
IBM Instana

Leverage automated APM to
accelerate CI/CD and boost
application performance

Contents 01 →
Executive summary

02 →
Change is the
new normal

03 →
Why manual
performance
management fails

04 →
Implementing
automated APM

05 →
Conclusion: Maximizing
CI/CD agility

06 →
Is IBM Instana right
for you?

01

Executive summary

Continuous integration and continuous
delivery (CI/CD) has become the goal for
applications at a majority of organizations.
Meanwhile, modern technologies such
as Docker and Kubernetes have become
preferred application environments.
Applications and their infrastructure are
therefore becoming increasingly dynamic,
constantly changing to meet scalability
requirements and fast-evolving functionality.

Unfortunately, the typical organization
still relies on performance monitoring
technology designed before CI/CD became
the ubiquitous application delivery
model. Older monitoring solutions require
significant manual effort from IT staff. This
not only wastes precious staff time but
also increases costs without delivering
meaningful visibility into applications
and infrastructure.

Adopting an automated performance
management strategy is the only practical
way organizations can break through
application challenges to capitalize on CI/
CD-powered application environments.

3Next chapterPrevious chapter

02

Change is the new normal

Everyone knows we live in a fast-
changing world. For IT organizations,
however, the fast-changing nature of
application environments is extreme.
The overwhelming mandate is clearly a
bias for speed. The faster a company can
deliver custom business applications,
the more value IT is delivering. This
simple reality drives the adoption of new
techniques and technologies, particularly
CI/CD to achieve faster delivery, better
business capability and improve the
quality for custom applications.

The final stage in the CI/CD cycle is
monitoring. Automated, seamless
application monitoring helps complete
the CI/CD cycle and restart the loop of
improving the application. The structure
of the application changes continuously
at every layer. New hosts come online
and disappear constantly with containers
making provisioning even more dynamic.

Developers continuously build and
provision completely new APIs and services
without checking with operations. Even the
application code can change because of
improvements or bug fixes at any moment.
The closer a team gets to CI/CD, the more
frequently these changes occur. That’s why
performance management configuration,
monitoring dashboards, dependency
mappings and alerting rules must evolve
automatically to keep pace with the
environment they’re monitoring. Otherwise,
IT teams lack accurate visibility into the
environments they manage, leaving the
organization at great risk of failure that
could impact users.

4Next chapterPrevious chapter

Change is the new normal

5Next chapterPrevious chapter

Complex dependencies
Constant changes in how and where
applications run can impact the actual
dependencies among different components.
Any specific service depends on a unique
vertical stack of software along with data
or processing from other services.

Why is it important to always understand
dependencies? It’s the basis for faster
troubleshooting. Finding the root cause
of an issue in complex environments
requires in-depth dependency analysis.
What’s causing slow or erroneous
requests? Requests span many
services across many frameworks and
infrastructures, so you need to know the
structural dependencies of every request
to answer that question. But as we know,
dependencies constantly change.

Manual interpretation of dependencies
is simply not feasible—especially when
dependencies change so quickly.
Even if operators succeed in mapping
dependencies at a moment in time, their
mappings will quickly become outdated.
What’s more, manual dependency
interpretation is a huge resource drain
that engages your best engineers.

he rise of dynamic applications
aster application development requires
odern technology for rapid construction

nd delivery of new services.

n particular, the CI/CD pipeline is a primary
rocess for supporting speed and quality.
n addition, to augment that process,
ew architectures such as containers,
icroservices, serverless computing

nd Kubernetes orchestration are being
onsidered and adopted.

ith more workloads moving to dynamic
echnologies—eight billion pulls on the
ocker hub in a month and 130 billion

otal pulls since the hub was launched
n 20141—there are new realities for
he pace and scale of change within
pplication environments.

The IT industry is consolidating around
CI/CD terminology and methodologies.
Meanwhile, public cloud platforms now offer
Kubernetes-managed container processing
as a service that is easily integrated into
CI/CD pipelines. Clearly, there are major
changes taking place in the world of
application construction and delivery.

T
F
m
a

I
p
I
n
m
a
c

W
t
D
t
i
t
a

03

Why manual performance
management fails

The challenges of manual performance
monitoring (APM)
Because traditional monitoring tools
weren’t designed for dynamic applications,
a new set of open-source technologies
has emerged to help development teams
manually set up their own monitoring
through manual coding. Whether providing
performance metrics, tracing paths of an
application or exposing other details of code,
these open-source monitoring tools create
their own set of challenges when it comes
to production performance monitoring.

To manually monitor the performance of
an application, engineers must complete
a long list of tasks.

– Write data collectors
– Perform manual code tracing to track

distributed requests
– Configure a data repository
– Identify and designate dependencies,

usually through reverse engineering

– Select data to correlate
– Build dashboards to visualize correlation
– Configure alerting rules and threshold

The biggest problem is that the people
capable of performing these tasks are
usually the highest skilled—and highest
paid—technicians and engineers in
the company.

In short, although open source implies
simplified performance management, too
many manual tasks are required, resulting in
deployment slowdowns, cost increases and
additional labor requirements. And that’s
before you look at the opportunity costs
of relegating your precious developers to
writing monitoring code instead of creating
business application code.

6Next chapterPrevious chapter

Why manual performance
management fails

7Next chapterPrevious chapter

The true effort of building your own
Historically, manually setting up a
monitoring system wasn’t a problem
because none of the components—
application code nor, application
infrastructure middleware, app servers
and so on—changed very often. IT would
provision a box, set its IP address, load
some software, set up the monitoring
and then never touch it again for years.

A similar situation applied to application
environments built on traditional
technologies. The number of application
instances and host servers running at any
given moment typically didn’t change. As
a result, manual configuration of the tech
stack in static environments worked fine
with little impact on the organization’s ability
to monitor and manage performance.

But when workloads move into dynamic
environments based on technologies
such as containers and on methodologies
such as CI/CD, manual performance
management strategies and build-it-
yourself solutions simply can’t keep up.
This is true for several reasons.

Rule deterioration
When your environment changes
constantly, the rules that your monitoring
tools use to determine the health of
applications and services need to change
continuously as well. If they don’t—which
is likely to happen if you depend on manual
intervention to update rules—the rules will
quickly deteriorate.

For example, when a new service is
deployed or an orchestrator moves
workloads, health check rules will cease
to accurately interpret environment
dependencies until the rules are updated.
If rules aren’t updated manually, monitoring
alerts and insights will be based on outdated
configurations. This deterioration undercuts
visibility and increases the risk of an
infrastructure or service failure.

Manual monitoring impedes speed
Tasks such as creating tracing and
monitoring code are too time consuming.
So is interpreting monitoring information
by hand and manually updating performance
management rules when application code or
environment architectures change.

Simply put, humans can’t support
rapidly changing environments without
automation. Attempting to manage
performance manually will significantly
slow down application release cycles.
And for the business, it can mean incorrect
use of the expensive expertise that your IT
staff represents.

04

Implementing
automated APM

If manual monitoring is so laborious, then
why hasn’t every organization automated
monitoring yet? There are actually three
reasons for this.

1. Until recently, fully automatic monitoring
technology did not exist.

2. Software engineers tend to code their
own solutions to problems, leading to the
monitoring-as-code approach, which can
be functional in the short term but is not
maintainable or scalable.

3. Teams try to use previous investments
in existing monitoring tools, hoping
they’ll work in their new high-speed
environments. But unfortunately,
they don’t.

With these reasons in mind, let’s take a
look at the capabilities that should be part
of a fully automated APM solution.

– Automatic discovery and monitoring
of the full infrastructure and application
stack. This is a key element of the CI/CD
process that is missing today and slowing
down the release process.

– Real-time complex dependency
mapping, with automatic updates
for any change. This is critical for root
cause analysis to address performance
issues quickly.

– Automatic, rapid identification of
performance problems. Quickly
identifying performance issues based
on automatic rule configuration and
monitoring is the only way to minimize
false positives and avoid application
delivery delays.

– Rule configuration and alerting that use
machine learning and AI to establish
dynamic baselines for healthy application
behavior, then identify anomalies based
on those baselines. This eliminates the
need for tedious configuration, monitoring
and data interpretation by humans while
minimizing false-positive alerts.

– Automatic monitoring setup which
includes agent deployment, code
instrumentation, infrastructure discovery
and more. Maximize the data collected
while minimizing the effort required from
human administrators to collect it.

Both existing performance management
tools and modern open source monitoring
tools lack this automation functionality.
Furthermore, both sets of tools require
too much manual configuration,
programming, setup and administration
to optimize monitoring.

8Next chapterPrevious chapter

05

Conclusion:
Maximizing
CI/CD agility

Is your CI/CD as agile as it could be?
Successful management of dynamic
application environments doesn’t end
with automated monitoring.

Your IT teams should continually assess
how well they have automated all
performance management tasks by asking
themselves the following questions:

– How long does it take to achieve
sufficient visibility into application
performance after we push out a
new release?

– How long does it take to update
monitoring rules when a new application
or service deployment occurs?

– How much time and effort do our
developers expend writing tracing code?

– How many performance or availability
incidents are we missing per month
or quarter?

– How are we handling alert storms—
those rapid streams of alerts in a short
period? Are we able to respond to each
alert effectively without suffering from
alert fatigue? Can we trace alerts quickly
to root causes so that we know when
multiple alerts are stemming from the
same underlying issue?

– Is our monitoring and performance
management process as automated
as the rest of the application delivery
pipeline? If not, how can we automate
it further?

Regardless of your IT team size, automation
is critical for an effective performance
management strategy so that you can
achieve high-speed delivery of new
business services.

IBM Instana™, the automated performance
management solution born in the age
of microservices, cloud computing and
containers can help you truly deliver on the
promise of CI/CD. Designed specifically to
manage the performance of dynamic CI/
CD-driven application environments, IBM
Instana uses AI and automation to deliver
comprehensive, actionable insight with no
manual effort.

9Next chapterPrevious chapter

06

Is IBM Instana right for you?

IBM Instana™ is an enterprise observability
platform that includes automated
application performance monitoring
capabilities. It’s designed for businesses
operating complex, modern, cloud-native
applications no matter where they
reside—on premises, in public and private
clouds, on mobile devices or in an IBM
zSystems™ environment.

IBM Instana helps you control modern
hybrid applications with AI-powered
discovery of deep contextual dependencies
inside hybrid applications. IBM Instana
also provides visibility into development
pipelines to help enable closed-loop
DevOps automation.

These capabilities provide actionable
feedback needed for clients as they
optimize application performance, enable
innovation and mitigate risk. These features
help DevOps increase efficiency and add
value to software delivery pipelines so
they can meet their service and business-
level objectives.

See the power of IBM Instana for yourself.
Sign up today for a free 14-day trial of
the full version of the product. No credit
card required.

10Next chapterPrevious chapter

IBM Instana free trial

Explore IBM Instana

https://www.instana.com/trial/
https://www.ibm.com/products/instana

11

1. Team DevClass, DevClass.com, “Docker knits
together Hub stats, says Pulls over 8 billion”,
5 February 2020.

© Copyright IBM Corporation 2023

IBM Corporation
New Orchard Road
Armonk, NY 10504

Produced in the United States of America
June 2023

IBM, the IBM logo, IBM Instana, and zSystems are
trademarks or registered trademarks of International
Business Machines Corporation, in the United States
and/or other countries. Other product and service
names might be trademarks of IBM or other companies.
A current list of IBM trademarks is available on
ibm.com/trademark.

This document is current as of the initial date of
publication and may be changed by IBM at any time.
Not all offerings are available in every country in
which IBM operates.

It is the user’s responsibility to evaluate and
verify the operation of any other products or
programs with IBM products and programs. THE
INFORMATION IN THIS DOCUMENT IS PROVIDED
“AS IS” WITHOUT ANY WARRANTY, EXPRESS OR
IMPLIED, INCLUDING WITHOUT ANY WARRANTIES
OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE AND ANY WARRANTY OR CONDITION OF
NON-INFRINGEMENT. IBM products are warranted
according to the terms and conditions of the
agreements under which they are provided.

http://ibm.com/trademark
https://devclass.com/2020/02/05/docker-knits-together-hub-stats-says-pulls-over-8-billion/
https://devclass.com/2020/02/05/docker-knits-together-hub-stats-says-pulls-over-8-billion/

	Endnotes

	Button 387:
	Button 388:
	Button 422:
	Button 424:
	Button 390:
	Button 391:
	Button 399:
	Button 400:
	Button 431:
	Button 432:
	Button 433:
	Button 401:
	Button 434:
	Button 435:
	Button 436:
	Button 437:
	Button 396:
	Button 397:
	Endnote 1:
	Endnote 2:
	Button 313:
	Endnote 4:

