
The power 
of enterprise 
observability in 
pre-production 
testing

IBM Instana



Contents 01 →
Introduction

02 →
Traditional 
pre-production methods

03 →
Introducing intricacy 
to the testing process

04 →
Enterprise observability 
is the answer

05 →
Enhance your 
testing process

06 →
Why IBM Instana?



Introduction

01

Traditional application performance 
monitoring (APM)  
Traditional APM tools focus on 
infrastructure monitoring, application 
dependencies, business transactions 
and user experience, and were designed 
to quickly identify, isolate and solve 
performance problems.
 
But as agile development, DevOps, multiple 
programming languages, new cloud-native 
technologies, and microservices-based 
applications have increased, traditional 
APM systems can no longer provide 
visibility into complex technologies. 

From APM to observability 
Observability is the logical evolution from 
traditional APM to meet the increasingly 
rapid, distributed and dynamic nature 
of cloud-native application deployments. 
Enterprise observability platforms 
perform a critical function for 
modern software development.

Through IBM Instana™, IBM brings a 
fully automated enterprise observability 
platform that delivers the context 
needed to take intelligent actions 
and ensure optimum application 
performance and deployments. 

3Next chapterPrevious chapter

The complexity of application testing
Application monitoring exists to prevent 
software issues from affecting customers. 
Today most applications are built using 
microservices to be more scalable, agile, 
and resilient, but despite their benefits, 
microservices require management 
and oversight. With a microservices 
architecture, each service operates 
independently from the others. Managing 
the entire system can be challenging. 

One example: the need to 
ensure the availability and optimal 
performance of all the constituent 
services within a microservices 
application. To solve this challenge, 
IT teams are deploying comprehensive 
monitoring and management to help 
prevent outages and failures that 
could occur in deploying software.



Traditional pre-production 
testing methods

02

Scenario tests
The most basic method is scenario 
testing, in which applications perform or 
receive transactions, so teams can get 
a performance baseline, and then test 
repeatedly to compare results to the 
baseline. This method allows for finding 
coding errors and agile corrections.

4Next chapterPrevious chapter

Throughout the development and 
deployment process, teams have 
many testing options at their disposal.  
Here are the most common methods:



	– Component testing: Test the behavior 
and resilience of one microservice. You 
can mimic any calls to external services, 
but you’re not testing the microservice’s 
interaction with the infrastructure or 
other services. 

	– Contract testing: An integrated contract 
test verifies whether APIs and other 
resources provided by a microservice 
are behaving as expected. A test suite is 
limited in scope to only the service that 
is in use. As changes are introduced to 
the microservice, this test reveals their 
impact on other services.

Manual fault injection
A third set of tests involves fault injection. 
Errors are added manually to a part of the 
application. You could add a path change 
in a Kubernetes cluster that causes a 
503 error when it tries to orchestrate 
containers, or you could increase CPU 
usage. You can vary the duration of the 
errors or adjust other parameters.

5Next chapterPrevious chapter

Traditional pre-production 
testing methods

Validation tests
A second set of tests involves validation 
tests, which focus on individual application 
components and range in complexity 
approaching end-to-end tests. Here are 
some common tests: 

	– Unit testing: Identify the smallest 
application component you can test 
to determine whether it behaves the 
way should by itself, not with other 
components or its environment. 

	– Integration testing: Used to test basic 
success and error paths over a network 
boundary. These tests validate that 
the communication paths between 
subsystems work.



Introducing intricacy 
to the testing process 

03

Scriptless tests  
Scripted tests, validation tests, and 
traditional fault injection all follow 
predictable patterns. Microservices-
based applications use independent 
application components hosted in 
containers. With Kubernetes or another 
container orchestrator, containers can 
suddenly appear and blink out of existence 
automatically as conditions change.

The result is incredible complexity, leading 
to some more sophisticated tests.

Unscripted tests and AI/ML  
Unscripted tests randomize 
transactions for the application 
to perform and upstream activities 
that can affect it. These tests can also 
be used to test the response of site 
reliability engineers (SREs) and their 
teams, which can also encourage 
more testable code. 

Scriptless tests don’t have to be 
purely randomized either. Using 
AI/ML, organizations can run new 
tests based on current conditions, 
performance against previous tests, 
changes introduced manually, or 
other parameters. 

6Next chapterPrevious chapter



Enterprise observability 
is the answer 

04

7Next chapterPrevious chapter

	– Automated context: When you receive 
an alert, it’s one thing to understand the 
simple context. Knowing which part of 
your environment is failing separates 
enterprise observability from traditional 
APM, which generally only tells you 
whether the application is performing 
well or not.  

	– Correlation: Sometimes an application 
fails when nothing is wrong with 
the application. There could be an 
infrastructure problem or other 
services further upstream required 
by the application to run. Often, APM 
tools also miss which downstream 
services could be degraded or even fail 
because of the application’s failure. 
Without correlation capabilities, your 

teams could burn valuable time trying 
to find dependencies—or worse, miss 
dependencies completely. Context 
and correlation inform the suggested 
remediation actions that enterprise 
observability solutions produce.

Enterprise observability in pre-production  
Automated testing during the 
development cycle is standard, but 
scripted fault injection tests are no 
longer good enough. Organizations need 
to do something different to effectively 
test microservices-based applications 
to prepare for application deployment. 
Artificial Intelligence (AI) can provide 
automated unscripted tests that help to 
ensure greater resilience for applications 
before they hit production. 

Automation and context for correlation  
When monitoring tools can’t deliver the 
meaningful results SREs need to optimize 
their applications, it’s time to apply a 
new approach. Enterprise observability 
separates from traditional APM tools in 
three crucial ways: automation, context, 
and actionable intelligence.

	– Automatic discovery: Immediate, 
automatic discovery of all components 
across a company’s environment and 
extended ecosystem. Automated 
discovery saves time spent on manual 
configuration, and it greatly limits the  
risk of missing components or entire 
parts of the architecture.



Enhance your 
testing process 

05

8Next chapterPrevious chapter

	– Test in cloud-based environments: 
Cloud platforms free up resources 
by allocating resources dynamically 
only as tests need them. For many 
organizations, cloud-based testing in 
various environments also creates a 
more realistic result since they are  
using software as a service (SaaS)  
on a platform on a service (PaaS). 

	– Vary your tests: Apply different scripts 
and environments, as well as web 
browsers for web applications, to test 
code. Apply different usage patterns 
and test in various geographies. You can 
use Kubernetes to orchestrate new test 
environments. However, diagnosis of new 
issues becomes more challenging.

The most complex tests and the most 
challenging methodologies are often most 
closely aligned with actual production 
environments. Given this, how can 
organizations achieve the best results 
from tests? The answer lies in enterprise 
observability.

Setting up a series of automated tests 
in which each test repeatedly calls a 
microservice enables a baseline of 
expected performance to compare results. 
The narrow scope limits the value of the 
results. Here are some ideas to improve 
testing to produce more valuable content:

	– Test different components of the 
application: Run new test scripts each 
time a microservice refreshes and 
compare the outputs of the new code 
with previous outputs.



One-second granularity: A new 
infrastructure snapshot every second 
ensures up-to-date measurements every 
time and doesn’t miss changes that might 
take place during longer times between 
measurements.

Request tracing: During end-to-end traces, 
IBM Instana traces every request through 
all the systems it moves through. This 
tracing is automated, freeing up time for 
your developers. Following traces through 
systems and architectures unveils changes 
under more circumstances and helps 
your teams find and fix more issues. By 
delivering full context around each trace, 
IBM Instana gives you the information 
you need to triage more quickly and 
create more resilient applications before 
deploying to production.

IBM Instana advantages 
in pre-production
IBM Instana™ adds functionality to make 
testing work across the application 
spectrum. To make pre-production testing 
effective for launching new products and 
features, the same enterprise observability 
functionality is extremely valuable:

Automated discovery: IBM Instana 
automatically discovers every application 
and infrastructure component the very 
moment it is installed. You can start 
benchmarking and comparing 
all application components, nodes, 
containers, and architectural 
components almost instantly. 

Architecture monitoring: By monitoring 
your architecture and your applications, 
IBM Instana gives a better view of the 
impact of your applications on your 
architectural components, and the effects 
of your architecture on your applications. 
Seeing upstream and downstream effects 
enables you to identify the root cause of 
issues very quickly, limiting time spent on 
triage and issue resolution.  

No sampling ever: The whole point of 
testing is to verify the performance of 
applications every time they act. Legacy 
applications spot-check transactions 
and sample only elements of traces. IBM 
Instana never samples, so it delivers an 
enhanced version of the same metrics.

Enhance your 
testing process

9Next chapterPrevious chapter



Why IBM Instana? 

06

With DevOps, SRE, Platform, ITOps, 
and Developer teams under pressure 
to keep applications performant while 
operating faster and smarter than ever, 
observability must be easy, simple, and 
transcend technology stacks to achieve 
the modernization the business demands. 

To operate even more quickly and 
proactively, these teams need observability 
that is powered by AI and operating on 
precise high-fidelity data—no sampling, 
which in the cloud native world can miss 
critical anomalies that impact end-users.

IBM Instana democratizes observability 
by providing a solution that anyone 
across DevOps, SRE, Platform, ITOps, and 
Development can use to get the data they 
want with the context they need. 

IBM Instana offers simple and predictable 
pricing, ensures no lock-in due to intense 
upfront setups, and has no limits on what 
you and your teams observe. Advanced skill 
sets are not required and getting started 
takes minutes.

10Next chapterPrevious chapter



Purpose-built for cloud native yet 
technology-agnostic, this solution 
automatically and continuously provides 
high-fidelity data—1-second granularity 
and end-to-end traces—with the context 
of logical and physical dependencies 
across mobile, web, applications, 
and infrastructure. 

This approach provides immediate 
feedback on new, more frequent 
deployments, ensuring issues are 
identified before they become 
incidents, while configurable smart 
alerts further enable proactive 
performance management.

Explore IBM Instana

Try IBM Instana

Why IBM Instana?

11Next chapterPrevious chapter

IBM Instana™ provides real-time 
observability for your organization’s 
data, to all your teams, with the 
context you need. It delivers quick 
time to value while ensuring your 
observability strategy can keep 
up with the dynamic complexity 
of today’s environments and 
tomorrow’s. From mobile to 
mainframe, IBM Instana supports 
over 250 technologies and growing.

https://www.ibm.com/products/instana
https://www.instana.com/trial/


© Copyright IBM Corporation 2023

IBM Corporation
New Orchard Road
Armonk, NY 10504

Produced in the United States of America
May 2023
 
IBM, the IBM logo, IBM Instana and IBM Z are 
trademarks or registered trademarks of International 
Business Machines Corporation, in the United 
States and/or other countries. Other product and 
service names might be trademarks of IBM or other 
companies. A current list of IBM trademarks is 
available on ibm.com/trademark.

This document is current as of the initial date of 
publication and may be changed by IBM at any time. 
Not all offerings are available in every country in which 
IBM operates.

It is the user’s responsibility to evaluate and verify 
the operation of any other products or programs with 
IBM products and programs. THE INFORMATION IN 
THIS DOCUMENT IS PROVIDED “AS IS” WITHOUT 
ANY WARRANTY, EXPRESS OR IMPLIED, INCLUDING 
WITHOUT ANY WARRANTIES OF MERCHANTABILITY, 
FITNESS FOR A PARTICULAR PURPOSE AND ANY 
WARRANTY OR CONDITION OF NON-INFRINGEMENT. 
IBM products are warranted according to the terms 
and conditions of the agreements under which they 
are provided.

12


	Button 385: 
	Button 386: 
	Button 417: 
	Button 418: 
	Button 446: 
	Button 447: 
	Button 421: 
	Button 422: 
	Button 423: 
	Button 424: 
	Button 437: 
	Button 438: 
	Button 429: 
	Button 430: 
	Button 431: 
	Button 432: 
	Button 433: 
	Button 434: 
	Endnote 3: 
	Endnote 5: 
	Button 414: 
	Endnote 6: 


