

Advantages of running
EDB PostgreSQL on
IBM Power
An overview of performance aspects of running an
open source database such as PostgreSQL within
a modernized banking application

IBM Power

Advantages of running EDB PostgreSQL on IBM Power

2

Table of contents
Introduction .. 3

Database deployment ... 3

Infrastructure .. 3

Software stack ... 5

Workload ... 5

Performance tests and results ... 7

Power results .. 9

x86 results ... 11

Competitive advantage of IBM Power .. 12

Impact of workload and database options .. 12

Summary ... 14

About the authors ... 14

IBM Power

Advantages of running EDB PostgreSQL on IBM Power

3

Introduction
EDB PostgreSQL, or simply, Postgres, is an open source relational database management
system (RDBMS) known for its reliability and robustness. As an open source database,
PostgresSQL delivers a level of trust important to the banking industry. It has an active
community that continuously contributes to its development, ensuring regular updates and
improvements. PostgreSQL remains a top choice for businesses and organizations looking
for a reliable and scalable database solution. PostgreSQL also adheres to SQL standards
and offers a wide range of advanced features, such as JSON support and geospatial data
processing, and it enables easier migration from commercial databases such as Oracle.

Red Hat OpenShift Container Platform (OCP) automates the deployment and management
of containerized applications which enables agility, portability, scalability, security, and
more for hybrid cloud.

In this paper, we examine the performance characteristics of Postgres with applications
running with OCP on two different hardware platforms: IBM Power and x86. We also share
the techniques we used to tune the operating environment and the database engine.

Database deployment
The underlying infrastructure for a database is an important factor for performance,
especially when the database is used within a hybrid cloud environment where the
database may be on a different system than the application. To measure Postgres
performance in a simulated hybrid cloud environment, we ran a containerized application
in an OCP cluster accessing the database system which was configured outside of the OCP
cluster. Specifically, we ran a single instance of Postgres running in a Linux virtual machine
(VM) accessed by multiple pods running the pgbench workload on the OCP cluster with a
private 25 G-based SRIOV network.

Infrastructure
Two different hardware platforms were used to run the performance tests. However, the
configuration of the database and workload was done on the same server. The diagram

IBM Power

Advantages of running EDB PostgreSQL on IBM Power 4

below depicts the high-level view of the infrastructure configuration applicable to both
platforms.

A single system was used for both platforms: The workload to stress the database was
deployed on the OCP worker node and the database was installed on a stand-alone Linux
VM. The two VMs were co-located on the same system. The Linux VM is not part of the
OCP cluster, it just runs within the same physical system where the OCP cluster is also
running. The OCP worker node connects to the database through a private 25 G SRIOV
based network. The database on the Linux VM was based on a dedicated NVMe storage
device. Note that the Power VMs used half the number of cores as the x86 VMs.

Following are descriptions of the systems used for the tests:

IBM Power10
Model: IBM Power S1022 (9105-22A)

Number of physical cores: 32

Number of sockets: 2

Total system memory: 1,024 GB

The first socket of thePower10 system had a total of 16 physical cores, where all 16 cores
were equally used to run the OCP worker node and the database Linux VM.

Linux VMPostgreSQL

Pod

Pod

OCP worker node

Red Hat O
penShift

Container P
latofrm

Private network

IBM Power

Advantages of running EDB PostgreSQL on IBM Power 5

Intel x86 (Ice Lake)
Model: Intel Xeon Platinum 8380 CPU @ 2.30GHz

Number of physical cores: 80

Number of sockets: 2

Total system memory: 1,024 GB

The first socket of the x86 system had a total of 40 physical cores, where 32 cores were
equally used to run the OCP worker node and the database Linux VM.

Software stack
Database OS: Red Hat Enterprise Linux (RHEL) 8.6

Database Kernel: 4.18.0-425.el8.ppc64le / 4.18.0-372.9.1.el8.x86_64

Database storage: Local NVMe

Database file system: Ext4

OpenShift Container Platform (OCP): 4.11.25

Pgbench Version: PostgreSQL 14.4 (pgbench (14.4.0, server 14.4.0))

Workload
pgbench is a benchmarking tool used for PostgreSQL which can evaluate performance by
simulating workloads with multiple concurrent database clients executing sets of
transactions against the database. The default workload in pgbench consists of four types
of transactions: selects, updates, inserts, and deletes. These transactions are performed on
a predefined set of tables with synthetic data generated by pgbench.

The workload distribution can be adjusted by specifying the scaling factor, which
determines the number of rows in the tables. We used the scaling factor of 1000 which set
the database size to approximately 16 GB. The workload can also be customized by

https://www.postgresql.org/docs/current/pgbench.html

IBM Power

Advantages of running EDB PostgreSQL on IBM Power

6

modifying the transaction mix, transaction weight, and the number of concurrent clients.

We used the default transaction mix and simple update to measure the performance. The
following database commands shows the database tables and sizes tuned for the
performance tests:

$/usr/edb/as14/bin/psql -d mydb -c "SELECT pg_size_pretty(
pg_database_size('mydb'));"
pg_size_pretty

16 GB
(1 row)

$/usr/edb/as14/bin/psql mydb
psql (14.4.0, server 14.4.0)
Type "help" for help.

mydb-# \d+
List of relations
 Schema | Name | Type | Owner | Persistence | Access
method | Size | Description
--------+------------------+-------+--------------+-------------+------------
---+---------+-------------
 public | pgbench_accounts | table | enterprisedb | permanent | heap
| 13 GB |
 public | pgbench_branches | table | enterprisedb | permanent | heap
| 12 MB |
 public | pgbench_history | table | enterprisedb | permanent | heap
| 1394 MB |
 public | pgbench_tellers | table | enterprisedb | permanent | heap
| 14 MB |
(4 rows)

The default transaction mix test using -b option:

BEGIN;
UPDATE pgbench_accounts SET abalance = abalance + :delta WHERE aid = :aid;
SELECT abalance FROM pgbench_accounts WHERE aid = :aid;
UPDATE pgbench_tellers SET tbalance = tbalance + :delta WHERE tid = :tid;
UPDATE pgbench_branches SET bbalance = bbalance + :delta WHERE bid = :bid;
INSERT INTO pgbench_history (tid, bid, aid, delta, mtime) VALUES (:tid, :bid,
:aid, :delta, CURRENT_TIMESTAMP);
END;

The simple update built-in mix is achieved by using the -N option, where the following two
SQL statements are not included:

IBM Power

Advantages of running EDB PostgreSQL on IBM Power 7

UPDATE pgbench_branches SET bbalance = bbalance + :delta WHERE bid = :bid;
INSERT INTO pgbench_history (tid, bid, aid, delta, mtime) VALUES (:tid, :bid,
:aid, :delta,

The Read only test can be executed with the -S option where the only the following
statement is used:

SELECT abalance FROM pgbench_accounts WHERE aid = :aid;

The database size can be adjusted by increasing or decreasing the number of rows using
the -s (scale factor) option. For the performance tests, the scale factor value of 1000
resulted in a 16 GB database size. With the scale factor set to 2000, the size will be
approximately 30 GB.

On the pgbench workload side, the number of clients and threads were configured using
the -C and -J options. The number of clients and threads per each instance of pgbench
was set at 7.

Performance tests and results
Every application that accesses the database will have its own requirements and criteria.
Some might only read data; however, most workloads will require read, write, and update
transactions.

The pgbench workload scripts using the -b option provides a mixture of read, write, and
update transactions which is what we primarily used in our performance tests.

As noted, the infrastructure used to run the tests were based on two different hardware
platforms, however the workload configurations were identical: The pgbench workload
running in the OCP pods accessing the database running in the Linux VM outside of OCP.
Various load tests were done to measure the performance with different resource
configurations. All the performance measurements are representative of the Linux VM’s
database. Following are the load types for both infrastructures:

IBM Power

Advantages of running EDB PostgreSQL on IBM Power 8

Power platform
The pgbench workload on the OCP worker node had three different test configurations:

• 16 pods with 4 vCPU and 14 G memory

• 32 pods with 2 vCPU and 7 G memory

• 64 pods with 1 vCPU and 3.5 G memory

The database on the Linux VM had a single instance of PostgreSQL database using the 8
physical cores at SMT8 based on Ext4 file system with the following characteristics:

• Block size of file system: 64 KB (stat -f /dev/nvme1n1)

• Sector size of file system: 4 KB (fdisk -l)

• Operating System page size: 64 KB (getconf PAGE_SIZE)

x86 platform
The pgbench workload on the OCP worker node:

• 16 pods with 2 vCPU and 14 G memory

• 32 pods with 1 VCPU vCPU and 7 G memory

The database on the Linux VM had a single instance of PostgreSQL database using the 16
physical cores at hyperthreading based on Ext4 file system and with the following
characteristics:

• Block size of file system: 4 KB (stat -f /dev/nvme1n1)

• Sector size of file system: 512 KB (fdisk -l)

• Operating System page size: 4 KB (getconf PAGE_SIZE)

For all tests, a baseline was captured using the default PostgreSQL database configuration

IBM Power

Advantages of running EDB PostgreSQL on IBM Power 9

as outlined at the following link:
https://github.com/postgres/postgres/blob/master/src/backend/utils/misc/postgresql.con
f.sample.
There are several PostgreSQL databases tunables that impact the performance, however
the following two variables had the most impact in our testing:

• The max_wal_size refers to the maximum size allowed for the Write-Ahead Log in a
PostgreSQL database management system. The Write-Ahead Log is a crucial
component for ensuring data integrity and durability. It records changes to the
database before they are applied, providing a recovery mechanism in case of system
failures. Setting an appropriate max WAL size can have performance benefits. When
the max WAL size is too small, frequent log rotations occur, which can introduce
overhead due to disk writes and other related operations. On the other hand, if the max
WAL size is too large, it might result in longer recovery times during a crash or failover
scenario.
Having max_wal_size too small can cause checkpoints to happen very frequently
where during the checkpoints all the dirty buffers in shared buffers need to be written
out. The first time a page is changed after a checkpoint, the entire page is written to the
WAL rather than just the change. On a busy system, this can be a very significant burst
of WAL activity.

• The checkpoint_timeout parameter determines the maximum time interval
between automatic checkpoints, which are points in time when the system flushes
dirty data from memory to disk to ensure data durability and prevent data loss in
case of a crash. A longer checkpoint timeout, intervals can lead to improved write
throughput. Frequent checkpoints can introduce overhead and contention, affecting
the overall write performance, especially in scenarios with high write loads. By
increasing the timeout, you allow the system to perform more writes before
initiating a checkpoint, potentially reducing the checkpoint-related overhead. Power
results

SMT8 TPC-B mixed results with default and tuned configurations
The following table shows the database performance measurements using default and
tuned configurations with SMT8 and database size of 16 GB. To read the content of this

https://github.com/postgres/postgres/blob/master/src/backend/utils/misc/postgresql.conf.sample
https://github.com/postgres/postgres/blob/master/src/backend/utils/misc/postgresql.conf.sample

IBM Power

Advantages of running EDB PostgreSQL on IBM Power

10

table, the far-left column, indicates weather whether the test was done using the default or
tuned configuration. The next two columns show the number of pgbench workload pods
and number of clients within each pod. For example, the first row, with 16 pods and 7
clients per pod translates into 112 total number of database connections.

The reminder of the columns in this table are the performance measurements of the
PostgreSQL database running on the Linux VM, where the optimal performance is achieved
with 32 pods in tuned configuration. The other important observation is the effect of the
workload on the database locking, where the amount of database locking is increased with
the increase of the load.

Test PODs C/J TPS LAT CPU % SMT Row
Exclusive

Access
Share

Exclusive
Lock

Default 16 7 56470.1 1.98 67.34 8 622 203 219
Default 32 7 55241.3 4.05 72.05 8 842 271 353
Default 64 7 51978 8.61 75.2 8 2993 897 995
Tune 16 7 60642.3 1.84 70.12 8 427 141 187
Tune 32 7 61963.9 3.61 79.49 8 915 254 361
Tune 64 7 57459.9 7.79 83.05 8 2095 623 722

SMT4 and SMT2 TPC-B mixed results with default and tuned
configurations
The number of available CPUs can have an impact on the number of database transactions
per second, and generally the higher the number of CPUs, the higher the transactions per
seconds throughput. However, as shown in above table, with 64 pods accessing the
database, the transactions per second drops due to the amount of database locking. With
more database tuning, database locking can be reduced, however as noted before, we
tried several other database tunable knobs, and could not get benefits, except for the two
tunables mentioned previously. We believe the locking could be due to the implementation
of PostgreSQL’s internal interaction with the higher number of CPUs. We plan to engage
with PostgreSQL development team to explore opportunities to enhance the performance.

The unique SMT setting in Power systems allows you to adjust the available CPUs within
the operating system environment. To test the effect of the number of CPUs in database
locking, we changed the SMT setting for the Linux VM to 4 and 2, to reduce the number of

IBM Power

Advantages of running EDB PostgreSQL on IBM Power

11

available CPUs. Note that because of this change, we did not run the 64 pods test scenario.

The following table shows the database performance measurements using default and
tuned configurations with SMT4 and SMT2 and database size of 16 GB. Note the increase
in the transactions per seconds with tuned configuration was similar to the SMT8 results.
The amount of database locking does not improve with lower SMT, as we hoped, however
that could be due to the much higher CPU utilization with lower SMT levels.

Test PODs C/J TPS LAT CPU % SMT Row
Exclusive

Access
Share

Exclusive
Lock

Default 16 7 50499.4 2.21 84.04 4 339 115 185

Default 32 7 48678.2 4.6 87.52 4 971 311 381

Tune 16 7 51555.7 2.17 85.5 4 646 207 223

Tune 32 7 49861.2 4.49 89.03 4 920 281 393

x86 results
Hyperthreaded TPC-B mixed results with default and tuned
configurations
As outlined before, the configuration of the workload and test methodologies between the
two platform were identical. The following table shows the database performance
measurements for x86 using default and tuned configurations with hyperthreading and
database size of 16 GB.

Test Core vCPU PODS C/J TPS Lat CPU
%

SMT Row
Exclusive

Access
Share

Exclusive
Lock

No
Tune

16 32 16 7 46978.66 2.38 91.73 2 454 146 189

No
Tune

16 32 32 7 44477.46 5.03 93 2 985 334 404

Tune 16 32 16 7 47678.65 2.34 92.36 2 571 191 219
Tune 16 32 32 7 45570.24 4.91 93.63 2 1152 375 431

IBM Power

Advantages of running EDB PostgreSQL on IBM Power

12

Competitive advantage of IBM Power
SMT8 and hyperthreaded TPC-B mixed results with tuned
configuration comparison
The Power platform is known for its high availability, and security aspects making it an
ideal database server and the performance comparison of the two platform with respect to
the number of transactions in our test does show the advantage of the Power platform as a
database server. The following table shows the results we achieved using the tuned
configuration that we previously discussed.

To compare the load with 32 pods, the 16 physical cores of the x86 platform
produced 45570.24 transaction per second, whereas the 8 physical cores of Power
produced 61963.90 transactions per second. Considering the difference in TPS with
respect to the used physical cores, there is a 2.72 X per core advantage for the Power
platform to run PostgreSQL database transactions.

System PODs C/J TPS LAT CPU % SMT Row
Exclusive

Access
Share

Exclusive
Lock

Power 16 7 60642.3 1.84 70.12 8 427 141 187
Power 32 7 61963.9 3.61 79.49 8 915 254 361
x86 16 7 47678.65 2.34 92.36 2 571 191 219
x86 32 7 45570.24 4.91 93.63 2 1152 375 431

Impact of workload and database
options
pgbench -N option
As described earlier, the pgbench workload allows different SQL operations to be used
when running the load. Using the -N option, there is only a single UPDATE SQL operation
used. Note that using -N option makes the test case less like TPC-B, however we tested
this option to measure the amount of contention on the tables, and its impact on the
amount of database locking. Running 64 pods against the SMT8 based database with

IBM Power

Advantages of running EDB PostgreSQL on IBM Power

13

default configuration, there is almost 20% increase in performance and decrease in
number of database lock. The results highlight the effect of database locking and its
impact on the overall performance.

EXT4 file
System

PODs
Clients

C/J TPS LAT CPU % SMT Row
Exclusive

Access
Share

Exclusive
Lock

Without -N 64 7 51978 8.61 75.2 8 2993 897 995
With -N 64 7 62874.62 7.12 59.2 8 1093 638 782

fsync on/off
Another commonly used option for the PostgreSQL database is the fsync setting which
ensures that all updates are physically written to disk so that database cluster can recover
to a consistent state after an operating system or hardware crash. Setting this option to off
can benefit performance. Running 64 pods against the SMT8 based database with default
configuration resulted in 15% performance benefit.

LTC patch PODs
Clients

C/J TPS LAT(ms) CPU % SMT Row
Exclusive

Access
Share

Exclusive
Lock

fsync Off 64 7 66106.3 6.77 88.08 8 2073 674 829
fsync On 64 7 57459.9 7.79 83.05 8 2095 623 722

SRIOV based network adapter
There are several variables in the underlying infrastructure that could impact the
performance of applications. The network configuration is one of those variables that we
examined. With reference to the infrastructure description noted earlier in this paper, we
focused on the network connection between the OCP cluster where the pgbench workload
runs and the Linux VM where the PostgreSQL database runs.

On both platforms, the SRIOV based network communication between the OCP worker
node and Linux VM were based on a single 25 G adapter with 2 physical ports, where the
Virtual Functions (VF) used for both OCP worker nodes and Linux VMs were based on a
single physical port. We used the VF from two different 25 G network adapters to measure
the impact of the network configuration. The table below shows around 4% performance
improvement when the VFs were from a single port of a single 25 G adapter.

IBM Power

Advantages of running EDB PostgreSQL on IBM Power

14

Network
Type

PODs
Clients

C/J TPS LAT(ms) CPU % SMT Row
Exclusive

Access
Share

Exclusive
Lock

Diff N/W
Adapter

64 7 50080 8.9 71.62 8 1691 503 806

Same N/W
adapter

64 7 51978 8.61 75.2 8 2993 897 995

Summary
The Power platform's architecture and unique hardware capabilities, along with its
processing power and memory capacity, deliver superior performance for database-
intensive workloads with PostgreSQL, as we’ve demonstrated with our testing. Couple this
performance with the Power platform’s reliability and PostgreSQL on Power should be
recognized as a preferred choice for businesses seeking a dependable and high-
performing solution to meet their evolving data needs.

About the authors
Mel Bakhshi is a senior Power system performance analyst in IBM infrastructure
Organization. He has experience in systems architecture design, distributed database,
capacity planning and sizing of the hybrid cloud environment. You can reach Mel at
melb@ca.ibm.com.

Vijay K Puliyala is a Power system performance analyst in IBM infrastructure Organization.
He has more than 10 years’ experience working iwht the IBM Power System platform. You
can reach Vijay Kumar at vpuliya@in.ibm.com.

http://linkedin.com/in/mbakhshi
mailto:melb@ca.ibm.com
mailto:vpuliya@in.ibm.com

IBM Power

Advantages of running EDB PostgreSQL on IBM Power

15

© Copyright IBM Corporation 2023

IBM Corporation New Orchard Road Armonk, NY 10504

Produced in the
United States of America
August 2023

IBM and the IBM logo are trademarks of International Business
Machines Corp., registered in many jurisdictions worldwide. Other product and service names might be trademarks of IBM or other companies. A
current list of IBM trademark is available on the Web at “Copyright and trademark information” at ibm.com/trademark.

This document is current as of the initial date of publication and may be changed by IBM at any time. Not all offerings are available in every
country in which
IBM operates.

THE INFORMATION IN THIS DOCUMENT IS PROVIDED “AS IS” WITHOUT ANY WARRANTY, EXPRESS OR IMPLIED, INCLUDING WITHOUT ANY
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND ANY WARRANTY
OR CONDITION OF NON-INFRINGEMENT. IBM products are warranted according to the terms and conditions of the agreements under which
they are provided.

	Table of contents
	Introduction
	Database deployment
	Infrastructure
	IBM Power10
	Intel x86 (Ice Lake)

	Software stack
	Workload
	Performance tests and results
	Power platform
	x86 platform
	SMT8 TPC-B mixed results with default and tuned configurations

	x86 results
	Hyperthreaded TPC-B mixed results with default and tuned configurations

	Competitive advantage of IBM Power
	SMT8 and hyperthreaded TPC-B mixed results with tuned configuration comparison

	Impact of workload and database options
	pgbench -N option
	fsync on/off
	SRIOV based network adapter

	Summary
	About the authors

