
IBM Instana

Boost observability to
streamline application
modernization

Contents 01 →
Overview

02 →
Elements of application
modernization

03 →
Beginning the
modernization journey

04 →
Benefits of modernizing
applications

05 →
The mistake of not
modernizing

06 →
The role of observability

07 →
IBM Instana enterprise
observability

08 →
Is IBM Instana right
for you?

01

Overview

Everyone agrees application modernization
is a hot topic. And one that most enterprises
are discussing or will be soon. Application
modernization is an involved process that
includes an assessment of your current app
portfolios, determining which ones are most
critical to be modernized, then formulating
a cost-effective plan to take action.
Unfortunately, the reality of application
modernization is usually more complex
than what developer advocates convey on
social media.

While container-based microservice
applications have gained traction, many
legacy applications still require migration.
On-premises infrastructure and monolithic
applications are often the starting point,
with cloud-native applications being the
end goal. However, each organization needs
to chart its unique course based on its
current state, requirements and feasibility.
Significant migration is already taking
place and is expected to increase in the
coming years.

3Next chapterPrevious chapter

02

Elements of
application
modernization

Code
Writing and updating code for an application
is an arduous task. Just getting it out the
door is challenging. However, Murphy’s Law
tell us that eventually, the application will
need to be updated while the code owner
is unavailable. The owner of the application
may also leave the company and no longer
be available.

The new person could be in for a rude
surprise. Custom code, personal comments,
odd ordering, no comments, not using
accepted syntax and poor formatting can
all turn simple tasks into detective work.
Outdated Java language could disable
critical integrations on your website.
And that could damage the business.

Application components
A monolithic application on bare metal
servers can’t become cloud native by
magic. The application needs to be broken
into microservices, its components placed
into containers and those containers
orchestrated with a tool like Kubernetes.

Just that process is a lot of work but it does
provide a start for application components.
The more complex the components, the
more time that’s required of developers and
engineers, which often creates urgency to
move to a cloud hosting service. Let them
manage the infrastructure so your team can
manage the applications.

Infrastructure
Remember when we stated that code,
component and infrastructure changes can
happen in parallel? If you’re migrating an
application to a cloud environment, you
have several infrastructure application
component options.

– Rehost. Lift and shift the application
and rehost it in the cloud.

– Replatform. Host the application in the
cloud and make minor infrastructure
changes.

– Repurchase. Purchase software
as a service (SaaS) versions of
your applications.

– Refactor. Rewrite some or all of an
application and possibly deploy a
new application architecture, such as
converting a service-oriented architecture
(SOA) application to containers.

4Next chapterPrevious chapter

03

Beginning the
modernization
journey

Where do you start? It depends on where
you are. Generally, you want to move to
the next step on the sliding scale toward
cloud native, but each step has its own set
of challenges.

You are here Your next step

Bare metal, Virtualized,
on premises on premises

Virtualized, Data centers
on premises

Data centers Private cloud

Private cloud Public cloud

Public cloud Hybrid cloud

Hybrid cloud Cloud native

Determining the success of each step in
the process requires both a benchmark
measurement of application performance
before modernization and a new
measurement for comparison after.
Maintaining visibility to collect the same set
of metrics at each stage can be challenging
for some application performance
monitoring (APM) tools.

Defining legacy for this ebook
The phrase legacy application could have
several different definitions. For this ebook,
we’re providing a definition of legacy
applications that makes it easier for us to
use legacy and legacy application than the
longer, fully qualified name.

In this discussion, legacy application will
mean some form of a Java Enterprise Edition
(Java EE) or .NET (dot net) application,
either deployed as a monolith or in an SOA
environment. For that purpose, this ebook
might also refer to Generation 1 and 2 APM
tools as legacy monitoring or legacy APM.
Any discussions of other legacy tools will be
called out specifically.

5Next chapterPrevious chapter

04

Benefits of modernizing
applications

Migrating code, application components and
infrastructure involves complex decisions
and requires a great deal of planning.
Considering the difficulty, is this something
you’re prepared to take on? Here’s why
you should.

Modernizing applications is a key part of
the digital transformation journey which
helps automate manual processes.
Automation can have a positive impact on
both service performance and maximizing
human resources. Processes that require
frequent manual intervention can be slower,
subject to more errors and more expensive
to operate. Here are some reasons for
modernizing applications.

– Optimize developer time.
– Accelerate innovation and the

continuous integration, continuous
delivery (CICD) pipeline.

– Reduce costs and redundancy.
– Become more responsive to user needs.
– Build more uniformity into the

organization and processes.
– Deprecate older environments.
– Resolve issues quicker.

6Next chapterPrevious chapter

Benefits of modernizing applications

7Next chapterPrevious chapter

Optimize developer time
Many legacy applications are based in Java
or .NET, but some lack the sophistication
of newer applications. Updates and
routine maintenance can be difficult for
development teams. The lack of historical
knowledge can make one missing developer
a bottleneck for all work on an application.

As one developer takes over for another,
the new developer can piece together an
application with fixes and patches in that
developer’s own style. As a result, the
inconsistencies are overwhelming, such as
links to JavaScript function files in some
places and JavaScript directly in the code
in others. Simple fixes turn into hours spent
poring over code to find the needle in
the haystack.

When developers apply rigor and user-
experience (UX) principles to their code,
it’s easier for anyone to work with the code
or, better yet, let you automate routine
work. Comments define what each section
references in the application. Scripts and
style sheets indicate what those elements
do. And whether the originating developer
uses tabs or spaces, it’s consistent.

The result is less time figuring out code
and more time doing work, less stress
and more accomplishment, and better
team performance.

Accelerate innovation and the
CICD pipeline
In most cases, older applications are less
resilient. As a result, developers often spend
too much time dealing with emergencies
to keep the application running instead of
innovating for customers.

When developers complete more work
early in a development project, they start
a virtuous cycle of resource allocation that
helps keep projects on time and reduce
errors. By contrast, when schedules slip,
they start a vicious cycle of scrambling to
address emergencies. That means devs
run tests at each stage manually instead
of running continuous automated tests.
They manually instrument code instead of
automating it. They painstakingly document
their infrastructure instead of using a tool

that can automatically discover it. This
process can cause misleading test results.
When that happens, code can hit production
before it’s ready.

Organizations are applying architectures
designed for running applications—such
as containers, microservices, serverless
computing and Kubernetes orchestration—
to application development and delivery.
Automation and orchestration tools like
Jenkins, Red Hat® Ansible®, Chef and Puppet
can help keep teams on the same page.
Each major public cloud platform—Amazon
Web Services (AWS), Microsoft Azure and
Google Cloud—offers Kubernetes-managed
container processing as a service.

Benefits of modernizing applications

Reduce costs and redundancy
One of the advanced steps organizations
take before moving to cloud hosting is to
run data centers. Global data centers are
great for load balancing and redundancy,
but they can be very expensive.

Data centers also often come with long-
term contracts. Migrating to the cloud is a
time-consuming process. To allow yourself
adequate time, you should start at least
one year before your data center
contract expires.

And if you thought data centers offered
redundancy, try dozens of containers
with microservices in the cloud. That’s
redundancy. Some large corporations still
use on-premises architectures and they
make them work. But the pattern toward
cloud adoption is unlikely to reverse.

Become more responsive to user needs
The requirements and wish lists for
customers and employees should be your
guiding light. Customers have little patience
anymore for delays or interruptions—both
online and in apps.

For example, if your web page takes
too long to load, chances are good a
customer will simply click somewhere
else. For online retailers, this can result in
significant revenue reductions from lost
sales. For optimum results, aim for about
2–4 seconds for a page to load or an app
process to complete.

8Next chapterPrevious chapter

9Next chapterPrevious chapter

Benefits of modernizing applications

Build more uniformity into organization
and processes
Remember how developers create their
own fixes and patches to cobble together
code? There are real-world consequences.
Different applications are coded differently,
making it difficult to hold them to minimum
standards. How can you apply a standard to
an application that doesn’t use any of the
components you’re trying to standardize?
Organizations modernize applications to
bring them into alignment, so they can be
brought into compliance.

Deprecate older environments
Here’s a scenario. An application is built
on Java 11. The current version is Java 20.
If the team is going to upgrade the version
and improve code accordingly, why not
take this opportunity to modernize the
application in other ways? Break it into
microservices. Move it to the cloud. Make
it a cloud-native application.

Resolve issues
Distributed components enable incident
responders to disable some containers or
other pieces without turning off all of them.
In other words, distributed, cloud-based
microservice application components
remove the single point of failure that
plagues monolithic applications. Containers
also enable developers to isolate and test
pieces of an application without affecting
the whole thing.

Orchestrators such as Kubernetes also
make it easier to apply fixes to applications
without customer downtime, which is a
huge win for the provider and user alike.

05

Why companies
make the mistake
of not modernizing

10Next chapterPrevious chapter

Companies most often delay application
modernization for two main reasons: short-
term pain and the difficulty of measuring
progress. Balancing short-term discomfort
with long-term benefits can be challenging,
as the former is more certain while the latter
can be a gamble. Measuring progress along
the entire modernization journey can also be
a significant obstacle.

Short-term pain
Here’s a quick list of reasons organizations
delay or cancel application modernization
projects.

– Client hesitation. The modernization
process usually requires some disruption,
and for industries such as financial
services and healthcare, privacy concerns
as well as disruption are causes for alarm.

– Time. Remember the migration? Each
of those steps could easily take up to
a year. Just breaking a monolith into
microservices requires understanding
what capabilities you want to deploy
separately and breaking the process into
steps so you can measure progress.

– Money. In the short term, both the
code upgrades and the architectural
changes can be expensive. When you
total the costs of developer time spent
on handling emergencies, adding new
hires, turnover, training and planned code
freezes, the hidden expenses can add
up quickly.

Companies hoping to stop spending millions
on data center operations often end up
paying additional costs for hosting service.

Inability to benchmark
and compare performance
As management consultant Peter Drucker
famously wrote, “If you can’t measure it,
you can’t improve it.”

As you’ll see, modernization isn’t simple.
Organizations running monolithic
applications can use legacy APM tools to
measure the appropriate metrics. However,
once the application components are broken
up and running in containers, some legacy
APM tools can’t see inside containers. Plus
with cloud hosting, even fewer legacy APM
tools are up to that observability task.

06

The role of observability in
application modernization

It’s critical to add observability into
your portfolio as you plan and execute
application modernization and digital
transformation. Application quality control
is a requirement to do modernization.

– Benchmark and compare with the
same measurements.

– It’s easier for a containerized Docker
solution to measure on premises.

– A legacy APM tool can’t measure
cloud native apps.

Benchmarking before you plan to
modernize an application is critical so you
can determine where your application
performance is weak, where it’s strong and
where it’s on track. There are some basic
best practices to keep in mind.

Benchmarking for application
quality control
When you benchmark and compare
performance at each stage, it’s critical
that you record the same measurements
so the comparisons are valid. Benchmarking
is a critical feature that deserves careful
attention. It’s the only justifiable way to
track application quality control.

To begin modernizing a monolith application,
the first step is to decouple its capabilities
into components and microservices.
However, operating microservices effectively
can also pose risks. Start by decoupling
simple edge services to help mitigate these
risks and provide the most comprehensive
metrics and request traces.

11Next chapterPrevious chapter

The role of observability in
application modernization

The next step involves placing
microservices in containers within a
virtualized environment, followed by
moving the components to data centers
and ultimately, to the cloud. This requires
new authentication services, sensors for
cloud architectures and integrations with
APIs. An old APM solution may not be
sufficient for these tasks.

Observability: More than just metrics,
traces and logs
Observability tools, defined by metrics,
traces and logs, may not provide sufficient
details about legacy applications. This is
one reason why you should consider an
observability platform capable of meeting
the unique needs of enterprises—especially
those running legacy apps across both
legacy and hybrid environments.

Legacy APM tools can monitor monolithic
applications, but they’re not equipped
to handle microservices, containers and
cloud architectures. When applied to
containerized application infrastructures,
they function as “black-box” monitoring
and cannot inspect the application's
internal workings. The same problem is
exacerbated with cloud-based or cloud-
native applications. To address these
issues, an enterprise observability tool
is the clear solution. Here are some
advantages of starting with such a tool.

Discovery. See every application and
infrastructure component to miss nothing
and bring context to everything.

Trace requests. Trace requests in legacy
applications and trace every request
regardless of environment, even in
cloud-native applications.

High granularity. Leave no more than
one second between monitoring beats.

Instant notifications. Turn information
into intelligent action.

12Next chapterPrevious chapter

07

IBM Instana enterprise
observability

IBM Instana™ is an industry leader in
enterprise observability. Here are a few
ways IBM Instana adds functionality to
make application modernization work
more efficiently.

– Automated discovery. IBM Instana
automatically discovers every application
and infrastructure component the
moment it’s installed.

– No sampling. Legacy applications spot-
check transactions and some elements
of traces. Instana never samples, so it
delivers an enhanced version of metrics
for legacy applications along with every
transaction and event from microservice-
based applications.

13Next chapterPrevious chapter

– Request tracing. IBM Instana traces
every request across all the systems
it moves through. This tracing is
automated, saving the developers’ time.

– One-second granularity. A new
infrastructure snapshot every second
helps ensure up-to-date measurements.

– Three-second notifications. When
incidents happen—and they will—
notify the right people and kick off a
remediation process immediately.

08

Is IBM Instana right for you?

IBM Instana provides an industry-
leading real-time automated enterprise
observability platform. Its application
performance monitoring capabilities are
ideal for organizations operating complex,
modern, cloud-native applications. IBM
Instana is ready to go to work anywhere
your workloads run—in public clouds,
private clouds, hybrid clouds, on mobile
devices, on premises or in an IBM®
z Systems™ environment.

IBM Instana gives you expanded control
over modern hybrid applications, thanks
to its precise metrics, full end-to-end
traces for all transactions and AI-powered
contextual dependencies discovery inside
hybrid applications. For systems reliability
engineers, IBM Instana helps improve the

reliability and resilience of cloud-native
applications by preventing issues from
turning into incidents. And by providing
blazing fast remediation times when
incidents do occur.

See the power of IBM Instana for yourself.
Sign up today for a free 14-day trial of
the full version of the product. No credit
card required.

14Next chapterPrevious chapter

IBM Instana free trial

Explore IBM Instana

https://www.instana.com/trial/
https://www.ibm.com/products/instana

15

© Copyright IBM Corporation 2023

IBM Corporation
New Orchard Road
Armonk, NY 10504

Produced in the United States of America
May 2023

IBM, the IBM logo, IBM Instana, and zSystems are
trademarks or registered trademarks of International
Business Machines Corporation, in the United
States and/or other countries. Other product and
service names might be trademarks of IBM or other
companies. A current list of IBM trademarks is
available on ibm.com/trademark.

Red Hat and Ansible are trademarks or registered
trademarks of Red Hat, Inc. or its subsidiaries in
the United States and other countries.

Microsoft is a trademark of Microsoft Corporation
in the United States, other countries, or both.

Java and all Java-based trademarks and logos are
trademarks or registered trademarks of Oracle
and/or its affiliates.

This document is current as of the initial date of
publication and may be changed by IBM at any time.
Not all offerings are available in every country in
which IBM operates.

It is the user’s responsibility to evaluate and verify
the operation of any other products or programs with
IBM products and programs. THE INFORMATION IN
THIS DOCUMENT IS PROVIDED “AS IS” WITHOUT
ANY WARRANTY, EXPRESS OR IMPLIED, INCLUDING
WITHOUT ANY WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND ANY
WARRANTY OR CONDITION OF NON-INFRINGEMENT.
IBM products are warranted according to the terms
and conditions of the agreements under which they
are provided.

http://ibm.com/trademark

	Endnotes

	Button 387:
	Button 388:
	Button 422:
	Button 424:
	Button 390:
	Button 391:
	Button 393:
	Button 394:
	Button 396:
	Button 397:
	Button 399:
	Button 400:
	Button 405:
	Button 406:
	Button 408:
	Button 409:
	Button 411:
	Button 412:
	Button 414:
	Button 415:
	Button 369:
	Button 370:
	Button 417:
	Button 418:
	Button 429:
	Button 430:
	Endnote 1:
	Endnote 2:
	Button 313:
	Endnote 4:

