
IBM Instana

Monitoring serverless
successfully
A comprehensive guide

Contents 01 →
Executive summary

02 →
Serverless monitoring
challenges

03 →
Why existing APM
isn’t enough

04 →
Selecting APM for
serverless monitoring

05 →
Conclusion

06 →
About IBM Instana

Executive summary

3Next chapterPrevious chapter

At the same time, serverless technology
has created new challenges for the
teams tasked with monitoring and
managing serverless functions. This
is because serverless architectures are
fundamentally different from conventional
application deployment models, making
it difficult to gain visibility into serverless
environments and their functions.

This ebook offers a comprehensive look
at the challenges of monitoring serverless
functions, as well as the best practices
for solving them. It analyzes the reasons
that can make serverless monitoring so
challenging and explains why traditional
application performance monitoring
(APM) tools can struggle when applied
to serverless workloads. It identifies
also a set of useful features to effectively
monitor serverless environments while
realizing the performance, cost and
reliability advantages that a serverless
architecture can offer.

Since the introduction of AWS Lambda in
2014, serverless computing has become one
of the core building blocks of cloud-native
infrastructure. By allowing organizations
to run resource-intensive application
code on demand in a cloud environment
and pay for computing only when the
code is running, serverless functions have
unlocked new opportunities for optimizing
application performance, availability and
cost efficiency.

In each of these respects, serverless
computing delivers critical benefits that
aren’t necessarily available from traditional
physical servers or virtual machines (VMs),
which can incur costs constantly—even
when idle—and have limited resource
allocations to handle intensive workloads.

01

Serverless monitoring
challenges

02

While the core code within a serverless
function may not fundamentally deviate
from that found in a traditional application,
the underlying architecture, hosting
environment, and deployment patterns
associated with serverless functions
can exhibit significant differences.
These disparities can give rise to
numerous challenges when it comes
to monitoring and maintaining visibility
into serverless deployments.

In contrast, a conventional application
operates in a consistent manner regardless
of its hosting environment. For instance, an
NGINX web server or WordPress instance
hosted on Amazon Elastic Compute Cloud
(Amazon EC2) virtual server functions and
can be monitored in a similar manner as
it would if it were hosted on the Microsoft
Azure Virtual Machines service.

4Next chapterPrevious chapter

Vendor-specific serverless services
In serverless environments, the compatibility
of workloads can become problematic.
While all cloud-based serverless services
offer basic functionality, each service is
uniquely configured according to the vendor's
specifications. For instance, AWS Lambda
may not support the same programming
languages as Azure Functions or Google
Cloud Functions. Moreover, serverless
services have distinct environment
configurations that are typically non-
modifiable by end users. The situation
becomes even more diverse and inconsistent
when incorporating on-prem serverless
frameworks like OpenFaaS.

Configuration levels are dependent on the
environments and specific to each vendor.

Serverless functions come in
many languages
Similarly, serverless functions can be
written in a variety of different languages.
And some serverless services support
different languages than others. In some
cases, serverless platforms may require
functions written in one language to be
“wrapped” in another to execute them,
adding another layer of complexity.

Conventional APM methods, such as
language-specific tracing and metrics
collection, can be of limited use for
gaining visibility into serverless
performance and availability.

In other words, finding an easy or
consistent way to monitor serverless
functions by connecting through
specific programming languages
can be challenging.

Consequently, attempting to monitor
serverless functions solely at the service
level can result in an approach that lacks
portability and relies heavily on vendor-
specific configurations. To avoid lock-in
you would need to build a new monitoring
process to support a transition to a
serverless platform.

Therefore, monitoring serverless functions
at the service level may present limitations,
as the configuration levels depend on
the environments and are vendor specific—
meaning you’d need to build a new
monitoring process from scratch to
switch to a serverless platform.

5Next chapterPrevious chapter

↓

Serverless monitoring challenges

Serverless functions are one piece
of larger deployments
Serverless functions are often deployed
as part of continuous delivery pipelines.
It’s rare to deploy a workload that’s
composed solely of serverless functions.
In many cases, serverless functions
comprise one part of a larger application.
For example, most of the components
of a web application might be hosted
using traditional VMs and databases,
while serverless functions are used
to handle certain resource-intensive
processes on demand, such as resizing
images or performing optical character
recognition (OCR).

Lack of control over serverless
environments
Serverless environments eliminate the
need for the teams who deploy serverless
functions to set up or manage the servers
that host them. Vendors deliver a prebuilt,
preconfigured environment in which end
users can quickly deploy and execute
functions. These features make serverless
environments so valuable.

However, end users can’t access or modify
the host environment, and this can pose a
significant challenge for monitoring. Most
serverless services do provide capabilities
for forwarding log data to other cloud
services, but teams often have limited ability
to customize the way that data is generated
or structured. Further, it’s not always possible
to deploy monitoring agents on host servers
in a conventional way to collect and
aggregate metrics.

For this reason, effectively monitoring
serverless environments may require not
only an understanding of what’s happening
within functions themselves, but also
mapping that data to the performance
of the larger application. Monitoring tools
should be able to interpret the complex
relationships and dependencies between
each serverless function and the various
nonserverless microservices that often
power the rest of the workload.

6Next chapterPrevious chapter

Serverless monitoring challenges

Too many functions
One of the final challenges in monitoring
serverless functions is the sheer number
of functions that serverless workloads
entail. Although there’s no minimum
number of functions required to use
a serverless service, teams that use
serverless computing often deploy a
dozen or more functions at the same
time. They frequently introduce new
functions and retire old ones on an
ongoing basis.

Monitoring functions on this scale, using
conventional, manual approaches, can
prove difficult. It can require tremendous
effort and time commitment on the part
of administrators, and it undercuts the
ability of teams to continue scaling up
their deployments.

7Next chapterPrevious chapter

Serverless monitoring challenges

Highly dynamic functions
Serverless environments change quickly.
If monitoring tools must be manually
mapped to a specific serverless function
deployment, they need to be reconfigured
manually whenever the functions are
updated. This dependency means that
monitoring can get in the way of continuous
delivery—or worse—new versions of
serverless functions might not be properly
monitored because the tools aren’t yet
configured for the new deployment.

Why existing APM
isn’t enough

03

Ultimately, most existing APM solutions
were designed for fundamentally different
types of infrastructure. In general, they
lack cloud-native monitoring functionality.

8Next chapterPrevious chapter

A variety of traditional APM tools—designed
before the advent of the cloud-native era—
may support serverless monitoring to some
extent, but they come up short in several
respects:

	– They can’t typically map and interpret
the complex application architectures
of which serverless functions are often
a part.

	– Designed for monitoring monolithic
applications, they aren’t fully equipped
to understand interservice dependencies
or detect anomalies within highly
dynamic environments.

	– Usually vendor-specific, they can’t
monitor serverless functions in a
vendor-agnostic way, and they’re
not portable from one cloud to another.

Selecting APM for
serverless monitoring

04

Although most traditional APM solutions
are generally inadequate for serverless
monitoring, cloud-native APM tools
generally offer the features required to
handle the complexity, dynamism and scale
of serverless computing services. Here is a
summary of the key functionalities required
in an APM solution to monitor serverless
environments effectively.

9Next chapterPrevious chapter

Comprehensive tracing and analytics
There are two foundations to effective
monitoring in cloud-native environments:
tracing and analytics.

To effectively monitor serverless functions,
APM tools must be able to perform tracing
and analytics on individual parts of the
application but also to perform them
comprehensively, that is, across the
entire application.

APM solutions must be able to trace and
analyze individual application requests
across every component of the application,
including serverless functions and other
services. At the same time, they must
perform analytics on aggregate metrics
collected from the application as a
whole, as well as on collections of traces.
Comprehensive tracing and analytics are
the keys to providing visibility into all layers
of a complex application and give teams the
insight they need to address performance,
availability and cost-optimization issues.

Dependency mapping
Because serverless functions depend on
each other, as well as other application
components that are external to the
serverless environment, being able to
map and interpret dependencies is critical.

APM tools that are designed only to monitor
each part of the application individually,
without understanding relationships
between each part form a larger whole,
are insufficient.

10Next chapterPrevious chapter

Selecting APM for
serverless monitoring

Auto discovery
If monitoring instrumentation must be
configured manually each time a new
serverless function or update is deployed,
it’s virtually impossible for monitoring
tools to keep pace with continuous
delivery chains at scale.

For that reason, serverless APM
tools should be able to discover new
deployments and updates automatically
and then begin monitoring them without
manual intervention by human engineers.

Instead, performance and cost optimization
in a serverless workload usually requires
the ability to determine how a problem
with one serverless function impacts other
functions or services within the application.

Cloud-agnostic serverless monitoring
As we mentioned before, serverless
monitoring tools that work only with
certain cloud services will depend
on that vendor’s specific services or
configurations to monitor functions
at the environment level.

Choosing an APM tool that can monitor
functions, regardless of which serverless
service hosts them, can be a more flexible
and portable approach. This approach
requires the ability to perform tracing
and analytics within functions themselves,
rather than just connecting into the
host environment.

Real-time and historical visualization
As a rule, successful serverless monitoring
requires the ability to visualize analytics
and traces clearly. Visualization helps
monitoring teams make sense of and act
on complex monitoring data and rapidly
changing metrics.

To be most effective, APM tools must
provide visualization for real-time and
historical data. Real-time visualizations can
give teams visibility into the application
as it currently exists, while historical
visualizations enable them to research an
issue or gain crucial historical context when
troubleshooting a problem.

Conclusion

05

11Next chapterPrevious chapter

Serverless monitoring requires a
fundamentally different set of strategies
and tooling than monitoring for
conventional applications. Without an
APM solution that can handle the unique
challenges of serverless computing,
organizations risk performance and
availability problems that drive up costs
and undercut the value of adopting
serverless services.

Traditional APM tools aren’t designed
to handle the complexity of serverless
environments, or to keep pace with
continuous delivery chains. But IBM
Instana™, an APM platform designed
from the start for the cloud-native age,
does. Using data analytics and machine

learning, IBM Instana maps the complex
dependencies that link serverless
functions to each other and to the rest of
the application. This solution performs
comprehensive tracing and analytics and
provides rich visualizations that can help
teams understand real-time and historical
data. IBM Instana works in a cloud-
agnostic way, allowing teams to monitor
their serverless workloads across a range
of serverless services. We invite you to sign
up for a free IBM Instana trial.

Get your free trial

https://www.instana.com/trial/

06

12Next chapterPrevious chapter

About IBM Instana

IBM Instana™ provides an enterprise
observability platform with automated
application performance monitoring
capabilities to businesses operating
complex, modern, cloud-native applications
no matter where they reside—on premises
or in public and private clouds, including
mobile devices or IBM zSystems™.

Control modern hybrid applications using
IBM Instana for AI-powered discovery
of deep contextual dependencies inside
hybrid applications. IBM Instana also
provides visibility into development
pipelines to help enable closed-loop
DevOps automation.

These capabilities provide actionable
feedback needed for customers as they
optimize application performance, enable
innovation and mitigate risk, helping
DevOps increase efficiency and add
value to software delivery pipelines while
meeting their service-level and business-
level objectives.

Explore IBM Instana

IBM Instana free trial

https://www.instana.com/enterprise-observability-platform/
https://www.instana.com/enterprise-observability-platform/
https://www.instana.com/automated-application-performance-monitoring/
https://www.instana.com/automated-application-performance-monitoring/
https://www.ibm.com/products/instana
https://www.instana.com/trial/

© Copyright IBM Corporation 2023

IBM Corporation
New Orchard Road
Armonk, NY 10504

Produced in the United States of America
May 2023

IBM, the IBM logo, IBM Instana, and zSystems are
trademarks or registered trademarks of International
Business Machines Corporation, in the United
States and/or other countries. Other product and
service names might be trademarks of IBM or other
companies. A current list of IBM trademarks is
available on ibm.com/trademark.

This document is current as of the initial date of
publication and may be changed by IBM at any time.
Not all offerings are available in every country in which
IBM operates.

It is the user’s responsibility to evaluate and verify
the operation of any other products or programs with
IBM products and programs. THE INFORMATION IN
THIS DOCUMENT IS PROVIDED “AS IS” WITHOUT
ANY WARRANTY, EXPRESS OR IMPLIED, INCLUDING
WITHOUT ANY WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND ANY
WARRANTY OR CONDITION OF NON-INFRINGEMENT.
IBM products are warranted according to the terms
and conditions of the agreements under which they
are provided.

13

http://ibm.com/trademark

	Button 469:
	Button 470:
	Button 467:
	Button 468:
	Button 495:
	Button 496:
	Button 497:
	Button 498:
	Button 499:
	Button 500:
	Button 417:
	Button 418:
	Button 471:
	Button 472:
	Button 473:
	Button 474:
	Button 423:
	Button 424:
	Button 437:
	Button 438:
	Endnote 3:
	Endnote 5:
	Button 414:
	Endnote 6:

