
REPORT

Developing
Open Cloud
Native
Microservices
Your Java Code in Action

Graham Charters,
Sebastian Daschner,
Pratik Patel & Steve Poole

Compliments of

Java is the open language for modern,
microservice applications. Explore Java for
your next cloud app today.

ibm.biz/OReilly-Java

https://ibm.biz/OReilly-Java
https://ibm.biz/OReilly-Java

Graham Charters, Sebastian Daschner,
Pratik Patel, and Steve Poole

Developing Open Cloud
Native Microservices

Your Java Code in Action

Boston Farnham Sebastopol TokyoBeijing Boston Farnham Sebastopol TokyoBeijing

978-1-492-05272-2

[LSI]

Developing Open Cloud Native Microservices
by Graham Charters, Sebastian Daschner, Pratik Patel, and Steve Poole

Copyright © 2019 Graham Charters, Sebastian Daschner, Pratik Patel, Steve Poole.
All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA
95472.

O’Reilly books may be purchased for educational, business, or sales promotional use.
Online editions are also available for most titles (http://oreilly.com). For more infor‐
mation, contact our corporate/institutional sales department: 800-998-9938 or
corporate@oreilly.com.

Acquisitions Editor: Chris Guzikowski
Development Editor: Michele Cronin
Production Editor: Christopher Faucher
Copyeditor: Rachel Monaghan

Proofreader: Amanda Kersey
Interior Designer: David Futato
Cover Designer: Karen Montgomery
Illustrator: Rebecca Demarest

August 2019: First Edition

Revision History for the First Edition
2019-08-07: First Release

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Developing Open
Cloud Native Microservices, the cover image, and related trade dress are trademarks
of O’Reilly Media, Inc.

The views expressed in this work are those of the authors, and do not represent the
publisher’s views. While the publisher and the authors have used good faith efforts
to ensure that the information and instructions contained in this work are accurate,
the publisher and the authors disclaim all responsibility for errors or omissions,
including without limitation responsibility for damages resulting from the use of or
reliance on this work. Use of the information and instructions contained in this
work is at your own risk. If any code samples or other technology this work contains
or describes is subject to open source licenses or the intellectual property rights of
others, it is your responsibility to ensure that your use thereof complies with such
licenses and/or rights.

This work is part of a collaboration between O’Reilly and IBM. See our statement of
editorial independence.

http://oreilly.com
https://oreil.ly/editorial-independence
https://oreil.ly/editorial-independence

Table of Contents

Foreword. v

Preface. ix

1. Introduction. 1
What It Means to Be Cloud Native 1
Why Java and the Java Virtual Machine for Cloud Native

Applications? 5
Summary 6

2. Open Technology Choices. 7
Open Source 8
Open Standards 12
Open Governance 12
Choosing Application Technologies 14
Cloud Native Environments 21
Continuous Delivery and Engineering Practices 21
Summary 22

3. Foundation. 23
Rapidly Developing Service Implementations 23
Persisting Service Data 29
Implementing REST Services 34
Summary 42

4. Cloud Native Development. 45
Securing REST Services 45

iii

Handling Service Faults 52
Publishing and Consuming APIs 55
Summary 57

5. Running in Production. 59
Reporting Health 60
Monitoring JVM, Runtime, and Application Metrics 63
Tracing Microservice Requests 69
Summary 73

6. Wrap-up and Conclusions. 75
Asynchronous Execution and Reactive Extensions 75
Threading 76
Conclusions 77

iv | Table of Contents

Foreword

Businesses do not care about microservices, twelve-factor apps, or
cloud native Java. They care about delivering business value to their
customers, open and community-driven APIs, and runtime
portability.

With a great developer experience comes increased productivity
with “to the point” code—meaning high maintainability. The less
code you have to write, the easier it is to spot bugs and implement
new functionality. J2EE was designed as a “micro cloud” to host
multiple, isolated applications. The EJB programming restrictions
discouraged you from accessing the local filesystem, loading classes
dynamically, or changing your isolated environment in any way.
These formally unpopular, but now obligatory, programming
restrictions are older than J2EE (EJBs came first) and are still a good
idea today.

Java EE 5 greatly simplified the programming model, servers
became leaner, and the transition from shared application servers to
single microservice runtimes began. Between Java EE 5 and Java EE
8 the platform was extended with internet-related APIs for REST
support, JSON, WebSockets, and asynchronous behavior out of the
box. The build is as simple as the programming model is. All the
Java EE APIs are bundled as a single, “provided” dependency in
Maven’s pom.xml. Java EE/Jakarta EE is mature, stable, and therefore
a genuinely boring runtime. Most Java EE APIs are iteratively
refined for years, so expect no revolution. This is great news for
businesses and pragmatic developers: demand for migrations is
decreasing. The frequent Eclipse MicroProfile release cadence is

v

quickly filling possible functionality gaps by delivering new APIs or
extending existing ones on demand.

All popular runtimes are implementing Java EE/Jakarta EE and
Eclipse MicroProfile APIs at the same time. You only have to down‐
load the Jakarta EE/MicroProfile runtime of your choice (a ZIP file),
extract the archive, and define the Java EE/MicroProfile API as a
“provided” dependency in Maven/Gradle (10 lines of code). In 10
minutes or less, the “Java Cloud Native Microservice Dream Team”
is ready to deliver value to the customer with the very first iteration.

This book gives you a pragmatic introduction to cloud native Java,
from the Java development kits and the open source ecosystem to a
minimalistic coffee shop example. With MicroProfile and Jakarta
EE, minimalism is the new best practice.

— Adam Bien
http://adam-bien.com

The Jakarta EE and Eclipse MicroProfile communities are signifi‐
cant new efforts that will be shaping the future of both Java and
cloud computing for years to come. In particular, both of these com‐
munities are leading the industry in providing vendor-neutral speci‐
fications, coupled with multiple, liberally licensed, open source
implementations for cloud native Java. In doing so, these two Eclipse
Foundation-hosted communities are creating the safe choice in Java
platforms for the new cloud-based systems being built today and
tomorrow.

It is important to understand that Java remains a critically important
technology in the cloud. Virtually all of the Fortune 1000 run signif‐
icant portions of their business on Java. Just as importantly those
same enterprises collectively have millions of developers with both
knowledge of Java and of their businesses. The missions for Jakarta
EE and MicroProfile are to provide paths forward for these enterpri‐
ses and their developers as they rearchitect their applications to
become cloud native.

Jakarta EE and MicroProfile represent two quite different paths to
technological success. Jakarta EE is the successor to Java EE, the
more than 20-year-old technology that laid the groundwork for
Java’s enormous success in the enterprise. Java EE’s success was

vi | Foreword

http://adam-bien.com

largely the result of careful evolutions of APIs and specifications,
release-to-release compatibility that has lasted for years, and multi-
vendor support and participation. MicroProfile only started in 2016
and is a demonstration of a truly open community’s ability to inno‐
vate quickly. With a cadence of three releases per year, MicroProfile
has rapidly evolved to a complete set of specifications for building,
deploying, and managing microservices in Java.

Eclipse community projects are always driven by great developers,
and at the Eclipse Foundation the cloud native Java community has
had many important contributors. I would like to recognize (in no
particular order) the contributions of just a few: Bill Shannon, Dmi‐
try Kornilov, Ed Bratt, Ivar Grimstad, David Blevins, Richard
Monson-Haefel, Steve Millidge, Arjan Tijms, John Clingan, Scott
Stark, Mark Little, Kevin Sutter, Ian Robinson, Emily Jiang, Markus
Karg, James Roper, Mark Struberg, Wayne Beaton, and Tanja Obra‐
dović are but a few individuals who have been leaders among this
community. My apologies in advance for forgetting someone from
this list!

I have known, or known of, the authors for many years, and during
that time they have been tireless champions of Java technologies.
This book will hopefully raise the profile of Java’s important role in
cloud native technologies, and lead to broader knowledge and adop‐
tion of the APIs, frameworks, technologies, and techniques which
will keep Java relevant for this new generation of cloud-based sys‐
tems and applications.

— Mike Milinkovich
Executive Director, Eclipse Foundation

Foreword | vii

Preface

Cloud native is a concept that’s been around for a number of years.
Initially, companies developed and promoted their own technolo‐
gies and perspectives on software development; however, in recent
years, the industry and technologies have matured, and this has led
to greater collaboration around open source and open standards.
We believe a user’s interests are best served by adopting technologies
that are based on open standards and open source, all produced by
communities founded on open governance. It’s taken us a few years
to get here, but it’s now possible and easy to build high-quality cloud
native Java applications using technologies that fit these criteria. In
this book, we’ll show you how.

Prerequisites for Reading This Book
This book is primarily aimed at readers who have some knowledge
of the Java programming language and who wish to get started with
creating cloud native Java applications. Readers without an under‐
standing of Java can still benefit from the book, as many of the prin‐
ciples will hold regardless of programming language or framework.

Why This Book Exists
This book exists to help Java developers begin their journey into
cloud native. There is much to learn on this voyage, and this book
will provide an introduction to important high-level concepts and
guide the reader along a well-trodden and proven technical path.

ix

What You Will Learn
By the end of this book you will understand the unique challenges
that arise when creating, running, and supporting cloud native
microservice applications. This book will help you decide what else
you need to learn when embarking on the journey to the cloud, and
how modern techniques can help with deployment of new applica‐
tions in general.

The book will briefly explain important considerations for designing
an application for the cloud. It covers the key principles for micro‐
services of distribution, data consistency, continuous delivery, and
the like, which not only are important for a cloud application but
also support the operational and deployment needs of modern 24x7,
highly available Java-based applications in general.

How This Book Is Organized
Technology moves at a fast pace. Keeping up with new innovations
while still maximizing your choices can be a challenge. In this book
we will explain how to use open technologies to develop Java appli‐
cations that follow the principles of cloud native, helping you keep
abreast of new thinking and ensuring your freedom of action.

We’ll start in Chapter 1 by defining cloud native and explain why
Java is the programming language of choice.

In Chapter 2 we’ll expand on what we mean by open technologies
and explain why taking an open approach is important. We’ll outline
how to identify good open technologies and then introduce the ones
we’ll use in the remainder of the book.

In Chapters 3, 4, and 5, we’ll use a complete example to demonstrate
how to develop a set of cloud native Java microservices using our
selected open technologies. We’ll show how to develop a microser‐
vice backed by a database and how to expose it as a JSON/HTTP
REST service. We’ll then explain how to secure the service, provide a
human- and machine-readable API definition for consumers to use,
gracefully handle service faults, and more. Finally, we’ll describe
how to make the service observable so that you can monitor the con‐
tainer, runtime, and application and be alerted to—and react to—
any problems that arise.

x | Preface

Finally, in Chapter 6 we’ll wrap things up and talk about future
directions for open cloud native Java applications.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file
extensions.

Constant width

Used for program listings, as well as within paragraphs to refer
to program elements such as variable or function names, data‐
bases, data types, environment variables, statements, and key‐
words.

Constant width bold

Shows commands or other text that should be typed literally by
the user.

Constant width italic

Shows text that should be replaced with user-supplied values or
by values determined by context.

This element signifies a tip or suggestion.

This element signifies a general note.

This element indicates a warning or caution.

Preface | xi

Using Code Examples
Supplemental material (code examples, exercises, etc.) is available
for download at https://github.com/IBM/ocn-java.

This book is here to help you get your job done. In general, if exam‐
ple code is offered with this book, you may use it in your programs
and documentation. You do not need to contact us for permission
unless you’re reproducing a significant portion of the code. For
example, writing a program that uses several chunks of code from
this book does not require permission. Selling or distributing a CD-
ROM of examples from O’Reilly books does require permission.
Answering a question by citing this book and quoting example code
does not require permission. Incorporating a significant amount of
example code from this book into your product’s documentation
does require permission.

We appreciate, but do not require, attribution. An attribution usu‐
ally includes the title, author, publisher, and ISBN. For example:
“Developing Open Cloud Native Microservices by Graham Charters,
Sebastian Daschner, Pratik Patel, and Steve Poole (O’Reilly). Copy‐
right 2019 Graham Charters, Sebastian Daschner, Pratik Patel, Steve
Poole, 978-1-492-05272-2.”

If you feel your use of code examples falls outside fair use or the per‐
mission given above, contact us at permissions@oreilly.com.

O’Reilly Online Learning
For almost 40 years, O’Reilly Media has pro‐
vided technology and business training,
knowledge, and insight to help companies
succeed.

Our unique network of experts and innovators share their knowl‐
edge and expertise through books, articles, conferences, and our
online learning platform. O’Reilly’s online learning platform gives
you on-demand access to live training courses, in-depth learning
paths, interactive coding environments, and a vast collection of text
and video from O’Reilly and 200+ other publishers. For more infor‐
mation, please visit http://oreilly.com.

xii | Preface

https://github.com/IBM/ocn-java
mailto:permissions@oreilly.com
http://oreilly.com
http://oreilly.com

How to Contact Us
Please address comments and questions concerning this book to the
publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

To comment or ask technical questions about this book, send email
to bookquestions@oreilly.com.

For more information about our books, courses, conferences, and
news, see our website at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Acknowledgments
First of all, we would like to thank the open source contributers who
put their time into the technologies covered in this book. Without
their experience and contribution to open source Java and Cloud
technologies, it would not be possible to have this rich ecosystem on
the cutting edge of software development.

We would also like to thank our reviewers, Chris Devers, Neil Pat‐
terson, Anita Chung, and Kevin Sutter, who helped shape this book
and make it of the highest quality.

We would also like to thank Adam Bien and Mike Milinkovich for
contributing the foreword, and for their leadership in community
activities around open source Java and the open Java work at the
Eclipse Foundation.

Finally, we would like to thank the team at O’Reilly for bearing with
us as we worked to create this book. We hope you enjoy reading it!

Preface | xiii

mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

CHAPTER 1

Introduction

What It Means to Be Cloud Native
Cloud native applications can be described in a single line: applica‐
tions that utilize and are optimized, or native, for cloud computing
environments. To fully understand what this means, you must
understand cloud computing and how it differs from traditional
monolith software development. Software professionals, to ensure
their companies remain competitive, must employ a modern style of
development and deployment that uses the compute and manage‐
ment infrastructure available in cloud environments. In this section,
we will discuss cloud native in depth to prepare you for the rest of
this book.

Microservice Oriented
First, cloud native architectures break from the traditional design of
monoliths and rely on containers (e.g., Docker) and serverless com‐
pute platforms. This means that applications are smaller and com‐
posed at a higher level. We no longer extend an existing application’s
functionality by creating or importing a library into the application,
which makes the application binary larger, slower to start and exe‐
cute, and more memory-intensive. Instead, with cloud native we
build new microservices to create a new feature and integrate it with
the rest of the application using endpoint type interfacing (such as
HTTP) and event type interfacing (such as a messaging platform).

1

For example, say we needed to add image upload capability to our
application. In the past, we would have imported a library to imple‐
ment this functionality, or we would have written an endpoint
where we accept a binary type through a web form and then saved
the image locally to our server’s disk. In a cloud native architecture,
however, we would create a new microservice to encapsulate our
image services (upload, retrieve, etc.). We would then save and
retrieve this image, not to disk, but to an object storage service in
the cloud (either one we would create or an off-the-shelf service
provided by our cloud platform).

This microservice also exposes an HTTP endpoint, but it is isolated
from the rest of the application. This isolation allows it to be devel‐
oped and tested without having to involve the rest of the application
—giving us the ability to develop and deploy faster. As it is not
tightly coupled with the rest of the application, we can also easily
add another way to invoke the routine(s): hooking it into an event-
driven messaging system, such as Kafka.

Loosely Coupled
This brings us to our second main discussion point on cloud native:
we rely more on services that are loosely coupled, rather than tightly
coupled monolith silos. For example, we use an authentication
microservice to do the initial authentication. We then use JSON
Web Tokens (JWT) to provide the necessary credentials to the rest
of our microservices suite to meet the security requirements of our
application.

The loose coupling of these small, independent microservices pro‐
vides immense benefits to us software developers and the businesses
that run on these platforms:

Cost
We are able to adapt our compute needs to demand (known as
elastic computing).

Maintainability
We are able to update or bug-fix one small part of our applica‐
tion without affecting the entire app.

Flexibility
We can introduce new features as new microservices and do
staged rollouts.

2 | Chapter 1: Introduction

Speed of development
As we are not doing low-level management of servers (and
dynamic provisioning), we can focus on delivering features.

Security
As we are more nimble, we can patch parts of our application
that need urgent fixes without extensive downtime.

Twelve-Factor Methodology
Along with these high-level cloud native traits, we should also dis‐
cuss the twelve-factor application methodology, a set of guidelines for
building applications in cloud native environments. You can read
about them in detail on their website, but we’ll summarize them for
you here:

1. A versioned codebase (like a Git repository) matches a deployed
service, and the codebase can be used for multiple deployments.

2. All dependencies should be explicitly declared and should not
rely on the presence of system-level tools or libraries. Explicitly
declaring and isolating dependencies ensures portability from
developer machine to continuous integration/continuous deliv‐
ery (CI/CD) to production server.

3. Configuration should be stored in the environment for things
that vary between deployments (e.g., environment variables).

4. Backing services are treated as attached resources, and there is
no distinction made between on-premise and third-party
resources; all are addressed via locator/credentials or URL, pro‐
vided via environment configuration.

5. Strict separation between the stages of build, release, and run
ensures reproducibility.

6. Deploy applications as one or more stateless processes. Shared
state should be portable and loadable from a backing service.

7. Share and export services via a declared port.
8. Scaling is achieved using horizontal scaling.
9. Fast startup and graceful shutdown maximize robustness and

scaling.

What It Means to Be Cloud Native | 3

https://12factor.net

10. Different environments (dev/test/prod) should be as similar as
possible. They must be reproducible, so do not rely on external
inputs in their construction.

11. Logs are to be emitted as event streams (stdout/stderror) for
easy aggregation and collection by the cloud platform.

12. Admin tasks must be in source control, packaged with the
application, and able to run in all environments.

Following these best practices will help developers succeed and will
reduce manual tasks and “hacks” that can impede the speed of
development. It will also help ensure the long-term maintainability
of your application.

Rapid Evolution
Cloud native development brings new challenges; for example,
developers often see the loss of direct access to the “server” on which
their application is running as overly burdensome. However, the
tools available for building and managing microservices, as well as
cloud provider tools, help developers to detect and troubleshoot
warnings and errors. In addition, technologies such as Kubernetes
enable developers to manage the additional complexity of more
instances of their microservices and containers. The combination of
microservices required to build a full, large application, often
referred to as a service mesh, can be managed with a tool such as
Istio.

Cloud native is rapidly evolving as the developer community better
understands how to build applications on cloud computing plat‐
forms. Many companies have invested heavily in cloud native and
are reaping the benefits outlined in this section: faster time to mar‐
ket, lower overall cost of ownership, and the ability to scale with
customer demand.

It’s clear that cloud native is becoming the way to create modern
business applications. As the pace of change is fast, it is important to
understand how to get the best out of the technology choices
available.

4 | Chapter 1: Introduction

Why Java and the Java Virtual Machine for
Cloud Native Applications?
In principle any programming language can be used to create
microservices. In reality, though, there are several factors that
should influence your choice of a programming language.

Innovation and Insight
The first consideration is simply the pace of innovation and where it
is taking place. The Java community is probably the place where
those with the deepest knowledge and experience in using the
internet for business gather. The community that created Enterprise
Java and has made it the de facto business platform is also the com‐
munity that is leading the evolution of cloud native thinking. They
are exploring all the aspects of what it means to be cloud native—
whether it is serverless, reactive, or even event driven. Cloud native
continues to evolve, so it’s important to keep abreast of its direction
and utilize the best capabilities as they’re developed in the Java
community.

Performance and Economics
Next, consider that a cloud environment has a significantly different
profile from a traditional one that runs on a local server. In a cloud
environment, the amount of compute resource is usually lower and,
of course, you pay for what you use. That means that cloud native
applications need to be frugal and yet still performant. In general,
developers need runtimes that are fast to start, consume less mem‐
ory, and still perform at a high level. Couple this need with cloud’s
rapid evolution, and you are looking for a runtime with a pedigree
of performance and innovation. The Java platform and Java Virtual
Machine (JVM) are the perfect mix of performance and innovation.
Two decades worth of improvements in performance and steady
evolution have made Java an excellent general purpose program‐
ming language. Cloud native Java runtimes like Eclipse OpenJ9 offer
substantial benefits in runtime costs while maintaining maximum
throughput.

Why Java and the Java Virtual Machine for Cloud Native Applications? | 5

Software Design and Cloud Solutions
Finally, it’s important to understand that a modern cloud native
application is more complex than traditional applications. This
complexity arises because a cloud native solution operates in a world
where scale, demand, and availability are increasingly significant
factors. Cloud native applications have to be highly available, scale
enormously, and handle wide-ranging and dynamic demand. When
creating a solution, you must look carefully at what the program‐
ming language offers in terms of reducing design issues and bugs.
The Java runtime, with its object-oriented approach and built-in
memory management, helps remove problems that are challenging
to analyze locally, let alone in a highly dynamic cloud environment.

Java and the JVM address these challenges by enabling developers to
create applications that are easier to debug, easier to share, and less
prone to failure in challenging environments like the cloud.

Summary
In this chapter we outlined the key principles of being cloud native,
including being microservice oriented, loosely coupled, and respon‐
sive to the fast pace of change. We summarized how following the
twelve-factor methodology helps you succeed in being cloud native
and why Java is the right choice for building cloud native
applications.

In the next chapter we explore the importance of an open approach
when choosing what to use for your cloud native applications. An
open approach consists of open standards to help you interoperate
and insulate your code from vendor lock-in, open source to help
you reduce costs and innovate faster, and open governance to help
grow communities and ensure technology choices remain inde‐
pendent of undue influence from any one company. We’ll also out‐
line our technology choices for the cloud native microservices
shown in the remainder of the book.

6 | Chapter 1: Introduction

CHAPTER 2

Open Technology Choices

In this chapter we’re going to look at open technology choices for
cloud native Java applications. For us, “open” encompasses three
principles, shown in Figure 2-1.

Figure 2-1. Three principles of open technologies

We’ll start by talking about the role of open source, why it’s impor‐
tant to us, and how to evaluate candidate projects. Next, we’ll talk
about the role of open standards, the benefits they provide, and their
relationship to open source. We’ll then talk about open governance,
its importance across both open source and open standards, and
how it helps in building open communities.

We’ll show you how to use your new understanding of open source,
standards, and governance to make informed open technology
choices. Finally, we’ll describe the open technologies we’ve chosen to
use in the subsequent chapters of this book.

7

Open Source
Most developers are aware of the concept of open source. It’s worth‐
while, however, to distinguish between free software and open source
software. The benefits of free (as in no cost) software are evident to
all of us. It’s great to be able to use something without paying for it.
It’s important, though, to understand if there are hidden costs to
using “free” software. Quite often there are usage restrictions, such
as time limits, that impact your ability to use the software as part of
a solution.

In essence, open source means the source code is available for any‐
one to see. But that’s not the only reason we care about open source
—in fact, as users of open source, we very rarely look at the source
code. So why does open source matter to us? There are a number of
reasons:

Cost
I can use it without paying, and there is both community and
paid support available.

Speed
If I use this open source project, it will help me get my job done
quicker.

Influence
If I find a problem, I can fix it or raise an issue. If I need an
enhancement, I can contribute it or request a new feature.

Community
If I have a problem, the community will hopefully help; I don’t
need to open a support ticket. I can also become part of the
community.

Opportunity
Significant, diverse open source projects grow larger markets
where there will be demand for my skills.

As you can see, many of the characteristics of open source—the rea‐
sons we’d want to use it—don’t stem from its simple availability. For
example, just because the source is available doesn’t mean there’s a
community to support it. The reality is, there’s a wide-ranging set of
attributes of open source projects that you need to consider when
choosing what is right for you, including the following:

8 | Chapter 2: Open Technology Choices

License
Does the open source license permit me to use the software in
the way I’d like to? Many open source projects come with per‐
missive licenses on usage that allow modification, sharing, or
creation of commercial solutions. Some, of course, do not allow
this flexibility.

Purpose
Why does the project exist? This goes beyond its technical scope
and covers factors such as why the contributors are
participating.

Community
Does the open source project have a vibrant contributor and
user community?

Standards
Does the project implement open standard APIs, allowing me to
switch to other providers?

Governance
Is the project maintained under an open governance model,
such as those under the Apache Software Foundation, Eclipse
Foundation, or Linux Foundation? We’ll talk more about open
governance later in this chapter.

The open source approach is probably the best way to develop and
evolve complex software. The right combination of license, commu‐
nity, governance, and standardization has produced some of the
world’s most successful technologies. Getting this combination right
can be a challenge, however, so in the next sections we’ll go into
more detail on the considerations for community, standards, and
governance.

Open Community
Open source is not just about the code: it’s also about how the code is
designed, created, tested, and supported. It’s about the people
involved and how they interact. There are many approaches to open
source, from a single individual sharing their work on GitHub all
the way to large team efforts, spread out across companies and geog‐
raphies.

So what should we look for in an open source community?

Open Source | 9

Vibrancy
Ideally, vibrant open source projects with multivendor participation
(i.e., multiple companies and/or individuals) and open governance
should be preferred, as they have been shown to offer the maximum
benefit to participants and consumers alike. However, many open
source projects are single-individual or single-company efforts.

The vibrancy of a project is measured in terms of factors such as the
number of active contributors, number of recent contributions, con‐
tributor company affiliations, and support for the user base. If a
project isn’t very active, has limited contributors, ignores outside
contribution, or neglects its user base, these are all reasons to think
twice before adopting. Here are some questions to ask yourself when
vetting a project:

• Is the project overly reliant on an individual or single company?
• Is the project managed under an open governance model?
• Is the project license permissive so that I can fork and patch if

necessary?
• Does the project implement open standard APIs, and are there

viable alternative implementations?
• Does the project exist only to promote a commercial product?
• Does the community actively support its user base?
• Does the community consider the impact of changes on its

existing users?
• Does the project actively encourage new contributions—ideas,

fixes, features?

Vendor neutrality
Software development is a creative process. Developers spend valua‐
ble time designing, writing, testing, fixing, and even supporting the
software. Some developers do contribute to open source for the love
of it. They enjoy giving something to the community, or it scratches
a metaphorical itch. However, for the vast majority of open source
projects, open source is a company’s business model. It might be that
it facilitates collaboration with other companies and so enables mar‐
kets to grow, similar to collaboration on open standards. Often such

10 | Chapter 2: Open Technology Choices

projects live in open source foundations, such as the Eclipse Foun‐
dation, Linux Foundation, or the Apache Software Foundation.

Many open source projects are solely or predominantly created by a
single company. Here, the open source is freely available to use with
the intention of selling support or building a commercial offering
that contains additional functionality.

These are common patterns, and there’s nothing wrong with them.
However, they encourage centralized single vendor control over a
project and, in the case of the commercial offering, discourage con‐
tribution of important features to the open source project.

When you’re choosing an open source technology, it’s important to
understand the community involvement and associated business
strategies. Any risk associated with adoption is greatly reduced if
there is a clear history of broad, meritocratic participation across the
community or if the technology is an implementation of open
standards.

In the world of cloud, it’s easy to overlook the importance of open
technologies. Cloud solutions promise to help us deliver and gain
value faster than traditional approaches. Coupled with the fact that
application lifespans are decreasing, it’s not hard to fall for the
seductive argument of using just one vendor’s technologies. After
all, what can possibly go wrong with limiting oneself to a single
vendor?

Thankfully, the ubiquity of container technologies (e.g., Docker and
Kubernetes clustering) gives us a common cloud foundation on
which we can rely. This allows us to decouple the cloud native appli‐
cations and implementation technology choice from the cloud pro‐
vider choice.

A focus on collaboration
Like with open standards, open source has repeatedly demonstrated
that collaboration and sharing is in fact a business enabler and
amplifier. Examining the existing software communities, we can
easily see that the more successful ones are those that understand
that collaborating and innovating together creates a fast-paced eco‐
system whose potential audience is larger than the individual mar‐
kets of each of the participating companies.

Open Source | 11

Everyone benefits more from the creation of a large market where
no one participant owns the standards or the implementations. The
collaborative model also fuels innovation because everyone in the
community has a vested interest to keep it evolving and, since the
community is larger, the rate of innovation and quality is often
higher.

Open Standards
There’s no question that open standards are incredibly important.
Imagine a world without TCP/IP, HTTP, HTML, and the like.
Standards enable contracts for interoperability and portability. They
protect users against vendor and implementation lock-in, but also
enable ecosystems to grow and thrive by enabling collaboration and
more rapid and greater adoption. They enable vendors to collabo‐
rate or interoperate and then differentiate themselves through quali‐
ties of service, such as performance, footprint, or price. They also
enable developers to build skills applicable to more employers and
broader markets.

In the early 2000s, the collaboration between many companies and
individuals around Java EE created a vibrant ecosystem that made
Java the dominant language for enterprise applications. The APIs it
defined enabled multiple implementations (IBM WebSphere, Oracle
JBoss, Oracle WebLogic, etc.), and to this day, those APIs continue
to thrive through implementations from IBM, Oracle, Payara, Tomi‐
tribe, and others.

Historically, the Enterprise Java standards have been created
through the Java Community Process (JCP). In recent years, Eclipse
has become the place for Enterprise Java standards, initially with the
development of the Eclipse MicroProfile APIs and more recently
with Jakarta EE (the open future of the Java EE specifications).

An open standards approach, in conjunction with structured and
impartial governance from an organization like the Eclipse Founda‐
tion, means that innovation will be maximized and all the partici‐
pants will have equal footing.

Open Governance
Having a clear, fair, and impartial community process is essential for
the long-term health and prosperity of any open community,

12 | Chapter 2: Open Technology Choices

whether it’s open source or open standards. Communities with a
good governance model may still fail for other reasons, but without
one they are rarely successful. Good intentions to play fair at the
start of a collaboration can easily be lost. The draw of fame or com‐
mercial gain can turn a collaboration based on simple personal
agreements into a combat zone where friends of many years can
become bitter enemies.

Collaborators in open source and open standards projects need to
understand up front that there are fair rules about how agreement is
reached and how disputes are settled. There should be clear guide‐
lines about how intellectual property is handled, how ownership and
responsibilities are assigned, how contributions are licensed and
accepted, and so on. Ideally, there will be other specifications, such
as codes of conduct and some form of community charter.

This may sound like a lot of work and overhead for a new collabora‐
tion to incur, but that need not be the case. There are many good
examples of communities that have procedural frameworks in place
to help with these challenges. In fact, some of these communities are
designed with the aim of encouraging and nurturing the growth of
open source projects or open standards that meet the criteria we’ve
explained in this chapter. Examples of such communities are the
Apache Software Foundation, the Eclipse Foundation, the Linux
Foundation, OASIS, and W3C.

Having an open governance model has another major benefit: it will
attract more participation, because those joining understand and
agree with the rules up front. Knowing that they will be treated
equally and fairly is a significant factor for new players because they
are assured that their contributions will not be misused and that
their voice and opinion will be equal to others.

As you’ve now seen, there are many facets of open technology to
think about. In the first half of this chapter, we’ve explained what we
consider to be important ones both for the long-term viability of an
open source project and for you as a consumer of that project. In the
second half of this chapter, we’ll turn to the technology considera‐
tions themselves and our views on the combination of technology
and community that we’ve chosen for open cloud native Java.

Open Governance | 13

Choosing Application Technologies
When considering any project, you need to factor in how critical the
technology is to your solution, how complex it is, and how easy it
would be to switch out. If you’re choosing a single-vendor open
source project, picking one that exposes standard APIs greatly
reduces the associated risk.

Small, modular components in a framework—that is, ones that can
easily be replaced with alternative approaches—offer less risk com‐
pared to building on top of a framework or runtime that is not mod‐
ular and built on standard APIs.

Selecting the right cloud native technologies comes down to a mix of
need, risk, complexity, and community. The right combination is
not necessarily the same for everyone. If you are seeking a Java-
based approach that will have the best chance of navigating the com‐
plexities of cloud, the Eclipse Foundation provides an excellent
platform. The Eclipse Foundation offers a vendor-neutral,
community-led, and (above all) community-focused attitude; the
Eclipse MicroProfile and Jakarta EE technologies are the best start‐
ing point in our opinion.

The Eclipse Foundation is the home of many great technologies and
has a justified reputation as a place where communities can grow
and work together to build leading-edge, best-of-breed solutions.
Originally set up as an openly governed organization for the devel‐
opment of open source tools and runtime technologies, the Eclipse
Foundation has more recently moved to support the development of
open standards. This means that, as organizations go, Eclipse is
pretty unique in being able to tick all three boxes: open standards,
open source, and open governance.

The Foundation is an exemplar of how communities can work
together to achieve something bigger than any one of the partici‐
pants could do on their own. Its reputation as a safe, fair, and active
home for open source and open standards is one of the reasons Ora‐
cle chose to contribute its Java EE codebase and specifications to the
Foundation. Let’s now take a look at Eclipse technologies in a little
more detail.

14 | Chapter 2: Open Technology Choices

1 Java API for RESTful Web Services and JSON Binding/Processing, respectively.

Java EE and Jakarta EE
Java EE has formed the basis of Enterprise Java since 1999. From its
early days delivering basic web container capabilities to the final
release of Java EE 8, it has provided the foundational technologies
for web and microservice-based applications.

Java EE originally consisted of 35 specifications and, to provide
portability assurances, compliant platform vendors were required to
provide implementations of them all. But, with the advent of com‐
posable runtimes, such as Open Liberty and Wildfly Swarm, the
days of monolithic Java EE platforms came to an end. The time
came to think of Java EE as a catalog of capabilities to pick and
choose from. You’d like to write a REST service? Just include JAX-RS
and JSON-B. Need database persistence? Just include JPA.

For the first 18 years of Java EE’s life, it was governed by a process
managed by Sun, and more recently, Oracle. This governance led to
strained relationships at times between the participants and did not
lend itself to the most inclusive and collaborative environment. In
2017, Oracle announced it would relinquish control of Java EE, and
it subsequently chose Eclipse as the new custodians. The new com‐
munity chose the name Jakarta EE to represent the new platform.

Since the announcement, a great deal of work has been done to con‐
tribute the reference implementations (RIs), compliance tests
(TCKs), and specifications and to set up the legal infrastructure nec‐
essary for the future development of Jakarta EE. This has resulted in
the first release of Jakarta EE, Jakarta EE 8, that provides parity with
Java EE 8. From here on, an openly governed, open community will
create new specifications to contribute to Jakarta EE 9 and beyond.

Java EE 8, and therefore Jakarta EE 8, still consists of 35 specifica‐
tions, a number of which (e.g., JAX-RS and JSON-B/P for REST
services1) are essential for cloud native applications, and many of
which (e.g., JPA, Bean Validation, Contexts and Dependency Injec‐
tion for database access, and dependency injection and validation of
simple components) will be important. Coupling this with the fact
that there are multiple open source implementation options avail‐
able, we believe Jakarta EE technologies are a great foundation for
cloud native microservices.

Choosing Application Technologies | 15

Eclipse MicroProfile
Eclipse MicroProfile is an open collaboration around technologies
for Enterprise Java microservices. Initially formed as its own organi‐
zation, MicroProfile soon moved to the Eclipse Foundation. The
MicroProfile community is represented by many large companies
and Java user groups, including IBM, Red Hat, Oracle, Microsoft,
the LJC (London Java Community), and SOUJava, and the projects
themselves have 140 individual contributors. The MicroProfile col‐
laboration delivers specifications and compliance tests, and it bene‐
fits from multiple open source implementations, including Open
Liberty, SmallRye, Payara, TomEE, and Quarkus.

MicroProfile is designed to complement Java EE, reusing technolo‐
gies where appropriate. In fact, the first version was based purely on
the Java EE 7 technologies of JAX-RS, CDI, and JSON-P.

Subsequent MicroProfile releases have moved up to Java EE 8,
adding JSON-B. They’ve also added many new specifications devel‐
oped by the MicroProfile community. These broadly fall into three
categories, as shown in Figure 2-2 and described in the following
list:

Figure 2-2. Specifications developed by the MicroProfile community

Foundation
These are the foundational technologies for writing and calling
microservices. Most are from Java EE, but MicroProfile also
adds a really simple type-safe REST client.

Scale
These are not about scaling a single microservice; Kubernetes
does that perfectly well. Instead, they cover the APIs a developer
needs in order to start building large numbers of cloud native
microservices owned by independent teams—for example, the
ability to publish a service API definition for another team to
use, or gracefully handling problems with the services you
depend on, such as intermittent failures or slow responses.

16 | Chapter 2: Open Technology Choices

Observe
These are the technologies that help with monitoring services
for health (e.g., whether or not the service is ready to receive
requests or is dead and needs restarting), retrieving service met‐
rics to enable alerting of abnormal behavior, and tracing service
requests.

To keep pace with the industry demands for cloud native technolo‐
gies, MicroProfile now releases new specifications every four
months, and a number of vendor implementations typically soon
follow.

Given that MicroProfile is based on tried-and-tested Enterprise Java
technologies, is designed by a vibrant and open collaborative com‐
munity, and benefits from a number of independent open source
implementations, it’s an ideal choice for cloud native microservices.

JVM Choices for Cloud Native Applications
It’s very common to not give a great deal of thought to the choice of
Java Virtual Machine. Even as a key part of any Java solution, the
JVM is generally taken for granted.

For most of its life the development of the JVM has been strictly
controlled by the JCP and various specification enhancements called
Java Specification Requests (JSR).

This community process has ensured that the JVM provides the
same runtime experience for applications regardless of the underly‐
ing operating system or hardware. The JVM is probably the most
successful cross-platform environment ever. Although there are
always edge cases, it is safe to say that the vast majority of Java appli‐
cations will run as is on any JVM and will function exactly the same.

Using the JCP process as the vehicle for change has become too
heavyweight for modern needs. More and more of the JVM’s direc‐
tion is now being developed via the OpenJDK project. This project
maintains the reference codebase for the JVM, and many minor
(and sometimes not so minor) decisions about the JVM’s behavior
are made there. The OpenJDK community is funded and staffed by
Oracle with both monetary and infrastructure contributions by Red
Hat and others. This arrangement means that Oracle’s commercial
interests will spill into the direction the OpenJDK project takes, but
as long as those interests match the wider community, that is not a

Choosing Application Technologies | 17

concern. Developing a JVM requires deep skills, knowledge, and
experience, so it is not surprising that there are few contributors to
the effort who are not funded by a commercial entity.

Because the OpenJDK project owns and maintains the Java codebase
(including the JVM), it is almost the only game in town for Java
runtimes. The leaders of the project work hard to ensure that the
many millions of Java developers and end users can continue to rely
on there being a fit-for-purpose Java runtime for their current and
future needs.

The JVM from the OpenJDK project is called Hotspot. There are
others implementations available. We’ll examine one in a moment,
but first it’s important to understand that because the JVM’s behav‐
ior is so clearly specified and there is a large compliance suite
(which checks that the JVM in question conforms to the specifica‐
tion), replacing one JVM with another is not a particularly difficult
or risky thing to do.

Why Would You Want to Use a Different JVM?
We’ve said before that when selecting open source components, you
must think carefully about your choice. What happens if one of the
selected components goes away, the license changes, or something
else happens that’s detrimental to your project? Another, more pro‐
grammatic consideration is whether the direction of the related
community is aligned with industry thought or wider pressures.

In this instance it’s worth looking at the history of JVM develop‐
ment from an economic point of view. The JVM specification has
evolved over 20-odd years to provide a best-of-breed platform for
business applications running on large servers. The applications cre‐
ated have evolved to span multiple on-premise servers and are
designed to be available 24/7. In this model the economics favor
applications (and runtimes) that provide maximum throughput over
many months or even years. This model drives design thinking to
maximize performance at the cost of initial startup and memory
consumption. If the application is going to run long term, then
increasing startup time at the cost of improved runtime efficiency is
an acceptable tradeoff.

For most of Java’s lifetime, this tradeoff has been the underlying
driver for the direction of Java features. With the rise of cloud-based
solutions, the economics have changed—or rather, the JVM now has

18 | Chapter 2: Open Technology Choices

an additional, conflicting set of performance and memory demands
upon it. Short-lived services need to start quickly, and given that
clouds often charge based on memory consumption, you want them
to have a small memory footprint.

Modifying the Hotspot JVM codebase to support these new cloud
economics is a considerable challenge and will take time to achieve.
Work is already underway in the OpenJDK project to make Hotspot
more “cloud friendly,” but it’s going to take time because many Hot‐
spot features will need to be substantially redesigned to deal with
supporting two conflicting performance profiles.

The two main open source JVMs used in the industry are Hotspot
(from the OpenJDK project and contributed by Oracle) and Eclipse
OpenJ9 (contributed to the Eclipse Foundation by IBM). Most of us
are familiar with Hotspot but not so much OpenJ9. OpenJ9 is the
codebase of the JVM that IBM and its customers (some of the larg‐
est enterprises in the world) have been using for over 20 years. It is
designed to work on a wide variety of systems, from mobile phones
to mainframes. The need to deal with such a range of environments
has resulted in a design that is flexible and frugal. For instance, the
runtime profile required by mobile phones is for applications to
start fast and use as little memory as possible. OpenJ9 can typically
achieve memory savings of around 50% less than Hotspot for the
same workload. Sound familiar? Yes, these are the same characteris‐
tics we described as being important for cloud native applications.
This is why for our applications we have chosen to use OpenJ9.

With OpenJ9 on the scene, the Java community now has two choices
of open source, robust, enterprise-capable JVMs for running Java
applications.

Where Do You Get a Java Runtime?
Whichever JVM you choose, you should consider where to access it
and how to maintain and support it.

There’s been a flurry of recent announcements from various Java
vendors offering an OpenJDK-based Java runtime. In addition to
the existing commercial offerings from Oracle, IBM, and more,
there are now many freely available, free-to-use alternatives. This is
all good news for users. The choice of vendor is now much wider
than ever before. Still, there are a few points to consider when mak‐
ing your decision.

Choosing Application Technologies | 19

First, although JVM behavior is well specified, the rest of the Java
runtime is less so. Alternative JVMs are easy options, but the
remainder of the runtime (what is usually referred to as the class
libraries) is not readily plug replaceable. This means it is imperative
to understand how the vendor deals with accessing and maintaining
the class libraries. Given the impracticalities of having a third-party
version of the class libraries, the vendor will have retrieved that code
from the OpenJDK project. There are various routes for how this
may occur. The main consideration is the latencies between the
OpenJDK codebase and the corresponding vendor binaries. Delays
in the process will increase the likelihood of your Java choice miss‐
ing bug fixes or security patches.

Another consideration is the mechanism and frequency with which
the vendor sends bug fixes to the OpenJDK project. Delays here can
mean that bug fixes in the vendor’s offering may not be present in
offerings from other vendors.

The final consideration is about testing. How does the vendor go
about ensuring their offering is compatible and comparable with
other runtimes?

Driven by a desire to have consistent and compatible Java runtimes
across the multiple Java distributions available today, the London
Java Community began an initiative that has grown into what is now
seen as the source for free, open, and supported Java. This initiative
is called AdoptOpenJDK.

The AdoptOpenJDK website provides daily built binaries for all the
Java versions currently in play. With a choice of Hotspot or OpenJ9
downloads (or even Docker images), AdoptOpenJDK provides a
one-stop shop for free Java. AdoptOpenJDK has many sponsors,
including some major technology vendors such as IBM and Micro‐
soft, as well as many others that are more consumer focused. All the
sponsors share a desire for consistent and well-tested Java runtimes
that are frequently updated and will be available for a long time.

The AdoptOpenJDK community is providing a consistent choice for
end users and long-term support with security fixes for free. With its
focus on daily updates, a close relationship with the OpenJDK com‐
munity, and probably the most comprehensive testing regime,
AdoptOpenJDK is an great choice for Java binaries for your cloud
native Java applications.

20 | Chapter 2: Open Technology Choices

https://adoptopenjdk.net/

Cloud Native Environments
Modern applications are typically deployed and executed using
cloud native technologies such as containers, container orchestra‐
tion, and service meshes. These offer a much more effective and
manageable way of operating production-grade systems. Docker
and Kubernetes in particular have emerged as de facto standards for
container and orchestration technology. Service mesh technology,
such as Istio, extends these approaches and introduces additional
cross-cutting concerns such as security or advanced traffic manage‐
ment on a networking level.

In this book, we’ll be focusing on the foundations of cloud native
application development; the business logic and everything that is
mainly written in Java. While we’ll cover integration points of our
Java applications with these cloud native environments, the details
of their use are beyond the book’s scope.

Continuous Delivery and Engineering
Practices
In order to quickly deliver software with quality and reliability,
modern applications are built and shipped using continuous delivery
(CD) pipelines. Every step required to get from the source code to
the running production system should be automated and run
without human intervention. Automated software tests need to be
part of the pipeline, and they need to verify every previous step as
well as the functional and nonfunctional requirements of the
application.

The goal of CD is that every software build that passes the whole
pipeline is ready for production and will deliver value to its users.

Implementing CD is certainly not unique to cloud native applica‐
tions; however, with the requirements of a modern application in a
fast-moving world, shipping with automation, speed, and predicta‐
bility is more important than ever.

Cloud native technology facilitates building and deploying software
in an automated way, thanks to the great support of Infrastructure-
as-Code and automation in technologies such as Docker and
Kubernetes.

Cloud Native Environments | 21

Microservice architectures are developed by cross-functional teams
with a one-to-one ownership of team to application (microservice),
with each team likely owning multiple microservices and the
responsibilities of developing, maintaining, and monitoring those
microservices. Following the “You build it, you run it” mantra of
DevOps, teams consist of cross-functional engineers with different
focus areas.

CD is essential to successful cloud native applications. However, this
book focuses on the foundational development aspects of cloud
native and so we will not discuss it further.

Summary
In this chapter, we started by outlining the important principles of
good open technology around open source, open standards, and
open governance. We then showed how to use these principles to
evaluate open source and open standards choices. Finally, we talked
about the lead role the Eclipse Foundation has taken in producing
open cloud native technologies, detailing our choices of Eclipse
Jakarta EE and Eclipse MicroProfile.

Lastly, we talked about the role of the JVM and the runtime charac‐
teristics required by cloud native applications. We introduced the
Eclipse OpenJ9 JVM and discussed how its runtime profile of fast
startup and low memory footprint makes it a good choice for cloud
native Java applications. We also introduced AdoptOpenJDK as a
reliable source of prebuilt OpenJDK binaries.

In the next chapter, we’ll start getting our hands dirty in the code.
We’ll begin by diving further into the Jakarta EE and MicroProfile
technologies for implementing a REST service backed by a database.

In our implementation, we have chosen to use the Open Liberty
runtime. Open Liberty is a leader in implementing the Java EE and
MicroProfile specifications. It starts fast and can be customized to
include only the runtime components you need, making it great for
lightweight cloud native microservices. Because our code is using
Open Liberty through the Java EE and MicroProfile APIs, if we
change our mind, it’s relatively easy to switch to one of the many
other implementations available to us.

22 | Chapter 2: Open Technology Choices

CHAPTER 3

Foundation

In this chapter, we’re going to lay the foundation for developing
cloud native microservice applications. First we’ll focus on how to
implement the business logic in plain Java with as little coupling to
framework-specific APIs as possible. We will then look at the edges
of the applications that communicate with other applications and
databases. We’ll see how to persist our business objects and how to
implement HTTP-based services.

When it comes to implementing the communication boundaries,
there are two main approaches to developing cloud native microser‐
vices: contract-first and implementation-first. With contract-first, the
service API (the contract) is defined—for example, through Swagger
or OpenAPI—and then used to generate the service implementation
skeleton. With implementation-first, the service is implemented and
then the contract generated (e.g., though runtime- or tools-based
OpenAPI generation). Both are valid approaches, but we mainly see
developers using implementation-first, which is the approach taken
in this chapter.

Rapidly Developing Service Implementations
Let’s dive into implementation with an example application based on
a coffee shop. The first aspect enterprise developers should focus on
is implementing the business logic—not on cross-cutting concerns,
integration, observability, or anything else for now, but only on what
adds value to the application and its users. In other words, at the
core of our microservices we start from a plain Java view and only

23

model and implement components that directly relate to our busi‐
ness use case.

The convenience of Enterprise Java is that the programming model
adds little weight to our individual classes and methods, thanks to
the declarative approaches of both Jakarta EE and Eclipse MicroPro‐
file. Typically, the classes of our core domain logic are simple Java
classes that are merely enhanced with a few annotations.

This is why in this book we start by only covering Java and CDI,
then gradually add more specifications as our application requires
some more cross-cutting features. With this plain approach you can
achieve a lot.

Implementing Domain Classes Using CDI
In our coffee-shop application, one of the entry points for our use
case, sometimes referred to as a boundary, is a class called Coffee
Shop. This class implements functionality to order a cup of coffee or
retrieve the status of previous orders:

public class CoffeeShop {

 @Inject
 Orders orders;

 @Inject
 Barista barista;

 public List<CoffeeOrder> getOrders() {
 return orders.retrieveAll();
 }

 public CoffeeOrder getOrder(UUID id) {
 return orders.retrieve(id);
 }

 public CoffeeOrder orderCoffee(CoffeeOrder order) {
 OrderStatus status = barista.brewCoffee(order);
 order.setStatus(status);

 orders.store(order.getId(), order);
 return order;
 }

 public void processUnfinishedOrders() {
 // ...

24 | Chapter 3: Foundation

 }
}

The CoffeeShop class exposes the use cases for ordering a coffee,
retrieving a list of all orders or a single one, and processing unfin‐
ished orders. It defines two dependencies, Orders and Barista, to
which it delegates the further execution.

As you can see, the only Enterprise Java–specific declarations are the
injections of our dependencies via @Inject. Dependency injection,
as well as inversion of control in general, is one of the most useful
patterns for developing our applications. We developers are not
required to instantiate and wire dependent components, including
all their transitive dependencies, which means we can focus on effi‐
ciently writing the business domain logic. We define the dependen‐
cies as “we need to use this component in our class” without regard
to the instantiation. The life cycle of our instances, or beans, is man‐
aged by CDI.

You can mix and match using CDI beans in different
scopes and injecting them as needed. The injection
framework makes sure that all combinations work as
desired.

The CoffeeOrder, which represents the entities of our domain, is
written using plain Java only for now. It’s a POJO (plain old Java
object) containing properties for the order ID, type, and status:

public class CoffeeOrder {

 private final UUID id = UUID.randomUUID();
 private CoffeeType type;
 private OrderStatus status;

 // getters & setters ...

}

The CoffeeType and OrderStatus types are Java enums that define
the available types of drinks (ESPRESSO, LATTE, POUR_OVER) and their
order statuses (PREPARING, FINISHED, COLLECTED).

The components that implement our business logic should be tested
well. Writing test cases is beyond the scope of this book. However,
with the approach of plain Java first, we can efficiently develop test

Rapidly Developing Service Implementations | 25

cases that cover the majority of our business logic by using test
frameworks such as JUnit and mocking frameworks such as Easy‐
Mock or Mockito.

Scopes
Besides dependency injection, CDI also enables us to define the
scope of the beans. The bean’s scope determines its life cycle—for
example, when it will be created and when it will be destroyed.
Instances of the CoffeeShop class are created with an implicit depen‐
dent scope; that is, the scope is dependent on the scope of whatever
uses them. If, for example, a request-scoped HTTP endpoint is
injected with our CoffeeShop bean, the CoffeeShop instance life
cycle will also exist within the same request scope.

If we need to define a different scope, say, for a class that exists only
once in our application, we annotate the class accordingly. The fol‐
lowing example shows the application-scoped Orders class:

@ApplicationScoped
public class Orders {

 private final ConcurrentHashMap<UUID, CoffeeOrder> orders =
 new ConcurrentHashMap<>();

 public List<CoffeeOrder> retrieveAll() {
 return orders.entrySet().stream()
 .map(Map.Entry::getValue)
 .collect(Collectors.toList());
 }

 public CoffeeOrder retrieve(UUID id) {
 return orders.get(id);
 }

 public void store(UUID id, CoffeeOrder order) {
 orders.put(id, order);
 }

 public List<CoffeeOrder> getUnfinishedOrders() {
 return orders.values().stream()
 .filter(o -> o.getStatus()
 != OrderStatus.COLLECTED)
 .collect(Collectors.toList());
 }
}

26 | Chapter 3: Foundation

The Orders class is responsible for storing and retrieving coffee
orders, including their status. The @ApplicationScoped annotation
declares that there is to be one instance of the Orders bean. No mat‐
ter how many injection points we have in our application—Coffee

Shop being one of them—they will always be injected with the same
instance.

Be aware of the default concurrency management of
Enterprise Java Bean (EJB) singletons if you’re using
them instead of application-scoped CDI beans. CDI
beans don’t manage concurrency, and it’s the develo‐
per’s responsibility to make them thread-safe.

The most commonly used scopes that are available in CDI are
dependent, request, application, and session. If for some reason
these capabilities are not enough, developers can write their own
scopes and extend the features of CDI. In a typical enterprise appli‐
cation, however, this is seldom required.

Configuration
For a typical application we’ll need to configure a few things, such as
how to look up and access external systems, how to connect to data‐
bases, or which credentials to use. The good news is that in a cloud
native world, we can externalize a lot of different kinds of configura‐
tion from the application level to the environment. We don’t have to
configure and change the application binaries; instead we can have
the different configuration values injected from the environment
(e.g., such as Kubernetes ConfigMaps).

As developers, we want to focus on configuration that relates to the
application business logic. Depending on your business, your appli‐
cations might be required to behave differently in different
environments.

In general, we want to be able to inject configuration values with
minimal developer effort. We just covered dependency injection,
and ideally, we’d like to have a similar way to inject configured val‐
ues into our code.

With CDI we could write CDI producers that look up our config‐
ured values and make them available. But there’s an even easier
method: using MicroProfile Config.

Rapidly Developing Service Implementations | 27

MicroProfile Config
MicroProfile Config defines functionality that allows developers to
easily inject configured values, just like we can inject service or other
beans using CDI. For example, it ships with default config sources
for environment variables that we can use right away. Available envi‐
ronment values in our systems are loaded and ready to be injected
without any further developer effort.

Let’s assume that we want to enhance our coffee-shop example to
define default coffee drinks if the clients don’t say which type of cof‐
fee they’d like to have. To do that, we set some default CoffeeType in
our CoffeeOrders if the provided type is empty.

Have a look at our updated CoffeeShop class:

public class CoffeeShop {

 @Inject
 @ConfigProperty(name = "coffeeShop.order.defaultCoffeeType",
 defaultValue = "ESPRESSO")
 private CoffeeType defaultCoffeeType;

 // ...

 public CoffeeOrder orderCoffee(CoffeeOrder order) {
 setDefaultType(order);
 OrderStatus status = barista.brewCoffee(order);
 order.setStatus(status);

 orders.store(order.getId(), order);
 return order;
 }

 private void setDefaultType(CoffeeOrder order) {
 if (order.getType() == null)
 order.setType(defaultCoffeeType);
 }

 // ...
}

The CoffeeType is resolved from the environment variable
coffeeShop.order.defaultCoffeeType. Some operating systems
don’t support dots in their variable names, which is why
MicroProfile Config supports multiple ways of replacing the dots
with underscores. We could thus define this variable as
COFFEESHOP_ORDER_DEFAULTCOFFEETYPE. If that environment

28 | Chapter 3: Foundation

variable is not set in the running application, the value will default
to ESPRESSO.

The CoffeeType enum defines multiple values that can be resolved
by the string representations, and so we can choose the ESPRESSO
string representation as the default.

Persisting Service Data
We just saw how to implement the main business logic components
into our applications. Besides stateless processing logic, most appli‐
cations require us to persist state, usually the domain entities that
represent the core of our business.

There are many database technologies to choose from. In this chap‐
ter we want to focus on relational database management systems
(RDBMSes), which offer an arguably straightforward way of persist‐
ing domain objects that, in our experience, covers the majority of
use cases.

Java Persistence API
In the Enterprise Java world, the Java Persistence API (JPA) is one of
the most widely used technologies to persist domain entities. It
offers an effective, declarative way to map types and their properties
to relational database tables. JPA integrates well with models that are
built following the concepts of domain-driven design. Persisting
entities doesn’t introduce much code overhead and doesn’t overly
constrain the modeling. This enables us to construct the domain
model first, focusing on the business aspects, and integrate the per‐
sistence functionality afterward.

JPA’s main concepts are the entity beans, which represent the indi‐
vidual persisted domain entities, and the entity manager, which is
responsible for storing and retrieving entity beans.

Mapping domain models
JPA enables us to directly map our domain entities as well as aggre‐
gates to the database. In order to do that, we define domain types
like the CoffeeOrder as JPA entity beans:

@Entity
@Table(name = "orders")
public class CoffeeOrder {

Persisting Service Data | 29

 @Id
 private String id;

 @Basic(optional = false)
 @Enumerated(EnumType.STRING)
 @Column(name = "coffee_type")
 private CoffeeType type;

 @Basic(optional = false)
 @Enumerated(EnumType.STRING)
 private OrderStatus orderStatus;

 // getters & setters

}

The @Entity annotation defines the CoffeeOrder as an entity bean.
Each entity bean is required to define an identity field for instances
of the entity bean—that is, contain an ID property, annotated with
@Id. The individual fields are usually mapped to database columns,
which are also configured declaratively, using the corresponding
annotations. Full examples can be found in the JPA documentation.

The CoffeeOrder example will persist our coffee order to the orders
table, with the enumerations persisted as string representations.

Managing persisted entities

The EntityManager is the main entry point that manages the persis‐
tence of our entities. Our business logic invokes its functionality
during the processing of a coffee order use case:

@ApplicationScoped
public class CoffeeShop {

 @PersistenceContext
 EntityManager entityManager;

 // ...

 @Transactional
 public CoffeeOrder orderCoffee(CoffeeOrder order) {
 order.setId(UUID.randomUUID().toString());
 setDefaultType(order);
 OrderStatus status = barista.brewCoffee(order);
 order.setOrderStatus(status);

 return entityManager.merge(order);
 }

30 | Chapter 3: Foundation

http://bit.ly/2YsOvs4

}

The merge operation makes the coffee order a managed entity,
meaning JPA will manage storing and retrieving it from the
database.

The @Transactional annotation states that the orderCoffee is to be
executed within a transaction. The default for the annotation is to
require a transaction, so if there isn’t one already, a new one will be
started. If a new transaction is started, once this method finishes
execution (returns) the container will automatically commit the
transaction, and the coffee order will be persisted to the database.
The merge operation causes the coffee order to be persisted.

If we define aggregate entities that contain not only primitive types
or value objects but also references to other entities, the persist oper‐
ations are invoked on the root entities and cascaded to the refer‐
enced subentities. The difference between entities and value objects,
such as strings, enumerations, or currency values, is the notation of
identity. It doesn’t make a difference to (most) businesses which
instance of a 10 euro bill we refer to, but it does make a difference
which coffee order has just been completed successfully. The latter
needs to be identified individually and thus represents a domain
entity.

The EntityManager implements the DAO (Data Access Object) pat‐
tern. Depending on the complexity of the invocations made on the
EntityManager type, it is often not necessary to encapsulate them in
a separate DAO-like type.

Integrating RDBMSes
Our basic example shows the persistence configuration that is
required on the project code level. In order to integrate the database
into our application, we need to define the data source, in other
words, how to connect to the database.

Ideally, we can abstract the detailed configuration from our applica‐
tion configuration. As we saw earlier, environment-specific configu‐
ration should not be part of the application code but rather managed
by the infrastructure.

JPA manages the persistence of entities within persistence contexts.
The entity manager of a persistence context acts as a cache for the

Persisting Service Data | 31

entities and uses a single persistence unit corresponding to a data‐
base instance. If only one database instance is used within the appli‐
cation, the entity manager can be obtained directly, as shown in the
example, without specifying the persistence unit.

Persistence units are specified in the persistence.xml file, which
resides in the META-INF directory of our project:

<?xml version="1.0" encoding="UTF-8"?>
<persistence version="2.2"
 xmlns="http://xmlns.jcp.org/xml/ns/persistence"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://xmlns.jcp.org/xml/ns/persistence
 http://xmlns.jcp.org/xml/ns/
 persistence/persistence_2_2.xsd">
 <persistence-unit name="coffee-orders" transaction-
type="JTA">
 </persistence-unit>
</persistence>

This example configures a persistence unit that doesn’t specify a data
source. Our application container is required to define a default data
source, so that is what is used here. With this approach we can
decouple the infrastructure configuration from our application
binary build. This means we only need to build the application once
and can change the configuration as we take it through testing, stag‐
ing, and into production—a best practice in the world of cloud
native microservices.

If we use multiple data sources in our application, we define multi‐
ple persistence units and refer to the data sources via JDNI:

<?xml version="1.0" encoding="UTF-8"?>
<persistence version="2.2"
 xmlns="http://xmlns.jcp.org/xml/ns/persistence"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://xmlns.jcp.org/xml/ns/persistence
 http://xmlns.jcp.org/xml/ns/
persistence/persistence_2_2.xsd">
 <persistence-unit name="coffee-orders" transaction-
type="JTA">
 <jta-data-source>jdbc/CoffeeOrdersDB</jta-data-source>
 </persistence-unit>
 <persistence-unit name="customers" transaction-type="JTA">
 <jta-data-source>jdbc/CustomersDB</jta-data-source>
 </persistence-unit>
</persistence>

32 | Chapter 3: Foundation

1 For more information, see this Illustrated Proof of the CAP theorem.

In this case, we are required to qualify the EntityManager lookups
with the corresponding persistence unit:

@PersistenceContext(unitName = "coffee-orders")
EntityManager entityManager;

Transactions
As mentioned before, Enterprise Java makes it easy to execute busi‐
ness logic within transactions. This is required once we make use of
relational databases and when we want to ensure that our data is
stored in an all-or-nothing fashion. In one way or another, the
majority of enterprise applications require ACID (atomic, consis‐
tent, isolated, durable) transactions.

In a distributed system, a business use case might involve multiple
external systems, databases, or backend services. Traditionally, these
distributed transactions have relied on the use of a two-phase com‐
mit (2PC) protocol to coordinate updates across the external sys‐
tems. Achieving this consistency across distributed systems takes
time and resources, and thus it comes at the cost of availability. In
modern internet-scale systems, availability is often key, so other
techniques based around the goal of eventual consistency have been
employed. These include patterns such as Sagas and CQRS (com‐
mand query responsibility separation). In moving to an eventual
consistency model, a system becomes more loosely coupled and
responsive, with the caveat that the data may be a little stale. For a
more detailed understanding of these principles, we recommend
you look at the literature on CAP theorem.1

In order to guarantee data consistency, our systems typically require
us to use transactions in which a single database participates. As
we’ve seen in the example, the @Transactional annotation enables
this functionality without requiring developers to write boilerplate
code or extensive configuration. If required, we can further refine
how multiple, nested methods are executed. For example, methods
that are executed within an active transaction can suspend the trans‐
action and start a new transaction that is active during their execu‐
tion, or they can be part of an existing transaction. For further
information, have a closer look at the semantics of the parameters of

Persisting Service Data | 33

http://bit.ly/2yFFQDg
http://bit.ly/2yGMDg4

the @Transactional annotation and the Java Transaction API (JTA)
specification.

In our CoffeeShop example, we used a CDI bean. An
alternative approach, although less in favor nowadays,
would have been to use a session EJB. With session
EJBs, by default, all the EJB methods are transactional,
so there would be no need for the @Transactional
annotation.

Implementing REST Services
Now that you’ve seen how our domain entities can be persisted, let’s
have a look at how to integrate other applications using HTTP-based
communication. You’ll learn how to implement HTTP-based serv‐
ices using JAX-RS, how to map entities to transfer objects, and how
applications can benefit from the ideas behind hypermedia.

Once we have implemented our business logic and potentially
implemented persistence, we have to further integrate our applica‐
tion into our system. Business logic that is not accessible from out‐
side the application mostly provides little value, and typically
enterprise systems are required to provide endpoints to communi‐
cate with other systems.

The following example shows how to implement REST services
using Enterprise Java technology. We’ll implement JAX-RS resource
classes that handle the HTTP functionality and make our business
logic accessible outside of the application.

Boundary Classes
JAX-RS resource classes typically represent the boundaries, or the
entry points, of our business use cases. Clients make HTTP requests
and thus start a specific business process in the backend.

The following shows a JAX-RS resource class that implements the
HTTP handling for retrieving coffee orders:

import javax.ws.rs.*;
import javax.ws.rs.core.*;

@Path("/orders")
@Produces(MediaType.APPLICATION_JSON)
@Consumes(MediaType.APPLICATION_JSON)

34 | Chapter 3: Foundation

http://bit.ly/2M0sASv
http://bit.ly/2M0sASv

public class OrdersResource {

 @Inject
 CoffeeShop coffeeShop;

 @GET
 public List<CoffeeOrder> getOrders() {
 return coffeeShop.getOrders();
 }
}

The @Path annotation declares the class as a JAX-RS resource for
handling the /orders URL path. There are annotations for all stan‐
dard HTTP verbs, such as @GET, @POST, and @HEAD. These annota‐
tions declare a method as a JAX-RS resource method. Once a client
makes an HTTP GET request to the /orders resource, the request
will be handled in the getOrders method of this class.

JAX-RS automatically maps Java objects to HTTP requests and
responses. It supports content negotiation; that is, clients can tell the
servers which content type they use for request bodies, and which
one they expect for the server’s responses. This example resource
class supports JSON, which is specified by the @Consumes and @Pro
duces annotations. Developers can declare further content type
capabilities by implementing and registering the MessageBody
Writer and MessageBodyReader types in JAX-RS, but for most
microservices, JSON is the format used. We must pay attention so as
not to use the wrong import for the @Produces annotation, since
CDI also defines one with the same name but different behavior.

In order to create some coffee orders, clients typically create new
resources by sending POST requests to the backend’s URLs. The fol‐
lowing shows the JAX-RS resource method for creating new orders:

@Path("/orders")
@Produces(MediaType.APPLICATION_JSON)
@Consumes(MediaType.APPLICATION_JSON)
public class OrdersResource {

 @Inject
 CoffeeShop coffeeShop;

 @Context
 UriInfo uriInfo;

 @POST
 public Response orderCoffee(CoffeeOrder order) {

Implementing REST Services | 35

 final CoffeeOrder storedOrder = coffeeShop
 .orderCoffee(order);
 return Response.created(buildUri(storedOrder)).build();
 }

 private URI buildUri(CoffeeOrder order) {
 return uriInfo.getRequestUriBuilder()
 .path(OrdersResource.class)
 .path(OrdersResource.class, "getOrder")
 .build(order.getId());
 }
}

The orderCoffee resource method will receive the POST request
with the coffee order as the body in the JSON content type and will
then map it to an CoffeeOrder object. The resource method calls
the business functionality of the boundary and returns a Response
object, a wrapper object for HTTP responses with additional infor‐
mation, to indicate that the resource has been created successfully.
The JAX-RS implementation will map this to the 201 Created

HTTP status code and the Location header field. We’ll see in “Vali‐
dating Resources” on page 38 how other response codes can be
returned when the input data is invalid.

This is all we need to do to implement HTTP endpoints on our side.

Mapping Entities to JSON
By default, all properties of a business entity for which we define
getter and setter methods are mapped to JSON. However, often we
require some further control over how exactly the properties of an
object are serialized, especially when the mapping slightly varies
from what we represent in Java.

In Enterprise Java, there are two ways to map Java objects from and
to JSON. The first way is to declaratively map the properties, using a
standard called JSON-B (the Java API for JSON Binding). This is
what we implicitly used in the previous examples. By default, this
approach will map all properties for which an object defines getter
and setter methods to JSON object fields. Nested object types are
handled recursively.

The second way is to programmatically create or read JSON objects
using a technology called JSON-P (the Java API for JSON Process‐
ing). JSON-P defines methods that we can call directly to create
arbitrary objects. This approach provides the greatest flexibility in

36 | Chapter 3: Foundation

how objects are mapped. Let’s look at an example of how to pro‐
grammatically map our coffee order type:

@Path("/orders")
public class OrdersResource {

 @Inject
 CoffeeShop coffeeShop;

 @Context
 UriInfo uriInfo;

 @GET
 public JsonArray getOrders() {
 return coffeeShop.getOrders().stream()
 .map(this::buildOrder)
 .collect(JsonCollectors.toJsonArray());
 }

 private JsonObject buildOrder(CoffeeOrder order) {
 return Json.createObjectBuilder()
 .add("type", order.getType().name())
 .add("status", order.getStatus().name())
 .add("_self", buildUri(order).toString())
 .build();
 }

 private URI buildUri(CoffeeOrder order) {
 return uriInfo.getRequestUriBuilder()
 .path(OrdersResource.class)
 .path(OrdersResource.class, "getOrder")
 .build(order.getId());
 }
}

The JsonArray type defines a JSON array of arbitrary elements. The
getOrders resource method maps the individual coffee orders to
JsonObject and aggregates them into the array type. We can see
how the object builder allows us to compose objects with our
desired structure. The resulting JSON objects differ slightly from the
declaratively mapped approach.

The question often arises as to when to use JSON-B or JSON-P. Typ‐
ically, we find that the declarative approach of JSON-B is the sim‐
plest and covers most use cases.

If its default serialization is not what you need, then JSON-B also
allows you to control how the Java objects are mapped to JSON,
especially how and whether individual properties are being mapped.

Implementing REST Services | 37

The following example slightly modifies the mapping of our coffee
order:

public class CoffeeOrder {

 @JsonbTransient
 private final UUID id = UUID.randomUUID();

 @JsonbTypeAdapter(CoffeeTypeDeserializer.class)
 private CoffeeType type;

 @JsonbProperty("status")
 private OrderStatus orderStatus;

 // methods omitted
}

The @JsonbTransient annotation declares the id field as transient;
that is, this field will be ignored by JSON-B and neither be read from
nor written to JSON. @JsonbProperty allows for further customiza‐
tion of the JSON object field name.

If the default mapping of a Java type doesn’t work for us, we can
always declare a custom type adapter, for example, using the @Jsonb
TypeAdapter annotation as shown in the previous example. You can
have a look at the adapter for the coffee type enum in the CoffeeTy
peAdapter class, found in the code example project.

These and a few other ways of customizing the JSON mapping built
into JSON-B already fulfill a majority of cases. If more flexibility or
control is required, we can instead programmatically create or read
JSON structures using JSON-P. This approach is especially helpful
when dealing with Hypermedia REST resources, as you’ll see later in
this chapter.

Validating Resources
Request data that is received from clients needs to be sanitized
before it can be used further. For security reasons you should never
trust the data that has come from an external source, such as a web
form or REST request. In order to make it simple to validate input,
Enterprise Java ships with the Bean Validation API, which allows us
to declaratively configure the desired validation. The good news for
developers is that this standard integrates seamlessly with the rest of
the platform, including, for example, JAX-RS resources.

38 | Chapter 3: Foundation

To ensure that only valid coffee orders are accepted in our applica‐
tion, we enhance our JAX-RS resource method with Bean Validation
constraints:

...

@POST
public Response orderCoffee(@Valid @NotNull CoffeeOrder order) {
 final CoffeeOrder storedOrder = coffeeShop.
 orderCoffee(order);
 return Response.created(buildUri(storedOrder)).build();
}

The @NotNull annotation ensures that we’ll receive properly popula‐
ted orders. @Valid makes sure that the order itself is validated for
potential subsequent validation constraints.

Let’s look at our enhanced coffee order class that defines what makes
a valid order:

public class CoffeeOrder {

 @JsonbTransient
 private final UUID id = UUID.randomUUID();

 @NotNull
 @JsonbTypeAdapter(CoffeeTypeDeserializer.class)
 private CoffeeType type;

 private OrderStatus status;

 // ... getters & setters
}

The type of a coffee order must not be null either; that is, clients
must provide a valid enumeration value. The value is automatically
mapped by the provided JSON-B type adapter, which returns a null
if an invalid value is transmitted. Consequently, validation will fail
for any invalid values.

JAX-RS integrates with Bean Validation such that if any constraint
validations fail, an HTTP status code of 400 Bad Request is
automatically returned. Therefore, the presented example is already
sufficient to ensure that only valid orders can be sent to our applica‐
tion.

Implementing REST Services | 39

REST and Hypermedia
Representational State Transfer (REST) provides an architectural
style of web services that is often well suited to the needs and struc‐
ture of web applications. The idea is to loosely couple applications
with interfaces that are accessible in a uniform way, through URLs.
There are a few REST constraints, such as the use of uniform inter‐
faces, identification of individual resources (i.e., the entities in our
domain), and the use of Hypermedia As The Engine Of Application
State, commonly referred to as HATEOAS. The representations of
the domain entities are modified in a uniform way—in HTTP, for
example, using the methods GET, POST, DELETE, PATCH, and PUT.

Hypermedia allows for linking related resources and resource
actions, and then making them accessible through URLs. If some
HTTP resources are somewhat related to others, for example, they
can be linked to each other and accessed through full URLs that the
client directly follows. In this way, the server guides the clients
through the available resources using semantic link relations. The
clients don’t need to know how the URLs are structured on the
server. Roy T. Fielding described Hypermedia’s usage in his disserta‐
tion, “Architectural Styles and the Design of Network-based
Software.”

The following shows a basic example of a coffee order representa‐
tion in the JSON format:

{
 "type": "ESPRESSO",
 "status": "PREPARING",
 "_links": {
 "self": "https://api.coffee.example.com/orders/123",
 "customer": "https://api.coffee.example.com/customers/234"
 }
}

The _links field of the representation gives some example links—to
the coffee order resource itself and to the customer who created this
order. If a client would like to know more about the customer, it
would follow the provided URL in a subsequent GET request.

It’s usually not sufficient to only follow links and read resources
using GET, so you can also exchange information—say, on how to
modify resources—using POST or PUT requests.

40 | Chapter 3: Foundation

The following demonstrates an example Hypermedia response that
uses the concept of actions. There are a few Hypermedia-aware con‐
tent types that support these approaches, such as the Siren content
type on which this example is based:

{
 "class": ["coffee-order"],
 "properties": {
 "type": "ESPRESSO",
 "status": "PREPARING"
 },
 "actions": [
 {
 "name": "cancel-order",
 "method": "POST",
 "href": "https://api.coffee.example.com/cancellations",
 "type": "application/json",
 "fields": [
 { "name": "reason", "type": "text" },
 { "name": "order", "type": "number", "value": 123 }
]
 }
],
 "links": [
 "self": "https://api.coffee.example.com/orders/123",
 "customer": "https://api.coffee.example.com/customers/234"
]
}

In this example, the server enables the client to cancel a coffee order
and describes its usage in the cancel-order action. A new cancella‐
tion means the client would POST a JSON representation of a cancel‐
lation containing the order number and the reason to the provided
URL. In this way, the client requires knowledge only of the cancel-
order action and the origin of the provided information (i.e., the
order number, which is given, and the cancellation reason, which is
known only by the client and may be entered in a text field in the
UI).

This is one example of a content type that enables the use of Hyper‐
media controls. There is no real standard format that the industry
has agreed upon. However, this Siren-based example nicely demon‐
strates the concepts of links and actions. Whatever content type and
representation structure is being used, the projects need to agree
upon and document their usage. But as you can see, this way of
structuring the web services requires far less documentation, since
the usage of the API is baked into the resource representations

Implementing REST Services | 41

already. This also greatly reduces the likelihood of API documenta‐
tion becoming out of date with the code. We’ll see later in Chapter 4
how OpenAPI can further improve this approach.

One of the benefits of using HATEOAS is that control over how the
resources are accessed resides on the server side. The server owns
the communication and is even free to change the URL structures,
since the clients are no longer required to make any assumptions
about how the URLs are being constructed.

Decoupling the communication also results in less duplication of
business logic. Clients do not need to contain the logic for the con‐
ditions under which an order can be canceled; they can simply dis‐
play the functionality for canceling orders if the corresponding
action is provided in the HATEOAS response. Only the knowledge
that is required to reside on the client side—for example, how the
cancellation reason is provided—needs to be implemented on the
client side (i.e., UI decisions).

Let’s come back to how we map our domain entities to JSON on the
server side. As you can see, the JSON structures for Hypermedia
resources can become quite complex, which in turn may result in
complex Java type hierarchies if we were to use the declarative
approach of JSON-B. For this reason, it’s worth considering the pro‐
grammatic approach using JSON-P to create these Hypermedia
resources instead. The code that creates the JSON-P objects repre‐
senting the coffee orders can be factored out into a separate class
with the single responsibility to remove redundancy in the JAX-RS
resources, if required.

Summary
As you’ve seen in this chapter, we can already implement the vast
majority of our enterprise application using plain Java and CDI. At
its core, our business logic is written in plain Java with some
dependency injection added to simplify defining dependent compo‐
nents. MicroProfile Config enables us to inject required configura‐
tion with minimal impact in the code. What’s left is mainly
integration into our overall enterprise system, as well as nonfunc‐
tional requirements such as resiliency and observability.

We saw how to integrate persistence into our applications using JPA
and how to map domain entities to relational databases with

42 | Chapter 3: Foundation

minimal developer effort. Thanks to the previous specification work
being done in the JTA standard, we can define transactional behav‐
ior without obscuring the business code.

We can implement REST endpoints using the JAX-RS standard with
JAX-RS resources. The declarative programming model allows us to
efficiently define the endpoints with default HTTP bindings. It also
allows us to further customize the HTTP request and response map‐
pings, if required.

Enterprise Java supports binding our entities to and from JSON,
either declaratively using JSON-B or programmatically using JSON-
P. Which approach makes more sense depends on the complexity of
the entity representations. The requests can be validated using Bean
Validation, which allows developers to specify the validation pro‐
grammatically or declaratively as well. Enterprise developers might
want to explore the concepts behind Hypermedia that allow further
decoupling from the server, make the server resources discoverable,
and make communication more flexible and adaptive.

Summary | 43

CHAPTER 4

Cloud Native Development

In the previous chapter we saw how to develop REST services that
are backed by a database. We discussed how Enterprise Java makes
this simple, allowing the developer to focus largely on the business
logics and use a small set of annotations to define database persis‐
tence and to provide and call REST services with JSON payloads.

This ability to use annotations to reduce the amount of coding
required is great for small numbers of simple services, but you’ll
soon encounter limitations if you’re scaling to tens or hundreds of
services for which individual teams are responsible. Your business
logic is now split across processes with remote APIs. These APIs will
need to be appropriately secured. A client request potentially passes
through tens of services, all managed independently and with net‐
works in between, which adds the potential for latency and reliabil‐
ity problems. Your independent teams now need to be able to
collaborate and communicate their service APIs. These are just
some of the costs associated with cloud native development, but
thankfully there are APIs and technologies available to help.

Securing REST Services
Background
It’s important to start by recalling that by default the HTTP protocol
is stateless. The protocol supports various “verbs” for requests (GET,
POST, PUT, DELETE, etc.). These are the building blocks for the REST‐
ful approach underpinning microservices. All calls are stateless, as

45

they are simply requests to retrieve or modify state on the server.
There is no capability within the protocol to define any sort of rela‐
tionship between these calls. This design approach means that
HTTP services can balance workload effectively across multiple
servers (and the like) because any call can be routed to any available
responder.

This stateless design is effective for public data where the caller can
remain anonymous, but at some point it becomes essential to differ‐
entiate one client from another.

As mentioned before, prior to a client authenticating themselves, a
service does not need to be able to differentiate between callers.
They can remain anonymous and undifferentiated. Once a client is
authenticated to the server, however, then they are no longer anony‐
mous. The client may have particular powers to modify the state of
the server; hence, the server must ensure there are appropriate con‐
trols in place to prevent hijacking of the communications between
the user and the server.

Application architectures therefore face a continuous challenge in
determining how to communicate securely and statefully with an
authenticated client when the underlying protocol is stateless.

The Common Approach
Most application server frameworks provide a basic mechanism to
achieve this via a session mechanism that stores a unique identifier
in a cookie called JSESSIONID that is sent to the client. In this model
the session ID is simply a randomly generated key that can be used
by the client to show that its request is part of a previous conversa‐
tion with the server.

This approach does work, but it has some significant weaknesses:

Server affinities
The session ID is a key to more important data stored on the
server. This is fine when there is only one server. When there
are multiple servers that could handle the request from the cli‐
ent, though, they must somehow communicate to each other
what are valid session IDs and what is the important related
data. Otherwise, a client request routed to a new server would
find that its JSESSIONID is not recognized and hence the request
would be rejected.

46 | Chapter 4: Cloud Native Development

Session ID hacking or spoofing
The session ID on its own merely indicates to the server that the
client has been seen before. The random nature of the session
ID protects against simple spoofing. If it were a simple numeric
value, it’s easy to see how a malicious actor could create a fake
session ID and try to break into an existing conversation
between client and server. The random nature of the session ID
prevents simple numerical attacks but does not prevent stolen
session IDs from being reused.

Lack of access granularity
Since the session ID is just a key to identifying the client, it does
not restrict the request’s capability. A stolen or hijacked session
ID could be used to access the server in any way the client is
authorized to do—even if unrelated to the original request from
the client.

Multiple authentication
JSESSIONID is a server concept. It is created by the application
server and shared across related instances. If the client needs to
talk to different services, then it will need to authenticate sepa‐
rately with them. If they too provide JSESSIONIDs, then the cli‐
ent will need to manage multiple conversations to prevent
repeated authentication. Reauthentication is both a waste of
resources and a potential security risk.

Access propagation
When the application itself is making a request to a service on
behalf of the client, the JSESSIONID is not suitable to pass on to
the next service. The application will need to authenticate with
the new service on the client’s behalf. In this case the application
has to request additional authentication information from the
client or use some preloaded authentication data. Neither of
these options is particularly optimal, and both carry a risk of
being potential security exposures.

Introducing JSON Web Tokens
In light of all the aforementioned weaknesses, much effort has been
applied to creating an improved approach that addresses or reduces
these concerns. As one example, in 2015 the IETF published
rfc7519, which proposed a compact solution called JSON Web Token
(JWT).

Securing REST Services | 47

The JWT approach is based on providing an encoded, signed token
that the client can use to access an application securely without
needing the application to hold session state. The token is not spe‐
cific to any application and can be passed to downstream services
with no need for reauthentication. JWT tokens are readable and ver‐
ifiable by anyone but, because they are signed, cannot be modified
without detection.

A JWT token looks like this:

eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJzdWIiOiIxMjM0NTY3ODkwIiw
iZW1haWwiOiJqb2VAbWFpbHNlcnZlci5jb20iLCJleHAiOjEyMDAxMTY0OTAsImd
yb3VwcyI6WyJtZW1iZXIiXX0.MR_71yUi80M9b_Hb9MnCrquuosvanX2hwggNsgV
cMe0

Looking closely, we can see the token is separated into three parts by
periods (dots). Logically the token consists of a header, a payload,
and a signature. The header and payload are base64 encoded. Once
split and decoded, the token is more easily understandable.

Header
{
"alg": "HS256",
"typ": "JWT"
}

The JSON that makes up the header typically has two properties.
The "alg" field defines the encryption algorithm used in the signa‐
ture. The "typ" field specifies the type of the token, which by defini‐
tion is "JWT".

Payload
This section contains claims, which are optional. There are multiple
predefined claims, some of which, although technically optional, are
generally essential.

Claims are logically grouped into three types:

Registered claims
Claims that are the most obviously useful or essential. The list
includes the token expiration time, the token’s issuer, and the
subject or principle of the token.

48 | Chapter 4: Cloud Native Development

Public claims
Claims intended to be shared between organizations and to be
in some way domain specific. Public claims are registered in the
IANA JSON Web Token Registry.

• Private claims cover all other claims that individuals and
groups want for their own usage.

Here is a typical JWT claims example:

{
"sub" : "joe",
"email" : "joe@mailserver.com",
"exp" : 1200116490 ,
"groups" : ["member"]
}

This example shows the following claims:

• "sub" or subject, the value that will be returned via the Micro‐
Profile JsonWebToken.getCallerPrinciple() method.

• "email", a private claim that can be accessed by using Json
WebToken.getClaim("email").

• "exp" or expiration date, the date and time after which this
token is considered to be invalid.

• "groups", the list of groups or roles the subject is a member of.
This can be automatically checked with the @RolesAllowed
annotation.

Signature
The signature is an encrypted version of the header and payload
joined together. It is created by base64 encoding the header and pay‐
load and then encrypting the result.

The signature can be signed by either a public or private key. In
either case, the token recipient can easily assert that the data has not
been modified. Of course, if the issuer signed the token with a pub‐
lic key, then any potential bad actor could create a fraudulent token
by using the public key. So while it is technical feasible to use public
keys, it is best to use a private key. Doing so provides additional
proof that the token issuer is who they claim to be, as only they have
the private key.

Securing REST Services | 49

http://bit.ly/2YsOPag

JWT with MicroProfile
Eclipse MicroProfile provides first-class support for generating and
consuming JWT elements. There are easy-to-use annotations and
methods for setting and reading group access, identities of partici‐
pants, times of token issue and expiration, and, of course, setting
and reading custom claims.

Enabling JWT as the authentication method
Using JWT with MicroProfile is straightforward. Use an annotation
on the Application class to enable JWT as the login method:

@LoginConfig(authMethod = "MP-JWT")
public class CoffeeShopApplication extends Application {

Consuming JWT
On each endpoint class, use CDI to inject the current JWT instance:

@Path("/orders")
public class OrdersResource {

 @Inject
 private JsonWebToken jwtPrincipal;

Each endpoint using JWT support looks similar to the following
example:

 @GET
 @RolesAllowed({"member"})
 @Path("coffeeTypes")
 public Response listSpecialistCoffeeTypes() {
 ...

Notice how by using the @RoleAllowed annotation we can check
that the client user is in the required member group. If the client is
not a member, then the server will automatically reject the request.

Additional benefits of using JWT
JWT can be used to store important information about the client
that otherwise might have had to be cached on the server. Being able
to reduce sensitive data stored on the server greatly helps in situa‐
tions where the server has been compromised. It is hard to steal sen‐
sitive data if it is not actually there!

Imagine that in our coffee-shop example members can order special,
super-strong coffees if they are 18 or over. Under normal

50 | Chapter 4: Cloud Native Development

circumstances, the server will ask for the user’s date of birth, which
will be stored in a database. Subsequent interactions with the user
will require the server to retrieve the user’s record to check their age
and whether they are a coffee club member.

By including private claims in the token that confirms the user is 18
or over and a club member, the server can quickly check that the
user is eligible for the special coffees without having to retrieve sen‐
sitive data.

This capability is particularly powerful. If the information is not
something that should be revealed to the user or a third party, it can
be encrypted inside the token.

In this example, the JWT token claims would look something like
this:

"sub" : "joe",
"name ": "Joe Black",
"exp" : 1200116490,
"groups" : ["member"]
"adult" : "true"

The Java code checking the claim during the order would simply be:

@POST
 @RolesAllowed({"member"})
 @Path("/orderMemberCoffee")

 public Response orderMemberCoffee(CoffeeOrder order) {

 JsonValue claim=jwtPrincipal.getClaim("adult");

 if(claim==null || claim!=JsonValue.TRUE) {

 return Response.status(Response.Status.FORBIDDEN).build();

 }
 // normal processing of order

Encrypting claims
Since JWT contents are essentially public, if the claim information is
sensitive, then it can be worthwhile to encrypt the contents of the
claim and even obscure the claim name itself. In this example, the
actual age of the user is needed:

"age" : "25"

Securing REST Services | 51

Once encrypted and obfuscated, it appear as follows:

"a7a6a43128392fc" : "Bd+vK2AnxSNZduoGxFdbpBOfZ3mkPfBcw14t
4uU29nA="

Final Thoughts on JWT
JWT provides a strong mechanism for validating that the client has
not forged any of the claims and is whom they say they are. How‐
ever, like all publicly shared data in an HTTP or HTTPS request, the
data in the JWT token can potentially be stolen and can be used as is
against the service. Detecting this kind of spoofing is beyond the
scope of this book, but it’s important to know that it can and does
occur.

Handling Service Faults
System outages in large businesses can cost them tens of thousands
of dollars per minute in lost revenue. High availability (HA) is there‐
fore critical to business success. Many businesses make significant
investments with the goal of achieving four-nines availability
(99.99% available, or less than 52 minutes, 36 seconds of outage per
year) or even five-nines availability (99.999% available, or less than 5
minutes, 15 seconds of outage per year). You may be wondering
what this has to do with microservices, and to answer that, we need
to do some sums.

Consider a company running a monolithic application with five-
nines availability. They split the application up into microservices,
each deployed and managed independently. They calculate that on
average each request to their application passes through 10 micro‐
services and each individual microservice has five-nines availability.
What’s the overall availability of their microservice-based applica‐
tion? It’s actually now only four nines.

This is the probability of a request being successful:

0 . 99999 10 = 0 . 9999 = 99 . 99 %

If a request passes through 100 microservices, the availability of that
request is actually only three nines, meaning 1 in 1,000 requests will
encounter a problem—not great for customer satisfaction.

52 | Chapter 4: Cloud Native Development

This is the probability of a request being successful:

0 . 99999 100 = 0 . 999 = 99 . 9 %

The solution to this problem is to expect issues and handle them
gracefully. If, as a client of a service, you can be tolerant of its faults
and not propagate those issues back to your clients, then your avail‐
ability is not impacted. Do this for all your service dependencies,
and your overall availability is not impacted at all.

Fault tolerance is the concept of designing into a system the ability to
gracefully handle faults. There are a number of different strategies
for handling faults, and the approach you choose depends on the
types of problems you might encounter and the purpose of the ser‐
vice being called. For example, a slow service might require a differ‐
ent strategy from a service that suffers intermittent outages.

MicroProfile Fault Tolerance implements a number of strategies, as
summarized here:

Retry
The Retry strategy is useful for short-lived transient failures.
You can configure the number of times a service request will be
retried and the time interval between retries.

Timeout
Timeout allows you to time a request out before it completes.
This is useful if you are calling a service that might not respond
in a reasonable amount of time—for example, within your serv‐
ice’s service level agreement (SLA) response time.

Fallback
Fallback allows you to define an alternative action to take in the
event of a failure—for example, calling an alternative service or
returning cached data.

Circuit breaker
A circuit breaker helps prevent repeated calls to a failing service.
If a service begins to have issues, the circuit is opened and
immediately fails requests until the service becomes stable and
the circuit is closed.

Handling Service Faults | 53

Bulkhead
Bulkhead is useful when you are calling a service that is at risk
of being overloaded. You can restrict the number of current
requests to a service and queue up or fail requests over this
limit.

Asynchronous
Asynchronous allows you to offload requests to separate threads
and then use Futures to handle the responses. An object repre‐
senting the result of an asynchronous computation, the Future
can be used to retrieve a result once the computation has
completed.

It’s also possible to combine these policies for the same microservice
dependency. For example, you can use Retry along with Fallback so
that if the retries ultimately fail, you can call a fallback operation to
return something useful.

Let’s look at an example of MicroProfile Fault Tolerance. The follow‐
ing code is for a client of the Barista service:

 @Retry
 @Fallback(fallbackMethod="unknownBrewStatus")
 public OrderStatus retrieveBrewStatus(CoffeeOrder order) {
 Response response
 = getBrewStatus(order.getId().toString());
 return readStatus(response);
 }

 private OrderStatus unknownBrewStatus(CoffeeOrder order) {
 return OrderStatus.UNKNOWN;
 }

 private Response getBrewStatus(String id) {
 return target.resolveTemplate("id", id)
 .request().get();
 }

This code makes a remote call to the Barista service to retrieve the
status of an order. The client may throw an exception, for example,
if it is unable to connect to the Barista service. If this occurs, the
@Retry annotation will cause the request to be retried, and in the
event none of the request is successful, the @Fallback annotation
causes the unknownBrewStatus method to be called, which returns
OrderStatus.UNKNOWN.

54 | Chapter 4: Cloud Native Development

Publishing and Consuming APIs
A common characteristic of companies that succeed with microser‐
vices is how they organize their teams. Spotify, for example, has
squads that are responsible for each microservice; they manage the
microservice from concept to development, from test to production,
and finally to end of life.

Services don’t live in isolation, so it’s important for teams to be able
to communicate to potential users what their services do and how to
call them. Ideally that communication should be both human- and
machine-readable, enabling a person to understand the service and
a service client to easily call it, for example, by generating a service
proxy at build time.

Open API is an open specification at the Linux Foundation designed
to do just that. Open API is a standardization of Swagger contrib‐
uted by SmartBear. It describes service APIs in either YAML or
JSON format, and there are a number of tools that take these defini‐
tions and generate proxies or service stubs for various languages,
including Java.

Rather than write Open API definitions from scratch, it’s preferable
to generate them from the service implementation. This is simpler
for developers, as they don’t need to be familiar with the Open API
format or restate things already said in the code. It also ensures that
the API definition is in sync with the code and that tests can be used
to quickly flag breaking changes. It’s possible to generate a machine-
readable Open API definition directly for service implementations,
such as those using JAX-RS and JSON-B. To augment the service
definition with documentation, MicroProfile provides additional
annotations that cover things such as operation documentation and
API documentation URLs. The following example shows a JAX-RS/
JSON-B service using the @Operation annotation to add a human-
readable description:

 @GET
 @Path("{id}")
 @Operation(summary="Get a coffee order",
 description=
 "Returns a CoffeeOrder object for the given order id.")
 public CoffeeOrder getOrder(@PathParam("id") UUID id) {
 return coffeeShop.getOrder(id);
 }

Publishing and Consuming APIs | 55

The resulting OpenAPI YAML definition would be as follows. For
the sake of brevity, only the definitions relating to the getOrder
method are shown:

openapi: 3.0.0
info:
 title: Deployed APIs
 version: 1.0.0
servers:
- url: http://localhost:9080/coffee-shop
- url: https://localhost:9443/coffee-shop
paths:
 /resources/orders/{id}:
 get:
 summary: Get a coffee order
 description: Returns a CoffeeOrder object for the given...
 operationId: getOrder
 parameters:
 - name: id
 in: path
 required: true
 schema:
 type: string
 format: uuid
 responses:
 default:
 description: default response
 content:
 application/json:
 schema:
 $ref: '#/components/schemas/CoffeeOrder'
components:
 schemas:
 CoffeeOrder:
 type: object
 properties:
 id:
 type: string
 format: uuid
 type:
 type: string
 enum:
 - ESPRESSO
 - LATTE
 - POUR_OVER
 orderStatus:
 type: string
 enum:
 - PREPARING
 - FINISHED
 - COLLECTED

56 | Chapter 4: Cloud Native Development

Some environments also provide a UI so that you can try out the
API. Figure 4-1 shows the OpenAPI UI for retrieving a coffee order.
Clicking “Try it out” allows you to enter the order id and get back
the CoffeeOrder JSON.

Figure 4-1. OpenAPI UI for retrieving coffee orders

Summary
In this chapter we’ve discussed a number of areas you need to focus
on when developing cloud native microservices: end-to-end security
through your microservices flow, graceful handling of network and
service availability issues to prevent cascading failures, and simple
sharing and use of microservices APIs between teams. While these
areas aren’t unique to the microservices world, they’re essential to
success within it. Without these approaches, your microservice
teams will struggle to share and collaborate while remaining
autonomous.

We’ve shown how using the open standards of JWT and Open API
and their integration into Enterprise Java through MicroProfile,
along with MicroProfile’s easy-to-use Fault Tolerance strategies,
makes it relatively easy to address these requirements. For addi‐
tional step by step instructions on how to build a cloud native
microservices application in Java, please visit ibm.biz/oreilly-cloud-
native-start.

In the next chapter we’ll move on to cloud native microservice
deployment and how to take to make your services observable so
you can detect, analyze, and resolve problems encountered in
production.

Summary | 57

https://ibm.biz/oreilly-cloud-native-start
https://ibm.biz/oreilly-cloud-native-start

CHAPTER 5

Running in Production

Observability refers to the ability to continually monitor your micro‐
service to understand how it’s performing, predict problems, and
diagnose issues. Monitoring your runtime and application code is
nothing new, but in a cloud native world you need to be able to do
so with tens, hundreds, or thousands more instances and in cloud
native deployment environments (e.g., containers and Kubernetes).

A common question that arises around observability is performance
impact. We caution against compromising observability for the sake
of performance. Modern JVMs incur only a small overhead when
capturing runtime metrics, and the alternative is to essentially “fly
blind.” The last thing you need is for your service to go wrong,
which you find out only when people start banging on your door,
and you realize you have absolutely no diagnostic information to
resolve the problem.

Eclipse MicroProfile provides three APIs to help monitor microser‐
vices: MicroProfile Health, MicroProfile Metrics, and MicroProfile
OpenTracing. Each covers different aspects of observability, from
the availability of your service to the performance of the service
runtime.

In this chapter we’ll explain how to use MicroProfile to make your
microservices observable. We’ll also discuss how to integrate your
microservices with the Kubernetes infrastructure to enable Kuber‐
netes to manage your service life cycle and traffic delivery. Finally,
we’ll show how to hook up your microservices to monitoring and

59

alerting tools to enable proactive detection and management of
issues.

Reporting Health
It’s common practice to report the health of a service through a
REST endpoint. Kubernetes liveness and readiness probes can be
configured to call these endpoints to get the health status of a service
and take appropriate action. For example, if a service reports itself as
not being ready, then Kubernetes will not deliver work to it. If a
check for liveness fails, then Kubernetes will kill and restart the
container.

Because of these different liveness and readiness remediation strate‐
gies, the types of health checks you perform will likewise differ. For
example, readiness should be based on transient events that are out‐
side your container’s control, such as a required service or database
being unavailable (presumably temporarily). Liveness, however,
should check for things that are unlikely to go away without a con‐
tainer restart—for example, running low on memory.

The MicroProfile Health API takes away the need to understand
which HTTP responses to provide for the different health states,
allowing you to focus on just the code required to determine
whether or not the service is healthy.

The next example is a readiness health check for the coffee-shop
service, denoted by the @Readiness annotation.

@Readiness
@ApplicationScoped
public class HealthResource implements HealthCheck {

 private boolean isHealthy() {

 try {
 Client client = ClientBuilder.newClient();
 WebTarget target =
 client.target(
 "http://barista:9080/barista/resources/brews");
 Response response = target.request().get();

 int status = response.getStatus();
 if (status != 200) {
 return false;
 } else {
 System.err.println(status);

60 | Chapter 5: Running in Production

 }
 return true;
 } catch (Exception e) {
 e.printStackTrace();
 return false;
 }
 }

 @Override
 public HealthCheckResponse call() {
 boolean up = isHealthy();

 return HealthCheckResponse.named("coffee-shop")
 .withData("barista",
 String.valueOf(up))
 .state(up).build();
 }
}

Because the coffee-shop service requires the barista service in
order to work, the health check determines whether the barista is
available by calling the GET method on the brews resource. So long
as the service returns an HTTP 200 OK, the health check reports its
status as UP.

Early versions of MicroProfile Health supported only
one type of health check: @Health. Use MicroProfile
Health 1.3, which adds @Readiness and @Liveness to
match the Kubernetes readiness and liveness probe
concepts.

When the preceding health check succeeds, the health endpoint
returns the 200 OK and the following JSON:

{
 "checks": [
 {
 "data": {
 "barista": "true"
 },
 "name": "coffee-shop",
 "state": "UP"
 }
],
 "outcome": "UP"
}

Reporting Health | 61

If the health check fails, it returns 503 SERVICE UNAVAILABLE with
the following JSON:

{
 "checks": [
 {
 "data": {
 "barista": "false"
 },
 "name": "coffee-shop",
 "state": "DOWN"
 }
],
 "outcome": "DOWN"
}

A service can implement multiple health checks. The overall health
response is an aggregation (logical AND) of all the checks. If any one
of the checks is DOWN, then the overall outcome is reported as DOWN.

Kubernetes Integration
As mentioned earlier, MicroProfile Health is designed to work
seamlessly with Kubernetes. Kubernetes allows you to configure two
types of health probe when you deploy your microservice: readiness
and liveness. The extracts of YAML in the next example show the
configuration for readiness problems for the coffee-shop service.
An initial delay is set to give the service sufficient time to start and
report its true status. After this delay, Kubernetes will check the
readiness every five seconds, and if it returns a 503 SERVICE

UNAVAILABLE HTTP response code, then Kubernetes will stop deliv‐
ering requests to it:

 spec:
 containers:
 - name: coffee-shop-container
 image: example.com/coffee-shop:1
 ports:
 - containerPort: 9080
 # system probe
 readinessProbe:
 httpGet:
 path: /health/ready
 port: 9080
 initialDelaySeconds: 15
 periodSeconds: 5
 failureThreshold: 1

62 | Chapter 5: Running in Production

The next block of YAML shows an example configuration of a liven‐
ess probe for the coffee-shop services. As with the readiness probe,
delay and sampling periods are specified. The key difference is the
actions Kubernetes will take if the liveness check fails. In this case,
Kubernetes will assume the container is sick and kill and restart it:

 spec:
 containers:
 - name: coffee-shop-container
 image: example.com/coffee-shop:1
 ports:
 - containerPort: 9080
 # system probe
 livenessProbe:
 httpGet:
 path: /health/live
 port: 9080
 initialDelaySeconds: 15
 periodSeconds: 5
 failureThreshold: 1

Monitoring JVM, Runtime, and Application
Metrics
Understanding how well your services are performing and behaving
is essential to ensuring their smooth operation. To enable this,
MicroProfile Metrics provides an endpoint for retrieving metrics
about your running service. By default, you can retrieve JVM met‐
rics, prefixed with base:, and these are produced in a Prometheus
format. The output can then be used to set up alerts or provide
dashboards—for example, through Grafana.

Additional metrics can also be generated, including runtime met‐
rics, prefixed with vendor: and application metrics, prefixed with
application:. Some application metrics can be automatically gen‐
erated—for example, metrics about Fault Tolerance retries—but
MicroProfile also provides APIs for instrumenting the service for
additional application metrics.

The following is an extract of the metrics output from the
coffee-shop services. Only a subset of the data available is shown:

TYPE base:cpu_system_load_average gauge
HELP base:cpu_system_load_average Displays the system load
average for the last minute. The system load average is the
sum of the number of runnable entities queued to the available

Monitoring JVM, Runtime, and Application Metrics | 63

processors and the number of runnable entities running on the
available processors averaged over a period of time. The way
in which the load average is calculated is operating system
specific but is typically a damped time-dependent average. If
the load average is not available, a negative value is
displayed. This attribute is designed to provide a hint
about the system load and may be queried frequently.
The load average may be unavailable on platforms
where it is expensive to implement this method.
base:cpu_system_load_average 0.34
TYPE base:thread_count counter
HELP base:thread_count Displays the current number of live
threads including both daemon and non-daemon threads.
base:thread_count 82
TYPE base:classloader_current_loaded_class_count counter
HELP base:classloader_current_loaded_class_count Displays the
number of classes that are currently loaded in the Java
virtual machine.
base:classloader_current_loaded_class_count 17785
TYPE base:memory_committed_heap_bytes gauge
HELP base:memory_committed_heap_bytes Displays the amount of
memory in bytes that is committed for the Java virtual
machine to use. This amount of memory is guaranteed for the
Java virtual machine to use.
base:memory_committed_heap_bytes 1.23011072E8
TYPE base:thread_daemon_count counter
HELP base:thread_daemon_count Displays the current number of
live daemon threads.
base:thread_daemon_count 79
TYPE base:classloader_total_unloaded_class_count counter
HELP base:classloader_total_unloaded_class_count Displays the
total number of classes unloaded since the Java virtual
machine has started execution.
base:classloader_total_unloaded_class_count 3
TYPE base:memory_max_heap_bytes gauge
HELP base:memory_max_heap_bytes Displays the maximum amount of
heap memory in bytes that can be used for memory management.
This attribute displays -1 if the maximum heap memory size is
undefined. This amount of memory is not guaranteed to be
available for memory management if it is greater than the
amount of committed memory. The Java virtual machine may fail
to allocate memory even if the amount of used memory does not
exceed this maximum size.
base:memory_max_heap_bytes 5.36870912E8
TYPE base:cpu_process_cpu_load_percent gauge
HELP base:cpu_process_cpu_load_percent Displays the
'recent cpu usage' for the Java Virtual Machine process.
base:cpu_process_cpu_load_percent 0.020974123871630043
TYPE vendor:servlet_coffee_shop_com_sebastian_daschner
_coffee_shop_jaxrs_configuration_response_time_total_seconds
gauge

64 | Chapter 5: Running in Production

HELP vendor:servlet_coffee_shop_com_sebastian_daschner
_coffee_shop_jaxrs_configuration_response_time_total_seconds
The total response time of this servlet since the start of
the server.
vendor:servlet_coffee_shop_com_sebastian_daschner_coffee_shop
_jaxrs_configuration_response_time_total_seconds 4.5836283
TYPE vendor:servlet_com_ibm_ws_microprofile_openapi_open_api
_servlet_response_time_total_seconds gauge
HELP vendor:servlet_com_ibm_ws_microprofile_openapi_open_api
_servlet_response_time_total_seconds The total response time
of this servlet since the start of the server.
vendor:servlet_com_ibm_ws_microprofile_openapi_open_api_servlet
_response_time_total_seconds 0.35594430000000005
TYPE vendor:servlet_com_ibm_ws_microprofile_metrics_private
_private_metrics_rest_proxy_servlet_response_time_total
_seconds gauge
HELP vendor:servlet_com_ibm_ws_microprofile_metrics_private
_private_metrics_rest_proxy_servlet_response_time_total
_seconds The total response time of this servlet since the
start of the server.
vendor:servlet_com_ibm_ws_microprofile_metrics_private_private
_metrics_rest_proxy_servlet_response_time_total_seconds
0.34659330000000005
TYPE vendor:session_default_host_metrics_active_sessions
gauge
HELP vendor:session_default_host_metrics_active_sessions
The number of concurrently active sessions. (A session is
active if the product is currently processing a request that
uses that user session).
vendor:session_default_host_metrics_active_sessions 1
TYPE vendor:servlet_coffee_shop_com_sebastian_daschner_coffee
_shop_jaxrs_configuration_request_total counter
HELP vendor:servlet_coffee_shop_com_sebastian_daschner_coffee
_shop_jaxrs_configuration_request_total The number of visits
to this servlet since the start of the server.
vendor:servlet_coffee_shop_com_sebastian_daschner_coffee_shop
_jaxrs_configuration_request_total 29
TYPE vendor:threadpool_default_executor_size gauge
HELP vendor:threadpool_default_executor_size The size of the
thread pool.
vendor:threadpool_default_executor_size 12
TYPE application:ft_com_sebastian_daschner_coffee_shop_control
_barista_retrieve_brew_status_retry_calls_succeeded_retried
_total counter
application:ft_com_sebastian_daschner_coffee_shop_control
_barista_retrieve_brew_status_retry_calls_succeeded_retried
_total 0
TYPE application:ft_com_sebastian_daschner_coffee_shop_control
_barista_retrieve_brew_status_invocations_failed_total counter
application:ft_com_sebastian_daschner_coffee_shop_control
_barista_retrieve_brew_status_invocations_failed_total 0

Monitoring JVM, Runtime, and Application Metrics | 65

TYPE application:ft_com_sebastian_daschner_coffee_shop_control
_barista_retrieve_brew_status_retry_calls_failed_total counter
application:ft_com_sebastian_daschner_coffee_shop_control
_barista_retrieve_brew_status_retry_calls_failed_total 6
TYPE application:ft_com_sebastian_daschner_coffee_shop_control
_barista_retrieve_brew_status_invocations_total counter
application:ft_com_sebastian_daschner_coffee_shop_control
_barista_retrieve_brew_status_invocations_total 38
TYPE application:ft_com_sebastian_daschner_coffee_shop
_control_barista_retrieve_brew_status_retry_calls_succeeded_
not_retried_total counter
application:ft_com_sebastian_daschner_coffee_shop_control
_barista_retrieve_brew_status_retry_calls_succeeded_not_retried
_total 32
TYPE application:ft_com_sebastian_daschner_coffee_shop_control
_barista_retrieve_brew_status_retry_retries_total counter
application:ft_com_sebastian_daschner_coffee_shop_control
_barista_retrieve_brew_status_retry_retries_total 18
TYPE application:ft_com_sebastian_daschner_coffee_shop
_control_barista_retrieve_brew_status_fallback_calls_total
counter
application:ft_com_sebastian_daschner_coffee_shop
_control_barista_retrieve_brew_status_fallback_calls_total 6

MicroProfile provides APIs for a number of precanned metrics
types, including timers for recording method timing, counters for
total number of requests or max concurrent requests, and gauges to
sample values. The following code shows how to get request timing
information for the orderCoffee method. This could be useful to
configure alerts in the event that response times deteriorate:

 @POST
 @Timed(
 name="orderCoffee.timer",
 displayName="Timings to Coffee Orders",
 description = "Time taken to place a new coffee order.")
 public Response orderCoffee(
 @Valid @NotNull CoffeeOrder order) {
 final CoffeeOrder storedOrder
 = coffeeShop.orderCoffee(order);
 return Response.created(buildUri(storedOrder)).build();
 }

Here is an example output for the resulting metric:

HELP application:com_sebastian_daschner_coffee_shop_boundary_
orders_resource_order_coffee_timer_seconds Time taken to
place a new coffee order.
application:com_sebastian_daschner_coffee_shop_boundary_orders
_resource_order_coffee_timer_seconds_count 7
application:com_sebastian_daschner_coffee_shop_boundary_orders

66 | Chapter 5: Running in Production

_resource_order_coffee_timer_seconds{quantile="0.5"} 0.0318028
application:com_sebastian_daschner_coffee_shop_boundary_orders
_resource_order_coffee_timer_seconds{quantile="0.75"} 0.0413141
application:com_sebastian_daschner_coffee_shop_boundary_orders
_resource_order_coffee_timer_seconds{quantile="0.95"} 0.5347786
application:com_sebastian_daschner_coffee_shop_boundary_orders
_resource_order_coffee_timer_seconds{quantile="0.98"} 0.5347786
application:com_sebastian_daschner_coffee_shop_boundary_orders
_resource_order_coffee_timer_seconds{quantile="0.99"} 0.5347786
application:com_sebastian_daschner_coffee_shop_boundary_orders
_resource_order_coffee_timer_seconds{quantile="0.999"} 0.5347786

Dashboards and Alerts
It’s one thing to generate metrics data from a microservice, but it’s
another to actually gather it, visualize it, and react. This is where
monitoring dashboards come in. There are a number of tools avail‐
able for this purpose; one common combination is Prometheus and
Grafana. Prometheus is a powerful open source tool for gathering
metrics data and alerting. Grafana provides great dashboard capabil‐
ities for analytics, monitoring, and alerting, and has first-class inte‐
gration with Prometheus.

Creating a dashboard and alerts is simple. An instance of Prome‐
theus can be pointed at the MicroProfile Metrics endpoint (e.g.,
https://localhost:9443/metrics). Prometheus periodically calls the
endpoint to retrieve the metrics data. Any fields can be used to pro‐
duce charts and set up alerts. If you’d like a Grafana dashboard, you
can configure Grafana to populate a dashboard using data retrieved
from Prometheus.

Figure 5-1 shows some of the metrics MicroProfile has generated for
the coffee-shop. The chart on the left shows mean, max, and min
times for the orderCoffee operation. These were generated from
the earlier @Timed annotation example. The chart on the right shows
two metrics generated by default by MicroProfile Fault Tolerance.
These are showing successful requests over time and the number of
calls to the Fallback operation over time. You can see that after a
while we start to see failures and the subsequent use of the Fallback,
due to instability in the barista service. Of course, if this were run‐
ning in Kubernetes, the health endpoint would have told Kubernetes
we were not ready to receive traffic.

Monitoring JVM, Runtime, and Application Metrics | 67

Figure 5-1. Grafana dashboard for the coffee-shop service MicroProfile
application metrics

Figure 5-2 shows a dashboard for some of the default JVM metrics.
These include heap size, system load, CPU load, and threads. These
are all interesting and important metrics to track in order to detect
when a service may encounter difficulties.

Figure 5-2. Grafana dashboard for default JVM metrics

Monitoring dashboards are essential, but the dashboards can con‐
tain so much data that it’s difficult to spot when something is going
wrong, and this is where alerts come in. Both Prometheus and Gra‐
fana provide the ability to set up alerts in order to be notified of
aberrant situations. Figure 5-3 shows a dashboard for an alert we’ve
set up to notify us when the Fallback calls exceed a threshold of 0.5.
We can see that the alert has triggered. We can also set up Grafana to
notify us via various channels, including email, Slack, webhook, and
Kafka.

68 | Chapter 5: Running in Production

Figure 5-3. Grafana dashboard showing a triggered alert

Tracing Microservice Requests
You’ve deployed your tens or hundreds of microservices, and for a
while, all seems fine. One day, you start encountering intermittent
problems; some requests are timing out and some are slow. Health
and Metrics alone may not give you the information necessary to
diagnose the issue. At some point you’re going to want to trace the
requests through your interconnected microservices. You can think
of this as the microservice equivalent of step-debugging through
your code. You want to see the path your requests take and how long
they take, in order to identify where they start to go wrong. This is
where OpenTracing comes in.

OpenTracing is a language-neutral standard API for performing dis‐
tributed tracing. MicroProfile OpenTracing enables distributed trac‐
ing of requests passing through your Java microservices. REST
methods are automatically traced, which means you get a useful
level of tracing without making any changes to your code.

MicroProfile OpenTracing requires an implementation of the Open‐
Tracing Tracer API. This can be implemented over any number of
tracing infrastructures, such as Apache Zipkin or Jaeger. In our
example we’re using Apache Zipkin.

Figure 5-4 shows an example Zipkin trace for placing a coffee order.
You can see the request to coffee-shop ordercoffee takes approxi‐
mately 20 ms and that the request to that service results in a call to
the barista updatecoffeebrew operation.

Tracing Microservice Requests | 69

Figure 5-4. Zipkin trace for an ordercoffee request

It’s possible to drill down on the spans to see more details. Figure 5-5
shows the details of the updatecoffeebrew request. It shows the
timings for the requests, the HTTP request information (URL,
methods, status), and the OpenTracing IDs for the request.

Figure 5-5. Zipkin span details for an updatecoffeebrew request

70 | Chapter 5: Running in Production

We can also see failed requests, for example, when the barista ser‐
vice is unavailable. Figure 5-6 shows the trace for one such
ordercoffee request.

Figure 5-6. Zipkin trace for a failed ordercoffee request

Figure 5-7 shows the details of the failed request where we can see
the exception and the HTTP methods and status.

Not all useful trace points correspond to REST API calls. For exam‐
ple, in our applications, an EJB Timer is used to periodically check
the status of orders. If you want to control which methods are
traced, MicroProfile provides the ability to explicitly trace spans
using the @Traced annotation. In the absence of an explicit trace
span, all we see in OpenTracing is the request coming into the
barista service.

The following code shows the explicit trace span added to the Order
Processor.java:

 @Traced
 public void processOrder(CoffeeOrder order) {
 OrderStatus status = barista.retrieveBrewStatus(order);
 order.setOrderStatus(status);
 }

Tracing Microservice Requests | 71

Figure 5-7. Zipkin trace details for a failed ordercoffee request

72 | Chapter 5: Running in Production

Figure 5-8 shows the trace for the application-defined span. It shows
how the barista retrievecoffeebrew operation is being called
from the coffee-shop processorder operation.

Figure 5-8. Zipkin trace for an application-defined span for
processorder

Summary
Often when you are developing a new application, be it a traditional
monolithic application or new cloud native application, observabil‐
ity is considered secondary to getting the functionality written.
However, we’ve seen that when deploying microservices, the decom‐
position and distribution of application code makes it essential to
consider observability from day one.

We’ve seen the three key aspects to observability:

• The readiness and liveness of your services through MicroPro‐
file Health and the ability to integrate these with Kubernetes
infrastructure

• The service runtime analysis through MicroProfile Metrics and
the ability to monitor and alert through tools such as Prome‐
theus and Grafana

• The ability to understand the flow of requests through a system
of microservices through OpenTracing and tracer tools such as
Apache Zipkin

Summary | 73

OpenTelemetry
At the time of this writing, a new specification for distributed trac‐
ing is being developed, called OpenTelemetry. It is being created by
the Cloud Native Computing Foundation (CNCF) and is the con‐
vergence of OpenTracing and a Google project called OpenCensus.
Discussions are underway in the MicroProfile community to adopt
OpenTelemetry, and the expectation is that this will become the
preferred approach for distributed tracing. Given the heritage of
OpenTelemetry and the fact that MicroProfile OpenTracing enables
the most useful tracing by default, any migration is likely to be
simple.

74 | Chapter 5: Running in Production

CHAPTER 6

Wrap-up and Conclusions

In the previous three chapters, we’ve seen how to get started with
developing cloud native Java applications using open technologies.
As industry understanding of cloud native has evolved and matured,
a number of use cases have emerged requiring more sophisticated
patterns, such as Reactive, Saga, and CQRS, as well as a general
increase in asynchronous execution. These are beyond the scope of
this introductory book, but we’ll briefly discuss them here before we
finish with our conclusions.

Asynchronous Execution and Reactive
Extensions
Traditionally, the execution of business logic in enterprise applica‐
tions happens synchronously; that is, a single thread usually exe‐
cutes the business logic from the start in the boundary until the
business method returns. However, more recently, demand has
grown for asynchronous and reactive execution, and subsequently a
number of specifications have been enhanced with these features.

JAX-RS, for example, offers ways to asynchronously invoke HTTP
calls in the JAX-RS client in both asynchronous and reactive ways,
by natively supporting types such as CompletionStage. The same is
true for asynchronous JAX-RS endpoint resources that handle the
execution of the business logic in separate threads, decoupled from
the default HTTP request thread pool.

75

CDI events are another example where the decoupling of business
code can happen in an asynchronous way. Since Java EE 8, CDI
events can be fired and handled asynchronously, without blocking
the code that emits the event. Another technology that supports
asynchronous communications is the WebSockets protocol, which is
also natively supported in Enterprise Java.

The Eclipse MicroProfile community recently released two reactive
specifications: Reactive Streams Operators and Reactive Messaging.
Reactive Streams Operators defines reactive APIs and types. Reac‐
tive Messaging enhances CDI to add @Incoming and @Outgoing
annotations to mark methods that process and produce messages
reactively, which could, for example, be integrated with Kafka.

Over time we will likely see the integration of these APIs in various
enterprise specifications, especially to streamline the use of multiple
technologies with regard to reactive programming. The proper
plumbing of stream, handling backpressure, and potential errors
usually results in quite a lot of boilerplate code that could be
reduced if different specifications support the same APIs.

Threading
The application server is traditionally responsible for defining and
starting threads; in other words, the application code neither is sup‐
posed to manage its own threads nor start them. This is important,
as information essential to the correct execution of the business
logic (e.g., transaction and security contexts) is often associated with
the threads. The container defines one or more thread pools that are
used to execute business logic. Developers have multiple ways to
configure these pools and to further define and restrict the execu‐
tions—for example, by making use of the bulkheads pattern. We saw
an example for this in Chapter 4, using MicroProfile Fault
Tolerance.

Another aspect of asynchronous processing is the ability to have
timed executions, (i.e., code that is executed in a scheduled or
delayed manner). For this, Enterprise Java provides EJB timers,
which are restricted to EJBs, or the managed scheduled executor
services, which are part of the concurrency utilities.

76 | Chapter 6: Wrap-up and Conclusions

Transactions and Sagas
In Chapter 3 we showed how to access database systems using local
transactions. Enterprise Java traditionally supports two-phase com‐
mit (XA) transactions to coordinate transactional behavior between
applications.

Distributed two-phase commit transactions can exhibit scalability
challenges when used in modern microservice architectures, and so
these often focus on eventual consistency with the ability to scale.
Longer-running business transactions that span multiple systems
are usually then implemented using the Saga pattern. This is more
an architectural pattern than a specific implementation. We suggest
you familiarize yourself with this class of approach and consider
applying it once the business logic of your overall system requires
multiple applications to take part in a long-running transaction.

Command Query Responsibility Separation
Another related eventual consistency pattern is Command Query
Responsibility Separation, or CQRS. Here, the logic and data updat‐
ing the system is separated from the logic and data required to sup‐
port the various application views (frontends). This allows the data
and logic for queries to be optimized for high throughput without
compromising the performance of the paths for updating the back‐
end. This pattern has proved popular in systems that have a large
number of queries for a relatively small number of updates.

The separation of updates from queries leads to the need for eventu‐
ally consistency rather than two-phase commit transactions. The
storage of separate view data optimized for queries makes it a good
fit for GraphQL APIs, where the views can submit queries for just
the data they require. To support this, the MicroProfile community
is in the process of defining a GraphQL specification.

Conclusions
Our primary motivation for writing this book was to enable you to
be successful in cloud native development. As strong believers in
using open technologies wherever possible, we discussed how being
open not only helps avoid vendor lock-in, but also improves quality
and longevity. Using the open criteria of open source, open stand‐
ards, and open governance, as well as their interrelationships, we

Conclusions | 77

explained our rationale for selecting particular implementations and
approaches for cloud native Java development.

Enterprise Java, with its open specifications and open source imple‐
mentations, is already very well suited for the majority of today’s
applications, and we’ve shown you how to get started with using
those capabilities.

To introduce the concepts for cloud native development, we walked
you through a complete example of developing a cloud native appli‐
cation using only open source Java technologies based purely on
open standards. We showed how many preexisting APIs can help
you develop cloud native microservices and how new APIs are now
available to handle important cloud native functionality. For exam‐
ple, we showed how to secure your services, build resiliency into
your application code, and make your code observable with metrics,
health checks, and request tracing.

This book has focused on the foundational technologies of cloud
native Java application development. Cloud native goes far beyond
the development of Java code, though, and we’ve intentionally only
touched on other aspects such as containers, Kubernetes, Istio, and
continuous integration/continuous delivery (CI/CD). These areas
warrant books of their own. We’ve also only briefly touched on how
cloud native is causing the industry to reimagine how applications
and solutions are architected and how new architecture patterns
(e.g., Sagas, CQRS) and technologies (gRPC, RSocket, GraphQL,
Reactive, asynchronous execution) are emerging to support them.
Again, these topics could take up many books all by themselves.

Looking forward, the future appears bright for open Enterprise Java
technologies. Jakarta EE has just made its first release to create a
foundation for future specifications. MicroProfile continues to grow,
in terms of both the valuable technologies it provides and commu‐
nity and vendor implementations. With more Reactive APIs becom‐
ing available, and GraphQL, Long Running Actions (a framework
for weaving together microservices to achieve eventual consistency),
and other specifications in the pipeline, MicroProfile will soon also
have the foundational capabilities for building emerging cloud
native architecture patterns.

Finally, innovation isn’t happening just in the APIs and architectures
we use, but also in the developer tools and how they’re used. We’re
seeing open tools emerging that are designed specifically for cloud

78 | Chapter 6: Wrap-up and Conclusions

native development (e.g., Eclipse Codewind), including in hosted
environments (e.g., Eclipse Che). We think this is going to be a very
exciting area of innovation over the coming years, with the potential
for great improvement in the cloud native developer experience. For
the latest content about developing modern applications with the
open Java ecosystem, please visit ibm.biz/oreilly-java-tech.

We hope that you’ve found this book useful and that it has inspired
and enabled you to give the technologies a try. We wish you every
success in your open cloud native journey.

Conclusions | 79

https://ibm.biz/oreilly-java-tech

About the Authors
Graham Charters is an IBM senior technical staff member and
WebSphere Applications Server developer advocacy lead based at
IBM’s R&D Laboratory in Hursley, UK. He has a keen interest in
emerging technologies and practices and in particular programming
models. His past exploits include establishing and contributing to
open source projects at PHP and Apache, and participating in, and
leading industry standards at OASIS and the OSGi Alliance.

Sebastian Daschner is a lead Java developer advocate for IBM. His
role is to share knowledge and educate developers about Java, enter‐
prise software, and IT in general. He enjoys speaking at conferences;
writing articles and blog posts; and producing videos, newsletters,
and other content.

Pratik Patel is a lead developer advocate at IBM. He co-wrote the
first book on Enterprise Java in 1996, Java Database Programming
with JDBC (Coriolis Group). He has also spoken at various confer‐
ences and participates in several local tech groups and startup
groups. He hacks Java, iOS, Android, HTML5, CSS3, JavaScript,
Clojure, Rails, and—well, everything except Perl.

Steve Poole is a long-time Java developer, leader, and evangelist. He
is a DevOps practitioner (whatever that means). He has been work‐
ing on IBM Java SDKs and JVMs since Java was less than 1. He is a
seasoned speaker and regular presenter at international conferences
on technical and software engineering topics.

	Copyright
	Table of Contents
	Foreword
	Preface
	Prerequisites for Reading This Book
	Why This Book Exists
	What You Will Learn
	How This Book Is Organized
	Conventions Used in This Book
	Using Code Examples
	O’Reilly Online Learning
	How to Contact Us
	Acknowledgments

	Chapter 1. Introduction
	What It Means to Be Cloud Native
	Microservice Oriented
	Loosely Coupled
	Twelve-Factor Methodology
	Rapid Evolution

	Why Java and the Java Virtual Machine for Cloud Native Applications?
	Innovation and Insight
	Performance and Economics
	Software Design and Cloud Solutions

	Summary

	Chapter 2. Open Technology Choices
	Open Source
	Open Community

	Open Standards
	Open Governance
	Choosing Application Technologies
	Java EE and Jakarta EE
	Eclipse MicroProfile
	JVM Choices for Cloud Native Applications
	Why Would You Want to Use a Different JVM?
	Where Do You Get a Java Runtime?

	Cloud Native Environments
	Continuous Delivery and Engineering Practices
	Summary

	Chapter 3. Foundation
	Rapidly Developing Service Implementations
	Implementing Domain Classes Using CDI

	Persisting Service Data
	Java Persistence API

	Implementing REST Services
	Boundary Classes
	Mapping Entities to JSON
	Validating Resources
	REST and Hypermedia

	Summary

	Chapter 4. Cloud Native Development
	Securing REST Services
	Background
	The Common Approach
	Introducing JSON Web Tokens
	JWT with MicroProfile
	Final Thoughts on JWT

	Handling Service Faults
	Publishing and Consuming APIs
	Summary

	Chapter 5. Running in Production
	Reporting Health
	Kubernetes Integration

	Monitoring JVM, Runtime, and Application Metrics
	Dashboards and Alerts

	Tracing Microservice Requests
	Summary

	Chapter 6. Wrap-up and Conclusions
	Asynchronous Execution and Reactive Extensions
	Threading
	Transactions and Sagas
	Command Query Responsibility Separation

	Conclusions

	About the Authors

