
FROM TESTING THROUGH Cl/CD TO
DELIVER BUSINESS RESULTS

Enterprise Bug Busting
From Testing through CI/CD to Deliver Business Results

©2021, Rosalind Radcliffe

All rights reserved. This book or any portion thereof may not be reproduced or used in any
manner whatsoever without the express written permission of the publisher except for the use of

brief quotations in a book review.

Published by Accelerated Strategies Press
acceleratedstrategiespress.com

ISBN: 978-1-09838-149-3
ISBN eBook: 978-1-09838-150-9

“There is no longer any question whether modern DevOps practices can
be used to accelerate and improve quality for legacy systems. Rosalind
describes DevOps testing concepts in language that makes sense for
large enterprise systems and describes large system challenges in a way
that makes sense for DevOps testing. If you were looking for a primer of
what you need to know and understand before you apply continuous
testing in a complex system, you found it. There are two modes for using
this book: 1) With a highlighter in hand to mark the ideas you want to
apply as you bring enterprise DevOps testing to life; and 2) Hand this
book to a peer or leader in your organization and tell them to read it so
that you can talk about what to do next. I recommend both modes.”

Mark Moncelle
Enterprise DevOps Practitioner

“Enterprise Bug Busting hits home on the all important topic of testing
in the enterprise. It defines a roadmap for implementing a continuous
integration practice in your organization, and Rosalind Radcliffe, drawing
on a lifetime of DevOps experience, demonstrates how application
development leaders can improve software quality while building hybrid
cloud applications that are delivered continuously.”

Sherri Hanna
Senior Offering Manager, DevOps for IBM Z Hybrid Cloud

“Mainframes are still a critical part of IT infrastructures, and Rosalind
Radcliffe is an expert in bringing modern development technologies to
trans- form these systems beyond their traditional role as systems of
record.”

Charlene O’Hanlon
Chief Content Officer, MediaOps

“In my years in the DevOps community, Rosalind Radcliffe has been a
shining, true North Star pointing the way for enterprises to adopt the latest
technologies, while leveraging their existing investments to do more,
better and faster. This book is a continuation of this common sense, best
practices approach to success.”

Alan Shimel
CEO and Founder, MediaOps

“Software quality is an immutable theme throughout Rosalind’s
remarkable career. She artfully imparts her masters-level knowledge.
Enterprise software teams will immediately benefit from this book and
alter course towards improved software quality in this age of digital
transformation.”

Mitch Ashley
CEO and Managing Analyst, Accelerated Strategies Group

“This book showcases Rosalind’s unique ability at providing common
sense transformational guidance to enterprises with mainframe and
complex environments.”

Jayne Groll
CEO, DevOps Institute

To my husband Bob who has always been there to support me, and for
my children so they can understand more of what I do.

FOREWORD
Do you work in a large organization that has a variety of applications
including mainframe systems running your core business? Do you
struggle to deliver improvements with the speed the business requires and
the quality the customer expects? When working with the mainframe
teams, are you confused as to why everything tends to work differently
than the rest of the applications? If so, then this book is for you, and
Rosalind is the best guide to help you navigate all of these challenges and
understand how to create quality systems for complex environments.

I met Rosalind when she presented at the 2015 DevOps Enterprise
Summit. It was in the early days at the conference when most of what was
being presented was about improvements on small applications that were
not core to the business. Everyone was recommending small- isolated
teams working with front-end code. When Rosalind stepped onto the
stage to talk about mainframes I thought, “Well, this is going to be
interesting.”

She started clearly describing the differences between the stability
provided by the redundancy of distributed systems vs. the stability
provided by mainframes that support the core business of most large
enterprises. Rosalind stepped through each and every DevOps practice
being discussed at the conference and showed how each and every one
of the practices can be implemented on mainframes. Rosalind closed by
stating that there isn’t anything fundamentally wrong with mainframes,
and in fact they run most of the core businesses in the industry. We just

shouldn’t be developing on them the same way we did 30 years ago. It
was one of the best presentations I have ever seen, and I decided I had to
meet her.

As I have gotten to know her better over the years, I have learned she
has the unique ability and skill to speak strategically with executives and
technically with senior engineers. She can go into an organization and
help the executives understand the changes required. When the senior
technical leads that have been doing the same thing the same way for 30
years say it won’t work, she can dive into the technical details to address
their concerns and help them understand how it actually can and should
work. Rosalind is one of the most impressive people I have met in the
industry.

She has a passion for quality and 30 years of experience driving
improvements both inside IBM and with its customers. Through this
experience she has realized quality is not something that can be delegated
to the quality assurance organization. It needs to be everyone’s job. It is
not just a function of testing. It involves everything from the idea for a
new capability to ensuring it meets the needs of the business and the
expectations of the customer. An effective quality system involves all the
steps in between.

Rosalind starts with this broader view of quality and shows how to
provide an end-to-end system. She demonstrates her knowledge of how
to apply these concepts to a broad range of applications. More importantly
she shows how to apply these concepts to mainframes, which she is
uniquely qualified to do. She helps people understand how mainframes
are different from the other applications.

She deep dives on how to create effective quality systems for the
mainframe with customer examples and key learnings. Rosalind also
covers the latest capabilities of the IBM Z that can support these more
modern development approaches that are valuable but not broadly used.
She shows how and why organizations that haven’t modified their
development approaches as much as they should have over the last 30
years should be leveraging these new capabilities.

If you work in a large enterprise with lots of different applications,
including the mainframe, this is a must read. It will help you understand
how to create a truly effective quality system and explain how and why
the mainframe is different. It will also help you understand the more
modern approaches to development that your mainframe teams need to
start adopting.

Gary Gruver
President of Gruver Consulting

TABLE OF CONTENTS
Who Should Read This Book

Introduction

Section 1: Introduction
What Software Quality Is
Metrics

Story
Types of Metrics
Importance of Testing
What Is Testing and Who Does It?
What Is Continuous Integration?

Key Parts of Continuous Integration
Single source code manager (SCM)
Fully automated build process
Build runs on a build machine
Fix broken builds right away
Keep the build fast
Make the builds and tests visible
Make sure the output is published to easily get it

Why Continuous Integration
How Does Continuous Integration Support Building Quality Apps?

Key Insight: Continuous Integration
Continuous Delivery, Continuous Deployment

Key insight: Automated Deployment
IBM Z: A High-Level View

IBM Z overview:
Definitions of key terms:

Traditional z/OS development:
Background for Enterprises

How Organizational Structure Impacts Software Quality
Story

Types of Customers
Types of Application Architectures
Summary

Section 2:Essential Components
Pipeline

Key insights: Pipeline
Individual Development Environment (IDE) Code section
Source Code Manager (SCM)
Build

Key insights: Static Analysis
Artifact Repository
Provision and Deploy and Test
Story: Deployment errors

Key insight: Manual Changes
Monitoring
Planning
Analyze

Provisioning vs. Deployment
Key insights: Application Infrastructure

Environments for Testing
Isolated and Shared Environments

Examples of shared environments:
Story

Key Insights: Isolated test environments
Provisioning Environments

Story
Key insight: Shared test environments

Containers
Test Data Management

Key insights: Test data creation
Key insights: Test data

Stable Quality Signal
Story: Unreliable Tests

Key Insight: Stable quality signal
Get Clean, Stay Clean
Summary

Section 3: Types of Testing
Scope of Testing
Unit Testing

Key Insight: Automated Unit testing
Beyond Unit, But Still in the Build
Component Testing
Applications
End-to-End Testing

Key Insight: End-to-End Testing
Types of Testing
Functional Verification Testing
API Testing

Key Insight: API Testing
Sniff Testing, Smoke Testing

Story: The 99 pencil test
Integration/System Testing

Function testing
Integration testing/system testing

User Testing
User experience testing

Key Insight: User Experience Testing
Freeform testing
Malicious testing
User acceptance testing

Story
Regression Testing
Performance/Scalability Testing

Key Insights: Performance Testing
Infrastructure Testing
Chaos or Fault Injection Testing

Additional mainframe background:
Production Verification Test

A/B or Market Testing
Story

TDD/BDD Testing
Frameworks for testing
Summary

Section 4: Putting It All Together
Why include IBM Z in this change?

Story
Key Insight: Cultural Change

Cultural Change
Bringing the Parts Together

Story: Bringing it all together
Getting Started

Story: When it does not work
Key Insight: Willingness to change

Story
Conclusion

Story

Acknowledgments

WHO SHOULD
READ THIS BOOK
This book is targeted at large enterprise organizations that have systems
including IBM Z (the mainframe as many may consider it), or anyone
interested in learning more about software quality including IBM Z. This
book is targeted to executives who are in an organization with these
large complex systems, as well as engineers working to improve the
overall process. This book does not assume any specific background
knowledge, and therefore, includes definitions and terms so those with
multiple/various backgrounds can gain an understanding of software
quality for the large enterprise.

INTRODUCTION
No matter where you look today, you will find technology everywhere.
This includes software, which plays a significant part in our lives in
some way every day. I’ve witnessed this evolution to software everywhere
over the course of my lifetime, going from a day when the only software
directly affecting my life was in the telephone system, though not in the
telephone attached to the wall. A time when cars were mechanical
machines without software guiding, helping and entertaining, and when
watches were about fine Swiss movement. Today, we can’t get away from
software. Software is in hospitals, cars, it controls the electric grid, it’s
used daily in our phones and our homes. Any financial transaction you
make involves software as well, even if cash is used, the processing in the
cash register is all software.

With software everywhere, the quality of that software and supporting
hardware can affect our lives in many varying ways. If an internet search
renders a ‘page not found’ message it’s a minor inconvenience. But
when software fails in a car or in an airplane, it’s life threatening. The
combination of software and hardware controls so many facets of our lives
in ways many people don’t even recognize. The importance of this must
be recognized and acknowledged by those of us in the IT industry.

As noted, there are instances where the quality of software can determine
life and death. While most of the time it’s not that critical, it is important
to understand that

software in any form does impact our lives. This understanding is why it
is important to improve the overall quality of the systems being built.

The goal of this book is to provide insights that will help enterprises
improve the overall quality of software being created today. This overall
quality is achieved throughout the entire development lifecycle based on
the inclusion or omission of activities, automation and organizational
strategy. I will provide definitions for areas that drive software quality,
key insights from years working with various organizations, and stories
to explain what others have done. Some stories will be positive and
some not so positive. Sharing both the good and the bad is intended to
help others learn from and steer clear of the mistakes made by those before
them. We all learn through experimentation, I hope to help readers avoid
some trouble, and offer insights into new options to improve the overall
process. I will share stories from my 30+ years of experience working
with various companies, across the globe, large, small and everywhere in-
between, as well as my work within IBM.

One important note is that this book is primarily focused on the existing
enterprises with existing applications and code bases. Organizations that
have been around for a while vs. the general startup organization who’s
entire code base may be less than a few years old. Though there are
lessons for everyone, the examples provided and discussions will be based
on large long-term enterprises. Startup environments will have a different
view as they will generally have started more with modern DevOps
practices, or cloud native development practices. Common attributes of
large enterprises are:

Widely diverse languages, coding styles and application
architectures.

Testing and deployment practices are often well established and

require a culture change.

Up or downstream systems that “just work” and are seen to be too
expensive or risky to change.

Complexity of the system is too large for any one team to
understand, develop, or manage. This requires multiple layers,
which adds additional complexity when testing the entire system.

The scale, complexity and reliability requirements, drive the
requirements that automation has to be designed from the start for
production standards.

Return on investment needs to be considered in all aspects of
change, change does not happen just because something new
comes along, but it has to provide business value. An example
would be the focus on automated testing for a part of the solution
that does not change often.

Why is it so important to consider the overall software quality of large
complex systems? Large complex systems including IBM Z, host more
than 70% of the total structured data. IBM Z is used by most of the world’s
top banks, insurance companies and retailers, it is heavily used in travel
and transportation, not to mention the various government systems. These
systems provide the business value to many organizations, yet these
systems are seen as legacy, hard to maintain and hard to work with.
However, they are at the core of the business process, by bringing the full
complex system including the IBM Z into the overall software quality
process, using automation for the repeatable

tasks, and bringing modern processes to the development and operations
environment, not only does the quality improve but the business value can
be unlocked for greater use by other parts of the organization as part of
the digital transformation.

When I started at IBM, I was just out of college and my first job was
working on the then current version of IBM Z, which was the IBM S/370.
My original job was to simply learn the language used for the system, and
learn how the system was developed and tested. First assignments were
focused on testing, or small coding changes to get used to how the
system worked. We did have automation, and I learned early on, to
automate tasks that had to be repeated. The parts I worked on were
critical to the system, so I had to be very careful with changes to make sure
nothing that used to work was broken. This took time and conscious effort.
To test the various terminal types, I had to go to a terminal room and test
the functions on each of the various terminals available. When we got our
first PCs, the team had the ability to use the terminal emulator to test all
the various options instead of having to spend time in the terminal room,
this helped speed up the process and allow for more automation to be used
for the testing.

These early days taught me a lot about the importance of quality. One
other early opportunity I had was to work with clients directly through our
major User Groups. This early feedback directly from the client regarding
how they actually used the product, what they liked and what they did not
like, helped drive changes for improved user experience. I also spent a
number of years in IBMs User Centered Design organization, the
precursor to what we have now, Design Thinking, with a focus on users.
Human factors testing allowed us to see how actual

users would use the capabilities. With this information we could better
design the functions. This focus on what is best for the end-user led to the
work we did with Common User Access (CUA), which helped define the
industry standard user interface. This work also led to the IEEE standard
for user interface.

Anyone using a computer today still sees the impact of that work, the
menu bar across the top, with File, Edit, View and Help, in standard
locations, and the standard cut, copy and paste keyboard shortcuts – ctrl-
c, ctrl-v, ctrl-x, ctrl-z, (or cmd on Mac).

Having worked to help drive this standard across all of the major IT
vendors at the time was a challenge, but the fact that it lives 30 years later
shows the value of this effort to focus on the end user. This was obviously
a team effort, but I was glad to be part of it so early in my career.

Throughout my career I have worked in various roles, but this beginning
drive for quality for our end users has stuck with me. Over the 30 years
since, development practices have gone through many changes and
evolutions, however, when looking at many IBM Z shops the development
and operations practices have not evolved in the same way. Even today
when I talk with some Z developers, I see their development practices and
tools, look exactly the same as when I started. Those 30 years of evolution
that helped drive the change for digital transformation, for software
everywhere, seems to have left out this very critical part of the
organization. The IBM Z system itself has not stood still, it has continued
to evolve as all other systems have. Now is the time for the people
working with IBM Z software, to also take advantage of all the new
possibilities available.

This book leverages those changes in the system and takes those
experiences and brings them together to help organizations around the
world learn from the lessons of others.

Development practices have evolved over the years, but fundamentally
it’s always the same. Software development requires developers to use
their knowledge and skill to create a set of capabilities. These capabilities
must be verified to ensure they do what is intended and they must interact
with the rest of the system in the way intended. This is a very simple view
of the process, but fundamentally, at its core that’s what software
development is.

Software development is, at its core, the innovation of individuals creating
new functions based on a set of user requests. It is not the same as a
manufacturing process where you work to remove variability to help
ensure every object comes out the same with the same level of quality.
Creating a quality system requires a combination of activities, automation
and measurements to ensure that creation satisfies the nonfunctional, as
well as, functional requirements within the right risk profile. The
acceptable level of risk will vary based on the type of software being
developed, the ease of deploying a fix and the impact of a problem.

The reason to create the software is to provide business value. Building
software is done by a team of responsible people, and these teams do not
work in isolation from each other. These teams include the customers,
internal or external, and representatives of the external users. The
requirements for the software form a hypothesis for what can provide that
value. That then needs to be verified by the user, once created, to

allow for the adjustment as necessary. The value is useless without
quality. Nobody wants a product that does not function to meet their
needs.

Since the actual creation of the software cannot be tightly controlled, the
activities related to the creation should be as automated as possible to
remove the opportunity for error from all the surrounding activities.
Simply put, the creative activity of writing the code needs all the
flexibility to allow for innovation. The process of building, and deploying
the software should be completely automated as there is no need for
creativity in this process, but there is a high requirement that it be highly
repeatable.

What is built as part of this creative process is based on a set of
requirements, based on market, business and user input. These
requirements will also include a set of nonfunctional requirements, or at
least nonfunctional expectations for the function. This includes
characteristics such as availability, response time and security, among
others. The requirements driving the software creation, the software
creation itself, and all the processes related to it, are often referred to as
the software development lifecycle (SDLC).

The creative process of designing software requires methods to test that
software to ensure it satisfies the requirements as specified. This testing
process is what many people include in a quality assurance program, but
in reality the software quality is determined by the entire SDLC.

Over the years various transitions have happened with the SDLC,
generally to add additional steps in the process, approvals, and additional
checks to help improve the perceived quality of the solution.

However, as I will describe in the book, some of the changes added,
alleviated a problem but brought more significant problems into the
process. We, therefore, need to address the entire lifecycle in context of
the quality we are working toward.

Another important note in driving software quality is that since it is a
creative process, you can’t guarantee there are no problems. The goal
should be to deliver the appropriate level of risk for a problem.
Determining the level of risk acceptable to each solution, and determining
appropriate ways to measure that risk are key factors.

Measurements are an important part of driving software quality, but
determining the right metrics to drive the right behaviors is the challenge.
Providing the right focus at the right time in the process to drive the
highest quality possible with the least effort.

I will detail throughout the remaining sections of the book how each
aspect of the software development lifecycle contributes in its own way
to the final solution running in production. I will discuss the implications
for measurements and how they drive behaviors in ways that may not lead
to improved quality.

In many ways this book is written for executives and engineers alike
who work in organizations that have IBM Z, but are not familiar with it,
this book provides the explanations for why things have come to be done
a certain way, as well as suggestions for how to help change those
practices. However, for those of you working with IBM Z, you can skip
those definitions of terms you already know, but the suggestions for new
ways of working apply to you as well.

I have designed this book so that it can be read front to back, however, if

only a particular topic is of interest, each section can stand alone. Each
section will contain the definition and foundation information, as well as
key insights and stories from various customers environments. In
addition, background information is included for those less familiar with
particular areas such as the IBM Z environment.

Section 1 provides general background information, definitions
for key areas such as software quality, metrics, continuous
integration and continuous delivery (CI/CD) and background
information. It will include a description of the types of customers
that I will use as examples in the book as well as abstract
descriptions of those customers. In addition it provides high-level
overview of IBM Z and definitions of key terms related to IBM Z
and an introduction to traditional z/OS development processes.
The goal of this section is to lay the foundation for an
understanding of IBM Z as well as areas related to software
quality.

Section 2 delves into essential components related to the process
of software quality including the overall pipeline, environments
for use during the process, fundamentals related to data for testing
and overall high-level practices that should be followed. This
section describes how modern development practices can now be
used including IBM Z, and describes the importance of each
aspect as it relates to the process.

Section 3 provides a view of the various types of testing, the users
who perform the tests, and additional considerations for each type
of testing. It describes how the IBM Z system can be

included and additional considerations for inclusion in each type
of testing.

Section 4 offers a summary, options for roadmaps for
transformation and additional stories to bring the entire process
together.

To order a full copy of the book, visit any of the listed retailers below.

Bookbaby: https://store.bookbaby.com/book/enterprise-bug-busting

Barnes & Noble:
https://www.barnesandnoble.com/w/enterprise-bug-busting-rosalind-
radcliffe/1139892437;jsessionid=C2E224D0973EDC6EBD08A6432FD58EA4.prodny_store01-
atgap06?ean=9781098381509

Amazon Kindle:
 https://www.amazon.com/Enterprise-Bug-Busting-Testing-Business-
ebook/dp/B09B2YKW55/ref=sr_1_1?crid=JV7G9DOCQ77O&dchild=1&keywords=enterprise+b
ug+busting+rosalind+radcliffe&qid=1629250309&sprefix=Enterprise+bug+%2Caps%2C186&sr
=8-1

Kobo:
https://www.kobo.com/us/en/ebook/enterprise-bug-busting

Ciando:
https://www2.ciando.com/ebook/bid-3045063-enterprise-bug-busting-from-testing-through-ci-cd-
to-deliver-business-results.html?CFID=85431c4a-a940-4587-9cfd-
9810474ae0cf&CFTOKEN=0&jsessionid=7C234FCC108666F0D14D5A4801C39C51

