

Develop apps faster.
Go serverless
without vendor
lock-in.

 Focus on building and running apps, not maintaining servers
 Quickly bind AI services to your action sequences

 Choose a cloud environment with open source tools

https://ibm.co/CloudFunctions
IBM Cloud Functions

Control costs, autoscale, and integrate systems across clouds.

| IBM Cloud Functions

Run actions thousands of times in a second or
once a week. Action instances scale to meet exact
demand, then disappear.

It's simple. Pay only for exact times your actions
run, down to one-tenth of a second: no memory,
no cost.

Based on Apache OpenWhisk, IBM Cloud Functions
provides an ecosystem in which developers
can share and use code across environments.

Trigger your actions from events in your favorite
cloud services, or directly from your apps via
REST APIs.

Develop actions in your favorite language: Java,
Swift, JS/Node.JS, PHP, Python. You can also use
any code in a Docker container as an action.

© Copyright IBM Corporation 2017. The IBM logo and ibm.com are trademarks of International Business Machines Corp.,
registered in many jurisdictions worldwide. Other product and service names might be trademarks of IBM or other
companies. A current list of IBM trademarks is available on the Web at “Copyright and trademark information”
at www.ibm.com/legal/us/en/copytrade.shtml.

Raymond Camden

Developing Serverless
Applications

A Practical Introduction with
Apache OpenWhisk

Boston Farnham Sebastopol TokyoBeijing Boston Farnham Sebastopol TokyoBeijing

978-1-491-99622-5

[LSI]

Developing Serverless Applications
by Raymond Camden

Copyright © 2018 O’Reilly Media, Inc. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA
95472.

O’Reilly books may be purchased for educational, business, or sales promotional use.
Online editions are also available for most titles (http://oreilly.com/safari). For more
information, contact our corporate/institutional sales department: 800-998-9938 or
corporate@oreilly.com.

Editors: Brian Foster and Virginia Wil‐
son
Production Editor: Shiny Kalapurakkel
Copyeditor: Matthew Burgoyne
Interior Designer: David Futato

Cover Designer: Karen Montgomery
Illustrator: Rebecca Demarest
Tech Reviewers: Mike Roberts, John Cha‐
pin, Brian Rinaldi, Jess Males

October 2017: First Edition

Revision History for the First Edition
2017-10-06: First Release

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Developing Serv‐
erless Applications, the cover image, and related trade dress are trademarks of
O’Reilly Media, Inc.

While the publisher and the author have used good faith efforts to ensure that the
information and instructions contained in this work are accurate, the publisher and
the author disclaim all responsibility for errors or omissions, including without limi‐
tation responsibility for damages resulting from the use of or reliance on this work.
Use of the information and instructions contained in this work is at your own risk. If
any code samples or other technology this work contains or describes is subject to
open source licenses or the intellectual property rights of others, it is your responsi‐
bility to ensure that your use thereof complies with such licenses and/or rights.

http://oreilly.com/safari

Table of Contents

1. Introduction. 1
What Is Serverless? 1
Serverless Use Cases 2
Who Is This Book For? 3
Getting the Source 4

2. OpenWhisk Basics. 5
Introduction to Apache OpenWhisk 5
OpenWhisk on IBM Cloud (Bluemix) 6
Registering for IBM Cloud (Bluemix) 7
Getting the OpenWhisk CLI 9

3. Working with Actions. 13
The Fundamentals of OpenWhisk Actions 13
Options for OpenWhisk Actions 14
Rules for JavaScript Actions 15
Your First Action 16
Running Your Action 19
Working with Arguments 23
Asynchronous Actions 25

4. Using OpenWhisk Actions. 29
Authenticated REST API 29
Web Actions 31
API Management 36

iii

5. Building Sequences. 49
Creating Sequences 51

6. Working with Packages. 55
Creating and Managing Packages 56
Using Bluemix Packages 61

7. Using Triggers and Rules . 63
What are Triggers? 63
What are Rules? 64
Feeds and OpenWhisk Supplied Triggers 65

8. Going Further with OpenWhisk. 67
Asking Questions 67
Additional Reading 68
Participating 68
Everything Else 68

iv | Table of Contents

CHAPTER 1

Introduction

This book aims to help you enter the exciting new world of server‐
less development. By the end of the book, you’ll know how to use
Apache OpenWhisk to write serverless functions and how to call
them from applications. You’ll see how to create powerful new serv‐
ices by combining existing actions into sequences, as well as how
they can be automated with triggers.

What Is Serverless?
The technical industry is rife with terms that sometimes bear little to
no resemblance to what they supposedly represent. Serverless is the
latest example of this. Many people object to the term because
servers are always involved with anything hosted on the internet. Of
course, if we can get over the fact that the cloud isn’t literally a few
thousand feet over our heads, we can move to accept this new term
as well.

It’s best to think of serverless as not the lack of servers, but the lack
of server management. Serverless is best described as the ability to
deploy your apps without worrying about provisioning and manag‐
ing a server. This could be seen as a natural outgrowth of the cloud
and virtual servers.

Virtual servers greatly improved our lives by allowing developers to
add (and remove) servers with the click of a button. Suddenly, you
didn’t have to ask permission, or wait around, to put your applica‐
tion online. As awesome as this was, it came with some drawbacks.

1

Servers require maintenance. They have to be locked down. They
have to be set up with the appropriate amount of RAM and disk
space. They also have to be running to actually do anything. While
that’s obvious, it’s easy to forget that you’re paying for a server to run
all day, every day, even when the app in question isn’t actually being
used.

This is where serverless truly shines. Instead of provisioning an
entire server, you can take the logic that comprises your application
and simply deploy it as is. You can think of this as “Function as a
Service.” This greatly simplifies the process of getting what you need
online and ready to be used. You no longer need to worry about set‐
ting up a web server or figuring out how to route a particular
request to a particular piece of logic. Instead, you deploy that logic
(a function) and the serverless provider handles everything else.

Best of all, your costs can go way down. Instead of a server running
constantly, the serverless platform fires up your code when reques‐
ted. When your code isn’t being used, nothing is running. You pay
for your usage and nothing more! While every platform has it’s own
pricing model, your costs in general will be far less.

If you think this sounds compelling, you aren’t alone. Many of the
biggest tech companies now offer serverless as a product offering.
Amazon led the way with AWS Lambda, the oldest and most mature
serverless platform. Google has Cloud Functions, and Microsoft has
Azure Functions. In this book, we’ll be focusing on IBM Cloud
Functions, a serverless solution created by IBM based on Apache
OpenWhisk.

Serverless Use Cases
It is (most likely) simpler to work with serverless and certainly
cheaper, but what are some use cases where serverless shines? Here
are just a few examples.

APIs for CRUD
CRUD, or Create/Read/Update/Delete, refers to how people
typically work with content. Given you have a set of data, your
app may need to perform CRUD as part of its functionality. In
the past, APIs for this would be built in a server-side application
and handle passing calls back and forth between a frontend and
a backend storage system. Serverless is great for these simple

2 | Chapter 1: Introduction

https://aws.amazon.com/lambda/
https://cloud.google.com/functions/
https://azure.microsoft.com/en-us/services/functions/

proxies by reducing the amount of overhead you need to sup‐
port the APIs.

Rewriting APIs
One of the cooler things you can do with serverless is build an
API that rewrites another API. Imagine an API that only
returns XML. You could use serverless to build a proxy that
transforms it to JSON. Imagine an API that returns useful infor‐
mation, but also a lot of data your clients don’t need. You could
use your API to simply remove the unwanted data.

Slow background work
Anything that is slow (comparatively) will typically be handled
by a process running in the background on a scheduled basis.
Examples of this include image processing (such as optimizing
and resizing), log processing, or simply handling uploaded files.
Serverless is a great way to build these background utilities.

Who Is This Book For?
This book is for the developer who works on the backend, creating
services to support frontend clients. Those clients could be basic
websites or more modern progressive web apps. They can also be
mobile apps written using hybrid technologies like Apache Cordova,
or fully native apps written in Java or Swift. This book is for anyone
who has had to set up an environment, a web server, and other tools
just to build an API, and would love to see a much simpler way of
standing up services.

Apache OpenWhisk supports multiple languages, but this book
focuses on JavaScript for working with serverless. You do not need
to be a JavaScript expert in order to work with the examples. If you
know nothing at all about JavaScript and want to quickly get up to
speed, or just want to brush up on your knowledge, I highly recom‐
mend bookmarking the MDN Web Docs, seen in Figure 1-1. For‐
mally known as “MozDevNet,” this site contains both guides and
reference materials to all things web related.

Who Is This Book For? | 3

https://developer.mozilla.org/en-US/

Figure 1-1. MDN Web Docs website

There are absolutely no editor or web browser requirements to com‐
plete this book. Use the editor and browser that works best for your
development. I used Visual Studio Code and highly recommend it.

Getting the Source
You can find the complete source for the code samples in this book
on GitHub at https://github.com/cfjedimaster/developing-serverless-
applications-code. If you have a Git client installed on your system,
simply pull a copy of the repository. If you don’t, use the Clone or
download button to get a zip of the files.

4 | Chapter 1: Introduction

https://code.visualstudio.com/
https://github.com/cfjedimaster/developing-serverless-applications-code
https://github.com/cfjedimaster/developing-serverless-applications-code

CHAPTER 2

OpenWhisk Basics

One of the best benefits of OpenWhisk is how easy it is to get
started. You’ll learn what IBM Cloud Functions based on Open‐
Whisk and IBM Cloud (Bluemix) are and how they relate. Then,
you’ll learn how to get started. That process is divided into two
parts. First, I’ll walk you through registering with IBM Bluemix.
While optional, this provides the simplest way to test your Open‐
Whisk actions. Second, I’ll show you how to install the command
line interface for OpenWhisk, how to confirm it worked, and what
the upgrade process is like.

Introduction to Apache OpenWhisk
Apache OpenWhisk is a new, open source project under the Apache
umbrella (see Figure 2-1 for a screenshot of its website). Many peo‐
ple tend to think of Apache as “the web server people,” but the orga‐
nization is responsible for many open source projects.

5

http://openwhisk.incubator.apache.org/

Figure 2-1. The Apache OpenWhisk website

Apache OpenWhisk has some pretty big supporters, including IBM,
Adobe, and most recently, Red Hat.

As an open source project, anyone and everyone can participate in
the platform. There is both a public mailing list as well as GitHub
repositories where bugs can be reported (and worked on). There is
also a Slack organization where people can ask technical questions.
You can sign up for that Slack group and, once registered, you can
chat with other developers.

OpenWhisk on IBM Cloud (Bluemix)
As one of the biggest supporters behind OpenWhisk, IBM has made
it easy for developers to use the serverless platform in IBM Cloud
Functions, the managed OpenWhisk implementation on the IBM
Cloud (Bluemix). IBM Cloud is a Platform as a Service (PaaS) solu‐
tion that handles things like NodeJS hosting, integration with Wat‐
son, and OpenWhisk (see Figure 2-2 for a screenshot of its website).
Because IBM Cloud is easy to use, this book will focus on using that
platform for deploying and hosting your serverless code. To be clear,
this is optional and 100% not required to use Apache OpenWhisk.
IBM Cloud Functions has an incredibly generous free tier, so you
will not have to pay a dime to run through the various exercises and
examples in this book. In this context, we will use IBM Cloud Func‐
tions and OpenWhisk interchangeably.

6 | Chapter 2: OpenWhisk Basics

http://openwhisk.apache.org/slack.html
https://openwhisk-team.slack.com/
https://www.ibm.com/cloud-computing/bluemix/

Figure 2-2. The IBM Cloud (Bluemix) website

IBM’s website refers to OpenWhisk as Cloud Functions. This is the
name IBM uses to refer to OpenWhisk running in its own offerings.

In the next chapter, I’ll walk you through how to use OpenWhisk
with Bluemix. However, note that the core of your OpenWhisk
activity will be the same no matter where you end up deploying your
code.

Registering for IBM Cloud (Bluemix)
If you don’t currently have a Bluemix account, open the registration
page and sign up (see Figure 2-3).

Figure 2-3. Registration page for Bluemix

Registering for IBM Cloud (Bluemix) | 7

https://console.bluemix.net/registration/
https://console.bluemix.net/registration/

This should be like any other registration page you’ve encountered
before. Note that you are not asked for a credit card. The registration
page mentions a 30-day free trial. While that’s true, you can still use
IBM Cloud Functions for free after your 30 days. It has a free tier (as
does most of Bluemix), and as long as you don’t share your server‐
less APIs with a few million of your friends, you shouldn’t have any‐
thing to worry about.

If you’ve already registered for Bluemix in the past, you don’t need
to do anything special. Just log in. Then, skip to the next section.

After signing up, you’ll need to do an email verification. Sign in, and
you’ll be asked a few questions. The first is to simply specify an
organization (see Figure 2-4). Go ahead and use one of the sug‐
gested values. This really isn’t that important.

Figure 2-4. Picking an organization

Next, you’ll be asked to create a “space.” Think of this as a folder or
project for your work. If you do a lot with Bluemix, you may have
many of these to organize your work. But as before, just select one of
the suggested values (see Figure 2-5).

8 | Chapter 2: OpenWhisk Basics

Figure 2-5. Picking a space

Congratulations, you’ve registered for Bluemix! In the next section,
you’ll learn how to get the OpenWhisk command line interface, as
well as how to configure it.

Getting the OpenWhisk CLI
The Bluemix dashboard will be pretty empty for new users. For
existing users, you’ll see what you normally do here. To get to Open‐
Whisk, click the hamburger menu in the upper lefthand side, as
shown in Figure 2-6.

Figure 2-6. Opening the Bluemix menu

Then, select Functions from the menu. This brings you directly to
the “Getting Started” experience. Here, you’ll find documentation,
links to develop and monitor OpenWhisk activity, and the API por‐
tal. For now, begin by clicking the Download Cloud Functions CLI
button, as shown in Figure 2-7.

Getting the OpenWhisk CLI | 9

Figure 2-7. The Getting Started page

This page walks you through setting up the Bluemix CLI, but you
can skip this as this book is focused on OpenWhisk development
only. At the bottom of the page, simply click the last link: “Looking
for the wsk CLI?” The next page (as shown in Figure 2-8) includes a
bunch of critical information, so let’s cover it bit by bit.

Figure 2-8. The Download page

First and foremost, note that the web page does a bit of sniffing to
determine what operating system you’re using. For most folks, this
will be fine. However, if you need another operating system, you
would click the link marked “Click here.” For Windows users using
the new Windows Subsystem for Linux (WSL), this is what you
would do to get the Ubuntu bits.

10 | Chapter 2: OpenWhisk Basics

Learning More about WSL

While not required, the Windows Subsystem for Linux
works very well with OpenWhisk. You can learn more
about it in their blog. I strongly recommend it.

Your download will be a zip file containing just the executable file
for your platform. Unzip the file and copy it into a folder that’s part
of your system path. In other words, a location where you can run
the executable from your command prompt.

If you’ve done that correctly, you can go to your command prompt
and type wsk to see it running correctly, as shown in Figure 2-9.

Figure 2-9. The CLI running correctly!

Upgrading the CLI

Unfortunately, upgrading the CLI is currently a man‐
ual process. You can read about how to do this in a
blog post.

Getting the OpenWhisk CLI | 11

https://blogs.msdn.microsoft.com/wsl/
http://bit.ly/2wFWCnc

The next step is a one-time security update. In order for the CLI to
know who you are, how you log in to Bluemix, etc., you need to set
an authentication token in the CLI itself. Figure 2-10 shows the
command you need to type in step 2. You can either type it by hand,
or click the Copy button and paste it into your terminal. Once that
command is run, the wsk CLI will then be able to work with your
account. You can confirm you’re set up by running wsk property
get.

Figure 2-10. Note that the authentication key above is obscured on
purpose.

Finally, follow the last direction in Figure 2-8. Don’t worry about
understanding what it means. I’ll be covering all of that later. Just
ensure that you can run the command without error (as seen in
Figure 2-11).

Figure 2-11. The test command running perfectly!

With this out of the way, you are now ready to start building your
own serverless functions with Apache OpenWhisk!

12 | Chapter 2: OpenWhisk Basics

CHAPTER 3

Working with Actions

In the first chapter, I referred to serverless as Function as a Service
(FaaS). Within OpenWhisk, actions are how we refer to those func‐
tions. Everything you build will begin with actions, so understand‐
ing how to build and use them is fundamental to being a serverless
developer on the OpenWhisk platform. I’ll begin by covering the
fundamentals of how actions should be built. You should think of
these as guideliness, not hard and fast rules. I’ll then switch to the
actual rules you have to follow.

This chapter will focus on working with actions via the CLI. While
this covers how developers interact with OpenWhisk, it certainly
isn’t how the public will use it. The next chapter will demonstrate
how you can take these actions and make them available to the pub‐
lic.

The Fundamentals of OpenWhisk Actions
As previously described, what follows are the fundamentals (or
principles) of how you should build your actions. These are guide‐
lines you should follow but are not done at the code level. Consider
them best practices, but note that you may bend these best practices
from time to time.

First off, actions are typically small pieces of code. However, “small”
is, of course, relative. It may mean 20 lines of code, or it may mean
200. But in general, if you find yourself working on a file that’s get‐

13

ting larger and larger, it may make sense to break it up into smaller
actions.

Next, actions are atomic and stateless, meaning they run, do their
stuff, and then disappear into the void. Nothing about them persists
from one call to the other, so that’s how you should code. But of
course, there are caveats. When OpenWhisk runs your action, it
doesn’t kill it immediately. Rather, it waits a bit to see if it will be run
again. Therefore, you actually can persist data and use it again. As
long as your code doesn’t rely on this cache and just uses it as opti‐
mization when available, then you will be good. The same applies to
the filesystem. Your action can read and write to the filesystem but
should assume that those files disappear when done. And as just sta‐
ted, you can check to see if a cached file exists but don’t require it.
Finally, actions can work with persistance systems like databases.
This means that while the action may go away, it can work with data
that persists.

Finally, actions should focus on doing only one thing. Now, again,
this is a guideline, not a rule. If your action does two things, the
Serverless Police won’t be stopping by your desk to slap your hand.
But in general, the more focused your action, the more easily you’ll
be able to use it elsewhere. This is the same principle you learn when
picking up any language. You use functions to save yourself from
repeating code. In doing so, you naturally make your functions sim‐
pler and purpose driven. The same applies to actions.

Options for OpenWhisk Actions
When building OpenWhisk actions, you’ve got a few choices for
how you develop them:

• JavaScript
• Swift
• Python
• Java
• PHP
• Docker

Each of these environments has its own specific details in terms of
what version it’s running and what’s supported. For example, at the
time this book was written, JavaScript actions used the Node 6.9.1
environment, and Python used Python 3.6.1. You can find out the

14 | Chapter 3: Working with Actions

current settings for all environments via the OpenWhisk reference
docs.

The final option, Docker, technically allows you to use any language
to build your actions.

In this book, I’ll be focusing on JavaScript. Everything demon‐
strated, though, will work just as well in any of the other environ‐
ments. Do not worry if you aren’t a JavaScript or Node expert. While
JavaScript isn’t something that can be precisely nailed down, anyone
with at least a beginner’s level understanding should be good to go.
If you find yourself struggling with something that is more Java‐
Script and less OpenWhisk, open your browser to the Mozilla
Developer Network. The Mozilla Developer Network (soon to be
rebranded to MDN Web Docs) is the number one resource for
everything web related. Don’t let the “Mozilla” in the name fool you.
Nothing about their docs is Firefox-specific, so developers should
consider it a resource for any browser and any web technology.

Searching MDN Quicker

As a quick tip, if you need to search for something web
related (perhaps how to work with arrays in Java‐
Script), prefix your search term with “mdn.” So, for
example, search “mdn array.” The top result will be a
link to the MDN.

Rules for JavaScript Actions
In general, you’re free to write your JavaScript actions as you see fit,
but there are a few rules you must follow. To help illustrate this, let’s
look at a simple action.

function main() {

 var message = "Hello World";

 return { result: message };

}

First off, the action has a function called “main.” Your code must
always have this. It doesn’t mean you can’t have more functions in
the action named whatever you will, but OpenWhisk is going to run
a function called “main” when it executes your action.

Rules for JavaScript Actions | 15

http://bit.ly/2xfgPzF
http://bit.ly/2xfgPzF
https://developer.mozilla.org/
https://developer.mozilla.org/

Secondly, you must return a JavaScript object. In the previous sam‐
ple, the object has one key: result. That key name is totally arbi‐
trary. The value, message, is a string. That’s also arbitrary. All that
really matters is that you return an object. To make this a bit more
clear, here is another example.

function main() {

 var message = "Hello World";
 var highScores = [92332,89100,72910,51410];
 var bio = {
 name:"Raymond",
 cool:true
 };

 return {
 greeting:message,
 topScores:highScores,
 me:bio
 };

}

In this example, the object has three keys of various types of data.
Again, the crucial point is returning an object. What’s actually in
that object is up to your action. If you’re writing code to translate
text, then your action will probably return a string. If you’re writing
code to target the Death Star, you will probably return an array of
galactic coordinates.

And for the most part, that’s it. There’s going to be a few more rules
to cover as we go along, but that’s the basics. Now let’s build a “real”
action!

Your First Action
For our first action, let’s start with something that is not too complex
but is still a bit beyond the typical “Hello World” example. You can
find this code in the GitHub repository as ch03/action1.js.

16 | Chapter 3: Working with Actions

http://bit.ly/2wF9hGV

/*
Based on the time (of the OpenWhisk runtime at least!), return
an appropriate greeting.
*/

function main() {
 let message = '';
 let timeOfDay = new Date().getHours();

 if(timeOfDay < 12) {
 message = 'Good morning!';
 } else if(timeOfDay < 18) {
 message = 'Good Afternoon!';
 } else {
 message = 'Good evening!';
 }

 return { greeting:message };

}

This action begins by creating two variables, a message string and
timeOfDay, a value based on the current time’s number of hours. As
the comment says on top, this will be based on where OpenWhisk is
actually running it and may not match your local time.

Then, the code simply uses a few conditionals to create a greeting
appropriate for the time.

What the heck is “let”?

If the let keyword threw you there, don’t worry. Yes,
this is part of the latest JavaScript (really ECMAScript)
standard, commonly referred to as ES6. The code
could have just as easily used the var keyword instead.
let is simply a bit more specific about its scope. If
you’re comfortable with ES6, go ahead and use it! This
book will make liberal use of it. If you’re not yet ready
to embrace the new hotness, that’s fine as well!

You can write this code yourself or use the file downloaded from the
GitHub repository referred to in Chapter 1. In your terminal, ensure
you are in the same directory as the file.

In order for this code to be deployed to OpenWhisk, you have to tell
the CLI to deploy it. This can be done with the following command:

wsk action create nameOfAction nameOfFile

Your First Action | 17

The first two arguments, action create, should be self-explanatory.
This will create a new action. The third argument, nameOfAction,
refers to the name you want to use for your action. The final argu‐
ment is simply the filename. The CLI has great documentation
within it. Figure 3-1 has an example of the result of running wsk
action.

Figure 3-1. CLI Help FTW!

To deploy the action, run the following command:

wsk action create timedGreeting action1.js

Again, this assumes you’re in the same directory as the code. If not,
either add the full path in the last argument or simply change direc‐
tories. The CLI will then tell you that the action is created.

Cool. So what do you do when you realize you made a typo or had a
bug and need to update it? Just change the command from create
to update.

wsk action update timedGreeting action1.js

You can run update even when the action doesn’t exist, so if you
want, you can skip using create and just stick to update.

In case you’re curious, you can also delete actions: wsk action

delete timedGreeting will remove it from the system. Want to see
all your actions? Just run wsk action list, as seen in Figure 3-2.

18 | Chapter 3: Working with Actions

Figure 3-2. Listing Actions

At first, this list will be short, but overtime it will grow. The list is
currently sorted by the last time the action was updated. To get an
alpha-sorted list, you would use wsk action list --name-sort.
Also note that there is a default maximum of 30 actions returned per
request. You can use the --limit argument to ask for more. As
always, use the -h flag for help with all the various options you can
use.

Running Your Action
Ok, the action previously created is deployed to OpenWhisk, but
how do you actually test it? To be clear, we’re talking about testing it
as a developer. Using the action in actual production code will be
covered in the next chapter.

To run an action, use the invoke argument. The general form of the
command looks like so:

wsk action invoke name

So given that, you can run the action just created by running:

wsk action invoke timedGreeting

Doing so returns the following result:

ok: invoked /_/timedGreeting with id a773826ffa6841ee96e9...b

Not very clear, is it? When you invoke such an action, a few things
happen. First, the CLI isn’t going to wait around for it to finish.
Though it may be quick and the code used for the first action may
be incredibly simple, but the CLI isn’t waiting.

Instead, the CLI returned what OpenWhisk refers to as an activa‐
tion. Activations are records of your action’s lifecycle. They contain
the result of your action as well as a set of metadata about how it
ran. To get the activation, you can use this command:

wsk activation get X

Where X is the ID returned from the invoke call. Here is what that
looks like:

Running Your Action | 19

{
 "namespace": "ray@camdenfamily.com_dev",
 "name": "timedGreeting",
 "version": "0.0.2",
 "subject": "ray@camdenfamily.com",
 "activationId": "c8e7f96ecc9b4f81879427671937a4d6",
 "start": 1498847586291,
 "end": 1498847586294,
 "duration": 3,
 "response": {
 "status": "success",
 "statusCode": 0,
 "success": true,
 "result": {
 "greeting": "Good evening!"
 }
 },
 "logs": [],
 "annotations": [
 {
 "key": "limits",
 "value": {
 "logs": 10,
 "memory": 256,
 "timeout": 60000
 }
 },
 {
 "key": "path",
 "value": "ray@camdenfamily.com_dev/timedGreeting"
 }
],
 "publish": false
}

Activations are returned as a JSON packet. They contain a lot of
data, much of which is obvious, but let’s discuss some important
ones.

• The most important part of the activation is the response key,
specifically the response.result. When you invoke such an
action, a few things happen.

• The next most important bits are start, end, and duration.
However, you most likely only care about duration. This
reflects how long it took for your function to run. OpenWhisk
charges based on execution time rounded up to the nearest 100
ms. This function call took 3 ms but will be billed at 100 ms. But

20 | Chapter 3: Working with Actions

again, OpenWhisk has a huge free tier, so this execution proba‐
bly cost around 0.000000001 cents. Probably even less.

• The next one you should note is logs. If your code made use of
console.log(), the debugging tool of champions, then they
would show up there. This is also where you would see errors.
We’ll demonstrate an example of that in a bit.

If you’re curious, you can actually get a list of all your activations
using wsk activation list, as shown in Figure 3-3.

Figure 3-3. A list of recent activations.

As with the action list command, the activation list is sorted by the
most recent activation and limited to 30 results. Again though, this
can be modified with a few additional arguments.

Still, the most convenient use of the activation command is the
poll. The poll command simply waits for you to run actions and
then reports the result automatically. You can open up a new termi‐
nal window and simply run that command and wait for results. It
will not show any of the metadata or any of the results, but it will
report errors and show any logs. Now would be a perfect time to
show an example of that in action.

Let’s begin by looking at a new action, one terribly flawed and
doomed to failure.

/*
I have no chance of running well.
*/

function main() {
 console.log('running my action');
 let x = 1;
 let y = 2;
 let z = a+b;

 return { result: z};
}

Running Your Action | 21

There’s two things to note here. First, the use of console.log as a
simple debugging measure and secondly, the error that will occur
when the function tries to add two variables that don’t exist. You can
find this code in ch3/action_bad.js. Use the wsk CLI to create a new
action with the name action_bad and then invoke it. Figure 3-4
shows how wsk activation poll reports it.

Figure 3-4. wsk poll report

Note that the output includes both the log message as well as the
error. When developing with OpenWhisk, you may want to keep a
terminal open with the poll just to make debugging easier. But
assuming your code works well, there’s an even easier way to get
results.

When invoking an OpenWhisk action, you can pass two useful
arguments:

• --blocking (or -b) tells the CLI to wait for the function to com‐
plete. This will then return the entire activation to your screen.

• --result (or -r) tells the CLI to print just the result. If you
don’t care about execution times or the logs, this is definitely
desirable.

Put together, you can then run your action like so:

wsk action invoke timedGreeting -b -r

And the result is much easier to work with:

{
 "greeting": "Good evening!"
}

22 | Chapter 3: Working with Actions

http://bit.ly/2yvDoxP

This is even useful in case of errors. Here is the result of running
action_bad:

{
 "error": "An error has occurred: ReferenceError: a
 is not defined"
}

Working with Arguments
So far our only action (the only working one) was simple. It
accepted no input and simply returned a value based on time. Most
actions, though, will need to accept arguments to function correctly.
OpenWhisk makes this fairly easy. To pass arguments to an action,
you simply use the --param argument. Here is an example:

wsk action invoke myAction --param something foo -b -r

In this example, the parameter something is passed with the value
foo. Sending two parameters is as simple as repeating the argument:

wsk action invoke myAction --param something foo --param
somethingmore goo -b -r

Finally, you can pass a set of parameters based on a file. This could
be useful if you have many parameters or more complex data, like
arrays.

wsk action invoke myAction --param-file something.json

The file must be a JSON file in order for it to work. Now how does
the code work with these parameters? All parameters, no matter
how many are sent, are passed as one basic object. Here’s a new
action that shows this in action.

/*
Returns the area of rectangle.
*/

function main(args) {

 if(!args.width) {
 return {
 error:"Width argument required."
 }
 }

 if(!args.height) {
 return {
 error:"Height argument required."

Working with Arguments | 23

 }
 }

 let area = args.width * args.height;

 return { area: area };
}

You can find this file in the GitHub repo as ch3/area.js. It’s a simple
action that determines the area of a rectangle. The first line now
includes one argument, args, which will hold any and old argu‐
ments (or parameters) passed to the function. Notice that the code
also checks for two particular parameters. This isn’t required, but it
makes the action a bit more proper. The code could be made even
better if it checked for valid numbers too. Once it has those parame‐
ters, it uses a bit of math and returns the result. Here’s an example of
how the action can be invoked:

wsk action invoke area -b -r --param width 100 --param
height 90

And the result:

{
 "area": 9000
}

Actions also support the idea of default parameters. This allows you
to set up parameters that can be changed on a case-by-case basis but
revert to a default value when not passed. Default parameters are set
using the wsk command line like so:

wsk action update actionName --param something somevalue

The previous command will update actionName so that it has a
default parameter named something with a value somevalue. You
can also use --param-file argument to specify a JSON file contain‐
ing key/value pairs for default parameters. For this example, we’ll
revert to the boring but easy to understand “Hello World” example:

/*
Hello Word - because of course.
*/

function main(args) {

 let message = `Hello, ${args.name}!`;

 return { result:message };
}

24 | Chapter 3: Working with Actions

http://bit.ly/2fg3Sv2

You can find this file in ch3/hello_world.js. All it does is create a per‐
sonalized greeting based on a name parameter. To create this action
and set the default parameter for name, use this command:

wsk action create hello_word hello_world.js --param name
Nameless

Next, test calling it both with and without a name parameter. Here is
the result without a parameter: wsk action invoke hello_world
-b -r:

{
 "result": "Hello, Nameless!"
}

And here is the result of calling it with a parameter: wsk action
invoke hello_world -b -r --param name Ray:

{
 "result": "Hello, Ray!"
}

You may be wondering why you would use a default parameter
when code can be used to do the same thing. You can! Using a
default parameter on the action itself allows you to change the
implementation later. For example, from JavaScript to Java (but my
goodness, why would you do that). Having it in code makes it a bit
easier to see. It’s really up to the developer to decide what makes
sense.

Asynchronous Actions
So far, all of the actions demonstrated have returned a result imme‐
diately. What about actions that need to perform asynchronous
actions? A perfect example of this is HTTP requests. Imagine an
action that requests a third-party API, does some manipulation on
the result, and returns it. This is actually a really good use case for
serverless. A client application may have need of data that only a
remote API can provide. But what if that API returns a lot of extra
data that isn’t necessary? Or perhaps it returns the data in XML
instead of JSON. (Yes, some APIs still do that.) A serverless action
could act as a proxy—both removing extra data not needed by the
client and performing basic transformations on the data to make it
easier to use by the client. Even better, if that third-party API ever
goes out of business, the action could simply (hopefully!) switch to

Asynchronous Actions | 25

http://bit.ly/2yo9J8M

another service and massage the data to return it exactly as it was
before.

To use asynchronous actions with OpenWhisk, your code has to be
slightly modified from previous examples. Instead of returning a
simple JavaScript object, you must return a Promise. Promises are a
(kinda) new way to handle asynchronous code. They work especially
well in cases where you have to manage multiple asynchronous calls
in a fixed order or workflow. Promises can be a bit scary at first, so if
you’ve never used them before, be sure to read the helpful guide at
MDN. However, their usage in OpenWhisk can be, thankfully,
rather simple. Here is a sample pseudo-code action:

function main(args) {

 return new Promise(function(resolve, reject) {

 //stuff happens

 if(somethingGood) {
 resolve({result:1};
 } else {
 reject({error:'Oh no!'});
 }
 });

}

Let’s tackle this bit by bit. The biggest change is that the code returns
a Promise, not a plain JavaScript object. This basically tells Open‐
Whisk, “Just hang on, friend, I’m going to do some stuff and get
back to you in a bit.” Then, whatever code needs to run is executed.
Finally, you decide if something good or bad happened. Notice how
the Promise’s argument, a callback, is passed a resolve and reject
parameter. These are functions you run to basically say, “I ended
well, and here’s some data,” or “something went wrong, let me share
with you the details.” In both cases, the result data is a plain Java‐
Script object.

For our first demo, let’s write an action that returns the JSON Feed
from my blog. A JSON Feed is basically a JSON version of a RSS
feed. This action will get the feed but only return the most recent
entry.

26 | Chapter 3: Working with Actions

https://mzl.la/2r0Q4sy
https://mzl.la/2r0Q4sy
https://jsonfeed.org/

const request = require('request');

function main(args) {

 let url = 'https://www.raymondcamden.com/jsonfeed/
 index.json';

 return new Promise((resolve, reject) => {

 request({url:url, json:true},
 (error, response, body) => {

 resolve({latestblog:body.items[0]});

 });

 });
}

The action starts off by loading the request library. OpenWhisk sup‐
ports a number of popular npm modules out of the box. The refer‐
ence guide mentioned earlier lists all of the npm modules that can
be used. (OpenWhisk also supports custom npm modules, but that
will not be covered in this book.)

The action then uses the request library to open the JSON feed for
the blog, automatically parses the JSON, and then returns the first
(i.e. most recent) blog entry. Here is a sample of the output:

{
 "latestblog": {
 "content_text": "(trimmed for size)",
 "date_published": "2017-06-29 09:03:00 -0700",
 "id":
 "https://www.raymondcamden.com/2017/06/29/
 handling-sms-with-openwhisk/",
 "tags": "openwhisk,watson",
 "title": "Handling SMS with OpenWhisk, IBM Watson,
 and Twilio",
 "url":
 "https://www.raymondcamden.com/2017/06/29/
 handling-sms-with-openwhisk/"
 }
}

Async actions are called just like any other OpenWhisk action. So
given that the action was called “async1,” calling it would have been
done like so:

wsk action invoke async1 -b -r

Asynchronous Actions | 27

http://bit.ly/2xfgPzF
http://bit.ly/2xfgPzF

Now that you know how to create OpenWhisk actions and call them
via the CLI, in the next chapter you’ll learn how to expose these
actions so that others can use them as well.

28 | Chapter 3: Working with Actions

CHAPTER 4

Using OpenWhisk Actions

So far, every example demonstrated has made use of the CLI to work
with actions. We’ve covered creating, updating, and running actions
via the CLI. But what about actually using OpenWhisk actions in
production? There are three ways of doing that, each with their own
benefits and recommended use cases.

Authenticated REST API
The first method is the authenticated REST API. Actually, this is
what the CLI was doing on your behalf. The REST API allows for
full integration with OpenWhisk, doing everything the CLI does
and more. However, as you can probably guess by the title of this
section, it does require authentication credentials.

When making requests to the REST API, your username and pass‐
word must be passed. However, this is not the same as your IBM
Bluemix login. In Chapter 2, you copied a command to set up your
authentication information for the CLI. You can retieve that infor‐
mation using the CLI as well. Running wsk property get will
return a set of values related to your current setup, including
authentication information in the whisk auth value:

whisk auth lotsofrandomnumbers:evenmorerandomnumber
whisk API host openwhisk.ng.bluemix.net
whisk API version v1
whisk namespace _
whisk CLI version 2017-07-12T20:09:28+00:00
whisk API build 2017-07-31T14:35:32Z
whisk API build number whisk-build-5338

29

https://console.bluemix.net/docs/openwhisk/openwhisk_rest_api.html

While the values in the above sample were modified, note the colon
that appears inside the auth value. When using the authenticated
API, your username would be on the left of this and your password
would be on the right. With these values, you could then make calls
to the API to perform whatever actions make sense. So why would
you use this?

While serverless is a very exciting and powerful new way to develop,
there are a huge amount of app servers out there that will not be dis‐
appearing overnight. (And of course, serverless absolutely does not
make sense in every situation!) It is entirely possible that your orga‐
nization could have an existing app server using Node, PHP, or even
ColdFusion and wants to make use of functionality deployed on
OpenWhisk. By making simple authenticated HTTP calls to the
REST API, you can then make use of those functions.

For developers wanting to use Node with OpenWhisk, take a look at
the OpenWhisk npm package. This makes using the REST API far
easier and supports a nice Promise-based method of working with
every aspect of the platform. Here is a simple example of calling an
action.

const openwhisk = require('openwhisk');
const options = {
 apihost:'openwhisk.ng.bluemix.net',
 api_key:'super_secret_key_no_one_will_guess'
}
const ow = openwhisk(options);

ow.actions.invoke({name:'getcats',blocking:true,result:true})
.then((cats) => {
 console.log('Here are the cats:', cats);
});

In this case, the api_key value would simply be the entire string of
the auth value from the earlier CLI example. For more information
about the npm package, see the docs on GitHub.

In general, the REST API will only be used for internal projects or
projects involving existing app servers where authentication infor‐
mation can be safely embedded and used securely. The REST API
should not be used in client-side applications.

30 | Chapter 4: Using OpenWhisk Actions

https://github.com/apache/incubator-openwhisk-client-js

Web Actions
Web Actions broadly provide the following features:

• A public, anonymous URL for invoking the action.
• A way to return more than just plain JSON data. Web Actions

can return headers, headers and data, and non-JSON data, such
as HTML and binary data. The ability to return headers will be
crucial for client-side web applications.

• Actions invoked as web actions also get access to request infor‐
mation about how they were invoked. This includes request
headers, CGI query string and path information, and the raw
body of the request.

• A way to modify their behavior depending on how they are
called. For example, by manipulating the URL, a user can ask
for a portion of the data returned instead of the entire set.

• Finally, web actions with default parameters are considered pro‐
tected, which means that they are still considered a parameter
but can’t be overridden by the user calling the action. Essen‐
tially, they are “read-only” parameters that can’t be changed.

Enabling web action support for an existing action is simple. Let’s
begin by looking at a simple action.

const cats = ["Luna","Cracker","Robin","Pig","Simba"];

function main(args) {

 return {
 cats:cats
 };

}

This action returns a hard-coded list of cats. There are no parame‐
ters or any other activity; it simply returns the list. Set this up as an
action called cats. (You can find this code in ch4/cats.js.)

wsk action create cats cats.js

Then ensure it works correctly:

wsk action invoke cats

Now that the action exists, let’s discuss how to enable it as a web
action and how to call it.

Web Actions | 31

http://bit.ly/2waDOZ3

Enabling Web Actions
Enabling an action to be a web action involves adding the web anno‐
tation to it. Here’s how to enable it:

wsk action update cats --web true

To confirm, use the CLI to retrieve the action:

wsk action get cats

The result should look like so:

{
 "namespace": "ray@camdenfamily.com_dev",
 "name": "cats",
 "version": "0.0.2",
 "exec": {
 "kind": "nodejs:6",
 "code": "\r\nconst cats = [\"Luna\",\"Cracker\",\
 "Robin\",\"Pig\",\"Simba\"];
 \r\n\r\nfunction main(args)
 {\r\n\r\n return {\r\n cats:cats\r\n
 };\r\n \r\n}"
 },
 "annotations": [
 {
 "key": "web-export",
 "value": true
 },
 {
 "key": "raw-http",
 "value": false
 },
 {
 "key": "final",
 "value": true
 },
 {
 "key": "exec",
 "value": "nodejs:6"
 }
],
 "limits": {
 "timeout": 60000,
 "memory": 256,
 "logs": 10
 },
 "publish": false
}

32 | Chapter 4: Using OpenWhisk Actions

You’ll notice multiple bits of information about the action, including
the source code itself. The important part, though, is "web-export"
under the "annotations" key. If, for some reason, you want to dis‐
able web action support, you can simply run this CLI call:

wsk action update cats --web false

Accessing Web Actions
Once an action has been web enabled, how do you access it? The
general form of a web action URL is:

https://{APIHOST}/api/v1/web/{QUALIFIED ACTION NAME}.{EXT}

Let’s break this down bit by bit. The APIHOST value will be open
whisk.ng.bluemix.net if you are using Bluemix to host your Open‐
Whisk code. QUALIFIED ACTION NAME is a bit more complex. This is
a combination of three different values.

The first value is your Bluemix space. That was set up earlier, but
you may have forgotten it. A quick way to see it again is to simply
list your actions with wsk action list, as shown in Figure 4-1.

Figure 4-1. Getting the action list

In Figure 4-1, notice how each action is prefixed
with /ray@camdenfamily.com_dev/. This value will be different for
you but is the space value you’ll need to get your web action URL.

The next part of the qualified name is the package. Packages will be
discussed in the next chapter, but for now, just know that actions
exist in a default package.

Finally, the last part of the qualified name is just the action itself.
That seems like a lot, but keep in mind that only the end of the URL
typically changes as you work with different web actions.

Even better, the CLI supports a quick way to get the base URL for a
web-enabled action. Simply run wsk action get nameOfAction

Web Actions | 33

--url. The --url flag at the end simply asks for the URL used for
the action. You won’t get the rest of the action metadata.

Here’s the URL for the cats action:

http://openwhisk.ng.bluemix.net/api/v1/web/ray@camdenfam

ily.com_dev/default/cats.json

Note the extension at the end tells the web action that it should
return it’s data in JSON. If you open this in your browser (although
you should change it to the URL for your space), you should see a
result similar to Figure 4-2.

Figure 4-2. Testing the web action in a browser

In theory, this code is done. It has an anonymous accessible URL
and could be used by client-side applications. To illustrate this, con‐
sider the following simple client-side application. (You can find this
code in ch4/cats.html.)

<!DOCTYPE html>
<html>
 <head>
 <meta charset="utf-8">
 <title></title>
 <meta name="description" content="">
 <meta name="viewport" content="width=device-width">
 </head>

 <body>

 <h2>Cats</h2>

 <div id="result"></div>

 <script src="https://code.jquery.com/jquery-3.1.1.min.js"
 integrity="sha256-hVVnYaiADRTO2PzUGmuLJr8BLUSjGIZsDY...8="
 crossorigin="anonymous"></script>

34 | Chapter 4: Using OpenWhisk Actions

http://bit.ly/2xzZ5Pn

 <script>
 // Change this to YOUR url...
 let apiUrl = 'http://openwhisk.ng.bluemix.net/api/v1/web'+
 '/ray@camdenfamily.com_dev/default/cats.json';
 $(document).ready(function() {
 console.log('Load cats');
 $.get(apiUrl).then(function(res) {
 console.log(res);
 let list = '';
 res.cats.forEach((cat) => {
 list += `${cat}`;
 });
 list += '';
 $('#result').html(list);
 });
 });
 </script>
 </body>
</html>

This one page application (which is built this way just for simplici‐
ty’s sake!) makes use of some simple jQuery calls to fetch the URL
that points to the action defined earlier. Again, be sure to change the
URL to match your own. After the JSON data is loaded, it’s simply
rendered out as an unordered list (see Figure 4-3).

Figure 4-3. Client-side application

If you open Dev Tools in your browser, you’ll notice that a CORS
header was added automatically to the API. CORS stands for cross-
origin resource sharing and is used to help define what resources are

Web Actions | 35

allowed to use an API. You can learn more about CORS at the MDN
but for now, just know that by default OpenWhisk is creating an
API that can be used by JavaScript code on any host. This is useful,
but you can disable this via annotations if you would like more pre‐
cise control.

API Management
The most powerful way to expose your actions is with the API Man‐
agement feature. The full name of this feature, Bluemix Native API
Management, refers to the ability to not only say that a particular
action should be addressable via a HTTP method, but also that you
need to exert control over the API. For example, you may require a
key to use the API. This also allows for things like rate limiting to
ensure developers don’t abuse your API (and drive up your costs).
Finally, with API management you get a basic analytics system that
tells you how many times your API has been called.

Enabling API Management
In the beginning of this book, I mentioned that OpenWhisk, when
being used with IBM Bluemix, had a UI that mirrored what could be
done with the CLI. I’ve focused mainly on the CLI aspects as that is
most likely going to be more familiar for developers. In this section,
I’m going to turn our focus to the UI as it makes working with the
feature easier. While some of what I’m going to show can be done
with the CLI too, it makes more sense for this section to focus on
the visual tools for the API manager.

If you didn’t bookmark it, you can find the Bluemix OpenWhisk
console here: https://console.bluemix.net/openwhisk/ (see Figure 4-4).

36 | Chapter 4: Using OpenWhisk Actions

http://bit.ly/1B1O4Ch
https://console.bluemix.net/openwhisk/

Figure 4-4. Bluemix OpenWhisk console

On the lefthand side, click the “APIs” link. Until you start actually
creating APIs via this tool, you’ll be presented with a basic page (see
Figure 4-5) welcoming you to the feature.

Figure 4-5. API management welcome page

To begin trying the feature, simply click the Create an OpenWhisk
API button. The next page (Figure 4-6) is divided into two sections,
“API Info” and “Security and Rate Limiting.” Don’t worry about the
security stuff yet, I will come back to this later in the chapter and
modify settings there. For now, focus on the basic API information.

API Management | 37

Figure 4-6. Setting up API information

The first item simply lets you import API information in OpenAPI
format. The first thing you’ll want to specify is the API name. An
API can be comprised of multiple end points, so for example, a Cat
API may have the ability to create cats, delete cats, search, and so
forth. We built a simple Cat action earlier in the book that returned
a list of cats. If we pretend that eventually we’ll have many more
such actions, we could imagine having a proper “Cat” API. So for
now, we’ll use “The Awesome Cat API.”

The “Base Path” setting serves as a bucket for all the different parts
of your API. You can use anything here, but it makes sense to give
this a name that reflects the purpose of the actions you will expose
under it. For our demo, we’ll use “/cat”.

So far, we’ve named the API and given it a base path, but it doesn’t
actually have any actions you can use with it. The UI refers to this as
operations. This would be the "list cats,” "delete cats,” and so
on, described earlier. To add the first operation, simply click the
Create operation button.

The popup launched by the UI gives you a few options (see
Figure 4-7):

Path
This is the final part of the URL for your API and should reflect
what you’re doing with this particular operation. Since we know

38 | Chapter 4: Using OpenWhisk Actions

https://www.openapis.org/

we have an action that returns a list of cats, you can use “/list”
here.

Verb
This drop down lets you specify which HTTP verb should be
used. There are rules about when you should use what. For
example, deleting a cat should require the DELETE HTTP opera‐
tion. You are not required to follow these rules though.
(Although you should strongly consider following the norm.)
For our case, keep it at the default of GET.

Package containing action
This drop down lets you select a package. Leave that alone for
now as it will be covered in Chapter 6.

Action
This drop down lets you select what action to associate with the
operation. The cats action is what will return a list of cats.

Response content type
Finally, you can specify a particular content type for the
response. The default is fine for this.

Figure 4-7. Details for the new operation

API Management | 39

After hitting the Save button, you’ll be brought back to the API info
screen (Figure 4-8). Now your operation should be visible in the list.

Figure 4-8. The completed information for the API

At this point, you are almost done. Scroll down past the security
stuff and ensure you click the Save button. You’ll now be taken to
the summary page (Figure 4-9). This page includes the base route
for your API, basic analytics, and even a response log of your most
recent calls.

Figure 4-9. Your new API!

40 | Chapter 4: Using OpenWhisk Actions

Testing APIs
The first thing to note on the API summary screen is the Route
URL. It will look something like this:

https://service.us.apiconnect.ibmcloud.com/gws/apigate

way/api/very long random string/cat

If you click on this link, you’ll end up on a page with a 404 error.
This is expected as the route URL is just the base of your API.
Remember the operation defined earlier? Add /list to the end, and
you should see your API result (Figure 4-10).

Figure 4-10. The browser’s view of the data

If you reload your API multiple times, you can then return to the
dashboard, use the Refresh button (Figure 4-11) by the analytics,
and see how API calls are recorded.

API Management | 41

Figure 4-11. Analytics and logging for your API

The action used for the list operation, cats, is relatively trivial. Let’s
add a quick enhancement that lets users filter the list of cats. You can
find the following code in source control at ch4/cats2.js.

const catList = ["Luna","Cracker","Robin","Pig","Simba"];

function main(args) {

 let cats = catList;

 if(args.filter && args.filter !== '') {
 cats = cats.filter((cat) => {
 return (cat.indexOf(args.filter) >= 0);
 });
 }

 return {
 cats:cats
 };

}

The first change was to create a copy of the list of cats (now
renamed to catList). This lets us optionally modify the list. The
next change is a simple check for a filter argument. If it exists and
isn’t blank, it is used to check against each cat, and only cats with a
matching name are returned.

To update the action, simply use the CLI: wsk action update cats
cats2.js. In case you’re curious, it is completely fine to create an

42 | Chapter 4: Using OpenWhisk Actions

http://bit.ly/2jRmPcf

action with one filename and then update it with another. The name
of the action is important, not the file that acted as the source.

Now that the action is updated, the API created by the gateway can
be used to work with this new feature. At the end of the URL, simply
append: ?filter=Lu (see Figure 4-12).

Figure 4-12. API result after filtering

For both web actions and APIs created with the API management
feature, simple query parameters and form values are associated
with arguments.

Locking Down APIs
Now that you’ve got a managed API, how can you go about limiting
access to it? Bluemix Native API Management provides a quick and
simple way of doing so. Ensure you’re in the “Definition” page and
toggle Require applications to authenticate via API Key, as shown in
Figure 4-13.

API Management | 43

Figure 4-13. Enabling authentication

Once enabled, you can select how authentication is enforced. You
can require either just an API key or an API key and secret value.
The location of these values can only be in the header, not passed in
as a query string or form value. Finally, you can tweak the names of
the header values required for authentication. For now though, keep
everything as the default.

Next, enable rate limiting. As you can guess, this lets you limit the
number of times an API can be called within a time frame. Be sure
to make note of the description of the leaky bucket method used
to determine how often you can run the API. Imagine you’ve speci‐
fied 100 calls per hour. The leaky bucket method does not let you
call the API 99 times at once and then a final time later in the hour.
Rather, the 100 calls must be spread out evenly across the entire
hour (demonstrated in Figure 4-14).

Figure 4-14. Enabling rate limiting

44 | Chapter 4: Using OpenWhisk Actions

You can also enable authentication via OAuth (Figure 4-15). For
now, only Google is supported, but leave that turned off for now.

Figure 4-15. Google OAuth is also an option

Finally, be sure to click the Save button so your changes are applied.
Now if you rerun the API call in your browser, you’ll get an error, as
shown in Figure 4-16.

Figure 4-16. Your API is now protected

To start using this API, you’ll need a key. Click on the “Sharing” link
and you’ll be provided with an interface that lets you work with keys
in two contexts—either for users in Bluemix or those outside. In
general, you’ll probably be sharing the API with outside users, so
begin by clicking the Create API Key in the second section.
Figure 4-17 shows the dialog created when this is clicked.

API Management | 45

Figure 4-17. Adding a new key

The name is simply a description for who is using the key, so feel
free to enter anything here, such as, Testing Key. After adding it,
you’ll see it listed back on the sharing page (Figure 4-18).

Figure 4-18. List of shared keys

Technically, at this point, you can simply open your command line
and use a tool like Curl to call the API and include the proper
authorization key. Another option is to use a desktop client such as
Postman. However, note that next to the API key is an “API Portal
Link.” Click on this and you get a custom built developer portal
(Figure 4-19) just for that key.

46 | Chapter 4: Using OpenWhisk Actions

https://www.getpostman.com/

Figure 4-19. The developer portal

Also, make note of the “Try It” link on the righthand side. Click that,
paste in the key, and then hit the Call operation button. You’ll get a
full report on both the request and response as well as the actual
data of the result, as shown in Figure 4-20.

Figure 4-20. Testing the API

Remember that this API had only one operation. A more real world
example would have multiple operations and opportunies to test in
the portal.

API Management | 47

CHAPTER 5

Building Sequences

You’ve just learned how to build actions that can be deployed as
serverless functions with Apache OpenWhisk. One of the more
powerful ways you can use an action is as part of a sequence. In
essense, a sequence is simply an action that consists of other actions.
Let’s consider a simple example.

Imagine an action that simply takes a number and adds one to it.
Let’s call it the Incrementor.

Now imagine another action that takes a number and doubles it.
We’ll call that the Doubler.

If you wanted to both increment and double a number, you could
simply pass your input to Incrementor, get the result, and then pass
that result to Doubler. That would require two network calls (see
Figure 5-1) but probably wouldn’t be terribly slow.

Figure 5-1. Working with two actions

49

But OpenWhisk provides a better way. By combining both actions
into a sequence (as shown in Figure 5-2), the person calling the
serverless function can work with both actions at once. To the client,
it’s simply another action, but behind the scenes, multiple actions
are working together to create a result.

Figure 5-2. Working with one sequence

When we first introduced actions, we mentioned that you should
make them small and focus them on one thing only. This becomes
incredibly important when working with sequences. The more “sin‐
gle purpose” your actions are, the easier it is to combine them into
sequences. Let’s consider a more real-world example.

One of the services IBM provides under the Watson umbrella is a
Tone Analysis service. This takes text input and attempts to provide
information about the tone being used in the text. It has a pretty
simple API, and it’s trivial to build an OpenWhisk action to work
with it. (You can find the full source code for that action on my web‐
site.)

Given that you can use an OpenWhisk action to analyze the tone of
text, sequences allow us to do some interesting things. Imagine a
simple action that parses an RSS feed. (You can find one built
already.) By combining an RSS Parsing action with analysis, you can
create a sequence that tells you the emotional tone of a blog.

Now imagine another OpenWhisk action that works with Twitter.
(And again, you can find that code already built: https://github.com/
cfjedimaster/twitter-openwhisk.) You can combine that action with
the tone analysis to create a sequence that reveals the tone of a per‐
son’s Twitter feed.

50 | Chapter 5: Building Sequences

https://www.ibm.com/watson/developercloud/tone-analyzer.html
http://bit.ly/2xmU2Qd
http://bit.ly/2xmU2Qd
http://bit.ly/2yhCmoc
http://bit.ly/2yhCmoc
https://github.com/cfjedimaster/twitter-openwhisk
https://github.com/cfjedimaster/twitter-openwhisk

What’s truly fascinating about the previous two examples is that
from a few actions, two very powerful services were built simply by
putting them together in a sequence. Let’s look at how that’s done
and how you use them.

Creating Sequences
Creating sequences is pretty simple in OpenWhisk, but before you
can create a sequence, you must have the component actions that
make it up first. In other words, a sequence made from action A and
action B requires that A and B actually exist first. That’s probably
obvious but is often something that can be missed. Let’s begin by
creating the components for the simple “Increment and Double”
concept previously described. First, the Increment action.

function main(args) {
 let result = Number(args.number) + 1;

 return { result:result };

}

This is a fairly simple action. It takes an input parameter (assumed
to be called “number”), adds one to it, and returns it as a result
value. This file can be found in the ch05 folder in the GitHub reposi‐
tory for this book. The name is incrementor.js. To send it to Open‐
Whisk, run wsk action create incrementor incrementor.js.
Ensure it is working by doing a quick test: wsk action invoke
incrementor --param number 10 -b -r. The result should be:

{
 "result": 11
}

Now create the code for the doubler action. This can be found in the
GitHub repo as doubler.js.

function main(args) {
 let result = Number(args.number) * 2;

 return { result:result };

}

Push this to OpenWhisk using wsk action create doubler dou
bler.js and test it as well with wsk action invoke doubler

--param number 10 -b -r. The result will be:

Creating Sequences | 51

http://bit.ly/2wSu0Cq
http://bit.ly/2htd5Rl
http://bit.ly/2xGmePV

{
 "result": 20
}

To create a sequence in OpenWhisk, the wsk action command is
used again but in a slightly different format. The basic syntax for the
sequence version is: wsk action create nameOfSequence

--sequence firstAction,secondAction. Essentially, you pass a
--sequence flag with a list of actions that comprise your sequence.
You can also specify a default parameter for the sequence in the
same way you would any other action. The end result is a sequence,
but in reality, it’s just another action. Invoking a sequence is done
just like any other action: wsk action invoke nameOfSequence.
Let’s go ahead and do that for our previous actions.

wsk action create --sequence incrementAndDouble --sequence
incrementor,doubler

The result should simply be: ok: created action incremen

tAndDouble. Now let’s invoke it with wsk action invoke incremen
tAndDouble --param number 10 -b -r. The result should be
(10+1)*2=22:

{
 "result": null
}

Woah—what went wrong? One requirement of sequences is that
output from the previous action must match the desired input of the
second. So what does that mean? The input to incrementor was a
parameter called number. The result was a variable called result.
The input to doubler was also a parameter called number, but Open‐
Whisk sent in a parameter called result because that’s what the pre‐
vious action returned. Now would be a great time to share a great
debug tip. Modify the code of doubler.js to add this line after the ini‐
tial function declaration:

console.log(JSON.stringify(args));

All this code does is log out the arguments sent to the action. You
can then update the action like you would normally: wsk action
update doubler doubler.js. What’s interesting to note is that you
are not only updating doubler but the sequence as well. In another
tab, start listening for activations using wsk activation poll and
then invoke the sequence again. Figure 5-3 shows what you should
see after running an invocation.

52 | Chapter 5: Building Sequences

Figure 5-3. Debugging log from Doubler

As you can see in Figure 5-3, the input was the right number value,
but the name of the parameter was result, and not number. So how
do you fix this? You could simply edit doubler.js to look for the result
parameter. But what happens to people using doubler by itself? It’s
going to seem odd to pass a parameter named result. You could
make the code look for either argument and simply check one first.
While that would work, it makes doubler.js tied to the sequence, and
that’s just a bad idea. You could imagine other sequences using dou‐
bler and the code getting messier and messier. There are two general
fixes for cases like this.

The first solution is a bit complex, but you can add a third action
that sits between two unrelated actions. It simply massages the input
provided to it to make it appropriate for the next action. So for
example, something like this:

function main(args) {
 //rename args.result to args.number
 return { number: args.result};
}

This works well and is especially useful in more complex sequences.
A simpler solution though is to consider renaming the result.
Instead of using a generic “result” result, perhaps return it as some‐
thing more appropriate. Consider this new version of incrementor
(found in incrementor2.js):

function main(args) {
 let result = Number(args.number) + 1;

 return { number:result };

}

This code has the exact same logic. The only thing that changed is
the name of the returning value. For completeness sake, the same
change was made in doubler2.js. After both actions are updated, the
result is finally as expected.

Creating Sequences | 53

http://bit.ly/2fRwK0v

{
 "number": 22
}

Overall, sequences allow for the most complex serverless applica‐
tions as developers can grow an app by simply creating longer and
longer sequences. They can also reuse the same actions in multiple
different sequences and get the benefit when one action is updated
with bug fixes or performance changes.

54 | Chapter 5: Building Sequences

CHAPTER 6

Working with Packages

The next feature of OpenWhisk that I’ll discuss is packages. At their
heart, packages are merely a way to organize actions. Consider an
action that reads tweets from a Twitter account. Now consider
another action that searches all of Twitter for a keyword. Finally,
imagine an action that can post a tweet for an account. Packages let
us do powerful organizational-type tasks with those actions.

First, a package serves an organizational purpose. Any action cre‐
ated is automatically placed in a default package. Actions must also
have a unique name. So if you wanted an action named “process,”
you couldn’t have more than one. (To be fair, “process” is a pretty
poor name by itself.) By using a package, you can place the action
inside it, allowing for more than one action with the same name. So
for example, an orderSystem package could have an action called
“process,” and a userSystem package could have one as well.

Second, packages allow for default parameters that apply to the
entire package at once. The Twitter API requires certain authentica‐
tion values before you can make use of it. If you had multiple
actions in a Twitter package, you could supply a default key for all of
them at once and not have to worry about setting it on each and
every action.

Finally, packages can also be shared. This means that Twitter pack‐
age described previously could actually be made available to every‐
one using OpenWhisk. Of course, that then makes it impossible to
use a package-wide default parameter for the key because if I shared
my package with my key, you would be able to use my credentials to

55

work with Twitter. Luckily, you can use another feature called pack‐
age binding. Binding is simply the act of saying, “I want to use this
public package but create my own version of it.” I can then supply a
default key to make my usage of it easier.

You’ll also discover that Bluemix has a set of packages ready to be
used with your code already. These packages cover useful utilities as
well as wrappers for some of the popular Watson APIs. At the end of
this chapter, I’ll briefly cover them and point you to the documenta‐
tion.

Creating and Managing Packages
Creating packages is fairly simple. The command is: wsk package
create name where "name" is the name of the package. Like actions,
the name of each package must be unique. While you can think of
packages almost like subdirectories, note that you cannot create a
package within a package. Go ahead and create a new package called
firstPackage:

wsk package create firstPackage

The result should be a simple success message. You can then list
your packages using: wsk package list (see Figure 6-1).

Figure 6-1. Listing packages using the wsk package list command

Right now the package is empty, so let’s put a simple action in it just
for testing purposes. The following action simply returns all the
arguments sent to it. You can find it in the GitHub repository for
this book as ch06/echo.js.

function main(args) {

 return { params: args};

}

Putting an action into a package is relatively simple. When creating
or updating an action using wsk action, you simply prefix the name
of the action with the name of the package and a slash. So to put this
into the new package, the following command should be used:

56 | Chapter 6: Working with Packages

http://bit.ly/2fn7mvs

wsk action create firstPackage/echo echo.js

After creating it, you can confirm that it’s in the package a few ways.
First, ask for all your actions with wsk action list (see
Figure 6-2).

Figure 6-2. Action list with new package and action on top

Notice how the new action (the first one in the list) includes the
package name. Another way to find your action is to get the package
itself using wsk package get firstPackage, as shown in
Figure 6-3.

Figure 6-3. Data about the package

The command line call returned metadata about the package as well
as a list of every action inside it (currently just one). That data could
get a bit verbose. For a shorter version, you can use wsk package
get firstPackage --summary, as shown in Figure 6-4.

Creating and Managing Packages | 57

Figure 6-4. A shorter, nicer list of actions in the package.

Using an action in a package is also just as easy as putting the action
inside it. As with creating (or updating), you simply prefix the name
of the package when invoking the action. Here’s an example that also
illustrates the echo feature of the action just created.

wsk action invoke firstPackage/echo --param name Ray --param
awesome true -b -r

{
 "params": {
 "awesome": true,
 "name": "Ray"
 }
}

As I mentioned before, packages can have default parameters as
well. Let’s update the package to add that: wsk package update
firstPackage -param music trance. This command specifies that
every action in the package will have a default parameter named
"music" with the value "trance". In case you’re curious, you can
still use default parameters for each action, and they will take prior‐
ity over the package-wide action. To see this new default in action,
simply run the previous test on echo, and you’ll see it returned:

{
 "params": {
 "awesome": true,
 "music": "trance",
 "name": "Ray"
 }
}

If you ever need to check what parameters are set for a package, use
the wsk package get command without the summary flag. It will be
returned in the JSON description of the packge:

{
 "namespace": "ray@camdenfamily.com_dev",
 "name": "firstPackage",
 "version": "0.0.2",
 "publish": false,
 "parameters": [
 {

58 | Chapter 6: Working with Packages

 "key": "music",
 "value": "trance"
 }
],
 "binding": {},
 "actions": [
 {
 "name": "echo",
 "version": "0.0.1",
 "annotations": [
 {
 "key": "exec",
 "value": "nodejs:6"
 }
]
 }
]
}

If you decide to share your package, you can update the package
with the “shared” annotation. For example, this will share firstPack
age:

wsk package update firstPackage --shared yes

This too can be seen when getting the package data but note that it
will show up as a "publish" value, not "shared". Unfortunately,
there isn’t an easy way for people to know your package is shared.
For others to use it, you would need to specifically tell them how to
address it. In that case, they can’t use firstPackage/echo as that
doesn’t include your name or any other identifying information.

You may not have noticed, but when you run wsk package list,
information about your account, or “namespace,” was included in
the result. For example, here is the full name of the firstPackage
package: /ray@camdenfamily.com_dev/firstPackage. By using that
prefix as well, another user can invoke your new shared package.
Here is how another account would call the package:

wsk action invoke /ray@camdenfamily.com_dev/firstPackage/echo
--param x 1 -b -r

Figure 6-5 shows what you should see after running an invocation.

Creating and Managing Packages | 59

Figure 6-5. Invoking the shared package.

Basically, instead of just package/action, it’s namespace/package/
action. If you feel that is too verbose, you can use yet another fea‐
ture of packages: bindings. A binding creates a reference to the pack‐
age. (So in other words, if the original package is updated, your copy
is as well.) However, you get the benefit of supplying your own
default parameters as well as giving it a shorter name within your
account. A great use for this is configuration values for APIs that
can be shared across multiple actions.

To bind a package, use the following syntax:

wsk package bind thePackage newName

If you want to specify a default parameter, you must do it when you
bind. There is no capability to update a binding. Setting those
defaults works just like in any other command: --param someParam
someValue as an example. Lastly, note that you can also bind a pack‐
age to yourself. Why would you do that? Remember that package
default parameters are shared. That means you can’t share a cool
package with others if you’ve specified confidential information as a
parameter. Instead, you can bind a copy of your own package to
yourself and specify the parameter then.

To see this in action, let’s create a bound copy of firstPackage and
specify a new default music style, one that is much more sensible:

wsk package bind /ray@camdenfamily.com_dev/firstPackage fp
--param music disco

In this example, I basically said, “Make a bound copy of firstPackage
to a new package called fp. Also, set a default parameter music with
the value of disco.” To see this in action, you can invoke the echo
command on the new package with: wsk action invoke fp/echo
-b -r:

{
 "params": {
 "music": "disco"

60 | Chapter 6: Working with Packages

 }
}

Using Bluemix Packages
In the very beginning of this book, I made it clear that working with
IBM Bluemix was optional. There’s quite a bit of cool and powerful
features on Bluemix, but it is not something you have to use as an
OpenWhisk developer. One reason you may want to consider it,
however, is the powerful suite of shared packages Bluemix provides
developers. Even better, Bluemix will even automatically deploy
packages for you when you work with certain services. For example,
if you make use of Cloudant, Bluemix can automatically give you a
complete package of actions that works with it and configures it for
you with your credentials.

All of Bluemix’s packages will be in the “whisk.system” namespace.
You can list them by using the command wsk package list /
whisk.system. Full documentation for these packages can be found
at the main Bluemix site, but here is a list of currently supported
packages and a brief description of each.

Alarms
Related to triggers, covered in Chapter 8.

Cloudant
Used to work with the Cloudant NoSQL database.

Combinators
Used to add some simple logic to actions (for example, doing
something when an action fails to run correctly).

GitHub
Lets you set up a webhook for responding to GitHub repository
activity.

Messaging
Used with IBM Message Hub.

Push notifications
Related to Bluemix’s push notification service for mobile devi‐
ces.

Samples
A few simple example actions.

Using Bluemix Packages | 61

https://ibm.co/2xsY3Ed
https://console.bluemix.net/docs/openwhisk/index.html

Slack
Because everything has to integrate with Slack.

Utils
A set of utility actions, including an echo action like the one
built previously.

Watson-translator, Watson-speechToText, Watson-textToSpeech
All related to various Watson services working with speech and
text.

Weather
Integrates with the Weather Company APIs.

Websocket
Works with a web socket server.

Invoking these Bluemix-hosted actions is just like calling your
own package actions; for example: wsk action

invoke /whisk.system/utils/echo -b -r --param woot epic

will return:

{
 "woot": "epic"
}

Again, be sure to check the docs for more information on using
these packages. While the command line can return some informa‐
tion (what actions and brief descriptions), you will want the online
documentation for a deeper dive into the usage.

62 | Chapter 6: Working with Packages

CHAPTER 7

Using Triggers and Rules

You’ve now seen how to create actions as well as how to call them
via HTTP calls. But OpenWhisk also allows for an event-based acti‐
vation system configured by triggers. This creates an entirely new
way of working with serverless. You can write code that responds to
new data being created, new files being stored, and more. With trig‐
gers and rules, your serverless code can be self-running and automa‐
ted.

What are Triggers?
Triggers are simply events. For developers who have worked in lan‐
guages with events, like JavaScript, this should be a familiar concept.
Generally speaking, a developer simply says, “I want so and so to
happen when this particular event occurs,” and OpenWhisk sup‐
ports this via triggers.

By itself, a trigger is simply an event and doesn’t actually do any‐
thing. In the next section, you’ll learn how to associate a trigger with
a rule to fire calls to actions. You can begin working with triggers
using the CLI, which follows a similar usage pattern to both actions
and packages.

Creating a Trigger
To create a trigger, simply use wsk trigger create NAME:

wsk trigger create firstTrigger

63

After running this, the CLI will simply give you a message stating
that the trigger was created. You can see what triggers you’ve created
by doing wsk trigger list. You can remove triggers by simply
doing wsk trigger delete NAME.

Firing a Trigger
To fire a trigger, use the following syntax wsk trigger fire NAME.
Doing so returns an activation ID:

ok: triggered /_/firstTrigger with id 0526fd4aae5447df98...fc

And that’s it—nothing more. By themselves, triggers are simply
events. To have something actually happen when a trigger is fired,
you have to combime them with a rule.

What are Rules?
Rules are the counterpart to triggers. They basically say, “When a
trigger is fired, I want you to run an action.” If triggers are events,
rules set up the event listeners. A rule creates a one-to-one relation‐
ship between a trigger and an action. If you need to have one trigger
fire off multiple events, then you simply create multiple rules, each
associating the one trigger with a different rule.

Creating a Rule
To create a rule, the syntax is a bit different from that of a trigger.
The basic form is wsk rule create nameOfRule nameOfTrigger
nameOfAction. For example, to create a rule based off the earlier
trigger, you could use the following:

wsk rule create firstRule firstTrigger timedGreeting

This rule says, when the firstTrigger is fired, run the action
timedGreeting. If you forget this, you can fetch the details of a rule
like so: wsk rule get firstRule. This returns a JSON packet
describing the rule:

{
 "namespace": "ray@camdenfamily.com_dev",
 "name": "firstRule",
 "version": "0.0.1",
 "status": "active",
 "trigger": {
 "name": "firstTrigger",

64 | Chapter 7: Using Triggers and Rules

 "path": "ray@camdenfamily.com_dev"
 },
 "action": {
 "name": "timedGreeting",
 "path": "ray@camdenfamily.com_dev"
 },
 "publish": false
}

Pay special attention to the status field above. Rules have a special
feature where they can be disabled. This allows you to keep an
“event listener” for a trigger but temporarily disable it. To use this
command, you would use wsk rule disable firstRule. Doing so
and then fetching the rule details again would show a status of inac
tive. You could re-enable the rule by doing wsk rule enable

firstRule.

Testing the Rule
Now that a rule is associated with the trigger, you can see it in action
by simply firing the rule again. If you have a window open monitor‐
ing your activations with wsk activation poll, you can see this
yourself. Run wsk trigger fire firstTrigger, and you’ll see
three activations:

Activation: timedGreeting (59e34d94169342f699af1ea540f4d128)
[]

Activation: firstTrigger (25b571c554524704a6fbfa0ebdb7ca11)
[]

Activation: firstRule (45846e884e434ea9b3a728975302474e)
[]

The order is asynchronous, so you may see a different order. But
essentially what you are seeing here is the trigger firing, the rule
noticing this because it has been told to listen to it, and then the
action fired off because the rule was told to do so when activated.

Feeds and OpenWhisk Supplied Triggers
Feeds are simply a way of working with triggers in an automated
manner. Earlier in the chapter you saw how triggers could be fired
from the CLI, but for most cases, users will expect triggers to be
fired automatically based on some external service. OpenWhisk
supports this feature via feeds. Examples of feeds would be:

Feeds and OpenWhisk Supplied Triggers | 65

• Data being added to a Cloudant database
• A change being made to a GitHub repository
• A new tweet from a particular user
• Email arriving to a particular account

While creating a feed is outside the scope of this book (users can see
the specifics in the OpenWhisk documentation), OpenWhisk on
IBM Bluemix provides multiple feeds that can be used in triggers
and associated with your own actions via rules. Currently these
feeds are:

/whisk.system/alarms/alarm

A simple CRON-based trigger. This is useful for creating a
scheduled trigger.

/whisk.system/cloudant/changes

Fired when changes are made to a Cloudant database.

/whisk.system/github/webhook

Used to set up a webhook for use with a GitHub repository.
Supports listening to multiple different types of GitHub events.

/whisk.system/messaging/messageHubFeed

Used to listen for messages posted to a Message Hub instance.

/whisk.system/pushnotifications/webhook

Used to listen to device subscription/unsubscription events.

Don’t forget, though, that custom feeds can be created, so you are
not limited by what OpenWhisk provides out of the box. For exam‐
ple, while there is a prebuilt feed for Cloudant changes, one could be
built for Mongo as well.

66 | Chapter 7: Using Triggers and Rules

http://bit.ly/2xjC57C

CHAPTER 8

Going Further with OpenWhisk

Now that you’ve gotten a good introduction to Apache OpenWhisk,
where can you go to learn more? Begin by bookmarking the two pri‐
mary web sites for OpenWhisk development:

The Apache OpenWhisk open source project
This is where you can learn how to participate in the project, file
issues, and keep up to date with new changes.

OpenWhisk at IBM
From here, you can register for a Bluemix account, begin testing
OpenWhisk, and learn about other services that could work
well with OpenWhisk.

Asking Questions
If you have questions about OpenWhisk, there’s a few places you
should consider:

• First is the OpenWhisk Slack. You can sign up for it through
their channel. You’ll find it a fairly active Slack with engineers
on the product as well as end users.

• There is also a more generic Slack for serverless. You can sign
up for this Slack channel as well.

• You can also use the OpenWhisk tag at StackOverflow. Right
now, there isn’t a lot of content there, but it is growing every
day.

67

http://openwhisk.apache.org/
https://www.ibm.com/cloud-computing/bluemix/openwhisk
https://openwhisk-team.slack.com/
https://www.ibm.com/cloud-computing/bluemix/openwhisk
https://serverless-forum.slack.com/
http://bit.ly/2xzfOCv
http://bit.ly/2xzfOCv
https://stackoverflow.com/questions/tagged/openwhisk

Additional Reading
For additional reading, consider these resources:

• While I’ve shared this before, the core docs can be found at
https://console.bluemix.net/docs/openwhisk/index.html#getting-
started-with-openwhisk.

• There is also a Medium publication focused on OpenWhisk
with multiple authors.

• While not focused on OpenWhisk alone, IBM published a
“developer journey” that provides an excellent real world walk
through of building an application. Obviously, OpenWhisk is
part of the process. Many blog entries tend to be simple and not
necessarily similar to what you would see in the real world. The
developer journey does a great job of presenting a realistic sce‐
nario.

Participating
Since OpenWhisk is an open source project, you may want to
actually participate in making it better. Or perhaps you simply want
to make note of a bug you ran into while using the product. Here are
two links to get you started:

• First, consider joining the developer listserv. This is where peo‐
ple discuss OpenWhisk, including both problems and ideas for
new features. You do not have to actually participate in conver‐
sations. You are free to join and listen in for an idea of what’s
coming next.

• Second, if you do find a bug, you should report it on the GitHub
repo for OpenWhisk. Be sure to search the open issues first to
ensure it hasn’t already been reported.

Everything Else
Finally, you can also keep up to date with OpenWhisk news by sim‐
ply following its Twitter account. The account tweets updates and
retweets interesting news from other developers as well (Figure 8-1).

68 | Chapter 8: Going Further with OpenWhisk

https://console.bluemix.net/docs/openwhisk/index.html#getting-started-with-openwhisk
https://console.bluemix.net/docs/openwhisk/index.html#getting-started-with-openwhisk
https://medium.com/openwhisk
https://developer.ibm.com/code/journey/unlock-enterprise-data-using-apis/
http://openwhisk.apache.org/contact.html
https://github.com/apache/incubator-openwhisk
https://github.com/apache/incubator-openwhisk
https://twitter.com/openwhisk

Figure 8-1. The OpenWhisk Twitter account

While OpenWhisk doesn’t care what editor you use to write your
code, one of the best (free and open source) editors out there is Vis‐
ual Studio Code. There is an extension in development for Visual
Studio Code that wraps some of the features of the CLI right in the
editor itself. Figure 8-2 demonstrates it in action. You can find the
extension on GitHub.

Figure 8-2. An example of the extension in action, taken from the proj‐
ect’s readme.md file

Everything Else | 69

https://github.com/apache/incubator-openwhisk-vscode

In Figure 8-2, you can see the extension providing quick access to
common CLI commands within the editor. This lets you do all of
your work within the editor itself, bypassing your terminal if you
would like.

Finally, consider signing up for Serverless Status. This is a weekly
newsletter (curated by myself and others) that includes links to
interesting news in the serverless world. While not constrained to
just OpenWhisk articles, you’ll find interesting content from across
the entire spectrum of serverless development.

70 | Chapter 8: Going Further with OpenWhisk

https://serverless.email/

About the Author
Raymond Camden is a developer advocate for IBM. His work focu‐
ses on LoopBack, serverless, hybrid mobile development, Node.js,
HTML5, and web standards in general. He’s a published author and
presents at conferences and user groups on a variety of topics. Ray‐
mond can be reached at his blog, @raymondcamden on Twitter, or
via email at raymondcamden@gmail.com.

https://www.raymondcamden.com/
http://bit.ly/2hklR7O
mailto:raymondcamden@gmail.com

	Cover
	Copyright
	Table of Contents
	Chapter 1. Introduction
	What Is Serverless?
	Serverless Use Cases
	Who Is This Book For?
	Getting the Source

	Chapter 2. OpenWhisk Basics
	Introduction to Apache OpenWhisk
	OpenWhisk on IBM Cloud (Bluemix)
	Registering for IBM Cloud (Bluemix)
	Getting the OpenWhisk CLI

	Chapter 3. Working with Actions
	The Fundamentals of OpenWhisk Actions
	Options for OpenWhisk Actions
	Rules for JavaScript Actions
	Your First Action
	Running Your Action
	Working with Arguments
	Asynchronous Actions

	Chapter 4. Using OpenWhisk Actions
	Authenticated REST API
	Web Actions
	Enabling Web Actions
	Accessing Web Actions

	API Management
	Enabling API Management
	Testing APIs
	Locking Down APIs

	Chapter 5. Building Sequences
	Creating Sequences

	Chapter 6. Working with Packages
	Creating and Managing Packages
	Using Bluemix Packages

	Chapter 7. Using Triggers and Rules
	What are Triggers?
	Creating a Trigger
	Firing a Trigger

	What are Rules?
	Creating a Rule
	Testing the Rule

	Feeds and OpenWhisk Supplied Triggers

	Chapter 8. Going Further with OpenWhisk
	Asking Questions
	Additional Reading
	Participating
	Everything Else

	About the Author

