
IBM z/OS 3.1 AI-powered WLM batch initiator management - Resource and Tuning Guidelines

© Copyright IBM Corporation 2023

IBM z/OS 3.1

AI-powered WLM batch initiator management

Resource and Tuning Guidelines

Contributors:
Joseph Gentile, IBM
Loic Fura, IBM
Paul Ippolito, IBM
Tian Na, IBM
Sun Yu Zhuo, IBM
Khadija Souissi, IBM
Robert St. John, IBM
Julia Bulgannawar, IBM

Nicholas Matsakis, IBM
Dr. Paul Lekkas, IBM
Chris Watson, IBM
Steve Partlow, IBM
Frank Bellacicco, IBM
Terri Menendez, IBM
Robert Miller Jr, IBM

IBM z/OS 3.1 AI-powered WLM batch initiator management - Resource and Tuning Guidelines

© Copyright IBM Corporation 2023

Content
Preface .. 2

1. Introduction ... 3

1.1 High Level Offering Components and their Interactions ... 4
1.2 Performance Test Environment ... 9

2. Hardware Resource Guidance .. 10

2.1 Memory Resource Guidance .. 11
2.2 Processor Resource Guidance ... 14
2.3 DASD Resource Guidance .. 14

3. z/OS System and AI Framework for IBM z/OS Tuning Guidance ... 15

3.1 EzNoSQL and VSAM/RLS Tuning Guidance ... 15
3.1.1 IGDSMSxx PARMLIB Settings ... 15
3.1.2 SMS DATACLAS Settings .. 16
3.1.3 CFRM Policy Settings ... 18
3.2 Miscellaneous Tuning Guidance .. 20
3.2.1 ZFS .. 20
3.2.2 Component Trace (CTRACE) ... 20

4. WLM Batch Initiator Model Training Resource Guidance ... 21

4.1 Recommendations and Tuning Guidance ... 21
4.1.1 WLM Service Class Settings .. 21
4.1.2 Spark resources ... 22
4.1.3 Estimate Training Duration and zIIPs .. 23
4.2 Observations.. 24
4.2.1 Training duration factors ... 24
4.2.2 CPU Utilization ... 26
4.2.3 Memory Utilization ... 31

5. Conclusion.. 32

2

IBM z/OS 3.1 AI-powered WLM batch initiator management - Resource and Tuning Guidelines

© Copyright IBM Corporation 2023

Preface
This paper is intended to provide guidance for planning and implementation of the AI-powered WLM batch
initiator management offering. The document explains the solution at a high level, introduces some of the major
components and how they work together, and ties those to the resources that you will need to configure or set
aside for the solution. The information is based on internal testing, projections, and subject matter expertise. The
authors intend to help users like system programmers understand the resources used by the solution more
thoroughly before implementing it themselves and providing them with a more seamless experience.

1. Introduction
IBM z/OS® 3.1 introduces the AI Framework for IBM z/OS, or z/OS AI framework for short,
which is a set of AI capabilities provided with the operating system and designed to
incorporate and operationalize pre-built AI models geared towards simplifying system
operations and IT processes.

AI-powered WLM batch initiator management represents the initial AI infused capability
within the operating system that leverages the AI Framework for IBM z/OS. It is designed to
intelligently predict upcoming batch workload and react accordingly. As a result, batch
workload spikes can be forecasted and addressed right away, helping system programmers
avoid fine tuning and trial and error approaches. You can leverage the new AI capabilities
infused into WLM without any need for additional AI skills.

Using an intuitive control interface, called AI Control Interface for IBM z/OS, you can switch
between AI, non-AI, and simulating modes. Simulating mode allows you to extract predictive
insights from the model without the system taking automated action. It is intended to help
you gain confidence and trust in AI mode before enabling it.

In the next section, you will find a high-level overview of each of the components and how
they interact with each other, followed by a description of the environment used for testing.
Section 2 describes the hardware resource requirements and utilization for both training and
inferencing use cases. Section 3 addresses software tuning guidance. Finally, section 4
describes the resource requirements and performance tradeoffs of model training.

3

IBM z/OS 3.1 AI-powered WLM batch initiator management - Resource and Tuning Guidelines

© Copyright IBM Corporation 2023

1.1 High Level Offering Components and their Interactions

The major components of the AI framework are:

• AI Base component for IBM z/OS, a new operating system component
• EzNoSQL for z/OS
• IBM Z® Common Data Provider
• Machine Learning for IBM z/OS Core
• The AI Control Interface for IBM z/OS, a new z/OSMF plug-in

While most of the components are provided within IBM z/OS, IBM Z Common Data Provider
and Machine Learning for z/OS Core are delivered within the AI System Services for IBM z/OS.
This new offering integrates seamlessly with the other z/OS AI Framework components and
delivers support of key AI lifecycle phases including data ingestion, AI model training,
inference, AI model quality monitoring, and retraining services.

Figure 1 shows the solution architecture picture including the z/OS AI Framework
components, the initial use case provider as well as place holders for future use
case providers.

Figure 1:

4

IBM z/OS 3.1 AI-powered WLM batch initiator management - Resource and Tuning Guidelines

© Copyright IBM Corporation 2023

Following is a components description including how they interact with each other.

• z/OS Workload Management (WLM) is the initial use case provider that leverages the AI
Framework for IBM z/OS.

– For systems configured to use AI, Workload Management queries the AI model on a
10-second interval via AI Base component for IBM z/OS services, for participating
service classes in a single request, to predict the upcoming workload based on
historical workload patterns and start the required initiators in advance.

– WLM writes SMF 99 subtype 2 data to SMF which is used as the historical data,
which contains data for any service classes that had recent activity.

– The real-time SMF records are used during the inference requests to predict the
upcoming workload.

– WLM provides an AI training application which can be trained with your own
historical SMF 99 subtype 2 records. The resulting trained AI model is deployed
automatically in the model server which is leveraging Machine Learning for
IBM z/OS Core.

– The training takes place at the system level, such that one model is produced for
each participating system.

– Each model knows about all the service classes on the system for which it
was trained.
 For training to be successful for a given service class on a system, sufficient

historical data must be provided.
 At the time of the writing of this paper, the minimum is 30 days.

• z/OS System Management Facility (SMF) – SMF provides the services for recording SMF
data. There are two types of SMF recording: Data set (e.g. SYS1.MANA), and the more
strategic log stream.

– SMF allows real time access to records in memory via SMF real time in-memory
objects. The types of records that are buffered and the size of the memory object
are configurable in SMFPRMxx.

– IBM Z Common Data provider can leverage the real time interface but logstream
recording is required.

– An advantage of the real time interface is to avoid adding exit routines to SMF exits.
• IBM Z Common Data Provider (zCDP) – This component acts as the vehicle to transport

and propagate the data to the datastore in JSON format on a 10 second interval.
– The data is intended to be consumed by the AI training application or model

training or during inferencing.

5

IBM z/OS 3.1 AI-powered WLM batch initiator management - Resource and Tuning Guidelines

© Copyright IBM Corporation 2023

– In the specific use case of AI-powered WLM batch initiator management, the data

consists of SMF 99 subtype 2 records.
– zCDP has two started tasks:

 The System Data Engine (e.g. HBOSDE) filters and collects SMF data
from z/OS.

 The Data Streamer (e.g. HBODS) streams the data to the data store.
– The System Data Engine supports using both SMF in-memory object or provided

SMF exit routine in order to collect the records.
– zCDP runs on each participating system to collect and stream the historical data to

the datastore.
• EzNoSQL for z/OS – EzNoSQL is a z/OS native JSON data store which uses VSAM RLS as the

back-end database.
– The AI Framework for IBM z/OS leverages EzNoSQL to store the historical data.
– Each AI model and participating system will have its own EzNoSQL data store

containing historical data for that system.
– EzNoSQL provides Java APIs which are used in this solution to access the

data store.
– EzNoSQL uses a VSAM RLS Key Sequenced Data Set (KSDS) to store the data.

• z/OS VSAM record-level sharing (VSAM RLS) – VSAM record-level sharing is an access
method for a VSAM cluster which enables Sysplex-wide sharing of the cluster.

– Data is cached both locally on each system accessing the cluster in the BMF buffer
pool space, and in the coupling facility cache structure associated with the cluster.

– VSAM RLS utilizes the IBM Z coupling facility to provide the global cache and the
serialization for the EzNoSQL data store.

– In this solution, an alternate index is used to allow the AI model to quickly access
records by service class and chronologically.

• Machine Learning for IBM z/OS Core (MLz Core) – Machine Learning for IBM z/OS Core
plays the role of the AI model server. It provides AI model training, deployment,
management, and inferencing capabilities.

– The scoring service is an address space that contains a runtime environment in
which the model can execute inference requests (queries). It is typically called
ALNSCSV.

– Leveraging the pre-built AI training application, you can train the AI Model with one
button click leveraging the IBM Apache Spark environment which is incorporated in
Machine Learning for IBM z/OS Core.
 The Spark environment includes Spark master and worker address spaces

that are persistent (e.g. ALNSPKM and ALNSPKWx respectively).

6

IBM z/OS 3.1 AI-powered WLM batch initiator management - Resource and Tuning Guidelines

© Copyright IBM Corporation 2023

 During training, Spark creates a driver and one or more executor address

spaces in order to fulfill the request (e.g. ALNSPKDx and
ALNSPKXx respectively).

– Machine Learning for IBM z/OS Core also includes a core services address space
which receives REST API training or inference requests and routes control to the
appropriate backend service to handle them.

– Only a single instance of Machine Learning for IBM z/OS Core and the scoring
service is necessary for the Sysplex.

• AI Base Component for IBM z/OS (z/OS AI Base) – This new z/OS component acts as a
bridge between Workload Management and Machine Learning for IBM z/OS.

– It receives inference calls from Workload Management, forwards them via TCP/IP
communication to Machine Learning for IBM z/OS, and the request is passed to the
AI model scoring service.

– The z/OS AI Base component forwards the inference result provided by the scoring
service to Workload Management.

• IBM z/OS Management Facility (z/OSMF) – z/OS Management Facility provides the
configuration workflows for this solution as well as the AI Control Interface plug-in.

• AI Control Interface for IBM z/OS (z/OS AI Interface) – The AI Control Interface for IBM
z/OS allows you to control and interact with the AI capability on the AI configured system.
Leveraging this interface, you can initiate the AI model training (or re-training), and toggle
AI modes at the service class level. You can select from AI enabled, AI disabled, or AI
simulating modes.

Figure 2 (below) shows a slightly lower level diagram of the components and their interactions
than Figure 1. They are summarized in three steps:

1) Data collection: in the lower left corner, the SMF Live Data is being collected and
converted into JSON by the zCDP data collection engine then sent to the EzNoSQL
database using the zCDP data streamer.

2) AI services for scoring and training: in the upper right corner, MLz Core services offer
APIs for both management and scoring. The scoring API allows inference requests to
be submitted and returns predictive insights. The management API can be used to
request model training or deploy a new model. The model training runs as a Spark
application under MLz Core managed Spark cluster.

7

IBM z/OS 3.1 AI-powered WLM batch initiator management - Resource and Tuning Guidelines

© Copyright IBM Corporation 2023

3) Workload management: in the top left corner, the z/OS AI Base component provides
access to the AI model services to WLM. WLM interacts with the z/OS AI Base
component to request predictive AI insights and adjust its decisions for batch initiator
management. Using the new z/OS AI Control Interface in the left center portion of the
diagram, system programmers can initiate a model training and select which service
classes should be AI managed.

Figure 2:

Configura�on Diagram (simplified)

EzNoSql
Database

z/OSMF
Persistent Data

PARMLIB

MLz Core Home
ZFS

SMF

z/OS AI Base
Started Task

Workload Management

SMF Live Data

ZCDP Data Col lec�on
Engine

MLz Scoring Services

ZCDP Data Streamer

MLz Core Services
Started Task

MLz Spark Master
Started Task

MLz Spark Worker
Started Task

z/OS AI Interface

8

IBM z/OS 3.1 AI-powered WLM batch initiator management - Resource and Tuning Guidelines

© Copyright IBM Corporation 2023

1.2 Performance Test Environment
The computer system used for testing the solution was an IBM z15® 8561-716 T01 with two
internal coupling facility LPARs. The largest z/OS LPAR configuration tested had 1 shared CP
and 8 shared zIIPs with 256 GB of memory. All logical processors were vertical high polarity
by LPAR weight. The smallest LPAR configuration tested had 1 shared CP and 1 shared zIIP
with 32 GB of memory. We used approximately 52 GB of DASD space. For TCP/IP networking,
we configured SMC-D. However, the test environment consisted of a single system at the time
of writing this paper, so network communication was local only. For most of the testing, 3
WLM managed service classes have been used. Some additional scalability measurements
have been taken with up to 8 WLM managed service classes.

Test Environment
Resource Name

Value

CPC IBM z15 8561-716 T01

LPAR 1
Internal Coupling
Facility

2

LPAR CPs 1
LPAR zIIPs Minimum: 1

Maximum: 8
LPAR Memory Minimum: 32 GB

Maximum: 256 GB

9

IBM z/OS 3.1 AI-powered WLM batch initiator management - Resource and Tuning Guidelines

© Copyright IBM Corporation 2023

Key software stack installed in the performance test environment

The following table is provided for reference to indicate which software levels were tested
during this study. It is not an exhaustive list.

It is recommended to stay current on maintenance for each AI Framework for IBM z/OS
component and Workload Management. The z/OS Fix Category (FIXCAT)
IBM.z/OS.AIFramework can be used to find the related service. For EzNoSQL service, you can
use the IBM.Function.EzNoSQL FIXCAT. For more information about Fix Categories, please
refer to https://www.ibm.com/support/pages/ibm-fix-category-values-and-descriptions.

Product or z/OS Component Name APAR PTF
Pre-release version of z/OS 3.1 N/A N/A

IBM z/OS WLM

OA64632 UJ93376
OA64643 UJ93364
OA65359 UJ93761

AI Base Component for IBM z/OS OA64497 UJ93388

AI Control Interface for IBM z/OS

PH53888 UI92846
PH53940 UI93018
PH56159 pre-release version N/A

EzNoSQL for z/OS OA64811 UJ93294
OA63987 UJ93161
OA64239 UJ93410

IBM z/OS JES2 OA65199 UJ93426
IBM z/OS Data Gatherer OA64631 UJ93229
Pre-release version of Machine
Learning for IBM z/OS Core 3.1

N/A N/A

Pre-release version of IBM Z
Common Data Provider V5.1

N/A N/A

2. Hardware Resource Guidance
The primary CPC resources required for the offering are memory (central storage), zIIP
processors, and at least one coupling facility. The sections below describe these topics
in detail.

10

https://www.ibm.com/support/pages/ibm-fix-category-values-and-descriptions

IBM z/OS 3.1 AI-powered WLM batch initiator management - Resource and Tuning Guidelines

© Copyright IBM Corporation 2023

2.1 Memory Resource Guidance

The AI model uses memory during inferencing and training. The pre-built AI training
application has been developed using the Scala programming language and is compiled to a
Java executable. Java™ can use up to the maximum heap size allowed, which is configured in
the AI Framework Configuration Workflow. At the time of writing this paper, the default setting
for the MLz Core scoring service Java Virtual Machine (JVM) Heap Size is 64 GB of virtual
memory which actually configures the –Xmx Java heap option. In our testing, we found out
that this value was larger than the amount that was used. Therefore, we recommend setting
the value to the minimum allowed in the workflow, which is 16 GB. This should allow you to
reduce the potential memory footprint of the scoring service and CPU impact of Java
garbage collections.

If you want to change the settings afterwards, please refer to the instructions below to modify
the Java heap settings directly in the scoring service configuration file. However, most users
should not need to make any change to it, except if trying to reduce the memory footprint to
its minimum. In our testing environment, it typically consumed under 1 GB of heap memory
with the Java heap size set to 1 GB minimum (-Xms) and 2 GB maximum (-Xmx).

How to change the Java heap size for the MLz Core scoring service:
1) Open $IML_HOME/configuration/scoring.cfg.[scoring_service_name] where
[scoring_service_name] is the name you have selected for the scoring service.
2) Locate the “jvm_options” setting.
3) Update the “-Xms” value to set the minimum heap size to the desired value.
4) Update the “-Xmx” value to set the maximum heap size to the desired value.
5) The change becomes effective when you (re)start the scoring service.

Training the model may require 16 GB of virtual memory, depending on how Spark is
configured. See section 4.2.3 for a discussion of training memory consumption.

z/OSMF may require 1 GB of heap memory depending on configuration. IBM Z Common Data
Provider may require up to 1 GB of heap for the data streamer.

Furthermore, you need to consider the ZFS user file cache size. In our testing environment, we
used the system-calculated value of 2 GB. For more information, please refer to section 3.2.1.

11

IBM z/OS 3.1 AI-powered WLM batch initiator management - Resource and Tuning Guidelines

© Copyright IBM Corporation 2023

If SMF in-memory objects are used, you need to consider the size of the object. In our testing
we employed a 500MB object.

Be sure to consider the VSAM RLS BMF buffer pool size as well, especially if it is expanded for
this solution. In our testing, we found out that model training tended to use a lot of buffer pool
space, as all the historical data is ingested by the training application. Inferencing alone did
not require much buffer pool space. Please refer to the section 3.1.1 to learn more about
tuning guidance for the VSAM RLS BMF buffer pools.

Real memory demand is typically lower than virtual memory demand. However, these
components alone can theoretically consume these amounts of memory. When measuring
model inferencing, the RMF high-water mark system memory demand was 8.8 GB. When
measuring an 8-service class model training, the high water mark system memory demand
was 11.2 GB excluding VSAM RLS BMF buffer space.

We calculated the high water mark system memory demand based on the SMF 71 RMF
Paging Activity Report central storage numbers, using the following formula:

High water mark frames in use = Total available frames – Minimum available frames

The high water mark frames in use can be converted to gigabytes by multiplying the value by
4096 bytes per page and then dividing it by 1024 cubed (1 GB).

𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 𝑜𝑜𝑜𝑜 𝑟𝑟𝐺𝐺𝐺𝐺𝑟𝑟 𝑚𝑚𝐺𝐺𝑚𝑚𝑜𝑜𝑟𝑟𝐺𝐺 = 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 × 4096
10243

The table below summarizes these figures and adds an address space level breakdown for the
top 64-bit memory consuming address spaces. We calculated the address space level
breakdowns using SMF30HVR (above the bar real frames used) and the same formula above
to convert frames to gigabytes.

There is a discrepancy of roughly 2 GB between the sum of the SMF 30 64-bit Real Memory
numbers and the RMF high water mark numbers, which is presumed to be below the bar real
memory. By and large, this solution exploits above the bar memory.

If the memory is not available in central storage, then the operating system must page to free
up the required memory which impacts system performance. Our intention is to avoid paging

12

IBM z/OS 3.1 AI-powered WLM batch initiator management - Resource and Tuning Guidelines

© Copyright IBM Corporation 2023

for better performance. We recommend at least 32 GB as a starting point which has room for
expansion. Please keep in mind the memory demands of your workload today, though. During

the time where we tested with 32 GB of memory, the test system did not have other
workloads running which consumed much memory. We advise to always monitor your
systems for memory shortages and paging especially when adding new software products or
workloads.

Scope Memory

utilization during
inferencing

Memory
utilization during
training

Data Source

High water mark
System memory
demand excluding
VSAM RLS Buffer Pools

8.8 GB 11.2 GB RMF Monitor I Paging
Activity Report (SMF
71)

ZFS with 2 GB User File
Cache

1.9 GB 2.3 GB SMF 30 subtype 2
field SMF30HVR

ALNSPKD0 - MLz Core
Spark Driver

N/A 1.7 GB SMF 30 subtype 2
field SMF30HVR

ALNSPKX0 - MLz Core
Spark Executor

N/A 2.2 GB SMF 30 subtype 2
field SMF30HVR

ALNSCSV – MLz Core
Scoring Service

1.5 GB 1.5 GB SMF 30 subtype 2
field SMF30HVR

IZUSVR1 - z/OSMF
Server

510 MB 550 MB SMF 30 subtype 2
field SMF30HVR

ALNSERV – MLz Core
REST Server

200 MB 300 MB SMF 30 subtype 2
field SMF30HVR

ALNSPKM – MLz Spark
Master

110 MB 170 MB SMF 30 subtype 2
field SMF30HVR

ALNSPKW – MLz Core
Spark Worker

120 MB 160 MB SMF 30 subtype 2
field SMF30HVR

HBODS – zCDP Data
Streamer

90 MB 110 MB SMF 30 subtype 2
field SMF30HVR

13

IBM z/OS 3.1 AI-powered WLM batch initiator management - Resource and Tuning Guidelines

© Copyright IBM Corporation 2023

2.2 Processor Resource Guidance

From a processor perspective, a zIIP is not required as CPs can be used, but the AI model
processing is highly zIIP eligible. In our testing, the CP utilization during inferencing was
negligible and the zIIP utilization was mid-single digit percentages in terms of one processor.
The zIIP utilization for training is much more important because AI model training is
processor intensive. During training, Spark can use 100% of any zIIP it is allowed to use
according to the Spark configuration. There is a tradeoff between training elapsed time and
zIIP processor resource which is discussed in detail in section 4 on training.

For most of the testing, we have not used Simultaneous Multithreading (SMT) for zIIP. We
found out that SMT did not have much of an impact on the performance during testing. Please
refer to section 4 to learn more about leveraging SMT for training.

You can find the information regarding the processor resource recommendations and
utilization in the table below. The data is based on testing with a number of service classes
between three and eight.

Resource Minimum Recommended (if

different)
Average utilization
during inferencing

Average
utilization during
training

zIIPs
(shared)

1 2+ for training
parallelism (see
section 4)

2-5% of one
processor

Up to 100% of
all allowed zIIPs

CPs
(shared)

1 (at least one is
required for z/OS)

 < 2% of one
processor

~5% of one
processor

2.3 DASD Resource Guidance

The major file systems and data sets for the solution are summarized in the following table,
along with how much DASD space we allocated for each in our test environment.

14

IBM z/OS 3.1 AI-powered WLM batch initiator management - Resource and Tuning Guidelines

© Copyright IBM Corporation 2023

Item DASD Space
MLz Install, Home, and
Spark Home filesystem

47.4 GB (this is what we tested with
but a minimum of 10 GB is required)

MLz setup user file
system

500 MB

zCDP setup user file
system

300 MB

EzNoSQL for z/OS 4 GB

3. z/OS System and AI Framework for IBM z/OS Tuning Guidance

This section describes operating system and AI framework tuning considerations with the goal
of optimizing the AI framework. We organized the section by product/component.

3.1 EzNoSQL and VSAM/RLS Tuning Guidance

3.1.1 IGDSMSxx PARMLIB Settings

Since EzNoSQL relies on VSAM RLS, it is important to update and set IGDSMSxx on your
system with an adequate BMF buffer pool size. This ensures that VSAM RLS can cache data
from the file in memory for low latency access. The above the bar option,
RlsAboveTheBarMaxPoolSize, allows for 64-bit buffer pools that are larger than the maximum
size of the below the bar pool of 1.7 GB. The minimum size allowed for the above the bar pool
is 500 MB. Using the above the bar pool will facilitate local caching of a large amount of VSAM
data. For this offering the VSAM data size is expected to be multiple gigabytes. Other VSAM
RLS exploiters should be taken into consideration as well when sizing the buffer pools
because they are a shared system resource.

It can also be advantageous to page fix a portion of the buffer pools with the RlsFixedPoolSize
setting to reduce CPU utilization associated with VSAM RLS I/O. The fixed buffer pool can
avoid the need for memory to be fixed and unfixed on every I/O. However, once one of the
fixed buffers are designated to a certain CI Size like 4K, it is permanently fixed at that size, at
least until the next time SMSVSAM is restarted. That means the buffer would be ineligible for
use by a VSAM file CI of a different size like 32K.

Consider that the buffers are shared among all VSAM RLS data sets accessed by the system.
Therefore, we recommend to avoid fixing too large of a percentage of the total buffer pool

15

IBM z/OS 3.1 AI-powered WLM batch initiator management - Resource and Tuning Guidelines

© Copyright IBM Corporation 2023

size. If the buffer pool space is sufficiently large, for example tens of gigabytes, then a larger
percentage can be safely fixed. If the buffer pool space is less than 10 GB, then a smaller
percentage should be fixed. For such a buffer pool, a good starting point may be to fix 20% of
the buffer pool size.

In general, we recommend sizing the VSAM RLS BMF buffer pool so that it will achieve above a
90% or higher BMF buffer pool hit rate. During inferencing, we have noticed that it is possible
to achieve a buffer hit rate above 90% with a buffer pool that is a fraction of the data size.

During training, it may not be possible to achieve a 90% buffer hit rate because the training
application reads all the historical data from the datastore. However, sizing the buffer to
achieve the maximum hit rate for training may reduce I/Os during training and the associated
CP utilization. Since model training only takes place occasionally, this decision will also
depend on how much memory you have available to dedicate to VSAM RLS BMF buffer pools.

To optimize your buffer pool size for inferencing alone, 20% of the data size including the
alternate index (AIX®) may be a good starting point. To go further and optimize for training, we
recommend starting at 100% of the data and AIX size. These values should be tuned by
monitoring the buffer pool hit rate, though.

You can monitor the VSAM RLS BMF buffer pool hit rate, Coupling facility (CF) cache structure
hit rate, and DASD rate using RMF™ Monitor III or similar product or SMF 42 subtypes 15-19.
Data set level statistics are available via RMF Monitor III or similar product or enabling the
SMF 42 subtype 16 records. This granular monitoring capability can help you measure
performance specifically for your EzNoSQL database.

RLS_MaxCfFeatureLevel=A is recommended to allow data caching greater than 4K in the CF.

These settings can be dynamically activated with the following MVS command: SET SMS

You can use the following MVS command to confirm the settings have taken effect: DISPLAY
SMS,OPTIONS

3.1.2 SMS DATACLAS Settings

When configuring EzNoSQL for this solution, it is important to use a DATACLAS that has the
following attributes. Extended addressability allows a data set to be larger than 4 GB, which is

16

IBM z/OS 3.1 AI-powered WLM batch initiator management - Resource and Tuning Guidelines

© Copyright IBM Corporation 2023

required for the service class history datastore. RLS Above the Bar is recommended to allow
VSAM RLS to use the larger above the bar buffer pools.

RLS CF Cache setting DIRONLY (directory only) prevents VSAM RLS from caching data in the
CF cache structure for this cluster. The structure is still used to access the directory that
indicates which medium has the latest copy of the data (e.g. buffer or DASD). DIRONLY is
recommended to minimize CPU utilization associated with accessing the Coupling facility. This
was the option we used during the test since our environment was single system. If more than
one system is participating, then there is likely value to cache data in the CF for inferencing
and training, but it may also increase CPU utilization.

RLS CF Cache can also be set to ALL, NONE, or UPDATESONLY. ALL will cache reads and
writes in the Coupling facility cache structure. NONE will only cache VSAM index data.
UPDATESONLY will cache only write requests. Please refer to the following to learn more
about these options
https://www.ibm.com/docs/en/zos/3.1.0?topic=sharing-record-level-cf-caching.

DATACLAS recommendations are summarized in this table for convenience.

SMS DATCLAS Setting Name Setting

Value
Context

Extended Addressability Yes • Greater than 4 GB data sets

RLS CF Cache DIRONLY • Reduce CPU cost from CF I/O

RLS Above the Bar Yes • Allow above the 2G bar memory
to back local buffer pools

To change these settings, you can use the ISMF application on ISPF. Select option 4 and scroll
to the right with PF11:

17

https://www.ibm.com/docs/en/zos/3.1.0?topic=sharing-record-level-cf-caching

IBM z/OS 3.1 AI-powered WLM batch initiator management - Resource and Tuning Guidelines

© Copyright IBM Corporation 2023

LINE DATACLAS LAST TIME EXTENDED
 OPERATOR NAME MODIFIED DATA SET NAME TYPE ADDRESSABILITY
---(1)---- --(2)--- --(25)--- -------(26)------- -----(27)-----
 DCZHYPL 03:21 EXTENDED REQUIRED YES

. . .
 LINE DATACLAS RLS CF EXT CON RLS ABOVE
 OPERATOR NAME CACHE REMOVAL THE BAR
---(1)---- --(2)--- ---(43)---- -(44)-- --(45)---
 DCZHYPL DIRONLY NO YES

3.1.3 CFRM Policy Settings

For EzNoSQL, we recommend some CFRM Policy settings to optimize VSAM RLS CF
lock and cache structure performance for this solution.

First, we recommend not to enable duplexing for any VSAM RLS lock structure such as
IGWLOCK00. Duplexing adds significant overhead to structure accesses in these cases
and is not recommended for VSAM RLS.

In general, it is recommended to use separate lock structures for different VSAM RLS
exploiters, for instance recoverable applications, for VSAM RLS availability.
Recoverable applications have the potential to hold a large number of locks
concurrently and may impact lock structure availability for EzNoSQL and other
exploiters that may be sharing the structure. Using separate lock structures for
different exploiters prevents them from impacting each other.

We also recommend dedicating a new cache structure for this solution, so that it does
not have to compete with other VSAM RLS exploiters, reducing cache invalidations and
contention. For structure sizing guidance, consult the CF Sizer tool, and select the
VSAM RLS page. Please use the following link to the tool:
https://www.ibm.com/support/pages/cfsizer. This tool assumes you are caching data
in the Coupling facility via RLS CF Cache DATACLAS setting (above). If you are using
DIRONLY, you may be able to size the structure smaller than this value. In our testing,
in conjunction with DIRONLY, we used a size of 300 MB and saw negligible impact. We
don’t recommend defining a VSAM RLS cache structure size below 100 MB.

For VSAM RLS lock structures or any lock structures, it is important to monitor the
false contention rate. If the false contention rate is too high, for instance greater than

18

https://www.ibm.com/support/pages/cfsizer

IBM z/OS 3.1 AI-powered WLM batch initiator management - Resource and Tuning Guidelines

© Copyright IBM Corporation 2023

0.5%, then you can generally reduce it by increasing the structure size. The CF Sizer
tool can also assist with sizing your VSAM RLS lock structure.

It is also good to keep an eye on the asynchronous request rate for both lock
structures and cache structures associated with VSAM RLS. A rise in asynchronous
requests could indicate that the structure is allocated in a CF that is too busy from a
utilization standpoint, too far away from the CPC for the requests to complete
synchronously, or that some other bottleneck is present.

You can monitor both false contention and asynchronous requests using RMF or a
similar product, or the data from SMF 74 subtype 4 Coupling Facility Activity.

Finally, it is noteworthy that latency is lowest when the structures are allocated on a
CF LPAR co-located on the same CPC as the z/OS LPAR. The structure allocation
PREFLIST keyword can be used to control this. For Sysplex environments spread
across multiple CPCs, this may not be possible. You can use the following MVS™
command to query the CFRM policy settings and status for a structure:

DISPLAY XCF,STR,STRNAME=structurename

For more detailed VSAM RLS guidance, consult the “VSAM RLS Performance and Tuning
Presentation” document linked here: https://www.ibm.com/support/pages/node/319659.

CFRM Policy Setting Context

VSAM RLS lock structures such as
IGWLOCK00 Duplex DISABLED

• Minimize CF communication
overhead

Separate VSAM RLS lock structure for
different VSAM RLS exploiters

• VSAM RLS Availability

EZNOSQL_CACHE str dedicated for
this use case

• Isolate data for this offering
from other VSAM RLS data to
avoid impacting caching
performance

Monitor false contention for lock
structures and asynchronous request
rates using performance monitoring
tool or SMF 74 subtype 4

• Minimize CF communication
overhead

EzNoSQL cache and list structures
allocated on local CF LPAR (PREFLIST)
if possible

• Minimize CF communication
overhead

19

https://www.ibm.com/support/pages/node/319659

IBM z/OS 3.1 AI-powered WLM batch initiator management - Resource and Tuning Guidelines

© Copyright IBM Corporation 2023

3.2 Miscellaneous Tuning Guidance

3.2.1 ZFS

As the solution is OMVS based, you should consider ZFS settings. First, the user file cache
should have a low fault rate of 10% or lower which means that the hit rate should be 90% or
higher. The default user file cache size is 10% of LPAR memory up to 2 GB or 256 MB if 10%
of real is less than 256 MB. In our testing, we found out that for this single use case, 2 GB may
be a good starting point. This cache can be as large as 64 GB.

Secondly, the Vnode cache hit rate should be above 90%. The Vnode cache is a sort of file
directory cache in ZFS. In our testing, we found the system default of vnode_cache_size =
32786 vnodes may be a good starting point.

If the memory is available, we recommend specifying the fixed option for each of the caches
to reduce the CPU cost associated with each ZFS I/O. Note that fixing the caches permanently
occupies real memory.

You can adjust these settings in the ZFS configuration file IOEFSPRM or PARMLIB member
IOEPRMxx. Be sure to check out the documentation link for more information
https://www.ibm.com/docs/en/zos/3.1.0?topic=ioefsprm-.

Keep in mind the ZFS settings are system wide, and therefore must accommodate all
applicable workloads.

In order to query the cache hit rates, you can issue the following MVS command and consult
the output: MODIFY ZFS,QUERY,ALL
First it is recommended to clear the stats with the following MVS command, and then run your
workload: MODIFY ZFS,RESET,ALL
Afterward, issue the following command to check the statistics: MODIFY ZFS,QUERY,ALL

More information can be found in the Performance Tuning chapter of z/OS File System
Administration:
https://www.ibm.com/docs/en/zos/3.1.0?topic=debugging-performance-tuning.

3.2.2 Component Trace (CTRACE)

Component trace options can influence CPU utilization. For this offering and in general, we
recommend for best performance that component trace (CTRACE) should collect minimum

20

https://www.ibm.com/docs/en/zos/3.1.0?topic=ioefsprm-
https://www.ibm.com/docs/en/zos/3.1.0?topic=debugging-performance-tuning

IBM z/OS 3.1 AI-powered WLM batch initiator management - Resource and Tuning Guidelines

© Copyright IBM Corporation 2023

information for RSM, OMVS, and other z/OS components during normal production. During our
testing, we used minimal values for these components. This does not apply if the traces are
enabled temporarily for diagnostic reasons. The following command can be used to confirm
the trace option status for each component: DISPLAY TRACE.

You can use this MVS command to dynamically disable the traces or turn the options to
minimum (depending on the component): TRACE,CT,OFF,COMP=x
 The CTIxxxyy PARMLIB members can be updated to harden any changes as well.

4. WLM Batch Initiator Model Training Resource Guidance

This section covers resource and tuning recommendations specific to model training.

4.1 Recommendations and Tuning Guidance
Below you will find some configuration recommendations based on observations done in a lab
environment.

4.1.1 WLM Service Class Settings
Since the training is zIIP processor intensive, differentiating the service class and importance
will allow WLM to service inferencing and higher priority zIIP work before the training work,
which will run for a long time. It is important to take measures to ensure it will not interfere
with other zIIP-eligible work on the system.

It is recommended to assign the training job to a different WLM service class from the MLz
Core scoring service and high priority zIIP work. This service class should have a lower
importance. You can do this by creating a WLM classification rule targeting the MLz Core Spark
Driver and Executor address spaces (e.g. ALNSPKD* and ALNSPKX* respectively).

4.1.1.1 Honor Priority
Also, we recommend setting Honor Priority = No in the training job service class to ensure only
zIIPs are being utilized for training, and the work will not spill over to CPs. In the example
below, you can see how to set Honor Priority in the Modify a Service Class panel within the
WLM ISPF Application.

21

IBM z/OS 3.1 AI-powered WLM batch initiator management - Resource and Tuning Guidelines

© Copyright IBM Corporation 2023

Example:
 Modify a Service Class
Command ===> __

Service Class Name : PERFLO
Description Low Priority work
Workload Name PERFWKLD (name or ?)
Base Resource Group ________ (name or ?)
Cpu Critical NO (YES or NO)
I/O Priority Group NORMAL (NORMAL or HIGH)
Honor Priority NO (DEFAULT or NO)

4.1.2 Spark resources
Even with proper WLM Service Class tuning, it is important to provide enough zIIP capacity so
that other zIIP-eligible work can run efficiently while any training jobs are active. Training jobs
run as Spark jobs and each Spark worker core can consume up to one full zIIP. By making
sure there is plenty of zIIP capacity available for other zIIP-eligible work, you can further
minimize the potential for zIIP-eligible work running on CPs.

You can control how many zIIPs are used by setting the SPARK_WORKER_CORE value. Unless
there is no other zIIP-eligible work running on your system, it is recommended to set this
value lower than the number of zIIPs on your system. However, the amount of resource you
allow Spark to use will affect the duration of the training. You may choose to increase the
number of zIIPs on the system to reduce training elapsed time without impacting other zIIP-
eligible work. You can also plan training for times when it is less likely to impact other zIIP-
eligible work.

4.1.2.1 SPARK_WORKER_CORES
A Spark job is broken down into multiple tasks that can be executed in parallel if you allocate
enough processing resources to speed up the processing.

If you have multiple zIIPs available, you need to set the SPARK_WORKER_CORES parameter
to be equal to the number of zIIPs you would like to use for the training.

Similarly, if you want to restrict the number of zIIPs that Spark can use for the training, you
can use the SPARK_WORKER_CORES parameter to do so.

For example, with SPARK_WORKER_CORES=2, Spark will parallelize the training job on 2
zIIPs maximum.

22

IBM z/OS 3.1 AI-powered WLM batch initiator management - Resource and Tuning Guidelines

© Copyright IBM Corporation 2023

The SPARK_WORKER_CORES parameter is found in the $IML_HOME/spark/conf/spark-
env.sh configuration file.

Note: There is overhead associated with parallelization as you can see in our observation in
section 4.2.1.2 Number of zIIPs. For that reason, we do not recommend using more than 4
zIIPs (4 SPARK_WORKER_CORES) for the training.

4.1.2.1 SMT-2
If you enabled SMT to take advantage of the extra logical zIIPs for the training, you should
define 2 SPARK_WORKER_CORES per physical zIIP.

In our observation, the benefit of SMT is limited with the training workload, especially with 1
zIIP. It does seem to increase with the number of zIIPs utilized for the training.

4.1.3 Estimate Training Duration and zIIPs
Below are two formulae you can use to either estimate the training duration or estimate the
number of zIIPs required.

Given the number of service classes (#𝐺𝐺𝐺𝐺𝑟𝑟𝑠𝑠𝐺𝐺𝑠𝑠𝐺𝐺 𝑠𝑠𝑟𝑟𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺) to train and the number of zIIPs
(#𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝐺𝐺) assigned to the training, you can estimate the duration (in minutes) of the training
with the following formula:

𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻 𝒅𝒅𝒅𝒅𝑻𝑻𝑻𝑻𝒅𝒅𝑻𝑻𝒅𝒅𝑻𝑻 (𝒎𝒎𝑻𝑻𝑻𝑻𝒅𝒅𝒅𝒅𝒎𝒎𝒎𝒎) =
#𝐺𝐺𝐺𝐺𝑟𝑟𝑠𝑠𝐺𝐺𝑠𝑠𝐺𝐺 𝑠𝑠𝑟𝑟𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 ∗ 20

#𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝐺𝐺
∗ (1 +

#𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝐺𝐺 − 1
10

) + 2

"20” represents the average time in minutes it takes to train a single service class with a
single zIIP.

The parallelization overhead previously mentioned and observed in section 4.2.1.2 Number of
zIIPs is estimated via a factor that is function of the number of zIIPs.

The constant “2” represents the average time in minutes it takes for the Spark training job to
initialize, perform tasks that are not dependent on the number of service classes or zIIPs,
and finalize.

And vice versa, if you would like to estimate the number of zIIPs required to train a given
number of service classes (#𝐺𝐺𝐺𝐺𝑟𝑟𝑠𝑠𝐺𝐺𝑠𝑠𝐺𝐺 𝑠𝑠𝑟𝑟𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺) in a given number of minutes
(𝑇𝑇𝑟𝑟𝐺𝐺𝐺𝐺𝑇𝑇𝐺𝐺𝑇𝑇𝐺𝐺 𝑑𝑑𝑑𝑑𝑟𝑟𝐺𝐺𝐺𝐺𝐺𝐺𝑜𝑜𝑇𝑇 (𝑚𝑚𝐺𝐺𝑇𝑇𝑑𝑑𝐺𝐺𝐺𝐺𝐺𝐺)), you can use this formula:

23

IBM z/OS 3.1 AI-powered WLM batch initiator management - Resource and Tuning Guidelines

© Copyright IBM Corporation 2023

#𝒛𝒛𝒛𝒛𝒛𝒛𝒛𝒛𝒎𝒎 =
18 ∗ #𝐺𝐺𝐺𝐺𝑟𝑟𝑠𝑠𝐺𝐺𝑠𝑠𝐺𝐺 𝑠𝑠𝑟𝑟𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺

𝑇𝑇𝑟𝑟𝐺𝐺𝐺𝐺𝑇𝑇𝐺𝐺𝑇𝑇𝐺𝐺 𝑑𝑑𝑑𝑑𝑟𝑟𝐺𝐺𝐺𝐺𝐺𝐺𝑜𝑜𝑇𝑇 (𝑚𝑚𝐺𝐺𝑇𝑇𝑑𝑑𝐺𝐺𝐺𝐺𝐺𝐺) − (2 ∗ #𝐺𝐺𝐺𝐺𝑟𝑟𝑠𝑠𝐺𝐺𝑠𝑠𝐺𝐺 𝑠𝑠𝑟𝑟𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺) − 2

Note: The numbers given by the formulae are estimates for planning purposes only, not
references. They are here to give an idea and help guiding when deciding how much resources
to allocate for training and how long training may take.

The formulae were extrapolated from results obtained during lab measurements under lab
conditions (system resources 100% dedicated to training, no other workload).

4.2 Observations
The recommendations from the previous section come from the following results that have
been observed in a lab environment.

4.2.1 Training duration factors

4.2.1.1 Number of WLM Managed Service Classes
The more service classes you train, the longer the training will take.
Service classes are trained sequentially by the training job, so the training duration scales
linearly with the number of service classes as you can see in the measurements below (taken
on a system with 2 zIIPs):

service classes LPAR CP Util LPAR zIIP Util Training duration (minutes)
1 1% 87% 12
2 2% 87% 22
3 2% 87% 32
4 2% 87% 41
8 3% 84% 83

24

IBM z/OS 3.1 AI-powered WLM batch initiator management - Resource and Tuning Guidelines

© Copyright IBM Corporation 2023

4.2.1.2 Number of zIIPs
Adding more zIIPs to increase Spark parallelization helps lower the training duration, but the
benefit of adding zIIPs decreases as you add more zIIPs. You can see this effect in the graph
below.

The overhead of the spark parallelization comes from the synchronization that Spark is doing
in between each completed task. With more parallelism, more tasks are processed at the
same time and more synchronization is required as each of them complete. In the next
section, the detail CPU utilization graphs show the effect of the synchronization.

0

20

40

60

80

100

1 2 3 4 5 6 7 8

M
in

ut
es

Number of Service Classes

Training duration with 2 zIIPs + HONOR PRIORITY=NO

elapsed time (minutes)

0

10

20

30

40

50

60

1 2 3 4 5 6 7 8

M
in

ut
es

number of zIIP

Training duration with 3 service classes + HONOR PRIORITY=NO

elapsed time (minutes) Trend

25

IBM z/OS 3.1 AI-powered WLM batch initiator management - Resource and Tuning Guidelines

© Copyright IBM Corporation 2023

4.2.2 CPU Utilization
The higher the number of zIIPs (Spark parallelization) the lower the total zIIP utilization,
hinting at some overhead due to synchronization within the parallelized job.

LPAR
CPs

LPAR
zIIPs

SPARK_WORKER_C
ORES

Service
Classes

LPAR CP
Utilization

LPAR zIIP
Utilization

Elapsed Time
(minutes)

1 1 1 3 2% 99% 55
1 2 2 3 2% 87% 32
1 4 4 3 2.5% 75% 19
1 8 8 3 4% 56% 14

Training is a CPU intensive workload which is largely zIIP eligible. The CP utilization is minimal
during training.

Looking closer at how the time is spent on zIIP, the Spark Executor (ALNSPKX0) and Spark
Driver (ALNSPKD0) are the 2 main components. The Spark Executor(s) oversee(s) the actual
training and the Driver is managing and coordinating the executor(s).

26

IBM z/OS 3.1 AI-powered WLM batch initiator management - Resource and Tuning Guidelines

© Copyright IBM Corporation 2023

On the CP, the Spark Driver (ALNSPKD0) is the biggest time consumer. Most of the other
components are related to monitoring and performance data capture (RMF, RMFGAT and
other instrumentation tools we use). The Spark Executor (ALNSPKX0) has a very small share
of the time spent on CP. Finally, 8% of the time on CP corresponds to other z/OS components
and background activities.

Overall, with the CP utilization being low (under 5% of a single CP in all the tests we did), we
can conclude that the training workload is using minimal CP time.

The graphs below show the detailed CP and zIIP utilization during training with 1, 2, 4, and 8
zIIPs.

The two following graphs represent CP and zIIP utilization during training with 1 zIIP (and 1
SPARK_WORKER_CORES)

0

20

40

60

80

100

15:56:40:48 16:04:40:49 16:12:25:51 16:20:15:53 16:28:05:55 16:35:55:56 16:43:50:58 16:51:45:60

CP Utilization - Training with 1 CP, 1 zIIP, 3 Service Classes

SMF98_1_UT_AVG_CPUBUSY_CP

27

IBM z/OS 3.1 AI-powered WLM batch initiator management - Resource and Tuning Guidelines

© Copyright IBM Corporation 2023

CP utilization is almost nonexistent, except for the small spike due to I/O when starting the
training of the next service class.

zIIP utilization is 100%, except for the small dips due to I/O when starting the training of the
next service class.

The two following graphs represent CP and zIIP utilization during training with 2 zIIPs (and 2
SPARK_WORKER_CORES)

Like the 1 zIIP training, the CP utilization is very low, with a slightly bigger spike at the
beginning of the training.

0

20

40

60

80

100

15:56:40:48 16:04:40:49 16:12:25:51 16:20:15:53 16:28:05:55 16:35:55:56 16:43:50:58 16:51:45:60

zIIP Utilization - Training with 1 CP, 1 zIIP, 3 Service Classes

SMF98_1_UT_AVG_CPUBUSY_ZIIP

0

20

40

60

80

100

15:51:25:96 15:54:35:97 15:57:45:98 16:00:45:98 16:03:50:99

CP Utilization - Training with 1 CP, 2 zIIPs, 3 Service Classes

SMF98_1_UT_AVG_CPUBUSY_CP

28

IBM z/OS 3.1 AI-powered WLM batch initiator management - Resource and Tuning Guidelines

© Copyright IBM Corporation 2023

zIIP utilization is high, often at 100%, but there are small dips throughout the training
duration due to synchronization between the parallel tasks executed on the 2 zIIPs.

The two following graphs represent CP and zIIP utilization during training with 4 zIIPs (and 4
SPARK_WORKER_CORES).

The overall CP utilization remains low, and the CP utilization pattern remains the same as we
increase the number of zIIPs allocated to the training job.

0

20

40

60

80

100

15:51:25:96 15:54:35:97 15:57:45:98 16:00:45:98 16:03:50:99

zIIP Utilization - Training with 1 CP, 2 zIIPs, 3 Service Classes

SMF98_1_UT_AVG_CPUBUSY_ZIIP

0

20

40

60

80

100

15:18:10:35 15:21:15:36 15:24:25:43 15:27:30:47 15:30:30:48 15:33:35:49 15:36:35:50

CP Utilization - Training with 1 CP, 4 zIIPs, 3 Service Classes

SMF98_1_UT_AVG_CPUBUSY_CP

29

IBM z/OS 3.1 AI-powered WLM batch initiator management - Resource and Tuning Guidelines

© Copyright IBM Corporation 2023

On the zIIP side, utilization is still high, but less often at 100%. The synchronization of the
parallel tasks is more apparent here as it needs to synchronize more often with 4 tasks
running parallel.

The two following graphs represent CP and zIIP utilization during training with 8 zIIPs (and 8
SPARK_WORKER_CORES).

The CP profile remains the same: low utilization with spikes due to I/O at the beginning of the
training of each service class.

0

20

40

60

80

100

15:18:10:35 15:21:15:36 15:24:25:43 15:27:30:47 15:30:30:48 15:33:35:49 15:36:35:50

zIIP Utilization - Training with 1 CP, 4 zIIPs, 3 Service Classes

SMF98_1_UT_AVG_CPUBUSY_ZIIP

0

20

40

60

80

100

15:09:05:43 15:12:15:44 15:15:30:45 15:18:35:46 15:21:35:47

CP Utilization - Training with 1 CP, 8 zIIPs, 3 Service Classes

SMF98_1_UT_AVG_CPUBUSY_CP

30

IBM z/OS 3.1 AI-powered WLM batch initiator management - Resource and Tuning Guidelines

© Copyright IBM Corporation 2023

With 8 parallel tasks, the synchronization overhead is exacerbated: zIIP utilization is medium-
high and spikes to 100% only for short periods of time due to the synchronization of the 8
parallel tasks.

4.2.3 Memory Utilization

When training the WLM Batch Initiator AI model, some memory is required by the Spark Driver
and Executor which are both Java components.

With the default settings from the configuration workflow, the JVM for each of those
components has a max heap size of 8 GB. Therefore, a total of 16 GB of memory can
potentially be consumed during training by the Spark Driver and Executor.

During our testing, we found out that training the model with the lowest amount of memory
allowed by the configuration workflow: 2 GB each for the Driver and the executor was
sufficient. Therefore, we recommend setting those parameters to the minimum value allowed
by the configuration workflow (2 GB at the time of writing this paper) to reduce the potential
memory footprint of the training.

How to change the Java heap size for the Spark Driver and Executors:

1) Open $IML_HOME/configuration/deploy.cfg
2) Update the driver_memory setting to set the minimum and maximum heap size to

the same desired value. If it does not already exist add the parameter to the end of
the file.

3) Repeat step 3 for the executor_memory setting.
4) execute $IML_INSTALL_DIR/iml-services/create.sh

0

20

40

60

80

100

15:09:05:43 15:12:15:44 15:15:30:45 15:18:35:46 15:21:35:47

zIIP Utilization - Training with 1 CP, 8 zIIPs, 3 Service Classes

SMF98_1_UT_AVG_CPUBUSY_ZIIP

31

IBM z/OS 3.1 AI-powered WLM batch initiator management - Resource and Tuning Guidelines

© Copyright IBM Corporation 2023

In addition to the memory required by the Spark Java components in charge of the training,
the size of the buffer pools allocated to VSAM RLS matters to reduce the I/O done during
training. See 3.1.1 IGDSMSxx PARMLIB Settings for tuning guidance.

5. Conclusion

For AI-powered WLM batch initiator management and the z/OS 3.1 AI framework, we have
taken several key resource and tuning aspects into consideration including memory, zIIP
processors, and VSAM RLS tuning. Based on our test outcomes, findings, recommendations,
and tuning guidance, we would like help you leverage the z/OS 3.1 AI capabilities while
reducing the potential impact on other workloads and the system.

As AI models tend to have a larger memory footprint compared to traditional z/OS workloads,
it is important to make sure that you have the necessary memory available. Additional
memory can also be used to increase buffer sizes, allowing you to further optimize
performance.

In addition, the offering is highly zIIP eligible, and the AI model training can consume
considerable zIIP CPU, depending on how you configure Spark. It is important to be prepared
from a planning and WLM policy perspective for model training to avoid impacting parallel
zIIP-eligible work.

By properly tuning VSAM RLS to account for this offering as well as future use cases, data can
be sourced from memory more often, helping optimize EzNoSQL and overall VSAM RLS
performance.

Further, monitoring system performance and being equipped to adjust based on the data is
equally as important as sizing resources correctly from the start.

As this is the first foray from IBM of infusing AI into the z/OS operating system, you might
expect that the space will grow and change rapidly, as new use cases and enhancements are
brought onboard. Stay tuned!

32

IBM z/OS 3.1 AI-powered WLM batch initiator management - Resource and Tuning Guidelines

© Copyright IBM Corporation 2023

© Copyright IBM Corporation 2023
IBM Corporation
New Orchard Road
Armonk, NY 10504

IBM, the IBM logo, ibm.com, IBM Z, AIX, MVS, RMF and z/OS are trademarks or registered trademarks of International Business Machines Corporation, in the United States and/or
other countries. Other product and service names might be trademarks of IBM or other companies. A current list of IBM trademarks is available on ibm.com/trademark.

Java and all Java-based trademarks and logos are trademarks or registered trademarks of Oracle and/or its affiliates.

The registered trademark Linux is used pursuant to a sublicense from the Linux Foundation, the exclusive licensee of Linus Torvalds, owner of the mark on a world¬wide basis.

Microsoft is a trademark of Microsoft Corporation in the United States, other countries, or both.

This document is current as of the initial date of publication and may be changed by IBM at any time. Not all offerings are available in every country in which IBM operates.

All client examples cited or described are presented as illustrations of the manner in which some clients have used IBM products and the results they may have achieved. Actual
environmental costs and performance characteristics will vary depending on individual client configurations and conditions. Contact IBM to see what we can do for you.

It is the user’s responsibility to evaluate and verify the operation of any other products or programs with IBM products and programs.

THE INFORMATION IN THIS DOCUMENT IS PROVIDED “AS IS” WITHOUT ANY WARRANTY, EXPRESS OR IMPLIED, INCLUDING WITHOUT ANY
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND ANY WARRANTY OR CONDITION OF NON-INFRINGEMENT.

IBM products are warranted according to the terms and conditions of the agreements under which they are provided.

Statement of Good Security Practices: IT system security involves protecting systems and information through prevention, detection and response to improper access from
within and outside your enterprise. Improper access can result in information being altered, destroyed, misappropriated or misused or can result in damage to or misuse of
your systems, including for use in attacks on others. No IT system or product should be considered completely secure and no single product, service or security measure can be
completely effective in preventing improper use or access. IBM systems, products and services are designed to be part of a lawful, comprehensive security approach, which
will necessarily involve additional operational procedures, and may require other systems, products or services to be most effective.

IBM DOES NOT WARRANT THAT ANY SYSTEMS, PRODUCTS OR SERVICES ARE IMMUNE FROM, OR WILL MAKE YOUR ENTERPRISE IMMUNE FROM, THE MALICIOUS OR
ILLEGAL CONDUCT OF ANY PARTY.

The client is responsible for ensuring compliance with laws and regulations applicable to it. IBM does not provide legal advice or represent or warrant that its services or
products will ensure that the client is in compliance with any law or regulation.

IBM may not offer the products, services or features discussed in this document in all countries in which IBM operates, and the information may be subject to change
without notice. Consult your local IBM business contact for information on the product or services available in your area.

Any reference to an IBM product, program, or service is not intended to state or imply that only IBM's product, program, or service may be used. Any functionally equivalent
product, program, or service that does not infringe any of IBM's intellectual property rights may be used instead of the IBM product, program, or service. Evaluation and
verification of operation in conjunction with other products, except those expressly designated by IBM, is the user's responsibility.

IBM may have patents or pending patent applications covering subject matter in this document. The furnishing of this document does not give you any license to these
patents. You can send license inquiries, in writing, to the IBM Director of Licensing, IBM Corporation, North Castle Drive, Armonk, NY, 10504-1785 USA.

Performance and resource consumption information is based on measurements and projections using simulated workloads and data, executed in a controlled environment.
The actual results that any user will experience will vary depending upon considerations such as the number of WLM managed service classes, historical data, the
processor, memory, network, coupling facility, and I/O configurations, LPAR configuration, and workloads present. Therefore, no assurance can be given that users will
experience the same results stated here. The information is subject to change, and this document may be updated.

33

	AI-powered WLM batch initiator management
	Resource and Tuning Guidelines
	Preface
	1. Introduction
	1.1 High Level Offering Components and their Interactions
	1.2 Performance Test Environment

	2. Hardware Resource Guidance
	2.1 Memory Resource Guidance
	2.2 Processor Resource Guidance
	2.3 DASD Resource Guidance

	3. z/OS System and AI Framework for IBM z/OS Tuning Guidance
	3.1 EzNoSQL and VSAM/RLS Tuning Guidance
	3.1.1 IGDSMSxx PARMLIB Settings
	3.1.2 SMS DATACLAS Settings
	3.1.3 CFRM Policy Settings

	3.2 Miscellaneous Tuning Guidance
	3.2.1 ZFS
	3.2.2 Component Trace (CTRACE)

	4. WLM Batch Initiator Model Training Resource Guidance
	4.1 Recommendations and Tuning Guidance
	4.1.1 WLM Service Class Settings
	4.1.1.1 Honor Priority

	4.1.2 Spark resources
	4.1.2.1 SPARK_WORKER_CORES
	4.1.2.1 SMT-2

	4.1.3 Estimate Training Duration and zIIPs

	4.2 Observations
	4.2.1 Training duration factors
	4.2.1.1 Number of WLM Managed Service Classes
	4.2.1.2 Number of zIIPs

	4.2.2 CPU Utilization
	4.2.3 Memory Utilization

	5. Conclusion

