
IBM Cloud

IBM Aspera FASP
High-Speed transport
A critical technology comparison to alternative
TCP-based transfer technologies

Introduction
In this digital world, fast and reliable movement of digital
data, including massive sizes over global distances, is
becoming vital to business success across virtually every
industry. The Transmission Control Protocol (TCP) that has
traditionally been the engine of this data movement, however, has
inherent bottlenecks in performance (Figure 1), especially for
networks with high, round-trip time (RTT) and packet loss, and most
pronounced on high-bandwidth networks. It is well understood that
these inherent “soft” bottlenecks arcaused by TCP’s Additive-
Increase-Multiplicative-Decrease (AIMD) congestion avoidance
algorithm, which slowly probes the available bandwidth of the
network, increasing the transmission rate until packet loss is detected
and then exponentially reducing the transmission rate. However, it is
less understood that other sources of packet loss, such as losses due
to the physical network media, not associated with network
congestion equally reduce the transmission rate. In fact, TCP AIMD
itself creates losses, and equally contributes to the bottleneck. In
ramping up the transmission rate until loss occurs, AIMD inherently
overdrives the available bandwidth. In some cases, this self-induced

White paper

Contents:
1 Introduction

2 High-speed TCP overview

4 UDP-based high-speed solutions

10 IBM® Aspera® FASP® solution

loss actually surpasses loss from other causes (e.g., physical
media or bursts of cross traffic) and turns a loss-free
communication “channel” to an unreliable “channel” with an
unpredictable loss ratio.

The loss-based congestion control in TCP AIMD has a very
detrimental impact on throughput: Every packet loss leads to
retransmission, and stalls the delivery of data to the receiving
application until retransmission occurs. This can slow the
performance of any network application, but is
fundamentally flawed for reliable transmission of large
“bulk” data, for example file transfer, which does not require
in-order (byte stream) delivery.

This coupling of reliability (retransmission) to congestion
control in TCP creates a severe artificial throughput penalty
for file transport, as evident by the poor performance of
traditional file transfer protocols built on TCP such as
FTP, HTTP, CIFS, and NFS over wide area networks.
Optimizations for these protocols such as TCP acceleration
applied through hardware devices or alternative TCP improve
file transfer throughput to some degree when round-trip
times and packet loss rates are modest, but the gains
diminish significantly at global distances. Furthermore, as we
will see later in this paper, parallel TCP or UDP blasting
technologies provide an alternative means to achieve
apparently higher throughputs, but at tremendous bandwidth
cost. These approaches retransmit significant, sometimes
colossal amounts of unneeded file data, redundant with data
already in flight or received, and thus take many times longer
to transfer file data than is necessary, and cause huge
bandwidth cost. Specifically, their throughput of useful bits
excluding retransmitted data packets – “goodput” – is very
poor. These approaches deceptively appear to improve
network bandwidth utilization by filling the pipe with waste,
and transfer times are still slow!

For the narrow network conditions under which TCP
optimizations or simple blasters do achieve high “good data”
throughput, as network-centric protocols, they run up
against further soft bottlenecks in moving data in and out of
storage systems.

Transporting bulk data with maximum speed calls for an
end-to-end approach that fully utilizes available bandwidth
along the entire transfer path – from data source to data
destination – for transport of “good data” – data that is not in
flight or yet received. Accomplishing this goal across the
great range of network round-trip times, loss rates and

bandwidth capacities characteristic of the commodity
Internet WAN environments today requires a new and
innovative approach to bulk data movement, specifically, an
approach that fully decouples reliability and rate control. In
its reliability mechanism, the approach should retransmit
only needed data, for 100 percent good data throughput. In
its rate control, for universal deployment on shared Internet
networks, the approach should uphold the principles of
bandwidth fairness, and congestion avoidance in the
presence of other transfers and other network traffic, while
providing the option to dedicate bandwidth for high priority
transfers when needed.

Aspera FASP is an innovative bulk data transport technology
built on these core principles that is intended to provide an
optimal alternative to traditional TCP-based transport
technologies for transferring files over public and private
IP networks. It is implemented at the application layer, as an
endpoint application protocol, avoiding any changes to
standard networking. FASP is designed to deliver 100
percent bandwidth efficient transport of bulk data over any
IP network – independent of network delay and packet loss
– providing the ultimate high-performance next-generation
approach to moving bulk data.

In this paper we describe the alternative approaches to
“accelerating” file-based transfers – both commercial and
academic – in terms of bandwidth utilization, network
efficiency, and transfer time, and compare their
performance and actual bandwidth cost to Aspera FASP.

High-speed TCP overview
In recent years, a number of new high-speed versions of
the TCP protocol and TCP acceleration appliances
implementing these variations have been developed.
High-speed TCP protocols recognize the fundamental flaw
of AIMD and revamp this window-based congestion control
algorithm to reduce the artificial bottleneck caused by it,
and improve the long-term average throughput. The most
advanced versions of these protocols typically aim to
improve the detection of congestion through measuring
richer signals such as network queuing delay, rather than
increasing throughput until a loss event occurs. This helps
to prevent TCP flows from creating packet loss, and thus
artificially entering congestion avoidance, and improves the
long-term throughput in nearly loss-free networks.

2

IBM Cloud
White paper

However, the improvement diminishes rapidly in wide area
networks, where packet losses due to physical media error
or buffer overflow by cross traffic bursts become non-
negligible. A single packet loss in these networks will cause
the TCP sending window to reduce severely, while multiple

losses will have a catastrophic effect on data throughput.
More than one packet loss per window typically results in a
transmission timeout and the resulting bandwidth-delay-
product pipeline from sender to receiver drains and data
throughput drops to zero. The sender essentially has to
re-slow-start data transmission.

In contrast, in Aspera FASP the transmission rate is not
coupled to loss events. Lost data is retransmitted at a rate
corresponding to the end-to-end desired bandwidth. The
retransmission achieves virtually ideal bandwidth efficiency
– no data is transmitted in duplicate and the total target
capacity is fully utilized.

As shown in Figure 2, the throughput of FAST TCP, one such
commercial version of high-speed TCP (which include such
variations as CUBIC, H-TCP, BIC, etc.) on a network of one
percent packet loss improves the throughput over standard
TCP Reno on low latency networks, but the improvement
falls off rapidly at higher round-trip times typical of cross-

3

country and intercontinental links. The FASP throughput in
contrast has no degradation with increasing network delay
and achieves up to 100 percent efficient transmission and
an effective file transfer throughput at over 95 percent of
the bandwidth capacity. Similarly, as packet loss increases
(e.g., at five percent loss or more) the FASP throughput
decreases only by the same amount. At higher loss rates
the accelerated TCP throughput approximates Reno.

Standard and High-Speed TCP’s reaction to packet loss
forces the sender to not only reduce its sending window,
leading to an erratic transfer speed, but also pre-empts
new packets in the sending window with retransmitted
packets to maintain TCPs in-order delivery guarantee. This
transmission of new and retransmitted packets in the same
TCP sending window entangles the underperforming TCP
congestion control with TCP reliability control that
guarantees transfer integrity, and unnecessarily handicaps
transfer throughput for applications that do not require
in-order delivery, such as bulk data.

TCP reliability guarantees that no data is lost (the lost
packets will be detected by the receiver and retransmitted by
the sender afterwards), and received data is delivered,
in-order, to the application. In order to fulfill these two
guarantees, TCP not only retransmits the lost packets, but
also stalls the earlier-arriving, out-of-order packets (stored
temporarily in the kernel memory) until the missing packet
arrives, and the received data can be delivered to the
application layer, in-order. Given the requirement that the
receiver must continue storing incoming packets in RAM until

IBM Cloud
White paper

Figure 1: The bar graph shows the maximum throughput achievable under
various packet loss and network latency conditions on an OC-3 (155
Mbps) link for file transfer technologies that use TCP (shown in yellow).
The throughput has a hard theoretical limit that depends only on the
network RTT and the packet loss. Note that adding more bandwidth does
not change the effective throughput. File transfer speeds do not improve
and expensive bandwidth is underutilized.

Figure 2: File transfer throughput for 1 GB file comparing Reno TCP, a
commercially available high-speed TCP, UDT, and Aspera FASP in a link
with medium packet loss (1%). Note that while the accelerated TCP
improves Reno throughput on lower latency networks, the throughput
improvement falls off rapidly at higher round-trip times typical of
cross-country and intercontinental links. The FASP throughput in contrast
has no degradation with increasing delay. Similarly, as the packet loss rate
increases (e.g., at 5% loss) the FASP throughput decreases only by about
the same amount, while high-speed TCP is no better than Reno.

Maximum TCP Throughput with Increasing Network Distance

4

the missing data is received, retransmission is urgent and
first priority, and the sending of new data must be slowed in
concert. Specifically, on every packet loss event, new packets
have to slow down (typically the sending window freezes
until lost packets are retransmitted to receiver and
acknowledged), waiting for retransmitted packets to fill
“holes” in the byte stream at receiving end. In essence the
reliability and flow control (or congestion control) in TCP are
by design, thoroughly coupled.

Although this type of mechanism provides TCP with a strict
in-order byte stream delivery required by many applications,
it becomes devastating to applications that naturally do not
require strict byte order, such as file transfer, and thus
introduces a hidden artificial bottleneck to these
applications, limiting their corresponding data throughput.

To make it crystal clear, we can explore a simple example to
calculate the throughput loss due to a single non-congestion
related packet loss in a High-Speed TCP with a window
reduction of one-eighth on each loss. For a Gigabit network
with one percent packet loss ratio and 100 ms round-trip
delay, every single packet loss causes the rate to reduce by
one-eighth (compared with one half in TCP Reno) and it will
take 1 Gbps÷8(bits/byte)÷1024(bytes/packet)×100
ms×0.125 (drop ratio/loss)×100ms ≈ 152.6 seconds for the
sender to recover the original sending speed (1 Gbps) before
the packet loss event. During this recovery period, High-
speed TCP loses about 152.6s×1 Gbps×0.125/2 ≈ 8.9 GB
throughput because of a single loss event! In the real wide
area network, the actual value will be even larger since RTT
can be larger due to network queuing, physical media access,
scheduling and recovery, etc. Thus it typically takes longer
than 152.6 seconds for the sender to recover. Multiple
consecutive packet losses will be a catastrophe. A quote from
Internet Engineering Task Force (IETF) bluntly puts the effect
in this way: “Expanding the window size to match the capacity
of an LFN [long fat network] results in a corresponding
increase of the probability of more than one packet per
window being dropped. This could have a devastating effect
upon the throughput of TCP over an LFN. In addition, since the
publication of RFC 1323, congestion control mechanisms
based upon some form of random dropping have been
introduced into gateways, and randomly spaced packet drops
have become common; this increases the probability of
dropping more than one packet per window.”1

We note that this rate slowdown or throughput loss is
sometimes indeed necessary for byte-stream applications

where strict in-order delivery is a must. Otherwise, RAM has
to accommodate at least 1 Gbps×100 ms×0.125 ≈ 1.5 MB
extra data just to wait for a single lost packet of each TCP
connection for at least one RTT in our earlier example.
However, this slowdown becomes unnecessary for file
transfer applications because out-of-order data can be
written to disk without waiting for this lost packet, which can
be retransmitted any time at the speed that precisely
matches the available bandwidth inside the network,
discovered by an advanced rate control mechanism.

Indeed TCP by itself will not be able to decouple reliability
and congestion control and thus will not remove this artificial
bottleneck unless the purposes of TCP – providing reliable,
byte-stream delivery – are redefined by the IETF.2 The
traditional reliance upon a single transmission control
protocol for both reliable streaming and non-streaming
applications has been proven in practice to be suboptimal for
both domains.

UDP-based high-speed solutions
The reliability provided by TCP reduces network
throughput, increases average delay and worsens delay
jitter. Efforts to decouple reliability from congestion
avoidance have been made for years. Due to the complexity
of changing TCP itself, in recent years academic and
industry practices have pursued application-level protocols
that feature separable rate and reliability controls. These
approaches use UDP in the transport layer as an alternative
to TCP and implement reliability at the application layer.
Most such approaches are UDP blasters – they move data
reliably with UDP, employing some means to retransmit lost
data - but without meaningful consideration of the available
bandwidth, and risk network collapse, not to mention
collapse of their own throughput. Figure 3 shows the
throughput of Rocketstream, a commercial UDP data
blaster, when run over a 300 Mbps link with typical WAN
conditions (increasing RTT and packet loss).

UDP solutions, including open source implementations
Tsunami and UDT (used by products such as Signiant, File

IBM Cloud
White paper

5

Catalyst, and Sterling Commerce®), have attempted to
strengthen congestion control in UDP blasters through
simplistic algorithms that reduce transmission rate in the
face of packet loss. While the back off can be “tuned” to
achieve reasonable performance for specific network
pathways on a case-by-case basis, meaning single
combinations of bandwidth, round-trip delay, packet loss
and number of flows, the design is inherently unable to
adapt to the range of network RTT and packet loss
conditions and flow concurrency in any real-world Internet
network. Consequently, these approaches either
underutilize available bandwidth, or apparently “fill the
pipe”, but in the process overdrive the network with
redundant data transmission – as much as 50 percent
redundant data under typical network conditions - that
wastes bandwidth in the first order, and leads to collapse of
the effective file transfer throughput (“goodput”) in the
second order. Finally, in the process these approaches can
leave the network unusable by other traffic as their
overdrive creates packet loss for other TCP applications
and stalls their effective throughput.

We selected one of the most advanced retransmission
(NACK-based) UDP transport solutions, “UDT”, re-packaged
by commercial vendors, to demonstrate these problems.
Specifically, they include:

• Poor congestion avoidance. The dynamic “AIMD”
algorithm (D-AIMD) employed in UDT behaves similarly
to AIMD, but with a decreasing additive increase (AI)
parameter that scales back the pace of rate increase, as
the transmission rate increases. This approach fails to
recognize the aforementioned key issues of TCP – the
entanglement of reliability and rate control – and
instead makes the assumption that tuning one
parameter can solve the underperformance of AIMD
and even TCP. Indeed, a specifically tuned D-AIMD
outperforms TCP in one scenario, but immediately
underperforms TCP in another. Thus, in many typical
wide area networks, the performance of UDT is actually
worse than TCP.

• UDT’s aggressive data sending mechanism causes
dramatic rate oscillation and packet loss, not only
undermining its own throughput, but also jeopardizing

other traffic and degrading overall network
performance. In a typical wide area network where a
regular TCP flow (e.g., a HTTP session of a web client)
shares bandwidth with a UDT transfer, the TCP flow can
potentially experience denial-of-service due to
aggressiveness of the UDT flow (Figure 4). Indeed, the
possibility of extreme TCP unfriendliness is theoretically
studied in the original UDT paper, “Optimizing UDP-
based Protocol Implementations, 2005”, and the
authors propose a specific condition that must be
satisfied to avoid this extreme unfriendliness.2 In reality,
for very typical wide area networks (e.g., WAN with 100
ms RTT and 0.1 percent plr), the condition cannot be
satisfied and thus this extreme TCP unfriendliness will
be inevitable. That means in order to use a UDT-based
data movement solution, a regular customer will likely
need to invest more time and money on some type of
QoS companion to guarantee UDT will not damage the
operation of the whole network ecosystem (e.g., web,

IBM Cloud
White paper

Figure 3: The bar group shows the throughput achieved under various
packet loss and network latency (WAN) conditions on a 300 Mbps link for
RocketStream. Bars with zero height represent failures of establishing
connection between sender and receiver, which is not uncommon to
RocketStream when either RTT or packet loss ratio is large.

6

IBM Cloud
White paper

email, VOIP, network management).
• Aggressive sending and flawed retransmission in UDT

leads to lower efficiency of valuable bandwidth and
often forces customers to purchase more bandwidth
unnecessarily. (The very solution that is intended to
better utilize expensive bandwidth actually wastes it.)
The large difference between sending rate, receiving
rate, and effective file transfer rate in some experiments
(Figures 6 and 7) exposes the significant data drops at
the router and the receiver primarily due to overly
aggressive data injection and the flawed retransmission
mechanism of UDT. Measured efficiency (“goodput”)
drops below 20 percent in some typical wide area
networks. That means a 100 percent fully utilized
network by UDT uses 80 percent of the bandwidth
capacity transmitting redundant (duplicate) data to
receiver or transmitting useful data to an overflowed
buffer (overdriven by UDT itself).

The “benefit” and “cost” of using UDT to a regular user can
be quantified for an accurate comparison. “Benefit” can be
measured by the efficient use of bandwidth for transferring

needed data (goodput) translating directly into speedy transfer
times, while the “cost” can be abstracted as the effort of
transferring one needed data packet, defined as how many
duplicated copies are transferred to get one needed packet
successfully delivered to the application layer at another
network end. This cost also implies the induced costs to other
transfers, reflected by their loss of fair bandwidth share (Figure
4) and thus their degraded throughputs. Specifically, as already
partially reflected in Figure 5, UDT has lower effective transfer
throughput (resulting in slow transfers) over a wide range of
WAN conditions, and thus brings little benefit to users. And, the
associated bandwidth cost due to overdrive and redundant
retransmission dramatically affects other workflows.

Figure 5 shows the overall cost of transmitting one packet by a
single UDT transfer on a T3 (45 Mbps) link under different
RTTs and packet loss ratios. For most typical wide area
networks, one packet transfer needs eight to ten
retransmissions. In another words, in order to transfer a
1-gigabyte file, the UDT sender dumps nine to eleven
gigabytes into the network in the end. The transfer takes 9 –
11 times longer than necessary, and also causes large packet
loss to other flows.

The cost in Figure 5 is caused by the overly aggressive
injection rate of the UDT sender and duplicate retransmissions
dropped by the UDT receiver. To be more specific, we can
define sending cost to reflect the loss due to an overly
aggressive injection by the sender and thus packet drops at
router, and the receiving cost to reflect duplicate
retransmissions dropped at receiver.

Figure 4: File transfer throughput of a single UDT transfer on a typical
T3 link with packet loss ratio and 50 ms RTTs, and the effect of UDTtrans-
fer on a regular TCP flow. The TCP flow is not “visible” for most of its dura-
tion until the UDT flow terminates. transfer on a regular TCP flow. The TCP
flow is not “visible” for most of its duration until the UDT flow terminates.

7

IBM Cloud
White paper

Figure 6: The bar graph shows the sending rates, receiving
rates, and effective rates of a single UDT transfer under
different RTTs and packet loss ratios on a T3 link. Note that
the large difference between sending and receiving rate
implies large packet loss on the intervening network path, and
the large difference in the receiving and effective rate implies
a large number of duplicate retransmissions.

Figure 5: The bar graph shows the retransmissions of a single
UDT transfer under different RTTs and packet loss ratios. The
height of each bar, the “transmission cost,” is the quantity of
retransmitted data in units of gigabytes when a 1 GB file is
transferred. Bars with zero height represent failures to establish
a connection between sender and receiver, which is not
uncommon to UDT when either RTT or packet loss ratio is large.
Note that up to nine TIMES the original file size is sent and in
wasteful retransmissions.

and the receiving cost is

More accurately, the sending cost is

IBM Cloud
White paper

Note that the higher the sending cost, the more packets are
dropped at the router, while the higher the receiving cost, the
more packets are dropped at receiver. Figure 7 shows the
sending rates, receiving rates, and effective rates of a single
UDT transfer under different RTTs and packet loss ratios on a
T3 link. The rates ratios (sending rate to receiving rate and
receiving rate to effective rate) will be the defined costs above.
We observe that sending rates are persistently higher than
receiving rates, which are again persistently higher than
effective rate in all network configurations. These costs
drive the network to an operational point where network
utilization (defined as throughput divided by bandwidth) is
close to one, but the network efficiency (defined as
goodput divided by bandwidth) is as low as 15 percent.
Consequently, any given file transfer is over six times
slower than it should be.

To be crystal clear, we can verify the above costs through a
simple file transfer example under different wide area
networks by answering the following performance-related
questions:
• How many bytes are to be sent?
• How many bytes are actually sent?
• How many bytes are actually received?
• How long has the transfer taken?
• What is the effective file transfer speed?

Figure 7: The sending, receiving, and effective receiving rates of a single
UDT transfer on a T3 Link with 0%, 1% and 5% packet loss ratios and 100
ms, 200 ms, 200 ms RTTs. The gap between sending and receiving rates
implies large amount of data loss at router, while the gap between
receiving and effective receiving rates reflects the large number of drops
of duplicate retransmissions at the UDT receiver.

(a): UDT transfer on a T3 Link with 0% plr and 100 ms RTT

(b): UDT transfer on a T3 Link with 1% plr and 100 ms RTT

(c): UDT transfer on a T3 Link with 5% plr and 200 ms RTT

8

IBM Cloud
White paper

Bandwidth
(Mbps)

RTT
(ms)

plr
(%)

How
much to
be sent

(MB)

How much needs to
be sent (actual data
+ inevitable loss by

media, MB)

How
much data

actually
sent (MB)

Sending cost
(Sender’s
Overhead,

%)

How
much data

actually
received?

(MB)

Receiving
Cost

(Receiver’s
Overhead, %)

How long
does it

take? (s)

Effective
file transfer

speed
(Mbps)

Observed
Network

Utilization

Network
Efficiency
(Effective

Utilization,
%)

45 0 0 953.7 953.7 9093.2 314.1% 2195.8 130.2% 625.0 12.8 66.2% 28.4%

45 100 1 953.7 963.2 5941.8 234.9% 1774.0 86.0% 618.0 12.9 54.1% 28.8%

45 400 5 953.7 1001.4 3764.1 150.6% 1501.8 57.5% 830.0 9.6 34.1% 21.4%

45 800 5 953.7 1001.4 3549.9 152.9% 1403.9 47.2% 1296.0 6.2 20.4% 13.7%

100 100 1 953.7 963.2 1413.0 14.0% 1239.8 30.0% 239.0 33.5 44.0% 33.5%

100 200 5 953.7 1001.4 2631.2 19.6% 2200.1 130.7% 571.8 14.0 32.6% 14.0%

300 100 1 953.7 963.2 1060.0 2.1% 1038.4 8.9% 232.0 34.5 12.6% 11.5%

300 200 1 953.7 963.2 1083.0 2.3% 1059.1 11.1% 273.0 29.3 11.0% 9.8%

500 200 1 953.7 963.2 1068.9 1.7% 1051.5 10.3% 252.0 31.8 7.1% 6.4%

500 200 5 953.7 1001.4 1660.9 5.3% 1576.7 65.3% 539.1 14.8 5.0% 3.0%

Table 1: UDT file transfer over typical WANs – high-bandwidth cost and slow transfer rate

Bandwidth
(Mbps)

RTT
(ms)

plr
(%)

How much
data to

be sent?
(MB)

How much needs
to be sent (actual
data + inevitable

loss by media, MB)

How
much data

actually
sent? (MB)

Sending
Cost

(Sender’s
Overhead, %)

How much
data actually

received?
(MB)

Receiving
Cost

(Receiver’s
Overhead, %)

How long
does it

take? (s)

Effective
file transfer

speed
(Mbps)

Observed
Network

Utilization
(by receiver)

Network
Efficiency
(Effective

Utilization, %)

45 0 0 953.7 953.7 953.7 0.0% 953.7 0.0% 185.4 43.1 98.5 95.9%

45 100 1 953.7 963.2 963.3 1.0% 953.7 0.0% 187.8 42.6 97.1 94.6%

45 400 5 953.7 1001.4 1002.1 5.0% 954.3 0.1% 197.0 40.6 92.1 90.3%

45 800 5 953.7 1001.4 1003.5 5.1% 955.2 0.2% 197.0 40.6 91.6 90.3%

100 100 1 953.7 963.2 963.3 1.0% 953.8 0.0% 85.0 94.1 96.3 94.1%

100 200 5 953.7 1001.4 1002.4 5.0% 954.5 0.1% 88.9 90.0 91.9 90.0%

300 100 1 953.7 963.2 964.0 1.0% 954.4 0.1% 29.3 273.4 92.6 91.1%

300 200 1 953.7 963.2 964.7 1.0% 955.1 0.1% 29.2 274.3 91.9 91.4%

500 200 1 9536.7 9632.1 9635.0 1.0% 9539.0 0.0% 181.6 440.6 90.6 88.1%

500 200 5 9536.7 10013.6 10018.5 5.0% 9541.2 0.0% 186.9 428.0 88.0 85.6%

Table 2: Aspera FASP file transfer over typical WANs – near zero bandwidth cost and fast transfer rate

9

10

The direct consequences of UDT file transfer performance
shown in Table 1 are that useful data does not get through
the network at all, or that it does so at the price of network
efficiency (shown in the eighth column of Table 1), which not
only compounds the poor performance, but also causes a
denial-of-service for other network traffic by saturating the
bandwidth. Note that creating parallel transfers for higher
sending rates and network utilization as employed in some
UDT and TCP solutions only aggravates bandwidth waste and
forces customers to invest in more bandwidth prematurely.
The consequent improvement in network utilization and data
throughput is little, but the resulting cost (Figure 8) is
dramatically increased. Retransmission is increased by
another 40 percent with two UDT sessions. For the same
example (Table 1), UDT dumps as much as 13 GB to 15 GB
data to network in order to successfully deliver a less-than-1
GB file. Solutions using parallel TCP or UDT transfers have
similar or even worse performance as shown in Figure 8.

Aspera FASP solution
Aspera FASP fills the gap left by TCP in providing reliable
transport for applications that do not require byte-stream
delivery and completely separates reliability and rate control.
It uses standard UDP in the transport layer and achieves
decoupled congestion and reliability control in the
application layer through a theoretically optimal approach
that retransmits precisely the real packet loss on the
channel. Due to the decoupling of the rate control and
reliability, new packets need not slow down for the
retransferring of lost packets as in TCP-based byte streaming
applications. Data that is lost in transmission is retransmitted
at a rate that matches the available bandwidth inside the
end-to-end path, or a configured target rate, with zero
duplicate retransmissions for zero receiving cost.

The available bandwidth inside the path is discovered by a
delay-based rate control mechanism, for near zero sending
cost. Specifically, FASP adaptive rate control uses measured
queuing delay as the primary indication of network (or
disk-based) congestion with the aim of maintaining a small,
stable amount of “queuing” in the network; a transfer rate
adjusts up as the measured queuing falls below the target
(indicating that some bandwidth is unused and the transfer
should speed up), and adjusts down as the queuing
increases above the target (indicating that the bandwidth is
fully utilized and congestion is eminent). By sending
periodically probing packets into the network, FASP is able to
obtain a more accurate and timely measurement of queuing
delay along the transfer path. When detecting rising queuing
delay, a FASP session reduces its transfer rate, proportional
to the difference between the target queuing and the current
queuing, therefore avoiding overdriving the network. When
network congestion settles down, the FASP session quickly
increases according to a proportion of the target queuing and
thus ramps up again to fully utilize nearly 100 percent of the
available network capacity.

IBM Cloud
White paper

Figure 8: The graph shows the retransmission costs of two parallel UDT
sessions for a single 1 GB file transfer under different RTTs and packet
loss ratios in a T3 network. The height of each bar, referred to as
transmission cost, represents the amount of retransmission in units of
gigabytes when the 1 GB file is transferred. Bars with zero height
represent failures of establishing connection between sender and receiver,
which is not uncommon to UDT when either RTT or packet loss ratio is
large. Note that almost 14 GB (14x) the size of the file is retransmitted in
the process.

Unlike TCP’s rate control, the FASP adaptive rate control has
several major advantages: First, it uses network queuing
delay as the primary congestion signal and packet loss ratio
as the secondary signal, and thus obtains the precise
estimation of network congestion, not artificially slowing
down over networks with packet loss due to the media.
Second, the embedded quick response mechanism allows
high-speed file transfers to automatically slow down to allow
for stable, high throughput when there are many concurrent
transfers, but automatically ramp up to fully, efficiently utilize
unused bandwidth for more efficient delivery times. Third, the
advanced feedback control mechanism allows the FASP
session rate to more quickly converge to a stable equilibrium
rate that injects a target amount of queued bits into the buffer
at the congested router. Stable transmission speed and
queuing delay bring QoS experience to end users without
additional investment on QoS hardware or software. Delivery
time of data becomes predictable and data movement is
transparent to other applications sharing the same network.
Fourth, the full utilization of bandwidth, unlike NACK based
UDP blasters, introduces virtually no cost to the network and
network efficiency is kept around 100 percent.

In addition to efficiently utilizing available bandwidth, the
delay-based nature of FASP adaptive rate control allows
applications to build intentional prioritization in the transport
service. The built-in response to network queuing provides a
virtual “handle” to allow individual transfers to be prioritized/
de-prioritized to help meet application goals, such as offering
differentiated bandwidth priorities to concurrent FASP transfers.

IBM Cloud
White paper

11

Figure 10: FASP shared link capacity with other FASP and standard
TCP traffic, achieving intra-protocol and inter-protocol fairness.

Figure 11: FASP uses available bandwidth when TCP is limited by
network condition, achieving complete fairness between FASP flows
and with other (TCP) traffic.

Figure 9: The bar graph shows the throughput achieved under various packet
loss and network latency conditions on a 1 Gbps link for file transfer
technologies that use FASP innovative transfer technology. Bandwidth
efficiency does not degrade with network delay and packet loss.

About Aspera, an IBM Company
Aspera, an IBM company, is the creator of next-generation
transport technologies that move the world’s data at
maximum speed regardless of file size, transfer distance
and network conditions. Based on its patented, Emmy®
award-winning FASP® protocol, Aspera software fully
utilizes existing infrastructures to deliver the fastest, most
predictable file-transfer experience. Aspera’s core
technology delivers unprecedented control over bandwidth,
complete security and uncompromising reliability.
Organizations across a variety of industries on six
continents rely on Aspera software for the business-critical
transport of their digital assets.

By removing artificial bottlenecks in network transport and
freeing up full link bandwidth to end users, FASP transfers
sometimes reveal newly emerging bottleneck points in Disk
IO, file systems, and CPU scheduling, etc., which inevitably
create new hurdles as the transmission rate is pushed to the
full line speed especially in multi-Gigabit networks. The
FASP adaptive rate control has been extended to include
disk flow control to avoid data loss in fast file transfer writing
to a relatively slow storage pathway. A similar delay-based
model (patent-pending) was developed for the disk buffer.
Due to the different time scales of network and disk
dynamics, a two-time-scale design was employed to
accommodate both bandwidth and disk speed changes. At a
fine-grained, fast time scale, a local feedback mechanism is
introduced at the receiver end to accommodate periodic disk
slowdown due to operating system scheduling as an
example, while at a coarse-grained, slow time scale, a
unified delay-based congestion avoidance is implemented
for both bandwidth control and disk control, enabling FASP
transfers to simultaneously adapt to available network
bandwidth as well as disk speed.

File system bottlenecks manifest in a variety of aspects.
Indeed, many customers experience dramatically decreased
speed when transferring sets of small files compared with
transferring a single file of the same size. Using a novel file
streamlining technique, FASP removes the artificial
bottleneck caused by file systems and achieves the same
ideal efficiency for transfers of large numbers of small files.
For example, one thousand 2 MB files can be transmitted
from the US to New Zealand with an effective transfer speed
of 155 Mbps, filling an entire OC-3.

As a result, FASP eliminates the fundamental bottlenecks of
TCP- or UDP-based file transfer technologies such as FTP
and UDT, and dramatically speeds up transfers over public
and private IP networks. FASP removes the artificial
bottlenecks caused by imperfect congestion control
algorithms, packet losses (by physical media, cross-traffic
burst, or coarse protocols themselves), and the coupling
between reliability and congestion control. In addition, FASP
innovation is eliminating emerging bottlenecks from disk IO,
file system, CPU scheduling, etc. and achieves full line speed
on even the longest, fastest wide area networks. The result,
we believe, is a next-generation high-performance transport
protocol that fills the growing gap left by TCP for the
transport of large, file-based data at distance over
commodity networks, and thus makes possible the massive
everyday movement of digital data around the world.

For more information
For more information on IBM Aspera solutions, please visit
www.ibm.com/cloud/high-speed-data-transfer.

IBM Cloud
White paper

12

https://www.ibm.com/cloud-computing/products/high-speed-data-transfer/

KUW12449USEN-03

Please Recycle

© Copyright IBM Corporation 2018

IBM Corporation
Route 100
Somers, NY 10589

Produced in the United States of America
December 2018

IBM, the IBM logo, ibm.com and Aspera are trademarks or registered
trademarks of International Business Machines Corporation in the United
States, other countries, or both. If these and other IBM trademarked
terms are marked on their first occurrence in this information with a
trademark symbol (® or ™), these symbols indicate U.S. registered or
common law trademarks owned by IBM at the time this information was
published. Such trademarks may also be registered or common law
trademarks in other countries. A current list of IBM trademarks is available
on the Web at “Copyright and trademark information” at:ibm.com/legal/
us/en/copytrade.shtml

Linux is a registered trademark of Linus Torvalds in the United States,
other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks
of Microsoft Corporation in the United States, other countries, or both.

Other product, company or service names may be trademarks or service
marks of others.

This document is current as of the initial date of publication and may be
changed by IBM at any time. Not all offerings are available in every country
in which IBM operates.

The performance data and client examples cited are presented for
illustrative purposes only. Actual performance results may vary depending
on the specific configurations and operating conditions. It is the user’s
responsibility to evaluate and verify the operation of any other products or
programs with IBM product and programs. THE INFORMATION IN THIS
DOCUMENT IS PROVIDED “AS IS” WITHOUT ANY WARRANTY, EXPRESS
OR IMPLIED, INCLUDING WITHOUT ANY WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND ANY
WARRANTY OR CONDITION OF NON-INFRINGEMENT. IBM products are
warranted according to the terms and conditions of the agreements under
which they are provided.

1 Jacobson, V., Braden, R., and Borman, D., TCP Extensions For High
Performance, The Internet Engineering Task Force (IETF®), May, 1992,
http://www.ietf.org/rfc/rfc1323.txt

2 Ibid, 1992.

3 Gu, Yunhong and Grossman, R., Optimizing UDP-based Protocol
Implementations, 2005, http://udt.sourceforge.net/doc/pfldnet2005-v8.pdf

http://www.ietf.org/rfc/rfc1323.txt
http://udt.sourceforge.net/doc/pfldnet2005-v8.pdf

