

These materials are © 2017 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

http://ibm.co/servicevirtualization

These materials are © 2017 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Service
Virtualization

2nd IBM Limited Edition

by Judith Hurwitz

These materials are © 2017 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Service Virtualization For Dummies®, 2nd IBM Limited Edition

Published by
John Wiley & Sons, Inc.
111 River St.
Hoboken, NJ 07030-5774
www.wiley.com

Copyright © 2017 by John Wiley & Sons, Inc., Hoboken, New Jersey

Published by John Wiley & Sons, Inc., Hoboken, New Jersey

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any
form or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise,
except as permitted under Sections 107 or 108 of the 1976 United States Copyright Act, without
the prior written permission of the Publisher. Requests to the Publisher for permission should be
addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ
07030, (201) 748-6011, fax (201) 748-6008, or online at http://www.wiley.com/go/permissions.

Trademarks: Wiley, the Wiley logo, For Dummies, the Dummies Man logo, A Reference for the
Rest of Us!, The Dummies Way, Dummies.com, Making Everything Easier, and related trade dress
are trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its affiliates in the
United States and other countries, and may not be used without written permission. IBM and the
IBM logo are registered trademarks of International Business Machines Corporation. All other
trademarks are the property of their respective owners. John Wiley & Sons, Inc., is not associated
with any product or vendor mentioned in this book.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: THE PUBLISHER AND THE AUTHOR MAKE NO
REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF
THE CONTENTS OF THIS WORK AND SPECIFICALLY DISCLAIM ALL WARRANTIES, INCLUDING
WITHOUT LIMITATION WARRANTIES OF FITNESS FOR A PARTICULAR PURPOSE. NO WARRANTY
MAY BE CREATED OR EXTENDED BY SALES OR PROMOTIONAL MATERIALS. THE ADVICE
AND STRATEGIES CONTAINED HEREIN MAY NOT BE SUITABLE FOR EVERY SITUATION. THIS
WORK IS SOLD WITH THE UNDERSTANDING THAT THE PUBLISHER IS NOT ENGAGED IN
RENDERING LEGAL, ACCOUNTING, OR OTHER PROFESSIONAL SERVICES. IF PROFESSIONAL
ASSISTANCE IS REQUIRED, THE SERVICES OF A COMPETENT PROFESSIONAL PERSON SHOULD BE
SOUGHT. NEITHER THE PUBLISHER NOR THE AUTHOR SHALL BE LIABLE FOR DAMAGES ARISING
HEREFROM. THE FACT THAT AN ORGANIZATION OR WEBSITE IS REFERRED TO IN THIS WORK
AS A CITATION AND/OR A POTENTIAL SOURCE OF FURTHER INFORMATION DOES NOT MEAN
THAT THE AUTHOR OR THE PUBLISHER ENDORSES THE INFORMATION THE ORGANIZATION
OR WEBSITE MAY PROVIDE OR RECOMMENDATIONS IT MAY MAKE. FURTHER, READERS
SHOULD BE AWARE THAT INTERNET WEBSITES LISTED IN THIS WORK MAY HAVE CHANGED OR
DISAPPEARED BETWEEN WHEN THIS WORK WAS WRITTEN AND WHEN IT IS READ.

For general information on our other products and services, or how to create a custom For
Dummies book for your business or organization, please contact our Business Development
Department in the U.S. at 877-409-4177, contact info@dummies.biz, or visit www.wiley.com/go/
custompub. For information about licensing the For Dummies brand for products or services,
contact BrandedRights&Licenses@Wiley.com.

ISBN 978-1-119-41593-0 (pbk); ISBN 978-1-119-41591-6 (ebk)

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

Publisher’s Acknowledgments
Some of the people who helped bring this book to market include the
following:

Project Editor: Carrie A. Burchfield
Editorial Manager: Rev Mengle
Business Development

Representative: Sue Blessing

Production Editor: Tamilmani
Varadharaj

http://www.wiley.com
http://www.wiley.com/go/permissions
mailto:info@dummies.biz
http://www.wiley.com/go/custompub
http://www.wiley.com/go/custompub
mailto:BrandedRights&Licenses@Wiley.com

Table of Contents iii

These materials are © 2017 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Table of Contents
INTRODUCTION.. 1

About This Book.. 1
Icons Used in This Book.. 2

CHAPTER 1:	 What is Service Virtualization?.. 3
Defining Service Virtualization... 4
Service Virtualization in Action.. 5

The Whiz Bang International example.. 5
A large financial services organization.. 7

Seeing How Service Virtualization Differs
from Other Types of Virtualization.. 8
Exploring Where Service Virtualization Can Add Value.................... 9

Testing... 10
Development.. 11
Non-production usage.. 11

Benefits of Service Virtualization... 12
Reducing costs... 12
Improving productivity.. 13
Reducing risk.. 13
Increasing quality... 14

CHAPTER 2:	 The Driving Forces of Change... 15
Meeting the Rising Expectations of Enterprise Applications......... 16
Embracing Service-Oriented Architectures...................................... 17
The Rise of Mobile Applications.. 18
Agile Transformation Continues.. 19

CHAPTER 3:	 Escaping the Past.. 21
Improving Quality in the Application Life Cycle............................... 21
Rethinking Test Automation.. 23
Facing the Challenges of Complex Test Environments................... 25
Service Virtualization and Complex Test Environments................. 26

iv Service Virtualization For Dummies, 2nd IBM Limited Edition

These materials are © 2017 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

CHAPTER 4:	 Finding Your Way to Service Virtualization........... 27
Identifying Services to Virtualize... 28

The cost benefit analysis... 29
Doing the math.. 31

Looking into Test Automation Strategies... 33
Implementing Service Virtualization for All Testing
Purposes and Phases.. 34

Testing phases.. 34
Performance testing.. 36
Negative testing... 38

CHAPTER 5:	 Putting Service Virtualization to Work..................... 39
Understanding Your Architecture... 39

Communicating between components....................................... 41
Transporting messages... 42
Messaging standards.. 43
Finding the endpoints... 43

Defining Virtual Components.. 44
Synchronizing with external sources... 44
Recording existing services... 44
Behavior of virtual components.. 46

Provisioning Virtual Services.. 49

CHAPTER 6:	 Measuring ROI... 51
Building Your Business Case.. 51

Why service virtualization?... 52
Estimating the costs of implementing
service virtualization.. 53
Estimating the benefits of implementing
service virtualization.. 53

Quantifying the Benefits... 53
Eliminating or lowering costs associated with
traditional test environments... 54
Time spent provisioning test environments............................... 55
Finding and resolving defects early in the
development process.. 55

Selecting a Solution... 57

Table of Contents v

These materials are © 2017 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

CHAPTER 7:	 Ten Key Points for Success with
Service Virtualization.. 59
Rethink Your Approach to Testing.. 59
Plan for Flexibility.. 60
Practice Controlled Integration... 60
Test Continuously from Development to Production..................... 61
Externalize Your Test Data... 61
Explore Advanced Test Scenarios... 62
Avoid Reinventing the Wheel... 62
Service Virtualization Isn’t Just for Testers....................................... 62
Share Virtual Components across the Enterprise........................... 63
Enhance Team Productivity by Building Skills................................. 63

vi Service Virtualization For Dummies, 2nd IBM Limited Edition

These materials are © 2017 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Introduction 1

These materials are © 2017 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Introduction

Welcome to Service Virtualization For Dummies, 2nd IBM
Limited Edition. Service virtualization helps companies
create more efficient testing environments by elimi-

nating many of the roadblocks that testing teams typically
encounter. While testing teams want to test early in the applica-
tion development process, it’s hard to make this plan a reality
based on the increasing complexity of software environments. In
order to reduce project risk and guarantee higher quality out-
comes, your company needs a new proactive approach to testing.
You need an approach that improves the overall level of testing
and increases the efficiency of removing defects.

Your company can benefit from service virtualization if your
teams develop and deliver complex applications with multiple
dependent components that must be tested. Instead of waiting for
dependent services to become available for testing, your teams
can use service virtualization to emulate these missing elements.
With service virtualization your test environments can use vir-
tual services in lieu of the production services, increasing the
frequency of integration testing. As a result, deploying service
virtualization can help you decrease testing costs, improve team
productivity, and ultimately improve software quality.

About This Book
This book gives you insight into what it means to leverage service
virtualization in your testing environments. By simulating service
components, you can quickly validate the behavior and perfor-
mance of an application’s components and determine how they
interact. In this book, you discover the key challenges that com-
panies face when developing complex applications with multiple
dependencies and how you can increase test team efficiency with
service virtualization to enable more sophisticated and accurate
testing earlier in the life cycle.

These materials are © 2017 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Icons Used in This Book
The following icons are used to point out important information
throughout the book:

Tips help identify information that needs special attention.

Pay attention to these common pitfalls of managing your
foundational cloud.

This icon highlights important information that you should
remember.

This icon contains tidbits for the more technically inclined.

2 Service Virtualization For Dummies, 2nd IBM Limited Edition

CHAPTER 1 What is Service Virtualization? 3

These materials are © 2017 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

What is Service
Virtualization?

Imagine a world where software development teams consis-
tently deliver new applications on time, under budget, and with
exceptional quality and performance. For many development

and operations teams, the demands of testing today’s complex
applications in their test environments prevents this goal from
becoming an achievable reality.

In this chapter, I introduce a new technology called service vir-
tualization to the development and testing communities and talk
about how companies are using it as a key part of their testing
strategy to reduce risk, decrease testing costs, and deliver higher-
quality software. Service virtualization helps organizations over-
come many of the challenges associated with testing today’s
complex and interdependent systems. Because the term virtual-
ization is quite popular in different circles, I describe how service
virtualization is different from other kinds of virtualization. You
take a look at situations where service virtualization can add the
most value and dive into the various uses of service virtualization
and its key benefits.

Chapter 1

IN THIS CHAPTER

»» Introducing service virtualization

»» Seeing service virtualization in action

»» Discovering how service virtualization
differs from other types of virtualization

»» Understanding where service
virtualization adds value

»» Realizing the benefits of service
virtualization

4 Service Virtualization For Dummies, 2nd IBM Limited Edition

These materials are © 2017 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Defining Service Virtualization
Service virtualization simulates the behavior of select components
within an application to enable end-to-end testing of the appli-
cation as a whole. Test environments can use virtual services
in lieu of the production services to conduct integration testing
earlier in the development process. Service virtualization can be
useful for anyone involved in developing and delivering software
applications. Integration testing of these applications is often
delayed because some of the components the application depends
on aren’t available. Service virtualization enables earlier and more
frequent integration testing by emulating the unavailable compo-
nent dependencies.

Service virtualization solutions have the following characteristics:

»» Application emulation: Virtual components can simu-
late the behavior of an entire application or a specific
component.

»» Multiple test environments: Developers and quality
professionals may create test environments by using virtual
components configured for their needs.

»» Same testing tools: Developers and quality professionals
can use the same testing tools that they have used in the
past — the tools can’t tell the difference between a real
system and a virtual service.

These virtual components are created to simulate a real environ-
ment through two basic entry points:

»» Observing the system in action: Construct a virtual
component by listening to the network traffic of the service
that you want to emulate.

»» Reading the descriptions of the system: Construct a
virtual component by utilizing other sources of information
such as service specifications. An example is a Web Services
Description Language (WSDL) file, which describes the
operations offered by a service along with the parameters it
expects and the data it returns.

CHAPTER 1 What is Service Virtualization? 5

These materials are © 2017 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Service Virtualization in Action
One of the best ways to understand the benefits of service virtual-
ization is to look at examples. In this section, I give you a make-
believe example and a real customer scenario.

The Whiz Bang International example
The URGoodForIt Credit Check service (a make-believe service;
good name, huh?), provided by a third-party vendor, must be
deployed to test the new application. However, it isn’t readily
available in the test environment. The team can’t begin test-
ing without this dependent component. As a result the team is
forced to choose between de-scoping tests or slipping the delivery
schedule.

Figure 1-1 depicts a sample online ordering application that
implements the URGoodForIt Credit Check service. Whiz Bang
International has embraced Service-Oriented Architecture (SOA),
and the implementation of this application takes advantage of a
variety of services such as an ordering handling service, a third-
party credit-checking service, a third-party payment service, a
custom service to provision a new device, and a database. This
complete picture of the system reflects the production environ-
ment without service virtualization.

FIGURE 1-1: A commercial application in production without service
virtualization.

6 Service Virtualization For Dummies, 2nd IBM Limited Edition

These materials are © 2017 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

The URGoodForIt service is a good candidate for service virtual-
ization because

»» Test environment availability is delayed and the team has to
wait for the service to be available before testing can begin.

»» The URGoodForIt service costs money each time it’s
executed.

The team needs to test at user levels of 100,000 for perfor-
mance purposes. Because URGoodForIt is provided by a
third party, the business needs to pay a fee per use each
time the service is called in a test. The fees for performance
testing with 100,000 users add up very quickly.

The fact that this dependent service is unavailable for testing cre-
ates a testing bottleneck for the whole team, and to test (func-
tion or performance) end to end, you can’t begin testing until you
have all the required pieces. Virtualizing the unavailable service
unblocks the team. Illustrated in Figure 1-2, a production compo-
nent from Figure 1-1 is replaced with a virtual component.

FIGURE 1-2: Service virtualization makes the unavailable available.

CHAPTER 1 What is Service Virtualization? 7

These materials are © 2017 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

A good service virtualization solution makes it easy to create a
virtual component that

»» Mimics the behavior of the real component providing the
service

»» Responds with realistic data

»» Processes requests within configurable throughput ranges

»» Can be turned on or off, as the real service becomes
available, without having to reconfigure the deployed
application

Of course, at some point in time you’re going to need to test your
system against a real production application. Service virtualiza-
tion isn’t a substitute for testing the actual source code deployed
as the composite application. Meaning, you’re not going to bring
your software to market without real end-to-end testing. The idea
behind service virtualization is to catch the majority of defects
much earlier in the process when they’re easier and cheaper to fix.
You may still discover errors during your end-to-end testing, but
they’re likely to be fewer in number, and these bugs can prob-
ably only be discovered when the complete application is tested
by using the real components.

A large financial services organization
In this section, you take a look at a real-world example. (I removed
the company name for privacy reasons. I hope you understand!) A
large financial services organization set out to test its new bill-
ing application, including all its integrations with internal legacy
applications and external third-party dependencies. The integra-
tions between the different application components needed to be
tested continuously throughout the development process.

For example, the interfaces between the billing application and
the ordering application needed to be independently tested. Each
time a required test environment was configured, long delays
occurred because at least one of the required application compo-
nents wasn’t available. As a result, the team faced an end-of-cycle
test crunch. IT requested additional resources to execute the tests,
and because some of the test suites contained thousands of indi-
vidual tests, testing delays put the entire project at risk for missing
important completion deadlines.

8 Service Virtualization For Dummies, 2nd IBM Limited Edition

These materials are © 2017 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

The team decided to adopt service virtualization, and it was able
to create a major turnaround in the testing economics for the
new billing application. The quality professionals created virtual
components emulating aspects of the real-world environment
by recording messages and responses in that environment. This
virtualized environment had the behavior of the live application,
but the effort to create the test environments was significantly
reduced, so developers and quality professionals didn’t have to
use the actual dependent applications when testing their changes.
Instead, they used virtual components to perform integration
and performance testing of the components that didn’t change in
combination with the components, which they modified or devel-
oped new.

The result? The company reduced the time — from a few weeks to
just minutes — to stand up its test environments. The time sav-
ings resulted in sharp reductions in testing costs and allowed the
professionals to do a more thorough job of testing and validating
software quality.

Seeing How Service Virtualization
Differs from Other Types
of Virtualization

When people hear the term virtualization, they often automatically
think of “virtual machines” or “hardware virtualization.” In fact,
the term virtualization can be applied to many aspects of comput-
ing, such as servers, applications, network, or storage. In general,
virtualization means using computer resources to imitate other
computer resources.

In hardware virtualization, for example, one physical server is
partitioned into multiple virtual servers. The virtualization soft-
ware enables each virtual machine to present the appearance of
dedicated hardware. This can help reduce hardware costs, but
there are other costs associated with deploying hardware virtual-
ization and creating virtual machine images.

CHAPTER 1 What is Service Virtualization? 9

These materials are © 2017 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Utilizing virtual machines as staging environments for test-
ing has gotten a lot of press recently because they can provide
a good representation of what’s going into production with a
lower infrastructure footprint than full physical pre-production
environments. The IT or testing organization can create virtual
images of the production environment to run on virtual machines
without some of the manual effort or cost required to provision
and build a physical pre-production server. This can give the
testing group confidence because theoretically the virtual image
is very close to the real thing. The downside is that the creation
and ongoing management of those images (for example, tracking
license usage, installing the OS, and keeping it up to date) can still
add significant cost to a project. And you still have to wait for and
deploy every component needed by your application.

In service virtualization, however, software components are vir-
tualized by emulating their service interface and mimicking the
component’s behaviors. Service virtualization focuses on emulat-
ing only what’s needed by your test environment and, compared
with hardware virtualization, eliminates the additional effort to
license, configure, and run all the other bits required on a vir-
tual machine (for example, the operating system). There is, of
course, some investment to create virtual components for your
services, but the virtual components are available throughout the
application life cycle and have a very small footprint (much, much
smaller than a virtual machine). They also are easier to share and
faster to deploy because they’re hosted on a server optimized for
this purpose.

Exploring Where Service Virtualization
Can Add Value

Service virtualization can dramatically change the economics and
flow of the entire application development process. Application
quality is everyone’s responsibility — from development to test-
ing to deployment — so service virtualization can be used by the
entire team throughout the application life cycle.

10 Service Virtualization For Dummies, 2nd IBM Limited Edition

These materials are © 2017 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

A key benefit of service virtualization is that you can do testing
much earlier in the application development process by reducing
test bottlenecks. However, you may miss out on many additional
benefits of service virtualization if you only use this technology in
your formal testing process.

Testing
One of the most important principles adhered to by successful
testing teams is “Test early and often in the development pro-
cess.” Why? Because the earlier you find and isolate defects, the
better your ability to fix them. Now, I realize testing early and
often is simple to say, but it’s not so easy to execute. The longer it
takes to begin testing or “stand up” your test environments, the
less likely you are to test at the right time to achieve high-quality
outcomes. Service virtualization can help reduce testing costs and
speed up testing start and execution times.

Service virtualization delivers benefits for all types of testing
including functional (manual and automated), integration, and
performance testing. Take performance testing as one exam-
ple. The performance of today’s composite applications is really
the sum of the individual application component’s capability to
respond in a timely manner. Degradation in the response time of
any application components can slow performance of the applica-
tion, negatively impacting user experience. However, if you defer
performance testing until the entire application is deployed (the
traditional approach), it becomes much harder to identify the root
cause of slow performance and poor user experience.

Performance testing using a virtual component (or a set of virtual
components) enables you to fix the most obvious problems earlier.
Testing in the traditional way, where everyone builds a piece and
you test when everything is ready, you may never meet your per-
formance goal. You won’t know until the end of the development
and testing cycle that there’s one component, for example, that’s
taking too long to respond, adversely impacting the user experi-
ence. I give you a more detailed view of this process in Chapter 4.

Make sure you understand customer or end-user expectations
right from the beginning of the development process, including
the functionality, usability, reliability, supportability, and perfor-
mance, and the business logic involved. You need to do the math
and determine the individual performance specifications that

CHAPTER 1 What is Service Virtualization? 11

These materials are © 2017 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

each component must have. With that understanding, you can
simulate the exact conditions for the development team from day
one in your virtual test environment.

Development
Why does a developer need service virtualization? In addition to
the formal testing process managed by the testing team, devel-
opers should be testing their own code all the time. Service vir-
tualization can be used to simulate any environment required by
developers for testing, going beyond compilation and unit testing,
while they’re writing code.

Service virtualization eliminates the need for developers to man-
ually write their own simulation stubs or mocks (for example,
fake objects that try to mimic real objects in testing). These stubs
may require future maintenance, which will take time away from
developers writing new functionality for the business. Removing
the need to manually write stubs can be especially helpful in agile
development or iterative development environments where teams
wish to conduct continuous testing of new functionality through-
out the development process.

Non-production usage
Service virtualization can also be used to create a realistic envi-
ronment for training without the need to connect with your live
production environment resources. To understand how service
virtualization can help create more effective training programs,
this section gives you a scenario.

DON’T GRADE YOUR OWN WORK!
Having developers write their own testing simulations or stubs to vali-
date their own code changes or new code is a bad idea! It’s like having
a student mark his own homework or exam. Testers, who know how
the functionality should be tested and the data required to properly
test the various scenarios, can easily create virtual components
and tests, making them available to the development team.

12 Service Virtualization For Dummies, 2nd IBM Limited Edition

These materials are © 2017 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

A company wants to train its newly hired customer service agents
on how to use its Customer Relationship Management (CRM) sys-
tem. These agents are given access to a live version of the CRM
system to help simulate real situations encountered on the job.
However, the CRM system is connected to various back-end sys-
tems. To answer a series of exam questions, the agents need to
create queries about product and pricing information managed
by several back-end systems. With service virtualization, you can
emulate the back-end systems so CRUD (create, read, update, and
delete) transactions can occur without interfering with the live
production systems.

Beyond isolating the production from the trainees, service vir-
tualization makes it easy to reset the training environment to a
known state with known data. Achieving this with service virtu-
alization can be significantly less expensive than deploying the
complete system to an isolated training environment.

Benefits of Service Virtualization
Service virtualization enables earlier and more parallel, continu-
ous testing of complex applications across the development life
cycle. It can be especially useful in applications consisting of inter-
connected services in an SOA environment, where testing is often
delayed waiting for all the services to be ready and deployed. As a
result, service virtualization is likely to deliver benefits explained
in this section.

Reducing costs
Test lab infrastructure costs can be pricey. Instead of provisioning
large servers or mainframes, a virtual test environment can run
on low-cost commodity hardware. The environment can easily be
reconfigured for different testing needs or projects.

Costly crunch time end-to-end testing can also be reduced with
service virtualization because functional, integration, and busi-
ness process level tests have been executed many times before
and the majority of the defects should’ve been found. The fact that
you’ve done these tests throughout the development life cycle can
help drive down the time required to perform the full end-to-end
test and eliminate the need to bring on additional testing staff.

CHAPTER 1 What is Service Virtualization? 13

These materials are © 2017 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Many of today’s composite applications utilize services provided
by a third party. These third-party vendors may assess a charge
each time that service is executed. Virtualizing those services for
the purposes of testing can decrease the third-party access fees
from the testing budget without limiting testing activities. It also
solves another common problem with third-party services: The
provider may not make the services available for testing when you
need them. Service virtualization makes them available whenever
you need them.

Improving productivity
Constraints on developers and quality engineers can limit pro-
ductivity. In a physical test environment, you have constraints:

»» Time to provision environments

»» Time when environments are unavailable to developers and
testers

»» Limitations on the amount of test cases that can be put
through a system

With service virtualization you don’t have restraints in the way
you do testing or development. Virtual components are avail-
able 24/7. This means that productivity can be greatly increased,
and resources can be freed up for other value add activities or
additional testing process improvements such as the inclusion of
exploratory testing.

Reducing risk
Service virtualization can also help reduce risk. You can test soft-
ware earlier in the process, which means defects can be addressed
earlier, producing fewer surprises toward the end of the sched-
ule. The final product may be put into production earlier and with
fewer errors. Additionally, large teams can effectively work in
parallel, collaborating on different parts of an application by vir-
tualizing components of the complete system, and put a plan in
place to ensure that the system is tested properly and the piece
parts work together.

14 Service Virtualization For Dummies, 2nd IBM Limited Edition

These materials are © 2017 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Increasing quality
Service virtualization can improve the overall quality of the appli-
cation because it increases the efficiency of any testing being per-
formed. As a result, teams are able to do a more thorough job
of testing their applications and get higher quality software to
market faster.

CHAPTER 2 The Driving Forces of Change 15

These materials are © 2017 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

The Driving Forces
of Change

Information Technology (IT) departments have always had to
choose between how much time and resources to devote to
quality management practices (often dominated by testing)

versus the risk of delivering poor quality applications. In the past,
the IT department has often managed decisions about the quality
process with limited involvement from the business stakeholders.
However, as software has become an integral part of a company’s
strategy and persona in the marketplace, testing can no longer be
treated as a standalone activity. In many situations, the quality of
the software is an important way that customers, partners, and
suppliers measure a company and define its success in the mar-
ketplace. It’s no wonder that software quality management has
emerged as a foundational element of the enterprise application
life cycle.

In this chapter, you look at how the relationship between IT and
the business has changed, where IT no longer merely supports the
business but takes a leading role in creating value. You also see
the enterprise architectures that have emerged to address these
business pressures and dynamic landscape, the opportunities
and challenges presented by the emergence of new application

Chapter 2

IN THIS CHAPTER

»» Encountering the expectations of
enterprise applications

»» Wrapping your head around service-
oriented architectures

»» Taking advantage of mobile capabilities

»» Responding to changing customer
expectations

16 Service Virtualization For Dummies, 2nd IBM Limited Edition

These materials are © 2017 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

delivery channels, and how the IT organization itself — from
development processes to operations — has evolved. The need to
improve software quality is a constant undercurrent that requires
organizations to rethink their traditional approaches to testing in
order to be successful in this environment of rapid business and
technical change.

Meeting the Rising Expectations
of Enterprise Applications

As a business leader you need to keep focused on your business
strategy — whether your objective is outsmarting your competi-
tion, growing your business, or keeping your costs under control
for maximum profitability. Meeting these objectives in today’s
dynamic consumer-focused environment requires a high level
of collaboration between business and IT. In the past, IT focused
primarily on developing applications designed to meet the needs
of internal departments. However, IT has seen two changes in
recent years:

»» The expectations of users have increased based on their
experience with consumer technology.

»» The role of IT has grown to include developing and deploying
new, innovative externally facing applications.

Today these applications are required to develop new partner-
ship channels or to enhance the way customers interact with
the business. In other words, IT has moved from supporting the
business strategy to becoming a critical part of the business strat-
egy. Business leaders expect the IT organization to meet changing
requirements and deliver on the business objectives — quickly.
They are no longer willing to accept that technology will be an
impediment to change.

Because of this deep relationship between business strategy and
IT innovation, you need to understand some of the key business
pressures companies are facing. Applications designed to support
new business models need to process large and diverse volumes
of data, and they need to integrate with a broad range of new and
legacy systems. Companies also need to streamline and automate

CHAPTER 2 The Driving Forces of Change 17

These materials are © 2017 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

manual processes so they can rapidly develop and deploy high-
quality applications.

To support this new collaborative environment between business
and IT, many companies are incorporating new technologies to
improve responsiveness and user value, including

»» Modernization of traditional back-end systems to deliver
new functionality to the marketplace

»» Broader use of modular, shared services for the rapid
assembly of new composite applications

»» Increased support for new application delivery channels,
particularly mobile devices

»» Cloud computing for increased business flexibility and
scalability

Embracing Service-Oriented
Architectures

Enterprise architectures have evolved to keep up with the fast
pace of business innovation and growth. Many companies find
that by implementing a service-oriented approach they’re bet-
ter positioned to support the business requirements for flexibility
and scalability.

A service-oriented approach delivers other benefits, as well,
including the following:

»» Increased ability to create more sophisticated applications
by combining reusable modular business services

»» Improvements in IT responsiveness and performance

»» Ability to exchange data with outside organizations, for
example suppliers and partners

»» Flexibility to consume services from third-party suppliers

»» Support for a variety of deployment topologies including
using a public or private cloud

»» Increased standardization in the IT environment

18 Service Virtualization For Dummies, 2nd IBM Limited Edition

These materials are © 2017 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Service orientation is an architectural approach based on imple-
menting business processes as software services. These business
services consist of a set of loosely coupled components — designed
to manage dependencies and foster reuse — assembled to imple-
ment a well-defined business task. Designing systems with
modular business services results in more efficient and flexible
IT systems. Service orientation is also a business approach and
methodology that helps businesses scale and adapt to changing
market forces.

The key characteristics of service orientation are modularity,
reusability, and flexibility:

»» Modularity: Moving from large monolithic, complex, and
unmanageable applications to componentized reusable
business services

»» Reusability: The rules and logic of application components
that are common to key business processes and encapsu-
lated to create a reusable business service

Using a tested and proven component speeds development,
enables a higher level of security and trust, reduces risk, and
saves money.

»» Flexibility: A function of the modularity and reuse of
business services

Service-oriented architectures have led to an entire industry that
provides businesses with well-designed business services that
handle everything from payment services to credit check and
inventory availability. This creates new alternatives to developing
and deploying the underlying software in-house. However, it cre-
ates new challenges to managing releases and ensuring quality.

The Rise of Mobile Applications
The entire life cycle of application development and deployment
is changing because of changes in consumer expectations and
platform requirements. This major shift in IT and business hap-
pens due to the following factors:

CHAPTER 2 The Driving Forces of Change 19

These materials are © 2017 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

»» The demand for mobile applications

»» The need to integrate those new “systems of engagement”
with existing back-end “systems of record”

»» The opportunity to innovate by taking advantage of unique
mobile capabilities (such as location awareness)

Today, customers expect to be able to interact with a company
and its services in a variety of ways, including the ability to access
information from a laptop, tablet, or smartphone. Each of these
devices is powered using one of a variety of operating systems and
comes in several form factors. Increasingly, the end-user is in
control of what platform they select to interact with your organi-
zation. Development and testing require new approaches to sup-
port the wide range of customer devices.

These emerging applications don’t execute in isolation; they must
connect with existing back-end systems. Customer-facing appli-
cations have to be implemented with the right performance level
and the right quality level based on the right business process.
This may place new demands on the supporting systems, which
must be verified.

Mobile devices offer new unique capabilities but also have some
constraints. Features such as location awareness, voice-based
interfaces, and near field communication open new avenues of
innovation. However, compared to modern PCs, small screens,
limited bandwidth, and high network latency are back. Not to
mention significant variability based on device, carrier, and loca-
tion. Given the pace of innovation in this area, businesses can’t
anticipate how their customers’ requirements may change in the
future. Businesses have to make sure that their approaches to
development, testing, and deployment can keep pace as preferred
models for interaction continue to evolve.

Agile Transformation Continues
Many software development teams are relying on agile develop-
ment approaches to speed up the development process. Accord-
ingly, the testing process needs to speed up as well if the new
applications are to be introduced to the market quickly with
increasing quality. Agile development processes focus on short

20 Service Virtualization For Dummies, 2nd IBM Limited Edition

These materials are © 2017 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

development iterations that include continuous planning, testing,
and integration. The goal is to keep the project moving forward
at a fast pace by leveraging a highly collaborative environment.

This approach becomes impractical if testing lags behind develop-
ment. Unfortunately, this lag in testing is a common occurrence.
For example, the testing team may need to spend many hours
each night manually resetting the test environment. Addition-
ally, application testing may be delayed while the testing team
waits for dependent software to become available. Other delays in
testing occur when the duration of a manual test execution cycle
exceeds the length of a development sprint. If the testing team is
not able to adapt to the rhythm of an agile development approach,
IT is likely to encounter numerous delays and miss its application
delivery deadlines.

Just a few years ago, the typical application was changed only
a few times a year. Today, software development, deployment,
and operations environments face constant change. It is quite
common for a single application to be changed on a weekly or
sometimes daily basis. It is no longer possible for software devel-
opment and operations (production) to act as independent organi-
zations each with their individual tasks, deployment procedures,
and schedules.

CHAPTER 3 Escaping the Past 21

These materials are © 2017 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Escaping the Past

As the complexity of applications increases, with more inter-
faces and delivery options, continually improving software
quality management practices becomes more important

than ever before. However, while companies are attempting to
become more nimble and responsive to market demands, testing
often struggles to keep pace, creating a bottleneck in the overall
software delivery process.

In this chapter, I introduce approaches for companies to improve
their quality management processes. I introduce you to some best
practices that companies can put in place to become more qual-
ity focused and sophisticated in their testing practices. Because
application and testing environments are becoming more complex,
service virtualization addresses key challenges of these complex
testing environments and increases test team efficiency by enabling
more sophisticated and accurate testing earlier in the life cycle.

Improving Quality in the
Application Life Cycle

Software quality is a costly problem in virtually all industries.
Fixing software issues costs billions of dollars each year. The
problem seems to be that many organizations don’t realize that

Chapter 3

IN THIS CHAPTER

»» Increasing quality in the application life
cycle

»» Taking another look at test automation

»» Looking at the challenges of complex test
environments

»» Understanding how service virtualization
can help

22 Service Virtualization For Dummies, 2nd IBM Limited Edition

These materials are © 2017 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

the activity of testing is only one part of delivering high-quality
software. In order to deliver reliable, usable, available, maintain-
able, and scalable software that addresses business objectives,
there needs to be improved planning, collaboration, traceability,
and information accuracy throughout the application life cycle —
from requirements to deployment.

Too often, organizations are reactive in their approaches to
improving quality instead of implementing a proactive and opti-
mized quality process based on understanding changing require-
ments and business risks. Collaboration and traceability allow
teams to be proactive by having insight into what components of
the application have changed during the development effort. This
allows teams to focus testing on the specific areas of the applica-
tion that have changed and minimize risk to the business.

Even with the best quality management practices, software (and
hardware) can still be released into the marketplace with some
defects — many of which may go undetected prior to release. In
today’s world of accelerated software delivery, you can’t test every
code path and condition that a piece of software may encounter,
and let’s face it, today’s users have changed — they’re tolerant
(to a point) of some initial defects, but they expect these defects
to be resolved quickly through frequent releases.

To meet the demands of today’s end-user, the secret is to have
the necessary processes in place that allow for earlier detection,
isolation, and remediation of defects. And for those issues that do
escape into production, a strategy that addresses defects quickly
and gets those fixes to market faster is a must.

Service virtualization can help you improve your quality manage-
ment processes because it

»» Allows for earlier integration testing: Virtual components
can simulate service interfaces that the system under test
(SUT) needs to call on. You don’t wait until late in the
development life cycle to test the interfaces; you use a virtual
component(s) to test sooner. In fact, service virtualization
makes real continuous testing part of the regular build
process.

»» Accelerates test environment availability while lowering
costs: You can have a ready-made test environment in

CHAPTER 3 Escaping the Past 23

These materials are © 2017 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

relatively short order. Using virtual components to emulate
dependent environments allows testing to begin without
further delay. The cost of test environments — hardware,
software, and labor — is reduced.

»» Enables development to test earlier in the process:
Developers as well as Quality Assurance (QA) professionals
can make use of a shared set of virtual components to test
integrations earlier in the process, perform parallel develop-
ment, and deliver higher overall product quality.

Rethinking Test Automation
Test automation has been done the same way for many years,
typically involving a user interface (UI) based approach:

1.	 Wait for the UI to be stabilized.

2.	 Build up the test environment by deploying all the
components of the application once they’re ready.

3.	 Record user interaction via the UI.

4.	 Tweak the recordings, if needed, to improve test
scenarios.

5.	 Execute tests.

6.	 Reset the environment and rerun, hoping you don’t need
to do a lot of tweaking or rerecord.

7.	 Maintain a library of test scripts as the application
changes with each iteration, often by rerecording whole
scenarios.

UI test automation is faster to run than manual testing, so it can
be done more frequently. However, UI testing tends be fragile —
changes to the code often break tests, even when those changes
aren’t visible. This problem can be worse for scripts created by
recording user interactions. The trade-off made to mitigate the
cost of ongoing test maintenance is to wait until changes to the
UI are complete. Of course this introduces the risk that problems
aren’t found early enough in the development life cycle to be fixed
within the project’s original schedule.

24 Service Virtualization For Dummies, 2nd IBM Limited Edition

These materials are © 2017 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

The UI is also like the tip of an iceberg — the majority of code
and complexity hides below the application’s interface. The most
direct way to identify the root cause of a defect is to find it close
to where it was introduced, without other layers of the applica-
tion potentially masking what really went wrong (for example, by
not showing exceptions thrown by code to the user). This requires
taking a broader approach to automating test cases. Consider, for
example, testing each layer of the architecture independently.

Testing at the service or Application Programming Interface (API)
layer, the layer where components and applications “talk” to
each other, can improve testing efficiency and reduce business
risk because:

»» This is where applications often break — at the inter­
connection points between subsystems.

»» These boundaries often correspond with organizational and
schedule boundaries, so fixing problems here may be difficult
or expensive, especially if found late.

»» Service interfaces are, by nature, more stable than user
interfaces because many applications depend on the same
service specifications. Changes are typically well managed
between all stakeholders to avoid breakage in production.
As a result, automated tests at this layer require less
maintenance.

A natural synergy exists between service virtualization and auto-
mating tests of service interfaces. The tests drive a particular
service interface by generating requests and validating responses.
Virtual components receive these requests, emulate the real-
world service’s behavior, and provide the appropriate responses
on any number of supported protocols and in a variety of message
formats. Tools take advantage of this synergy by sharing protocol
definitions and data sets between virtual services and automated
service tests. In fact, one best practice is to create a test suite
against your service interfaces that can be used to validate both
the production component and the virtual component.

CHAPTER 3 Escaping the Past 25

These materials are © 2017 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Facing the Challenges of Complex
Test Environments

Creating test environments that host today’s complex applica-
tions can be difficult, especially in the case where the test applica-
tion interfaces with other internal and possibly external systems.
Other challenges include the following:

»» It can be expensive and time consuming to replicate an
entire production environment for the purpose of testing.
For example, a typical production server running Windows
Server 2012 can cost tens of thousands of dollars or more
depending on configuration. Capital costs can add up quickly
if many servers are needed.

»» It requires a lot of knowledge and technical skills to create
these environments. Configuring a test environment can
require application-specific, as well as system administrative,
expertise. Consider, for example, an application that
interfaces to an ERP system (SAP, Oracle, Siebel, or the like).
The application test team may not know how to deploy an
instance of the ERP system for testing.

»» It can often be costly and difficult to schedule time to test in
cases where third-party services are involved.

Some advanced developers may have tried to address the lack of a
complete test environment by creating their own ad-hoc “stubs”
or “mocks.” This approach may aid the developer with unit testing,
but rarely does it scale to support the entire team, for a few reasons:

»» Developing a realistic simulation to support all test cases and
test purposes is complicated and can quickly become a
major development and maintenance effort, diverting
development time away from the application.

»» Developers often need to change the underlying application
to use the mocks in place of the real components, diverging
the application under test from the one being readied for
production.

»» No infrastructure exists to support sharing these stubs
across the team.

»» Problems can easily be missed when testing relies on the
same developer mindset that created the code.

26 Service Virtualization For Dummies, 2nd IBM Limited Edition

These materials are © 2017 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Service Virtualization and
Complex Test Environments

Service virtualization is a technology that can help your organi-
zation become more efficient and quality focused in the face of
ever increasing complexity. With service virtualization, devel-
opers and testers create virtual components that can be shared,
enabling parallel development across the team. And because
virtual components emulate real-world services, applications,
or entire systems, they can help to remove delays in the test-
ing process. These components also run on commodity hardware
and decrease the cost of supporting multiple test environments,
which can decrease the concerns of operations related to capacity,
scalability, and security.

CHAPTER 4 Finding Your Way to Service Virtualization 27

These materials are © 2017 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Finding Your Way to
Service Virtualization

If you’ve been reading up to this point, you may now understand
the benefits of service virtualization and how it fits into the big
picture of software quality. You may also be wondering where

you should get started. On the surface, it may seem overwhelm-
ing. You may be tempted to randomly select one element to virtu-
alize just to see how service virtualization works. However, you
can definitely expect a better return on your investment if you
take a measured approach to evaluating your testing challenges
and let that guide you to make prioritized decisions on what
should be virtualized first.

In this chapter, I provide you with a way to analyze the services
you should virtualize. I give you more information about how
service virtualization and test automation are complementary,
and I describe how service virtualization helps throughout all the
phases of testing, from the unit test to the user acceptance test
and even the performance test.

Chapter 4

IN THIS CHAPTER

»» Identifying services to virtualize

»» Automating your tests

»» Virtualization for all testing purposes and
phases

28 Service Virtualization For Dummies, 2nd IBM Limited Edition

These materials are © 2017 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Identifying Services to Virtualize
To maximize success with service virtualization, you need to iden-
tify the right services to virtualize. How do you do this? To begin,
bring together the key development stakeholders involved in the
application life cycle and start thinking about where your orga-
nization experiences the most testing pain(s). Then, ask yourself
the following questions:

»» Do you have all the environments you need for integration
testing?

»» Are these test environments available to teams throughout
the development cycle?

»» Do you experience downtime due to unavailable test
environments?

»» How often does downtime occur? How long do your teams
usually have to wait?

»» What’s the impact on time and cost due to testing downtime?

»» Does your application interface with third-party services?

»» Do you need to pay for and schedule access to these
third-party interfaces prior to scheduling your tests? How
much does this cost?

»» Who controls the information needed for creating test
environments?

»» Do individuals or teams conflict with each other when
scheduling the sharing of test environments (or parts of a
test environment)?

Your responses to these questions help you prioritize a specific
area or areas where service virtualization could help. In fact, I
recommend several areas to start:

»» Start with the “low hanging fruit” where you get the
most benefit with the least amount of work: For exam-
ple, a web service defined in a web service description
language (WSDL) that returns data but doesn’t allow side
effects is an easy service to virtualize. There are no complex
state changes to model — just map the input arguments to
the data returned in the response. While this service is
simple and straightforward to create, it may actually remove

CHAPTER 4 Finding Your Way to Service Virtualization 29

These materials are © 2017 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

a test environment scheduling issue that could result in
project delays.

»» Focus on the conditions that are contributing to the
overall cost of testing: Middleware services are often good
candidates for virtualization. If the endpoint is an ERP
system, for example, you’ll need substantial hardware and
labor not to mention a reasonable data set to deploy a
copy of the system under test in the test environment.
Alternatively, you can simulate that endpoint.

»» Address dependencies on third-party services: Are you
subject to per-use charges when you access certain third-
party services? The same principle applies. It might be costly
to emulate because it’s complex, but it may be critical to do
so. This is where doing your homework with a cost benefit
analysis pays off.

The cost benefit analysis
The decision about what to virtualize often boils down to
performing a cost benefit analysis. The things that contribute to
cost are

»» Impact of unavailability: Lost team productivity and project
delays because dependent services/software weren’t
available for testing

»» Cost of the skilled resources: Acquiring and maintaining
staff with the necessary expertise required to set up and
maintain test environments

»» Underutilized test environments: Inefficient use of
expensive physical hardware, causing unnecessarily high
infrastructure costs

»» Cost of licenses: Software (operating systems, database
management systems, and so on) deployed in the physical
test lab environment or on a virtual machine

»» Cost of third-party service access fees: Charges applied
when an externally provided service is executed

Adopting service virtualization mitigates these costs and delivers
benefits, including infrastructure savings, increased productiv-
ity, and faster time to market — each of which contributes to

30 Service Virtualization For Dummies, 2nd IBM Limited Edition

These materials are © 2017 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

the overall ROI. You also want to consider more advanced system
dynamics when trying to identify what to virtualize.

Service volatility
Service volatility is about how often either the interface or behav-
ior of an application, system, or component changes. Upstream
components, the test environment, and tests all need to react to
these changes. You need to ensure that the change is handled in a
way that doesn’t disrupt quality or time to delivery. Consider the
following questions:

»» Is the dependent service still being developed and subject to
ongoing specification changes? You may choose to create a
virtual component that offers less effort to modify when
change is required but still allows integration testing to
proceed.

»» Is the dependency on a legacy application that seldom
changes? If so, you may create a virtual component to
simulate the entire application/system at the service
boundary.

»» Do your teams require slightly different implementations of
the same service? Virtual components allow you to model
and simulate specific behaviors to meet the needs of
multiple teams and assist with testing during parallel
development.

Impact of unavailability
What is the overall impact on the testing effort if a system, appli-
cation, or component isn’t available in the test environment? Some
missing components may only impact a few use cases, but others
could bring the whole application down and block all testing.

You have several things to consider when evaluating the impact of
an unavailable component:

»» How many testers will be idle, and for how long?

»» What test cases must be de-scoped (or delayed) if all the
components aren’t available?

All these factors have an associated cost. Virtualize those things
that unblock critical testing to reduce these costs.

CHAPTER 4 Finding Your Way to Service Virtualization 31

These materials are © 2017 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Cost to deploy or use
Make sure to calculate the cost of having to deploy the sys-
tem, application, or component. Determine how much it costs
to physically create a test environment. Some technologies are
certainly more expensive to deploy than others — even in test
environments. Or, perhaps you pay each time a third-party serv
ice is exercised. Putting a dollar value on the effort to create test
environments or execute pay-per-use services could make your
decision on what to virtualize very easy.

Complexity of the technology
While there’s support for virtualizing a large number of technolo-
gies, some technologies may be easier to virtualize than others.
In other cases, the technology itself may be easy to virtualize,
but the effort to emulate the business behavior of the service may
be more complicated. Rate the various technologies in the envi-
ronment by using scaling factor. The rating process will help you
compare the relative complexity and effort required to simulate
each dependency.

Doing the math
Planning is the name of the game for service virtualization, and
you want to map out your analysis. You may want to capture your
details in a table. Table 4-1 contains the set of components for
the sample application developed by Whiz Bang International
(introduced in Chapter 1). The technology used for each compo-
nent is listed under the Technology Used column. For instance,
the PurchaseStuff component uses SOAP over HTTPS. The impact
column describes the impact that an availability constraint or
another cost like paying a third-party vendor has on testing the
component. For example, it would cost $100,000 to physically
stand up an environment in order to test the TurnMeOn Provi-
sioning component. Or perhaps the environment already exists
but is unavailable due to scheduling conflicts. The cost of delays
in not being able to test is $100,000. The last column is the com-
plexity score for service virtualization. Here’s where you rate the
complexity of virtualizing a service. You can use a scale of 1–10 or
high, medium, and low; whatever you’re comfortable with is fine.
In this case we’re using a scale of 1–10 where 1 is low complexity
and 10 is very high complexity.

32 Service Virtualization For Dummies, 2nd IBM Limited Edition

These materials are © 2017 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

In this case it looks like the URGoodForIt service would be a good
candidate to virtualize. Why this one as opposed to the Purchas-
eStuff component? Both use the same technology: SOAP over
HTTPS. Both have an unavailability impact cost of $300,000. How-
ever, the PurchaseStuff service is four times more complicated
and will take longer to create. If you virtualize the URGoodForIt
service, you get the same amount of value ($300,000) with a frac-
tion of the effort. Of course, your numbers and implementations
may differ from Table 4-1, but in considering this approach and
sample data, I think you’ll get the idea of how to go through the
decision-making process in terms of what to virtualize.

In general, the more standard a technology or communication
protocol is, the more likely the virtualization tools are to support
it out of the box. Technologies such as SOAP and XML are almost
universal (although there will still be nuances), but sector-specific
standards such as SWIFT and FIX are less common. The key point
here is that the ROI for each tool will be different depending on
whether the protocol is supported out of the box, requires some
configuration, or requires an extension to be written to the tool

TABLE 4-1	 Components of Sample Whiz Bang
International Application

Technology
Used

Component/
Functionality

Impact of
Unavailability
+
Cost to
Deploy or Use

Complexity
Score for
Service
Virtualization
(1–10)

SOAP over
HTTPS

URGoodForIt Credit
Check Service

$300,000 1

SOAP over
HTTPS

PurchaseStuff
International
Shopping
Cart Service

$300,000 4

COBOL
Copybook over
MQ, 4 different
Copybooks

SendMeStuff Order
Handling Service

$500,000 3

Custom protocol
based on TCP/IP

TurnMeOn
Provisioning

$100,000 7

CHAPTER 4 Finding Your Way to Service Virtualization 33

These materials are © 2017 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

using an API. Some companies, such as IBM, are investing exten-
sively in technology to allow any protocol to be modeled without
the need for custom coding.

Looking into Test Automation Strategies
Many test automation projects focus on automating the user
interface (UI). However, this can be problematic, as discussed in
Chapter 3.

To remove testing delays associated with recording and exercis-
ing fragile user interfaces, consider automating tests at the serv
ice or application programming interface (API) layer instead of
relying solely on testing at the UI layer. It isn’t a coincidence
that this is the same layer discussed in the context of virtualiza-
tion. While service virtualization supports any kind of testing —
manual or automated, UI or API, functional or performance — it’s
also important to recognize the synergies with service testing and
the unique advantages of that approach:

»» Critical integration points are tested early, even before the UI
is available.

»» Tests that are less brittle as service interfaces are more
stable than user interfaces, especially after they’ve been
deployed into production.

»» Tests can act as part of the service contract, increasing clarity
across team or organization boundaries.

»» The same tests can verify the correctness of virtual compo-
nents as well as the real implementation.

»» Tests generating requests and validating responses are using
the same protocols as the virtual components. Therefore,
some of the work performed to create virtual components
and service tests is the same, and good tools allow you to
reuse that work.

»» It’s easier to isolate the cause of issues found at the service
layer because defects are discovered closer to the source of
the issue.

34 Service Virtualization For Dummies, 2nd IBM Limited Edition

These materials are © 2017 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Implementing Service Virtualization for
All Testing Purposes and Phases

There’s no way around it: You’re going to find defects when you
test. However, when you test later in the application life cycle,
odds are these defects may be more expensive to fix. Service vir-
tualization can help you to find errors and issues in all testing
phases.

Testing phases
There are various kinds of tests that are part of the application
development life cycle. The testing process generally looks some-
thing like Figure 4-1.

Traditionally, testing is done sequentially. Various kinds of tests
are deployed in succession, including the following:

»» Unit tests: Performed by developers to test small pieces
of code

»» Integration tests: Modules of code tested together

»» System tests: Testing the whole software per system
requirements

»» System integration tests: Testing interactions between
systems

»» User acceptance tests: Testing the system by clients against
requirements

»» Operability testing: Testing the availability of the compo-
nents that allow the application to run

FIGURE 4-1: Progression of testing phases during a project.

CHAPTER 4 Finding Your Way to Service Virtualization 35

These materials are © 2017 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Quality professionals often wait until System Integration Test-
ing (SIT) or User Acceptance Testing (UAT) to test the whole sys-
tem. And the reality is that defects will be discovered late in the
development process where they’re expensive to remediate. Costs
associated with finding defects in later test phases can rise by
orders of magnitude between each phase. Figure 4-2 illustrates
this concept.

Service virtualization unblocks end-to-end testing by removing
dependencies and enables finding defects earlier through the fol-
lowing ways:

»» Developers can begin validating integrations much earlier in
the application life cycle, expanding beyond unit testing and
increasing the level of testing performed in the development
process.

»» Testers can begin integration testing earlier and isolate
defects to specific areas of the application, decreasing the
remediation effort and avoiding the “big bang” integration
issues projects are often challenged with.

»» The entire development team can benefit by including
service virtualization and integration testing as part of the
continuous delivery process and getting immediate feedback
on the quality of automated builds.

If a blocking defect is discovered but can’t be fixed immediately,
consider using service virtualization to simulate the correct func-
tionality, allowing your team to proceed with testing. When the
defect is resolved, easily switch back to new source code and con-
tinue testing with the actual implementation.

FIGURE 4-2: The high costs of fixing defects during production.

36 Service Virtualization For Dummies, 2nd IBM Limited Edition

These materials are © 2017 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

In testing today’s composite applications, you’re typically vali-
dating a larger process made up of many pieces of functional-
ity, which is possible through an increasing level of application
interconnectivity and interdependence. As a result, not all of
the components are ready when needed, and they’re typically
brought together for system integration testing or user accep-
tance testing — near the end of the development effort — where
end-to-end testing can really begin.

Performance testing
Performance testing is a key part of a comprehensive testing pro-
cess. The reality is that teams typically defer performance testing
until later testing phases or ignore it all together — a practice that
can result in problems in production and damage to a company’s
reputation. Many performance issues can be associated with flaws
in the architecture or application design. Service virtualization can
help you discover architectural or design flaws earlier in the process
when it’s less costly than if you’d discovered them during UAT. Why?
Because you can performance test much earlier and simulate condi-
tions that are very difficult to create in normal deployments.

For example, when developing and deploying applications in the
cloud, you have little control over network latency. Imagine the
insight that could be gained by having the ability to test for condi-
tions requiring a delayed or immediate response. Service virtual-
ization gives you this ability.

I introduce an example application in Chapter 1. The company is
Whiz Bang International. If you read that chapter, Whiz Bang Inter-
national was testing a new application, and the requirement was
that 95 percent of all responses needed to be completed in four sec-
onds or less. An illustration of this concept is found in Figure 4-3.

The team already decided to virtualize the URGoodForIt Credit
Check service while this service was still under development. The
response time of that virtual component was set at one second
to reflect the service level agreement (SLA) with the provider.
Service virtualization allows performance testing to proceed ear-
lier because the other two components are ready for testing, and
the third can be simulated. During this testing, the team discov-
ered that another service (PurchaseMyStuff) had an issue. The
team responsible for PurchaseMyStuff had time to improve per-
formance, even before the URGoodForIt team had delivered its
implementation.

CHAPTER 4 Finding Your Way to Service Virtualization 37

These materials are © 2017 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Many interesting ways exist to leverage service virtualization in
performance testing. These include

»» Model the worst case scenario. Here you may want to
virtualize some back-end services and limit their throughput
to see how the overall user experience of your application is
impacted under load.

»» Find the next bottleneck. In this scenario, you may
virtualize some services with near unlimited throughput to
see which components become the next constraints on
overall system performance. This can help evaluate the
impact of improving the implementation of a particular
service before investing in development.

FIGURE 4-3: Measuring the cumulative response time simulating a third-
party service.

38 Service Virtualization For Dummies, 2nd IBM Limited Edition

These materials are © 2017 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

To ensure that actual systems operate as expected, the real com-
ponents should be validated. You may turn off all the virtual
components in late stage SIT or UAT, but after all the earlier inte-
gration testing enabled by service virtualization, there should be
few surprises.

Negative testing
Negative testing focuses on how an application or component
handles unexpected and error conditions. Examples include sup-
plying invalid inputs (for example, what happens when you try
to deposit a negative sum into a bank account) or a service unex-
pectedly fails (a server goes down). In all cases, the application
should handle the error gracefully. However, it can be very dif-
ficult to create some of these conditions when testing complex
applications. Sometimes it takes a complicated sequence of events
and set of test data to produce a particular error. In other cases,
you may not be able to put the system into a particular state —
such as shutting down a key service — because it would disrupt
others who are sharing the same test environment. In addition,
you may not know how to reproduce an error — it’s an intermit-
tent defect in a particular component — but you want to test that
your application can work around it.

Service virtualization makes it easier to support negative testing
because you can change the behavior of a virtual component to
produce the error condition you want. Different testers or even
different test cases can see different behaviors without impact-
ing others by reconfiguring their test environment with different
mixes of virtual components.

CHAPTER 5 Putting Service Virtualization to Work 39

These materials are © 2017 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Putting Service
Virtualization to Work

Service virtualization can enhance and support your compa-
ny’s quality management strategy with all types of testing.
While your testing processes are likely to evolve over time,

you may begin using service virtualization on an incremental
basis so you can realize immediate benefits from this approach. In
this chapter, I first describe the steps involved in creating your
initial virtual components. Second, because the services you’re
emulating (and the tests you run) vary in complexity, I provide a
range of behavioral models for virtual components. I also share
some requirements that a service virtualization solution should
meet. Finally, I discuss how you go about deploying and provi-
sioning virtual components and the best practices for running
tests. By the end of the chapter, if you read the entire thing, you
should have a pretty good idea of what’s involved in creating and
executing virtual components.

Understanding Your Architecture
Traditionally, when quality professionals test today’s complex
applications, they treat everything behind the user interface (UI)
as a black box. This approach allows the tester to focus on the

Chapter 5

IN THIS CHAPTER

»» Getting a grip on your current
architecture

»» Understanding the different services to
virtualize

»» Provisioning virtual components

40 Service Virtualization For Dummies, 2nd IBM Limited Edition

These materials are © 2017 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

end-user experience, which is certainly an important element of
your company’s quality management strategy. However, certain
limitations exist with traditional UI testing given the increasing
complexity of application environments. In order to provide a
more complete understanding of any problems that could impact
the user experience, the quality professional needs to follow a
white box approach — looking inside the box. Knowledge of the
underlying architecture is required if you want to virtualize serv
ices or automate integration tests.

The different boxes include the following:

»» Black box: What’s a black box? The application code is
considered a black box to UI testers because they only need
to know the inputs (to the application) and the outputs (from
the application). The data transformations or analytic
computations that generate the outputs that the users see
aren’t relevant.

»» White box: What’s a white box? Testers follow a white box
approach when they examine and test the internal structure
or workings of an application.

To test at the service layer, you need to follow a white box
approach. Getting your application working correctly requires
that you ensure the interconnected and interdependent elements
all work together. In other words, you need to understand the
components of your system and the connections between com-
ponents. It’s going to be important to understand aspects of the
architecture of the system that work below the user interface
level, either to virtualize services or automate integration tests.
To do this, you need to answer the following kinds of questions:

»» What are the components?

»» How do the components talk to each other?

»» What’s the technology for getting messages from one point
to another?

»» What are the protocols (for example, the details of these
messages)?

»» Where are the endpoints?

CHAPTER 5 Putting Service Virtualization to Work 41

These materials are © 2017 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

For example, I gave you an ecommerce example in Chapter 1. Feel
free to flip back there now and take a look at Figure 1-1. This example
contains a business logic layer, a presentation tier (mobile devices,
laptops), and the back-end services (order handling, credit check,
and so on). Some of the back-end services are developed internally
and others are provided by third parties. The middle layer uses JMS
to publish messages. Those messages are formatted as XML and
described by a schema (expressed in .xsd files).

The components I describe in this section are a few examples
of what you may find in your own system. Hundreds of differ-
ent types of transports and protocols exist, but virtualizing these
components will be easier if the software you select for service
virtualization includes support for your specific technologies right
out of the box.

Communicating between components
In order to virtualize a component, you need to understand how
that component communicates with other components in the over-
all application. These include web services, middleware, and data-
bases. Details of the communication will go into a model of your
application environment. Messages — units of information — are
sent from or received by components according to various com-
munication patterns:

»» Request/Response: This type of communication is defined
by a behavior pattern where one request generates one
response. Request/Response is the foundation of data
communication for the Internet. Web services and Hypertext
Transfer Protocol (HTTP) use this type of communication. For
example, when you type a Uniform Resource Locator (URL)
into a web browser, the browser makes an HTTP GET
request to a web server based on the URL. The server
responds to that request with the contents of the page
(often HyperText Markup Language or HTML), which the
browser renders. Each request generates one synchronous
response.

»» Publish/Subscribe: This pattern is a little bit different.
A component publishes a request for processing to a
message queue. Another component subscribes to the
message queue, watches for incoming messages, and
processes requests from the queue. If a response to the

42 Service Virtualization For Dummies, 2nd IBM Limited Edition

These materials are © 2017 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

original requestor is required, the same technique is used on
a different message queue. In this situation, the processing
component publishes a response message to a queue
subscribed to by the originating component. Requests and
responses are asynchronous. IBM WebSphere MQ is an
example of a message-oriented middleware that uses this
type of communication.

For example, consider the business process for approving an
insurance claim. The approval process may require the
gathering of additional data to support the claim. This may
take more time than the requesting service can reasonably
wait, so the request is published and the requestor can go
on to do other things. When the approval processing is
complete, the verdict is published for the requestor to see.

»» Query/Result: This communication pattern is characterized
by a behavior pattern where one query request generates
one synchronous response in the form of a result set.
Programming models for relational databases, such as JDBC,
use this pattern to execute queries. It’s worth distinguishing
from Request/Response because, unlike HTTP, it abstracts
away any network communication, which may or may not be
required.

Transporting messages
Communication protocols use various types of transports for
sending messages and receiving responses. These transports —
methods of communication between components — describe how
the messages get from one component to another. Several exam-
ples include

»» Hypertext Transfer Protocol (HTTP/https): This protocol
is foundational for data communication for the web. It is
Request/Response protocol based on Transmission Control
Protocol/Internet Protocol (TCP/IP).

»» Simple Object Access Protocol (SOAP): SOAP is a simple
Extensible Markup Language (XML)–based protocol to enable
applications to exchange information over HTTP.

»» Enterprise Service Bus (ESB): The ESB is an architectural
component designed to monitor and control the communi-
cation between business services. IBM’s WebSphere MQ,
Software AG’s WebMethods Integration Server, and the open

CHAPTER 5 Putting Service Virtualization to Work 43

These materials are © 2017 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

source Mule are examples of ESBs. A standard Application
Programming Interface (API) such as the Java Message
Service (JMS) API is often used to access these systems.

»» Java Database Connectivity (JDBC): JDBC is an API that
uses Structured Query Language (SQL) to connect relational
databases and other data sources.

Messaging standards
Many industries have created standards for the details of the
messages used in their industry. These standards include speci-
fications for the message schema, which are rules regarding the
format of the message (such as structure of fields, types, and val-
ues). Standards help to ensure that messages pass accurately and
quickly between components. These messaging standards are a
good fit for service virtualization. Some examples include

»» A web service defined with a Web Services Description
Language (WSDL): Web services are defined with
WSDL. Regardless of the messaging schema deployed,
the WSDL can be used to describe endpoints and their
messages.

»» Society for the Worldwide Interbank Financial
Telecommunication (SWIFT) and Financial Information
eXchange (FIX): SWIFT and FIX protocols are specific to the
financial services industry. They provide a standardized
and secure way to transfer and communicate financial
information.

»» Health Level 7 (HL 7): HL 7 is a standard used for messaging
in healthcare environments.

Finding the endpoints
Applications need to know how to reach the services they depend
on (the endpoints). Examples of endpoints include a web service
URL, a Java Messaging Service (JMS) endpoint, and a JDBC Con-
nection String. Some service virtualization technology has the
capability to observe and manage communication between com-
ponents without requiring your team to make any changes to the
endpoints in the application. This really simplifies the process
of configuring a test environment to take advantage of virtual
components.

44 Service Virtualization For Dummies, 2nd IBM Limited Edition

These materials are © 2017 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Defining Virtual Components
The first step in defining virtual components is to model the
architecture with enough detail to expose the boundaries where
virtual components can be introduced. It’s great if you have a tool
that can display the services and components in the system under
test and the dependencies between them visually. It’s even bet-
ter if the tool separates the logical view (components, services,
and protocols) from the physical view (specific endpoint URLs,
hostnames, IP addresses, and so on). This enables the tool to sup-
port multiple environments running the same components. They
share a logical view, but each environment has different physical
characteristics. For example, the IP addresses of servers in pro-
duction are different from each test/pre-production environment.

Synchronizing with external sources
Much of the information needed to paint this picture may be
available in the environment and development assets you already
have. You may be able to synchronize with those external sources
to populate the architectural views. Some examples include WSDL
files and middleware environments.

Recording existing services
You need to define the behavior of your virtual component.
Recording an existing service is a great way to capture a lot of the
information — including behavior and data — that you need to
create test cases and virtual components very quickly. It can also
help you decide what needs to be simulated.

For example, some protocols are big, with dozens of messages in
the protocol. In practice, your application may not use them all.
You can learn what really happens under the covers by recording a
session in a production or pre-production environment. Then use
this new information to scope your service virtualization effort.
The same goes for data.

Here’s the value of recording:

»» You can discover what messages are actually being shared
and the format of those messages (for example, the credit
check service may offer a method to request an appeal, but

CHAPTER 5 Putting Service Virtualization to Work 45

These materials are © 2017 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

your application may never do this, and therefore, your
virtual component doesn’t need to model its behavior).

»» You can discover the range of data actually used (for
example, the credit check service may return a credit score,
and your virtual service needs to know a reasonable range
of responses for that value).

»» You can understand message exchange patterns. These are
sequences of messages. Often you make a request, get a
response, and something in that response becomes input
to the next request (for example, you use a web service to
place an item in a shopping cart and get back the ID of the
shopping cart; you then need to use that ID to make another
request to view the contents of the cart).

So, what are the important considerations to think about as you’re
driving the system during recording? I give them to you in this
section.

What if you can’t record? You don’t need to record in order to get
started with service virtualization. Virtual components can also be
created from the design specifications before the service has been
fully developed.

Bootstrapping virtual component behavior
Service virtualization tools look at the inputs to a component and
the outputs from a component. Here is an example to illustrate
how you can bootstrap a virtual component.

Consider a web service for looking up the zip code for locations in
the United States. The request has two parameters: city and state.
The response is a string containing five digits. A recording of the
traffic to this service may look like Figure 5-1.

FIGURE 5-1: A sample recording of
the traffic for a ZIP code service.

46 Service Virtualization For Dummies, 2nd IBM Limited Edition

These materials are © 2017 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

A recording of the inputs (city and state) and the outputs (ZIP
code) provides adequate information to bootstrap or quickly
capture virtual component behavior.

Understanding the mechanics of recording
Make sure that the recording technology doesn’t interfere with
your application’s deployment. In addition, virtual components
should be easy to introduce into your environment. For example,
your testing process may be slowed down if you need to make
manual adjustments to allow for communication between the vir-
tual component and the rest of the system. You don’t want to take
the time to manually reconfigure your application’s deployment
prior to using a virtual component. Also, if you need to change
the application’s code in order to pick up an accurate recording,
it may interfere with your productivity and success with service
virtualization.

Behavior of virtual components
Virtual components exhibit a range of behaviors including the
following:

»» Simple: A simple behavior is deterministic — the virtual
component emulates a web service by returning the same
response for a certain input every time. For example, assume
you have an enterprise travel app called Hotel Finder that
communicates with multiple services to determine hotel
availability. It performs a request to find a hotel. To test this
app, each time you request a hotel, you receive the same
response — ABC Hotel. That’s enough for some test cases.

»» Non-deterministic: Here there’s a little bit more variability.
The service may get the stock quote for Big Company, for
example. You want the virtual component to generate a
different number each time you request the service. For the
purposes of testing, you don’t care what the number is as long
as it’s within a reasonable range. In this case, there’s no
business logic, but the variation enables more realistic testing.

»» Data driven: This behavior expands the richness of data
available from the virtual component. Input and output data
are specified in an external data source such as a spreadsheet
or database. The service inputs are used to look up the
corresponding outputs. An example of this type of behavior
may be a hotel finder service where you need to include

CHAPTER 5 Putting Service Virtualization to Work 47

These materials are © 2017 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

12 cities and three to four hotels in each city. It will take
approximately 42 (12 x 31⁄2) rows of data to build a table of
responses, but this variety could be necessary to make sure
the service communicates with other services in the right way.

»» Model driven/stateful: In a stateful service, one request
may change state on the server that must be maintained
and factored into responses to subsequent requests. These
changes can be modeled with a state transition diagram. For
example, say you have an ecommerce application and you
want to add an item to a cart. You make a request against a
service to add the particular item to the shopping cart. The
virtual component needs to remember the contents of the
cart to correctly respond to requests that examine the cart,
check out, and so on. You want to have a tool that makes it
easy to specify this behavior in the tool.

»» Behavioral: This category applies to components that don’t
follow the other more typical behavior patterns. You want
an easy way to add an arbitrary behavior to your virtual
components through scripting or coding.

Coding adds complexity. Sometimes you can avoid simulat-
ing complex behaviors by creating separate virtual compo-
nents, with different behaviors, for different test goals.
Service virtualization makes it easy to switch between
components as testing needs change, and you can avoid
coding a lot of conditional behavior.

For managing virtual component test data, here is a checklist of
important capabilities:

»» Data extracted from production environments must be
presented in an easy-to-use way.

»» Data must be captured during recording in a way that allows
for easy creation of a virtualized service.

»» Data should be able to be privatized or masked when
needed (for example, you virtualize a service that retrieves
medical records — you need realistic data for your test, but
you need to privatize/redact it for security and compliance
purposes).

»» Multiple types of boundary conditions should be tested (for
instance, will an empty shopping cart be sufficient for your
test environment, or do you need to include items in the
shopping cart?).

48 Service Virtualization For Dummies, 2nd IBM Limited Edition

These materials are © 2017 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

»» Externalize data from virtual components to allow for easy
updating. It will be easy for the author of a new test scenario
to add relevant data to a spreadsheet.

DETERMINING THE RIGHT TOOL
FOR THE JOB
When selecting a service virtualization solution, recognize the needs
of different roles within your organization. Not everyone needs to
define virtual components, but many testers need to access virtual
components in their test environments. To ensure that you can easily
and successfully deploy service virtualization, your virtualization
solution needs to provide functionality or support for several key
elements:

•	A method for observing and recording messaging conversations

•	A tool for creating and maintaining virtual components

•	A hosting environment for virtual components

•	An easy way for testers to configure their environment with virtual
components

You want a virtual service solution that’s flexible enough to allow you
to switch back and forth between the real component and virtual
components when testing. For example, 90 percent of your testing is
supported by a virtual component (say the Hotel Finder example from
this section). If that testing passes, the last 10 percent requires the
real service (say Expedia). You want both sets to use the same build to
avoid risk that something changed between builds. In other solutions,
such as ad hoc developer-written mocks, the application must be
changed, rebuilt, and redeployed. With tools such as IBM Rational
Test Workbench and IBM Rational Test Virtualization Server, you don’t
need to change your application code to toggle service invocations
between the real component and a virtual component; simply go to
the control panel and click a button. You can even define rules in your
virtual component to selectively respond to some incoming requests
while letting others pass through to a real system. This is particularly
useful when you’re trying to limit access to the real system for cost or
performance reasons, but there are a few behaviors that are difficult
to simulate.

CHAPTER 5 Putting Service Virtualization to Work 49

These materials are © 2017 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Provisioning Virtual Services
In order to provision virtual services, you need two key capabilities:

»» A way to develop virtual services in a personal environment
on your desktop

»» A shared environment for service virtualization to use across
your development team

Your developers and testers need a shared infrastructure for host-
ing virtual components. In addition, you need to maintain mul-
tiple environments in parallel with different mixes of real and
virtual components. An environment binds a set of variables from
the logical view of your system to specific virtual and physical
resources (identified by URLs, host addresses, ports, or other con-
nection settings). By creating multiple environments (for exam-
ple, developer private, SIT, and UAT), you can run tests against
different configurations during each phase of the product life
cycle. Figure 5-2 shows how the services in the Whiz Bang exam-
ple from Chapter 1 are bound in three different environments.

At this point you need to be able to control which traffic is routed
to a real service and which is routed to virtual services across your
environments. After you have your environment established, you
should be able to run all your tests without knowing the differ-
ence between real and virtual services. Your service virtualiza-
tion tool should allow this change in routing without requiring
any modification of the application code or configuration. You can
adjust virtual components throughout.

FIGURE 5-2: Provisioning services (virtual and real) across test environments.

50 Service Virtualization For Dummies, 2nd IBM Limited Edition

These materials are © 2017 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

RUNNING TESTS AND
EVALUATING RESULTS
You can easily run tests by taking advantage of service virtualization.
With service virtualization, all your tests — such as manual, auto-
mated, user interface, and integration — can be run in the same
manner as in a non-virtualized test environment. Ideally the tool used
to create your virtual service also includes a capability for running
tests and reporting on the test execution results. Or better yet: The
tool is integrated with a quality management solution to manage and
report on execution results in a single centralized repository accessi-
ble by all. The same quality management best practices that apply in
non-virtualized test environments are also important in virtualized
test environments.

CHAPTER 6 Measuring ROI 51

These materials are © 2017 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Measuring ROI

The first part of this book provides insight into how service
virtualization can help you reduce cost, increase quality,
and reduce the risk in delivering high-quality, complex

applications. Now that you’re ready to move forward, you find out
about building your business case for service virtualization.

In this chapter, I review some of the key benefits of service vir-
tualization and their potential contribution to your return on
investment (ROI). In addition, I provide a checklist to help you
choose your tools carefully and invest wisely.

Building Your Business Case
The purpose of a business case is to help management under-
stand the costs and benefits of a new initiative prior to making
an investment. You can develop a business case to determine if
implementing service virtualization is economically viable for
your organization and to assess how it compares to other invest-
ment alternatives. You need to measure how service virtualization
enhances your testing process and also, more broadly, look at how
service virtualization improves your application life cycle man-
agement processes. Because the results are measureable, quick,
and real, your business case should help convince management

Chapter 6

IN THIS CHAPTER

»» Developing a business case

»» Realizing the financial benefits of service
virtualization

»» Being successful with your service
virtualization solution

52 Service Virtualization For Dummies, 2nd IBM Limited Edition

These materials are © 2017 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

to make service virtualization a priority investment for your
organization.

Your business case should include three main components:

»» The rationale supporting your decision to implement service
virtualization

»» The estimated costs for the implementation

»» The estimated benefits of the implementation

Make sure to develop your own list of projected benefits to help
measure your ROI. While many companies have a very long list of
benefits, to get you started, here are a few important ones:

»» Increased team velocity

»» Decreased cost of quality

»» Reduced project risk

»» Improved level of testing

»» Defect removal efficiency

Why service virtualization?
How much testing downtime occurs due to your team’s inability
to access systems? How much money is wasted as development
teams wait to begin testing? Service virtualization is important
because it helps with the areas in your test process that cause the
greatest pain. You need to understand the costs that you can attri-
bute to delays in testing. Refer to your internal company analy-
sis on this topic to provide a business and technical rationale for
service virtualization in your organization.

In addition, get an idea of how often you need to access third-
party interfaces prior to scheduling your tests. Understand how
much you’re currently paying third-party service providers to
access their test environments. In essence, this component of
your business case is the place to begin justifying the recommen-
dation to implement service virtualization. Identify what your
testing environment is like now and the biggest problems that
you want to fix. Make a convincing case regarding the importance
of streamlining the software development process and how it can
be accomplished.

CHAPTER 6 Measuring ROI 53

These materials are © 2017 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Also consider referencing Chapter 4 to help with the first com-
ponent of your business case. In Chapter 4, you find a number of
questions to assess the need for service virtualization.

Estimating the costs of implementing
service virtualization
The costs of implementing service virtualization are relatively
easy to identify. They include the cost of buying licenses for the
software, the hardware cost to host the solution (if hardware
isn’t already available), and any associated implementation costs.
There will also be some time spent training the development
team on the new tools. Your estimate for these expenses will vary
depending on the software solution you decide to purchase and
its ease of use.

Estimating the benefits
of implementing service
virtualization
You want to use this component of your business case to articu-
late the costs you can avoid by implementing service virtualiza-
tion. In addition, you want to provide insight into how you expect
to gain efficiency and productivity. The next section, “Quantify-
ing the Benefits” presents some real-world examples of the ben-
efits potential.

Quantifying the Benefits
Testing makes up a significant portion of the cost to develop
your application, and if you can eliminate some of these costs,
by adopting service virtualization, you stand to realize a large
financial benefit. There will also be benefits based on the reduced
testing time and improved quality of your applications. These
benefits can be significant, but some aren’t easily quantified in an
ROI calculation. For example, how do you measure the benefit of
getting to market with an innovative product before your compe-
tition? What’s the monetary value of decreasing the duration of a
testing cycle?

54 Service Virtualization For Dummies, 2nd IBM Limited Edition

These materials are © 2017 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Regardless of how you test or the complexity of your applications,
many testing costs can quickly be eliminated with a mature serv
ice virtualization solution implementation. If you are one of the
many organizations currently struggling with testing complex
applications or you have dependencies on third-party services,
you can expect a significant ROI indeed!

Some of the most important benefits you’ll want to measure to
estimate your ROI include the factors in this section.

Eliminating or lowering costs
associated with traditional
test environments
The complexity of today’s composite applications requires mod-
ern test environments to enable multiple servers hosting a variety
of application software, including http servers, application serv-
ers, middleware, databases, and more, installed on a variety of
operating systems. The costs for setting up and maintaining such
an environment include everything from the initial hardware
and software costs to ongoing costs of server administration and
maintenance.

For the purposes of this discussion, assume a test environment
requires five servers: http server, application server, middleware
server, database server, and ERP system. Four of the servers have
a cost of $5,000 per month, and the ERP system costs $20,000 per
month. The team is considering the use of service virtualization
to emulate the database and ERP system during early test phases.
For every month that testing can proceed without these physical
implementations, the savings would be $25,000.

Alternatively, you may decide to avoid some of the high costs of
purchasing and maintaining a mainframe environment by lever-
aging a hosted environment. In this scenario, you pay monthly
access fees that may vary depending on the million instructions
per second (MIPS) used. Regardless of how you pay for the main-
frame, you probably depend on software hosted in such an envi-
ronment, and there’s a cost associated with testing.

What if you could decrease your monthly mainframe testing costs
by 50 percent or more? Assume a typical monthly cost of using
a mainframe environment for testing is $15,000. Decreasing the

CHAPTER 6 Measuring ROI 55

These materials are © 2017 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

cost of testing on the mainframe by half could deliver $90,000 in
annual savings.

Now consider the access fees you may be paying to third-party
vendors. These could be charges to access their service in a dedi-
cated testing environment on a cost per transaction. You can
decrease these access fees significantly with service virtualiza-
tion. For example, the access fee for third-party hosted services is
$30,000 per month. By virtualizing the services and testing with
virtual components, you can decrease this amount by 80 percent.
This results in a savings of $24,000 per month and potentially
$300,000 per year.

Time spent provisioning test
environments
Using expensive resources to set up, tear down, and reset test
environments greatly increases your cost of testing. With aver-
age full time equivalent (FTE) rates of $104,000 for testers and
$135,000 for developers, reducing the effort for managing test
environments by 80 percent could result in savings of $80,000 to
$110,000 per resource per year. As a result, testers and develop-
ers can refocus their efforts from managing test environments to
improving the level of testing.

This new efficiency in standing up the testing environment frees
up your highly-skilled teams to spend more time on revenue-
generating activities. By adopting service virtualization, you can
become more efficient and get higher quality software to market
faster.

Finding and resolving defects early
in the development process
One of the most important metrics to include when measuring
your ROI is the reduction in software defects. Defects are expen-
sive to fix and can have an obvious negative impact on customer
satisfaction. With regard to software defects, remember these
facts:

»» Software defects are the biggest man-made problem
plaguing software development organizations.

56 Service Virtualization For Dummies, 2nd IBM Limited Edition

These materials are © 2017 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

»» If you catch defects early in the software development
process, it’s easier and less costly to resolve them.

»» The key to finding defects earlier is to begin testing earlier —
moving testing to the left.

For the purposes of an ROI calculation, assume 100 defects are
discovered during user acceptance testing (UAT) of a single
release for a combined remediation cost of $200,000 or $2,000
per defect. And in production, the cost per defect increases by a
factor of 10 or $20,000 per defect. Fifteen defects are discovered
in production for a cost to fix of $300,000, bringing the total cost
for repairing defects to $500,000. If the number of defects found
in UAT and production was reduced by 70 percent, the savings
potential in this scenario is at least $350,000.

This figure doesn’t account for the potentially significant finan-
cial impact of customer dissatisfaction or lost revenue. The bene-
fit of improved customer satisfaction could make the savings even
more substantial. A service virtualization solution puts control in
the hands of the tester to begin testing earlier and isolate defects
for faster remediation at a much lower cost.

When you tally the dollar amounts from the three very quan-
tifiable measures, the savings are significant and continue to
increase with each software release where service virtualization is
used. Two additional factors to consider as you build the business
case aren’t as easy to quantify, but can have a big impact. These
factors are faster time to market and process improvements.

Faster time to market
If you begin your testing earlier and you test more efficiently, you
can innovate faster and get your products to market before your
competitors. Consider your revenue potential if you’re first to
market with an innovative solution.

Process improvements
Inefficiencies in your testing process are very costly. Consider how
much you spend on labor and associated costs while your testers
wait for dependent software to be deployed or for a shared test
environment to become available. Every minute of tester down-
time that you can avoid adds to your ROI for service virtualization.

CHAPTER 6 Measuring ROI 57

These materials are © 2017 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Some companies find that tester downtime is so high that it
sharply reduces productivity for the software development and
deployment teams. In some situations, this wait time can repre-
sent as much as 30 percent of a tester’s work hours — or $30,000
spent on unproductive time for a tester with an annual salary of
$100,000. Employing service virtualization allows organizations
to get their testers testing instead of waiting.

Selecting a Solution
Prior to selecting your service virtualization software, make sure
you understand what it takes to be successful with the solution
and how it meets your company’s specific requirements. Think
of the additional costs you may incur if the capabilities you need
aren’t supported by the software. If the solution you select falls
short on the capabilities you need, you won’t realize the ROI you
expect.

To help you compare solutions, ask yourself the following
questions:

»» Is the solution easy to use?

»» How much and what level of training is required?

»» Can you create virtual components from recordings or
design specifications?

»» Does the solution support manual, automated (integration
and functional), and performance test types?

»» Can you create virtual components that allow you to test
different scenarios including happy path, alternative flow,
and negative testing?

»» Can you create virtual components that enable you to test
what-if conditions?

»» Does the solution offer the capability to quickly deploy and
manage virtualized services through an administrative
console?

»» Can you toggle between live systems and virtual services
without having to reconfigure your application deployment?

58 Service Virtualization For Dummies, 2nd IBM Limited Edition

These materials are © 2017 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

»» Can the solution manage the complexity of your application
environment (ranging from data-driven and correlated
response sequences to full stateful database emulation)?

»» Can you automatically schedule and execute tests supported
by virtual components upon the availability of a new
application build?

»» Can you create, modify, and deploy virtual components
without requiring your teams to learn new programming
skills?

»» How easy will it be to share and reuse virtual components
across teams?

»» Can your teams develop in parallel environments?

»» Will your solution scale to accommodate very large teams as
you grow?

»» Does the solution require a long-term professional services
engagement to help you get started and continue to move
forward?

Technology is constantly changing, so make sure that the soft-
ware vendor you select is committed to delivering new function-
ality regularly to ensure the solution remains current. To help
speed your adoption process and keep your productivity levels up,
make sure your vendor provides excellent support with access to
trained technicians.

CHAPTER 7 Ten Key Points for Success with Service Virtualization 59

These materials are © 2017 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Ten Key Points for
Success with Service
Virtualization

Service virtualization has the capability to dramatically increase
efficiency in the way you test software. Service virtualization
enables you to rethink your approach to testing and adopt

processes that are optimized, setting you free of testing bottlenecks
and allowing you to focus on creativity and innovation. You recover
time that was typically spent standing up complex test environ-
ments and continuously testing through the development life cycle.
You explore advanced testing scenarios sooner without having to
reinvent the wheel. The return on your service virtualization invest-
ment is quick, and the benefits to your development teams and your
business are real.

Rethink Your Approach to Testing
Service virtualization supports any type of testing methodology,
and your goal should be to accelerate test execution — manual
or automated — in a way that’s repeatable and offers improved

Chapter 7

IN THIS CHAPTER

»» Start off on the right foot

»» Put control in the hands of the tester

»» Increase productivity by building skills

60 Service Virtualization For Dummies, 2nd IBM Limited Edition

These materials are © 2017 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

efficiency. The most appropriate place to start is by understand-
ing your testing methodology and determining where service
virtualization can increase team velocity while empowering your
team to deliver higher-quality software. After that, you may want
to look at testing the exchange of messages and behavior between
the integrated components of your composite applications. Why
take a black box approach to testing and execute tests from the
user interface when you have the opportunity to validate at the
integration layer? Service virtualization allows you to emulate
dependent, yet unavailable, software and test integrations earlier
and isolate defects for faster resolution.

Plan for Flexibility
Begin by identifying your biggest pain points — what challenges
are keeping you from performing your tests at the right time and
with the right level of detail? Teams can reduce testing bottle-
necks by starting with virtualizing the components that are the
most stable and the most expensive to stand up in test environ-
ments. If some components will be delivered late, use service vir-
tualization to help simulate that missing functionality. However,
as priorities shift over time, teams also need to be flexible. You
may not be able to set all your service virtualization requirements
upfront because priorities may shift over time.

Start simple and take on more complex service virtualization as
your team becomes more comfortable with the improved pro-
cess. Continuously review your needs and make adjustments to
improve efficiency.

Practice Controlled Integration
Too often development teams delay integration testing until the
end of development and bring all components together hoping
for the best. Unfortunately, things don’t always go as planned.
New defects, design flaws, architectural issues, or massive fail-
ures discovered during late development stages will put a proj-
ect at risk. A virtual component, simulating the real software’s
required behavior, offers a new level of control to the test team.
Systems can be isolated and subsystems simulated using virtual

CHAPTER 7 Ten Key Points for Success with Service Virtualization 61

These materials are © 2017 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

components to make the unavailable available. Performance tests
can be run earlier to validate design and architectural decisions.
And when the new or modified software is finally available to test,
development teams can introduce the new source code in a con-
trolled fashion by turning off the virtual component and testing
the real implementation.

Test Continuously from Development
to Production

You need a straightforward way to continuously test your code
so you can avoid introducing errors that become more difficult to
find and fix later on. The challenge with this is that testers often
lack access to critical elements at the right time to make continu-
ous integration testing a reality. Service virtualization makes this
possible. Creating virtual components that operate the same as
the real implementation makes it easier for your testers to test
in sync with development. Instead of encountering roadblocks to
continuous integration testing, your teams will be able to test at
a more continuous level in many more environments than were
previously possible.

Externalize Your Test Data
Valid test data is an integral part of testing and service virtualiza-
tion. However, making sure that your testing process incorpo-
rates data that’s accurate as well as manageable in both size and
complexity isn’t a simple task. Your data may come from mul-
tiple systems and multiple sources. Therefore, you should exter-
nalize the data, decoupling it from the virtual component itself.
This makes it easier for resources unfamiliar with the virtualiza-
tion solution implemented to enhance the data. As a result, you
can create a data set that’s accurate and consistent with the real
application without requiring technical knowledge of the service
virtualization solution itself. If you extract data from a produc-
tion environment, you need to make sure you use this data in a
responsible way that protects personal information.

62 Service Virtualization For Dummies, 2nd IBM Limited Edition

These materials are © 2017 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Explore Advanced Test Scenarios
Service virtualization provides a way for you to do important
system level testing that you always wanted to do but couldn’t
because it was too costly or time consuming. Or maybe you didn’t
have access to all the components you needed. Today’s complex
software applications need more complete and advanced testing
across the life cycle.

With the increasing focus on quality, you need to be able to start
testing — even negative and performance testing — much sooner.
Service virtualization enables you to simulate what-if situations
and stress your system to test for errors outside of the production
deployment. In addition, you can quickly implement alternative
paths in a virtual component, allowing you to create situations that
regularly occur in the “real” world but are challenging to reproduce.

Avoid Reinventing the Wheel
Too many times, developers and testers will start from scratch in
an attempt to increase testing efficiency, improve defect identi-
fication, or fix issues faster. For example, you may start out on
a path to solve testing bottleneck issues by manually authoring
simulation stubs. With service virtualization, it’s much more
productive and cost effective to implement a commerical solution
that’s built on proven best practices to create virtual components.
Leveraging technology built on a highly abstracted model is more
effective than coding stubs manually. Organizations should look
for a supported solution that offers out-of-the-box support for
their middleware, protocols, and formats. This allows developers
and testers to do what they were hired to do, which is focus on
improving the business value of the resulting product and deliv-
ering higher quality software.

Service Virtualization Isn’t Just
for Testers

Application quality doesn’t just fall on the tester or a group of
testers within an organization. Everyone should contribute to
improving the quality of the software delivered. In today’s world,

CHAPTER 7 Ten Key Points for Success with Service Virtualization 63

These materials are © 2017 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

programmers execute tests as part of their development respon-
sibilities, and they’re subject to the same constraints as testers.
These programmers may test the code they wrote without vali-
dating integrations. Because much of the dependent software isn’t
available for testing, the programmers will leave the integra-
tion testing for the test team. However, integration testing is too
important to leave for later in the development cycle.

Service virtualization is the enabler allowing development shops
to move integration testing farther to the left, simulate the miss-
ing dependencies, and get insight into the quality of the deliver-
able by incorporating automated testing as part of the build cycle.

Share Virtual Components across
the Enterprise

Your service virtualization solution should include an easy way
to share virtual components across development, operations, and
test teams in your organization. Because testing needs to be a
continuous process, it’s important that all members of your soft-
ware development and operations teams work in unison with each
other. Service virtualization supports cross-disciplinary teams in
ways that can change the dynamics of testing in your organiza-
tion and assist you in being compliant with industry standards.
Everyone needs to work together, including analysts and develop-
ers and programmers and testers, for maximum efficiency while
sharing knowledge and expertise across your entire organization.

Enhance Team Productivity
by Building Skills

Adopting new technology is only valuable when team members
are well trained in its use. Too often a busy application develop-
ment team doesn’t take the time it needs for training, which can
lead to a drop in productivity. Putting in the effort to help team
members build the right mix of skills should result in a big pay-
off. Your developers and testers need to have a good understand-
ing of the technologies used in your application’s implementation
and how service virtualization will be included. When all team

64 Service Virtualization For Dummies, 2nd IBM Limited Edition

These materials are © 2017 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

members work together to solve the problems of testing complex
composite applications, you’re in a better position to gain value
from service virtualization.

Adopting service virtualization is more than just installing a tool.
If your teams stay current on the topic of service virtualization
and build expert level skills, you’ll see a reduction in testing bot-
tlenecks and improvements in productivity and software quality.

These materials are © 2017 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Notes

These materials are © 2017 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Notes

http://Dummies.com

WILEY END USER LICENSE AGREEMENT
Go to www.wiley.com/go/eula to access Wiley’s ebook EULA.

http://www.wiley.com/go/eula

	Title Page
	Copyright Page
	Table of Contents
	Introduction
	About This Book
	Icons Used in This Book

	Chapter 1 What is Service Virtualization?
	Defining Service Virtualization
	Service Virtualization in Action
	The Whiz Bang International example
	A large financial services organization

	Seeing How Service Virtualization Differs from Other Types of Virtualization
	Exploring Where Service Virtualization Can Add Value
	Testing
	Development
	Non-production usage

	Benefits of Service Virtualization
	Reducing costs
	Improving productivity
	Reducing risk
	Increasing quality

	Chapter 2 The Driving Forces of Change
	Meeting the Rising Expectations of Enterprise Applications
	Embracing Service-Oriented Architectures
	The Rise of Mobile Applications
	Agile Transformation Continues

	Chapter 3 Escaping the Past
	Improving Quality in the Application Life Cycle
	Rethinking Test Automation
	Facing the Challenges of Complex Test Environments
	Service Virtualization and Complex Test Environments

	Chapter 4 Finding Your Way to Service Virtualization
	Identifying Services to Virtualize
	The cost benefit analysis
	Doing the math

	Looking into Test Automation Strategies
	Implementing Service Virtualization for All Testing Purposes and Phases
	Testing phases
	Performance testing
	Negative testing

	Chapter 5 Putting Service Virtualization to Work
	Understanding Your Architecture
	Communicating between components
	Transporting messages
	Messaging standards
	Finding the endpoints

	Defining Virtual Components
	Synchronizing with external sources
	Recording existing services
	Behavior of virtual components

	Provisioning Virtual Services

	Chapter 6 Measuring ROI
	Building Your Business Case
	Why service virtualization?
	Estimating the costs of implementing service virtualization
	Estimating the benefits of implementing service virtualization

	Quantifying the Benefits
	Eliminating or lowering costs associated with traditional test environments
	Time spent provisioning test environments
	Finding and resolving defects early in the development process

	Selecting a Solution

	Chapter 7 Ten Key Points for Success with Service Virtualization
	Rethink Your Approach to Testing
	Plan for Flexibility
	Practice Controlled Integration
	Test Continuously from Development to Production
	Externalize Your Test Data
	Explore Advanced Test Scenarios
	Avoid Reinventing the Wheel
	Service Virtualization Isn’t Just for Testers
	Share Virtual Components across the Enterprise
	Enhance Team Productivity by Building Skills

	EULA

Service.
Virtualization

