
REPORT

Istio
Explained
Getting Started with Service Mesh

Lin Sun & Daniel Berg

Compliments of

Preview
Edition

Run Istio on the IBM Cloud to connect, manage and
secure microservices at scale. Explore tutorials,
sample code and tech talks to learn more.

ibm.biz/oreilly-istio-tech

http://ibm.biz/oreilly-istio-tech
http://ibm.biz/oreilly-istio-tech

This Preview Edition of Istio Explained, Chapter
1, is a work in progress. The final report is

currently scheduled for release in November
2019 and will be available at learning.oreilly.com
and through other retailers once it is published.

Lin Sun and Daniel Berg

Istio Explained
Getting Started with Service Mesh

Boston Farnham Sebastopol TokyoBeijing Boston Farnham Sebastopol TokyoBeijing

https://learning.oreilly.com/

978-1-492-07393-2

[LSI]

Istio Explained
by Lin Sun and Daniel Berg

Copyright © 2020 IBM Corporation. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA
95472.

O’Reilly books may be purchased for educational, business, or sales promotional use.
Online editions are also available for most titles (http://oreilly.com). For more infor‐
mation, contact our corporate/institutional sales department: 800-998-9938 or cor‐
porate@oreilly.com.

Editors: Virginia Wilson and John
Devins
Interior Designer: David Futato

Cover Designer: Karen Montgomery
Illustrator: Rebecca Demarest

November 2019: First Edition

Revision History for the Early Release
2019-09-30: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781492073956 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Istio Explained,
the cover image, and related trade dress are trademarks of O’Reilly Media, Inc.

The views expressed in this work are those of the authors, and do not represent the
publisher’s views. While the publisher and the authors have used good faith efforts
to ensure that the information and instructions contained in this work are accurate,
the publisher and the authors disclaim all responsibility for errors or omissions,
including without limitation responsibility for damages resulting from the use of or
reliance on this work. Use of the information and instructions contained in this
work is at your own risk. If any code samples or other technology this work contains
or describes is subject to open source licenses or the intellectual property rights of
others, it is your responsibility to ensure that your use thereof complies with such
licenses and/or rights.

This work is part of a collaboration between O’Reilly and IBM. See our statement of
editorial independence.

http://oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781492073956
https://oreil.ly/editorial-independence
https://oreil.ly/editorial-independence

Table of Contents

Preface. v

1. Introduction to Service Mesh. 7
Challenges Managing Microservices 7
What is a Service Mesh anyway? 8
How Does a Service Mesh Work? 9
Service Mesh Ecosystem 11
Conclusion 16

iii

Preface

Microservices can be complicated and difficult to manage. The
increase use of containers and cloud have increased the distributed
nature of applications and has further complicated development
teams’ ability to understand and control interactions between serv‐
ices within these environments. These complexities have given rise
to a new solution called a service mesh which helps teams manage
the interactions between microservices.

Who This Book is For
We wrote this short book for developers and operators, however,
anyone responsible for the delivery of microservices will find the
material valuable. We assume you are just learning about Istio and
service mesh or you have been recently introduced to Istio and look‐
ing for a getting started guide.

What You Will Learn
In the pages that follow we will give you a solid background into the
challenges of microservices, explain what a service mesh is, describe
how a service mesh works, and explore the current service mesh
landscape. Starting with Chapter 2, we’ll use Istio as our main ser‐
vice mesh implementation to explain how to set up and use a service
mesh. We’ll describe the Istio architecture and explore Istio’s observ‐
ability, traffic management and security capabilities.

You don’t have to understand and consume all service mesh features
at once. You can instead adopt features incrementally and still enjoy
some of the benefits service mesh offers. To that end, we take an

v

incremental approach to teaching you how to adopt a service mesh
like Istio, our goal being to set you up for gradual adoption so you
can see benefits as quickly as possible.

Why Istio?
While there are many service mesh options to choose from, as you’ll
see in Chapter 1, we are personally most familiar with Istio and so
chose to illustrate the benefits service mesh can offer through Istio’s
features. We encourage you to use the information we provide in
this book to evaluate and choose the right solution for your needs.

Prerequisites
The working examples in the book build on Kubernetes for manag‐
ing the sample’s containers and Kubernetes serves as the platform
for Istio itself. To get the most out of the working examples, it would
be helpful for you to have a basic understanding of Kubernetes. To
get quickly up to speed, we recommend that you check out this
Kubernetes tutorial: Kubernetes 101. As with any adoption process
of a new technology, you are likely to run into trouble with configu‐
ration or setup. We provide a chapter that introduces techniques and
commands that may help you troubleshoot issues that you may
encounter on your journey to adopt service mesh.

vi | Preface

https://www.ibm.com/cloud/garage/content/course/kubernetes-101/0

CHAPTER 1

Introduction to Service Mesh

In this chapter we explore the notion of a service mesh and the vast
ecosystem that has emerged in support of service mesh solutions.
Organizations face many challenges when managing services espe‐
cially in a cloud-native environment. We are introducing service
mesh as a key solution on your cloud-native journey because we
believe that a service mesh should be a serious consideration for
managing complex interactions between services. An understanding
of service mesh and its ecosystem will help you choose an appropri‐
ate implementation for your cloud solution.

Challenges Managing Microservices
Microservices are an architecture and development approach that
breaks down business functions into individually deployable and
managed services. We view microservices as loosely coupled compo‐
nents of an application that communicate with each other using well
defined APIs. A key characteristic of microservices is that you
should be able to update them independent from one another which
enables smaller and more frequent deployments. Having many
loosely coupled services that are independently and frequently
changing does promote agility but it also presents a number of man‐
agement challenges.

1. Observing interactions between services can be complex when
you have many distributed, loosely coupled components.

7

2. Traffic management at depth becomes more important to
enable specialized routing for A/B or canary deployments
without impacting clients within the system.

3. Securing communication by encrypting the data flows is more
complicated when the services are decoupled and not part of the
same binary process.

4. Managing timeouts and communication failures between the
services can lead to cascading failures and is more complicated
to get correct when the services are distributed.

Many of these challenges can be resolved directly in the services
code. However, adjusting the service code puts a massive burden on
you to properly code solutions to these problems and it requires
each microservice owner to agree on the same solution approach to
assure consistency. Solutions to these types of problems are complex
and it is extremely error prone to rely on application code changes
to provide the solutions. Removing the burden of codifying solu‐
tions to these problems is a primary reason we have seen the intro‐
duction of the service mesh.

What is a Service Mesh anyway?
A service mesh is a programmable framework that allows you to
observe, secure, and connect microservices. A service mesh doesn’t
establish connectivity between microservices but, instead, it has pol‐
icies and controls that are applied on top of an existing network to
govern how microservices interact. Generally a service mesh is
agnostic to the language of the application and can be applied to
existing applications usually with little to no code changes.

A service mesh, ultimately, shifts responsibilities out of the applica‐
tion and moves that responsibility to the network. This is accom‐
plished by injecting behavior and controls within the application
that are then applied to the network. This is how things such as met‐
rics collecting, communication tracing, and secure communication
can take place without changing the applications themselves. As sta‐
ted earlier, a service mesh is a programmable framework. This
means that you can declare your intentions and the mesh will ensure
that your declared intentions are applied to the services and net‐
work. A service mesh simplifies the application code making it eas‐
ier to write, support, and develop by removing complex logic that

8 | Chapter 1: Introduction to Service Mesh

normally has to be bundled in the application itself. Ultimately a
service mesh allows you to innovate faster.

How did we get here?
Netflix was a pioneer in developing the early frameworks for man‐
aging microservices as part of the Netflix OSS or Open Source Soft‐
ware using components such as Asgard (control plane), Eureka
(service registry), Zuul (load balancer gateway), and Ribbon (client-
side load balancer). These early frameworks were implemented as a
series of libraries written in Java. To make use of their features, you
had to modify your Java application by adding the necessary Netflix
OSS libraries and adjusting the application logic to make use of the
types and methods within these libraries. This approach worked
well if you were developing Java applications and if you were will‐
ing to adjust the code.

Recent years have given rise to the use of containers and Kuber‐
netes (container orchestration) as the basis for microservices. Using
containers has made it simpler to develop applications using multi‐
ple languages (e.g., Python, Golang, Java, etc). Containers also pro‐
vided opportunities for standardizing operational capabilities as
more features were being abstracted out of the application code and
moved into the container platform. These conditions helped to
usher in the modern service management system which we now
call a service mesh.

How Does a Service Mesh Work?
Many service mesh implementations have the same general refer‐
ence architecture (see Figure 1-1). A service mesh will have a control
plane to program the mesh and client-side proxies in the data
plane (shown below the dashed line) which serve as the control
point for securing, observing, and routing decisions between serv‐
ices. The control plane transfers configurations to the proxies in
their native format. The client-side proxies are attached to each
application within the mesh. Each proxy intercepts all inbound and
outbound traffic to and from its associated application. By intercept‐
ing traffic, the proxies have the ability to inject behavior on the com‐
munication flows between services. Here is a list of behaviors that
commonly found in a service mesh implementation.

How Does a Service Mesh Work? | 9

https://netflix.github.io
https://kubernetes.io
https://kubernetes.io

• Traffic shaping with dynamic routing controls between services
• Resiliency support for service communication such as circuit

breakers, timeouts, and retries
• Observability of traffic between services
• Tracing of communication flows
• Secure communication between services

In Figure 1-1, you can see that the communication between two
applications such as App1 and App2 is executed via the proxies
versus directly between the applications themselves as indicated by
the red arrows. By having communication routed between the
proxies, the proxies serve as a key control point for performing
complicated tasks such as initiating TLS handshaking for encryp‐
ted communication (shown on the red line with the lock in Figure
1-1) Since the communication is performed between the proxies,
there is no need to embed complex logic in the applications them‐
selves. Each service mesh implementation option has various fea‐
tures but they all share this general approach.

Figure 1-1. Anatomy of a Service Mesh

10 | Chapter 1: Introduction to Service Mesh

Service Mesh Ecosystem
You may find navigating the service mesh ecosystem to be a bit
daunting because there are many different implementation choices.
While most choices share the same reference architecture shown in
Figure 1-1, there are variations to approaches and project structure
you should consider when making your service mesh selection.
Here are some questions to ask yourself when selecting a service
mesh implementation.

• Is it an open-source project governed by a diverse contributor
base?

• Does it use a proprietary proxy?
• Is the project part of a foundation?
• Does it contain the feature set that you need and want?

The fact that there are many service mesh options validates the
interest of service mesh and it shows that the community has not
selected a de facto standard as we have seen with other projects such
as Kubernetes for container orchestration. Your answers to these
questions will have an impact on the type of service mesh that you
prefer whether it is a single vendor controlled or a multi-vendor,
open source project. Let’s take a moment to review the service mesh
ecosystem and describe each implementation so that you have a bet‐
ter understanding of what is available.

Envoy
Envoy proxy is an open source project originally created by the folks
at Lyft. Envoy proxy is an edge and service proxy that was custom
built to deal with the complexities and challenges of cloud native
applications. While Envoy itself does not constitute a service mesh,
it is definitely a key component of the service mesh ecosystem. What
you will see from exploring the service mesh implementations is that
the client-side proxy from the reference architecture in Figure 1-1 is
often implemented using an Envoy proxy.

Envoy is one of the six Graduated projects in the Cloud Native
Computing Foundation (CNCF). The CNCF is part of the Linux
foundation and it hosts a number of open source projects that are
used to manage modern cloud native solutions. The fact that Envoy
is a CNCF graduated project is an indicator that it has a strong com‐
munity with adopters using Envoy proxy in production settings.

Service Mesh Ecosystem | 11

https://envoyproxy.io
https://eng.lyft.com
https://www.cncf.io
https://www.cncf.io

While Envoy was originally created by Lyft, the open source project
has grown to a diverse community as depicted in the company con‐
tributions in the CNCF DevStats graph shown in Figure 1-2.

Figure 1-2. Envoy Twelve Month Contribution Distribution

Istio
The Istio project is an open source project co-founded by IBM and
Google in 2017. Istio makes it possible to connect, secure, and
observe your microservices while being language agnostic. Istio has
grown to have contributions beyond just IBM and Google with con‐
tributions from VMware, Red Hat, and Aspen Mesh. Figure 1-3
shows the company contributions over the past twelve months using
the CNCF DevStats tool. The recent open-source project named
Knative builds upon Istio as well to provide tools and capabilities to
build, deploy, and manage serverless workloads. At the time of writ‐
ing this book, Istio was not contributed to the Cloud Native Com‐
puting Foundation (CNCF) but many of the components that Istio
uses are in the CNCF such as Envoy, Kubernetes, Jaeger, and Prome‐
theus. Istio is listed as part of the CNCF Cloud Native Land‐
scape under the Service Mesh category.

12 | Chapter 1: Introduction to Service Mesh

https://envoy.teststats.cncf.io/d/4/company-statistics-by-repository-group?orgId=1&from=now-1y&to=now
https://istio.io
https://istio.teststats.cncf.io/d/4/company-statistics-by-repository-group?orgId=1&from=now-1y&to=now
https://knative.dev
https://www.cncf.io
https://www.cncf.io
https://landscape.cncf.io
https://landscape.cncf.io

Figure 1-3. Istio Twelve Month Contribution Distribution

The Istio control plane extends the Kubernetes API server and uti‐
lizes the popular Envoy proxy for its client-side proxies. Istio sup‐
ports mTLS communication between services, traffic shifting, mesh
gateways, monitoring and metrics with Prometheus and Grafana, as
well as custom policy injection. Istio has installation profiles such as
demo and production to make it easier to provision and configure
the Istio control plane for specific use cases.

Consul Connect
Consul Connect is a service mesh that is developed by Hashicorp.
Consul Connect extends Hashicorp’s existing Consul offering which
has service discovery as a primary feature as well as other built-in
features such as a key-value store, health checking, and service seg‐
mentation for secure TLS communication between services. Consul
Connect is available as an open-source project with Hashicorp itself
being the predominate contributor. Hashicorp has an enterprise
offering for Consul Connect for purchase with support. At the time
of writing this book, Consul Connect was not contributed to the
CNCF or another foundation. Consul is listed as part of the CNCF
Cloud Native Landscape under the Service Mesh category.

Consul Connect uses Envoy as the sidecar proxy and the Consul
server as the control plane for programming the sidecars. Consul
Connect includes secure mTLS support between microserves and
observability using Prometheus and Grafana projects. The secure
connectivity support leverages the Hashicorp Vault product for
managing the security certificates. Recently, Hashicorp has intro‐

Service Mesh Ecosystem | 13

https://envoyproxy.io
https://www.consul.io/docs/connect/index.html
https://landscape.cncf.io
https://landscape.cncf.io
https://www.vaultproject.io

duced L7 traffic management and mesh gateways into Consul Con‐
nect as beta features.

Linkerd
The Linkerd service mesh project is an open-source project as well
as a CNCF incubating project. The predominate contributors to the
Linkerd project are from Buoyant as shown in the twelve month
CNCF DevStats company contribution graph shown in Figure 1-4.
Linkerd has the key capabilities of a service mesh which includes
observability using Prometheus and Grafana, secure mTLS commu‐
nication, and the project recently added support for service traffic
shifting. The client-side proxy used with Linkerd is proprietary to
the Linkerd project itself written in Rust. Linkerd provides an injec‐
tor to inject proxies during a Kubernetes pod deployment based on
an annotation to the Kubernetes pod specification. Linkerd also
includes a UI dashboard to view and configure settings of the mesh.

Figure 1-4. Linkerd One Year Contribution Distribution

App Mesh
App Mesh is a cloud service hosted by AWS to provide a service
mesh with application-level networking support for compute serv‐
ices within AWS such as Amazon ECS, AWS Fargate, Amazon
EKS, and Amazon EC2. As the project URL suggests, AWS App
Mesh is not open source and is proprietary to Amazon. App Mesh
does utilize the Envoy proxy for the sidecar proxies within the
mesh which does have the benefit that it may be compatible with
other AWS partners and open source tools. It appears that App
Mesh has similar routing concepts as the Istio control plane which
is not surprising since Istio serves as a control plane for Envoy

14 | Chapter 1: Introduction to Service Mesh

https://linkerd.io
https://linkerd.teststats.cncf.io/d/4/company-statistics-by-repository-group?orgId=1&from=now-1y&to=now
https://www.rust-lang.org
https://aws.amazon.com/app-mesh/

proxy. There is no mention of secure mTLS communication sup‐
port between services at this time. The focus of App Mesh appears
to be primarily traffic routing and observability.

Kong
Kong’s service mesh builds upon the Kong edge capabilities for
managing APIs and has delivered these capabilities throughout the
entire mesh. While Kong is an open source project, it appears that
the contributions are heavily dominated by Kong members. Kong is
not a member of a foundation but it is listed as part of the CNCF
Cloud Native Landscape under the API Gateway category. Kong
does provide Kong Enterprise which is a paid product with support.

Much like all the other service mesh implementations, Kong has
both a control plane to program and manage the mesh as well as a
client-side proxy. In Kong’s case the client side proxy is unique to
the Kong project. Kong includes support for end-to-end mTLS
encryption between services. Kong promotes their extensibility fea‐
ture as a key advantage. You can extend the Kong proxy using Lua
plugins to inject custom behavior at the proxies.

AspenMesh
AspenMesh is unlike the other service mesh implementations
because ApsenMesh is a supported distribution of the Istio project.
AspenMesh does have many open source projects on Github but
their primary direction is not to build a new service mesh imple‐
mentation but rather to harden and support an open source service
mesh implementation through a paid offering. AspenMesh hosts
components of Istio such as Prometheus and Jaeger making it easier
to get started and use over time. They have features above and
beyond the Istio base project such as a UI and dashboard to view
and manage Istio resources. AspenMesh has introduced additional
tools such as Istio Vet which is used to detect and resolve misconfi‐
gurations within an instance of Istio. AspenMesh is an example
where there are new markets emerging to offer support and build
upon source service mesh implementation such as Istio.

Service Mesh Interface
Service Mesh Interface or SMI is a relatively new specification that
was announced at KubeCon EU 2019. SMI is spearheaded by Micro‐

Service Mesh Ecosystem | 15

https://konghq.com/solutions/service-mesh/
https://landscape.cncf.io
https://landscape.cncf.io
https://www.lua.org
https://aspenmesh.io/
https://github.com/aspenmesh/istio-vet
https://smi-spec.io/

soft with a number of backing partners such as Linkerd, Hashicorp,
solo.io, and VMware. SMI is not a service mesh implementation;
however, SMI is attempting to be a common interface or abstraction
for other service mesh implementations. If you are familiar with
Kubernetes then SMI is similar in concept to what Kubernetes has
with CRI or the Container Runtime Interface which provides an
abstraction for the container runtime in Kubernetes with implemen‐
tations such as docker and containerd. While SMI may not be
immediately applicable for you, it is an area worth watching to see
where the community may head as far as finding a common ground
for service mesh implementations.

Conclusion
The service mesh ecosystem is vibrant and you have learned that
there are many open source projects as well as vendor specific
projects that provide implementations for a service mesh. As we
continue to explore service mesh more deeply, we will turn our
attention to the Istio project. We have selected the Istio project
because it uses the Envoy proxy, it is rich in features, it has a diverse
open source community, and, most importantly, we both have expe‐
rience with the project.

16 | Chapter 1: Introduction to Service Mesh

About the Authors
Lin Sun is a Senior Technical Staff Member and Master Inventor at
IBM. She is a maintainer on the Istio project and also serves on the
Istio Steering Committee and Technical Oversight Committee. She
is passionate about new technologies and loves to play with them.
She holds 150+ patents issued with USPTO.

Daniel Berg is an IBM Distinguished Engineer responsible for the
technical architecture and delivery of the IBM Cloud Kubernetes
Service and Istio. Daniel has deep knowledge of container technolo‐
gies including Docker and Kubernetes and has extensive experience
building and operating highly available cloud-native services. Daniel
is a member of the Technical Oversight Committee for the Istio.io
open source service mesh project and he is responsible for driving
the technical integration of Istio into IBM Cloud.

	Cover
	IBM
	Copyright
	Table of Contents
	Preface
	Who This Book is For
	What You Will Learn
	Why Istio?
	Prerequisites

	Chapter 1. Introduction to Service Mesh
	Challenges Managing Microservices
	What is a Service Mesh anyway?
	How Does a Service Mesh Work?
	Service Mesh Ecosystem
	Envoy
	Istio
	Consul Connect
	Linkerd
	App Mesh
	Kong
	AspenMesh
	Service Mesh Interface

	Conclusion

	About the Authors

