
Netcool/OMNIbus
Version 7 Release 4

ObjectServer HTTP Interface Reference
Guide

SC27-5612-01

���

Netcool/OMNIbus
Version 7 Release 4

ObjectServer HTTP Interface Reference
Guide

SC27-5612-01

���

Note
Before using this information and the product it supports, read the information in “Notices” on page 55.

This edition applies to version 7, release 4 of IBM Tivoli Netcool/OMNIbus (product number 5724-S44) and to all
subsequent releases and modifications until otherwise indicated in new editions.

© Copyright IBM Corporation 1994, 2013.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

About this publication v
Intended audience v
What this publication contains v
Publications v
Accessibility vii
Tivoli technical training vii
Support information vii
Conventions used in this publication viii
List of abbreviations ix

Chapter 1. Overview of the ObjectServer
HTTP interface 1
Enabling the HTTP interface and OSLC interface in
the ObjectServer 1

ObjectServer properties that control the HTTP
interface and OSLC interface 2

Enabling and configuring the IBM JazzSM service
provider registry 5

registry.oslc table 6

Chapter 2. HTTP interface URIs. 7
Table collection services. 7

Table collection services: GET request 7
Table collection services: GET response 8
Table collection services: POST request 9
Table collection services: POST response 10
Table collection services: PATCH request. . . . 11
Table collection services: PATCH response . . . 12
Table collection services: DELETE request . . . 13
Table collection services: DELETE response . . . 13

Row element services 14
Row element GET request 17
Row element GET response 18
Row element PATCH request 19
Row element PATCH response 19
Row element DELETE request 20
Row element DELETE response 21

SQL command factory 22
SQL command factory POST request 22
SQL command factory POST response 23

System information services 24
GET collection request 24
GET collection response 25
GET element request 26
GET element response 26

Chapter 3. Common behaviors 29
HTTP and HTTPS support 29
HTTP response codes 29

Query parameters 30
Authentication mechanisms 31
Success JSON message payload. 32
Error JSON message payload 32
Message encryption 33
Accept MIME types 33
Content MIME types 33
Response caching 33

Appendix A. Example JSON payloads 35
Example JSON row set: GET. 35
Example JSON row set: PATCH 36
Example JSON row set: POST 37
Example SQL command factory: POST 38
Example JSON success message 38
Example JSON error message 38

Appendix B. HTTP request and
response examples 39
Example table collection POST request 39
Example table collection POST response 40
Example table collection GET request. 40
Example table collection GET response 40
Example table collection PATCH request. 42
Example table collection PATCH response 42
Example table collection DELETE request 43
Example table collection DELETE response 43
Example row element GET request via RowSerial . 43
Example row element GET via RowSerial response 43
Example row element GET request via KeyField . . 45
Example row element GET response via key field . 45
Example row element PATCH request 47
Example row element PATCH response 48
Example row element DELETE request 48
Example row element DELETE response. 49
Example SQL command factory POST request . . . 49
Example SQL command factory POST response . . 49
Example system information GET request 49
Example system information GET response 50
Example system information element GET request 50
Example system information element GET response 50
JSON configuration file with MIME type settings
and HTTP headers 51

Appendix C. List of abbreviations . . . 53

Notices 55
Trademarks 57

© Copyright IBM Corp. 1994, 2013 iii

iv IBM Tivoli Netcool/OMNIbus: ObjectServer HTTP Interface Reference Guide

About this publication

Tivoli Netcool/OMNIbus is a service level management (SLM) system that delivers
real-time, centralized monitoring of complex networks and IT domains.

The IBM Tivoli Netcool/OMNIbus Administration Guide provides detailed information
about administrative tools, functions, and capabilities of Tivoli Netcool/OMNIbus.
In addition, it is designed to be used as a reference guide to assist you in
designing and configuring your environment.

Intended audience
This publication is intended for administrators who are responsible for configuring
Tivoli Netcool/OMNIbus.

What this publication contains

This publication contains the following sections:
v Chapter 1, “Overview of the ObjectServer HTTP interface,” on page 1: Describes

the HTTP interface and how to enable it by setting ObjectServer properties.
v Chapter 2, “HTTP interface URIs,” on page 7: Describes the URIs that give

access to table data and to rows in tables, execute SQL commands via HTTP, and
give access to system information.

v Chapter 3, “Common behaviors,” on page 29: Lists the HTTP and HTTPS
version support, query parameters, authentication mechanisms, and so on.

v Appendix A, “Example JSON payloads,” on page 35: Sample JSON payloads.
v Appendix B, “HTTP request and response examples,” on page 39: Sample HTTP

requests and responses.
v “List of abbreviations” on page ix: Terms and abbreviations that are used in this

publication.

Publications
This section lists publications in the Tivoli Netcool/OMNIbus library and related
documents. The section also describes how to access Tivoli publications online and
how to order Tivoli publications.

Your Tivoli Netcool/OMNIbus library

The following documents are available in the Tivoli Netcool/OMNIbus library:
v IBM Tivoli Netcool/OMNIbus Installation and Deployment Guide, SC14-7526

Includes installation and upgrade procedures for Tivoli Netcool/OMNIbus, and
describes how to configure security and component communications. The
publication also includes examples of Tivoli Netcool/OMNIbus architectures and
describes how to implement them.

v IBM Tivoli Netcool/OMNIbus Administration Guide, SC14-7527

© Copyright IBM Corp. 1994, 2013 v

Describes how to perform administrative tasks using the Tivoli
Netcool/OMNIbus Administrator GUI, command-line tools, and process control.
The publication also contains descriptions and examples of ObjectServer SQL
syntax and automations.

v IBM Tivoli Netcool/OMNIbus Web GUI Administration and User's Guide, SC14-7528
Describes how to perform administrative and event visualization tasks using the
Tivoli Netcool/OMNIbus Web GUI.

v IBM Tivoli Netcool/OMNIbus User's Guide, SC14-7529
Provides an overview of the desktop tools and describes the operator tasks
related to event management using these tools.

v IBM Tivoli Netcool/OMNIbus Probe and Gateway Guide, SC14-7530
Contains introductory and reference information about probes and gateways,
including probe rules file syntax and gateway commands.

v IBM Tivoli Monitoring for Tivoli Netcool/OMNIbus Agent User's Guide, SC14-7532
Describes how to install the health monitoring agent for Tivoli
Netcool/OMNIbus and contains reference information about the agent.

v IBM Tivoli Netcool/OMNIbus Event Integration Facility Reference, SC14-7533
Describes how to develop event adapters that are tailored to your network
environment and the specific needs of your enterprise. This publication also
describes how to filter events at the source.

v IBM Tivoli Netcool/OMNIbus Error Messages Guide, SC14-7534
Describes system messages in Tivoli Netcool/OMNIbus and how to respond to
those messages.

v IBM Tivoli Netcool/OMNIbus Web GUI Administration API (WAAPI) User's Guide,
SC22-7535
Shows how to administer the Tivoli Netcool/OMNIbus Web GUI using the XML
application programming interface named WAAPI

v IBM Tivoli Netcool/OMNIbus ObjectServer HTTP Interface Reference Guide,
SC27-5613Describes the URIs and common behaviors of the Application
Programming Interface (API) that is called the ObjectServer HTTP Interface.
Describes how to enable the API and provides examples of JSON payloads, and
HTTP requests and responses.

v IBM Tivoli Netcool/OMNIbus ObjectServer OSLC Interface Reference Guide,
SC27-5613Describes the services, resources, and common behaviors of the Open
Services for Lifecycle Collaboration (OSLC) Application Programming Interface
(API) that is called the ObjectServer OSLC Interface. Describes how to enable the
API and provides examples of service provider definitions, RDF/XML payloads,
and HTTP requests and responses.

Accessing terminology online

The IBM Terminology Web site consolidates the terminology from IBM product
libraries in one convenient location. You can access the Terminology Web site at the
following Web address:

http://www.ibm.com/software/globalization/terminology

Accessing publications online

IBM posts publications for this and all other Tivoli products, as they become
available and whenever they are updated, to the Tivoli Information Center Web
site at:

vi IBM Tivoli Netcool/OMNIbus: ObjectServer HTTP Interface Reference Guide

http://www.ibm.com/software/globalization/terminology

http://publib.boulder.ibm.com/infocenter/tivihelp/v3r1/index.jsp

Note: If you print PDF documents on other than letter-sized paper, set the option
in the File > Print window that allows Adobe Reader to print letter-sized pages on
your local paper.

Ordering publications

You can order many Tivoli publications online at the following Web site:

http://www.ibm.com/e-business/linkweb/publications/servlet/pbi.wss

You can also order by telephone by calling one of these numbers:
v In the United States: 800-879-2755
v In Canada: 800-426-4968

In other countries, contact your software account representative to order Tivoli
publications. To locate the telephone number of your local representative, perform
the following steps:
1. Go to the following Web site:

http://www.ibm.com/e-business/linkweb/publications/servlet/pbi.wss
2. Select your country from the list and click Go. The Welcome to the IBM

Publications Center page is displayed for your country.
3. On the left side of the page, click About this site to see an information page

that includes the telephone number of your local representative.

Accessibility
Accessibility features help users with a physical disability, such as restricted
mobility or limited vision, to use software products successfully.

With this product, you can use assistive technologies to hear and navigate the
interface. You can also use the keyboard instead of the mouse to operate some
features of the graphical user interface.

Tivoli technical training

For Tivoli technical training information, refer to the following IBM Tivoli
Education Web site:

http://www.ibm.com/software/tivoli/education

Support information
If you have a problem with your IBM software, you want to resolve it quickly. IBM
provides the following ways for you to obtain the support you need:

Online
Go to the IBM Software Support site at http://www.ibm.com/software/
support/probsub.html and follow the instructions.

IBM Support Assistant
The IBM Support Assistant (ISA) is a free local software serviceability
workbench that helps you resolve questions and problems with IBM
software products. The ISA provides quick access to support-related

About this publication vii

http://publib.boulder.ibm.com/infocenter/tivihelp/v3r1/index.jsp
http://www.ibm.com/e-business/linkweb/publications/servlet/pbi.wss
http://www.ibm.com/e-business/linkweb/publications/servlet/pbi.wss
http://www.ibm.com/software/tivoli/education
http://www.ibm.com/software/support/probsub.html
http://www.ibm.com/software/support/probsub.html

information and serviceability tools for problem determination. To install
the ISA software, go to http://www.ibm.com/software/support/isa.

Documentation
If you have a suggestion for improving the content or organization of this
guide, send it to the Tivoli Netcool/OMNIbus Information Development
team at:

mailto://L3MMDOCS@uk.ibm.com

Conventions used in this publication
This publication uses several conventions for special terms and actions and
operating system-dependent commands and paths.

Typeface conventions

This publication uses the following typeface conventions:

Bold

v Lowercase commands and mixed case commands that are otherwise
difficult to distinguish from surrounding text

v Interface controls (check boxes, push buttons, radio buttons, spin
buttons, fields, folders, icons, list boxes, items inside list boxes,
multicolumn lists, containers, menu choices, menu names, tabs, property
sheets), labels (such as Tip: and Operating system considerations:)

v Keywords and parameters in text

Italic

v Citations (examples: titles of publications, diskettes, and CDs)
v Words defined in text (example: a nonswitched line is called a

point-to-point line)
v Emphasis of words and letters (words as words example: "Use the word

that to introduce a restrictive clause."; letters as letters example: "The
LUN address must start with the letter L.")

v New terms in text (except in a definition list): a view is a frame in a
workspace that contains data

v Variables and values you must provide: ... where myname represents....

Monospace

v Examples and code examples
v File names, programming keywords, and other elements that are difficult

to distinguish from surrounding text
v Message text and prompts addressed to the user
v Text that the user must type
v Values for arguments or command options

Operating system-dependent variables and paths

This publication uses the UNIX convention for specifying environment variables
and for directory notation.

When using the Windows command line, replace $variable with %variable% for
environment variables, and replace each forward slash (/) with a backslash (\) in
directory paths. For example, on UNIX systems, the $NCHOME environment

viii IBM Tivoli Netcool/OMNIbus: ObjectServer HTTP Interface Reference Guide

http://www.ibm.com/software/support/isa
mailto://L3MMDOCS@uk.ibm.com

variable specifies the path of the Netcool® home directory. On Windows systems,
the %NCHOME% environment variable specifies the path of the Netcool home
directory. The names of environment variables are not always the same in the
Windows and UNIX environments. For example, %TEMP% in Windows
environments is equivalent to $TMPDIR in UNIX environments.

If you are using the bash shell on a Windows system, you can use the UNIX
conventions.

Operating system-specific directory names

Where Tivoli Netcool/OMNIbus files are identified as located within an arch
directory under NCHOME, arch is a variable that represents your operating system
directory, as shown in the following table.

Table 1. Directory names for the arch variable

Directory name represented by arch Operating system

aix5 AIX® systems

hpux11hpia HP-UX Itanium-based systems

linux2x86 Red Hat Linux and SUSE systems

linux2s390 Linux for System z®

solaris2 Solaris systems

win32 Windows systems

Fix pack information

Information that is applicable only to the fix pack versions of Tivoli
Netcool/OMNIbus are prefaced with a graphic. For example, if a set of
instructions is preceded by the graphic Fix Pack 1 , it means that the instructions
can only be performed if you installed fix pack 1 of your installed version of Tivoli
Netcool/OMNIbus. In the release notes, descriptions of known problems that are
prefaced with Fix Pack 1 are solved in fix pack 1, and so on.

Note: Fix packs are distributed separately for the server components and the Web
GUI component.

List of abbreviations
The API documentation for the ObjectServer HTTP interface and the ObjectServer
OSLC interface use the following abbreviations and terms.

HTTP Hyper Text Transfer Protocol. HTTP version 1.1 is defined in RFC2616.
Unless otherwise noted, the term HTTP is used in this document to mean
both HTTP and HTTPS.

HTTPS
Hyper Text Transfer Protocol Secure, as defined in RFC2818.

JazzSM
Jazz for Service Management, which is available from https://
www.ibm.com/developerworks/mydeveloperworks/groups/service/
html/communityview?communityUuid=69ec672c-dd6b-443d-add8-
bb9a9a490eba.

JSON JavaScript Object Notation, as defined in ECMA-262.

About this publication ix

https://www.ibm.com/developerworks/mydeveloperworks/groups/service/html/communityview?communityUuid=69ec672c-dd6b-443d-add8-bb9a9a490eba
https://www.ibm.com/developerworks/mydeveloperworks/groups/service/html/communityview?communityUuid=69ec672c-dd6b-443d-add8-bb9a9a490eba
https://www.ibm.com/developerworks/mydeveloperworks/groups/service/html/communityview?communityUuid=69ec672c-dd6b-443d-add8-bb9a9a490eba
https://www.ibm.com/developerworks/mydeveloperworks/groups/service/html/communityview?communityUuid=69ec672c-dd6b-443d-add8-bb9a9a490eba

MIME Multipurpose Internet Mail Extensions. MIME media types are defined in
IANA MIME Media Types.

OSLC Open Services for Lifecycle Collaboration, as defined at
http://open-services.net.

REST Representational State Transfer, as originally and informally described in
Architectural Styles and the Design of Network-based Software Architectures.

URI Uniform Resource Identifier, as defined in RFC3986.

XML eXtensible Markup Language, as defined by W3C.

x IBM Tivoli Netcool/OMNIbus: ObjectServer HTTP Interface Reference Guide

http://open-services.net

Chapter 1. Overview of the ObjectServer HTTP interface

The HTTP interface is a lightweight Application Programming Interface (API) that
is hosted in the ObjectServer. The HTTP interface provides access to table data in
the ObjectServer through a structured URI format that uses HTTP. POST, PATCH,
GET, and DELETE requests. Requests are supported against table URIs or row
URIs. Access to the URI is authenticated by a known ObjectServer user through
basic HTTP authentication The interface can be secured through an HTTPS
connection. You can enable the interface by setting properties in the ObjectServer.

The ObjectServer hosts another API that is called the OSLC interface. This API is
an event server provider that presents a resource-linked data view of events and
the associated journal and detail resources. For more information about the OSLC
interface, see the IBM Tivoli Netcool/OMNIbus ObjectServer OSLC Interface Reference
Guide.

Base URI

The base URI for the HTTP interface is as follows.
http://host:port/objectserver/restapi/

Related tasks:
“Enabling the HTTP interface and OSLC interface in the ObjectServer”
The ObjectServer HTTP and OSLC interfaces are disabled by default, because the
interfaces need to be configured for a secure setup.

Enabling the HTTP interface and OSLC interface in the ObjectServer
The ObjectServer HTTP and OSLC interfaces are disabled by default, because the
interfaces need to be configured for a secure setup.

Before you begin

Work out which ObjectServers in your environment need to be accessed via HTTP
or HTTPS. Not all ObjectServers in an environment need to grant access to
ObjectServer data through an HTTP-based mechanism.

About this task

Because the hosting of the HTTP and OSLC interfaces in the ObjectServer requires
an embedded HTTP server, the ObjectServer can serve files to HTTP clients.
Although the ObjectServer can serve pages, it is not optimized for page-serving,
unlike an Apache web server. For this reason, do not use the ObjectServer to host
anything other than rudimentary HTML or JavaScript pages.

Procedure
1. To enable the interfaces, set the NRestOS.Enable property to TRUE.
2. To configure the embedded HTTP server so that the interfaces are active on an

HTTP port, specify the listening port for the connection type. For example, to
make the interfaces listen on port 8080, set the properties as follows:
NHttpd.EnableHTTP : TRUE
NHttpd.ListeningPort : 8080

© Copyright IBM Corp. 1994, 2013 1

3. If you want the interfaces to be active on an HTTPS port on 9090, set the
properties that are shown in the following example. Because an HTTPS port is
SSL encrypted, a certificate file that contains an appropriate certificate needs to
be created and protected by a password.
NHttpd.SSLEnable : TRUE
NHttpd.SSLListeningPort : 9090
NHttpd.SSLCertificate : “certificatelabel”
NHttpd.SSLCertificatePwd : “password”

4. To enable file-serving from the ObjectServer, set the NHttpd.EnableFileServing
property. The root of the served pages is defined by the NHttpd.DocumentRoot
property.

5. Fix Pack 2 To generate the members resource reference list in the RDF/XML
payload of Event, Journal, and Detail query capability responses in both
Collection and ResponseInfo resource instances, set the
NRestOS.OSLCRDFMsgFormat to “MIGRATION”. For more information about this
parameter and why you might need to set it, see the section Updates to the
HTTP interface and OSLC interface in the Release Notes.

Related concepts:
Chapter 1, “Overview of the ObjectServer HTTP interface,” on page 1
The HTTP interface is a lightweight Application Programming Interface (API) that
is hosted in the ObjectServer. The HTTP interface provides access to table data in
the ObjectServer through a structured URI format that uses HTTP. POST, PATCH,
GET, and DELETE requests. Requests are supported against table URIs or row
URIs. Access to the URI is authenticated by a known ObjectServer user through
basic HTTP authentication The interface can be secured through an HTTPS
connection. You can enable the interface by setting properties in the ObjectServer.

ObjectServer properties that control the HTTP interface and
OSLC interface

ObjectServer properties that control the HTTP and OSLC interfaces.

The following table lists the ObjectServer properties that control the HTTP interface
and the OSLC interface.

Table 2. Properties and command-line options for controlling the HTTP interface and the
OSLC interface

Property Command-line option Description

NRestOS.Enable TRUE | FALSE -nrestosenable TRUE | FALSE Enables the HTTP interface
and the OSLC interface to
the ObjectServer.

The default is FALSE, which
means that the interfaces are
disabled.

NRestOS.OSLCResource
ConfigFile string

-nrestososlcrescfg string The path to the OSLC
resource configuration file.
This JSON file defines how
columns from the
ObjectServer schema are
mapped to properties in the
OSLC event domain.

The default is
$OMNIHOME/etc/restos/
resourcecfg.json.

2 IBM Tivoli Netcool/OMNIbus: ObjectServer HTTP Interface Reference Guide

The following table lists the ObjectServer properties that control the embedded
HTTP server.

Table 3. Properties and command-line options for controlling the embedded HTTP server

Property Command-line option Description

NHttpd.AccessLog string -nhttpd_accesslog string Specifies the name and
location of the log file where
the server logs all requests
that it processes.

The default is
$OMNIHOME/log/
NCOMS_http_access.log.

NHttpd.Authentication
Domain string

-nhttpd_authdomain string Specifies the authentication
domain that is used when
requesting authentication
details over the HTTP or
HTTPS connection.

The default is omnibus.

Fix Pack 2

NHttpd.ConfigFile string

-nhttpd_configfile string Specifies the path to a JSON
configuration file.

The default is
$OMNIHOME/etc/
libnhttpd.json, which
enables mimeType settings
and HTTP headers in HTTP
response files.

NHttpd.DocumentRoot string -nhttpd_docroot string Specifies the document root
of the embedded web
service.

The default is
$OMNIHOME/etc/restos/
docroot.

NHttpd.EnableFileServing
TRUE | FALSE

-nhttpd_enablefs TRUE |
FALSE

Use this property to enable
default file serving by the
ObjectServer. This allows the
ObjectServer to act as a
simple HTTP server that
serves files from the local
filesystem.

The default is FALSE.

NHttpd.ExpireTimeout
unsigned

-nhttpd_exptimeout unsigned Specifies the maximum time,
in seconds, that an HTTP 1.1
connection remains idle
before it is dropped.

The default is 15.

Chapter 1. Overview 3

Table 3. Properties and command-line options for controlling the embedded HTTP
server (continued)

Property Command-line option Description

NHttpd.ListeningHostname
string

-nhttpd_hostname string Specifies the listening host
name or IP address that can
be used as the hostname part
of a URI to the ObjectServer
HTTP or HTTPS interface.

The default is localhost.

NHttpd.SSLListeningPort
integer

-nhttpd_sslport integer Specifies the port on which
the ObjectServer listens for
HTTPS requests.

The default is 0.

NHttpd.SSLCertificate string -nhttpd_sslcert string Specifies the name of the SSL
certificate of the server.

The default is ''.

NHttpd.SSLCertificatePwd
string

-nhttpd_sslcertpwd string Specifies the password
required to access the SSL
certificate file.

The default is ''.

NHttpd.SSLEnable TRUE |
FALSE

-nhttpd_sslenable TRUE |
FALSE

Enables the use of SSL
support.

The default is FALSE.

Fix Pack 2

NRestOS.OSLCRDFMsgFormat
string

nrestososlcrmf string Set this property to the string
MIGRATION to redevelop any
utilities that are based on the
ObjectServer OSLC interface
so that the members resource
reference list is generated in
a Collection resource
instance instead of a
ResponseInfo resource
instance in the RDF/XML
payload of the Event, Detail,
and Journal query capability.

The MIGRATION setting means
that the members resource
reference list is generated in
both a Collection and a
ResponseInfo resource
instance. Redevelop your
OSLC utilities to generate the
members resource reference
list only in the Collection
resource instance. After the
code that generates the list in
ResponseInfo resource
instance is removed, reset
this property.

4 IBM Tivoli Netcool/OMNIbus: ObjectServer HTTP Interface Reference Guide

For more information about the properties and command-line options of the
ObjectServer, see the IBM Tivoli Netcool/OMNIbus Administration Guide.

Enabling and configuring the IBM JazzSM service provider registry
If your environment uses Jazz for Service Management (JazzSM), you can
configure the ObjectServer to register with the JazzSM service provider registry.
The ObjectServer is registered as an event OSLC service provider. Registrations to
JazzSM registries are configured and managed by the OSLC service provider
registry table, registry.oslcsp.

About this task

Access to this table is granted only to the root user and administrators that have
the OSLCAdmin role. Registrations cannot be updated. Registration records can be
only inserted and deleted, not updated.

Procedure
v To create a registration, insert a registration entry into the registry.oslcsp table.

The following example shows a sample SQL INSERT command for the JazzSM
service provider registry that runs on the host jazzsm.company.com, on port 9080,
with the default credentials:
INSERT INTO registry.oslcsp (Name, RegistryURI,
RegistryUsername, RegistryPassword)

VALUES (’MyRegistration’,
’http://jazzsm.company.com:9080/oslc/pr’,
’system’, ’manager’);

After the insert is made, the ObjectServer attempts to register the OSLC interface
of the local ObjectServer with the defined JazzSM service provider registry. If the
registration is successful, the registration URI that was created is stored in the
RegistrationURI field. The Registered field is set to 1. If the registration is not
successful, the Registered field is set to 0.

v To remove a registration from a JazzSM service provider registry, delete the
registration entry from the table. For example, to remove the registration that is
shown in the previous example, use the SQL DELETE command that is shown
in the following example:
DELETE FROM registry.oslcsp WHERE Name=’MyRegistration’;

If the registration record contains a registration URI that is registered with the
defined JazzSM service provider registry, the ObjectServer deletes the record
after you delete the row from the table.

What to do next

If a registration fails, see the ObjectServer log file.

Chapter 1. Overview 5

registry.oslc table
This table is used to configure and manage registrations of OSLC service providers
to IBM® JazzSM service registries.

Table 4. OSLC service provider registration table registry.oslcsp.

Column Type Description

Name VARCHAR(64) A user-defined name for the
registration table entry.

RegistryURI VARCHAR(1024) The OSLC service provider
services record of the registry
service. RegistryURI is the
primary key of the table.

RegistryUsername VARCHAR(64) The user that is used to
authenticate with the JazzSM
service provider registry.

RegistryPassword VARCHAR(64) The password that is used to
authenticate with the JazzSM
service provider registry.

Registered integer Indicates whether the entry
has a registration record with
the JazzSM registry service.
Possible values are as
follows:

v 0: The entry does not have
a registration.

v 1: The entry has a
registration.

RegistrationURI VARCHAR(1024) The URI of the registration
record in the JazzSM service
provider registry for this
ObjectServer.

LastRegistered time The date and time of the last
successful registration to the
JazzSM service provider
registry.

6 IBM Tivoli Netcool/OMNIbus: ObjectServer HTTP Interface Reference Guide

Chapter 2. HTTP interface URIs

The ObjectServer HTTP interface includes URIs that give access to table data and
to rows in tables, execute SQL commands via HTTP, and give access to system
information.

Table collection services
Use the table collection services URI to access any table in the ObjectServer data
store, such as system or user tables. The table collection services URI is the
top-level URI.

The format of this URI is as follows.
http://host:port/objectserver/restapi/database/table

Where database is the name of the ObjectServer database, and table is the name of
the table in that database.

The table collection services URI supports the following HTTP methods: GET,
POST, PATCH, and DELETE.

Rows in the referenced table can be fetched, updated, or deleted by a single
request. A row can also be inserted into the table by a POST request. Only a single
row can be inserted. Bulk insertion is not possible.

Example table collection URIs are as follows:
v http://localhost/objectserver/restapi/alerts/status

v http://localhost/objectserver/restapi/catalog/tables

v http://localhost/objectserver/restapi/alerts/conversions

Table collection services: GET request
The elements of an HTTP GET request to a table collection to retrieve rows from
an ObjectServer table.

Table 5. Table collection services: GET request

Element Description

HTTP method GET

© Copyright IBM Corp. 1994, 2013 7

Table 5. Table collection services: GET request (continued)

Element Description

Query parameters
filter

Defines the conditions that a row in the
table must satisfy. This parameter is the
WHERE clause of an SQL SELECT
statement.

collist
Defines the columns of the table in the
results of the HTTP response. This
parameter is the column list component
of an SQL SELECT statement.

orderby
Defines the sort order of the result set.
This parameter is the ORDER BY clause
of an SQL SELECT statement.

Request headers
Authorization

Required

Host
Required

Accept application/json

Request body Not applicable

Related reference:
“Authentication mechanisms” on page 31
Any connection to the ObjectServer HTTP interface needs a set of Tivoli
Netcool/OMNIbus user credentials for authentication. Only basic HTTP
authentication is supported.
“Example table collection GET request” on page 40
Select all rows from the alerts.status table.

Table collection services: GET response
The elements of an HTTP GET response to a table collection in an ObjectServer.

Table 6. Table collection services: GET response

Element Description

Response headers
Server

The name of the HTTPd engine.

Date
The date or time of the response.

Connection
The connection state of the connection.
Possible states are Close or Keep-Alive.

Content-Type application/json

Normal HTTP response codes 200 (Created): The response body
contains a JSON success message.

8 IBM Tivoli Netcool/OMNIbus: ObjectServer HTTP Interface Reference Guide

Table 6. Table collection services: GET response (continued)

Element Description

Error HTTP response codes 500 (Internal Server Error): The server
failed to complete the request due to an
unexpected internal problem. The
response body contains the JSON error
message with more information.

Other common HTTP error response codes
are 401 (Unauthorized), 403 (Forbidden),
and 406 (Not Acceptable).

Related reference:
“HTTP response codes” on page 29
The common set of HTTP response codes for an HTTP method from the
ObjectServer HTTP interface.
“Error JSON message payload” on page 32
The ObjectServer HTTP interface might return a JSON error message payload in
any nonsuccess response code, such as 500. This error message gives information
about the internal ObjectServer return code failure that is related to the request.
“Example table collection GET response” on page 40

Table collection services: POST request
Table 7. Table collection services: POST request

Element Description

HTTP method POST

Query parameters Not applicable

Request headers
Authorization

Required

Host
Required

Accept application/json

Content-Type application/json

Request body JSON row set containing a single row to
insert. Bulk insert is not supported.

Related reference:
“Example JSON row set: POST” on page 37
This example JSON row set defines a row to be inserted into the alerts.status table
of the ObjectServer.
“Example table collection POST request” on page 39
Insertion of a row into the alerts.status table.

Chapter 2. HTTP interface URIs 9

Table collection services: POST response
The elements of an HTTP POST response for the creation of a row within a table
collection in the ObjectServer.

Table 8. Table collection services: POST resposne

Element Description

Response headers
Server

The name of the HTTPd engine.

Date
The date or time of the response.

Connection
The state of the connection. Possible
states are Close or Keep-Alive.

Location
The URI of the created resource.

Content-Type application/json

Normal HTTP response codes 201 (Created): The URI of the inserted
row is contained in the HTTP header
Location of the response. The response
body contains a JSON success message.

Error HTTP response codes 400 (Bad Request): The JSON row set
definition of the row to insert is invalid.
The row is invalid because it contains
missing, unknown or incorrect columns,
or because insufficient or incorrect
column values are provided.

409 (Conflict): Primary key collision.
The row already exists in the table.

500 (Internal Server Error): The server
failed to complete the request due to an
unexpected internal problem. The
response body contains the JSON error
message with more information.

Other common HTTP error response codes
are 401 (Unauthorised), 403 (Forbidden)406
(Not acceptable), and 415 (Unsupported
Media Type).

10 IBM Tivoli Netcool/OMNIbus: ObjectServer HTTP Interface Reference Guide

Related reference:
“HTTP response codes” on page 29
The common set of HTTP response codes for an HTTP method from the
ObjectServer HTTP interface.
“Success JSON message payload” on page 32
The ObjectServer HTTP interface returns a JSON success message in the payload.
The HTTP response code informs the requester whether the request was successful,
and the JSON message gives additional information. This information includes the
number of rows in a table collection that were affected by the request.
“Error JSON message payload” on page 32
The ObjectServer HTTP interface might return a JSON error message payload in
any nonsuccess response code, such as 500. This error message gives information
about the internal ObjectServer return code failure that is related to the request.
“Example table collection POST response” on page 40

Table collection services: PATCH request
The elements of an HTTP PATCH request to a table collection to update rows in an
ObjectServer table.

Table 9. HTTP PATCH elements

Element Description

HTTP method PATCH

Query parameters
filter

Defines the conditions that a row in the
table must satisfy. This parameter is the
WHERE clause of an SQL SELECT
statement.

Request headers
Authorization

Required

Host
Required

Accept application/json

Request body JSON row set that contains a single row. The
row defines which columns to update, and
which values to update the columns to.

Related reference:
“HTTP response codes” on page 29
The common set of HTTP response codes for an HTTP method from the
ObjectServer HTTP interface.
“Example JSON row set: PATCH” on page 36
This example updates the Location, LastOccurrence, Acknowledged, OwnerUID
and OwnerGID columns of the matched rows in the alerts.status table.
“Example table collection PATCH request” on page 42
Update the Location, LastOccurrence, Acknowledged, OwnerUID and OwnerGID
columns of all rows in the alerts.status table.

Chapter 2. HTTP interface URIs 11

Table collection services: PATCH response
The elements of an HTTP PATCH response for the update of rows in a table
collection in the ObjectServer.

Table 10. Table collection services: PATCH response

Element Description

Response headers
Server

The name of the HTTPd engine.

Date
The date or time of the response.

Connection
The state of the connection. Possible
states are Close or Keep-Alive.

Content-Type application/json

Normal HTTP response codes 200 (OK): The response body contains a
JSON success message.

Error HTTP response codes 400 (Bad Request): The JSON row set
definition of the row to insert is invalid.
The row is invalid because it contains
missing, unknown or incorrect columns,
or because insufficient or incorrect
column values are provided.

500 (Internal Server Error): The server
failed to complete the request due to an
unexpected internal problem. The
response body contains the JSON error
message with more information.

Other common HTTP error response codes
are 401 (Unauthorised), 403 (Forbidden)406
(Not acceptable), and 415 (Unsupported
Media Type).

Related reference:
“HTTP response codes” on page 29
The common set of HTTP response codes for an HTTP method from the
ObjectServer HTTP interface.
“Success JSON message payload” on page 32
The ObjectServer HTTP interface returns a JSON success message in the payload.
The HTTP response code informs the requester whether the request was successful,
and the JSON message gives additional information. This information includes the
number of rows in a table collection that were affected by the request.
“Error JSON message payload” on page 32
The ObjectServer HTTP interface might return a JSON error message payload in
any nonsuccess response code, such as 500. This error message gives information
about the internal ObjectServer return code failure that is related to the request.
“Example table collection PATCH response” on page 42

12 IBM Tivoli Netcool/OMNIbus: ObjectServer HTTP Interface Reference Guide

Table collection services: DELETE request
The elements of an HTTP DELETE request to a table collection to delete rows in an
ObjectServer table.

Table 11. Table collection services: DELETE request

Element Description

HTTP method

Query parameters
filter

Defines the conditions that a row in the
table must satisfy. This parameter is the
WHERE clause of an SQL SELECT
statement.

Request headers
Authorization

Required

Host
Required

Accept application/json

Request body Not applicable

Related reference:
“Authentication mechanisms” on page 31
Any connection to the ObjectServer HTTP interface needs a set of Tivoli
Netcool/OMNIbus user credentials for authentication. Only basic HTTP
authentication is supported.
“Example table collection DELETE request” on page 43
Delete all rows in the alerts.status table.

Table collection services: DELETE response
The elements of an HTTP DELETE response for the deletion of rows in a table
collection in the ObjectServer.

Table 12. Table collection services: DELETE response

Element Description

Response headers
Server

The name of the HTTPd engine.

Date
The date or time of the response.

Connection
The state of the connection. Possible
states are Close or Keep-Alive.

Content-Type application/json

Normal HTTP response codes 200 (Created): The response body
contains a JSON success message.

Chapter 2. HTTP interface URIs 13

Table 12. Table collection services: DELETE response (continued)

Element Description

Error HTTP response codes 400 (Bad Request): The JSON row set
definition of the row to insert is invalid.
The row is invalid because it contains
missing, unknown or incorrect columns,
or because insufficient or incorrect
column values are provided.

500 (Internal Server Error): The server
failed to complete the request due to an
unexpected internal problem. The
response body contains the JSON error
message with more information.

Other common HTTP error response codes
are 401 (Unauthorised), 403 (Forbidden)406
(Not acceptable), and 415 (Unsupported
Media Type).

Related reference:
“HTTP response codes” on page 29
The common set of HTTP response codes for an HTTP method from the
ObjectServer HTTP interface.
“Success JSON message payload” on page 32
The ObjectServer HTTP interface returns a JSON success message in the payload.
The HTTP response code informs the requester whether the request was successful,
and the JSON message gives additional information. This information includes the
number of rows in a table collection that were affected by the request.
“Error JSON message payload” on page 32
The ObjectServer HTTP interface might return a JSON error message payload in
any nonsuccess response code, such as 500. This error message gives information
about the internal ObjectServer return code failure that is related to the request.
“Example table collection DELETE response” on page 43

Row element services
Use this URI to access and reference specific rows in ObjectServer tables.

The following methods are supported.

RowSerial

Every row in every table in the ObjectServer has an integer value that uniquely
identifies that row in the table in which the row resides. When you use an HTTP
GET request to fetch rows to the table collection services URI, the RowSerial value
of each row is automatically returned as a column in the JSON row set document.
The RowSerial value can be used to build a row element URI to that row, as the
following example shows.
http://host:port/objectserver/restapi/database/table/rowserial/

Where database is the name of the ObjectServer database, table is the name of the
ObjectServer table, and rowserial is the unique row serial number of the row.

The RowSerial method supports the following HTTP methods: GET, PATCH, and
DELETE.

14 IBM Tivoli Netcool/OMNIbus: ObjectServer HTTP Interface Reference Guide

Because RowSerial is an integer, it is efficient to for building URIs and evaluating
ObjectServers. RowSerial URIs are valid only for the ObjectServer from which they
were originally determined. Access to rows via RowSerial is the preferred method.

Key field

Every row in every table in the ObjectServer has a key field that uniquely
identifies that row in the table in which it resides. It is therefore possible to
reference a row by using the key field instead of the RowSerial value, as shown in
the following example.
http://host:port/objectserver/restapi/database/table/kf/keyfield/

Where database is the name of the ObjectServer database, table is the name of the
ObjectServer table, and keyfield is the unique row serial number of the row.

The key field method supports the following HTTP methods: GET, PATCH, and
DELETE.

Notes on key field construction

Wherever permissible, a key field URI is valid in any ObjectServer in environments
in which the HTTP interface is enabled, so that you can build and use a common
path to a row across multiple ObjectServers.

Key fields for rows that are valid across multiple ObjectServers differ, depending
on the ObjectServer table in which they reside. For example, in the alerts.status
table, the primary key is the Identifier column. Because the value of Identifier is
not unique to a single event instance across multiple ObjectServers, it is not used
to build the key field. Instead, the key field for rows in the alerts.status table is
built from the values of the ServerSerial column and the ServerName column.

Note: It is complex to generate key fields, especially in tables with
multiple-column primary keys, because certain characters must be encoded for use
in a URI. Unless you need a URI that is valid across multiple ObjectServers, use
the RowSerial URI.

The following table shows how the key field is constructed for the alerts.status,
alerts.journal, alerts.details tables, and for all other general tables in the
ObjectServer.

Chapter 2. HTTP interface URIs 15

Table 13. Construction of key field values for row elements

Table Type How the key field is constructed

alerts.status Event The ServerSerial field is combined with the
ServerName field and separated by a colon. The
following example shows how the fields are
combined.

1234:NCOMS

The following example shows how the field is
constructed after it is encoded for use in a URI.

1234%3ANCOMS

The following example shows a sample URI.

http://localhost/
objectserver/
restapi/alerts
/status/
kf/12510%
3ANCOMS

alerts.journal Journal The key field is defined by the KeyField column of
the journal table. Because journals are reserialized
differently in different ObjectServers, a journal key
field is not valid across multiple ObjectServers. The
following example shows a sample KeyField.

2684:0:1341416084

The following example shows how the field is
constructed after it is encoded for use in a URI.

12684%3A0%
3A1341416084

The following example shows a sample URI.

http://localhost/
objectserver/
restapi/
alerts/
journal/kf/
12684%3A0%
3A1341416084

alerts.details Details The key field is defined by the KeyField column of
the details table. The following example shows a
sample KeyField.

EventIdentifier@@@@4####4

The following example shows how the field is
constructed after it is encoded for use in a URI.

EventIndentifier%40%40%40%404%23%23%23%234

The following example shows a sample URI.

http://localhost/
objectserver/
restapi/alerts/
details/kf/
EventIndentifier
%40%40%40%4
04%23%23%23%234

16 IBM Tivoli Netcool/OMNIbus: ObjectServer HTTP Interface Reference Guide

Table 13. Construction of key field values for row elements (continued)

Table Type How the key field is constructed

All other general
tables in the
ObjectServer

General The key field is the set of columns that make up the
primary key of the table. If the primary key of the
table consists of multiple keys, specify the key
values in the same order as in the table schema.
Separate the key values with the sequence #KF#.

The following example shows a sample key field in
a table that has two primary columns, with the
values ColVa
lue01 and 654.

ColValue01#KF#654

The following example shows how this field is
constructed after it is encoded for use in a URI

ColValue01%23KF%23654

The following example shows this key field in a
URI.

http://localhost/
objectserver/
restapi/
alerts/mytable
/kf/ColValue01
%23KF%23654

Row element GET request
The elements of an HTTP GET request to a row element to retrieve a specific row
from an ObjectServer table.

Table 14. Row element: GET request

Element Description

HTTP method GET

Query parameters
collist

Defines the columns of the table in the
results of the HTTP response. This
parameter is the column list component
of an SQL SELECT statement.

Request headers
Authorization

Required

Host
Required

Accept application/json

Request body Not applicable

Chapter 2. HTTP interface URIs 17

Related reference:
“Authentication mechanisms” on page 31
Any connection to the ObjectServer HTTP interface needs a set of Tivoli
Netcool/OMNIbus user credentials for authentication. Only basic HTTP
authentication is supported.
“Example row element GET request via RowSerial” on page 43

Row element GET response
The elements of an HTTP GET response for the retrieval of a specific row from an
ObjectServer table.

Table 15. Row element: GET response

Element Description

Response headers
Server

The name of the HTTPd engine.

Date
The date or time of the response.

Connection
The state of the connection. Possible
states are Close or Keep-Alive.

Content-Type application/json

Normal HTTP response codes 200 (Created): The response body
contains a JSON success message.

Error HTTP response codes 404 (Not Found): The requested row was
not found in the table because the row
was deleted.

500 (Internal Server Error): The server
failed to complete the request due to an
unexpected internal problem. The
response body contains the JSON error
message with more information.

Common HTTP error response codes are 401
(Unauthorized), 403 (Forbidden), and 406
(Not Acceptable).

Related reference:
“HTTP response codes” on page 29
The common set of HTTP response codes for an HTTP method from the
ObjectServer HTTP interface.
“Error JSON message payload” on page 32
The ObjectServer HTTP interface might return a JSON error message payload in
any nonsuccess response code, such as 500. This error message gives information
about the internal ObjectServer return code failure that is related to the request.
“Example row element GET via RowSerial response” on page 43

18 IBM Tivoli Netcool/OMNIbus: ObjectServer HTTP Interface Reference Guide

Row element PATCH request
The elements of an HTTP PATCH request to a specific row element in an
ObjectServer table.

Table 16. Row element: PATCH request

Element Description

HTTP method PATCH

Query parameters Not applicable

Request headers
Authorization

Required

Host
Required

Accept application/json

Request body A JSON row set that contains a single row.
The row defines which columns in the row
to update.

Related reference:
“Authentication mechanisms” on page 31
Any connection to the ObjectServer HTTP interface needs a set of Tivoli
Netcool/OMNIbus user credentials for authentication. Only basic HTTP
authentication is supported.
“Example JSON row set: PATCH” on page 36
This example updates the Location, LastOccurrence, Acknowledged, OwnerUID
and OwnerGID columns of the matched rows in the alerts.status table.
“Example row element PATCH request” on page 47
Update the Location, LastOccurrence, Acknowledged, OwnerUID and OwnerGID
columns of a specific row in the alerts.status table.

Row element PATCH response
The elements of an HTTP PATCH response for the update of a specific row in a
table of the ObjectServer.

Table 17. Row element: PATCH response

Element Description

Response headers
Server

The name of the HTTPd engine.

Date
The date or time of the response.

Connection
The state of the connection. Possible
states are Close or Keep-Alive.

Content-Type application/json

Normal HTTP response codes 200 (Created): The response body
contains a JSON success message.

Chapter 2. HTTP interface URIs 19

Table 17. Row element: PATCH response (continued)

Element Description

Error HTTP response codes 400 (Bad Request): The JSON row set
definition of the row to insert is invalid.
The row is invalid because it contains
missing, unknown or incorrect columns,
or because insufficient or incorrect
column values are provided.

404 (Not Found): The requested row was
not found in the table because the row
was deleted.

500 (Internal Server Error): The server
failed to complete the request due to an
unexpected internal problem. The
response body contains the JSON error
message with more information.

Other common HTTP error response codes
are 401 (Unauthorised), 403 (Forbidden)406
(Not acceptable), and 415 (Unsupported
Media Type).

Related reference:
“HTTP response codes” on page 29
The common set of HTTP response codes for an HTTP method from the
ObjectServer HTTP interface.
“Success JSON message payload” on page 32
The ObjectServer HTTP interface returns a JSON success message in the payload.
The HTTP response code informs the requester whether the request was successful,
and the JSON message gives additional information. This information includes the
number of rows in a table collection that were affected by the request.
“Error JSON message payload” on page 32
The ObjectServer HTTP interface might return a JSON error message payload in
any nonsuccess response code, such as 500. This error message gives information
about the internal ObjectServer return code failure that is related to the request.
“Example row element PATCH response” on page 48

Row element DELETE request
The elements of an HTTP DELETE request to a specific row element in an
ObjectServer table.

Table 18. Row element: DELETE request

Element Description

HTTP method DELETE

Query parameters Not applicable

Request headers
Authorization

Required

Host
Required

Accept application/json

Request body Not applicable

20 IBM Tivoli Netcool/OMNIbus: ObjectServer HTTP Interface Reference Guide

Related reference:
“Authentication mechanisms” on page 31
Any connection to the ObjectServer HTTP interface needs a set of Tivoli
Netcool/OMNIbus user credentials for authentication. Only basic HTTP
authentication is supported.
“Example row element DELETE request” on page 48
Delete a specific row in the alerts.status table.

Row element DELETE response
The elements of an HTTP DELETE response for the deletion of a specific row in a
table of the ObjectServer.

Table 19. Row element: DELETE response

Element Description

Response headers
Server

The name of the HTTPd engine.

Date
The date or time of the response.

Connection
The state of the connection. Possible
states are Close or Keep-Alive.

Content-Type application/json

Normal HTTP response codes 200 (Created): The response body
contains a JSON success message.

Error HTTP response codes 404 (Not Found): The requested row was
not found in the table because the row
was deleted.

500 (Internal Server Error): The server
failed to complete the request due to an
unexpected internal problem. The
response body contains the JSON error
message with more information.

Other common HTTP error response codes
are 401 (Unauthorised), 403 (Forbidden)406
(Not acceptable), and 415 (Unsupported
Media Type).

Chapter 2. HTTP interface URIs 21

Related reference:
“HTTP response codes” on page 29
The common set of HTTP response codes for an HTTP method from the
ObjectServer HTTP interface.
“Success JSON message payload” on page 32
The ObjectServer HTTP interface returns a JSON success message in the payload.
The HTTP response code informs the requester whether the request was successful,
and the JSON message gives additional information. This information includes the
number of rows in a table collection that were affected by the request.
“Error JSON message payload” on page 32
The ObjectServer HTTP interface might return a JSON error message payload in
any nonsuccess response code, such as 500. This error message gives information
about the internal ObjectServer return code failure that is related to the request.
“Example row element DELETE response” on page 49

SQL command factory
Use the SQL command factory of the ObjectServer HTTP interface to execute
arbitrary SQL commands via HTTP.

To execute SQL through this interface, users need the AllowISQL user permission
for read SQL commands, and the AllowISQLWrite user permission for write SQL
commands.

For more information about user permissions, see the IBM Tivoli Netcool/OMNIbus
Administration Guide.

To execute a SQL command, post a JSON SQL command message to the SQL
command factory URI, as shown in the following example.
http://host:port/objectserver/restapi/sql/factory

The SQL command factory supports the following HTTP methods: POST.

SQL command factory POST request
The requirements for a POST request to SQL command factory to execute arbitrary
SQL commands in the ObjectServer.

Table 20. SQL command factory: POST request

Element Description

HTTP method POST

Query parameters Not applicable

Request headers
Authorization

Required

Host
Required

Accept application/json

Content-Type application/json

Request body JSON SQL command message

22 IBM Tivoli Netcool/OMNIbus: ObjectServer HTTP Interface Reference Guide

Related reference:
“Authentication mechanisms” on page 31
Any connection to the ObjectServer HTTP interface needs a set of Tivoli
Netcool/OMNIbus user credentials for authentication. Only basic HTTP
authentication is supported.
“Example SQL command factory: POST” on page 38
This example SQL command factory message issues a drop user command for
execution
“Example SQL command factory POST request” on page 49

SQL command factory POST response
The elements of an HTTP POST response for the execution of arbitrary SQL
commands in the ObjectServer.

Table 21. SQL command factory: POST response

Element Description

Response headers
Server

The name of the HTTPd engine.

Date
The date or time of the response.

Connection
The state of the connection. Possible
states are Close or Keep-Alive.

Content-Type application/json

Normal HTTP response codes 200 (Created): The response body
contains a JSON success message.

Error HTTP response codes 400 (Bad Request): The JSON row set
definition of the row to insert is invalid.
The row is invalid because it contains
missing, unknown or incorrect columns,
or because insufficient or incorrect
column values are provided.

500 (Internal Server Error): The server
failed to complete the request due to an
unexpected internal problem. The
response body contains the JSON error
message with more information.

Other common HTTP error response codes
are 401 (Unauthorised), 403 (Forbidden)406
(Not acceptable), and 415 (Unsupported
Media Type).

Chapter 2. HTTP interface URIs 23

Related reference:
“HTTP response codes” on page 29
The common set of HTTP response codes for an HTTP method from the
ObjectServer HTTP interface.
“Success JSON message payload” on page 32
The ObjectServer HTTP interface returns a JSON success message in the payload.
The HTTP response code informs the requester whether the request was successful,
and the JSON message gives additional information. This information includes the
number of rows in a table collection that were affected by the request.
“Error JSON message payload” on page 32
The ObjectServer HTTP interface might return a JSON error message payload in
any nonsuccess response code, such as 500. This error message gives information
about the internal ObjectServer return code failure that is related to the request.
“Example SQL command factory POST response” on page 49

System information services
Use this URI to query and determine the compilation details and versions of the
HTTP interface and the OSLC interface in the ObjectServer.

All available system information elements can be obtained by issuing an HTTP
GET request to the system information services URI, as shown as the following
example.
http://host:port/objectserver/restapi/sysinfo

The system information elements can be fetched individually by referring to the
required system information element in the URI, as shown in the following
example.
http://host:port/objectserver/restapi/sysinfo/element

Where element can be one of the following system information elements.

compile
Gets the detailed build information of the HTTP interfaces that are hosted in
the ObjectServer.

rest
Gets version information about the HTTP interface of the ObjectServer.

oslc
Gets version information about the OSLC interface of the ObjectServer.

The system information service URI supports the following HTTP methods: GET.

GET collection request
The elements of an HTTP GET request to the system information collection URI to
retrieve all system information from an ObjectServer.

Table 22. System information collection services: GET request

Element Description

HTTP method GET

Query parameters Not applicable

24 IBM Tivoli Netcool/OMNIbus: ObjectServer HTTP Interface Reference Guide

Table 22. System information collection services: GET request (continued)

Element Description

Request headers
Authorization

Required

Host
Required

Accept application/json

Request body Not applicable

Related reference:
“Authentication mechanisms” on page 31
Any connection to the ObjectServer HTTP interface needs a set of Tivoli
Netcool/OMNIbus user credentials for authentication. Only basic HTTP
authentication is supported.
“Example system information GET request” on page 49

GET collection response
The elements of an HTTP GET response for the retrieval of all ObjectServer system
information.

Table 23. System information collection services: GET response

Element Description

Response headers
Server

The name of the HTTPd engine.

Date
The date or time of the response.

Connection
The state of the connection. Possible
states are Close or Keep-Alive.

Content-Type application/json

Normal HTTP response codes 200 (Created): The response body
contains a JSON success message.

Error HTTP response codes 500 (Internal Server Error): The server
failed to complete the request due to an
unexpected internal problem. The
response body contains the JSON error
message with more information.

Other common HTTP error response codes
are 401 (Unauthorised), 403 (Forbidden),
and 406 (Not acceptable).

Chapter 2. HTTP interface URIs 25

Related reference:
“HTTP response codes” on page 29
The common set of HTTP response codes for an HTTP method from the
ObjectServer HTTP interface.
“Error JSON message payload” on page 32
The ObjectServer HTTP interface might return a JSON error message payload in
any nonsuccess response code, such as 500. This error message gives information
about the internal ObjectServer return code failure that is related to the request.
“Example system information GET response” on page 50

GET element request
The elements of an HTTP GET request to retrieve a specific system information
element from an ObjectServer.

Table 24. System element information services: GET request

Element Description

HTTP method GET

Query parameters Not applicable

Request headers
Authorization

Required

Host
Required

Accept application/json

Request body Not applicable

Related reference:
“Authentication mechanisms” on page 31
Any connection to the ObjectServer HTTP interface needs a set of Tivoli
Netcool/OMNIbus user credentials for authentication. Only basic HTTP
authentication is supported.
“Example system information element GET request” on page 50

GET element response
The elements of an HTTP GET response for the retrieval of a specific system
information element from an ObjectServer.

Table 25. System element information services: GET response

Element Description

Response headers
Server

The name of the HTTPd engine.

Date
The date or time of the response.

Connection
The state of the connection. Possible
states are Close or Keep-Alive.

Content-Type application/json

Normal HTTP response codes 200 (Created): The response body
contains a JSON success message.

26 IBM Tivoli Netcool/OMNIbus: ObjectServer HTTP Interface Reference Guide

Table 25. System element information services: GET response (continued)

Element Description

Error HTTP response codes 500 (Internal Server Error): The server
failed to complete the request due to an
unexpected internal problem. The
response body contains the JSON error
message with more information.

Other common HTTP error response codes
are 401 (Unauthorized), 403 (Forbidden),
and 406 (Not acceptable).

Related reference:
“HTTP response codes” on page 29
The common set of HTTP response codes for an HTTP method from the
ObjectServer HTTP interface.
“Error JSON message payload” on page 32
The ObjectServer HTTP interface might return a JSON error message payload in
any nonsuccess response code, such as 500. This error message gives information
about the internal ObjectServer return code failure that is related to the request.
“Example system information element GET response” on page 50

Chapter 2. HTTP interface URIs 27

28 IBM Tivoli Netcool/OMNIbus: ObjectServer HTTP Interface Reference Guide

Chapter 3. Common behaviors

Characteristics that are common to all requests from, and all responses to, the
ObjectServer HTTP interface.

HTTP and HTTPS support
The ObjectServer HTTP interface supports HTTP or HTTPS connectivity at HTTP
1.0 or HTTP 1.1.

HTTP response codes
The common set of HTTP response codes for an HTTP method from the
ObjectServer HTTP interface.

Success message codes

The following table shows the common HTTP success message codes.

Table 26. Common HTTP success message codes

HTTP method HTTP response code Comments

GET 200 (OK)

POST 201 (Created) The HTTP header
Locationcontains the URI for
the newly created resource.

PATCH 200 (OK)

DELETE 200 (OK)

Error message codes

The following table shows the common HTTP error message codes.

Table 27. Common HTTP error message codes

HTTP response code Comments

400 Bad Request. Check the request payload and
query parameters.

401 Not Authorized. The request does not
contain valid authentication credentials.

403 Access to the defined resource is denied. The
authentication credentials that were used to
make the connection are denied access to the
resources that are specified in the request.

404 The requested resource was not found. The
request might be deleted.

406 The requested accept MIME type is not
supported.

409 Conflict. An attempt was made to insert a
row that already exists.

© Copyright IBM Corp. 1994, 2013 29

Table 27. Common HTTP error message codes (continued)

HTTP response code Comments

415 Specified content MIME type is not
supported.

500 Internal server error. For more information,
check the RDF/XML error message payload.

Related reference:
“Error JSON message payload” on page 32
The ObjectServer HTTP interface might return a JSON error message payload in
any nonsuccess response code, such as 500. This error message gives information
about the internal ObjectServer return code failure that is related to the request.

Query parameters
Syntax information about the OSLC query parameters that are supported by the
HTTP interface.

Table 28. Description of the query parameters of the HTTP interface

Query parameter Description

filter This query parameter defines which rows the request acts on,
when the request is made to the ObjectServer. Use the same
format for this parameter as for an SQL WHERE clause. You can
use this parameter only with GET, PATCH, and DELETE requests
to an ObjectServer table collection URI.

The following example shows a sample filter parameter.

Node=’hostname.domain’

The following example shows the same parameter after it is
encoded for use in a URI.

Node%3D%27hostname.domain%27

The following example shows a sample URI that contains this
parameter.

http://localhost/objectserver/restapi/alerts/status?
filter=Node%3D%27hostname.domain%27

collist This query parameter is valid only on an HTTP GET request. The
parameter defines which columns of the table to return in the
JSON row set message. To define the value of the parameter, use
the same syntax as the column list component of a SQL SELECT
statement.

The following example shows a sample collist parameter.

Serial,Node,Summary

The following example shows the same parameter after it is
encoded for use in a URI.

Serial%2CNode%2CSummary

The following example shows a sample URI that contains this
parameter.

http://localhost/objectserver/restapi/alerts/status?
collist=Serial%2CNode%2CSummary

30 IBM Tivoli Netcool/OMNIbus: ObjectServer HTTP Interface Reference Guide

Table 28. Description of the query parameters of the HTTP interface (continued)

Query parameter Description

orderby This query parameter is valid only on an HTTP GET request to an
ObjectServer table collection URI. The parameter defines the order
of rows in the JSON row set message that is returned. To define
the value of the parameter, use the same syntax as the ORDER BY
clause of a SQL SELECT statement.

The following example shows a sample orderby parameter.

Serial ASC

The following example shows the same parameter after it is
encoded for use in a URI.

Serial%20ASC

The following example shows a sample URI that contains this
parameter.

http://localhost/objectserver/restapi/alerts/status/?
orderby=Serial%20ASC

The following example shows a URI that uses all the query parameters in Table 28
on page 30.
http://localhost/objectserver/restapi/alerts/status?filter=Node%3D%27hostname.domain
%27&collist=Serial%2CNode%2CSummary&Serial%20ASC&orderby=Serial%20ASC

Authentication mechanisms
Any connection to the ObjectServer HTTP interface needs a set of Tivoli
Netcool/OMNIbus user credentials for authentication. Only basic HTTP
authentication is supported.

If no basic HTTP credentials are provided in the HTTP header Authorization, a
401 (Not Authorized) HTTP response is returned.

Because basic HTTP credentials are insecure, use HTTPS to ensure that the socket
communication is encrypted.

For more information about using SSL to encrypt communications, see the IBM
Tivoli Netcool/OMNIbus Installation and Deployment Guide.
Related reference:
“SQL command factory POST request” on page 22
The requirements for a POST request to SQL command factory to execute arbitrary
SQL commands in the ObjectServer.

Chapter 3. Common behaviors 31

Success JSON message payload
The ObjectServer HTTP interface returns a JSON success message in the payload.
The HTTP response code informs the requester whether the request was successful,
and the JSON message gives additional information. This information includes the
number of rows in a table collection that were affected by the request.

Table 29. Description of RDF/XML success message payload

Name Value type Description

affectedRows Integer The number of rows affected
by the request. For requests
that are applied to a table
collection, the value can
range from 0 to many.

keyField String The key field ID of the a
single affected resource. The
key field ID is present only
in successful row insertions.

uri String The URI of the successfully
inserted row or the URI of
the successful request. For a
successful row insertion, this
URI will match the URI in
the HTTP header Location.

Related reference:
“Example SQL command factory: POST” on page 38
This example SQL command factory message issues a drop user command for
execution

Error JSON message payload
The ObjectServer HTTP interface might return a JSON error message payload in
any nonsuccess response code, such as 500. This error message gives information
about the internal ObjectServer return code failure that is related to the request.

Table 30. Description of RDF/XML error message payload

Name Value type Description

statusCode Integer The HTTP status code that is
reported with the error.

message String An informative message that
describes the error.

moreInfo String More information, if
available. If no more
information is available, this
element of the payload is not
returned.

Related reference:
“Example JSON error message” on page 38
An example JSON error message indicating that the cause of the 400 (Bad
Request) HTTP response was caused by a referenced object, such as a column not
being found in the table.

32 IBM Tivoli Netcool/OMNIbus: ObjectServer HTTP Interface Reference Guide

Message encryption
Encryption of the message payload is not supported.

Accept MIME types
The accept MIME types supported by the ObjectServer HTTP interface.

The supported MIME types are as follows.
application/json (JSON)

Content MIME types
The content MIME types supported by the ObjectServer HTTP interface.

The supported MIME types are as follows.
application/json (JSON)

Response caching
Rows in the ObjectServer, especially event data, change constantly due to user or
programmatic actions. Because the ObjectServer HTTP interface is hosted directly
with the table data, there is no penalty to access the data. The interface therefore
does not cache any data, such as responses, at any level. Each ObjectServer HTTP
request is resolved separately each time, in the same way as any request upon the
ObjectServer data from any of the interfaces of the ObjectServer.

Chapter 3. Common behaviors 33

34 IBM Tivoli Netcool/OMNIbus: ObjectServer HTTP Interface Reference Guide

Appendix A. Example JSON payloads

Examples of JSON message payloads.

Example JSON row set: GET
This example JSON row set is from a HTTP GET to the alerts.status table collection
URI.
{
"rowset": {
"osname": "NCOMS",
"dbname": "alerts",
"tblname": "status",
"coldesc": [{

"name": "Identifier",
"type": "string",
"size": 255
}, {
"name": "Serial",
"type": "integer",
"size": 4
}, {
"name": "Node",
"type": "string",
"size": 64
}, {
"name": "NodeAlias",
"type": "string",
"size": 64
}, {
"name": "AlertKey",
"type": "string",
"size": 255
}, {
"name": "Severity",
"type": "integer",
"size": 4
}, {
"name": "Summary",
"type": "string",
"size": 255
}, {
"name": "StateChange",
"type": "utc",
"size": 4
}, {
"name": "FirstOccurrence",
"type": "utc",
"size": 4
}, {
"name": "LastOccurrence",
"type": "utc",
"size": 4
}, {
"name": "RowSerial",
"type": "integer",
"size": 4
}],
"rows": [{

"Identifier": "Startup@sol9-build1",
"Serial": 12469,

© Copyright IBM Corp. 1994, 2013 35

"Node": "sol9-build1",
"NodeAlias": "",
"AlertKey": "",
"Severity": 0,
"Summary": "ObjectServer NCOMS on sol9-build1 started at

Wed Jul 04 15:27:57 2012",
"StateChange": 1341412082,
"FirstOccurrence": 1341411978,
"LastOccurrence": 1341412077,
"RowSerial": 12469
}, {
"Identifier": "ProfilerEnableToggle@NCOMS:sol9-build1",
"Serial": 12468,
"Node": "sol9-build1",
"NodeAlias": "",
"AlertKey": "",
"Severity": 0,
"Summary": "ObjectServer NCOMS Profiler enabled at Wed Jul 04

15:27:56 2012",
"StateChange": 1341412077,
"FirstOccurrence": 1341411976,
"LastOccurrence": 1341412076,
"RowSerial": 12468
}, {
"Identifier": "Shutdown@sol9-build1",

******* TRUNCATED ********
"RowSerial": 12519
}],
"affectedRows": 13
}
}

Example JSON row set: PATCH
This example updates the Location, LastOccurrence, Acknowledged, OwnerUID
and OwnerGID columns of the matched rows in the alerts.status table.
{
"rowset": {

"coldesc": [{
"type":"integer",
"name":"Acknowledged"

}, {
"type":"string",
"name":"Location"

}, {
"type":"integer",
"name":"OwnerUID"

}, {
"type":"integer",
"name":"OwnerGID"

}, {
"type":"utc",
"name":"LastOccurrence"
}],
"rows": [{

"Location":"UPDATED",
"LastOccurrence":1341412223,
"Acknowledged":1,
"OwnerUID":65534,
"OwnerGID":1

}],
"affectedRows":0

}
}

36 IBM Tivoli Netcool/OMNIbus: ObjectServer HTTP Interface Reference Guide

Example JSON row set: POST
This example JSON row set defines a row to be inserted into the alerts.status table
of the ObjectServer.
{
"rowset": {
"coldesc": [{

"type":"string",
"name":"Identifier"

}, {
"type":"string",
"name":"Node"

}, {
"type":"string",
"name":"Manager"

}, {
"type":"string",
"name":"Agent"

}, {
"type":"string",
"name":"AlertKey"

}, {
"type":"integer",
"name":"Severity"

}, {
"type":"integer",
"name":"Type"

}, {
"type":"string",
"name":"Summary"

}, {
"type":"integer",
"name":"Acknowledged"

}, {
"type":"string",
“name":"Location"

}, {
"type":"utc",
"name":"FirstOccurrence"

}, {
"type":"utc",
"name":"LastOccurrence"

}, {
"type":"integer",
"name":"OwnerUID"

}, {
"type":"integer",
"name":"OwnerGID"

}],
"rows": [{
"FirstOccurrence":1341412087,
"Node":"localhost",
"AlertKey":"JUnitEventInstance",
"Agent":"createEventNew()",
"Summary":"This is a test event generated by the JUnit REST Event Tests.(0)",
"LastOccurrence":1341412087,
"Acknowledged":0,
"Identifier":"JUnitEventTestInstance####0",
"Manager":"com.ibm.netcool.omnibus.ws.junit.rest.schema.utils.TableRowEvent",
"OwnerGID":0,
"Location":"NOT UPDATED",
"Type":1,
"Severity":4,
"OwnerUID":0

Appendix A. Example JSON payloads 37

}],
"affectedRows":0
}
}

Example SQL command factory: POST
This example SQL command factory message issues a drop user command for
execution
{
"sqlcmd" : "drop user ’testuser01’;"
}

Related reference:
“SQL command factory POST request” on page 22
The requirements for a POST request to SQL command factory to execute arbitrary
SQL commands in the ObjectServer.

Example JSON success message
An example JSON success message for a row insertion into the alerts.status table of
the ObjectServer.
{
"entry": {

"affectedRows": 1,
"keyField": "14382%3ANCOMS",
"uri": "http://localhost/objectserver/restapi/alerts/status/kf/14382%3ANCOMS"

}
}

Example JSON error message
An example JSON error message indicating that the cause of the 400 (Bad
Request) HTTP response was caused by a referenced object, such as a column not
being found in the table.
{
"exception": {
"statusCode": 400,
"message": "Object not found"
}

}

Related reference:
“Error JSON message payload” on page 32
The ObjectServer HTTP interface might return a JSON error message payload in
any nonsuccess response code, such as 500. This error message gives information
about the internal ObjectServer return code failure that is related to the request.

38 IBM Tivoli Netcool/OMNIbus: ObjectServer HTTP Interface Reference Guide

Appendix B. HTTP request and response examples

Examples of HTTP requests and responses.

Example table collection POST request
Insertion of a row into the alerts.status table.
Accept: application/json
Authorization: Basic dGVzdHVzZXIwMTpuZXRjb29s
Content-Type: application/json
Host: localhost
Connection: keep-alive
Content-Length: 984

{
"rowset": {

"coldesc": [{
"type": "string",
"name": "Identifier"

}, {
"type": "string",
"name": "Node"

}, {
"type": "string",
"name": "AlertKey"

}, {
"type": "integer",
"name": "Severity"

}, {
"type": "string",
"name": "Summary"

}, {
"type": "utc",
"name": "FirstOccurrence"

}, {
"type": "utc",
"name": "LastOccurrence"

}, {
"type": "integer",
"name": "OwnerUID"

}, {
"type": "integer",
"name": "OwnerGID"

}],
"rows": [{

"FirstOccurrence": 1341412087,
"Node": "localhost",
"AlertKey": "JUnitEventInstance",
"Summary": "This is a test event generated by the JUnit REST Event Tests.(1)",
"LastOccurrence": 1341412087,
"Identifier": "JunitEventTestInstance####1",
"OwnerGID": 0,
"Severity": 4,
"OwnerUID": 0

}]
}
}

© Copyright IBM Corp. 1994, 2013 39

Example table collection POST response
HTTP/1.1 201 Created
Location: http://localhost/objectserver/restapi/alerts/status/kf/12481%3ANCOMS
Cache-Control: no-cache
Server: libnhttpd
Date: Wed Jul 4 15:31:53 2012
Connection: Keep-Alive
Content-Type: application/json;charset=UTF-8
Content-Length: 304
{
"entry": {
"affectedRows": 1,
"keyField": "12481%3ANCOMS",
"uri": "http://localhost/objectserver/restapi/alerts/status/kf/12481%3ANCOMS"
}
}

Example table collection GET request
Select all rows from the alerts.status table.
GET /objectserver/restapi/alerts/status HTTP/1.1
Accept: application/json
Authorization: Basic dGVzdHVzZXIwMTpuZXRjb29s
Host: localhost
Connection: keep-alive

Example table collection GET response
HTTP/1.1 200 OK
Cache-Control: no-cache
Server: libnhttpd
Date: Wed Jul 4 15:32:03 2012
Connection: Keep-Alive:
Content-Type: application/rdf+xml
Content-Length: 24860
{
"rowset": {

"osname": "NCOMS",
"dbname": "alerts",
"tblname": "status",
"coldesc": [{

"name": "Identifier",
"type": "string",
"size": 255
}, {
"name": "Serial",
"type": "integer",
"size": 4
}, {
"name": "Node",
"type": "string",
"size": 64
}, {
"name": "NodeAlias",
"type": "string",
"size": 64
}, {
"name": "AlertKey",
"type": "string",
"size": 255
}, {
"name": "Severity",
"type": "integer",
"size": 4

40 IBM Tivoli Netcool/OMNIbus: ObjectServer HTTP Interface Reference Guide

}, {
"name": "Summary",
"type": "string",
"size": 255
}, {
"name": "StateChange",
"type": "utc",
"size": 4
}, {
"name": "FirstOccurrence",
"type": "utc",
"size": 4
}, {
"name": "LastOccurrence",
"type": "utc",
"size": 4
}, {
"name": "RowSerial",
"type": "integer",
"size": 4
}],
"rows": [{

"Identifier": "Startup@sol9-build1",
"Serial": 12469,
"Node": "sol9-build1",
"NodeAlias": "",
"AlertKey": "",
"Severity": 0,
"Summary": "ObjectServer NCOMS on sol9-build1 started at

Wed Jul 04 15:27:57 2012",
"StateChange": 1341412082,
"FirstOccurrence": 1341411978,
"LastOccurrence": 1341412077,
"RowSerial": 12469
}, {
"Identifier": "ProfilerEnableToggle@NCOMS:sol9-build1",
"Serial": 12468,
"Node": "sol9-build1",
"NodeAlias": "",
"AlertKey": "",
"Severity": 0,
"Summary": "ObjectServer NCOMS Profiler enabled at

Wed Jul 04 15:27:56 2012",
"StateChange": 1341412077,
"FirstOccurrence": 1341411976,
"LastOccurrence": 1341412076,
"RowSerial": 12468
}, {
"Identifier": "JUnitEventTestInstance####0",
"Serial": 12469,
"Node": "sol9-build1",
"NodeAlias": "",
"AlertKey": "JUnitEventInstance",
"Severity": 0,
"Summary": "This is a test event generated by the

JUnit REST Event Tests. (0)",
"StateChange": 1341412184,
"FirstOccurrence": 1341411772,
"LastOccurrence": 1341412074,
"RowSerial": 12468
}, {
"Identifier": "Shutdown@sol9-build1",

******* TRUNCATED ********
"RowSerial": 12519

Appendix B. HTTP request and response examples 41

}],
"affectedRows": 12
}
}

Example table collection PATCH request
Update the Location, LastOccurrence, Acknowledged, OwnerUID and OwnerGID
columns of all rows in the alerts.status table.
PATCH /objectserver/restapi/alerts/status HTTP/1.1
Accept: application/json
Authorization: Basic dGVzdHVzZXIwMTpuZXRjb29s
Content-Type: application/json
Host: localhost
Connection: keep-alive
Content-Length: 1092
{
"rowset": {
"coldesc": [
{
"type": "integer",
"name": "Acknowledged"
},
{
"type": "string",
"name": "Location"
},
{
"type": "integer",
"name": "OwnerUID"
},
{
"type": "integer",
"name": "OwnerGID"
},
{
"type": "utc",
"name": "LastOccurrence"
}
],
"rows": [
{
"Location": "UPDATED",
"LastOccurrence": 1341412235,
"Acknowledged": 1,
"OwnerUID": 65534,
"OwnerGID": 1
}
]
}
}

Example table collection PATCH response
HTTP/1.1 200 OK
Cache-Control: no-cache
Server: libnhttpd
Date: Wed Jul 4 15:32:03 2012
Connection: Keep-Alive:
Content-Type: application/json;charset=UTF-8
Content-Length: 158
{
"entry": {

42 IBM Tivoli Netcool/OMNIbus: ObjectServer HTTP Interface Reference Guide

"affectedRows": 10,
"uri": "http://localhost/objectserver/restapi/alerts/status"
}
}

Example table collection DELETE request
Delete all rows in the alerts.status table.
DELETE /objectserver/restapi/alerts/status HTTP/1.1
Accept: application/json
Authorization: Basic dGVzdHVzZXIwMTpuZXRjb29s
Host: localhost
Connection: keep-alive

Example table collection DELETE response
HTTP/1.1 200 OK
Cache-Control: no-cache
Server: libnhttpd
Date: Wed Jul 4 15:38:53 2012
Connection: Keep-Alive:
Content-Type: application/json;charset=UTF-8
Content-Length: 157
{
"entry": {
"affectedRows": 10,
"uri": "http://localhost/objectserver/restapi/alerts/status"
}
}

Example row element GET request via RowSerial
Accept: application/json
Authorization: Basic dGVzdHVzZXIwMTpuZXRjb29s
Host: localhost
Connection: keep-alive

Example row element GET via RowSerial response
Cache-Control: no-cache
Server: libnhttpd
Date: Wed Jul 4 15:32:03 2012
Connection: Keep-Alive:
Content-Type: application/json;charset=UTF-8
Content-Length: 5964
{
"rowset": {
"osname": "NCOMS",
"dbname": "alerts",
"tblname": "status",
"coldesc": [{

"name": "Identifier",
"type": "string",
"size": 255

}, {
"name": "Serial",
"type": "integer",
"size": 4
}, {
"name": "Node",
"type": "string",
"size": 64
}, {
"name": "NodeAlias",

Appendix B. HTTP request and response examples 43

"type": "string",
"size": 64
}, {
"name": "Manager",
"type": "string",
"size": 64
}, {
"name": "Agent",
"type": "string",
"size": 64
}, {
"name": "AlertGroup",
"type": "string",
"size": 255
}, {
"name": "AlertKey",
"type": "string",
"size": 255
}, {
"name": "Severity",
"type": "integer",
"size": 4
}, {
"name": "Summary",
"type": "string",
"size": 255
}, {
"name": "StateChange",
"type": "utc",
"size": 4
}, {
"name": "FirstOccurrence",
"type": "utc",
"size": 4
}, {
"name": "LastOccurrence",
"type": "utc",
"size": 4
}, {

***** TRUNCATED ******
}],
"rows": [{
"Identifier": "JUnitEventTestInstance####0",
"Serial": 12510,
"Node": "localhost",
"NodeAlias": "",
"Manager": "com.ibm.netcool.omnibus.ws.junit.rest.schema.utils.TableRowEvent",
"Agent": "createEventNew()",
"AlertGroup": "",
"AlertKey": "JUnitEventInstance",
"Severity": 4,
"Summary": "This is a test event generated by the JUnit REST Event Tests. (0)",
"StateChange": 1341412207,
"FirstOccurrence": 1341412087,
"LastOccurrence": 1341412087,
"InternalLast": 1341412207,
"Poll": 0,
"Type": 1,
"Tally": 1,
"Class": 0,
"Grade": 0,
"Location": "NOT UPDATED",
"OwnerUID": 0,
"OwnerGID": 0,
"Acknowledged": 0,
"Flash": 0,
"EventId": "",

44 IBM Tivoli Netcool/OMNIbus: ObjectServer HTTP Interface Reference Guide

"ExpireTime": 0,
"ProcessReq": 0,
"SuppressEscl": 0,
"Customer": "",
"Service": "",
"PhysicalSlot": 0,
"PhysicalPort": 0,
"PhysicalCard": "",
"TaskList": 0,
"NmosSerial": "",
"NmosObjInst": 0,
"NmosCauseType": 0,
"NmosDomainName": "",
"NmosEntityId": 0,
"NmosManagedStatus": 0,
"NmosEventMap": "",
"LocalNodeAlias": "",
"LocalPriObj": "",
"LocalSecObj": "",
"LocalRootObj": "",
"RemoteNodeAlias": "",
"RemotePriObj": "",
"RemoteSecObj": "",
"RemoteRootObj": "",
"X733EventType": 0,
"X733ProbableCause": 0,
"X733SpecificProb": "",
"X733CorrNotif": "",
"ServerName": "NCOMS",
"ServerSerial": 12510,
"URL": "",
"ExtendedAttr": "",
"OldRow": 0,
"ProbeSubSecondId": 0,
"BSM_Identity": ""
}],
"affectedRows": 1
}
}

Example row element GET request via KeyField
Select a specific row from the alerts.status table via the key field.
GET /objectserver/restapi/alerts/status/kf/12510%3ANCOMS HTTP/1.1
Accept: application/json
Authorization: Basic dGVzdHVzZXIwMTpuZXRjb29s
Host: localhost
Connection: keep-alive

Example row element GET response via key field
HTTP/1.1 200 OK
Cache-Control: no-cache
Server: libnhttpd
Date: Wed Jul 4 15:32:03 2012
Connection: Keep-Alive:
Content-Type: application/json;charset=UTF-8
Content-Length: 5964
{
"rowset": {

"osname": "NCOMS",
"dbname": alerts",
"tblname": "status",
"coldesc": [{

"name": "Identifier",

Appendix B. HTTP request and response examples 45

"type": "string",
"size": 255

}, {
"name": "Serial",
"type": "integer",
"size": 4

}, {
"name": "Node",
"type": "string",
"size": 64

}, {
"name": "NodeAlias",
"type": "string",
"size": 64

}, {
"name": "Manager",
"type": "string",
"size": 64

}, {
"name": "Agent",
"type": "string",
"size": 64

}, {
"name": "AlertGroup",
"type": "string",
"size": 255

}, {
"name": "AlertKey",
"type": "string",
"size": 255

}, {
"name": "Severity",
"type": "integer",
"size": 4

}, {
"name": "Summary",
"type": "string",
"size": 255

}, {
"name": "StateChange",
"type": "utc",
"size": 4

}, {
"name": "FirstOccurrence",
"type": "utc",
"size": 4

}, {
"name": "LastOccurrence",
"type": "utc",
"size": 4

}, {
***** TRUNCATED ******

}],
"rows": [{

"Identifier": "JUnitEventTestInstance####0",
"Serial": 12510,
"Node": "localhost",
"NodeAlias": "",
"Manager": "com.ibm.netcool.omnibus.ws.junit.rest.schema.utils.TableRowEvent",
"Agent": "createEventNew()",
"AlertGroup": "",
"AlertKey": "JUnitEventInstance",
"Severity": 4,
"Summary": "This is a test event generated by the JUnit REST Event Tests. (0)",
"StateChange": 1341412207,
"FirstOccurrence": 1341412087,
"LastOccurrence": 1341412087,

46 IBM Tivoli Netcool/OMNIbus: ObjectServer HTTP Interface Reference Guide

"InternalLast": 1341412207,
"Poll": 0,
"Type": 1,
"Tally": 1,
"Class": 0,
"Grade": 0,
"Location": "NOT UPDATED",
"OwnerUID": 0,
"OwnerGID": 0,
"Acknowledged": 0,
"Flash": 0,
"EventId": "",
"ExpireTime": 0,
"ProcessReq": 0,
"SuppressEscl": 0,
"Customer": "",
"Service": "",
"PhysicalSlot": 0,
"PhysicalPort": 0,
"PhysicalCard": "",
"TaskList": 0,
"NmosSerial": "",
"NmosObjInst": 0,
"NmosCauseType": 0,
"NmosDomainName": "",
"NmosEntityId": 0,
"NmosManagedStatus": 0,
"NmosEventMap": "",
"LocalNodeAlias": "",
"LocalPriObj": "",
"LocalSecObj": "",
"LocalRootObj": "",
"RemoteNodeAlias": "",
"RemotePriObj": "",
"RemoteSecObj": "",
"RemoteRootObj": "",
"X733EventType": 0,
"X733ProbableCause": 0,
"X733SpecificProb": "",
"X733CorrNotif": "",
"ServerName": "NCOMS",
"ServerSerial": 12510,
"URL": "",
"ExtendedAttr": "",
"OldRow": 0,
"ProbeSubSecondId": 0,
"BSM_Identity": ""

}],
"affectedRows": 1
}
}

Example row element PATCH request
Update the Location, LastOccurrence, Acknowledged, OwnerUID and OwnerGID
columns of a specific row in the alerts.status table.
PATCH /objectserver/restapi/alerts/status/kf/12510%3ANCOMS HTTP/1.1
Accept: application/json
Authorization: Basic dGVzdHVzZXIwMTpuZXRjb29s
Content-Type: application/json
Host: localhost
Connection: keep-alive
Content-Length: 1092
{
"rowset": {
"coldesc": [

Appendix B. HTTP request and response examples 47

{
"type": "integer",
"name": "Acknowledged"

},
{

"type": "string",
"name": "Location"

},
{

"type": "integer",
"name": "OwnerUID"

},
{
"type": "integer",
"name": "OwnerGID"
},
{
"type": "utc",
"name": "LastOccurrence"
}
],
"rows": [
{
"Location": "UPDATED",
"LastOccurrence": 1341412235,
"Acknowledged": 1,
"OwnerUID": 65534,
"OwnerGID": 1
}
]
}
}

Example row element PATCH response
HTTP/1.1 200 OK
Cache-Control: no-cache
Server: libnhttpd
Date: Wed Jul 4 15:32:03 2012
Connection: Keep-Alive:
Content-Type: application/json;charset=UTF-8
Content-Length: 215
{

"entry": {
"affectedRows": 1,
"uri": "/objectserver/restapi/alerts/status/kf/12510%3ANCOMS"

}
}

Example row element DELETE request
Delete a specific row in the alerts.status table.
DELETE /objectserver/restapi/alerts/status/kf/12621%3ANCOMS HTTP/1.1
Accept: application/json
Authorization: Basic dGVzdHVzZXIwMTpuZXRjb29s
Host: localhost
Connection: keep-alive

48 IBM Tivoli Netcool/OMNIbus: ObjectServer HTTP Interface Reference Guide

Example row element DELETE response
HTTP/1.1 200 OK
Cache-Control: no-cache
Server: libnhttpd
Date: Wed Jul 4 15:38:53 2012
Connection: Keep-Alive:
Content-Type: application/json;charset=UTF-8
Content-Length: 207
{

"entry": {
"affectedRows": 1,
"uri": "/objectserver/restapi/alerts/status/kf/12621%3ANCOMS"

}
}

Example SQL command factory POST request
POST /objectserver/restapi/sql/factory HTTP/1.1
Accept: application/json
Authorization: Basic dGVzdHVzZXIwMTpuZXRjb29s
Content-Type: application/json
Content-Length: 64
Host: localhost
Connection: keep-alive
{

"sqlcmd":"drop user ’testuser01’;"
}

Related reference:
“SQL command factory POST request” on page 22
The requirements for a POST request to SQL command factory to execute arbitrary
SQL commands in the ObjectServer.

Example SQL command factory POST response
HTTP/1.1 200 OK
Cache-Control: no-cache
Server: libnhttpd
Date: Wed Jul 4 15:38:53 2012
Connection: Keep-Alive
Content-Type: application/json;charset=UTF-8
Content-Length: 124
{

"rowset": {
"osname": "NCOMS",
"affectedRows": 0

}
}

Example system information GET request
GET /objectserver/sysinfo HTTP/1.1
Accept: application/json
Authorization: Basic dGVzdHVzZXIwMTpuZXRjb29s
Host: localhost
Connection: keep-alive

Appendix B. HTTP request and response examples 49

Example system information GET response
HTTP/1.1 200 OK
Cache-Control: no-cache
Server: libnhttpd
Date: Wed Jul 4 15:38:53 2012
Connection: Keep-Alive
Content-Type: application/json;charset=UTF-8
Content-Length: 412
{

"compile": {
"full_details": "Tuesday June 26 17:12:01 BST 2012 on

hurccsol.hursley.ibm.com (SunOS 5.9 Generic_118558-30)",
"date": "Tuesday June 26 17:12:02 BST 2012",
"machine": "hurccsol.hursley.ibm.com",
"system": "SunOS 5.9 sparc",
"build_version": "750.CAPPL.01"

},
"rest": {

"version": "v1.0",
"major": 1,
"minor": 0

},
"oslc": {

"version": "v1.0",
"major": 1,
"minor": 0

}
}

Example system information element GET request
GET /objectserver/sysinfo/compile HTTP/1.1
Accept: application/json
Authorization: Basic dGVzdHVzZXIwMTpuZXRjb29s
Host: localhost
Connection: keep-alive

Example system information element GET response
HTTP/1.1 200 OK
Cache-Control: no-cache
Server: libnhttpd
Date: Wed Jul 4 15:38:53 2012
Connection: Keep-Alive:
Content-Type: application/json;charset=UTF-8
Content-Length: 286
{

"compile": {
"full_details": "Tuesday June 26 17:12:01 BST 2012 on

hurccsol.hursley.ibm.com (SunOS 5.9 Generic_118558-30)",
"date": "Tuesday June 26 17:12:02 BST 2012",
"machine": "hurccsol.hursley.ibm.com",
"system": "SunOS 5.9 sparc",
"build_version": "750.CAPPL.01"

}
}

50 IBM Tivoli Netcool/OMNIbus: ObjectServer HTTP Interface Reference Guide

JSON configuration file with MIME type settings and HTTP headers
Fix Pack 2

This example shows a $OMNIHOME/etc/libnhttpd/json configuration file, which is
edited to define MIME type settings and HTTP headers in HTTP responses that are
returned by the HTTP interface and OSLC interface. To enable MIME type settings
and HTTP headers, enable the NHttpd.ConfigFile property.

The sections that enable MIME type settings and HTTP headers are as follows:

httpResponse
Defines the HTTP headers that are in the HTTP responses that are returned by
the HTTP interface and OLSC interface. It has the following subsections:

corsHeaders
Overrides Cross-Origin Resource Sharing (CORS) HTTP headers. By
default, the default headers are overridden to indicate that the Location
HTTP header are be allowed and exposed. This setting is required for
HTTP 201 Create responses messages.

httpHeaders
For user-defined HTTP headers. These headers are added to all HTTP
responses. Use this section to add static values for clients. A sample header
is provided in the example.

mimeTypes
This section assigns a file extension, for example .html, to a MIME type. When
file-serving is enabled, these definitions are used to determine the MIME type
for the file. They also set the Content-Type HTTP header so that browsers can
handle the file correctly. The $OMNIHOME/etc/libnhttpd/json file has a default
set of MIME type settings that you can add to.

Example
{
"_comment" : "This file provides additional configuration data to the embedded HTTP
socket library (libnhttpd).",
"httpResponse" : {
"_comment" : "This section defines a set of user defined static elements that
should be returned in an HTTP response, such as HTTP headers.",
"corsHeaders" : [
{
"name" : "Access-Control-Allow-Headers",
"value" : "Location"
},
{
"name" : "Access-Control-Expose-Headers",
"value" : "Location"
}
],
"httpHeaders" : [
]
},
"mimeTypes" : {
"_comment" : "This section maps MIME types to file extensions. It is used by
libnhttpd to determine the MIME type for a file that is to be served from
its file serving URI.",
"application/json" : [
"json"
],

Appendix B. HTTP request and response examples 51

"application/rdf+xml" : [
"rdf"
],
"application/xslt+xml" : [
"xsl", "xslt"
],
"image/jpeg" : [
"jpg", "jpeg"
],
"image/gif" : [
"gif"
],
"image/png" : [
"png"
],
"text/css" : [
"css"
],
"text/javascript" : [
"js"
],
"text/HTML" : [
"htm", "html"
],
"text/plain" : [
"txt", "log"
],
"text/xml" : [
"xml"
]
}
}

Related reference:
“ObjectServer properties that control the HTTP interface and OSLC interface” on
page 2
ObjectServer properties that control the HTTP and OSLC interfaces.

52 IBM Tivoli Netcool/OMNIbus: ObjectServer HTTP Interface Reference Guide

Appendix C. List of abbreviations

The API documentation for the ObjectServer HTTP interface and the ObjectServer
OSLC interface use the following abbreviations and terms.

HTTP Hyper Text Transfer Protocol. HTTP version 1.1 is defined in RFC2616.
Unless otherwise noted, the term HTTP is used in this document to mean
both HTTP and HTTPS.

HTTPS
Hyper Text Transfer Protocol Secure, as defined in RFC2818.

JazzSM
Jazz for Service Management, which is available from https://
www.ibm.com/developerworks/mydeveloperworks/groups/service/
html/communityview?communityUuid=69ec672c-dd6b-443d-add8-
bb9a9a490eba.

JSON JavaScript Object Notation, as defined in ECMA-262.

MIME Multipurpose Internet Mail Extensions. MIME media types are defined in
IANA MIME Media Types.

OSLC Open Services for Lifecycle Collaboration, as defined at
http://open-services.net.

REST Representational State Transfer, as originally and informally described in
Architectural Styles and the Design of Network-based Software Architectures.

URI Uniform Resource Identifier, as defined in RFC3986.

XML eXtensible Markup Language, as defined by W3C.

© Copyright IBM Corp. 1994, 2013 53

https://www.ibm.com/developerworks/mydeveloperworks/groups/service/html/communityview?communityUuid=69ec672c-dd6b-443d-add8-bb9a9a490eba
https://www.ibm.com/developerworks/mydeveloperworks/groups/service/html/communityview?communityUuid=69ec672c-dd6b-443d-add8-bb9a9a490eba
https://www.ibm.com/developerworks/mydeveloperworks/groups/service/html/communityview?communityUuid=69ec672c-dd6b-443d-add8-bb9a9a490eba
https://www.ibm.com/developerworks/mydeveloperworks/groups/service/html/communityview?communityUuid=69ec672c-dd6b-443d-add8-bb9a9a490eba
http://open-services.net

54 IBM Tivoli Netcool/OMNIbus: ObjectServer HTTP Interface Reference Guide

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not grant you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan, Ltd.
19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law: INTERNATIONAL
BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION "AS IS"
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR
PURPOSE. Some states do not allow disclaimer of express or implied warranties in
certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

© Copyright IBM Corp. 1994, 2013 55

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

IBM Corporation
958/NH04
IBM Centre, St Leonards
601 Pacific Hwy
St Leonards, NSW, 2069
Australia

IBM Corporation
896471/H128B
76 Upper Ground
London SE1 9PZ
United Kingdom

IBM Corporation
JBF1/SOM1
294 Route 100
Somers, NY, 10589-0100
United States of America

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement or any equivalent agreement
between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments may
vary significantly. Some measurements may have been made on development-level
systems and there is no guarantee that these measurements will be the same on
generally available systems. Furthermore, some measurements may have been
estimated through extrapolation. Actual results may vary. Users of this document
should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

All statements regarding IBM's future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the

56 IBM Tivoli Netcool/OMNIbus: ObjectServer HTTP Interface Reference Guide

names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrate programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating
platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs.

Portions of this product include software developed by Daniel Veillard.
v libxml2-2.7.8

The libxml2-2.7.8 software is distributed according to the following license
agreement:
© Copyright 1998-2003 Daniel Veillard.
All Rights Reserved. Permission is hereby granted, free of charge, to any person
obtaining a copy of this software and associated documentation files (the
“Software”), to deal in the Software without restriction, including without
limitation the rights to use, copy, modify, merge, publish, distribute, sublicense,
and/or sell copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE DANIEL VEILLARD BE
LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF
OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.
Except as contained in this notice, the name of Daniel Veillard shall not be used in
advertising or otherwise to promote the sale, use or other dealings in this Software
without prior written authorization from him.

If you are viewing this information softcopy, the photographs and color
illustrations may not appear.

Trademarks
AIX, IBM, the IBM logo, ibm.com®, Informix, Netcool, System z, Tivoli®, and Tivoli
Enterprise Console® are trademarks or registered trademarks of International
Business Machines Corporation in the United States, other countries, or both.

Adobe, Acrobat, Portable Document Format (PDF), PostScript, and all Adobe-based
trademarks are either registered trademarks or trademarks of Adobe Systems
Incorporated in the United States, other countries, or both.

Notices 57

Java™ and all Java-based trademarks and logos are trademarks or
registered trademarks of Sun Microsystems, Inc. in the United States,
other countries, or both.

Linux is a registered trademark of Linus Torvalds in the United States, other
countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of
Microsoft Corporation in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Other company, product, or service names may be trademarks or service marks of
others.

58 IBM Tivoli Netcool/OMNIbus: ObjectServer HTTP Interface Reference Guide

����

Printed in the Republic of Ireland

SC27-5612-01

	Contents
	About this publication
	Intended audience
	What this publication contains
	Publications
	Accessibility
	Tivoli technical training
	Support information
	Conventions used in this publication
	List of abbreviations

	Chapter 1. Overview of the ObjectServer HTTP interface
	Enabling the HTTP interface and OSLC interface in the ObjectServer
	ObjectServer properties that control the HTTP interface and OSLC interface

	Enabling and configuring the IBM JazzSM service provider registry
	registry.oslc table

	Chapter 2. HTTP interface URIs
	Table collection services
	Table collection services: GET request
	Table collection services: GET response
	Table collection services: POST request
	Table collection services: POST response
	Table collection services: PATCH request
	Table collection services: PATCH response
	Table collection services: DELETE request
	Table collection services: DELETE response

	Row element services
	Row element GET request
	Row element GET response
	Row element PATCH request
	Row element PATCH response
	Row element DELETE request
	Row element DELETE response

	SQL command factory
	SQL command factory POST request
	SQL command factory POST response

	System information services
	GET collection request
	GET collection response
	GET element request
	GET element response

	Chapter 3. Common behaviors
	HTTP and HTTPS support
	HTTP response codes
	Query parameters
	Authentication mechanisms
	Success JSON message payload
	Error JSON message payload
	Message encryption
	Accept MIME types
	Content MIME types
	Response caching

	Appendix A. Example JSON payloads
	Example JSON row set: GET
	Example JSON row set: PATCH
	Example JSON row set: POST
	Example SQL command factory: POST
	Example JSON success message
	Example JSON error message

	Appendix B. HTTP request and response examples
	Example table collection POST request
	Example table collection POST response
	Example table collection GET request
	Example table collection GET response
	Example table collection PATCH request
	Example table collection PATCH response
	Example table collection DELETE request
	Example table collection DELETE response
	Example row element GET request via RowSerial
	Example row element GET via RowSerial response
	Example row element GET request via KeyField
	Example row element GET response via key field
	Example row element PATCH request
	Example row element PATCH response
	Example row element DELETE request
	Example row element DELETE response
	Example SQL command factory POST request
	Example SQL command factory POST response
	Example system information GET request
	Example system information GET response
	Example system information element GET request
	Example system information element GET response
	JSON configuration file with MIME type settings and HTTP headers

	Appendix C. List of abbreviations
	Notices
	Trademarks

