Crosstabs statistics

Chi-square. For tables with two rows and two columns, select Chi-square to calculate the Pearson chi-square, the likelihood-ratio chi-square, Fisher's exact test, and Yates' corrected chi-square (continuity correction). For 2 × 2 tables, Fisher's exact test is computed when a table that does not result from missing rows or columns in a larger table has a cell with an expected frequency of less than 5. Yates' corrected chi-square is computed for all other 2 × 2 tables. For tables with any number of rows and columns, select Chi-square to calculate the Pearson chi-square and the likelihood-ratio chi-square. When both table variables are quantitative, Chi-square yields the linear-by-linear association test.

Correlations. For tables in which both rows and columns contain ordered values, Correlations yields Spearman's correlation coefficient, rho (numeric data only). Spearman's rho is a measure of association between rank orders. When both table variables (factors) are quantitative, Correlations yields the Pearson correlation coefficient, r, a measure of linear association between the variables.

Nominal. For nominal data (no intrinsic order, such as Catholic, Protestant, and Jewish), you can select Contingency coefficient, Phi (coefficient) and Cramér's V, Lambda (symmetric and asymmetric lambdas and Goodman and Kruskal's tau), and Uncertainty coefficient.

Ordinal. For tables in which both rows and columns contain ordered values, select Gamma (zero-order for 2-way tables and conditional for 3-way to 10-way tables), Kendall's tau-b, and Kendall's tau-c. For predicting column categories from row categories, select Somers' d.

Nominal by Interval. When one variable is categorical and the other is quantitative, select Eta. The categorical variable must be coded numerically.

Kappa. Cohen's kappa measures the agreement between the evaluations of two raters when both are rating the same object. A value of 1 indicates perfect agreement. A value of 0 indicates that agreement is no better than chance. Kappa is based on a square table in which row and column values represent the same scale. Any cell that has observed values for one variable but not the other is assigned a count of 0. Kappa is not computed if the data storage type (string or numeric) is not the same for the two variables. For string variable, both variables must have the same defined length.

Risk. For 2 x 2 tables, a measure of the strength of the association between the presence of a factor and the occurrence of an event. If the confidence interval for the statistic includes a value of 1, you cannot assume that the factor is associated with the event. The odds ratio can be used as an estimate or relative risk when the occurrence of the factor is rare.

McNemar. A nonparametric test for two related dichotomous variables. Tests for changes in responses using the chi-square distribution. Useful for detecting changes in responses due to experimental intervention in "before-and-after" designs. For larger square tables, the McNemar-Bowker test of symmetry is reported.

Cochran's and Mantel-Haenszel statistics. Cochran's and Mantel-Haenszel statistics can be used to test for independence between a dichotomous factor variable and a dichotomous response variable, conditional upon covariate patterns defined by one or more layer (control) variables. Note that while other statistics are computed layer by layer, the Cochran's and Mantel-Haenszel statistics are computed once for all layers.

Specifying Statistics for Crosstabs

This feature requires Statistics Base Edition.

  1. From the menus choose:

    Analyze > Descriptive Statistics > Crosstabs...

  2. In the Crosstabs dialog box, click Statistics.