
IBM Developer for z/OS
Version 15.0

Host Configuration Reference

IBM

SC27-9934-03

Note

Before using this information, be sure to read the general information under “Notices” on page 43.

Third edition (March 2022)

This edition applies to IBM® Developer for z/OS® Version 15.0 and to all subsequent releases and modifications until
otherwise indicated in new editions.

IBM welcomes your comments. You can send your comments by mail to the following address:

IBM Corporation
Attn: Information Development Department 53NA
Building 501 P.O. Box 12195
Research Triangle Park NC 27709-2195
USA

You can fax your comments to: 1-800-227-5088 (US and Canada)

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any way it
believes appropriate without incurring any obligation to you.

Note to U.S. Government Users Restricted Rights - Use, duplication or disclosure restricted by GSA ADP Schedule
Contract with IBM Corp.
© Copyright International Business Machines Corporation 2015, 2024.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract with
IBM Corp.

Contents

Figures.. v

Tables... vii

About this document...ix
Who should use this document...ix

Part 1. Host Configuration Reference..1

Chapter 1. Understanding Developer for z/OS.. 3
Component overview..3
Task owners.. 4
CARMA.. 5

CRASTART... 5
Batch submit... 6

z/OS UNIX directory structure... 6

Chapter 2. Security considerations... 9
Authentication methods...9
Connection security..9
xUnit support for CICS applications (ZUnit).. 9
Security definitions...11

Requirements and checklist... 12
Define the data set profiles.. 12
Verify the security settings... 13

Chapter 3. TCP/IP considerations... 15
TCP/IP ports... 15

External communication...15
Internal communication... 16
TCP/IP port reservation.. 16

CARMA and TCP/IP... 16
CARMA and TCP/IP ports..16
CARMA and stack affinity..17

Chapter 4. WLM considerations...19
Workload classification.. 19

Classification rules..20
Setting goals... 21

Considerations for goal selection...21
OMVS...22
JES...23

Chapter 5. Push-to-client considerations... 25
Introduction..25
Host-based projects...25

Chapter 6. CICSTS considerations.. 27
xUnit support for CICS applications.. 27

 iii

Bidirectional language support..27
Diagnostic IRZ messages for Enterprise Service Tools...27

Chapter 7. SMF considerations... 29
SMF type 122, subtype 1... 29

Client activation code request..29
Header section..30
Data section 1, Creator ID.. 32
Data section 2, Server initialization..33
Data section 3, VU license handler status... 34
Data section 4, Client UUID..34
Data section 5, Client labels...34
Data section 6, Client data... 35

Chapter 8. Troubleshooting configuration problems..37
Log files...37

CARMA logging..37
fekfivpc IVP test logging... 37
Code review logging..38
Code coverage logging..38

Tracing.. 38
CARMA tracing.. 38
Error feedback tracing.. 38

z/OS UNIX permission bits...39
SETUID file system attribute.. 39
APF authorization..40
Sticky bit..40

Error feedback B37 space abend ..41
Host Connection Emulator... 41

Notices..43
Programming interface information.. 44
Trademarks.. 44
Terms and conditions for product documentation... 44

iv

Figures

1. Component overview...3

2. Task owners... 4

3. CARMA flow... 5

4. z/OS UNIX directory structure.. 6

5. TCP/IP ports.. 15

6. WLM classification...19

 v

vi

Tables

1. Security setup variables..12

2. WLM entry-point subsystems... 20

3. WLM work qualifiers.. 20

4. WLM workloads... 21

5. WLM workloads - OMVS.. 22

6. WLM workloads - JES..23

7. SMF record type 122 subtype 1, header section... 30

8. SMF record type 122 subtype 1, data section 1...32

9. SMF record type 122 subtype 1, data section 2...33

10. SMF record type 122 subtype 1, data section 3.. 34

11. SMF record type 122 subtype 1, data section 4.. 34

12. SMF record type 122 subtype 1, data section 5.. 35

13. SMF record type 122 subtype 1, data section 6.. 35

 vii

viii

About this document

This document gives background information for various configuration tasks of IBM Developer for z/OS
itself and other z/OS components and products (such as WLM and TCP/IP).

The following names are used in this manual:

• IBM Explorer for z/OS is called z/OS Explorer.
• IBM z/OS Debugger is called z/OS Debugger.
• IBM Developer for z/OS is called Developer for z/OS.
• IBM z/OS Explorer Extensions is called z/OS Explorer Extensions.
• Common Access Repository Manager is abbreviated to CARMA.
• z/OS UNIX System Services is called z/OS UNIX.
• Customer Information Control System Transaction Server is called CICSTS, abbreviated to CICS®.
• z/OS Automated Unit Testing Framework is called ZUnit.

The host components of IBM Developer for z/OS are shared between multiple products, and therefore
have a product-neutral name. This publication discusses configuration of the following FMIDs:

• HHOPxxx, IBM z/OS Explorer Extensions

This FMID adds additional services to z/OS Explorer that can be utilized by the Developer for z/OS
client.

This document is part of a set of documents that describe Developer for z/OS host configuration. Each of
these documents has a specific target audience. You are not required to read all documents to complete
the Developer for z/OS configuration.

• IBM Developer for z/OS Host Configuration Guide describes in detail all planning tasks, configuration
tasks and options (including optional ones) and provides alternative scenarios.

• IBM Developer for z/OS Host Configuration Reference describes Developer for z/OS design and gives
background information for various configuration tasks of Developer for z/OS, z/OS components, and
other products (such as WLM and TCP/IP) related to Developer for z/OS.

For the most up-to-date versions of this document, see the Developer for z/OS Knowledge Center
available at https://www.ibm.com/support/knowledgecenter/SSQ2R2/rdz_welcome.html.

For the most up-to-date versions of the complete documentation, including installation instructions,
white papers, podcasts, and tutorials, see the library page of the IBM Developer for z/OS website (http://
www.ibm.com/support/docview.wss?uid=swg27048563).

Who should use this document
This document is intended for system programmers configuring and tuning IBM Developer for z/OS.

While the actual configuration steps are described in the Host Configuration Guide. This publication lists in
detail various related subjects, such as tuning, security setup, and more. To use this document, you must
be familiar with the z/OS UNIX System Services and MVS™ host systems.

© Copyright IBM Corp. 2015, 2024 ix

https://www.ibm.com/support/knowledgecenter/SSQ2R2/rdz_welcome.html
http://www.ibm.com/support/docview.wss?uid=swg27048563

x IBM Developer for z/OSVersion 15.0: Host Configuration Reference

Part 1. Host Configuration Reference

© Copyright IBM Corp. 2015, 2024 1

2 IBM Developer for z/OSVersion 15.0: Host Configuration Reference

Chapter 1. Understanding Developer for z/OS

The Developer for z/OS host consists of several components that interact to give the client access to the
host services and data. Understanding the design of these components can help you make the correct
configuration decisions.

Developer for z/OS builds on top of IBM Explorer for z/OS. For z/OS Explorer related information, see
"Understanding z/OS Explorer" in the IBM Explorer for z/OS Host Configuration Reference.

Component overview

Figure 1. Component overview

Figure 1 on page 3 shows a generalized overview of the combined z/OS Explorer, z/OS Debugger, and
Developer for z/OS layout on your host system.

• (z/OS Explorer) Remote Systems Explorer (RSE) provides core services, such as connecting the client to
the host and starting other servers for specific services. RSE consists of two logical entities:

– RSE daemon (RSED), which manages connection setup. RSE daemon is also responsible for running
in single server mode. To do so, RSE daemon creates one or more child processes known as RSE
thread pools (RSEDx).

– RSE server, which handles individual client request. An RSE server is active as a thread inside a RSE
thread pool.

• (z/OS Debugger) Debug Manager (DBGMGR) coordinates debugger activity.
• (z/OS Explorer) TSO Commands Service (TSO cmd) provides a batch-like interface for TSO and ISPF

commands.
• (z/OS Explorer) JES Job Monitor (JMON) provides all JES related services.

© Copyright IBM Corp. 2015, 2024 3

• Common Access Repository Manager (CARMA) provides an interface to interact with Software
Configuration Managers (SCMs), such as CA Endevor® SCM.

• More services are available, which can be provided by Developer for z/OS itself or corequisite software.

The description in the previous paragraph and list shows the central role assigned to RSE. With few
exceptions, all client communication goes through RSE. This allows for easy security related network
setup, as only a limited set of ports are used for client-host communication.

To manage the connections and workloads from the clients, RSE is composed of a daemon address
space, which controls thread pool address spaces. The daemon acts as a focal point for connection
and management purposes, while the thread pools process the client workloads. Based upon the values
defined in the rse.env configuration file, and the amount of actual client connections, multiple thread
pool address spaces can be started by the daemon.

Task owners
Figure 2 on page 4 shows a basic overview of the owner of the security credentials used for various
z/OS Explorer, z/OS Debugger, and Developer for z/OS tasks.

Figure 2. Task owners

The ownership of a task can be divided into two sections. Started tasks are owned by the user ID that is
assigned to the started task in your security software. All other tasks, with the RSE thread pools (RSEDx)
as exception, are owned by the client user ID.

Figure 2 on page 4 shows the z/OS Explorer, z/OS Debugger, and Developer for z/OS started tasks
(DBGMGR, JMON, and RSED), and sample started tasks and system services that Developer for z/OS
communicates with. The USS REXEC tag represents the z/OS UNIX REXEC (or SSH) service.

RSE daemon (RSED) creates one or more RSE thread pool address spaces (RSEDx) to process client
requests. Each RSE thread pool supports multiple clients and is owned by the same user as the RSE
daemon. Each client has his own threads inside a thread pool, and these threads are owned by the client
user ID.

Depending on actions done by the client, one or more additional address spaces can be started, all owned
by the client user ID, to perform the requested action. These address spaces can be an MVS batch job, or

4 IBM Developer for z/OSVersion 15.0: Host Configuration Reference

a z/OS UNIX child process. Note that a z/OS UNIX child process is active in a z/OS UNIX initiator (BPXAS),
and the child process shows up as a started task in JES.

The creation of these address spaces is most often triggered by a user thread in a thread pool, either
directly or by using system services like ISPF. But the address space could also be created by a third
party. For example, z/OS UNIX REXEC or SSH are involved when starting builds in z/OS UNIX.

The user-specific address spaces end at task completion or when an inactivity timer expires. The started
tasks remain active. The address spaces listed in Figure 2 on page 4 remain in the system long enough
to be visible. However, you should be aware that due to the way z/OS UNIX is designed, there are also
several short-lived temporary address spaces.

CARMA

Figure 3. CARMA flow

CARMA (Common Access Repository Manager) is used to access a host based Software Configuration
Manager (SCM), for example CA Endevor® SCM. Figure 3 on page 5 shows a schematic overview of how a
Developer for z/OS client can access any supported host-based Software Configuration Manager (SCM).

1. The client has a Common Access Repository Manager (CARMA) plugin.
2. The CARMA plugin communicates with the CARMA miner, active as a user-specific thread within the

RSE thread pool (RSEDx). This communication is done by way of the existing RSE connection.
3. When the client requests access to a SCM, the CARMA miner will bind to a TCP/IP port and will start

a user-specific CARMA server, with the port number as startup argument. The CARMA server will then
connect to this port and use this path for communication with the client. Note that host based SCMs
expect single-user address spaces to access their services, which requires CARMA to start a CARMA
server per user. It is not possible to create a single server supporting multiple users.

4. The CARMA server will load the Repository Access Manager (RAM) that supports the requested SCM.
5. The RAM deals with the technical details of interacting with the specific SCM, and presents a common

interface to the client.

CRASTART
The "CRASTART" method starts the CARMA server as a subtask within RSE. It provides a very flexible
setup by using a separate configuration file that defines data set allocations and program invocations
needed to start a CARMA server. This method provides the best performance and uses the fewest
resources, but requires that module CRASTART is located in LPA.

RSE invokes load module CRASTART, which uses the definitions in crastart*.conf to create a valid
environment to execute batch TSO and ISPF commands. Developer for z/OS uses this environment to
run the CARMA server, CRASERV. Developer for z/OS provides multiple crastart*.conf files, each
preconfigured for a specific RAM.

Chapter 1. Understanding Developer for z/OS 5

Batch submit
The "batch submit" method starts the CARMA server by submitting a job. This is the default method used
in the provided sample configuration files. The benefit of this method is that the CARMA logs are easily
accessible in the job output. It also allows the use of custom server JCL for each developer, which is
maintained by the developer himself. However, this method uses one JES initiator per developer starting a
CARMA server.

RSE invokes CLIST CRASUB*, which in turn submits an embedded JCL to create a valid environment to
execute batch TSO and ISPF commands. Developer for z/OS uses this environment to run the CARMA
server, CRASERV. Developer for z/OS provides multiple CRASUB* members, each preconfigured for a
specific RAM.

z/OS UNIX directory structure

Figure 4. z/OS UNIX directory structure

Figure 4 on page 6 shows an overview of the z/OS UNIX directories used by Developer for z/OS. The
following list describes each directory touched by Developer for z/OS, how the location can be changed,
and who maintains the data within.

• /usr/lpp/IBM/zee/ is the root path for the Developer for z/OS product code. The actual location
is specified in the zee.env configuration file (variable FEL_HOME). The files within are maintained by
SMP/E.

• Developer for z/OS places files in /usr/lpp/IBM/zexpl/bin, the binaries directory of z/OS Explorer.
The actual location is specified in the z/OS Explorer configuration. The files within are maintained by
SMP/E.

• /etc/zexpl/ holds the z/OS Explorer and Developer for z/OS configuration files. The actual location
is specified in the RSED started task (variable CNFG). The files within are maintained by the system
programmer.

• /tmp/ is used by Legacy ISPF Gateway to store temporary data. Some IVPs store their output here.
The files within are maintained by ISPF and the IVPs. The location can be customized with the TMPDIR
variable in rse.env. It is also the default location for Java™ dump files, which can be customized with
the _CEE_DUMPTARG variable in rse.env.

Note: /tmp/ requires permission bit mask 777 to allow each client to create temporary files.

6 IBM Developer for z/OSVersion 15.0: Host Configuration Reference

• /var/zexpl/WORKAREA/ is used by Legacy ISPF Gateway to transfer data between z/OS UNIX and
MVS based address spaces. The actual location is specified in rse.env (variable CGI_ISPWORK). The
files within are maintained by ISPF.

Note: /var/zexpl/WORKAREA/ requires permission bit mask 777 to allow each client to create
temporary files.

• Developer for z/OS writes log messages in the z/OS Explorer log files located in /var/zexpl/zexpl/
logs/$LOGNAME. The actual location is specified in the z/OS Explorer configuration. The files within are
maintained by z/OS Explorer and Developer for z/OS product code.

• /var/zexpl/pushtoclient/ holds host-based project information, client configuration files and
client product update information that is pushed to the client upon connection to the host. The actual
location is specified in pushtoclient.properties (variable pushtoclient.folder). The files
within are maintained by a Developer for z/OS client administrator.

Note: The host components of Developer for z/OS are shared by multiple products, and the data
in /var/zexpl/pushtoclient/projects is not used by Developer for z/OS.

• /var/zexpl/pushtoclient/projects/ holds the host-based project definition files. The actual
location is specified in /var/zexpl/pushtoclient/keymapping.xml, which is created and
maintained by a Developer for z/OS client administrator. The files within are maintained by a project
manager or lead developer.

Chapter 1. Understanding Developer for z/OS 7

8 IBM Developer for z/OSVersion 15.0: Host Configuration Reference

Chapter 2. Security considerations

Developer for z/OS extends z/OS Explorer by providing additional functions, some of which interact with
other system components and products, such as CICS. Developer for z/OS specific security definitions are
used to secure the provided functions.

The security mechanisms used by Developer for z/OS servers and services rely on the data sets and file
systems it resides in being secure. This implies that only trusted system administrators should be able to
update the program libraries and configuration files.

Developer for z/OS builds on top of IBM Explorer for z/OS. For z/OS Explorer related information, see
"Security consideration" in the IBM Explorer for z/OS Host Configuration Reference.

Authentication methods
CARMA authentication

Client authentication is done by RSE daemon as part of the client's connection request. CARMA is
started from a user specific thread, and inherits the user’s security environment, bypassing the need
for additional authentication.

Connection security
Most communication between Developer for z/OS client and host goes through RSE, thus utilizing the
connection security provided by z/OS Explorer.

Some Developer for z/OS services use a separate external (client-host) communication path:

• The Host Connect Emulator on the client connects to a TN3270 server on the host. The encryption
details are controlled by an Application Transparent Transport Layer Security (AT-TLS) policy.

• Remote (host-based) actions in z/OS UNIX subprojects use an REXEC or SSH server on the host. SSH
communication is always encrypted.

xUnit support for CICS applications (ZUnit)
Frameworks that assist developers in writing code to perform repeatable, self-checking unit tests are
collectively known as xUnit. IBM Developer for z/OS provides such a framework for unit testing of
Enterprise COBOL and PL/I code, called ZUnit. This customization task extends ZUnit to support testing
CICS applications through recording of the parameters used in EXEC CICS calls.

Note: Support for testing CICS applications relies on services offered by IBM z/OS Dynamic Test Runner,
FMID HAL6xxx. Ensure that this FMID is installed and configured. You might find it convenient to
perform the customization tasks described here in conjunction with those described in Support for
CICS applications of the Dynamic Test Runner Host Configuration Guide as there are common resources
updated by both tasks.

Multiple user IDs are involved when using ZUnit to test CICS applications:

1. The user ID used by the end-user when connecting to the host using the IBM Developer for z/OS client,
referred to as the client user ID in this section.

2. The user ID used by the CICS region when doing actions requested by ZUnit, referred to as the CICS
user ID in this section. The CICS user ID can differ from the client user ID, for example it can be the
CICS default user.

3. The user ID used by an administrator or end-user to interact directly with CICS, referred to as CICS
admin ID in this section. The CICS admin ID can differ from both the client user ID and the CICS user
ID.

4. The user ID that the CICS region runs under, referred to as the CICS region user ID in this section.

© Copyright IBM Corp. 2015, 2024 9

Data set

As part of its processing, ZUnit creates a recording (also known as "playback") data set that will be
populated by Dynamic Test Runner. The high level qualifier(s) of this data set can be configured in the
ZUnit client preferences (default is the client user ID followed by ZUNIT.PB). The low level qualifier is
the name of the program under test. Two user IDs require authorization to the security profile in the
DATASET class that protects these recording data sets:

• The client user ID requires ALTER access so that it can create them
• The CICS region user ID requires UPDATE access so that it can write to them

For example, use the following z/OS Security Server (RACF) commands to define a data set profile for
client user ID IBMUSER using the default high level qualifier, and to authorize users to use it:

ADDSD 'IBMUSER.ZUNIT.PB.*' UACC(NONE) DATA('ZUNIT PLAYBACK')
PERMIT 'IBMUSER.ZUNIT.PB.* ' CLASS(DATASET) ACCESS(ALTER) ID(IBMUSER)
PERMIT 'IBMUSER.ZUNIT.PB.* ' CLASS(DATASET) ACCESS(UPDATE) ID(#CICS_region_user_ID)
SETROPTS GENERIC(DATASET) REFRESH

SEC=YES

When CICS security is enabled with the SEC=YES system initialization parameter, users of the
ZUnit management transaction (CICS admin ID) require READ access to the profile protecting the
AZUMCICS transaction. Default resource and grouping class names for transactions are TCICSTRN
and GCICSTRN, respectively, but these names can be overridden by the XTRAN CICS system
initialization parameter.

For example, use the following z/OS Security Server (RACF) commands to define a profile for
transaction AZUM in the TCICSTRN class, and to authorize users to run it:

RDEFINE TCICSTRN AZUM UACC(NONE)DATA('ZUNIT MANAGEMENT')
PERMIT AZUM CLASS(TCICSTRN) ACCESS(READ) ID(#CICS_admin_ID_group)
SETROPTS GENERIC(TCICSTRN) REFRESH

No further security configuration is required unless CICS security is enabled with the SEC=YES
system initialization parameter, and either CMDSEC=ALWAYS or RESSEC=ALWAYS is specified as a
CICS system initialization parameter.

CMDSEC=ALWAYS

If SEC=YES and CMDSEC=ALWAYS are specified as CICS system initialization parameters, then client
user IDs require ALTER access to TDQUEUE, the security profile that protects the CICS Transient Data
queue (TD queue) commands. Default resource and grouping class names for CICS commands are
CCICSCMD and VCICSCMD, respectively, but these names can be overridden by the XCMD CICS system
initialization parameter.

For example, use the following z/OS Security Server (RACF) commands to define a profile for TD
queue commands in the CICSCMD class, and to authorize users to issue the TDQUEUE commands:

RDEFINE CCICSCMD TDQUEUE UACC(NONE)
PERMIT TDQUEUE CLASS(CCICSCMD) ACCESS(ALTER) ID(#client_user_ID_group)
SETROPTS GENERIC(CCICSCMD) REFRESH

RESSEC=ALWAYS

If SEC=YES and RESSEC=ALWAYS are specified as CICS system initialization parameters, then client
user IDs require the following resource authorization:
Transient data queues (TD queues)

Client user IDs require ALTER access to ZU*, the profile that protects ZUnit CICS TD queues.
Default resource and grouping class names for CICS TD queues are DCICSDCT and ECICSDCT,
respectively, but these names can be overridden by the XDCT CICS system initialization
parameter.

10 IBM Developer for z/OSVersion 15.0: Host Configuration Reference

For example, use the following z/OS Security Server (RACF) commands to define a profile for TD
queues in the DCICSDCT class, and to authorize users to access them:

RDEFINE DCICSDCT ZU* UACC(NONE) DATA('ZUNIT')
PERMIT ZU* CLASS(DCICSDCT) ACCESS(ALTER) ID(#client_user_ID_group)
SETROPTS GENERIC(DCICSDCT) REFRESH

Programs

Client user IDs require:

• READ access to AZUCREST
• READ access to all load modules or program objects containing routines that are called by

programs under test using non-CICS interfaces

Default resource and grouping class names for CICS programs are MCICSPPT and NCICSPPT,
respectively, but these names can be overridden by the XPPT CICS system initialization
parameter.

For example, use the following z/OS Security Server (RACF) commands to define profiles for
program AZUCREST in the MCICSPPT class and programs under test in the NCICSPPT class, and
to authorize users to access them:

RDEFINE MCICSPPT AZUCREST UACC(NONE) DATA('ZUNIT')
RDEFINE NCICSPPT TESTPGM1 UACC(NONE)
ADDMEM(#test_program_1,#test_program_2,#test_program_3)
RDEFINE NCICSPPT TESTPGM2 UACC(NONE) ADDMEM(#test_program_4,#test_program_5)
PERMIT AZUCREST CLASS(MCICSPPT) ACCESS(READ) ID(#client_user_ID_group)
PERMIT TESTPGM1 CLASS(NCICSPPT) ACCESS(READ) ID(#client_user_ID_group1)
PERMIT TESTPGM2 CLASS(NCICSPPT) ACCESS(READ) ID(#client_user_ID_group2)
SETROPTS GENERIC(MCICSPPT) REFRESH
SETROPTS GENERIC(NCICSPPT) REFRESH

Temporary Storage queues (TS queues)

By default, no authorization is required for temporary storage queues (TS queues). If you want to
enforce security for TS queues, define two TSMODELs in CICS:

• One with PREFIX(_AZU_LOG) LOCATION(AUXILIARY) SECURITY(YES)
• One with PREFIX(_AZU_CTL) LOCATION(MAIN) SECURITY(YES)

Client user IDs require UPDATE authorization to, at least, profiles for TS queues with names
starting with _AZU_LOGRS_ and _AZU_CTL2_.

The default resource and grouping class names for temporary storage queues are SCICSTST
and UCICSTST, respectively, but these names can be overridden by the XTST CICS system
initialization parameter.

For example, use the following z/OS Security Server (RACF) commands to define profiles for TS
queues used by ZUnit, and to authorize users to access them:

RDEFINE SCICSTST _AZU_* UACC(NONE) DATA('ZUNIT')
PERMIT _AZU_* CLASS(SCICSTST) ACCESS(UPDATE) ID(#client_user_ID_group)
SETROPTS GENERIC(SCICSTST) REFRESH

Security definitions
Customize and submit the sample FELRACF job, which has sample RACF® commands to create the basic
security definitions for Developer for z/OS.

FELRACF is located in FEL.#CUST.JCL, unless you specified a different location when you customized
and submitted the FEL.SFELSAMP(FELSETUP) job. See "Customization setup" in the Host Configuration
Guide for more details.

See the RACF Command Language Reference (SA22–7687) for more information about RACF commands.

Chapter 2. Security considerations 11

Requirements and checklist
To complete the security setup, the security administrator must know the values that are listed in Table
1 on page 12. These values were defined during previous steps of the installation and customization of
Developer for z/OS.

Table 1. Security setup variables

Description

• Default value
• Where to find the answer Value

Developer for z/OS product high-
level qualifier

• FEL
• SMP/E installation

Developer for z/OS customization
high-level qualifier

• FEL.#CUST
• FEL.SFELSAMP(FELSETUP),

as described in "Customization
setup" in the Host Configuration
Guide.

The following list is an overview of the actions that are required to complete the basic security setup
of Developer for z/OS. As documented in the following sections, different methods can be used to fulfill
these requirements, depending on the required security level.

• “Define the data set profiles” on page 12
• “Verify the security settings” on page 13

Define the data set profiles
READ access for users and ALTER for system programmers is sufficient for most Developer for z/OS data
sets. Replace the #sysprog placeholder with valid user IDs or RACF group names. Also, ask the system
programmer who installed and configured the product for the correct data set names. FEL is the default
high-level qualifier used during installation and FEL.#CUST is the default high-level qualifier for data sets
created during the customization process.

• ADDGROUP (FEL) OWNER(IBMUSER) SUPGROUP(SYS1)
DATA('IBM Developer for z/OS - HLQ STUB')

• ADDSD 'FEL.*.**' UACC(READ)
DATA('IBM Developer for z/OS')

• PERMIT 'FEL.*.**' CLASS(DATASET) ACCESS(ALTER) ID(#sysprog)

• SETROPTS GENERIC(DATASET) REFRESH

Notes:

• Protect FEL.SFELLPA against updates because this data set is loaded into LPA, which is APF
authorized by default.

• The sample commands in this publication and in the FELRACF job assume that Enhanced Generic
Naming (EGN) is active. When EGN is active, the ** qualifier can be used to represent any number of
qualifiers in the DATASET class. Substitute ** with * if EGN is not active on your system. For more
information about EGN, see Security Server RACF Security Administrator's Guide (SA22-7683).

Some of the Developer for z/OS components require additional security data set profiles. Replace the
#sysprog and #ram-developer placeholders with valid user ID’s or RACF group names:

12 IBM Developer for z/OSVersion 15.0: Host Configuration Reference

• CARMA RAM (Repository Access Manager) developers require UPDATE access to the CARMA VSAMs,
FEL.#CUST.CRA*.

– ADDSD 'FEL.#CUST.CRA*.**' UACC(READ)
DATA('IBM Developer for z/OS - CARMA')

– PERMIT 'FEL.#CUST.CRA*.**' CLASS(DATASET) ACCESS(ALTER) ID(#sysprog)

– PERMIT 'FEL.#CUST.CRA*.**' CLASS(DATASET) ACCESS(UPDATE) ID(#ram-developer)

– SETROPTS GENERIC(DATASET) REFRESH

Verify the security settings
Use the following sample commands to display the results of your security-related customizations.

• Data set profiles

– LISTGRP FEL
– LISTDSD PREFIX(FEL) ALL

Chapter 2. Security considerations 13

14 IBM Developer for z/OSVersion 15.0: Host Configuration Reference

Chapter 3. TCP/IP considerations

Developer for z/OS uses TCP/IP to provide mainframe access to users on a non-mainframe workstation. It
also uses TCP/IP for communication between various components and other products.

Developer for z/OS builds on top of IBM Explorer for z/OS. For z/OS Explorer related information, see
"TCP/IP considerations" in the IBM Explorer for z/OS Host Configuration Reference.

TCP/IP ports

Figure 5. TCP/IP ports

Figure 5 on page 15 shows the TCP/IP ports that can be used by z/OS Explorer, z/OS Debugger, and
Developer for z/OS. The arrows show which party does the bind (arrowhead side) and which one
connects.

External communication
Define the following ports to your firewall protecting the z/OS host, as they are used for client-host
communication (using the tcp protocol):

• (z/OS Explorer) RSE daemon for client-host communication setup, default port 4035. The port can be
set in the rse.env configuration file. Communication on this port can be encrypted.

• (z/OS Explorer) RSE server for client-host communication. By default, any available port is used, but this
can be limited to a specified range with the _RSE_PORTRANGE definition in rse.env. The default port
range for _RSE_PORTRANGE is 8108-8118 (11 ports). Communication on this port can be encrypted.

• (z/OS Debugger) Debug manager for debugger services, default port 5335. The port can be set in the
DBGMGR started task JCL. Communication on this port can be encrypted.

• CICS PIPELINE port for ZUnit CICS recorder. There is no default. The port can be set in the CICS CSD.
Communication on this port can be encrypted.

• Either INETD service for remote (host-based) actions in z/OS UNIX subprojects:

– REXEC (z/OS UNIX version), default port 512.
– SSH (z/OS UNIX version), default port 22. Communication on this port is encrypted.

• TN3270 Telnet service for the Host Connect Emulator, default port 23. Communication can be
encrypted (default port 992). The default port assigned to the TN3270 Telnet service depends on
whether or not the user chooses to use encryption.

© Copyright IBM Corp. 2015, 2024 15

• Host-based code coverage can be instructed to connect to the Engine of a Developer for z/OS client.
Communication on this port can be encrypted. Note that in this scenario, the z/OS-based code coverage
collector is a client for TCP/IP and the Engine on the user’s personal computer is a server for TCP/IP.
The default is to work with z/OS Debugger locally on the same host.

Note: Normally the client specifies which TCP/IP address is used to connect to the host. However, to
ensure that debug sessions communicate with the correct host, the Debug Manager dictates to the client
which TCP/IP address must be used.

Internal communication
Several Developer for z/OS host services run in separate threads or address spaces and are using TCP/IP
sockets as communication mechanism, using your system’s loopback address. All these services use RSE
for communicating with the client, making their data stream confined to the host only. For some services
any available port will be used, for others the system programmer can choose the port or port range that
will be used:

• (z/OS Explorer) JES Job Monitor for JES-related services, default port 6715. The port can be set in the
FEJJCNFG configuration member and is repeated in the rse.env configuration file.

• CARMA communication uses by default an ephemeral port, but a port range can be set in the
CRASRV.properties configuration file.

• (z/OS Debugger) Debug Manager for debug related services, default port 5336. The port can be set in
the DBGMGR started task JCL.

• Host-based code coverage, which is a batch job, allocates an ephemeral port to allow the z/OS
Debugger to communicate with it and deliver data needed for the code coverage report.

TCP/IP port reservation
If you use the PORT or PORTRANGE statement in PROFILE.TCPIP to reserve the ports used by z/OS
Explorer, z/OS Debugger, and Developer for z/OS, note that many binds are done by threads active in an
RSE thread pool. The job name of the RSE thread pool is RSEDx, where RSED is the name of the RSE
started task, and x is a random single digit number, so wildcards are required in the definition.

PORT 4035 TCP RSED ; z/OS Explorer – RSE daemon
PORT 6715 TCP JMON ; z/OS Explorer – JES job monitor
PORT 5335 TCP DBGMGR ; z/OS Debugger – debug manager
PORT 5336 TCP DBGMGR ; z/OS Debugger – debug manager
PORTRange 8108 11 TCP RSED* ; z/OS Explorer – RSE_PORTRANGE
;PORTRange 5227 100 TCP RSED* ; z/OS Explorer Extensions - CARMA

CARMA and TCP/IP

CARMA and TCP/IP ports
CARMA (Common Access Repository Manager) is used to access a host-based Software Configuration
Manager (SCM), for example CA Endevor® SCM. In most cases, like for RSE daemon, a server binds to a
port and listens for connection requests. CARMA however uses a different approach, as the CARMA server
is not active yet when the client initiates the connection request.

When the client sends a connection request, the CARMA miner, which is active as a user thread in
an RSE thread pool, will request an ephemeral port or find a free port in the range specified in the
CRASRV.properties configuration file and binds to it. The miner then starts the CARMA server and
passes the port number, so that the server knows to which port to connect. When the server is connected,
the client can send requests to the server and receive the results.

From a TCP/IP perspective, RSE (by way of the CARMA miner) is the server that binds to the port, and the
CARMA server is the client connecting to it.

If you use the PORT or PORTRANGE statement in PROFILE.TCPIP to reserve the port range used by
CARMA, note that the CARMA miner is active in an RSE thread pool. The jobname of the RSE thread pool

16 IBM Developer for z/OSVersion 15.0: Host Configuration Reference

is RSEDx, where RSED is the name of the RSE started task and x is a random single digit number, so
wildcards are required in the definition.

PORTRange 5227 100 RSED* ; z/OS Explorer Extensions-CARMA

Note: The CARMA IVP, felfivpc, will fail if you reserve the CARMA ports for usage by the RSE address
spaces. This is to be expected because the IVP runs in the address space of the person executing the IVP,
not in RSE’s address space, and TCP/IP will fail the bind request.

CARMA and stack affinity
CARMA (Common Access Repository Manager) is used to access a host-based Software Configuration
Manager (SCM), for example CA Endevor® SCM. To do so, CARMA starts a user-specific server, which
needs additional configuration to enforce stack affinity.

Similar to the z/OS Explorer started tasks, stack affinity for a CARMA server is set with the
_BPXK_SETIBMOPT_TRANSPORT variable, which must be passed on to LE (Language Environment®). This
can be done by adjusting the startup command in the active crastart*.conf or CRASUB* configuration
file.

Note:

• The exact name of the configuration file that holds the startup command depends on various
choices made by the systems programmer who configured CARMA. Refer to "Chapter 3. (Optional)
Common Access Repository Manager (CARMA)" in the Host Configuration Guide (SC27-9933) for more
information about this.

• _BPXK_SETIBMOPT_TRANSPORT specifies the name of the TCP/IP stack to be used, as defined in the
TCPIPJOBNAME statement in the related TCPIP.DATA.

• Coding a SYSTCPD DD statement does not set the requested stack affinity.
• By default, CARMA does not use the normal TCP/IP stacks. CARMA uses the loopback address for the

communication between CARMA miner and CARMA server. This improves security (only local processes
have access to the loopback address) and is likely to prevent the need to add stack affinity to CARMA
communication.

crastart*.conf
Replace the following part:

... PARM(&CRAPRM1. &CRAPRM2.)

with this (where TCPIP represents the desired TCP/IP stack):

... PARM(ENVAR("_BPXK_SETIBMOPT_TRANSPORT=TCPIP") / &CRAPRM1. &CRAPRM2.)

Note: CRASTART does not support line continuations, but there is no limit on the accepted line length.

CRASUB*
Replace the following part:

... PARM(&PORT &TIMEOUT)

with this (where TCPIP represents the desired TCP/IP stack):

... PARM(ENVAR("_BPXK_SETIBMOPT_TRANSPORT=TCPIP") / &PORT &TIMEOUT)

Note: Job submission limits line length to 80 characters. You can break a longer line at a blank () and use
a plus (+) sign at the end of the first line to concatenate 2 lines.

Chapter 3. TCP/IP considerations 17

18 IBM Developer for z/OSVersion 15.0: Host Configuration Reference

Chapter 4. WLM considerations

Unlike traditional z/OS applications, Developer for z/OS is not a monolithic application that can be
identified easily to Workload Manager (WLM). Developer for z/OS consists of several components that
interact to give the client access to the host services and data. As described in Chapter 1, “Understanding
Developer for z/OS,” on page 3, some of these services are active in different address spaces, resulting in
different WLM classifications.

Developer for z/OS builds on top of IBM Explorer for z/OS. For z/OS Explorer related information, see
"WLM considerations" in the IBM Explorer for z/OS Host Configuration Reference.

Workload classification

Figure 6. WLM classification

Figure 6 on page 19 shows a basic overview of the subsystems through which z/OS Explorer, z/OS
Debugger, and Developer for z/OS workloads are presented to WLM.

RSE daemon (RSED), Debug Manager (DBGMGR) and JES Job Monitor (JMON) are z/OS Explorer and z/OS
Debugger started tasks (or long-running batch jobs), each with their individual address space.

RSE daemon spawns a child process for each RSE thread pool server (which supports a variable number
of clients). Each thread pool is active in a separate address space (using a z/OS UNIX initiator, BPXAS).
Because these are spawned processes, they are classified using the WLM OMVS classification rules, not
the started task classification rules.

The clients that are active in a thread pool can create a multitude of other address spaces, depending on
the actions done by the users. Depending on the configuration of Developer for z/OS, some workloads,
such as the TSO Commands service (TSO cmd), can run in address spaces with a different classification.

The address spaces listed in Figure 6 on page 19 remain in the system long enough to be visible, but you
should be aware that due to the way z/OS UNIX is designed, there are also several short-lived temporary
address spaces. These temporary address spaces are active in the OMVS subsystem.

© Copyright IBM Corp. 2015, 2024 19

Note that while the RSE thread pools use the same user ID and a similar job name as the RSE daemon,
all address spaces started by a thread pool are owned by the user ID of the client requesting the action.
The client user ID is also used as (part of) the job name for all OMVS-based address spaces stated by the
thread pool.

More address spaces are created by other services that Developer for z/OS uses, such as z/OS UNIX
REXEC (USS build).

Classification rules
WLM uses classification rules to map work coming into the system to a service class. This classification is
based upon work qualifiers. The first (mandatory) qualifier is the subsystem type that receives the work
request. Table 2 on page 20 lists the subsystem types that can receive Developer for z/OS workloads.

Table 2. WLM entry-point subsystems

Subsystem type Work description

JES The work requests include all jobs that JES2 or JES3 initiates.

OMVS The work requests include work processed in z/OS UNIX System Services forked
children address spaces.

STC The work requests include all work initiated by the START and MOUNT commands.
STC also includes system component address spaces.

Table 3 on page 20 lists additional qualifiers that can be used to assign a workload to a specific service
class. Refer to MVS Planning: Workload Management (SA22-7602) for more details on the listed work
qualifiers.

Table 3. WLM work qualifiers

JES OMVS STC

AI Accounting Information x x x

LU LU Name (*)

PF Perform (*) x x

PRI Priority x

SE Scheduling Environment Name x

SSC Subsystem Collection Name x

SI Subsystem Instance (*) x

SPM Subsystem Parameter x

PX Sysplex Name x x x

SY System Name (*) x x

TC Transaction/Job Class (*) x

TN Transaction/Job Name (*) x x x

UI User ID (*) x x x

Note: For the qualifiers marked with (*), you can specify classification groups by adding a G to the type
abbreviation. For example, a transaction name group would be TNG.

20 IBM Developer for z/OSVersion 15.0: Host Configuration Reference

Setting goals
As documented in “Workload classification” on page 19, Developer for z/OS creates different types
of workloads on your system. These different tasks communicate with each other, which implies that
the actual elapse time becomes important to avoid time-out issues for the connections between the
tasks. As a result, Developer for z/OS tasks should be placed in high-performance service classes, or in
moderate-performance service classes with a high priority.

A revision, and possibly an update, of your current WLM goals is therefore advised. This is especially true
for traditional MVS shops new to time-critical OMVS workloads.

Note:

• The goal information in this section is deliberately kept at a descriptive level, because actual
performance goals are very site-specific.

• To help understand the impact of a specific task on your system, terms like minimal, moderate and
substantial resource usage are used. These are all relative to the total resource usage of Developer for
z/OS itself, not the whole system.

Table 4 on page 21 lists the address spaces that are used by z/OS Explorer and Developer for z/OS. z/OS
UNIX will substitute "x" in the "Task Name" column by a random 1-digit number.

Table 4. WLM workloads

Description Task name Workload

(z/OS Debugger) Debug Manager DBGMGR STC

(z/OS Explorer) JES Job Monitor JMON STC

(z/OS Explorer) RSE daemon RSED STC

(z/OS Explorer) RSE thread pool RSEDx OMVS

(ISPF) Interactive ISPF Gateway (TSO Commands
serverice)

<userid> JES

(ISPF) Legacy ISPF Gateway (TSO Commands service) <userid>x OMVS

CARMA (batch) CRA<port> JES

CARMA (crastart) <userid>x OMVS

MVS build (batch job) * JES

z/OS UNIX build (shell commands) <userid>x OMVS

z/OS UNIX shell <userid> OMVS

Considerations for goal selection
The following general WLM considerations can help you to properly define the correct goal definitions for
Developer for z/OS:

• You should base goals on what can actually be achieved, not what you want to happen. If you set goals
higher than necessary, WLM moves resources from lower importance work to higher importance work
which might not actually need the resources.

• Limit the amount of work assigned to the SYSTEM and SYSSTC service classes, because these classes
have a higher dispatching priority than any WLM managed class. Use these classes for work that is of
high importance but uses little CPU.

• Work that falls through the classification rules ends up in the SYSOTHER class, which has a
discretionary goal. A discretionary goal tells WLM to just do the best it can when the system has spare
resources.

Chapter 4. WLM considerations 21

When using response time goals:

• There must be a steady arrival rate of tasks (at least 10 tasks in 20 minutes) for WLM to properly
manage a response time goal.

• Use average response time goals only for well controlled workloads, because a single long transaction
has a big impact on the average response time and can make WLM overreact.

When using velocity goals:

• You usually cannot achieve a velocity goal greater than 90% for various reasons. For example, all the
SYSTEM and SYSSTC address spaces have a higher dispatching priority than any velocity-type goal.

• WLM uses a minimum number of (using and delay) samples on which to base its velocity goal decisions.
So the less work running in a service class, the longer it will take to collect the required number of
samples and adjust the dispatching policy.

• Reevaluate velocity goals when you change your hardware. In particular, moving to fewer, faster
processors requires changes to velocity goals.

OMVS
All workloads use the client user ID as base for the address space name. (z/OS UNIX will substitute "x" in
the "Task Name" column by a random 1-digit number.)

The workloads will all end up in the same service class due to a common address space naming
convention. You should specify a multi-period goal for this service class. The first periods should be high-
performance, percentile response time goals, while the last period should have a moderate-performance
velocity goal. Some workloads, such as the ISPF Client Gateway, will report individual transactions to
WLM, while others do not.

Table 5. WLM workloads - OMVS

Description Task name Workload

Legacy ISPF Gateway (TSO
Commands service)

<userid>x OMVS

CARMA (crastart) <userid>x OMVS

CARMA (ISPF Client Gateway) <userid> and <userid>x OMVS

z/OS UNIX build (shell
commands)

<userid>x OMVS

z/OS UNIX shell <userid> OMVS

• Legacy ISPF Gateway

The Legacy ISPF Gateway is an ISPF service invoked by Developer for z/OS to execute non-interactive
TSO and ISPF commands. This includes explicit commands issued by the client as well as implicit
commands issued by Developer for z/OS. Resource usage depends heavily on user actions, and will
therefore fluctuate, but is expected to be minimal.

• CARMA

CARMA is an optional Developer for z/OS server that is used to interact with host based Software
Configuration Managers (SCMs), such as CA Endevor® SCM. Developer for z/OS allows for different
startup methods for a CARMA server, some of which become an OMVS workload. Resource usage
depends heavily on user actions, and will therefore fluctuate, but is expected to be minimal.

• z/OS UNIX build

When a client initiates a build for a z/OS UNIX project, z/OS UNIX REXEC (or SSH) will start a task
that executes a number of z/OS UNIX shell commands to perform the build. Resource usage depends
heavily on user actions, and will therefore fluctuate, but is expected to be moderate to substantial,
depending on the size of the project.

22 IBM Developer for z/OSVersion 15.0: Host Configuration Reference

• z/OS UNIX shell

This workload processes z/OS UNIX shell commands that are issued by the client. Resource usage
depends heavily on user actions, and will therefore fluctuate, but is expected to be minimal.

JES
JES-managed batch processes are used in various manners by Developer for z/OS. The most common
usage is for MVS builds, where a job is submitted and monitored to determine when it ends. But
Developer for z/OS could also start a CARMA server in batch, and communicate with it using TCP/IP.

Table 6. WLM workloads - JES

Description Task name Workload

CARMA (batch) CRA<port> JES

MVS build (batch job) * JES

• CARMA

CARMA is a Developer for z/OS server that is used to interact with host based Software Configuration
Managers (SCMs), such as CA Endevor® SCM. Developer for z/OS allows for different startup methods
for a CARMA server, some of which become a JES workload. You should specify a high-performance,
one-period velocity goal, because the task does not report individual transactions to WLM. Resource
usage depends heavily on user actions, and will therefore fluctuate, but is expected to be minimal.

• MVS build

When a client initiates a build for an MVS project, Developer for z/OS will start a batch job to perform the
build. Resource usage depends heavily on user actions, and will therefore fluctuate, but is expected to
be moderate to substantial, depending on the size of the project. Different moderate-performance goal
strategies can be advisable, depending on your local circumstances.

– You could specify a multi-period goal with a percentile response time period and a trailing velocity
period. In this case, your developers should be using mostly the same build procedure and similar
sized input files to create jobs with uniform response times. There must also be a steady arrival rate
of jobs (at least 10 jobs in 20 minutes) for WLM to properly manage a response time goal.

– A velocity goal is best suited for most batch-jobs, because this goal can handle highly variable
execution times and arrival rates.

Chapter 4. WLM considerations 23

24 IBM Developer for z/OSVersion 15.0: Host Configuration Reference

Chapter 5. Push-to-client considerations

Push-to-client, or host-based client control, supports central management of the following things:

• Client configuration files
• Client product version
• Project definitions

Developer for z/OS builds on top of IBM Explorer for z/OS. For z/OS Explorer related information, see
"Push-to-client considerations" in the IBM Explorer for z/OS Host Configuration Reference.

Introduction
Developer for z/OS clients can pull client configuration files and product update information from the host
when they connect, ensuring that all clients have common settings and that they are up-to-date.

The client administrator can create multiple client configuration sets and multiple client update scenarios
to fit the needs of different developer groups. This allows users to receive a customized setup, based on
criteria like membership of an LDAP group or permit to a security profile.

z/OS Projects can be defined individually through the z/OS Projects perspective on the client, or z/OS
Projects can be defined centrally on the host and propagated to the client on an individual user basis.
These "host-based projects" look and function exactly like projects defined on the client except that their
structure, members, and properties cannot be modified by the client, and they are accessible only when
connected to the host.

A development project manager defines a project and assigns individual developers to it.

See the Developer for z/OS IBM Documentation (http://www.ibm.com/support/knowledgecenter/
SSQ2R2/rdz_welcome.html) for details about how the development project manager can perform the
tasks assigned to them.

When enabling configuration or version control support for multiple developer groups, one additional
team will be involved in managing push-to-client. Which team this is depends on the option chosen to
identify the groups a developer belongs to:

• An LDAP administrator maintains group definitions that place each developer in none, one, or more
FEL.PTC.* LDAP groups.

• A security administrator maintains access lists to FEL.PTC.* security profiles. A developer can be
authorized to none, one, or more profiles.

Host-based projects
z/OS Projects can be defined individually through the z/OS Projects perspective on the client, or z/OS
Projects can be defined centrally on the host and propagated to the client on an individual user basis.
These "host-based projects" look and function exactly like projects defined on the client except that their
structure, members, and properties cannot be modified by the client, and they are only accessible when
connected to the host.

The base directory for host-based projects is defined (by the client administrator) in /var/zexpl/
pushtoclient/keymapping.xml, and is /var/zexpl/pushtoclient/projects by default.

To configure host-based projects, the project manager or lead developer needs to define the following
types of configuration files. All files are UTF-8 encoded XML files.

• Project instance files are specific to a single user ID and point to reusable project definition files.
Each user who works with host-based projects needs a subdirectory, /var/zexpl/pushtoclient/
projects/<userid>/, containing one project instance file (*.hbpin) for each project to be
downloaded.

© Copyright IBM Corp. 2015, 2024 25

http://www.ibm.com/support/knowledgecenter/SSQ2R2/rdz_welcome.html
http://www.ibm.com/support/knowledgecenter/SSQ2R2/rdz_welcome.html

• Project definition files define the structure and contents of the project and can be reused by multiple
users. Project definition files (*.hbppd) list the subprojects contained by the project and are located in
the root project definition directory or one of its subdirectories.

• Subproject definition files define the structure and contents of the subproject and can be reused by
multiple users. Subproject definition files (*.hbpsd) define the set of resources required to build a
single load module and are located in the root project definition directory or one of its subdirectories.

• Subproject properties files are properties files with variable substitution support and can be reused by
multiple subprojects. Subproject property files (*.hbppr) support variable substitution to allow sharing
of property files among multiple users and are located in the root project definition directory or one of
its subdirectories.

Host-based projects are also eligible to participate in the multiple group setup. This eligibility means that
host-based projects can be defined also in /var/zexpl/pushtoclient/grouping/<devgroup>/
projects/.

When a workspace is bound to a specific group, and there are project definitions for a user in this group
and in the default group, the user receives the project definitions from both the default and the specific
group.

26 IBM Developer for z/OSVersion 15.0: Host Configuration Reference

Chapter 6. CICSTS considerations

This chapter groups references to Developer for z/OS components that can work inside CICSTS regions.

xUnit support for CICS applications
For more information on ZUnit CICS support, see the section "xUnit support for CICS applications" in
chapter "Other customization tasks" of the Host Configuration Guide.

Bidirectional language support
For more information on bidirectional language support, see "CICS bidirectional language support" in the
Host Configuration Guide.

Diagnostic IRZ messages for Enterprise Service Tools
For more information about diagnostic IRZ messages for Enterprise Service Tools, see "Runtime
messages for Enterprise Service Tools" in the Troubleshooting and support > Messages in Developer for
z/OS section of IBM Documentation.

© Copyright IBM Corp. 2015, 2024 27

28 IBM Developer for z/OSVersion 15.0: Host Configuration Reference

Chapter 7. SMF considerations

Shops can use Systems Management Facilities (SMF) records for purposes such as performance
management, capacity planning, auditing, and accounting. Developer for z/OS provides SMF record type
122 subtype 1.

SMF type 122, subtype 1
SMF record type 122, subtype 1 is created by Developer for z/OS host components each time a client
requests an activation token. If provided, the activation token, which is valid for 30 days, allows the client
to unlock all features without additional, client-based, license management.

Provisioning of the activation token requires that the host code can register as a product that supports
activation tokens, and that SMF record type 122, subtype 1 can be created. For more information, refer
to "Product enablement in IFAPRDxx" and "SMF record collection in SMFPRMxx" in the Host Configuration
Guide.

A client requests an activation token upon connecting to the host, and only when it does not have a valid
token, or the current token is about to expire. This results in infrequent creation of SMF type 122, subtype
1 records.

Sample JCL FELSMF can be used to collect and interpret SMF type 122, subtype 1 records. FELSMF is
located in FEL.SFELSAMP, if you installed Developer for z/OS in the default location.

SMF record type 122, subtype 1, always has a header section that is followed by 1 or more data sections:

• “Header section” on page 30: Generic header for this SMF record
• “Data section 1, Creator ID” on page 32: Identify which server created the SMF record
• “Data section 2, Server initialization” on page 33: Holds server initialization information
• “Data section 3, VU license handler status” on page 34: Holds information on activation code request

processing
• “Data section 4, Client UUID” on page 34: Holds unique client identifier
• “Data section 5, Client labels” on page 34: Holds labels that describe additional client data
• “Data section 6, Client data” on page 35: Holds additional data that describes the client.

Each data section can be present 0, 1, or more times. If there are multiple copies of the data section, then
all sections are consecutive.

Client activation code request
Developer for z/OS clients require an activation code to enable all features. With VU-based licensing,
the z/OS based server is capable of providing an activation code with a limited life span when a client
requests an activation code, thus enabling the client upon connect. Developer for z/OS creates a SMF type
122, subtype 1 record each time a client requests an activation code.

Refer to section "Product enablement in IFAPRDxx" in the Host Configuration Guide to learn if your
Developer for z/OS host is enabled to provide activation codes.

SMF record type 122, subtype 1, has a product header and up to 6 data sections when used for an
activation code request:

• “Header section” on page 30: Generic header for this SMF record
• “Data section 1, Creator ID” on page 32: Identify which server created the SMF record
• “Data section 2, Server initialization” on page 33: Holds server initialization information
• “Data section 3, VU license handler status” on page 34: Holds information on activation code request

processing

© Copyright IBM Corp. 2015, 2024 29

• “Data section 4, Client UUID” on page 34: Holds unique client identifier
• “Data section 5, Client labels” on page 34: Holds labels that describe additional client data
• “Data section 6, Client data” on page 35: Holds additional data that describes the client.

Header section
The header section for SMF record type 122, subtype 1, holds a standard SMF header followed by fields
that reference the various data sections. Character strings are in EBCDIC, left aligned and padded with
blanks to fill the field.

Table 7. SMF record type 122 subtype 1, header section

Offsets Type/Value Length Name Description

0 (x0) Structure 24 SMFHDR ** Standard SMF header **

0 (x0) Structure 4 SMFRDW ** SMF Record descriptor word **

0 (x0) Unsigned 2 SMFLEN Record length. This field and the
next field (total of 4 bytes) form
the record descriptor word (RDW),
which is removed when the record
is dumped.

2 (x2) Unsigned 2 SMFSEG Spanned segment descriptor. This
field and the previous field (total of
4 bytes) form the record descriptor
word (RDW), which is removed
when the record is dumped.

4 (x4) Bitstring 1 SMFFLG SMF header flag byte.

.1.. SMSSTV (x40) Subtypes are being used.

5 (x5) Unsigned 1 SMFRTY Record type: 122 (x7A)

6 (x6) Unsigned 4 SMFTME Time since midnight, in hundredths
of a second, that has elapsed since
the record was moved into the SMF
buffer (format: HHMMSSth).

10 (xA) Packed 4 SMFDAT Date when the record was moved
into the SMF buffer. In the form of
0cyydddF, where c is 0 for 19xx
and 1 for 20xx, yy is the current
year (0-99), ddd is the current day
(1-366), and F is the sign.

14 (xE) EBCDIC 4 SMFSID System identification (from the SMF
SID parameter).

18 (x12) EBCDIC 4 SMFWID Subsystem ID.

22 (x16) Unsigned 2 SMFSTP Record subtype: 1 (x1)

24 (x18)

24 (x18) Structure 40 SMF122t1h_Head ** SMF type 122 subtype 1 specific
header **

24 (x18) 4 -- header description

30 IBM Developer for z/OSVersion 15.0: Host Configuration Reference

Table 7. SMF record type 122 subtype 1, header section (continued)

Offsets Type/Value Length Name Description

24 (x18) Unsigned 2 SMF122t1h_Len SMF type 122 subtype 1 specific
header length. It is set to the size of
SMF122t1h_Head.

26 (x1A) Unsigned 2 SMF122t1h_Cnt Number of data section triplets. It
is set to the number of data section
identifier blocks that follow.

28 (x1C) Structure 6 -- triplet for data section 1 (creator
ID)

28 (x1C) Unsigned 2 SMF122t1h_S1Len Section length. It is set to the size
of SMF122t1s1_Section.

30 (x1E) Unsigned 2 SMF122t1h_S1Cnt Number of sections. This field
documents how many times this
section is present in the record (can
be 0). If the number is greater than
1, then all sections are consecutive.

32 (x20) Unsigned 2 SMF122t1h_S1Offset Section offset. The offset, from the
start of the record, of this section
block.

34 (x22) Structure 6 -- triplet for data section 2 (server
initialization)

34 (x22) Unsigned 2 SMF122t1h_S2Len Section length. It is set to the size
of SMF122t1s2_Section.

36 (x24) Unsigned 2 SMF122t1h_S2Cnt Number of sections. This field
documents how many times this
section is present in the record (can
be 0). If the number is greater than
1, then all sections are consecutive.

38 (x26) Unsigned 2 SMF122t1h_S2Offset Section offset. The offset, from the
start of the record, of this section
block.

40 (x28) Structure 6 -- triplet for data section 3 (VU
license handler)

40 (x28) Unsigned 2 SMF122t1h_S3Len Section length. It is set to the size
of SMF122t1s3_Section.

42 (x2A) Unsigned 2 SMF122t1h_S3Cnt Number of sections. This field
documents how many times this
section is present in the record (can
be 0). If the number is greater than
1, then all sections are consecutive.

44 (x2C) Unsigned 2 SMF122t1h_S3Offset Section offset. The offset, from the
start of the record, of this section
block.

46 (x2E) Structure 6 -- triplet for data section 4 (client
UUID)

Chapter 7. SMF considerations 31

Table 7. SMF record type 122 subtype 1, header section (continued)

Offsets Type/Value Length Name Description

46 (x2E) Unsigned 2 SMF122t1h_S4Len Section length. It is set to the size
of SMF122t1s4_Section.

48 (x30) Unsigned 2 SMF122t1h_S4Cnt Number of sections. This field
documents how many times this
section is present in the record (can
be 0). If the number is greater than
1, then all sections are consecutive.

50 (x32) Unsigned 2 SMF122t1h_S4Offset Section offset. The offset, from the
start of the record, of this section
block.

52 (x34) Structure 6 -- triplet for data section 5 (client
labels)

52 (x34) Unsigned 2 SMF122t1h_S5Len Section length. It is set to the size
of SMF122t1s5_Section.

54 (x36) Unsigned 2 SMF122t1h_S5Cnt Number of sections. This field
documents how many times this
section is present in the record (can
be 0). If the number is greater than
1, then all sections are consecutive.

56 (x38) Unsigned 2 SMF122t1h_S5Offset Section offset. The offset, from the
start of the record, of this section
block.

58 (x3A) Structure 6 -- triplet for data section 6 (client
data)

58 (x3A) Unsigned 2 SMF122t1h_S6Len Section length. It is set to the size
of SMF122t1s6_Section.

60 (x3C) Unsigned 2 SMF122t1h_S6Cnt Number of sections. This field
documents how many times this
section is present in the record (can
be 0). If the number is greater than
1, then all sections are consecutive.

62 (x3E) Unsigned 2 SMF122t1h_S6Offset Section offset. The offset, from the
start of the record, of this section
block.

Data section 1, Creator ID
Data section 1 for SMF record type 122, subtype 1, identifies the server and the function that created this
SMF record. Character strings are in EBCDIC, left aligned and padded with blanks to fill the field.

Table 8. SMF record type 122 subtype 1, data section 1

Offsets Type/Value Length Name Description

0 (x0) Structure 20 SMF122t1s1_Section ** section 1 (creator ID) **

0 (x0) EBCDIC 8 SMF122t1s1_Plex Sysplex name

8 (x8) EBCDIC 8 SMF122t1s1_Sys System name

32 IBM Developer for z/OSVersion 15.0: Host Configuration Reference

Table 8. SMF record type 122 subtype 1, data section 1 (continued)

Offsets Type/Value Length Name Description

16 (x10) Unsigned 2 SMF122t1s1_Server Server ID. This is set to the RSED
port number.

18 (x12) Bitstring 2 SMF122t1s1_Flags Flags

....1 SMF122t1s1F_Lic (x1) VU license handler created this
record.

Data section 2, Server initialization
Data section 2 for SMF record type 122, subtype 1, holds system and server initialization information.
Character strings are in EBCDIC, left aligned and padded with blanks to fill the field. It is created in these
situations:

• The first time a client requests an activation code since server startup.
• The first time a client requests an activation code since dynamic changes to
SYS1.PARMLIB(IFAPRDxx) that impact Developer for z/OS.

Table 9. SMF record type 122 subtype 1, data section 2

Offsets Type/Value Length Name Description

0 (x0) Structure 22 SMF122t1s2_Section ** section 2 (server initialization) **

0 (x0) Unsigned 4 SMF122t1s2_iTime IPL time stamp. Time since midnight,
in hundredths of a second, that has
elapsed when the system was IPL'd
(format: HHMMSSth).

4 (x4) Packed 4 SMF122t1s2_iDate IPL date stamp. Date when the system
was IPL'd. In the form of 0cyydddF,
where c is 0 for 19xx and 1 for 20xx,
yy is the current year (0-99), ddd is
the current day (1-366), and F is the
sign.

8 (x8) EBCDIC 8 SMF122t1s2_ProdID Registered Product ID (PID). This
is set to the PID used by
the server to (re-)register itself,
following the rules defined in
SYS1.PARMLIB(IFAPRDxx).

16 (x10) Unsigned 1 SMF122t1s2_Ver Server version. This is set to the
first nibble of environment variable
$IDZ_VERSION.

17 (x11) Unsigned 1 SMF122t1s2_Rel Server release. This is set to the
second nibble of environment variable
$IDZ_VERSION.

18 (x12) Unsigned 1 SMF122t1s2_Mod Server modification. This is set to the
third nibble of environment variable
$IDZ_VERSION.

19 (x13) Unsigned 1 SMF122t1s2_Lvl Server level. This is set to the
fourth nibble of environment variable
$IDZ_VERSION.

20 (x14) Bitstring 2 SMF122t1s2_Flags Flags

Chapter 7. SMF considerations 33

Table 9. SMF record type 122 subtype 1, data section 2 (continued)

Offsets Type/Value Length Name Description

.... (none)

Data section 3, VU license handler status
Data section 3 for SMF record type 122, subtype 1, holds information pertinent to how the VU license
handler processed the activation code request by a client. Character strings are in EBCDIC, left aligned
and padded with blanks to fill the field.

Table 10. SMF record type 122 subtype 1, data section 3

Offsets Type/Value Length Name Description

0 (x0) Structure 4 SMF122t1s3_Section ** section 3 (VU license handler) **

0 (x0) Bitstring 2 SMF122t1s3_Flags Flags

....1 SMF122t1s3F_VUon (x0001) Client activation code
provided.

2 (x2) Unsigned 2 SMF122t1s3_Track Request tracker. This field increments
by one each time a request for an
activation code is processed. The
counter wraps back to 0 when the
maximum value is reached.

Data section 4, Client UUID
Data section 4 for SMF record type 122, subtype 1, holds the Universally Unique Identifier (UUID)
provided by the client during the request for an activation code. The length of this UUID can vary, and is
documented in field SMF122t1h_S4Len of the header section. Character strings are in UTF8.

Table 11. SMF record type 122 subtype 1, data section 4

Offsets Type/Value Length Name Description

0 (x0) Structure ? SMF122t1s4_Section ** section 4 (client UUID) **

0 (x0) UTF8 ? SMF122t1s4_UUID Unique client ID

Data section 5, Client labels
Data section 5 for SMF record type 122, subtype 1, holds a list of comma (,) separated labels that
describe the data elements in data section 6, client data. The client provides most of this data during
the request for an activation code. The length of this string can vary, and is documented in field
SMF122t1h_S5Len of the header section. Character strings are in UTF8.

• productName: Name of the Developer for z/OS client
• productVersion: Version of the Developer for z/OS client
• productRelease: Release of the Developer for z/OS client
• productModification: Modification of the Developer for z/OS client
• zexplIPaddress: IP address of the Developer for z/OS client
• zexplHostName: DNS name of the Developer for z/OS client
• zexplUserId: User ID of the person that is using the Developer for z/OS client
• productAPIVersionClient: Version of the activation code API used by the Developer for z/OS client
• zexplAPIVersionClient: Version of the activation code API used by the z/OS Explorer client

34 IBM Developer for z/OSVersion 15.0: Host Configuration Reference

• zexplAPIVersionHost: Version of the activation code API used by the z/OS Explorer server
• productAPIVersionHost: Version of the activation code API used by the Developer for z/OS server
• returnCode: Result of z/OS Explorer validating correctness of the data it transferred on behalf of

Developer for z/OS

Table 12. SMF record type 122 subtype 1, data section 5

Offsets Type/Value Length Name Description

0 (x0) Structure ? SMF122t1s5_Section ** section 5 (client labels) **

0 (x0) UTF8 ? SMF122t1s5_Labels Client data labels in comma
separated list

Data section 6, Client data
Data section 6 for SMF record type 122, subtype 1, holds a list of comma (,) separated data elements,
which are described in data section 5, client labels. The client provides most of this data during
the request for an activation code. The length of this string can vary, and is documented in field
SMF122t1h_S6Len of the header section. Character strings are in UTF8. If the data itself holds a comma
(,) it is replaced by its Unicode representation, ,. Other characters that are replaced by their Unicode
representation are the semicolon (;), ;, and the tilde (~), ~.

Table 13. SMF record type 122 subtype 1, data section 6

Offsets Type/Value Length Name Description

0 (x0) Structure ? SMF122t1s6_Section ** section 6 (client data) **

0 (x0) UTF8 ? SMF122t1s6_Client Client data in comma separated list

Chapter 7. SMF considerations 35

36 IBM Developer for z/OSVersion 15.0: Host Configuration Reference

Chapter 8. Troubleshooting configuration problems

This chapter is provided to assist you with some common problems that you may encounter during your
configuration of z/OS Explorer Extensions.

z/OS Explorer Extensions sits on top of Explorer for z/OS, which also documents common configuration
problems in a troubleshooting chapter of its Host Configuration Reference. Depending on the problem, it
might be documented there.

Messages and return codes generated by z/OS Explorer Extensions components are documented in Host
and runtime messages.

Valuable information can also be found on the IBM Z and LinuxOne Community.

Log files
z/OS Explorer Extensions creates log files that can assist you and IBM support center in identifying and
solving problems. The following list is an overview of log files that can be created on your z/OS host
system. Next to these product-specific logs, be sure to check the SYSLOG for any related messages.

MVS based logs can be located through the appropriate DD statement.

The z/OS UNIX based log file for an IVP (Installation Verification Program) is located in the directory
referred to by TMPDIR, if this variable is defined in rse.env. If the variable is not defined, the file is
created in /tmp.

CARMA logging
• CARMA server job

When opening a connection with CARMA, using the batch interface, FEL.#CUST.SYSPROC(CRASUBMT)
will start a server job (with the user's user ID as owner) named CRAport, where port is the TCP/IP port
used.

• CARMALOG DD

If DD statement CARMALOG is specified in the chosen CARMA startup method, CARMA logging is
redirected to this DD statement in the server job, otherwise it goes to SYSPRINT.

• SYSPRINT DD

The SYSPRINT DD of the server job holds the CARMA logging, if DD statement CARMALOG is not
defined.

• SYSTSPRT DD

The SYSTSPRT DD of the server job holds the system (TSO) messages for the CARMA server startup.
• userlog/$LOGNAME/rsecomm.log

Communication logging of CARMA, where userlog is the combined value of the user.log and
DSTORE_LOG_DIRECTORY directives in rse.env, and $LOGNAME is the logon user ID (uppercase). If
the user.log directive is commented out or not present, the home path of the user is used. The home
path is defined in the OMVS security segment of the user ID. If the DSTORE_LOG_DIRECTORY directive
is commented out or not present, then .eclipse/RSE/ is appended to the user.log value.

fekfivpc IVP test logging
• /tmp/fekfivpc.log

The fekfivpc command (CARMA related IVP test) will create the fekfivpc.log file to document
the communication between RSE and CARMA. The log will be created in the directory referenced by
TMPDIR, if this variable is defined in rse.env. If the variable is not defined, the file is created in /tmp.

© Copyright IBM Corp. 2015, 2024 37

https://www.ibm.com/docs/en/adfz/explorer-for-zos/3.2?topic=configuration-host-reference-guide
https://www.ibm.com/community/z/

Code review logging
• SYSTSPRT DD

The SYSTSPRT DD of the step invoking the code review procedure holds the messages of the front end
that drives the code analysis process.

• WORKSPCE DD

The WORKSPCE DD of the step invoking the code review procedure holds the Eclipse workspace log
messages of the code analysis process.

• ERRMSGS DD

The ERRMSGS DD of the step invoking the code review procedure holds the stderr output of the code
analysis process.

Code coverage logging
• SYSTSPRT DD

The SYSTSPRT DD of the step invoking the code coverage procedure holds the messages of the front-
end that drives the code analysis process.

• WORKSPCE DD

The WORKSPCE DD of the step invoking the code coverage procedure holds the Eclipse workspace log
messages of the code analysis process.

• ERRMSGS DD

The ERRMSGS DD of the step invoking the code coverage procedure holds the stderr output of the
code analysis process.

Tracing

CARMA tracing
The user can control the amount of trace info that a CARMA server generates by setting Trace Level in the
properties tab of the CARMA connection on the client. The choices for Trace Level are:

• Disable Logging
• Error Logging
• Warning Logging
• Informational Logging
• Debug Logging

The default value is the following:

Error Logging

Refer to “Log files” on page 37 for more information on log file locations.

The z/OS system programmer can control the amount of trace info that CARMA’s CRASTART startup
method generates by setting crastart.syslog in CRASRV.properties, and by setting the debug
level for rsecomm.log in rsecomm.properties or with an operator command.

Error feedback tracing
The following procedure allows gathering of information needed to diagnosis error feedback problems
with remote build procedures. This tracing will cause performance degradation and should only be done
under the direction of the IBM support center. All references to hlq in this section refer to the high-level

38 IBM Developer for z/OSVersion 15.0: Host Configuration Reference

qualifier used during installation of z/OS Explorer Extensions. The installation default is FEL, but this
might not apply to your site.

1. Make a backup copy of your active ELAXFCOC compile procedure. This procedure is default shipped in
data set hlq.SFELSAMP, but could have been copied to a different location, such as SYS1.PROCLIB,
as described in "ELAXF* remote build procedures" in the Host Configuration Guide.

2. Change the active ELAXFCOC procedure to include the 'MAXTRACE' string on the
EXIT(ADEXIT(ELAXMGUX)) compile option.

//COBOL EXEC PGM=IGYCRCTL,COND=(4,LT),REGION=0M,
//* PARM=('EXIT(ADEXIT(ELAXMGUX))',
// PARM=('EXIT(ADEXIT(''MAXTRACE'',ELAXMGUX))',
// 'ADATA',
//* 'LIB', not supported in COBOL V5 & up
//* 'TEST(NONE,SYM,SEP)', not supported in COBOL V5 & up
// 'TEST',
// 'LIST',
// 'FLAG(I,I)'&CICS&DB2&COMP)

Note: You have to double the apostrophes around MAXTRACE. The option is now:
EXIT(ADEXIT(''MAXTRACE'',ELAXMGUX)).

3. Perform a Remote Syntax Check on the COBOL program for which you want detailed tracing.
4. The SYSOUT part of the JES output will start by listing the names of the data sets for SIDEFILE1,
SIDEFILE2, SIDEFILE3 and SIDEFILE4.

ABOUT TOO OPEN SIDEFILE1 - NAME = 'uid.DT021207.TT110823.M0000045.C0000000'
SUCCESSFUL OPEN SIDEFILE1 - NAME = 'uid.DT021207.TT110823.M0000045.C0000000'
ABOUT TOO OPEN SIDEFILE2 - NAME = 'uid.DT021207.TT110823.M0000111.C0000001'
SUCCESSFUL OPEN SIDEFILE2 - NAME = 'uid.DT021207.TT110823.M0000111.C0000001'
ABOUT TOO OPEN SIDEFILE3 - NAME = 'uid.DT021207.TT110823.M0000174.C0000002'
SUCCESSFUL OPEN SIDEFILE3 - NAME = 'uid.DT021207.TT110823.M0000174.C0000002'
ABOUT TOO OPEN SIDEFILE4 - NAME = 'uid.DT021207.TT110823.M0000236.C0000003'
SUCCESSFUL OPEN SIDEFILE4 - NAME = 'uid.DT021207.TT110823.M0000236.C0000003'

Note: Depending on your settings, SIDEFILE1 and SIDEFILE2 may be pointing to a DD statement
(SUCCESSFUL OPEN SIDEFILE1 - NAME = DD:WSEDSF1). Refer to the JESJCL part of the output
(which is located before the SYSOUT part) to get the actual data set name.

 22 //COBOL.WSEDSF1 DD DISP=MOD,
 // DSN=uid.ERRCOB.member.SF.Z682746.XML
 23 //COBOL.WSEDSF2 DD DISP=MOD,
 // DSN=uid.ERRCOB.member.SF.Z682747.XML

5. Copy these four data sets to your PC, for example, by creating a local COBOL project in z/OS Explorer
Extensions and adding the SIDEFILE1->4 data sets.

6. Copy the complete JES job log to your PC, for example, by opening the job output in z/OS Explorer
Extensions and saving it to the local project by selecting File > Save As.

7. Restore procedure ELAXFCOC to the original state, either by undoing the change (remove the
''MAXTRACE'', string in the compile options) or restoring the backup.

8. Send the collected files (SIDEFILE1->4 and job log) to the IBM support center.

z/OS UNIX permission bits
z/OS Explorer Extensions requires that the z/OS UNIX file system and some z/OS UNIX files have certain
permission bits set.

SETUID file system attribute
The file system (HFS or zFS) in which z/OS Explorer Extensions is installed must be mounted with the
SETUID permission bit on (this is the system default). Mounting the file system with the NOSETUID
parameter will prevent z/OS Explorer Extensions from performing authorized actions, like writing SMF
records.

Chapter 8. Troubleshooting configuration problems 39

Similar errors (such as messages BPXP014I and BPXP015I) can be expected if the file systems hosting
Explorer for z/OS, Java, or z/OS UNIX binaries are mounted with the NOSETUID parameter.

Use the TSO ISHELL command to list the current status of the SETUID bit. In the ISHELL panel, select
File_systems > 1. Mount table to list the mounted file systems. The a line command will show the
attributes for the selected file system, where the “Ignore SETUID” field should be 0.

APF authorization
The z/OS UNIX APF bit is set during SMP/E install where needed. This permission bit might get lost if you
did not preserve it during a manual copy of the z/OS Explorer Extensions directories.

The following z/OS Explorer Extensions files must be APF-authorized:

• /usr/lpp/IBM/zee/bin/

– CRASTART
– felfvlic

Use z/OS UNIX command ls -E to list the extended attributes, in which the APF bit is marked with the
letter a, as shown in the following example ($ is the z/OS UNIX prompt):

$ cd /usr/lpp/IBM/zee
$ ls -E bin/felfvlic
-rwxr-xr-x a-s- 2 user group 118784 Jul 8 12:31 bin/felfvlic

Use z/OS UNIX command extattr +a to set the APF bit manually, as shown in the following sample ($ and
are the z/OS UNIX prompts):

$ cd /usr/lpp/IBM/zee
$ su
extattr +a bin/felfvlic
exit
$ ls -E bin/felfvlic
-rwxr-xr-x a-s- 2 user group 118784 Jul 8 12:31 bin/felfvlic

Note: To be able to use the extattr +a command, you must have at least READ access to the
BPX.FILEATTR.APF profile in the FACILITY class of your security software, or be a superuser (UID
0) if this profile is not defined. For more information, refer to UNIX System Services Planning (GA22-7800).

Sticky bit
Some of the optional z/OS Explorer Extensions services require that MVS load modules are available to
z/OS UNIX. This is done by creating a stub (a dummy file) in z/OS UNIX with the "sticky" bit on. When the
stub is executed, z/OS UNIX will look for an MVS load module with the same name and execute the load
module instead.

The z/OS UNIX sticky bit is set during SMP/E install where needed. These permission bits might get lost if
you did not preserve them during a manual copy of the z/OS Explorer Extensions directories.

The following z/OS Explorer Extensions files must have the sticky bit on:

• /usr/lpp/IBM/zee/bin/

– AZUTSTRN
– CRASTART

Use z/OS UNIX command ls –l to list the permissions, in which the sticky bit is marked with the letter t,
as shown in the following example ($ is the z/OS UNIX prompt):

$ cd /usr/lpp/IBM/zee
$ ls -l bin/CRA*
-rwxr-xr-t 2 user group 71 Jul 8 12:31 bin/CRASTART

40 IBM Developer for z/OSVersion 15.0: Host Configuration Reference

Use z/OS UNIX command chmod +t to set the sticky bit manually, as shown in the following example ($
and # are the z/OS UNIX prompt):

$ cd /usr/lpp/IBM/zee
$ su
chmod +t bin/CRA*
exit
$ ls -l bin/CRA*
-rwxr-xr-t 2 user group 71 Jul 8 12:31 bin/CRASTART

Note: To be able to use the chmod command, you must have at least READ access to the
SUPERUSER.FILESYS.CHANGEPERMS profile in the UNIXPRIV class of your security software, or be a
superuser (UID 0) if this profile is not defined. For more information, refer to UNIX System Services
Planning (GA22-7800).

Error feedback B37 space abend
When a user selects error feedback during a compile action, several temporary data sets are created by
z/OS Explorer Extensions. When one of these data sets runs out of space, the compile jobs ends with a
B37-04 space abend.

Adjust the space allocation in FEK.SFEKPROC(FEKFERRF) when your users experience this problem.
The default value is SPACE(200,40) TRACKS.

Note: FEK.SFEKPROC is a Explorer for z/OS data set.

Host Connection Emulator
• Host Connection Emulator uses TN3270 telnet and not the RSE server to connect to the host.
• When using secure telnet (SSL) and you are working with certificates that are not signed by a well-

known CA, every client must add the CA certificate to their Host Connection Emulator list of trusted CAs.
• The NOSNAEXT option of TCP/IP’s TELNETPARMS might be necessary to disable the SNA functional

extensions. If NOSNAEXT is specified, the TN3270 telnet server does not negotiate for contention
resolution and SNA sense functions.

Chapter 8. Troubleshooting configuration problems 41

42 IBM Developer for z/OSVersion 15.0: Host Configuration Reference

Notices

This information was developed for products and services offered in the US. This material might be
available from IBM in other languages. However, you may be required to own a copy of the product or
product version in that language in order to access it.

IBM may not offer the products, services, or features discussed in this document in other countries.
Consult your local IBM representative for information on the products and services currently available in
your area. Any reference to an IBM product, program, or service is not intended to state or imply that
only that IBM product, program, or service may be used. Any functionally equivalent product, program, or
service that does not infringe any IBM intellectual property right may be used instead. However, it is the
user's responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this
document. The furnishing of this document does not grant you any license to these patents. You can
send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive, MD-NC119
Armonk, NY 10504-1785
US

For license inquiries regarding double-byte character set (DBCS) information, contact the IBM Intellectual
Property Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan Ltd.
19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION "AS IS"
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. Some jurisdictions do not allow disclaimer of express or implied warranties in
certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically
made to the information herein; these changes will be incorporated in new editions of the publication.
IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM websites are provided for convenience only and do not in
any manner serve as an endorsement of those websites. The materials at those websites are not part of
the materials for this IBM product and use of those websites is at your own risk.

IBM may use or distribute any of the information you provide in any way it believes appropriate without
incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the
exchange of information between independently created programs and other programs (including this
one) and (ii) the mutual use of the information which has been exchanged, should contact:

IBM Director of Licensing
IBM Corporation
North Castle Drive, MD-NC119
Armonk, NY 10504-1785
US

© Copyright IBM Corp. 2015, 2024 43

Such information may be available, subject to appropriate terms and conditions, including in some cases,
payment of a fee.

The licensed program described in this document and all licensed material available for it are provided by
IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement or any
equivalent agreement between us.

The performance data and client examples cited are presented for illustrative purposes only. Actual
performance results may vary depending on specific configurations and operating conditions.

Information concerning non-IBM products was obtained from the suppliers of those products, their
published announcements or other publicly available sources. IBM has not tested those products
and cannot confirm the accuracy of performance, compatibility or any other claims related to non-
IBMproducts. Questions on the capabilities of non-IBM products should be addressed to the suppliers of
those products.

Statements regarding IBM's future direction or intent are subject to change or withdrawal without notice,
and represent goals and objectives only.

This information contains examples of data and reports used in daily business operations. To illustrate
them as completely as possible, the examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to actual people or business enterprises is
entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs
in any form without payment to IBM, for the purposes of developing, using, marketing or distributing
application programs conforming to the application programming interface for the operating platform
for which the sample programs are written. These examples have not been thoroughly tested under
all conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these
programs. The sample programs are provided "AS IS", without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

Programming interface information

Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business
Machines Corp., registered in many jurisdictions worldwide. Other product and service names might be
trademarks of IBM or other companies. A current list of IBM trademarks is available on the web at
"Copyright and trademark information" at www.ibm.com/legal/copytrade.shtml.

Terms and conditions for product documentation
Permissions for the use of these publications are granted subject to the following terms and conditions.

Applicability
These terms and conditions are in addition to any terms of use for the IBM website.

Personal use
You may reproduce these publications for your personal, noncommercial use provided that all proprietary
notices are preserved. You may not distribute, display or make derivative work of these publications, or
any portion thereof, without the express consent of IBM.

44 Notices

http://www.ibm.com/legal/us/en/copytrade.shtml

Commercial use
You may reproduce, distribute and display these publications solely within your enterprise provided
that all proprietary notices are preserved. You may not make derivative works of these publications, or
reproduce, distribute or display these publications or any portion thereof outside your enterprise, without
the express consent of IBM.

Rights
Except as expressly granted in this permission, no other permissions, licenses or rights are granted, either
express or implied, to the publications or any information, data, software or other intellectual property
contained therein.

IBM reserves the right to withdraw the permissions granted herein whenever, in its discretion, the use
of the publications is detrimental to its interest or, as determined by IBM, the above instructions are not
being properly followed.

You may not download, export or re-export this information except in full compliance with all applicable
laws and regulations, including all United States export laws and regulations.

IBM MAKES NO GUARANTEE ABOUT THE CONTENT OF THESE PUBLICATIONS. THE PUBLICATIONS
ARE PROVIDED "AS-IS" AND WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED,
INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT,
AND FITNESS FOR A PARTICULAR PURPOSE.

Notices 45

46 IBM Developer for z/OSVersion 15.0: Host Configuration Reference

IBM®

SC27-9934-03

	Contents
	Figures
	Tables
	About this document
	Who should use this document

	Part 1. Host Configuration Reference
	Chapter 1. Understanding Developer for z/OS
	Component overview
	Task owners
	CARMA
	CRASTART
	Batch submit

	z/OS UNIX directory structure

	Chapter 2. Security considerations
	Authentication methods
	Connection security
	xUnit support for CICS applications (ZUnit)
	Security definitions
	Requirements and checklist
	Define the data set profiles
	Verify the security settings

	Chapter 3. TCP/IP considerations
	TCP/IP ports
	External communication
	Internal communication
	TCP/IP port reservation

	CARMA and TCP/IP
	CARMA and TCP/IP ports
	CARMA and stack affinity
	crastart*.conf
	CRASUB*

	Chapter 4. WLM considerations
	Workload classification
	Classification rules

	Setting goals
	Considerations for goal selection
	OMVS
	JES

	Chapter 5. Push-to-client considerations
	Introduction
	Host-based projects

	Chapter 6. CICSTS considerations
	xUnit support for CICS applications
	Bidirectional language support
	Diagnostic IRZ messages for Enterprise Service Tools

	Chapter 7. SMF considerations
	SMF type 122, subtype 1
	Client activation code request
	Header section
	Data section 1, Creator ID
	Data section 2, Server initialization
	Data section 3, VU license handler status
	Data section 4, Client UUID
	Data section 5, Client labels
	Data section 6, Client data

	Chapter 8. Troubleshooting configuration problems
	Log files
	CARMA logging
	fekfivpc IVP test logging
	Code review logging
	Code coverage logging

	Tracing
	CARMA tracing
	Error feedback tracing

	z/OS UNIX permission bits
	SETUID file system attribute
	APF authorization
	Sticky bit

	Error feedback B37 space abend
	Host Connection Emulator

	Notices
	Programming interface information
	Trademarks
	Terms and conditions for product documentation

