SR H L
ot e S LA LI

IBM® Engineering Requirements Management DOORSE

The DXL Reference Manual

IBM® Engineering Requirements Management DOORS®

DXL Reference Manual
Release 9.7.2

Before using this information, be sure to read the general information under the "Notices" chapter on page 967.

This edition applies to version 9.7.2 of IBM® Engineering Requirements Management DOORS® and to all subsequent releases and
modifications until otherwise indicated in new editions.

© Copyright IBM Corporation 1993, 2023
US Government Users Restricted Rights—Use, duplication or disclosure restricted by GSA ADP Schedule Contract with IBM Corp.

DXL Reference Manual iii

iv. DXL Reference Manual

Chapter 1

Chapter 2

Chapter 3

Chapter 4

Table of Contents

Aboutthismanual................ o, 1
Typographical CONVENHONS u et ettt et ettt et 1
Related documentation.o\ttt 2
Introduction. i, 3
Developing DXL programsottt 3
Browsing the DXL Ibrary 5
Localizing DXLo 6
Language fundamentals 7
Lexical CONVENTIONS . .\ v\ttt ettt e e e e e e e et ettt ettt et et 10
(703 0] 725 o - 12
LN tifiers © ottt e e e e 14
o T PP 15
DeClarations v ot 15
BXPIessIONS. . ..o 18
N33 '3 o Y PP 20
Basic fUNCHOMNS .« . o\ttt s 24

New in DXL for DOORS® 9.7cciii i 29

Symbol character Mappinig.ottt 29

New in DXL for Rational DOORS 9.6.1 31

Object Management functions.oouviiiiii ... 31
Module Propertiesttt 32
Dialog box functions 32
Display control funiCONS v v vttt 32
OLE ODJECTS « .« vt et e 33
General fUNCHONSo 33
OSLC DXL SEIVICES .« .o v vttt i ittt i35
TIMEL. . oo 036

New in DXL for Rational DOORS 9.6.................... 39

Operating system INterface.t 39
Mini database explorer........... 039
Modules.o 40
History. . oo 40
Dialog box functions: common element OPerations.uuut e enaeeeaeaa. 41
Display control: COIUMNSo vttt e e 41
Display control: Layout DXLot 42
HTTP Server. . ..o e 42

DXL Reference Manual

Vi

Chapter 5

Chapter 6

Chapter 7

Chapter 8

Chapter 9

Chapter 10

DXL Reference Manual

New in DXL for Rational DOORS 9.5 43
Embedded OLE objects and the OLE clipboard, 43
OSLC Link DISCOVELY . . oottt ettt e e e e e e e e e e e e e e e 44
Database PrOPELtieso vttt et e 45
Rational Ditectory Server o 48
New in DXL for Rational DOORS 9.4 51
Attribute definItlons. 51
ArIbULE TYPES . . oo oo 53
Rich text StrNgs . .. oo oot 54
New in DXL for Rational DOORS 9.3 55
Converting a symbol character to Unicode ... i i i i 55
Dialog box functions. o e 56
Operations ON tYPE SLING . . . vttt ettt ettt ettt et 56
Embedded OLE objects and the OLE clipboard oo .. 58
OLE information functionst 58
DiSCUSSIONS oottt 59
RIFID .o 62
Rational DOORS URLSso o e 62
FIIters « oo 63
Compound Filters 65
Localizing DXL 66
Finding links.o 67
LNKS . oo 69
New in DXL for Rational DOORS 9.2 71
Additional authentication it 71
Dialog box updateso 72
INEW CONMSLANES « . 2 v vttt et ettt e ettt e e ettt e e e e e et 73
Partitions updates 74
Requirements Interchange Format (RIF).o i 75
New in DXL for Rational DOORS 9.1 85
Regular BXPressions 85
New in DXL for Rational DOORS 9.0 87
DASCUSSIONS .« . oottt 87
DiaSCUSSION TYPES. . oo oo vttt ettt 87
ProOpertieso 83
Tterators ... oo 90
OPEIAtiONS . . oottt ettt 92
THIGEOIS. o oottt 94
Example 95
DeSCIIPHONS . ettt 97
View DesCriptionsottt 97

Chapter 11

Chapter 12

Chapter 13

Chapter 14

Chapter 15

Attribute Type Descriptions i 97
Attribute Definition DesCiptions uuuu e 99
Filteting. . ..o 100
HTIML . 100
HTML Control. 101
HTML Edit Control. 111
Miscellaneouso o 113
Fundamental types and functions. 115
Operations on all tyPes.t 115
Operations on type bool 117
Operations on type char. 118
Operations ON tYPEINL . . o oottt ettt ettt ettt 121
Operations on type realottt 124
Operations ON tYPE SLIING. . . oo vttt ettt et ettt e 128
General language facilities 135
Files and streams.o 135
Configuration file ACCESSttt 143
Dates . . 149
SKIP LISES .« oo ettt 156
Regular expressions 160
Textbuffers. 165
ALTAYS .« oot 174
Operating systemiinterface 179
Operating system commands.ottt 179
WANAOWS TEGISTIY . ..ottt e 186
Interprocess commuNICAtIONSttt 189
System clipboard functions 192

Customizing DOORS®ciiiiiiiiinannnn 195

Colof SChEMES. . .. 195
Database Explorer Options.ttt 197
Mini database exXplorer. o 200
Locales. . ..o 201
Codepages. . ..o 207
Message of the dayo 211
Database Properties o 212
DOORS® database access. 215
Database Propertiest 215
Group and user manipulation 232
Group and USer MANAZEMECIL. « ..ottt t ettt ettt ettt ettt ettt ettt 240
LDAD . 250
LDAP Configurationooiiiiit ittt 252

DXL Reference Manual

vii

viii

Chapter 16

Chapter 17

Chapter 18

Chapter 19

DXL Reference Manual

LDAP server information i 254
LDAP data configurationooiiiii i 258
Rational Ditectory Server o 262

DOORS® hierarchyt 267

About the DOORS® hierarchy 267
Item access controls. 268
Hierarchy clipboardo 269
Hierarchy information. o 272
Hierarchy manipulation. 276
Jtems. . 278
Folders ... 281
PrOJECES. « oottt 284
Looping Within Projects.t 289

Modules. . ..ottt ettt et e e nnanns 291

Module access CONIOISottt 291
Module refereniCesot 292
Module information. 295
Module manipulation.o 299
Module display Statettt 305
Baselines.o 308
Baseline Set Definition 316
Baseline Sets. 325
HiStory . oo e 334
Descriptive modules 344
Recently opened modules 347
Module Propertiesot 349
Electronic Signatures e, 353
SIgNALULE LYPES .« oo v v e ettt ettt et 353
Controlling Electronic Signature ACLo 353
Electronic Signature Data Manipulation. 357
Examples 362

Objects ... e, 371

ADBOUL ODJECES. . . oottt 3T
ODbject 2CCESS CONLLOIS . . ittt 371
Finding objects. . ..ottt 373
CULLENT ODJECT .« v v vttt et ettt e e e e e 378
Navigation from an objectt 379
ODbject MANAGEMENL. © . . ettt ettt ettt et ettt ettt 382
Information about objects. 386
Selecting ObJECts. . . oottt 388
Object Searchingt 390
Miscellaneous object fUnCHONSt 391

Chapter 20

Chapter 21

Chapter 22

Chapter 23

LiNKS. . . ottt e e e e e 395

About links and link module desctiptors. 00395
Link creation. . ..ottt 2223906
Link access CONtrol. . ..ottt 02396
Finding links oo 397
Versioned HnKS . ..ottt 403
Link management.t 400
Default link module i 412
LSOt . o v vt ettt e e 412
External Links. 415
OSLC Link DISCOVELY .. oo oottt ettt 420
DOORS® URLS .« o ttot ettt e e e e e e e e 422

Attributes e e e e 431

AtrIDULE VAIUES. . o ot e e 431
Attribute value access CONLIOIS. . ..o vttt e 438
Multi-value enumerated attributes.ot e 439
Attribute definitionsottt 441
Attribute definition aCCESS CONTIOIS . . o v vttt e e e e e et et et e et 452
AIDULE TYPES .« o oot 454
Attribute type aCCess CONTIOIS\ttt 460
Attribute type manipulation. 401
DXL attribute . . .ottt e 467
Accesscontrols it 471
CoNtrolliNg ACCESS. . . oo vttt ettt ettt 471
LOCKING . . 480
Example programs 481

Dialogboxes i i 485

Lcons . 485
Message bOXES 488
Dialog box functions 491
Dialog box elements. 503
Common element OPELationS.ttt ettt ettt et 503
Simple elements for dialog boxes 527
Choice dialog box elementst 542
View Clements.o 547
Text editor €lements. 555
Buttons 558
CaANVASES .« . oottt ettt 562
COMPIEX CANVASES. « . .ot e e ettt et ettt et et e e ettt 576
TOOIDALS . .o 587
COlOLS vt 592
Simple placement 598
Constrained placement. o 601
Progress Dar 607

DXL Reference Manual

Chapter 24

Chapter 25

Chapter 26

Chapter 27

Chapter 28

Chapter 29

DXL Reference Manual

DBE £eSIZING . . .o\ 610

HTML CONtrol ... 611
HTML Edit Control 621
Templates i e, 623
Template fUnCtions 623
Template eXPressiOnsttt 624
DOORS® windowcontrol 627
The DXL Library and Addins menus. 627
Module status bars. e 629
DOORS® built-in Windowso 630
Module MENUSt 632
Displaycontrol i 647
FIIters « oo 647
Compound flters.t 658
Filtering on multi-valued attributes. o 662
Sorting modules. 663
VWS Lt 667
VIeW aCCESS CONLIOLS . ..ottt ittt e et 678
View defInitions.o oottt 680
COlUMNS .+ oot 690
Scrolling functions.o e 699
Layout DXL, ... 700
Partitions. 707
Partition CONCEPLS . ..o vttt 707
Partition definition management. i i 707
Partition definition CONENtSottt 710
Partition Management ettt ettt e 716
Partition information. 719
Partition aCCess.ot 724
Requirements Interchange Format (RIF) 727
RIE @XPOIt o v vt e ettt e 727
RIF IMPOIt. . oo 728
RIFID .o 729
MErge oot 730
RIF definition. . ..o oottt 730
Examples 733
OLEobjectsot it e e eannnn 739
Embedded OLE objects and the OLE clipboard o ... 739
OLE information functionst 750
Picture object SuppOrt.o 757

Chapter 30

Chapter 31

Chapter 32

Chapter 33

Chapter 34

Chapter 35

Chapter 36

Automation cHent SUPPOTt.o 768
Controlling DOORS® from applications that support automation 773
Triggers ... e e s 777
Introduction to trggers 777
THIGEEL CONSTANES . .o v vttt ettt ettt et et ettt ettt 781
Trigger definition 782
Trigger Manipulationttt 785
Drag-and-drop trigger funCtOnso vttt 795
Pagesetupfunctions, 807
Page attributes Status 807
Page dimensions 808
Document attributes.o oot 811
Page setup information. e 814
Page setup management. 817

Table CONCEPLottt 819
Table CONSANTS .« . oottt ettt e e e et e et e e e e e e e e 819
Table MANAZEIMCIIT . . . oo\ttt ettt e e e e e e e e e e 820
Table manipulation. 824
Table attributes. 832
Richtext............. . i 835
Rich teXt ProCessinngo oottt 835
Rich text StrNgso oot e 842
Enhanced character SUppoOrtottt 854
Importing rich text. 857
Diagnostic Permsot 858

Spelling Checker.ttt iiannnnn 863

Constants and general functions i i 863
Language and Grammar. ittt 872
Spelling Dictionary 881
Miscellaneous Spelling 884
Spelling\Dictionaty EXamples.ottt 886
Database Integrity Checker 889
Database Integrity TYPES oottt 889
Database Integrity Perms. 890
Discussions. iiiiiiaaa, 899
Discussion TYPEsottt 899
Properties 899

DXL Reference Manual

Xi

Xii

Chapter 37

Chapter 38

Chapter 39

DXL Reference Manual

Tterators . ..o o 902
OPEIAtiONS . . oottt ettt 903
THIGEELS. « ottt 907
Discussions access CONLrols.o it 908
Example 910
Generalfunctions.ol 913
Errorhandling o 913
Archive and eStOre oo i 916
Checksum validation 929
LOCKING. © 933
HTML functions ooouo it 940
HTTP SCIVEr ..ottt e e 942
Asynchronous HTTP feqUESESo v v vttt e e e e e e e e 947
OSLC DXL SEIVICES « .« vt ettt ettt ettt et e et e et e e 951
Broadcast Messaginig oottt 953
Converting a symbol character to Unicodeooo i i 954
TIMEL oot 955
Symbol character mapping 958
Character codes and theirmeanings.................. 961
Notices i 967
Index e 969

About this manual

Welcome to version 9.7 of IBM® Engineering Requirements Management DOORS® (DOORS®), a powerful tool that
helps you to capture, track and manage your user requirements.

DXL (DOORS® eXtension Language) is a scripting language specially developed for DOORS®. DXL is used in many
patts of DOORS® to provide key features, such as file format importers and exporters, impact and traceability analysis and
inter-module linking tools. DXL can also be used to develop larger add-on packages such as CASE tool interfaces and
project management tools. To the end user, DXL developed applications appear as seamless extensions to the graphical
user interface. This capability to extend or customize DOORS® is available to users who choose to develop their own DXL
scripts.

The DXL language is for the more technical user, who sets up programs for the end-user to apply. DXL takes many of its
fundamental features from C and C++. Anyone who has written programs in these or similar programming languages
should be able to use DXL

This book is a reference manual for DXL for version 9.7 of DOORS® Refer to it if you wish to automate simple or
complex repetitive tasks, or customize your users’ DOORS® environment. It assumes that you know how to write C or
C++ programs.

Typographical conventions

The following typographical conventions are used in this manual:

Typeface or Symbol [Meaning

Bold Important items, and items that you can select, including buttons and menus:
“Click Yes to continue”.

1talics Book titles.

Courier Commands, files, and directories; computer output: “Edit your
.properties file”.

> A menu choice: “Select File > Open”. This means select the File menu, and
then select the Open option.

Each function or macro is first introduced by name, followed by a declaration or the syntax, and a short description of the
operation it performs. These are supplemented by examples where appropriate.

DXL Reference Manual

d

Related documentation

The following table describes where to find information in the DOORS® documentation set:

For information on

See

DOORS®
How to set up licenses to use DOORS®
How to write requirements

How to integrate DOORS® with other
applications

The DOORS® IBM Knowledge Center
Rational Lifecycle Solutions Licensing Guide
Ger It Right the First Time

DOORS® API manual

DXL Reference Manual

Chapter 1
Introduction

This chapter describes the DXL Interaction window, DXL library, and the basic features of DXL. It covers the following
topics:

* Developing DXL programs
* Browsing the DXL library
¢ Localizing DXL

* Language fundamentals

* Lexical conventions

* Constants

* Identifiers

* Types

* Declarations

* Expressions

* Statements

* Basic functions

Developing DXL programs

You can use the DXL Interaction window to develop small DXL programs.

For large-scale program development, you should use a third party editing tool when coding, and then load your code into
the DXL Interaction window to execute and debug it. You can set up a menu option in IBM® Engineeting Requirements
Management DOORS® (DOORS®)) to run your third party editing tool.

DXL Reference Manual

To use the DXL Interaction window:

1. In either the Database Explorer or a module window, click Tools > Edit DXL.

@ DXL Interaction - DOORS FEX
=L input

DL output

I ewt eror Print...][Load...][Save Az][Broveze. .][Cloze][Help

2. Either type or load your program into the DXL input pane.

To load the contents of a file, click Load. To load a program from the DXL library, click Browse.
3. To run the program in the DXL input pane, click Run.

Any error messages that are generated are displayed in the DXL output pane.

To see the next error message, click Next error. The contents of the DXL input pane scroll to the line of source code
that caused the error displayed in the DXL output pane.

4. To print the contents of the DXL input pane with line numbers, click Print.

5. To save the contents of the DXL input pane to file, click Save As.

DXL Reference Manual

Right-click anywhere in the DXL input pane to display a pop-up menu with the sub-menus File, Edit, and Search. The
Edit sub-menu options have standard Windows functions. The File sub-menu options are described in the following

table:
File Description
Load Loads the contents of a text file into the DXL input pane. You can also use
drag-and-drop to load a file directly from Windows Explorer.
Save Saves changes you made to the text in the DXL input pane.
Save as Saves the contents of the DXL input pane to another file.
New Clears the DXL input pane. If you have made changes to the text that have not

yet been saved, you are asked if you want to save them.

The Search sub-menu options are described in the following table:

Search Description

Search Finds a string of text in the DXL input pane. The search is case-sensitive.

Again Repeats the search.

Replace Replaces one string of text with another. You can replace text strings one at a
time or all at once.

Goto line Moves the cursor to the start of a specified line. (This is useful when debugging

DXL programs because errors are indicated against line numbers.)

Browsing the DXL library

The DXL library is in the /1ib/dx1 folder in the DOORS® home ditectory.

You can browse the DXL library when you are:

Using the DXL Interaction window, by clicking the Browse button to find a program to run.

Creating a DXL attribute, by clicking the Browse button to find a program to use for the attribute (see “DXL
attribute,” on page 467).

Creating a layout DXL column, by clicking the Browse button to find a program to use for the layout DXI. column
(see “Layout DXIL,” on page 700).

DXL Reference Manual

You see the DXL Library window. The DXL programs and the buttons you see depend on where you were when you
clicked the Browse button.

#] Browse Tools - DOORS E|E”z|
4 .

ormal m n HT kL Format
| Export comma or tab-separated spreadsheet and database data
| Export module ta Frametd aker
| Export module ta plain text
| Export RTF
OLE export to Microzoft Office Products

DOORS Outlook interface

Export module using automation to Excel 97

Export module using automation to Powerpoint family
[Warious utiliies for importing data into DOORS

[Seme example programs which illustrate various DXL features -
Degcription
HTML output az produced by this zcript -
All data in the curment Wiew [whether default or athenwize] will N
be exported inta HTML under the fallowing conditions.
o The "Object Text" attribute [or the 'main’ column) will be rendered az
NORMAL text.

o &l dizolaved attributes will be rendered in ITALIC in the form:

| £

[_Run [Edt. |[Pi. || Close][Hep
Button Action
Run Runs the selected program in your DXL Interaction window.
Edit Edits the selected program.
Print Prints the selected program.

Localizing DXL

DOORS® uses ICU resource bundles for accessing translated strings. DXL perms ate available to access ICU resource
bundles containing translated strings for customized DXIL. For information about creating ICU resource bundles, see

http:/ /userguide.icu-project.org/locale/localizing.

Put the language resource files in a directory whose name is taken as the bundle name, under

$DOORSHOME/language, for example $DOORSHOME /language/myResource/de DE.res. There are two

bundles already shipped with DOORS®, core and DXL.)

DXL Reference Manual

LS_

Declaration
string LS (string key, string fallback, string bundle)

Operation

Returns the string from resource bundle that is identified by key. If the string identified by key is not found in the resource
bundle, the fallback string is returned.

Example

de.txt file contains;

de {
Keyl{"Ausgehend"}
Key2{"Ausgehende Links"}
Key3{"Normalansicht"}
Key4{"Klartext"}

}

From the command line, generate a resource bundle, for example genrb de.txt, and copy the resource bundle to
$DOORSHOME/language/myResource/, where myResource is the name of your resource bundle. The localized
strings can then be accessed using the LS perm, for example in the DXL editor, type:

print LS ("Keyl", "Ausgehend not found", "myResource") "\n"

print LS ("Key2", "Ausgehende Links not found", "myResource") "\n"
print LS ("Key3", "Normalansicht not found", "myResource") "\n"
print LS ("Key4", "Klartext not found", "myResource") "\n"

The output is:

Ausgehend

Ausgehende Links

Normalansicht

Klartext

Language fundamentals

DXL is layered on an undetlying programming language whose fundamental data types, functions and syntax are largely
based on C and C++. To support the needs of script writing, there are some differences. In particular, concepts like main
program are avoided, and mandatory semicolons and parentheses have been discarded.

DXL Reference Manual

Auto-declare

In DXL there is a mechanism called auto-declare, which means that a user need not specify a type for a variable. For
example, in the script:

i=5
print i

the interpreter declares a new variable and deduces from the assignment that its type is int.

Because DXL is case-sensitive, there is a potential hazard when relying on this mechanism to type variables. If you make a
mistake when typing a variable name, the interpreter assumes that a new variable is being used, which creates errors that are

hard to find.
This feature can be disabled by adding the line:
XFLAGS &=~AutoDeclare

to the bottom of the file $SDOORSHOME /1ib/dx1/startup.dxl.

Syntax

The syntactic style is more like natural language or standard mathematical notation. Consider the function:
string deleteUser (string name)

This can be called as follows:

deleteUser "Susan Brown"

The lack of semicolons is possible through DXI’s recognition of the end of a line as a statement terminator, except when it
follows a binary operator. This means you can break an expression like 243 over a line by making the break after the + sign.
A comment ending in a dash (/ /=) also enables line continuation.

As in C, == is used for equality, while = is used for assignment. Unlike C or Pascal, concatenation of symbols is a valid
operation.

Parsing

Statement or expression parsing is right associative and has a relatively high precedence. Parenthesis has the highest
precedence.

Because sqrt is defined as a function call that takes a single type real argument:
sgqrt 6.0

is recognized as a valid function call, whereas in C it is:

sqrt (6.0)

So, the C statement:

print (sqrt (6.0))

can be:

DXL Reference Manual

print sqgrt 6.0
in DXL
The following script declares a function max, which takes two type int arguments:

int max(int a, b) {
if a < b then return b else return a

}

print max (2, 3)

The call of max is parsed as print (max (2, 3)), which is valid. The statement:

print max 2,3

would generate errors. Because the comma has a lower precedence than concatenation, it is parsed as:
((print max(2)),3)

If in doubt, use the parentheses, and separate statements for concatenation operations.

Naming conventions

As a general rule, DXL reserves identifiers ending in one or more underscores (_,) for its own use. You should not use
functions, data types or variables with trailing underscores, with the exception of those documented in this manual.

Names introduced as data types in DXL, such as int, string, Module and Object, must not be used as
identifiers. The fundamental types such as int and string are in lower case. DOORS® specific types all start with an
upper case letter to distinguish them from these, and to enable their lower case versions to be used as identifiers.

Loops

In DXL, loops are treated just like any other operator, and are overloaded, that is, declared to take arguments and return
values of more than one type. The loop notation used is as follows:

for variable in something do {

}

The for loops all iterate through all values of an item, setting variable to each value in turn.

Note: When using for loops, care must be taken when deleting items within the loop and also opening and closing items
within a for loop. For example, if variableis of type Module and something is of type Project, and
within the for loop a condition is met that means one of the modules will be deleted, this should not be done
within the for loop as it can lead to unexpected results. A recommended method is to use a skip list to store the
modules and to do any manipulation required using the contents of the skip list.

DXL Reference Manual

10‘

Lexical conventions

Semicolon and end-of-line

DXL diverges from C in that semicolons can be omitted in some contexts, with end-of-line (newline) causing statement
termination. Conversely, newline does not cause statement termination in other contexts. This is a useful property;
programs look much better, and in practice the rules are intuitive. The rules are:

* Any newlines or spaces occurring immediately after the following tokens are ignored:

; ’ ? : = (+ * [
& - ! ~ / S << >> <>
< > <= >= == I= ” | &&
and || or AN += = *— /= o—
<<= >>= &= | = A= <- 1= => ..
. -> HR \

* Any newlines before an else ora) are ignored. All other newlines delimit a possibly empty statement.
* Multiple consecutive areas of white space containing newlines are treated as single newlines.

* The recognition of a newline can be avoided by prefixing it with an empty // comment or a comment ending in -.

Comments

The characters /* start a comment that terminates with the characters * /. This style of comment does nof nest.

The characters // start a comment that terminates at the end of the line on which it occuts. The end-of-line is not
considered part of the comment unless the comment is empty or the final character is —. This latter feature is useful for
adding comments to a multi-line expression, or for continuing a concatenation expression over two lines.

Notably, comments that immediately follow conditional statements can cause code to behave unexpectedly.
The following program demonstrates some comment forms:

/* Some comment examples (regular C comment) */

int a // a C++ style comment

int b = 1 + // We need a trailing - at the end -

2 // to prevent a syntax error between "+" and the newline
print //
"hello" // the // after print causes the following newline to be
// ignored

/*

DXL Reference Manual

int C // this whole block is commented out

Identifiers

An identifier is an arbitrarily long sequence of characters. The first character must be a letter; the rest of the identifier may
contain letters, numerals or either of the following two symbols:

DXL is case sensitive (upper- and lower-case letters are considered different).

The following words are reserved for use as keywords, and must not be used otherwise:

and bool break by case char
const continue default do else enum
for if in int module object
or pragma real return sizeof static
struct string switch then union void
while

The following keywords are not currently supported in user programs, but are reserved for future use:
case const default enum
struct switch union

A keyword is a sequence of letters with a fixed syntactic purpose within the language, and is not available for use as an
identifier.

File inclusion

To include files into DXL scripts, you can use either of the following:
#include "file"
#include <file>

Absolute or relative path names can be used. Relative paths must be based on one of the following forms depending on the

platform:
$DOORSHOME/1ib/dx1 (UNIX)
$DOORSHOME\\1ib\\dx1l (Windows)

DXL Reference Manual

where DOORSHOME is defined in a UNIX® environment variable, or on Windows platforms in the registry. The
Windows-style file separator (\) must be duplicated so that DXI. does not interpret it as a meta-character in the string.

If the addins directory is defined in a UNIX environment variable or the Windows registry, this directory is also searched,
so relative path names can be with respect to the addins directory.

Note: The UNIX shell file name specification form ~user/ is not supported.

Pragmas

Pragmas modify the background behavior of the DXL interpreter, for example:
pragma runlLim, int cyc

sets the timeout interval cyc as a number of DXL execution cycles. The timeout is suppressed if cyc is set to zero, as
shown in the following example:

pragma runLim, 0 // no limit

pragma runLim, 1000000 // explicit limit

There is also a pragma for setting the size of the DXL runtime stack, which is used as follows:

pragma stack, 10000

The default value is set to 1,000,000.

If running the DXL from the DXL editor, when the timeout limit is reached a message is displayed asking if you want to:
* Continue - script execution continues with the same timeout limit.

* Continue doubling the timeout - script execution continues with double the current timeout limit.

e Halt execution - DXL is halted with a run-time etror.

If running in batch mode, it is good practise to execute scripts in the DXL editor initially to detect any errors or timeouts.
Pragma runlim,0 should be used in instances of timeouts.

Pragma encoding accepts only one string argument that is "UTF-8". As a result, the parser interprets the rest of the file by
using UTF-8 encoding.

So, make sure that you include the string argument "UTF-8" at the start of any DXL file.

When a user opens a DOORS module that includes the characters 4 or U in the name, the module opens successfully in the
DOORS GUI. But it fails to open in the batch mode and returns a null module.

To resolve the issue, add following details to the batch script:
pragma encoding, "UTF-8"

isBatch() => if true

Module m = read (ansi(modName), false)

Constants

Integer constants

An integer constant consisting of a sequence of digits is interpreted as octal if it begins with a 0 (digit zero); otherwise it is
interpreted as decimal.

A sequence of digits preceded by 0x or 0X is interpreted as a hexadecimal integer.

A sequence of Os or 1s preceded by 0b is interpreted as a binary number, and converted to an integer value.

13

Character constants

A character constant is a character enclosed in single quotes, as in ' x '. The value of a character constant is defined to be of
gle q >

type char.

Certain non-graphic characters, the single quote and the backslash, can be represented according to the following escape
sequences:

Character Escape sequence
newline \n

hotizontal tab \t

backspace \b

carriage return \r

form-feed \f

backslash W

single quote \ !

bit pattern \ddd

any other character \c

The escape \ddd consists of the backslash followed by 1, 2, or 3 octal digits.

Any other character that is escaped is passed straight through.

Type real constants

A type real consists of an integer part, a decimal point, a fraction part, an e or E, and an integer exponent. The integer
and fraction part both consist of a sequence of digits.

You can omit either the integer part or the fraction part, but not both. You can omit either the decimal point or the
exponent with its € or E. You can add a sign to the exponent.

Example
1.0
0.1
1el0
1.2E30

DXL Reference Manual

The null constant

The constant null is used as a polymorphic value to indicate a null value. You can use it for any derived type (see
“Derived types,” on page 15). You can use it for both assignment to variables and conditional tests on variables.

Example
Object obj = null

if (null obj) {
ack "This object is empty"

Strings

A string literal, of type st ring and storage class static, is a sequence of characters surrounded by double quotes, as in
"apple".

Within a string the double quote () must be preceded by a backslash (\). For example “Pear\”” is the string Pear” in
quotes. In addition, you can use the same escape sequences as described in “Character constants,” on page 13, including the
newline character.

Identifiers

Identifiers denote variables, functions, types and values. You can introduce an identifier into a program by declaration or by
immediate declaration. Immediate declaration is when an undeclared identifier is used as the left hand side of an assignment
statement.

Variables

Variables represent regions of computer memory. The meaning of the value stored in a variable is determined by the type of
the identifier used to access the variable.

Unassigned variables contain the unassigned pattern, which is checked on all references. In this way, errors with unassigned
vatiables are avoided, and an accurate error message is reported.

Scope

Once declared, an identifier has a region of validity within the program known as its scope.

In general, identifiers are in scope following their declaration within the current block, and are available within nested
blocks. Identifiers can be hidden by re-declaration in nested blocks. For example, the following code prints a 4 and then a 3
in the output pane of the DXL Interaction window.

int i = 3

DXL Reference Manual

if (true) {
int i = 4
print 1 "\n"

}

print 1 "\n"

Types

Fundamental types

DXL has the following base types:
Base type Description

bool Denotes the domain of values true and false, which are provided as
predefined constants.

char Is similar to the C character type.
int Is the only integer type provided in DXL. On all platforms, integers are signed,

and have a precision of 32 bits.
real Is like the double type in C, with a precision of 64 bits.

void Is the type with no values; its main use is in declaring functions that do not
return a result.

string Is similar to the derived C type char*.

Derived types

DXL supports arrays, functions and references. An internal class facility provides new non-fundamental types, referred to as
built-in types, such as Object, Module and Template. DXL does not support class creation by user programs.

Declarations

Declarations are the mechanism used to associate identifiers with variables, functions or values.

Declarators

DXL follows C in its declarator syntax. However, only the simple forms should be necessary in DXL programs.

DXL Reference Manual

DXL extends C style arrays by enabling a variable to define the bounds of the array. The number of elements in an atray is
available by using the sizeof function.

Unlike C, DXL arrays can have only one dimension.
In addition to the normal C declarator forms, DXL provides the C++ reference declarator &.

DXL uses the ANSI C method of supplying a function’s formal parameters in the declarator itself with each argument given
as a fully specified type.

The following script gives some example declarations:

int i, j, k // declare 3 integers

int n = 4 // declare an integer and initialize it
bool al2] // declare an array of type bool of size 2
int b[n] // declare an integer array of size n

print sizeof a // prints "2"

Note: A declaration of the form ‘intn = {1,2,3}’ is not supported.

Immediate declaration

Immediate declaration is a DXL extension from C, which means that the first use of an undeclared variable is also a
declaration. It must be used in a context where an unambiguous value is given to it, for example the left hand side of an
assignment statement:

i=2

print i

Once declared, the identifier must be used consistently.

Function definitions

DXL functions are very close to the style of ANSI C functions. The following script gives some examples:
// define a function to find the maximum of two integers

int i

int max(int a, b) {

return a < b ? b : a

}// max

// This function applies f to every element in a,
// using an accumulation variable r that is initialized to base.

int apply accumulate(int base, int a[], int f(int, int)) {
int r = base
for (i = 0; i < sizeof a; i++) {
r = f(r, ali])

}

DXL Reference Manual

return r
} // apply accumulate
int a[5]

print "Filling an array:\n\n"

for (i = 0; i < sizeof a; i++) {
al[i] = random 1000
print a[i] "\n"

} // for

print "largest number was:

print apply accumulate (0, a, max)
// print largest element in a

Line 3 defines the function max, which has two parameters of type int and returns a type int. One difference from
ANSI C is that the parameter type specifier int need not be repeated before the b parameter.

Line 10 declares a function parameter £. Note that £’s parameters do not include redundant identifiers.

Operator functions

You can redefine DXL operators by prefixing the operator with : : to turn it into an identifier.

Example

This example defines a multiplication operator that applies to strings and integers.
string ::*(string s, int n) {
string x = ""
int 1
for 1 in 0 : n-1 do {
X =X s

return x
}
print ("apple " * 4)
This prints out:

apple apple apple apple

If you wish to overload the concatenation operator, which is normally represented by a space, use the symbol . . .
string ::..(real r, int n) {

string s = ""

int 1

// concatenate the string to a space n times

DXL Reference Manual

for i in 0:n-1 do {
s=s r " "

return s
}
print (2.45 3) "\n" // try it out
The program prints the string:
2.450000 2.450000 2.450000

Expressions

This section outlines the major differences between C and DXL expressions. The operations defined on DXL fundamental
types are explained in “Fundamental types and functions,” on page 115.

Reference operations

DXL supports C++ style reference operations. References are like var parameters in Pascal or Ada, which means they
provide an alias to a variable, not a copy. To declare a reference variable its name must be preceded by an ampersand (&).

Example

This example is a program to swap two integers. In C you have explicitly to pass the address of the variables to be swapped
and then de-reference them within the body of the function. This is not required in DXL.

// swap two integers
void swap (int &a, &b) {

int temp

temp = a; a = b; b = temp
}

int x = 2

int& z = x // z is now an alias for x
int y =3

print x " " y "\n"

swap (z, y) // equivalent to swap (x,Vy)
print x " " y "\n"

This program prints the string:

23
32

DXL Reference Manual

Overloaded functions and operators

Most functions and operators can be declared to take arguments and return values of more than one type.

Example
This example overloads a commonly used identifier print to provide an object printer.
// Overload print to define an Object printer
void print (Object o) {
string h = o0."Object Heading"
string t = o."Object Text"
print h ":\n\n" t "\n"
}

print current Object

Funct

ion calls

DXL enables calls of functions defined without parameters to omit the empty parenthesis, except where the call appears as
a function argument or any other context where a function name is valid. Function calls with single arguments can also omit
the parenthesis, but beware of concatenation’s high precedence when the argument passed is an expression.

Note: When overloading functions, ensure that the first declaration of the function does not have a void parameter, e.g
void print (void). This may lead to unexpected results. Furthermore, function calls of the form void
print (int i=0, int g=0) should also not be used.

Example

void motto () { // parameterless
print "A stitch in time saves nine.\n"

} // motto

int square(int x) {

return x*x

} // square

motto // call the function

print square 9 // two function calls
Casts

Because of DXL’s overloading facility, it is easy to write expressions that have more than one possible interpretation; that is,
they are ambiguous. Casts are used to pick which interpretation is required. Casts in DXI. come in two forms:

expression type

DXL Reference Manual

20

(type expression)
In the first form, the type name can appear after the expression, as in:
o = current Object

In the second form, the type may come first, but the whole expression must be within parenthesis:

o = (Object current)

Range

A range expression extracts a substring from a string, or substring from a buffer, and is used in regular expression matching.
It has two forms:

int from : int to
int from : int to by int by

Examples are given with the functions that use ranges.

Statements

This section describes how to construct statements in DXIL..

Compound statements

Compound statements are also referred to as blocks.

Several statements can be grouped into one using braces { . . . }.

Conditional statements

The if statement takes an expression of type bool, which must be in parenthesis. If the expression evaluates to true, it

executes the following statement, which can be a block. If the expression evaluates to false, an optional el se statement
is executed.

As an alternative form, the parenthesis around the condition can be dropped, and the keyword then used after the
condition.

Example
int i =2, § =2
if (1 < 3) {

i 4= 2
} else {
i += 3

DXL Reference Manual

if 1 == j then j = 22

The then form does not work with a condition that starts with a component in parenthesis, for example:
if (2 + 3) == 4 then print "no"

generates a syntax errof.

DXL also supports the C expression form:

2 + 3 ==5 72 print "yes" : print "no"

The if statement also supports multiple else 1if statements, which can be written as elseif.

Example

int i =1, § =2

if (1< 9) {

i+= 3
} else if (1 == 3j) {
i+=2

{ else if (1 > j) |

i+=1

Do not add a comment in the middle of the else 1if statement.

Example

int i =1, § =2

if (1 < 3J) |

i+= 3
} else

// Do not add comment here
if (1 == 3J) {

i+=2

DXL Reference Manual

21

{ else if (1 > j) |
i+=1
}

DXL considers the else 1if to be one statement and can give incorrect results if a comment line with a preceding space
of tab is in-between the el se and i f.

Loop statements

DXL has three main loop (iteration) statements. It supports the C forms:

for (init; cond; increment) statement

while (cond) statement

and a new form:

for typel vl in type2 v2 do

where typel and type?2 are two types, possibly the same; v1 is a reference variable and v2 is a variable, which can be a
range expression (see “Range,” on page 20). This form is heavily used in DXL for defining type-specific loops.
Example

int x
int a=2
int b=3
for (x=1; x <= 11; x+=2) {

print x

}

while (a==2 and b==3) {
print "hello\n";
a =3

}

for x in 1 : 11 by 2 do {
print x

}

In this example, the first loop is a normal C for loop; the second is a normal C while loop. Note that DXL offers the
keyword and as an alternative to &&.

The last form in the example uses a range statement, which has the same semantics as the first C-like loop.

Break statement

The break statement causes an immediate exit from a loop. Control passes to the statement following the loop.

Example

int 1 =1

DXL Reference Manual

while (true) {
print i++
if (i==10){
break
}// if (i==10)

}// while (true)

Continue statement

The continue statement effects an immediate jump to the loop’s next test or increment statement.
Example
int 1 =1

while (true) {

if (i==4) { // don't show 4
i++
continue

y// 1f (i==4)

print i++

if (1==10) {
break

}// if (i==10)
}// while (true)

Return statement

The return statement either exits a void function, or returns the given value in any other function.

Note: Care should be taken when using the return statement. For example, assigning a value to a variable where the

assignment is a function, and that function returns no value, can lead to unexpected values being assigned to the

variable.

Example
// exit void function
void print (Object o) {

if (null o)
return string h = o."Object Heading"

print h "\n"
} // print

// return given value

DXL Reference Manual

23

24

int double (int x) {
return x + x // return an integer
} // double

print double 111

Null statement

The null (empty) statement has no effect. You can create a null statement by using a semicolon on its own.
Example
int a = 3

if (a < 2) ; else print a

Basic functions

This section defines some basic functions, which can be used throughout DXI.

of
This function is used as shown in the following syntax:
of (argument)
Returns the passed argument, which can be of any type. It has no other effect. It is used to clarify code.
Example
if end of cin then break
sizeof

This function is used as shown in the following syntax:
sizeof (array(])

Returns the number of elements in the array, which can be of any type.

Example

string strs[] = {"one", "two", "three"}
int ints[] = {1, 2, 3, 4}

print sizeof strs // prints 3
print sizeof ints // prints 4

DXL Reference Manual

halt

Declaration
void halt ()

Operation

Causes the current DXL program to terminate immediately. This is very useful if an error condition is detected in a
program.

Example

if (null current Module) {
ack "program requires a current module"
halt

checkDXL

Declaration

string checkDXL[File] (string code)

Operation
Provides a DXL mechanism for checking DXL code.

The checkDXL function analyzes a DXL program and returns the string that would have been produced in the DXL
Interaction window had it been run on its own.

The checkDXLF1ile function analyzes a file and returns the error message that would have been produced in the DXL
Interaction window had the file been run.

Example

string errors =
checkDXL ("int j = 3 \n print k + j")

if (!null errors)
print "Errors found in dxl string:\n" errors
"\n"

would produce the following in the DXL Interaction window’s output pane.

Errors found in dxl string:

-E- DXL: <Line:2> incorrect arguments for (+)

-E- DXL: <Line:2> incorrect arguments for function (print)

-E- DXL: <Line:2> undeclared variable (k)

DXL Reference Manual

25

26

sort

Declaration

void sort(string stringArrayl])

Operation

Sorts the string array st ringArray. The sort function handles string arrays containing non-ASCII characters, as do the

string and Buffer compatison operators.

Example

int noOfHeadings = 0

Object o

for o in current Module do {
string oh = o0."Object Heading"
if (!'null oh) noOfHeadings++

}

string headings[noOfHeadings]

int 1 = 0

for o in current Module do {
string oh = o0."Object Heading"
if (!null oh) headings[i++] = oh

}

sort headings

for (i = 0; i < noOfHeadings; i++) print headings[i] "\n"

activateURL

Declaration

void activateURL (string url)

Operation

This is equivalent to clicking on a URL in a formal module.

batchMode, isBatch

Declaration
bool batchMode ()

bool isBatch ()

DXL Reference Manual

Operation

Both functions return true if DOORS® is running in batch mode, and false if DOORS® is running in interactive
mode.

DXL Reference Manual

27

28

DXL Reference Manual

29

Chapter 2

New in DXL for DOORS® 9.7

This chapter describes changes to the DXL Reference Manual in IBM® Engineering Requirements Management
DOORS® (DOORS®) 9.7:

* Symbol character mapping
» getFontList
* getMappedCode
* getMappedCodes
» updateMappedCodes

Symbol character mapping

getFontList

The perm getFontList fills a skip list with the name of fonts that have a mapped character. See “getFontList” on page 958.

getMappedCode

The perm getMappedCode returns the unicode value of a character in the specified font.

If no character mapping is defined (either the font is not known or the actual character provided is not mapped), a value of
0 is returned. See “getMappedCode” on page 958.

getMappedCodes

The perm getMappedCodes fills the provided skip list with any existing mappings for the supplied font. You can then update
this skip list with additional mappings. You must create the skip list before being passed to the function.

See “getMappedCodes” on page 959.

updateMappedCodes

The perm updateMappedCodes updates or adds mappings for the supplied font. If the font has previously been mapped, the
contents of skip list replace the mappings. See “updateMappedCodes” on page 959.

DXL Reference Manual

EdgeView Controls

Support for edge-based HTML control is available from 9.7.2.7 version onwards. See "HTML Control" section in Chapter
10.

30

DXL Reference Manual

Chapter 3

New in DXL for Rational DOORS 9.6.1

This chapter describes changes to the DXL Reference Manual in Rational DOORS 9.6.1:

Object Management functions:

* purgeObject_

Dialog box functions:

* helpOn

* minimumSize

o listView

Display control functions:

* Compound filters

¢ Columns: backgroundColor(get)
* Columns: backgroundColor(set)
* Layout DXL: setRefreshDelta
OLE objects

* olelnsert (insert to buffer)
General functions:

* Checksum validation

* HTML help

* Asynchronous HTTP requests
* OSLC DXL Services

* Timer

Triggers

‘31

Object Management functions

purgeObject

The function “purgeObject_

>

> on page 386 removes the specified soft-deleted object. Once executed, this object cannot be

recovered. The name ends in '_' to discourage casual use. The documentation for this function is added in version 9.6.1.3 of

this manual.

DXL Reference Manual

32‘

Module Properties

delete(ModuleProperties)

The function “delete(ModuleProperties)” on page 350 deletes the supplied moduleProperties structure. If not called after a
call to getProperties, the memory will only be released after the context is released. This function is new in Rational
DOORS version 9.6.1.4.

Dialog box functions

helpOn

The documentation for the helpOn function has been removed from this manual because the help is no longer delivered in
the HTML Help (chm) format.

minimumSize

The new function “minimumSize” on page 502 sets the minimum size of the dialog box to a specified width and height.

listView

Beginning in Rational DOORS version 9.6.1.7, you can use Cttl+A keys to select all items in a multiselect listView. See
“listView” on page 549.

Display control functions

Compound filters

The documentation for “Compound filters” on page 658 includes new example code in version 9.6.1.3 of this manual.

DXL Reference Manual

33

Columns: backgroundColor(get)

The function “backgroundColor(get)” on page 691 returns the name of the attribute that is used to color the background of
a specific column. The function was first included in version 9.4.0. The documentation is added in version 9.6.1.3 of this
manual.

Columns: backgroundColor(set)

The function “backgroundColor(set)” on page 692 sets the background color of a specific column. The function was first
included in version 9.4.0. The documentation is added in version 9.6.1.3 of this manual.

Layout DXL: setRefreshDelta

The function “setRefreshDelta” on page 704 was a new function in Rational DOORS 9.6.0. The documentation is added in
version 9.6.1 of this manual.

OLE objects

olelnsert (insert to buffer)

The function “olelnsert (insert to buffer)” on page 744 inserts OLE into the given buffer at a given character offset. The
documentation for this function is added in version 9.6.1.4 of this manual.

General functions

Checksum validation

The checksum validation functions enable you to create a validation record for a module before you export or archive the
module. When the module is later imported or restored to the project, you can compare the checksum validation record
with the module to identify changes to the text or other attribute values in the selected views.

createChecksumFile

The function “createChecksumFile” on page 929 creates a compressed file with a .zip extension that contains XML files
that describe a module, selected views within the module, and object attributes that are associated with objects in those
views.

DXL Reference Manual

34

loadChecksumFile

The function “loadChecksumFile” on page 930 loads a checksum package for a specific module and loads the list of views
that are available for checksum comparison.

compareChecksumFile

The function “compareChecksumFile” on page 931 enables the user to compare the checksum validation record with the
related module to identify changes to the text or other attribute values in the selected views.

HTML help: helpOnEx

The documentation for the helpOnEx function has been removed from this manual because the help is no longer delivered
in the HTML Help (chm) format.

Asynchronous HTTP requests

The “Asynchronous HTTP requests” on page 947 ate used to make HTTP requests asynchronously so that the main
Rational DOORS process is not blocked. With these functions, the DXL user interface is still be responsive while an HTTP
request is in progress.

Future HttpRequest

The Future HttpRequest function starts an HTTP request but instead of waiting for a response, it immediately returns a
Future object. The Future object contains a value that will be delivered in future. The Future object can be checked for
readiness later. The HTTP response can be fetched from the Future object when it is ready.

The documentation for this function is added in version 9.6.1.6 of this manual.

DXL Reference Manual

35

OSLC DXL Services

OSLC DXL Setvices ate DXL scripts that can be run by making an Open Setvices for Lifecycle Collaboration (OSLC)
request to an instance of Rational DOORS Web Access. A service must be added to the DOORS database before it can be
run. DXL functions are available to add, remove, and return information about DXL services. For mote information and
examples, see the help topic: OSLC DXL services for Rational DOORS.

Support for OSLC DXL Services was added to Rational DOORS in a previous release. This documentation is added in
version 9.6.1.4.

OSLCDXLService properties

“OSLCDXILService properties” on page 951 are defined for use with the . (dot) operator and a OSLCDXLService handle.

setDxIServiceResult

The function “setDxlIServiceResult” on page 952 sets the result string that is returned as a result of the service that is being
run.

addOrUpdateOSLCDXLService

The function “addOrUpdateOSLCDXIService” on page 952 adds a new service to the list of configured DXL services or
updates an existing one.

removeOSLCDXLService(string key)

The function “removeOSLCDXILService(string key)”” on page 953 removes a service from the configuration. Finds the
service by its key (that is, name).

removeOSLCDXLService(OSLCDXLService service)

The function “removeOSLCDXTService(OSLCDXI.Service setvice)” on page 953 removes a service object from the
configuration.

DXL Reference Manual

https://www.ibm.com/support/knowledgecenter/SSYQBZ_9.6.1/com.ibm.doors.install.doc/topics/r_dxl_services.html

36‘

Timer

Documentation for the timer functions is added in version 9.6.1.4. The functions are available in eatlier versions.

timer

“Timer” on page 955 creates a timer element that executes the callback function every 'n' seconds.

stopTimer

The function “stopTimer” on page 955 stops the execution of a specific timer. Returns true if the timer was running and is
now stopped.

startTimer

The function “startTimer” on page 955 restarts the execution of a specific timer. Returns true if the timer was stopped and
is now restarted.

isTimer

The function “isTimer” on page 956returns TRUE if 1d is a valid action index and it is a timer.

getTimerName

The function “getTimerName” on page 956 returns a string containing the name of the timer (or NULL if not a timer).

getTimerinterval

The function “getTimerInterval” on page 956 returns the number of seconds between each execution of the timer.

getTimerlD

The function “getTimerID” on page 956 returns the timer id as an integer.

getTimerRunning

The function “getTimerRunning” on page 957 returns TRUE if 1d is a timer and it is running,.

DXL Reference Manual

Triggers

The documentation for triggers is updated in version 9.6.1.6 to include this statement: Rational DOORS Web Access does
not support triggers. This condition applies to all previous versions also.

DXL Reference Manual

37

38

DXL Reference Manual

Chapter 4

New in DXL for Rational DOORS 9.6

This chapter describes features and documentation that are new in Rational DOORS 9.6:

Operating system interface: getMemoryUsage

Mini database explorer

Modules: downgrade, downgradeShare

History constants

Dialog box functions: common element operations
Display control

¢ Columns

* Layout DXL setRefreshDelta

HTTP Server

Operating system interface

getMemoryUsage

This perm “getMemoryUsage” on page 180 returns the Rational DOORS client memory usage in MB.

The perm was added in Rational DOORS 9.3.0.7, but the documentation is new in 9.6.0.1.

Mini database explorer

This perm “fnMiniExplorer” on page 200 creates a miniature database explorer window that shows a tree view in which you
can navigate through the hierarchy of the Rational DOORS database and select an item.

This information is added to the documentation in Rational DOORS 9.6.0.1. The function is available in previous releases.

DXL Reference Manual

39

40‘

Modules

downgrade

This information is added to the documentation for the existing perm “downgrade” on page 301 in Rational DOORS
9.6.0.1:

If there are unsaved changes to the module, then the user is prompted to save the changes. Alternatively, the save perm can
be used prior to downgrade, so that any changes to the module are preserved.

downgradeShare

This information is added to the documentation for the existing perm “downgradeShare” on page 301 in Rational DOORS
9.6.0.1:

If there are unsaved changes to the module, then the user is prompted to save the changes. Alternatively, the save perm can
be used prior to downgrade, so that any changes to the module are preserved.

History

Constants (history type)

The following constants are added to the list of “Constants (history type)” on page 334:
* const HistoryType moveObject

* const HistoryType synchronizeModule

* const HistoryType commentModule

* const HistoryType commentObject

This information is added to the documentation in Rational DOORS 9.6.0.1. The functions are available in previous
releases.

DXL Reference Manual

41

Dialog box functions: common element operations

setTextChangeCB

This perm “setTextChangeCB” on page 512 sets the text change callback for field, richField, text, richText DBEs where the
callback is of the form void callbackFn (DBE). When the callback function is invoked on a text change, DBE will be
the handle of the edit control DBE, which can be field, richField, text or richText.

This is a new function in Rational DOORS 9.6.

toolBarEditGetString

This perm “toolBarEditGetString” on page 513 gets the contents of the edit control hosted on the toolbar with DBE
handle tb, where 1ndex identifies the edit control on this toolbar by the index of the edit control.

This is 2 new function in Rational DOORS 9.6.

Display control: columns

link(get)

This perm “link(get)” on page 696 returns true if column c is a link indicator column.

'This is a new function in Rational DOORS 9.6.

link(set)

This perm “link(set)” on page 696 makes column c a link indicator column.

'This is a new function in Rational DOORS 9.6.

changebar(get)

This perm “changebar(get)” on page 696 returns true if column c is a change bar column.

'This is a new function in Rational DOORS 9.6.

changebar(set)

This perm “changebar(set)” on page 696 makes column ¢ a change bar column.

DXL Reference Manual

42

'This is a new function in Rational DOORS 9.6.

currentColumn(get)

This perm “currentColumn(get)” on page 698 gets the current column for this DXL context. If the DXL is not layout DXL
then this will return NULL.

This information is added to the documentation in Rational DOORS 9.6. The function is available in previous releases.

Display control: Layout DXL

setRefreshDelta

The function “setRefreshDelta” on page 704 is a new Layout DXL function in Rational DOORS 9.6. The documentation
for this function is added in 9.6.1.

HTTP Server

The new section “HTTP Server” on page 942 defines functions for making HTTP requests to a URL.

This information is added to the documentation in Rational DOORS 9.6. The functions atre available in the most recent
previous releases.

DXL Reference Manual

Chapter 5

New in DXL for Rational DOORS 9.5

This chapter describes features and documentation that are new in Rational DOORS 9.5:
* Embedded OLE objects and the OLE clipboard

* OSLC Link Discovery

e Database properties

* Rational Directory Server

Embedded OLE objects and the OLE clipboard

olelnsert

Declaration
bool oleInsert (Object o, [attrRef],string fileName, [bool insertAsIcon])

where the optional parameter at t rRef is in the following format: (Object o) . (string attrName)

Operation

Embeds the file £iIeName as an OLE object in the Rational DOORS formal object o in a text attribute. If the optional
parameter attrRef is specified, then the OLE object is embedded in the user-defined text attribute. If no parameter is
specified, then the OLE object is embedded in the system Object Text attribute.

If the optional parameter insertAsIcon is specified, then if true, the OLE object is displayed as an icon, else it is
displayed as content. If no patameter is specified, then the default is to display the OLE object as content.

The function returns true on successful insertion of the OLE object. Otherwise, it returns false.

An OLE package is created if a file has no associated applications that support OLE. OLE packages even allow executable
files to be embedded into documents. It is then possible to execute such a file from within the document.

Example
/*

this code segment embeds an existing word document into the current formal
object
*/

string docName = "c:\\docs\\details.doc"

Object obj = current

DXL Reference Manual

43

44

if (olelInsert(obj, obj."my text", docName)) {
print "Successfully embedded document\n"

} else {
print "Problem trying to embed document\n"

OSLC Link Discovery

When OSLC (external) links are discovered the results are stored in DOORS in a database-wide cache so that future
sessions that open modules with those links open faster. When a user opens a module, the cache is checked first for any
external links. If the data in the cache has not yet expired then the cached external links are shown; else, a new query is
executed to discover any OSLC (external) links and the cache is then updated with the results. The cache has a default
expiry time of 5 minutes after which the external links are considered to be out of date. This expiry time can be modified.

getCachedExternalLinkLifeTime

Declaration
int getCachedExternallinkLifeTime ()

Operation

Returns the life time (expity time) of the cached external links in seconds.

setCachedExternalLinkLifeTime

Declaration

string setCachedExternallinkLifeTime (int lifetime)

Operation
Sets the life time (expiry time) of the cached external links to lifetime seconds.
If the value lifetime is zero then this will disable link discovery.

Returns an error if the user does not have the manage database privilege; otherwise, returns null.

DXL Reference Manual

45

Database properties

getReconfirmPasswordRequired

Declaration

bool getReconfirmPasswordRequired /()

Operation

Returns true if a reconfirmation password is required after a specified timeout period; otherwise, returns false.

setReconfirmPasswordRequired

Declaration

void setReconfirmPasswordRequired (bool required)
Operation
Sets whether a reconfirmation password is required after a specified timeout period, depending on the value of required.

This perm only operates if the cutrent user has the Manage Database privilege.

getReconfirmPasswordTimeout

Declaration

int getReconfirmPasswordTimeout ()

Operation

Returns the timeout period (in minutes) before the reconfirmation password dialog appears.

setReconfirmPasswordTimeout

Declaration

void setReconfirmPasswordTimeout (int timeout)

Operation
Sets the timeout period to timeout minutes before the reconfirmation password dialog appears.

This perm only operates if the cutrent user has the Manage Database privilege.

DXL Reference Manual

getRequireLettersinPassword

Declaration

bool getRequirelettersInPassword ()

Operation

Returns true if a password is required to contain at least one alphabetic character; otherwise, returns false.

setRequireLettersinPassword

Declaration

string setRequirelettersInPassword (bool required)

Operation
If requiredis true, then a password is required to contain at least one alphabetic character.

This perm only operates if the current user has the Manage Database privilege, otherwise an error message is returned.

getRequireNumberlinPassword

Declaration

bool getRequireNumberInPassword ()

Operation

Returns true if a password is required to contain at least one number; otherwise, returns false.

setRequireNumberlnPassword

Declaration

string setRequireNumberInPassword (bool required)

Operation
If required is true, a password is required to contain at least one number.

This perm only operates if the current user has the Manage Database privilege, otherwise an error message is returned.

getRequireSymbollnPassword

Declaration

bool getRequireSymbolInPassword ()

DXL Reference Manual

47

Operation

Returns true if a password is required to contain at least one non-alphanumeric character; otherwise, returns false.

setRequireSymbollnPassword

Declaration

string setRequireSymbolInPassword(bool required)

Operation
If required is true, a password is required to contain at least one non-alphanumeric character.

This perm only opetates if the cutrent user has the Manage Database privilege, otherwise an error message is returned.

getMinPasswordGeneration

Declaration

int getMinPasswordGeneration ()

Operation

Returns the minimum number of password generations before a password can be reused.

setMinPasswordGeneration

Declaration

string setMinPasswordGeneration (int num)

Operation

Sets the minimum number of password generations before a password can be reused to num. The minimum number
cannot exceed the in-built maximum limit of 12 generations before a password can be reused.

This perm only operates if the current user has the Manage Database privilege, otherwise an error message is returned.

getMaxPasswordGenerationLimit

Declaration

int getMaxPasswordGenerationLimit ()

Operation

Returns the in-built maximum limit of password generations before a password can be reused. This maximum limit is set to
12.

DXL Reference Manual

48

getMinPasswordAgelnDays

Declaration

int getMinPasswordAgeInDays ()

Operation

Returns the minimum number of days before a password can be reused.

setMinPasswordAgelnDays

Declaration

string setMinPasswordAgelInDays (int days)

Operation

Sets the minimum number of days before a password can be reused to days. The minimum number cannot exceed the
in-built maximum limit of 180 days before a password can be reused.

This perm only operates if the current user has the Manage Database privilege, otherwise an error message is returned.

getMaxPasswordAgeLimit

Declaration

int getMaxPasswordAgeLimit ()

Operation

Returns the in-built maximum limit of days before a password can be reused. This maximum limit is set to 180 days.

Rational Directory Server

getTDPortNo

Declaration
int getTDPortNo ()

Operation

Returns the Rational Directory Server port number.

DXL Reference Manual

setTDPortNo

Declaration

string setTDPortNo (int 1)

Operation

Sets the Rational Directory Server port number.

Returns an error string if the current user is not the administrator.

DXL Reference Manual

49

50

DXL Reference Manual

Chapter 6

New in DXL for Rational DOORS 9.4

This chapter describes features that are new in Rational DOORS 9.4:

¢ Attribute definitions
* Attribute types

e Rich text strings

Attribute definitions

Attribute definition properties

Properties are defined for use with the . (dot) operator and an attribute definition handle to extract information from an
attribute definition, as shown in the following syntax:

(AttrDef ad) .property

The following property is now supported:

String property Extracts
uri The URI of an attribute definition.
ad.uri Returns the URI of user defined attributes. This URI is called defined

ad. appliedUri

ad.defaultUri

module level URI.

Returns the URI of system defined attributes (default module level
URI), user defined attributes (defined module level URI), and globally
mapped URI

Returns the URI of system defined attributes (default module level
URI).

DXL Reference Manual

51

52‘

create(attribute definition)

Syntax

AttrDef create ([module|object]
[property value]...
[(default defval)]
attribute (string attrName))

Operation

Creates a new attribute definition called attrName from the call to attribute, which is the only argument that must
be passed to create. The optional arguments modify create, by specifying the value of attribute properties. The
arguments can be concatenated together to form valid attribute creation statements.

The keywords module and object specify that the attribute definition that is being created applies to modules or
objects, respectively.

The default property specifies the default value for the attribute definition that is being created as defVal. This property
should always be specified within parenthesis to avoid parsing problems. The value must be given as a string, even if the
undetlying type is different. Rational DOORS converts the value automatically.

As required, you can specify other properties. The defaults ate the same as the Rational DOORS user interface. The
following property is now supported:

String property Specifies

uri The URI of an attribute definition.

modify(attribute definition)

Declaration

AttrDef modify (AttrDef old,
[setproperty value,]
AttrDef new)

Operation

Modifies an existing attribute definition by passing it a new attribute definition. The optional second argument enables you
to set a single property. The following property is now supported:

String property Sets
uri The URI of an attribute definition.
Example

AttrDef ad = create object type "Integer" attribute "cost"

ad = modify(ad, object type "Integer" attribute "Costing")

DXL Reference Manual

ad

modify(ad, setHistory, true)
ad

modify(ad, setDefault, "123")

ad = modify(ad, setURI, "http://www.webaddress.com")

Attribute types

setURI

Declaration
AttrType setURI (AttrType at, string URI, string &errMess)
AttrType setURI (AttrType at, string name, string URI, string &errMess)

AttrType setURI (AttrType at, int index, string URI, string &errMess)

Operation

Sets the URI for the specified attribute type. Returns a modified attribute type. If there is an error, the message is returned
in the final string parameter. The URI can be set for a specified enumeration value or enumeration index.

Example

AttrType at

string errorMsg

string index[] = { "first", "second", "third" }

at = setURI(at, "http://www.webaddress.com", errorMsg)

at = setURI(at, index[0], "http://www.webaddress.com", errorMsqg)
getURI
Declaration

string uri (AttrType at)

string uri (AttrType at, string name)
string uri (AttrType at, int index)
Operation

Gets the URI for the specified attribute type or for a named enumeration value or for a enumeration index.

DXL Reference Manual

54‘

Rich text strings

applyTextFormattingToParagraph

Declaration

string applyTextFormattingToParagraph(string s, bool addBullets,
int indentLevel, int paraNumber, [int firstIndent])

Operation
Applies bullet and/or indent style to the given text, overwriting any existing bullets/indents.
* If addBulletsis true, adds bullet style.

* If indentLevel is nonzero, adds indenting to the value of indentLevel. The units for indentlLevel are twips =
twentieths of a point.

* If paraNumber is zero, the formatting is applied to all the text. Otherwise it is only applied to the specified paragraph
number.

* If the optional parameter £irstIndent is specified, then this sets the first line indent. If the value is negative then
this sets a hanging indent. The units ate in points.

The input string s must be rich text. For example, from string s = richText o."Object Text".

Returns a rich text string which describes the text with the formatting applied.

Example
Object o = current
string s = o0."Object text"

0."Object text" = richText (applyTextFormattingToParagraph (richText
s,true, 0,0))

Adds bullet style to all of the current object’s text.

DXL Reference Manual

Chapter 7

New in DXL for Rational DOORS 9.3

This chapter describes features that are new in Rational DOORS 9.3:
* Converting a symbol character to Unicode

* Dialog box functions

* Operations on type string

* Embedded OLE objects and the OLE clipboard
* OLE information functions

e Discussions

* RIFID

* Rational DOORS URLs

e Filters

* Compound Filters

* Localizing DXL

* Finding links

* Links

Converting a symbol character to Unicode

symbolToUnicode

Declaration

char symbolToUnicode (char symbolChar, bool convertAllSymbols)

Operation

Converts a symbol character to its Unicode equivalent. If convertAllSymbols is false, only symbols with the Times
New Roman font equivalents are converted.

DXL Reference Manual

55

56‘

Dialog box functions

addAcceleratorKey

Declaration

void addAcceleratorKey (DB db, void dxlCallback(), char accelerator, int
modifierKeyFlags)

Operation

Adds an accelerator key accelerator to the dialog db with the callback function dx1Callback () and the passed-in
modifierKeyFlags. modifierKeyFlags is used in conjunction with the accelerator parameter to change
which key should be pressed with the accelerator key. Possible values for it are modKeyNone, modKeyCtrl,
modKeyShift and null.

The specified DXL callback fn dx1Callback () executes for the specified keystroke combination being pressed when
the DXL dialog box db is active.

Only call this perm after the dialog box db has been realized, otherwise a DXL run-time error will occur.

Example
void fn ()
{
print "callback fires\n"
}
DB db = create("testDialog", styleStandard)

realize db

// The callback fn() will be executed on pressing Shift+F7 when the dialog db is
active.

addAcceleratorKey (db, fn, keyF7, modKeyShift)

Operations on type string

unicodeString

Declaration

string unicodeString (RTF string str, bool convertAllSymbols, bool
returnAsPlainText)

DXL Reference Manual

57

Operation

Returns the value of the specified rich text string as RTF or plain text. If the attribute contains characters in Symbol font,
these characters are converted to the Unicode equivalents.

If convertAllSymbols is true, all symbol character are converted. If false, only Unicode characters that have a good
chance of being displayed are used. See the symbolToUnicode perm for a description of which characters are
converted.

The value is returned as plain text if returnAsPlainText is true. Otherwise the value is returned as RTF.

escape

Declaration
string escape(string str, char escapeChar, string escapeChars)

Operation

Escapes all the characters in str which are in escapeChars, with the escapeChar character. This also escapes
escapeChar itself.

Example
escape ("hello world", '/', "1") returns "he/l1/lo wor/1d"

escape ("hello world #1", '#', "1h") returns "#he#l#lo wor#ld ##1"

stripPath

Declaration
string stripPath(string path, bool isEscaped)

Operation
Removes the path part from path, using forward slash as the path separator.

If isEscaped s true, the slash character can be used as a literal character rather than a path separator by preceding the
character with a backslash.

Example
stripPath ("abc/def/ghi", b) returns "ghi", where b is true or false.
stripPath ("abc/def\\/ghi", true) returns "def/ghi"

DXL Reference Manual

58‘

Embedded OLE objects and the OLE clipboard

olePasteSpecial

Declaration

string olePasteSpecial (string attrRef, bool displayAsIcon)

Operation

Copies an OLE object from the clipboard and appends it to at tRef. The boolean displayAslcon, when set to t rue will
display the OLE object as an icon in the object. Returns null on success and displays an error message on failure.

Example
Object o = current

olePasteSpecial (o."object text", false)

OLE information functions

oleSetHeightandWidth

Declaration
oleSetHeightandWidth (string attrRef, int height, int width, int index)

Operation
Sets the height and width of the OLE object within attrRef at the specified index.

Example
Object o = current Object
oleSetHeightandWidth (o."Object Text"™, 150, 150, 1)

DXL Reference Manual

Discussions

isDiscussionColumn

Declaration

bool isDiscussionColumn (Column c)

Operation

Returns true if the column is a discussion column, otherwise false.

setDiscussionColumn

Declaration

void setDiscussionColumn (Column ¢, string s)

Operation

Sets the filter on the discussion column based on the supplied discussion DXL filename.

Example
Column c
for ¢ in current Module do
{
if (isDiscussionColumn (c))
{
string s = dxlFilename (c)
if (s != null)
{
Module m = edit ("/TestDiscussions ", true)
//Open a module, with some discussions in it.
if (m !'= null)
{
Column cNew = insert (column 3)
title(cNew, "My copy Discussion™)

string home = getenv ("HOME")

string fullPath = home "\\" s ""

string contents = readFile (fullPath)

DXL Reference Manual

//Call dx1 PERM on that column before setting the discussion column. The
//discussion column is also a modified version of LAYOUT dxl.

dx1 (cNew, contents)
setDiscussionColumn (cNew, s)
width (cNew, 100)

refresh (m, false)

canModifyDiscussions

Declaration

bool canModifyDiscussions ({Module m| Item i| string s} [, {User |string}l])

Operation

Returns true if a given user or named user (current user if the parameter is not supplied) is allowed to create a discussion or
a comment on a discussion for the given module, item or named module. The use of item is intended for use when the

Item represents a module.

canEveryoneModifyDiscussions

Declaration

bool canEveryoneModifyDiscussions ({Module m| Item 1i})

Operation

Returns true if the discussions access list for the given module or item contains the special "Everyone" group.

addUser

Declaration

void addUser (Item i, {User ul| string s})

Operation
Adds the user or named user to the Discussion Access List for an Ttem. The updated list is not saved in the database until

saveDiscussionAccessList is called.

DXL Reference Manual

61

addGroup

Declaration
void addGroup (Item i, {Group g| string s})

Operation

Adds the group or named group to the Discussion Access List for an Item. The updated list is not saved in the database
until saveDiscussionAccessList is called.

removeUser

Declaration
void RemoveUser (Item i, {User ul| string s})

Operation

Remove the user or named user from the Discussion Access List for an ITtem. The updated list is not saved in the database
until saveDiscussionAccessList is called.

removeGroup

Declaration
void removeGroup (Item i, {Group g| string s})

Operation

Remove the group or named group from the Discussion Access List for an ITtem. The updated list is not saved in the
database until saveDiscussionAccessList is called.

saveDiscussionAccessList

Declaration

string saveDiscussionAccessList (Item 1)

Operation

This perm saves the discussion access list for the given item to the database. This perm is only successful for an
administrator or a user with manage database privileges. If the call is successful, a null value will be returned, otherwise a

string with an error message will be returned.

DXL Reference Manual

62‘

RIF ID

getRifID

Declaration
string getRifID(Object o)

Operation

Returns a string with the RIF ID for object o. If the object does not have a RIF ID, an empty string is returned.

getObjectByRiflD

Declaration
Object getObjectByRifID (Module m, string s)

Operation

Returns the object within module m with a RIF ID of s. If the module does not contain an object with the input RIF ID,
null is returned.

Rational DOORS URLs

getResourceURL

Declaration

string getResourceURL(Module | Object| Database__ | ModuleVersion| ModName___| Folder | Project | Item)

Operation

Returns the resource URL of the passed in item.

getResourceURLConfigOptions

Declaration

void getResourceURLConfigOptions(string &dwaProtocol, string &dwaHost, int &dwaPort)

DXL Reference Manual

63

Operation

Gets the dwaProtocol, dwaHost, and dwaPort DBAdmin options configured for this database. The
dwaProtocol, dwaHost, and dwaPort parameters contain the values upon return.

decodeResourceURL

Declaration

string decodeResourceURL(string resourceURL, string &protocol, string& dbHost, int& dbPort, string& repositoryld,
string& dbName, string& dbld, Item&, ModuleVersion&, string& viewName, int& objectAbsno)

Operation

Breaks down a passed-in resource URL into its constituent parts and passes back the information as may be applicable into

the reference parameters.

Returns null on success, error message on failure.

Filters

getSimpleFilterType _

Declaration
int getSimpleFilterType (Filter)

Operation

Returns the type of the simple filtet; attribute, link, object, or column. Please note that the returned value corresponds to the
index of the appropriate tab page on the filter dialog. If the specified filter is not a simple filter, -1 is returned.

getAttributeFilterSettings_

Declaration

bool getAttributeFilterSettings (Module,
Filter,
string& attributeName,
int& comparisonType,
string& comparisonValue,
bool& matchCase,

bool& useRegexp)

DXL Reference Manual

64

Operation

Gets details of the specified attribute filter in the return parameters. The function returns false if the filter is not a valid
attribute filter.

The comparisonType paramenter returns the internal index of the comparison. This is different to the index that is
used in the associated combo box on the filter dialog. The translation is performed by the DXL code.

getLinkFilterSettings_

Declaration

bool getLinkFilterSettings (Module,
Filter,
bool& mustHave,
int& 1inkType,

string& linkModuleName)

Operation

Gets details of the specifed link filter in the return parameters. The function returns false if the filter is not a valid link
filter.

The 1inkType parameter returns a value that maps directly to the appropriate combo box.

The 1inkModuleName parameter returns an asterisk if links are allowed through any module, or the module name.

getObjectFilterSettings_

Declaration
bool getObjectFilterSettings (Module,
Filter,

int& objectFilterType)

Operation

Gets details of the specified object filter in the return parameter. The function returns false if the filter is not a valid
object filter.

The objectFilterType parameter returns a value that maps directly to the radio group on the dialog.

getColumnFilterSettings_

Declaration
bool getColumnFilterSettings (Module,

Filter,

DXL Reference Manual

65

string& columnName,
string& comparisonValue,
bool& matchCase,

bool& useRegExp)

Operation

Gets details of the specified column filter in the return parameters. The function returns false if the filter is not a valid

column filter.

Compound Filters

These perms can be used to decompose compound filters into their component parts for analysis, and potential
modification or replacement.

See examples in “Compound filters” on page 658.

getCompoundFilterType__

Declaration
int getCompoundFilterType (Filter)

Operation

Returns an integer value indicating the type of the specified filter.

It returns one of the following new DXL constant values for compound filter types:
int filterTypeAnd

int filterTypeOr

int filterTypeNot

It returns -1 for a simple filter. The test for a negative value suffices to indicate that the filter is not compound, as the new

constants are all positive values.

If no filter is supplied, a run-time DXL error is generated.

getComponentFilter_

Declaration

Filter getComponentFilter_(Filter, int index)

Operation

Returns an integer value indicating the type of the specified filter.

DXL Reference Manual

It returns one of the following new DXL constant values for compound filter types:
int filterTypeAnd

int filterTypeOr

int filterTypeNot

This perm teturns a component filter that is part of the supplied compound filter. If the compound filter is of type
filterTypeNot, the index must be zero, or the perm returns null. If the compound filter is of type
filterTypeOror filterTypeAnd, anindex of 0 or 1 returns the first or second sub-filter, and any other index
value returns null.

If the supplied filter is not a compound filtet, the perm returns null.

If no filter is supplied, a run-time DXL error is generated.

Localizing DXL

Rational DOORS uses ICU resource bundles for accessing translated strings. DXL perms are available to access ICU
resource bundles containing translated strings for customized DXL. For information about creating ICU resource bundles,

see http://userguide.icu-project.org/locale/localizing.

Put the language resource files in a directory whose name is taken as the bundle name, under

$DOORSHOME/ language,for example SDOORSHOME /language/myResource/de DE.res. There are two
bundles already shipped with Rational DOORS, core and DXL.)

LS

Declaration
string LS (string key, string fallback, string bundle)

Operation

Returns the string from resource bundle that is identified by key. If the string identified by key is not found in the resource
bundle, the fallback string is returned.

Example

de.txt file contains;

de {
Keyl{"Ausgehend"}
Key2{"Ausgehende Links"}
Key3{"Normalansicht"}

Key4{"Klartext"}

DXL Reference Manual

67

From the command line, generate a resource bundle, for example genrb de.txt, and copy the resource bundle to
$DOORSHOME /language/myResource/, where myResource is the name of your resource bundle. The localized
strings can then be accessed using the LS perm, for example in the DXL editor, type:

print LS ("Keyl",

print LS ("Key2",

print LS ("Key3",

print LS ("Key4",
The output is:

Ausgehend

Ausgehende Links
Normalansicht

Klartext

"Ausgehend not found", "myResource") "\n"

"Ausgehende Links not found", "myResource") "\n"

"Normalansicht not found", "myResource") "\n"

"Klartext not found", "myResource") "\n"

Finding links

for each incoming link

Syntax

(LinkRef)
linkModuleName)

for in Object

do {

} ce

where:
LinkRef
tgtObject

1inkModuleName

Operation

tgtObject<-string

is a variable of type Link or LinkRef
is a variable of type Object

is a string variable

Assigns the variable LinkRef to be each successive incoming link arriving at object tgtObject via link module named
linkModuleName. The string 1inkModuleName can be a specific link module name, or the string " * " meaning any

link module.

Iterates through all incoming link references including those from baselines and soft-deleted modules.

Note:
not detected.

This loop only assigns to LinkRe f incoming link values for which the source object is loaded; unloaded links are

DXL Reference Manual

Example
LinkRef 1

for (1) in current Object<-"*" do {
string user = 1."Created By"
print user "\n"

for each source

Syntax

for (srcModName) in Object tgtObject<-string
linkModName) do {

}

where:
srcModName is a string variable
tgtObject is a variable of type Object
1inkModName is a string variable
Operation

Assigns the variable srcModName to be the unqualified name of the source module of each successive incoming link
arriving at object tgtObject via link module named 1inkModuleName. The string 1inkModuleName can be a
specific link module name, or the string " *" meaning any link module.

Includes links from baselines and soft-deleted modules, returning the name of the source module (without baseline version
numbers).

Note: This loop assigns to modName values for all incoming links, whether the source is loaded or not. This can be used
to pre-load all incoming link sources before using the for all incoming links loop.

Example

This example prints the unqualified name of all the source modules for incoming links to the cutrent object:
Object o = current

string srcModName

for (srcModName) in o<-"*" do print srcModName "\n"

DXL Reference Manual

for each source reference

Syntax

for (srcModRef) in Object tgtObject<-string
linkModName) do {

}

where:
srcModRef is a variable of type ModName
tgtObject is a vatiable of type Object
1inkModName is a string variable

Operation

Assigns the variable srcModRef to be the reference of the source module of each successive incoming link arriving at
object tgtObject via link module named 1inkModuleName. The string 1inkModuleName can be a specific link
module name, or the string " * " meaning any link module.

Includes links from baselines and soft-deleted modules.

Note: This loop assigns to modName values for all incoming links, whether the source is loaded or not. This can be used
to pre-load all incoming link sources before using the for all incoming links loop.

Example
ModName srcModRef
for (srcModRef) in o<=-"*" do

read (fullName (srcModRef), false)

Links

getlegacyURL

Declaration
string getLegacyURL (object o)

Operation

This perm returns the legacy Rational DOORS URL. The legacy URL contains the protocol as "doors". This URL can then
be decoded using decodeURL.

DXL Reference Manual

Example

ModuleVersion mv

int objectAbsno

Item i

string dbHost = null
int dbPort

string dbName

string dbID = null

string objUrl = getURL (current Object)

string legacyUrl

string errorMsg

errorMsg = getLegacyURL (objUrl, legacyUrl)
if (!null errorMsgqg)

{

print errorMsg "\n"

else

errorMsg = decodeURL (legacyUrl, dbHost, dbPort, dbName, dbID, i, mv,
objectAbsno)

}
if(!null errorMsgqg)
{

print errorMsg "\n"

else
{

print "Original URL - " objUrl "\nDB Host - " dbHost "\n"

print "DB Port - " dbPort "\nDB Name - " dbName "\nDB Id - " dbId
"\nAbsolute Number - " objectAbsno "\n"

}

DXL Reference Manual

Chapter 8

New in DXL for Rational DOORS 9.2

This chapter describes features that are new in Rational DOORS 9.2:
* Additional authentication

* Dialog box updates

* New constants

* Partitions updates

* Requirements Interchange Format (RIF)

Additional authentication

getAdditionalAuthenticationEnabled

Declaration

bool getAdditionalAuthenticationEnabled()

Operation

Returns true if enhanced security users need to perform additional authentication during login. Only relevant when

authentication is being controlled via RDS.

getAdditionalAuthenticationPrompt

Declaration

string getAdditionalAuthenticationPrompt ()

Operation

Returns the label under which additional authentication is requested, if enhanced security is enabled, for example the label

for the second “password” field. Only relevant when authentication is being controlled via RDS.

getSystemLoginConformityRequired

Declaration

bool getSystemLoginConformityRequired ()

DXL Reference Manual

7

72

Operation

Returns true if enhanced security users have there system login verified when logging in. Only relevant when
authentication is being controlled via RDS.

getCommandLinePasswordDisabled

Declaration

bool getCommandLinePasswordDisabled ()

Operation

Return true if the =P command line password argument is disabled by default.

setCommandLinePasswordDisabled

Declaration

string setCommandLinePasswordDisabled (bool)

Operation

Sets whether the —P command line password argument is disabled by default. Supplying t rue disables the option by
default.

Dialog box updates

toolBarComboGetEditBoxSelection

Declaration

string toolBarComboGetEditBoxSelection (DBE toolbar, int index)

Operation

Returns the selected text from the editable combo box in toolbar where index is the combo box index.

toolBarComboCutCopySelectedText

Declaration
void toolBarComboCutCopySelectedText (DBE toolbar, int index, bool cut)

DXL Reference Manual

73

Operation

Cuts, or copies, the selected text in the editable combo box in toolbar atlocation index. If cut is true, the selected
text is cut to the clipboard. Otherwise, it is copied.

toolBarComboPasteText

Declaration

void toolBarComboPasteText (DBE toolbar, int index)

Operation

Pastes text from the clipboard into the combo box located at index in toolbar. Replaces selected text if there is any.

hasFocus

Declaration
bool hasFocus (DBE toolbar)

Operation

Returns true if the supplied toolbar DBE contains an element that currently has the keyboard focus. Otherwise,
returns false.

setDXLWindowAsParent

Declaration
void setDXLWindowAsParent (DB dialogq)

Operation

Sets the DXL interaction window to be the parent of dialog. If there is no DXL interaction window, the parent is set to
null.

New constants

mayUseCommandLinePassword

Declaration

bool mayUseCommandLinePassword

DXL Reference Manual

74

Operation

Boolean property of a User. When command line passwords are disabled by default, this returns t rue if they have been
enabled for the given User. Otherwise, returns false.

additionalAuthenticationRequired

Declaration

bool additionalAuthenticationRequired

Operation

Boolean property of a User. Returns true if the User needs to perform additional authentication during login. Only
relevant when authentication is performed via RDS.

iconAuthenticatingUser

Declaration

Icon iconAuthenticatingUse

Operation

The icon used to represent a user requited to perform additional authentication during login.

Partitions updates

addAwayModule

Declaration

string addAwayModule (PartitionDefinition pd, string modName[, string partName])

Operation
Used to add a formal module to a partition in the away database.

The new, optional parameter can be used to specify the partition name where it may vary from the definition name.

addAwayLinkModule

Declaration

string addAwayLinkModule (PartitionDefinition pd, string modName[, string
partName])

DXL Reference Manual

75

Operation
Used to add a link module to a partition in the away database.

The new, optional parameter can be used to specify the partition name where it may vary from the definition name.

Requirements Interchange Format (RIF)

exportType

Declaration
void initRIFExport (ExportType)

Operation
Sets the export type to be either RIF or ReqlF. Call this before using the exportPackage method.

example

initRIFExport (exportRIF 1 2)// Sets the export to be RIF

initRIFExport (exportReqlIF)// Sets the export to be ReqlF

exportPackage

Declaration

string exportPackage (RifDefinition def, Stream RifFile, DB parent, bool& cancel)

Operation

Exports def to the XML file identified by Ri fFile. The stream must be have been opened for writing using “write
(filename, CP _UTF8)”.1f parent is null then a non-interactive operation is performed. Otherwise, progress bars
will be displayed.

If an interactive export is performed, and is cancelled by the user, cancel will be set to true.

importRifFile

Declaration

string importRifFile(string RifFilename, Folder parent, string targetName,
string targetDesc, string RifDefName, string RifDefDescription, DB parent)

Operation

Performs a non-interactive import of R1 fFileName, placing the imported modules in a new folder in the specified
parent. The new folder name and description ate specified by targetName and targetDesc.

DXL Reference Manual

rifiMerge

Declaration

string rifMerge (RifImport mrgObj, DB parent)

Operation

Performs a non-interactive merge using the information in mrgOb3.

RifDefinition

A RifDefinition is the object in which a package to be exported in RIF format is defined.

Properties are defined for use with the . (dot) operator and a R1fDefinition handle to extract information from a
definition, as shown in the following syntax:

variable.property

where:
variable is a variable of type RifDefinition.
property is one of the following properties.

The following tables list the RifDefinition properties and the information they extract or specify

String property Extracts
name The name of the definition.
description The desctiption of the definition.

rifDefinitionIdentifer The unique ID of the RIF definition (this is shared between databases, unlike the
name and description).

boolean property Extracts

createdLocally Returns true if the definition was created in the local database, as opposed to being
imported.

canModify Returns true if the correct user can modify the definition.

Project property Extracts

project The project which contains the definition.

DXL Reference Manual

7

RifModuleDefinition

A RifModuleDefinition is an object which contains the details of how a module should be exported, as part of a
RIF package.

Properties are defined for use with the . (dot) operator and RifModuleDefinition handle to extract information
from, a definition record, as shown in the following syntax:

variable.property

where:
variable is a variable of type R1 fModuleDefinition.
property is one of the properties below.

The following tables list the R1 fModuleDefinition properties and the information they extract or specify:

String property Extracts

dataConfigView The name of the view used to define which data in the module will be included in the RIF
export.

ddcView The name of the view used to define what data can be edited when the exported RIF package
is imported into another database.

bool property Extracts

createdLocally Whether the module was added to the RifDefinition in the current database or not.
ModuleVersion Extracts

property

moduleVersion The ModuleVersion reference for the given RifModuleDefinition.
Ddcmode property Extracts

ddcMode The type of access control used to define whether the module, or its contents, will be

editable in each database once it has been exported.

DXL Reference Manual

DdcMode constants

DdcMode constants define the type of access control used define whether a module, or its contents, will be editable in each
of the local and target database once the export has taken place. The following table details the possible values, and their

meanings.
Constant Meaning
ddcNone Module will be editable in both source and target databases.
ddcReadOnly Module will be editable in only the soutce database.
ddcByObject Selected objects in the module will be made read-only in the source database.
ddcByAttribute Selected attributes in the module will be made read-only in the source database.
ddcFullModule Module will not be editable.
Riflmport

A RifImport is an object which contains information on a RIF import. These are created by import operations, and are
persisted in a list in the stored RifDefinition.

Properties are defined for use with the . (dot) operator and a RifImport handle to extract information from, or specify
information in an import record, as shown in the following syntax:

variable.property

where:
variable is a vatiable of type RifImport.
property is one of the properties.

The following tables list the Riflmport properties and the information they extract or specify :

bool property Extracts

mergeStarted Returns true when a merge operation is started.
mergeCompleted Returns true when the merge has been completed.
mergeRequired Returns true when an import is a valid candidate for merging.
mergeDisabled Returns true if the merge has been disabled due to lock removal.
User property Extracts

importedBy Returns the user who performed the import.

DXL Reference Manual

79

User property Extracts

mergedBy Returns the user who preformed the merge.

Folder property Extracts

folder Returns the folder containing the imported data. On import, a DXL script is expected to
iterate through the contents of this folder, merging all items which have RIF IDs, and which
are persisted in this folder.

Date property Extracts

exportTime Returns the time the export was performed. Note that this is the timestamp derived from the
creationTime element of the header in the imported RIF package. Merges should be
performed in the order in which the data was exported, rather than the order in which the
packages were imported.

importTime Returns the date that the import folder was created.

mergeTime Returns the date that the merge of the import folder was completed, or started if it has not
yet been completed.

RifDefinition property Extracts

definition Returns the RifDefinition with which the import is associated.

for RifDefinition in Project

Syntax

for rifDef in proj do {

J
Operation

Assigns rifDef to be each successive RifDefinitionin Project proj.

for RifModuleDefinition in RifDefinition

Syntax

for rifModDef in rifDef so {

DXL Reference Manual

80

Operation

Assigns rifModDef to be each successive RifModuleDefinitionin RifDefinition rifDef.

for Riflmport in RifDefinition

Syntax

for rifImp in rifDef do {

}
Operation

Assigns rifImp to be each successive rifImportinRifDefinition rifDef.

Examples

The following example dumps all information about all RIF definitions in the current project to the screen. It then
conditional exports one of the packages.

RifDefinition rd

RifModuleDefinition rmd

Stream stm = write ("C:\\Public\\rifExport.xml", CP_UTFS8)
string s = ""

bool b

Project p = current

Project p2

ModuleVersion mv

DB myDB = null

DdcMode ddcm
for rd in p do {
print rd.name "\n"
print rd.description "\n"

print rd.rifDefinitionIdentifier "\n"

if (rd.createdLocally) {

DXL Reference Manual

print "Local DB\n"

if (rd.canModify) {

print "May be modified by current user\n"

p2 = rd.project

print fullName p "\n"

for rmd in rd do {

print "\nModules present in definition :\n"

mv = rmd.moduleVersion

print fullName mv "\t"

print rmd.dataConfigView "\t"

print rmd.ddcView "\t"

if (rmd.createdLocally) {

print "Home DB.\n"

ddcm = rmd.ddcMode

if (ddcm == ddcFullModule) {

print "Module will not be editable once definition is exported.\n"

} else if (ddcm == ddcByObject) {

DXL Reference Manual

81

82

print "Selected objects will be locked in the local database once the
definition is exported.\n"

} else if (ddcm == ddcByAttribute) {

print "Selected attributes will be locked in the local database once
the definition is exported.\n"

} else if (ddcm == ddcReadOnly) {

print "Module will only be editable in the local database once
definition is exported.\n"

} else if (ddcm == ddcNone) {

print "Module will be fully editable in both local and target
databases when definition is exported.\n"

if (rd.name == "RifDefl") {

s = exportPackage (rd, stm, myDB, b)

if (s 1= ")

print "Error occurred : " s "\n"

}

The following example dumps all information about all RIF imports in the current project. It then merges those imports
where required.

DXL Reference Manual

RifImport ri

RifDefinition rd

Project p = current

User importer, merger

string importerName, mergerName, res
Folder f

Skip dates = create

for rd in p do {

for ri in rd do {

rd = ri.definition

print rd.name "\n"

f = ri.folder

print "Located in : " fullName f

print "\n"

importer = ri.importedBy

importerName = importer.name
print "Imported by : " importerName "\n"
print "Imported on : " ri.importTime "\n"

if (ri.mergeStarted && !ri.mergeCompleted) ({

print "Merge started on : " ri.mergeTime "\n"

} else if (ri.mergeCompleted) {

print "Merge completed on : " ri.mergeTime "\n"

DXL Reference Manual

83

84

if (ri.mergeRequired) {

print "Merge required.\n"

res = rifMerge (ri, null)

print "Merging result " res "\n"
} else {

merger = ri.mergedBy

print "Merged by : " mergerName "\n"

if (ri.mergeDisabled) {

print "Merge disabled,

}

print "\n"

DXL Reference Manual

locks removed.\n"

Chapter 9

New in DXL for Rational DOORS 9.1

This chapter describes features that are new in Rational DOORS 9.1:

* Regular Expressions

Regular Expressions

regexp2

Declaration

Regexp regexp?2 (string expression)

Operation

Creates a regular expression. Its behavior will not be changed to match the legacy behavior of regexp () . Should be used
in all new regular expression code.

DXL Reference Manual

85

86

DXL Reference Manual

87

Chapter 10

New in DXL for Rational DOORS 9.0

This chapter describes features that are new in Rational DOORS 9.0:
* Discussions

* Descriptions

¢ Filtering

« HTML

¢ Miscellaneous

Discussions

¢ Discussion Types
* Properties

* Iterators

e Operations

e Triggers

* Example

Discussion Types

Discussion

Represents a discussion.

Comment

Represents a comment in a discussion.

DiscussionStatus

Represents the status of a discussion. The possible values are Open and Closed.

DXL Reference Manual

88‘

Properties

The following tables describe the properties available for the discussion and comment types. Property values can be
accessed using the . (dot) operator, as shown in the following syntax:

variable.property

where:
variable is a variable of type Discussion or Comment
property is one of the discussion or comment properties
Discussion

Property Type Extracts

status DiscussionStatus The status of the discussion: whether it is open or
closed.

summary string The summary text of the discussion, which may be
null

createdBy User The user who created the discussion, if it was
created in the current database. Otherwise it
returns null.

createdByName string The name of the user who created the discussion,
as it was when the discussion was created.

createdByFullName string The full name of the user who created the
discussion, as it was when the discussion was
created.

createdOn Date The date and time the discussion was created.

createdDataTimestamp Date The last modification timestamp of the object or
module that the first comment in the discussion
referred to.

lastModifiedBy User The user who added the last comment to the
discussion, or who last changed the discussion
status

lastModifiedByName string The user name of the user who added the last

comment to the discussion, or who last changed
the discussion status.

DXL Reference Manual

89

Property

Type

Extracts

lastModifiedByFullName

lastModifiedOn

lastModifiedDataTimestamp

firstVersion

lastVersion

firstVersionIndex

lastVersionIndex

string

Date

Date

ModuleVersion

ModuleVersion

string

string

The full name of the user who added the last
comment to the discussion, or who last changed
the discussion status.

The date and time the last comment was added, or
when the discussion status was last changed.

The last modification timestamp of the object or
module that the last comment in the discussion
referred to.

The version of the module the first comment was
raised against.

Note: If a comment is made against the current
version of 2 module and the module is
then baselined, this property will return a
reference to that baseline. If the baseline
is deleted, it will return the deleted
baseline.

The version of the module the latest comment was
raised against. See note for the firstVersion
property above.

The baseline index of the first module version
commented on in the discussion. Can be used in
compatrisons between module versions.

The baseline index of the last module version
commented on in the discussion. Can be used in
comparison between module versions.

DXL Reference Manual

Comment

Property Type Extracts

text string The plain text of the comment.

moduleVersionIndex string The baseline index of the module version against which the
comment was raised. Can be used in comparisons between
module versions.

status DiscussionStatus The status of the discussion in which the comment was made.

moduleVersion ModuleVersion The version of the module against which the comment was
raised.

Note: If a comment if made against the current version of a
module and the module is then baselined, this
property will return a reference to that baseline. If the
baseline is deleted, it will return the deleted baseline.

onCurrentVersion bool True if the comment was raised against the current version of
the module or an object in the current version.

changedStatus bool Tells whether the comment changed the status of the
discussion when it was submitted. This will be true for
comments that closed or re-opened a discussion.

dataTimestamp Date The last modified time of the object or module under
discussion, as seen at the commenting users client at the time
the comment was submitted.

createdBy User The user that created the comment. Returns null if the user is
not in the current user list.

createdByName string The user name of the user who created the comment, as it was
when the comment was created.

createdByFullName string The full name of the user who created the comment, as it was
when the comment was created.

createdOn Date The data and time when the comment was created.

discussion Discussion The discussion containing the comment.

Ilterators

DXL Reference Manual

91

for Discussion in Type

Syntax
for disc in Type do {
}
where:
disc is a variable of type Discussion
Type is a vatiable of type Object, Module, Project or
Folder
Operation

Assigns the variable disc to be each successive discussion in Type in the order they were created. The first time it is run
the discussion data will be loaded from the database.

The Module, Folder and Project variants will not include discussions on individual objects.

The Folder and Project variants are provided for forward compatibility with the possible future inclusion of
discussions on folders and projects. They perform no function in Rational DOORS 9.0.

for Comment in Discussion

Syntax
for comm in disc do {
}
where:
comm is a variable of type Comment
disc is a vatiable of type Discussion
Operation

Assigns the variable comm to be each successive comment in disc in chronological order. The first time it is run on a
discussion in memory, the comments will be loaded from the database. Note that if a discussion has been changed by a
refresh (e.g. in terms of the last Comment timestamp) then this will also refresh the comments list.

The discussion properties will be updated in memory if necessary, to be consistent with the updated list of comments.

DXL Reference Manual

92‘

Operations

create(Discussion)

Declaration

string create(target, string text, string summary, Discussioné& disc)

Operation

Creates a new Discussion about target, which can be of type Object or Module. Returns null on success, error
string on failure. Also add text as the first comment to the discussion.

addComment

Declaration

string addComment (Discussion disc, target, string text, Commenté& comm)

Operation

Adds a Comment about target to an open Discussion. Note that target must be an Object or Module that
the Discussion already relates to. Returns null on success, etror string on failure.

closeDiscussion

Declaration

string closeDiscussion (Discussion disc, target, string text, Comment& comm)

Operation

Closes an open Discussion disc by appending a closing comment, specified in text. Note that target must be an
Object or Module that disc already relates to. Returns null on success, error string on failure.

reopenDiscussion

Declaration

string reopenDiscussion (Discussion disc, target, string text, Comment& comm)

Operation

Reopens a closed Discussion disc and appends a new comment, specified in text. Note that target must be an
Object or Module that disc already relates to. Returns null on success, error string on failure.

DXL Reference Manual

93

deleteDiscussion

Declaration

string deleteDiscussion (Discussion d, Module m|Object o)

Operation

Deletes the specified module or object discussion if the user has the permission to do so. Returns null on success, or an

error string on failure.

sortDiscussions

Declaration

void sortDiscussions ({Module m|Object o|Project p|Folder f}, property, bool
ascending)

Operation

Sorts the discussions list associated with the specified item according to the given property, which may be a date, or a
string propetty as listed in the discussions properties list. String sorting is performed according to the lexical ordering for the
current user’s default locale at the time of execution.

If the discussion list for the specified item has not been loaded from the database, this perm will cause it to be loaded.

The Folder and Project forms are provided for forward compatibility with the possible future inclusion of discussions
on folders and projects. They perform no function in 9.0.

getDiscussions

Declaration

string getDiscussions ({Module m|Object o|Project p|Folder f})

Operation

Refreshes from the database the Discussion data for the specified item in memory. Returns null on success, or an error

on failure.

getObjectDiscussions

Declaration

string getObjectDiscussions (Module m)

Operation

Refreshes from the database all Di scussions for all objects in the specified module. Returns null on success, or an error

on failure

DXL Reference Manual

getComments

Declaration

string getComments (Discussion d)

Operation

Refreshes from the database the comments data for the specified Discussion in memory. Returns null on success, or an

error on failure.

Note: The Discussion properties will be updated if necessary, to be consistent with the updated comments list.

mayModifyDiscussionStatus

Declaration

bool mayModifyDiscussionStatus (Discussion d, Module m)

Operation

Checks whether the current user has rights to close or re-open the specified discussion on the specified module.

baselinelndex

Declaration

string baselinelIndex (Module m)

Operation
Returns the baseline index of the specified Module, which may be a baseline or a current version. Can be used to tell

whether a Comment can be raised against the given Module data in a given Discussion.

Note: A Comment cannot be raised against a baseline index which is less than the lastVersionIndex property of

the Discussion.

Triggers

Trigger capabilities have been expanded so that triggers can now be made to fire before or after a Discussion ora

Comment is created.

As follows:

pre post

Comment X X

DXL Reference Manual

95

pre post

Discussion X X

comment

Declaration

Comment comment (Trigger t)

Operation

Returns the Comment with which the supplied Trigger is associated, null if not a Comment trigger.

discussion

Declaration

Discussion discussion (Trigger t)

Operation

Returns the Discussion with which the supplied Trigger is associated, null if not a Discussion trigger.

dispose(Discussion/Comment)

Declaration

void dispose ({Discussioné& d|Commenté& c})

Operation

Disposes of the supplied Comment or Discussion reference freeing the memory it uses.

Can be called as soon as the reference is no longer required.

Note: The disposing will take place at the end of the current context.

Example

// Create a Discussion on the current Module, with one follow-up Comment...

Module m = current
Discussion disc = null

create(m,"This is my\nfirst comment.","First summary",disc)

Comment cmt

DXL Reference Manual

96

addComment (disc, m, "This is the\nsecond comment.", cmt)

// Display all Discussions on the Module
for disc in m do
{
print disc.summary " (" disc.status ")\n"
User u = disc.createdBy
string s = u.name
print "Created By: " s "\n"
print "Created By Name: \"" disc.createdByName "\"\n"
print "Created On: " stringOf (disc.createdOn) "\n"
u = disc.lastModifiedBy
S = u.name

print "Last Mod By: " s "\n"

print "Last Mod By Name: \"" disc.lastModifiedByName "\"\n"

print "Last Mod On " stringOf (disc.lastModifiedOn) "\n"

print "First version: " (fullName disc.firstVersion) "
(versionString disc.firstVersion) "]\n"

print "Last version: " (fullName disc.lastVersion) " ["
(versionString disc.lastVersion) "]\n"

Comment c

for ¢ in disc do

{

print "Comment added by " (c.createdByName) " at " //-
(stringOf (c.createdOn)) ":\n"

print "Module Version: " (fullName c.moduleVersion) "
(versionString c.moduleVersion) "]\n"

print "Data timestamp: " (stringOf c.dataTimestamp) "\n"
print "Status: " c.status " (" (c.changedStatus ? "Changed"

"Unchanged") ")\n"

print "On current: " c.onCurrentVersion "\n"
print c.text "\n"

}

DXL Reference Manual

Descriptions

This section desctibes the DXL support in Rational DOORS for the new desctiption functionality.
* View Descriptions
e Attribute Type Descriptions

* Attribute Definition Descriptionss

View Descriptions

setViewDescription

Declaration

void setViewDescription (ViewDef vd, string desc)

Operation

Sets the description for a view where vd is the view definition handle.

getViewDescription

Declaration

string getViewDescription (ViewDef vd)

Operation

Returns the description for a view where vd is the view definition handle.

Attribute Type Descriptions

setDescription

Declaration
AttrType setDescription (AttrType at, string desc, string &errMess)

Operation

Sets the description for the specified attribute type. Returns null if the description is not successfully updated.

DXL Reference Manual

97

modify

Declaration

AttrType modify (AttrType at, string name, string codes[], int values, int
colors, string descs[], [int arrMaps/[],] string &errMess)

Operation

Modifies the supplied attribute type with the corresponding values and descriptions. Can be used to update the descriptions
of old enumeration types.

The optional arrMaps argument specifies existing index values for enumeration values, taking into consideration their
re-ordering.

create

Declaration

AttrType create(string name, string codes[], int values[], int colors[], string
descs[], string &errMess)

Operation

The new descs [] argument enables the creation of a new enumeration based attribute type, whose enumerations use
those descriptions. Returns null if creation is not successful.

description property

Both attribute types themselves, and the enumeration values they may contain, have a new description property. It can
be accessed by using the dot (.) operator.

Example
AttrType at
string desc

int i

//To get the description of the attribute type

desc = at.description

//To get the description of the enumeration values with index i

desc = at.description[i]

DXL Reference Manual

99

Attribute Definition Descriptions

description property

Attribute definitions can now contain a description property. It can be accessed by using the dot (.) operator.
Example

Module m = current

AttrDef ad = find(m, "AttrName")

print ad.description

description(create)

Attribute definition descriptions can be specified during their creation.
Example
AttrDef ad = create object (description “My description”) (type “string”) //-

(default “defvalue”) (attribute "AttrName")

description(modify)

Attribute definition descriptions can be altered by using the modify perm is one of the following ways. Note the new
setDescription property constant.

Example1

Module m = current

AttrDef ad = find(m, "AttrName")

modify (ad, module (description “New Description”) (type “string”) //-

(default “New default”) (attribute “New Name”))

Example2
Module m = current
AttrDef ad = find(m, "AttrName")

modify (ad, setDescription, “New description text”)

DXL Reference Manual

100‘

Filtering

This section describes the DXL support in Rational DOORS for the new module explorer filtering functionality added in
Rational DOORS 9.0.

applyFiltering

Declaration
void applyFiltering (Module)

Operation

Sets the module exploter display to reflect the current filter applied to the specified module.

unApplyFiltering

Declaration
void unApplyFiltering (Module)

Operation

Switches off filtering in the module explorer for the specified module.

applyingFiltering

Declaration
bool applyingFiltering (Module)

Operation

Returns a boolean indicating whether filtering is turned on in the module explorer for the specified module.

HTML

This section desctibes the DXL support the HTML functionality added in Rational DOORS 9.0.
* HTML Control
* HTML Edit Control

DXL Reference Manual

101

HTML Control

The section describes the DXL support for the HTML control added in Rational DOORS 9.0.

Note: Some of the functions listed below take an ID string parameter to identify either a frame or an HTML element. In
each of these methods, frames or elements nested within other frames are identified by concatenating the frame
IDs and element IDs as follows: <top frame ID>/[<sub frame ID>/...]<element ID>.

In methods requiring a frame ID, passing nul1l into this parameter denotes the top level document.

These methods refer to all frame types including IFRAME and FRAME elements.

edgeView (Edge based)

Declaration

DBE edgeView (DB parentDB, int width, int height, string URL, bool
before navigate cb (DBE element, string URL, string frameName, bool
&needAsync), void document complete cb(DBE element, string URL), void
navigate complete cb (DBE element, string URL, int statusCode), void
progress_cb (DBE element, int percentage))

Operation

Creates a Microsoft Edge-based HTML view control where the arguments are defined as follows:

parentDB The dialog box containing the control.

width The initial width of the control.

height The initial height of the control.

URL The address that will be initially loaded into the control. Can be null to

load a blank page (about:blank).

Before navigate cb Fired for each document/frame before the HTML window/frame
navigates to a specified URL. It could be used, amongst to intercept and
process the URL prior to navigation, take action, and navigating to a new
URL. The return value determines whether to cancel the navigation. If
the return values is false, the navigation is canceled. Following are the
arguments that are used with this operation:

e element: The HTML control

e URL: The address where the URL should navigate to.

e frameName: Name of the frame from where the URL will navigate.

e needAsync: The parameter mentions whether we want to perform
this callback in async mode to perform additional actions before
proceeding with the navigate event. Initially, the value is set to false
to indicate that it is a sync callback. When the value is set to true, the
same event is fired again in async mode.

DXL Reference Manual

shyamramani
Cross-Out

102

Note: You must handle the navigation logic in sync call of this event. If
additional action needs to be performed in this event callback, you can
set the needAsync parameter to true and perform those actions in async
call.

document complete cb Fired for each document/frame once they are initialized and loaded. It
could be used to start a functionality required after all the data that has
been received and is about to be rendered. For example, parsing the
HTML document.

Following are the arguments that are used with this operation:

e clement: The HTML control
e URL: The address of the document/frame that is loaded

navigate complete cb Fired for each document/frame once they finish loading the current
content or if the navigation has failed. Following are the arguments that
are used with this operation:

e element: The HTML control

e URL: The address or name of the frame for which the navigation
failed.

e statusCode: Standard HTML error code.

progress cb Used to notify the progress of navigation in percentage.

htmIView (IE based)

Declaration

DBE htmlView (DB parentDB, int width, int height, string URL, bool

before navigate cb(DBE element, string URL, string frame, string postData), void
document complete cb(DBE element, string URL), bool navigate error cb (DBE
element, string URL, string frame, int statusCode), void progress cb (DBE
element, int percentage))

Operation

Creates an HTML view control where the arguments are defined as follows:

parentDB The dialog box containing the control.

width The initial width of the control.

height The initial height of the control.

URL The address that will be initially loaded into the control. Can be

null to load a blank page (about:blank).

DXL Reference Manual

before navigate cb

document complete cb

navigate error cb

progress cb

Fires for each document/frame before the HTML window/frame
navigates to a specified URL. It could be used, amongst other
things, to intercept and process the URL prior to navigation,
taking some action and possibly also navigating to a new URL.

The return value determines whether to cancel the navigation.
Returning false cancels the navigation.

Its arguments are defined as follows:
* element: The HTML control itself

* URL: The address about to be navigated to.

» frame: The frame for which the navigation is about to take
place.

* postData: The data about to be sent to the server if the
HTTP POST transaction is being used.

Fires for each document/frame once they are completely loaded
and initialized. It could be used to start functionality required after
all the data has been received and is about to be rendered, for
example, parsing the HTML document.

Its arguments are defined as follows:
* element: The HTML control itself

e URL: The loaded address.

Fires when an error occurs during navigation. Could be used, for
example, to display a default document when internet connectivity
is not available.

The return value determines whether to cancel the navigation.
Returning false cancels the navigation.

Its arguments are defined as follows:
* elements: The HTML control itself.

* URL: The address for which navigation failed.
» frame: The frame for which the navigation failed.

* statusCode: Standard HTML error code.

Used to notify about the navigation progress, which is supplied as
a percentage.

DXL Reference Manual

101

102 ‘

set(html callback)

Declaration

void set (DBE HTMLView, bool event cb(DBE element, string ID, string tag, string
event type))

Operation

Attaches a callback to HTML control element that receives general HTML events. The ID argument identifies the
element that sourced the event, the tag argument identifies the type of element that sourced the event, and the
event type argument identifies the event type. Note that the only event types currently supported are c1ick and
dblclick.

If this function is used with an incorrect DBE type, a DXL runtime error occurs.

This operation is applicable for edgeView and htmlView.

set(html URL)

Declaration
void set (DBE HTMLView, string URL)

Operation
Navigates the given HTMLView to the given URL.
Can only be used to navigate the top-level document and cannot be used to navigate nested frame elements.

This operation is applicable for edgeView and htmlView.

setURL

Declaration
void setURL(DBE HTMLView, string ID, string URL)

Operation
Navigates the frame identified by ID to the given URL. The ID may be null.

This operation is applicable for edgeView and htmlView.

getURL

Declaration
string getURL (DBE HTMLView, string ID)

Operation
Returns the URL for the currently displayed frame as identified by its ID. The ID may be null.

DXL Reference Manual

103

This operation is applicable for edgeView and htmlView.

get(HTML view)

Declaration

string get (DBE HTMLView)

Operation

Returns the URL currently displayed in the given HTMLVi ew, if there is one.

This operation is applicable for edgeView and htmlView.

get(HTML frame)

Declaration
Buffer get (DBE HTMLView, string ID)

Operation
Returns the URL for the currently displayed frame as identified by its ID.

This operation is applicable for edgeView and htmlView.

set(HTML view)

Declaration
string set (DBE HTMLView, Buffer HTML)

Operation

Sets the HTML fragment to be rendered inside the <body> tags by the HTML view control directly. This enables the
controls HTML to be constructed dynamically and directly rendered.

This operation is applicable for edgeView and htmlView.

setHTML

Declaration
string setHTML (DBE HTMLView, string ID, Buffer HTML)

Operation

Sets the HTML fragment to be rendered inside the <body> tags by the HTML view controls frame as identified by ID.
This enables the HTML of the given document or frame to be constructed dynamically and directly rendered.

Note: The contents of the frame being modified must be in the same domain as the parent HTML document to be
modifiable. A DXL error will be given on failure (for example, if the wrong type of DBE is supplied).

DXL Reference Manual

104

This operation is applicable for edgeView and htmlView.

getHTML

Declaration
Buffer getHTML (DBE HTMLView, string ID)

Operation
Returns the currently rendered HTML fragment inside the <body> tags of the document or frame as identified by its ID.

This operation is applicable for edgeView and htmlView.

getBuffer

Declaration
Buffer getBuffer (DBE HTMLView)

Operation
Returns the currently rendered HTML.
This operation is applicable for edgeView and htmlView.

getlnnerText

Declaration
string getInnerText (DBE HTMLView, string ID)

Operation
Returns the text between the start and end tags of the first object with the specified ID.

This operation is applicable for edgeView and htmlView.

setlnnerText

Declaration
void setInnerText (DBE HTMLView, string ID, string text)

Operation
Sets the text between the start and end tags of the first object with the specified ID.

This operation is applicable for edgeView and htmlView.

DXL Reference Manual

105

getinnerHTML

Declaration
string getInnerHTML (DBE HTMLView, string ID)

Operation
Returns the HTML between the start and end tags of the first object with the specified ID.

This operation is applicable for edgeView and htmlView.

setlnnerHTML

Declaration
void setInnerHTML (DBE HTMLView, string ID, string html)

Operation
Sets the HTML between the start and end tags of the first object with the specified ID.

Note: The innerHTML property is read-only onthe col, colGroup, framSet,html, head, style, table,
tBody, tFoot, tHead, title, and tr objects.

This operation is applicable for edgeView and htmlView.

getAttribute

Declaration
string getAttribute (DBE element, string ID, string attribute)

Operation

Retrieves the value for the requested attribute of the first object with the specified value of the ID attribute. If the attribute
does not exist, null is returned.

Returns null on success. Returns error string on failure, for example if the wrong type of DBE is passed in.

This operation is applicable for edgeView and htmlView.

setAttribute

Declaration
void setAttribute (DBE element, string ID, string attribute)

DXL Reference Manual

106

Operation

Sets the value of the requested attribute for the first object with the specified value of the ID attribute. If the attribute does
not exist, it is added to the object.

Displays a DXL error on failure, for example if the wrong type of DBE is passed in.

This operation is applicable for edgeView and htmlView.

getProperty

Declaration
String getProperty(DBE element, string ID, string property)

Operation

Retrieves the value for the requested property of the first object with the specified value of the ID attribute. If the property
does not exist, “undefined” is returned. Returns property value on success. Returns empty string on failure, for example, if
the element does not exist with the given ID.

This operation is applicable for edgeView only.

setProperty

Declaration
void setProperty (DBE element, string ID, string propertyType, string propertyValue)

Operation

Sets the value of the requested property for the first object with the specified value of the ID attribute. If the property does
not exist, it is added to the object.

This operation is applicable for edgeView only.

Example htmlView

DB dlg

DBE htmlCtrl
DBE htmlBtn
DBE html

void onTabSelect (DBE whichTab) {

int selection = get whichTab

}

DXL Reference Manual

void onSetHTML (DBE button) {
Buffer b = create
string s = get (htmlCtrl)
print s
b =s
set (html, Db)
delete b

void onGetInnerText (DBE button) {
string s = getInnerText (html,

confirm(s)

void onGetInnerHTML (DBE button) {
string s = getInnerHTML (html,

confirm(s)

void onGetAttribute (DBE button) {
string s = getAttribute (html,

confirm(s)

void onSetInnerText (DBE button) {
Buffer b = create
string s = get (htmlCtrl)

setInnerText (html, "Text", s)

"Text")

"Text")

"Text" ,

"Align")

DXL Reference Manual

107

108

void onSetInnerHTML (DBE button) {

Buffer b = create

string s = get (htmlCtrl)

setInnerHTML (html, "Text", s)

void onSetAttribute (DBE button) {
Buffer b = create
string s = getAttribute (html, "Text", "Align")
if (s == "left"){
s = "center"
}
else if (s == "center"){
s = "right"
}
else if (s == "right") {

s = "left"
}

setAttribute (html, "Text", "align", s)

bool onHTMLBeforeNavigate (DBE dbe, string URL, string frame, string body) {

string buttons[] = {"OK"}
string message = "Before navigate - URL: " URL "\r\nFrame: " frame
"\r\nPostData: " body "\r\n"

print message ""

return true

DXL Reference Manual

void onHTMLDocComplete (DBE dbe, string URL) {

string buttons[] = {"OK"}
string message = "Document complete - URL: " URL "\r\n"
print message ""

string s = get (dbe)

print "url: " s "\r\n"

}

bool onHTMLError (DBE dbe, string URL, string frame, int error) {
string buttons[] = {"OK"}

string message = "Navigate error - URL: " URL "; Frame: " frame "; Error: "
error "\r\n"

print message ""

return true

void onHTMLProgress (DBE dbe, int percentage) {
string buttons[] = {"OK"}
string message = "Percentage complete: " percentage "%\r\n"
print message

return true

dlg = create("Test", styleCentered | styleThemed | styleAutoparent)

htmlCtrl = text(dlg, "Field:", "<html><body>\r\n<p id=\"Text\"
align=\"center\">Welcome to DOORS <i>ERS</i></p>\r\n</body></html>",
200, false)

htmlBtn = button(dlg, "Set HTML...", onSetHTML)

DBE getInnerTextBtn = button(dlg, "Get Inner Text...", onGetInnerText)
DBE getInnerHTMLBtn = button(dlg, "Get Inner HTML...", onGetInnerHTML)
DBE getAttributeBtn = button(dlg, "Get Attribute...", onGetAttribute)

DBE setInnerTextBtn = button(dlg, "Set Inner Text...", onSetInnerText)
DBE setInnerHTMLBtn = button(dlg, "Set Inner HTML...", onSetInnerHTML)
DBE setAttributeBtn = button(dlg, "Set Attribute...", onSetAttribute)

DXL Reference Manual

109

110

DBE frameCtrl = frame(dlg, "A Frame", 800,

string strTabLabels[] = {"One","Two"}
DBE tab = tab(dlg, strTablabels, 800, 500,
htmlCtrl->"top"->"form" htmlCtrl->"left"-

>"form" htmlCtrl->"right"->"unattached"
htmlCtrl->"bottom"->"unattached"

htmlBtn->"top"->"spaced"->htmlCtrl
htmlBtn->"left"->"form"
htmlBtn->"right"->"unattached" htmlBtn-

>"bottom"->"unattached"

getInnerTextBtn->"top"->"spaced"-
>htmlCtrl getInnerTextBtn->"left"-
>"spaced"->htmlBtn getInnerTextBtn-
>"right"->"unattached" getInnerTextBtn-

>"bottom"->"unattached"

getInnerHTMLBtn->"top"->"spaced"->htmlCtrl

500)

onTabSelect)

getInnerHTMLBtn->"1left"->"spaced"->getInnerTextBtn

getInnerHTMLBtn->"right"->"unattached"

getInnerHTMLBtn->"bottom"->"unattached"

getAttributeBtn->"top"->"spaced"->htmlCtrl

getAttributeBtn->"left"->"spaced"->getInnerHTMLBtn

getAttributeBtn->"right"->"unattached"
getAttributeBtn->"bottom"->"unattached"

DXL Reference Manual

111

setInnerTextBtn->"top"->"spaced"->htmlBtn
setInnerTextBtn->"left"->"aligned"->getInnerTextBtn
setInnerTextBtn->"right"->"unattached"

setInnerTextBtn->"bottom"->"unattached"

setInnerHTMLBtn->"top"->"spaced"->htmlBtn
setInnerHTMLBtn->"left"->"spaced"->setInnerTextBtn
setInnerHTMLBtn->"right"->"unattached"

setInnerHTMLBtn->"bottom"->"unattached"

setAttributeBtn->"top"->"spaced"->htmlBtn
setAttributeBtn->"left"->"spaced"->setInnerHTMLBtn
setAttributeBtn->"right"->"unattached"

setAttributeBtn->"bottom"->"unattached"

frameCtrl->"top"->"spaced"->setInnerTextBtn
frameCtrl->"left"->"form"
frameCtrl->"right"->"form"

frameCtrl->"bottom"->"form

tab->"top"->"inside"->frameCtrl tab-
>"left"->"inside"->frameCtrl tab-
>"right"->"inside"->frameCtrl tab-

>"bottom"->"inside"->frameCtrl

html = htmlView(dlg, 800, 500, "http://news.bbc.co.uk", onHTMLBeforeNavigate,
onHTMLDocComplete, onHTMLError, onHTMLProgress)

DXL Reference Manual

112

html->"top"->"inside"->tab
html->"left"->"inside"->tab
html->"right"->"inside"->tab

html->"bottom"->"inside"->tab

realize (dlg)
show (d1g)

Example edgeView

DB dlg

DBE htmlCtrl
DBE htmlBtn
DBE html

void onTabSelect (DBE whichTab) {

int selection = get whichTab

}

void onSetHTML (DBE button) {
Buffer b = create
string s = get (htmlCtrl)
print s
b =s
set (html, b)
delete b

}

void onGetInnerText (DBE button) ({
string s = getInnerText (html, "Text")
confirm(s)

}
void onGetInnerHTML (DBE button) ({

string s = getInnerHTML (html, "Text")
confirm(s)

DXL Reference Manual

void onGetAttribute (DBE button) {
string s = getAttribute (html, "Text", "align")
confirm(s)

}

void onGetProperty (DBE button) {
string s = getProperty(html, "Text", "align")
confirm(s)

}

void onSetInnerText (DBE button) ({
Buffer b = create
string s = get (htmlCtrl)
setInnerText (html, "Text", s)

}

void onSetInnerHTML (DBE button) ({
Buffer b = create
string s = get (htmlCtrl)
setInnerHTML (html, "Text", s)

}

void onSetAttribute (DBE button) {
Buffer b = create
string s = getAttribute (html, "Text", "align")

if (s == "left") {
s = "center"

} else if (s == "center") {
s = "right"

} else if (s == "right") {
s = "left"

}
setAttribute (html, "Text", "align", s)

void onSetProperty (DBE button) {
Buffer b = create
string s = getProperty(html, "Text", "align")
if (s == "left") {

s = "\"center\""

} else if (s == "center") {
s = "\"right\""

} else if (s == "right") {

s = n\nleft\u "
}
setProperty (html, "Text", "align", s)
}

bool onHTMLBeforeNavigate (DBE dbe, string URL, string frame,

string buttons[] = {
n OK"
}

bool & bNeedAsync) {

DXL Reference Manual

113

114

if (bNeedAsync) {
string message = "Async Before navigate - URL: " URL "\r\nFrame: " frame
"\r\nNeedAsync: " bNeedAsync "\r\n"
print message ""
} else {
string message = "Sync Before navigate - URL: " URL "\r\nFrame: " frame
"\r\nNeedAsync: " bNeedAsync "\r\n"
print message ""
bNeedAsync = true
}

return true

}

void onHTMLDocComplete (DBE dbe, string URL) ({
string buttons[] = {
n OK"
}
string message = "Document complete - URL: " URL "\r\n"
print message ""
string s = get (dbe)
print "url: "
s "\r\n"

}

void onNavComplete (DBE dbe, string URL, int iErrCode) {
string buttons[] = {
n OK"
}
string message = "Navigation completed - URL: " URL "; HttpStatusCode : "
iErrCode "\r\n"
print message ""

}

void onHTMLProgress (DBE dbe, int percentage) {
string buttons[] = {
n OK"
}
string message = "Percentage complete: " percentage "$\r\n"
print message
return true

}

dlg = create("Test", styleCentered | styleThemed | styleAutoparent)

htmlCtrl = text(dlg, "Field:", "<html><body>\r\n<p id=\"Text\"
align = \"center\">Welcome to DOORS <i>ERS</i></p>\r\n</body></html>",
200, false)

htmlBtn = button(dlg, "Set HTML...", onSetHTML)

DBE getInnerTextBtn = button(dlg, "Get Inner Text...", onGetInnerText)
DBE getInnerHTMLBtn = button(dlg, "Get Inner HTML...", onGetInnerHTML)
DBE getAttributeBtn = button(dlg, "Get Attribute...", onGetAttribute)
DBE getPropertyBtn = button(dlg, "Get Property...", onGetProperty)

DXL Reference Manual

DBE setInnerTextBt
DBE setInnerHTMLBt
DBE setAttributeBt
DBE setPropertyBtn
DBE frameCtrl = fr

htmlCtrl -> "top"
htmlCtrl -> "left"
htmlCtrl -> "right

n = button(dlg, "Set Inner Text...", onSetInnerText)
n = button(dlg, "Set Inner HTML...", onSetInnerHTML)
n = button(dlg, "Set Attribute...", onSetAttribute)
= button(dlg, "Set Property...", onSetProperty)

ame (dlg, "A Frame", 800, 500)

-> "form"
-> "form"

" -> "unattached"

htmlCtrl -> "bottom" -> "unattached"

htmlBtn -> "top" -
htmlBtn -> "left"
htmlBtn -> "right"

> "spaced" -> htmlCtrl
-> "form"

-> "unattached"

htmlBtn -> "bottom" -> "unattached"”

getInnerTextBtn ->
getInnerTextBtn ->
getInnerTextBtn ->
getInnerTextBtn ->
getInnerHTMLBtn ->
getInnerHTMLBtn ->
getInnerHTMLBtn ->
getInnerHTMLBtn ->
getAttributeBtn ->
getAttributeBtn ->
getAttributeBtn ->
getAttributeBtn ->
getPropertyBtn ->
getPropertyBtn ->
getPropertyBtn ->
getPropertyBtn ->
setInnerTextBtn ->
setInnerTextBtn ->
setInnerTextBtn ->
setInnerTextBtn ->
setInnerHTMLBtn ->
setInnerHTMLBtn ->
setInnerHTMLBtn ->

"top" -> "spaced" -> htmlCtrl

"left" -> "spaced" -> htmlBtn

"right" -> "unattached"

"bottom" -> "unattached"

"top" -> "spaced" -> htmlCtrl

"left" -> "spaced" -> getInnerTextBtn
"right" -> "unattached"

"bottom" -> "unattached"

"top" -> "spaced" -> htmlCtrl

"left" -> "spaced" -> getInnerHTMLBtn
"right" -> "unattached"

"bottom" -> "unattached"

"top" -> "spaced" -> htmlCtrl

"left" -> "spaced" -> getAttributeBtn
"right" -> "unattached"

"bottom" -> "unattached"

"top" -> "spaced" -> htmlBtn

"left" -> "aligned" -> getInnerTextBtn
"right" -> "unattached"

"bottom" -> "unattached"

"top" -> "spaced" -> htmlBtn

"left" -> "spaced" -> setInnerTextBtn

"right" -> "unattached"

DXL Reference Manual

115

116

setInnerHTMLBtn -> "bottom" -> "unattached"

setAttributeBtn -> "top" -> "spaced" -> htmlBtn

setAttributeBtn -> "left" -> "spaced" -> setInnerHTMLBtn

setAttributeBtn -> "right" -> "unattached"

setAttributeBtn -> "bottom" -> "unattached"

setPropertyBtn -> "top" -> "spaced" -> htmlBtn

setPropertyBtn -> "left" -> "spaced" -> setAttributeBtn

setPropertyBtn -> "right" -> "unattached"

setPropertyBtn -> "bottom" -> "unattached"

frameCtrl -> "top" -> "spaced" -> setlInnerTextBtn

frameCtrl -> "left" -> "form"

frameCtrl -> "right" -> "form"

frameCtrl -> "bottom" -> "form"

html = edgeView(dlg, 800, 500, "https://www.bbc.com/news",
onHTMLDocComplete, onNavComplete, onHTMLProgress)

html -> "top" -> "inside" -> frameCtrl

html -> "left" -> "inside" -> frameCtrl

html -> "right" -> "inside" -> frameCtrl

html -> "bottom" -> "inside" -> frameCtrl

realize (dlg)

show (d1g)

onHTMLBeforeNavigate,

HTML Edit Control

The section describes the DXL support for the HTML edit control added in Rational DOORS 9.0.

The control behaves in many ways like a rich text area for entering formatted text. It encapsulates its own formatting

toolbar enabling the user to apply styles and other formatting.

DXL Reference Manual

112

htmIEdit

Declaration

DBE htmlEdit (DB parentDB, string label, int width, int height)

Operation

Creates an HT'ML editor control inside parentDB.

htm|Buffer

Declaration
Buffer getBuffer (DBE editControl)
Operation

Returns the currently rendered HTML fragment shown in the control. The fragment includes everything inside the <body>
clement tag.

set(HTML edit)

Declaration
void set (DBE editControl, Buffer HTML)
Operation

Sets the HTML to be rendered by the edit control. The HTML fragment should include everything inside, but not
including, the <body> element tag.

Example

DB MyDB = create "hello"

DBE MyHtml = htmlEdit (MyDB, "HTML Editor", 400, 100)

void mycb (DB dlg) {

Buffer b = getBuffer MyHtml

string s = stringOf b

ack s

DXL Reference Manual

113

apply (MyDB, "GetHTML", mycb)
set (MyHtml, "Initial Text")

show MyDB

Miscellaneous

delete(regexp)

Declaration

void delete (Regexp)

Operation
New in Rational DOORS 9.0 this perm deletes the supplied regular expression and frees the memory used by it.

getURL

Declaration

string getURL (Database d)

string getURL (Module m)

string getURL (ModName modName)
string getURL (ModuleVersion modVer)
string getURL (Object o)

string getURL (Folder f)

string getURL (Project p)

string getURL (Item 1)

Operation
Returns the Rational DOORS URL of the given parameter.

backSlasher

Declaration
buffer backSlasher (Buffer b)

DXL Reference Manual

114

Operation

This function takes a buffer and converts all forward-slash characters (/) to back-slash characters (\), eliminates any
repeated back-slash characters, and removes any trailing back-slash characters.

Example

string s = "\\directory////file "
Buffer b = create

b =s

b = backSlasher (b)

print b ""

DXL Reference Manual

Chapter 11
Fundamental types and functions

This chapter describes the functions and operators that can be used on the fundamental types of the core language
underlying DXT.:

* Operations on all types
* Operations on type bool
e Operations on type char
* Operations on type int

* Operations on type real

* Operations on type string

Operations on all types

The concatenation operator and the functions print and null can be used with all fundamental types.

Concatenation (base types)

The space character is the concatenation operator, which is shown as <space> in the following syntax:
bool b <space> string s
real r <space> string s
char ¢ <space> string s
int 1 <space> string s

string sl <space> string s2

For type A space character

bool Concatenates string s onto the evaluation of b (true or false), and returns the resulting string.
real Concatenates string s onto real number r, and returns the resulting string.

char Concatenates the string s onto the character ¢ and returns the result as a string.

int Concatenates the string s onto the integer ¢ and returns the result as a string.

string Concatenates string s2 onto string s1 and returns the result as a string.

DXL Reference Manual

116

Concatenation must be used when printing derived types. An example of a derived typeis 0. ”Object text”, where o
is an object. If a string is not concatenated to the end of the print statement, a DXL error will occur, in this case.

Example
print "square root of 2 is " (sqgrt 2.0) "\n"
char nl = '"\n'

print "line one" nl "line two"
print (getenv "DOORSHOME") "/lib/dx1"

print o."Object text" ""

print (base types)

Declaration

void print (bool x)
void print (real r)
void print (char c¢)
void print (int 1)

void print (string s)

Operation
For type Prints
bool The string true in the DXL output window if x is t rue; otherwise prints false.
real The passed real number r in the DXL output window, using a precision of 6 digits after the radix
character.
char The character ¢ in the DXL output window.
int Integer 1 in the DXL output window, with a trailing newline.
string The string s in the DXL output window without a trailing newline.
Example
print (2.2 * 2.2) // prints 4.840000
print 'a'

print "Hello world\n"

null

The null function either returns the null value for the type, or tests whether a variable has the null value for its type.

DXL Reference Manual

Declaration
type null ()

bool null (type x)

Operation

The first form returns the following values depending on the value of type:

Type Return value

bool false

char character of ASCII code 0
int 0

real 0.000000

string a null string ("")

The second form returns true if x has a null value as follows:

Type Null value

bool falseornull

char null

int Oornull

real Any 0 value with any number of decimal places or null
string “W ornull

You can use the value null to assign a null value to any type, including type bool and char.

Example

string empty

null

print null empty // prints true

Operations on type bool

Just as C++ has introduced a separate type bool (for boolean), so has DXL.

See also “Concatenation (base types),” on page 115, the print function, and the null function.

DXL Reference Manual

117

118

Type bool constants

The following constants are declared:
const bool true

const bool on

const bool false

const bool off

The boolean value true is equivalent to on; the value false is equivalent to of £.

Note: For boolean values you cannot use 1 and 0.

Boolean operators

The operators &&, | |,and ! perform logical AND, OR, and NOT operations, as shown in the following syntax:
bool x && bool y

bool x || bool y

'bool x

These operators use lazy evaluation.

The && operator returns true only if x and y are both true; otherwise, it returns false. If xis false, it does not
evaluate y.

The | | operator returns true if x or yis true; otherwise, it returns false. If xis true, it does not evaluate y.

The ! operator returns the negation of x.

Type bool comparison

Type bool relational operators can be used as shown in the following syntax:

bool x == bool y

bool x != bool y

The == operator returns true only if x and y are equal; otherwise, it returns false.

The != operator returns true only if x and y are not equal; otherwise, it returns false.

Operations on type char

See also “Concatenation (base types),” on page 115, the print function, and the null function.

DXL Reference Manual

119

Character comparison

Character relational operators can be used as shown in the following syntax:
char chl == char ch2
char chl != char ch2
char chl < char ch2
char chl > char ch2
char chl <= char ch2
char chl >= char ch2

These operators teturn true if chl is equal, not equal, less than, greater than, less than or equal to, or greater than or
equal to ch2.

Character extraction from string

The index notation, [], can be used to extract a single character from a string, as shown in the following syntax:
string text[int n]

This returns the n™ character of string text, counting from 0.

Example

This example prints h in the DXL Interaction window’s output pane:

string s = "hello"

char ¢ = s[0]

print c

Character classes

The set of functions whose names start with 1s can be used to check whether a character belongs to a specific class.

Declaration

bool isalpha (char ch)
bool isupper (char ch)
bool islower (char ch)
bool isdigit (char ch)
bool isxdigit (char ch)
bool isalnum(char ch)

bool isspace(char ch)

DXL Reference Manual

120

bool ispunct (char ch)
bool isprint (char ch)
bool iscntrl (char ch)
bool isascii (char ch)

bool isgraph (char ch)

Operation

These functions return t rue if the character ch is in the named character class:

Class Description
alpha 'a' = 'z' 'A' - 'Z7"
upper ‘A - "7
lower 'a' = 'z'
digit 0" - '9"
xdigit 0" - '9' 'a' - 'f' '‘A' - 'F!
alnum 'a' = 'z' 'A' - 'z' '0' - '9'
space oAt "\n' "\m" "\j" "\k'
punct any character except <space> and alpha numeric
characters

print a printing character
cntrl any character code between 0 and 31, and code 127
ascii any character code between 0 and 127
graph any visible character

Example

print isalpha 'x' // prints true

print isalpha ' ' // prints false

charOf
Declaration

char charOf (int asciiCode)

Operation

Returns the character whose ASCII code is asciiCode.

DXL Reference Manual

Example

const char nl =

charOf 10

intOf (char)

Declaration

int (char ch)

Operation
Returns the ASCII code of character ch.

Example

print intOf

g

// prints 97

Operations on type int

A type int value in DXL has at least 32 bits.

See also “Concatenation (base types),” on page 115, the print function, and the null function.

Arithmetic operators (int)

Arithmetic operators can be used as shown in the following syntax:

int
int
int
int
int
int

int

~int x

-int x

X

X

X

X

X

X

X

+

int
int
int
int
int
int

int

y

NR R R KR K

These operators perform integer arithmetic operations for addition, subtraction, multiplication, division, remainder, bitwise

OR, bitwise AND, bitwise NOT, and negation.

DXL Reference Manual

121

122

Assignment (int)

Assignment operators can be used as shown in the following syntax:

int x = 1int y
int x += int y
int x -= int y
int x *= int y
int x /= int y
int x %= int y
int x |= int y

int x &= int y

These operators assign integer values to variables of type 1nt assignment. The last seven variations combine an arithmetic
operation with the assignment.

Example
int y = 20
y *=3

print y // print 60

print y // print 8

print y // print 2

Unary operators

Unary operators can be used to increment or decrement variables before or after their values are accessed, as shown in the
following syntax:

int x++
int x--
int ++x
int --x

The first two operators return the value of the variable before incrementing or decrementing a variable. The second two
return the value after incrementing or decrementing a variable.

Note: You can overload these operators.

DXL Reference Manual

Example

int i

= 40

print ++1i

print i++

print i

// prints 41
// prints 41
// prints 42

Minimum and maximum operators

Two operators can be used to obtain the minimum or maximum value from a pair of integers, as shown in the following

syntax:

int x <? int y

int x >? int y

These operators return the minimum or maximum of integers x and y.

Example
print (3 <? 2)
print (3 >? 2)

// prints 2
// prints 3

Integer comparison

Integer relational operators can be used as shown in the following syntax:

int
int
int
int
int

int

X

X

X

X

X

X

== int
'= int
< int
> int
<= int
>= int

Y

NN R OKR

Y

These operators return true if x is equal, not equal, less than, greater than, less than or equal to, or greater than or equal to

v.

Example

print

(2 = 3)

// prints true

isValidInt

Declaration

bool isValidInt (string value)

DXL Reference Manual

123

124

Operation
Returns true if value is a valid integer; otherwise, returns false. The value passed must not be just spaces, e.g.

If a null string is passed, a DXL run-time error occurs.

random(int)

Declaration

int random(int max)
Operation

Returns a random integer value x such that 0 <= x < max

Example

print random 100 // prints an integer in the range 0 to 99

Operations on type real

A type real value in DXL is like a type double in C, with a precision of 64 bits.

See also “Concatenation (base types),” on page 115, the print function, and the null function.

Type real pi

The only constant of type real thatis declared in DXL is pi:
const real pi

This supplies a constant value of 3.141593.

Arithmetic operators (real)

Arithmetic operators can be used as shown in the following syntax:
real x + real y

real x - real
real x * real
real x / real
real

real x

-real x

DXL Reference Manual

125

Operation

These operators petform arithmetic operations on type real variables for addition, subtraction, multiplication, division,
exponentiation, and negation.

Example
print (2.2 + 3.3) // prints 5.500000

Assignment (real)

Assignment operators can be used as shown in the following syntax:
real x = real y
real x += real y
real x -= real y
real x *= real y
real x /= real y

These operators perform type real assignment. The last four variations combine an arithmetic operation with the
assighment.

Example
real x = 1.1
print (x += 2.0) // prints 3.1

After the print statement, the variable x is assigned the value 3. 1.

Convert to real

The assignment operator = can be used to convert an integer to a real number, as shown in the following syntax:

real r = int 1

Operation

Converts 1 into a type real, assigns it to the type real variable r, and returns this value.
Example

real r = 5

print r // prints 5.000000

Type real comparison

Type real relational operators can be used as shown in the following syntax:

real x == real y

DXL Reference Manual

126

real x != real y
real x < real y
real x > real y
real x <= real y

real x >= real y

These operators return true if x is equal, not equal, less than, greater than, less than or equal to, or greater than or equal
to y.

Example
print (2.2 < 4.0) // prints true

intOf (real)

Declaration

int intOf (real r)

Operation

Rounds r of type real to the nearest integer.

Example
print intOf 3.2 // prints 3

realOf

Declaration
real realOf (int 1)

real realOf (string s)

Operation

Converts type int 1 ortype string s into atype real value, and returns it.
Example

print realOf 4 // prints 4.000000

real x = realOf "3.2"

print x // prints 3.200000

DXL Reference Manual

Ccos

Declaration

real cos(real angle)

Operation

Returns the cosine of angle in radians.
sin

Declaration

real sin(real angle)

Operation

Returns the sine of angle in radians.
tan

Declaration

real tan(real angle)

Operation

Returns the tangent of angle in radians.
exp

Declaration

real exp(real x)

Operation

Returns the natural exponent of type real x.
log

Declaration

real log(real x)

Operation

Returns the natural logarithm of type real x.

DXL Reference Manual

127

128

pow
Declaration
real pow(real x,
real y)
Operation
Returns type real x raised to the power y (same as x"y).
sqrt

Declaration

real sqgrt(real x)

Operation

Returns the squate root of x.

random(real)

Declaration

real random/()

Operation

Returns a random value x, such that 0 <=x < 1.

Operations on type string

A DXL type string can contain any number of characters.

See also “Concatenation (base types),” on page 115, the print function, and the null function.

String comparison

String relational operators can be used as shown in the following syntax:
string sl == string s2
string sl != string s2

string sl < string s2

DXL Reference Manual

129

string sl > string s2
string sl <= string s2
string sl >= string s2

These operators return true if s1 is equal, not equal, less than, greater than, less than or equal to, or greater than or equal
to s2. Case is significant.

Example

print ("aaaa" < "a") // prints "false"
print ("aaaa" > "a") // prints "true"
print ("aaaa" == "a") // prints "false"
print ("A" > "a") // prints "false"
print ("McDonald" < "Man") // prints "false"

Substring extraction from string

The index notation, [], can be used to extract a substring from a string, as shown in the following syntax:
string text[range]
Operation

Returns a substring of text as specified by range, which must be in the form int:int.

The range argument is specified as the indices of the first and last characters of the desired substring, counting from 0. If
the substring continues to the end of the string, the second index can be omitted.

Example

string str = "I am a string constant"

print str[0:3] // prints "I am"

print str[2:3] // prints "am"

print str[5:] // prints "a string constant"
cistrcmp

Declaration

int cistrcmp(string sI,
string s2)

Operation

Compares strings s1 and s2 without regard to their case, and returns:

0 if s1 == 52

DXL Reference Manual

130

1 if st > §2

-1 if s1 < 52

Example

print cistrcmp ("aAa", "AaA") // prints 0

print cistrcmp ("aRa","aA") // prints 1

print cistrcmp ("aAa", "aRaa") // prints -1
length

Declaration

int length(string str)
Operation

Returns the length of the string str.

Example
print length "123" // prints 3

lower, upper

Declaration
string lower (string str)

string upper (string str)

Operation

Converts and returns the contents of str into lower or upper case.
Example

string mixed = "aaaBBBBcccc"

print lower mixed // prints "aaabbbbcccc"

print upper mixed // prints "AAABBBBCCCC"

soundex

Declaration

string soundex (string str)

DXL Reference Manual

Operation

Returns the soundex code of the string st r. Initial non-alphabetic chatracters of str are ignored.
Soundex codes are identical for similar-sounding English words.

Example

Both these examples print R265 in the DXL Interaction window’s output pane.

print (soundex "requirements")

print (soundex "reekwirements")

backSlasher

Declaration
buffer backSlasher (Buffer b)

Operation

This function takes a buffer and converts all forward-slash characters (/) to back-slash characters (\), eliminates any
repeated back-slash characters, and removes any trailing back-slash characters.

Example

string s = "\\directory////file "
Buffer b = create

b =s

b = backSlasher (b)

print b ""

findPlainText

Declaration

bool findPlainText (string s, string sub, int &offset, int &length, bool
matchCase[, bool reverse])

Operation

Returns true if string s contains the substring sub.

Both s and sub are taken to be plain text string. Use findRichText to deal with strings containing RTF markup.
If matchCase is true, string s must contain string sub exactly with matching case; otherwise, any case matches.

The function returns additional information in offset and 1ength. The value of offset is the number of characters
in s to the start of the first match with string sub. The value of Iength contains the number of characters in the
matching string.

DXL Reference Manual

131

132

If reverse is specified and is true, then the search is started at the end of the string, and the returned values of offset
and Iength will reflect the last matching string in s.

Example
string s = “This shall be a requirement”
string sub = “shall”

int offset = null

int length = null

bool matchCase = true

bool reverse = true

if (findPlainText (s, sub, offset, length, matchCase, reverse)) {

print offset ™ : ™ length “™ \\prints “5 : 5”

unicodeString

Declaration

string unicodeString (RTF string str, bool convertAllSymbols, bool
returnAsPlainText)

Operation

Returns the value of the specified rich text string as RTF or plain text. If the attribute contains characters in Symbol font,
these characters are converted to the Unicode equivalents.

If convertAllSymbols is true, all symbol character are converted. If false, only Unicode characters that have a good
chance of being displayed are used. See the symbolToUnicode perm for a description of which characters are
converted.

The value is returned as plain text if returnAsPlainText is true. Otherwise the value is returned as RTF.

escape

Declaration

string escape(string str, char escapeChar, string escapeChars)

Operation

HEscapes all the characters in str which are in escapeChars, with the escapeChar character. This also escapes
escapeChar itself.

DXL Reference Manual

133

Example
escape ("hello world", '/', "1") returns "he/l/lo wor/1ld"
escape ("hello world #1", '#', "1h") returns "#he#l#lo wor#ld ##1"

stripPath

Declaration

string stripPath(string path, bool isEscaped)
Operation

Removes the path part from path, using forward slash as the path separator.

If isEscapediis true, the slash character can be used as a literal character rather than a path separator by preceding the
character with a backslash.

Example
stripPath ("abc/def/ghi", b) returns "ghi", where b is true or false.
stripPath ("abc/def\\/ghi", true) returns "def/ghi"

DXL Reference Manual

134

DXL Reference Manual

135

Chapter 12
General language facilities

This chapter introduces basic functions and structures defined by DXI.’s run-time environment, as follows:
¢ Files and streams

* Configuration file access

* Dates

e Skip lists

* Regular expressions

* Text buffers

e Arrays

Files and streams

This section desctribes DXL’s features for manipulating files. For information on creating a directory, see the mkdir
function.

The main data type introduced is the St ream, which uses C++ like overloadings of >> and << to read and write files.
Streams are not a fundamental type inherited from DXL’s C origins, so the type name Stream begins with an upper case
letter.

Standard streams

Declaration
Stream& cin
Streamé& cout

Streamé& cerr

Operation

Following C++’s naming scheme for UNIX standard streams, these variables are initialized by IBM® Engineering
Requirements Management DOORS® (DOORS®) to standard input, output and ertor.

On UNIX platforms, you can use cin to read input that has been piped into DOORS®, and cout to pipe data out from
DOORS®. Similatly, you can send user defined error messages (or any other desired output) to standard etror using cerr.

DXL Reference Manual

136

Read from stream

The operator >> can be used to read strings or data from a configuration area stream, or fill a buffer, as shown in the
following syntax:

file >> string s
file >> char c¢
file >> real r

file >> int 1

file >> Buffer b

where:

fileisafile of type Stream

The first form reads a line of text from the configuration area stream file into string s, up to but not including any newline.

The next three forms read the data from the configuration area stream file, and return the result as a stream, to enable
chained reads. Real and integer constants are expected to be the last items on a line, while characters, including newlines, are
read one at a time up to and including the end of file.

The second form reads from the configuration area stream file into buffer b until it is full at its current size, or the end of
the file is reached. Returns the configuration area stream. This function can read multiple lines.

Example
char c
real r
int i
Stream input = read "data.dat"

input >> ¢ >> r >> i

Read line from stream

Two operators can be used to read a single line from a stream to a buffer, as shown in the following syntax:
file -> Buffer b

file >= Buffer b

where:

fileisafile of type Stream

Operation

The —> operator reads a single line from the stream f£11e, and copies it to the buffer, skipping any leading white space. If
the line is empty besides white space, the buffer is emptied. Returns the stream.

DXL Reference Manual

137

The >= operator reads a single line from the stream £11e, and copies it to the buffer in its entirety. If the line is empty, the
buffer is emptied. Returns the stream.

Write to stream

The operator << can be used to write strings, single characters or buffers to a stream, as shown in the following syntax:
file << string s

file << char c¢

file << Buffer b

where:

fileisafile of type Stream

Writes the string s, the character ¢, or the buffer b to the stream file. To write other data types to a stream, first convert
them to a string by concatenating the empty string or a newline.

Example

Stream out = write tempFileName
out << 1.4 "\n"

Stream alpha = write tempFileName

alpha << 'a' << 'b' << '¢!

canOpenFile

Declaration
bool canOpenFile (string pathname,

bool forWrite)

Operation

Returns t rue when the file pathname can be opened; otherwise, returns false. If forWriteis set to true, the file is
opened for write and the current contents of the file are cleared. If forWriteissetto false the file is opened read only
and the existing contents are unchanged.

read, write, append(open file)

Declaration
Stream read(string filename)
Stream write(string filename)

Stream append(string filename)

DXL Reference Manual

138

Operation

Opens a file £ilename for reading, wtiting or appending, and returns a stream. File I/O operations only succeed if the
user has permission to create or access the files specified.

To open a binary file, you must call the binary function after the read, write or append. The syntax is therefore:
read [binary] filename

write [binary] filename

append [binary] filename

You can use the Stat DXL functions to check whether the I/O functions in this section can succeed (see “uset, size,
mode,” on page 185).

Example

// ASCII file

Stream output = write tempFileName

// binary file

Stream image = read binary pictureFileName

close(stream)

Declaration

void close (Stream s)

Operation

Closes the stream s.

flush

Declaration

void flush (Stream s)

Operation

Flushes the output stteam s. Character I/O can be buffered; this command forces any such buffers to be cleared.

readFile

Declaration

string readFile(string filename)

Operation

Returns the contents of the file £ilename as a string.

DXL Reference Manual

139

Note: The Codepages function also has a readFile operator. For information about Codepages and readFile, see
“readFile,” on page 209.

goodFileName

Declaration

string goodFileName (string filename)

Operation

Returns a legitimate file name of the passed file, £ilename, with respect to any restrictions imposed by the current
platform. This will only apply to the filename up to the .’ character. The string after the .” is ignored.

This function does not support non-English Unicode characters.
Example

This example prints the file name Test results in the DXL output window:

print goodFileName "Test results"

tempFileName

Declaration

string tempFileName ()

Operation

Returns a string, which is a legal file name on the current platform, and is not the name of an existing file. On UNIX
platforms, returns a file name like /tmp/DOORSaaouef; on Windows platforms, returns a file name like
C:\TEMP\DP2. This file can be used for temporary storage by DXL programs.

currentDirectory

Declaration

string currentDirectory ()

Operation

Returns the path name of the current working directory.

copyFile

Declaration

string copyFile(string sourceFileName,
string destFileName)

DXL Reference Manual

140

Operation

Copies file sourceFileName to destFileName. If the operation succeeds, returns null; otherwise, returns an

error message.

Example
copyFile ("filel", "file2")

deleteFile

Declaration

string deleteFile(string filename)

Operation

Deletes the file named filename. If the operation succeeds, returns null; otherwise, returns an error message.

renameFile

Declaration

string renameFile(string old, string new)

Operation

Renames the file called 01d to new. If the operation succeeds, returns null; if it fails, returns an error message.

end(stream)

Declaration
bool end(Stream s)

Operation

Returns true if the stream has no more characters pending. The test should be made after a read, but before the read

data is used:

Example

while (true) {
input >> str // read a line at a time; var set up
if (end input) break // test after read but before

print str "\n" // variable str is used

DXL Reference Manual

141

format

Declaration

void format (Stream s, string text, int width)

Operation

Outputs string text to Stream s, formatting each word of the text with a ragged right margin in a column of width
characters. If a word is too long for the specified column, it is continued on the next line.

Example

Stream out = write tempFileName

format (out, "DXL Reference Manual", 5)
close out

This generates the following in the temporary file:

DXL

Refer

ence

Manua

1

for file in directory

Syntax

for s in directory "pathname" do {

}

where:
pathname is the path of the directory
s is a string variable
Operation

Sets the string s to be each successive file name found in the directory pathname.

Example
This example prints a list of the files in ditectory C: \:
string x = "c:\\"

string file

DXL Reference Manual

142

for file in directory x do {

print file "\n"

Files and streams example program

This example creates a temporary file, writes some data to it, saves it, tenames it, reads from the new file, and then deletes it:

// file (Stream) DXL example

/*
example file I/0 program

*/

string filename = tempFileName // get a scratch file

print "Writing to " filename "\n"

Stream out = write filename

out << 'x' "» // write a char (via a string)

out << 1.001 "\n" // a real (must be last thing on line)
out << 42 "\n" // an int (must be last thing on line)

out << "hello world\na second line\n"
// a string

close out // write a file to read back in again
string oldName = filename
filename = tempFileName // get a new file name

renameFile (oldName, filename) // move the file we wrote earlier

print "Reading from " filename "\n"

Stream input = read filename

char ¢ // declare some variable
real r

int 1

input >> c

input >> r

input >> i

print ¢ ™ " r " " i "\n" // check data type read/writes
string str // do rest line by line

while (true) {
input >> str // read a line at a time

DXL Reference Manual

143

if (end of input) break
print str "\n" // str does not include the newline

}
print readFile filename // read the whole lot into a string
close input

deleteFile filename // delete the file

Configuration file access

This section describes the DXL features for manipulating configuration files. The data types used are ConfType and
ConfStream. Many of these functions have a parameter ConfType area. The arguments that can be passed as
ConfType area are as follows:

e confUser

e confSysUser
* confSystem
¢ confTemp

The confUser argument means the file is situated in an area specific to the current DOORS® user, or to the current
system user if a project is not open.

The confSysUser argument means the file is situated in the configuration area for system users. This argument remains
constant regardless of whether the user is logged into the project. For example, the Rational DOORS Tip Wizard uses a
confSysUser file to store whether a user has opted to show Tips on startup.

The confSystem argument means the file is situated in a shared area accessible by all users.
The confTemp argument is similar to confSystem, but is generally used for storing temporary files.

If the function does not supply an area argument, confUser is used.

Read from stream

The operator >> can be used to read strings or data from a configuration area stream, or fill a buffer, as shown in the
following syntax:

file >> string s

file >> Buffer b

where:

fileisafile of type ConfStream

The first form reads a line of text from the configuration area stream f1i1e into string s, up to but not including any

newline.

The second form reads from the configuration area stream £1 1e into buffer b until it is full at its current size, or the end of
the file is reached. Returns the configuration area stream. This function can read multiple lines.

DXL Reference Manual

144

Read line from stream

Two operators can be used to read a single line from a configuration stream to a buffer, as shown in the following syntax:
file -> Buffer b

file >= Buffer b

where:

fileisafile of type ConfStream

Operation

The —> operator reads a single line from the configuration area stream £1le, and copies it to the buffer, skipping any
leading white space. If the line is empty besides white space, the buffer is emptied. Returns the stream.

The >= operator reads a single line from the configuration area stream £1i le, and copies it to the buffer in its entirety. If
the line is empty, the buffer is emptied. Returns the stream.

Write to stream

The operator << can be used to write strings, single characters or buffers to a stream, as shown in the following syntax:
file << string s

file << char c¢

file << Buffer b

where:

fileisafile of type ConfStream

Writes the string s, the character ¢, or the buffer b to the configuration area stream f£1Ie. To write other data types to a
configuration area stream, first convert them to a string by concatenating the empty string or a newline.

Example

ConfStream out = write tempFileName
out << 1.4 "\n"

ConfStream alpha = write tempFileName

alpha << 'a' << 'b' << '¢!

confMkdir

Declaration

void confMkdir (string dirName
[,ConfType areal)

DXL Reference Manual

145

Operation

Creates the directoty, dirName, in either the default ot the specified configuration area, area.

confDeleteDirectory

Declaration

string confDeleteDirectory(string pathname, ConfType conf)

Operation

Deletes the named directory in the specified ConfType atea (confSystem or confUser). On success it returns null;

on failure it returns an error string.

confRead

Declaration

ConfStream confRead(string fileName
[,ConfType areal)

Operation
Opens the specified file for reading, and returns the file handle. The file can be in either the default or the specified

configuration area.

Detects the encoding of conf files by checking for the presence of a UTF-8 Byte Order Marker (BOM) at the start of the
file. If it finds one, it assumes that the file is encoded in UTF-8. Otherwise, it assumes that the file is encoded according to
the legacy codepage for the database. In either case, any values subsequently read from the file using the ConfStream >>
operator or others are converted to Unicode, so the encoding of the file should not affect the functionality of any DXL
scripts that use this perm.

confWrite

Declaration

ConfStream confWrite(string fileName
[,ConfType areal)

Operation

Opens the specified file for writing, and returns the file handle. The file can be in either the default or the specified
configuration area.

Any conf files created by this perm are encoded in UTF-8, enabling them to contain any Unicode strings.

DXL Reference Manual

146

confAppend

Declaration

ConfStream confAppend (string fileName
[,ConfType areal)

Operation
Opens the specified file for appending, and returns the file handle. The file can be in either the default or the specified

configuration area.

This perm converts any non-UTF-8 files to UTF-8 encoding before opening them for append. This enables any Unicode
strings to be written to the file using the ConfStream << write operators.

confRenameFile

Declaration

string confRenameFile(string old,
string new
[,ConfType areal)

Operation
Renames the file 01d to new in either the default or the specified configuration area.

Returns an error message string if the operation fails.

confCopyFile

Declaration
string confCopyFile(string source,
string dest,
ConfType area)
Operation

Copies source to dest in the specified configuration area. If the operation fails, it returns an error message.

confDeleteFile

Declaration

string confDeleteFile(string fileName
[,ConfType areal

DXL Reference Manual

147

Operation

Deletes the specified file in either the default or the specified configuration area. If the operation fails, it returns an error

message.

confFileExists

Declaration

bool confFileExists (string fileName
[,ConfType areal)

Operation

Returns true if the specified file exists in either the default or the specified configuration area; otherwise, returns false.

close(configuration area stream)

Declaration

void close (ConfStream s)

Operation

Closes the configuration atea stream s.

end(configuration area stream)

Declaration
bool end(ConfStream s)

Operation

Returns true if the stream has no more characters pending. The test should be made after a read, but before the read

data is used:

Example

while (true) {
input >> str // read a line at a time; var set up
if (end input) break // test after read but before
print str "\n" // variable str is used

DXL Reference Manual

148

for file in configuration area

Syntax

for s in confDirectory("dirname"[,areal) do {

}

where:
dirname is the name of the directory in area, or if area is omitted, in
confUser
area is a constant of type ConfType: confUser,
confSysUser, confSystem, confTemp, or
confProjUser
s is a string variable
Operation

Sets the string s to be each successive file name found in the directory pathname.

Example
This example prints a list of the files in ditectory test in confUser:
string file

for file in confDirectory("test") do {
print file "\n"

confUploadFile(source, dest [, conftype])

Declaration

string confUploadFile(string source, string dest [, conftypel)

Operation

Uploads a file from the location on the client machine specified by source, to the file in the system conf area on the
database server, specified by dest. It returns null on success. If the dest string contains double-petiods " . ." ot specifies
an invalid directory, then the perm reports an error and returns null. Otherwise, if the upload fails, the perm returns an error
message.

The optional 3rd argument specifies the config area where the file should be sent. This defaults to the current user’s config
area (confUser). Files to be accessible to all users should be uploaded to the system config area, by specifying this argument
as “confSystem”.

Example

string message = confUploadFile ("C:\\temp\\myprog.exe", "myprog", confSystem)

DXL Reference Manual

149

if (!'null message)

{

warningBox (message)

confDownloadFile(source, dest [, conftype])

Declaration

string confDownloadFile (string source, string dest [, conftypel)

Operation

Downloads a file from the location in the conf area on the database server, specified by dest, to the location on the client
machine specified by source. It returns null on success. If the source string contains double-periods “. .” then the perm
reports an error and returns null. Otherwise, if the download fails, the perm returns an error message.

The optional 3rd argument specifies the config area from which the file should be copied. This defaults to the current uset’s
config area (confUser).

Example

string message = confDownloadFile ("myprog","C:\\temp\\myprog2.exe", confSystem)
if (!'null message)

{

warningBox (message)

Dates

This section describes DXLs features for manipulating dates.
Dates are not a fundamental type inherited from DXL’s C origins, so the type name Date begins with an upper case letter.

DXL Date data limits are from 1 Jan 1970, to 31 Dec 2102.

Note: The date values always refer to your system’s current time zone.

Concatenation (dates)

The space character is the concatenation operator, which is shown as <space> in the following syntax:

Date d <space> string s

DXL Reference Manual

150

Concatenates string s onto date d and returns the result as a string. It uses the long format date, or, if any operations
dealing in seconds have occurred, the short format date with time added.

Example
This example prints <01 January 1999>:
Date d = "1 Jan 99"

print nengnsn

Assignment (date)

The assignment operator = can be used as shown in the following syntax:
Date d = string datestr

Converts the string datestr into a date, assigns it to d, and returns it as a result. Issues an error message if datestris
not in a valid date format. Ordinal numbers, for example 4th, are not recognized. Apart from that limitation, all date
formats are valid, for example:

Yyyy, dd mmm
dd/mm/yy
mm/dd/yy

Time can be appended to a dates using the format hh:mm:ss. ss, provided the date is in the format dd/mm/yy or
mm/dd/yy.

Example

This example prints 04 October 1961:
Date dl = "4 Oct 1961"

print dl

Date comparison

Date relational operators can be used as shown in the following syntax:
Date dl == Date d2
Date dl1 != Date dZ2
Date dlI < Date d2
Date dl > Date d2
Date dl <= Date dZ2
Date dlI >= Date d2

These operators return true if d1 is equal, not equal, less than, greater than, less than or equal to, greater than or equal to
dz.

DXL Reference Manual

151

Example

This example prints false in the DXL Interaction window’s output pane:
Date dl = "4 Oct 1961"

Date d2 = "10 Nov 1972"

print (dl > d2)

print(date)

Declaration
void print (Date d)

Operation

Prints the date d in the DXL output window in long format, or, if any operations dealing in seconds have occurred, the
short format date with time added.

Example
This example prints 04 October 1961:
Date dl = "4 Oct 1961"
print dl
today
Declaration

Date today()

Operation

Returns today’s date. The value includes the exact time, but it is not printed using:
print today

The function call:

intOf today

returns the integer number of seconds since 1 Jan 1970, 00:00:00 GMT.
Example

This example prints the current date and time:

print dateOf intOf today

Note: Concatenating strings to the end of this statement may give unexpected results.

DXL Reference Manual

152

session

Declaration

Date session()

Operation

Returns the date on which the current DOORS® session began. The value includes the exact time in the same way as the
today function.

Example
This example prints the date the current DOORS® session started:

print session

intOf(date)

Declaration
int intOf (Date d)

Operation

Returns an integer corresponding to the number of seconds that have elapsed between the given date and 1 Jan 1970,
00:00:00 GMT.

When a Date data type is converted for dates on or after 1 Jan 2037, or before 1 Jan 1970, this function returns a result of
-1.

Example
print intOf today

dateOf

Declaration

Date dateOf (int secs)

Operation

Returns the date and time that is calculated as secs seconds since 1 Jan 1970, 00:00:00 GMT.
Example

int minute = 60

int hour = 60 * minute

int day = 24 * hour

int year = 365 * day

DXL Reference Manual

int leapYear = 366 * day

print dateOf ((year * 2) + leapYear)

This generates the following in the DXL Interaction window’s output pane:

01/01/73 00:00:00

This is three years after 1 Jan 1970, 00:00:00 GMT, taking into account that 1972 was a leap year.

stringOf

Declaration
string stringOf (Date d[, Locale 1][, string s])

Operation

This returns the string representation of the date value using the specified locale and format. If no locale is specified, the
cutrent user locale is used. If no format string or a null format string is specified, then if the date value includes time
(hours:minutes:seconds), the default short date format for the locale will be used. Otherwise, a long date format will be
used. The default short date format will be either that specified by the user using setDateFormat (Locale), or, if no
default short date format has been set by the user for the locale, the system default format.

date

Declaration
Date date(string s[, Locale I1][,string s])

Operation

This returns the date value represented by the supplied string, interpreted according to the specified locale and format. The
default locale is the current user locale. If no format string is supplied, the input string is parsed using first the user’s default
short date format (if one has been specified for the locale), and then all the supported formats for the locale.

for string in shortDateFormats

Declaration

for string in shortDateFormats ([Locale 11])

Operation

This iterator returns the short date formats supported for the specified locale. If no locale is specified, it returns the short
date formats supported for the current user locale.

The first format returned is the default short date format for the locale.

DXL Reference Manual

153

154

for string in longDateFormats

Declaration

for string in longDateFormats ([Locale 117)

Operation

This iterator returns the long date formats supported for the specified locale. If no locale is specified, it returns the long date

formats supported for the cutrent user locale.

The first format returned is the default long date format for the locale.

includesTime

Declaration

bool includesTime (Date d)

Operation

This returns t rue if the specified date value includes time information as well as date.

dateOnly

Declaration
Date dateOnly (Date d)

Operation

Returns a copy of the supplied date value, without any included time-of-day information (it returns a date-only value).

dateAndTime

Declaration
Date dateAndTime (Date d)

Operation

Returns a copy of the supplied date value including time-of-day data.

Example

print today ()

prints 6 June 2010

print dateAndTime (today)
ptints 6/6/2010 13:42:34

DXL Reference Manual

155

Example

The following example uses the new locale specific date format perms.

// dates.dxl - dates and formats example
//*‘k***‘k*‘k************‘k*‘k*‘k***‘k**
void testFormat (Date dateValue, Locale loc, string format)

// DESCRIPTION: Checks that the stringOf and dateOf perms are true

// inverses for the specified format.

{

print " format " format ": " stringOf (datevalue, loc, format) "\n"

} // testFormat
//**
vold testDate (Date dateValue, Locale loc)
// Tests stringOf and dateOf using default formats, and all supported formats.
{

// Test default format

string stringForm = stringOf (dateValue, loc)

print "Default format: " stringForm "\n"

// Test all supported formats
string format
print "Short formats:\n"
for format in shortDateFormats (loc) do
{
testFormat (dateValue, loc, format)
}
print "Long formats:\n"
for format in longDateFormats (loc) do
{

testFormat (dateValue, loc, format)

// Test abbreviations.

print "Abbreviated names: " stringOf (datevValue, loc, "ddd, d MMM yy") "\n"

DXL Reference Manual

156

// Test all full names.
print "Full names: " stringOf (datevalue, loc, "dddd, d MMMM yyyy") "\n"

} // testDate

Locale loc = userLocale

print "\nLOCALE: " (name loc) "\n"
print "\nDATE ONLY:\n"

testDate (today, loc)

print "\nDATE AND TIME:\n"

testDate (dateAndTime (today), loc)

Skip lists

This section desctribes DXL’s features for manipulating skip lists.

Skip lists are an efficient dictionary like data structure. Since DXL does not support a C like struct feature, many DXL
programs use skip lists as the building blocks for creating complex data structures.

Because DXL provides no garbage collection, it is important to delete skip lists that are no longer required, thereby freeing

allocated memoty.

Skip lists are not a fundamental type inherited from DXL’s C origins, so the type name Skip begins with an upper case
letter.

create, createString(skip list)

Declaration
Skip create()

Skip createString/()

Operation
Creates a new empty skip list and returns it.

It is very important, and it is the programmer’s responsibility to ensure that data and keys are consistently used when storing
and retrieving from a skip list. For example, you can cause program failure by inserting some data into a skip list as an
integer, then retrieving the data into a string variable and attempting to print it.

The keys used with the skip list can be of any type. However, comparison of keys is based on the address of the key, not its
contents. This is fine for elements that are always represented by a unique pointer, for example, objects, modules, or skip
lists, but care is needed with strings. This is because a string may not have a unique address, depending on whether it is
literal or a computed string stored in a variable.

DXL Reference Manual

157

There are two ways of avoiding this problem. The first is to use the createString form of the function for a skip list
with a string key. The alternative is to ensure that all literal strings used as keys are concatenated with the empty string.

Example
Skip strKeys = create
put (strKeys, "literal" "", 1000)

delete(skip list)

Declaration
void delete (Skip s)
Operation

Deletes all of skip list s. Variables that have been given as keys or data are not affected. This operation does not set the skip
list to null. If the user checks the list for null, this will produce a DXL run-time error. The user should set the skip list to null
after deletion.

delete(entry)

Declaration

bool delete(Skip s,
type key)

Operation

Deletes an entry in skip list s according to the passed key, which can be of any type. Variables that have been given as keys
or data are not affected. Returns false if the key does not exist.

Example

if (delete (numberCache, 1)) // delete absno 1
ack "delete succeeded"

find(entry)

Declaration

bool find(Skip s,
typel key
[,type2 &datal)

Operation

Returns true if the passed key, of typel, has an entry in skip list s. The optional third argument sets the entry found to
be data of type2. Both typel and type?2 can be any type.

DXL Reference Manual

158

Example

if (find(numberCache, 1, o)) {
string h = o0."Object Heading"
ack h

key

The key function is used only within the skip list for loop, as shown in the following syntax:

(type key(Skip s))

Operation

Returns the key corresponding to the current element. The return value can be of any type, so a cast must precede the use of
key.

Example

Object o

for o in numberCache do {
// must cast the key command.
int i = (int key numberCache)
print i

put

Declaration

bool put (Skip s,
typel key,
type2 data)

Operation

Returns true if the passed key and data are successfully inserted into the skip list s. Duplicate entries are not allowed,
so the function returns false if an entry with the same key already exists. For this reason, an entry at an existing key
must first be deleted before its data can be changed.

Example

Skip s = create
put(s,1,20)

print put(s, 1, 30)
// prints 'false'
delete(s, 1)

print put(s, 1, 30)

DXL Reference Manual

159

// prints 'true', s(l) is now 30

for data element in skip list

Syntax

for dataElement in skiplist do {

}
where:
dataElement is a variable of any type

skiplist is a variable of type Skip

Operation

Sets entry to be each successive type data element of 1ist.

Example
Object o

for o in numberCache do {
string h = o0."Object Heading"
print h "\n"

Skip lists example program

In this example a skip list is used to store a mapping from absolute numbers to the corresponding DOORS® object:
// skip list example
/*
simple skip list example: make a mapping
from absolute numbers to objects, allowing
fast lookup
*/
Skip numberCache = create // builds the skip list
Object o

int n=20 // count objects

for o in current Module do {
// cycle through all objects

int absno = o."Absolute Number"
// get the number

DXL Reference Manual

160

put (numberCache, absno, o)
// number is key, object is data

n++
}// for
// we now have a quick way of going from absolute numbers to objects:
if (n > 0) {

int 1

for i in 1:20 do {

int absno = 1 + random n
// choose an absno at random

if (find (numberCache, absno, o)) {
// can we find it?
string heading = o."Object Heading"

print "#" absno " has
heading \"" heading "\"\n"

y// if
}// for
y// if

Regular expressions

This section describes DXLs features for using regular expressions.

Regular expressions are a mechanism for detecting patterns in text. They have many applications, including searching and
simple parsing.

Regular expressions are not a fundamental type inherited from DXI’s C origins, so the type name Regexp begins with an
upper case letter.

The following symbols can be used in Regexp expressions:

Meaning Example Matches
* ZEro Of more Occurrences ax any number of a charactets, or none
+ one or more occurrences x+ one or more X characters
any single character except X any number of any characters (any
new line string)
\ escape (literal text char) \. literally a . (dot) character

DXL Reference Manual

(Continued)

A

start of the string (if at start

of Regexp)

end of the string (if at end of

Regexp)

Groupings

character range (letters or

digits)

Alternative

“"The.*

end\\.$

(ref) +
(bind) *

[sSThall.

*\\. S

[~abc]
[a=-zA-7]
[0-9]

(dat |doc)

any string starting with The or
starting with The after any new
line(see also | | below)

any string ending with end.

at least one ref string then any
number of bind strings

any string containing shall or Shall
and ending in a literal dot (any
requirement sentence)

any character except a, b, or ¢
any alphabetic character

any digit

cither the string dat or the string doc

Note:

The regular expression escape character must itself be escaped in a DXL string. For example, to have the regular

expression \ ., you must have \\ . in the DXL string.

Many of the functions for regular expressions use the data type Regexp.

Application of regular expressions

The space character is an operator that applies a regular expression to a string or buffer; it is shown as <space> in the
following syntax:

Regexp reg <space> string text

Regexp reg <space> Buffer b

Operation

Returns true if there is a match.

Example

Regexp line = regexp?

while

(line txtl)

{

nmoxn

DXL Reference Manual

161

162

match

The match function returns a range for a match of a regular expression within a string or buffer, as shown in the following
syntax:

Regexp r = regexp "x(optionsl)y(optionsZ2)..."
{string|Buffer} str = "string"

str[match n]

where:
r str are variables
Xy are literal characters in a regular expression
optionsl are regular expression matching options
options2
string is a string or buffer
n is an integer

Operation

When n=0, teturns the range of string. When n=1, returns the range of the match for optionsl;when n=2, returns
the match for options2, and so on. The value for n is restricted to the range 0-9.

Example

This example detects and decomposes URLs:

Regexp URL = regexp2 " (HTTP|http|ftp|FTP|file|FILE) :// ([~ \\),:>\"]1*)"
string txt3 = "The ABC URL is http://www.abc.com; it may be..."

if (URL txt3) {

print txt3[match 0] "\n" // whole match
print txt3[match 1] "\n" // first section in ()
print txt3[match 2] "\n" // second section in ()
}
matches
Declaration

bool matches (string reg,
string text)

DXL Reference Manual

163

Operation

Returns true if text matches reg. For repeated use, declaring and building a regular expression is more efficient.

Example
string txt = "xxxxyesuuuu"

if (matches (" (yes|no)", txt)) print txt[match 0]

regexp

Declaration
Regexp regexp (string req)
Operation

Returns a new regular expression, specified by string reg. For legacy support only, should not be used in new code.
Replaced by regexp2().

Example
// matches any line except newline

Regexp line = regexp2 ".*"

start, end(of match)

Declaration
int start(int n)

int end(int n)

Operation

Return the position of the first and last characters of the nth match from a call to ma tch. The value for n is restricted to
the range 0-9.

Example

int firstNameLen = end 1

delete(regexp)

Declaration
void delete (Regexp)

Operation

This perm deletes the supplied regular expression and frees the memory used by it.

DXL Reference Manual

164

regexp2

Declaration

Regexp regexp? (string expression)

Operation

Creates a regular expression. Its behavior will not be changed to match the legacy behavior of regexp () . Should be used
in all new regular expression code.

Regular expressions example program

// regular expression DXL example

/*
examples of regular expression DXL

*/

Regexp line = regexp2 ".*"

// matches any character except newline

string txtl = "line 1\nline 2\nline 3\n"
// 3 line string

while (!'null txtl && line txtl) {
print txtl[match 0] "\n"
// match 0 is whole of match

txtl = txtl[end 0 + 2:] // move past newline
}

// The following regular expression detects and decomposes URLs

Regexp URL = regexp2 " (HTTP|http|ftp|FTP|file|FILE):// ([~ \\),;>\"]1*)"

string txt3 = "The ABC URL is http://www.abcinc.com, and may be..."
if (URL txt3) {

print txt3[match 0] "\n" // whole match

print txt3[match 1] "\n" // first bracketed section

print txt3[match 2] "\n" // second.

print start 1 // position 15 in txt3 (from O0)

print end 1 // 18

print start 2 // 22

print end 2 // 34

DXL Reference Manual

165

Text buffers

The following functions enable the manipulation of DXL buffers. Buffers are a speed and memory efficient way of
manipulating text within DXL applications. Their use is particularly encouraged in parsers and importers.

You should explicitly delete buffers with delete as soon as they are no longer needed in a script.

Buffers are not a fundamental type inherited from DXI.’s C origins, so the type name Buf fer begins with an upper case
letter.

Because DXL provides no garbage collection, it is important to delete buffers that are no longer required, thereby freeing
allocated memory.

Assignment (buffer)

The assignment operator = can be used as shown in the following syntax:
Buffer b = string s
or

Buffer b = h.oldvalue
Operation

The first form sets the contents of buffer b to that of the string s. You can use a range in the assignment.

The second form sets the contents of the buf fer to the history property oldValue. The buffer should be deleted after

use.

Note: If you want to assign a buffer to a buffer, you must use the form Buf fer b=stringOf (a), otherwise, the
address of a is given to b instead of its value.

Append operator

The append operator += can be used as shown in the following syntax:
Buffer b += string s
Buffer b += char c¢

Buffer b += Buffer b

Operation
Appends the string, character, or buffer to the buffer b.

Example
This example prints oneltwox in the DXL Interaction window’s output pane:
Buffer bufl = create

Buffer buf2 = create

DXL Reference Manual

166

bufl = "one"
buf2 = "two"
bufl += "1"
bufl += buf2
bufl += 'x'

Concatenation (buffers)

The space character is the concatenation operator, which is shown as <space> in the following syntax:
Buffer b <space> string s

Concatenates string s onto the contents of buffer b and returns the result as a string. You can use a range in the
concatenation.

Example
Buffer b

= create

b = "aaa"

print b "zzz" // prints "aaazzz"

Buffer comparison

String relational operators can be used as shown in the following syntax:

Buffer bl == Buffer b2
Buffer bl != Buffer b2
Buffer bl < Buffer b2
Buffer bl > Buffer b2
Buffer bl <= Buffer b2
Buffer bl >= Buffer b2

These operators return true if bl is equal, not equal, less than, greater than, less than or equal to, or greater than or equal
to b2. Case is significant.

Example

Buffer bl = create

Buffer b2 = create

bl = "aaa"

b2 = "aza"

print (bl==b2) "™ " (bl!=b2) " " (blb2) " "
print (blb2) "™ " (bl<=b2) " " (bl>=b2) "\n"

DXL Reference Manual

167

// prints "false true true false true false"

Read and write operators

The >> operator can be used to read a stream into a buffer and return the stream (see “Read from stream,” on page 130).
The << operator can be used to write a buffer to a stream and return the stream (see “Read line from stream,” on page 136).

The -> and >= operators can be used to read a single line from a file to a buffer, (see “Write to stream,” on page 137).

Character extraction from buffer

The index notation, [], can be used to extract a single character from a buffer, as shown in the following syntax:

Buffer b[int n]

This returns the n'™ character of buffer b, counting from 0.
Example

This example prints a in the DXL Interaction window’s output pane:
Buffer b = "abc"

char ¢ = b[0]

print c

Substring extraction from buffer

The index notation, [], can be used to extract a substring from a buffer, as shown in the following syntax:
Buffer b[range]

Operation

Returns a range of b as specified by range, which must be in the form int :int.

The range argument is specified as the indices of the first and last characters of the desired range, counting from 0. If the
range continues to the end of the buffer, the second index can be omitted. This function returns a buffer or string
depending on the type assigned.

Example

Buffer buf = create

buf = "abcdefg"

string s = buf[2:3]

print s // prints cd
Buffer b = buf[4:5]

print b // prints ef

DXL Reference Manual

168

combine

Declaration

void combine (Buffer bl,
Buffer b2,
int start
[,int finish])
Operation

Concatenates a substring of b2 onto the contents of b1. The substring is from start to finish,orif finishis
omitted, from start to the end of the buffer. This function provides a performance advantage over the assignment to
buffer using the range option.

Example

Buffer bl = create, b2 = create
bl = "zzz"

b2 = "abcdef"

combine (bl, b2, 3, 4)

print stringOf bl // prints "zzzde"

contains

Declaration

int contains (Buffer b,
char ch
[,int offset])

int contains (Buffer b,
string word,
int offset)

Operation

The first form returns the index at which the character ch appears in buffer b, starting from 0. If present, the value of
offset controls where the search starts. For example, if offset is 1, the search starts from 2. If offset is not
present, the search starts from 0. If ch does not appear after offset, the function returns —1.

The second form returns the index at which string word appears in the buffer, starting from 0, provided the string is
preceded by a non-alphanumeric character. The value of the mandatory of fset argument controls where the search
starts. If word does not appear after offset, the function returns —1.

DXL Reference Manual

169

getDOSstring

Declaration
Buffer getDOSstring (Buffer b)

Operation

Returns a copy of the supplied Buffer, with a cartiage-return character inserted before any newline character that is not

already preceded by a carriage return.

create(buffer)

Declaration

Buffer create([int initSizel)

Operation

Creates a buffer. A buffer has no intrinsic limit on its size; when a buffer becomes full it extends itself, if memory permits.
The atgument 1nitSize specifies the initial size of the buffer. If no initial size argument is passed, this function creates a
buffer that uses a default initial size of 255.

delete(buffer)

Declaration
void delete (Buffer &b)

Operation

Deletes the buffer b, and sets the variable b to null.

firstNonSpace

Declaration
int firstNonSpace (Buffer b)
Operation

Returns the index of the first non-space character in buffer b, or —1 if there is none.

DXL Reference Manual

170‘

keyword(buffer)

Declaration
int keyword(Buffer b,

string word,
int offset)
Operation

Returns the index at which string word appears in buffer b, starting from character of fset, provided that the string is
neither preceded nor followed by a non-alphanumeric character. If word does not appear, the function returns —1.

This function is used to accelerate parsing of programming languages.

length(buffer get)

Declaration
int length (Buffer b)

Operation

Returns the length of the buffer.

length(buffer set)
Declaration
void length (Buffer b,
int Ien)
Operation

Sets the length of a buffer. This is normally used for truncating buffers, but can also be used to lengthen them.
The DXL program is responsible for the content of the buffer.

Example

Buffer buf = create

buf = "abcd"

length (buf, 2)

print "<" (stringOf buf) ">" // prints "ab"

DXL Reference Manual

171

set(char in buffer)

Declaration
void set (Buffer b,
int n,
char ch)
Operation
Sets the character at position n of buffer b to character ch.
Example
if (name[n] == '.') set(name, n, ';")
setempty
Declaration

void setempty (Buffer b)

Operation

Empties buffer b, but does not reclaim any space.

setupper, setlower

Declaration
void setupper (Buffer b)

void setlower (Buffer b)

Operation

These functions convert the case of buffer b to upper or lower case.

stringOf(buffer)

Declaration
string stringOf (Buffer b)

Operation

Returns the contents of buffer b as a string.

Example

Buffer b = create

DXL Reference Manual

172

b = "aaaa"

print stringOf b // prints "aaaa"

Buffers and regular expressions

Regular expressions can be applied to buffers in the same way as strings (see “Application of regular expressions,” on page
161). The regular expression functions start, end (of match), and match can also be used with buffers.

Example
Buffer buf = create
buf = "aaaabbccccc"
Regexp re = regexp2 "a*"
re buf // apply regular expression
print buf[match 0] // prints "aaaa"
search
Declaration

bool search (Regexp re,
Buffer b,
int start
[,int finish])

Operation

Searches part of b using re. The search starts at start and continues until £inish, orif finish is omitted, from
start to the end of the buffer.

This function provides a performance advantage over the concatenation of regular expression to buffer with the range
option.
Note that the match, end and start regular expression functions can be used to return offsets relative to start, not

the start of the buffer.

It is possible when using this perm along with a complex regular expression, and a very large Buffer, that valid code will
produce a run-time error detailing an “incorrect regular expression”.

Text buffers example program

// buffer DXL example
/*

example use of DXL buffers - place a border
around a multi-line piece of text, e.g.:

| the gquick brown |

DXL Reference Manual

*/

fox jumped over |
the lazy dog |

Buffer process (Buffer source) {

Regexp line = regexp2 ".*"

int from = 0

int max = 0
Buffer boxed = create, horiz = create
while (search(line, source, from)) {

// takes a line at a time from source

int offset = end 0
// end of the match within source

string match = source[from:from+offset]

from += offset + 2
// move 'from' over any newline

if (null match)
break

// we are done

max = max >? length match
// remember max line length

}

if (max==0) { // no strings matched
boxed = "++\n++"
} else {
horiz = "+" // build a horizontal line
int i
for 1 in 1l:max+2 do // allow two spaces
horiz += '-!'

horiz += '+!
horiz += '\n'
from = 0 // reset offset
boxed += horiz

while (search(line, source, from)) {
// rescan buffer

int offset = end O

string match =
source[from: from+toffset]

if (null match)
break

from += offset + 2

// matches up to newline

DXL Reference Manual

173

174

boxed += '|' // add the vertical bars
boxed += "' !
boxed += match

for i in 1 : max - length match + 1 do
boxed += ' !
// add space to side of box

boxed += '|"

boxed += '\n'

}
boxed += horiz

return boxed

}

Buffer text = create

text = "The quick brown" // build a test string
text += '\n'

text += "fox Jjumped over"

text += '\n'

text += "the lazy dog"

cout = write "buffer.tmp"

cout << process text // print result

Arrays

This section describes a dynamically sized two-dimensional array data type. An example of its use is in the DOORS® ASCII
output generator in the tools library. As with skip lists, you must retrieve data into variables of the same data type as they
were put into the array, or program failure may occur.

Because DXL provides no garbage collection, it is important to delete DXI.’s dynamic arrays that are no longer required,
thereby freeing allocated memory.

Dynamic arrays are not a fundamental type inherited from DXL’s C origins, so the type name Array begins with an upper
case letter.

create(array)

Declaration

Array create(int x,
int vy)

DXL Reference Manual

175

Operation

Creates a dynamically sized array of initial bounds (x,y). Following C conventions, the minimum co-ordinate is (0,0), and
the maximum co-ordinate is (x-1,y-1). If an assignment is made to an array element outside these initial bounds, the array is
automatically resized. When viewing arrays with the printCharArray function, the X axis grows left to right across the
page, while the Y axis grows down the page.

Both arguments to create must be greater than or equal to 1.

Example

This example creates an array with 50 elements in the X direction accessed from (0,0) to (49,0), and only one element in the
Y direction:

Array firstArray = create(50,1)

delete(array)

Declaration

void delete (Array a)

Operation

Deletes array a; stored contents are not affected.

get(data from array)

Declaration

type get (Array a,
int x,
int y)

Operation

Returns the data, of any type, stored in array a at position (X, y). You must retrieve the data into a variable of the same type
as used when the data was put into the array. To ensure that this works unambiguously in the way intended, you should use
a cast prefix to the get command.

Atrays are not just for fundamental types like strings and integers. You can store any DXL type in them, for example,
objects, modules, skip lists, and even other arrays.

Example

This example uses a cast prefix to get:
Array a = create(10,10)
string str

int 1

put(a, "a string", 3, 4)
put(a, 1000, 3, 5)

DXL Reference Manual

176

str = (string get(a,3,4)) // cast get as string
print str "\n" // prints "a string"
i = (int get(a, 3, 5)) // cast get as int
print i // prints "1000"

This example stores an array in an array:

Array a = create(4,1)

Object obj = first current Module
Module mod = current

Skip skp = create

Array arr = create(l,1)

put(a, obj, 0, 0)

put(a, mod, 1, 0)
put(a, skp, 2, 0)
put(a, arr, 3

, 0)

put (arr,"I was nested in a!", 0, 0)

Object objRef (Object get(a,0,0))
Module modRef = (Module get(a,1,0))

Skip skpRef

(Skip get(a,2,0))

Array arrRef (Array get(a,3,0))

string str (string get (arrRef, 0, 0))

print str // prints "I was nested in a!"

get(string from array)

Declaration

string get (Array a,
int x,
int y,

int Ien)

Operation

Retrieves 1en characters as a string from a starting at position (x,y). This is the matching get command for putString.
Example

Array a = create(10,10)

putString(a, "a string", 2, 2)

string some = get(a, 4, 2, 3)

DXL Reference Manual

177

print some "\n" // prints "str"

put(data in array)

Declaration

void put (Array a,
type data,
int x,
int y)

Operation

Puts data, of any type, into array a at position (x,y). If the new position is outside a’s current bounds, a is resized to
accommodate the new element.

putString

Declaration

void putString(Array a,
string s,
int x,
int y)

Operation

Puts the string s into the array a in such a way that its character contents are placed in X-direction adjacent elements
starting at (x,y). The original, or any other desired string can be rebuilt by using the argument string form of get (a, x,
vy, len).The 3-argument form of get can be used to retrieve individual characters. Attempting to retrieve a character as

a string causes program failure.

printCharArray

Declaration

void printCharArray (Array a,
Stream s,
int xI,
int yI,
int x2,
int y2)
Operation

Sends the section of array a defined by the passed co-ordinates x1,y1 and x2,y2, to the stream s.

Example

Array a = create(20,5)

DXL Reference Manual

178

int x,y
for y in O 4 do
for x in O 19 do
put(a, '#', x, y)

Stream out = write "array.tmp"

printCharArray(a, out, O,

out << "\n"
putString(a, "abc", 3, 1)

printCharArray (a,
// view change

out, O,

out << "\n"

close out

DXL Reference Manual

0,

0,

19,

// populate an array with a
// block of # characters.

// open a stream

4)

// write original block

// insert a string

19,

4)

Chapter 13
Operating system interface

This chapter describes three major packages of functions that allow IBM® Engineering Requirements Management
DOORS® (DOORS®) to communicate with the host operating system:

* Operating system commands
* Windows registry
¢ Interprocess communications

* System clipboard functions

Operating system commands

This section defines functions that interact with the operating system under which DOORS® is being run. For a DXL
program to be portable between platforms, care is needed when using these facilities. The functions that use the Stat data
type work on the stat API provided by the operating system, which enables DXL programs to determine the status of
files and directoties.

platform

Declaration
string platform()

Operation

Returns the name of the current DOORS® platform, cutrently one of:

Linux® Linux
Solaris Sun
WIN32 All Windows platforms

This function can be used to make programs portable between platforms.

Example

string fileGoodName (string root, extpc, extunix) {
if (platform == "WIN32")
return currentDirectory "\\"
goodFileName root extpc

DXL Reference Manual

179

180

else
return (getenv "HOME") "/"
goodFileName root extunix

}

The function fileGoodName |, defined in $DOORSHOME/1ib/dx1/utils/ fileops.dxlusesplatformto
construct an appropriate file name for the current operating system. Using such functions enables DXL programs to be
useful on all platforms. Literal file names in programs may not be portable. The path /tmp/dx1/myfile may work ona
WIN32 platform, but ¢ : \temp\dx1\myfile cannot work on a UNIX platform.

getMemoryUsage

Declaration
int getMemoryUsage ()
Operation

Returns the DOORS® client memory usage in MB.

getenv

Declaration
string getenv (string var)

Operation

Returns the current value of the environment variable var, as set in the operating system. Both Windows and UNIX

platforms support this mechanism.

Note: You should know about your operating system’s environment variables before using this function. If necessary,
consult the operating system documentation.

Example

print getenv ("HOME")

print getenv ("DATA")

print getenv ("DOORSHOME")

print getenv ("DOORSDATA")

The first two examples return the corresponding variable values in the registry.

The second two examples return the corresponding variable values used in a command-line shortcut to start DOORS®, if

set. Otherwise, returns the values set in the registry.

DXL Reference Manual

181

hostname

Declaration

string hostname ()

Operation

Returns a string, which is the name of the current host system.

fullHostname

Declaration

string fullHostname (void)

Operation

Gets the fully qualified hostname of the machine on which the perm is executed.

mkdir

Declaration

void mkdir (string dirName
[,string osParm])

Operation
Creates directory dirName.

Optional argument 0s Parm can contain information that is dependent on the operating system, such as the UNIX octal

file access mask.

Example

The following example creates a typical UNIX path name, and sets the access rights:
mkdir ("/usr/development/phasel", "0755")

The following example creates a Windows path, for which there are no access rights:

mkdir ("C:\\DOORS\\DXLExample\\", "")

setenv

Declaration

void setenv(string var,
string s)

DXL Reference Manual

182

Operation

Sets the registry variable var to s in the registry section
HKEY CURRENT USER\Software\Telelogic\DOORS\<DOORS version>\Config, where <DOORS
version>is the version number of the current version of DOORS® installed.

Before using this function, you should be familiar with your operating system’s registry variables. If necessary, consult your

operating system documentation.

setServerMonitor

Declaration
vold setServerMonitor (bool on)

Operation

On Windows platforms only, when on is true, activates the DOORS® Server Monitor. This inserts an icon in the
Windows task bar that monitors client server communications.

serverMonitorlsOn

Declaration

bool serverMonitorIsOn ()

Operation

On Windows platforms only, returns true if the DOORS® Server Monitor is active. Otherwise, returns false.

username

Declaration
string username ()

Operation

Returns a string that contains the operating system defined user name under which DOORS® is being run. This may not be
the same as the DOORS® user name returned by doorsname, depending on the curtent project’s setup.

system

Declaration

void system(string command)

DXL Reference Manual

183

Operation

On Windows platforms only, passes the string command to the operating system for execution, and continues the current
DXL program. Using platform in conjunction with this function prevents an error message on UNIX platforms.
Example

if (platform=="WIN32")
system "notepad"

Note that if the command to be executed is a built in DOS command, such as del, you need, for example:

system "c:\\windows\\command.exe /c del temp.txt"

Declaration

void system(string command,
void childCB(int)
[,void parentCB()])

Operation
On UNIX platforms only, passes the string command to the operating system for execution.

Unlike the Windows system function, these functions terminate the current execution path of the calling DXL program.
One or two callback functions must be provided. In the first form, only a function chi1dCB is needed. This function is
called when the operating system finishes execution of command. In the second form, parentCBis also provided; this is
called concurrently with the operating system’s processing of command, enabling the calling DXL program to continue
work while the command is being executed.

Example

void cb () {
print "system command executing\n"

}

void nullCB(int status) {
}

if (platform == "WIN 32") {
system ("E: \\winnt\\system32\\command.exe")

cb
} else{
system ("xterm", nullCB, cb)

create(status handle)

Declaration
Stat create (Stream s)

Stat create(string filename)

DXL Reference Manual

184

Operation

Returns a status handle for the stream or file name, which is used in the other Stat functions.

delete(status handle)

Declaration

void delete (Stat s)

Operation

Deletes the handle s.

accessed, modified, changed(date)

Declaration
Date accessed(Stat s)
Date modified (Stat s)

Date changed(Stat s)

Operation

Returns the accessed, modified or changed date of the stream or file identified by the handle.

directory, symbolic, regular

Declaration
bool directory(Stat s)
bool symbolic (Stat s)

bool regular (Stat s)

Operation

Returns true if the stream or file identified by the handle is a directory, a symbolic link, or a regular file respectively.
Example

Stat s

string filename = "/etc"

s = create filename

if (!'null s && directory s)
ack filename " is a directory!"

DXL Reference Manual

user, size, mode

Declaration

string user (Stat s)

int size(Stat s)

int mode (Stat s)

Operation

Returns the user name (PC file on windows), size, or mode of the stream or file identified by the handle.

The following constant integers are used with the int mode (Stat) function as bit-field values (using standard UNIX

stat semantics).

Constant Meaning
S_ISUID set user id on execution
S_ISGID set group id on execution
S_IRWXU read, write, execute permission: owner
S_IRUSR read permission: owner
S_TWUSR wtite permission: owner
S_IXUSR execute/search permission: owner
S_IRWXG read, write, execute permission: group
S_IRGRP read permission: group
S_IWGRP write permission: group
S_IXGRP execute/search permission: group
S_IRWXO read, write, execute permission: other
S_IROTH read permission: other
S_IWOTH wtite permission: other
S_IXOTH execute/search
Example
The following example shows how to emulate the formatting of part of the UNIX command 1s
string filename = "/etc"
Stat s = create filename

DXL Reference Manual

185

186

if (!'null s) {
int modes = mode s

print (modes&S ISUID!=0 ? 's' : '-")
print (modes&S IRUSR!=0 2 'r' : '-")
print (modes&S IWUSR!=0 ? 'w' : '-'")
print (modes&S IXUSR!=0 ? 'x' : '-")
print (modes&S IRGRP!=0 2 'r' : '-")
print (modes&S IWGRP!=0 ? 'w' : '-'")
print (modes&S IXGRP!=0 ? 'x' : '-")
print (modes&S IROTH!=0 2 'r' : '-")
print (modes&S IWOTH!=0 ? 'w' : '-'")
print (modes&S IXOTH!=0 ? 'x' : '-")

print "\t" filename

Status handle functions example

This example is taken from $DOORSHOME/lib/dxl/utils/fileops.dxl.

bool fileExists (string filename) {
Stat s

s = create filename
if (null s) return false
delete s
return true
}

It is used by several of the DXL Library tools to determine whether a file exists.

Windows registry

getRegistry

Declaration

string getRegistry(string keyName,
string valueName)

DXL Reference Manual

187

Operation

Returns a string representation of the named value of the specified Windows registry key.

The keyName argument must be a fully specified registry key, beginning with any one of the following:
HKEY CURRENT USER

HKEY LOCAL MACHINE

HKEY CLASSES ROOT

HKEY USERS

If valueName is null, returns the default value for the key. If the key does not exist, the value does not exist, or the
operating system is not a Windows platform, returns null.

Example

string s = "HKEY CURRENT USER\\SOFTWARE\\Microsoft
Office\\9.3\\Common\\LocalTemplates"

print getRegistry (s, null) "\n"

string s = "HKEY CURRENT USER\\SOFTWARE\\Microsoft Office\\95\\WORD\\OPTIONS"
print getRegistry (s, "DOC-PATH") "\n"

setRegistry
Declaration

string setRegistry(string keyName,
string valueName,
{stringl|int} value)

Operation

Sets the named value of the specified registry key to have the value supplied and the appropriate registry type, as follows:

Type of value Registry type
string value REG SZ
integer value REG DWORD

The key is created if one does not already exist. If valueName is null, the default key value is set.

The keyName argument must be a fully specified registry key, beginning with any one of the following:
HKEY CURRENT USER

HKEY LOCAL MACHINE

HKEY CLASSES ROOT

HKEY USERS

DXL Reference Manual

188

This function is only usable on Windows platforms.

If the operation fails, returns an error message; otherwise returns null.

Example

string s = "HKEY CURRENT USER\\SOFTWARE\\XYZ Inc.\\The Product\\Verification"
// Set default value of key

string errMess = setRegistry(s, null, "Default string value")

// Set named string value

errMess = setRegistry (s, "Configuration Parameter", "Is enabled")

// Set named integer value

checkStringReturn setRegistry (s, "Usage count", 1234)

deleteKeyRegistry

Declaration

string deleteKeyRegistry(string keyName)

Operation

Deletes the named key from the registry, therefore extreme caution should be used.

The keyName argument must be a fully specified registry key, beginning with any one of the following:
HKEY CURRENT USER

HKEY LOCAL MACHINE

HKEY CLASSES ROOT

HKEY USERS

This function is only usable on Windows platforms.

If the operation fails, returns an error message; otherwise returns null.

Example

// Clear up keys created

string errMess = deleteKeyRegistry "HKEY CURRENT USER\\-
SOFTWAREA\XYZ Inc.\\The Product\\Verification"

errMess = deleteKeyRegistry "HKEY CURRENT USER\\SOFTWARE\\XYZ Inc.\\The
Product"

errMess = deleteKeyRegistry "HKEY CURRENT USER\\SOFTWARE\\XYZ Inc."

DXL Reference Manual

189

deleteValueRegistry

Declaration

string deleteValueRegistry(string keyName,
string valueName)

Operation

Deletes the named value from the specified registry key. If valueName is null, deletes the default value for the key.

Note: Use caution when calling this function.

The keyName argument must be a fully specified registry key, beginning with any one of the following:
HKEY CURRENT USER

HKEY LOCAL MACHINE

HKEY CLASSES ROOT

HKEY USERS

This function is only usable on Windows platforms.

If the operation fails, returns an error message; otherwise returns null.

Example

string s = "HKEY CURRENT USER\\SOFTWARE\\XYZ Inc.\\-
The Product\\Verification"

// Delete named value

string errMess = deleteValueRegistry (s, "Usage count")

// Delete default value

errMess = deleteValueRegistry(s, null)

Interprocess communications

There are two forms of interprocess communications (IPC):

* The first uses TCP/IP. It can be used with the UNIX and Windows opetating systems on all supported platforms.
* The second uses sockets, where a file is used to pass messages. It works only on UNIX platforms.

For examples of how to use DXL IPC functions, see the DOORS® API Manual.

Windows programs can also use OLE Automation functions to communicate with other programs.

DXL Reference Manual

190

ipcHostname

Declaration

string ipcHostname (string ipAddress)

Operation

Resolves the IP address ipAddress to its host name.
Example
This example prints localhost in the DXL Interaction window’s output pane.

print ipcHostname ("127.0.0.1")

server

Declaration
IPC server (string socket)

IPC server (int port)

Operation
The first form establishes a server connection to the UNIX socket socket.

The second form establishes a server connection to the port number port on all platforms. In the case that supplied port
number is 0, an ephemeral port number is allocated by the operating system. To fetch this ephemeral port number, use
getPort () on the resulting IPC.

getPort

Declaration
int getPort (IPC channel)

Operation

Fetches the port associated with the specified IPC. Useful when the IPC is allocated an ephemeral port by the operating
system (see IPC server (int)).

client

Declaration
IPC client (string socket)

IPC client (int ip,
string host)

DXL Reference Manual

191

Operation
The first form establishes a client connection to the UNIX socket socket.

The second form establishes a client connection to the IP address ip at host on all platforms.

accept

Declaration
bool accept (IPC)

Operation

Wiaits for a client connection at the server end of the connection.

send

Declaration

bool send(IPC chan,
string message)

Operation

Sends the string message down IPC channel chan.

recv
Declaration
bool recv (IPC chan,
{string|Buffer} &response
[,int tmt])
Operation
Wiaits for a message to arrive in channel chan and assigns it to string or buffer variable response.
The optional third argument defines a timeout, tmt seconds, for a message to arrive in channel chan. If tmt is zero, these
functions wait forever. They only work if the caller is connected to the channel as a client or a setver.
disconnect

Declaration

void disconnect (IPC chan)

Operation

Disconnects channel chan.

DXL Reference Manual

192‘

delete(IPC channel)

Declaration

void delete (IPC chan)

Operation

Deletes channel chan (can be a setver or a client).

System clipboard functions

copyToClipboard

Declaration
bool copyToClipboard(string s)

Operation

Copies a plain text string (not RTF) to the clipboard. On success, returns true.

setRichClip

Declaration
void setRichClip (RTF string s, string styleName, string fontTable)
void setRichClip(Buffer buff, string styleName, string fontTable)

void setRichClip (RTF string s, string styleName, string fontTable, bool
keepBullets, bool keepIndents)

void setRichClip(Buffer buff, string styleName, string fontTable, bool
keepBullets, bool keepIndents)
Operation

First form sets the system clipboard with the rich text obtained by applying the style sty leName to the string s, using the
font table font Table supplied, which should include a default font. Font numbers in the string s will be translated to the
supplied font table fontTable.

Second form is same as the first but the soutce is a buffer buff rather than an RTF_string .

Third form sets the system clipboard with the rich text obtained by applying the style sty leName to the string s, using
the font table fontTable supplied. If keepBulletsis false, any bullet characters are removed from string s. If
keepIndentsis false, any indentation is removed from string s. If keepBullets and keepIndents are both
true, the behavior is exactly the same as the first form.

DXL Reference Manual

193

Fourth form is same as the third but the source is a buffer buff rather than an RTF _string .

Example 1

The following code:

string s = "hello"

string fontTable = "\\deffO{\\fonttbl {\\fl Times New Roman;}}"
setRichClip (richText s, "Normal", fontTable)

puts the following rich text string onto the system clipboard:

{\rtfl \deffO{\fonttbl {\fl Times New Roman; }}{\stylesheet {\sl Normal;}}{\sl
hello\par}}

Example 2

string bulletedString =
"{\\rtfl\\ansi\\ansicpgl252\\deff0\\deflangl033{\\fonttbl {\\£0\\fswiss\\fcharse
t0 Arial;}{\\f1\\fnil\\fcharset2 Symbol;}}

\\viewkind4\\ucl\\pard\\f0\\fs20 Some text with\\par

\\pard{\\pntext\\£I\\'B7\\tab} {*\\pn\\pnlvlblt\\pnfl\\pnindentO {\\pntxtb\\ 'B7
FINNEL-720\\1i720 bullet 1\\par

{\\pntext\\fI\\'B7\\tab}bullet 2\\par
\\pard bullet points in it.\\par
\\par

po

string fontTable = "\\deffO{\\fonttbl{\\fO\\fswiss\\fcharsetO
Arial; } {\\fI\\fnil\\fcharset2 Symbol;}}"

setRichClip (richText bulletedString, "Normal", fontTable)

// the previous call puts

// "{\rtfl \deffO{\fonttbl{\fO\fswiss\fcharset0 Arial;}{\fl\fnil\fcharset?2
Symbol; }}{\stylesheet {\sl Normal;}}{\sl Some text with\par {\fl\'b7\tabl}bullet
I\par {\fl\'b7\tab}bullet 2\par bullet points in it.\par \par}}"

// on the clipboard

setRichClip (richText bulletedString, "Normal", fontTable, false, false)

// the previous call puts

DXL Reference Manual

194

// "{\rtfl \deffO{\fonttbl{\fO\fswiss\fcharset0 Arial;}{\fl\fnil\fcharset2
Symbol; }}{\stylesheet {\sl Normal;}}{\sl Some text with\par bullet I1\par bullet

2\par bullet points in it.\par \par}}"
// on the clipboard -- note no bullet symbols (\'b7) in the markup

DXL Reference Manual

195

Chapter 14

Customizing DOORS®

This chapter explains how you can customize IBM® Engineering Requirements Management DOORS® (DOORS®):
* Color schemes

* Database Explorer options

* Locales

* Codepages

* Message of the day

e Database Properties

Color schemes

This section defines constants and functions for setting the DOORS® color scheme.

Display Color Schemes

The following constants are defined as database display schemes for use with the functions below:
originalDOORSColo[u] rScheme

modernDOORSColo[u] rScheme

highContrastOneColo[u] rScheme

highContrastTwoColo[u] rScheme

highContrastBlackColo[u] rScheme

highContrastWhiteColo[u] rScheme

getDefaultColorScheme

Declaration

int getDefaultColo[u]rScheme ()

Operation

Returns the default color scheme used by the Database Explorer The possible values for colorScheme are listed above.

DXL Reference Manual

196

setDefaultColorScheme

Declaration

void setDefaultColo[u]rScheme (int colorScheme)

Operation

Sets the default color scheme used by the Database Explorer. Schemes can be created and modified using the Display tab
in the Options dialog box (from the Tools > Options menu in the Database Explorer. The possible values for
colorScheme are listed above:

optionsExist

Declaration

bool optionsExist (string schemeName)

Operation

Returns true if a color scheme exists under schemeName; otherwise, returns false.

resetColors

Declaration
void resetColors([int colorScheme])

Operation

If no argument is supplied, resets to the default color scheme otherwise resets to colorScheme, which can any of the

values listed above.

resetColor

Declaration
void resetColor (int colorIndex

[,int colorSchemel)
Operation

Resets the color specified by colorIndex to the default, or if the second argument is supplied, to colorScheme,
which can be any of the values listed above.

DXL Reference Manual

197

Database Explorer options

This section defines constants and functions for customizing the Database Explorer.

Font constants

Declaration

int HeadingsFont
int TextFont

int GraphicsFont

Operation

These constants define the font in the getFontSettings and setFontSettings functions.

getFontSettings

Declaration

void getFontSettings (int level,
int usedIn,
int &size,
int &family,
bool &bold,
bool &italic)

Operation

Passes back settings for the font usedIn for objects at heading level Ievel. The value of usedIn can be
HeadingsFont, TextFont, or GraphicsFont. The last four arguments pass back the point size, font family,
whether the font is bold, and whether the font is italic. The constants for point size are the following:

e l4pt=5
+ 12pt=4
« 1lpt=3
e 10pt=2
* Ipt=1
e 8pt=0

DXL Reference Manual

198

setFontSettings

Declaration

void setFontSettings (int level,
int usedIn,
int size,
int family,
bool bold,
bool italic)

Operation

Sets the point size, font family, whether the font is bold, and whether the font is italic for the font usedIn for objects at
heading level 1evel. The value of usedIn can be HeadingsFont, TextFont, or GraphicsFont. The constants
for point size are the following:

* l4pt=5
e 12pt=4
e 1lpt=3
* 10pt=2
* Ipt=1
e 8pt=0

refreshExplorer

Declaration

void refreshExplorer (Module m)

Operation

Refreshes the Database Explorer window for module m.

synchExplorer

Declaration

void synchExplorer (Module m)

Operation

Refreshes the Rational DOORS Module Explorer window to reflect changes to the current object selected in the module
display.

DXL Reference Manual

199

refreshDBExplorer

Declaration

void refreshDBExplorer ()

Operation

Refreshes the Database Explorer window to reflect changes to the current folder or the display state. If the current
folder/project is changed using DXL, this perm will not change the currently open item to reflect this. This is used to only
refresh the contents of the currently selected item.

setShowFormalModules, setShowDescriptiveModules, setShowLinkModules

Declaration
void setShowFormalModules (bool expression)
void setShowDescriptiveModules (bool expression)

void setShowLinkModules (bool expression)

Operation

Shows formal, descriptive, or link modules in the Database Explorer if expressionis true. Hides formal, descriptive,

ot link modules if expressionis false.

showFormalModules, showDescriptiveModules, showLinkModules(get)

Declaration
bool showFormalModules ()
bool showDescriptiveModules ()

bool showLinkModules ()

Operation

Returns true if the Database Explorer is set to show formal, descriptive, or link modules; otherwise returns false.

getSelectedltem

Declaration
Item getSelectedItem()

Operation

Return the item cutrently selected in the Database Explorer.

DXL Reference Manual

200 ‘

Mini database explorer

fnMiniExplorer

Creates a miniature database explorer window that shows a tree view in which you can navigate through the hierarchy of the
DOORS® database and select an item. The layout of the tree view depends on whether your main client window is
configured for Project View or Database View. The items that are displayed can be controlled through the use of a filter.

By default, only projects and folders are populated. You must explicitly choose module types. For ease of use, it is possible
to have the tree view expand to a particular start location. The dialog box is modal and therefore prevents other use of the
DOORS® client while it is displayed.

Declaration

string fnMiniExplorer ([Folder f | DB parent,] int itemFilter, string titleBar,
string userPrompt)

Operation

Returns the name of the module if found otherwise returns an empty string.

Optional parameter f specifies the folder where the tree-view will auto-expand.

Optional parameter parent specifies the parent DXL dialog.

Parameter titleBar specifies the title window. If no value is specified (i.e. null or empty string) then “DOORS Database
Mini-Exploret" will be shown.

Parameter userPrompt specifies the user prompt. If no value is specified (i.e. null or empty string) then "Please make your
selection..." will be shown.

Parameter itemFilter specifies what module types are shown in the tree-view. This is a bit mask that can have the following

values:
Value Use this flag to include...
MINI_EXP_LINK_MODS Link modules
MINI EXP FORMAL MODS Formal modules
MINI EXP DESCRIPTIVE MODS Descriptive modules

DXL Reference Manual

201

Value Use this flag to include...

MINI EXP_ SHOW DELETED Soft-deleted modules

MINI EXP SHOW ALL NO DELETED All module types

MINI EXP_ SHOW ALL All module types and soft-deleted modules
Example

string moduleName = fnMiniExplorer (folder ("/My Project/My Folder"),
MINI EXP FORMAL MODS | MINI EXP LINK MODS, "Browse", "Select a source module")

Locales

getDateFormat

Declaration
string getDateFormat ([Locale 1], [bool isShortFormat])

Operation

When called with no arguments, this returns the current default short date format. This may be selected for the current user
locale, using the Windows Control Panel. If the boolean argument is supplied and is false, the default long date format is

returned.

Locale type

Operation

This type represents any valid user locale value. It can take any of the values supported by the client system.

The perms that take a Locale argument will all return a DXL run-time error if they are supplied with a null value.

for Locale in installedLocales

Declaration

for Locale in installedLocales

Operation

This iterator returns all the Locale values installed on the client system.

DXL Reference Manual

202

Example
Locale loc
for loc in installedLocales do

{

print id(loc) ": " name(loc) "\n"

for Locale in supportedLocales

Declaration

for Locale in supportedLocales

Operation

This iterator returns all the Locale values supported on the client system.

userLocale

Declaration

Locale userLocale()

Operation

This returns the current user locale on the client system.

name

Declaration

string name (Locale 1)

Operation

This returns the name (in the current desktop language) of the specified Locale.

language

Declaration

string language (Locale 1)

Operation

This returns the English name of the Locale language.

DXL Reference Manual

203

region

Declaration

string region (Locale 1)

Operation

This returns the English name of the country/region of the Locale.

Declaration

int id(Locale 1)

Operation

This returns the integer identifier value for the Locale. This is a constant for any given Locale.

locale

Declaration
Locale locale(int 1)

Operation

This returns the Locale for the specified identifier value. It returns null if the integer value is not a valid supported locale

identifier.

installed

Declaration
bool installed(Locale 1)

Operation

This returns t rue if the Locale is installed on the client machine. Otherwise it returns false.

attributeValue

Declaration
bool attributeValue (AttrDef attr, string s[, bool bl])

DXL Reference Manual

204

Operation

Tests whether the supplied string represents a valid value for the specified attribute definition. If the third argument is
supplied and set to true, the function will return true if the attribute base type is date and the string is a valid date string
for the user’s current Locale setting.

locale

Declaration
AttrDef.locale()

Operation
Use to access the locale of the specified At trDe£. It returns null if there is no locale specified by the attribute definition.
Example
AttrDef ad = find(current Module, "Object Text")
Locale loc = ad.locale
print "Object Text locale is " name (loc) "\n"setLocale
getLegacylLocale
Declaration

Locale getLegacyLocale (void)

Operation

Returns the legacy data locale setting for the database. This determines the locale settings that are used to display legacy
attribute data. If none is set, this returns null, and legacy attribute values are displayed according to the settings for the

current user locale.

setLe

gacylLocale

DXL Reference Manual

Declaration

string setlegacyLocale (Locale 1)

Operation

This enables users with Manage Database privilege to set the Legacy data locale for the database (as explained above).
setLegacyLocale (null) removes the Legacy data locale setting for the database. Returns null on success, and an
error string on failure, including when it is called by a user without Manage Database privilege.

205

Single line spacing constant

Declaration

int single

Operation

This constant is used to specify single line spacing.

Line spacing constant for 1.5 lines

Declaration

int onePointFive

Operation

This constant is used to specify 1.5 lines line spacing.

setLineSpacing

Declaration
void setLineSpacing(int IineSpacing)
Operation

Sets line spacing for the current locale.

Example

setLineSpacing (single)

getLineSpacing

Declaration

int getLineSpacing()

Operation

Retrieves the line spacing for the current locale.
Example

if (getLineSpacing() == onePointFive)

{

print "Line spacing is set to One and a half lines.\n"

DXL Reference Manual

206

setLineSpacing

Declaration

void setlLineSpacing(Locale locale, int lineSpacing)

Operation

Sets line spacing for the desired locale.

getLineSpacing

Declaration

int getLineSpacing(Locale locale)

Operation

Retrieves the line spacing for the desired locale.

getDefaultLineSpacing

Declaration
int getDefaultLineSpacing(void)

Operation

Returns the default line spacing for the user’s current locale. For example, it will return single when the line spacing is
European, onePointFive when the line spacing is Japanese, Chinese, or Korean, and so on.

getFontSettings

Declaration

void getFontSettings (int level, int usedIn, int &size, string &family, bool
&bold, bool &italic, Locale locale)

Operation

Gets the current user’s font-related display options for the locale provided. The usedIn parameter can be one of the
following constants: HeadingsFont, TextFont or GraphicsFont.

Example
int pointSize

string fontFamily

DXL Reference Manual

207

bool bold, italic
getFontSettings (2, TextFont, pointSize, fontFamily, bold, italic, userLocale)

print fontFamily ", " pointSize ", " bold ", " italic "\n"

setFontSettings

Declaration

void setFontSettings (int level, int usedIn, int size, string family, bool bold,
bool italics, Locale locale)

Operation

Sets the current user’s font-related display options for the locale provided.

for string in availableFonts do

Declaration

for string in availableFonts do {}

Operation

Iterator over the specified availableFonts.

Example
string fontName

for fontName in availableFonts do {

}

Provides access to the names of each of the available fonts.

Codepages

Constants

Constants for codepages

The following constants denote codepages:

e constint CP_LATIN1 // ANSI Latin-1

* constint CP_UTF8 // Unicode UTF-8 encoding

DXL Reference Manual

208

* constint CP_UNICODE // UTF-16 little-endian encoding (= CP_UTF16_LE)
* constint CP_UTF16_LE // UTF-16 little-endian encoding

* constint CP_UTF16_BE // UTF-16 big-endian encoding

* constint CP_JAP // Japanese (Shift-]JIS)

« constint CP_CHS // Simplified Chinese (GB2312)

* const int CP_KOR // Korean (KSC 5601)

* constint CP_CHT // Traditional Chinese (Big 5)

for int in installedCodepages

Declaration

for int in installedCodepages do

Operation

This iterator returns the values of all the codepages installed in the client system.

for int in supportedCodepages

Declaration

for int in supportedCodepages do

Operation

This iterator returns the values of all codepages supported by the client system. Some of these may not be currently
installed.

currentANSIcodepage

Declaration
int currentANSIcodepage ()

Operation

Returns the current default ANSI codepage for the client system. For example, in Western Europe and North America this
will typically return 1252, equivalent to ANSI Latin-1.

codepageName

Declaration

string codepageName (int codepage)

DXL Reference Manual

209

Operation

This returns the name of the specified codepage. Note that this returns an empty string for any codepage that is not installed

on the system.

read

Declaration

Stream read(string filename, int codepage)

Operation

Opens a stream onto the specified filename; content of file decoded from the specified codepage.

write

Declaration

Stream write(string filename, int codepage)

Operation

Opens a stream onto the specified filename; content of file encoded to the specified codepage.

append

Declaration

Stream append(string filename, int codepage)

Operation

Opens a stream for append onto the specified filename; content of file encoded to the specified codepage.

readFile

Declaration

string readFile(string filename, int codepage)

Operation

Reads string from specified file; content is decoded from the specified codepage.

Note: The Files function also has a readFile operatot. For information about Files and readFile, see “readFile,” on page
138.

DXL Reference Manual

210

isValidChar

Declaration

bool isValidChar (char ¢, int codepage)

Operation

Returns true only if the supplied character can be represented in the specified codepage.

convertToCodepage

Declaration

{string|Buffer} convertToCodepage (int codepage, {string|Buffer&} utf8string)

Operation

Returns a version of the supplied string or buffer, encoded according to the specified codepage. The supplied string is
assumed to be encoded in UTF-8 (the default encoding for all DOORS® strings).

Note: Only UTF-8 strings will print and display correctly in Rational DOORS V8.0 and higher. This perm is intended for
use in exporting string data for use in other applications.

Example

string latinlstr = covertToCodepage (CP_LATIN1, “fir Elise”)

convertFromCodepage

Declaration
{string|Buffer} convertFromCodepage (int codepage, {string|Buffer&} cpString)

Operation

Converts a string or buffer from the specified codepage to the DOORS® default UTF-8 encoding. Once a non-UTF-8
string is converted to UTF-8, it can be displayed and printed by DOORS®, including 8-bit (non-ASCII) characters.

Example

int port=5093

int iTimeOut=10

IPC ipcServerConn=server (port)

string inputStr

if (laccept (ipcServerConn))

{

DXL Reference Manual

211

print "No connection\n";

}

else while (recv (ipcServerConn, inputStr, iTimeOut))

{

inputStr = convertFromCodepage (currentANSIcodepage (), inputStr)

print inputStr "\n";

Message of the day

setMessageOfTheDay

Declaration
string setMessageOfTheDay (string message)

Operation

This is used to set the message of the text in the database. Returns null if successful, returns an error if the user does not
have the manage database privilege.

setMessageOfTheDayOption

Declaration
string setMessageOfTheDayOption (bool setting)

Operation

Used to tutn the message of the day on or off . Returns an error if the user does not have the manage database privilege,

otherwise returns null.

getMessageOfTheDay

Declaration
string getMessageOfTheDay ()

Operation

Returns the message of the day if one is set, otherwise returns null.

DXL Reference Manual

212

getMessageOfTheDayOption

Declaration

bool getMessageOfTheDayOption ()

Operation

Used to determine whether the message of the day is enabled. Returns true if it is enabled, otherwise returns false.
Example

string sl, s2, message

message = "Hello and welcome to DOORS!"

if (getMessageOfTheDayOption()) {
print "Current message of the day is : " (getMessageOfTheDay())
} else {
print "No message of the day is set, setting message and turning on."
sl = setMessageOfTheDay (message)
if (!'null s1){
print "There was an error setting the message of the day : " sl
} else {
s2 = setMessageOfTheDayOption (true)
if (!'null s2){

print "There was an error turning on the message of the day :" s2

Database Properties

setLoginFailureText

Declaration

string setLoginFailureText (string msqg)

DXL Reference Manual

213

Operation

Sets the string as the pretext for login failure Emails sent through DOORS®. Returns null on success or failure etror

message.

getLoginFailureText

Declaration

string getLoginFailureText (void)

Operation
Gets the string used for login failure Emails sent through DOORS®.

setDatabaseMailPrefixText

Declaration

string setDatabaseMailPrefixText (string msg)

Operation

Sets the string as the pretext for Emails sent through DOORS®. Returns null on success or failure error message.

getDatabaseMailPrefixText

Declaration

string getDatabaseMailPrefixText (void)

Operation
Gets the string used in Emails sent through DOORS®.

setEditDXLControlled

Declaration
string setEditDXLControlled (bool)

Operation

Activates or de-activates the database wide setting determining whether the ability to edit DXL will be controlled. Returns

null on success, or an error on failure.

DXL Reference Manual

214

getEditDXLControlled

Declaration
bool getEditDXLControlled (void)

Operation

Used to determine if the ability to edit DXL is controlled in the database. Returns true if the ability to edit DXL can be
denied.

DXL Reference Manual

215

Chapter 15

DOORS® database access

This chapter covers:

* Database properties

* Group and user manipulation
e Group and user management
« LDAP

* LDAP Configuration

* LDAP server information

* LDAP data configuration

* Rational Directory Server

Database properties

This section defines functions for IBM® Engineering Requirements Management DOORS® (DOORS®) database
properties. DXL defines the data type LoginPolicy, which can take either of the following values:

viaDOORSLogin
viaSystemLogin

These values control how users log in to DOORS®, using the DOORS® user name or the system login name.

getDatabaseName

Declaration

string getDatabaseName ()

Operation
Returns the name of the DOORS® database.

setDatabaseName

Declaration

bool setDatabaseName (string newName)

DXL Reference Manual

216

Operation

Sets the name of the DOORS® database to newName. If the operation succeeds, it returns t rue; otherwise, it returns
false. The operation fails if the name contains any prohibited characters.

This perm only operates if the current user has the Manage Database privilege, otherwise it returns false.

getAccountsDisabled

Declaration

bool getAccountsDisabled ()

Operation

If standard and custom user accounts for the current database are disabled, returns t rue; otherwise, returns false.

Example

if (getAccountsDisabled()) {
print "Only those with May Manage Power can
log in"

setAccountsDisabled

Declaration

void setAccountsDisabled (bool disabled)

Operation

Disables or enables standard and custom user accounts for the current database, depending on the value of disabled.

This perm only operates if the cutrent user has the Manage Database privilege, otherwise an error message is displayed.

Note: A saveDirectory () command must be used for this to take effect.

Example
This example disables all standard and custom user accounts:
setAccountsDisabled (false)

saveDirectory ()

getDatabaseldentifier

Declaration

string getDatabaseIdentifier ()

DXL Reference Manual

217

Operation

Returns the unique database identifier generated by DOORS® during database creation.

getDatabasePasswordRequired

Declaration

bool getDatabasePasswordRequired ()

Operation

Returns true if passwords are required for the current DOORS® database; otherwise, returns false.

setDatabasePasswordRequired

Declaration

void setDatabasePasswordRequired (bool required)

Operation

Sets passwords required or not required for the current database, depending on the value of required.

This perm only operates if the current user is the administrator, otherwise an error message is displayed.

getReconfirmPasswordRequired

Declaration

bool getReconfirmPasswordRequired /()

Operation

Returns true if a reconfirmation password is required after a specified timeout period; otherwise, returns false.

setReconfirmPasswordRequired

Declaration

void setReconfirmPasswordRequired (bool required)

Operation

Sets whether a reconfirmation password is required after a specified timeout period, depending on the value of required.

This perm only operates if the cutrent user has the Manage Database privilege.

DXL Reference Manual

218

getReconfirmPasswordTimeout

Declaration

int getReconfirmPasswordTimeout ()

Operation

Returns the timeout period (in minutes) before the reconfirmation password dialog appears.

setReconfirmPasswordTimeout

Declaration

void setReconfirmPasswordTimeout (int timeout)

Operation

Sets the timeout period to timeout minutes before the reconfirmation password dialog appears.

This perm only operates if the cutrent user has the Manage Database privilege.

getRequireLettersinPassword

Declaration

bool getRequirelettersInPassword ()

Operation

Returns true if a password is required to contain at least one alphabetic character; otherwise, returns false.

setRequirelLettersinPassword

Declaration

string setRequirelettersInPassword (bool required)

Operation
If requiredis true, then a password is required to contain at least one alphabetic character.

This perm only operates if the current user has the Manage Database privilege, otherwise an error message is returned.

getRequireNumberinPassword

Declaration

bool getRequireNumberInPassword ()

DXL Reference Manual

219

Operation

Returns true if a password is required to contain at least one number; otherwise, returns false.

setRequireNumberlinPassword

Declaration

string setRequireNumberInPassword (bool required)

Operation
If required is true, a password is required to contain at least one number.

This perm only operates if the cutrent user has the Manage Database privilege, otherwise an error message is returned.

getRequireSymbollnPassword

Declaration

bool getRequireSymbolInPassword ()

Operation

Returns true if a password is required to contain at least one non-alphanumeric character; otherwise, returns false.

setRequireSymbollnPassword

Declaration

string setRequireSymbolInPassword(bool required)

Operation

If required is true, a password is required to contain at least one non-alphanumeric character.

This perm only opetates if the cutrent user has the Manage Database privilege, otherwise an error message is returned.

getDatabaseMinimumPasswordLength

Declaration

int getDatabaseMinimumPasswordLength ()

Operation

Returns the minimum number of characters required for a password on the current database.

DXL Reference Manual

220

setDatabaseMinimumPasswordLength

Declaration

void setDatabaseMinimumPasswordLength (int Iength)

Operation
Sets the length of password required for the current database to Iength characters. The value can be any non-negative
integer.

This perm only operates if the current user has the Manage Database privilege.

getMinPasswordGeneration

Declaration

int getMinPasswordGeneration ()

Operation

Returns the minimum number of password generations before a password can be reused.

setMinPasswordGeneration

Declaration

string setMinPasswordGeneration (int num)

Operation

Sets the minimum number of password generations before a password can be reused to num. The minimum number
cannot exceed the in-built maximum limit of 12 generations before a password can be reused.

This perm only operates if the current user has the Manage Database privilege, otherwise an error message is returned.

getMaxPasswordGenerationLimit

Declaration

int getMaxPasswordGenerationLimit ()

Operation
Returns the in-built maximum limit of password generations before a password can be reused. This maximum limit is set to
12.

DXL Reference Manual

221

getMinPasswordAgelnDays

Declaration

int getMinPasswordAgeInDays ()

Operation

Returns the minimum number of days before a password can be reused.

setMinPasswordAgelnDays

Declaration

string setMinPasswordAgelInDays (int days)

Operation
Sets the minimum number of days before a password can be reused to days. The minimum number cannot exceed the
in-built maximum limit of 180 days before a password can be reused.

This perm only operates if the cutrent user has the Manage Database privilege, otherwise an error message is returned.

getMaxPasswordAgeLimit

Declaration

int getMaxPasswordAgeLimit ()

Operation

Returns the in-built maximum limit of days before a password can be reused. This maximum limit is set to 180 days.

getDatabaseMailServer

Declaration

string getDatabaseMailServer (void)

Operation
Returns as a string the name of the SMTP mail server for DOORS®.

setDatabaseMailServer

Declaration

void setDatabaseMailServer (string serverName)

DXL Reference Manual

222

Operation
Sets the mail server for the current database to serverName.

This perm only operates if the current user has the Manage Database privilege.

getDatabaseMailServerAccount

Declaration

string getDatabaseMailServerAccount (void)

Operation

Returns as a string the name of the mail account that appeats to originate messages from DOORS®.

setDatabaseMailServerAccount

Declaration

void setDatabaseMailServerAccount (string accountName)
Operation
Sets to accountName the mail account that appears to originate messages from DOORS®.

This perm only operates if the current user has the Manage Database privilege.

getLoginPolicy

Declaration
LoginPolicy getLoginPolicy ()

Operation

Returns the login policy (either viaDOORSLogin or viaSystemLogin) for the current database. These values control
how users log in to DOORS®, using the DOORS® name or the system login name.

setLoginPolicy

Declaration
void setLoginPolicy(LoginPolicy policy)

Operation

Sets the login policy for the current database to policy, which can be either viaDOORSLogin or
viaSystemLogin.

This perm only operates if the current user has the Manage Database privilege, otherwise an error message is displayed.

DXL Reference Manual

223

getDisableLoginThreshold

Declaration
int getDisableLoginThreshold ()

Operation

Returns the number of times a user account tolerates a failed login. If the number of login failures to any single account
exceeds this value, DOORS® disables that account. Nobody can use a disabled account.

If the return value is zero, there is no limit. See also the getFailedLoginThreshold function.

setDisableLoginThreshold

Declaration
void setDisableloginThreshold(int attempts)

Operation

Sets the number of times a user account tolerates a failed login. If the number of login failures to any single account exceeds
this value, DOORS® disables that account. Nobody can use a disabled account.

If attempts is zero, there is no limit. See also the setFailedLoginThreshold function.

This perm only operates if the cutrent user has the Manage Database privilege, otherwise an error message is displayed.

getFailedLoginThreshold

Declaration

int getFailedLoginThreshold()

Operation

Returns the number of times DOORS® tolerates a login failure. If this threshold is exceeded, DOORS® closes.

If the return value is zero, there is no limit. See also the setDisableLoginThreshold function.

setFailedLoginThreshold

Declaration

void setFailedLoginThreshold(int attempts)

Operation
Sets the number of times DOORS® tolerates a login failure. If this threshold is exceeded, DOORS® closes.

If attempts is zero, thete is no limit. See also the setDisableLoginThreshold function.

DXL Reference Manual

224

This perm only operates if the current user has the Manage Database privilege, otherwise an error message is displayed.

Note: A saveDirectory () command must be used for this to take effect.
Example
setFailedLoginThreshold (3)

saveDirectory ()

getLoginLoggingPolicy

Declaration
bool getLoginLoggingPolicy (bool type)
Operation

If DOORS® is keeping track of logins of the specified type, returns t rue; otherwise, returns false. If type is true,
returns the policy for successful logins; otherwise, returns the policy for login failures.

To set the logging policy, use the setLoginLoggingPolicy function.
Example
This example indicates whether DOORS® is keeping track of login failures.

getLoginLoggingPolicy (false)

setLoginLoggingPolicy

Declaration

void setLoginLoggingPolicy (bool type,
bool status)

Operation

Sets the logging policy for login events of the specified type. If status is true, logging of the specified type is enabled;
otherwise, it is disabled. If type is true, sets the policy for successful logins; otherwise, sets the policy for login failures.

To find out the current logging policy, use the getLoginLoggingPolicy function.

Example
This example causes DOORS® not to log successful logins.

setLoginLoggingPolicy (true, false)

setMinClientVersion

Declaration

string setMinClientVersion(string s)

DXL Reference Manual

225

Operation

Sets the minimum client version that can connect to the current database. The string argument must be of the format n. n,
n.n.norn.n.n.n,where each nis a decimal integer. The integer values represent Major version, Minor version, Service
Release and Patch number respectively. The Service Release and Patch numbers are optional, and default to zero.

This perm only operates if the current user has the Manage Database privilege, otherwise it returns an appropriate error
string. It also returns an error string if the string argument is not of the correct format, or represents a client version higher
than the current client.

getMinClientVersion

Declaration
string getMinClientVersion (void)

Operation

Returns a string representing the minimum client version that can connect to the current database, in the format n. n,
n.n.notn.n.n.n. The formatis explained in setMinClientVersion. If no minimum client version has been set
for the database, this perm returns a NULL string.

setMaxClientVersion

Declaration

string setMaxClientVersion (string s)

Operation

Sets the maximum client version that can connect to the current database. The string argument must be of the format n. n,
n.n.norn.n.n.n,where each nis a decimal integer. The integer values represent Major version, Minor version, Service
Release and Patch number respectively. The Service Release and Patch numbers are optional.

This perm only operates if the current user has the Manage Database privilege, otherwise it returns an appropriate error
string. It also returns an error string if the string argument is not of the correct format, or represents a client version lower
than the current client.

getMaxClientVersion

Declaration

string getMaxClientVersion (void)

Operation

Returns a string representing the maximum client version that can connect to the current database, in the format n. n,
n.n.notn.n.n.n. The formatis explained in setMinClientVersion. If no minimum client version has been set
for the database, this perm returns a null string.

DXL Reference Manual

226

doorsinfo

Declaration

string doorsInfo (int 1)
Operation
A new valid value for the integer argument is defined (infoServerVersion).

This returns the version of the database server to which the client is currently connected.

Example

string serverVersion = doorsInfo(infoServerVersion)

print "database server version is " serverVersion "\n"
addNotifyUser

Declaration

void addNotifyUser (User user)

Operation

Adds user to the list of users to be notified by e-mail of attempts to log in. If user does not have an e-mail address, no

notification takes place.

deleteNotifyUser

Declaration

void deleteNotifyUser (User user)

Operation

Deletes user from the list of users to be notified by e-mail of attempts to log in.

createPasswordDialog

Declaration
string createPasswordDialog (DB parent,

bool &completed)
Operation

Displays a dialog box containing password and password confirmation fields as well as OK and Cancel buttons. The parent
argument is needed for the Z-order of the elements.

If confirmation is successful, returns a null string; otherwise, returns an error message.

DXL Reference Manual

227

If the user clicks OK, sets completed to true. If the user clicks Cancel, sets completed to false. DOORS® stores
the entered password temporarily for the next user account created with the addUser function. It is not stored as plain
text, and is lost if DOORS® shuts down before a new account is created.

Example

See the section “Creating a user account example,” on page 230.

changePasswordDialog

Declaration

string changePasswordDialog (DB parent,
User user,
bool masquerade,
bool &completed)

Operation

Displays a dialog box containing password and password confirmation fields as well as OK and Cancel buttons. The
parent argument is needed for the Z-order of the elements.

If confirmation is successful, returns a null string; otherwise, returns an error message.

If the user clicks OK, sets completed to true. If the user clicks Cancel, sets completed to false. DOORS® stores
the entered password temporatily. It is not stored as plain text, and is lost if DOORS® shuts down before the password is
copied using the copyPassword function.

A user without the mayEditUserList power must confirm his existing password, otherwise the function returns an
error message. A user with this power is not prompted for an existing password, unless masqueradeis true.

Example

This example copies a new password to the user account for which it was created.
User u = find("John Smith")

bool completed

string s = changePasswordDialog(confirm, u,
false, completed)

if (completed && (null s)) {
copyPassword ()

}
saveUserRecord (u)

saveDirectory ()

DXL Reference Manual

228

confirmPasswordDialog

Declaration

bool confirmPasswordDialog (DB parent,
bool &completed)

Operation

Displays a dialog box containing a password confirmation field as well as OK and Cancel buttons. The title of the dialog
box is always Confirm password - DOORS. The parent argument is needed for the Z-order of the elements.

If confirmation is successful, returns t rue; otherwise, returns false.

If the user clicks OK, sets completed to true. If the user clicks Cancel, sets completed to false.

Example

bool bPasswordOK = false, bCompleted = false

// query user

bPasswordOK = confirmPasswordDialog (dbExplorer, bCompleted)
// check status

if (bCompleted == true)
{

print "Confirmed"

copyPassword

Declaration

bool copyPassword()

Operation

Copies the password created using the function to the account for which the password was created. Returns null on success
and an error message on failure.

Example

This example copies a new password to the user account for which it was created.

User u = find("John Smith")

bool completed

string s = changePasswordDialog (dbExplorer, u, false, completed)

if (completed && (null s)) {
copyPassword ()

DXL Reference Manual

229

getAdministratorName

Declaration

string getAdministratorName ()

Operation

Returns the name of the administrator for the DOORS® database.

sendEMailNotification

Declaration

{bool|string} sendEMailNotification(string fromDescription,
string targetAddress,
string subject,
string message)

string sendEMailNotification(string fromDescription,
Skip targetAddresses,
[, Skip ccAddresses]
[, Skip bccAddresses]
string subject,
string message)

Operation

Issues a notification e-mail to the specified address or addresses. The communication takes place using SMTP, and depends
on the appropriate Database Properties fields being correctly set up prior to its use (SMTP Mail Server and Mail Account).

The user can set the description of the sender, the subject matter, and message contents using fromDescription,
subject and message. If fromDescription isa null string, DOORS® defaults to a standard text:

DOORS Mail Server
The following standard text is sent in front of the specified message:

The following is a notification message from DOORS - please do not reply as it
was sent from an unattended mailbox.

The variant returning a boolean is for legacy use and returns true if the SMTP communication was successful; otherwise,
returns false. Others variants return an error string on failure.

DXL Reference Manual

230

sendEMailMessage

Declaration

{bool|string} sendEMailMessage (
string fromDescription,
string targetAddress,
string subject,
string message)

string sendEMailMessage (
string fromDescription,
Skip targetAddress,
[, Skip ccAddresses]
[, Skip bccAddresses]
string subject,
string message)

Operation

Performs the same function as sendEMailNotification, but without prepending text to the message.

Creating a user account example

This example creates a new user account named John Smith, having johns as its login name, with whatever password
is entered in the dialog box.

// prevent dxl timeout dialog

pragma runLim, O

// globals

bool g bPasswordOK = true

// user details

const string sUserName = "John Smith"
const string sUserLogin = "johns"

// only relevant if password is required

if (getDatabasePasswordRequired() == true) {
bool bConfirmCompleted = false
// query user

g bPasswordOK =
confirmPasswordDialog (dbExplorer,
bConfirmCompleted)

// check status

DXL Reference Manual

if (bConfirmCompleted == false) {
// adjust accordingly
g bPasswordOK = false
}
}

// check status

if (g _bPasswordOK == true) {
// only relevant if name doesn't exist
// as group or user

if (existsUser (sUserName) == false &&
existsGroup (sUserName) == false) {
bool bCreateCompleted = false
// query user

string sErrorMsg =
createPasswordDialog (dbExplorer,
bCreateCompleted)

// check status

if (sErrorMsg == null &&
bCreateCompleted == true) {
// add new user

if (addUser (sUserName, sUserLogin) ==

null) {
// save new user list
if (saveDirectory () == null) {
// refresh
if (loadDirectory() == null) {
// inform user
infoBox ("User '"sUserName"'
was added successfully.\n")
} else {

// warn user
warningBox ("Failed to load
user list.\n")

}

} else {
// warn user
warningBox ("Failed to save
user list.\n")
}
} else {
// warn user
warningBox ("Failed to add user
'"sUserName"'.\n")

DXL Reference Manual

231

232

} else {
// warn user
warningBox (sErrorMsqg)

}

} else {
// warn user
warningBox ("The name '"sUserName"'
already exists as either a DOORS User or
Group.\n")

Group and user manipulation

Group and user manipulation functions and for loops use the following DX data types: Group, User, GroupList,
UserList, and UserNotifyList. These types have the following permitted values:

Type Constant Meaning

GroupList groupList Provides access to all groups defined in the
database. This is the only constant of type
GroupList.

UserList userList Provides access to all users (with the

exception of the administrator account) who
have an account in the database. This is the
only constant of type UserList.

UserNotifyList userNotifyList Provides access to all users who must be
notified by e-mail of attempts to log in. This
is the only constant of type
UserNotifyList.

find

Declaration
User find()

{Group|User} find(string name)

Operation

The first form returns a handle of type User to the currently logged in user.

DXL Reference Manual

233

The second form returns a handle of type Group or type User for the group or user name. A call to this function where
name does not exist causes a DXL run-time etror. To check that a user or group exists, use the existsGroup,
existsUser functions.

findByID

Declaration

User findByID(string identifier)

Operation

Returns a handle of type User for the specified 1dentifier, or null if the user does not exist but the identifier is valid.
If the specified identifier is badly formed, a DXL run-time etror occurs.

You can extract the identifier for a user from a variable of type User with the identifier property (see “Group and
user properties,” on page 241).

existsGroup, existsUser

Declaration
bool existsGroup(string name)

bool existsUser (string name)

Operation

If the named group or user exists, returns true; otherwise, returns false.

loadUserRecord

Declaration

string loadUserRecord (User user)

Operation

Loads the details of user user from the database.
Example

User u = find("boss")

loadUserRecord (u)
string e = u.email

print e

DXL Reference Manual

234

ensureUserRecordLoaded

Declaration

string ensureUserRecordLoaded (User user)

Operation

If the user’s record for user has not already been loaded, calls the 1oadUserRecord function.

saveUserRecord

Declaration

string saveUserRecord (User user)

Operation

Saves the details of user user to the database.

Note: A saveDirectory () command should be used to commit the changes to the database

Example

User u = find("boss")
loadUserRecord (u)
string e = u.email

if (null e) {
u.email = "boss@work"

}
saveUserRecord (u)

saveDirectory ()

loadDirectory

Declaration

string loadDirectory ()

Operation

Loads the group and user list from the database. All changes made since the last load or save are lost. If the operation
succeeds, returns null; otherwise, returns an error message.

DXL Reference Manual

235

saveDirectory

Declaration

string saveDirectory ()

Operation

Saves all changes to groups, users, and login policies in the database. If the call fails, returns an error message.

Note: This perm places a temporary lock on the users directory. If used in a continuous manner, for example, repeatedly
in a for loop, this could cause conflicts for another user trying to login.

for user in database

Syntax

for user in userlList do {

}
where:

user is a variable of type User

If the database is configured to use an LDAP directory, use:

for user in userlist (“pattern”) do {

}
Operation

Assigns the variable user to be each successive non-administrator user in the database.

For LDAP, if the pattern specified is *, then the loop returns the entire set of users that are available in the LDAP
directory. This operation might require some time, depending on the number of users in the LDAP directory.

Example
This example prints a list of users in the database:
User user

for user in userList (“*”) do {
string uName = user.name
print uName "\n"

DXL Reference Manual

236

for group in database

Syntax

for group in groupList do {

}

where:

group is a variable of type Group

If the database is configured to use an LDAP directory, use:

for group in groupList (“pattern”) do {

}
Operation

Assigns the vatiable group to be each successive group in the database.

For LDAP, if the pattern specified is *, then the loop returns the entire set of groups that are available in the LDAP
directory. This operation might require some time, depending on the number of groups in the LDAP directory.

Example
This example prints a list of groups in the database:
Group group

for group in groupList ("*") do {
string gName = group.name
print gName "\n"

for user in group

Syntax

for user in group do {

where:
user is a vatiable of type User
group is a variable of type Group

DXL Reference Manual

237

Operation

Assigns the vatiable user to be each successive non-administrator user in the specified group.

Example

This example prints a list of users in group development:
User user

Group development = find("development")

for user in development do {
string uName = user.name
print uName "\n"

for group in IdapGroupsForUser

Declaration

for g in ldapGroupsForUser (u) do {

where:
g is a variable of type Group
u is a variable of type User
Operation

Iterate over all groups of which the user passed to the IdapGroupsForUser function is a member. Note that this
iterator is only effective when DOORS® is configured for LDAP, not for the Rational Directory Server.

Example
User u = find(“fred”)
Group g

for g in ldapGroupsforUser (u) do {

for user in notify list

Syntax

for user in userNotifyList do {

DXL Reference Manual

238

where:
user is a vatiable of type User

Operation

Assigns the variable user to be each successive user in the list of users to be notified by e-mail of login activity.

copyPassword

Declaration

string copyPassword()

Operation

This is the same as the existing copyPassword () perm. It performs an identical operation, transferring the shadow
password to the real password but instead of returning a boolean indicating success or failure, it returns NULL on success
and a message on failure. The existing perm can fail resulting in a reported error in the DXL output display if an exception
is thrown. The new perm will catch exceptions and pass the message back to the DXL code for it to display as a pop-up
dialog.

fullName

Declaration

UserElement fullName ()

Operation

This can be used to get the full name of the user.
Example
User u = find()

string name = u.fullName

mayEditDXL

Declaration

UserElement mayEditDXL ()
Operation

Indicates whether the specified user is able to edit and run DXT. programs.

Example
User u = find

bool useDXL = u.mayEditDXL

DXL Reference Manual

239

synergyUsername

Declaration

UserElement synergyUsername ()

Operation

This can be used to retrieve the user’s SYNERGY/Change user name.

This attribute value is only available when DOORS® is configured to use the Rational Directory Servet.

This value is not writable; its value is set when the systemLoginName is set.

Example:

User u = find("Test")

string s = u.synergyUsername
User u = find("Test")
u.synergyUsername = "testuser"

//this generates an error

forename

Declaration

UserElement forename ()

Operation

This can be used to get or set the user’s forename.

This attribute value is only available when DOORS® is configutred to use the Rational Directory Servert.

Setting this value has the side effect of setting the fullName of the user to the concatenation of forename and surname.
This is only relevant when configured to use the Rational Directory Server.

Example
User u = find("Test")

string s = u.forename

User u = find("Test")

u.forename = "Tom"

DXL Reference Manual

240

surname

Declaration

UserElement surname ()

Operation

This can be used to get or set the user’s surname.

This attribute value is only available when DOORS® is configured to use the Rational Directory Servert.

Setting this value has the side effect of setting the fullName of the user to the concatenation of forename and surname.
This is only relevant when configured to use the Rational Directory Server.

Example
User u = find("Test")

string s = u.surname

User u = find("Test")

u.surname = "Thumb"

Group and user management

Group and user management functions use the DXI. data types Group, User, and UserClass.

User class constants

Type UserClass can have one of the following values:

Constant Meaning
administrator User type administrator
standard User type standard
databaseManager User type database manager
projectManager User type project manager
custom User type custom

DXL Reference Manual

241

Group and user properties

Properties are defined for use with the . (dot) operator and a group or user handle to extract information from, or specify
information in a group or user record, as shown in the following syntax:

variable.property

where:
variable is a vatiable of type Group or User
property is one of the user or group properties

The following tables list the group properties and the information they extract or specify (for further details on specifying
information see the setGroup function):

String property Extracts

name name

Boolean property Extracts

Disabled whether the group is disabled

The following tables list the user properties and the information that they extract or specify.
Note: The string properties and Boolean properties in the following tables do not apply to the following DXL
statements. These statements only use one property, the Boolean property Disabled:
* for property in user account
* isAttribute(uset)
e delete(user property)
e get(user property)
* set(user property)

For further details on specifying information, see the setUser function.

String property Extracts

address postal address

email e-mail address

identifier identifier: a string containing a hexadecimal number, which is created
by DOORS®

description description

DXL Reference Manual

242

String property Extracts
name name
password password (write-only)

systemLoginName system login name (not DOORS® user name)

telephone telephone number

fullName full name

Boolean property Extracts

Disabled whether the account is disabled

emailCPUpdates whether the user of the CP system can be notified by
e-mail when the status of a proposal changes, for
example when it is accepted or rejected

mayArchive whether the user can archive and restore modules and

mayCreateTopLevelFolders

mayEditGroupList

mayEditUserList

mayManage

mayPartition

passwordChanged

passwordMayChange

mayUseCommandLinePassword

additionalAuthenticationR
equired

projects

whether the user can create folders at the root of the
database

whether the user can edit, create and delete groups

whether the user can edit, create, and delete user
accounts and groups

whether the user can manage the DOORS® database

whether the user can transfer the editing rights for a
module to a satellite database (see the chapters on
partitions in Using DOORS® and Managing
DOORS®)

whether the password has been changed since the
account was created

whether the user is permitted to change the password

if database restrictions are enabled, whether the user
may use the command line password switch

whether the user is required to perform additional
when logging in (RDS only)

DXL Reference Manual

243

Integer property Extracts
passwordLifetime lifetime of password (0 means unlimited lifetime)
passwordMinimumLength minimum number of characters in password for this

user (non-negative integer)

Type UserClass property Extracts

class class of user; this can be one of the values in “User class
constants,” on page 240

for property in user account

Syntax

for Boolean property Disabled in user do {

}

where:

Boolean property Extracts

Disabled whether the user is disabled
Operation

Assigns Boolean property Disabled to each successive user.

isAttribute(user)

Declaration

bool isAttribute (User user, Boolean property Disabled)

Operation

Returns true if the specified user contains the Boolean property Disabled; otherwise, returns false.

isAttribute(user attribute)

Declaration

bool isAttribute (User user, string attribute)

DXL Reference Manual

244

Operation

Returns true if the specified user contains the string at t ribute; otherwise, returns false.
Example

User u = find("Test")

string attr = "key"

bool b = isAttribute (u, attr)

isAttribute(group attribute)

Declaration
bool isAttribute (Group group, string attribute)

Operation

Returns true if the specified group contains the string at t ribute; otherwise, returns false.
Example

Group g = find("Developers")

string attr = "key"

bool b = isAttribute(g, attr)

delete(user attribute)

Declaration

void delete (User user, string attribute)

Operation

Deletes the specified string at t ribute if found within user.

delete(group attribute)

Declaration

void delete (Group group, string attribute)

Operation

Deletes the specified string at tribute if found within group.

DXL Reference Manual

245

delete(user property)

Declaration

void delete (User user, Boolean property Disabled)

Operation
Deletes the Boolean property Disabled within user. You cannot delete propetties of other types.

This action takes effect after saveUserRecord has been called. It is then permanent and cannot be reversed.

get(user property)

Declaration

string get (User user, Boolean property Disabled)

Operation

Returns the value of the Boolean property Disabled within user. If the property does not exist, a DXL
run-time error occurs.

get(user attribute)

Declaration

string get (User user, string attribute)

Operation

Returns the value of the string at t ribute within user. If the property does not exist, a DXL run-time error occurs.

Example
User u = find(“Test”)
string attr = “key”

string val = get(u, attr)

print val

get(group attribute)

Declaration

string get (Group group, string attribute)

DXL Reference Manual

246

Operation

Returns the value of the string at t ribute within group. If the property does not exist, a DXL run-time error occurs.
Example

Group g = find(“Developers”)

string attr = “key”

string val = get(g, attr)

print val

set(user property)

Declaration

void set (User user, Boolean property Disabled, string value)

Operation

Updates the value of the Boolean property Disabled within user. If the property does not exist it is created.

set(user attribute)

Declaration

void set (User user, string attribute, string value)

Operation

Updates the value of the string attribute to the specified value. If the attribute does not exist it is created.
Example

User u = find(“Test”)

string attr = “key”

string val = “value”

set (u, attr, wval)

set(group attribute)

Declaration

void set (Group group, string attribute, string value)

DXL Reference Manual

247

Operation

Sets the string attribute to the specified value. If the attribute does not exist it is created.

Example
Group g = find(“Developers”)
string attr = “key”

string val = “value”

set (g, attr, val)

setGroup

Declaration

string setGroup (Group id,

property,
{stringl|bool} value)

Operation
Updates the value of the specified standard property (from the String property table) within the group id.

If successful, returns a null string; otherwise, returns an error message.

setUser

Declaration

string setUser (User user,

property,
{string|int|bool} value)

Operation
Updates the value of the specified standard property (from the String property table) within user.

If successful, returns a null string; otherwise, returns an error message.

addGroup

Declaration

string addGroup (string name)

Operation

Creates group name. If the operation is successful, returns a null string; otherwise, returns an error message.

DXL Reference Manual

248

deleteGroup

Declaration
string deleteGroup (Group group)

Operation
Deletes group group from the DOORS® database. It does not affect underlying users.

This action takes effect after the user directory has been refreshed using the saveDirectory function. It is then
permanent and cannot be reversed.

If the operation is successful, returns a null string; otherwise, returns an error message.

addUser

Declaration
string addUser (string name,

string uid)

string addUser (string name,
string password
string uid)

Operation

The first form creates a user account with the specified name, and system login, uid. If the operation succeeds returns a
null string; otherwise, returns an error message. This function must be used after a call to the
createPasswordDialog function, so that the password is set to an initial value. The user must change the password
on first use. If there has been no previous call to the createPasswordDialog function, the password is set to a null
string.

The second form is only supported for compatibility with earlier releases. It is deprecated because passwords are passed as
plain text.

This action takes effect after the user directory has been refreshed using the saveDirectory function.

Example

See the section “Creating a user account example,” on page 230.

deleteUser

Declaration
string deleteUser (User user)

Operation

Deletes the user account for user from the DOORS® database. Appropriate e-mails are also issued to the same people
who are notified of unsuccessful logins.

DXL Reference Manual

249

This action takes effect after the user directory has been refreshed using the saveDirectory function. Itis then

permanent and cannot be reversed.

If the operation is successful, returns a null string; otherwise, returns an error message.

addMember

Declaration

void addMember (Group group,
User user)

Operation
Adds user user to group group.

This action takes effect after the user directory has been refreshed using the saveDirectory function.

deleteMember

Declaration

bool deleteMember (Group group,
User user)

Operation
Deletes user user from group group. If the operation succeeds, returns t rue; otherwise, returns false.

This action takes effect after the user directory has been refreshed using the saveDirectory function.

deleteAllMembers

Declaration
bool deleteAllMembers (Group group)
Operation

Deletes all users from group group.

This action takes effect after the user directory has been refreshed using the saveDirectory function.

member

Declaration

bool member (Group group,
User user)

DXL Reference Manual

250

Operation

If user useris a member of group group, returns t rue; otherwise returns false.

stringOf(user class)

Declaration

string stringOf (UserClass userClass)

Operation

Returns a string representation of the specified user class. This can be one of the following values:
"Administrator"

"Standard"

"Database Manager"

"Project Manager"

"Custom"

LDAP

savelLdapConfig()

Declaration

string savelLdapConfig ()

Operation

Save the LDAP configuration to the database. Returns empty string on success, error message on failure.

loadLdapConfig()

Declaration
string loadLdapConfig ()

Operation

Load the LDAP configuration from the database. Returns empty string on success, error message on failure.

DXL Reference Manual

251

getUseldap()

Declaration
bool getUseldap ()

Operation

Gets the value of the flag which determines if we are using LDAP for storage of user and group information.

setUselLdap()

Declaration
string setUseldap (bool usingLdap)

Operation

Sets the value of the flag which determines if we are using LDAP for storage of user and group information. Only the
administrator can set this value. Returns empty string on success, etror message on failure.

updateUserList()

Declaration
string updateUserList ()

Operation

Update the DOORS® user list from the LDAP user list. Creates standard users for all the users permitted by LDAP if they
do not already exist in the DOORS® database, and updates user name and system login name for existing users.

Note: This operation can take a long time, particularly if no group of DOORS® users has been specified (see
setDoorsUserGroupDN).

updateGroupList()

Declaration
string updateGroupList ()

Operation

Update the DOORS® group list from the LDAP group list. Creates DOORS® groups for all the groups permitted by
LDAP if they do not already exist in the DOORS® database, and updates group name for existing groups.

Note: This operation can take a long time, particularly if no group of DOORS® groups has been specified (see
setDoorsGroupGroupDN).

DXL Reference Manual

252 ‘

LDAP Configuration

findUserRDNFromName

Declaration

string findUserRDNFromName (string name, bool &unique, string &uid)

Operation
Seatch for name in the LDAP directoty, in the attribute specified by name for DOORS® user names, in the DOORS®
user subtree.

If found, return the distinguished name of the entry, relative to the DOORS® user root. Also sets the unique flag t rue if
only one matching entry was found, and fills in the uid string with the system login name obtained from the matching entry.
If not found, returns NULL. Only the administrator can run this function.

findUserRDNFromLoginName

Declaration

string findUserRDNFromLoginName (string uid, bool &unique, string &name)

Operation
Search for uid in the LDAP directory, in the attribute specified for system login names, in the DOORS® user subtree.

If found, return the distinguished name of the entty, relative to the DOORS® user root. Also sets the unique flag t rue if
only one matching entry was found, and fills in the name string with the DOORS® user name obtained from the matching
entry. If not found, returns NULL. Only the administrator can run this function.

findGroupRDNFromName

Declaration

string findGroupRDNFromName (string name, bool &unique)

Operation
Search for name in the LDAP ditectoty, in the attribute specified for DOORS® group names, in the DOORS® group

subtree.

If found, return the distinguished name of the entry, relative to the DOORS® group root. Also sets the unique flag t rue
if only one matching entry was found. If not found, returns NULL. Only the administrator can run this function.

DXL Reference Manual

253

findUserInfoFromDN

Declaration

string findUserInfoFromDN (string dn, string &name, string &uid)
Operation

Search for an entry with distinguished name dn in the LDAP directory.

If found, fills in the name and uid with the DOORS® user name and system login name obtained from the matching entry.
Returns NULL. Only the administrator can run this function.

checkConnect

Declaration

string checkConnect ()

Operation

Check the cutrent LDAP configuration by attempting to connect to the specified server/port as the user specified by
DOORS® bind dn with the DOORS® bind password. Returns NULL on success, error message on failure.

checkDN

Declaration

string checkDN (string dn)

Operation

Check that the given dn is a valid entry in the directory specified by the current LDAP configuration. This can be run to
check that the user root, group root, user group dn, and group group dn have been set to existing values. Only the
administrator can run this function.

Example

LdapItem item

for item in ldapGroupLlist do
{

print item.name "\n"
print item.dn "\n"

print item.uid "\n"

for item in ldapUserList do

DXL Reference Manual

254

print item.name "\n"
print item.dn "\n"

print item.uid "\n"

LDAP server information

getLdapServerName

Declaration

string getLdapServerName ()

Operation
Gets the name of the LDAP server.

setLdapServerName(string)

Declaration

string setLdapServerName (string name)

Operation

Sets the name of the LDAP server. Only the administrator can set this value. Returns empty string on success, error
message on failure.

getPortNo

Declaration
int getPortNo ()

Operation

Gets the port number of the server used for storage of user and group information.

setPortNo

Declaration

string setPortNo (int portNo)

DXL Reference Manual

255

Operation

Sets the port number of the server used for storage of user and group information. Only the administrator can set this value.

Returns empty string on success, error message on failure.

getDoorsBindNameDN

Declaration

string getDoorsBindNameDN ()

Operation

Gets the dn of the user we use to bind to the LDAP server.

setDoorsBindNameDN

Declaration

string setDoorsBindNameDN (string name)
Operation
Sets the dn of the user we use to bind to the LDAP server. Only the administrator can set this value.

Returns empty string on success, error message on failure.

setDoorsBindPassword

Declaration

string setDoorsBindPassword(string pass)

Operation

Sets the password we use to bind to the LDAP server. Only the administrator can set this value.

Returns empty string on success, error message on failure.

Note: Thereis no getDoorsBindPassword as DXL does not need to know this.

setDoorsBindPasswordDB

Declaration

string setDoorsBindPasswordDB (DB parentWindow)

Operation

This presents the user with a password dialog box. If the user enters the same valid password in both fields of the dialog
box, the setDoorsBindPassword () functionality is executed.

DXL Reference Manual

256

This returns null on success, and an error string on failure (either if the user does not enter the same valid password in both
fields of the dialog box, or if the setting of the password option failed).

getDoorsUserRoot

Declaration

string getDoorsUserRoot ()

Operation

Gets the identifier of the directory subtree used for storage of user information.

setDoorsUserRoot

Declaration
string setDoorsUserRoot (string ident)

Operation

Sets the identifier of the directory subtree used to search the LDAP server for users. Only the administrator can set this

value. Returns empty string on success, etror message on failure.

getDoorsGroupRoot

Declaration

string getDoorsGroupRoot ()

Operation

Gets the identifier of the directory subtree used for storage of group information.

setDoorsGroupRoot

Declaration

string setDoorsGroupRoot (string ident)

Operation

Sets the identifier of the directory subtree used to search the LDAP server for groups. Only the administrator can set this
value. Returns empty string on success, error message on failure.

DXL Reference Manual

257

getDoorsUserGroupDN

Declaration

string getDoorsUserGroupDN ()

Operation
Gets the dn of the LDAP group used to specify permitted DOORS® users.

setDoorsUserGroupDN

Declaration
string setDoorsUserGroupDN (string dn)

Operation

Sets the dn of the LDAP group used to specify permitted DOORS® users. Only the administrator can set this value.
Returns empty string on success, error message on failure.

getDoorsGroupGroupDN

Declaration

string getDoorsGroupGroupDN ()

Operation
Gets the dn of the LDAP group used to specify permitted DOORS® groups.

setDoorsGroupGroupDN

Declaration

string setDoorsGroupGroupDN ()

Operation

Sets the dn of the LDAP group used to specify permitted DOORS® groups. Only the administrator can set this value.
Returns empty string on success, error message on failure.

DXL Reference Manual

258 ‘

LDAP data configuration

getDoorsUsernameAttribute

Declaration

string getDoorsUsernameAttribute ()

Operation
Gets the name of the LDAP attribute to be used for a DOORS® user name.

setDoorsUsernameAttribute

Declaration

string setDoorsUsernameAttribute (string name)

Operation

Sets the name of the LDAP attribute to be used for a DOORS® user name. Only the administrator can set this value.
Returns empty string on success, error message on failure.

getLoginNameAttribute

Declaration

string getLoginNameAttribute ()

Operation

Gets the name of the LDAP attribute to be used for the system login name.

setLoginNameAttribute

Declaration

string setLoginNameAttribute (string name)

Operation

Sets the name of the LDAP attribute to be used for the system login name. Only the administrator can set this value.
Returns empty string on success, error message on failure.

DXL Reference Manual

259

getEmailAttribute

Declaration
string getEmailAttribute ()

Operation

Gets the name of the LDAP attribute to be used for the uset’s email address.

setEmailAttribute

Declaration

string setEmailAttribute (string email)

Operation

Sets the name of the LDAP attribute to be used for the user’s email address. Only the administrator can set this value.

Returns empty string on success, error message on failure.

getDescriptionAttribute

Declaration

string getDescriptionAttribute ()

Operation

Gets the name of the LDAP attribute to be used for the user’s description.

setDescriptionAttribute

Declaration

string setDescriptionAttribute (string name)

Operation

Sets the name of the LDAP attribute to be used for the user’s description. Only the administrator can set this value. Returns

empty string on success, error message on failure.

getTelephoneAttribute

Declaration
string getTelephoneAttribute ()

DXL Reference Manual

260

Operation

Gets the name of the LDAP attribute to be used for the users’s telephone number.

setTelephoneAttribute

Declaration

string setTelephoneAttribute (string phone)

Operation

Sets the name of the LDAP attribute to be used for the users’s telephone number. Only the administrator can set this value.

Returns empty string on success, error message on failure.

getAddressAttribute

Declaration
string getAddressAttribute ()

Operation

Gets the name of the LDAP attribute to be used for the users’s address.

setAddressAttribute

Declaration

string setAddressAttribute (string address)

Operation

Sets the name of the LDAP attribute to be used for the users’s address. Only the administrator can set this value. Returns

empty string on success, error message on failure.

getGroupObjectClass

Declaration
string getGroupObjectClass ()

Operation

Gets the name of the LDAP object class to be used to identify groups. Typically this value will be
groupOfUniqueNames.

DXL Reference Manual

261

setGroupObjectClass

Declaration
string setGroupObjectClass (string class)

Operation

Sets the name of the LDAP object class to be used to identify groups. Only the administrator can set this value. Returns

empty string on success, error message on failure.

getGroupMemberAttribute

Declaration
string getGroupMemberAttribute ()

Operation

Gets the name of the LDAP attribute to be used to identify group members. Typically this value will be uniqueMember.

setGroupMemberAttribute

Declaration

string setGroupMemberAttribute (string name)

Operation

Sets the name of the LDAP attribute to be used to identify group members. Only the administrator can set this value.
Returns empty string on success, error message on failure.

getGroupNameAttribute

Declaration
string getGroupNameAttribute ()

Operation

Gets the name of the LDAP attribute to be used for a group’s name. Typically this value will be cn.

setGroupNameAttribute

Declaration
string setGroupNameAttribute (string group)

DXL Reference Manual

262

Operation

Sets the name of the LDAP attribute to be used for a group’s name. Only the administrator can set this value. Returns

empty string on success, etror message on failure.

Group and user properties

Declaration
string ldapRDN

If we have auser u, print u.ldapRDN prints the user’s LDAP relative distinguished name, which may be empty if
LDAP is not being used.

The administrator can set a user’s LDAP rdn with

u.ldapRDN = new value.

string utf8(ansiString)

Declaration

string utf8(string ansiString)

Operation

This returns the UTF-8 format conversion of an ANSI string argument ansiString. LDAP servers use UTF-8
encoding, whereas DOORS® data is stored in ANSI format. This affects the encoding of extended characters, such as
accented letters, which are encoded in UTF-8 as 2-byte sequences.

string ansi(utf8String)

Declaration

string ansi(string utf8String)

Operation

This returns the ANSI format conversion of a UTF-8 string argument ut £8String. LDAP servers use UTF-8 encoding,
whereas DOORS® data is stored in ANSI format. This affects the encoding of extended characters, such as accented
letters, which are encoded in UTF-8 as 2-byte sequences.

Rational Directory Server

After using any of the following functions to modify the Rational Directory Server, use the saveL.dapConfig() function to
save the modifications.

DXL Reference Manual

263

getUseTelelogicDirectory

Declaration
bool getUseTelelogicDirectory ()

Operation

Returns a flag indicating whether Rational Directory Server support is enabled.

setUseTelelogicDirectory

Declaration
string setUseTelelogicDirectory (bool b)

Operation
Enables or disables Rational Directory Server support.
Returns an error string if the current user is not the administrator.

Returns an error message if the argument is t rue and ordinary LDAP is already enabled.

getTDServerName

Declaration

string getTDServerName ()

Operation

Returns the Rational Directory Server name.

setTDServerName

Declaration

string setTDServerName (string s)

Operation
Sets the Rational Directory Server name.

Returns an error string if the current user is not the administrator.

DXL Reference Manual

264

getTDPortNo

Declaration
int getTDPortNo ()

Operation

Returns the Rational Directory Server port number.

setTDPortNo

Declaration

string setTDPortNo (int 1)
Operation

Sets the Rational Directory Server port number.

Returns an error string if the current user is not the administrator.

getTDBindName

Declaration
string getTDBindName ()

Operation

Returns the Rational Directory Server administrator bind (login) name.

setTDBindName

Declaration

string setTDBindName (string s)

Operation
Sets the Rational Directory Server administrator bind (login) name.

Returns an error string if the current user is not the administrator.

setTDBindPassword

Declaration

string setTDBindPassword (string s)

DXL Reference Manual

265

Operation
Sets the Rational Directory Server administrator bind (login) password.

Returns an error string if the current user is not the administrator.

setTDBindPassword

Declaration
string setTDBindPassword (DB bind pass)

Operation

Sets the Rational Directory Server administrator bind (login) password from the specified database.

getTDUseDirectoryPasswordPolicy

Declaration

bool getTDUseDirectoryPasswordPolicy ()

Operation

Returns a flag indicating whether the directory should handle all password policy issues.

setTDUseDirectoryPasswordPolicy

Declaration
string setTDUseDirectoryPasswordPolicy(bool TD dir)

Operation
Enables or disables support for the directory password policy.

Returns an error string if the current user is not the administrator.

getAdditionalAuthenticationEnabled

Declaration
bool getAdditionalAuthenticationEnabled()

Operation

Returns true if enhanced security users need to perform additional authentication during login. Only relevant when

authentication is being controlled via RDS.

DXL Reference Manual

266

getAdditionalAuthenticationPrompt

Declaration
string getAdditionalAuthenticationPrompt ()

Operation

Returns the label under which additional authentication is requested, if enhanced security is enabled, for example the label
for the second “password” field. Only relevant when authentication is being controlled via RDS.

getSystemLoginConformityRequired

Declaration
bool getSystemLoginConformityRequired ()

Operation

Returns true if enhanced security users have there system login verified when logging in. Only relevant when
authentication is being controlled via RDS.

getCommandLinePasswordDisabled

Declaration

bool getCommandLinePasswordDisabled ()

Operation

Return true if the =P command line password argument is disabled by default.

setCommandLinePasswordDisabled

Declaration

string getCommandLinePasswordDisabled (bool)

Operation

Sets whether the —P command line password argument is disabled by default. Supplying t rue disables the option by
default.

DXL Reference Manual

267

Chapter 16

DOORS® hierarchy

This chapter describes features that are relevant to items, folders, and projects within the IBM® Engineering Requirements
Management DOORS® (DOORS®) hierarchy. Features specific to modules and objects are described in the following
chapters:

* About the DOORS® hierarchy
* Ttem access controls

* Hierarchy clipboard

* Hierarchy information

e Hierarchy manipulation

e Items

* Folders

e Projects

* Looping within projects

About the DOORS® hierarchy

Within a DOORS® database there are items, which can be folders, projects, and modules. A project is a special type of
folder. The database root is also a folder.

In DXL, the DOORS® hierarchy is represented by the data types Item, Folder, Project, and a call to the module
function. Open modules ate also represented by the Module data type.

Functions that operate on items have equivalents for folders, projects and modules.

Modules and folders are in general referenced by their unqualified names (without paths). However, DXL scripts can
specify fully qualified names, which ate distinguished by the inclusion of one or more slash (/) characters. These names can
be cither relative to the current folder, for example:

../folder/module

or absolute (with a leading slash), for example:

/ folder/module

Create functions fail if an invalid (non-existent) path is specified.

Functions common to all hierarchy items are described in “Hierarchy clipboard,” on page 269, “Hierarchy information,” on
page 272, and “Hierarchy manipulation,” on page 276.

Functions specific to items of type Item are described in “Items,” on page 278.
P yp > pag

Functions specific to folders are described in “Folders,” on page 281.

DXL Reference Manual

268

Functions specific to projects are described in “Projects,” on page 284.

Functions specific to modules are described in “Modules,” on page 291.

[tem access controls

This section describes functions that report on access rights for items.

canCreate(item)

Declaration
bool canCreate({Item i|Folder f})

Operation

Returns true if the current DOORS® user has create access to the item or folder specified by the argument. Otherwise,
returns false.

canControl(item)

Declaration
bool canControl ({Item i|Folder f})

Operation

Returns t rue if the cutrent DOORS® user can change the access controls on the item or folder specified by the argument.
Otherwise, returns false.

canRead(item)

Declaration
bool canRead({Item i|Folder f})

Operation

Returns true if the current DOORS® user can read the item or folder specified by the argument. Otherwise, returns
false.

canModify(item)

Declaration
bool canModify({Item i|Folder f})

DXL Reference Manual

269

Operation

Returns true if the current DOORS® user can modify the item or folder specified by the argument. Otherwise, returns
false.

canDelete(item)

Declaration
bool canDelete({Item i|Folder f})

Operation

Returns true if the current DOORS® user can delete the item or folder specified by the argument. Otherwise, returns
false.

Hierarchy clipboard

This section defines functions for the hierarchy clipboard. Passing a null argument of type Item, Folder, or
Project to any function, or a null string to a call to the module function results in a run-time DXL error. The term item
means a variable of type Item, type Folder, or type Project, or a call to the module function.

clipCut

Declaration
string clipCut (Item 1)

Operation

Places a write lock on the item specified by the argument, and adds it to the clipboard as part of a set of cut items. If the
write lock fails, or if the user does not have delete access to the item and its descendants (if any), the call to c1ipCut fails.

If the previous operation was not a cut, this function first clears the clipboard. If the item is deleted, returns an error

message.

No other user can open the cut item until it has been pasted or the cut has been undone.

clipCopy

Declaration
string clipCopy(Item 1)

DXL Reference Manual

270

Operation

Places a share lock on the item specified by the atgument, and adds it to the clipboard as part of a set of copied items. If the
share lock fails, or if the user does not have read access to the item, the call to c1ipCopy fails. Any descendants of the
item to which the user does not have read access are not included as part of the set of items placed on the clipboard.

If the previous operation was a paste, this function first clears the clipboard. If the previous operation was a cut, this
function first performs an undo. If the item is deleted, returns an error message.

No other user can move, delete or rename the item until it has been pasted or the copy has been undone.

clipClear

Declaration
string clipClear ([bool forcel)

Operation

If the last operation was not a cut, unlocks and clears the clipboard contents. If the last operation was a cut, the result
depends on the value of force as follows:

false the call fails

true purges the contents of the clipboard from the database.

If you omit force, its value is assumed to be false.

clipPaste

Declaration
string clipPaste (Folder folderRef)

Operation

Pastes the contents of the clipboatd to folderRef. If the user does not have create access to the destination, the call to
clipPaste fails. If folderRef is deleted, returns an error message.

If the previous operation was a cut, moves the contents of the clipboard from their original location, and places a share lock
on them. Otherwise, unlocks the originals, and makes copies of them in folderRef. In this case, any projects have Copy

of in front of their names, because duplicate project names are not allowed. If this still results in duplicate names, Copy n

of is used, where n is the lowest number >= 2 that prevents duplication. This function uses the same naming convention
to avoid duplication when copying items into their original folder.

The items pasted from the clipboard remain share locked until the clipboard is cleared. This is done automatically when the
client closes down, or when the user opens any module in the clipboard for exclusive edit, or deletes, renames, or moves any
item in the clipboard.

DXL Reference Manual

271

clipUndo

Declaration
string clipUndo ({Item 1)

Operation

If the last operation was a cut or copy, unlocks and clears the clipboard contents.

clipLastOp

Declaration
int clipLastOp ()
Operation

Returns an integer indicating the last operation performed on the hierarchy clipboard. The returned value can be of: Cut,
Copy, Clear, Paste, Undo.

itemClipboardlsEmpty

Declaration
bool itemClipboardIsEmpty ()

Operation

If there are no items in the hierarchy clipboard, returns true; otherwise, returns false.

inClipboard

Declaration
bool inClipboard({Item i|Folder f|Project p|Module m|ModName modRef})

Operation

If the item specified by the argument is in the hierarchy clipboard, returns t rue; otherwise, returns false.

DXL Reference Manual

272 ‘

Hierarchy information

This section defines functions that provide information about items, folders, projects, or modules. The term e means a
variable of type Item, type Folder, type Project or type ModName . You can also reference an open module using
the data type Module. Passing a null argument of type Item, Folder, Project, Module or ModName _ to any
function results in a run-time DXL error.

folder, project, module(state)

Declaration
bool folder (string folderName)
bool project(string projectName)

bool module (string moduleName)

Operation

Returns true if the argument is the name of a folder, project, or module to which the current user has read access;
otherwise, returns false.

Because a project is a special class of folder, the folder function returns t rue for projects as well as other folders.

description

Declaration
string description({Item i|Folder f|Project p|Module m|ModName modRef})

Operation

Returns the description of the item specified by the argument.

Example

print description current Module

name(item)

Declaration
string name ({Item i|Folder f|Project p|Module m|ModName modRer})

Operation

Returns the unqualified name of the item specified by the argument.

Example

print name current Module

DXL Reference Manual

273

fullName(item)

Declaration
string fullName ({Item i|Folder f|Project p|Module m|ModName modRef})

Operation

Returns the full name of the item specified by the argument, including the path from the nearest ancestor project, or if not

inside a project, from the root folder.

path(item)

Declaration
string path({Item i|Folder f|Project p|Module m|ModName modRef})

Operation

Returns the full name of the parent of the item specified by the argument from the nearest ancestor project, or if not inside

a project, from the root folder.

getParentFolder(item)

Declaration
Folder getParentFolder ({Item i|Folder f|Project p|Module m|ModName modRef})

Operation

Returns the folder containing the item specified by the argument. If the argument is the root folder, returns null.

getParentProject(item)

Declaration
Project getParentProject ({Item i|Folder f|Project p|Module m|ModName modRef})

Operation

Returns the nearest ancestor project for the item specified by the argument, or null if there is none. If the item is a project,
this function does not return the project itself, but the nearest one above (or null if there is none).

isDeleted(item)

Declaration
bool isDeleted({Item i|Folder f|Project p|ModName modRef})

DXL Reference Manual

274

Operation

If the item specified by the argument is marked as deleted ot soft deleted, or if it does not exist, or if the user does not have
read access to it, returns t rue; otherwise, returns false.

setShowDeletedltems(bool)

Declaration
void setShowDeletedItems (bool show)

Operation

If bool show is set to true, deleted items will be visible in the Database Explorer. Setting show to f£alse hides all
deleted items.

type
Declaration
string type({Item i|Folder f|Module m|ModName modRef})
Operation
Returns the type of the item specified by the argument as a string. Possible values are shown in the following table.
Return value Item Folder Module
"Folder" y y n
"Project" y y n
"Formal" y n y
"Link" y n y
"Descriptive" y n y
Example
print type(item "/")
uniquelD

Declaration
string uniquelID({Item i|Folder f|Project p|ModName modRef|Module m})

DXL Reference Manual

275

Operation

Returns a unique identifier for the specified item, which lasts for the lifetime of the item, and is never reused. The unique
identifier does not change when the item is moved or renamed. If the item is copied, the copy has a different identifier.

A call to this function where 1 does not exist causes 2 DXL run-time etrot.

qualifiedUniquelD

Declaration
string qualifiedUniqueID({Item i|Folder f|Project p|ModName name|Module m})

Operation

Returns a representation of a reference to the specified Item, Folder, Project, Module or ModName_, which
uniquely identifies that object amongst databases.

Provided that supported mechanisms for the creation of DOORS® databases are used, these unique identifiers can be
treated as globally unique; no two objects in any two databases will have the same qualifiedUniquelD.

See also uniquelD, which returns an unqualified representation of a reference.

getReference

Declaration

string getReference (Item referrer, Item referee)

Operation

Returns a reference to the referee from the referrer. This reference is invatiant under archive/restore (both inter-database
and intra-database) and copy/paste. Such a reference is to be used in preference to the referee’s index, unless the reference
is intended to be variant under such operations.

itemFromReference

Declaration

Item itemFromReference (Item referrer, string ref)

Operation

Returns the item to which ref refers from the specified referrer. ref must be a string that was obtained using the
getReference () perm. If the reference cannot be resolved, the returned item will satisfy null.

Example
Make a reference from the current module to an item named “a”

Item i = item fullName current Module

Item j = item "a"

DXL Reference Manual

276

// rj is a reference to j from i

string rj = getReference (i, 7j)

print rj "\n"

This reference will never change when i and j are moved, copied (together), archived, and restored (together).

Copyiand j to getii and jj
Item j = itemFromReference (i, rj) // get item that rj refers
Item jj = itemFromReference (ii, rj) // get item that rj refers

Typically these would be used when generating traceability. The DXL that generates the layout DXL or attribute DXL
would call getReference and then insert the returned value into the layout DXL or attribute DXL code as the value
passed to itemFromReference ().

Hierarchy manipulation

This section defines functions for item manipulation. All creation functions are specific to the type of item being created,
but you can delete, undelete, purge, move, and rename items of all types using the Item handle. The term item means a
variable of type Item, type Folder, type Project or type ModName . You can also reference an open module using
the data type Module. Passing a null argument of type Item, Folder, Project, Module or ModName to any
function results in a run-time DXL error.

delete(item)

Declaration
string delete({Item i|Folder f|Project p})

string delete (ModName &modRef
[,bool hardDelete])

bool delete (ModName &modRefr)

Operation

Marks the item specified by the argument as deleted. If the item is already marked as deleted, or if the user does not have
delete access to it, the call fails.

The first and second forms return a null string on success; otherwise, an error message.

In the second form, if hardDelete is set to false, the module is not purged. If hardDelete is true or missing
and if the module was soft-deleted, the module is purged. If the module was not soft-deleted, the function returns an error
message. If the operation succeeds and the module is purged, the function also sets the ModName argument to null.

DXL Reference Manual

277

The third form is retained for compatibility with earlier releases. It returns t rue on success; otherwise, false. This is
equivalent to hardDelete (module) (the module need not be soft deleted). If the operation succeeds, also sets the
ModName argument to null.

For a folder or project, the user must also have delete access to all the undeleted folders, projects, and modules in it.

undelete(item)

Declaration
string undelete({Item i|Folder f|Project p|ModName modRef})

bool undelete (ModName modRef)

Operation

Marks the item specified by the argument as undeleted. If the item is not marked as deleted, or if the user does not have
delete access to the item, the call fails.

The first form returns a null string on success; otherwise, an error message.
The second form is retained for compatibility with earlier releases. It returns true on success; otherwise, false.

For a folder or project, this function also marks as undeleted all folders, projects, and modules in it, to which the user has

delete access.

Example

undelete item "my folder"

purge(item)

Declaration
string purge ({Item &i|Folder &f|Project &p|ModName &modRef})

bool purge (ModName &modRef)

Operation

Purges the item specified by the argument from the database. If the operation succeeds, sets the argument to null. If the
item is not marked as deleted, ot if the user does not have delete access to the item, the call fails.

The first form returns a null string on success; otherwise, an error message.
The second form is retained for compatibility with earlier releases. It returns true on success; otherwise, false.
For a folder or project, the user must also have delete access to all the undeleted folders, projects, and modules in it.

For aModName argument, the function deletes all incoming and outgoing links before purging the module.

Example
purge item "my folder"

or

DXL Reference Manual

278

Item i = item "my folder"
purge i

move(item)
Declaration

string move ({Item i|Folder f|Project p|ModName modRef}, Folder destination)

Operation

Moves the item specified by the first argument to folder destination. The folder can be any folder except the database

root.
If the user does not have delete access to the item, or create access to the destination folder, the call fails.

If the operation succeeds, returns a null string; otherwise, returns a string describing the error.

Example

move (item "My Module", folder "/new projects")

rename(item)

Declaration

string rename ({Item i|Folder f|Project
plModName modRef},
string name,
string description)

bool rename (ModName modRefr)

Operation

Renames the item specified by the first argument to name and associates it with description. The name argument
must be an unqualified name. If the user does not have modify access to the item, the call fails.

The first form returns a null string on success; otherwise, an error message.

The second form is retained for compatibility with earlier releases. It returns true on success; otherwise, false.

Example

rename (folder "my folder", "public", "for review")

ltems

This section defines functions and for loops for items, which make use of the Ttem data type. Passing a null argument
of type ITtem to any function results in a run-time DXL etror.

DXL Reference Manual

279

See also the functions in “Hierarchy clipboard,” on page 269, “Hierarchy information,” on page 272, and “Hierarchy
manipulation,” on page 270.

item(handle)

Declaration

Item item(string itemName)

Operation

If itemName is the name of an item to which the current user has read access, returns a handle of type I tem; otherwise,
returns null.

itemFromID(handle)

Declaration

Item itemFromID (string uniquelD)

Operation

If uniqueIDis the ID of an item to which the current user has read access, returns a handle of type I tem; otherwise,
returns nul 1.

for item in folder

Syntax
for itemRef in folder do {
}
where:
itemRef is a vatiable of type Item
folder is a variable of type Folder
Operation

Assigns 1temRef to be each successive undeleted item (for which the user has read access) in folder. Items in
sub-folders are not included.

Example
Item i

for 1 in current Folder do {
print (name i) "\n"

DXL Reference Manual

280

for all items in folder

Syntax

for itemRef in all folder do {

}

where:
itemRef is a vatiable of type Item
folder is a variable of type Folder
Operation

Assigns 1 temRef to be each successive item (for which the user has read access) in folder, including deleted items.
Items in sub-folders are not included.

Example
Folder f = current

Item itemRef

for itemRef in f do {

print fullName (itemRef) "\n"

for all items in project

Syntax

for itemRef in project do {

}

where:
itemRef is a variable of type ITtem
project is a variable of type Project
Operation

Assigns 1 temRef to be each successive undeleted item (for which the user has read access) in project, looping
recutsively through contained folders and projects.

DXL Reference Manual

281

Example
Item itemRef

for itemRef in current Project do
print name (itemRef) "\n"

Folders

'This section defines functions for folders.

See also the functions in “Hierarchy clipboard,” on page 269, “Hierarchy information,” on page 272, and “Hierarchy
manipulation,” on page 270.

Setting current folder

The assignment operator = can be used as shown in the following syntax:
current = Folder folder

Makes folder the current folder, provided the user has read access to the folder. See also, the current (folder)
function.

To set the current folder to the database root, use:
current = folder "/"

For large DXL programs, when you set the current folder, cast the current on the left hand side of the assignment to the
correct type. This speeds up the parsing of the DXL program, so when your program is first run, it is loaded into memory
quicker. It does not affect the subsequent execution of your program. So:

current = newCurrentFolder
becomes
(current FolderRef) = newCurrentFolder

Note that this cast only works for assignments to current. It is not useful for comparisons or getting the value of the current
folder.

current(folder)

Declaration

Folder current ()

Operation
Returns a handle on the current folder.
The current folder can be a project.

The current folder has two important implications:

DXL Reference Manual

282

* When you specify an item name, it is interpreted relative to the current folder.

* When you set the current folder using the assignment operator, you lock that folder and its ancestors, so that it cannot
be renamed, deleted or moved.

The project or folder that is opened in the Database Explorer is similarly locked. If you open a DXL window or run
another DXL script, that has its own current folder. The current folder for the DXL window is initially the current
folder of its patent.

If all folders are closed, the database root becomes the current folder.

Example

Folder f = current

folder(handle)

Declaration
Folder folder (string folderName)

Folder folder (Item itemRef)

Operation

If the argument specifies a folder to which the current user has read access, returns a handle of type Folder; otherwise,
returns null.

The string "/" identifies the database root.
Example
This example sets the current folder to the database root:

current = folder "/"

convertProjectToFolder

Declaration
string convertProjectToFolder (Project projectRef, Folder &folderRef)

Operation

Converts the project projectRef to a folder folderRef. If the operation succeeds, sets projectRef tonull,
makes the folder argument valid, and returns a null string; otherwise, returns an error message. If the user does not have
control access to the project or the create projects power (through mayCreateTopLevelFolders), the call fails.

Example

Project p = project "/Construction Project"
Folder £

string s = convertProjectToFolder (p, f)

DXL Reference Manual

283

if (null s)

print "Converted project " name(f) "to folder."
else
print "Error: " s

convertFolderToProject

Declaration

string
convertFolderToProject (Folder folderRef,
Project &projectRef)

Operation

Converts the folder folderRef to a project projectRef. If the operation succeeds, sets folderRef to null,
makes the project argument valid, and returns a null string; otherwise, returns an error message. If the user does not have
control access to the folder or the create projects power (through mayCreateTopLevelFolders), the call fails.

Example
Folder f = folder "/Construction Project/test records"
Project p
string s = convertFolderToProject(f, p)
if (null s)
print "Converted folder " name(p) "to project."
else
print "Error: " s

create(folder)

Declaration

Folder create(string name,
string description)

string create (string name, description desc, Folderé& f)

Operation

Creates a folder with the given name and description. The name argument can be an absolute or relative name, and
may include the path. If the user does not have create access to the patrent folder, the call fails.

The second form of the perm performs the same function as the first, but returns any error message, and passes the created
folder back via the last argument.

DXL Reference Manual

284

closeFolder

Declaration

string closeFolder ()

Operation

Changes the current folder to refer to the parent of the current folder. If the operation succeeds returns a null string;
otherwise, returns a string describing the error.

Example

closeFolder ()

Projects

This section defines operators, functions and for loops for projects, which make use of the Project data type. Passing a
null argument of type Project to any function results in a run-time DXL error.

See also the functions in “Hierarchy clipboard,” on page 269, “Hierarchy information,” on page 272, and “Hierarchy
manipulation,” on page 270.

Setting current project

The assignment operator = can be used as shown in the following syntax:
current = Project project

Makes project the current folder, and the current project, provided the user has read access to the folder. See also, the
current (project) function.

If the current folder is a project, it is also the current project. If the cutrent folder is not a project, the current project is the
nearest project containing the current folder. If the current folder is not contained in a project, the current project is null.

For large DXL programs, when you set the current project, cast the current on the left hand side of the assignment to the
correct type. This speeds up the parsing of the DXL program, so when your program is first run, it is loaded into memory
quicker. It does not affect the subsequent execution of your program. So:

current = newCurrentProject
becomes
(current FolderRef) = newCurrentProject

Note that this cast only works for assignments to current. It is not useful for comparisons or getting the value of the current
project.

Example

current = project "/My Project"

DXL Reference Manual

285

current(project)

Declaration

Project current ()

Operation

Returns a handle on the nearest ancestor project of the current folder, or null if the current folder is not in any project.

Example
Module m
// check project is open

if (null current Project) {
ack "No project is open"
halt

}

for m in current Project do {
print "Module " m."Name" " is open"

project(handle)

Declaration
Project project(string projectName)
Project project (Item itemRef)

Operation

If the argument specifies a project to which the current user has read access, returns a handle of type Project to the
project; otherwise, returns null.

for project in database

Syntax

for project in database do {

}
where:

project is a variable of type Project

DXL Reference Manual

286

Operation

Assigns project to be each successive project (for which the user has read access) in the database, excluding deleted
projects. Compare with for all projects in database.

Example
This example prints a list of projects in the database:
Project p

for p in database do {
print (name p) "\n"

}

for all projects in database

Syntax

for name in database do {

}
where:

name is a string variable

Operation

Assigns the string name to be each successive project name (for which the user has read access) in the database, including
deleted projects. Compare with for project in database.

Example
This example prints a list of projects in the database:
string s

for s in database do {
print s "\n"

getinvalidCharinProjectName

Declaration

char getInvalidCharInProjectName (string s)

Operation

Returns any character in string s that would be invalid in a project name.

DXL Reference Manual

287

isDeleted(project name)

Declaration

bool isDeleted(string projectName)

Operation

If projectName is a project that has been deleted but not purged, or if it does not exist, or if the user does not have read
access to it, returns true; otherwise, returns false.

This function is retained only for compatibility with eatlier releases. New programs should use the isDeleted (item)
function.

Example
Project p = project "Test Project"

if (!'null p && !isDeleted p)
current = p

isValidName

See “isValidName,” on page 298.

create(Project)

Declaration

Project create(string projName,
string description
[,string adminUser
[,string password,
string loginsystem,
int passwordPolicy,
int adminPolicy,
string &messagell)

string create(string name, description desc, Projecté& p)

Operation

Creates a project, projName, having description. The adminUser and following arguments are retained for
compatibility with earlier releases; in Rational DOORS 6.0, the values of these arguments are ignored. However, a call to
create that uses any of the legacy arguments sets the current folder to the new project (for compatibility with legacy DXL
scripts, which expect the new project to be opened).

You must assign this function to a variable of type Project, otherwise, it tries to create a linkset between modules
projName and description.

Administrator power is required for this function.

DXL Reference Manual

288

The second form of the perm performs the same function as the original perm, but returns any error message, and passes
the created project back via the last argument.

Example
Project p = create("Test Project", "Play area for
DOORS")
closeProject
Declaration

void closeProject()

Operation

Sets the parent of the current project to be the new current folder. In Rational DOORS 6.0, closing a project means
changing the current folder.

Example

closeProject ()

openProject

Declaration

string openProject (string projName
[,string user,
string pass])

Operation

Sets the named project as the current folder. The user and password arguments are retained for compatibility with
carlier releases. In Rational DOORS 6.0 these arguments ate ignored.

If the project opens successfully, returns null; otherwise returns an error message. If the project does not exist, or the user
does not have read access to it, the call fails.

Example

string mess = openProject ("Demo", "Catrina Magali", "aneblr")

doorsVersion

Declaration

string doorsVersion ()

Operation

Returns the version of the current DOORS® executable as a string.

DXL Reference Manual

Example

print doorsVersion

Looping within projects

The following sections describe the for loops available for looping within projects:

for all items in project

for open module in project

for all modules in project

for in-partition in project

for out-partition in project

for partition definition in project

for trigger in project

DXL Reference Manual

289

290

DXL Reference Manual

291

Chapter 17
Modules

This chapter describes features that operate on IBM® Engineering Requitrements Management DOORS® (DOORS®)
modules:

* Module access controls
* Module references

* Module information

* Module manipulation

* Module display state

* Baselines

* Baseline Set Definition
* Baseline Sets

* History

* Descriptive modules

* Recently opened modules

* Module Properties

Module access controls

This section describes functions that report on access rights for a module. The module has to be open in exclusive edit
mode.

canCreate(module)

Declaration

bool canCreate (Module m)

Operation

Returns true if the current DOORS® user has create access to module m; otherwise, returns false.

DXL Reference Manual

292 ‘

canControl(module)

Declaration

bool canControl (Module m)

Operation

Returns true if the current DOORS® user can change the access controls on module m; otherwise, returns false.

canModify(module)

Declaration

bool canModify (Module m)

Operation

Returns true if the current DOORS® user can modify module m; otherwise, returns false.f

canDelete(module)

Declaration
bool canDelete (Module m)

Operation

Returns true if the current DOORS® user can delete module m; otherwise, returns false.

Module references

This section defines functions and for loops that make use of the Module data type.

See also the functions in “Hierarchy clipboard,” on page 269.

Setting current module

The assignment operator = can be used as shown in the following syntax:
current = Module module
Makes module the current module. See also, the current (module) function.

For large DXL programs, when you set the current module, cast the current on the left hand side of the assignment to the
correct type. This speeds up the parsing of the DXL program, so when your program is first run, it is loaded into memory
quicker. It does not affect the subsequent execution of your program. So:

DXL Reference Manual

293

current = newCurrentModule
becomes
(current ModuleRef) = newCurrentModule

Note that this cast only works for assignments to current. It is not useful for compatisons or getting the value of the current
module.

current(module)

Declaration

Module current ()

Operation

Returns a reference to the current module. In some contexts current could be ambiguous, in which case it should be
followed by Module in a cast.

Example

print (current Module)."Description”™ "\n"

module(handle)

Declaration
Module module (Item itemRef)
ModName module (string modRef)

Operation

The first form returns a handle of type Module for i temRef if i temRef is an open module. Otherwise, it returns
null.

The second form returns a handle of type ModName _ for the named module, whether it is open or closed.

for module in database

Syntax

for m in database do {
}
where:

mis a variable of type Module

Operation

Assigns the variable m to be each successive open module (for which the user has read access) in the database.

DXL Reference Manual

294

for open module in project

Syntax

for m in project do {

where:
m is a vatiable of type Module
project is a variable of type Project
Operation

Assigns the variable m to be each successive open module (for which the user has read access) in project. This loop
includes modules in sub folders as well as those in the top level of the project. It does not include modules in projects that
are contained in the project. This only works on the user’s computer.

Example
Module m

int count = 0

for m in current Project do {
print m."Name" "\n"
count++

}

if (count==0)
print "no modules in current project\n"

for all modules in project

Syntax

for moduleName in project do {

}

where:
moduleName is a string variable
project is a variable of type Project

DXL Reference Manual

295

Operation

Assigns the variable moduleName to be each successive module name (for which the user has read access) in project.
This loop includes open or closed modules but only at the top level of the project. This is no longer everything contained in
the project. This only works on the uset’s computer.

Example
string modName

for modName in current Project do
print modName "\n"

for Module in Folder do

Syntax

for m in folder do {

where:
m is a vatiable of type Module
folder is a variable of type Folder
Operation
This provides access to all open modules that have the specified folder as their parent.
Example
Module m
Folder f = current

for m in £ do {

print "Module " (name m) " is open "\n"

Module information

This section defines functions that return information about DOORS® modules.

See also the functions in “Hierarchy information,” on page 272.

DXL Reference Manual

296

Module state

Declaration

bool baseline (Module m)

bool exists(ModName modRef)

bool open (ModName modRef)

bool unsaved (Module m)

Operation

Each function returns true for a condition defined by the function name as follows:

Function Returns true if
baseline module m is a baseline; otherwise, returns false
exists module modRef exists in the current project; otherwise, returns false
open module modRef is open in any mode; otherwise, returns false
unsaved module m has not been saved since changes were made; otherwise returns
false
Example
string s = "/projl/SRD"
Item i = item s
if (exists module s) print "and the system requirements ... \n"

if (open module s) print "SRD is open\n"

version

Declaration

string version (Module m)

Operation

Returns the version of open module m as a string.

Example

print (version current Module)

DXL Reference Manual

297

canRead, canWrite(module)

Declaration
bool canRead (Module m)
bool canWrite (Module m)

Operation

Returns whether the current DOORS® user has read or write access to the top of open module m.

getSelectedCol

Declaration
int getSelectedCol (Module m)

Operation

Returns the integer identifier for the currently selected column in m. If the specified module is not displayed, or no column
is selected, returns —1.

isRead, isEdit, isShare

Declaration
bool isRead (Module m)
bool isEdit (Module m)

bool isShare (Module m)

Operation
Returns whether module m is open for reading, for editing or in shared mode. Otherwise, returns false.

These functions only return values for modules opened by the current user in the current session.

Example
Module m

for m in current Project do {
if (isEdit m)
print m."Name" " is open edit\n"

DXL Reference Manual

298

getinvalidCharlInModuleName

Declaration

char getInvalidCharInModuleName (string s)

Operation

Returns any character in string s that would be invalid in a module name.

isValidDescription

Declaration

bool isValidDescription (string descString)

Operation

Returns true if descStringis alegal description for a project, module, view or page layout; otherwise, returns false.

Example
This example returns true.

bool b = isValidDescription("Test Description")

isValidName

Declaration

{char|bool} isValidName (string nameString)

Operation

By default, returns the first illegal character of nameString. If you force a type bool, returns true if nameStringis
a legal name for a project, module, view or page layout; otherwise, returns false.

Example

This example returns &, the first illegal character in the name:

char ¢ = isValidName ("illegal&Name")

This example returns true:

char ¢ = isValidName ("legalName")

isValidPrefix

Declaration

bool isValidPrefix(string prefixString)

DXL Reference Manual

299

Operation

Returns true if prefixStringis alegal prefix for an object; otherwise returns false.

Example
This example returns true:

bool b = isValidPrefix ("PREFIX-1")

isVisible

Declaration
bool isVisible (Module m)

Operation

Returns true if module mis open for display on the screen. Otherwise, returns false.

Module manipulation

This section defines the functions for creating modules and performing database administration tasks on modules other
than descriptive modules, which are covered in “Descriptive modules,” on page 344.

See also the functions in “Hierarchy manipulation,” on page 270.

create(formal module)

Declaration

Module create (string name,
string desc,
string prefix,
int absno

[,bool displayl])

string create(string name, description desc, prefix pref, int absnum, Module& m)

Operation

Creates a formal module with name name, description desc, object prefix prefix and starting absolute number
absno. The name argument can be an absolute or relative path. The optional last argument controls whether the module
is displayed in the user interface after it has been created.

The second form creates a formal module. However, in the case of an error which causes no module to be created, the error
message is returned instead of generating a run-time DXL error.

DXL Reference Manual

300 ‘

create(descriptive module)

Declaration

string create(string name, description desc, prefix pref, int absnum, string
filename, Moduleé& m)

Operation

Creates a Descriptive module. When an error occurs, which causes no module to be created, the error message is returned

instead of generating a run-time DXL etror.

create(link module)

Declaration

Module create(string name,
string desc,
int mapping

[,bool displayl])

string create(string name, description desc, int mapping, Moduleé& m)
const int manyToMany
const int manyToOne
const int oneToMany

const int oneToOne

Operation

Creates a link module with name name, description desc, and a mapping. The name argument can be an absolute or
relative path. The mapping argument can take one of the following values: manyToMany, manyToOne, oneToMany
or oneToOne. As with the creation of a formal module, the optional last argument controls whether the module is
displayed in the user interface after it has been created.

The second form of the perm creates a Link module, similat to the perm Module create (name, description,
mapping), but returns error messages instead of generating a run-time DXL etror.

close(module)

Declaration

bool close (Module m
[,bool savel])

Operation

Closes the open module m, with the option of saving changes. If save is true, the user is prompted to save before
closing. If save is false, closes the module without saving. If the module is closed, the call fails.

DXL Reference Manual

301

If the operation fails, returns false. If mis a link module, c1lose only succeeds if there are no loaded linksets and no
other module is currently referring to the link module. Any open link modules that m refers to ate also closed.

The DOORS® object clipboard is cleared when a module is closed.

Do not access the module handle after the module has been closed.

downgrade

Declaration
bool downgrade (Module m)

Operation

Sets the open mode for module m to read only, if it is open in edit or shareable mode. This enables other users to open it in
shared mode, or one at a time in exclusive edit mode. If the operation succeeds, returns true; otherwise, returns false.
If the module is closed, the call fails. If there are unsaved changes to the module, then the user is prompted to save the
changes. Alternatively, the save perm can be used prior to downgrade, so that any changes to the module are preserved.

This function is not equivalent to checking whether the current user can modify the given object.

downgradeShare

Declaration

bool downgradeShare (Module m)

Operation

Sets the open mode for module m to shareable, if it is open in edit mode. This enables other users to open it in shared mode
or read mode. If the operation succeeds, returns t rue; otherwise, returns false. If the module is closed, the call fails. If
there are unsaved changes to the module, then the user is prompted to save the changes. Alternatively, the save perm can be
used prior to downgrade, so that any changes to the module are preserved.

This function is not equivalent to checking whether the current user can modify the given object.

printModule

Declaration

void printModule (Module m)

Operation
Opens the print dialog box for the open module m.

Example

printModule current Module

DXL Reference Manual

302

read, edit, share(open module)

Declaration

Module read(string name
[,bool disp[, bool loadStandardView]])

Module edit (string name
[,bool disp[, bool silent[, bool loadStandardView]]])

Module share(string name
[,bool displ, bool silent[, bool loadStandardView]]])

Operation

These functions return a module handle for the module named name. The name argument can be an absolute or relative
path. The read function opens the module for reading, edit for unshared editing, and share for shared editing. The
optional disp flag enables the visibility of the opened module to be specified; the module is displayed in a window if
dispis true or omitted.

The optional parameter silent specifies whether the user should be prompted when the module cannot be opened in the
desired mode because of locks. If this parameter is not supplied it is assumed to be false.

Using the optional parameter ladStandardl iew means you can force the standard view to be loaded as the default. If this
parameter is not supplied it is assumed to be false.

Note: If a module is open in a particular mode, that same module must not be opened in another mode, if the statement
doing this is within a for loop.

Example

Module m = edit ("/Car/Car user reqts", false)

save(module)

Declaration

void save (Module m)

Operation

Saves open module m.

copy(module)

Declaration

bool copy (ModName modRef,
string newName,
string newDesc)

DXL Reference Manual

303

Operation

Copies module modRef to new name newName, with description newDesc, within the same folder or project. All
outgoing links ate copied, but incoming links are not copied, and linksets are not updated.

hardDelete(module)

Declaration
bool hardDelete (ModName &modRer)

Operation

Removes module modRef from the database (compate with the softDelete (module) function); the module cannot
be recovered with undelete (item) following this operation.

If the operation succeeds, sets the argument to null, and returns t rue; otherwise, returns false. If the user does not
have delete access to the item, or if the module is open, the call fails.

The function hardDelete should be used instead of the delete (item) function, for all new programs.

Note: softDelete mustbe used on a module before using hardDelete.

softDelete(module)

Declaration
bool softDelete (ModName modRef)

Operation

Marks module modRef as deleted. The module is not actually deleted until it is purged. Modules marked for deletion can
be recovered using the undelete (item) function.

When used interactively, a user who tries to use this function on a module with links has to confirm or cancel the operation.

In batch mode no confirmation is required.

formalStatus

Declaration

void formalStatus (Module, String status)

Operation

Displays the supplied string in the third area of the status bar in the specified module, which must be a formal module. If
the module is not a formal module a DXL run-time error is generated.

DXL Reference Manual

304

autolndent

Declaration
bool autoIndent (Module)
void autoIndent (bool)

Operation

The first form returns true if auto-indentation for the main column in the specified module is currently turned on, otherwise

it returns false.

The second form sets the auto-indentation status