
Enterprise PL/I for z/OS
IBM Developer for z/OS PL/I for Windows
5.3

Messages and Codes

IBM

GC27-8950-02

Note

Before using this information and the product it supports, be sure to read the general information under
“Notices” on page 211.

Third Edition (March 2021)

This edition applies to Version 5 Release 3 of Enterprise PL/I for z/OS®, 5655-PL5, and to any subsequent releases until
otherwise indicated in new editions or technical newsletters. Make sure you are using the correct edition for the level of
the product.

Order publications through your IBM representative or the IBM branch office serving your locality. Publications are not
stocked at the address below.

A form for readers' comments is provided at the back of this publication. If the form has been removed, address your
comments to:

IBM Corporation, Department H150/090
555 Bailey Ave.
San Jose, CA, 95141-1099
United States of America

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any way it
believes appropriate without incurring any obligation to you.

Because IBM® Enterprise PL/I for z/OS supports the continuous delivery (CD) model and publications are updated to
document the features delivered under the CD model, it is a good idea to check for updates once every three months.
© Copyright International Business Machines Corporation 1999, 2019.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract with
IBM Corp.

Contents

About this book... v
Compiler and preprocessor messages.. v
How to send your comments.. vi
Accessibility...vi

Chapter 1. Compiler Informational Messages (1000-1076, 2800-2999)................... 1

Chapter 2. Compiler Warning Messages (1078-1225, 2600-2799)........................... 9

Chapter 3. Compiler Error Messages (1226-1499, 2400-2599).............................. 35

Chapter 4. Compiler Severe Messages (1500-2399).. 69

Chapter 5. MACRO, CICS, and SQL Preprocessor Messages (3000-3999)..............143

Chapter 6. Code Generation Messages (5000-5999).. 177

Chapter 7. Condition codes.. 181
Condition codes 1 through 500...181
Condition codes 501 through 1000.. 187
Condition codes 1001 through 1499.. 190
Condition codes 1500 through 2000.. 193
Condition codes 2001 through 2500.. 201
Condition codes 3000 through 4000.. 203
Condition codes 4001 through 9999.. 206

Notices..211
Trademarks.. 211

Bibliography.. 213
PL/I publications... 213
Related publications..213

 iii

iv

About this book

This book is for PL/I programmers and system programmers. It helps you understand compiler and
preprocessor messages.

Compiler and preprocessor messages
This guide lists the compiler messages in numerical order. These messages are also listed in numerical
order in the output following the source program and in any other listings produced by the compiler.

Format of messages
In your compilation output, each compiler message, with the exception of the code generation messages
in the range 5000-5999, starts with IBMnnnnI X where:

• IBM indicates that the message is a PL/I message.
• nnnn is the number of the message.
• The closing letter I indicates that no system operator action is required.
• The X represents a severity code.

In some catastrophic situations, such as not being able to open SYSPRINT, the compiler might not follow
the last two of the preceding rules.

In this guide, messages are listed numerically. Each compiler message in this section has the form
IBMnnnnI X where X is the severity code.

Severity codes can be any of the following: I, W, E, S, or U.

These severity codes indicate the following. (Note that the return codes listed are the highest return code
generated.)
I

An informational message (RC=0) indicates that the compiled program should run correctly. The
compiler might inform you of a possible inefficiency in your code or some other condition of interest.

W
A warning message (RC=4) warns you that a statement might be in error (warning) even though it is
syntactically valid. The compiled program should run correctly, but might produce different results
than expected or be significantly inefficient.

E
An error message (RC=8) describes a simple error fixed by the compiler. The compiled program
should run correctly, but might produce different results than expected.

S
A severe error message (RC=12) describes an error not fixed by the compiler. If the program is
compiled and an object module is produced, it should not be used.

U
An unrecoverable error message (RC=16) signifies an error that forces termination of the compilation.
An object module is not successfully created.

Compiler messages are printed in groups according to these severity levels and to the component that
produced them.

The code generation messages (those in the range 5000-5999) start with IBMnnnn where:

• IBM indicates that the message is a PL/I message.
• nnnn is the number of the message.

© Copyright IBM Corp. 1999, 2019 v

Under batch, the code generation messages are written to the STDOUT DD data set, while all other
messages appear in the listing which is written to the SYSPRINT DD data set. Under z/OS UNIX, the code
generation messages are written to stdout, while all other messages appear in the listing and are also
written to stdout.

The compiler FLAG option suppresses the listing of messages in the compiler listing. You can find a
description of the FLAG option in Enterprise PL/I for z/OS Programming Guide.

Message inserts
Many of the compiler messages contain message inserts indicating where the compiler inserts
information when it prints the message. These inserts are emphasized in the messages in this section
using italics.

Contacting IBM for support
If you contact IBM for programming support for a compiler error, it is useful to have a listing of your
source program available. To make the analysis of any potential problem easier, it is best if that listing is
created with the options: INSOURCE MACRO OPTIONS SOURCE.

How to send your comments
Your feedback is important in helping us to provide accurate, high-quality information. If you have
comments about this document or any other PL/I documentation, contact us in one of these ways:

• Send an email to compinfo@cn.ibm.com

Be sure to include the name of the document, the publication number of the document, the version of
PL/I, and, if applicable, the specific location (for example, page number) of the text that you are
commenting on.

• Fill out the Readers' Comment Form at the back of this document, and return it by mail or give it to an
IBM representative. If the form has been removed, address your comments to:

International Business Machines Corporation
Reader Comments
H150/090
555 Bailey Avenue
San Jose, CA 95141-1003
USA

• Fax your comments to this U.S. number: (800)426-7773.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information
in any way it believes appropriate without incurring any obligation to you.

Accessibility
Accessibility features assist users who have a disability, such as restricted mobility or limited vision, to
use information technology content successfully. The accessibility features in z/OS provide accessibility
for Enterprise PL/I.

Accessibility features
z/OS includes the following major accessibility features:

• Interfaces that are commonly used by screen readers and screen-magnifier software
• Keyboard-only navigation
• Ability to customize display attributes such as color, contrast, and font size

vi About this book

mailto:compinfo@cn.ibm.com

z/OS uses the latest W3C Standard, WAI-ARIA 1.0 (http://www.w3.org/TR/wai-aria/), to ensure
compliance to US Section 508 (http://www.access-board.gov/guidelines-and-standards/communications-
and-it/about-the-section-508-standards/section-508-standards) and Web Content Accessibility
Guidelines (WCAG) 2.0 (http://www.w3.org/TR/WCAG20/). To take advantage of accessibility features,
use the latest release of your screen reader in combination with the latest web browser that is supported
by this product.

The Enterprise PL/I online product documentation in IBM Knowledge Center is enabled for accessibility.
The accessibility features of IBM Knowledge Center are described at http://www.ibm.com/support/
knowledgecenter/en/about/releasenotes.html.

Keyboard navigation
Users can access z/OS user interfaces by using TSO/E or ISPF.

Users can also access z/OS services by using IBM Developer for z/OS.

For information about accessing these interfaces, see the following publications:

• z/OS TSO/E Primer (http://publib.boulder.ibm.com/cgi-bin/bookmgr/BOOKS/ikj4p120)
• z/OS TSO/E User's Guide (http://publib.boulder.ibm.com/cgi-bin/bookmgr/BOOKS/ikj4c240/

APPENDIX1.3)
• z/OS ISPF User's Guide Volume I (http://publib.boulder.ibm.com/cgi-bin/bookmgr/BOOKS/ispzug70)
• IBM Developer for z/OS Knowledge Center (http://www.ibm.com/support/knowledgecenter/SSQ2R2/

rdz_welcome.html?lang=en)

These guides describe how to use TSO/E and ISPF, including the use of keyboard shortcuts or function
keys (PF keys). Each guide includes the default settings for the PF keys and explains how to modify their
functions.

Interface information
The Enterprise PL/I online product documentation is available in IBM Knowledge Center, which is
viewable from a standard web browser.

PDF files have limited accessibility support. With PDF documentation, you can use optional font
enlargement, high-contrast display settings, and can navigate by keyboard alone.

To enable your screen reader to accurately read syntax diagrams, source code examples, and text that
contains the period or comma PICTURE symbols, you must set the screen reader to speak all punctuation.

Assistive technology products work with the user interfaces that are found in z/OS. For specific guidance
information, see the documentation for the assistive technology product that you use to access z/OS
interfaces.

Related accessibility information
In addition to standard IBM help desk and support websites, IBM has established a TTY telephone
service for use by deaf or hard of hearing customers to access sales and support services:

TTY service
800-IBM-3383 (800-426-3383)
(within North America)

IBM and accessibility
For more information about the commitment that IBM has to accessibility, see IBM Accessibility
(www.ibm.com/able).

About this book vii

http://www.w3.org/TR/wai-aria/
http://www.w3.org/TR/wai-aria/
http://www.access-board.gov/guidelines-and-standards/communications-and-it/about-the-section-508-standards/section-508-standards
http://www.access-board.gov/guidelines-and-standards/communications-and-it/about-the-section-508-standards/section-508-standards
http://www.access-board.gov/guidelines-and-standards/communications-and-it/about-the-section-508-standards/section-508-standards
http://www.w3.org/TR/WCAG20/
http://www.w3.org/TR/WCAG20/
http://www.w3.org/TR/WCAG20/
http://www.ibm.com/support/knowledgecenter/en/about/releasenotes.html
http://www.ibm.com/support/knowledgecenter/en/about/releasenotes.html
http://publib.boulder.ibm.com/cgi-bin/bookmgr/BOOKS/ikj4p120
http://publib.boulder.ibm.com/cgi-bin/bookmgr/BOOKS/ikj4p120
http://publib.boulder.ibm.com/cgi-bin/bookmgr/BOOKS/ikj4c240/APPENDIX1.3
http://publib.boulder.ibm.com/cgi-bin/bookmgr/BOOKS/ikj4c240/APPENDIX1.3
http://publib.boulder.ibm.com/cgi-bin/bookmgr/BOOKS/ikj4c240/APPENDIX1.3
http://publib.boulder.ibm.com/cgi-bin/bookmgr/BOOKS/ispzug70
http://publib.boulder.ibm.com/cgi-bin/bookmgr/BOOKS/ispzug70
http://www.ibm.com/support/knowledgecenter/SSQ2R2/rdz_welcome.html?lang=en
http://www.ibm.com/support/knowledgecenter/SSQ2R2/rdz_welcome.html?lang=en
http://www.ibm.com/support/knowledgecenter/SSQ2R2/rdz_welcome.html?lang=en
http://www.ibm.com/able
http://www.ibm.com/able

viii Enterprise PL/I for z/OS IBM Developer for z/OS PL/I for Windows: Enterprise PL/I for z/OS Messages and
Codes

Chapter 1. Compiler Informational Messages
(1000-1076, 2800-2999)

IBM1018I I option-name should be specified
within OPTIONS, but is accepted
as is.

Explanation
This message is used in building the options listing.

IBM1035I I The next statement was merged
with this statement.

Explanation
The statement following the statement for which this
message was issued were merged with that statement.

IBM1036I I The next statement-count
statements were merged with this
statement.

Explanation
The specified number of statements following the
statement for which this message was issued were
merged with that statement.

IBM1038I I note

Explanation
This message is used to report back end informational
messages.

IBM1039I I Variable variable name is implicitly
declared.

Explanation
All variables should be declared except for contextual
declarations of built-in functions, SYSPRINT and
SYSIN.

IBM1040I I note

Explanation
This message is used by %NOTE statements with a
return code of 0.

IBM1041I I Comment spans line-count lines.

Explanation
A comment ends on a different line than it begins. This
may indicate that an end-of-comment delimiter is
missing.

IBM1042I I String spans line-count lines.

Explanation
A string ends on a different line than it begins. This
may indicate that a closing quote is missing.

IBM1043I I variable name is contextually
declared as attribute.

Explanation
There is no declare statement for the named variable,
but it has been given the indicated attribute because
of its usage. For instance, if the variable is used as a
locator, it will be given the POINTER attribute.

IBM1044I I FIXED BINARY with precision 7 or
less is mapped to 1 byte.

Explanation
The OS/370 PL/I and PL/I for MVS compilers would
have mapped this to 2 bytes.

IBM1046I I UNSPEC applied to an array is
handled as a scalar reference.

Explanation
The OS/370 PL/I and PL/I for MVS compilers would
have handled UNSPEC applied to an array as an array
of scalars.

IBM1047I I ORDER option may inhibit
optimization.

Explanation
If the ORDER option applies to a block, optimization is
likely to be inhibited, especially if the block contains
ON-units that refer to variables declared outside the
ON-unit.

IBM1048I I GET/PUT DATA without a data-list
inhibits optimization.

© Copyright IBM Corp. 1999, 2019 1

Explanation
A GET DATA statement can alter almost any variable,
and a PUT DATA statement requires almost all
variables to be stored home anytime a PUT DATA
statement might be executed. Both of these
requirements inhibit optimization.

IBM1050I I INITIAL attribute for RESERVED
STATIC is ignored.

Explanation
The INITIAL attribute has been specified for a variable
with the attributes RESERVED STATIC. Unless such a
variable is listed in the EXPORTS clause of a PACKAGE
statement, the variable will not be initialized.

IBM1051I I Argument to BUILTIN name built-in
may not be byte aligned.

Explanation
This message applies to the ADDR,
CURRENTSTORAGE/SIZE and STORAGE/SIZE built-in
functions. Applying any one of these built-in functions
to an unaligned bit variable may not produce the
results you expected.

IBM1052I I The NODESCRIPTOR attribute is
accepted even though some
arguments have * extents.

Explanation
When a string with * extent or an array with * extents is
passed, PL/I normally passes a descriptor so that the
called routine knows how big the passed argument
really is. The NODESCRIPTOR attribute indicates that
no descriptor should be passed; this is invalid if the
called routine is a PL/I procedure.

 dcl x entry(char(*), fixed bin(31))
 options(nodescriptor);

IBM1053I I Scaled FIXED operation evaluated
as FIXED DECIMAL.

Explanation
If one of the built-in functions ADD, DIVIDE, MULTIPLY
or SUBTRACT is invoked with argument that have type
FIXED, if either operand has a non-zero scale factor,
the result will have type FIXED DEC.

IBM1058I I Conversion from source type to
target type will be done by library
call.

Explanation
This message can be used to help find code that may
be very expensive if executed as part of a loop or to
find code involving conversions of unlike types.

IBM1059I I SELECT statement contains no
OTHERWISE clause.

Explanation
The ERROR condition will be raised if no WHEN clause
is satisfied.

IBM1060I I Name resolution for identifier
selected its declaration in a
structure, rather than its non-
member declaration in a parent
block.

Explanation
The PL/I language rules require this, but it might be a
little surprising. In the following code fragment, for
instance, the display statement would display the
value of x.y.

 a: proc;

 dcl y fixed bin init(3);

 call b;

 b: proc;

 dcl
 1 x,
 2 y fixed bin init(5),
 2 z fixed bin init(7);

 display(y);

 end;

 end a;

IBM1061I I Probable DATE calculation should
be examined for validity after the
year 1999.

Explanation
Use of any of the constants 365, 1900 or '19' may
indicate a date calculation. If this is true, you should
examine the calculation to determine if it will be valid
after the year 1999.

IBM1062I I variable inferred to contain a two-
digit year.

2 Enterprise PL/I for z/OS IBM Developer for z/OS PL/I for Windows: Enterprise PL/I for z/OS Messages and
Codes

Explanation
The indicated was inferred to contain a two-digit year
because, for example, it was assigned the DATE built-
in function.

IBM1063I I Code generated for DO group
would be more efficient if control
variable were a 4-byte integer.

Explanation
The control variable in the DO loop is a 1-byte integer,
2-byte integer, fixed decimal or fixed picture, and
consequently, the code generated for the loop will not
be optimal.

IBM1064I I Use of OPT(2) forces TEST(BLOCK).

Explanation
Under OPT(2), any specification of TEST hooks
stronger than TEST(BLOCK) is not supported.

IBM1065I I Float constant constant would be
more precise if specified as a long
float.

Explanation
The named short floating-point constant cannot be
exactly represented. It could be more accurately
represented if it were specified as a long floating-point
constant. For example, the 1.3E0 cannot be exactly
represented, but could be better represented as
1.3D0.

IBM1067I I UNTIL clause ignored.

Explanation
If a DO specification has no clause such as TO, BY or
REPEAT that could cause the loop to be repeated, then
the UNTIL clause will have no effect on the loop and
will be ignored.

 do x = y until (z > 0);
 ...
 end;

IBM1068I I Procedure has no RETURNS
attribute, but contains a RETURN
statement. A RETURNS attribute
will be assumed.

Explanation
If a procedure contains a RETURN statement, it should
have the RETURNS attribute specified on its
PROCEDURE statement.

 a: proc;
 return(0);
 end;

IBM1069I I The AUTOMATIC variables in a
block should not be used in the
prologue of that block.

Explanation
The AUTOMATIC variables in a block may be used in
the declare statements and the executable statements
of any contained block, but in the block in which they
are declared, they should be used only in the
executable statements.

 dcl x fixed bin(15) init(5);
 dcl y(x) fixed bin(15);

IBM2800I I The procedure proc name is not
referenced.

Explanation
The named procedure is not external and is never
referenced in the compilation unit. This may represent
an error (if it was supposed to be called) or an
opportunity to eliminate some dead code.

IBM2801I I FIXED DEC(source-
precision,source-scale) operand
will be converted to FIXED
BIN(target-precision,target-scale).
This introduces a non-zero scale
factor into an integer operation
and will produce a result with the
attributes FIXED BIN(result-
precision,result-scale).

Explanation
Under RULES(IBM), when an arithmetic operation has
an operand that is FIXED BIN and an operand that is
FIXED DEC with a non-zero scale factor, then the
FIXED DEC operand will be converted to FIXED BIN.

IBM2802I I Aggregate mapping will be done
by library call.

Chapter 1. Compiler Informational Messages (1000-1076, 2800-2999) 3

Explanation
This message can be used to help find code that may
be very expensive if executed as part of a loop. It may
be produced, for example, if your code refers to an
element of a structure that uses REFER. If the
structure uses multiple REFERs and the element
occurs after the last REFER, the single reference to
that element may produce multiple copies of this
message (because multiple library calls will be made).

IBM2803I I keyword STRING EDIT statement
optimized.

Explanation
This message is issued when a PUT or GET STRING
EDIT statement has been optimized by the compiler so
that most of it is done inline.

IBM2804I I Boolean is compared with
something other than '1'b or '0'b.

Explanation
This message will flag statements such as the
following, where "true" is a BIT(1) STATIC INIT('1'b). It
would be better if "true" were a named constant, i.e. if
it were declared with the VALUE attribute rather than
STATIC INIT

 if (a < b) = true then

IBM2805I I For assignment to variable name,
conversion from source type to
target type will be done by library
call.

Explanation
This message can be used to help find code that may
be very expensive if executed as part of a loop or to
find code involving conversions of unlike types.

IBM2806I I Passing a LABEL to another
routine is poor coding practice and
will cause the compiler to
generate less than optimal code.

Explanation
It is generally very unwise to pass a label to another
routine. It would be good to think about redesigning
any code doing this.

IBM2809I I FIXED DEC(source-
precision,source-scale) operand
will be converted to FIXED

BIN(target-precision,target-scale).
This introduces 8-byte integer
arithmetic into an operation that
might be faster if computed in
decimal.

Explanation
If the LIMITS option specifies a maximum FIXED
precision greater than 31, then an operation involving
a FIXED DEC and a FIXED BIN operand might produce
an 8-byte integer result even if both operands are
"small". For example, if you add a FIXED DEC(13) and a
FIXED BIN(31), the result would be an 8-byte integer
(because a FIXED DEC(13) value might be too large to
fit in a 4-byte integer). To avoid this, you could apply
the DECIMAL built-in function to the FIXED BIN
operand.

IBM2810I I Conversion of FIXED BIN(source-
precision,source-scale) to FIXED
DEC(target-precision,target-scale)
may produce a more accurate
result than under the old compiler.

Explanation
In certain conversions of FIXED BIN(p,q) to FIXED
DEC, the old compiler slightly rounded the result if q
was positive.

IBM2811I I Use of PICTURE as DO control
variable is not recommended.

Explanation
If the control variable in a DO loop is a PICTURE
variable, then more code will be generated for the loop
than if the control variable were a FIXED BIN variable.
Moreover, such loops may easily be miscoded so that
they will loop infinitely.

IBM2812I I Argument number argument
number to BUILTIN name built-in
would lead to much better code if
declared with the VALUE attribute.

Explanation
For functions such as VERIFY(x,y), if y is a constant, it
is much better for performance to declare y with the
VALUE attribute rather than with the INITIAL attribute.

IBM2814I I Aggregate mapping for storage
allocation will be done by library
call.

4 Enterprise PL/I for z/OS IBM Developer for z/OS PL/I for Windows: Enterprise PL/I for z/OS Messages and
Codes

Explanation
This message can be used to help find code that may
be expensive if invoked many times. This message
may be produced for ALLOCATE statements for BASED
and CONTROLLED variables with non-constant
extents, and it may also be produced for the prologue
of PROCEDUREs that use AUTOMATIC variables with
non-constant extents.

IBM2815I I Argument number argument-
number in ENTRY reference ENTRY
name is not recommended to be
passed BYVALUE.

Explanation
A BYVALUE argument should be one that could
reasonably be passed in a register. Hence its type
should be either one of REAL FIXED BIN, REAL FLOAT,
POINTER, OFFSET, HANDLE, LIMITED ENTRY, FILE,
ORDINAL, CHAR(1), WCHAR(1), or ALIGNED BIT(n)
with n less than or equal to 8.

IBM2816I I BYVALUE parameters should
ideally be ones that can
reasonably be passed in registers.

Explanation
A BYVALUE parameter should be one that could
reasonably be passed in a register. Hence its type
should be either one of REAL FIXED BIN, REAL FLOAT,
POINTER, OFFSET, HANDLE, LIMITED ENTRY, FILE,
ORDINAL, CHAR(1), WCHAR(1), or ALIGNED BIT(n)
with n less than or equal to 8.

IBM2817I I BYVALUE in RETURNS is
recommended only for types that
can reasonably be returned in
registers.

Explanation
Using BYVALUE in RETURNS is recommended only if
the value to be returned has a type that could
reasonably be returned in a register. Hence its type
should be either one of REAL FIXED BIN, REAL FLOAT,
POINTER, OFFSET, HANDLE, LIMITED ENTRY, FILE,
ORDINAL, CHAR(1), WCHAR(1), or ALIGNED BIT(n)
with n less than or equal to 8.

IBM2818I I Addition or subtraction of FIXED
DEC(precision,scale-factor) and
FIXED DEC(precision,scale-factor)
may raise FIXEDOVERFLOW.

Explanation
The precision required to hold the result as defined by
PL/I of this add (or subtract) is greater than the
LIMITS(FIXEDDEC) maximum for the operands and
hence depending on the data values,
FIXEDOVERFLOW may be raised by the operation.

IBM2819I I Multiplication of FIXED
DEC(precision,scale-factor) and
FIXED DEC(precision,scale-factor)
may raise FIXEDOVERFLOW.

Explanation
The precision required to hold the result as defined by
PL/I of this multiply is greater than the
LIMITS(FIXEDDEC) maximum for the operands and
hence depending on the data values,
FIXEDOVERFLOW may be raised by the operation.

IBM2820I I The option-name option is not
supported on this platform.

Explanation
The named compiler option is not supported on this
platform. For example, the BLKOFF option is an option
on the z/OS platform, but not on AIX or Windows. If
specified on those platforms, it is ignored.

IBM2825I I Conversion from source type to
target type will be done by library
call.

Explanation
This message can be used to help find code that may
be very expensive if executed as part of a loop or to
find code involving conversions of unlike types.

IBM2826I I For assignment to variable name,
conversion from source type to
target type will be done by library
call.

Explanation
This message can be used to help find code that may
be very expensive if executed as part of a loop or to
find code involving conversions of unlike types.

IBM2827I I Conversion from source type to
target type can produce an inexact
or incorrect result.

Explanation
For example, the conversion of the FLOAT DEC(15)
value 321.1234 to FIXED DEC(15,15) will produce the

Chapter 1. Compiler Informational Messages (1000-1076, 2800-2999) 5

inexact result 0.123399999999952. However, the
conversion of the FLOAT DEC(15) value 54321.1234 to
FIXED DEC(15,15) will produce the incorrect result
0.372036854775807. Incorrect results can be
avoided in a conversion to FIXED DEC(p,q) if the
absolute value of the source is less than 10**(18-p).

IBM2830I I VALUE(: type name :) will return an
instance of the structure type that
is only partially initialized.

Explanation
If the VALUE type function is applied to a structure
type which has an initial attribute on only some of its
elements, then the structure instance will be only
partially initialized. For example, the compiler will flag
the following code with this message because B2 has
no initial value - it will have the initial values from type
a only if B2 is also declared with the attribute
init(value(: a :)).

 if (a < b) = true then

 define structure
 1 a,
 2 a1 fixed bin(31) init(17),
 2 a2 fixed bin(31) init(19);

 define structure
 1 b,
 2 b1 fixed bin(31) init(119),
 2 b2 type a;

 dcl x type b;

 x = value(: b :);

IBM2831I I ASSERT statement may never be
executed.

Explanation
This message warns that the compiler has detected an
ASSERT UNREACHABLE statement that can never be
run as the flow of control must always pass it by.

IBM2832I I INLINE directive will be ignored
for procedure name and all other
procedures since the TEST option
is on.

Explanation
The compiler will perform no inling if the TEST option
is on.

IBM2833I I INLINE directive will be ignored
for procedure name since it
contains ENTRY statements.

Explanation
The compiler will not inline a PROCEDURE that has
ENTRY statements.

IBM2834I I INLINE directive will be ignored
for procedure name since it
contains subprocedures and/or
BEGIN blocks.

Explanation
The compiler will not inline a PROCEDURE or BEGIN
block that contains other PROCEDUREs or BEGIN
blocks.

IBM2835I I INLINE directive will be ignored
for procedure name since it has
OPTIONS(NODESCRIPTOR), but
has some parameters with
nonconstant extents.

Explanation
The compiler will not inline a PROCEDURE that
requires has the NODESCRIPTOR option but would
normally be passed descriptors with its arguments.

IBM2836I I INLINE directive will be ignored
for procedure name since it
contains labels that may be
targets of out-of-block GOTOs.

Explanation
The compiler will not inline a PROCEDURE that which
has any labels that are possibly the target of a GOTO
from another PROCEDURE or BEGIN block.

IBM2837I I INLINE directive will be ignored
for procedure name since it
contains some DATA-directed I/O
statements.

Explanation
The compiler will not inline a PROCEDURE that has any
PUT DATA or GET DATA statements.

IBM2838I I INLINE directive will be ignored
for procedure name since it has
non-default condition enablement.

Explanation
The compiler will not inline a PROCEDURE that has any
condition enablement that differs from the default.

IBM2839I I INLINE directive will be ignored
for procedure name since it
contains ON-units.

6 Enterprise PL/I for z/OS IBM Developer for z/OS PL/I for Windows: Enterprise PL/I for z/OS Messages and
Codes

Explanation
The compiler will not inline a PROCEDURE that has any
ON statements.

IBM2840I I If TRANSLATE is being used to
reformat a date-time value, it
would be better to use the
REPATTERN or DATETIME built-in
function instead.

Explanation
If the first and third arguments to the TRANSLATE
built-in function are both constant, then the code is
likely trying to reformat a date-time value. This code
would be easier to understand if the REPATTERN built-
in function or, if possible, the DATETIME built-in
function were used instead. For example, the first two
bits of code below assign the same value to the target
variable shortdate, and the second two bits of code
also assign the same value to the target variable
currentdate. However, in each case, the second
statement is much clearer.

 shortdate
 = translate('12.34.5678',
 longdate,
 '56783412abcdefghijkl');

 shortdate
 = repattern(longdate,
 'DD.MM.YYYY',
 'YYYYMMDDHHMISS999');

 currentdate
 = translate('12.34.5678',
 datetime(),
 '56783412abcdefghijkl');

 currentdate
 = datetime('DD.MM.YYYY');

IBM2841I I Changing
MEMCONVERT(p,n,1200,q,m,1208
) to MEMCU12(p,n,q,m) would be
better for performance.

Explanation
MEMCU12 will perform much better than
MEMCONVERT.

IBM2842I I Changing
MEMCONVERT(p,n,1208,q,m,1200
) to MEMCU21(p,n,q,m) would be
better for performance.

Explanation
MEMCU21 will perform much better than
MEMCONVERT.

IBM2843I I The defined structure struct name
is alignment byte aligned, but
occupies only storage size bytes of
storage.

Explanation
Defined structures must occupy a number of bytes
that is a multiple of the structures alignment. So, for
example, if a structure contains an aligned fixed
bin(31) (or other aligned fullword) field as its most
stringently aligned item, then the structure must
occupy a multiple of 4 bytes. The following structure
does not meet this requirement:

 define structure
 1 point,
 2 x fixed bin(31),
 2 y char(1);

IBM2844I I The characters =+ will be accepted
as two separate characters. But
perhaps += was meant, and it
would be better to separate these
characters with a blank.

Explanation
This may represent a problem especially if this occurs
in an assignment statement and += was meant instead
of =+.

IBM2845I I The characters =- will be accepted
as two separate characters. But
perhaps -= was meant, and it
would be better to separate these
characters with a blank.

Explanation
This may represent a problem especially if this occurs
in an assignment statement and -= was meant instead
of =-.

IBM2846I I It would be better to convert
nested procedures in a PACKAGE
into sister level-1 procedures.

Explanation
The compiler issues this message if a compilation unit
contains a PACKAGE statement with exactly one
level-1 procedure which in turn has its own nested
procedures.

IBM2847I I Source in RETURN statement has a
MAXLENGTH of return-length
which is greater than the length of

Chapter 1. Compiler Informational Messages (1000-1076, 2800-2999) 7

returns-length in the
corresponding RETURNS attribute.

Explanation
If a RETURNS statement specifies a VARYING or
VARYINGZ variable with a MAXLENGTH greater than
the length specified in the RETURNS attribute, then it
may have a value that is too big to be returned without
truncation. For example, the variable X in the

RETURNS statement below has a value ('TooBig') that
has length greater than 4. It will be trimmed (to 'TooB')
to fit the RETURNS attribute.

 x: proc returns(char(4));
 dcl x char(8) var;
 x = 'TooBig';
 return(x);

8 Enterprise PL/I for z/OS IBM Developer for z/OS PL/I for Windows: Enterprise PL/I for z/OS Messages and
Codes

Chapter 2. Compiler Warning Messages (1078-1225,
2600-2799)

IBM1078I W Statement may never be executed.

Explanation
This message warns that the compiler has detected a
statement that can never be run as the flow of control
must always pass it by.

IBM1079I W Too few arguments have been
specified for the ENTRY ENTRY
name.

Explanation
The number of arguments should match the number of
parameters in the ENTRY declaration.

IBM1080I W The keyword label-name, which
could form a complete statement,
is accepted as a label name, but a
colon may have been used where a
semicolon was meant.

Explanation
A PL/I keyword which could form a complete
statement has been used as statement label. This
usage is accepted, but a colon may have been used
where a semicolon was intended.

 dcl a fixed bin(31) ext;

 if a = 0 then
 put skip list('a = 0')
 else:

 a = a + 1;

IBM1081I W keyword expression should be
scalar. Lower bounds assumed for
any missing subscripts.

Explanation
The expression in the named keyword clause should
be a scalar, but an array reference was specified.

 dcl p pointer;
 dcl x based char(10);
 dcl a(10) area(1000);

 allocate x in(a) set(p);

IBM1082I W Argument number argument-
number in entry reference entry
name is a scalar, but its declare
specifies a structure.

Explanation
A scalar may be passed as the argument when a
structure is expected, but this require building a
"dummy" structure and assigning the scalar to each
field in that structure.

 dcl e entry(1 2 fixed bin(31), 2 fixed
bin(31));
 dcl i fixed bin(15);
 call e(i);

IBM1083I W Source in label assignment is
inside a DO-loop, and an illegal
jump into the loop may be
attempted. Optimization will also
be very inhibited.

Explanation
GOTO statements may not jump into DO loops, and the
compiler will flag any GOTO whose target is a label
constant inside a (different) DO loop. However, if a
label inside a DO loop is assigned to a label variable,
then this kind of error may go undetected.

IBM1084I W Nonblanks after right margin are
not allowed under
RULES(NOLAXMARGINS).

Explanation
Under RULES(NOLAXMARGINS), there should be
nothing but blanks after the right margin.

IBM1085I W variable may be unset when used.

Explanation
The indicated variable may not have been assigned or
initialized a value before it is used.

IBM1086I W built-in function will be evaluated
using long rather than extended
routines.

© Copyright IBM Corp. 1999, 2019 9

Explanation
The indicated built-in function has an extended float
argument, but since the corresponding extended
routine is not yet available, it will be evaluated using
the appropriate long routine.

IBM1087I W FLOAT source is too big for its
target. An appropriate HUGE value
of assumed value is assumed.

Explanation
A value larger than HUGE(1s0) cannot be assigned to a
short float. Under hexadecimal float, the value
3.141592E+40 could be assigned to a short float, but
under IEEE, the maximum value that a short float can
hold is about 3.40281E+38.

IBM1088I W FLOAT literal is too big for its
implicit precision. The E in the
exponent will be replaced by a D.

Explanation
The precision for a float literal is implied by the
number of digits in its mantissa. For instance 1e99 is
implicitly FLOAT DECIMAL(1), but the value 1e99 is
larger than the largest value a FLOAT DECIMAL(1) can
hold.

IBM1089I W Control variable in DO loop cannot
exceed TO value, and loop may be
infinite.

Explanation
If the TO value is equal to the maximum value that a
FIXED or PICTURE variable can hold, then a loop
dominated by that variable will run endlessly unless
exited inside the loop by a LEAVE or GOTO. For
example, in the first code fragment below, x can never
be bigger than 99, and the loop would be infinite. In
the second code fragment below, y can never be
bigger than 32767, and the loop would be infinite.

 dcl x pic'99';

 do x = 1 to 99;
 put skip list(x);
 end;

 dcl y fixed bin(15);

 do y = 1 to 32767;
 put skip list(y);
 end;

IBM1090I W Constant used as locator qualifier.

Explanation
An expression contains a reference to a based variable
with a constant value for its locator qualifier. This may
cause a protection exception on some systems. It may
also indicate that the variable was declared as based
on NULL or SYSNULL and that this constant value is
being used as its locator qualifier.

 dcl a fixed bin(31) based(null());

 a = 0;

IBM1091I W FIXED BIN precision less than
storage allows.

Explanation
Except in unusual circumstances, the precision in a
FIXED BIN declaration should be 7, 15, 31 or 63 if
SIGNED and one greater if UNSIGNED. This message
may indicate that a declare specified, for example,
FIXED BIN(8) when UNSIGNED FIXED BIN(8) was
meant.

IBM1092I W GOTO whose target is or may be in
another block severely limits
optimization.

Explanation
Try to change the code so that it sets and tests a
switch instead, or limit GOTOs to very small modules
that do not need optimization.

IBM1093I W PLIXOPT string is invalid. See
related runtime message message-
number.

Explanation
The PLIXOPT string could not be parsed. See the cited
LE message for more detail.

IBM1094I W Element option in PLIXOPT is
invalid. See related runtime
message message-number.

Explanation
The PLIXOPT string contains an invalid item. See the
cited LE message for more detail.

IBM1095I W Element option in PLIXOPT has
been remapped to option. See
related runtime message message-
number.

10 Enterprise PL/I for z/OS IBM Developer for z/OS PL/I for Windows: Enterprise PL/I for z/OS Messages and
Codes

Explanation
The PLIXOPT string contains a run-time option which
is not supported by LE. See the cited LE message for
more detail.

IBM1096I W STAE and SPIE in PLIXOPT is not
supported. See related runtime
message message-number.

Explanation
The SPIE and STAE options have been replaced by the
TRAP option. TRAP(ON) is equivalent to SPIE and
STAE; TRAP(OFF) is equivalent to NOSPIE and
NOSTAE. The combination SPIE and NOSTAE and the
combination NOSPIE and STAE are no longer
supported. See the cited LE message for more detail.

IBM1097I W Scalar accepted as argument
number argument-number in
ENTRY reference ENTRY name
although parameter description
specifies an array.

Explanation
Generally, scalars should not be passed where arrays
are expected, but in some situations, this may be what
you want.

 dcl a entry((*) fixed bin)
option(nodescriptor);

 call a(0);

IBM1098I W Extraneous comma at end of
statement ignored.

Explanation
A comma was followed by a semicolon rather than by a
valid syntactical element (such as an identifier). The
comma will be ignored in order to make the semicolon
valid.

 dcl 1 a, 2 b fixed bin, 2 c fixed bin, ;

IBM1099I W FIXED DEC(source-
precision,source-scale) operand
will be converted to FIXED
BIN(target-precision,target-scale).
Significant digits may be lost.

Explanation
Under RULES(IBM), when a comparison or arithmetic
operation has an operand that is FIXED BIN and an
operand that is FIXED DEC with a non-zero scale
factor, then the FIXED DEC operand will be converted
to FIXED BIN. Under RULES(ANS), when a comparison
or arithmetic operation has an operand that is FIXED
BIN and an operand that is FIXED DEC with a zero
scale factor, then the FIXED DEC operand will be
converted to FIXED BIN. In each case, significant
digits may be lost, and if there is a fractional part, it
may not be exactly represented as binary. For
instance, under RULES(IBM), the assignment
statement below will cause the target to have the
value 29.19, and in the comparison, C will be
converted to FIXED BIN(31,10) and significant digits
will be lost (in fact, SIZE would be raised, but since it is
disabled, this program would be in error).

 dcl a fixed dec(07,2) init(12.2);
 dcl b fixed bin(31,0) init(17);
 dcl c fixed dec(15,3) init(2097151);
 dcl d fixed bin(31,0) init(0);

 a = a + b;

 if c = d then;

IBM1100I W The attribute attribute-option is
not valid on BEGIN blocks and is
ignored.

Explanation
An attribute (REDUCIBLE in the example below) has
been specified in the OPTIONS clause on a BEGIN
statement, but that attribute is not valid for BEGIN
blocks.

 begin options(reducible);

IBM1101I W option-name is not a known
PROCEDURE attribute and is
ignored.

Explanation
An attribute (DATAONLY in the example below) has
been specified in the OPTIONS clause on a
PROCEDURE statement, but that attribute is not valid
for PROCEDUREs.

 a: proc options(dataonly);

Chapter 2. Compiler Warning Messages (1078-1225, 2600-2799) 11

IBM1102I W option-name is not a known BEGIN
attribute and is ignored.

Explanation
The indicated attribute is valid on PROCEDURE
statements, but not on BEGIN statements.

 begin recursive;

IBM1103I W option-name is not a supported
compiler option and is ignored.

Explanation
The compiler option is not supported on this platform.

 *process map;

IBM1104I W Suboptions of the compiler option
option-name are not supported
and are ignored.

Explanation
Suboptions of the compiler option are not supported
on this platform.

 *process list(4);

IBM1105I W A suboption of the compiler option
option-name is too long. It is
shortened to length number-of-
letters.

Explanation
Various compiler options have limits on the size of
subfields. Refer to the Programming Guide for the
limits of specific compiler options.

 *process margini('+-');

IBM1106I W Condition prefixes on keyword
statements are ignored.

Explanation
Condition prefixes are not allowed on DECLARE,
DEFAULT, IF, ELSE, DO, END, SELECT, WHEN or
OTHERWISE statements.

 (nofofl): if (x+y) > 0 then

IBM1107I W option-name is not a known ENTRY
statement attribute and is ignored.

Explanation
An attribute (DATAONLY in the example below) has
been specified in the OPTIONS clause on an ENTRY
statement, but that attribute is not valid for ENTRY
statements.

 a: entry options(dataonly);

IBM1108I W The character char specified in the
option option is already defined
and may not be redefined. The
redefinition will be ignored.

Explanation
A character specified in the OR, NOT, QUOTE or
NAMES compiler option is already defined in the PL/I
character set or by another compiler option.

 *process not('=');
 *process not('!') or('!');

IBM1109I W The second argument in the C-
format item will be ignored.

Explanation
If you wish to display the real and imaginary parts of a
complex number using different formats, use the REAL
and IMAG built-in functions and 2 format items.

 put edit (x) (c(e(10,6), e(10,6)));

IBM1110I W The %INCLUDE statement should
be on a line by itself. The source on
the line after the %INCLUDE
statement is ignored.

Explanation
Split the text into 2 lines.

 %include x; %include y;

IBM1111I W CHECK prefix is not supported and
is ignored.

12 Enterprise PL/I for z/OS IBM Developer for z/OS PL/I for Windows: Enterprise PL/I for z/OS Messages and
Codes

Explanation
The CHECK prefix is not part of the SAA PL/I language.

 (check): i = j + 1;

IBM1112I W condition-name condition is not
supported and is ignored.

Explanation
The CHECK and PENDING conditions are not part of
the SAA PL/I language.

 on check ...

IBM1113I W verb-name statement is not
supported and is ignored.

Explanation
The named statement, for example the CHECK
statement, is not part of the SAA PL/I language.

IBM1114I W Comparands are both constant.

Explanation
Both operands in a comparison are constant, and
consequently, the result of the comparison is also a
constant. If this comparison is the expression in an IF
clause, for example, this means that either the THEN
or ELSE clause will never be executed.

IBM1115I W INITIAL list contains count items,
but the array variable name
contains only array size. Excess is
ignored.

Explanation
For an array, an INITIAL list should not contain more
values than the array has elements.

 dcl a init(1, 2), b(5) init((10) 0);

IBM1116I W Comment spans more than one
file.

Explanation
A comment ends in a different file than it begins. This
may indicate that an end-of-comment statement is
missing.

IBM1117I W String spans more than one file.

Explanation
A string ends in a different file than it begins. This may
indicate that a closing quote is missing.

IBM1118I W Delimiter missing between
nondelimiter and nondelimiter. A
blank is assumed.

Explanation
A delimiter (for example, a blank or a comma) is
required between all identifiers and constants.

 dcl 1 a, 2 b, 3c;

IBM1119I W Code generated for DO group
would be more efficient if control
variable name were not an
aggregate member.

Explanation
The control variable in the DO loop is a member of an
array, a structure or a union, and consequently, the
code generated for the loop will not be optimal.

IBM1120I W Multiple closure of groups. END
statements will be inserted to
close intervening groups.

Explanation
Using one END statement to close more than one
group of statements is permitted, but it may indicate a
coding error.

IBM1121I W Missing character assumed.

Explanation
The indicated character is missing, and there are no
more characters in the source. The missing character
has been inserted by the parser in order to correct
your source.

IBM1122I W Missing character assumed before
character.

Chapter 2. Compiler Warning Messages (1078-1225, 2600-2799) 13

Explanation
The indicated character is missing and has been
inserted by the parser in order to correct your source.

 display('Program starting' ;

IBM1123I W The ENVIRONMENT option option-
name has been specified without a
suboption. The option option-name
is ignored.

Explanation
Certain ENVIRONMENT options, such as RECSIZE,
require suboptions.

 dcl f file env(recsize);

IBM1124I W A suboption has been specified for
the ENVIRONMENT option option-
name. The suboption will be
ignored.

Explanation
Certain ENVIRONMENT options, such as
CONSECUTIVE, should be specified without any
suboptions.

 dcl f file env(consecutive(1));

IBM1125I W The ENVIRONMENT option option-
name has been specified more
than once.

Explanation
ENVIRONMENT options should not be repeated.

 dcl f file env(consecutive consecutive);

IBM1126I W The ENVIRONMENT option option-
name has an invalid suboption.
The option will be ignored.

Explanation
The suboption type is incorrect.

 dcl f file env(regional(5));

IBM1127I W option-name is not a known
ENVIRONMENT option. It will be
ignored.

Explanation
There is no such supported ENVIRONMENT option.

 dcl f file env(unknown);

IBM1128I W The ENVIRONMENT option option-
name conflicts with the LANGLVL
compiler option. The option will be
ignored.

Explanation
The indicated option is valid only with LANGLVL(OS).

 dcl f file env(fb);

IBM1129I W verb-name processor-name
statement ignored up to closing
semicolon.

Explanation
An EXEC SQL or EXEC CICS statement has been found
in the source program. The compiler will ignore these
statements.

 exec sql ...;

IBM1130I W The external name identifier is too
long. It will be shortened to
identifier.

Explanation
The maximum length of external names is set by the
EXTNAME suboption of the LIMITS compiler option.

 dcl this_name_is_long static external
pointer;

14 Enterprise PL/I for z/OS IBM Developer for z/OS PL/I for Windows: Enterprise PL/I for z/OS Messages and
Codes

IBM1131I W An EXTERNAL name specification
for name has been specified on its
PROCEDURE statement and in the
EXPORTS clause of the PACKAGE
statement. The EXPORTS
specification will be used.

Explanation
The name specified in the EXTERNAL attribute in the
EXPORTS clause overrides the name specified in the
EXTERNAL attribute on the PROCEDURE statement.

 a: package exports(b ext('_B'));

 b: proc ext('BB');

IBM1132I W An EXTERNAL name specification
for name has been specified in its
declaration and in the RESERVES
clause of the PACKAGE statement.
The RESERVES specification will
be used.

Explanation
The name specified in the EXTERNAL attribute in the
RESERVES clause overrides the name specified in the
EXTERNAL attribute in the DECLARE statement.

 a: package reserves(b ext('_B'));

 dcl b ext('BB') static ...

IBM1133I W The FORMAT CONSTANT array
label-name is not fully initialized.

Explanation
An element of a FORMAT CONSTANT array has not
been defined, for example, f(2) in the example below.

 f(1): format(x(2), a);

 f(3): format(x(4), a);

IBM1134I W The LABEL CONSTANT array label-
reference is not fully initialized.

Explanation
The named variable defines a statement label array,
but not all the elements in that array are labels for
statements in the containing procedure.

 l(1): display(...);

 l(3): display(...);

IBM1135I W Logical operand is constant.

Explanation
An argument to one of the logical operators (or, and or
not) is a constant. The result of the operation may also
be a constant. If this operation is the expression in an
IF clause, for example, this means that either the
THEN or ELSE clause will never be executed.

 if a | '1'b then

IBM1136I W Function invoked as a subroutine.

Explanation
A function, for example, a PROCEDURE or ENTRY
statement with the RETURNS attribute, has been
invoked in a CALL statement. The value that is
returned by the function will be discarded, but the
OPTIONAL attribute should be used to indicate that
this is valid.

IBM1137I W The attribute attribute is invalid in
GENERIC descriptions and will be
ignored.

Explanation
The named attribute is invalid in GENERIC description
lists.

 dcl g generic (f1 when(connected),
 f2 otherwise);

IBM1138I W Number of items in INITIAL list is
count for the array variable name
which contains array size
elements.

Explanation
The array will be incompletely initialized. If the named
variable is part of a structure, subsequent elements in
that structure with this problem will be flagged with
message 2602. This may be a programming error (in
the example below, 4 should probably have been 6)
and may cause exceptions when the program is run.

Chapter 2. Compiler Warning Messages (1078-1225, 2600-2799) 15

 dcl a(8) fixed dec init(1, 2, (4) 0);

IBM1139I W Syntax of the %CONTROL
statement is incorrect.

Explanation
The %CONTROL statement must be followed by
FORMAT or NOFORMAT option enclosed in
parentheses and then a semicolon.

IBM1140I W Syntax of the LANGLVL option in
the %OPTION statement is
incorrect.

Explanation
The LANGLVL option in the %OPTION statement must
be specified as either LANGLVL(SAA) or
LANGLVL(SAA2).

IBM1141I W Syntax of the %NOPRINT
statement is incorrect.

Explanation
The %NOPRINT statement must be followed, with
optional intervening blanks, by a semicolon.

IBM1142I W Syntax of the %PAGE statement is
incorrect.

Explanation
The %PAGE statement must be followed, with optional
intervening blanks, by a semicolon.

IBM1143I W Syntax of the %PRINT statement
is incorrect.

Explanation
The %PRINT statement must be followed, with
optional intervening blanks, by a semicolon.

IBM1144I W Number of lines specified with
%SKIP must be between 0 and
999 inclusive.

Explanation
Skip amounts greater than 999 are not supported.

 %skip(2000);

IBM1145I W Syntax of the %SKIP statement is
incorrect.

Explanation
The %SKIP statement must be followed by a
semicolon with optional intervening blanks and a
parenthesized integer.

IBM1146I W Syntax of the TEST option in the
%OPTION statement is incorrect.

Explanation
The TEST option in the %OPTION statement must be
specified without any suboptions.

IBM1147I W Syntax of the NOTEST option in the
%OPTION statement is incorrect.

Explanation
The NOTEST option in the %OPTION statement must
be specified without any suboptions.

IBM1148I W Syntax of the %PUSH statement is
incorrect.

Explanation
The %PUSH statement must be followed, with optional
intervening blanks, by a semicolon.

IBM1149I W Syntax of the %POP statement is
incorrect.

Explanation
The %POP statement must be followed, with optional
intervening blanks, by a semicolon.

IBM1150I W Syntax of the %NOTE statement is
incorrect.

Explanation
The %NOTE statement must be followed by, in
parentheses, a note and an optional return code, and
then a semicolon.

IBM1151I W FIXED BINARY precision is
reduced to maximum value.

Explanation
The maximum FIXED BIN precision depends on the
LIMITS option.

IBM1152I W FIXED DECIMAL precision is
reduced to maximum value.

16 Enterprise PL/I for z/OS IBM Developer for z/OS PL/I for Windows: Enterprise PL/I for z/OS Messages and
Codes

Explanation
The maximum FIXED DEC precision depends on the
LIMITS option.

IBM1153I W FLOAT BINARY precision is
reduced to maximum value.

Explanation
The maximum FLOAT BIN precision is 64 on Intel, 106
on AIX and 109 on z/OS.

IBM1154I W FLOAT DECIMAL precision is
reduced to maximum value.

Explanation
The maximum FLOAT DEC precision is 18 on Intel, 32
on AIX and 33 on z/OS except for DFP which has a
maximum of 34.

IBM1155I W The aggregate aggregate-name
contains noncomputational
values. Those values will be
ignored.

Explanation
Some members of an aggregate referenced in an I/O
statement are noncomputational. The computational
members will be correctly processed, but the
noncomputational ones will be ignored.

 dcl 1 x,
 2 y ptr,
 3 fixed bin(31);
 put skip list(x);

IBM1156I W Arguments to MAIN procedure are
not all POINTER.

Explanation
Under SYSTEM(CICS), SYSTEM(TSO) and
SYSTEM(IMS), the arguments to the MAIN procedure
should all have type POINTER.

IBM1157I W note

Explanation
This message is used by %NOTE statements with a
return code of 4.

IBM1158I W A option is missing in the
specification of the option option.
One is assumed.

Explanation
A closing quote or parenthesis is missing in the
specification of a compiler option. A quoted string
must not cross line boundaries.

IBM1159I W The string option is not recognized
as a valid option keyword and is
ignored.

Explanation
An invalid compiler option has been specified.

IBM1160I W The third argument to the
MARGINS option is not supported.

Explanation
Printer control characters are not supported on input
source records.

IBM1161I W The suboption suboption is not
valid for the option compiler
option.

Explanation
A suboption of a compiler option is incorrect. The
suboption may be unknown or outside the allowable
range.

 *process flag(q) margins(1002);

IBM1162I W A required suboption is missing for
the suboption option.

Explanation
A required suboption of a compiler option is missing.

 *process or;

IBM1163I W Required sub-fields are missing
for the option option. Default
values are assumed.

Explanation
Required suboptions of a compiler option are missing.

 *process margins;

IBM1164I W option-name should be specified
within OPTIONS, but is accepted
as is.

Chapter 2. Compiler Warning Messages (1078-1225, 2600-2799) 17

Explanation
The option, for example REORDER, is accepted outside
of the OPTIONS attribute, but it should be specified
within the OPTIONS attribute. This would also conform
to the ANSI standard.

IBM1165I W The OPTIONS option option-name
has been specified more than
once.

Explanation
The only supported LINKAGE options are OPTLINK
and SYSTEM.

IBM1166I W option-name is not a known
LINKAGE suboption. The LINKAGE
option will be ignored.

Explanation
The only supported LINKAGE options are OPTLINK
and SYSTEM.

IBM1167I W Maximum number of %PUSH
statements exceeded. The control
statement is ignored.

Explanation
The maximum number of pending %PUSH statements
is 63.

IBM1168I W No %PUSH statements are in
effect. The %POP control
statement is ignored.

Explanation
A %POP has been issued when no %PUSH statement
are pending.

IBM1169I W No precision was specified for the
result of the builtin name built-in.
The precision will be determined
from the argument.

Explanation
This message applies to the FIXED and FLOAT built-in
functions when only one argument is given. The
precision is not set to a default, but is instead derived
from the argument. For example, if x is FLOAT BIN(21),
FIXED(x) will return a FIXED BIN(21) value.

IBM1170I W The OPTIONS attribute option-
attribute is not supported and is
ignored.

Explanation
The indicated element of the OPTIONS list is not
supported.

 dcl a ext entry options(nomap);

IBM1171I W SELECT statement contains no
WHEN or OTHERWISE clauses.

Explanation
WHEN or OTHERWISE clauses are not required on
SELECT statements, but their absence may indicate a
coding error.

IBM1172I W A zero length string has been
entered for the option-name
option. The option is ignored.

Explanation
User-specified string has zero length. This can occur
when OR('') has been specified on the command line
or when the backslash character is specified as the
only character in the OR string. In the latter case, the
backslash character has been interpreted as an
escape character, and so the string appears to have
zero length.

IBM1173I W SELECT statement contains no
WHEN clauses.

Explanation
SELECT statements do not require WHEN clauses, but
their absence may indicate a coding error.

IBM1174I W The reference in the from-into
clause clause may not be byte-
aligned.

Explanation
The reference specified in the FROM or INTO clause
may not be byte-aligned. If the reference is indeed not
byte-aligned, unpredictable results may occur.

IBM1175I W FIXED BINARY constant contains
too many digits. Excess
nonsignificant digits will be
ignored.

Explanation
The maximum precision for FIXED BINARY constants
is specified by the FIXEDBIN suboption of the LIMITS
compiler option.

18 Enterprise PL/I for z/OS IBM Developer for z/OS PL/I for Windows: Enterprise PL/I for z/OS Messages and
Codes

IBM1176I W FIXED DECIMAL constant contains
too many digits. Excess
nonsignificant digits will be
ignored.

Explanation
The maximum precision for FIXED DECIMAL constants
is specified by the FIXEDDEC suboption of the LIMITS
compiler option.

IBM1177I W Mantissa in FLOAT BINARY
constant contains more digits than
the implementation maximum.
Excess nonsignificant digits will be
ignored.

Explanation
Float binary constants are limited to 64 digits on Intel,
32 on AIX and 33 on z/OS.

IBM1178I W Mantissa in FLOAT DECIMAL
constant contains more digits than
the implementation maximum.
Excess nonsignificant digits will be
ignored.

Explanation
Float decimal constants are limited to 18 digits on
Intel, 106 on AIX and 109 on z/OS.

IBM1179I W FLOAT literal is too big for its
implicit precision. An appropriate
HUGE value of assumed value is
assumed.

Explanation
The precision for a float literal is implied by the
number of digits in its mantissa. For instance 1e99 is
implicitly FLOAT DECIMAL(1), but the value 1e99 is
larger than the largest value a FLOAT DECIMAL(1) can
hold.

IBM1180I W Argument to BUILTIN name built-in
is not byte aligned.

Explanation
This message applies to the ADDR,
CURRENTSTORAGE/SIZE and STORAGE/SIZE built-in
functions. Applying any one of these built-in functions
to a variable that is not byte-aligned may not produce
the results you expect.

IBM1181I W A WHILE or UNTIL option at the
end of a series of DO specifications

applies only to the last
specification.

Explanation
In the following code snippet, the WHILE clause
applies only to the last DO specification, that is only
when I = 5;

 do i = 1, 3, 5 while(j < 5);

IBM1182I W Invocation of a NONRECURSIVE
procedure from within that
procedure is invalid. RECURSIVE
attribute is assumed.

Explanation
A procedure contains code that will cause it to be
recursively invoked, but the procedure was not
declared with RECURSIVE attribute.

 a: proc(n);
 ...
 if n > 0 then call a;

IBM1183I W condition-name condition is
disabled. Statement is ignored.

Explanation
The SIGNAL statement is ignored if the condition it
would raise is disabled. Some conditions, like SIZE, are
disabled by default.

 (nofofl): signal fixedoverflow;

IBM1184I W Source with length string-length in
INITIAL clause for variable name
has length greater than the length
string-length of that INITIAL
variable.

Explanation
The string in the INITIAL clause ('TooBig' in the
example below) will be trimmed to fit (to 'TooB').

 dcl x char(4) static init('tooBig');

Chapter 2. Compiler Warning Messages (1078-1225, 2600-2799) 19

IBM1185I W Source with length string-length in
RETURN statement has length
greater than that in the
corresponding RETURNS attribute.

Explanation
The string in the RETURNS clause ('TooBig' in the
example below) will be trimmed to fit (to 'TooB').

 x: proc returns(char(4));
 ...
 return('TooBig');

IBM1186I W Source with length string-length in
string assignment has length
greater than the length string-
length of the target.

Explanation
The source in the assignment ('TooBig' in the example
below) will be trimmed to fit (to 'TooB').

 dcl x char(4);
 x = 'TooBig';

IBM1187I W Argument number argument-
number in entry reference entry
name has length string-length
which is greater than that of the
corresponding parameter.

Explanation
The source in the entry invocation ('TooBig' in the
example below) will be trimmed to fit (to 'TooB').

 dcl x entry(char(4));
 call x('TooBig');

IBM1188I W Result of concatenating two
strings is too long.

Explanation
The length of the string produced by concatenating
two strings must not be greater than the maximum
allowed for the derived string type.

IBM1189I W NODESCRIPTOR attribute conflicts
with the NONCONNECTED
attribute for the parameter

parameter name. CONNECTED is
assumed.

Explanation
If NODESCRIPTOR is specified (or implied) for a
procedure, aggregate parameters should have the
CONNECTED attribute. The CONNECTED attribute can
be explicitly coded, or it can be implied by the
DEFAULT(CONNECTED) compiler option.

IBM1190I W The OPTIONS option option-name
conflicts with the LANGLVL
compiler option. The option will be
applied.

Explanation
The named option is not part of the PL/I language
definition as specified in the LANGLVL compiler option.

IBM1191I W Result of FIXED BIN divide will not
be scaled.

Explanation
When dividing a FIXED BIN(p1,0) value by a FIXED
BIN(p2,0) value where 31 > p1, the result will have the
attributes FIXED BIN(p1,0). With ANSI 76, it would
have the attributes FIXED BIN(31,31-p1).

IBM1192I W WHEN clauses contain duplicate
values.

Explanation
In a dominated SELECT statement, if a WHEN clause
has the same value as an earlier WHEN clause, the
code for the second WHEN clause will never be
executed. This message will be produced only if the
SELECT statement is otherwise suitable for
transformation into a branch table.

IBM1193I W statement count statements in
block block name.

Explanation
This message is produced if a block contains more
statements than allowed by the MAXSTMT compiler
option. It may point to blocks that are excessively
large.

IBM1194I W More than one argument to MAIN
procedure.

Explanation
A MAIN procedure should have at most one argument,
except under SYSTEM(CICS) and SYSTEM(IMS).

20 Enterprise PL/I for z/OS IBM Developer for z/OS PL/I for Windows: Enterprise PL/I for z/OS Messages and
Codes

IBM1195I W Argument to MAIN procedure is
not CHARACTER VARYING.

Explanation
The argument to the MAIN procedure should be
CHARACTER VARYING, except under SYSTEM(CICS),
SYSTEM(TSO) and SYSTEM(IMS).

IBM1196I W AREA initialized with EMPTY -
INITIAL attribute is ignored.

Explanation
Any INITIAL attribute specified for an AREA variable is
ignored. The variable will, instead, be initialized with
the EMPTY built-in function.

IBM1197I W file-name assumed as file
condition reference.

Explanation
All file conditions should be qualified with a file
reference, but ENDFILE and ENDPAGE are accepted
without a file reference. SYSIN and SYSPRINT are then
assumed, respectively.

IBM1198I W A null argument list is assumed for
variable name.

Explanation
An ENTRY reference is used where the result of
invoking that entry is probably meant to be used.

 dcl e1 entry returns(ptr);
 dcl q ptr based;
 e1->q = null();

 dcl e2 entry returns(bit(1));
 if e2 then ...

IBM1199I W Syntax of the %LINE directive is
incorrect.

Explanation
The %LINE directive must be followed, with optional
intervening blanks, by a parenthesis, a line number, a
comma, a file name and a closing parenthesis.

 %line(19, test.pli);

IBM1200I W Use of DATE built-in function may
cause problems.

Explanation
The DATE built-in returns a two-digit year. It might be
better to use the DATETIME built-in which returns a
four-digit year.

IBM1201I W suboption conflicts with a
previously specified suboption for
the option compiler option.

Explanation
There is a conflict of suboptions for the LANGLVL
compiler option. The SAA2 and OS suboptions are
mutually exclusive.

 *process langlvl(saa2 os);

IBM1202I W Syntax of the %OPTION statement
is incorrect.

Explanation
The only option supported in the %OPTION statement
is the LANGLVL option.

IBM1203I W Argument to PLITEST built-in
subroutine is ignored.

Explanation
Change the invocation of PLITEST so that no argument
is passed.

IBM1204I W INTERNAL CONSTANT assumed
for initialized STATIC LABEL.

Explanation
LABEL variables require block activation information,
and hence they cannot be initialized at compile-time.
For a STATIC LABEL variable with the INITIAL
attribute, if the variable is a member of a structure or a
union, a severe message will be issued. Otherwise, its
attributes will be changed to INTERNAL CONSTANT in
order to eliminate the requirement for block activation
information. Such a variable must be initialized with
LABEL CONSTANTs from containing blocks.

IBM1205I W Arguments of the option compiler
option must be the same length.

Explanation
If two arguments of the NAMES option are specified,
they must be the same length. The second argument is
the uppercase value of the first. If a character in the
first string does not have an uppercase value, use the
character itself as the uppercase value. For example:

Chapter 2. Compiler Warning Messages (1078-1225, 2600-2799) 21

 names('$!@' '$!@')

IBM1206I W BIT operators should be applied
only to BIT operands.

Explanation
In an expression of the form x & y, x | y, or x ^ y, x and y
should both have BIT type.

IBM1207I W Operand to LENGTH built-in
should have string type.

Explanation
If the operand has a numeric type, the result is the
length that value would have after it was converted to
string. The length of a numeric type is NOT the same
as its storage requirement.

IBM1208I W INITIAL list for the array variable
name contains only one item.

Explanation
The array will be incompletely initialized. If the named
variable is part of a structure, subsequent elements in
that structure with this problem will be flagged with
message 2603. An asterisk can be used as an
initialization factor to initialize all the elements with
one value. In the example below, a(1) is initialized with
the value 13, while the elements a(2) through a(8) are
uninitialized. In contrast, all the elements in b are
initialized to 13.

 dcl a(8) fixed bin init(13);
 dcl b(8) fixed bin init((*) 13);

IBM1209I W INDEXED environment option for
file file name will be treated as
ORGANIZATION(INDEXED).

Explanation
Since ISAM is not being simulated on the OS/2
platform, the file will be treated in a manner similar to
VSAM KSDS. The file specified in the first declaration
below would be handled in the same manner as the
file in the second declaration. Both are treated as
ORGANIZATION(INDEXED).

 dcl f1 file env(indexed);
 dcl f2 file env(organization(indexed));

IBM1210I W The field width specified in the
keyword-format item may be too
small for complete output of the
data item.

Explanation
The format width will be too small for output if the
number is negative. It might be valid if the format is
being used for input.

IBM1211I W Source with length string-length in
string assignment has length
greater than the length string-
length of the target variable.

Explanation
The source in the assignment ('TooBig' in the example
below) will be trimmed to fit (to 'TooB'). If the target is
a pseudovariable, message 1186 is issued instead.

 dcl x char(4);
 x = 'TooBig';

IBM1212I W The A format item requires an
argument when used in GET
statement. An L format item is
assumed in its place.

Explanation
A width must be specified on A format items when
specified on a GET statement.

 get edit(name) (a);

IBM1213I W The procedure proc name is not
referenced.

Explanation
The named procedure is not external and is never
referenced in any live code in the compilation unit.
This may represent an error (if it was supposed to be
called) or an opportunity to eliminate some dead code.

IBM1214I W A dummy argument will be
created for argument number
argument-number in entry
reference entry name.

Explanation
An argument passed BYADDR to an entry does not
match the corresponding parameter in the entry
description. The address of the argument will not be

22 Enterprise PL/I for z/OS IBM Developer for z/OS PL/I for Windows: Enterprise PL/I for z/OS Messages and
Codes

passed to the entry. Instead, the argument will be
assigned to a temporary with attributes that do match
the parameter in the entry description, and the
address of that temporary will be passed to the entry.
This means that if the entry alters the value of this
parameter, the alteration will not be visible in the
calling routine.

 dcl e entry(fixed bin(31));
 dcl i fixed bin(15);
 call e(i);

IBM1215I W The variable variable name is
declared without any data
attributes.

Explanation
It will be given the default attributes, but this may be
because of an error in the declare. For instance, in the
following example, parentheses may be missing

 dcl a, b fixed bin;

IBM1216I W The structure member variable
name is declared without any data
attributes. A level number may be
incorrect.

Explanation
It will be given the default attributes, but this may be
because of an error in the declare. For instance, in the
following example, the level number on c and d should
probably be 3.

 dcl a, b fixed bin;
 1 a,
 2 b,
 2 c,
 2 d;

IBM1217I W An unnamed structure member is
declared without any data
attributes. A level number may be
incorrect.

Explanation
It will be given the default attributes, but this may be
because of an error in the declare. For instance, in the
following example, the level number on c and d should
probably be 3.

 dcl a, b fixed bin;
 1 a,
 2 *,
 2 c,
 2 d;

IBM1218I W First argument to BUILTIN name
built-in should have string type.

Explanation
To eliminate this message, apply the CHAR or BIT
built-in function to the first argument.

 dcl i fixed bin;
 display(substr(i,4));

IBM1219I W LEAVE will exit noniterative DO-
group.

Explanation
This message is not produced if the LEAVE statement
specifies a label. In the following loop, the LEAVE
statement will cause only the immediately enclosing
DO-group to be exited; the loop will not be exited.

 do i = 1 to n;
 if a(i) > 0 then
 do;
 call f;
 leave;
 end;
 else;
 end;

IBM1220I W Result of comparison is always
constant.

Explanation
This message is produced when a variable is
compared to a constant equal to the largest or
smallest value that the variable could assume. In the
following loop, the variable x can never be greater than
99, and hence the implied comparison executed each
time through the loop will always result in a '1'b.

 dcl x pic'99';

 do x = 1 to 99;
 end;

Chapter 2. Compiler Warning Messages (1078-1225, 2600-2799) 23

IBM1221I W Statement uses count bytes for
temporaries.

Explanation
This message is produced if a statement uses more
bytes for temporaries than allowed by the MAXTEMP
compiler option.

IBM1222I W Comparison involving 2-digit year
is problematic.

Explanation
Comparisons involving data containing 2-digit year
fields may cause problems if exactly one of the years is
later than 1999.

IBM1223I W Literal in comparison interpreted
with DATE attribute.

Explanation
In a comparison, if one comparand has the DATE
attribute, the other should also. If the non-date is a
literal with a value that is valid for the date pattern, it
will be viewed as if it had the same DATE attribute as
the date comparand. So, in the following code,
'670101' will be interpreted as if it had the
DATE('YYMMDD') attribute.

 dcl x char(6) date('YYMMDD');

 if x > '670101' then ...

IBM1224I W DATE attribute ignored in
comparison with non-date literal.

Explanation
In a comparison, if one comparand has the DATE
attribute, the other should also. If the non-date is a
literal with a value that is not valid for the date pattern,
the DATE attribute will be ignored. So, in the following
code, the comparison will be evaluated as if x did not
have the DATE attribute.

 dcl x char(6) date('YYMMDD');

 if x > '' then ...

IBM1225I W DATE attribute ignored in
conversion from literal.

Explanation
If the target in an explicit or implicit assignment has
the DATE attribute, the source should also. If it does
not, the DATE attribute will be ignored. So, in the
following code, the assignment will be performed as if
x did not have the DATE attribute.

 dcl x char(6) date('YYMMDD');

 x = '';

IBM2600I W Compiler backend issued warning
messages to STDOUT.

Explanation
Look in STDOUT to see the message issued by the
compiler backend.

IBM2601I W Missing character assumed before
character. DECLARE and other
nonexecutable statements should
not have labels.

Explanation
The indicated character is missing and has been
inserted by the parser in order to correct your source.

 xx: dcl test fixed bin;

IBM2602I W Number of items in INITIAL list is
count for the array variable name
which contains array size
elements.

Explanation
The array will be incompletely initialized. If the named
variable is part of a structure, the first element in that
structure with this problem will be flagged with
message 1138. This may be a programming error (in
the example below, 6 should probably have been 7)
and may cause exceptions when the program is run.

 dcl
 1 a,
 2 b(8) fixed bin init(1, (7) 29),
 2 c(8) fixed bin init(1, (6) 29);

IBM2603I W INITIAL list for the array variable
name contains only one item.

24 Enterprise PL/I for z/OS IBM Developer for z/OS PL/I for Windows: Enterprise PL/I for z/OS Messages and
Codes

Explanation
The array will be incompletely initialized. If the named
variable is part of a structure, the first element in that
structure with this problem will be flagged with
message 1208. An asterisk can be used as an
initialization factor to initialize all the elements with
one value. In the example below, b(1) and c(1) are
initialized with the value 13, while the elements b(2)
through b(8) and c(2) through c(8) are uninitialized. In
contrast, all the elements in d are initialized to 13.

 dcl
 1 a,
 2 b(8) fixed bin init(13),
 2 d(8) fixed bin init(13),
 2 e(8) fixed bin init((*) 13);

IBM2604I W FIXED DEC(source-
precision,source-scale) will be
converted to FIXED DEC(target-
precision,target-scale). Significant
digits may be lost.

Explanation
If the source in a conversion to FIXED DECIMAL is a
FIXED DECIMAL or PICTURE variable with a different
precision and scale factor, and if the difference
between the precisions is not as large as the the
difference between the scale factors, then significant
digits may be lost. If the SIZE condition were enabled,
code would be generated to detect any such
occurrence, and this message would not be issued.

 dcl a fixed dec(04) init(1009);
 dcl b fixed dec(03);

 b = a;

IBM2605I W Invalid carriage control character.
Blank assumed.

Explanation
The specified line contains an invalid ANS print control
character. The valid characters are: blank, 0, -, + and 1.

IBM2606I W Code generated for the REFER
object reference name would be
more efficient if the REFER object
had the attributes REAL FIXED
BIN(p,0).

Explanation
If the REFER object has any other attributes, it will be
converted to and from REAL FIXED BIN(31,0) via
library calls.

IBM2607I W PICTURE representing FIXED
DEC(source-precision,source-scale)
will be converted to FIXED
DEC(target-precision,target-scale).
Significant digits may be lost.

Explanation
If the source in a conversion to FIXED DECIMAL is a
PICTURE variable with a different precision and scale
factor, and if the difference between the precisions is
not as large as the the difference between the scale
factors, then significant digits may be lost. If the SIZE
condition were enabled, code would be generated to
detect any such occurrence, and this message would
not be issued.

 dcl a pic'(4)9' init(1009);
 dcl b fixed dec(03);

 b = a;

IBM2608I W PICTURE representing FIXED
DEC(source-precision,source-scale)
will be converted to PICTURE
representing FIXED DEC(target-
precision,target-scale). Significant
digits may be lost.

Explanation
If the source in a conversion to a PICTURE is a
PICTURE variable with a different precision and scale
factor, and if the difference between the precisions is
not as large as the the difference between the scale
factors, then significant digits may be lost. If the SIZE
condition were enabled, code would be generated to
detect any such occurrence, and this message would
not be issued.

 dcl a pic'(4)9' init(1009);
 dcl b pic'(3)9';

 b = a;

IBM2609I W Comment contains a semicolon on
line line-number.file-number.

Chapter 2. Compiler Warning Messages (1078-1225, 2600-2799) 25

Explanation
If a comment contains a semicolon, it may indicate
that there is an earlier unintentionally unclosed
comment that is accidentally commenting out some
source as in this example

 /* start of unclosed comment
 dcl b pic'(3)9';
 /* next comment */

IBM2610I W One argument to BUILTIN name
built-in is FIXED DEC while the
other is FIXED BIN. Compiler will
not interpret precision as FIXED
DEC.

Explanation
This message applies to the MULTIPLY, DIVIDE, ADD,
and SUBTRACT built-in functions: if one argument to
one of these functions is FIXED DEC while the other is
FIXED BIN, then the specified precision will not be
interpreted as a FIXED DEC precision. This may cause
improper truncation of data. For example, the result of
the following multiply will have the attributes FIXED
BIN(15), not FIXED DEC(15), and that might cause the
result to be improperly truncated.

 dcl a fixed bin(31);
 dcl b fixed dec(15);

 b = multiply(a, 1000, 15);

IBM2611I W The binary value binary value
appears in more than one WHEN
clause.

Explanation
In a dominated SELECT statement, if a WHEN clause
has the same value as an earlier WHEN clause, the
code for the second WHEN clause will never be
executed. This message will be produced only if the
SELECT statement is otherwise suitable for
transformation into a branch table.

IBM2612I W The character string character
string appears in more than one
WHEN clause.

Explanation
In a dominated SELECT statement, if a WHEN clause
has the same value as an earlier WHEN clause, the
code for the second WHEN clause will never be

executed. This message will be produced only if the
SELECT statement is otherwise suitable for
transformation into a branch table.

IBM2613I W RULES(NOLAXINOUT) violation:
variable is being passed as an
INOUT parameter, but may be
unset.

Explanation
The indicated variable may not have been assigned or
initialized a value before it is used as an INOUT
parameter. This is problematic unless it is used only as
an OUTONLY parameter.

IBM2614I W Both comparands are Booleans.

Explanation
This message will flag statements such as the
following, where the "equals" is meant to be an "and"
or "or".

 if (a < b) = (c < d) then

IBM2615I W DO-loop will always execute
exactly once. A semicolon after
the DO may be missing.

Explanation
DO-loops should normally be iterative, but if the DO-
loop specification consists of just one assignment,
then it will always excute once and only once. A
semicolon after the DO may be missing, as in this
example

 do
 edsaup.tprs = ads162.tprs;
 edsaup.tops = ads162.tops;
 end;

IBM2616I W Size of parameter variable will
return the currentsize value since
no descriptor is available.

Explanation
If the SIZE or STG built-in function is applied to a
CHAR(*) VARYING (or VARYINGZ) parameter when
there is no descriptor available, then the size of the
actual storage allocated to the variable cannot be
determined and only the current size can be returned.

26 Enterprise PL/I for z/OS IBM Developer for z/OS PL/I for Windows: Enterprise PL/I for z/OS Messages and
Codes

IBM2617I W Passing a LABEL to a non-PL/I
routine is very poor coding
practice and will cause the
compiler to generate less than
optimal code.

Explanation
It is generally very unwise to pass a label to another
routine. It would be good to think about redesigning
any code doing this. The compiler will issue this
message when a LABEL is passed to an ENTRY
declared with OPTIONS(COBOL) or OPTIONS(ASM)
or OPTIONS(FORTRAN). The only valid use of this
label in the called routine would be to pass it on to
another PL/I routine.

IBM2618I W The suboption suboption is not
valid for the suboption option of
the option compiler option.

Explanation
A suboption of a suboption of a compiler option is
incorrect. The suboption may be unknown or outside
the allowable range.

 *process limits(extname(2000));

IBM2619I W attribute must be returned
BYADDR.

Explanation
BYADDR must be used in RETURNS of PICTURE and
VARYING.

IBM2620I W Target structure contains REFER
objects. Results are undefined if
the assignment changes any
REFER object.

Explanation
Changing REFER objects may not produce the
expected results. For example, in the following
example, the assignment will not change any of the
elements in the array d.

 dcl
 1 a based(p),
 2 b fixed bin(31),
 2 c fixed bin(31),
 2 d(10 refer(c)),
 3 e fixed bin(31),
 3 f fixed bin(31);

 a = '';

IBM2621I W ON ERROR block does not start
with ON ERROR SYSTEM. An error
inside the block may lead to an
infinite loop.

Explanation
The first statement in an ON ERROR block should
usually be an ON ERROR SYSTEM statement. This will
tend to prevent an infinite loop if there is an error in
the rest of the code in the ON ERROR block.

IBM2622I W ENTRY used to set the initial value
in a DO loop will be invoked after
any TO or BY values are set.

Explanation
If the initial value in a DO loop is set via an ENTRY,
then you may get unexpected results if that ENTRY
also changes the TO or BY value. For example, in the
first loop below, the function "first" should not change
the value of the variable "last". It would be better to
change this code into the form of the second loop
below.

 do x = first() to last;
 end;

 temp = first();
 do x = temp to last;
 end;

IBM2623I W Mixing FIXED BIN and FLOAT DEC
produces a FLOAT BIN result.
Under DFP, this will lead to poor
performance.

Explanation
Under DFP, the conversion of FLOAT DEC to FLOAT BIN
requires an expensive library call that will lead to poor
performance. To avoid this, the DECIMAL built-in
function can be applied to the FIXED BIN operand. For
example, it would be better to change the first
assignment statement into the form of the second
below.

 dcl n fixed bin(31);
 dcl f float dec(16);

 f = n + f;
 f = dec(n) + f;

IBM2624I W Mixing BIT and FLOAT DEC
produces a FLOAT BIN result.

Chapter 2. Compiler Warning Messages (1078-1225, 2600-2799) 27

Under DFP, this will lead to poor
performance.

Explanation
Under DFP, the conversion of FLOAT DEC to FLOAT BIN
requires an expensive library call that will lead to poor
performance. To avoid this, the DECIMAL built-in
function can be applied to the BIT operand. For
example, it would be better to change the first
assignment statement into the form of the second
below.

 dcl b bit(8);
 dcl f float dec(16);

 f = b + f;
 f = dec(b) + f;

IBM2625I W Mixing FLOAT BIN and FLOAT DEC
produces a FLOAT BIN result.
Under DFP, this will lead to poor
performance.

Explanation
Under DFP, the conversion of FLOAT DEC to FLOAT BIN
requires an expensive library call that will lead to poor
performance.

IBM2626I W Use of SUBSTR with a third
argument equal to 0 is somewhat
pointless since the result will
always be a null string.

Explanation
While technically valid, a SUBSTR reference with a
third argument that is a constant of zero probably
represents a coding error.

IBM2627I W No metadata will be generated for
the structure identifier since its
use of REFER is too complex.

Explanation
XMI metadata is generated for BASED structures using
REFER only if their use of REFER is "simple".

IBM2628I W BYVALUE parameters should
ideally be no larger than 32 bytes.

Explanation
BYVALUE parameters larger than 32 bytes require too
much overhead and are bad for performance.

IBM2629I W No debug symbol information will
be generated for identifier.

Explanation
No debug symbol information will be generated for the
named variable, and hence it cannot be referenced
when using the debugger.

IBM2630I W The result in an arithmetic
operation has the attributes FIXED
base(precision,scale-factor) which
means that its scale factor is
greater than its precision and that
the operation may lead to an
overflow.

Explanation
If the scale factor for the result of an operation
exceeds the precision of the result, then unexpected
fixedoverflow exceptions may occur. This can happen,
for example, when multiplying two FIXED DEC(15,8)
variables under the LIMITS(FIXEDDEC(15)) option
because the result of such a multiplication would have
the attributes FIXED DEC(15,16). To eliminate this
message, the PRECISION built-in function could be
used to reduce the scale factor of one of the operands
or the MULTIPLY built-in function could be used to
override the default attributes for the result.

IBM2631I W One argument to BUILTIN name
built-in is FIXED DEC while the
other is FLOAT BIN. Compiler will
not interpret precision as FIXED
DEC.

Explanation
This message applies to the MULTIPLY, DIVIDE, ADD,
and SUBTRACT built-in functions: if one argument to
one of these functions is FIXED DEC while the other is
FLOAT BIN, then the specified precision will not be
interpreted as a FIXED DEC precision. This may cause
improper truncation of data. For example, the result of
the following multiply will have the attributes FLOAT
BIN(15), not FIXED DEC(15), and that might cause the
result to be improperly truncated.

 dcl a float bin(31);
 dcl b fixed dec(15);

 b = multiply(a, 1000, 15);

IBM2632I W One argument to BUILTIN name
built-in is FIXED DEC while the
other is FLOAT DEC. Compiler will

28 Enterprise PL/I for z/OS IBM Developer for z/OS PL/I for Windows: Enterprise PL/I for z/OS Messages and
Codes

not interpret precision as FIXED
DEC.

Explanation
This message applies to the MULTIPLY, DIVIDE, ADD,
and SUBTRACT built-in functions: if one argument to
one of these functions is FIXED DEC while the other is
FLOAT DEC, then the specified precision will not be
interpreted as a FIXED DEC precision. This may cause
improper truncation of data. For example, the result of
the following multiply will have the attributes FLOAT
DEC(15), not FIXED DEC(15), and that might cause the
result to be improperly truncated.

 dcl a float dec(15);
 dcl b fixed dec(15);

 b = multiply(a, 1000, 15);

IBM2633I W Given the support for addressing
arithmetic, basing a POINTER or
OFFSET on a FIXED BIN is
unnecessary, and it will also fail to
work properly if the size of a
POINTER changes.

Explanation
Code using such variables will work only as long as the
size of the POINTER or OFFSET variable remains the
same as the size of the FIXED BIN variable.

IBM2634I W Given the support for addressing
arithmetic, basing a FIXED BIN on
a POINTER or OFFSET is
unnecessary, and it will also fail to
work properly if the size of a
POINTER changes.

Explanation
Code using such variables will work only as long as the
size of the POINTER or OFFSET variable remains the
same as the size of the FIXED BIN variable.

IBM2635I W The result in an arithmetic
operation has the attributes FIXED
base(precision,scale-factor) which
means that some significant digits
may be lost.

Explanation
If the scale factor for the result of an operation is
negative, then the ones digits will be lost and that may
cause problems. This can happen, for example, when
dividing a FIXED DEC(11,2) variable by a FIXED

DEC(31,29) variable because the result of such a
division would have the attributes FIXED DEC(31,-7).
To eliminate this message, the PRECISION built-in
function could be used to reduce the scale factor of
one of the operands or the DIVIDE built-in function
could be used to override the default attributes for the
result.

IBM2636I W The ordinal ordinal name appears
in more than one WHEN clause.

Explanation
In a dominated SELECT statement, if a WHEN clause
has the same value as an earlier WHEN clause, the
code for the second WHEN clause will never be
executed. This message will be produced only if the
SELECT statement is otherwise suitable for
transformation into a branch table.

IBM2637I W An ENTRY invoked as a function
should have the RETURNS
attribute.

Explanation
If an ENTRY is used as a function, it should be
declared with the RETURNS attribute. The compiler
will apply the RETURNS attribute to both of the
ENTRYs in this example, but for E, the compiler will
assume it will return FLOAT DEC while for M, it will
assume it will return FIXED BIN.

 dcl e entry;
 dcl m entry;

 a = e();
 a = m();

IBM2638I W Statement used count
intermediate language
instructions.

Explanation
This message is produced if a statement uses more
intermediate language instructions. than allowed by
the MAXGEN compiler option. It may point to
statements that are excessively complex.

IBM2639I W Previous statement used count
intermediate language
instructions.

Explanation
This message is produced if a statement uses more
intermediate language instructions. than allowed by

Chapter 2. Compiler Warning Messages (1078-1225, 2600-2799) 29

the MAXGEN compiler option. It may point to
statements that are excessively complex. This
message, rather than message IBM2638, is produced
under the same situations as message IBM2638
except the STMT number option must also be in effect.

IBM2640I W Target is a REFER object. Results
are undefined if an assignment
changes a REFER object.

Explanation
Changing REFER objects might cause subsequent code
to fail. For example, in the following code, the first
assignment causes the second assignment to
overwrite storage.

 dcl
 1 a based(p),
 2 b fixed bin(31),
 2 c fixed bin(31),
 2 d(10 refer(c)),
 3 e fixed bin(31),
 3 f fixed bin(31);

 allocate a;
 a.c = 15;
 a.f = 0;;

IBM2641I W The suboption option of the option
compiler option must be followed
by a (possibly empty)
parenthesized list.

Explanation
A suboption of a compiler option has been incorrectly
specified. It must be followed by a left parenthesis and
then a (possibly empty) list of items and a closing right
parenthesis.

 *process deprecate(builtin);

IBM2642I W OPTIONS(REENTRANT) is ignored.

Explanation
Specifying OPTIONS(REENTRANT) on a PROCEDURE
or BEGIN block has no effect on the generated code.
Your code will be reentrant only if it does not alter any
STATIC variables. You can use the
DEFAULT(NONASGN) compiler option to force the
compiler to flag assignments to STATIC variables.

IBM2643I W The BUILTIN function builtin will
be deprecated.

Explanation
The named built-in function was specified in the
BUILTIN suboption of the DEPRECATENEXT option,
and so any explicit or contextual declaration of it is
flagged.

IBM2644I W The INCLUDE file filename will be
deprecated.

Explanation
The named INCLUDE file was specified in the INCLUDE
suboption of the DEPRECATENEXT option, and so any
attempt to include it is flagged.

IBM2645I W The ENTRY named entryname will
be deprecated.

Explanation
The named ENTRY was specified in the ENTRY
suboption of the DEPRECATENEXT option, and so any
explicit or contextual declaration of it is flagged.

IBM2646I W The VARIABLE named variable will
be deprecated.

Explanation
The named VARIABLE was specified in the VARIABLE
suboption of the DEPRECATENEXT option, and so any
explicit or contextual declaration of it is flagged.

IBM2647I W The statementname statement will
be deprecated.

Explanation
The named statement was specified in the STMT
suboption of the DEPRECATENEXT option, and so any
use of that statement is flagged.

IBM2648I W Declaration contains count
INITIAL items.

Explanation
Change the declaration to STATIC, or remove the
INITIAL items and copy the INITIAL item from a
STATIC variable.

IBM2649I W The binary value binary value
appears more than once in the
INLIST argument set.

Explanation
In INLIST(x, y1, y2, ...), no y value should appear
twice. This message will be produced only if the

30 Enterprise PL/I for z/OS IBM Developer for z/OS PL/I for Windows: Enterprise PL/I for z/OS Messages and
Codes

INLIST function is otherwise suitable for
transformation into a branch table.

IBM2650I W The ordinal ordinal name appears
more than once in the INLIST
argument set.

Explanation
In INLIST(x, y1, y2, ...), no y value should appear
twice. This message will be produced only if the
INLIST function is otherwise suitable for
transformation into a branch table.

IBM2651I W Block block name contains count
branches.

Explanation
This message is produced if a block contains more
branches than allowed by the MAXBRANCH compiler
option. It may point to blocks that are excessively
complex.

IBM2652I W REINIT reference contains no
element with an INITIAL attribute.

Explanation
In the statement REINIT x, x should contain some
element with an INITIAL attribute. If not, no code will
be generated for the statement.

IBM2653I W The list of preprocessor options
must be enclosed in quotation
marks.

Explanation
For example, rather than specifying
PP(SQL(VERSION(AUTO))), specify
PP(SQL('VERSION(AUTO)')).

IBM2654I W INITIAL attribute for BASED on
ADDR has no effect on the base
variable.

Explanation
The INITIAL attribute for BASED has an effect only if
the BASED variable is used in an ALLOCATE statement.
But for code such as the following, it has no effect on
either the variable A or B.

 dcl a fixed bin(31);
 dcl b bit(32) based(addr(a)) init(''b);

IBM2655I W Some options conflict with the
non-overridable options.

Explanation
If the 2 strings in the IBMZIOP module are equal, then
different values for the options specified there are not
allowed in the +DD options files, the invocation
parameter, the options environment variable or the
PROCESS statements. The conflicting options will be
ignored.

IBM2656I W Simple defining applies to variable
name. If string-overlay defining is
intended, then add POS(1) to its
declaration.

Explanation
In the following example, DEFBUF does not overlay the
first 10 bytes of BUFFER. Instead, each array element
of DEFBUF overlays the first byte of the first byte of the
corresponding array element of BUFFER.

 DCL BUFFER(10) CHAR (300);
 DCL DEFBUF(10) CHAR(1) DEF BUFFER;

IBM2657I W Both logical AND operands are
identical.

Explanation
This is probably a coding error.

IBM2658I W Both logical OR operands are
identical.

Explanation
This is probably a coding error.

IBM2659I W Generated code would be better if
all the INITIAL attributes in the
declare for variable name were
changed to VALUE.

Explanation
If an AUTOMATIC or STATIC structure consists entirely
of scalar fields all of which have the INITIAL attribute
and none of which have their address taken, then the
compiler could probably generate much better code if
all the INITIAL keywords were change to VALUE
keywords. If the STATIC or AUTOMATIC attribute is
explicitly specified, it would also have to be removed
from the declare.

Chapter 2. Compiler Warning Messages (1078-1225, 2600-2799) 31

IBM2660I W Program logic may lead to the END
statement for procedure name
even though procedure name is a
function that should return a
value.

Explanation
This message warns that the compiler has detected
code that could lead to an error under some
conditions.

 oops: proc(x) returns(fixed bin(31);
 dcl x fixed bin(31);
 select;
 when(x > 0) return(1);
 when(x = 0) return(0);
 otherwise;
 end;
 end;

The compiler will issue this message for E15 sort exits
unless the E15 sort exit specifies the OPTIONAL
attribute as part of the RETURNS option on its
PROCEDURE statement.

IBM2661I W The string string value appears
more than once in the INLIST
argument set.

Explanation
In INLIST(x, y1, y2, ...), no y value should appear
twice. This message will be produced only if the
INLIST function is otherwise suitable for
transformation into a branch table.

IBM2662I W INLIST argument set contains
duplicate values.

Explanation
In INLIST(x, y1, y2, ...), no y value should appear
twice. This message will be produced only if the
INLIST function is otherwise suitable for
transformation into a branch table.

IBM2663I W WHEN clause contains an
expression that matches the
previous expression in the
containing SELECT statement.

Explanation
In a SELECT statement, if a WHEN clause has the same
expression as the previousr expression in the WHEN
clauses in that SELECT statement, then the code is
probably in error. The compiler will not report all such

errors, but only those where an expression is
duplicated in one of the four previous expressions.

IBM2664I W WHEN clause contains an
expression that matches the
expression count previous in the
containing SELECT statement.

Explanation
In a SELECT statement, if a WHEN clause has the same
expression as one of the earlier expressions in the
WHEN clauses in that SELECT statement, then the
code is probably in error. The compiler will not report
all such errors, but only those where an expression is
duplicated in one of the four previous expressions.

IBM2665I W EXTERNAL PLIXOPT declare
specifies run-time options only if
the variable has the attribute
CHARACTER VARYING INITIAL
and is not an array.

Explanation
If an EXTERNAL variable is intended to define LE
runtime options, then it must be a scalar CHAR
VARYING string with an INITIAL value.

IBM2666I W RETURN expression holds the
address of a variable in
AUTOMATIC storage.

Explanation
Returning the address of a variable in AUTOMATIC
storage is likely to produce code that cannot work
successfully.

IBM2667I W The string lengths in the declare
for first depend on the size of
second whose declare comes later
in the block. Consider moving the
first declare after the second.

Explanation
The extents in one declare should not depend on the
size of a later declare. The compiler will swap the two
declares, but this might introduce other problems. It
might be better to move the first declare after the
second.

IBM2668I W Using the VALUE function with the
structure type type adds count
bytes to the generated object.

32 Enterprise PL/I for z/OS IBM Developer for z/OS PL/I for Windows: Enterprise PL/I for z/OS Messages and
Codes

Explanation
This message is produced if a typed structure with
some VALUE attributes needs more bytes than allowed
by the MAXINIT compiler option. Use of the VALUE
type function will add a full copy of the structure to the
generated object's constant area and may lead to
binder problems.

IBM2669I W The attribute keyword attribute is
ignored in an ALIAS definition.

Explanation
Attributes such as ALIGNED and UNALIGNED may be
specified in a DEFINE ALIAS statement, but they will
be ignored and should be removed.

IBM2670I W The parameter to MAIN should be
declared as CHAR(*) VARYING.

Explanation
The parameter to MAIN has a maximum length that
depends on the system and should not be declared
with a fixed maximum length.

IBM2671I W The variable X is passed as
argument number n to entry E. The
corresponding parameter has the
A attribute, and hence the variable
could be modified despite having
the D attribute.

Explanation
Code like this could lead to a protection exception. In
the following example, snce the variable X is
NONASSIGNABLE, the compiler could have passed the
address of a constant fullword 17 to the routine TEST.
If so, if E changed its parameter (as the attribute
OUTONLY says it could), then a protection exception
would result.

 call oops(17);

 test: proc(x);
 dcl x fixed bin(31) NONASSIGNABLE;
 dcl e ext entry(ASSIGNABLE fixed
bin(31));
 call e(x);
 end;

Chapter 2. Compiler Warning Messages (1078-1225, 2600-2799) 33

34 Enterprise PL/I for z/OS IBM Developer for z/OS PL/I for Windows: Enterprise PL/I for z/OS Messages and
Codes

Chapter 3. Compiler Error Messages (1226-1499,
2400-2599)

IBM1226I E Area extent is reduced to
maximum value.

Explanation
The maximum size allowed for an AREA variable is
16777216.

IBM1227I E keyword statement is not allowed
where an executable statement is
required. A null statement will be
inserted before the keyword
statement.

Explanation
In certain contexts, for example after an IF-THEN
clause, only executable statements are permitted. A
DECLARE, DEFINE, DEFAULT or FORMAT statement
has been found in one of these contexts. A null
statement, (a statement consisting of only a
semicolon) will be inserted before the offending
statement.

IBM1228I E DEFAULT statement is not allowed
where an executable statement is
required. The DEFAULT statement
will be enrolled in the current
block, and a null statement will be
inserted in its place.

Explanation
In certain contexts, for example after an IF-THEN
clause, only executable statements are permitted. A
DEFAULT statement has been found in one of these
contexts. A null statement (a statement consisting of
only a semicolon) will be inserted in place of the
DEFAULT statement.

IBM1229I E FORMAT statement is not allowed
where an executable statement is
required. The FORMAT statement
will be enrolled in the current
block, and a null statement will be
inserted in its place.

Explanation
In certain contexts, for example after an IF-THEN
clause, only executable statements are permitted. A
FORMAT statement has been found in one of these
contexts. A null statement (a statement consisting of

only a semicolon) will be inserted in place of the
FORMAT statement.

IBM1230I E Arguments have been specified for
the variable variable name, but it
is not an entry variable.

Explanation
Argument lists are valid only for ENTRY references.

 dcl a(15) entry returns(fixed bin(31));
 i = a(3)(4);

IBM1231I E Arguments/subscripts have been
specified for the variable variable
name, but it is neither an entry nor
an array variable.

Explanation
Argument/subscript lists are valid only for ENTRY and
array references.

 dcl a fixed bin;
 i = a(3);

IBM1232I E Extraneous comma at end of
statement ignored.

Explanation
A comma was followed by a semicolon rather than by a
valid syntactical element (such as an identifier). The
comma will be ignored in order to make the semicolon
valid. Under RULES(LAXPUNC), a message with the
same text, but lesser severity would be issued

 dcl 1 a, 2 b fixed bin, 2 c fixed bin, ;

IBM1233I E Missing character assumed.

Explanation
The indicated character is missing, and there are no
more characters in the source. The missing character
has been inserted by the parser in order to correct

© Copyright IBM Corp. 1999, 2019 35

your source. Under RULES(LAXPUNC), a message with
the same text, but lesser severity would be issued

IBM1234I E Missing character assumed before
character.

Explanation
The indicated character is missing and has been
inserted by the parser in order to correct your source.
Under RULES(LAXPUNC), a message with the same
text, but lesser severity would be issued

 display('Program starting' ;

IBM1235I E No data format item in format list.

Explanation
Data items cannot be transmitted unless a data format
item is given in the format list.

 put edit ((130)'-') (col(1));

IBM1236I E Subscripts on keyword labels are
ignored.

Explanation
A label specified on a PROCEDURE, PACKAGE or
ENTRY statement should have no subscripts.

IBM1237I E EXTERNAL ENTRY attribute is
assumed for variable-name.

Explanation
An undeclared variable is used with an arguments list.
This should give it a contextual declaration as
BUILTIN, but its name is not that of a built-in function.

IBM1238I E The second argument to the
BUILTIN name built-in is greater
than the precision of the result.

Explanation
The sift amount in ISLL is should not be greater than
the precision of the result.

 i = isll(n, 221);

IBM1239I E The attribute attribute is not
supported and is ignored.

Explanation
The named attribute is either not part of the SAA PL/I
language and is not supported on this platform.

 dcl f file transient;

IBM1240I E The attribute attribute is invalid in
a RETURNS descriptor.

Explanation
The RETURNS descriptor may not specify an array.

 dcl a entry returns((12) fixed bin);

IBM1241I E Only '=' and '^=' are allowed as
operators in comparisons involving
complex numbers.

Explanation
Equal and not equal are defined for complex variables,
but you have attempted to relate them in some other
way.

IBM1242I E Only '=' and '^=' are allowed as
operators in comparisons involving
program control data.

Explanation
Other relationships between program control data are
not defined. Perhaps a variable was misspelled.

IBM1243I E REGIONAL(integer specification (2
or 3)) ENVIRONMENT option is not
supported.

Explanation
REGIONAL(2) and REGIONAL(3) ENVIRONMENT
options are syntax-checked during compile-time but
are not supported during run-time.

IBM1244I E The variable specified as the
option value in an ENVIRONMENT
option must be a STATIC scalar
with the attributes REAL FIXED
BIN(31,0).

Explanation
This applies to the KEYLENGTH, KEYLOC and RECSIZE
suboptions.

36 Enterprise PL/I for z/OS IBM Developer for z/OS PL/I for Windows: Enterprise PL/I for z/OS Messages and
Codes

IBM1245I E The variable specified as the
option value in an ENVIRONMENT
option must be a STATIC scalar
with the attribute CHARACTER.

Explanation
This applies to the PASSWORD suboption.

IBM1246I E Argument to BUILTIN name built-in
should be CONNECTED.

Explanation
This message applies, for example, to the ADDR built-
in function. The value returned by the ADDR function is
the address of the first byte of its argument. If you use
this pointer to refer to a based variable, the variable
may be mapped over storage occupied by some other
variable, rather than the storage occupied by the
argument.

IBM1247I E Arithmetic operands should both
be numeric.

Explanation
The required implicit conversions will be performed,
but this may indicate a programming error. This
message will not be issued if the RULES(LAXCONV)
option is specified.

 i = i * '2';

IBM1248I E Argument to BUILTIN name built-in
should have arithmetic type.

Explanation
The argument to the named built-in function should
have arithmetic type. The required implicit conversion
will be performed, but this may indicate a
programming error. This message will not be issued if
the RULES(LAXCONV) option is specified.

IBM1249I E Argument to BUILTIN name built-in
should have CHARACTER type.

Explanation
The argument to the named built-in function should
have CHARACTER type. The required implicit
conversion will be performed, but this may indicate a
programming error.

IBM1252I E Argument number argument
number to BUILTIN name built-in
should have arithmetic type.

Explanation
The required implicit conversion will be performed, but
this may indicate a programming error. This message
will not be issued if the RULES(LAXCONV) option is
specified.

 x = max(x, y, z, '2');

IBM1254I E Arithmetic prefix operand should
be numeric.

Explanation
The required implicit conversion will be performed, but
this may indicate a programming error. This message
will not be issued if the RULES(LAXCONV) option is
specified.

 a = - b;

IBM1272I E Argument number argument
number to BUILTIN name built-in is
negative. It will be changed to 0.

Explanation
The second argument to built-in functions such as
COPY and REPEAT must be nonnegative.

 x = copy(y, -1);

IBM1273I E Third argument to BUILTIN name
built-in is negative. It will be
changed to 0.

Explanation
The third argument to built-in functions such as
COMPARE, PLIFILL, and PLIMOVE must be
nonnegative.

 call plimove(a, b, -1);

IBM1274I E RULES(NOLAXIF) requires BIT(1)
expressions in IF, WHILE, etc.

Explanation
Expressions in IF, WHILE, UNTIL and undominated
WHEN clauses should have the attributes BIT(1)

Chapter 3. Compiler Error Messages (1226-1499, 2400-2599) 37

NONVARYING. If not, the expression should be
compared to an appropriate null value. This message
will not be issued if the RULES(LAXIF) option is
specified.

 dcl x bit(8) aligned;
 ...
 if x then ...

IBM1281I E OPTIONS(RETCODE) on ATTACH
reference is invalid and will be
ignored.

Explanation
OPTIONS(RETCODE) is not supported on ATTACH
references.

IBM1287I E Exponentiation operands should
have numeric type.

Explanation
In an expression of the form x**y, x and y should not
have string type. This message will not be issued if the
RULES(LAXCONV) option is specified.

IBM1293I E WIDECHAR extent is reduced to
maximum value.

Explanation
The maximum length allowed for a WIDECHAR
variable is set by the STRING suboption of the LIMITS
option.

IBM1294I E BIT extent is reduced to maximum
value.

Explanation
The maximum length allowed for a BIT variable is set
by the STRING suboption of the LIMITS option.

IBM1295I E Sole bound specified is less than
1. An upper bound of 1 is
assumed.

Explanation
The default lower bound is 1, but the upper bound
must be greater than the lower bound.

 dcl x(-5) fixed bin;

IBM1296I E The BYADDR option conflicts with
the SYSTEM option.

Explanation
The arguments passed to the MAIN procedure when
SYSTEM(IMS) or SYSTEM(CICS) is in effect should not
have the BYADDR attribute.

 *process system(ims);
 a: proc(x);
 dcl x ptr byaddr;

IBM1297I E Source and target in BY NAME
assignment have no matching
assignable base identifiers.

Explanation
In a BY NAME, the source and target structures should
have at least one matching base element identifier.

 dcl 1 a, 2 b, 2 c, 2 d;
 dcl 1 w, 2 x, 2 y, 2 z;
 a = w, by name;

IBM1298I E Characters in B3 literals must be
0-7.

Explanation
In a B3 literal, each character must be either 0-7.

IBM1299I E CHARACTER extent is reduced to
maximum value.

Explanation
The maximum length allowed for a CHARACTER
variable is set by the STRING suboption of the LIMITS
option.

IBM1300I E variable name is contextually
declared as attribute.

Explanation
This is an E-level message because
RULES(NOLAXDCL) has been specified.

IBM1301I E A DECIMAL exponent is required.

Explanation
An E in a FLOAT constant must be followed by at least
one decimal digit (optionally preceded by a sign).

38 Enterprise PL/I for z/OS IBM Developer for z/OS PL/I for Windows: Enterprise PL/I for z/OS Messages and
Codes

IBM1302I E The limit on the number of
DEFAULT predicates in a block has
already been reached. This and
subsequent DEFAULT predicates in
this block will be ignored.

Explanation
Each block should contain no more than 31 DEFAULT
predicates.

IBM1303I E A second argument to the BUILTIN
name built-in must be supplied for
arrays with more than one
dimension. A value of 1 is
assumed.

Explanation
The LBOUND, HBOUND, and DIMENSION built-in
functions require two arguments when applied to
arrays having more than one dimension.

 dcl a(5,10) fixed bin;
 do i = 1 to lbound(a);

IBM1304I E Second argument to BUILTIN name
built-in is not positive. A value of 1
is assumed.

Explanation
The DIMENSION, HBOUND and LBOUND built-in
functions require that the second argument be
positive.

IBM1305I E Second argument to BUILTIN name
built-in is greater than the number
of dimensions for the first
argument. A value of dimension
count is assumed.

Explanation
The second argument to the LBOUND, HBOUND, and
DIMENSION built-in functions must be no greater than
the number of dimensions of their array arguments.

 dcl a(5,10) fixed bin;
 do i = 1 to lbound(a,3);

IBM1306I E Repeated declaration of identifier
is invalid and will be ignored.

Explanation
Level 1 variable names must not be repeated in the
same block.

 dcl a fixed bin, a float;

IBM1307I E Duplicate specification of
arithmetic precision. Subsequent
specification ignored.

Explanation
The precision attribute must be specified only once in
a declare.

 dcl a fixed(15) bin(31);

IBM1308I E Repeated declaration of identifier
is invalid. The name will be
replaced by an asterisk.

Explanation
The variable names at any given sublevel within a
structure or union must be unique.

 dcl 1 a, 2 b fixed, 2 b float;

IBM1309I E Duplicate specification of
attribute. Subsequent
specification ignored.

Explanation
Attributes like INITIAL must not be repeated for an
element of a DECLARE statement.

 dcl a fixed init(0) bin init(2);

IBM1310I E The attribute character conflicts
with previous attributes and is
ignored.

Explanation
Attributes must be consistent.

 dcl a fixed real float;

Chapter 3. Compiler Error Messages (1226-1499, 2400-2599) 39

IBM1311I E EXTERNAL name contains no non-
blank characters and is ignored.

Explanation
The external name should contain some nonblank
characters.

 dcl x external(' ');

IBM1312I E WX literals should contain a
multiple of 4 hex digits.

Explanation
WX literals must represent unicode strings and hence
must contain a multiple of 4 hex digits.

 x = '00'wx;

IBM1314I E ELSE clause outside of an open IF-
THEN statement is ignored.

Explanation
ELSE clauses are valid immediately after an IF-THEN
statement.

 do; if a > b then; end; else a = 0;

IBM1315I E END label matches a label on an
open group, but that group label is
subscripted.

Explanation
END statements for groups with a subscripted label
must have labels that are also subscripted.

 a(1): do;
 ...
 end a;

IBM1316I E END label is not a label on any
open group.

Explanation
A Label on END statement must match a LABEL on an
open BEGIN, DO, PACKAGE, PROCEDURE, or SELECT
statement.

 a: do;
 ...
 end b;

IBM1317I E An END statement may be missing
after an OTHERWISE unit. One will
be inserted.

Explanation
After an OTHERWISE unit in a SELECT statement, only
an END statement is valid.

 select;
 when (...)
 do;
 end;
 otherwise
 do;
 end;
 display(....);

IBM1318I E The ENVIRONMENT option option-
name conflicts with preceding
ENVIRONMENT options. This
option will be ignored.

Explanation
There was a conflict detected in the ENVIRONMENT
options specification. In the example
ENV(CONSECUTIVE INDEXED), the INDEXED option
conflicts with the CONSECUTIVE option.

IBM1319I E STRINGSIZE condition raised
while evaluating expression.
Result is truncated.

Explanation
During the conversion of a user expression during the
compilation, the target string was found to be shorter
than the source, thus causing the STRINGSIZE
condition to be raised.

IBM1320I E STRINGRANGE condition raised
while evaluating expression.
Arguments are adjusted to fit.

Explanation
If all the arguments in a SUBSTR reference are
constants or restricted expressions, the reference will
be evaluated at compile- time and the STRINGRANGE
condition will occur if the arguments do not comply
with the rules described for the SUBSTR built-in
function.

40 Enterprise PL/I for z/OS IBM Developer for z/OS PL/I for Windows: Enterprise PL/I for z/OS Messages and
Codes

 a = substr('abcdef', 5, 4);

IBM1321I E LEAVE/ITERATE label matches a
label on an open DO group, but
that DO group label is subscripted.

Explanation
LEAVE/ITERATE statements for groups with a
subscripted label must have labels that are also
subscripted.

 a(1): do;
 ...
 leave a;

IBM1322I E LEAVE/ITERATE label is not a label
on any open DO group in its
containing block.

Explanation
LEAVE/ITERATE must specify a label on an open DO
loop in the same block as the LEAVE/ITERATE
statement.

 a: do loop;
 begin;
 leave a;

IBM1323I E ITERATE/LEAVE statement is
invalid outside an open DO
statement. The statement will be
ignored.

Explanation
ITERATE/LEAVE statements are valid only inside DO
groups.

 a: begin;
 ...
 leave a;
 ...
 end a;

IBM1324I E The name name occurs more than
once in the EXPORTS clause.

Explanation
Names in the EXPORTS clause of a package statement
must be unique.

 a: package exports(a1, a2, a1);

IBM1325I E The name name occurs in the
EXPORTS clause, but is not the
name of any level-1 procedure.

Explanation
Each name in the EXPORTS clause of a package
statement must be the name of some level-1
procedure in that package.

 a: package exports(a1, a2, a3);

IBM1326I E Variables declared without a name
must be structure members or
followed by a substructure list.

Explanation
An asterisk may be used only for structure or union
names, or for members of structures or unions. An
asterisk may not be used for a level-1 structure name
that specifies the LIKE attribute.

 dcl * char(20) static init('who can use
me');

IBM1327I E The CHARACTER VARYING
parameter to MAIN should be
ASCII with the attribute NATIVE.

Explanation
If the parameter is EBCDIC or has the attribute
NONNATIVE, unpredictable results can occur.

IBM1328I E The CHARACTER VARYING
parameter to MAIN should be
EBCDIC with the attribute
BIGENDIAN.

Explanation
If the parameter is ASCII or has the attribute
LITTLEENDIAN, unpredictable results can occur. This
message applies only to SYSTEM(MVS) etc.

Chapter 3. Compiler Error Messages (1226-1499, 2400-2599) 41

IBM1329I E ENTRY statements are not allowed
under RULES(NOMULTIENTRY).

Explanation
Under RULES(NOMULTIENTRY), there should be no
ENTRY statements in your source program.

IBM1330I E The I in an iSUB token must be
bigger than zero. A value of 1 is
assumed.

Explanation
The I in an iSUB token must represent a valid
dimension number.

 dcl b(8) fixed bin def(0sub,1);

IBM1331I E The I in an iSUB token must have
no more than 2 digits. A value of 1
is assumed.

Explanation
The I in an iSUB token must have only 1 or 2 digits.

 dcl b(8) fixed bin def(001sub,1);

IBM1332I E The format-item format item
requires an argument when used
in GET statement. A value of 1 is
assumed.

Explanation
A width must be specified on A, B, and G format items
when specified on a GET statement.

 get edit(name) (a);

IBM1333I E Non-asterisk array bounds are not
permitted in GENERIC
descriptions.

Explanation
All array bounds in generic descriptions must be
asterisks.

 dcl x generic (e1 when((10) fixed), ...

IBM1334I E String lengths and area sizes are
not permitted in GENERIC
descriptions.

Explanation
All string lengths and area sizes in generic descriptions
must be asterisks.

 dcl x generic (e1 when(char(10)), ...

IBM1335I E Entry description lists are not
permitted in GENERIC
descriptions.

Explanation
Any ENTRY attribute in a generic description list must
not be qualified with an entry description list.

 dcl x generic (e1 when(entry(ptr)), ...

IBM1336I E GRAPHIC extent is reduced to
maximum value.

Explanation
The maximum length allowed for a GRAPHIC variable
is set by the STRING suboption of the LIMITS option.

IBM1337I E GX literals should contain a
multiple of 4 hex digits.

Explanation
GX literals must represent graphic strings and hence
must contain a multiple of 4 hex digits.

 x = '00'gx;

IBM1338I E Upper bound is less than lower
bound. Bounds will be reversed.

Explanation
A variable has been declared with an upper bound that
is less than its lower bound. The upper and lower
bounds will be swapped in order to correct this. For
example, DECLARE x(3:1) will be changed to DECLARE
x(1:3).

IBM1339I E Identifier is too long. It will be
collapsed to identifier.

42 Enterprise PL/I for z/OS IBM Developer for z/OS PL/I for Windows: Enterprise PL/I for z/OS Messages and
Codes

Explanation
The maximum length of an identifier is set by the
NAME suboption of the LIMITS compiler option.

IBM1340I E Argument number argument-
number in ENTRY reference ENTRY
name contains BIT data. NOMAP is
assumed.

Explanation
An argument containing BIT data has been found in a
call to a COBOL routine. Mapping of such structures
between PL/I and COBOL is not supported.

 dcl f ext entry options(cobol);

 dcl 1 a, 2 b bit(8), 2 c bit(8);

 call f(a);

IBM1341I E Argument number argument-
number in ENTRY reference ENTRY
name is or contains a UNION.
NOMAP is assumed.

Explanation
An argument containing UNION data has been found in
a call to a COBOL routine. Mapping of such structures
between PL/I and COBOL is not supported.

 dcl f ext entry options(cobol);

 dcl 1 a union, 2 b char(4), 2 c fixed
bin(31);

 call f(a);

IBM1342I E Argument number argument-
number in ENTRY reference ENTRY
name contains non-constant
extents. NOMAP is assumed.

Explanation
An argument containing non-constant extents has
been found in a call to a COBOL routine. Mapping of
such structures between PL/I and COBOL is not
supported.

 dcl f ext entry options(cobol);

 dcl n static fixed bin init(17);

 dcl 1 a, 2 b char(n), 2 c fixed bin(31);

 call f(a);

IBM1343I E nomap-suboption is invalid as a
suboption of option.

Explanation
The suboption should be specified as ARGn where "n"
is an integer greater than 0.

 dcl f ext entry options(cobol
nomap(arg0));

IBM1344I E NOMAP specifications are valid
only for ILC routines.

Explanation
NOMAP, NOMAPIN and NOMAPOUT are valid only for
COBOL, FORTRAN and ASM Procedures and Entrys.

IBM1345I E Initial level number in a structure
is not 1.

Explanation
The level-1 DECLARE statement may be missing.

 dcl
 2 a,
 3 b,
 3 c,

IBM1346I E INIT expression should be
enclosed in parentheses.

Explanation
This is required to avoid ambiguities. For example, it is
unclear whether all of the elements should be
initialized with the value 4 or if the first element should
be initialized with the value 9.

 dcl a(5) fixed bin init((5)+4);

IBM1347I E B assumed to complete iSUB.

Explanation
There is no language element of the form 1su.

Chapter 3. Compiler Error Messages (1226-1499, 2400-2599) 43

 dcl a(10) def b(1su, 1sub);

IBM1348I E Digit in BINARY constant is not
zero or one.

Explanation
In a BINARY constant, each digit must be a zero or
one.

IBM1349I E Characters in BIT literals must be
0 or 1.

Explanation
In a BIT literal, each character must be either zero or
one.

IBM1350I E Character with decimal value n
does not belong to the PL/I
character set. It will be ignored.

Explanation
The indicated character is not part of the PL/I
character set. This can occur if a program containing
NOT or OR symbols is ported from another machine
and those symbols are translated to a character that is
not part of the PL/I character set. Using the NOT and
OR compiler options can help avoid this problem.

IBM1351I E Characters in hex literals must be
0-9 or A-F.

Explanation
In a hex literal, each character must be either 0-9 or A-
F.

IBM1352I E The statement element character
is invalid. The statement will be
ignored.

Explanation
The statement entered could not be parsed because
the specified element is invalid.

IBM1353I E Use of underscore as initial
character in an identifier accepted
although invalid under
LANGLVL(SAA).

Explanation
Under LANGLVL(SAA), identifiers must start with an
alphabetic character or with one of the extralingual
characters. They may not start with an underscore.
Under LANGLVL(SAA2), identifiers may start with an

underscore, although names starting with _IBM are
reserved for use by IBM.

IBM1354I E Multiple argument lists are valid
only with the last identifier in a
reference.

Explanation
A reference of the form x(1)(2).y.z is invalid.

IBM1355I E Empty argument lists are valid
only with the last identifier in a
reference.

Explanation
A reference of the form x().y.z is invalid.

IBM1356I E Character with decimal value n
does not belong to the PL/I
character set. It is assumed to be
an OR symbol.

Explanation
The indicated character is not part of the PL/I
character set, but was immediately followed by the
same character. This can occur if a program containing
an OR symbol is ported from another machine and this
symbol is translated to a character that is not part of
the PL/I character set. Using the OR compiler option
can help avoid this problem.

IBM1357I E Character with decimal value n
does not belong to the PL/I
character set. It is assumed to be
a NOT symbol.

Explanation
The indicated character is not part of the PL/I
character set, but was immediately followed by an =, <
or > symbol. This can occur if a program containing a
NOT symbol is ported from another machine and this
symbol is translated to a character that is not part of
the PL/I character set. Using the NOT compiler option
can help avoid this problem.

IBM1358I E The scale factor specified in
BUILTIN name built-in with a
floating-point argument must be
positive. It will be changed to 1.

Explanation
This applies to the ROUND built-in function. The non-
positive value will be changed to 1.

44 Enterprise PL/I for z/OS IBM Developer for z/OS PL/I for Windows: Enterprise PL/I for z/OS Messages and
Codes

 dcl x float bin(53);
 x = round(x, -1);

IBM1359I E Names in
RANGE(identifier:identifier) are not
in ascending order. Order is
reversed.

Explanation
The names must be in ascending order.

 default range(h : a) fixed bin;

IBM1360I E The name identifier has already
been defined as a FORMAT
constant.

Explanation
The name of a FORMAT constant cannot be used as
the name of a LABEL constant as well.

 f(1): format(a, x(2), a);

 f(2): ;

IBM1361I E The name identifier has already
been defined as a LABEL constant.

Explanation
The name of a LABEL constant cannot be also used as
the name of a FORMAT constant.

 f(1): ;

 f(2): format(a, x(2), a);

IBM1362I E The label label-name has already
been declared. The explicit
declaration of the label will not be
accepted.

Explanation
Declarations for label constant arrays are not
permitted.

 dcl a(10) label variable;

 a(1): ...

 a(2): ...

IBM1363I E Structure level greater than 255
specified. It will be replaced by
255.

Explanation
The maximum structure level supported is 255.

 dcl
 1 a,
 256 b,
 2 c,

IBM1364I E Elements with level numbers
greater than 1 follow an element
without a level number. A level
number of 1 is assumed.

Explanation
A structure level is probably missing.

 dcl
 a,
 2 b,
 2 c,

IBM1365I E Statement type resolution
requires too many lexical units to
be examined. The statement will
be ignored.

Explanation
To determine if a statement is an assignment or
another PL/I statement, many elements of the
statement may need to be examined. If too many have
to be examined, the compiler will flag the statement as
in error. For instance, the following statement could be
a DECLARE until the equal sign is encountered by the
lexer.

 dcl (a, b, c) = d;

IBM1366I E Level number following LIKE
specification is greater than than
the level number for the LIKE
specification. LIKE attribute will
be ignored.

Chapter 3. Compiler Error Messages (1226-1499, 2400-2599) 45

Explanation
LIKE cannot be specified on a parent structure or
union.

 dcl
 1 a like x,
 2 b,
 2 c,

IBM1367I E Statements inside a SELECT must
be preceded by a WHEN or an
OTHERWISE clause. Statement is
ignored.

Explanation
A WHEN or OTHERWISE may be missing.

 select;
 i = i + 1;
 when (a > 0)
 ...

IBM1368I E The attribute character is invalid if
it is not followed by an element
with a greater logical level.

Explanation
The named attribute is valid only on parent structures.

 dcl
 1 a,
 2 b union,
 2 c1 fixed bin(31),
 2 c2 float bin(21),
 ...

IBM1369I E MAIN has already been specified
in the PACKAGE.

Explanation
OPTIONS(MAIN) may be specified for only one
PROCEDURE in a PACKAGE. All but the first
specification will be ignored.

IBM1370I E Extent expression is negative. It
will be replaced by the constant 1.

Explanation
Extents must be positive.

 dcl x char(-10);

IBM1371I E Structure element identifier is not
dot qualified.

Explanation
Under the option RULES(NOLAXQUAL), all structure
elements should be qualified with the name of at least
one of their parents.

IBM1372I E EXTERNAL specified on internal
entry point.

Explanation
The EXTERNAL attribute is valid only on external
procedures and entrys: for example, in a non-package,
only on the outermost procedure and entry statements
contained in it, and in a package, only on the
procedures and entrys listed in the EXPORTS clause of
the PACKAGE statement.

 a: proc;
 b: proc ext('_B');

IBM1373I E Variable variable name is implicitly
declared.

Explanation
Under the RULES(NOLAXDCL) option, all variables
must be declared except for contextual declarations of
built-in functions, SYSPRINT and SYSIN.

IBM1374I E Contextual attributes conflicting
with PARAMETER will not be
applied to variable name.

Explanation
Only those contextual attributes that can be applied to
a parameter will be applied. For example, CONSTANT
and EXTERNAL, which apply to contextual file
declarations, will not be applied to file parameters.

 a: proc(f);

 open file(f);

IBM1375I E The DEFINED variable variable
name does not fit into its base
variable.

46 Enterprise PL/I for z/OS IBM Developer for z/OS PL/I for Windows: Enterprise PL/I for z/OS Messages and
Codes

Explanation
The number of bits, characters or graphics needed for
a DEFINED variable must be no more than in the base
variable.

 dcl a char(10);

 dcl b char(5) defined (a) pos(8);

IBM1376I E Factoring of level numbers into
declaration lists containing level
numbers is invalid. The level
numbers in the declaration list will
be ignored.

Explanation
Only attributes can be factored into declaration lists.

 dcl 1 a, 2 (b, 3 c, 3 d) fixed;

IBM1377I E A scale factor has been specified
as an argument to the BUILTIN
name built-in, but the result of
that function has type FLOAT. The
scale factor will be ignored.

Explanation
Scale factors are valid only for FIXED values.

 x = binary(1e0,4,2);

IBM1378I E An arguments list or subscripts list
has been provided for a GENERIC
entry reference. It will be ignored.

Explanation
GENERIC entry references are not allowed to contain
an arguments or subscripts list.

 dcl t generic(sub1(10) when((*)),
 sub2 when((*,*)));

IBM1379I E Locator qualifier for GENERIC
reference is ignored.

Explanation
GENERIC references cannot be locator-qualified.

 dcl x generic (...);

 call p->x;

IBM1380I E Target structure in assignment
contains no elements with the
ASSIGNABLE attribute. No
assignments will be generated.

Explanation
In an assignment to a structure, some element of the
structure must have the assignable attribute.

 dcl
 1 a based,
 2 nonasgn fixed bin,
 2 nonasgn fixed bin;

 p->a = 0;

IBM1381I E DEFINED base for a BIT structure
should be aligned.

Explanation
If a BIT structure (or union) is defined on a variable
that is not aligned on a byte boundary, unpredictable
results may occur. This is especially true if a
substructure of the DEFINED variable is passed to
another routine.

IBM1382I E INITIAL attribute is invalid for
STATIC FORMAT variables. Storage
class is changed to AUTOMATIC.

Explanation
FORMAT variables require block activation
information; they cannot be initialized at compile-time.
If the variable were a member of a structure, the
storage class would not be changed to AUTOMATIC,
and a severe message would be issued instead.

IBM1383I E Labels on keyword statements are
invalid and ignored.

Explanation
Labels are not permitted on DECLARE, DEFAULT, and
DEFINE statements or on WHEN and OTHERWISE
clauses.

IBM1384I E message

Chapter 3. Compiler Error Messages (1226-1499, 2400-2599) 47

Explanation
This message is used to report back end error
messages.

IBM1385I E Invalid DEFINED - string overlay
defining attempted.

Explanation
The base variable in the DEFINED attribute must
consist of UNALIGNED, NONVARYING string variables
of the same string type as the DEFINED variable.

IBM1386I E DEFINED base for a BIT variable
should not be subscripted.

Explanation
When one bit variable is defined on a second (the
base), the base may be an array, but it must not be
subscripted.

 dcl a(20) bit(8) unaligned;
 dcl b bit(8) defined(a(3));

IBM1387I E The NODESCRIPTOR attribute is
invalid when any parameters have
* extents. The NODESCRIPTOR
attribute will be ignored.

Explanation
A parameter can have * extents only if a descriptor is
also passed. The NODESCRIPTOR attribute will be
ignored, and descriptors will be assumed to have been
passed for all array, structure and string arguments.

 a: proc(x) options(nodescriptor);

 dcl x char(*);

IBM1388I E The NODESCRIPTOR attribute is
invalid when any parameters have
the NONCONNECTED attribute.

Explanation
A parameter can have the NONCONNECTED attribute
only if a descriptor is also passed.

 a: proc(x) options(nodescriptor);

 dcl x(20) fixed bin nonconnected;

IBM1389I E The identifier identifier is not the
name of a built-in function. The
BUILTIN attribute will be ignored.

Explanation
The BUILTIN attribute can be applied only to
identifiers that are the names of built-in functions or
subroutines.

IBM1390I E note

Explanation
This message is used by %NOTE statements with a
return code of 8.

IBM1391I E End-of-source has been
encountered after an unmatched
comment marker.

Explanation
An end-of-comment marker is probably missing.

IBM1392I E End-of-source has been
encountered after an unmatched
quote.

Explanation
A closing quote is probably missing.

IBM1393I E Item in OPTIONS list conflicts with
other attributes in the declaration.
option-name is ignored.

Explanation
The indicated element of the options list is invalid.

 dcl a file options(assembler);

IBM1394I E Item in OPTIONS list is invalid for
BEGIN blocks. option-name is
ignored.

Explanation
The indicated element of the options list is invalid for
BEGIN blocks (although it may be valid for
PROCEDUREs).

 begin options(assembler);

48 Enterprise PL/I for z/OS IBM Developer for z/OS PL/I for Windows: Enterprise PL/I for z/OS Messages and
Codes

IBM1395I E Item in OPTIONS list is invalid for
PACKAGEs. option-name is
ignored.

Explanation
The indicated element of the options list is invalid for
PACKAGEs (although it may be valid for PROCEDUREs).

 a: package exports(*) options(assembler);

IBM1396I E Item in OPTIONS list is invalid for
PROCEDUREs. option-name is
ignored.

Explanation
The indicated element of the options list is invalid for
PROCEDUREs (although it may be valid for ENTRYs).

 a: procedure options(inter);

IBM1397I E Item in OPTIONS list is invalid for
nested PROCEDUREs. option-name
is ignored.

Explanation
The indicated element of the options list is invalid for
nested PROCEDUREs (although it may be valid for
PROCEDUREs).

 a: proc;
 b: proc options(main);

IBM1398I E Invalid item in OPTIONS list.
option-name is ignored.

Explanation
The indicated element of the options list is not a
supported option in any statement or declaration.

 a: proc options(unknown);

IBM1399I E Item in OPTIONS list is invalid for
ENTRY statements. option-name is
ignored.

Explanation
The indicated element of the options list is invalid for
ENTRY statements (although it may be valid for
PROCEDUREs).

 a: entry options(chargraphic);

IBM1400I E Item in OPTIONS list conflicts with
preceding items. option-name is
ignored.

Explanation
The elements of the options list must be consistent,
unlike in the example where BYVALUE and BYADDR
conflict.

 a: proc options(byvalue byaddr);

IBM1401I E Parameter attributes have been
specified for a variable that is not
a parameter. The parameter
attributes are ignored.

Explanation
Parameter attributes, such as BYVALUE or
CONNECTED, may be specified only for parameters.

 a: proc;
 dcl x byvalue ptr;

IBM1402I E Constant in POSITION attribute is
less than 1.

Explanation
The POSITION attribute must specify a positive value.

 dcl a def b pos(-10);

IBM1403I E The end of the source was reached
before the logical end of the
program. Null statements and END
statements will be inserted as
necessary to complete the
program.

Chapter 3. Compiler Error Messages (1226-1499, 2400-2599) 49

Explanation
The source should contain END statements for all
PACKAGEs, PROCEDUREs, BEGIN blocks, DO groups,
and SELECT statements, as well as statements for all
IF-THEN and ELSE clauses.

IBM1404I E The procedure name proc-name
has already been declared. The
explicit declaration of the
procedure name will not be
accepted.

Explanation
Declarations for internal procedures are not permitted.

 a: proc;
 dcl b entry options(byvalue);
 b: proc;

IBM1405I E Only one description is allowed in
a returns descriptor.

Explanation
A function can return only one value.

 dcl b entry returns(ptr, ptr);

IBM1406I E The product of the repetition
factor repetition-factor and the
length of the constant string to
which it is applied is greater than
the maximum length allowed for a
constant. The repetition factor will
be ignored.

Explanation
The string represented by a repetition factor applied to
another string must conform to the same limits
imposed on strings without repetition factors.

 a = (32767) 'abc';

IBM1407I E Scale factor is bigger than 127. It
will be replaced by 127.

Explanation
Scale factors must lie between -128 and 127 inclusive.

IBM1408I E Scale factor is less than -128. It
will be replaced by -128.

Explanation
Scale factors must lie between -128 and 127 inclusive.

IBM1409I E A SELECT statement may be
missing. A SELECT statement,
without an expression, will be
inserted.

Explanation
A WHEN or OTHERWISE clause has been found
outside of a SELECT statement.

IBM1410I E Semicolon inserted after ELSE
keyword.

Explanation
An END statement enclosing a statement such as DO
or SELECT has been found before the statement
required after ELSE.

 do;
 if a > b then
 ...
 else
 end;

IBM1411I E Semicolon inserted after ON
clause.

Explanation
An END statement enclosing a statement such as DO
or SELECT has been found before the statement
required after ON condition.

 do;
 ...
 on zdiv
 end;

IBM1412I E Semicolon inserted after
OTHERWISE keyword.

Explanation
An END statement may be misplaced or a semicolon
may be missing.

IBM1413I E Semicolon inserted after THEN
keyword.

50 Enterprise PL/I for z/OS IBM Developer for z/OS PL/I for Windows: Enterprise PL/I for z/OS Messages and
Codes

Explanation
An END statement may be misplaced or a semicolon
may be missing.

IBM1414I E Semicolon inserted after WHEN
clause.

Explanation
An END statement may be misplaced or a semicolon
may be missing.

IBM1415I E Source file does not end with the
logical end of the program.

Explanation
The source file contains statements after the END
statement that closed the first PACKAGE or
PROCEDURE. These statements will be ignored, but
their presence may indicate a programming error.

IBM1416I E Subscripts have been specified for
the variable variable name, but it
is not an array variable.

Explanation
Subscripts can be specified only for elements of an
array.

IBM1417I E Second argument in BUILTIN name
reference is less than 1. It will be
replaced by 1.

Explanation
Otherwise the STRINGRANGE condition would be
raised.

IBM1418I E Second argument in BUILTIN name
reference is too big. It will be
trimmed to fit.

Explanation
Otherwise the STRINGRANGE condition would be
raised.

IBM1419I E Third argument in BUILTIN name
reference is less than 0. It will be
replaced by 0.

Explanation
Otherwise the STRINGRANGE condition would be
raised.

IBM1420I E The factor in K/M constant is too
large and is replaced by maximum
factor.

Explanation
The maximum K constant is 2097151K, and the
maximum M constant is 2047M.

IBM1421I E More than 15 dimensions have
been specified. Excess will be
ignored.

Explanation
The maximum number of dimensions allowed for a
variable, including all inherited dimensions, is 15.

IBM1422I E Maximum of 500 LIKE attributes
per block exceeded.

Explanation
A block should contain no more than 500 LIKE
references. Under LANGLVL(SAA2), there is no limit.

IBM1423I E UNALIGNED attribute conflicts
with AREA attribute.

Explanation
All AREA variables must be ALIGNED.

IBM1424I E End of comment marker found
when there are no open
comments. Marker will be ignored.

Explanation
An */ was found when there was no open comment.

IBM1425I E There is no compiler directive
directive. Input up to the next
semicolon will be ignored.

Explanation
See the Language Reference Manual for the list of
supported compiler directives.

IBM1426I E Structure level of 0 replaced by 1.

Explanation
Structure level numbers must be positive.

IBM1427I E Numeric precision of 0 replaced by
1.

Chapter 3. Compiler Error Messages (1226-1499, 2400-2599) 51

Explanation
Numeric precisions must be positive.

IBM1428I E X literals should contain a multiple
of 2 hex digits.

Explanation
An X literal may not contain an odd number of digits.

IBM1429I E INITIAL attribute for REFER object
variable name is invalid.

Explanation
In DCL 1 a BASED, 2 b FIXED BIN INIT(3), 2 c(n
REFER(b)), the initial clause for 'b' is invalid and may
lead to unpredictable results.

IBM1430I E UNSIGNED attribute for type type
type type name conflicts with
negative INITIAL values and is
ignored.

Explanation
If an ORDINAL type is declared with the UNSIGNED
attribute, any INITIAL values specified must be
nonnegative.

IBM1431I E PRECISION specified for type type
type type name is too small to
cover its INITIAL values and is
adjusted to fit.

Explanation
An ORDINAL type must have a precision larger enough
to cover the range of values defined for it.

 define ordinal
 colors
 (red init(0),
 orange init(256)
 yellow init(512)) unsigned prec(8);

IBM1432I E The type type name is already
defined. The redefinition is
ignored.

Explanation
A named type may be defined only once in any block.

IBM1433I E The name name occurs more than
once in the RESERVES clause.

Explanation
Names in the RESERVES clause of a package
statement must be unique.

 a: package reserves(a1, a2, a1);

IBM1434I E The name name occurs in the
RESERVES clause, but is not the
name of any level-1 STATIC
EXTERNAL variable.

Explanation
Each name in the RESERVES clause of a package
statement must be the name of some level-1 static
external variable in that package.

 a: package reserves(a1, a2, a3);

IBM1435I E A precision value less than 1 has
been specified as an argument to
the BUILTIN name built-in. It will
be replaced by 15.

Explanation
Precision values must be positive.

 middle = divide(todo, 2, 0);

IBM1436I E The scale factor specified as an
argument to the BUILTIN name
built-in is out of the valid range. It
will be replaced by the nearest
valid value.

Explanation
Scale factors must be between -128 and 127
inclusive.

 f = fixed(i, 15, 130);

IBM1437I E The second argument to the
BUILTIN name built-in is greater
than the maximum FIXED BINARY
precision. It will be replaced by
the maximum value.

52 Enterprise PL/I for z/OS IBM Developer for z/OS PL/I for Windows: Enterprise PL/I for z/OS Messages and
Codes

Explanation
The maximum FIXED BINARY precision supported
allowed depends on the FIXEDBIN suboption of the
LIMITS option.

 i = signed(n, 63);

IBM1438I E Excess arguments for ENTRY
ENTRY name ignored.

Explanation
More arguments were specified in an ENTRY reference
than were defined as parameters in that ENTRY's
declaration.

 dcl e entry(fixed bin);
 call e(1, 2);

IBM1439I E Excess arguments for BUILTIN
name built-in ignored.

Explanation
More arguments were specified for the indicated built-
in function than are supported by that built-in function.

 i = acos(j, k);

IBM1441I E ENTRY/RETURNS description lists
for comparands do not match.

Explanation
In a comparison of two ENTRY variables or constants,
the ENTRY and RETURNS description lists should
match. The linkages must also match.

 dcl e1 entry(fixed), e2 entry(float);

 if e1 = e2 then

IBM1442I E The ENTRY/RETURNS description
lists in the ENTRY to be assigned
to target variable do not match
those of the target variable.

Explanation
In an assignment of an ENTRY variable or constant, the
ENTRY and RETURNS description lists for the source

should match those of the target. The linkages must
also match.

 dcl e1 variable entry(fixed), e2
entry(float);

 e1 = e2;

IBM1443I E An ENTRY/RETURNS description
list in an ENTRY in the INITIAL list
for target variable do not match
those of the target variable.

Explanation
When initializing an ENTRY variable or constant, the
ENTRY and RETURNS description lists for the source
should match those of the target. The linkages must
also match.

 dcl e1 variable entry(fixed);
 dcl e2 variable entry(float) init(e1);

IBM1444I E The ENTRY/RETURNS description
lists in the RETURN statement do
not match those in the
corresponding RETURNS attribute

Explanation
When a function returns an ENTRY variable or
constant, the ENTRY and RETURNS description lists in
the returned ENTRY reference should match those in
the containing procedure's RETURNS option. The
linkages must also match.

 a: proc returns(entry(float));

 dcl e1 entry(fixed);

 return(e1);

IBM1445I E The ENTRY/RETURNS description
lists for argument number
argument-number in entry
reference entry name do not match
those in the corresponding
parameter.

Explanation
This message also occurs if the linkages do not match.

 dcl a entry(entry(float));

Chapter 3. Compiler Error Messages (1226-1499, 2400-2599) 53

 dcl e1 entry(fixed);

 call a(e1);

IBM1446I E Third argument in BUILTIN name
reference is too big. It will be
trimmed to fit.

Explanation
Otherwise the STRINGRANGE condition would be
raised.

IBM1447I E Literals with an X prefix are valid
only in EXEC SQL statements.

Explanation
In PL/I statements, hex literals should be specified
with an X suffix.

IBM1448I E Use of nonconstant extents in
BASED variables without REFER
accepted although invalid under
LANGLVL(SAA).

Explanation
In the SAA level-1 language definition, extents in
BASED variables must all be constant except where
the REFER option is used. The following would be
invalid

 dcl x based char(n);

IBM1449I E Use of type function accepted
although invalid under
LANGLVL(SAA).

Explanation
Type functions are not part of the SAA level-1
language.

IBM1450I E keyword keyword accepted
although invalid under
LANGLVL(SAA).

Explanation
The indicated keyword (UNSIGNED in the example
below) is not defined in the SAA level-1 language.

 dcl x fixed bin unsigned;

IBM1451I E Use of S, D and Q constants
accepted although invalid under
LANGLVL(SAA).

Explanation
The definition of the SAA level-1 language does not
include S, D, and Q floating-point constants.

IBM1452I E Use of underscores in constants
accepted although invalid under
LANGLVL(SAA).

Explanation
The definition of the SAA level-1 language does not
permit using underscores in numeric and hex
constants.

IBM1453I E Use of asterisks for names in
declares accepted although invalid
under LANGLVL(SAA).

Explanation
The definition of the SAA level-1 language does not
permit using asterisks for structure element names.

IBM1454I E Use of XN and XU constants
accepted although invalid under
LANGLVL(SAA).

Explanation
The definition of the SAA level-1 language does not
include XN and XU constants.

IBM1455I E Use of arguments with BUILTIN
name built-in accepted although
invalid under LANGLVL(SAA).

Explanation
Under LANGLVL(SAA), the DATETIME built-in function
cannot have any arguments.

 s = datetime('DDMMYYYY');

IBM1456I E Use of 3 arguments with BUILTIN
name built-in accepted although
invalid under LANGLVL(SAA).

Explanation
Under LANGLVL(SAA), the VERIFY and INDEX built-in
functions are supposed to have exactly 2 arguments.

54 Enterprise PL/I for z/OS IBM Developer for z/OS PL/I for Windows: Enterprise PL/I for z/OS Messages and
Codes

 i = verify(s, j, k);

IBM1457I E Use of 1 argument with BUILTIN
name built-in accepted although
invalid under LANGLVL(SAA).

Explanation
Under LANGLVL(SAA), the DIM, LBOUND and HBOUND
built-in functions are supposed to have 2 arguments.

 i = dim(a);

IBM1458I E GOTO is not allowed under
RULES(NOGOTO).

Explanation
Under RULES(NOGOTO(STRICT)), there should be no
GOTO statements in your source program except for
those that exit an ON-unit.

IBM1459I E Uninitialized AUTOMATIC
variables in a block should not be
used in the prologue of that block.

Explanation
The AUTOMATIC variables in a block may be used in
the declare statements and the executable statements
of any contained block, but in the block in which they
are declared, they should be used only in the
executable statements.

 dcl x fixed bin(15) automatic;
 dcl y(x) fixed bin(15) automatic;

IBM1460I E Under RULES(ANS), nonzero scale
factors are not permitted in
declarations of FIXED BIN.
Declared scale factor will be
ignored.

Explanation
RULES(IBM) allows scaled FIXED BIN, but
RULES(ANS) supports it only for FIXED DECIMAL.
RULES(ANS) will ignore the scale factors in the
following declares

 dcl x fixed bin(31,16);

 dcl y entry(fixed bin(31,16));

IBM1461I E Under RULES(ANS), nonzero scale
factors are not permitted when the
result of BUILTIN name has the
attributes FIXED BIN. Specified
scale factor will be ignored.

Explanation
RULES(IBM) allows scaled FIXED BIN, but
RULES(ANS) supports it only for FIXED DECIMAL.
RULES(ANS) will ignore the scale factors in the
following built-ins

 dcl (x,y) fixed bin(15,0);
 put list(add(x,y,31,2));
 put list(bin(x,31,2));
 put list(prec(x,31,2));

IBM1462I E Expression in comparison
interpreted with DATE attribute.

Explanation
In a comparison, if one comparand has the DATE
attribute, the other should also. If the non-date is an
expression that could have a value that is valid for the
date pattern, it will be viewed as if it had the same
DATE attribute as the date comparand.

IBM1463I E Operand with DATE attribute is
invalid except in compare or
assign. DATE attribute will be
ignored.

Explanation
Comparisons are the only infix operations where
operands with the DATE attribute may be used. If they
are used in any other operation, the DATE attribute will
be ignored. So, in the following code, the addition will
be flagged and the DATE attribute ignored.

 dcl x char(5) date('YYDDD');

 put list(x + 1);

IBM1464I E DATE attribute ignored in
comparison with non-date
expression.

Chapter 3. Compiler Error Messages (1226-1499, 2400-2599) 55

Explanation
In a comparison, if one comparand has the DATE
attribute, the other should also. If the non-date is an
expression that could not have a value that is not valid
for the date pattern, the DATE attribute will be ignored.

IBM1465I E Source in assignment has the
DATE attribute, but target variable
does not. The DATE attribute will
be ignored.

Explanation
If the target in an assignment has the DATE attribute,
the source should also. If the target is a
pseudovariable, message 1466 is issued instead.

 dcl x char(6);
 x = date();

IBM1466I E Source in assignment has the
DATE attribute, but target does
not. The DATE attribute will be
ignored.

Explanation
If the source in an assignment has the DATE attribute,
the target should also.

IBM1467I E Source in INITIAL clause for
variable name has the DATE
attribute but the target does not.
The DATE attribute will be ignored.

Explanation
If an INITIAL expression has the DATE attribute, the
target should also.

IBM1468I E Argument number argument-
number in entry reference entry
name has the DATE attribute but
the corresponding parameter does
not. The DATE attribute will be
ignored.

Explanation
The argument and parameter should match, unlike in
the example below

 dcl x entry(char(6));
 call x(date());

IBM1469I E Source in RETURN statement has
the DATE attribute, but the
corresponding RETURNS option
does not. The DATE attribute will
be ignored.

Explanation
The attributes of the RETURNed expression and in the
RETURNS option should match, unlike in the example
below

 x: proc returns(char(6));
 ...
 return(date());

IBM1470I E An ID option must be specified for
the INCLUDE preprocessor.

Explanation
No other options are valid for the INCLUDE
preprocessor.

IBM1471I E The ID option specified for the
INCLUDE preprocessor is invalid.

Explanation
The INCLUDE preprocessor ID option must have one
suboption consisting of a string specifying the
INCLUDE directive.

IBM1472I E A closing right parenthesis is
missing from the ID option
specified for the INCLUDE
preprocessor.

Explanation
The suboption specified for the INCLUDE preprocessor
ID option must be closed with a right parenthesis.

IBM1473I E The syntax of the preprocessor
INCLUDE directive is incorrect.

Explanation
A statement that starts with the preprocessor
INCLUDE directive specified in that preprocessor's ID
option must be followed by a name and, optionally, a
semicolon.

IBM1474I E Source in assignment does not
have the DATE attribute, but target
variable does. The DATE attribute
will be ignored.

56 Enterprise PL/I for z/OS IBM Developer for z/OS PL/I for Windows: Enterprise PL/I for z/OS Messages and
Codes

Explanation
If the target in an assignment has the DATE attribute,
the source should also. If the target is a
pseudovariable, message 1475 is issued instead.

 dcl x char(6) date('YYMMDD');
 x = '';

IBM1475I E Target in assignment has the DATE
attribute, but source does not. The
DATE attribute will be ignored.

Explanation
If the target in an assignment has the DATE attribute,
the source should also.

IBM1476I E Source in INITIAL clause for
variable name does not have the
DATE attribute but the target does.
The DATE attribute will be ignored.

Explanation
If a variable has the DATE attribute, then any INITIAL
value for it should also.

IBM1477I E Argument number argument-
number in entry reference entry
name does not have the DATE
attribute but the corresponding
parameter does. The DATE
attribute will be ignored.

Explanation
The argument and parameter should match, unlike in
the example below

 dcl x entry(char(6) date('YYMMDD'));
 call x('');

IBM1478I E Source in RETURN statement does
not have the DATE attribute, but
the corresponding RETURNS
option does. The DATE attribute
will be ignored.

Explanation
The attributes of the RETURNed expression and in the
RETURNS option should match, unlike in the example
below

 x: proc returns(char(6) date('YYMMDD'));
 ...
 return('');

IBM1479I E Multiple RETURN statements are
not allowed under
RULES(NOMULTIEXIT).

Explanation
Under RULES(NOMULTIEEXIT), there should be at
most one RETURN statement in each PROCEDURE and
BEGIN block in your source program.

IBM1480I E Multiple closure of groups is not
allowed under
RULES(NOMULTICLOSE).

Explanation
Under RULES(NOMULTICLOSE), there should be no
multiple closure of groups in your source program.

IBM1481I E BYNAME assignment statements
are not allowed under
RULES(NOBYNAME).

Explanation
Under RULES(NOBYNAME), there should be no
BYNAME assignment statements in your source
program.

IBM1482I E The variable variable name is
declared without any data
attributes.

Explanation
It will be given the default attributes, but this may be
because of an error in the declare. For instance, in the
following example, parentheses may be missing.
Under RULES(LAXDCL), this is a W-level message.

 dcl a, b fixed bin;

IBM1483I E The structure member variable
name is declared without any data
attributes. A level number may be
incorrect.

Explanation
It will be given the default attributes, but this may be
because of an error in the declare. For instance, in the

Chapter 3. Compiler Error Messages (1226-1499, 2400-2599) 57

following example, the level number on c and d should
probably be 3. Under RULES(LAXDCL), this is a W-level
message.

 dcl a, b fixed bin;
 1 a,
 2 b,
 2 c,
 2 d;

IBM1484I E An unnamed structure member is
declared without any data
attributes. A level number may be
incorrect.

Explanation
It will be given the default attributes, but this may be
because of an error in the declare. For instance, in the
following example, the level number on c and d should
probably be 3. Under RULES(LAXDCL), this is a W-level
message.

 dcl a, b fixed bin;
 1 a,
 2 *,
 2 c,
 2 d;

IBM1485I E A WHEN or OTHERWISE clause
has been found inside of an open
DO group contained in an open
SELECT group. An END statement
may be missing and will be
inserted in an attempt to fix the
problem.

Explanation
The compiler assumes that an END statement to close
the open DO group is missing, but it may be that a
SELECT statement to start a nested SELECT is missing.
In either case, the code is incorrect and should be
corrected.

IBM1486I E Statement contains a mismatching
number of (and).

Explanation
Every (should have a matching).

IBM1487I E Statement contains a mismatching
number of (: and :).

Explanation
Every (: should have a matching :).

IBM2400I E Compiler backend issued error
messages to STDOUT.

Explanation
Look in STDOUT to see the message issued by the
compiler backend.

IBM2401I E Missing character assumed before
character. DECLARE and other
nonexecutable statements should
not have labels.

Explanation
The indicated character is missing and has been
inserted by the parser in order to correct your source.
Under RULES(LAXPUNC), a message with the same
text, but lesser severity would be issued

 xx: dcl test fixed bin;

IBM2402I E variable name is declared as
BASED on the ADDR of variable
name, but variable name requires
more storage than variable name.

Explanation
The amount of storage needed for a BASED variable
must be no more than provided by its base variable.

 dcl a char(10);

 dcl b char(15) based(addr(a));

IBM2403I E PROCESS statements are not
permitted under the NOPROCESS
option.

Explanation
When the NOPROCESS option is in effect, the source
should contain no PROCESS statements.

IBM2404I E variable name is declared as
BASED on the ADDR of variable
name, but variable name requires
more storage than remains in the
enclosing level 1 structure variable
name after the location of variable
name.

58 Enterprise PL/I for z/OS IBM Developer for z/OS PL/I for Windows: Enterprise PL/I for z/OS Messages and
Codes

Explanation
The amount of storage needed for a BASED variable
must be no more than provided by its base variable.

 dcl 1 a, 2 a1 char(10), 2 a2 char(10);

 dcl b char(15) based(addr(a2));

IBM2405I E Even decimal precisions are not
allowed under
RULES(NOEVENDEC).

Explanation
Under RULES(NOEVENDEC), there should be no FIXED
DECIMAL data declared with an even precision.

 dcl a fixed dec(10);

IBM2406I E Precision outside VALUE clause
will be ignored.

Explanation
In DEFAULT statements, numeric precisions should be
specified only inside VALUE clauses.

 dft range(*) fixed bin(31);

IBM2407I E Length outside VALUE clause will
be ignored.

Explanation
In DEFAULT statements, lengths of strings should be
specified only inside VALUE clauses.

 dft range(*) bit(8);

IBM2408I E AREA size outside VALUE clause
will be ignored.

Explanation
In DEFAULT statements, sizes of AREAs should be
specified only inside VALUE clauses.

 dft range(*) area(10000);

IBM2409I E RETURN statement without an
expression is invalid inside a
subprocedure that specified the
RETURNS attribute.

Explanation
All RETURN statements inside functions must specify
a value to be returned.

 a: proc returns(fixed bin);

 return;

IBM2410I E Function function name contains
no valid RETURN statement.

Explanation
Functions must contain at least one RETURN
statement.

IBM2411I E STRINGOFGRAPHIC(CHARACTER
) option is ignored because
argument to STRING built-in
function is possibly not
contiguous.

Explanation
The STRINGOFGRAPHIC(CHARACTER) option will be
ignored if the argument contains any elements that are
VARYING or if the argument is a NONCONNECTED slice
of an array.

IBM2412I E Procedure has no RETURNS
attribute, but contains a RETURN
statement. A RETURNS attribute
will be assumed.

Explanation
If a procedure contains a RETURN statement, it should
have the RETURNS attribute specified on its
PROCEDURE statement.

 a: proc;
 return(0);
 end;

IBM2413I E The attribute attribute should be
specified only on parameters and
descriptors.

Chapter 3. Compiler Error Messages (1226-1499, 2400-2599) 59

Explanation
Attributes must be consistent.

 dcl a fixed based connected;

IBM2414I E The option option conflicts with
the option option. The IBM default
of option will be used instead.

Explanation
The specified options conflict and cannot be used
together. On ASCII systems, the compiler will produce
this message if you specify the GRAPHIC and EBCDIC
options. Conversely, on EBCDIC systems, the compiler
will produce this message if you specify the GRAPHIC
and ASCII options.

IBM2415I E Without APAR number, compiler
would generate incorrect code for
this statement.

Explanation
The indicated APAR will fix a compiler problem with
this statement.

IBM2416I E The SEPARATE suboption of TEST
is not supported when the
LINEDIR option is in effect.

Explanation
When the LINEDIR option is in effect, only the
NOSEPARATE suboption of the TEST option is
supported.

IBM2417I E In FETCHABLE code compiled with
NORENT NOWRITABLE(PRV), it is
invalid to ALLOCATE or FREE a
CONTROLLED variable unless it is
a PARAMETER.

Explanation
In FETCHABLE code, all CONTROLLED variables should
be parameters.

IBM2418I E Variable variable is unreferenced.

Explanation
The compiler will issue this message for any level-1
variable that is not referenced in a particular storage
class named in the RULES option: for example,
AUTOMATIC variables under RULES(NOUNREF),
BASED variables under RULES(NOUNREFBASED), etc

IBM2419I E option is invalid and ignored
unless the ARCH option is level or
greater.

Explanation
The RTCHECK option will be ignored unless the ARCH
option is 8 or greater since the necessary instructions
are available only with ARCH(8) or later.

IBM2420I E DFP is invalid and ignored unless
the ARCH option is 7 or greater.

Explanation
The FLOAT(DFP) option will be ignored unless the
ARCH option is 7 or greater since the necessary
instructions are available only with ARCH(7) or later.

IBM2421I E A file should not be closed in its
ENDFILE block.

Explanation
In an ENDFILE block for a file, it is invalid to close that
file in the ENDFILE block.

IBM2422I E Under the DFP option, the
HEXADEC attribute is not
supported for FLOAT DEC.

Explanation
Under the FLOAT(DFP) option, all FLOAT DECIMAL will
be treated as DFP and may not be declared as
HEXADEC. The attribute is still valid for FLOAT BIN.

IBM2423I E Under the DFP option, the IEEE
attribute is not supported for
FLOAT DEC.

Explanation
Under the FLOAT(DFP) option, all FLOAT DECIMAL will
be treated as DFP and may not be declared as IEEE.
The attribute is still valid for FLOAT BIN.

IBM2424I E Scale factors are not allowed in
FLOAT declarations.

Explanation
Scale factors are valid only in declares of FIXED BIN or
FiXED DEC. The first declaration below is invalid and
should be changed to one of the subsequent
declarations.

 dcl a1 float dec(15,2);

60 Enterprise PL/I for z/OS IBM Developer for z/OS PL/I for Windows: Enterprise PL/I for z/OS Messages and
Codes

 dcl a2 fixed dec(15,2);
 dcl a3 float dec(15);

IBM2425I E Statement with ELSE IF should be
rewritten using SELECT.

Explanation
Under RULES(NOELSEIF), the compiler will issue this
message for statement where an ELSE is immediately
followed by an IF statement.

IBM2426I E Maximum nesting of DO
statements has been exceeded.

Explanation
The nesting of DO statements has exceeded the value
specified in the DO suboption of the MAXNEST
compiler option.

IBM2427I E Maximum nesting of IF statements
has been exceeded.

Explanation
The nesting of IF statements has exceeded the value
specified in the IF suboption of the MAXNEST compiler
option.

IBM2428I E Maximum nesting of PROC and
BEGIN statements has been
exceeded.

Explanation
The nesting of PROC and BEGIN statements has
exceeded the value specified in the BLOCK suboption
of the MAXNEST compiler option.

IBM2429I E CMPAT(V3) requires that 8-byte
integers be allowed. The second
value in the FIXEDBIN suboption
of the LIMITS option will be set to
63.

Explanation
The use of the CMPAT(V3) option with
LIMITS(FIXEDBIN(31,31)) is not supported. Since
CMPAT(V3) will cause various built-in functions (such
as HBOUND) to return a FIXED BIN(63) result, at least
the second value in the FIXEDBIN suboption of LIMITS
must be 63 (i.e. LIMITS(FIXEDBIN(31,63)) or
LIMITS(FIXEDBIN(63,63)) must be in effect).

IBM2430I E The LINESIZE value specified in
the OPEN of file file name is not
compatible with the RECSIZE
specified in its declare.

Explanation
If the file has F format and is not a PRINT file, then the
LINESIZE must be no greater than the RECSIZE. If the
file has F format and is a PRINT file, then the LINESIZE
must be less than the RECSIZE. If the file has V format
and is not a PRINT file, then the LINESIZE must be no
greater than the RECSIZE-4. If the file has V format
and is a PRINT file, then the LINESIZE must be less
than the RECSIZE-4.

IBM2431I E The option option conflicts with
the GOFF option. NOGOFF will be
used instead.

Explanation
The specified option is not permitted with the GOFF
option, and the GOFF option will be turned off so that
the compile may proceed. This applies, for example, to
the NOWRITABLE(PRV) and COMMON options.

IBM2432I E The attribute character is invalid
with parameters and is ignored.

Explanation
The INITIAL attribute, for example, is invalid with
parameters (since their storage will have been
allocated elsewhere).

 dcl a fixed bin parameter initial(0);

IBM2433I E The attribute character is invalid
with DEFINED and is ignored.

Explanation
The INITIAL attribute, for example, is invalid with
DEFINED variables (since their storage will have been
allocated elsewhere).

 dcl b char(1) initial('') defined(a);

IBM2434I E Under RULES(NOLAXENTRY), all
ENTRY declares must specify a
parenthesized parameter list,
even if empty.

Explanation
Under RULES(NOLAXENTRY), all ENTRY declares must
be prototyped. If the ENTRY should have no
parameters, it should be declared as ENTRY() rather
than as simply ENTRY.

Chapter 3. Compiler Error Messages (1226-1499, 2400-2599) 61

IBM2435I E Scale factor is less than 0.

Explanation
Under RULES(NOLAXSCALE), scale factors must be
nonnegative, and the compiler flags the statement
below.

 dcl a fixed dec(15,-2);

IBM2436I E Scale factor is larger than the
precision.

Explanation
Under RULES(NOLAXSCALE), scale factors must be no
larger than the precision,

 dcl a fixed dec(15,17);

IBM2437I E SQL preprocessor invoked more
than once without INCONLY.

Explanation
If the SQL preprocessor is invoked more than once
without INCONLY as its suboption, then the DBRM
library member created for the compile will be empty.
It is best to invoke the SQL preprocessor either only
once or once with INCONLY as its only suboption and
then only once more.

IBM2438I E STOP and EXIT statements are not
allowed.

Explanation
Under RULES(NOSTOP), there should be no STOP and
no EXIT statements in your source program.

IBM2439I E END statement for a PROCEDURE
must include the name of the
PROCEDURE.

Explanation
Under RULES(NOPROCENDONLY), the END statement
for a PROCEDURE must not consist of simply the END
keyword and a semicolon. It must also include the
name of the PROCEDURE it is closing.

IBM2440I E Structure element identifier is not
qualified with the name of its
containing level-1 structure.

Explanation
Under the option RULES(NOLAXQUAL), all structure
elements should be qualified with the name of their
outermost parent.

IBM2441I E GOTO exits the current block.

Explanation
Under RULES(NOGOTO(LOOSE)) and
RULES(NOGOTO(LOOSEFORWARD)), there should be
no GOTO statements in your source program except
for those that exit an ON-unit and those that goto a
label in the current block.

IBM2442I E Structure identifier contains
padding.

Explanation
Under RULES(NOPADDING), structures should contain
no padding.

IBM2443I E Control variable in DO statement
belongs to a parent block.

Explanation
Under RULES(NOGLOBALDO), in a DO loop of the form
DO x = .., x must be declared in the same block as the
DO loop.

IBM2444I E The BUILTIN function builtin has
been deprecated.

Explanation
The named built-in function was specified in the
BUILTIN suboption of the DEPRECATE option, and so
any explicit or contextual declaration of it is flagged.

IBM2445I E The INCLUDE file filename has
been deprecated.

Explanation
The named INCLUDE file was specified in the INCLUDE
suboption of the DEPRECATE option, and so any
attempt to include it is flagged.

IBM2446I E The ENTRY named variable has
been deprecated.

Explanation
The named ENTRY was specified in the ENTRY
suboption of the DEPRECATE option, and so any
explicit or contextual declaration of it is flagged.

62 Enterprise PL/I for z/OS IBM Developer for z/OS PL/I for Windows: Enterprise PL/I for z/OS Messages and
Codes

IBM2447I E The VARIABLE named variable has
been deprecated.

Explanation
The named VARIABLE was specified in the VARIABLE
suboption of the DEPRECATE option, and so any
explicit or contextual declaration of it is flagged.

IBM2448I E CICS preprocessor invoked more
than once.

Explanation
If the CICS preprocessor were invoked more than
once, then the second invocation would cause
duplicate declarations to be inserted in the outermost
procedure. The CICS preprocessor must be invoked
only once. The compiler ignores any excess
invocations.

IBM2449I E Source and target in assignment
are identical.

Explanation
Under RULES(NOSELFASSIGN), the source and target
in an assignment must be different.

IBM2450I E First argument to BUILTIN name
built-in should have length greater
than or equal to length.

Explanation
The argument to the named built-in function is too
short. For example, the argument to the Y4DATE built-
in function should have the form YYMMDD with
possibly some trailing blanks, and hence the length of
that argument should be greater than or equal to 6.

IBM2451I E Source in the assignment is a
Boolean, but the target is not
BIT(1).

Explanation
Under RULES(NOLAXIF), if the target in an assignment
is not BIT(1), the assignment is flagged if the source is
a Boolean. So, for example, the first assignment below
is correct, but RULES(NOLAXIF) flags the second
assignment since the third assignment might be what
was intended.

 x = (y = z);

 x = y = z;

 x, y = z;

IBM2452I E Scale factor is less than 0.

Explanation
Under RULES(NOLAXSCALE), scale factors must be
nonnegative. The compiler flags the first statement
below, but not the second one (which is a possible
replacement for the first).

 b = round(c, -1);

 b = 10 * round(c/ 10, 0);

IBM2453I E Code should not come after a
nested procedure.

Explanation
Under RULES(NOLAXNESTED), all executable code in a
procedure must come before its first nested
subprocedure.

IBM2454I E The builtin statement has been
deprecated.

Explanation
The named statement was specified in the STMT
suboption of the DEPRECATE option, and so any use of
that statement is flagged.

IBM2455I E The builtin keyword does not
conform to the CASERULES option.

Explanation
The named keyword does not follow the case rules
specified in the KEYWORD suboption of the
CASERULES option.

IBM2456I E RECURSIVE procedures are not
allowed under
RULES(NORECURSIVE).

Explanation
Under RULES(NORECURSIVE), the RECURSIVE
attribute should not be used and procedures should
not call themselves.

IBM2457I E RULES(NORECURSIVE) conflicts
with DFT(RECURSIVE). The
compiler will apply
RULES(RECURSIVE) instead.

Chapter 3. Compiler Error Messages (1226-1499, 2400-2599) 63

Explanation
If you want to use DFT(RECURSIVE), then
RULES(RECURSIVE) should also be used. If
RULES(NORECURSIVE) is more important, then
DFT(NONRECURSIVE) should be used.

IBM2458I E The CONTROLLED attribute is not
allowed under
RULES(NOCONTROLLED).

Explanation
Under RULES(NOCONTROLLED), the CONTROLLED
attribute must not be used.

IBM2459I E The characters specified in the
option option must all have
hexadecimal values less than
'80'x.

Explanation
Under the ENCODING(UTF8) option, the characters
specified in the OR, NOT, QUOTE, and BLANK compiler
options must all be one-byte UTF-8 characters.

IBM2460I E The option option conflicts with
the ENCODING(UTF8) option.
ENCODING(ASCII) will be
assumed.

Explanation
The specified options conflict and cannot be used
together. The ENCODING(UTF8) option cannot be used
with the SOSI, DBCS or GRAPHIC options.

IBM2461I E The MARGINI option must specify
a valid UTF-8 string consisting of
one UTF-8 character.

Explanation
Under the ENCODING(UTF8) option, the MARGINI
option must be a one-character UTF-8 string. If not, a
blank will be used instead.

IBM2462I E The attribute character conflicts
with the attribute character and is
ignored.

Explanation
Attributes must be consistent.

 dcl a parameter static;

IBM2463I E LINKAGE(SYSTEM) is not
supported for PL/I procedures,
and LINKAGE(OPTLINK) will be
assumed instead.

Explanation
Under 64-bit, only the OPTLINK linkage is supported
for PL/I procedures

IBM2464I E Line contains more than one
statement.

Explanation
Under RULES(NOLAXSTMT), there should be only one
statement per line.

IBM2465I E Assignment of a null string to a
pointer is invalid.

Explanation
Under DEFAULT(NULLSTRPTR(STRICT)), such
assignments are invalid.

IBM2466I E Comparison of a null string to a
pointer is invalid.

Explanation
Under DEFAULT(NULLSTRPTR(STRICT)), such
comparisons are invalid.

IBM2467I E RULES(NOYY) conflicts with use of
a date pattern with a 2-digit year.

Explanation
Under RULES(NOYY), the use of date patterns with a 2-
digit year is invalid.

IBM2468I E RULES(NOYY) conflicts with use of
a date pattern with a ZY.

Explanation
Under RULES(NOYY), the use of date patterns with a
ZY is invalid.

IBM2469I E RULES(NOYY) conflicts with use of
the DATE attribute without a
pattern.

Explanation
Under RULES(NOYY), the use of the DATE attribute
without a pattern is invalid since it implies a pattern of
YYMMDD.

64 Enterprise PL/I for z/OS IBM Developer for z/OS PL/I for Windows: Enterprise PL/I for z/OS Messages and
Codes

IBM2470I E RULES(NOYY) conflicts with use of
the BUILTIN name built-in
function.

Explanation
Under RULES(NOYY), the use of any of the Y4 date
built-in functions is invalid.

IBM2471I E RULES(NOYY) conflicts with use of
the BUILTIN name built-in function
with a window argument.

Explanation
Under RULES(NOYY), the use of any date built-in
function with a window argument is invalid.

IBM2472I E RULES(NOYY) conflicts with use of
the DATE built-in function.

Explanation
Under RULES(NOYY), the use of the DATE built-in
functions is invalid since it will return a 2-digit year.

IBM2473I E proc name has not been explicitly
declared.

Explanation
Under RULES(NOLAXINTERFACE), if there is a
PACKAGE statement, then every external PROCEDURE
other than MAIN must be declared.

IBM2474I E GOTO jumps to a previous line in
the current block.

Explanation
Under RULES(NOGOTO(LOOSEFORWARD)), there
should be no GOTO statements in your source program
except for those that exit an ON-unit and those that
goto a label on a later line in the current block.

IBM2475I E Line contains too many
semicolons.

Explanation
Under RULES(NOMULTISEMI), there should be only
one semicolon on a line.

IBM2476I E Item in OPTIONS list is invalid for
ON-unit BEGIN blocks. option-
name is ignored.

Explanation
The indicated element of the options list is invalid for
ON-unit BEGIN blocks (although it may be valid for
other BEGIN blocks).

 on zdiv begin options(inline);

IBM2477I E Variable variable is used, but not
set.

Explanation
The compiler will issue this message for any level-1
automatic variable that is used, but not the target of an
assignment statement if the RULES(NOUNSET) option
is in effect.

IBM2478I E Under RULES(NOCOMPLEX), the
COMPLEX attribute, the COMPLEX
built-in function, and constants
ending with the I suffix are not
allowed.

Explanation
Under RULES(NOCOMPLEX), the COMPLEX attributes,
the COMPLEX built-in function, and "imaginary"
constants (such as 1i) must not be used.

IBM2479I E Compilation unit does not contain
a PACKAGE statement.

Explanation
Under RULES(NOLAXPACKAGE), every compilation
unti must contain a PACKAGE statement.

IBM2480I E Package contains procedures but
no EXPORTS clause naming
specifically which procedures are
exported.

Explanation
Under RULES(NOLAXEXPORTS), every PACKAGE that
contains procedures must have an EXPORTS clause
that names the routines it exports.

IBM2481I E Scale factor is greater than 0.

Explanation
Under RULES(NOLAXSCALE(STRICT)), scale factors for
FIXED BIN must be zero. The compiler uses other
messages to flag negative scale factors and scale
factors greater than the precision, but it uses this

Chapter 3. Compiler Error Messages (1226-1499, 2400-2599) 65

message to flag all other positive scale factors such as
in the statement below.

 dcl a fixed bin(15,2);

IBM2482I E Parameter variable is declared
without INONLY, OUTONLY, or
INOUT.

Explanation
If the RULES(NOLAXPARMS) option is in effect, The
compiler will issue this message for any level-1
paramter declared without specifying if it is an input,
an output or both.

IBM2483I E The structure identifier is count-
byte aligned, but does not have a
multiple of count bytes before its
first element with that alignment.

Explanation
Under RULES(NOPADDING(STRICT)), structures
should contain no hang.

IBM2484I E The structure identifier does not
have a multiple of 8 bits before its
first element with byte (or greater)
alignment.

Explanation
Under RULES(NOPADDING(STRICT)), structures
should contain no hang.

IBM2485I E The size of the structure identifier
is not a multiple of its alignment.

Explanation
Under RULES(NOPADDING(STRICT)), structures
should contain no padding.

IBM2486I E The structure identifier does not
have a multiple of 8 bits after its
last element with byte (or greater)
alignment.

Explanation
Under RULES(NOPADDING(STRICT)), structures
should contain no hang.

IBM2487I E The structure identifier does not
contain a multiple of 8 bits.

Explanation
Under RULES(NOPADDING(STRICT)), structures
should contain no hang.

IBM2489I E FIXED DEC(source-
precision,source-scale) operand
will be converted to FIXED
BIN(target-precision,target-scale).
This introduces a non-zero scale
factor into an integer operation
and will produce a result with the
attributes FIXED BIN(result-
precision,result-scale).

Explanation
Under RULES(IBM), when an arithmetic operation has
an operand that is FIXED BIN and an operand that is
FIXED DEC with a non-zero scale factor, then the
FIXED DEC operand will be converted to FIXED BIN.
Under RULES(NOLAXSCALE(STRICT)), this is flagged
as an error.

IBM2490I E Source in assignment does not fit
in the the VALUERANGE of the
target.

Explanation
When assigning to a target with the VALUERANGE
attribute, the source must have a value in that range.

IBM2491I E Source in assignment does not
occur in the the VALUELIST of the
target.

Explanation
When assigning to a target with the VALUELIST
attribute, the source must have a value in that list.

IBM2492I E RULES(NOGLOBAL) violation:
Variable variable is used inside a
nested PROCEDURE.

Explanation
If the RULES(NOGLOBAL) option is in effect, the
compiler will issue this message for variables that are
used in a procedure that is nested inside the
procedure in which they were declared.

IBM2493I E RULES(NOLAXOPTIONAL)
violation: Variable variable is used
as an argument to the BUILTIN
name function, but does not have
the OPTIONAL attribute.

66 Enterprise PL/I for z/OS IBM Developer for z/OS PL/I for Windows: Enterprise PL/I for z/OS Messages and
Codes

Explanation
If the RULES(NOLAXOPTIONAL) option is in effect, the
compiler will enforce the rule that arguments to the
PRESENT or OMITTED built-in functions should have
the OPTIONAL attribute.

IBM2494I E RULES(NOLAXQUAL) violation:
Structure element identifier is not
fully qualified.

Explanation
Under the option RULES(NOLAXQUAL(FULL)), all
structure elements should be qualified with the names
of all their parents.

IBM2495I E Third argument in BUILTIN name
reference is too small. It will be
replaced by the value of the
second argument minus 1.

Explanation
Given SUBTO(x,i,j), then j >= (i-1) must be true.
Otherwise the STRINGRANGE condition would be
raised.

Chapter 3. Compiler Error Messages (1226-1499, 2400-2599) 67

68 Enterprise PL/I for z/OS IBM Developer for z/OS PL/I for Windows: Enterprise PL/I for z/OS Messages and
Codes

Chapter 4. Compiler Severe Messages (1500-2399)

IBM1500I S Argument number argument-
number in ENTRY reference ENTRY
name has type source type, which
is invalid for a parameter with type
target type.

Explanation
An argument must have a type that can be converted
to the corresponding parameter's type.

IBM1501I S Argument number argument-
number in ENTRY reference ENTRY
name has a different strong type
than the corresponding parameter.

Explanation
If a parameter is strongly typed, any argument passed
to it must have the same type.

IBM1502I S Argument number argument-
number in ENTRY reference ENTRY
name has type source type, which
is invalid for a parameter with type
target type. If the ENTRY should be
invoked, an argument list must be
provided.

Explanation
An argument must have a type that can be converted
to the corresponding parameter's type.

IBM1503I S Argument number argument-
number in ENTRY reference ENTRY
name has type source type, which
is invalid for a parameter with type
LIMITED ENTRY.

Explanation
Only an EXTERNAL ENTRY CONSTANT, an ENTRY
CONSTANT representing a non-nested PROCEDURE, or
an ENTRY VARIABLE with the LIMITED attribute can
be passed to a LIMITED ENTRY parameter.

IBM1504I S Argument number argument-
number in ENTRY reference ENTRY
name has type POINTER, which is
invalid for an OFFSET parameter
without an AREA qualifier.

Explanation
POINTER expressions can be converted to OFFSET
only if the OFFSET is declared with an AREA qualifier.

IBM1505I S Argument number argument-
number in ENTRY reference ENTRY
name has type POINTER, which is
invalid for a POINTER parameter
since the OFFSET argument is not
an OFFSET variable declared with
an AREA qualifier.

Explanation
OFFSET variables can be converted to POINTER only if
the OFFSET is declared with an AREA qualifier.

IBM1506I S Argument number argument-
number in ENTRY reference ENTRY
name has a different ORDINAL
type than the corresponding
parameter.

Explanation
ORDINALs cannot be passed to other ORDINALs
having different ORDINAL types.

IBM1507I S Arrays of label constants may not
be passed as arguments.

Explanation
The array can be assigned to an array of LABEL
variables, and that array can be passed.

 lx(1): ... ;

 lx(2): ... ;

 call x(lx);

IBM1508I S Too few arguments have been
specified for the ENTRY ENTRY
name.

Explanation
The number of arguments must match the number of
parameters in the ENTRY declaration.

IBM1509I S Argument to variable name
pseudovariable must be
ASSIGNABLE.

© Copyright IBM Corp. 1999, 2019 69

Explanation
The target in an assignment through a pseudovariable
must not have the NONASSIGNABLE attribute.

 dcl a static nonasgn char(7)
init('example');

 unspec(a) = ''b;

IBM1510I S First argument to variable name
pseudovariable must be
ASSIGNABLE.

Explanation
The target in an assignment through a pseudovariable
must not have the NONASSIGNABLE attribute.

 dcl a static nonasgn char(7)
init('example');

 substr(a,1,2) = 'tr';

IBM1511I S Argument number argument-
number in ENTRY reference ENTRY
name is an aggregate, but the
parameter description specifies a
scalar.

Explanation
Scalars cannot be converted to aggregates.

 dcl a entry(fixed bin), b(10) fixed bin;

 call a(b);

IBM1512I S Argument number argument-
number in ENTRY reference ENTRY
name is a scalar, but the
parameter description specifies an
aggregate to which it cannot be
passed.

Explanation
Dummy aggregate arguments are not supported
except when passing a non-AREA scalar to a non-
CONTROLLED array of scalars, and the array must have
no bounds specified as *. The scalar can be assigned to
an aggregate, and that aggregate can be passed.

 dcl a entry(1, 2 fixed bin, 2 fixed bin);

 call a(0);

IBM1513I S Argument number argument-
number in ENTRY reference ENTRY
name is an aggregate that does not
exactly match the corresponding
parameter description.

Explanation
Dummy aggregate arguments are not supported. If an
entry description describes an aggregate parameter,
then any argument passed must match that
parameter's description.

IBM1514I S Argument number argument-
number in ENTRY reference ENTRY
name is an aggregate with more
members than its corresponding
parameter description.

Explanation
Dummy aggregate arguments are not supported. If an
entry description describes an aggregate parameter,
then any argument passed must match that
parameter's description.

IBM1515I S Argument number argument-
number in ENTRY reference ENTRY
name is an aggregate with fewer
members than its corresponding
parameter description.

Explanation
Dummy aggregate arguments are not supported. If an
entry description describes an aggregate parameter,
then any argument passed must match that
parameter's description.

IBM1516I S The number of dimensions in the
subelements of argument number
argument-number in ENTRY
reference ENTRY name and in its
corresponding parameter
description do not match.

Explanation
Dummy aggregate arguments are not supported. If an
entry description describes an aggregate parameter,
then any argument passed must match that
parameter's description.

IBM1517I S The upper and lower bounds in the
subelements of argument number
argument-number in ENTRY

70 Enterprise PL/I for z/OS IBM Developer for z/OS PL/I for Windows: Enterprise PL/I for z/OS Messages and
Codes

reference ENTRY name and in its
corresponding parameter
description do not match.

Explanation
Dummy aggregate arguments are not supported. If an
entry description describes an aggregate parameter,
then any argument passed must match that
parameter's description.

IBM1518I S The number of dimensions for
argument number argument-
number in ENTRY reference ENTRY
name and in its corresponding
parameter description do not
match.

Explanation
Array arguments and parameters must have the same
number of dimensions.

 dcl a entry((*,*) fixed bin), b (10)
fixed bin;

 call a(b);

IBM1519I S The upper and lower bounds for
argument number argument-
number in ENTRY reference ENTRY
name and in its corresponding
parameter description do not
match.

Explanation
Array arguments and parameters must have the same
lower and upper bounds.

 dcl a entry((0:10) fixed bin), b (10)
fixed bin;

 call a(b);

IBM1520I S Charset 48 is not supported.

Explanation
Charset 48 is no longer supported. The source code
must be converted to charset 60.

IBM1521I S Not enough virtual memory is
available to continue the
compilation.

Explanation
The compilation requires more virtual memory than is
available. It may help to specify one or more of the
following compiler options: NOTEST, NOXREF,
NOATTRIBUTES, and NOAGGREGATE.

IBM1522I S variable cannot be SET unless an
IN clause is specified.

Explanation
If an offset variable is declared without an AREA
reference, it cannot be set in an ALLOCATE or LOCATE
statement unless an IN clause names an AREA
reference.

IBM1523I S Argument to BUILTIN name built-in
must be an AREA reference.

Explanation
The built-in function AVAILABLEAREA is defined only
for AREAs.

IBM1524I S BUILTIN name(x) is undefined if
ABS(x) > 1.

Explanation
An expression contains the built-in function ASIN or
ACOS applied to a restricted expression that evaluated
to a number outside the domain of that function.

IBM1525I S ATANH(x) is undefined if x is REAL
and ABS(x) >= 1.

Explanation
An expression contains the built-in function ATANH
applied to a restricted expression that evaluated to a
number outside the domain of that function.

IBM1526I S Argument to BUILTIN name must
have derived mode REAL.

Explanation
An expression contains the named built-in function
with an argument having mode COMPLEX.

IBM1527I S First argument to BUILTIN name
built-in must have locator type.

Explanation
An expression contains the named built-in function
with its first argument having neither type POINTER
nor OFFSET.

Chapter 4. Compiler Severe Messages (1500-2399) 71

IBM1528I S First argument to BUILTIN name
built-in must have derived mode
REAL.

Explanation
An expression contains the named built-in function
with its first argument having mode COMPLEX. This
message applies, for example, to the ATAN and ATAND
built-in functions when two arguments are given.

IBM1530I S Second argument to BUILTIN name
built-in must have derived mode
REAL.

Explanation
An expression contains the named built-in function,
with its second argument having mode COMPLEX. This
message applies, for example, to the ATAN and ATAND
built-in functions when two arguments are given.

IBM1531I S BUILTIN name argument has
invalid type.

Explanation
An expression contains the reference BINARYVALUE(x)
where x has a type other than POINTER, OFFSET or
ORDINAL.

IBM1532I S E35 sort exit routines must use a
32-bit linkage.

Explanation
Any other linkage is invalid.

IBM1533I S BUILTIN name argument must
have computational type.

Explanation
An expression contains the named built-in function
with an argument that has neither string nor numeric
type.

IBM1534I S BUILTIN name result would be too
long.

Explanation
The result of the REPEAT or COPY built-in function
must not be longer than the maximum allowed for the
base string type.

IBM1535I S BUILTIN name argument must
have type REAL FLOAT.

Explanation
An expression contains the named built-in function
with an argument having type other than REAL FLOAT.
This message applies, for instance, to the floating-
point inquiry built-in functions such as HUGE and
RADIX, and to the floating-point manipulation built-in
functions such as EXPONENT and SUCC.

IBM1536I S BUILTIN name argument must be a
reference.

Explanation
An expression contains the named built-in function
with an argument that is not a reference.

IBM1537I S BUILTIN name argument must be
an array expression.

Explanation
An expression contains the named built-in function
with an argument that is not an array expression. This
message applies, for example, to the built-in functions
ALL, ANY, SUM and PROD.

IBM1538I S BUILTIN name argument must be a
FILE reference.

Explanation
An expression contains the named built-in function
with an argument that is not a FILE. This message
applies, for example, to the I/O built-in functions such
as LINENO and PAGENO.

IBM1539I S * is invalid as a BUILTIN function
argument.

Explanation
A value must be specified as an argument to a BUILTIN
function unless the argument is optional.

 dcl a float;

 a = sqrt(*);

IBM1540I S Argument number argument
number to BUILTIN name built-in
must have derived mode REAL.

Explanation
An expression contains the named built-in function
with the specified argument having mode COMPLEX.

72 Enterprise PL/I for z/OS IBM Developer for z/OS PL/I for Windows: Enterprise PL/I for z/OS Messages and
Codes

This message applies to the MAX and MIN built-in
functions.

IBM1541I S Argument number argument
number to BUILTIN name built-in
must have computational type.

Explanation
An expression contains the named built-in function
with the specified argument having noncomputational
type. This message applies to the MAX and MIN built-
in functions.

IBM1542I S First argument to BUILTIN name
built-in must have computational
type.

Explanation
An expression contains the named built-in function
with a first argument that has neither string nor
numeric type.

IBM1543I S Argument to BUILTIN name built-in
must have type CHARACTER(1)
NONVARYING.

Explanation
This applies to the RANK built-in function.

IBM1545I S First argument to BUILTIN name
built-in must be an array.

Explanation
An expression contains the named built-in function
with a first argument that is not an array. This message
applies, for instance, to the DIMENSION, HBOUND,
and LBOUND built-in functions.

IBM1546I S Second argument to BUILTIN name
built-in must have type
CHARACTER(1) NONVARYING.

Explanation
This applies to the PLIFILL built-in subroutine.

IBM1547I S Second argument to BUILTIN name
built-in must have computational
type.

Explanation
An expression contains the named built-in function
with a second argument that has neither string nor
numeric type.

IBM1548I S BUILTIN function may not be used
inside a BEGIN block.

Explanation
The PLISTSIZE built-in functions may be used only in
procedures.

IBM1549I S BUILTIN function may be used only
in procedures with
LINKAGE(SYSTEM).

Explanation
The PLISTSIZE built-in function may not be used in
procedures with any of the linkages OPTLINK, PASCAL,
etc.

IBM1550I S Argument to the BUILTIN name
pseudovariable must be an EVENT
variable.

Explanation
This message applies to the COMPLETION and STATUS
pseudovariables.

IBM1551I S Argument to the BUILTIN name
pseudovariable must be a TASK
variable.

Explanation
This message applies to the PRIORITY
pseudovariable.

IBM1552I S Third argument to BUILTIN name
built-in must have computational
type.

Explanation
An expression contains the named built-in function
with a third argument that has neither string nor
numeric type. This message applies, for example, to
the SUBSTR and CENTER built-in functions.

IBM1554I S Argument to BUILTIN name built-in
must be either a NONVARYING BIT
array reference or else an array
expression with known length.

Explanation
The ALL and ANY built-in functions are restricted to
two types of array expressions: an array expression
that is a NONVARYING BIT array reference or an array
expression that has known length. The first five
examples below meet these restrictions, but the
remaining examples do not.

Chapter 4. Compiler Severe Messages (1500-2399) 73

 dcl a(10) bit(16) varying;
 dcl b(10) bit(16);

 if all(b) then ...
 if any(a ^= ''b) then ...
 if all(a = b & a) then ...
 if any(''b ^= b) then ...
 if all(a = ''b | b = ''b) then ...
 if any(a) then ...
 if all(substr(b,1,n)) then ...

IBM1555I S Second argument to BUILTIN name
built-in must have computational
type.

Explanation
An expression contains the named built-in function
with a second argument that has neither string nor
numeric type.

IBM1556I S Argument number argument
number to BUILTIN name built-in
would force STRINGRANGE.

Explanation
If a third argument is given for one of the built-in
functions INDEX, SEARCH, VERIFYR, or SCRUBOUT, it
must be positive. If a third argument is given for one of
the built-in functions SEARCHR and VERIFYR, it must
be nonnegative. If a fourth argument is given for the
built-in function REPLACE, it must be positive.

IBM1557I S Second argument to BUILTIN name
built-in must be positive.

Explanation
The second argument for the built-in functions
CENTER, LEFT and RIGHT must not be zero or
negative.

IBM1558I S Argument to VALID built-in must
have the attributes FIXED
DECIMAL or PICTURE.

Explanation
The argument to the VALID built-in function must have
exactly the indicated attributes. It is not sufficient that
it can be converted to these attributes.

IBM1559I S SQRT(x) is undefined if x is REAL
and x < 0.

Explanation
An expression contains the BUILTIN function SQRT
applied to a restricted expression that evaluated to a
number outside the domain of that function.

IBM1560I S BUILTIN function(x) is undefined if
x is REAL and x <= 0.

Explanation
An expression contains the named built-in function
applied to a restricted expression that evaluated to a
number outside the domain of that function. This
message applies, for instance, to the LOG, LOG2, and
LOG10 built-in functions.

IBM1561I S RULES(ANS) does not allow
ROUND to be applied to FIXED
BIN.

Explanation
RULES(ANS) dose not permit non-zero scale factors
with FIXED BIN, and hence it does not allow ROUND to
be applied to FIXED BIN (or BIT) arguments.

IBM1562I S Argument to BUILTIN name built-in
has invalid type.

Explanation
The argument to the HANDLE built-in must be a
structure type, and conversely the argument to the
TYPE built-in must be a handle.

IBM1563I S Second argument to BUILTIN name
built-in must be nonnegative.

Explanation
The second argument for the built-in functions
CHARACTER, BIT, and GRAPHIC must be zero or
greater.

IBM1564I S Too few arguments have been
specified for the BUILTIN name
built-in.

Explanation
Supply the minimum number of arguments required.

IBM1566I S BUILTIN name(x) is undefined for x
outside the supported domain.

Explanation
An expression contains the named built-in function
applied to a restricted expression that evaluated to a

74 Enterprise PL/I for z/OS IBM Developer for z/OS PL/I for Windows: Enterprise PL/I for z/OS Messages and
Codes

number outside the supported domain of that
function.

IBM1568I S BUILTIN function(x,y) is undefined
if x=0 and y=0.

Explanation
An expression contains the built-in function ATAN or
ATAND applied to a restricted expression that
evaluated to a number outside the domain of that
function.

IBM1569I S BUILTIN name argument must be a
CONNECTED reference.

Explanation
The argument to the named built-in function must be a
reference (for example, not an expression or a literal),
and that reference must be CONNECTED.

IBM1570I S BUILTIN name argument must be a
reference to a level 1
CONTROLLED variable.

Explanation
The ALLOCATION built-in function cannot be used with
structure members or with non-CONTROLLED
variables.

IBM1571I S BUILTIN name argument must be a
reference to a level 1 BYADDR
parameter.

Explanation
The OMITTED built-in function cannot be used with
BYVALUE parameters, structure members, or non-
parameters.

IBM1573I S The use of * as an argument is
permitted only for parameters
declared with the OPTIONAL
attribute.

Explanation
Add the OPTIONAL attribute to the entry declaration or
replace the * by an actual argument.

IBM1575I S Argument number argument
number to BUILTIN name built-in
must have type POINTER or
OFFSET.

Explanation
The indicated argument to built-in functions such as
PLIMOVE and COMPARE must be a locator.

IBM1576I S Argument number argument
number to BUILTIN name built-in
must have type CHARACTER(1)
NONVARYING.

Explanation
This applies to HEXIMAGE, CENTER, LEFT, RIGHT,
MEMSQUEEZE, etc.

IBM1577I S First argument to BUILTIN name
built-in must have type POINTER.

Explanation
This applies to the OFFSET built-in function.

IBM1578I S First argument to BUILTIN name
built-in must have type OFFSET.

Explanation
This applies to the POINTER built-in function.

IBM1579I S Second argument to BUILTIN name
built-in must have type AREA.

Explanation
This applies to the OFFSET and POINTER built-in
functions.

IBM1580I S First argument to BUILTIN name
built-in is an OFFSET value.

Explanation
If the first argument to built-in functions such as
PLIMOVE and COMPARE has the attribute OFFSET, it
must be an OFFSET reference not an OFFSET value.

IBM1581I S First argument to BUILTIN name
built-in is an OFFSET variable
declared without an AREA
qualifier.

Explanation
If the first argument to built-in functions such as
PLIMOVE and COMPARE is an OFFSET variable, that
OFFSET variable must be declared with an AREA
qualifier so that the offset can be converted to an
address.

Chapter 4. Compiler Severe Messages (1500-2399) 75

IBM1582I S Argument number argument
number to BUILTIN name built-in is
an OFFSET value.

Explanation
If the indicated argument to built-in functions such as
PLIMOVE and COMPARE has the attribute OFFSET, it
must be an OFFSET reference not an OFFSET value.

IBM1583I S Argument number argument
number to BUILTIN name built-in is
an OFFSET variable declared
without an AREA qualifier.

Explanation
If the indicated argument to built-in functions such as
PLIMOVE and COMPARE is an OFFSET variable, that
OFFSET variable must be declared with an AREA
qualifier so that the offset can be converted to an
address.

IBM1584I S Second argument to BUILTIN name
built-in must have type OFFSET.

Explanation
This applies to the OFFSETDIFF built-in function.

IBM1585I S Second argument to BUILTIN name
built-in must have type POINTER.

Explanation
This applies to the POINTERDIFF built-in function.

IBM1586I S Argument to STRING built-in
function/pseudovariable must be
CONNECTED.

Explanation
The STRING built-in function and pseudovariable
cannot be applied to discontiguous array cross-
sections or to array parameters not declared with the
CONNECTED attribute.

IBM1587I S Argument number argument
number to BUILTIN name built-in
must have the ENTRY attribute.

Explanation
Any other argument type is invalid. This message
applies to the PLISRTx built-in functions.

IBM1588I S First argument to BUILTIN name
built-in must have type GRAPHIC.

Explanation
This applies to the CHARGRAPHIC built-in function.
For instance, in the following example, g should be
declared as graphic, not as char.

 dcl c char(10);
 dcl g char(5);

 c = charg(g);

IBM1589I S BUILTIN name argument must not
have any subscripts.

Explanation
The LOCATION and BITLOCATION built-in functions
cannot be applied to subscripted references.

IBM1590I S Argument to STRING built-in
function/pseudovariable must not
be a UNION and must not contain
a UNION.

Explanation
The STRING built-in function and pseudovariable
cannot be applied to UNIONs or to structures
containing UNIONs.

IBM1591I S All members of an argument to the
STRING built-in function/
pseudovariable must have the
UNALIGNED attribute.

Explanation
The STRING built-in function and pseudovariable
cannot be applied to structures or arrays containing
elements with the ALIGNED attribute.

IBM1592I S All members of an argument to the
STRING built-in function/
pseudovariable must have the
NONVARYING attribute.

Explanation
The STRING built-in function and pseudovariable
cannot be applied to structures or arrays containing
VARYING strings.

IBM1593I S All members of an argument to the
STRING built-in function/
pseudovariable must have string
type.

76 Enterprise PL/I for z/OS IBM Developer for z/OS PL/I for Windows: Enterprise PL/I for z/OS Messages and
Codes

Explanation
The STRING built-in function and pseudovariable
cannot be applied to structures or arrays containing
noncomputational types or arithmetic types other than
pictures.

IBM1594I S All members of an argument to the
STRING built-in function/
pseudovariable must have the
same string type.

Explanation
The STRING built-in function and pseudovariable
cannot be applied to structures or arrays containing
different string types, for example, BIT and
CHARACTER strings.

IBM1595I S First argument to BUILTIN name
built-in must have type REAL
FLOAT.

Explanation
This applies to the floating-point inquiry and
manipulation built-in functions such as HUGE and
EXPONENT.

IBM1596I S Second argument to BUILTIN name
built-in must have type
CHARACTER.

Explanation
This applies to the EDIT built-in function.

IBM1597I S BUILTIN name argument must
have type TASK.

Explanation
This applies to the PRIORITY built-in function.

IBM1598I S BUILTIN name argument must
have type EVENT.

Explanation
This applies to the COMPLETION and STATUS built-in
functions.

IBM1599I S The BUILTIN function variable
name may not be used as a
pseudovariable.

Explanation
The named built-in function is not a pseudovariable
and may not be used as one.

IBM1600I S Source to BUILTIN name
pseudovariable must be scalar.

Explanation
It is invalid to assign an array, structure, or union to
one of the built-in functions ONCHAR, ONSOURCE, or
ONGSOURCE.

IBM1601I S The identifier identifier is not the
name of a built-in function. Any
use of it is unsupported.

Explanation
The BUILTIN attribute can be applied only to
identifiers that are the names of built-in functions or
subroutines.

IBM1602I S Fourth argument to BUILTIN name
built-in must have the attributes
REAL FIXED BIN(31,0).

Explanation
This applies to the PLISRTx built-in functions. For
instance, in the following example, rc should be
declared as fixed bin(31), not fixed bin(15).

 dcl rc fixed bin(15);

 call plisrta('SORT FIELDS=(1,80,CH,A) ',
 'RECORD TYPE=F,LENGTH=(80) ',
 256000,
 rc);

IBM1603I S BUILTIN name argument must not
have the CONSTANT attribute.

Explanation
This applies to the ADDR and similar built-in functions.
It is invalid, for instance, to apply the ADDR built-in
function to a label constant.

IBM1604I S BUILTIN function argument must
be nonnegative.

Explanation
The argument for the built-in functions LOW and HIGH
must be zero or greater.

IBM1605I S Argument to ENTRYADDR built-in
must be an ENTRY variable or an
EXTERNAL ENTRY constant.

Chapter 4. Compiler Severe Messages (1500-2399) 77

Explanation
The ENTRYADDR built-in function cannot be applied to
non-ENTRYs or to INTERNAL ENTRY constants.

IBM1606I S Argument to variable name
pseudovariable must be a
reference.

Explanation
Pseudovariables cannot be applied to expressions.

 unspec(12) = '00'b4;

IBM1607I S First argument to variable name
pseudovariable must be a
reference.

Explanation
The SUBSTR pseudovariable cannot be applied to
expressions.

 substr('nope', 1, 1) = 'd';

IBM1608I S Argument to variable name
pseudovariable must be a scalar.

Explanation
The compiler does not support the named
pseudovariable applied to arrays, structures, or
unions.

IBM1609I S First argument to variable name
pseudovariable must be a scalar.

Explanation
The compiler does not support the named
pseudovariable applied to arrays, structures, or
unions.

IBM1610I S Argument to variable name
pseudovariable must be
COMPLEX.

Explanation
The REAL and IMAG pseudovariable can be applied
only to COMPLEX arithmetic variables.

IBM1611I S First argument to BUILTIN name
pseudovariable must have string
type.

Explanation
The SUBSTR pseudovariable cannot be applied to
numeric variables or to noncomputational values.

IBM1612I S Argument to the ENTRYADDR
pseudovariable must be an ENTRY
variable.

Explanation
The ENTRYADDR pseudovariable can be applied only
to ENTRY variables.

IBM1613I S Argument to BUILTIN name built-in
has attributes that conflict with
file attribute.

Explanation
The indicated built-in function cannot be applied to file
constants with attributes that conflict with the
indicated attribute.

IBM1614I S Argument to BUILTIN name built-in
has attributes that conflict with
STREAM.

Explanation
The indicated built-in function cannot be applied to
non-STREAM files.

IBM1615I S Argument to BUILTIN name built-in
has attributes that conflict with
PRINT.

Explanation
The indicated built-in function cannot be applied to
non-PRINT files.

IBM1616I S Attributes and ENVIRONMENT
options for file file name conflict.

Explanation
Specified file attributes and ENVIRONMENT options on
a declaration statement are in conflict. The following
DECLARE statement is an example of this type of
conflict:

 dcl file f1 direct env(consecutive);

IBM1617I S DIRECT attribute for file file name
needs ENVIRONMENT option
specification of INDEXED,
REGIONAL, RELATIVE, or VSAM.

78 Enterprise PL/I for z/OS IBM Developer for z/OS PL/I for Windows: Enterprise PL/I for z/OS Messages and
Codes

Explanation
Use of the DIRECT file attribute needs an
ENVIRONMENT option specification of INDEXED,
REGIONAL, RELATIVE, or VSAM.

 dcl file f1 direct env(relative);

IBM1618I S Syntax of the %INCLUDE
statement is incorrect.

Explanation
%INCLUDE must be followed by a name and either a
semicolon or else a second name in parenthesis and
then a semicolon.

IBM1619I S File specification after %INCLUDE
is too long.

Explanation
The maximum length of the file specification is 8
characters.

IBM1620I S File specification missing after
%INCLUDE.

Explanation
%INCLUDE must be followed by a file name, not just a
semicolon.

IBM1621I S NODESCRIPTOR attribute is
invalid if any parameters have bit
alignment.

Explanation
If a parameter is an unaligned bit string or an array or
structure consisting entirely of unaligned bit strings,
then OPTIONS(NODESCRIPTOR) must not be specified
or implied.

IBM1622I S The number of elements and
dimension specifications in an
aggregate must not exceed
131071.

Explanation
Aggregates with more than 131071 elements and
dimension specifications would require descriptors
that would require too much storage.

IBM1623I S The dot-qualified reference
reference name is unknown.

Explanation
The named reference is not a member of any structure
or union declared in the block in which it is referenced
or declared in any block containing that block.

IBM1625I S Extent must be a scalar.

Explanation
An expression specifying an array bound, a string
length or an AREA size must not be a reference to an
array, a structure, or a union.

IBM1626I S Extent must have computational
type.

Explanation
An expression specifying an array bound, a string
length, or an AREA size must have numeric or string
type.

IBM1627I S Subscript expressions must be
scalars.

Explanation
An expression used as a subscript must not be an
array, structure, or union reference.

IBM1628I S Index number index number into
the array variable name must have
computational type.

Explanation
Only expressions having numeric or string type may be
used as subscripts.

IBM1629I S Extents for STATIC variable are not
constant.

Explanation
Array bounds, string lengths, and AREA sizes in STATIC
variables must evaluate at compile-time to constants.

IBM1630I S Number of dimensions in arrays do
not match.

Explanation
In the assignment of one array to another, the two
arrays must have the same number of dimensions.

IBM1631I S Upper and lower bounds in arrays
do not match.

Chapter 4. Compiler Severe Messages (1500-2399) 79

Explanation
In the assignment of one array to another, the two
arrays must have the same lower and upper bound in
each dimension.

IBM1632I S Index number index number into
the variable variable name is less
than the lower bound for that
dimension.

Explanation
Executing such a program would most likely cause a
protection exception.

 dcl a(5:10) fixed bin(31);

 a(1) = 0;

IBM1633I S Index number index number into
the variable variable name is
greater than the upper bound for
that dimension.

Explanation
Executing such a program would most likely cause a
protection exception.

 dcl a(5:10) fixed bin(31);

 a(20) = 0;

IBM1634I S Number of dimensions in
subelements of structures do not
match.

Explanation
In structure assignments and structure expressions,
all subelements that are arrays must have the same
number of dimensions.

 dcl
 1 a,
 2 b(8) fixed bin,
 2 c char(10);

 dcl
 1 x,
 2 y(8,9) fixed bin,
 2 z char(10);

 a = x;

IBM1635I S Upper and lower bounds in
subelements of structures do not
match.

Explanation
In structure assignments and structure expressions,
all subelements that are arrays must have the same
bounds.

 dcl
 1 a,
 2 b(8) fixed bin,
 2 c char(10);

 dcl
 1 x,
 2 y(9) fixed bin,
 2 z char(10);

 a = x;

IBM1636I S Substructuring in subelements of
structures do not match.

Explanation
In structure assignments and structure expressions, if
any element of one structure is itself a structure, then
the corresponding element in all the other structures
must also be a similar structure.

IBM1637I S Number of subelements in
structures do not match.

Explanation
In structure assignments and structure expressions,
all structures must have the same number of
elements.

IBM1638I S Structures and unions are not
permitted in GENERIC
descriptions.

Explanation
Only scalars and arrays of scalars are permitted in
GENERIC descriptions.

IBM1639I S The aggregate aggregate-name
contains only noncomputational
values. The aggregate will be
ignored.

Explanation
Aggregates containing no strings or arithmetic
variables cannot be used in PUT or GET statements.

80 Enterprise PL/I for z/OS IBM Developer for z/OS PL/I for Windows: Enterprise PL/I for z/OS Messages and
Codes

IBM1640I S The aggregate aggregate-name
contains one or more unions and
cannot be used in stream I/O.

Explanation
Aggregates containing one or more UNION statements
cannot be used in PUT or GET statements.

IBM1641I S References to slices of the array of
structures structure-name are not
permitted.

Explanation
An array of structures must be referenced in its
entirety or element by element.

 dcl
 1 a(8,9),
 2 b fixed bin,
 2 c char(10);

 a(2,*) = 0;

IBM1642I S References to slices of the array of
unions union-name are not
permitted.

Explanation
An array of unions must be referenced in its entirety or
element by element.

 dcl
 1 a(8,9) union,
 2 b fixed bin,
 2 c char(10);

 a(2,*) = 0;

IBM1643I S Each dimension of an array must
contain no more than 2147483647
elements.

Explanation
It must be possible to compute the value of the
DIMENSION built-in function for an array. In DECLARE
x(x:y), (y-x+1) must be less than 214748648.

IBM1644I S Aggregate contains more than 15
logical levels.

Explanation
The maximum physical level allowed is 255, but the
maximum logical level is 15.

IBM1645I S Data aggregate exceeds the
maximum length.

Explanation
Aggregates containing unaligned bits must be less
than 2**28 bytes in size while all other aggregates
must be less than 2**31.

IBM1646I S SIZE would be raised in assigning
TO value to control variable.

Explanation
If the TO value is bigger than the maximum value that
a FIXED or PICTURE variable can hold, then a loop
dominated by that variable would cause SIZE to be
raised. For example, in the first code fragment below, x
can not be assigned a value bigger than 99. In the
second code fragment below, y can not be assigned a
value bigger than 32767.

 dcl x pic'99';

 do x = 1 to 100;
 put skip list(x);
 end;

 dcl y fixed bin(15);

 do y = 1 to 32768;
 put skip list(y);
 end;

IBM1647I S Too few subscripts specified for
the variable variable name.

Explanation
The number of subscripts given for a variable must
match that variable's number of dimensions

IBM1648I S Too many subscripts specified for
the variable variable name.

Explanation
The number of subscripts given for a variable must
match that variable's number of dimensions

IBM1649I S The number of inherited
dimensions plus the number of
member dimensions exceeds 15.

Explanation
Arrays with more than 15 dimensions are not
supported.

Chapter 4. Compiler Severe Messages (1500-2399) 81

 dcl
 1 dim7(2,3,4,5,6,7,8),
 2 dim7more(2,3,4,5,6,7,8)
 3 dim2many(2,3) fixed bin,
 3 * fixed bin,
 2 * char(10);

IBM1650I S The LIKE reference is neither a
structure nor a union.

Explanation
The LIKE reference cannot be a scalar or an array of
scalars.

 dcl
 a fixed bin,
 1 b like a;

IBM1651I S The keyword name reference is
ambiguous.

Explanation
The LIKE reference needs enough qualification to be
unique. This message also applies to INDFOR and
VALUELISTFROM.

 dcl
 1 x like b,
 1 a,
 2 b,
 3 c,
 3 d,
 2 e,
 3 f,
 3 g,
 1 h,
 2 b,
 3 j,
 3 k;

IBM1652I S Neither the LIKE reference nor any
of its substructures can be
declared with the LIKE attribute.

Explanation
LIKE from LIKE is not supported.

 dcl
 1 a,
 2 b1 like c,
 2 b2 like c,
 1 c,
 2 d fixed bin,
 2 e fixed bin;
 dcl
 1 x like a;

IBM1653I S A LIKE reference in an ENTRY
declaration must not be a member
of a structure or union containing
that ENTRY declaration.

Explanation
LIKE definitions must not be recursive.

 dcl
 1 a based,
 2 b1 fixed bin(31),
 2 b2 fixed bin(31),
 2 b3,
 3 c limited entry(like a);

IBM1654I S The keyword name reference is
unknown.

Explanation
The LIKE reference must be known in the block
containing the LIKE attribute specification. This
message also applies to INDFOR and
VALUELISTFROM.

IBM1655I S Only CONTROLLED variables can
be passed to CONTROLLED
parameters.

Explanation
If a parameter is declared as controlled, non-
controlled variables and expressions with operators
cannot be passed to it.

 dcl c char(20);

 call a(c);

 a: proc(b);
 dcl b controlled char(*);

IBM1656I S A CONTROLLED variable passed to
a CONTROLLED parameter must
have the same attributes as that
parameter.

Explanation
Differences in any arithmetic attributes are not
permitted. The following example will emit this
message.

 dcl x fixed bin(15) controlled;

 call a(x);

82 Enterprise PL/I for z/OS IBM Developer for z/OS PL/I for Windows: Enterprise PL/I for z/OS Messages and
Codes

 a: proc(b);
 dcl b controlled fixed bin(31);

IBM1657I S A subscript has been specified for
the non-array variable variable
name.

Explanation
Subscripts are permitted only in array element
references.

IBM1658I S Argument number argument-
number in ENTRY reference ENTRY
name is an array expression
requiring a temporary array with
strings of unknown length.

Explanation
Temporary arrays of strings are supported only if the
string length is known.

 dcl a entry, (b(10),c(10)) char(20) var;

 call a(b || c);

IBM1659I S After LIKE expansion, aggregate
would contain more than 15
logical levels.

Explanation
The total number of logical levels after LIKE expansion
must not exceed 15.

IBM1660I S The size (record-size) of the
record conflicts with the RECSIZE
(recsize) specified in the
ENVIRONMENT attribute.

Explanation
Execution of the statement would raise the RECORD
condition.

 dcl datei file record output
 env(fb recsize (80)
total) ;

 dcl satzaus char (100);

 write file(datei) from(satzaus);

IBM1661I S Aggregates cannot be assigned to
scalars.

Explanation
Only scalars can be assigned to scalars.

IBM1662I S Unsupported use of union or
structure containing a union.

Explanation
Unions and structures containing unions may not be
used in expressions except when used as an argument
to a built-in function such as ADDR or UNSPEC.

IBM1663I S Unsupported or invalid use of
structure expression.

Explanation
Structure expressions may not, for instance, be
assigned to arrays of scalars.

IBM1664I S Array expressions cannot be
assigned to non-arrays.

Explanation
Array expressions may not, for instance, be assigned
to structures or scalars.

IBM1665I S E15 sort exit routines must have
the RETURNS attribute.

Explanation
An E15 sort exit have the RETURNS attribute since it
will be invoked as a function by the sort library routine.

IBM1666I S E15 sort exit routines must return
a CHARACTER string.

Explanation
An E15 sort exit may return a NONVARYING, VARYING
or VARYINGZ CHARACTER string, but it must be a
character string.

IBM1667I S Target in assignment is
NONASSIGNABLE.

Explanation
The target in an assignment statement must not have
the NONASSIGNABLE attribute.

IBM1668I S Target in assignment is a function
reference.

Chapter 4. Compiler Severe Messages (1500-2399) 83

Explanation
The target of an assignment statement must be an
array, structure, union or scalar reference. Function
references are not permitted as target of assignments.

IBM1669I S Unsupported assignment to a
target containing a UNION.

Explanation
Assignments to UNIONs or structures containing
UNIONs are restricted. Compound assignment
operators are not supported, the source must be a
similar structure that contains matching UNIONs, both
the source and target must have extents known at
compile time, and all UNIONs involved must occupy a
whole number of bytes.

IBM1670I S A PROCEDURE containing ENTRY
statements with differing
RETURNS attributes must return
values BYADDR.

Explanation
In a PROCEDURE containing ENTRY statements, if the
PROCEDURE and ENTRY statements do not all have
the same RETURNS attributes, then all values must be
returned BYADDR. You can compile with
DFT(RETURNS(BYADDR)) to force this, or you can add
the BYADDR attribute to each set of RETURNS
attribute. For example, you must either compile the
following program with DFT(RETURNS(BYADDR)) or
change the "fixed bin" to "fixed bin byaddr".

 a: proc;
 return;
 b: entry returns(fixed bin);
 return(1729);
 end;

IBM1671I S The source in a structure
assignment must be a scalar
expression or a matching
structure.

Explanation
The source in a structure assignment cannot be an
array of scalars or a structure that does not match the
target.

IBM1672I S In multiple BY NAME assignments,
if one target is an array of
structures, then all must be.

Explanation
A BY NAME assignment may have not have a mixture
of array and non-array targets.

 dcl 1 a, 2 a1 fixed bin, 2 a2 fixed bin;
 dcl 1 b(3), 2 a1 fixed bin, 2 a2 fixed bin;
 dcl 1 c, 2 a1 fixed bin, 2 a2 fixed bin;

 a,b = c, by name;

IBM1673I S The target in a compound
concatenate and assign must be a
VARYING or VARYINGZ string.

Explanation
Only the simple assignment operator can be used to
assign to a NONVARYING string.

IBM1674I S Target in assignment contains
UNIONs.

Explanation
The target in an assignment must not contain any
UNIONs.

IBM1675I S FROMALIEN option cannot be used
with MAIN.

Explanation
These two options are mutually exclusive.

IBM1676I S Source in assignment to LIMITED
ENTRY must be either a non-
nested ENTRY constant or another
LIMITED ENTRY.

Explanation
ENTRY constants representing nested procedures and
ENTRY variables not declared with the LIMITED
attribute cannot be assigned to variables with the
attributes LIMITED ENTRY.

IBM1677I S Assignment of ENTRY to target
type is invalid. If the ENTRY should
be invoked, an argument list must
be provided.

Explanation
An ENTRY constant or variable without an argument
list will not be invoked and hence can be assigned only
to an ENTRY variable.

84 Enterprise PL/I for z/OS IBM Developer for z/OS PL/I for Windows: Enterprise PL/I for z/OS Messages and
Codes

IBM1678I S Assignment of source type to target
type is invalid.

Explanation
The target attributes conflict with the source
attributes.

IBM1679I S Assignment of POINTER to
OFFSET is invalid unless the
OFFSET is declared with an AREA
qualifier.

Explanation
POINTER expressions can be converted to OFFSET
only if the OFFSET is declared with an AREA qualifier.

IBM1680I S Assignment of OFFSET to
POINTER is invalid unless the
OFFSET is declared with an AREA
qualifier.

Explanation
OFFSET variables can be converted to POINTER only if
the OFFSET is declared with an AREA qualifier.

IBM1681I S The number of preprocessor
invocations specified exceeds the
maximum number (25) allowed.

Explanation
A maximum of 25 preprocessor invocations can be
specified in the PP option or in combination with the
MACRO option.

IBM1682I S The target in a BY NAME
assignment must be a structure.

Explanation
The target in a BY NAME assignment cannot be an
array or a scalar.

IBM1683I S Set of matching names in the
expansion of BY NAME assignment
must contain either all structures
or no structures.

Explanation
For instance, in the assignment, x = y, by name, if both
x and y immediately contain a member z, then either
both x.z and y.z are structures or neither x.z and y.z is a
structure.

IBM1684I S Number of dimensions in the BY
NAME corresponding elements

variable name and variable name
do not match.

Explanation
In a BY NAME assignment, arrays with matching
names must have the same number of dimensions.

 dcl
 1 a,
 2 b(4,5) bin(31,0),
 2 c bin(31,0);
 dcl
 1 x,
 2 b(4) bin(31,0),
 2 c bin(31,0);

 a = x, by name;

IBM1685I S Upper and lower bounds in BY
NAME corresponding elements
variable name and variable name
do not match.

Explanation
In a BY NAME assignment, arrays with matching
names must have the same lower and upper bounds.

 dcl
 1 a,
 2 b(1:5) bin(31,0),
 2 c bin(31,0);
 dcl
 1 x,
 2 b(0:4) bin(31,0),
 2 c bin(31,0);

 a = x, by name;

IBM1686I S BY NAME assignment contains
UNIONs.

Explanation
The target structure in a BY NAME assignment must
not contain any UNIONs even if no names in those
UNIONs match names in the source. The source
expression also must contain any unions or structures
containing unions.

IBM1687I S reserved name cannot be declared
with OPTIONS other than ASM.

Explanation
If the DLI compiler option is specified, PLITDLI cannot
be declared with any OPTIONS other than
OPTIONS(ASM).

Chapter 4. Compiler Severe Messages (1500-2399) 85

IBM1688I S reserved name cannot be declared
with an entry description list.

Explanation
If the DLI compiler option is specified, PLITDLI cannot
be declared with an entry description list.

IBM1689I S reserved name cannot be declared
as a function.

Explanation
If the DLI compiler option is specified, PLITDLI cannot
be declared as a function.

IBM1690I S OPTIONS(language-name) is not
supported for functions.

Explanation
Functions, i.e. entrys declared with the RETURNS
attribute, cannot be declared with OPTIONS(ASM) or
OPTIONS(COBOL).

IBM1691I S Extents in ENTRY descriptors must
be asterisks or restricted
expressions with computational
type.

Explanation
In ENTRY descriptors, each array bound, string length
and AREA size must be specified either with an
asterisk or with a restricted expression that has
computational type.

IBM1692I S An ENTRY invoked as a function
must have the RETURNS attribute.

Explanation
There is no default RETURNS attribute.

 dcl e entry;

 a = e();

IBM1693I S call-option option repeated in CALL
statement.

Explanation
The TASK, EVENT and PRIORITY options may be
specified only once in any CALL statement.

IBM1694I S Reference in CALL statement must
not be a built-in function.

Explanation
CALL x is invalid unless x is a built-in subroutine, an
ENTRY constant, or an ENTRY variable. Built-in
functions are not built-in references. For example,
"Call SQRT(x)" is invalid.

IBM1695I S Reference in CALL statement must
either be a built-in subroutine or
have type ENTRY.

Explanation
CALL x is invalid unless x is a built-in subroutine, an
ENTRY constant, or an ENTRY variable.

IBM1696I S RETURN statement without an
expression is invalid inside a
subprocedure that specified the
RETURNS attribute.

Explanation
All RETURN statements inside functions must specify
a value to be returned.

 a: proc returns(fixed bin);

 return;

IBM1697I S RETURN statement is invalid
inside a PROCEDURE that did not
specify the RETURNS attribute.

Explanation
A statement of the form RETURN(x) is valid inside only
PROCEDUREs that are defined with a RETURNS
attribute.

IBM1698I S RETURN statement with an
expression is invalid inside a
BEGIN in a PROCEDURE that does
not have the RETURNS(BYADDR)
attribute.

Explanation
A statement of the form RETURN(x) is valid inside a
BEGIN block only if the PROCEDURE enclosing that
BEGIN block has the RETURNS(BYADDR) attribute
explicitly or by default.

IBM1699I S Argument number argument-
number in ENTRY reference ENTRY
name is an aggregate. This
conflicts with the BYVALUE option.

86 Enterprise PL/I for z/OS IBM Developer for z/OS PL/I for Windows: Enterprise PL/I for z/OS Messages and
Codes

Explanation
Arrays, structures, and unions cannot be passed
BYVALUE.

IBM1700I S AREAs must be passed BYADDR.

Explanation
Even AREA variables with constant size must be
passed BYADDR.

IBM1701I S Argument number argument-
number in ENTRY reference ENTRY
name is a string with unknown
size. This conflicts with the
BYVALUE option.

Explanation
Only strings with constant size can be passed
BYVALUE.

IBM1702I S The attribute keyword attribute is
invalid as a RETURNS
subattribute.

Explanation
Structures and union may not be returned. The
following code example is invalid:

 dcl a entry returns(1 union, 2 ptr, 2 ptr);

IBM1703I S Reference in CALL statement must
not be an aggregate reference.

Explanation
CALL references must be scalars.

 dcl ea(10) entry;

 call ea;

IBM1704I S Too many argument lists have
been specified for the variable
variable name.

Explanation
A function can have only one argument list unless it
returns an ENTRY, in which case it can have only two
argument lists unless the returned ENTRY returns an
ENTRY, and so on.

IBM1705I S RETURN expression with attribute
source type is invalid for RETURNS
options specifying the attribute
target type.

Explanation
The RETURN expression must have a type that can be
converted to the type indicated in the RETURNS
option.

 a: proc returns(pointer)

 return(0);
 end;

IBM1706I S RETURN expression with attribute
source type is invalid for RETURNS
options specifying the attribute
target type. If the ENTRY should be
invoked, an argument list must be
provided.

Explanation
The RETURN expression must have a type that can be
converted to the type indicated in the RETURNS
option.

 a: proc returns(pointer)

 dcl f entry returns(pointer);
 return(f);
 end;

IBM1707I S RETURN expression with attribute
source type is invalid for RETURNS
options specifying the attribute
LIMITED ENTRY.

Explanation
Only an EXTERNAL ENTRY CONSTANT, an ENTRY
CONSTANT representing a non-nested PROCEDURE, or
an ENTRY VARIABLE with the LIMITED attribute can
be specified as the RETURNS expression in a function
that returns a LIMITED ENTRY.

IBM1708I S RETURN expression with attribute
POINTER is invalid for RETURNS
options specifying the attribute
OFFSET since the OFFSET
attribute is not declared with an
AREA qualifier.

Chapter 4. Compiler Severe Messages (1500-2399) 87

Explanation
POINTER expressions can be converted to OFFSET
only if the offset is declared with an AREA qualifier.

IBM1709I S RETURN expression with attribute
OFFSET is invalid for RETURNS
options specifying the attribute
POINTER since the OFFSET
expression is not an OFFSET
variable declared with an AREA
qualifier.

Explanation
OFFSET variables can be converted to POINTER only if
the OFFSET is declared with an AREA qualifier.

IBM1710I S ORDINAL type in RETURN
expression and RETURNS option
must match.

Explanation
In a function that returns an ordinal, the ORDINAL type
in any RETURN expression must be the same as
returned by the function.

 a: proc returns(ordinal color);

 dcl i ordinal intensity;
 return(i);
 end;

IBM1711I S Expression in RETURN statement
must be scalar.

Explanation
The expression in a RETURN statement must not be an
array, a structure, or a union.

IBM1712I S External name specification must
be a non-null string.

Explanation
EXTERNAL('') is invalid.

IBM1713I S Function function name contains
no RETURN statement.

Explanation
Functions must contain at least one RETURN
statement.

IBM1714I S Extents in RETURNS descriptors
must be constants.

Explanation
In RETURNS descriptors, each array bound, string
length, and AREA size must be specified with a
restricted expression that has computational type.
Unlike ENTRY descriptors, asterisks are not permitted.

IBM1715I S Exit from an ON-unit via RETURN
is invalid.

Explanation
RETURN statements are not permitted in an ON-unit or
any of its contained BEGIN blocks unless the
contained block is also contained in a procedure
defined in the ON-unit.

IBM1716I S FORMAT expression must be a
scalar value.

Explanation
Expressions in FORMAT lists, including SKIP clauses,
must represent scalar values.

IBM1717I S FORMAT expression must have
computational type.

Explanation
Expressions in FORMAT lists, including SKIP clauses,
must have computational type so that the expression
can be converted to FIXED BIN(31).

IBM1718I S source type is invalid as a Boolean
expression.

Explanation
The expression in an IF, WHILE, UNTIL, SELECT, or
WHEN clause must have computational type so that it
can be converted to BIT(1).

IBM1719I S ENTRY is invalid as a Boolean
expression. If an ENTRY should be
invoked, an argument list must be
provided.

Explanation
The expression in an IF, WHILE, UNTIL, SELECT, or
WHEN clause must have computational type so that it
can be converted to BIT(1). An ENTRY cannot be used
as a Boolean expression. If the ENTRY is a function
which should be invoked, an argument list, even if it
consists only of a left and right parenthesis, must be
provided.

IBM1720I S Expression for calculating size of
variable with adjustable extents is

88 Enterprise PL/I for z/OS IBM Developer for z/OS PL/I for Windows: Enterprise PL/I for z/OS Messages and
Codes

too complicated. Variable may be
defined in terms of itself.

Explanation
An expression used in calculating the size of a variable
must not depend on any values that the variable may
have because those values do not exist until storage
can be allocated for the variable.

IBM1721I S Expression contains too many
nested subexpressions.

Explanation
The compiler's space for evaluating expressions has
been exhausted. Rewrite the expression in terms of
simpler expressions.

IBM1722I S The number of error messages
allowed by the MAXMSG option
has been exceeded.

Explanation
Compilation will terminate when the number of
messages has exceeded the limit set in the MAXMSG
compiler option.

IBM1723I S Result of concatenating two
literals is too long.

Explanation
The length of the string literal produced by
concatenating two string literals must not be greater
than the maximum allowed for a literal with the
derived string type.

IBM1724I S Addition of source type and target
type is invalid.

Explanation
One of the operands in an addition must be
computational and the other must be either
computational or a locator.

IBM1725I S Addition of source type and target
type is invalid. If an ENTRY should
be invoked, an argument list must
be provided.

Explanation
An ENTRY cannot be used as an arithmetic operand. If
the ENTRY is a function which should be invoked, an
argument list, even if it consists only of a left and right
parenthesis, must be provided.

IBM1726I S Subtraction of target type from
source type is invalid.

Explanation
The first operand in a subtraction must be
computational or a locator. The second operand can be
a locator only if the first is a locator. Otherwise, the
second operand must be computational.

IBM1727I S Subtraction of target type from
source type is invalid. If an ENTRY
should be invoked, an argument
list must be provided.

Explanation
An ENTRY cannot be used as an arithmetic operand. If
the ENTRY is a function which should be invoked, an
argument list, even if it consists only of a left and right
parenthesis, must be provided.

IBM1728I S Multiplication of source type by
target type is invalid.

Explanation
Both operands in a multiplication must be
computational.

IBM1729I S Multiplication of source type by
target type is invalid. If an ENTRY
should be invoked, an argument
list must be provided.

Explanation
An ENTRY cannot be used as an arithmetic operand. If
the ENTRY is a function which should be invoked, an
argument list, even if it consists only of a left and right
parenthesis, must be provided.

IBM1730I S Division of source type by target
type is invalid.

Explanation
Both operands in a division must be computational.

IBM1731I S Division of source type by target
type is invalid. If an ENTRY should
be invoked, an argument list must
be provided.

Explanation
An ENTRY cannot be used as an arithmetic operand. If
the ENTRY is a function which should be invoked, an
argument list, even if it consists only of a left and right
parenthesis, must be provided.

Chapter 4. Compiler Severe Messages (1500-2399) 89

IBM1732I S Unsupported use of aggregate
expression.

Explanation
Aggregate expressions are supported only as the
source in an assignment statement and, with some
limitations, as an argument to the ANY or ALL built-in
functions.

IBM1733I S Concatenate operands must have
computational type.

Explanation
Only expressions having string or numeric type may be
concatenated.

IBM1734I S Operand in a prefix expression is
not computational.

Explanation
The prefix operators (plus, minus, and logical not) may
be applied only to expressions having string or
numeric type.

IBM1735I S AREA variables may not be
compared.

Explanation
No relational operations are defined for AREA
variables.

IBM1736I S Comparison of source type to target
type is invalid.

Explanation
Computational types can be compared only with other
computational types, and non-computational types
can be compared only with like non-computational
types.

IBM1737I S Comparison of ENTRY to target
type is invalid. If the ENTRY should
be invoked, an argument list must
be provided.

Explanation
ENTRYs can be compared only with other ENTRYs. If
the ENTRY is a function which should be invoked, an
argument list, even if it consists only of a left and right
parenthesis, must be provided.

IBM1738I S Comparison of source type to
ENTRY is invalid. If the ENTRY

should be invoked, an argument
list must be provided.

Explanation
ENTRYs can be compared only with other ENTRYs. If
the ENTRY is a function which should be invoked, an
argument list, even if it consists only of a left and right
parenthesis, must be provided.

IBM1739I S TASK variables may not be
compared.

Explanation
No relational operations are defined for TASK
variables.

IBM1740I S Comparison of an OFFSET to a
POINTER is invalid since the
OFFSET comparand is not an
OFFSET variable declared with an
AREA qualifier.

Explanation
An OFFSET can be compared with a POINTER as long
as the OFFSET can be converted to a POINTER. This
requires that the OFFSET is declared with an AREA
qualifier.

IBM1741I S Operands in comparison have
differing strong types.

Explanation
Comparisons of strongly-typed variables are invalid
unless both have the same type.

 dcl hp handle point;
 dcl hr handle rectangle;

 if hp = hr then
 ...

IBM1742I S Compared ORDINALs must have
the same ORDINAL type.

Explanation
ORDINALs cannot be compared with other ORDINALs
having a different ORDINAL type.

IBM1743I S Source and target in assignment
have differing strong types.

90 Enterprise PL/I for z/OS IBM Developer for z/OS PL/I for Windows: Enterprise PL/I for z/OS Messages and
Codes

Explanation
Assignments of strongly-typed variables are invalid
unless both have the same type.

IBM1744I S Conversion of ORDINALs is invalid
unless both have the same
ORDINAL type.

Explanation
ORDINALs cannot be assigned to other ORDINALs
having different ORDINAL type.

IBM1745I S In a function that returns a strong
type, the type in any RETURN
expression must be the same as
that returned by the function.

Explanation
For instance, in a function that returns a typed
structure, any RETURN expression must have the
same structure type.

IBM1746I S VALUE, VALUELIST, VALUERANGE,
and STATIC INITIAL expressions
must be constant.

Explanation
These expressions must be reducible to a constant at
compile-time.

 dcl a fixed bin static nonassignable
init(0);
 dcl m fixed bin value(a);
 dcl n fixed bin static init(a);

IBM1747I S Function cannot be used before
the function's descriptor list has
been scanned.

Explanation
This is a compiler restriction. Reorder the declarations
and blocks in your program. For example, the following
declarations should be in reverse order.

 dcl a char(csize(x, y));
 dcl csize entry(char(2), fixed bin)
 returns(fixed bin);

IBM1748I S Extents of automatic variables
must not depend on the extents of
automatic variables declared later
in the same block.

Explanation
Reorder the declarations in your program. For
example, the following declarations should be in
reverse order.

 dcl a char(length(b)) auto;
 dcl b char(10) auto;

IBM1749I S VALUE and INITIAL expressions
must be scalars.

Explanation
Aggregate expressions are not valid as INITIAL and
VALUE expressions.

IBM1750I S INITIAL attribute is invalid for the
STATIC LABEL variable variable-
name since it has the MEMBER
attribute.

Explanation
The INITIAL attribute is supported for a STATIC LABEL
variable only if the variable is a scalar or an array of
scalars.

IBM1751I S INITIAL attribute is valid for the
STATIC ENTRY variable variable-
name only if it has the LIMITED
attribute.

Explanation
ENTRY variables that don't have the LIMITED attribute
require block activation information, and hence they
cannot be initialized at compile-time.

IBM1753I S INITIAL attribute is invalid for the
STATIC FORMAT variable variable-
name.

Explanation
FORMAT variables require block activation
information, and hence they cannot be initialized at
compile-time. If the variable were not a member of a
structure, the storage class would be changed to
AUTOMATIC and an error message would be issued
instead.

IBM1754I S An asterisk iteration factor can be
applied only to the last expression
in the INITIAL item list for
variable-name.

Chapter 4. Compiler Severe Messages (1500-2399) 91

Explanation
Since an asterisk iteration factor completes the
initialization of a variable, it cannot be followed by
more initial values.

 dcl a(10) fixed bin init(1, 2, (*) 0,
8);

IBM1755I S An asterisk iteration factor cannot
be used in the nested INITIAL
item list for variable-name.

Explanation
An asterisk iteration can be used only in a non-nested
INITIAL item list. The following example is invalid.

 dcl a(20) fixed bin init((2) (1, (*)
2));

IBM1756I S The scalar variable variable-name
has an INITIAL list with more than
one item.

Explanation
Only arrays can have an INITIAL list with more than
one element.

 dcl a fixed bin init(1, 2);

IBM1757I S LABEL constant in STATIC INITIAL
for the variable variable-name
must be in the same block as the
LABEL being initialized.

Explanation
Change the storage class to AUTOMATIC.

 lx:;

 subproc: proc;

 dcl la static label init(lx);

 end;

IBM1758I S Only one element in the STATIC
UNION variable-name may have
the INITIAL attribute.

Explanation
If more than one element in a STATIC UNION had an
INITIAL value, it would not be clear which should take
precedence.

 dcl
 1 a union static,
 2 b fixed bin(31) init(17),
 2 c fixed bin(15) init(19);

IBM1759I S Non-null INITIAL values are not
supported for the STATIC
NONCONNECTED array variable-
name since it has the attributes
UNALIGNED BIT.

Explanation
The only supported INITIAL values for a STATIC
UNALIGNED BIT variable with inherited dimensions
are bit strings equal to ''b.

 dcl
 1 a(10,2) static,
 2 b1 bit(1) init((20) '1'b),
 2 b2 bit(1) init((20) '0'b);

IBM1760I S LABEL constant in the STATIC
INITIAL list for variable-name
must not be an element of a LABEL
CONSTANT array.

Explanation
Replace the subscripted LABEL with an unsubscripted
one or change the storage class to AUTOMATIC.

 lx(1):;
 lx(2):;

 dcl la(2) static label init(lx(2),
lx(1));

IBM1761I S ENTRY reference in INITIAL clause
for the STATIC ENTRY variable
variable-name must not be
FETCHABLE.

Explanation
The variable y in DCL x ENTRY LIMITED INIT(y) must
not be FETCHABLE; y must not be used in a FETCH or
RELEASE statement, and y must not have the
OPTIONS(FETCHABLE) attribute.

92 Enterprise PL/I for z/OS IBM Developer for z/OS PL/I for Windows: Enterprise PL/I for z/OS Messages and
Codes

IBM1762I S INITIAL iteration factor must have
computational type.

Explanation
Iteration factors in INITIAL lists must have numeric or
string types.

IBM1763I S INITIAL iteration factor must be a
scalar.

Explanation
An iteration factor in an INITIAL list must not be an
array, structure, or union.

IBM1764I S The BYVALUE attribute is invalid
for strings of nonconstant length.

Explanation
Strings with nonconstant length must be passed and
received by address.

 a: proc(x);
 dcl x char(*) byvalue;

IBM1765I S Length of string with the VALUE
attribute must be a constant or an
asterisk.

Explanation
Named strings must have a constant length or a length
determined from their VALUE.

 dcl a fixed bin automatic;
 dcl s char(a) value('variable length');

IBM1766I S VALUE for variable-name must be
evaluated before its first use.

Explanation
Named constants must be evaluated before they are
used. Reorder the declarations so that each named
constant is declared before its first use.

 dcl a char(n) static init('tooSoon');
 dcl n fixed bin value(7);

IBM1767I S Control variable in DO statement
must not be a named constant.

Explanation
Named constants may not be used as control variables
in DO loops.

 dcl n fixed bin value(7);

 do n = 1 to 5;

IBM1768I S Control variable in DO statement
must have VARIABLE attribute.

Explanation
Constants may not be used as control variables in DO
loops.

 dcl ex external entry, (ev1, ev2) entry;

 do ex = ev1, ev2;

IBM1769I S Control variable has type
POINTER, but TO expression does
not.

Explanation
If the control variable in a DO loop has POINTER type,
the TO expression must have POINTER type. Implicit
conversion from OFFSET to POINTER is not supported
in this context.

IBM1770I S Control variable in loop with TO
clause must have computational
or locator type.

Explanation
In a DO loop with a TO clause, the control variable
must have a type that allows a comparison of less than
and greater than. This is possible only for
computational and locator types.

IBM1771I S The variable name BUILTIN
function may be used as a
pseudovariable in a DO-loop only
if the length of the pseudovariable
reference is known at compile
time.

Explanation
SUBSTR and UNSPEC may be used as pseudovariables
in DO-loops only if their derived length is known at
compile time.

Chapter 4. Compiler Severe Messages (1500-2399) 93

IBM1772I S Source in DO loop initialization
must be scalar.

Explanation
In a DO loop of the form DO a = b TO c, b must be a
scalar.

IBM1773I S Control variable in DO statement
must be a scalar.

Explanation
In a DO loop of the form DO x = .., x must be a scalar.

IBM1774I S Compiler restriction: control
variable in DO statement must not
be a BASED or CONTROLLED string
or area that has non-constant
extent.

Explanation
In a DO loop of the form DO x = .., if x is a string or an
area, then it must have constant size or must be static,
automatic, or defined.

IBM1775I S BY expression must have
computational type.

Explanation
The expression in the BY clause of a DO loop must
have a string or numeric type. It cannot have a locator
type because it must be comparable to zero.

IBM1776I S BY expression must not be
COMPLEX.

Explanation
The expression in the BY clause of a DO loop must be
REAL.

 dcl z cplx float;

 do jx = 1 to 10 by z;

IBM1777I S TO expression must not be
COMPLEX.

Explanation
The expression in the TO clause of a DO loop must be
REAL

 dcl z cplx float;

 do jx = 1 to z;

IBM1778I S Control variable in loop with TO
clause must not be COMPLEX.

Explanation
In a DO loop with a TO clause, the control variable
must have a type that allows a comparison of less than
and greater than. This is possible for numeric types
only if the numeric type is REAL.

IBM1779I S TO expression must have
computational type.

Explanation
The expression in the TO clause of a DO loop must
have a string or numeric type.

IBM1780I S SIGNAL ANYCONDITION is invalid.

Explanation
ON ANYCONDITION may be used to trap conditions
not otherwise trapped, but ANYCONDITION may not
be signalled.

IBM1781I S And, or and exclusive-or of source
type and target type is invalid.

Explanation
Bitwise operands must have a computational type.

IBM1782I S And, or and exclusive-or of source
type and target type is invalid. If an
ENTRY should be invoked, an
argument list must be provided.

Explanation
An ENTRY cannot be used as a bitwise operand. If the
ENTRY is a function which should be invoked, an
argument list, even if it consists only of a left and right
parenthesis, must be provided.

IBM1783I S BASED variable without an
implicit qualifier must be explicitly
qualified.

Explanation
A variable declared as BASED instead of as
BASED(reference) must always be explicitly qualified.
This is necessary even when the variable is an
argument to built-in functions such as STORAGE.

94 Enterprise PL/I for z/OS IBM Developer for z/OS PL/I for Windows: Enterprise PL/I for z/OS Messages and
Codes

IBM1784I S The ENTRY variable-name may not
be used as a locator qualifier since
it does not have the RETURNS
attribute.

Explanation
Functions, but not subprocedures, can be used as
locator qualifiers (and then only if they return a
locator).

IBM1785I S The variable variable-name is used
as a locator qualifier, but it is not a
scalar.

Explanation
Only scalars can be used as locator qualifiers.

IBM1786I S BUILTIN name built-in may not be
used as a locator qualifier.

Explanation
The named built-in function cannot be used as a
locator qualifier since it does not return a POINTER.

IBM1787I S The ENTRY variable-name may not
be used as a locator qualifier.

Explanation
x(...)->y is invalid unless x returns a POINTER or an
OFFSET declared with a qualifying AREA.

IBM1789I S The qualifier variable-name does
not have locator type.

Explanation
Only POINTERs and OFFSETs declared with a
qualifying AREA can be used as locator qualifiers.

IBM1790I S Locator qualification is invalid for
variable-name.

Explanation
Locator qualification is valid only for BASED variables.

IBM1791I S The locator qualified reference
reference name is ambiguous.

Explanation
All references must be unambiguous.

IBM1792I S The locator qualified reference
reference name is unknown.

Explanation
Locator qualified references must be explicitly
declared. BASED variables may not be implicitly
declared.

IBM1793I S The variable name BUILTIN
function may not be used as a
pseudovariable in a DO-loop.

Explanation
Only IMAG, REAL, SUBSTR and UNSPEC may be used
as pseudovariables in DO loops.

IBM1794I S Too many implicit locators are
needed to resolve the qualification
for a variable. Variable may be
based on itself.

Explanation
An implicitly qualified variable must require no more
than 15 qualifiers to be completely qualified. If it
requires more, this may indicate its qualifiers are too
interdependent.

 dcl a pointer based(b);
 dcl b pointer based(a);
 a = null();

IBM1795I S The OFFSET variable variable-
name may not be used as a locator
qualifier since it was not declared
with an AREA specification.

Explanation
An OFFSET variable can be used as a locator qualifier
only if it can be converted to a pointer value. This
requires that the offset be declared with an AREA
qualification.

IBM1796I S Qualifier must be a scalar.

Explanation
Arrays, structures, and unions may not be used as
locator qualifiers.

IBM1797I S BASED variables may not contain
extents with nonconstant values if
other extents use the REFER
option.

Chapter 4. Compiler Severe Messages (1500-2399) 95

Explanation
The REFER option cannot be used in a BASED variable
which also has an extent that is set by a non-constant
expression.

IBM1798I S Invalid scale factor in PICTURE
specification.

Explanation
The picture character F specifies a picture scaling
factor for fixed-point decimal numbers. The number of
digits following the V picture character, minus the
integer specified with F, must be between -128 and
127.

IBM1799I S Invalid characters in PICTURE
specification.

Explanation
The picture specification can contain only A X 9 for the
Character Data, and only 9 V Z * , . / B S + - $ CR DB Y
K E F < > for the Numeric Data. The characters
between the insertion characters < > are not affected
by this rule.

IBM1800I S Invalid characters in the F scaling
factor.

Explanation
The picture character F specifies a picture scaling
factor for fixed-point decimal numbers. The format is
F(n) where n can be any signed integer between -128
and 127 inclusively.

IBM1801I S A character PICTURE string may
have only A, X, or 9.

Explanation
The picture specification can contain only A, X, or 9 for
the character data. Other characters are not permitted.

IBM1802I S Invalid precision in PICTURE fixed
decimal precision.

Explanation
The number of digits for the precision field within a
numeric data picture specification must be between
one and the maximum allowed by the
LIMITS(FIXEDDEC) option.

IBM1803I S Too many T, I, or R appear in the
PICTURE specification.

Explanation
T, I, or R are the overpunched characters in the picture
specification. Only one overpunched character can
appear in the specification for a fixed point number. A
floating-point specification can contain two (One in the
mantissa field and one in the exponent field).

IBM1804I S PICTURE specifications in C-
format items must be arithmetic.

Explanation
Character PICTURE specifications are not permitted in
C-format items.

IBM1805I S Precision in numeric PICTURE
must NOT be less than 1.

Explanation
The precision field within a numeric data picture
specification must contain at least one digit.

IBM1806I S The precision in FIXED DECIMAL
PICTURE is too big.

Explanation
The precision in the fixed decimal picture specification
must not exceed that specified in the LIMITS compiler
option.

IBM1807I S Precision in FLOAT DECIMAL
PICTURE is too big.

Explanation
The precision in the float decimal picture specification
is limited by the hardware to 18 digits.

IBM1808I S PICTURE string is empty.

Explanation
Null picture strings (''P) are invalid.

IBM1809I S Exponent in FLOAT PICTURE is too
long. Exponent will be truncated
to fit.

Explanation
The number of digits in the exponent of the float
decimal picture specification is limited to 4.

IBM1810I S Exponent in FLOAT PICTURE has
no digits.

96 Enterprise PL/I for z/OS IBM Developer for z/OS PL/I for Windows: Enterprise PL/I for z/OS Messages and
Codes

Explanation
The exponent in the float decimal picture specification
is missing. It must be entered even if it is zero.

IBM1811I S Exponent in PICTURE
specification cannot contain V.

Explanation
V specifies an implicit decimal point. Therefore, it is
not permitted in the exponent field.

IBM1812I S FLOAT PICTURE cannot contain
CR, DB or F.

Explanation
Credit (CR), debit (DB), and scale factor (F) are only
allowed in the FIXED picture specification.

IBM1813I S PICTURE specification is too long.
Excess characters are truncated
on the right.

Explanation
The compiler restrictions on the length of the picture
specification are:

 fixed decimal: 254
 float decimal: 253
 character data: 511

IBM1814I S PICTURE string has an invalid
floating insertion character string.

Explanation
The floating insertion string is delimited by < >.
Floating is done by the > character. The string can
contain any character with one exception: the
delimiters themselves. In order to include the
characters < and > in the floating insertion string,
these angle brackets must be used in an escaped
format. << must be used to specify the character <,
and <> must be used to specify the character >. So, for
example, <aaa<<bbb<>ccc> denotes the insertion
string aaa<bbb>ccc.

IBM1815I S BUILTIN name is a built-in
subroutine. It should be used only
in CALL statements and not as a
function.

Explanation
Built-in subroutines cannot be used as functions - they
can only be called. For instance, the following code is
invalid

 dcl pliretc builtin;

 rc = pliretc(16);

IBM1816I S keyword item variable name is not
computational.

Explanation
The expression must be arithmetic or string.

 dcl x label variable;
 put list(x);

IBM1817I S The KEYTO reference must be of
type CHARACTER or GRAPHIC.

Explanation
The KEYTO reference should have the data type
character or graphic. The reference can also be a
variable with a non-numeric picture string
specification.

IBM1818I S I/O-option conflicts with previous
options on the I/O-stmt statement.

Explanation
An option on the I/O statement conflicts with prior
options.

 open file(f1) input output;
 read file(f) into(x) set(p);

IBM1819I S The I/O-option option is multiply
specified on the I/O-stmt
statement.

Explanation
Each option may be specified only once.

 read file(f1) ignore(1) ignore(2);

IBM1820I S Mandatory I/O-option option not
specified on the I/O-stmt
statement.

Chapter 4. Compiler Severe Messages (1500-2399) 97

Explanation
A required statement element has not been specified.

 open output;
 write file(x);

IBM1821I S Reference for from-into-option is
an invalid element or aggregate
type.

Explanation
An invalid scalar or aggregate reference has been
specified for the FROM or INTO clause in a record I/O
statement. The example below will cause this
message to be issued.

 dcl f1 file;
 read file(f1) into(f1);

IBM1822I S The keyword-type expression must
be computational.

Explanation
The expression in a KEY or KEYFROM record I/O
statement option must be computational data.

IBM1823I S SET reference must have locator
type.

Explanation
In the SET clause of an ALLOCATE or LOCATE
statement, the reference must have the type POINTER
or OFFSET.

IBM1824I S keyword expression must be
scalar.

Explanation
The expression in the named keyword clause must be
scalar. This keyword clause could be an IF, UNTIL,
WHILE, WHEN, KEY, KEYFROM or KEYTO clause.

 dcl f1 file;
 dcl x char(10);
 dcl z(10) char(10);
 read file(f1) into(x) key(z);

IBM1825I S The reference in the keyword
clause cannot be a built-in
function reference.

Explanation
The references for the KEYTO, FROM, INTO, and SET
record I/O options cannot be built-in functions. The
example below will cause this message to be issued.

 dcl f1 file;
 dcl x char(10);
 read file(f1) into(hex(x));

IBM1826I S The reference in the keyword
clause cannot be a function
invocation.

Explanation
The references for the KEYTO, FROM, INTO, and SET
record I/O options cannot be entry.

IBM1827I S The reference in the keyword
clause must have CHARACTER
type.

Explanation
The specified reference is invalid. It must be of type
character. The example below will cause this message
to be issued.

 dcl p pointer;
 display ('what is your name?') reply(p);

IBM1828I S The reference in the keyword
clause must be a scalar variable.

Explanation
The specified reference is invalid. It must be a scalar.
The example below will cause this message to be
issued.

 dcl z(10) char(10);
 display ('what is your name?') reply(z);

IBM1829I S The attributes of the argument in
the clause clause conflict with its
usage.

Explanation
The declared attributes conflict with their use in the
statement.

 dcl f file stream;
 read file(f) into(x);

IBM1830I S keyword expression is not
computational.

98 Enterprise PL/I for z/OS IBM Developer for z/OS PL/I for Windows: Enterprise PL/I for z/OS Messages and
Codes

Explanation
The expression must be arithmetic or string.

 dcl p pointer;
 put list(ptradd(p,2));

IBM1831I S The LOCATE reference variable-
name is not implicitly qualified
and is invalid without a SET
clause.

Explanation
Provide a SET clause in the LOCATE statement.

 dcl f file;
 dcl x char(10) based;
 locate x file(f1);

IBM1832I S SET reference must have POINTER
type.

Explanation
The reference in the SET clause of a FETCH statement
must have the POINTER type. OFFSET types are not
supported in this context.

IBM1833I S The aggregate reference in the
from-into clause clause must be
CONNECTED.

Explanation
The specified reference in the FROM or INTO record
I/O option is invalid. The reference must be connected.
The example below will cause this message to be
issued.

 dcl f1 file;
 dcl 1 a(3),
 2 b(4) char(4),
 2 c(4) char(4);

 read file(f1) into(b);

IBM1834I S The expression in IGNORE must be
computational.

Explanation
The specified expression in the IGNORE option of the
READ statement must be computational. The example
below will cause this message to be issued.

 dcl a area;

 read file(f1) ignore(a);

IBM1835I S The LOCATE reference variable-
name is not a level-1 BASED
variable.

Explanation
The LOCATE reference may not be a structure member
and must have the storage attribute BASED.

IBM1836I S INITIAL attribute is invalid for
structures.

Explanation
The INITIAL attribute is valid only for scalars and
arrays of scalars.

IBM1837I S The reference in the keyword
clause cannot be a named
constant.

Explanation
The specified reference is invalid. It cannot be a
named constant. The example below will cause this
message to be issued.

 dcl f1 file;
 dcl x char(2);
 dcl val fixed bin(15) value(4);

 read file(f1) into(x) keyto(val);

IBM1838I S The attributes of argument-number
conflict with its usage in data
directed I/O.

Explanation
Only AUTOMATIC, CONTROLLED, PARAMETER, STATIC
and and implicitly qualified BASED variables are
supported in data directed I/O.

 dcl q based;
 put data(q);

IBM1839I S DATA-directed I/O does not
support references with locators.

Explanation
Use a temporary or use LIST- or EDIT directed I/O.

IBM1840I S Subscripted references are not
allowed in GET DATA.

Chapter 4. Compiler Severe Messages (1500-2399) 99

Explanation
Use a temporary or use GET LIST or GET EDIT.

IBM1841I S The first argument in the keyword-
format item is invalid.

Explanation
The format argument is outside the valid range.

 put edit('hi') (a(-1));

IBM1842I S The field width specified in the
keyword-format item is too small
for complete input or output of the
data item.

Explanation
The width specified is too small for complete
processing.

 put edit(10190) (f(3));

IBM1843I S The fractional digits specified in
the keyword-format item is invalid.

Explanation
The fractional number of digits must be less than or
equal to the field width and non-negative.

IBM1844I S The argument in the R-format item
is not a format constant or format
variable.

Explanation
The argument to the R-format item must be either a
format constant or a format variable.

IBM1845I S The significant digits specified in
E-format item is invalid.

Explanation
The number of significant digits must be greater than
or equal to the number of fractional digits, less than or
equal to the field width and non-negative.

IBM1846I S The format-item format item is
invalid with GET/PUT STRING.

Explanation
G, L, PAGE, LINE, SKIP, and COLUMN format items may
not be used in GET/PUT EDIT statements using the
STRING option.

IBM1847I S GOTO target is inside a (different)
DO loop.

Explanation
The target of a GOTO cannot be inside a DO loop
unless the GOTO itself is in the same DO loop.

IBM1848I S The INCLUDE file for include-stmt-
arg could not be found.

Explanation
The INCLUDE file could not be found or opened.

IBM1849I S Under CMPAT(V1), bounds must
not be greater than 32767.

Explanation
Under CMPAT(V1), bounds must be between -32768
and 32767 inclusive. To use bounds outside this range,
specify a different CMPAT option.

IBM1850I S Under CMPAT(V1), bounds must
not be less than -32768.

Explanation
Under CMPAT(V1), bounds must be between -32768
and 32767 inclusive. To use bounds outside this range,
specify a different CMPAT option.

IBM1851I S The INCLUDE file include-file-name
could not be opened.

Explanation
An unexpected error occurred while trying to open an
include source file.

IBM1852I S The preprocessor preprocessor is
not known to the compiler.

Explanation
A preprocessor specified in the PP compiler option is
unknown.

IBM1853I S Variable in statement statement
must be a FETCHABLE entry
constant.

Explanation
The argument in the FETCH and RELEASE statements
must be a FETCHABLE entry constant.

IBM1854I S Fetch of the PP name preprocessor
failed with ONCODE= oncode.

100 Enterprise PL/I for z/OS IBM Developer for z/OS PL/I for Windows: Enterprise PL/I for z/OS Messages and
Codes

Explanation
The compiler attempted to load the module specified
in the PP-DEF installation option for the preprocessor.

IBM1855I S Preprocessor PP name terminated
abnormally with ONCODE=
oncode-value.

Explanation
A terminating error was detected in a preprocessor
invoked by the compiler.

IBM1856I S Fetch of the user exit initialization
routine failed with ONCODE=
oncode.

Explanation
The compiler was unable to load the user exit.

IBM1857I S User exit routine terminated
abnormally with ONCODE=
oncode-value.

Explanation
The compiler detected a terminating error in the user
exit.

IBM1858I S Compilation aborted by user exit.

Explanation
The user exit aborted the compilation by setting the
return code to 16.

IBM1859I S The first statement must be a
PROCEDURE or PACKAGE
statement.

Explanation
All other statements must be enclosed in a PACKAGE
or PROCEDURE statement.

IBM1860I S PACKAGE statement must be the
first statement in the program.

Explanation
PACKAGE statements cannot follow any other
statements in the program.

IBM1861I S All statements other than
DECLARE, DEFAULT and
PROCEDURE statements must be
contained inside a PROCEDURE.

Explanation
This message can occur, for instance, if the first
PROCEDURE statement is invalid or if a PROCEDURE
contains too many END statements.

IBM1862I S Statements are nested too deep.

Explanation
The nesting of PROCEDURE, DO, SELECT and similar
statements is greater than that supported by the
compiler. Rewrite the program so that it is less
complicated.

IBM1863I S Variables declared in a PACKAGE
outside of any PROCEDURE must
have the storage class STATIC,
BASED or CONTROLLED or must be
DEFINED on STATIC.

Explanation
AUTOMATIC variables must be declared inside a
PROCEDURE, and DEFINED variables declared outside
a PROCEDURE must be defined on STATIC.

IBM1864I S The function name built-in is not
supported.

Explanation
Support for the indicated built-in function has been
discontinued.

IBM1865I S The only BASED variables
supported in data-directed i/o are
those that have constant extents
and that are implicitly qualified by
simple variables.

Explanation
The variable implicitly qualifying the BASED variable
must be a scalar that is not part of an array, structure
or union, and it must be a POINTER with either the
AUTOMATIC or STATIC storage attribute.

IBM1866I S The keyword statement is not
supported.

Explanation
Support for the indicated statement has been
discontinued.

IBM1867I S The pseudovariable variable name
is not supported.

Chapter 4. Compiler Severe Messages (1500-2399) 101

Explanation
Support for the indicated pseudovariable has been
discontinued.

IBM1868I S Invalid use of iSUB.

Explanation
iSUB references are permitted only in DEFINED
clauses.

IBM1869I S ALLOCATE with attribute lists is
not supported.

Explanation
For example, neither of the following are supported.

 allocate x(5);
 allocate y char(10);

IBM1870I S ON statement cannot specify both
SYSTEM and an ON-unit.

Explanation
If the SYSTEM action is specified in an ON statement,
an ON-unit may not be specified as well.

 on error system stop;

IBM1871I S The reference in the CONDITION
condition must have type
CONDITION.

Explanation
x in CONDITION(x) refers to a variable that does not
have the type CONDITION.

IBM1872I S The reference in the condition-
name condition must have type
FILE.

Explanation
The reference in the named FILE condition does not
have the type FILE.

IBM1873I S Nesting of DO statements exceeds
the maximum.

Explanation
DO statements can be nested only 50 deep. Simplify
the program.

IBM1874I S Nesting of IF statements exceeds
the maximum.

Explanation
IF statements can be nested only 50 deep. Simplify
the program.

IBM1875I S Nesting of SELECT statements
exceeds the maximum.

Explanation
SELECT statements can be nested only 50 deep.
Simplify the program.

IBM1876I S Nesting of blocks exceeds the
maximum.

Explanation
Blocks may be nested only 30 deep.

IBM1878I S The reference in the EVENT clause
must have type EVENT.

Explanation
A reference of any other type is invalid and is invalid.

IBM1879I S The reference in the TASK clause
must have type TASK.

Explanation
A reference of any other type is invalid and is invalid.

IBM1880I S Reference must have FILE type.

Explanation
A file variable or constant is required.

 dcl x format variable;
 open file(x);

IBM1881I S The reference reference name is
ambiguous.

Explanation
Enough qualification must be provided to make any
reference unique.

IBM1882I S The ALLOCATE reference variable-
name is not a level-1 BASED or
CONTROLLED variable.

102 Enterprise PL/I for z/OS IBM Developer for z/OS PL/I for Windows: Enterprise PL/I for z/OS Messages and
Codes

Explanation
References in ALLOCATE statements must be level-1
variable names, and those variables must have the
BASED or CONTROLLED attributes.

IBM1883I S The ALLOCATE reference variable-
name is not implicitly qualified
and is invalid without a SET
clause.

Explanation
Provide a SET clause in the ALLOCATE statement.

 dcl a based;

 allocate a;

IBM1884I S The reference variable-name in the
GENERIC attribute list is not a
scalar ENTRY reference.

Explanation
A reference of any other type is invalid.

IBM1885I S IN option reference must have
AREA type.

Explanation
A reference of any other type is invalid.

IBM1886I S The REFER object name reference
name is ambiguous.

Explanation
Provide enough qualification to make the name
unique.

 dcl
 1 a based,
 2 b1,
 3 c bit(8) aligned,
 3 d char(10),
 2 b2,
 3 c bit(8) aligned,
 3 d char(10),
 2 e(n refer(c)) char(10);

IBM1887I S The REFER object reference name
must be an element of the same
structure where it is used, and
must precede its first usage in that
structure.

Explanation
The named REFER object cannot be declared in
another structure or in the same structure, but after its
first usage.

IBM1888I S The REFER object reference name
must have computational type.

Explanation
It must be possible to convert the REFER object safely
to and from REAL FIXED BIN(31,0).

 dcl
 1 a based,
 2 b,
 3 c pointer,
 3 d char(10),
 2 e(n refer(c)) char(10);

IBM1889I S The REFER object reference name
must be a scalar.

Explanation
The REFER object may not have any dimensions in its
declaration and neither may any of its parents.

 dcl
 1 a based,
 2 b(8),
 3 c fixed bin,
 3 d char(10),
 2 e(n refer(c)) char(10);

IBM1890I S The REFER object reference name
must precede the first level-2
element containing a REFER.

Explanation
Reorder the elements in the declaration so that all
REFER objects precede the first level-2 element
containing a REFER.

 dcl
 1 a based,
 2 b fixed bin,
 2 c char(n refer(b)),
 2 d fixed bin,
 2 e char(n refer(d));

IBM1891I S REFER is not allowed on non-
BASED variables.

Chapter 4. Compiler Severe Messages (1500-2399) 103

Explanation
REFER can be used only in declarations of BASED
variables.

IBM1892I S The REFER object reference name
must have constant length.

Explanation
If a REFER object is a string, it must have constant
length.

IBM1893I S REFER is allowed only on
members of structures and unions.

Explanation
REFER cannot be used only in declarations of scalars
or arrays of scalars.

IBM1894I S REINIT references must not be
subscripted.

Explanation
In the statement REINIT x, x must not have any
subscripts or arguments.

IBM1895I S Operations involving
OPTIONS(language-name)
routines are not supported if the
DIRECTED option applies.

Explanation
If the DIRECTED(ASM) option is used, comparisons
and assignments are not supported for ENTRYs
declared with OPTIONS(ASM). Similarly, if the
DIRECTED(COBOL) option is used, comparisons and
assignments are not supported for ENTRYs declared
with OPTIONS(COBOL).

IBM1896I S OPTIONS(language-name) is not
supported for ENTRY VARIABLEs if
the DIRECTED option applies.

Explanation
If the DIRECTED(ASM) option is used, ENTRY
VARIABLES may not be declared with OPTIONS(ASM).
Similarly, if the DIRECTED(COBOL) option is used,
ENTRY VARIABLES may not be declared with
OPTIONS(COBOL).

IBM1897I S Simple defining is supported only
for scalars, for structures with
constant extents matching those
in the base variable, and for arrays
of such scalars and structures as

long as the array is not based on a
controlled variable.

Explanation
If simple defining is not intended, specify
POSITION(1) to force string defining.

IBM1898I S The base reference in the
DEFINED attribute cannot be a
built-in or type function.

Explanation
You can define a variable only another user variable.

IBM1899I S The base variable in the DEFINED
attribute cannot be BASED,
DEFINED or CONSTANT.

Explanation
Convert the DEFINED and base variables into a
UNION.

IBM1900I S Extents for DEFINED bit structures
must be constant.

Explanation
All bounds and string lengths for DEFINED structures
and unions consisting of bit strings must be constant.

IBM1901I S POSITION attribute is invalid
without the DEFINED attribute.

Explanation
The POSITION attribute has no meaning without
DEFINED attribute.

IBM1902I S The expression in the POSITION
attribute must have computational
type.

Explanation
The POSITION expression must have a numeric or
string type.

IBM1903I S The expression in the POSITION
attribute for bit string-overlay
defining must be an integer
constant.

Explanation
The compiler must be able to evaluate the expression
to an integer constant when it scans the POSITION
attribute.

104 Enterprise PL/I for z/OS IBM Developer for z/OS PL/I for Windows: Enterprise PL/I for z/OS Messages and
Codes

IBM1904I S Variable following the free clause
clause must be level-1 and either
BASED or CONTROLLED.

Explanation
A variable that is either based or controlled should
immediately follow the FREE keyword.

IBM1905I S IN or SET option option invalid
after the CONTROLLED variable in
the ALLOCATE or FREE clause
clause.

Explanation
An invalid option immediately follows a controlled
variable in an ALLOCATE or FREE statement.

IBM1906I S The reference qualifying an
OFFSET attribute must be a scalar
AREA reference.

Explanation
Using the specified AREA reference to qualify an
OFFSET variable is invalid. The reference must be
scalar. The following example will issue this message.

 dcl a(10) area;
 dcl o offset(a);

IBM1907I S Extents for CONTROLLED variables
cannot be specified using
asterisks or REFER.

Explanation
The extent specified for the controlled variable is
invalid. The following example will emit this message.

 dcl c(*) char(10) controlled;

IBM1908I S Extents for attribute variables
cannot be specified using
asterisks or REFER.

Explanation
Extents for AUTOMATIC and DEFINED variables must
be specified by expressions.

IBM1909I S The attribute attribute conflicts
with the attribute attribute.

Explanation
The named attributes, for example PARAMETER and
INITIAL, are mutually exclusive.

IBM1910I S The attributes given in the
declaration for identifier conflict
with its use as a parameter.

Explanation
Parameters can have no storage attributes other than
CONTROLLED. Parameters also cannot have any of the
attributes BUILTIN, CONDITION, CONSTANT,
EXTERNAL, and GENERIC.

IBM1911I S Repeated specifications of the
unsubscripted statement label
character are in error.

Explanation
All statement labels in any block must be unique.

IBM1912I S Indices specified for the LABEL
character have already been
specified.

Explanation
All statement labels in any block must be unique.

IBM1913I S ON-units may not be labeled. All
such labels will be ignored.

Explanation
A BEGIN block or a statement associated with an ON
clause may not have a label.

IBM1914I S GOTO target must be a LABEL
reference.

Explanation
x in GOTO x must have type LABEL. x must not have
type FORMAT.

IBM1915I S GOTO target must be a scalar.

Explanation
x in GOTO x must not be an array.

IBM1916I S The procedure/entry proc-name
has already been defined.

Explanation
Sister procedures must have different names.

Chapter 4. Compiler Severe Messages (1500-2399) 105

 a: proc;
 b: proc;
 end;
 b: proc;
 end;
 end;

IBM1917I S Program contains no valid source
lines.

Explanation
The source contains either no statements or all
statements that it contains are invalid.

IBM1918I S All the names in the ORDINAL
ordinal-name have been previously
declared.

Explanation
None of the names in an ORDINAL should have been
declared elsewhere. If they are, perhaps the ORDINAL
definition has been accidentally repeated.

IBM1919I S The EXTERNAL name string is
specified for the differing names
name and name.

Explanation
Each EXTERNAL name must be used only once. So, for
example, the following declares would be illegal since
the external name Z is specified for two different
names X and Y.

 dcl X fixed bin(31) ext('Z');
 dcl Y fixed bin(31) ext('Z');

IBM1920I S FIXED BINARY constant contains
too many digits.

Explanation
The maximum precision of FIXED BINARY constants is
set by the FIXEDBIN suboption of the LIMITS compiler
option.

IBM1921I S FIXED DECIMAL constant contains
too many significant digits.

Explanation
The maximum precision of FIXED DECIMAL constants
is set by the FIXEDDEC suboption of the LIMITS
compiler option.

IBM1922I S Exponent in FLOAT BINARY
constant contains more digits than
the implementation maximum.

Explanation
The exponent in a FLOAT BINARY constant may
contain no more than 5 digits.

IBM1923I S Mantissa in FLOAT BINARY
constant contains more significant
digits than the implementation
maximum.

Explanation
The mantissa in a FLOAT BINARY constant may
contain no more than 64 digits.

IBM1924I S Exponent in FLOAT DECIMAL
constant contains more digits than
the implementation maximum.

Explanation
The exponent in a FLOAT BINARY constant may
contain no more than 4 digits.

IBM1925I S Mantissa in FLOAT DECIMAL
constant contains more significant
digits than the implementation
maximum.

Explanation
The mantissa in a FLOAT DECIMAL constant may
contain no more than maximum number of digits
allowed on the platform.

IBM1926I S Constants must not exceed 8192
bytes.

Explanation
The number of bytes used to represent a constant in
your program must not exceed 8192. This limit holds
even for bit strings where the internal representation
will consume only one-eighth the number of bytes as
the external representation does.

IBM1927I S SIZE condition raised by attempt
to convert source-value to target-
attributes

Explanation
The source value is not in the domain of the target.

 dcl x fixed bin(15);

106 Enterprise PL/I for z/OS IBM Developer for z/OS PL/I for Windows: Enterprise PL/I for z/OS Messages and
Codes

 x = 172900;

IBM1928I S ERROR raised while building
CEEUOPT from PLIXOPT.

Explanation
The ERROR condition was while the compiler was
trying to build CEEUOPT from PLIXOPT. There may be
an error in the LE APIs used by the compiler. Contact
IBM service.

IBM1929I S Unable to open file file-name in
routine proc-name(line-number).

Explanation
The compiler was unable to open the named
temporary file used to communicate with the code
generation module. Check the value of the TMP
environment variable.

IBM1930I S Unable to write to file file-name .
Disk may be full.

Explanation
The compiler was unable to write to a temporary file
used to communicate with the code generation
module. The disk to which the TMP environment
variable points may be full.

IBM1932I S Unable to close file file-name in
routine proc-name(line-number).

Explanation
The compiler was unable to close the named
temporary file used to communicate with the code
generation module. Check the value of the TMP
environment variable.

IBM1933I S Unable to open temporary files
because the path and filename are
too long.

Explanation
Shorten the name of the source file or the directory
specified by the TMP variable.

IBM1934I S If a parameter is a structure with
nonconstant extents, only
matching structures are supported
as arguments.

Explanation
Assign the structure to a temporary and pass the
temporary, or omit the parameter description in the
entry declaration.

IBM1935I S Structure expressions as
arguments are not supported for
undescribed parameters.

Explanation
Assign the structure to a temporary and pass the
temporary, or describe the parameter in the entry
declaration.

IBM1936I S Invocation of compiler backend
ended abnormally.

Explanation
The back end of the compiler either could not be found
or else it detected an error from which it could not
recover. The latter problem can sometimes occur, on
Intel, if your disk is short of free space and, on the z/
Series, if your job's region size is not large enough.
Otherwise, report the problem to IBM.

IBM1937I S Extents for parameters must be
asterisks or restricted expressions
with computational type.

Explanation
For parameters, each array bound, string length and
AREA size must be specified either with an asterisk or
with a restricted expression that has computational
type.

IBM1938I S Message file file name not found.

Explanation
The message must be in the current directory or in one
of the directories specified in the DPATH environment
variable.

IBM1939I S Exponentiation operands must
have computational type.

Explanation
The operands in an exponentiation must have numeric
or string type.

IBM1940I S note

Explanation
This message is used by %NOTE statements with a
return code of 12.

Chapter 4. Compiler Severe Messages (1500-2399) 107

IBM1941I U note

Explanation
This message is used by %NOTE statements with a
return code of 16.

IBM1942I S The scale factor specified in
BUILTIN name built-in must be a
restricted expression with integer
type.

Explanation
This applies to all the precision-handling built-in
functions.

IBM1943I S The number of error messages
allowed by the FLAG option has
been exceeded.

Explanation
Compilation will terminate when the number of
messages has exceeded the limit set in the FLAG
compiler option.

IBM1944I S The precision specified in BUILTIN
name built-in must be a restricted
expression with integer type.

Explanation
This applies to all the precision-handling built-in
functions.

IBM1945I S Extents for BASED variable may
not contain asterisks.

Explanation
Extents in BASED variables must be either constants
or specified with the REFER option.

IBM1946I S Reference must be an AREA
variable.

Explanation
The specified reference is invalid. An AREA variable is
needed.

IBM1947I S The reference to the GENERIC
variable GENERIC variable name
cannot be resolved.

Explanation
The argument list in a GENERIC reference must match
one of the generic descriptors in one of that

GENERIC's WHEN clauses. If an OTHERWISE clause
was specified, the argument list must have the same
number of elements as the OTHERWISE entry
reference.

IBM1948I S condition-name condition with
ONCODE=oncode-value raised
while evaluating restricted
expression.

Explanation
Compile-time evaluation of a restricted expression
raised a condition.

 display(1/0);

IBM1949I S Parameter name identifier appears
more than once in parameter list.

Explanation
Each identifier in a parameter list must be unique.

 a: proc(b, c, b);

IBM1951I S storage class variables must be
named.

Explanation
Variables with the CONTROLLED attribute must be
named, and a variable with the EXTERNAL attribute
may not have an * instead of a name unless a name is
given with the EXTERNAL attribute itself.

IBM1952I S INITIAL CALL cannot be used to
initialize STATIC data.

Explanation
An INITIAL CALL must be evaluated at run-time; it can
be used to initialize only non-STATIC data.

IBM1953I S The attributes of the EXTERNAL
variable variable name do not
match those in its previous
declaration.

Explanation
EXTERNAL variables can be declared in more than one
procedure in a compilation unit, but the attributes in
those declarations must match.

108 Enterprise PL/I for z/OS IBM Developer for z/OS PL/I for Windows: Enterprise PL/I for z/OS Messages and
Codes

IBM1954I S The base reference in the
DEFINED attribute must be
CONNECTED.

Explanation
Variables cannot be DEFINED on NONCONNECTED
references.

IBM1955I S Repeated declarations of the
EXTERNAL attribute variable name
are not supported.

Explanation
EXTERNAL FILE constants and CONDITIONs may be
declared only once in a compilation unit. Remove all
but the outermost declare.

IBM1956I S ITERATE is valid only for iterative
DO-groups.

Explanation
ITERATE is not valid inside type-I do groups.

IBM1957I S The WAIT event number
specification must be
computational.

Explanation
The expression representing the number of items to
wait for in a WAIT statement is invalid. The expression
must be of computational type. The following example
will issue this message.

 dcl e event;
 dcl p pointer:
 wait (e) (p);

IBM1958I S References in the WAIT statement
must be of type EVENT.

Explanation
The event reference in the WAIT statement is invalid.
It must be of type EVENT. The following example will
issue this message.

 dcl e entry;
 wait (e);

IBM1959I S Invalid aggregate expression
specified in WAIT statement.

Explanation
References in WAIT statements can be scalars. The
only valid aggregate reference is a simple array of
events. Structures, unions, and arrays of structures or
unions would be flagged as errors.

IBM1960I S type name is not a type name.

Explanation
In a declare statement that specifies TYPE x, ORDINAL
x, or HANDLE x, x must be a defined type.

IBM1961I S INITIAL values for type type type
type name must be in increasing
order.

Explanation
Any values specified in INITIAL clauses in an ORDINAL
definition must be in strictly increasing order.

IBM1962I S INITIAL values for type type type
type name must be less than 2G.

Explanation
ORDINAL values must fit in the range of a FIXED
BIN(31) variable.

IBM1963I S BUILTIN name argument must
have ORDINAL type.

Explanation
An expression contains the named built-in function
with an argument that is not an ORDINAL. This
message applies, for example, to the ORDINALNAME,
ORDINALPRED and ORDINALSUCC built-in functions.

IBM1964I S The attributes derived from the
PROCEDURE statement for the
ENTRY constant variable name do
not match those in its explicit
declaration.

Explanation
A label on a PROCEDURE statement constitutes a
declaration for an ENTRY constant with that name.
That name also appears in a DECLARE statement, but
the attributes in those two declarations do not match.

IBM1965I S There is more than one element
named reference name in the class
structure name.

Explanation
All references must be unambiguous.

Chapter 4. Compiler Severe Messages (1500-2399) 109

IBM1966I S There is no element named
reference name in the class
structure name.

Explanation
HANDLE qualified references must be explicitly
declared.

IBM1967I S The ENTRY variable-name may not
be used as a handle since it does
not have the RETURNS attribute.

Explanation
Functions, but not subprocedures, can be used as
handles (and then only if they return a handle).

IBM1968I S The ENTRY variable-name may not
be used as a handle.

Explanation
x(...)=>y is invalid unless x returns a HANDLE.

IBM1969I S The variable variable-name is used
as a handle, but it is not a scalar.

Explanation
Only scalars can be used as handles.

IBM1970I S BUILTIN name built-in may not be
used as a handle.

Explanation
The named built-in function cannot be used as a
handle.

IBM1971I S The GENERIC variable variable-
name may not be used as a handle.

Explanation
GENERIC references may not be used as handles.

IBM1972I S variable-name may not be used as
a handle.

Explanation
x=>y is invalid unless x has the HANDLE attribute

IBM1976I S DBCS characters are allowed only
in G and M constants.

Explanation
Hex strings (strings ending in one of the suffixes X, BX,
B4, GX or XN), bit strings (strings ending in the suffix

B), and character strings not ending in the suffix M
must contain only SBCS characters.

IBM1977I S SBCS characters are not allowed
in G constants.

Explanation
Mixed SBCS and DBCS is allowed only in M constants.

IBM1978I S Invalid use of SBCS encoded as
DBCS.

Explanation
Outside of comments, SBCS can be encoded as DBCS
only as part of an identifier.

IBM1981I S BUILTIN function may not be used
outside a procedure.

Explanation
The named built-in function may be used only inside
procedures.

IBM1984I S File filename could not be opened.

Explanation
The named file could not be opened. Make sure that
the file is named correctly, that it exists, that it has the
proper attributes and that you have the needed
permissions to access it.

IBM1985I S File filename could not be opened.
C-library-message

Explanation
The named file could not be opened. Make sure that
the file is named correctly, that it exists, that it has the
proper attributes and that you have the needed
permissions to access it. The accompanying C library
message may help identify the problem.

IBM1986I S A system or user abend has
occurred.

Explanation
This error can occur, for example. when writing the
MDECK to a SYSPUNCH dataset that is too small or
when writing to one of the other compiler output
datasets when they are too small. It would probably
be useful to examine the JES log.

IBM1987I S File filename could not be opened
because too many files have been
opened.

110 Enterprise PL/I for z/OS IBM Developer for z/OS PL/I for Windows: Enterprise PL/I for z/OS Messages and
Codes

Explanation
The maximum number of open files has been reached.
On some platforms, there is a system limit on the
number of open files, but the compiler also has a limit
of 2047 include files.

IBM1988I S File filename could not be opened
due to an access violation.

Explanation
Either the file is in use or you tried to open a file for
which you do not have sufficient privilege.

IBM1989I S File name or extension for
filename is too long.

Explanation
The length of the file name or extension is greater than
the maximum allowed.

IBM1990I S File name filename has invalid
format.

Explanation
Apart from z/OS UNIX, file names should not contain
quotes. Under z/OS UNIX, if the file name does contain
quotes, it should specify a PDS member.

IBM1991I S The load of the SQL preprocessor
failed with ONCODE= oncode.
DB2/2 must be properly installed
before the SQL preprocessor can
be loaded.

Explanation
The compiler attempted to load the SQL preprocessor
but was unable to do so. Check that DB2/2 is properly
installed.

IBM1992I S A file name must be specified.

Explanation
The command syntax is:

 PLI {d:}{path}filename{.ext} {(options}

IBM1993I S Compilation terminated by
ATTENTION condition.

Explanation
If you hit CTL-BRK during the compilation, the
compilation will stop.

IBM1994I S Internal compiler error: storage
header has been overwritten

Explanation
This message indicates that there is an error in the
front end of the compiler. Please report the problem to
IBM.

IBM1995I S Internal compiler error: storage
tail has been overwritten.

Explanation
This message indicates that there is an error in the
front end of the compiler. Please report the problem to
IBM.

IBM1996I S Internal compiler error: free
amount free request size does not
match allocated size allocated
size.

Explanation
This message indicates that there is an error in the
front end of the compiler. Please report the problem to
IBM.

IBM1997I S Internal compiler error: no WHEN
clause satisfied within module
name

Explanation
This message indicates that there is an error in the
front end of the compiler. Please report the problem to
IBM.

IBM1998I S Internal compiler error: protection
exception in module name

Explanation
This message indicates that there is an error in the
front end of the compiler. Please report the problem to
IBM.

IBM1999I S note

Explanation
This message indicates that there is an error in the
back end of the compiler. Please report the problem to
IBM.

IBM2000I S Internal compiler error: assertion
failed on line source line in
procedure name in package name
>> extra text

Chapter 4. Compiler Severe Messages (1500-2399) 111

Explanation
This message indicates that there is an error in the
front end of the compiler. Report the problem to IBM.

IBM2001I S A LICENSE REQUEST WAS DENIED
FOR PL/I, PID 5655-B22. THE
REQUEST ENDED WITH STATUS
CODE STATUS CODE AND RETURN
CODE RETURN CODE. THE
COMPILATION WILL BE
TERMINATED.

Explanation
IBM License Manager is installed on your system, but
the request to verify that you have a license to use the
PL/I compiler has failed.

IBM2002I S Close of file filename failed. There
may be a space problem.

Explanation
An error has occurred while attempting to close a file.

IBM2003I S Write to file filename failed. There
may be a space problem.

Explanation
An error has occurred while attempting to write to a
file.

IBM2004I S ATTACH reference must be
declared with either a null
argument list or with an argument
list specifying only one argument.

Explanation
If the ATTACH reference is declared without an
argument list, change the declare to specify a null
argument list by adding a pair of parentheses.

IBM2005I S ATTACH reference must be an
ENTRY reference.

Explanation
GENERIC references and built-in subroutines may not
be attached.

IBM2006I S ATTACH reference cannot be a
function reference.

Explanation
An ATTACH reference must not have the RETURNS
attribute, even if the value returned is an ENTRY.

IBM2007I S ATTACH reference must use
LINKAGE(SYSTEM).

Explanation
Unless the default linkage is overridden,
OPTIONS(LINKAGE(SYSTEM)) must be specified on
the declare for the ATTACH reference.

IBM2008I S ATTACH reference cannot be
FETCHABLE.

Explanation
An ATTACH reference may not be used in a FETCH or
RELEASE statement.

IBM2009I S ATTACH reference cannot be a
nested procedure.

Explanation
An ATTACH reference must be a level-1 procedure,
although it does need to be external.

IBM2010I S ATTACH reference, if an ENTRY
variable, must be a LIMITED
ENTRY.

Explanation
Specify the LIMITED attribute in the declare for the
ENTRY VARIABLE.

IBM2011I S ATTACH reference, if it has an
argument, must declare that
argument as POINTER BYVALUE.

Explanation
No other argument types are support in ATTACH
statements.

IBM2012I S The attribute keyword attribute is
invalid in an ALIAS definition.

Explanation
The specified attribute must not be used in a DEFINE
ALIAS statement. This includes attributes such as
ASSIGNABLE, but, as in RETURNS descriptors, the
attributes STRUCTURE, UNION and DIMENSION are
not permitted in ALIAS definitions. Hence, the
following are invalid:

 define alias array (10) fixed bin;

 define alias point 1, 2 fixed bin, 2 fixed

112 Enterprise PL/I for z/OS IBM Developer for z/OS PL/I for Windows: Enterprise PL/I for z/OS Messages and
Codes

bin;

IBM2013I S Only one description is allowed in
an ALIAS definition.

Explanation
The syntax allows the name in an alias definition to be
followed by a description list, but that description list
must consist of exactly one description. The following
is invalid:

 define alias x fixed bin, float bin;

IBM2014I S Extents in type descriptors must
be constant.

Explanation
In ALIAS and STRUCTURE definitions, each string
length and AREA size must be specified with a
restricted expression. Like RETURNS descriptors,
asterisks and non-constant expressions are not
permitted.

IBM2015I S VALUE attribute conflicts with
data type.

Explanation
The VALUE attribute is allowed only with
computational data types as well as pointer, offset,
handle and ordinal.

IBM2016I S The VALUE attribute is not allowed
with typed structures.

Explanation
The VALUE attribute is not allowed with typed
structures.

IBM2017I S INITIAL TO is valid only for
NATIVE POINTER.

Explanation
INITIAL TO is not valid for NONNATIVE POINTERs. It is
also invalid for non-POINTERs since they cannot be
assigned addresses.

IBM2018I S INITIAL TO is supported only for
STATIC variables.

Explanation
INITIAL TO is not supported for variables belonging to
any storage class other than STATIC.

IBM2019I S Unsupported LINKAGE used with
the LIST attribute.

Explanation
Specify OPTIONS(LINKAGE(OPTLINK)) or, on
WINDOWS, OPTIONS(LINKAGE(CDECL)) on the
PROCEDURE or ENTRY having a parameter with the
LIST attribute and then recompile.

IBM2020I S There is more than one element
named reference name in the typed
structure structure name.

Explanation
All references must be unambiguous.

IBM2021I S There is no element named
reference name in the structure
structure name.

Explanation
All structure references must be explicitly declared.

IBM2022I S The ENTRY variable-name may not
be used as a typed structure
qualifier since it does not have the
RETURNS attribute.

Explanation
Functions, but not subprocedures, can be used as
typed structure qualifiers (and then only if they return
a typed structure).

IBM2023I S The ENTRY variable-name may not
be used as a typed structure
qualifier.

Explanation
x(...)=>y is invalid unless x returns a typed structure.

IBM2024I S The array variable variable-name
may be used as a typed structure
qualifier only if it is completely
subscripted before its dot
qualification.

Explanation
For instance, if x is an array of structure t with member
m, x.m(2) is invalid. However, x(2).m is valid.

Chapter 4. Compiler Severe Messages (1500-2399) 113

IBM2025I S BUILTIN name built-in may not be
used as a typed structure qualifier.

Explanation
The named built-in function cannot be used as a typed
structure qualifier.

IBM2026I S The GENERIC variable variable-
name may not be used as a typed
structure qualifier.

Explanation
GENERIC references may not be used as typed
structure qualifiers.

IBM2027I S variable-name may not be used as
a structure qualifier.

Explanation
x.y is invalid unless x is a structure, a union or a
function returning a typed structure.

IBM2028I S TYPEs must be defined before
their use.

Explanation
The DEFINE STRUCTURE or DEFINE ALIAS statement
for a type x must precede any of use of x as attribute
type. The following two statements should be in the
opposite order.

 dcl x type point;

 define structure
 1 point,
 2 x fixed bin(31),
 2 y fixed bin(31);

IBM2029I S A DEFINE STRUCTURE statement
must consist of a level one
structure name optionally
followed by its substructures. Use
DEFINE ALIAS to set a name as a
synonym for a data type.

Explanation
A DEFINE STRUCTURE statement can specify just a
level 1 name only if there no other attributes specified.
The following are invalid

 define structure 1 int fixed bin;

 define structure 1 a type b;

IBM2030I S INITIAL attribute is invalid in
structure definitions.

Explanation
Defined structure types must be initialized via
assignments.

IBM2031I S Storage attributes are invalid in
structure definition.

Explanation
Storage attributes, such as AUTOMATIC and BYADDR,
must be specified with variables declared with
structure type.

IBM2032I S DEFINE STRUCTURE may not
specify an array of structures.

Explanation
The level 1 name in a structure definition may not have
the DIMENSION attribute.

IBM2033I S Only one description is allowed in
a structure definition.

Explanation
The syntax allows the name in a structure definition to
be followed by a description list, but that description
list must consist of exactly one structure description.
The following is invalid:

 define structure
 1 point,
 2 x fixed bin(31),
 2 y fixed bin(31),
 1 rectangle,
 2 upper_left type point,
 2 lower_right type point;

IBM2034I S The argument to the type function
type function must be an ordinal
type name.

Explanation
The argument to the type functions FIRST and LAST
must be an unambiguous type name, and that type
must be an ordinal type.

IBM2035I S The argument to the type function
type function must be a structure
type name.

114 Enterprise PL/I for z/OS IBM Developer for z/OS PL/I for Windows: Enterprise PL/I for z/OS Messages and
Codes

Explanation
The argument to the type function NEW must be an
unambiguous type name, and that type must be a
structure type.

IBM2036I S The second argument to the type
function type function must have
locator type.

Explanation
The second argument to the BIND type function must
be a pointer or offset value that is to be converted to a
handle to the structure type named as the first
argument.

IBM2037I S The first argument to the type
function type function must be a
structure type name.

Explanation
The first argument to the type functions BIND must be
an unambiguous type name, and that type must be a
structure type.

IBM2038I S BUILTIN name argument must
have HANDLE type.

Explanation
An expression contains the named built-in function
with an argument that is not a HANDLE.

IBM2039I S Argument to variable name
pseudovariable must be a
HANDLE.

Explanation
The TYPE pseudovariable can be applied only to
HANDLEs.

IBM2040I S The argument to the type function
type function must be a defined
type.

Explanation
The first argument to the type function SIZE must be
the unambiguous name of a defined type.

IBM2041I S The first argument to the type
function type function must be a
defined type.

Explanation
The first argument to the type function CAST must be
the unambiguous name of a defined type.

IBM2042I S The second argument to the type
function type function must be a
scalar.

Explanation
The second argument to the type function CAST must
be a scalar.

IBM2043I S The second argument to the type
function type function must have
the same size as the first
argument.

Explanation
The second argument to the type function CAST must
have the same size as the size of the type that is the
first argument.

IBM2044I S The get storage function to
BUILTIN name must be a LIMITED
ENTRY with LINKAGE(OPTLINK)
and an appropriate entry
description list.

Explanation
The function should be declared as

 dcl get entry(pointer byvalue,
 fixed bin(31) byaddr,
 fixed bin(31) byaddr)
 returns(pointer);

IBM2045I S The free storage function to
BUILTIN name must be a LIMITED
ENTRY with LINKAGE(OPTLINK)
and an appropriate entry
description list.

Explanation
The function should be declared as

 dcl free entry(pointer byvalue,
 pointer byvalue,
 fixed bin(31) byvalue);

IBM2046I S OPTIONS(NODESCRIPTOR) is
required if the last parameter to
an ENTRY or PROC has the LIST
attribute.

Explanation
If an entry or procedure has a variable number of
arguments in imitation of C, i.e. if its last parameter
has the LIST attribute, then

Chapter 4. Compiler Severe Messages (1500-2399) 115

OPTIONS(NODESCRIPTOR) must be specified (and
valid).

IBM2047I S The VARGLIST built-in function
may be used only inside
procedures whose last parameter
had the LIST attribute.

Explanation
The VARGLIST built-in function obtains the address of
the variable argument list passed to procedures whose
last parameter had the LIST attribute. It may not be
used in subprocedures of such routines or in
procedures having either no parameters or having no
parameter declared with the LIST attribute.

IBM2048I S The LIST attribute may be
specified only on non-nested
procedures, external entry
constants, and limited entry
variables.

Explanation
The LIST attribute causes a variable argument list to
be built, and such argument lists are permitted neither
with nested procedures nor with entry variables
declared without the LIMITED attribute.

IBM2049I S The LIST attribute may be
specified only on the last element
of an entry description list.

Explanation
The LIST attribute indicates that zero or more
parameters may be specified after it, but those
parameters may not be described.

IBM2050I S Descriptors are supported for
Fortran only for scalar character
strings.

Explanation
If OPTIONS(FORTRAN DESCRIPTOR) applies, all
parameters other than character strings must have
constant extents.

IBM2051I S Descriptors are not supported for
Fortran for routines defined by or
containing ENTRY statements.

Explanation
If OPTIONS(FORTRAN DESCRIPTOR) applies to an
ENTRY statement or to a procedure containing an
ENTRY statement, all parameters must have constant
extents.

IBM2052I S A function defined by a
PROCEDURE containing ENTRY
statements must return aggregate
values BYADDR.

Explanation
Either BYADDR must be specified in the RETURNS
option of the PROCEDURE statement, or the
RETURNS(BYADDR) suboption of the DEFAULT
statement must be in effect.

IBM2053I S A function defined by an ENTRY
statement must return aggregate
values BYADDR.

Explanation
Either BYADDR must be specified in the RETURNS
option of the ENTRY statement, or the
RETURNS(BYADDR) suboption of the DEFAULT
statement must be in effect.

IBM2054I S A PROCEDURE containing ENTRY
statements must receive all non-
pointer parameters BYADDR.

Explanation
Either BYADDR must be specified in the declares for
the parameters, or the BYADDR suboption of the
DEFAULT statement must be in effect.

IBM2055I S An ENTRY statement must receive
all parameters BYADDR.

Explanation
Either BYADDR must be specified in the declares for
the parameters, or the BYADDR suboption of the
DEFAULT statement must be in effect.

IBM2056I S ENTRY statement is not allowed in
DO loops.

Explanation
ENTRY statements are allowed in non-iterative DO
groups, but not in iterative DO loops.

IBM2057I S RETURN statement is invalid
inside a BEGIN in a PROCEDURE
that contains ENTRY statements.

Explanation
A RETURN statement is valid inside a BEGIN block
only if the PROCEDURE enclosing that BEGIN block
contains no ENTRY statements.

116 Enterprise PL/I for z/OS IBM Developer for z/OS PL/I for Windows: Enterprise PL/I for z/OS Messages and
Codes

IBM2058I S In a PROCEDURE without the
RETURNS option, any ENTRY
statement must use BYADDR for
its RETURNS value.

Explanation
Either BYADDR must be specified in the RETURNS
option of the ENTRY statement, or the
RETURNS(BYADDR) suboption of the DEFAULT
statement must be in effect.

IBM2059I S OPTIONS(FORTRAN) is invalid if
any parameters are UNALIGNED
BIT.

Explanation
Only ALIGNED BIT strings with constant length are
valid with OPTIONS(FORTRAN).

IBM2060I S Attributes may not be specified in
ALLOCATEs of BASED variables.

Explanation
Attributes may be specified only in ALLOCATEs of
CONTROLLED variables.

IBM2061I S Attributes specified for variable-
name in ALLOCATE statement do
not match those in its declaration.

Explanation
An attribute, such as CHARACTER, may be specified in
an ALLOCATE statement only if it is also specified in
the declaration of the variable to be allocated.

IBM2062I S Structuring specified in ALLOCATE
of variable-name does not match
that in its declaration.

Explanation
In an ALLOCATE statement for a structure, all the
levels specified in its declaration must be specified,
and no new levels may be specified.

IBM2063I S Specification of extent for
variable-name in ALLOCATE
statement is invalid since it was
declared with a constant extent.

Explanation
An attribute, such as CHARACTER, may be specified in
an ALLOCATE statement only if it is also specified in
the declaration of the variable to be allocated with
either an asterisk or a non-constant expression.

IBM2064I S The extent specified for the lower
bound for dimension dimension-
value of variable-name in
ALLOCATE statement is invalid
since that variable was declared
with a different constant extent.

Explanation
If a bound for a CONTROLLED variable is declared as a
constant, then it must be specified as the same
constant value in any ALLOCATE statement for that
variable.

IBM2065I S The extent specified for the upper
bound for dimension dimension-
value of variable-name in
ALLOCATE statement is invalid
since that variable was declared
with a different constant extent.

Explanation
If a bound for a CONTROLLED variable is declared as a
constant, then it must be specified as the same
constant value in any ALLOCATE statement for that
variable.

IBM2075I S ENTRY types and arguments in
type function must be LIMITED.

Explanation
A ENTRY type or argument used with the type function
CAST must have the attribute LIMITED.

IBM2076I S FLOAT types and arguments in
type function must be NATIVE
REAL.

Explanation
A FLOAT type or argument used with the type function
CAST must have the attributes NATIVE REAL.

IBM2077I S FIXED BIN types and arguments in
type function must be REAL with
scale factor zero.

Explanation
A FIXED BIN type or argument used with the type
function CAST must have the attributes REAL
PRECISION(p,0).

IBM2078I S Types with the attributes
attributes are not supported as the
target of the type function
function.

Chapter 4. Compiler Severe Messages (1500-2399) 117

Explanation
The first argument to the type function CAST must be a
type with one of the following sets of attributes: REAL
FIXED BIN(p,0) or NATIVE REAL FLOAT.

IBM2079I S Arguments with the attributes
attributes are not supported as the
source in the type function
function.

Explanation
The second argument to the type function CAST must
have one of the following sets of attributes: REAL
FIXED BIN(p,0) or NATIVE REAL FLOAT.

IBM2080I S DATE pattern is invalid.

Explanation
See the Language Reference Manual for a list of the
supported DATE patterns.

IBM2081I S DATE attribute is valid only with
NONVARYING CHARACTER, FIXED
DECIMAL and arithmetic PICTURE.

Explanation
The DATE attribute cannot be used on any other than
the named types.

IBM2082I S DATE attribute conflicts with non-
zero scale factor.

Explanation
The DATE attribute can be used on a numeric only if it
has a scale factor of zero.

IBM2083I S DATE attribute conflicts with
COMPLEX attribute.

Explanation
The DATE attribute can be used on a numeric only if it
is REAL.

IBM2084I S DATE attribute conflicts with
PICTURE string containing
characters other than 9.

Explanation
The DATE attribute can be used on a PICTURE only if
the PICTURE consists entirely of 9's.

IBM2085I S Length of DATE pattern and base
precision do not match.

Explanation
The DATE attribute can be used on a numeric only if its
precision equals the length of the DATE pattern.

IBM2086I S Length of DATE pattern and base
length do not match.

Explanation
The DATE attribute can be used on a string only if its
length equals the length of the DATE pattern.

IBM2087I S DATE attribute conflicts with
adjustable length.

Explanation
The DATE attribute can be used on a string only if the
string is declared with a constant length.

IBM2088I S Response file is too large. Excess
will be ignored.

Explanation
The options string built from the response file must be
less than 32767 characters long.

IBM2089I S Line in response file is longer than
100 characters. That line and rest
of file will be ignored.

Explanation
All lines in any response file must contain no more
than 100 characters.

IBM2090I S The keyword statement cannot be
used under SYSTEM(CICS).

Explanation
The named statement cannot be used under CICS.

IBM2091I S DISPLAY with REPLY cannot be
used under SYSTEM(CICS).

Explanation
DISPLAY with REPLY cannot be used under CICS.

IBM2092I S The BUILTIN name built-in
function cannot be used under
SYSTEM(CICS).

Explanation
The named built-in function cannot be used under
CICS.

118 Enterprise PL/I for z/OS IBM Developer for z/OS PL/I for Windows: Enterprise PL/I for z/OS Messages and
Codes

IBM2093I S The keyword statement cannot be
used under SYSTEM(CICS) except
with SYSPRINT.

Explanation
The named I/O statement cannot be used under CICS
unless the file used in the statement is SYSPRINT.

IBM2094I S Source in CAST to FLOAT must be
FLOAT, FIXED or ORDINAL.

Explanation
The source in a CAST to a FLOAT must be FLOAT,
FIXED or ORDINAL.

IBM2095I S Target in CAST from FLOAT must
be FLOAT, FIXED BIN or ORDINAL.

Explanation
The target in a CAST from a FLOAT must be FLOAT,
FIXED BIN or ORDINAL.

IBM2096I S Target in CAST from FIXED DEC
must be FLOAT, FIXED BIN or
ORDINAL.

Explanation
The target in a CAST from a FIXED DEC must be FLOAT,
FIXED BIN or ORDINAL.

IBM2097I S FIXED DEC types and arguments
in type function must be REAL with
non-negative scale factor.

Explanation
A FIXED DEC type or argument used with the type
function CAST must have the attributes REAL
PRECISION(p,q) with p >= q and q >= 0.

IBM2098I S Source in CAST to FIXED DEC must
be FLOAT, FIXED or ORDINAL.

Explanation
The source in a CAST to a FIXED DEC must be FLOAT,
FIXED or ORDINAL.

IBM2099I S CASEX strings must have the same
length.

Explanation
The two strings in the CASEX option must have the
same length. The second argument is the uppercase
value of the first. If a character in the first string does

not have an uppercase value, use the character itself
as the uppercase value.

IBM2100I S The attributes of the EXTERNAL
variable variable name do not
match those in its previous
declaration. The ORDINAL types
do not match.

Explanation
EXTERNAL variables can be declared in more than one
procedure in a compilation unit, but the attributes in
those declarations must match.

IBM2101I S The attributes of the EXTERNAL
variable variable name do not
match those in its previous
declaration. The HANDLE types do
not match.

Explanation
EXTERNAL variables can be declared in more than one
procedure in a compilation unit, but the attributes in
those declarations must match.

IBM2102I S The attributes of the EXTERNAL
variable variable name do not
match those in its previous
declaration. The STRUCTURE
types do not match.

Explanation
EXTERNAL variables can be declared in more than one
procedure in a compilation unit, but the attributes in
those declarations must match.

IBM2103I S The attributes of the EXTERNAL
variable variable name do not
match those in its previous
declaration. Alignment does not
match.

Explanation
EXTERNAL variables can be declared in more than one
procedure in a compilation unit, but the attributes in
those declarations must match.

IBM2104I S The attributes of the EXTERNAL
variable variable name do not
match those in its previous
declaration. Number and
attributes of structure members
do not match.

Chapter 4. Compiler Severe Messages (1500-2399) 119

Explanation
EXTERNAL variables can be declared in more than one
procedure in a compilation unit, but the attributes in
those declarations must match.

IBM2105I S The attributes of the EXTERNAL
variable variable name do not
match those in its previous
declaration. The number of
dimensions do not match.

Explanation
EXTERNAL variables can be declared in more than one
procedure in a compilation unit, but the attributes in
those declarations must match.

IBM2106I S The attributes of the EXTERNAL
variable variable name do not
match those in its previous
declaration. Lower bounds do not
match.

Explanation
EXTERNAL variables can be declared in more than one
procedure in a compilation unit, but the attributes in
those declarations must match.

IBM2107I S The attributes of the EXTERNAL
variable variable name do not
match those in its previous
declaration. Upper bounds do not
match.

Explanation
EXTERNAL variables can be declared in more than one
procedure in a compilation unit, but the attributes in
those declarations must match.

IBM2108I S The attributes of the EXTERNAL
variable variable name do not
match those in its previous
declaration. RETURNS attributes
do not match.

Explanation
EXTERNAL variables can be declared in more than one
procedure in a compilation unit, but the attributes in
those declarations must match.

IBM2109I S The attributes of the EXTERNAL
variable variable name do not
match those in its previous
declaration. BYVALUE and
BYADDR attributes in RETURNS do
not match.

Explanation
EXTERNAL variables can be declared in more than one
procedure in a compilation unit, but the attributes in
those declarations must match.

IBM2110I S The attributes of the EXTERNAL
variable variable name do not
match those in its previous
declaration. LINKAGE values do
not match.

Explanation
EXTERNAL variables can be declared in more than one
procedure in a compilation unit, but the attributes in
those declarations must match.

IBM2111I S The attributes of the EXTERNAL
variable variable name do not
match those in its previous
declaration. OPTIONS values do
not match.

Explanation
EXTERNAL variables can be declared in more than one
procedure in a compilation unit, but the attributes in
those declarations must match.

IBM2112I S The attributes of the EXTERNAL
variable variable name do not
match those in its previous
declaration. Parameter counts do
not match.

Explanation
EXTERNAL variables can be declared in more than one
procedure in a compilation unit, but the attributes in
those declarations must match.

IBM2113I S The attributes of the EXTERNAL
variable variable name do not
match those in its previous
declaration. BYVALUE and
BYADDR attributes in parameter
parameter-number do not match.

Explanation
EXTERNAL variables can be declared in more than one
procedure in a compilation unit, but the attributes in
those declarations must match.

IBM2114I S The attributes of the EXTERNAL
variable variable name do not
match those in its previous
declaration. The number of

120 Enterprise PL/I for z/OS IBM Developer for z/OS PL/I for Windows: Enterprise PL/I for z/OS Messages and
Codes

dimensions for parameter
parameter-number do not match.

Explanation
EXTERNAL variables can be declared in more than one
procedure in a compilation unit, but the attributes in
those declarations must match.

IBM2115I S The attributes of the EXTERNAL
variable variable name do not
match those in its previous
declaration. Lower bounds for
parameter parameter-number do
not match.

Explanation
EXTERNAL variables can be declared in more than one
procedure in a compilation unit, but the attributes in
those declarations must match.

IBM2116I S The attributes of the EXTERNAL
variable variable name do not
match those in its previous
declaration. Upper bounds for
parameter parameter-number do
not match.

Explanation
EXTERNAL variables can be declared in more than one
procedure in a compilation unit, but the attributes in
those declarations must match.

IBM2117I S The attributes of the EXTERNAL
variable variable name do not
match those in its previous
declaration. Alignment of
parameter parameter-number does
not match.

Explanation
EXTERNAL variables can be declared in more than one
procedure in a compilation unit, but the attributes in
those declarations must match.

IBM2118I S The attributes of the EXTERNAL
variable variable name do not
match those in its previous
declaration. Number and
attributes of structure members in
parameter parameter-number do
not match.

Explanation
EXTERNAL variables can be declared in more than one
procedure in a compilation unit, but the attributes in
those declarations must match.

IBM2119I S The attributes of the EXTERNAL
variable variable name do not
match those in its previous
declaration. Attributes of
parameter parameter-number do
not match.

Explanation
EXTERNAL variables can be declared in more than one
procedure in a compilation unit, but the attributes in
those declarations must match.

IBM2120I S AREAs are not supported in
RETURNS.

Explanation
But an AREA may be output parameter.

IBM2121I S Argument number argument-
number in entry reference entry
name must have the same size as
the corresponding parameter.

Explanation
For a AREA parameter declared with constant size, any
corresponding argument must have equal constant
size. Dummy AREA arguments are not supported in
this scenario.

 dcl x entry(area(10000));
 dcl a area(8000));
 call x(a);

IBM2123I S When expanded, DEFINE
STRUCTURE type would have an
array with more than 15 total
dimensions.

Explanation
The total number of dimensions allowed in a DEFINED
STRUCTURE type used in XMLCHAR must not exceed
15.

IBM2124I S When expanded, DEFINE
STRUCTURE type would contain
more than 15 logical levels.

Chapter 4. Compiler Severe Messages (1500-2399) 121

Explanation
The total number of logical levels allowed in a
DEFINED STRUCTURE type used in XMLCHAR must
not exceed 15.

IBM2125I S variable-name is a typed structure
and hence cannot be used in GET
DATA.

Explanation
The use of DEFINE STRUCTURE types is not supported
in GET DATA statements.

 define structure
 1 a,
 2 a1 fixed bin(31),
 2 a2 fixed bin(31);

 dcl x type a;

 get skip data(x);

IBM2126I S variable-name is a member of a
typed structure and hence cannot
be used in data directed I/O.

Explanation
The use of members of DEFINE STRUCTURE types is
not supported in data directed I/O statements.

 define structure
 1 a,
 2 a1 fixed bin(31),
 2 a2 fixed bin(31);

 dcl x type a;

 x.a1 = 17;
 x.a2 = 29;

 put skip data(x.a);

IBM2127I S The ENTRY named ENTRY variable
name matches the reference to the
GENERIC variable GENERIC
variable name, but while the
GENERIC reference is used as a
function, the matching ENTRY
does not have the RETURNS
attribute.

Explanation
A match for the GENERIC reference has been found,
but the match is not suitable because while the
GENERIC reference is used as a function, the matching
ENTRY is not a function. For example, the first

GENERIC reference below is invalid, while the second
is ok.

 dcl e1 entry(fixed bin);
 dcl e2 entry(fixed bin, fixed bin)
returns(fixed bin);
 dcl gp generic(e1 when(*),
 e2 when(*, *));

 rc = gp(0);

 rc = gp(0, 0);

IBM2128I S The ENTRY named ENTRY variable
name matches the reference to the
GENERIC variable GENERIC
variable name, but while the
GENERIC reference is used as a
function acting as a locator
qualifier, the matching ENTRY
does not return a POINTER.

Explanation
A match for the GENERIC reference has been found,
but the match is not suitable because while the
GENERIC reference is used as a locator, the matching
ENTRY is not a function returning a POINTER. For
example, the first GENERIC reference below is invalid,
while the second is ok.

 dcl f1 entry(fixed bin) returns(fixed
bin);
 dcl f2 entry(fixed bin, fixed bin)
returns(pointer);
 dcl bx based fixed bin;
 dcl gf generic(f1 when(*),
 f2 when(*, *));

 rc = gf(0)->bx;

 rc = gf(0, 0)->bx;

IBM2129I S The ENTRY named ENTRY variable
name matches the reference to the
GENERIC variable GENERIC
variable name, but while the
GENERIC reference is used as a
repeating function reference, the
matching ENTRY cannot be so
used.

Explanation
A match for the GENERIC reference has been found,
but the match is not suitable because while the
GENERIC reference is used as a function whose return
value is a function that is invoked (and so on, as the
number of argument lists mandates), the matching

122 Enterprise PL/I for z/OS IBM Developer for z/OS PL/I for Windows: Enterprise PL/I for z/OS Messages and
Codes

ENTRY cannot be so used. For example, the first
GENERIC reference below is invalid, while the second
is ok.

 dcl x1 entry(fixed bin)
 returns(entry);
 dcl x2 entry(fixed bin, fixed bin)
 returns(entry returns(fixed
bin));
 dcl gx generic(x1 when(*),
 x2 when(*, *));

 rc = gx(0)();

 rc = gx(0, 0)();

IBM2130I S iSUB defining is not valid with the
POSITION attribute.

Explanation
The POSITION attribute can be used only with string
overlay defining.

 dcl b(4) char(2) pos(2) def(a(1sub,1sub));

IBM2131I S In iSUB defining, the base and
DEFINED variables must match.

Explanation
The defined and base arrays in iSUB defining must
have identical attributes apart from the dimension
attribute.

 dcl a(4) fixed bin(31);
 dcl b(4) fixed bin(15) def(a(1sub,1sub));

IBM2132I S The i in an iSUB reference must
not exceed the dimensionality of
the DEFINED variable.

Explanation
The i in an iSUB reference must refer to a subscript of
the DEFINED variable and hence must not be greater
than the number of dimensions for that variable.

 dcl a(4,4) fixed bin(31);
 dcl b(4) fixed bin(15) def(a(1sub,2sub));

IBM2133I S An iSUB variable cannot be
defined on a cross-section of its
base.

Explanation
In an iSUB variable, no asterisks may appear in the
specification of the base array.

 dcl a(4,4) fixed bin(31);
 dcl b(4) fixed bin(15) def(a(1sub,*));

IBM2134I S iSUB defining is supported only for
arrays of scalars.

Explanation
iSUB defining is not supported for structures and
unions.

IBM2135I S DFT(DESCLIST) conflicts with
CMPAT(cmpat-suboption).

Explanation
If CMPAT(V1) or CMPAT(V2) is specified, then
DFT(DESCLOCATOR) must be in effect (as it is by
default on z/OS).

IBM2136I S The number of indices specified
for the LABEL identifier does not
match the number previously
specified.

Explanation
The number of indices given for an element of a label
constant array must not vary.

 a(1,1):
 a(1,2):
 a(3):

IBM2137I S Indices have been specified for
the LABEL identifier when it was
previously specified without
indices.

Explanation
A label constant cannot be subscripted if its first use
contains no subscripts.

 a:
 a(3):

IBM2138I S Indices have not been specified
for the LABEL identifier when it

Chapter 4. Compiler Severe Messages (1500-2399) 123

was previously specified with
indices.

Explanation
A label constant must be subscripted if its first use
contains subscripts.

 a(3):
 a:

IBM2139I S The Language Enviroment run-
time is not current enough.

Explanation
The compiler requires that you use z/OS Language
Environment V2 R1 or later.

IBM2140I S Length of second argument to the
REPLACEBY2 built-in must be
twice that of the third.

Explanation
The second argument to the REPLACEBY2 built-in
function provides the set of pairs of characters which
are to replace the corresponding characters in the
third argument, and hence the length of the second
string must be twice that of the third.

IBM2141I S First argument to the BUILTIN
name built-in must be a structure.

Explanation
The first argument to the named built-in subroutine
must be a structure.

IBM2142I S Event structure argument to the
BUILTIN name built-in has too few
elements.

Explanation
The first argument to the named built-in subroutine
must be a structure supplying the event handlers for
the SAX parser, and that structure must have exactly
the right number of members. See the Programming
Guide for more details.

IBM2143I S Event structure argument to the
BUILTIN name built-in has too
many elements.

Explanation
The first argument to the named built-in subroutine
must be a structure supplying the event handlers for
the SAX parser, and that structure must have exactly
the right number of members. See the Programming
Guide for more details.

IBM2144I S Member member-number in the
event structure argument to the
BUILTIN name built-in is not a
scalar.

Explanation
The first argument to the named built-in subroutine
must be a structure supplying the event handlers for
the SAX parser, and each element of that structure
must be a scalar. See the Programming Guide for more
details.

IBM2145I S Member member-number in the
event structure argument to the
BUILTIN name built-in must be a
LIMITED ENTRY.

Explanation
The indicated element of the structure supplying the
event handlers for the SAX parser must be a LIMITED
ENTRY. See the Programming Guide for more details.

IBM2146I S Member member-number in the
event structure argument to the
BUILTIN name built-in must return
BYVALUE a NATIVE FIXED
BIN(31).

Explanation
The indicated element of the structure supplying the
event handlers for the SAX parser must be a function
returning BYVALUE a NATIVE FIXED BIN(31). See the
Programming Guide for more details.

IBM2147I S Member member-number in the
event structure argument to the
BUILTIN name built-in must have a
non-empty entry description list.

Explanation
The indicated element of the structure supplying the
event handlers for the SAX parser must have a non-
empty entry description list. See the Programming
Guide for more details.

IBM2148I S Member member-number in the
event structure argument to the
BUILTIN name built-in has a

124 Enterprise PL/I for z/OS IBM Developer for z/OS PL/I for Windows: Enterprise PL/I for z/OS Messages and
Codes

parameter count of specified-
parm-count when the correct
parameter count is required-parm-
count .

Explanation
The indicated element of the structure supplying the
event handlers for the SAX parser must have the
correct number of parameters. See the Programming
Guide for more details.

IBM2149I S Member member-number in the
event structure argument to the
BUILTIN name built-in must have a
BYVALUE POINTER as its first
parameter.

Explanation
The indicated element of the structure supplying the
event handlers for the SAX parser must have a
BYVALUE POINTER as its first parameter. See the
Programming Guide for more details.

IBM2150I S Member member-number in the
event structure argument to the
BUILTIN name built-in must have a
BYVALUE POINTER as its second
parameter.

Explanation
The indicated element of the structure supplying the
event handlers for the SAX parser must have a
BYVALUE POINTER as its second parameter. See the
Programming Guide for more details.

IBM2151I S Member member-number in the
event structure argument to the
BUILTIN name built-in must have a
BYVALUE NATIVE FIXED BIN(31)
as its third parameter.

Explanation
The indicated element of the structure supplying the
event handlers for the SAX parser must have a
BYVALUE NATIVE FIXED BIN(31) as its third
parameter. See the Programming Guide for more
details.

IBM2152I S Member member-number in the
event structure argument to the
BUILTIN name built-in must have a
BYVALUE POINTER as its fourth
parameter.

Explanation
The indicated element of the structure supplying the
event handlers for the SAX parser must have a
BYVALUE POINTER as its fourth parameter. See the
Programming Guide for more details.

IBM2153I S Member member-number in the
event structure argument to the
BUILTIN name built-in must have a
BYVALUE NATIVE FIXED BIN(31)
as its fifth parameter.

Explanation
The indicated element of the structure supplying the
event handlers for the SAX parser must have a
BYVALUE NATIVE FIXED BIN(31) as its fifth parameter.
See the Programming Guide for more details.

IBM2154I S Member member-number in the
event structure argument to the
BUILTIN name built-in must have a
BYVALUE POINTER as its second
parameter.

Explanation
The indicated element of the structure supplying the
event handlers for the SAX parser must have a
BYVALUE POINTER as its second parameter. See the
Programming Guide for more details.

IBM2155I S Member member-number in the
event structure argument to the
BUILTIN name built-in must have a
BYVALUE NATIVE FIXED BIN(31)
as its fourth parameter.

Explanation
The indicated element of the structure supplying the
event handlers for the SAX parser must have a
BYVALUE NATIVE FIXED BIN(31) as its fourth
parameter. See the Programming Guide for more
details.

IBM2156I S Member member-number in the
event structure argument to the
BUILTIN name built-in must have a
BYVALUE NATIVE FIXED BIN(31)
as its second parameter.

Explanation
The indicated element of the structure supplying the
event handlers for the SAX parser must have a
BYVALUE NATIVE FIXED BIN(31) as its second
parameter. See the Programming Guide for more
details.

Chapter 4. Compiler Severe Messages (1500-2399) 125

IBM2157I S Member member-number in the
event structure argument to the
BUILTIN name built-in must have a
BYVALUE CHAR(1) or BYVALUE
WCHAR(1) as its second
parameter.

Explanation
The indicated element of the structure supplying the
event handlers for the SAX parser must have a
BYVALUE CHAR (or BYVALUE WIDECHAR) of length
one as its second parameter. See the Programming
Guide for more details.

IBM2158I S Member member-number in the
event structure argument to the
BUILTIN name built-in has the
wrong linkage.

Explanation
The indicated element of the structure supplying the
event handlers for the SAX parser must have the PL/I
default linkage. See the Programming Guide for more
details.

IBM2159I S Member member-number in the
event structure argument to the
BUILTIN name built-in must have
the NODESCRIPTOR option.

Explanation
The indicated element of the structure supplying the
event handlers for the SAX parser must have the
NODESCRIPTOR option. See the Programming Guide
for more details.

IBM2160I S All members of the input structure
to the BUILTIN name built-in must
have computational type.

Explanation
The XMLCHAR built-in function cannot be applied to
structures containing noncomputational types.

IBM2161I S The input structure to the BUILTIN
name built-in must not be a UNION
or contain any UNIONs.

Explanation
The XMLCHAR built-in function cannot be applied to
unions or to structures containing unions.

IBM2162I S The input structure to the BUILTIN
name built-in must not contain any
GRAPHIC elements.

Explanation
The XMLCHAR built-in function cannot be applied to
structures containing any GRAPHIC data.

IBM2163I S The input structure to the BUILTIN
name built-in must not contain any
UTF-16 elements.

Explanation
The XMLCHAR built-in function cannot be applied to
structures containing any WIDECHAR or WIDEPIC
data.

IBM2164I S The input structure to the BUILTIN
name built-in must not contain any
unnamed substructures.

Explanation
The XMLCHAR built-in function cannot be applied to
structures containing substructures using an asterisk
as a name.

IBM2165I S PRV support is provided only if the
LIMITS(EXTNAME(7)) option is in
effect.

Explanation
Support for long external names is incompatible with
support for using the PRV to address CONTROLLED
variables.

IBM2166I S PRV support is provided only if the
NORENT option is in effect.

Explanation
Support for the RENT option is incompatible with
support for using the PRV to address CONTROLLED
variables.

IBM2167I S PRV support is provided only if the
CMPAT(V2) or CMPAT(V3) option is
in effect.

Explanation
Support for the CMPAT(LE) option is incompatible with
support for using the PRV to address CONTROLLED
variables.

IBM2170I S Too many INTERNAL CONTROLLED
variables.

126 Enterprise PL/I for z/OS IBM Developer for z/OS PL/I for Windows: Enterprise PL/I for z/OS Messages and
Codes

Explanation
When using the PRV to address CONTROLLED
variables, there may be no more than 568 INTERNAL
CONTROLLED variables.

IBM2171I S Under the NOWRITABLE option, no
FETCHABLE ENTRY may be
declared at the PACKAGE level.

Explanation
Under the NOWRITABLE option, every FETCHABLE
ENTRY constant must be declared inside a
PROCEDURE.

IBM2172I S Under the NOWRITABLE option, no
FILE CONSTANT may be declared
at the PACKAGE level.

Explanation
Under the NOWRITABLE option, every FILE CONSTANT
must be declared inside a PROCEDURE.

IBM2173I S Under the NOWRITABLE option, no
CONTROLLED may be declared at
the PACKAGE level.

Explanation
Under the NOWRITABLE option, every CONTROLLED
variable must be declared inside a PROCEDURE.

IBM2174I S Result of REPLACEBY2 is too long.

Explanation
The length of the string literal produced by applying
the REPLACEBY2 built-in function to 3 literals must
not be greater than the maximum allowed for a
character literal.

IBM2175I S The second and third arguments to
REPLACEBY2 must be restricted
expressions.

Explanation
The REPLACEBY2 built-in function currently supports
only second and third arguments that have a length
and value known at compile time.

IBM2176I S The result of the BUILTIN name
built-in would require more than
32767 bytes.

Explanation
The HEX and HEXIMAGE built-in functions cannot be
applied to strings using more than 16383 bytes of
storage.

IBM2177I S The file filename is a PDS member
and hence cannot be used for
SYSADATA.

Explanation
The named file is the file intended to be used as the
SYSADATA file, but such a file must not be a member
of a PDS.

IBM2178I S INCLUDE statements are not
supported when the LINEDIR
option is in effect.

Explanation
When the LINEDIR option is in effect, your source
must contain no INCLUDE statements.

IBM2179I S There is too little room between
the margins for the LINE directive.
The PPTRACE option will be
turned off.

Explanation
The %LINE directive generated by the PPTRACE must
fit on one line. You must either make the margins wide
enough to allow this or make the source file names
short enough.

IBM2180I S Use of the KEYED DIRECT file
filename in a keyword statement
without a KEY/KEYFROM clause is
invalid.

Explanation
Any input/output operation using a KEYED DIRECT file
must include the key of the record to which the the
operation is to be applied.

IBM2181I S First argument to BUILTIN name
built-in must have type
CHARACTER.

Explanation
This applies to the PICSPEC built-in function, for
example.

IBM2182I S Argument number argument
number to BUILTIN name built-in
must be a constant.

Chapter 4. Compiler Severe Messages (1500-2399) 127

Explanation
The specified argument to the named built-in function
must be a restricted expression. This applies to second
argument to the PICSPEC built-in function, for
example.

IBM2183I S The first argument to BUILTIN
name built-in must have constant
length equal to that of the second
argument.

Explanation
This applies to the PICSPEC built-in function, for
example.

IBM2184I S Compiler input files must have
less then 1000000 lines.

Explanation
Break up the source files into smaller files.

IBM2185I S Argument to BUILTIN name built-in
must have type REAL DECIMAL
FLOAT, and the DFP option must
be in effect.

Explanation
This applies to the ISFINITE and similar built-in
functions.

IBM2186I S BUILTIN name is not supported for
DFP.

Explanation
The named built-in function is not supported for float
using DFP. This message applies, for instance, to the
SQRTF built-in functions

IBM2187I S The exponent in the literal value is
too large for DECIMAL FLOAT with
precision precision.

Explanation
A DFP literal value when adjusted to have no decimal
point (e.g. 3.14E0 would be adjusted to 314E-2) must
have an exponent no larger than the maximum for its
precision. For precision <= 7, the maximum is 90. For 7
< precision <= 16, the maximum is 369. For 16 <
precision, the maximum is 6111.

IBM2188I S The exponent in the literal value is
too small for DECIMAL FLOAT with
precision precision.

Explanation
A DFP literal value when adjusted to have no decimal
point (e.g. 3.14E0 would be adjusted to 314E-2) must
have an exponent no smaller than the minimum for its
precision. For precision <= 7, the minimum is -95. For
7 < precision <= 16, the minimum is -383. For 16 <
precision, the minimum is -6143.

IBM2189I S Under CMPAT(V2) and CMPAT(LE),
bounds must not be greater than
+2147483647.

Explanation
Under CMPAT(V2) and CMPAT(LE), bounds must be
between -2147483648 and +2147483647.

IBM2190I S Under CMPAT(V2) and CMPAT(LE),
bounds must not be less than
-2147483648.

Explanation
Under CMPAT(V2) and CMPAT(LE), bounds must be
between -2147483648 and +2147483647.

IBM2191I S No valid character specified in the
option option.

Explanation
You must specify at least one valid character in each of
the OR, NOT and QUOTE or NAMES compiler options.

IBM2192I S Member member-number in the
event structure argument to the
BUILTIN name built-in must have a
BYVALUE POINTER as parameter
number parameter-number .

Explanation
The indicated element of the structure supplying the
event handlers for the SAX parser must have a
BYVALUE POINTER in the specified parameter
position. See the Programming Guide for more details.

IBM2193I S Member member-number in the
event structure argument to the
BUILTIN name built-in must have a
BYVALUE NATIVE FIXED BIN(31)
as parameter number parameter-
number .

Explanation
The indicated element of the structure supplying the
event handlers for the SAX parser must have a
BYVALUE NATIVE FIXED BIN(31) in the specified

128 Enterprise PL/I for z/OS IBM Developer for z/OS PL/I for Windows: Enterprise PL/I for z/OS Messages and
Codes

parameter position. See the Programming Guide for
more details.

IBM2194I S Member member-number in the
event structure argument to the
BUILTIN name built-in must have a
BYADDR POINTER as parameter
number parameter-number .

Explanation
The indicated element of the structure supplying the
event handlers for the SAX parser must have a
BYADDR POINTER in the specified parameter position.
See the Programming Guide for more details.

IBM2195I S Member member-number in the
event structure argument to the
BUILTIN name built-in must have a
BYADDR NATIVE FIXED BIN(31) as
parameter number parameter-
number.

Explanation
The indicated element of the structure supplying the
event handlers for the SAX parser must have a
BYADDR NATIVE FIXED BIN(31) in the specified
parameter position. See the Programming Guide for
more details.

IBM2196I S Member member-number in the
event structure argument to the
BUILTIN name built-in must have a
BYVALUE ALIGNED BIT(8) as
parameter number parameter-
number .

Explanation
The indicated element of the structure supplying the
event handlers for the SAX parser must have a
BYVALUE ALIGNED BIT(8) in the specified parameter
position. See the Programming Guide for more details.

IBM2197I S Argument to BUILTIN name built-in
must have type CHAR or
WIDECHAR.

Explanation
This applies to the ULENGTH built-in function, for
example.

IBM2198I S First argument to BUILTIN name
built-in must have type CHAR or
WIDECHAR.

Explanation
This applies to the UPOS and UWIDTH built-in
functions, for example.

IBM2199I S The run-time option XPLINK(ON)
must be in effect if object code is
to be generated.

Explanation
The compiler backend requires the XPLINK(ON) option
to be in effect.

IBM2200I S DFP conversion from source type to
target type failed with an operation
exception. The most likely cause
for this is lack of DFP hardware.

Explanation
The indicated conversion had a DFP source, target, or
both but failed at compile time with an operation
exception. These conversions require that the machine
on which the compilation occurs have DFP hardware
installed.

IBM2201I S First argument to BUILTIN name
built-in must have type REAL
DECIMAL FIXED, or REAL
DECIMAL FLOAT, and in the latter
case, the DFP option must be in
effect.

Explanation
This applies to the ROUNDDEC and similar built-in
functions.

IBM2202I S Use of the BUILTIN name built-in
requires ARCH(level) or greater.

Explanation
This applies to various built-in functions on some
platforms. For example, on z/OS, MEMCU4* and
MEMCU*4 require at least ARCH(7).

IBM2203I S The VALUE attribute may be used
on a structure member only if it is
used on all base members of that
structure.

Explanation
If any leaf structure member has the VALUE attribute,
then all must have the VALUE attribute.

IBM2204I S The VALUE attribute may be used
on a structure member only if no

Chapter 4. Compiler Severe Messages (1500-2399) 129

storage attribute is specified for
the structure.

Explanation
It is invalid to specify the VALUE attribute for a
member of a structure if the structure has a storage
attribute such as BASED, CONTROLLED, etc.

IBM2205I S The VALUE attribute may be used
on a structure member only if no
dimension attributes are specified
for its parents.

Explanation
It is invalid to specify the VALUE attribute for a
member of a structure that has inherited dimensions.

IBM2206I S The VALUE attribute conflicts with
the DIMENSION attribute.

Explanation
It is invalid to specify the VALUE attribute for an array.

IBM2207I S The VALUE attribute may be used
on a structure member only if no
parent has the UNION attribute.

Explanation
It is invalid to specify the VALUE attribute for a
member of a union.

IBM2208I S References to a structure
containing elements with the
VALUE attribute are invalid.

Explanation
Only the leaf elements of such a structure may be
referenced.

IBM2209I S Use of nonconstant extents in
BASED variables without REFER is
invalid except on scalars.

Explanation
Extents in BASED variables must all be constant
except where the REFER option is used - unless the
variable is a scalar. So, the first declare below is valid,
while the second is invalid.

 dcl x based char(n);
 dcl y(n,m) based fixed bin(31);

IBM2210I S The VALUE type function cannot be
applied to type name since that
structure has no members with an
INITIAL attribute.

Explanation
The VALUE type function can be applied only to those
structure types that have at least one member with an
INITIAL attribute.

IBM2211I S Shift-out code has no closing shift-
in code before the right margin.

Explanation
Every DBCS shift-out code between the margins must
have a matching DBCS shift-in code also between the
margins.

IBM2212I S Argument to the BUILTIN name
built-in must be a structure.

Explanation
The argument to the named built-in subroutine must
be a structure.

IBM2213I S Block contains too many label
arrays.

Explanation
Procedures and begin blocks must contain fewer than
2048 label arrays.

IBM2214I S Attribute is invalid on structure
parents.

Explanation
The XMLATTR and XMLOMIT attributes may be used
only on base structure elements.

IBM2215I S Attribute is invalid on unnamed
structure elements.

Explanation
The XMLATTR and XMLOMIT attributes may be used
only on named structure elements.

IBM2216I S Attribute is invalid on arrays.

Explanation
The XMLATTR and XMLOMIT attributes may be used
only on scalar structure elements.

IBM2217I S XMLATTR is invalid if the previous
element at that logical level does

130 Enterprise PL/I for z/OS IBM Developer for z/OS PL/I for Windows: Enterprise PL/I for z/OS Messages and
Codes

not also have the XMLATTR
attribute.

Explanation
The XMLATTR attribute may be used on a structure
element only if all its previous sister elements at the
same logical level also had the XMLATTR attribute.

IBM2218I S Attribute is invalid on non-native
FLOAT elements.

Explanation
The XMLOMIT attribute may not be used on FLOAT
elements using a data representation not supported by
the hardware.

IBM2219I S Parameters declared as INONLY
must not contain any elements
declared with the ASSIGNABLE
attribute.

Explanation
If a parameter is declared as INONLY, then the
ASSIGNABLE attribute is invalid on it and all of the
elements it contains.

IBM2220I S Parameters declared as OUTONLY
must contain at least one element
declared with the ASSIGNABLE
attribute.

Explanation
If a parameter is declared as OUTONLY, then the
NONASSIGNABLE attribute must not be specified on
all of its elements.

IBM2221I S A non-constant array extent in a
BASED variable is invalid if the
array has more than one
dimension.

Explanation
The use of a non-constant extent in BASED variable
without using REFER is limited. In an array, its use
requires that the array has only one dimension.

IBM2222I S A non-constant array extent in a
BASED variable is invalid if the
array has a non-constant lower
bound.

Explanation
The use of non-constant extents in BASED variables
without using REFER is limited. In an array, its use
requires that the array has a constant lower bound.

IBM2223I S A non-constant array extent in a
BASED structure is invalid if any
other fields in the structure have
non-constant extents.

Explanation
The use of non-constant extents in BASED variables
without using REFER is limited. In an array that is part
of a structure, its use requires that no other field in the
structure have non-constant extents.

IBM2224I S A non-constant AREA, BIT,
GRAPHIC, or WIDECHAR extent in
a BASED variable is invalid if the
variable is an array element or
part of a structure.

Explanation
The use of non-constant extents in BASED variables
without using REFER is limited. In an AREA, BIT,
GRAPHIC or WIDECHAR extent, its use requires that
the AREA or string is a scalar.

IBM2225I S A non-constant CHARACTER
extent in a BASED variable is
invalid if the string is ALIGNED
and either VARYING or VARYING4.

Explanation
The use of non-constant extents in BASED variables
without using REFER is limited. In a CHARACTER
extent, its use requires that the string be either
UNALIGNED, NONVARYING or VARYINGZ.

IBM2226I S A non-constant array extent in a
BASED variable is invalid if there
are any sibling fields after the
array or any of the array's parents.

Explanation
The use of non-constant extents in BASED variables
without using REFER is limited. In an array, its use
requires that the array and the array's parents have no
sibling fields.

IBM2227I S A non-constant CHARACTER
extent in a BASED structure is
invalid if the string is a member of
an array of structures.

Chapter 4. Compiler Severe Messages (1500-2399) 131

Explanation
The use of non-constant extents in BASED variables
without using REFER is limited. In a CHARACTER
extent, its use requires that the string not be part of an
array.

IBM2228I S A non-constant CHARACTER
extent in a BASED structure is
invalid unless the string is the last
field in the structure and not part
of a union.

Explanation
The use of non-constant extents in BASED variables
without using REFER is limited. In a CHARACTER
extent, its use requires that the string be the last
element in the structure and not part of a union.

IBM2230I S The argument to the BUILTIN name
built-in must have the attributes
REAL FIXED BIN and scale factor
zero.

Explanation
This applies, for example, to the POPCNT built-in
function.

IBM2231I S The BUILTIN name built-in is
supported only with the native
character set.

Explanation
The XMLCHAR built-in function cannot be used with
DFT(EBCDIC) on Windows or AIX nor with DFT(ASCII)
on the host.

IBM2232I S There must be only one target in a
BY DIMACROSS assignment.

Explanation
Multiple targets are not permitted in BY DIMACROSS
assignments. For example, the following is invalid.

 dcl 1 a, 2 a1 fixed bin, 2 a2 fixed bin;
 dcl 1 b like a;
 dcl 1 c(100) dimacross like a;

 a,b = c, by dimacross(jx);

IBM2233I S The target in a BY DIMACROSS
assignment must be a structure
reference.

Explanation
The target in a BY DIMACROSS assignment must not
be an array of structures or a scalar. For example, the
following is invalid.

 dcl 1 a(100), 2 a1 fixed bin, 2 a2 fixed
bin;
 dcl 1 b(100) dimacross, 2 b1 fixed bin, 2
b2 fixed bin;

 a = b, by dimacross(1);

IBM2234I S No arrays are permitted in the
source in a BY DIMACROSS
assignment.

Explanation
The source in a BY DIMACROSS assignment must not
include any array references.

IBM2235I S In a BY DIMACROSS assignment,
the immediate children of any
structure not declared with
DIMACROSS must not be arrays.

Explanation
The immediate children of a structure used in a BY
DIMACROSS assignment must be scalars or
substructures, but not arrays unless the structure was
declared with the DIMACROSS attribute. For example,
the following is invalid.

 dcl 1 a, 2 a1(100) fixed bin, 2 a2(100)
fixed bin;
 dcl 1 b(100) dimacross, 2 b1 fixed bin, 2
b2 fixed bin;

 a = b, by dimacross(1);

IBM2236I S BUILTIN name argument must
have the DIMACROSS attribute.

Explanation
The named built-in function is valid only when applied
to a reference to a variable declared with the
DIMACROSS attribute.

IBM2237I S The third argument to the
ALLCOMPARE built-in must be a
CHAR(2) constant.

132 Enterprise PL/I for z/OS IBM Developer for z/OS PL/I for Windows: Enterprise PL/I for z/OS Messages and
Codes

Explanation
The third argument to the ALLCOMPARE built-in
function must be a restricted expression with the
attributes CHAR(2) NONVARYING.

IBM2238I S The third argument to the
ALLCOMPARE built-in must specify
the name of a comparison
operator.

Explanation
When uppercased, the third argument to the
ALLCOMPARE built-in function must be one of 'EQ', 'LT',
'LE', 'GE', 'GT', or 'NE'.

IBM2239I S Invalid use of unspecified STRUCT
type type name.

Explanation
If a DEFINE STRUCT statement specifies no member
names, then any attempt to dereference the type is
invalid.

IBM2240I S Arithmetic operations are not
allowed on handles for unspecified
structure definitions.

Explanation
The size of an unspecified structure is unknown, and
hence all arithmetic operations on handles for it are ill-
defined.

IBM2241I S The argument to the type function
type function must be a specified
structure type name.

Explanation
The argument to the named type function must be the
name of a structure type that was fully specified.

IBM2242I S Subtraction of HANDLE from
HANDLE is invalid unless both
point to the same type.

Explanation
If h1 is a handle for structure type t1 and h2 is a
handle for structure type t2, the h1-h2 is invalid unless
t1 and t2 are the same.

IBM2243I S The attributes derived from the
PROCEDURE statement for the
ENTRY constant variable name do
not match those in its explicit
declaration. RETURNS attributes
do not match.

Explanation
A label on a PROCEDURE statement constitutes a
declaration for an ENTRY constant with that name.
That name also appears in a DECLARE statement, but
the attributes in those two declarations do not match.

IBM2244I S The attributes derived from the
PROCEDURE statement for the
ENTRY constant variable name do
not match those in its explicit
declaration. BYVALUE/BYADDR
attributes in RETURNS do not
match.

Explanation
A label on a PROCEDURE statement constitutes a
declaration for an ENTRY constant with that name.
That name also appears in a DECLARE statement, but
the attributes in those two declarations do not match.

IBM2245I S The attributes derived from the
PROCEDURE statement for the
ENTRY constant variable name do
not match those in its explicit
declaration. LINKAGE values do
not match.

Explanation
A label on a PROCEDURE statement constitutes a
declaration for an ENTRY constant with that name.
That name also appears in a DECLARE statement, but
the attributes in those two declarations do not match.

IBM2246I S The attributes derived from the
PROCEDURE statement for the
ENTRY constant variable name do
not match those in its explicit
declaration. OPTIONS values do
not match.

Explanation
A label on a PROCEDURE statement constitutes a
declaration for an ENTRY constant with that name.
That name also appears in a DECLARE statement, but
the attributes in those two declarations do not match.

IBM2247I S The attributes derived from the
PROCEDURE statement for the
ENTRY constant variable name do
not match those in its explicit
declaration. Parameter counts do
not match.

Chapter 4. Compiler Severe Messages (1500-2399) 133

Explanation
A label on a PROCEDURE statement constitutes a
declaration for an ENTRY constant with that name.
That name also appears in a DECLARE statement, but
the attributes in those two declarations do not match.

IBM2248I S The attributes derived from the
PROCEDURE statement for the
ENTRY constant variable name do
not match those in its explicit
declaration. BYVALUE/BYADDR
attributes in parameter parameter-
number do not match.

Explanation
A label on a PROCEDURE statement constitutes a
declaration for an ENTRY constant with that name.
That name also appears in a DECLARE statement, but
the attributes in those two declarations do not match.

IBM2249I S The attributes derived from the
PROCEDURE statement for the
ENTRY constant variable name do
not match those in its explicit
declaration. Number of
dimensions for parameter
parameter-number do not match.

Explanation
A label on a PROCEDURE statement constitutes a
declaration for an ENTRY constant with that name.
That name also appears in a DECLARE statement, but
the attributes in those two declarations do not match.

IBM2250I S The attributes derived from the
PROCEDURE statement for the
ENTRY constant variable name do
not match those in its explicit
declaration. Lower bounds for
parameter parameter-number do
not match.

Explanation
A label on a PROCEDURE statement constitutes a
declaration for an ENTRY constant with that name.
That name also appears in a DECLARE statement, but
the attributes in those two declarations do not match.

IBM2251I S The attributes derived from the
PROCEDURE statement for the
ENTRY constant variable name do
not match those in its explicit
declaration. Upper bounds for
parameter parameter-number do
not match.

Explanation
A label on a PROCEDURE statement constitutes a
declaration for an ENTRY constant with that name.
That name also appears in a DECLARE statement, but
the attributes in those two declarations do not match.

IBM2252I S The attributes derived from the
PROCEDURE statement for the
ENTRY constant variable name do
not match those in its explicit
declaration. Alignment of
parameter parameter-number does
not match.

Explanation
A label on a PROCEDURE statement constitutes a
declaration for an ENTRY constant with that name.
That name also appears in a DECLARE statement, but
the attributes in those two declarations do not match.

IBM2253I S The attributes derived from the
PROCEDURE statement for the
ENTRY constant variable name do
not match those in its explicit
declaration. Number and
attributes of structure members in
parameter parameter-number do
not match.

Explanation
A label on a PROCEDURE statement constitutes a
declaration for an ENTRY constant with that name.
That name also appears in a DECLARE statement, but
the attributes in those two declarations do not match.

IBM2254I S The attributes derived from the
PROCEDURE statement for the
ENTRY constant variable name do
not match those in its explicit
declaration. Attributes of
parameter parameter-number do
not match.

Explanation
A label on a PROCEDURE statement constitutes a
declaration for an ENTRY constant with that name.
That name also appears in a DECLARE statement, but
the attributes in those two declarations do not match.

IBM2255I S The argument to the BUILTIN name
built-in must be numeric, bit, or
character.

134 Enterprise PL/I for z/OS IBM Developer for z/OS PL/I for Windows: Enterprise PL/I for z/OS Messages and
Codes

Explanation
This message applies to the UTF8 built-in function.
GRAPHIC and non-computational arguments are not
allowed.

IBM2256I S The result of the BUILTIN name
built-in function would have a
length greater than the the
maximum allowed for a
CHARACTER string.

Explanation
Conversion of CHAR or WCHAR to UTF-8 can produce a
result string that is longer than the source string
because some CHAR(1) and WCHAR(1) values can
produce CHAR(2) or CHAR(3) strings when converted
to UTF-8. If there are too many of these values in the
source string then the target string would have a
length greater than the the maximum allowed for a
CHARACTER string.

IBM2257I S The argument to the BUILTIN name
built-in function must hold valid
UTF-16.

Explanation
This message applies to the UTF8 built-in function.

IBM2258I S The argument to the BUILTIN name
built-in must have type
CHARACTER.

Explanation
This message applies to the UTF8TOCHAR and
UTF8TOWCHAR built-in functions.

IBM2259I S The argument to the BUILTIN name
built-in must contain valid UTF-8.

Explanation
This message applies to the UTF8TOCHAR and
UTF8TOWCHAR built-in functions.

IBM2260I S INITIAL expressions in DEFINE
STRUCT must not depend on any
address values.

Explanation
These expressions must be simple restricted
expressions. For example, ENTRY, FILE and LABEL
constants must not be used in these INITIAL
expressions

IBM2261I S Overpunch and currency
characters are not allowed in
WIDEPIC specifications.

Explanation
These characters are allowed in PICTURE
specifications, but not in WIDEPIC.

IBM2262I S A and X characters are not allowed
in WIDEPIC specifications.

Explanation
These characters are allowed in PICTURE
specifications, but not in WIDEPIC.

IBM2263I S REFER objects must not be
COMPLEX WIDEPIC.

Explanation
REFER objects should have the REAL attribute.

IBM2264I S The attribute attribute is invalid in
a LOCATES descriptor.

Explanation
The LOCATES descriptor may not specify a structure,
union or array. The following code example is invalid:

 dcl b offset(a) locates(1 union, 2 ptr, 2
ptr);

IBM2265I S Extents in LOCATES descriptors
must be constants.

Explanation
In LOCATES descriptors, any string length and AREA
size must be specified with a restricted expression that
has computational type.

IBM2266I S The argument to BUILTIN name
built-in must have the LOCATES
attribute.

Explanation
This rule applies to the LOCVAL and similar built-in
functions.

IBM2267I S The first argument to BUILTIN
name built-in must have the
LOCATES attribute.

Chapter 4. Compiler Severe Messages (1500-2399) 135

Explanation
This rule applies to the LOCNEWSPACE and similar
built-in functions.

IBM2268I S Argument to the LOCVAL
pseudovariable must have the
LOCATES attribute.

Explanation
The LOCVAL pseudovariable can be applied only to
variables with the LOCATES attribute.

IBM2269I S LOCATES attribute is valid only
with OFFSET.

Explanation
The LOCATES attribute cannot be used on any other
types.

IBM2270I S Only one description is allowed in
a LOCATES descriptor.

Explanation
A located type can specify only one value. The
following declaration is not correct:

 dcl b offset(a) locates(ptr, ptr);

IBM2271I S The first argument to BUILTIN
name built-in must be a scalar
reference.

Explanation
This rule applies to the LOCNEWSPACE and similar
built-in functions.

IBM2272I S The second argument to BUILTIN
name built-in must be a scalar
reference.

Explanation
This rule applies to the LOCNEWVALUE and similar
built-in functions.

IBM2273I S The OFFSET argument to BUILTIN
name built-in must have an AREA
qualification.

Explanation
This rule applies to the LOCVAL and similar built-in
functions.

IBM2274I S The second argument to BUILTIN
name built-in must have the
LOCATES attribute.

Explanation
This rule applies to the LOCNEWVALUE and similar
built-in functions.

IBM2275I S Third argument to BUILTIN name
built-in must have type AREA.

Explanation
This rule applies to the LOCNEWVALUE built-in
functions.

IBM2276I S The argument to BUILTIN name
built-in must have the LOCATES
attribute or contain subelements
with the LOCATES attribute.

Explanation
This rule applies to the LOCSTG and similar built-in
functions.

IBM2277I S %INCLUDE statements are not
allowed under NOINCLUDE.

Explanation
Under the NOINCLUDE compiler option, %INCLUDE
statements are valid only if the MACRO preprocessor is
used.

IBM2278I S Source is not valid UTF-8.

Explanation
The source file contains lines that would be rejected
by the UVALID built-in function.

IBM2279I S option option contains invalid
UTF-8.

Explanation
The specified option contains values that would be
rejected by the UVALID built-in function.

IBM2280I S The corresponding characters in
the two NAMES strings must have
the same length.

Explanation
In the NAMES('abc', 'xyz') option, each of the UTF-8
characters in the first string must have a

136 Enterprise PL/I for z/OS IBM Developer for z/OS PL/I for Windows: Enterprise PL/I for z/OS Messages and
Codes

corresponding character of the same UTF-8 length in
the second string.

IBM2281I S The first argument to BUILTIN
name built-in must have
computational type or ordinal
type.

Explanation
An expression contains the named built-in function
with the specified argument having a
noncomputational type that is either not an ordinal
type. This message applies to the INLIST and
BETWEEN built-in functions.

IBM2282I S REINIT reference must be a level 1
item.

Explanation
In the statement REINIT x, x must not be a structure
or union member.

IBM2283I S REINIT references must be
BASED, AUTO, CTL or STATIC.

Explanation
In the statement REINIT x, x must not be DEFINED,
constant, or a parameter.

IBM2284I S The first and second arguments to
the BUILTIN name built-in must
have matching types.

Explanation
This message applies to the LOCNEWVALUE built-in
functions. In LOCNEWVALUE(x, y), if y has the
attribute LOCATES(t) where t is an ORDINAL or
STRUCT type, then x must have the same type.

IBM2285I S The argument to the BUILTIN name
built-in must have the attributes
UNSIGNED REAL FIXED BIN(64,0).

Explanation
This applies, for example, to the PLISTCK and
PLISTCKF built-in subroutines.

IBM2286I S The argument to the BUILTIN name
built-in must have the attributes
CHAR NONVARYING and length
length.

Explanation
This applies, for example, to the PLISTCKE built-in
subroutine where the argument must have length 16.

IBM2287I S Argument number argument
number to the BUILTIN name built-
in must contain only standard
computational types.

Explanation
The JsonGetValue and similar built-in functions cannot
be applied to aggregates or scalars containing
noncomputational types or containing any COMPLEX
numeric or any FIXED numeric with a scale factor that
is either negative or larger than its preicison.

IBM2288I S Argument number argument
number to the BUILTIN name built-
in must not be a UNION or contain
any UNIONs.

Explanation
The JsonGetValue and similar built-in functions cannot
be applied to unions or to structures containing
unions.

IBM2289I S Argument number argument
number to the BUILTIN name built-
in must not contain any GRAPHIC
elements.

Explanation
The JsonGetValue and similar built-in functions cannot
be applied to aggregates or scalars containing
GRAPHIC data.

IBM2290I S Member member-number in the
event structure argument to the
BUILTIN name built-in must have a
BYADDR NATIVE FIXED BIN(63) as
parameter number parameter-
number.

Explanation
The indicated element of the structure supplying the
event handlers for the SAX parser must have a
BYADDR NATIVE FIXED BIN(63) in the specified
parameter position. See the Programming Guide for
more details.

IBM2291I S POINTER precision is invalid.

Chapter 4. Compiler Severe Messages (1500-2399) 137

Explanation
In 64-bit mode, the only valid values for the POINTER
precision are 32 and 64. Otherwise the only valid value
is 32.

IBM2292I S Target in statement statement
must not be the name of a PROC or
ENTRY statement.

Explanation
The target in a FETCH or RELEASE statement must be
outside the current compilation unit.

IBM2293I S The BUILTIN name built-in is not
supported under CMPAT(V1).

Explanation
CMPAT(V2), CMPAT(V3) or CMPAT(LE) must be used
when compiling any code using this built-in function.

IBM2294I S A value greater than 64K for the
STRING subooption of the LIMITS
option is valid only under
CMPAT(V3) and CMPAT(LE).

Explanation
Strings longer than 65535 are not supported under
CMPAT(V1) or CMPAT(V2).

IBM2295I S A value greater than 32K for the
STRING subooption of the LIMITS
option is valid only under
BIFPREC(31).

Explanation
Strings longer than 32767 are not supported under
BIFPREC(15).

IBM2296I S Argument number argument
number to BUILTIN name built-in
must have the same ordinal type
as the first argument.

Explanation
An expression contains the named built-in function
with the specified argument having either a non-
ordinal type or an ordinal type that is not the same
ordinal type as the first argument. This message
applies to the INLIST and BETWEEN built-in functions.

IBM2297I S The BUILTIN name built-in
function is supported only under
LP(64).

Explanation
Built-in functions such as ALLOC31 are supported only
under z/OS and only under the LP(64) option.

IBM2298I S The BUILTIN name built-in
function is supported only when
the compiler option
CHECK(STORAGE) is used.

Explanation
Built-in functions such as ALLOCSIZE are supported
only under the CHECK(STORAGE) compiler option.

IBM2299I S No value can fall in the interval
defined by the second and third
arguments to the BUILTIN name
built-in function.

Explanation
The values a and b in BETWEEN(x,a,b) must satisfy a
<= b. The values a and b in
BETWEENEXCLUSIVE(x,a,b) must satisfy a < b, and the
same is true for BETWEENLEFTEXCLUSIVE and
BETWEENRIGHTEXCLUSIVE.

IBM2300I S The compiler was disabled in the
IFAPRDxx parmlib member. The
compilation will terminate without
further processing.

Explanation
The SMF registration of the compiler failed because it
has been disabled in the IFAPRDxx parmlib member.

IBM2301I S The IFAEDREG registration of the
compiler failed with return code
return code . The compilation will
terminate without further
processing.

Explanation
The SMF registration of the compiler failed with the
indicated return code.

IBM2302I S The option option is not supported
under LP(64).

Explanation
The specified option is not supported under LP(64).
This is true, for example, of the SYSTEM(IMS) option.

IBM2303I S codepage is not a supported
codepage.

138 Enterprise PL/I for z/OS IBM Developer for z/OS PL/I for Windows: Enterprise PL/I for z/OS Messages and
Codes

Explanation
The specified value is not a supported codepage. See
the Programming Guide for a list of the supported
codepages.

IBM2304I S The attribute attribute is not
supported under CMPAT(V1).

Explanation
CMPAT(V2), CMPAT(V3) or CMPAT(LE) must be used
when compiling any code using this attribute.

IBM2305I S The ASSERT COMPARE operator
must be a CHAR(2) constant.

Explanation
If an operator is specified in an ASSERT COMPARE
statement, it must be a restricted expression with the
attributes CHAR(2) NONVARYING.

IBM2306I S The ASSERT COMPARE operator
must specify the name of a
comparison operator.

Explanation
If an operator is specified in an ASSERT COMPARE
statement, it must be one of 'EQ', 'LT', 'LE', 'GE', 'GT', or
'NE'.

IBM2307I S The first argument to the BUILTIN
name built-in must be a suitable
one-dimensional array.

Explanation
The array argument to the named built-in function
must have exactly one dimension. For BINSEARCH and
QUICKSORT, the array must consist of scalars. This
message applies to the BINSEARCH, BINSEARCHX,
QUICKSORT, and QUICKSORTX built-in functions.

IBM2308I S The first argument to the BUILTIN
name built-in must be ALIGNED if
NONVARYING BIT.

Explanation
If the first argument to the named built-in function is
NONVARYING BIT, then it must be ALIGNED. This
message applies to the BINSEARCH, BINSEARCHX,
QUICKSORT, and QUICKSORTX built-in functions.

IBM2309I S Comparison in BUILTIN name
built-in function is unsupported.

Explanation
This message applies to the BINSEARCH built-in
function and similar functions. The array and the
search argument must be both string or REAL numeric,
both ordinals of the same ordinal type, both pointers,
or both handles to the same structure type.

IBM2310I S The compare function passed to
the BUILTIN name built-in must be
a LIMITED ENTRY, must return
BYVALUE a NATIVE FIXED
BIN(31), must have exactly two
BYVALUE POINTER arguments,
and must have the OPTLINK
linkage.

Explanation
This message applies to the third argument to the
BINSEARCHX built-in function and similar functions.
This argument is the compare function to be invoked to
compare elements during the binary search. It must
be a LIMITED ENTRY (and hence must not be a nested
PROCEDURE) and must have the other properties
listed in the message.

IBM2311I S Labels are not allowed on the END
statement for a PACKAGE.

Explanation
Labels must not be applied to the END statement for a
PACKAGE.

IBM2312I S Argument number argument
number to BUILTIN name built-in
must be a scalar expression.

Explanation
An expression contains the named built-in function
when the specified argument is an aggregate
expression.

IBM2313I S Argument number argument
number to BUILTIN name built-in
must be an array expression.

Explanation
An expression contains the named built-in function
when the specified argument is a scalar or structure
expression.

IBM2314I S BUILTIN name built-in does not
support arrays of this type.

Chapter 4. Compiler Severe Messages (1500-2399) 139

Explanation
The QUICKSORT built-in supports only a limited set of
array types. For example, FIXED BIN and ORDINAL
arrays must be REAL and NATIVE.

IBM2315I S Argument number argument
number to BUILTIN name built-in
must be REAL FIXED BIN with
scale factor zero.

Explanation
This message applies to the REGEX and other built-in
functions where some arguments must have the
attributes REAL FIXED BIN PRECISION(p,0).

IBM2316I S Argument number argument
number to BUILTIN name built-in
must have CHARACTER type.

Explanation
This message applies to the REGEX and other built-in
functions where some arguments must have the
CHARACTER attribute.

IBM2317I S Argument number argument
number to BUILTIN name built-in
must be an ASSIGNABLE
reference.

Explanation
The indicated argument to the named built-in function
must be an ASSIGNABLE reference so that it can be
assigned a value. This message applies, for example,
to the first two arguments of the REGEX built-in
function.

IBM2318I S attribute attribute is valid only
with computational types.

Explanation
The VALUELIST and VALUERANGE attributes cannot be
used on non-computational tyeps.

IBM2319I S attribute attribute is not valid with
COMPLEX types.

Explanation
The VALUERANGE attribute cannot be used on
COMPLEX numeric types.

IBM2320I S First argument to BUILTIN name
built-in must be a reference to a
variable with the VALIDLIST or
VALIDRANGE attribute.

Explanation
The argument to the VALIDVALUE built-in function
must have one of the above attributes so that its value
can be checked against the declared list or range of
values.

IBM2321I S attribute contains duplicate
values.

Explanation
The items in VALUELIST and VALUERANGE lists should
be unique.

IBM2322I S The second value in the
VALUERANGE attribute must be
larger than the first.

Explanation
The items in the VALUERANGE attribute should be in
strictly ascending order. Both of the following are
invalid.

 dcl a fixed bin valuerange(12,1);
 dcl b fixed bin valuerange(1,1);

IBM2323I S Arguments number and number to
the BUILTIN name built-in must
have comparable types.

Explanation
The arguments to the VALIDVALUE built-in function
must be comparable. Similarly, the second and third
arguments to the IFTHENELSE built-in function must
be comparable. This means that if the first argument
has a computational type, then the second must also,
and if the first argument has an ordinal type, then the
second must have the same ordinal type, etc

IBM2324I S The attributes derived from the
PROCEDURE statement for the
ENTRY constant variable name do
not match those in its explicit
declaration. The EXTERNAL names
do not match: one name is external
name, and the other is external
name.

Explanation
A label on a PROCEDURE statement constitutes a
declaration for an ENTRY constant with that name.
That name also appears in a DECLARE statement, but
the attributes in those two declarations do not match.

140 Enterprise PL/I for z/OS IBM Developer for z/OS PL/I for Windows: Enterprise PL/I for z/OS Messages and
Codes

IBM2325I S The values specified for the
ROUTCDE and DESC in a WTO
must be between 1 and 16.

Explanation
These values specify which bits are set in the
ROUTCDE and DESC fields when a WTO or WTOR is
issued. These fields consist of 16 bits, and hence the
values must be between 1 and 16.

IBM2326I S The argument to the BUILTIN name
built-in must have UCHAR type.

Explanation
This message applies to the LowerLatin1, UpperLatin1
and related built-in functions.

IBM2327I S TRANSLATE of a UCHAR string
requires 3 arguments.

Explanation
TRANSLATE of a CHARACTER string will accept 2
arguments in which case COLLATE() will be assumed
for the third argument. But there is no equivalent
support for TRANSLATE of a UCHAR string.

IBM2328I S UX literal specifies an invalid
UTF-8 string.

Explanation
Not all hex strings represent valid UTF-8 strings. For
more details on valid UTF-8 strings, see the LRM and
the text describing the UVALID built-in function.

IBM2329I S Argument to BUILTIN name built-in
must have type CHAR, UCHAR or
WCHAR.

Explanation
This applies to the UVALID built-in function, for
example.

IBM2330I S The BUILTIN name built-in does
not support UCHAR arguments.

Explanation
This applies to the CENTER, LEFT, and RIGHT built-in
functions, for example.

IBM2331I S The input structure to the BUILTIN
name built-in must not contain any
UTF-8 elements.

Explanation
The XMLCHAR built-in function cannot be applied to
structures containing any UCHAR data.

IBM2332I S The base reference in the
DEFINED attribute cannot have a
UTF-8 type.

Explanation
DEFINED is not supported with UCHAR.

IBM2333I S Argument number argument
number to BUILTIN name built-in
must have a computational,
ordinal or pointer type.

Explanation
An expression contains the named built-in function
with the specified argument having a
noncomputational type that is neither an ordinal type
nor a POINTER or HANDLE. This message applies to
the IFTHENELSE built-in function.

IBM2334I S Argument number argument
number to BUILTIN name built-in
must be nonvarying with a known
length.

Explanation
An expression contains the named built-in function
with the specified argument be a string that is either
VARYING or has an unknown length. This message
applies to the IFTHENELSE built-in function.

IBM2335I S VALUELISTFROM reference must
name a structure consisting only of
elements with the VALUE
attribute.

Explanation
In VALUELISTFROM X, X must not contain any
substructures and every element of X must have the
VALUE attribute.

IBM2336I S The fourth argument to the
BUILTIN name built-in must be a
contant specifying the name of a
casing rule.

Explanation
When uppercased, the argument to the named built-in
function must be one of 'ASIS', 'LOWER', or 'UPPER'.

IBM2337I S BUILTIN name argument must
have numeric type.

Chapter 4. Compiler Severe Messages (1500-2399) 141

Explanation
An expression contains the named built-in function
with an argument that is not FIXED, FLOAT, or numeric
PICTURE.

IBM2338I S A QUALIFY block may contain only
DEFINE statements, DECLARE
statements, and nested QUALIFY
blocks.

Explanation
DEFAULT statements, for example, are not allowed in
QUALIFY blocks.

IBM2339I S A QUALIFY block must have a
name, but only one.

Explanation
Specify only one label on a QUALIFY statement.

IBM2340I S A name declared in a QUALIFY
block must be a scalar.

Explanation
A DECLARE statement in a QUALIFY block cannot
specify a structure, union or array.

IBM2341I S A name declared in a QUALIFY
block must have the VALUE
attribute.

Explanation
A DECLARE statement in a QUALIFY block cannot
specify a variable or a constant unless it has the VALUE
attribute.

IBM2342I S CONVERSION condition raised by
attempt to convert the GARPHIC
character with hex value source-
value to CHARACTER.

Explanation
The source value cannot be converted to SBCS.

IBM2343I S The type name type name is
ambiguous.

Explanation
Enough qualification must be provided to make any
type reference unique.

IBM2344I S type name is a type name, but not
the name of a STRUCTURE type.

Explanation
In a declare statement that specifies HANDLE x, x
must be the name of a STRUCTURE type.

IBM2345I S type name is a type name, but not
the name of an ORDINAL type.

Explanation
In a declare statement that specifies ORDINAL x, x
must be the name of an ORDINAL type.

IBM2346I S Argument number argument
number to BUILTIN name built-in
built-in must be either a scalar or
a one-dimensional array of
scalars.

Explanation
This applies, for example, to the REGEX built-in
function.

IBM2347I S The second argument to the
BUILTIN name built-in must have
the same number of dimensions as
the first argument.

Explanation
This applies, for example, to the REGEX built-in
function. In REGEX(x, y, ...), either x and y must both
be scalars or they must both be one-dimensional.

IBM2348I S The second argument to the
BUILTIN name built-in must have
the same lower bound as the first
argument. But its lower bound is
lbound while the first argument's
lower bound is lbound.

Explanation
This applies, for example, to the REGEX built-in
function.

IBM2349I S The second argument to the
BUILTIN name built-in must have
the same upper bound as the first
argument. But its upper bound is
hbound while the first argument's
upper bound is hbound.

Explanation
This applies, for example, to the REGEX built-in
function.

142 Enterprise PL/I for z/OS IBM Developer for z/OS PL/I for Windows: Enterprise PL/I for z/OS Messages and
Codes

Chapter 5. MACRO, CICS, and SQL Preprocessor
Messages (3000-3999)

IBM3000I I note

Explanation
This message is used to report DB2 or CICS backend
messages with a return code of 0.

IBM3019I I Program contains no EXEC SQL
statements requiring translation.

Explanation
The SQL suboption has been specified for the PP
option, but the program contains no EXEC SQL
statements other than possibly EXEC SQL INCLUDE
statements. The DBRMLIB will not be updated.

IBM3020I I Comment spans line-count lines.

Explanation
A comment ends on a different line than it begins. This
may indicate that an end-of-comment delimiter is
missing.

IBM3021I I String spans line-count lines.

Explanation
A string ends on a different line than it begins. This
may indicate that a closing quote is missing.

IBM3024I I note

Explanation
This message is used by %NOTE statements with a
return code of 0.

IBM3250I W note

Explanation
This message is used to report DB2 or CICS backend
messages with a return code of 4.

IBM3251I W identifier is multiply defined, but
with different attributes. The
declaration is ignored.

Explanation
Attributes and declares must be consistent.

 %a: proc;
 %end;
 %dcl a;

IBM3252I W The attribute attribute conflicts
with previous attributes and is
ignored.

Explanation
Attributes must be consistent.

 dcl a fixed char;

IBM3253I W Comment spans more than one
file.

Explanation
A comment ends in a different file than it begins. This
may indicate that an end-of-comment statement is
missing.

IBM3254I W String spans more than one file.

Explanation
A string ends in a different file than it begins. This may
indicate that a closing quote is missing.

IBM3255I W Delimiter missing between
nondelimiter and nondelimiter. A
blank is assumed.

Explanation
A delimiter (for example, a blank or a comma) is
required between all identifiers and constants.

 dcl 1 a, 2 b, 3c;

IBM3256I W Multiple closure of groups. END
statements will be inserted to
close intervening groups.

© Copyright IBM Corp. 1999, 2019 143

Explanation
Using one END statement to close more than one
group of statements is permitted, but it may indicate a
coding error.

IBM3257I W Missing character assumed.

Explanation
The indicated character is missing, and there are no
more characters in the source. The missing character
has been inserted by the parser in order to correct
your source.

IBM3258I W Missing character assumed before
character.

Explanation
The indicated character is missing and has been
inserted by the parser in order to correct your source.

 %dcl jump fixed;
 %skip
 %jump = 2;

IBM3259I W note

Explanation
This message is used by %NOTE statements with a
return code of 4.

IBM3260I W Syntax of the %CONTROL
statement is incorrect.

Explanation
The %CONTROL statement must be followed by
FORMAT or NOFORMAT option enclosed in
parentheses and then a semicolon.

IBM3261I W The suboption suboption is not
valid for the suboption option of
the option option.

Explanation
A suboption of a suboption of an option is incorrect.
The suboption may be unknown or outside the
allowable range.

 *process deprecate(stmt(test));

IBM3262I W The suboption option of the option
option must be followed by a

(possibly empty) parenthesized
list.

Explanation
A suboption of an option has been incorrectly
specified. It must be followed by a left parenthesis and
then a (possibly empty) list of items and a closing right
parenthesis.

 *process deprecate(stmt);

IBM3265I W Number of lines specified with
%SKIP must be between 0 and
999 inclusive.

Explanation
Skip amounts greater than 999 are not supported.

 %skip(2000);

IBM3270I W 'EXEC CICS' encountered, but the
CICS option is not in effect.
Command ignored.

Explanation
The CICS option must be in effect if the source
contains EXEC CICS statements.

IBM3271I W 'EXEC CSPM' encountered, but the
CSPM option is not in effect.
Command ignored.

Explanation
The CSPM option must be in effect if the source
contains EXEC CSPM statements.

IBM3272I W 'EXEC DLI' encountered, but the
DLI option is not in effect.
Command ignored.

Explanation
The DLI option must be in effect if the source contains
EXEC DLI statements.

IBM3281I W SELECT statement contains no
WHEN or OTHERWISE clauses.

Explanation
WHEN or OTHERWISE clauses are not required on
SELECT statements, but their absence may indicate a
coding error.

144 Enterprise PL/I for z/OS IBM Developer for z/OS PL/I for Windows: Enterprise PL/I for z/OS Messages and
Codes

IBM3283I W SELECT statement contains no
WHEN clauses.

Explanation
SELECT statements do not require WHEN clauses, but
their absence may indicate a coding error.

IBM3285I W FIXED BINARY constant contains
too many digits. Excess
nonsignificant digits will be
ignored.

Explanation
A FIXED BINARY constant must contain 31 or fewer
digits.

IBM3286I W FIXED DECIMAL constant contains
too many digits. Excess
nonsignificant digits will be
ignored.

Explanation
The maximum precision for FIXED DECIMAL constants
is specified by the FIXEDDEC suboption of the LIMITS
compiler option.

IBM3287I W Mantissa in FLOAT BINARY
constant contains more digits than
the implementation maximum.
Excess nonsignificant digits will be
ignored.

Explanation
Float binary constants are limited to 64 digits.

IBM3288I W Mantissa in FLOAT DECIMAL
constant contains more digits than
the implementation maximum.
Excess nonsignificant digits will be
ignored.

Explanation
Float decimal constants are limited to 18 digits.

IBM3289I W FLOAT literal is too big for its
implicit precision. An appropriate
HUGE value is assumed.

Explanation
The precision for a float literal is implied by the
number of digits in its mantissa. For instance 1e99 is
implicitly FLOAT DECIMAL(1), but the value 1e99 is
larger than the largest value a FLOAT DECIMAL(1) can
hold.

IBM3291I W The OPTIONS option option-name
conflicts with the LANGLVL
compiler option. The option will be
applied.

Explanation
The named option is not part of the PL/I language
definition as specified in the LANGLVL compiler option.

IBM3292I W suboption is not a valid suboption
for option.

Explanation
The specified suboption is not one of the supported
suboptions of the named option.

 *process pp(macro('fixed(long)'));

IBM3293I W A required suboption is missing for
the suboption option.

Explanation
The named option requires a suboption.

 *process pp(macro('fixed'));

IBM3294I W A closing parenthesis is missing in
the specification of the option
option. One is assumed.

Explanation
A closing parenthesis is missing in the specification of
the named option.

 *process pp(macro('fixed(bin'));

IBM3295I W option is not a supported option.

Explanation
The named option is not, in fact, an option.

 *process pp(macro('float'));

IBM3299I W Syntax of the %LINE directive is
incorrect.

Explanation
The %LINE directive must be followed, with optional
intervening blanks, by a parenthesis, a line number, a
comma, a file name and a closing parenthesis.

Chapter 5. MACRO, CICS, and SQL Preprocessor Messages (3000-3999) 145

 %line(19, test.pli);

IBM3300I W identifier has not been declared.
CHARACTER attribute assumed.

Explanation
All variables should be declared.

IBM3309I W Comparison of BUILTIN name to a
value it could not return is odd.

Explanation
This message points to a likely programming error. For
example, comparing SYSPOINTERSIZE to the value 32
is almost certainly an error since the only values
SYSPOINTERSIZE could return are 4 and 8.

IBM3310I W First argument to BUILTIN name
built-in should have string type.

Explanation
To eliminate this message, apply the CHAR or BIT
built-in function to the first argument.

 dcl i fixed bin;
 display(substr(i,4));

IBM3311I W Argument number to the BUILTIN
name built-in function is missing.
A null value will be passed for the
missing argument.

Explanation
An argument to the function reference is missing. A
null string or zero will be passed, as appropriate, for
the missing argument.

 %dcl a fixed;

 %a = max(n,);

IBM3312I W LEAVE will exit noniterative DO-
group.

Explanation
This message is not produced if the LEAVE statement
specifies a label. In the following loop, the LEAVE

statement will cause only the immediately enclosing
DO-group to be exited; the loop will not be exited.

 do i = 1 to n;
 if a(i) > 0 then
 do;
 call f;
 leave;
 end;
 else;
 end;

IBM3313I W Result of comparison is always
constant.

Explanation
This message is produced when a variable is
compared to a constant equal to the largest or
smallest value that the variable could assume. In the
following loop, the variable x can never be greater than
99, and hence the implied comparison executed each
time through the loop will always result in a '1'b.

 do x pic'99';

 do x = 1 to 99;
 end;

IBM3314I W The reference reference could refer
to a parent or its child, but the
child is assumed.

Explanation
For a structure named X with first child named X, a
reference to X would by PL/I rules be resolved to the
parent. But references to structures containing
structures are invalid in SQL statements and so the
reference is assumed to refer to the child. The
reference should be changed from X to X.X.

IBM3315I W The reference reference is an array
of structures. Arrays of structures
are not valid in SQL statements,
but because this structure consists
of only one element, the reference
is treated as if it were a reference
to its lone child.

Explanation
If a dimensioned structure named A consists of just
one child B, a reference to A is treated as a reference
to A.B.

IBM3316I W The reference reference is a
structure containing an array.

146 Enterprise PL/I for z/OS IBM Developer for z/OS PL/I for Windows: Enterprise PL/I for z/OS Messages and
Codes

Structures containing arrays are
not valid in SQL statements, but
because this structure consists of
only one element, the reference is
treated as if it were a reference to
its lone child.

Explanation
If a structure named A consists of just one child B and
B is an array, a reference to A is treated as a reference
to A.B.

IBM3317I W note

Explanation
This message is used to report DB2 message
DSNH030I.

IBM3320I W RETURNS attribute in ENTRY
declare ignored.

Explanation
ENTRY declares should not specify a RETURNS
attribute. In the example below, the "returns(char)"
should be omitted.

 %dcl a entry returns(char);

IBM3321I W RETURNS option assumed to
enclose attribute in PROCEDURE
statement.

Explanation
In a PROCEDURE statement, any RETURNS attribute
should be enclosed in parentheses following the
RETURNS keyword. In the example below, the "char"
attribute should be specified as "returns(char)".

 %a: proc char ;
 return('1729');
 %end;

IBM3322I W Argument list for PROCEDURE
identifier is missing. It will be
invoked without any arguments.

Explanation
References in open code to PROCEDUREs that have
parameters should always include at least an empty
argument list. For example, the "display(a)" below
should be "display(a())".

 %a: proc(x) char ;
 dcl x char;
 return('1729');
 %end;
 %act a;

 display(a);

IBM3323I W Too few arguments for
PROCEDURE identifier. Null values
will be passed for the missing
arguments.

Explanation
There are too few arguments for the specified
procedure. Null strings or zeros will be passed, as
appropriate, for the missing arguments.

 %a: proc(x) char ;
 dcl x char;
 return('1729');
 %end;
 %act a;

 display(a());

IBM3324I W Too many arguments for
PROCEDURE identifier. Excess
ignored.

Explanation
There are too many arguments for the specified
procedure. The excess arguments will be ignored.

 %a: proc(x) char ;
 dcl x char;
 return('1729');
 %end;
 %act a;

 display(a(1,2));

IBM3325I W No data attributes specified in
declare for identifier.

Explanation
Preprocessor variables should be declared with an
attribute such as CHAR or FIXED. This message could
indicate that there is an extraneous comma in the
declare statement as in this example.

 %dcl a, char;

Chapter 5. MACRO, CICS, and SQL Preprocessor Messages (3000-3999) 147

IBM3326I W The LIKE reference is neither a
structure nor a union.

Explanation
The LIKE reference cannot be a scalar or an array of
scalars.

 dcl
 a fixed bin,
 1 b like a;

IBM3327I W The LIKE reference is ambiguous.

Explanation
The LIKE reference needs enough qualification to be
unique.

 dcl
 1 x like b,
 1 a,
 2 b,
 3 c,
 3 d,
 2 e,
 3 f,
 3 g,
 1 h,
 2 b,
 3 j,
 3 k;

IBM3328I W Neither the LIKE reference nor any
of its substructures can be
declared with the LIKE attribute.

Explanation
LIKE from LIKE is not supported.

 dcl
 1 a,
 2 b1 like c,
 2 b2 like c,
 1 c,
 2 d fixed bin,
 2 e fixed bin;
 dcl
 1 x like a;

IBM3329I W The LIKE reference must not be a
member of a structure or union
declared with the LIKE attribute.

Explanation
LIKE from LIKE is not supported.

 dcl
 1 a,
 2 b1 like c,
 2 b2 like c,
 1 c,
 2 d fixed bin,
 2 e fixed bin;
 dcl
 1 x like a.b1;

IBM3330I W The LIKE reference is unknown.

Explanation
The LIKE reference must be known in the block
containing the LIKE attribute specification.

IBM3331I W The INCLUDE file filename will be
deprecated.

Explanation
The named INCLUDE file was specified in the INCLUDE
suboption of the DEPRECATENEXT option, and so any
attempt to include it is flagged.

IBM3332I W The END statement has no
matching BEGIN, DO, PACKAGE,
PROC, or SELECT. This may
indicate a problem with the syntax
of a previous statement.

Explanation
An END statement has been found that matches no
previous statement. This may indicate that a previous
statement has a syntax error such as a missing closing
semicolon.

IBM3333I W One or more END statements are
missing. This may indicate a
problem with the syntax of a
previous statement.

Explanation
The source ended without closing END statements for
all the open statement groups. This may indicate that a
previous statement has a syntax error such as a
missing closing semicolon.

IBM3334I W The ENTRY named variable will be
deprecated.

Explanation
The named ENTRY was specified in the ENTRY
suboption of the DEPRECATENEXT option, and so any
use of it is flagged.

148 Enterprise PL/I for z/OS IBM Developer for z/OS PL/I for Windows: Enterprise PL/I for z/OS Messages and
Codes

IBM3500I E note

Explanation
This message is used to report DB2 or CICS backend
messages with a return code of 8.

IBM3501I E note

Explanation
This message is used by %NOTE statements with a
return code of 8.

IBM3502I E An integer with a K suffix must
have no more than 7 digits.

Explanation
An integer of the form dddK must have no more than 7
digits. The specified value is replaced by 1K.

IBM3503I E In an integer with a K suffix the
digits must specify a value less
than or equal to 2097152.

Explanation
The largest accepted value for an integer with a K
suffix is 2097152K. The specified value is replaced by
2097151K.

IBM3504I E An integer with an M suffix must
have no more than 4 digits.

Explanation
An integer of the form dddM must have no more than 4
digits. The specified value is replaced by 1M.

IBM3505I E In an integer with an M suffix the
digits must specify a value less
than or equal to 2048.

Explanation
The largest accepted value for an integer with an M
suffix is 2048M. The specified value is replaced by
2047M.

IBM3506I E An integer with a G suffix must
have only 1 digit.

Explanation
An integer of the form dddG must have no more than 1
digit. The specified value is replaced by 1G.

IBM3507I E In an integer with an G suffix the
digits must specify a value less
than or equal to 2.

Explanation
The largest accepted value for an integer with an G
suffix is 2G. The specified value is replaced by 1G.

IBM3508I E Numeric precision of 0 replaced by
1.

Explanation
Numeric precisions must be positive.

IBM3509I E DECLARE statement has invalid
syntax. No variables in it may be
used in EXEC SQL statements.

Explanation
Fix the DECLARE statement so that it is syntactically
correct.

IBM3510I E keyword statement is not allowed
where an executable statement is
required. A null statement will be
inserted before the keyword
statement.

Explanation
In certain contexts, for example after an IF-THEN
clause, only executable statements are permitted. A
DECLARE, DEFINE, DEFAULT or FORMAT statement
has been found in one of these contexts. A null
statement, (a statement consisting of only a
semicolon) will be inserted before the offending
statement.

IBM3511I E COUNTER value would exceed
99999. It will be reset to 0.

Explanation
The COUNTER built-in function should not be invoked
more than 99999 times.

IBM3512I E Multiple closure of groups is not
allowed under
RULES(NOMULTICLOSE).

Explanation
Under RULES(NOMULTICLOSE), there should be no
multiple closure of groups in your source program.

IBM3514I E Second argument to BUILTIN name
built-in is negative. It will be
changed to 0.

Chapter 5. MACRO, CICS, and SQL Preprocessor Messages (3000-3999) 149

Explanation
The second argument to built-in functions such as
COPY and REPEAT must be nonnegative.

 x = copy(y, -1);

IBM3515I E Scale factor is bigger than 127. It
is replaced by 127.

Explanation
Scale factors must be between -128 and 127
inclusive.

IBM3516I E Scale factor is less than -128. It is
replaced by -128.

Explanation
Scale factors must be between -128 and 127
inclusive.

IBM3517I E Sole bound specified for
dimension dimension number of
array variable name is less than 1.
An upper bound of 1 is assumed.

Explanation
The default lower bound is 1, but the upper bound
must be greater than the lower bound.

 dcl x(-5) fixed bin;

IBM3518I E identifier does not conform to the
NAMEPREFIX option.

Explanation
If the NAMEPREFIX option is specified, the names of
all macro variables and procedures must start with the
character specified in that option.

IBM3519I E Characters in B3 literals must be
0-7.

Explanation
In a B3 literal, each character must be either 0-7.

IBM3520I E Structure level of 0 replaced by 1.

Explanation
Structure level numbers must be positive.

IBM3521I E Structure level greater than 255
specified. It is replaced by 255.

Explanation
The maximum structure level supported is 255.

 dcl
 1 a,
 256 b,
 2 c,

IBM3522I E A DECIMAL exponent is required.

Explanation
An E in a FLOAT constant must be followed by at least
one decimal digit (optionally preceded by a sign).

IBM3523I E A second argument to the BUILTIN
name built-in must be supplied for
arrays with more than one
dimension. A value of 1 is
assumed.

Explanation
The LBOUND, HBOUND, and DIMENSION built-in
functions require two arguments when applied to
arrays having more than one dimension.

 dcl a(5,10) fixed bin;
 do i = 1 to lbound(a);

IBM3524I E Second argument to BUILTIN name
built-in is not positive. A value of 1
is assumed.

Explanation
The DIMENSION, HBOUND and LBOUND built-in
functions require that the second argument be
positive.

IBM3525I E Second argument to BUILTIN name
built-in is greater than the number
of dimensions for the first
argument. A value of dimension
count is assumed.

Explanation
The second argument to the LBOUND, HBOUND, and
DIMENSION built-in functions must be no greater than
the number of dimensions of their array arguments.

150 Enterprise PL/I for z/OS IBM Developer for z/OS PL/I for Windows: Enterprise PL/I for z/OS Messages and
Codes

 dcl a(5,10) fixed bin;
 do i = 1 to lbound(a,3);

IBM3526I E Repeated declaration of identifier
is invalid and will be ignored.

Explanation
Level 1 variable names must not be repeated in the
same block.

 dcl a char, a fixed;

IBM3527I E Missing THEN assumed.

Explanation
THEN keyword must be part of any IF statement.

IBM3528I E Duplicate specification of
arithmetic precision. Subsequent
specification ignored.

Explanation
The precision attribute must be specified only once in
a DECLARE statement.

 dcl a fixed(15) bin(31);

IBM3529I E Scale factors are not allowed in
FLOAT declarations.

Explanation
Scale factors are valid only in declarations of FIXED
BIN or FIXED DEC. The first declaration below is
invalid and should be changed to one of the
subsequent declarations.

 dcl a1 float dec(15,2);

 dcl a2 fixed dec(15,2);
 dcl a3 float dec(15);

IBM3530I E identifier is an array. ACTIVATE
and DEACTIVATE are invalid for
arrays.

Explanation
Only scalars may be activated.

IBM3531I E identifier is a statement label.
ACTIVATE and DEACTIVATE are
invalid for labels.

Explanation
Labels may not be activated.

IBM3533I E THEN clause outside of an open IF
statement is ignored.

Explanation
THEN clauses are valid only immediately after an IF
<expression>.

 %if a > b; %then;

IBM3534I E ELSE clause outside of an open IF-
THEN statement is ignored.

Explanation
ELSE clauses are valid only immediately after an IF-
THEN statement.

 do; if a > b then; end; else a = 0;

IBM3536I E END label is not a label on any
open group.

Explanation
A Label on END statement must match a LABEL on an
open DO, PROCEDURE, or SELECT statement.

 a: do;
 ...
 end b;

IBM3537I E An END statement may be missing
after an OTHERWISE unit. One will
be inserted.

Explanation
After an OTHERWISE unit in a SELECT statement, only
an END statement is valid.

 select;
 when (...)
 do;
 end;

Chapter 5. MACRO, CICS, and SQL Preprocessor Messages (3000-3999) 151

 otherwise
 do;
 end;
 display(....);

IBM3538I E %END statement found without
any open %PROCEDURE, %DO or
%SELECT statements. It will be
ignored.

Explanation
Any %END statement should be part of a
%PROCEDURE-%END, %DO-%END or %SELECT-
%END group.

IBM3539I E STRINGSIZE condition raised
while evaluating expression.
Result is truncated.

Explanation
During the conversion of a user expression during the
compilation, the target string was found to be shorter
than the source, thus causing the STRINGSIZE
condition to be raised.

IBM3540I E STRINGRANGE condition raised
while evaluating expression.
Arguments are adjusted to fit.

Explanation
If all the arguments in a SUBSTR reference are
constants or restricted expressions, the reference will
be evaluated at compile- time and the STRINGRANGE
condition will occur if the arguments do not comply
with the rules described for the SUBSTR built-in
function.

 a = substr('abcdef', 5, 4);

IBM3542I E LEAVE/ITERATE label is not a label
on any open DO group.

Explanation
LEAVE/ITERATE must specify a label on an open DO
loop.

 %a: do jx = 1 to 1729;
 %leave b;
 %end;

IBM3543I E ITERATE/LEAVE statement is
invalid outside an open DO

statement. The statement will be
ignored.

Explanation
ITERATE/LEAVE statements are valid only inside DO
groups.

 %a: do jx = 1 to 1729;
 %end;
 %leave a;

IBM3544I E GX literals should contain a
multiple of 4 hex digits.

Explanation
GX literals must represent graphic strings and hence
must contain a multiple of 4 hex digits.

 x = '00'gx;

IBM3545I E Upper bound for dimension
dimension number of array variable
name is less than lower bound.
Bounds will be reversed.

Explanation
A variable has been declared with an upper bound that
is less than its lower bound. The upper and lower
bounds will be swapped in order to correct this. For
example, DECLARE x(3:1) will be changed to DECLARE
x(1:3).

IBM3546I E Identifier is too long. It will be
collapsed to identifier.

Explanation
All identifiers must be contained in 31 bytes or less.
PL/I DBCS identifiers must have 14 or fewer DBCS
characters.

IBM3547I E B assumed to complete iSUB.

Explanation
There is no language element of the form 1su.

 dcl a(10) def b(1su, 1sub);

IBM3548I E Digit in BINARY constant is not
zero or one.

152 Enterprise PL/I for z/OS IBM Developer for z/OS PL/I for Windows: Enterprise PL/I for z/OS Messages and
Codes

Explanation
In a BINARY constant, each digit must be a zero or
one.

IBM3549I E Characters in BIT literals must be
0 or 1.

Explanation
In a BIT literal, each character must be either zero or
one.

IBM3550I E Character with decimal value n
does not belong to the PL/I
character set. It will be ignored.

Explanation
The indicated character is not part of the PL/I
character set. This can occur if a program containing
NOT or OR symbols is ported from another machine
and those symbols are translated to a character that is
not part of the PL/I character set. Using the NOT and
OR compiler options can help avoid this problem.

IBM3551I E Characters in hex literals must be
0-9 or A-F.

Explanation
In a hex literal, each character must be either 0-9 or A-
F.

IBM3552I E The statement element character
is invalid. The statement will be
ignored.

Explanation
The statement entered could not be parsed because
the specified element is invalid.

IBM3553I E Use of underscore as initial
character in an identifier accepted
although invalid under
LANGLVL(SAA).

Explanation
Under LANGLVL(SAA), identifiers must start with an
alphabetic character or with one of the extralingual
characters. They may not start with an underscore.
Under LANGLVL(SAA2), identifiers may start with an
underscore, although names starting with _IBM are
reserved for use by IBM.

IBM3556I E Character with decimal value n
does not belong to the PL/I
character set. It is assumed to be
an OR symbol.

Explanation
The indicated character is not part of the PL/I
character set, but was immediately followed by the
same character. This can occur if a program containing
an OR symbol is ported from another machine and this
symbol is translated to a character that is not part of
the PL/I character set. Using the OR compiler option
can help avoid this problem.

IBM3557I E Character with decimal value n
does not belong to the PL/I
character set. It is assumed to be
a NOT symbol.

Explanation
The indicated character is not part of the PL/I
character set, but was immediately followed by an =, <
or > symbol. This can occur if a program containing a
NOT symbol is ported from another machine and this
symbol is translated to a character that is not part of
the PL/I character set. Using the NOT compiler option
can help avoid this problem.

IBM3558I E WX literals should contain a
multiple of 4 hex digits.

Explanation
WX literals must represent unicode strings and hence
must contain a multiple of 4 hex digits.

 x = '00'wx;

IBM3559I E RULES(NOGOTO) violation: the use
of EXEC SQL WHENEVER
statements violates
RULES(NOGOTO).

Explanation
EXEC SQL WHENEVER statements will lead to the
generation of GOTO statements and hence violate
RULES(NOGOTO).

IBM3560I E RULES(NOGOTO) violation: the use
of EXEC CICS HANDLE CONDITION
statements violates
RULES(NOGOTO).

Explanation
EXEC CICS HANDLE CONDITION statements create a
form of GOTO and hence violate RULES(NOGOTO).

IBM3565I E Statement type resolution
requires too many lexical units to

Chapter 5. MACRO, CICS, and SQL Preprocessor Messages (3000-3999) 153

be examined. The statement will
be ignored.

Explanation
To determine if a statement is an assignment or
another PL/I statement, many elements of the
statement may need to be examined. If too many have
to be examined, the compiler will flag the statement as
in error. For instance, the following statement could be
a DECLARE until the equal sign is encountered by the
lexer.

 dcl (a, b, c) = d;

IBM3567I E Statements inside a SELECT must
be preceded by a WHEN or an
OTHERWISE clause.

Explanation
A WHEN or OTHERWISE might be missing.

 select;
 i = i + 1;
 when (a > 0)
 ...

IBM3568I E Under RULES(NOLAXFIELDS),
EXEC SQL SELECT statements
must specify a list of field names.

Explanation
Under RULES(NOLAXFIELDS), EXEC SQL SELECT must
be followed by one or more field names, not by an
asterisk.

IBM3569I E Under RULES(NOLAXFIELDS),
EXEC SQL INSERT INTO
statements must specify a list of
field names.

Explanation
Under RULES(NOLAXFIELDS), EXEC SQL INSERT INTO
<table-name> must be followed by one or more field
names.

IBM3570I E Extent expression is negative. It
will be replaced by the constant 1.

Explanation
Extents must be positive.

 dcl x char(-10);

IBM3571I E The SQL and PL/I float options are
inconsistent.

Explanation
The compiler option DEFAULT(IEEE|HEXADEC) does
not match the SQL preprocessor option FLOAT(IEEE|
S390). Make sure they are consistent and resubmit
your job.

IBM3572I E Initial level number in a structure
is not 1.

Explanation
The level-1 DECLARE statement might be missing.

 dcl
 2 a,
 3 b,
 3 c,

IBM3573I E Elements with level numbers
greater than 1 follow an element
without a level number. A level
number of 1 is assumed.

Explanation
A structure level is probably missing.

 dcl
 a,
 2 b,
 2 c,

IBM3574I E Variables declared without a name
must be structure members or
followed by a substructure list.

Explanation
The use of an asterisk in place of a name is permitted
only for structure or union names or for members of
structures or unions. An asterisk must not be used for
a level-1 structure name that specifies the LIKE
attribute.

 dcl a fixed bin(15), * char(20) static
init('who can use me');

154 Enterprise PL/I for z/OS IBM Developer for z/OS PL/I for Windows: Enterprise PL/I for z/OS Messages and
Codes

IBM3575I E Duplicate specification of
attribute. Subsequent
specification ignored.

Explanation
Attributes such as CHAR must not be repeated for an
element of a DECLARE statement.

 dcl a char(10) char(20);

IBM3576I E The SQL statement is empty and is
ignored.

Explanation
EXEC SQL statements must consist of more than
merely EXEC SQL.

IBM3577I E INCONLY option is ignored
because preceded by other
options.

Explanation
The INCONLY option must be specified without any
other options.

IBM3580I E Parameter keyword may not be set
more than once. First setting is
assumed.

Explanation
In a statement-form procedure invocation, each
parameter must be specified only once. Any
subsequent specifications will be ignored. In the
example code, 17 would be returned for both
invocations of P.

 %p: proc(a) stmt returns(char);
 dcl a char;
 return(a);
 %end;
 %act p;

 display(p a(17) a(29););

 display(p(17) a(29););

IBM3581I E Unknown keyword in statement-
form procedure invocation.
keyword and any argument are
ignored.

Explanation
In a statement-form procedure invocation, any
keyword specified must be the name of a parameter
for that procedure.

 %p: proc(a) stmt returns(char);
 dcl a char;
 return(a);
 %end;
 %act p;

 display(p a(17) b(29););

IBM3582I E Parameter identifier is not
declared.

Explanation
Each parameter in a procedure should be declared.

 %a: proc(b, c);
 dcl b fixed;
 %end;

IBM3583I E Labels on keyword statements are
invalid and ignored.

Explanation
Labels are not permitted on DECLARE statements or
on WHEN and OTHERWISE clauses.

IBM3589I E The identifier identifier is not the
name of a built-in function. The
BUILTIN attribute will be ignored.

Explanation
The BUILTIN attribute can be applied only to
identifiers that are the names of built-in functions or
subroutines.

IBM3590I E The attribute keyword is not
supported and will be ignored.

Explanation
The named attribute is not supported by the macro
facility.

 %dcl a char external;

IBM3591I E Right parenthesis will be assumed
at end of argument list.

Chapter 5. MACRO, CICS, and SQL Preprocessor Messages (3000-3999) 155

Explanation
A right parenthesis is probably missing. If this occurs
in the source, all the characters after the unmatched
left parenthesis in the source will be interpreted as
parameters to the function. If this occurs in a
replacement string, all the characters after the
unmatched left parenthesis in the string will be
interpreted as parameters to the function.

IBM3603I E The end of the source was reached
before the logical end of the
program. Null statements and END
statements will be inserted as
necessary to complete the
program.

Explanation
The source should contain END statements for all
PROCEDUREs, DO groups, and SELECT statements, as
well as statements for all IF-THEN and ELSE clauses.

IBM3604I E The procedure name proc-name
has already been declared. The
explicit declaration of the
procedure name will not be
accepted.

Explanation
Declarations for internal procedures are not permitted.

 a: proc;
 dcl b entry options(byvalue);
 b: proc;

IBM3605I E The type type type type name is
already defined. The redefinition
is ignored.

Explanation
An ORDINAL type may be defined only once in any
block.

IBM3606I E Repeated declaration of identifier
is invalid. The name will be
replaced by an asterisk.

Explanation
The variable names at any given sublevel within a
structure or union must be unique.

 dcl 1 a, 2 b fixed, 2 b float;

IBM3607I E UNSIGNED attribute for type type
type type name conflicts with
negative INITIAL values and is
ignored.

Explanation
If an ORDINAL type is declared with the UNSIGNED
attribute, any INITIAL values specified must be
nonnegative.

IBM3608I E PRECISION specified for type type
type type name is too small to
cover its INITIAL values and is
adjusted to fit.

Explanation
An ORDINAL type must have a precision larger enough
to cover the range of values defined for it.

 define ordinal
 colors
 (red init(0),
 orange init(256)
 yellow init(512)) unsigned prec(8);

IBM3609I E A SELECT statement may be
missing. A SELECT statement,
without an expression, will be
inserted.

Explanation
A WHEN or OTHERWISE clause has been found
outside of a SELECT statement.

IBM3610I E Semicolon inserted after ELSE
keyword.

Explanation
An END statement enclosing a statement such as DO
or SELECT has been found before the statement
required after ELSE.

 do;
 if a > b then
 ...
 else
 end;

IBM3612I E Semicolon inserted after
OTHERWISE keyword.

156 Enterprise PL/I for z/OS IBM Developer for z/OS PL/I for Windows: Enterprise PL/I for z/OS Messages and
Codes

Explanation
An END statement might be misplaced or a semicolon
might be missing.

IBM3613I E Semicolon inserted after THEN
keyword.

Explanation
An END statement might be misplaced or a semicolon
might be missing.

IBM3614I E Semicolon inserted after WHEN
clause.

Explanation
An END statement might be misplaced or a semicolon
might be missing.

IBM3615I E Source file does not end with the
logical end of the program.

Explanation
The source file contains statements after the END
statement that closed the first PACKAGE or
PROCEDURE. These statements will be ignored, but
their presence may indicate a programming error.

IBM3616I E Subscripts have been specified for
the variable variable name, but it
is not an array variable.

Explanation
Subscripts can be specified only for elements of an
array.

IBM3617I E Second argument in SUBSTR
reference is less than 1. It will be
replaced by 1.

Explanation
Otherwise the STRINGRANGE condition would be
raised.

IBM3618I E Second argument in SUBSTR
reference is too big. It will be
trimmed to fit.

Explanation
Otherwise the STRINGRANGE condition would be
raised.

IBM3619I E Third argument in SUBSTR
reference is less than 0. It will be
replaced by 0.

Explanation
Otherwise the STRINGRANGE condition would be
raised.

IBM3620I E Third argument in SUBSTR
reference is too big. It will be
trimmed to fit.

Explanation
Otherwise the STRINGRANGE condition would be
raised.

IBM3621I E More than 15 dimensions have
been specified. Excess will be
ignored.

Explanation
The maximum number of dimensions allowed for a
variable, including all inherited dimensions, is 15.

IBM3624I E End-of-comment marker found
when there are no open
comments. Marker will be ignored.

Explanation
An */ was found when there was no open comment.

IBM3625I E There is no compiler directive
directive. Input up to the next
semicolon will be ignored.

Explanation
See the Language Reference Manual for the list of
supported compiler directives.

IBM3626I E Listing control statement must
start with a percent symbol.

Explanation
A listing control statement, even when in a
preprocessor procedure, must be preceded by a "%".

 %a: proc;
 skip;
 %end;

IBM3628I E X literals should contain a multiple
of 2 hex digits.

Explanation
An X literal may not contain an odd number of digits.

Chapter 5. MACRO, CICS, and SQL Preprocessor Messages (3000-3999) 157

IBM3638I E Excess arguments for ENTRY
ENTRY name ignored.

Explanation
More arguments were specified in an ENTRY reference
than were defined as parameters in that ENTRY's
declaration.

 dcl e entry(fixed bin);
 call e(1, 2);

IBM3639I E Excess arguments for BUILTIN
name built-in ignored.

Explanation
More arguments were specified for the indicated built-
in function than are supported by that built-in function.

 i = acos(j, k);

IBM3640I E The attribute attribute is invalid if
it is not followed by an element
with a greater logical level.

Explanation
The named attribute is valid only on parent structures.

 dcl
 1 a,
 2 b union,
 2 c1 fixed bin(31),
 2 c2 float bin(21),
 ...

IBM3641I E Level number following LIKE
specification is greater than the
level number for the LIKE
specification. LIKE attribute is
ignored.

Explanation
LIKE cannot be specified on a parent structure or
union.

 dcl
 1 a like x,
 2 b,
 2 c,

IBM3650I E keyword keyword accepted
although invalid under
LANGLVL(SAA).

Explanation
The indicated keyword (UNSIGNED in the example
below) is not defined in the SAA level-1 language.

 dcl x fixed bin unsigned;

IBM3651I E Use of S, D and Q constants
accepted although invalid under
LANGLVL(SAA).

Explanation
The definition of the SAA level-1 language does not
include S, D, and Q floating-point constants.

IBM3652I E Use of underscores in constants
accepted although invalid under
LANGLVL(SAA).

Explanation
The definition of the SAA level-1 language does not
permit using underscores in numeric and hex
constants.

IBM3653I E Use of asterisks for names in
declares accepted although invalid
under LANGLVL(SAA).

Explanation
The definition of the SAA level-1 language does not
permit using asterisks for structure element names.

IBM3654I E Use of XN constants accepted
although invalid under
LANGLVL(SAA).

Explanation
The definition of the SAA level-1 language does not
include XN constants.

IBM3656I E Use of 3 arguments with BUILTIN
name built-in accepted although
invalid under LANGLVL(SAA).

Explanation
Under LANGLVL(SAA), the VERIFY and INDEX built-in
functions are supposed to have exactly 2 arguments.

158 Enterprise PL/I for z/OS IBM Developer for z/OS PL/I for Windows: Enterprise PL/I for z/OS Messages and
Codes

 i = verify(s, j, k);

IBM3657I E Use of 1 argument with BUILTIN
name built-in accepted although
invalid under LANGLVL(SAA).

Explanation
Under LANGLVL(SAA), the DIM, LBOUND and HBOUND
built-in functions are supposed to have 2 arguments.

 i = dim(a);

IBM3658I E The INCLUDE file filename has
been deprecated.

Explanation
The named INCLUDE file was specified in the INCLUDE
suboption of the DEPRECATE option, and so any
attempt to include it is flagged.

IBM3659I E The EXEC SQL statement
statement has been deprecated.

Explanation
The named statement was specified in the STMT
suboption of the DEPRECATE option, and so any
occurrence of it is flagged.

IBM3660I E The ENTRY named variable has
been deprecated.

Explanation
The named ENTRY was specified in the ENTRY
suboption of the DEPRECATE option, and so any use of
it is flagged.

IBM3661I E Invalid use of question mark.

Explanation
Question marks are valid in the source only if part of
one of the trigraphs ??(or ??).

IBM3750I S note

Explanation
This message is used to report DB2 or CICS backend
messages with a return code of 12.

IBM3751I S A colon in an EXEC SQL statement
must be followed by an identifier

that starts a host variable
reference.

Explanation
A colon in an EXEC SQL statement must be followed by
a host variable reference, and such a reference must
start with an identifier.

IBM3752I S Dot-qualified reference implies too
many structure levels.

Explanation
Structures are limited to at most 15 logical levels, and
so any dot-qualified reference must have at most 14
dots (or else it would imply the structure had at least
16 logical levels).

IBM3753I S Length in SQL TYPE IS type name
is too large.

Explanation
The maximum length for BIN is 255 and for
VARBINARY 32704. See the Programming Guide for
the maximum lengths for BLOBs, CLOBs, and
DBCLOBs.

IBM3754I S SQL TYPE IS type name must be
followed by an opening left
parenthesis.

Explanation
The correct syntax is SQL TYPE IS type(length).

IBM3755I S SQL TYPE IS type name must have
an integer specifying its length
after the opening left parenthesis.

Explanation
The correct syntax is SQL TYPE IS type(length).

IBM3756I S SQL TYPE IS type name must have
a closing right parenthesis after
the integer specifying its length.

Explanation
The correct syntax is SQL TYPE IS type(length).

IBM3757I S SQL TYPE IS XML AS type name
must be followed by an opening
left parenthesis.

Chapter 5. MACRO, CICS, and SQL Preprocessor Messages (3000-3999) 159

Explanation
The correct syntax is SQL TYPE IS XML AS
type(length).

IBM3758I S SQL TYPE IS XML AS type name
must have an integer specifying its
length after the opening left
parenthesis.

Explanation
The correct syntax is SQL TYPE IS XML AS
type(length).

IBM3759I S SQL TYPE IS XML AS type name
must have a closing right
parenthesis after the integer
specifying its length.

Explanation
The correct syntax is SQL TYPE IS XML AS
type(length).

IBM3760I S Too few arguments have been
specified for the ENTRY ENTRY
name.

Explanation
The number of arguments must match the number of
parameters in the ENTRY declaration.

IBM3761I S Procedures may not be nested.

Explanation
Macro procedures may not be nested.

IBM3762I S No percent statements are
allowed inside procedures.

Explanation
Inside a procedure, statements should not begin with
a percent. The %DCL in the example below should be
just DCL.

 %a: proc(x) returns(char);
 %dcl x char;
 return('<' || x || '>');
 %end;

IBM3763I S Not enough virtual memory is
available to continue the compile.

Explanation
The compilation requires more virtual memory than is
available. It may help to specify one or more of the
following compiler options: NOINSOURCE, NOXREF,
NOATTRIBUTES, and/or NOAGGREGATE

IBM3764I S BUILTIN name argument must be a
parameter.

Explanation
An expression contains the named built-in function
with an argument that is not a parameter.

IBM3765I S BUILTIN name argument must be a
reference.

Explanation
An expression contains the named built-in function
with an argument that is not a reference.

IBM3766I S Aggregate contains more than 15
logical levels.

Explanation
The maximum physical level allowed is 255, but the
maximum logical level is 15.

IBM3767I S Length in SQL TYPE IS type name
must be greater than zero.

Explanation
The length in BIN, VARBIN, BLOB, CLOB, and DBCLOB
types must be positive.

IBM3768I S The use of asterisks as subscripts
is not permitted in the macro
facility.

Explanation
In the macro facility, all subscripts must be scalar
expressions.

IBM3769I S Argument to BUILTIN name built-in
must have type CHARACTER(1)
NONVARYING.

Explanation
This applies to the RANK built-in function.

IBM3770I S First argument to BUILTIN name
built-in must be an array.

160 Enterprise PL/I for z/OS IBM Developer for z/OS PL/I for Windows: Enterprise PL/I for z/OS Messages and
Codes

Explanation
An expression contains the named built-in function
with a first argument that is not an array. This message
applies, for instance, to the DIMENSION, HBOUND,
and LBOUND built-in functions.

IBM3771I S note

Explanation
This message is used by %NOTE statements with a
return code of 12.

IBM3772I S Third argument to BUILTIN name
built-in would force
STRINGRANGE.

Explanation
If a third argument is given for one of the built-in
functions INDEX or VERIFY, it must be positive.

IBM3773I S Second argument to BUILTIN name
built-in must be nonnegative.

Explanation
The second argument for the built-in functions
CHARACTER, BIT, and GRAPHIC must be zero or
greater.

IBM3774I S Too few arguments have been
specified for the BUILTIN name
built-in.

Explanation
Supply the minimum number of arguments required.

IBM3775I S The preprocessor name
preprocessor requires the
DFT(EBCDIC) option.

Explanation
The use of the DFT(ASCII) option with either the CICS
or SQL preprocessor is not supported.

IBM3778I S Syntax of the %INCLUDE
statement is incorrect.

Explanation
%INCLUDE must be followed by a name and either a
semicolon or else a second name in parenthesis and
then a semicolon.

IBM3779I S File specification after %INCLUDE
is too long.

Explanation
The maximum length of the file specification is 8
characters.

IBM3780I S File specification missing after
%INCLUDE.

Explanation
%INCLUDE must be followed by a file name, not just a
semicolon.

IBM3781I S Procedures may have no more
than 63 parameters.

Explanation
The excess parameters will be removed from the proc
statement.

IBM3782I S SQL TYPE IS XML must be
followed by the keyword AS.

Explanation
The correct syntax is SQL TYPE IS XML AS
type(length).

IBM3783I S SQL TYPE IS XML AS must be
followed by a valid type name.

Explanation
The correct syntax is SQL TYPE IS XML AS
type(length).

IBM3784I S SQL TYPE IS TABLE must be
followed by the keyword LIKE.

Explanation
The correct syntax is SQL TYPE IS TABLE LIKE table-
name AS LOCATOR.

IBM3785I S SQL TYPE IS TABLE LIKE must be
followed by a table name.

Explanation
The correct syntax is SQL TYPE IS TABLE LIKE table-
name AS LOCATOR.

IBM3786I S SQL TYPE IS TABLE LIKE must be
followed by the keyword AS after
the table name.

Explanation
The correct syntax is SQL TYPE IS TABLE LIKE table-
name AS LOCATOR.

Chapter 5. MACRO, CICS, and SQL Preprocessor Messages (3000-3999) 161

IBM3787I S SQL TYPE IS TABLE must be
followed by the keyword LOCATOR
after the table name and the AS
keyword.

Explanation
The correct syntax is SQL TYPE IS TABLE LIKE table-
name AS LOCATOR.

IBM3788I S SQL TYPE IS must be followed by a
valid type name.

Explanation
The keywords SQL TYPE IS must be followed by a type
name such as XML.

IBM3789I S Index number index number into
the variable variable name is less
than the lower bound for that
dimension.

Explanation
Executing such a statement would most likely cause a
protection exception.

 %dcl a(5:10) fixed;

 %a(1) = 0;

IBM3790I S Index number index number into
the variable variable name is
greater than the upper bound for
that dimension.

Explanation
Executing such a statement would most likely cause a
protection exception.

 %dcl a(5:10) fixed;

 %a(20) = 0;

IBM3791I S Each dimension of an array must
contain no more than 2147483647
elements.

Explanation
It must be possible to compute the value of the
DIMENSION built-in function for an array. For example,
in DECLARE A(x:y), (y-x+1) must be less than
214748648.

IBM3792I S Array variable name has too many
elements. Bounds set to 1.

Explanation
Arrays are limited to 2**20 elements.

IBM3793I S Too few subscripts specified for
the variable variable name.

Explanation
The number of subscripts given for a variable must
match that variable's number of dimensions

IBM3794I S Too many subscripts specified for
the variable variable name.

Explanation
The number of subscripts given for a variable must
match that variable's number of dimensions

IBM3795I S Shift-out code has no closing shift-
in code before the right margin.

Explanation
Every DBCS shift-out code between the margins must
have a matching DBCS shift-in code also between the
margins.

IBM3796I S Array expressions cannot be
assigned to non-arrays, and if any
target in a multiple assignment is
an array, then all the targets must
be arrays.

Explanation
Array expressions may not, for instance, be assigned
to structures or scalars.

IBM3797I S RETURN statement without an
expression is invalid inside a
PROCEDURE that specified the
RETURNS attribute.

Explanation
All RETURN statements inside functions must specify
a value to be returned.

 %a: proc returns(fixed);

 return;
 %end;

IBM3798I S RETURN statement with an
expression is invalid inside a

162 Enterprise PL/I for z/OS IBM Developer for z/OS PL/I for Windows: Enterprise PL/I for z/OS Messages and
Codes

PROCEDURE that did not specify
the RETURNS attribute.

Explanation
A statement of the form RETURN(x) is valid inside only
PROCEDUREs that are defined with a RETURNS
attribute.

 %a: proc;

 return('this is invalid');
 %end;

IBM3799I S The DECLARE statement for the
host variable reference is not
inside an SQL DECLARE SECTION.

Explanation
Under the SQL option STDSQL(YES), all host variables
must be declared between SQL BEGIN DECLARE
SECTION and SQL END DECLARE SECTION
statements.

IBM3800I S Function function name contains
no RETURN statement.

Explanation
Functions must contain at least one RETURN
statement.

IBM3801I S Target in assignment is invalid.

Explanation
The target in an assignment must be character or fixed
element reference. Pseudovariables are not
supported.

IBM3802I S Statement labels may not be used
in expressions.

Explanation
Statement labels must be used only in GOTO, LEAVE
and ITERATE statements.

IBM3803I S Target in concatenate-equals
assignment must have type char.

Explanation
Compound concatenate assignments with fixed targets
are not supported.

 %dcl a fixed;

 %a = '0';
 %a ||= '1';

IBM3804I S Target in arithmetic-equals
assignment must have type fixed.

Explanation
Compound arithmetic assignments with character
targets are not supported.

 %dcl a char;

 %a = '0';
 %a += '1';

IBM3805I S SQL TYPE IS XML type must be
followed by the keyword LARGE.

Explanation
The correct syntax is SQL TYPE IS XML AS type LARGE
OBJECT(length).

IBM3806I S SQL TYPE IS XML type LARGE
must be followed by the keyword
OBJECT.

Explanation
The correct syntax is SQL TYPE IS XML AS type LARGE
OBJECT(length).

IBM3807I S SQL TYPE IS CHARACTER must be
followed by the keyword LARGE.

Explanation
The correct syntax is SQL TYPE IS CHARACTER LARGE
OBJECT(length).

IBM3808I S SQL TYPE IS BINARY must be
followed by the keyword LARGE or
by a length enclosed in
parentheses.

Explanation
The correct syntax is SQL TYPE IS BINARY LARGE
OBJECT(length) or SQL TYPE IS BINARY(length).

IBM3809I S SQL TYPE IS type LARGE must be
followed by the keyword OBJECT.

Explanation
The correct syntax is SQL TYPE IS type LARGE
OBJECT(length).

Chapter 5. MACRO, CICS, and SQL Preprocessor Messages (3000-3999) 163

IBM3810I S Statement has too many labels.

Explanation
The compiler's limit on the number of labels on a
statement has been exceeded. Reduce the number of
labels on the statement.

IBM3811I S Expression contains too many
nested subexpressions.

Explanation
The compiler's space for evaluating expressions has
been exhausted. Rewrite the expression in terms of
simpler expressions.

IBM3812I S Result of concatenating a string of
length string length to a string of
length string length would produce
a string that is too long.

Explanation
The result of a concatenation must not have a length
greater than the maximum allowed for a string.

IBM3813I S Result of BUILTIN name applied
repetition value times to a string of
length string length would produce
a string that is too long.

Explanation
The result of COPY and REPEAT must not have a length
greater than the maximum allowed for a string.

IBM3814I S Unsupported use of aggregate
expression.

Explanation
The only valid aggregate expression is the use of an
array name as the first argument to the HBOUND or
LBOUND built-in functions.

IBM3815I S Operand in bit operation must
have length less than 32768.

Explanation
Bit operations are limited to strings of length 32767 or
less.

IBM3816I S Second and third arguments to the
TRANSLATE built-in function must
have length less than 32768.

Explanation
The TRANSLATE built-in function is not supported if
the second or third argument is longer than 32767
characters.

IBM3817I S Result of BUILTIN name would
exceed maximum string length.

Explanation
The result of a COMMENT or QUOTE built-in function
must not be a string that would have length greater
than the supported maximum.

IBM3820I S Under the INCONLY option, the
use of INCLUDE or XINCLUDE as a
macro procedure name is invalid
unless the colon follows
immediately after the name.

Explanation
If you must use INCLUDE or XINCLUDE as a macro
name, put the colon on the same line as the name.

IBM3821I S Under the INCONLY option, the
use of INCLUDE or XINCLUDE as a
macro statement label is invalid
unless the colon follows
immediately after the name.

Explanation
If you must use INCLUDE or XINCLUDE as a macro
statement label, put the colon on the same line as the
name.

IBM3822I S Under the INCONLY option, the
use of INCLUDE or XINCLUDE as a
macro variable that is the target of
an assignment is invalid unless the
equals sign follows immediately
after the name.

Explanation
If you must use INCLUDE or XINCLUDE as a macro
variable name, put the equals sign in the assignment
on the same line as the name. For example, change the
first assignment below into the second.

 %xinclude
 = 17;

 %xinclude = 17;

IBM3823I S A QUALIFY block may contain only
DEFINE statements, DECLARE

164 Enterprise PL/I for z/OS IBM Developer for z/OS PL/I for Windows: Enterprise PL/I for z/OS Messages and
Codes

statements, and nested QUALIFY
blocks.

Explanation
DEFAULT statements, for example, are not allowed in
QUALIFY blocks.

IBM3824I S A name declared in a QUALIFY
block must be a scalar.

Explanation
A DECLARE statement in a QUALIFY block cannot
specify a structure, union or array.

IBM3825I S A name declared in a QUALIFY
block must have the VALUE
attribute.

Explanation
A DECLARE statement in a QUALIFY block cannot
specify a variable or a constant unless it has the VALUE
attribute.

IBM3826I S The type name type name is
ambiguous.

Explanation
Enough qualification must be provided to make any
type reference unique.

IBM3827I S type name is a type name, but not
the name of an ORDINAL type.

Explanation
In a declare statement that specifies ORDINAL x, x
must be the name of an ORDINAL type.

IBM3837I S GOTO target is inside a (different)
DO loop.

Explanation
The target of a GOTO cannot be inside a DO loop
unless the GOTO itself is in the same DO loop.

IBM3841I S The INCLUDE file include-file-name
could not be opened.

Explanation
The INCLUDE file could not be found, or if found, it
could not be opened.

IBM3842I S Statements are nested too deep.

Explanation
The nesting of PROCEDURE, DO, SELECT and similar
statements is greater than that supported by the
compiler. Rewrite the program so that it is less
complicated.

IBM3844I S The function name built-in is not
supported.

Explanation
Support for the indicated built-in function has been
discontinued.

IBM3846I S The keyword statement is not
supported.

Explanation
Support for the indicated statement has been
discontinued.

IBM3848I S Use of iSUB is not supported.

Explanation
iSUB is only supported in syntax checking.

IBM3849I S type name is not a type name.

Explanation
If TYPE x is used in a declaration, x must be a defined
type.

IBM3850I S TYPEs must be defined before
their use.

Explanation
The DEFINE STRUCTURE or DEFINE ALIAS statement
for a type x must precede any of use of x as attribute
type. The following two statements should be in the
opposite order.

 dcl x type point;

 define structure
 1 point
 2 x fixed bin(31),
 2 y fixed bin(31);

IBM3851I S INITIAL values for type type type
type name must be in increasing
order.

Chapter 5. MACRO, CICS, and SQL Preprocessor Messages (3000-3999) 165

Explanation
Any values specified in INITIAL clauses in an ORDINAL
definition must be in strictly increasing order.

IBM3852I S INITIAL values for type type type
type name must be less than 2G.

Explanation
ORDINAL values must fit in the range of a FIXED
BIN(31) variable.

IBM3853I S Nesting of DO statements exceeds
the maximum.

Explanation
DO statements can be nested only 100 deep. Simplify
the program.

IBM3854I S Nesting of IF statements exceeds
the maximum.

Explanation
IF statements can be nested only 100 deep. Simplify
the program.

IBM3855I S Nesting of SELECT statements
exceeds the maximum.

Explanation
SELECT statements can be nested only 50 deep.
Simplify the program.

IBM3856I S Nesting of blocks exceeds the
maximum.

Explanation
Blocks must be nested only 30 deep.

IBM3857I S Only one description is allowed in
a structure definition.

Explanation
The syntax allows the name in a structure definition to
be followed by a description list, but that description
list must consist of exactly one structure description.
The following is invalid:

 define structure
 1 point
 2 x fixed bin(31),
 2 y fixed bin(31),
 1 rectangle
 2 upper_left type point,

 2 lower_right type point;

IBM3858I S All the names in the ORDINAL
ordinal-name have been previously
declared.

Explanation
None of the names in an ORDINAL should have been
declared elsewhere. If they are, perhaps the ORDINAL
definition has been accidentally repeated.

IBM3859I S Storage attributes are invalid in
structure definition.

Explanation
Storage attributes, such as AUTOMATIC and BYADDR,
must be specified with variables declared with
structure type.

IBM3860I S DEFINE STRUCTURE may not
specify an array of structures.

Explanation
The level 1 name in a structure definition may not have
the DIMENSION attribute.

IBM3861I S Open of dbrm dataset failed.

Explanation
The open of the .dbrm dataset to be used by the SQL
preprocessor failed. A possible cause might be lack of
write authoriy to the compile directory.

IBM3862I S Dynamic allocation of DBRMLIB
failed with the SVC 99 info code
info-code and the SVC 99 error
code error-code .

Explanation
The dynamic allocation of the DBRMLIB failed with the
indicated SVC 99 info and error codes.

IBM3863I S The DBRMLIB compiler option
must be specified.

Explanation
In order to perform a compile using the SQL
preprocessor without the INCONLY option, your must
specify the DBRMLIB compiler option.

IBM3870I S The FETCH of the CICS backend
failed.

166 Enterprise PL/I for z/OS IBM Developer for z/OS PL/I for Windows: Enterprise PL/I for z/OS Messages and
Codes

Explanation
Check that the CICS modules are accessible,
otherwise report this error to IBM.

IBM3871I S The CICS backend reported an
internal error while attempting to
perform its initialization.

Explanation
Report this error to IBM.

IBM3872I S The CICS backend reported an
internal error while attempting to
parse its options.

Explanation
Report this error to IBM.

IBM3873I S The CICS backend reported an
internal error while attempting to
build and emit the local declares.

Explanation
Report this error to IBM.

IBM3874I S The CICS backend reported an
internal error while attempting to
translate an EXEC statement.

Explanation
Report this error to IBM.

IBM3875I S The CICS backend reported an
internal error while attempting to
translate a CICS macro (such as
DFHVALUE).

Explanation
Report this error to IBM.

IBM3876I S The CICS backend reported an
internal error while attempting to
perform its termination.

Explanation
Report this error to IBM.

IBM3877I S The SQL backend reported an
internal error while attempting to
perform its initialization.

Explanation
Report this error to IBM.

IBM3878I S SQL initialization did not complete
successfully.

Explanation
See the additional messages produced by the SQL
backend.

IBM3880I S The reference reference could not
be resolved.

Explanation
All SQL host variables must be declared within the
current block scope.

IBM3881I S The reference reference is
ambiguous.

Explanation
All SQL host variables must be unambiguous. This can
be fixed by supplying enough structure qualification.

IBM3882I S The indicator array reference must
have only one dimension.

Explanation
An indicator array in an EXEC SQL statement must not
be multi-dimensional.

IBM3883I S The indicator array reference must
have constant bounds.

Explanation
An indicator array in an EXEC SQL statement must
have bounds that are specified simply as optionally
signed integers.

IBM3884I S The indicator variable reference is
used with a structure and hence
must be an array or a structure.

Explanation
An indicator variable for a structure in an EXEC SQL
statement must be an array or a structure.

IBM3885I S The host variable host-variable
must have only one dimension.

Explanation
A host variable in an EXEC SQL statement must not be
multi-dimensional.

IBM3886I S The host variable host-variable
must have constant bounds.

Chapter 5. MACRO, CICS, and SQL Preprocessor Messages (3000-3999) 167

Explanation
A host variable in an EXEC SQL statement must have
bounds that are specified simply as optionally signed
integers.

IBM3887I S The host variable host-variable
must be CONNECTED.

Explanation
A host variable in an EXEC SQL statement must be
one-dimensional and that dimension must not be
specified on a parent unless the parent has the
DIMACROSS attribute.

IBM3888I S The reference host-reference has
no corresponding DB2 type.

Explanation
All SQL host variables must have a corresponding DB2
type. For example, while FIXED DEC(7,-2) is valid in a
PL/I declaration, there is no corresponding DB2 type
because DB2 requires that in FIXED DEC(p,q), q is non-
negative and no greater than p.

IBM3889I S The reference host-reference is a
union and thus must not be used
as a host variable.

Explanation
All SQL host variables must have a corresponding DB2
type. There is no type matching a union.

IBM3890I S The reference host-reference is an
array of structures and thus must
not be used as a host variable.

Explanation
A structure may be used as a host variable only if it is
not an array.

IBM3891I S Since the structure reference host-
reference contains an array, it must
not have an indicator that is a
scalar or an array of scalars.

Explanation
A structure containing an array may be used as a host
variable with an indicator variable only if that indicator
variable is a similar structure.

IBM3892I S The reference host-reference
contains a substructure and thus
must not be used as a host
variable.

Explanation
A structure may be used as a host variable only if none
of its members are structures.

IBM3893I S The reference host-reference
contains unnamed elements and
thus must not be used as a host
variable.

Explanation
A structure may be used as a host variable only if all of
its members are named.

IBM3894I S The indicator variable reference
must be FIXED BIN(15).

Explanation
An indicator variable must be a native, real halfword
integer.

IBM3895I S The indicator variable reference is
used with an array and hence must
be an array as well.

Explanation
An indicator variable in an EXEC SQL statement must
be an array if it is used with an array.

IBM3896I S The VALUE reference host-
reference could not be reduced to a
character literal and thus must not
be used as a host variable.

Explanation
A reference with the VALUE attribute may be used as a
host variable with the SQL characterl type if it can be
reduced to a CHARACTER literal. See the Programming
Guide for more details.

IBM3897I S The VALUE reference host-
reference could not be reduced to a
numeric literal and thus must not
be used as a host variable.

Explanation
A reference with the VALUE attribute may be used as a
host variable with the SQL integer or decimal type if it
can be reduced to a REAL FIXED literal. See the
Programming Guide for more details.

IBM3898I S The VALUE reference host-
reference does not have character,
integer or decimal type and thus
must not be used as a host
variable.

168 Enterprise PL/I for z/OS IBM Developer for z/OS PL/I for Windows: Enterprise PL/I for z/OS Messages and
Codes

Explanation
A reference with the VALUE attribute may be used as a
host variable only if it has a SQL type of character,
integer or decimal.

IBM3899I S The reference reference name is
ambiguous.

Explanation
Enough qualification must be provided to make any
reference unique.

IBM3900I S The dot-qualified reference
reference name is unknown.

Explanation
The named reference is not a member of any structure
or union declared in the block in which it is referenced
or declared in any block containing that block.

IBM3901I S The element reference name in the
indicator structure must have the
same array bounds as the
corresponding element in the host
structure.

Explanation
In :x:y, if x and y are both structures, then for any
element of y that is an array, the corresponding
element of x must be an array with the same bounds
and vice versa.

IBM3902I S Argument to the BUILTIN name
built-in must be a structure.

Explanation
The argument to the named built-in subroutine must
be a structure.

IBM3903I S The indicator reference name must
not be a uinon.

Explanation
In :x:y, y must not be a union.

IBM3909I S The attribute attribute conflicts
with the attribute attribute.

Explanation
The named attributes, for example PARAMETER and
INITIAL, are mutually exclusive.

IBM3911I S The statement label identifier has
already been declared.

Explanation
All statement labels in any block must be unique.

IBM3914I S GOTO target must be a LABEL
reference.

Explanation
x in GOTO x must have type LABEL. x must not have
type FORMAT.

IBM3915I S GOTO target must be a scalar.

Explanation
x in GOTO x must not be an array.

IBM3916I S The procedure proc-name has
already been defined.

Explanation
Sister procedures must have different names.

 % b: proc;
 % end;
 % b: proc;
 % end;

IBM3917I S Program contains no valid source
lines.

Explanation
The source contains either no statements or all
statements that it contains are invalid.

IBM3920I S FIXED BINARY constant contains
too many digits.

Explanation
A FIXED BINARY constant must contain 31 or fewer
digits.

IBM3921I S FIXED DECIMAL constant contains
too many significant digits.

Explanation
The maximum precision of FIXED DECIMAL constants
is set by the FIXEDDEC suboption of the LIMITS
compiler option.

IBM3922I S Exponent in FLOAT BINARY
constant contains more digits than
the implementation maximum.

Chapter 5. MACRO, CICS, and SQL Preprocessor Messages (3000-3999) 169

Explanation
The exponent in a FLOAT BINARY constant may
contain no more than 5 digits.

IBM3923I S Mantissa in FLOAT BINARY
constant contains more significant
digits than the implementation
maximum.

Explanation
The mantissa in a FLOAT BINARY constant may
contain no more than 64 digits.

IBM3924I S Exponent in FLOAT DECIMAL
constant contains more digits than
the implementation maximum.

Explanation
The exponent in a FLOAT BINARY constant may
contain no more than 4 digits.

IBM3925I S Mantissa in FLOAT DECIMAL
constant contains more significant
digits than the implementation
maximum.

Explanation
The mantissa in a FLOAT BINARY constant may
contain no more than 18 digits.

IBM3926I S Constants must not exceed 30720
bytes.

Explanation
The number of bytes used to represent a constant in
your program must not exceed 30720. This limit holds
even for bit strings where the internal representation
will consume only one-eighth the number of bytes as
the external representation does.

IBM3927I S Numeric constants must be real,
unscaled and fixed.

Explanation
Any complex, scaled or floating point constant will be
converted to an integer value.

 %a = 3.1415;

IBM3928I S Only B, BX and X string suffixes
are supported.

Explanation
G, GX, M, A and E string suffixes are not supported.

 %a = '31'e;

IBM3929I S EXEC SQL statement must be in a
PROCEDURE.

Explanation
The only EXEC SQL statements allowed at the
PACKAGE level are EXEC SQL BEGIN DECLARE
SECTION, EXEC SQL END DECLARE SECTION,
nonexecutable EXEC SQL DECLARE, and EXEC SQL
INCLUDE other than EXEC SQL INCLUDE SQLCA and
EXEC SQL INCLUDE SQLDA.

IBM3930I S Invalid syntax in statement-form
of procedure invocation. Text up to
next semicolon will be ignored.

Explanation
In the invocation of a statement-form procedure, all
characters that are not part of comments or key names
should be enclosed in parentheses following one of
the keys. For example, the "+" in the display statement
below should not be present.

 %a: proc(x) stmt returns(char);
 dcl x char;
 return(1729);
 %end;
 %act a;

 display(a + x(5););

IBM3931I S Under the FIXED(DEC) option,
decimal constants must have no
more than 5 digits.

Explanation
Under the FIXED(BIN), decimal constants that
represent any valid FIXED BIN(31) number are
supported.

IBM3934I S EXEC SQL INCLUDE statement has
incorrect syntax.

Explanation
EXEC SQL INCLUDE must be followed by one identifier
and then by a semicolon.

170 Enterprise PL/I for z/OS IBM Developer for z/OS PL/I for Windows: Enterprise PL/I for z/OS Messages and
Codes

IBM3935I S The FETCH of the SQL backend
failed.

Explanation
Check that the SQL modules are accessible, otherwise
report this error to IBM.

IBM3936I S The SQL backend must be from
DB2 V9 or later.

Explanation
Switch to a more current level of DB2.

IBM3937I S The EXEC SQL statement is too
long.

Explanation
The EXEC SQL statement must be less than 500K
bytes long.

IBM3938I S The EXEC SQL statement has too
many host variables

Explanation
The EXEC SQL statement must use no more than 1500
host variables.

IBM3939I S The DBNAME option must specify
a valid database name.

Explanation
When invoking the SQL preprocessor on Windows or
AIX, the DBNAME option must be specified, and the
option must specify a valid database name.

IBM3943I S The number of error messages
allowed by the FLAG option has
been exceeded.

Explanation
Compilation will terminate when the number of
messages has exceeded the limit set in the FLAG
compiler option.

IBM3948I S condition-name condition with
ONCODE=oncode-value raised
while evaluating expression.

Explanation
Evaluation of an expression raised the named
condition.

 %a = a / 0;

IBM3949I S Parameter name identifier appears
more than once in parameter list.

Explanation
Each identifier in a parameter list must be unique.

 a: proc(b, c, b);

IBM3950I S An asterisk iteration factor can be
applied only to the last expression
in the INITIAL item list for
variable-name.

Explanation
Since an asterisk iteration factor completes the
initialization of a variable, it cannot be followed by
more initial values.

 %dcl a(10) fixed init(1, 2, (*) 0, 8);

IBM3951I S An asterisk iteration factor cannot
be used in the nested INITIAL
item list for variable-name.

Explanation
An asterisk iteration can be used only in a non-nested
INITIAL item list. The following example is invalid.

 %dcl a(20) fixed init((2) (1, (*) 2));

IBM3952I S INITIAL attribute on the
parameter variable-name is
invalid.

Explanation
A parameter cannot have an INITIAL attribute.

IBM3953I S INITIAL list contains count items,
but the array variable name
contains only array size. Excess is
ignored.

Explanation
For an array, an INITIAL list should not contain more
values than the array has elements.

Chapter 5. MACRO, CICS, and SQL Preprocessor Messages (3000-3999) 171

 %dcl b(5) init((10) 0);

IBM3956I S ITERATE is valid only for iterative
DO-groups.

Explanation
ITERATE is not valid inside type-I do groups.

IBM3957I S RETURN statement outside of a
PROCEDURE is invalid.

Explanation
RETURN statements are valid only inside procedures.

IBM3958I S INCLUDE statement inside of a
PROCEDURE is invalid.

Explanation
INCLUDE statements are permitted only outside any
preprocessor procedures.

 %a: proc;
 include sample;
 %end;

IBM3959I S Length of parameter exceeds
32767 bytes.

Explanation
Parameters to macro procedures must be no longer
than 32767 bytes.

IBM3960I S End-of-source has been
encountered after an unmatched
comment marker.

Explanation
An end-of-comment marker is probably missing.

IBM3961I S End-of-source has been
encountered after an unmatched
quote.

Explanation
A closing quote is probably missing.

IBM3962I S Replacement value contains no
end-of-comment delimiter. A
comment delimiter will be

assumed at the end of the
replacement value.

Explanation
An end-of-comment marker is probably missing.

IBM3963I S Replacement value contains no
end-of-string delimiter. A string
delimiter will be assumed at the
end of the replacement value.

Explanation
A closing quote is probably missing.

IBM3964I S ANSWER statement outside of a
PROCEDURE is invalid.

Explanation
ANSWER statements are valid only inside procedures.

IBM3965I S ANSWER statement inside of a
PROCEDURE with RETURNS is
invalid.

Explanation
ANSWER statements are not valid inside functions.

 %a: proc returns(char);
 answer('this is invalid');
 return('this is ok however');
 %end;

 %b: proc;
 answer('this is valid');
 %end;

IBM3966I S Source has caused too many
rescans.

Explanation
A rescan of a replacement string or a rescan of a string
returned by a preprocessor has caused further
replacement leading to another rescan etc., and the
maximum depth of rescanning was exceeded. For
instance, the following macro, which is meant to count
the number of dcl statements in a compilation, would
produce this message. If the %ACTIVATE statement
specified NORESCAN, it would work correctly.

 %dcl dcl_Count fixed;
 %dcl_Count = 0;

 %dcl: proc returns(char);
 dcl_count = dcl_count + 1;
 return('dcl');

172 Enterprise PL/I for z/OS IBM Developer for z/OS PL/I for Windows: Enterprise PL/I for z/OS Messages and
Codes

 %end;

 %activate dcl;

IBM3967I S CALL statement outside of a
PROCEDURE is invalid.

Explanation
CALL statements are valid only when they are inside
macro procedures.

IBM3968I S CALL reference is undefined.

Explanation
CALL reference must be a declared macro procedure.

IBM3969I S CALL reference is not a macro
entry.

Explanation
CALL reference must be a declared macro procedure.

IBM3970I S CALL reference must not be a
function.

Explanation
A CALL reference must not have the RETURNS
attribute.

IBM3971I S CALL reference must not have the
STATEMENT option.

Explanation
A CALL reference must not have the STATEMENT
option.

IBM3972I S End-of-file has been encountered
after an unmatched comment
marker.

Explanation
An end-of-comment marker is probably missing.

IBM3973I S End-of-file has been encountered
after an unmatched quote.

Explanation
A closing quote is probably missing.

IBM3974I S Every shift-in character after the
left margin of a source line must
have a matching shift-out
character before the right margin
of the same line.

Explanation
DBCS shift codes must be paired.

IBM3975I S Every shift-in character within a
string generated for rescan must
have a matching shift-out
character within that same string.

Explanation
DBCS shift codes must be paired.

IBM3976I S DBCS characters are allowed only
in G and M constants.

Explanation
Hex strings (strings ending in one of the suffixes X, BX,
B4, GX or XN), bit strings, (strings ending in the suffix
B), and character strings not ending in the suffix M
must contain only SBCS characters.

IBM3977I S SBCS characters are not allowed
in G constants.

Explanation
Mixed SBCS and DBCS is allowed only in M constants.

IBM3978I S Invalid use of SBCS encoded as
DBCS.

Explanation
Outside of comments, SBCS can be encoded as DBCS
only as part of an identifier.

IBM3979I S UX literal specifies an invalid
UTF-8 string.

Explanation
Not all hex strings represent valid UTF-8 strings. For
more details on valid UTF-8 strings, see the LRM and
the text describing the UVALID built-in function.

IBM3980I S Recursion of procedures is not
allowed.

Explanation
A procedure must not invoke itself directly or
indirectly.

IBM3981I S BUILTIN function may not be used
outside a procedure.

Chapter 5. MACRO, CICS, and SQL Preprocessor Messages (3000-3999) 173

Explanation
The named built-in function may be used only inside
procedures.

IBM3982I S Procedure procedure-name is
undefined and cannot be invoked.

Explanation
A procedure must be defined (correctly) before it can
be invoked.

IBM3983I S Premature end-of-source in scan.

Explanation
The source ended during a scan when a right
parenthesis or semicolon was required.

 %a: proc() stmt returns(char);
 return('1729');
 %end;
 %dcl a entry;

 a /* and no more source follows */

IBM3984I S File filename could not be opened.

Explanation
The named source file could not be opened. Make sure
that the file is named correctly, that it exists and that it
is readable.

IBM3985I S Semicolon found before required
closing right parenthesis.

Explanation
A statement contained a semicolon before a right
parenthesis which is needed to match an earlier left
parenthesis in the statement.

 select(a ;);

IBM3986I S IF statement syntax is invalid.

Explanation
A statement that appears to be an IF statement has
invalid syntax.

 if a > 0 ; then

IBM3987I S Statement must start with a
keyword or assignment target.

Explanation
After any condition prefixes and labels, statements
must start with either a keyword or, if the statement is
an assignment statement, it must start with an
identifier or BIND reference. The flagged statement
starts with some other lexical element. This may
indicate that a semicolon that is meant for the
previous statement is misplaced or that an element of
this statement has been erroneously omitted.

 a =0 b; = a;

IBM3988I S Statement has invalid syntax.

Explanation
The flagged statement is not valid PL/I. This may
indicate that a semicolon that is meant for the
previous statement is misplaced or that an element of
this statement has been erroneously omitted.

 put skip garbage;

IBM3993I S Internal preprocessor error:
assertion failed on line source line
in procedure name in package
name

Explanation
This message indicates that there is an error in the
preprocessor. Report the problem to IBM.

IBM3994I S Source is not valid UTF-8.

Explanation
The source file contains lines that would be rejected
by the UVALID built-in function.

IBM3995I S Generated text contains invalid
UTF-8.

Explanation
The text produced by an ANSWER or RETURNS
statement would be rejected by the UVALID built-in
function.

174 Enterprise PL/I for z/OS IBM Developer for z/OS PL/I for Windows: Enterprise PL/I for z/OS Messages and
Codes

IBM3996I S Internal preprocessor error:
protection exception in module
name.

Explanation
This message indicates that there is an error in the
preprocessor. Report the problem to IBM.

IBM3997I S Internal preprocessor error: no
WHEN clause satisfied within
module name.

Explanation
This message indicates that there is an error in the
preprocessor. Report the problem to IBM.

IBM3998I S note

Explanation
This message is used to report DB2 or CICS backend
messages with a return code of 16.

IBM3999I U note

Explanation
This message is used by %NOTE statements with a
return code of 16.

Chapter 5. MACRO, CICS, and SQL Preprocessor Messages (3000-3999) 175

176 Enterprise PL/I for z/OS IBM Developer for z/OS PL/I for Windows: Enterprise PL/I for z/OS Messages and
Codes

Chapter 6. Code Generation Messages (5000-5999)

IBM5001 INTERNAL COMPILER ERROR: text

Explanation
An internal compiler error occurred during
compilation.

Contact your Service Representative.

IBM5002 Virtual storage exceeded.

Explanation
The compiler ran out of memory trying to compile the
file. This sometimes happens with large files or
programs with large functions. Note that very large
programs limit the amount of optimization that can be
done.

Shut down any large processes that are running,
ensure your swap path is large enough, turn off
optimization, and redefine your virtual storage to a
larger size. You can also divide the file into several
small sections or shorten the function.

IBM5003 text

Explanation
General error message.

IBM5031 Unable to open file filename.

Explanation
The compiler could not open the specified file.

Ensure the file name is correct. Ensure that the correct
file is specified. If the file is located on a LAN drive,
ensure the LAN is working properly. Also, the file may
be locked by another process or access may be denied
because of insufficient permission.

IBM5032 An error occurred while reading
file filename.

Explanation
The compiler detected an error while reading from the
specified file.

Ensure that the correct file is being read and has not
been damaged. If the file is located on a LAN drive,
ensure the LAN is working properly.

IBM5033 An error occurred while writing to
file filename.

Explanation
The compiler detected an error while writing to the
specified file.

Ensure that the correct file is specified. If the file is
located on a LAN drive, ensure the LAN is working
properly.

IBM5034 Read-only pointer initialization of
dynamically allocated object name
is not valid.

Explanation
The value of a read-only pointer must be known at
compile time; a pointer cannot be read-only and point
to a dynamically allocated object at the same time
because the address of the pointee is known at run
time only.

Modify the code so that the pointer is initialized with a
read-only value or make the pointer read-write.

IBM5051 Function function-name exceeds
size limit.

Explanation
The ACU for the function exceeds the LIMIT specified
in the INLINE suboption.

Increase LIMIT if feasible to do so.

IBM5052 Function function-name is (or
grows) too large to be inlined.

Explanation
A function is too large to be inlined into another
function.

IBM5053 Some calls to function function-
name cannot be inlined.

Explanation
At least one call is either directly recursive, or the
wrong number of parameters were specified.

Check all calls to the function specified and make that
number of parameters match the function definition.

IBM5054 Automatic storage for function
function-name increased to over
value.

© Copyright IBM Corp. 1999, 2019 177

Explanation
The size of automatic storage for function increased by
at least 4 KB due to inlining.

Avoid inlining of functions which have large automatic
storage.

IBM5055 Parameter area overflow while
compiling function-name.
Parameter area size exceeds the
allowable limit of value.

Explanation
The parameter area for a function resides in the first
4K of automatic storage for that function. This
message indicates that the parameter area cannot fit
into 4K.

Reduce the size of the parameter area by passing
fewer parameters or by passing the address of a large
structure rather than the structure itself.

IBM5057 name section size cannot exceed
16777215 bytes. Total section size
is value bytes.

Explanation
A Data or Code section cannot exceed 16M in size.

Partition input source files into multiple source files
which can be compiled separately.

IBM5101 Maximum spill size of value is
exceeded in function function-
name.

Explanation
Spill size is the size of the spill area. Spill area is the
storage allocated if the number of machine registers is
not sufficient for program translation.

Reduce the complexity of the program and recompile.

IBM5102 Spill size for function function-
name is not sufficient. Recompile
specifying option SPILL(n) where
lower-limit < n <= upper-limit.

Explanation
Spill size is the size of the spill area. Spill area is the
storage allocated if the number of machine registers is
not sufficient for program translation.

Recompile using the SPILL(n) option lower-limit < n <=
upper-limit or with a different OPT level.

IBM5103 Internal error while compiling
function function-nametext.

Explanation
An internal compiler error occurred during
compilation.

Contact your Service Representative or compile with a
different OPT level.

IBM5104 Internal error while compiling
function function-name text.
Compilation terminated.

Explanation
An internal compiler error of high severity has
occurred.

Contact your Service Representative. Be prepared to
quote the text of this message.

IBM5105 Constant table overflow compiling
function function-name.
Compilation terminated.

Explanation
The constant table is the table that stores all the
integer and floating point constants.

Reduce the number of constants in the program and
recompile.

IBM5106 Instruction in function function-
name on line value is too complex.
Compilation terminated.

Explanation
The specified instruction is too complex to be
optimized.

Reduce the complexity of the instruction and
recompile, or recompile with a different OPT level.

IBM5107 Program too complex in function
function-name.

Explanation
The specified function is too complex to be optimized.

Reduce the complexity of the program and recompile,
or recompile with a different OPT level.

IBM5108 Expression too complex in
function function-name. Some
optimizations not performed.

Explanation
The specified expression is too complex to be
optimized.

178 Enterprise PL/I for z/OS IBM Developer for z/OS PL/I for Windows: Enterprise PL/I for z/OS Messages and
Codes

Reduce the complexity of the expression or compile
with a different OPT level.

IBM5109 Infinite loop detected in function
function-name. Program may not
stop.

Explanation
A loop which may be infinite has been detected in the
given function, and your code may need to be
changed. However, sometimes the compiler will issue
this message when your code is OK. For example, if
the loop is exited via a GOTO out of an ON-unit, the
compiler may issue this message although you would
not need to change your code.

Recode the loop so that it will end.

IBM5110 Loop too complex in function
function-name. Some
optimizations not performed.

Explanation
The specified loop is too complex to be optimized.

No action is required.

IBM5111 Division by zero detected in
function function-name. Runtime
exception may occur.

Explanation
A division by zero has been detected in the given
function.

Recode the expression to eliminate the divide by zero.

IBM5112 Exponent is non-positive with zero
as base in function function-name.
Runtime exception may occur.

Explanation
This is a possible floating-point divide by zero.

Recode the expression to eliminate the divide by zero.

IBM5113 Unsigned division by zero detected
in function function-name.
Runtime exception may occur.

Explanation
A division by zero has been detected in the given
function.

Recode the expression to eliminate the divide by zero.

IBM5114 Internal error while compiling
function function-name text.

Explanation
An internal compiler error of low severity has occurred.

Contact your Service Representative or compile with a
different OPT level.

IBM5115 Control flow too complex in
function function-name ; number
of basic blocks or edges exceeds
value.

Explanation
Basic blocks are segments of executable code without
control flow. Edges are the possible paths of control
flow between basic blocks.

Reduce the complexity of the program and recompile.

IBM5116 Too many expressions in function
function-name ; number of
symbolic registers exceeds value.

Explanation
Symbolic registers are the internal representation of
the results of computations.

Reduce the complexity of the program and recompile.

IBM5117 Too many expressions in function
function-name; number of
computation table entries exceeds
value.

Explanation
The computation table contains all instructions
generated in the translation of a program.

Reduce the complexity of the program and recompile.

IBM5118 Too many instructions in function
function-name; number of
procedure list entries exceeds
value.

Explanation
The procedure list is the list of all instructions
generated by the translation of each subprogram.

Reduce the complexity of the program and recompile.

IBM5119 Number of labels in function
function-name exceeds value.

Explanation
Labels are used whenever the execution path of the
program could change; for example: if statements,
switch statements, loops or conditional expressions.

Chapter 6. Code Generation Messages (5000-5999) 179

Reduce the complexity of the program and recompile.

IBM5120 Too many symbols in function
function-name ; number of
dictionary entries exceeds value.

Explanation
Dictionary entries are used for variables, aggregate
members, string literals, pointer dereferences,
function names and internal compiler symbols.

Compile the program at a lower level of optimization or
simplify the program by reducing the number of
variables or expressions.

IBM5121 Program is too complex in function
function-name. Specify MAXMEM
option value greater than value.

Explanation
Some optimizations not performed.

Recompile specifying option MAXMEM with the
suggested value for additional optimization.

IBM5122 Parameter area overflow while
compiling name. Parameter area
size exceeds value.

Explanation
The parameter area is used to pass parameters when
calling functions. Its size depends on the number of
reference parameters, the number and size of value
parameters, and on the linkage used.

Reduce the size of the parameter area by passing
fewer parameters or by passing the address of a large
structure rather than the structure itself.

IBM5123 Spill size for function function-
name is exceeded. Recompile
specifying option SPILL(n) where
lower-limit < n <= upper-limit for
faster spill code.

Explanation
Spill size is the reserved size of the primary spill area.
Spill area is the storage allocated if the number of
machine registers is not sufficient for program
translation.

Recompile using the SPILL(n) option with lower-limit <
n <= upper-limit for improved spill code generation.

IBM5130 An error occurred while opening
file filename.

Explanation
The compiler could not open the specified file.

Ensure the file name is correct. Ensure that the correct
file is being opened and has not been damaged. If the
file is located on a LAN drive, ensure the LAN is
working properly. Also, the file may be locked by
another process or access may be denied because of
insufficient permission.

IBM5131 An error occurred while writing
file filename.

Explanation
The compiler could not read from the specified file.

Ensure the file name is correct. Ensure that the correct
file is being written to and has not been damaged. If
the file is located on a LAN drive, ensure the LAN is
working properly. Also, the file may be locked by
another process or access may be denied because of
insufficient permission.

IBM5132 An error occurred while closing file
filename.

Explanation
The compiler could not write to the specified file.

Ensure the file name is correct. Ensure that the correct
file is being closed and has not been damaged. If the
file is located on a LAN drive, ensure the LAN is
working properly. Also, the file may be locked by
another process or access may be denied because of
insufficient permission.

IBM5141 Automatic area for function-name
is too large

Explanation
Automatic data resides in the stack; the stack size is
limited by the target machine addressabilty.

Avoid large structures and large arrays as local
variables; try using dynamically allocated data.
Alternatively, try to break down the procedure into
several smaller procedures.

180 Enterprise PL/I for z/OS IBM Developer for z/OS PL/I for Windows: Enterprise PL/I for z/OS Messages and
Codes

Chapter 7. Condition codes

Condition codes listed in this section reflect an aggregate of condition codes generated by all
implementations. Some might not be generated for a particular platform.

A summary of all condition codes are listed in numerical sequence as follows.

Condition codes 1 through 500
3

This condition is raised if, in a SELECT group, no WHEN clause is selected and no OTHERWISE clause is
present.

4
SIGNAL FINISH, or STOP statement executed.

9
SIGNAL ERROR statement executed.

10
SIGNAL NAME statement executed.

20
SIGNAL RECORD statement executed.

21
Record variable smaller than record size. Either:

• The record is larger than the variable in a READ INTO statement; the remainder of the record is lost.
• The record length specified for a file with fixed-length records is larger than the variable in a WRITE,

REWRITE, or LOCATE statement; the remainder of the record is undefined. If the variable is a
varying-length string, RECORD is not raised if the SCALARVARYING option is applied to the file.

22
Record variable larger than record size. Either:

• The record length specified for a file with fixed-length records is smaller than the variable in a READ
INTO statement; the remainder of the variable is undefined. If the variable is a varying-length string,
RECORD is not raised if the SCALARVARYING option is applied to the file.

• The maximum record length is smaller than the variable in a WRITE, REWRITE, or LOCATE
statement. For WRITE or REWRITE, the remainder of the variable is lost; for LOCATE, the variable is
not transmitted.

• The variable in a WRITE or REWRITE statement indicates a zero length; no transmission occurs. If
the variable is a varying-length string, RECORD is not raised if the SCALARVARYING option is applied
to the file.

23
Record variable length is either zero or too short to contain the embedded key.

The variable in a WRITE or REWRITE statement is too short to contain the data set embedded key; no
transmission occurs. (This case currently applies only to indexed key-sequenced data sets.)

24
Zero length record was read from a REGIONAL data set.

40
SIGNAL TRANSMIT statement executed.

41
Uncorrectable transmission error in output data set.

© Copyright IBM Corp. 1999, 2019 181

42
Uncorrectable transmission error in input data set.

43
Uncorrectable transmission error on output to index set.

44
Uncorrectable transmission error on input from index set.

45
Uncorrectable transmission error on output to indexed consecutive data set.

46
Uncorrectable transmission error on input from consecutive data set.

50
SIGNAL KEY statement executed.

51
Key specified cannot be found.

52
Attempt to add keyed record that has same key as a record already present in data set; or, in a
REGIONAL(1) data set, attempt to write into a region already containing a record.

53
Value of expression specified in KEYFROM option during sequential creation of INDEXED or
REGIONAL data set is less than value of previously specified key or region number.

54
Key conversion error, possibly due to region number not being numeric character.

55
Key specification is null string or begins with (8)'1'B or a change of embedded key has occurred on a
sequential REWRITE[FROM] for an INDEXED or key-sequenced data set.

56
Attempt to access a record using a key that is outside the data set limits.

57
No space available to add a keyed record on INDEXED insert.

58
Key of record to be added lies outside the range(s) specified for the data set.

70
SIGNAL ENDFILE statement executed.

80
SIGNAL UNDEFINEDFILE statement executed.

81
Conflict in file attributes exists at open time between attributes in DECLARE statement and those in
explicit or implicit OPEN statement.

82
Conflict between file attributes and physical organization of data set (for example, between file
organization and device type), or indexed data set has not been loaded.

83
After merging ENVIRONMENT options with DD statement and data set label, data set specification is
incomplete; for example, block size or record format has not been specified.

84
No DD statement associating file with a data set.

85
During initialization of a DIRECT OUTPUT file associated with a REGIONAL data set, an input/output
error occurred.

182 Enterprise PL/I for z/OS IBM Developer for z/OS PL/I for Windows: Enterprise PL/I for z/OS Messages and
Codes

86
LINESIZE greater than implementation-defined maximum, or invalid value in an ENVIRONMENT
option.

87
After merging ENVIRONMENT options with DD statement and data set label, conflicts exist in data set
specification; the value of LRECL, BLKSIZE or RECSIZE are incompatible with one another or the DCB
FUNCTION specified.

88
After merging ENVIRONMENT options with DD statement and data set label, conflicts exist in data set
specification; the resulting combination of MODE/FUNCTION and record format are invalid.

89
Password invalid or not specified.

90
SIGNAL ENDPAGE statement executed.

91
ENVIRONMENT option invalid for file accessing indexed data set.

92
The requested data set was not available.

93
Error detected by the operating system while opening a data set.

Subcode1 Meaning

50 A nonexistent ISAM file is being opened for input.

51 An unexpected error occurred when opening an ISAM file. Subcode2 gives the
return code from ISAM.

52, 53 An unexpected error occurred when opening a native or REGIONAL(1) file.

54 A nonexistent BTRIEVE file is being opened for input.

55 An unexpected error occurred when opening a BTRIEVE file. Subcode2 gives
the return code from BTRIEVE.

56 An unexpected error occurred when opening a DDM file.

57, 58 An unexpected error occurred when opening a DDM sequential, DDM relative
or DDM indexed file. Subcode2 gives the return code from DDM.

59 An attempt was made to open a file that was already open.

60 A file of invalid type is being opened. An example of this is opening a VSAM file
under z/OS UNIX System Services. VSAM files are not supported under z/OS
UNIX System Services.

66 Open of a VSAM file failed. Subcode2 gives the feedback code.

76 A retry attempt at opening an SFS file failed.

79 An SFS file opened for input or update could not be found.

119 An unexpected error occurred during dynamic allocation processing for the
file.

120 A parsing error occurred during dynamic allocation processing for the file.

121 An unexpected function was detected during dynamic allocation processing
for the file.

122 An unsupported file mode was detected during dynamic allocation processing
for the file.

Chapter 7. Condition codes 183

Subcode1 Meaning

123 The DDNAME could not be located during dynamic allocation processing for
the file.

94
REUSE specified for a nonreusable data set.

95
Alternate index specified for an index data set is empty.

96
Incorrect environment variable.

97
VSAM server not available to perform the OPEN.

98
Attempt to position the file at the first record failed.

99
File cannot be opened.

Subcode1 Meaning

1 or 2 The extended attributes (EAs) for an existing REGIONAL(1) file could not be
located and no RECCOUNT or RECSIZE values were given via the
ENVIRONMENT or SET DD option.

3 A positioning error occurred for a sequential output file.

4 TYPE (FIXED) was specified for a native file, but the file size was not a multiple
of RECSIZE.

5 or 13 A positioning error occurred for a REGIONAL(1) file.

6 - 12 A positioning error occurred for an output file.

21 - 23 AMTHD(DDM) was specified on the SET DD statement for a file, but the DDM
DDLs (DUBRUN and DUBLDM) could not be found or accessed.

24 Incorrect extended attribute on a DDM file.

25 The ORGANIZATION option of the ENVIRONMENT attribute conflicts with the
type of data set (DDM or native).

26 Conflicts exist with how the file is being used.

27 A composite key was detected with a keyed-opening.

28 - 30 A new DDM file could not be created.

31 A positioning error occurred for a DDM file.

35 AMTHD(BTRIEVE) was specified on the DD environment variable but the
BTRIEVE loadable component (BTRCALLS) could not be found or could not be
accessed on the system.

36 Unexpected error occurred when opening a BTRIEVE file.

37 A new BTRIEVE file could not be created.

38 A positioning error occurred for a BTRIEVE file.

40 AMTHD(ISAM) was specified on the DD environment variable but the ISAM
non-multithreading loadable components (IBMWS20F and IBMWS20G) or the
ISAM multithreading loadable components (IBMWM20F and IBMWM20G)
could not be found or could not be accessed on the system.

41 Unexpected error occurred when opening an ISAM file.

184 Enterprise PL/I for z/OS IBM Developer for z/OS PL/I for Windows: Enterprise PL/I for z/OS Messages and
Codes

Subcode1 Meaning

42 A new ISAM file could not be created.

43 A positioning error occurred for an ISAM file.

60 A file of invalid type is being opened. An example of this is opening a VSAM file
under z/OS UNIX System Services. VSAM files are not supported under z/OS
UNIX System Services.

62 Query for file information failed for a VSAM file under MVS batch.

63 A non-VSAM file is being opened as a VSAM file under MVS batch.

64 A VSAM file is being opened with an invalid type (that is, the file is not a KSDS,
ESDS or RRDS file).

65 A VSAM file is being opened in a non-MVS batch environment. VSAM files are
supported only under MVS batch.

66 Open of a VSAM file failed. Subcode 2 gives the feedback code.

67 A VSAM file is being opened as a non-VSAM file under MVS batch.

68 An invalid VSAM file is being opened.

69 Query for file information failed for a native file under MVS batch.

70 Positioning for a VSAM file failed.

71 A VSAM file is being opened under a non-MVS batch environment.

72 An invalid PL/I file is being opened.

73 The SFS library cannot be loaded.

74 The DCE library cannot be loaded.

75 A new SFS file could not be created.

77 Positioning for an SFS file failed.

78 Not enough storage below the line.

80 There was an error processing an empty VSAM file opened for update. Oncode
82 should have been issued.

110
The specified data set or path name could not be found during dynamic allocation processing for the
file.

111
An invalid keyword was encountered in the environment variable string during dynamic allocation
processing for the file.

112
Conflicting keywords were detected during dynamic allocation processing for the file.

113
A bad delimiter was detected during dynamic allocation processing for the file.

115
The DSN parameter of the environment variable specified a temporary data set name, which is not
supported for dynamic allocation.

116
The PATH parameter of the environment variable did not specify an absolute path name.

117
The data set name specified in the DSN keyword of the environment variable was invalid.

Chapter 7. Condition codes 185

118
The member name specified in the DSN keyword of the environment variable was invalid.

119
The path name specified in the PATH keyword of the environment variable was invalid.

120
An error occurred during the dynamic allocation phase for the file associated with the ddname.

121
An error occurred while attempting to dynamically deallocate the file associated with the ddname.

150
SIGNAL STRINGSIZE statement executed or STRINGSIZE condition occurred.

151
Truncation occurred during assignment of a mixed character string.

290
SIGNAL INVALIDOP statement was executed or INVALIDOP exception occurred.

300
SIGNAL OVERFLOW statement executed or OVERFLOW condition occurred.

310
SIGNAL FIXEDOVERFLOW statement executed or FIXEDOVERFLOW condition occurred.

320
SIGNAL ZERODIVIDE statement executed or ZERODIVIDE condition occurred.

330
SIGNAL UNDERFLOW statement executed or UNDERFLOW condition occurred.

340
SIGNAL SIZE statement executed; or high-order nonzero digits have been lost in an assignment to a
variable or temporary, or significant digits have been lost in an input/output operation.

341
High order nonzero digits have been lost in an input/output operation.

350
SIGNAL STRINGRANGE statement executed or STRINGRANGE condition occurred.

360
Attempt to allocate a based variable within an area that contains insufficient free storage for
allocation to be made.

361
Insufficient space in target area for assignment of source area.

362
SIGNAL AREA statement executed.

400
SIGNAL ATTENTION statement executed.

430
SIGNAL ASSERTION.

431
An ASSERT TRUE/FALSE statement without a TEXT clause failed.

432
An ASSERT TRUE/FALSE statement with a TEXT clause failed .

433
An ASSERT UNREACHABLE statement without a TEXT clause failed.

434
An ASSERT UNREACHABLE statement with a TEXT clause failed.

435
An ASSERT COMPARE statement without a TEXT clause failed.

186 Enterprise PL/I for z/OS IBM Developer for z/OS PL/I for Windows: Enterprise PL/I for z/OS Messages and
Codes

436
An ASSERT COMPARE statement with a TEXT clause failed.

450
SIGNAL STORAGE statement executed.

451
ALLOCATE statement or ALLOCATE built-in function failed; insufficient storage to satisfy request.

500
SIGNAL CONDITION (name) statement executed.

Condition codes 501 through 1000
520

SIGNAL SUBSCRIPTRANGE statement executed, or subscript has been evaluated and found to lie
outside its specified bounds.

600
SIGNAL CONVERSION statement executed.

601
Invalid conversion attempted during input/output of a character string.

603
Error during processing of an F-format item for a GET STRING statement.

604
Error during processing of an F-format item for a GET FILE statement.

605
Error during processing of an F-format item for a GET FILE statement following a TRANSMIT
condition.

606
Error during processing of an E-format item for a GET STRING statement.

607
Error during processing of an E-format item for a GET FILE statement.

608
Error during processing of an E-format item for a GET FILE statement following a TRANSMIT
condition.

609
Error during processing of a B-format item for a GET STRING statement.

610
Error during processing of a B-format item for a GET FILE statement.

611
Error during processing of a B-format item for a GET FILE statement following TRANSMIT condition.

612
Error during character value to arithmetic conversion.

613
Error during character value to arithmetic conversion for a GET or PUT FILE statement.

614
Error during character value to arithmetic conversion for a GET or PUT FILE statement following a
TRANSMIT condition.

615
Error during character value to bit value conversion.

616
Error during character value to bit value conversion for a GET or PUT FILE statement.

Chapter 7. Condition codes 187

617
Error during character value to bit value conversion for a GET or PUT FILE statement following a
TRANSMIT condition.

618
Error during character value to picture conversion.

619
Error during character value to picture conversion for a GET or PUT FILE statement.

620
Error during character value to picture conversion for a GET or PUT FILE statement following a
TRANSMIT condition.

621
Error in decimal P-format item for a GET STRING statement.

622
Error in decimal P-format input for a GET FILE statement.

623
Error in decimal P-format input for a GET FILE statement following a TRANSMIT condition.

624
Error in character P-format input for a GET FILE statement.

625
Error exists in character P-format input for a GET FILE statement.

626
Error exists in character P-format input for a GET FILE statement following a TRANSMIT condition.

627
A graphic or mixed character string encountered in a nongraphic environment.

628
A graphic or mixed character string encountered in a nongraphic environment on input.

629
A graphic or mixed character string encountered in a nongraphic environment on input after
TRANSMIT was detected.

633
An invalid character detected in a X, BX, or GX string constant.

634
An invalid character detected in a X, BX, or GX string constant on input.

635
An invalid character detected in a X, BX, or GX string constant on input after TRANSMIT was detected.

640
Conversion from picture contained an invalid character.

641
Conversion from picture contained an invalid character on input or output.

642
Conversion from picture contained an invalid character on input after TRANSMIT was detected.

643
Error during processing of a graphic F-format item for a GET STRING statement.

644
Error during processing of a graphic F-format item for a GET FILE statement.

645
Error during processing of a graphic F-format item for a GET FILE statement following a TRANSMIT
condition.

646
Error during processing of a graphic E-format item for a GET STRING statement.

188 Enterprise PL/I for z/OS IBM Developer for z/OS PL/I for Windows: Enterprise PL/I for z/OS Messages and
Codes

647
Error during processing of a graphic E-format item for a GET FILE statement.

648
Error during processing of a graphic E-format item for a GET FILE statement following a TRANSMIT
condition.

649
Error during processing of a graphic B-format item for a GET STRING statement.

650
Error during processing of a graphic B-format item for a GET FILE statement.

651
Error during processing of a graphic B-format item for a GET FILE statement following TRANSMIT
condition.

652
Error during graphic character value to arithmetic conversion.

653
Error during graphic character value to arithmetic conversion for a GET or PUT FILE statement.

654
Error during graphic character value to arithmetic conversion for a GET or PUT FILE statement
following a TRANSMIT condition.

655
Error during graphic character value to bit value conversion.

656
Error during graphic character value to bit value conversion for a GET or PUT FILE statement.

657
Error during graphic character value to bit value conversion for a GET or PUT FILE statement following
a TRANSMIT condition.

658
Error during graphic character value to picture conversion.

659
Error during graphic character value to picture conversion for a GET or PUT FILE statement.

660
Error during graphic character value to picture conversion for a GET or PUT FILE statement following a
TRANSMIT condition.

661
Error in decimal graphic P-format item for a GET STRING statement.

662
Error in decimal graphic P-format input for a GET FILE statement.

663
Error in decimal graphic P-format input for a GET FILE statement following a TRANSMIT condition.

664
Error in character graphic P-format input for a GET FILE statement.

665
Error exists in character graphic P-format input for a GET FILE statement.

666
Error exists in character graphic P-format input for a GET FILE statement following a TRANSMIT
condition.

667
No SBCS equivalent in the GRAPHIC conversion to character.

668
No SBCS equivalent in the GRAPHIC conversion to character on input.

Chapter 7. Condition codes 189

669
No SBCS equivalent in the GRAPHIC conversion to character on input following a TRANSMIT
condition.

670
Unknown source attributes.

671
Unknown source attributes on input.

672
Unknown source attributes on input following a TRANSMIT condition.

673
Error during WIDECHAR value to character conversion.

674
Error during WIDECHAR value to character conversion for a GET or PUT FILE statement.

675
Error during WIDECHAR value to character conversion for a GET or PUT FILE statement following a
TRANSMIT condition.

676
Error during WIDECHAR value to arithmetic conversion.

677
Error during WIDECHAR value to arithmetic conversion for a GET or PUT FILE statement.

678
Error during WIDECHAR value to arithmetic conversion for a GET or PUT FILE statement following a
TRANSMIT condition.

679
Error during WIDECHAR value to bit value conversion.

680
Error during WIDECHAR value to bit value conversion for a GET or PUT FILE statement.

681
Error during WIDECHAR value to bit value conversion for a GET or PUT FILE statement following a
TRANSMIT condition.

682
Error during WIDECHAR value to picture conversion.

683
Error during WIDECHAR value to picture conversion for a GET or PUT FILE statement.

684
Error during WIDECHAR value to picture conversion for a GET or PUT FILE statement following a
TRANSMIT condition.

Condition codes 1001 through 1499
1001

EVENT variable already used with a DISPLAY statement.
1002

GET or PUT STRING specifies data exceeding size of string.
1003

Further output prevented by TRANSMIT or KEY conditions previously raised for the data set.
1004

Attempt to use PAGE, LINE, or SKIP <= 0 for nonprintable file.
1005

In a DISPLAY(expression) REPLY (character-reference) statement, expression or character-reference
is zero length.

190 Enterprise PL/I for z/OS IBM Developer for z/OS PL/I for Windows: Enterprise PL/I for z/OS Messages and
Codes

1007
A REWRITE or a DELETE statement not preceded by a READ.

1008
Unrecognized field preceding the assignment symbol in a string specified in a GET STRING DATA
statement.

1009
An input/output statement specifies an operation or an option which conflicts with the file attributes.

1010
A built-in function or pseudovariable referenced an unopened file.

1011
Data management detected an input/output error but is unable to provide any information about its
cause.

1013
Previous input operation incomplete; REWRITE or DELETE statement specifies data which has been
previously read in by a READ statement with an EVENT option, and no corresponding WAIT has been
executed.

1014
Attempt to initiate further input/output operation when number of incomplete operations equals
number specified by ENVIRONMENT option NCP(n) or by default.

1015
Event variable specified for an input/output operation when already in use.

1016
After UNDEFINEDFILE condition raised as a result of an unsuccessful attempt to implicitly open a file,
the file was found unopened on normal return from the ON-unit.

1018
End of file or string encountered in data before end of data-list or in edit-directed transmission format
list.

1019
Attempt to close file not opened in current process.

1020
Further input/output attempted before WAIT statement executed to ensure completion of previous
READ.

1021
Attempt to access a record locked by another file in this process.

1022
Unable to extend indexed data set.

1023
Exclusive file closed while records still locked in a subtask

1024
Incorrect sequence of I/O operations on device-associated file.

1025
Insufficient virtual storage available to complete request.

1026
No position established in index data set.

1027
Record control interval already held in exclusive control.

1028
Requested record lies on an unmounted volume.

1029
Attempt to reposition in index data set failed.

Chapter 7. Condition codes 191

1030
An error occurred during index upgrade on a index data set.

1031
Invalid sequential write attempted on index data set.

1040
A data set open for output used all available space.

1041
An attempt was made to write a record containing a record delimiter.

1042
Record in data set is not properly delimited.

1043
I/O error during CLOSE processing.

1062
Record length incorrect for RRDS file.

1068
VSAM server was not available.

1069
A deadlock was detected while attempting to lock a record.

1071
A retained lock reject has occurred while attempting to lock a record.

1094
Alternate index pointer invalid.

1102
An error occurred in storage management. Storage to be freed was pointed to by an invalid address.

1104
An internal error occurred in the library.

1105
Unable to create an object window.

1106
Insufficient space available to satisfy a storage allocation request.

1107
A problem occurred during free storage processing.

1301
F-factor in PICTURE specification was outside of the range of -128 to 127.

1302
PICTURE specification contained invalid character.

1303
F-factor contained invalid character.

1304
PICTURE specification contained invalid character.

1305
PICTURE specification contained invalid precision value.

1306
PICTURE specification contained too many overpunch characters.

1307
PICTURE specification contained precision value less than 1.

1308
Precision value in fixed decimal PICTURE specification exceeded limit.

1309
Precision value in float decimal PICTURE specification exceeded limit.

192 Enterprise PL/I for z/OS IBM Developer for z/OS PL/I for Windows: Enterprise PL/I for z/OS Messages and
Codes

1310
PICTURE specification did not contain picture characters.

1311
Exponent in float PICTURE specification exceeded limit.

1312
Exponent in float PICTURE specification was missing.

1313
Exponent in PICTURE specification contained V character.

1314
Float PICTURE specification contained invalid character.

1315
PICTURE specification exceeded limit.

1316
PICTURE specification contained invalid delimiter.

Condition codes 1500 through 2000
1500

Computational error; short floating-point argument of SQRT built-in function is less than zero.
1501

Computational error; long floating-point argument of SQRT built-in function is less than zero.
1502

Computational error; extended floating-point argument of SQRT built-in function is less than zero.
1503

Computational error in LOG, LOG2, or LOG10 built-in function; extended floating-point argument is
less than zero.

1504
Computational error in LOG, LOG2, or LOG10 built-in function; short floating-point argument is less
than zero.

1505
Computational error in LOG, LOG2 or LOG10 built-in function; long floating-point argument is less than
zero.

1506
Computational error in SIN, COS, SIND, or COSD built-in function; absolute value of short floating-
point argument is too large. The limit depends on the representation as follows:

Representation Limit

hexadecimal pi*(2**18)

z ieee decimal 1s6

1507
Computational error in SIN, COS, SIND, or COSD built-in function; absolute value of long floating-point
argument is too large The limit depends on the representation as follows:

Representation Limit

hexadecimal pi*(2**50)

z ieee binary 3.53711d15

z ieee decimal 1d15

i ieee binary 2**63

Chapter 7. Condition codes 193

1508
Computational error; absolute value of short floating-point argument of TAN or TAND built-in function
is too large The limit depends on the representation as follows:

Representation Limit

hexadecimal pi*(2**18)

z ieee decimal 1s6

1509
Computational error; absolute value of long floating-point argument of TAN or TAND built-in function
is too large. The limit depends on the representation as follows:

Representation Limit

hexadecimal pi*(2**50)

z ieee binary 3.53711d15

z ieee decimal 1d15

i ieee binary 2**63

1514
Computational error; absolute value of short floating-point argument of ATANH built-in function >1.

1515
Computational error; absolute value of long floating-point argument of ATANH built-in function >1.

1516
Computational error; absolute value of extended floating-point argument of ATANH built-in function
>1.

1517
Computational error in SIN, COS, SIND, or COSD built-in function; argument of extended floating-point
argument is too large. The limit depends on the representation as follows:

Representation Limit

hexadecimal pi*(2**100)

z ieee binary 4.07802q33

z ieee decimal 1q33

i ieee binary 2**64

1518
Computational error; absolute value of short floating-point argument of ASIN or ACOS built-in function
exceeds 1.

1519
Computational error; absolute value of long floating-point argument of ASIN or ACOS built-in function
exceeds 1.

1520
Computational error; absolute value of extended floating-point argument of ASIN, ACOS built-in
function exceeds 1.

1522
Computational error; absolute value of extended floating-point argument of TAN or TAND built-in
function is too large The limit depends on the representation as follows:

Representation Limit

hexadecimal pi*(2**100)

194 Enterprise PL/I for z/OS IBM Developer for z/OS PL/I for Windows: Enterprise PL/I for z/OS Messages and
Codes

Representation Limit

z ieee binary 4.07802q33

z ieee decimal 1q33

i ieee binary 2**64

1523
Computational error; absolute value of real short floating-point argument of SINH or COSH built-in
function is too large The limit depends on the representation as follows:

Representation Limit

hexadecimal 175.366

z ieee decimal 2.233507s02

1524
Absolute value of real long floating-point argument of SINH or COSH argument is too large The limit
depends on the representation as follows:

Representation Limit

hexadecimal 175.366

z ieee binary 709.7827

z ieee decimal 8.864952608027075d02

i ieee binary 710.47

1525
Absolute value of real extended floating-point argument of SINH or COSH is too large, The limit
depends on the representation as follows:

Representation Limit

hexadecimal 175.366

z ieee binary 11354

z ieee decimal 1.41493853964484107282905574890354q4

i ieee binary 11357.56

1529
Computational error in SIN, COS, SIND, or COSD built-in function; absolute value of the real part of
complex short floating-point argument greater is too large The limit depends on the representation as
follows:

Representation Limit

hexadecimal pi*(2**18)

z ieee decimal 1s6

1530
Computational error in SIN, COS, SIND, or COSD built-in function; absolute value of the real part of
complex long floating-point argument is too large. The limit depends on the representation as follows:

Representation Limit

hexadecimal pi*(2**50)

z ieee binary 3.53711d15

Chapter 7. Condition codes 195

Representation Limit

z ieee decimal 1d15

i ieee binary 2**63

1531
Computational error in SIN, COS, SIND, or COSD built-in function; absolute value of the real part of
complex extended floating-point is too large. The limit depends on the representation as follows:

Representation Limit

hexadecimal pi*(2**100)

z ieee binary 4.07802q33

z ieee decimal 1q33

i ieee binary 2**64

1550
Computational error; during exponentiation, real short floating-point base is zero and integer
exponent is not positive.

1551
Computational error; during exponentiation, real long floating-point base is zero and integer exponent
is not positive.

1552
Computational error; during exponentiation, real short floating-point base is zero and the floating-
point or noninteger exponent is not positive.

1553
Computational error; during exponentiation, real long floating-point base is zero and the floating-point
or noninteger exponent is not positive.

1554
Computational error; during exponentiation, complex short floating-point base is zero and integer
exponent is not positive.

1555
Computational error; during exponentiation, complex long floating-point base is zero and integer
exponent is not positive.

1556
Computational error; during exponentiation, complex short floating-point base is zero and floating-
point or noninteger exponent is not positive and real.

1557
Computational error; during exponentiation, complex long floating-point base is zero and floating-
point or noninteger exponent is not positive and real.

1558
Computational error; complex short floating-point argument of ATAN or ATAND built-in function has
value, respectively, of ±1I or ±1.

1559
Computational error; complex long floating-point argument of ATAN or ATAND built-in function has
value, respectively, of ±1I or ±1.

1560
Computational error; during exponentiation, real extended floating-point base is zero and integer
exponent not positive.

1561
Computational error; during exponentiation, real extended floating-point base is zero and floating-
point or noninteger exponent is not positive.

196 Enterprise PL/I for z/OS IBM Developer for z/OS PL/I for Windows: Enterprise PL/I for z/OS Messages and
Codes

1562
Computational error; during exponentiation, complex extended floating-point base is zero and integer
exponent is not positive.

1563
Computational error; complex extended floating-point base is zero and floating-point or nonintegral
exponent is not positive.

1564
Computational error; complex extended floating-point argument of ATAN or ATAND built-in function
has value, respectively, of ±1I or ±1.

1568
Computational error EXP built-in function; absolute value of the imaginary part of the complex short
floating-point argument is too large. The limit depends on the representation as follows:

Representation Limit

hexadecimal pi*(2**18)

z ieee decimal 1s6

1569
Computational error EXP built-in function; absolute value of the imaginary part of the complex long
floating-point argument is too large. The limit depends on the representation as follows:

Representation Limit

hexadecimal pi*(2**50)

z ieee binary 3.53711d15

z ieee decimal 1d15

i ieee binary 2**63

1570
Computational error EXP built-in function; absolute value of the imaginary part of the complex
extended floating-point argument is too large. The limit depends on the representation as follows:

Representation Limit

hexadecimal pi*(2**100)

z ieee binary 4.07802q33

z ieee decimal 1qd33

i ieee binary 2**64

1571
Computational error GAMMA or LOGGAMMA built-in function; real short floating point argument is too
large. The limit for GAMMA depends on the representation as follows:

Representation Limit

hexadecimal 57.5744

z ieee decimal 6.932968s01

The limit for LOGGAMMA depends on the representation as follows:

Representation Limit

hexadecimal 4.2937*(10**73)

z ieee decimal 4.608910s94

Chapter 7. Condition codes 197

1572
Computational error GAMMA or LOGGAMMA built-in function; real long floating point argument is too
large. The limit for GAMMA depends on the representation as follows:

Representation Limit

hexadecimal 57.5744

z ieee binary 171.624

z ieee decimal 2.053796629328708d02

i ieee binary 171.6243

The limit for LOGGAMMA depends on the representation as follows:

Representation Limit

hexadecimal 4.2937*(10**73)

z ieee binary 2.559d305

z ieee decimal 1.138023083333461d382

i ieee binary 2.0d0**1014

1573
Computational error GAMMA or LOGGAMMA built-in function; real extended floating point argument is
too large. The limit for GAMMA depends on the representation as follows:

Representation Limit

hexadecimal 57.5744

z ieee binary 1755

z ieee decimal 2.12454995666246323632807135355444q3

i ieee binary 171.6243

The limit for LOGGAMMA depends on the representation as follows:

Representation Limit

hexadecimal 4.2937*(10**73)

z ieee binary 1q4928

z ieee decimal 7.07272165228093306168809969252963q6140

i ieee binary 2.0q0**1014

1574
Computational error TANH built-in function; absolute value of the imaginary part of the complex short
floating-point argument is too large. The limit depends on the representation as follows:

Representation Limit

hexadecimal pi*(2**18)

z ieee decimal 1s6

1575
Computational error TANH built-in function; absolute value of the imaginary part of the complex long
floating-point argument is too large. The limit depends on the representation as follows:

198 Enterprise PL/I for z/OS IBM Developer for z/OS PL/I for Windows: Enterprise PL/I for z/OS Messages and
Codes

Representation Limit

hexadecimal pi*(2**50)

z ieee binary 3.53711d15

z ieee decimal 1d15

i ieee binary 2**63

1576
Computational error TANH built-in function; absolute value of the imaginary part of the complex
extended floating-point argument is too large. The limit depends on the representation as follows:

Representation Limit

hexadecimal pi*(2**100)

z ieee binary 4.07802q33

z ieee decimal 1q33

i ieee binary 2**64

1577
Computational error in LOG, LOG2, or LOG10 built-in function; real short floating-point argument
equal to zero.

1578
Computational error in LOG, LOG2, or LOG10 built-in function; real long floating-point argument equal
to zero.

1579
Computational error in LOG, LOG2, or LOG10 built-in function; real extended floating-point argument
equal to zero.

1611
Computational error; real short floating-point argument for EXP built-in function is too large. The limit
depends on the representation as follows:

Representation Limit

hexadecimal 174.673

z ieee decimal 2.233507s02

1612
Computational error; real long floating-point argument for EXP built-in function is too large. The limit
depends on the representation as follows:

Representation Limit

hexadecimal 174.673

z ieee binary 709.7827

z ieee decimal 8.864952608027075d02

i ieee binary 710.47

1613
Computational error; real extended floating-point argument for EXP built-in function is too large. The
limit depends on the representation as follows:

Representation Limit

hexadecimal 174.673

Chapter 7. Condition codes 199

Representation Limit

z ieee binary 11354

z ieee decimal 1.41493853964484107282905574890354q4

i ieee binary 11357.56

1729
Computational error; during exponentiation, real short floating-point base is zero and real short
floating-point exponent is not positive or zero.

1730
Computational error; during exponentiation, real long floating-point base is zero and real long
floating-point exponent is not positive or zero.

1754
Computational error; during exponentiation for a complex short floating-point base with a complex
short floating-point exponent, an argument exceeded the limit.

1755
Computational error; during exponentiation for a complex long floating-point base with a complex
long floating-point exponent, an argument exceeded the limit.

1756
Computational error; during exponentiation for a complex extended floating-point base with a
complex extended floating-point exponent, an argument exceeded the limit.

1853
Computational error in TAN or TAND; for complex short floating-point argument, absolute value of the
real part of argument is too large. The limit depends on the representation as follows:

Representation Limit

hexadecimal pi*(2**18)

z ieee decimal 1s6

1854
Computational error in TAN or TAND; for complex long floating-point argument, absolute value of the
real part of argument is too large. The limit depends on the representation as follows:

Representation Limit

hexadecimal pi*(2**50)

z ieee binary 3.53711d15

z ieee decimal 1d15

i ieee binary 2**63

1855
Computational error in TAN or TAND; for complex extended floating-point argument, absolute value of
the real part of argument is too large. The limit depends on the representation as follows:

Representation Limit

hexadecimal pi*(2**100)

z ieee binary 4.07802q33

z ieee decimal 1q33

i ieee binary 2**64

200 Enterprise PL/I for z/OS IBM Developer for z/OS PL/I for Windows: Enterprise PL/I for z/OS Messages and
Codes

1914
Computational error; absolute value of imaginary part of complex short floating-point argument of
SINH or COSH built-in function is too large. The limit depends on the representation as follows:

Representation Limit

hexadecimal pi*(2**18)

z ieee decimal 1s6

1915
Computational error; absolute value of the imaginary part of complex long floating-point argument of
SINH or COSH built-in is too large. The limit depends on the representation as follows:

Representation Limit

hexadecimal pi*(2**50)

z ieee binary 3.53711d15

z ieee decimal 1d15

i ieee binary 2**63

1916
Computational error; absolute value of the imaginary part of complex extended floating-point
argument of SINH or COSH built-in is too large. The limit depends on the representation as follows:

Representation Limit

hexadecimal pi*(2**100)

z ieee binary 4.07802q33

z ieee decimal 1q33

i ieee binary 2**64

1960
Computational error in SQRT; real short floating-point argument is equal to zero.

1961
Computational error in SQRT; real long floating-point argument is equal to zero.

1962
Computational error in SQRT; real extended floating-point argument is equal to zero.

Condition codes 2001 through 2500
2002

WAIT statement cannot be executed because of restricted system facility.
2050

WAIT statement that causes permanent wait encountered.
2101

Greenwich mean time was not available for the RANDOM built-in function.
2102

An invalid seed value was detected in the RANDOM built-in function. The random number was set to
-1.

2103
Local time was unavailable.

2104
The value of y in the SECSTODATE, DAYS, DAYSTODATE, or DATETIME built-in function contained an
invalid picture string specification.

Chapter 7. Condition codes 201

2105
The value of x in the DAYS built-in function contained an invalid day value; the valid range is 15
October 1582 to 31 December 9999.

2106
The value of x in the DAYS built-in function contained an invalid month value; the valid range is
October 1582 to December 9999.

2107
The value of x in the DAYS built-in function contained an invalid year value; the valid range is 1582 to
9999.

2108
The value of x in the DAYSTODATE built-in function was outside the supported range; the valid range is
from 1 to 3,074,324.

2109
The value of x in the SECSTODATE built-in function was outside the supported range; the valid range is
from 86,400 to 265,621,679,999.999.

2110
The value of x in the DAYSTODATE built-in function could not be converted to a valid Japanese or
Republic of China Era.

2111
The difference between the current local time and the Greenwich Mean Time was unavailable.

2112
The value of x in the SECS or DAYS built-in function was outside the supported range; the valid range
is from 15 October 1582 to 31 December 9999.

2113
The value of x in the SECS built-in function contained an invalid seconds value; the valid range is from
0 to 59.

2114
The value of x in the SECS built-in function contained an invalid minutes value; the valid range is from
0 to 59.

2115
The value of x in the SECS built-in function contained an invalid hour value; the valid range is from 0 to
23 or from 0 to 12 (if the AP field is present).

2116
The value of x in the DAYS built-in function did not match the given picture specification.

2117
The value of x in the SECS built-in function did not match the given picture specification.

2118
The date string returned by the DAYSTODATE built-in function was truncated.

2119
The timestamp returned by the DATETIME or SECSTODATE built-in function was truncated.

2120
The value of x in the SECSTODATE or DATETIME built-in function contained an invalid value for the
number of seconds with the range of supported Japanese or Republic of China Eras.

2121
Insufficient data was passed to the DAYS or SECS built-in function; the picture string did not contain
enough information.

2122
The value of x in the SECS or DAYS built-in function contained an invalid Era name.

2165
Computational error GAMMA or LOGGAMMA built-in function; real short floating point argument is less
than or equal to zero.

202 Enterprise PL/I for z/OS IBM Developer for z/OS PL/I for Windows: Enterprise PL/I for z/OS Messages and
Codes

2166
Computational error GAMMA or LOGGAMMA built-in function; real long floating point argument is less
than or equal to zero.

2167
Computational error GAMMA or LOGGAMMA built-in function; real extended floating point argument is
less than or equal to zero.

2171
Real short floating-point argument greater than limit.

2172
Real long floating-point argument greater than limit.

2173
Real extended floating-point argument greater than limit.

2403
Computational error; real extended floating point argument of GAMMA or LOGGAMMA built-in function
was less than or equal to zero.

2404
Computational error; real extended floating point argument of GAMMA or LOGGAMMA built-in function
was equal to zero.

2413
Computational error; complex short floating-point argument in LOG, LOG2, or LOG10 built-in function
was zero.

2414
Computational error; complex long floating-point argument in LOG, LOG2, or LOG10 built-in function
was zero.

2415
Computational error; complex extended floating-point argument in LOG, LOG2, or LOG10 built-in
function was zero.

2504
Real short floating-point argument greater than allowed value for data type.

2505
Real long floating-point argument greater than allowed value for data type.

2506
Real extended floating-point argument greater than allowed value for data type.

Condition codes 3000 through 4000
3000

Field width, number of fractional digits, and number of significant digits (w, d, and s) specified for E-
format item in edit-directed input/output statement do not allow transmission without loss of
significant digits or sign.

3002
MEMCONVERT built-in returned a bad return code.

3003
No room for shift-in after Unicode conversion.

3006
Picture description of target does not match non-character-string source.

3009
A mixed-character string contained a shift-out, then ended before a shift-in was found.

3010
During processing of a mixed-character constant, one of the following occurred:

• A shift-in present in the SBCS portion.

Chapter 7. Condition codes 203

• A shift-out present in the graphic (double-byte) portion. (A shift-out cannot appear in either byte of
a graphic character).

• A shift-in present in the second byte of a graphic character.

3011
MPSTR built-in function contains an invalid character (or a null function string, or only blanks) in the
expression that specifies processing rules. (Only V, v, S, s, and blank are valid characters.)

3013
An assignment attempted to a graphic target with a length greater than 16,383 characters (32,766
bytes).

3014
A graphic or mixed string did not conform to the continuation rules.

3015
A X or GX constant has an invalid number of digits.

3016
Improper use of graphic data in stream I/O. Graphic data can only be used as part of a variable name
or string.

3018
Invalid UTF-8 data was detected.

3019
An invalid byte 2 in a UTF-8 character was detected.

3020
An invalid byte 3 in a UTF-8 character was detected.

3021
An invalid byte 4 in a UTF-8 character was detected.

3022
An incomplete UTF-8 character was detected.

3023
Invalid UTF-16 data was detected.

3024
An incomplete UTF-16 character was detected.

3025
USUBSTR reference is invalid.

3500
Error detected by the operating system while processing WAIT statement.

3501
Error detected by the operating system while processing DETACH statement.

3502
Error detected by the operating system while processing ATTACH statement.

3503
Error detected by the operating system while processing STOP statement.

3504
ATTACH statement being processed in POSIX(OFF) environment.

3797
Attempt to convert to or from graphic data.

3798
ONCHAR, ONSOURCE, or ONGSOURCE pseudovariable used out of context.

3799
The source was not modified in the CONVERSION ON-unit. Retry was not attempted. An ON-unit was
entered as a result of the CONVERSION condition being raised by an invalid character in the string

204 Enterprise PL/I for z/OS IBM Developer for z/OS PL/I for Windows: Enterprise PL/I for z/OS Messages and
Codes

being converted. The character was not corrected in an ON-unit using the ONSOURCE, ONGSOURCE,
or ONCHAR pseudovariables.

3800
Length of data aggregate exceeds system limit of 2**24 bytes.

3804
Array initialization exceeded maximum depth of iteration.

3808
Aggregate cannot be mapped in COBOL or FORTRAN.

3809
A data aggregate exceeded the maximum length.

3810
An array has an extent that exceeds the allowable maximum.

3901
Attempt to invoke process using a process variable that is already associated with an active process.

3904
Event variable referenced as argument to COMPLETION pseudovariable while already in use for a
DISPLAY statement.

3906
Assignment to an event variable that is already active.

3907
Attempt to associate an event variable that is already associated with an active process.

3908
Query of installation default of maximum number of threads failed.

3909
Attempt to create a subtask (using CALL statement) when insufficient main storage available.

3910
Attempt to attach a process (using CALL statement) when number of active processes was already at
limit defined by ISASIZE parameter of EXEC statement.

3911
WAIT statement in ON-unit references an event variable already being waited for in process from
which ON-unit was entered.

3912
Attempt to execute CALL with TASK option in block invoked while executing PUT FILE(SYSPRINT)
statement.

3913
CALL statement with TASK option specifies an unknown entry point.

3914
Attempt to call FORTRAN or COBOL routines in two processes simultaneously.

3915
Attempt to call a process when the multitasking library was not selected in the link-edit step.

3920
An out-of-storage abend occurred.

3951
Call to initialize wait failed.

3952
Call to perform wait failed.

3953
Call to cancel a subtask failed.

3954
Call to support PL/I EXCLUSIVE files failed.

Chapter 7. Condition codes 205

Condition codes 4001 through 9999
4001

Attempt to assign data to an unallocate CONTROLLED variable occurred on a GET DATA statement.
4002

Attempt to output an unallocate CONTROLLED variable occurred on a PUT DATA statement.
4003

Attempt to assign from an unallocate CONTROLLED variable occurred on a PUT DATA statement with
the STRING option.

5050
Too many digits specified in JSON floating-point number.

5051
Too many digits specified in JSON fixed-point number.

5052
Invalid value type in JSON text.

5053
Conversion from UTF-8 to character failed.

5054
Source in JSON assignment to BIT is invalid.

5055
Conversion from UTF-8 to UTF-16 failed.

5056
String in JSON text is too long.

5057
Characters after \u are not valid hexadecimal digits.

5058
Hexadecimal characters specify an invalid UTF surrogate pair.

5059
Invalid escape character in JSON text.

5060
Only valid value starting with t in JSON text is true.

5061
Only valid value starting with f in JSON text is false.

5062
Only valid value starting with n in JSON text is null.

5063
JSON text ends prematurely.

5064
Number does not conform to the rules of JSON syntax.

5065
Name in JSON source does not match that in the target.

5066
The JSON values true and false may be assigned only to NONVARYING BIT.

5067
JSON text contains invalid UTF-8 characters.

5068
Objects and arrays in the JSON text are nested too deeply.

5069
Next significant character in the JSON text should be an opening bracket, [.

206 Enterprise PL/I for z/OS IBM Developer for z/OS PL/I for Windows: Enterprise PL/I for z/OS Messages and
Codes

5070
Next significant character in the JSON text should be a closing bracket,].

5071
Next significant character in the JSON text should be an opening brace, {.

5072
Next significant character in the JSON text should be a closing brace, }.

5073
Next significant character in the JSON text should be a comma (,).

5074
Next significant character in the JSON text should be a double quotation mark (").

5075
Next significant character in the JSON text should be a colon (:).

5076
Next significant character in the JSON text should be the start of a JSON value.

5077
Next significant character in the JSON text should be a closing bracket,], or the start of a JSON value.

5078
Next significant character in the JSON text should be a double quotation mark (") or a closing brace, }.

5079
Next significant character in the JSON text should be a comma (,) or a closing bracket,].

5080
Next significant character in the JSON text should be a comma (,) or a closing brace, }.

8091
Operation exception.

8092
Privileged operation exception.

8093
EXECUTE exception.

8094
Protection exception.

8095
Addressing exception.

8096
Specification exception.

8097
Data exception.

8098
Insufficient stack storage

9002
Attempt to execute GO TO statement referencing label in an inactive block.

9003
Attempt to execute a GO TO statement to a nonexistent label constant.

9004
RETURN without return value attempted from procedure with RETURNS attribute.

9005
RETURN with return value attempted from procedure without RETURNS attribute.

9050
Program terminated by an abend.

Chapter 7. Condition codes 207

9051
An error occurred in CICS. It is highly likely that parameters, particularly pointers, specified on the
EXEC CICS command do not point at storage owned by the PL/I program. The ERROR on-unit is not
given control. When the TEST run-time option is in effect, PLITEST allows the user to examine
variables, etc. but the execution cannot be continued.

9200
Program check in SORT/MERGE program.

9201
SORT not supported in CMS.

9202
RECORD TYPE string missing in the PLISRTx call.

9203
Incorrect record type specified in the PLISRTx call.

9204
LENGTH= missing from RECORD TYPE string specification in the PLISRTB or PLISRTD call.

9205
Length specified in the LENGTH= parameter of the PLISRTx call is not numeric.

9206
Incorrect return code received from E15 or E35 data-handling routine.

9207
DFSORT failed with the return code displayed in the message.

9208
PLISRTx invoked in an environment other than ADMVS.

9209
Fetch of SMARTSort failed.

9210
DD for SORT input data set invalid.

9211
DD for SORT output data set invalid.

9212
DD for SORT data set missing LRECL or LENGTH.

9213
DD for SORT data set must specify a TYPE.

9214
CALL PLISRTx statement missing a SORT FIELDS string.

9215
SORT FIELDS parameter of CALL PLISRTx statement specified too many fields.

9216
SORT FIELDS parameter of CALL PLISRTx statement contained invalid start, length fields, or both.

9217
SORT FIELDS parameter of CALL PLISRTx statement contained invalid form.

9218
SORT FIELDS parameter of CALL PLISRTx statement contained invalid sequence.

9249
Routine cannot be released.

9250
Procedure to be fetched cannot be found.

9251
Permanent transmission error when fetching a procedure.

208 Enterprise PL/I for z/OS IBM Developer for z/OS PL/I for Windows: Enterprise PL/I for z/OS Messages and
Codes

9252
FETCH/RELEASE not supported in CMS.

9253
PLITEST unavailable.

9254
Attempt made to release load module containing non-PL/I high level language programs.

9255
SORT FIELDS parameter of CALL PLISRTx statement contained invalid sequence.

9258
Routine compiled with NORENT cannot fetch routine compiled with RENT.

9999
A failure occurred in invocation of a Language Environment service.

Chapter 7. Condition codes 209

210 Enterprise PL/I for z/OS IBM Developer for z/OS PL/I for Windows: Enterprise PL/I for z/OS Messages and
Codes

Notices

This information was developed for products and services offered in the U.S.A. IBM may not offer the
products, services, or features discussed in this document in other countries. Consult your local IBM
representative for information on the products and services currently available in your area. Any reference
to an IBM product, program, or service is not intended to state or imply that only that IBM product,
program, or service may be used. Any functionally equivalent product, program, or service that does not
infringe any IBM intellectual property right may be used instead. However, it is the user's responsibility to
evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this
document. The furnishing of this document does not give you any license to these patents. You can send
license inquiries, in writing, to:

 IBM Corporation
 J74/G4
 555 Bailey Avenue
 San Jose, CA 95141-1099
 U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM Intellectual Property
Department in your country or send inquiries, in writing, to:

 Intellectual Property Licensing
 Legal and Intellectual Property Law
 IBM Japan, Ltd.
 3-2-12, Roppongi, Minato-ku, Tokyo 106-8711

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law:

 INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES
 THIS PUBLICATION ,AS IS, WITHOUT WARRANTY OF ANY KIND,
 EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED
 TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
 MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Some states do not allow disclaimer of express or implied warranties in certain transactions, therefore,
this statement may not apply to you.

This information could include technical inaccuracies or typographical errors.

Changes are periodically made to the information herein; these changes will be incorporated in new
editions of the publication. IBM may make improvements and/or changes in the product(s) and/or the
program(s) described in this publication at any time without notice.

Any references in this publication to non-IBM Web sites are provided for convenience only and do not in
any manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of
the materials for this IBM product and use of those Web sites is at your own risk.

Trademarks
IBM, the IBM logo, and ibm.com® are trademarks or registered trademarks of International Business
Machines Corp., registered in many jurisdictions worldwide. Other product and service names might be
trademarks of IBM or other companies. A current list of IBM trademarks is available on the Web at
“Copyright and trademark information” at www.ibm.com/legal/copytrade.

Intel is a registered trademark of Intel Corporation in the United States and other countries.

© Copyright IBM Corp. 1999, 2019 211

http://www.ibm.com/legal/copytrade
http://www.ibm.com/legal/copytrade

Java™ and all Java-based trademarks and logos are trademarks or registered trademarks of Oracle and/or
its affiliates.

Microsoft, Windows, and Windows NT are trademarks of Microsoft Corporation in the United States and
other countries.

Pentium is a registered trademark of Intel Corporation in the United States and other countries.

Unicode is a trademark of the Unicode Consortium.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Other company, product or service names may be the trademarks or service marks of others.

If you are viewing this information in softcopy, the photographs and color illustrations may not appear.

212 Enterprise PL/I for z/OS IBM Developer for z/OS PL/I for Windows: Enterprise PL/I for z/OS Messages and
Codes

Bibliography

PL/I publications

Enterprise PL/I for z/OS
Programming Guide, GI13-4536
Language Reference, SC27-8940
Messages and Codes, GC27-8950
Compiler and Run-Time Migration Guide, GC27-8930

PL/I for MVS & VM
Installation and Customization under MVS, SC26-3119
Language Reference, SC26-3114
Compile-Time Messages and Codes, SC26-3229
Diagnosis Guide, SC26-3149
Migration Guide, SC26-3118
Programming Guide, SC26-3113
Reference Summary, SX26-3821

PL/I for AIX
Programming Guide, SC14-7319
Language Reference, SC14-7320
Messages and Codes, GC14-7321
Installation Guide, GC14-7322

Related publications

Db2 and z/OS
Administration Guide, SC27-8844
Application Programming and SQL Guide, SC27-8845
Command Reference, SC27-8848
Messages, GC27-8855
Codes, GC27-8847
SQL Reference, SC27-8859
LOBs with Db2 for z/OS: Stronger and Faster, SG24-7270
See also the Db2 for z/OS Product Documentation

DFSORT™

Application Programming Guide, SC23-6878
Installation and Customization, SC23-6881

IMS/ESA®

Application Programming: Database Manager, SC26-8015
Application Programming: Database Manager Summary, SC26-8037
Application Programming: Design Guide, SC26-8016

© Copyright IBM Corp. 1999, 2019 213

https://www-01.ibm.com/support/docview.wss?uid=swg27047206

Application Programming: Transaction Manager, SC26-8017
Application Programming: Transaction Manager Summary, SC26-8038
Application Programming: EXEC DL/I Commands for CICS and IMS™, SC26-8018
Application Programming: EXEC DL/I Commands for CICS and IMS Summary, SC26-8036
IMS/ESA V6R1 Bookindex, GC27-1557

TXSeries for Multiplatforms
Encina Administration Guide Volume 2: Server Administration, SC09-4474
Encina SFS Programming Guide, SC09-4483
See the TXSeries for Multiplatforms Knowledge Center

z/Architecture
Principles of Operation, SA22-7832
See Principles of Operation online

z/OS Language Environment
Concepts Guide, SA38-0687
Debugging Guide, GA32-0908
RunTime Messages, SA38-0686
Customization, SA38-0685
Programming Guide, SA38-0682
Programming Guide for 64-bit Virtual Addressing Mode, SA38-0689
Programming Reference, SA38-0683
RunTime Application Migration Guide, GA32-0912
Vendor Interfaces, SA38-0688
Writing Interlanguage Communication Applications, SA38-0684
See also the z/OS Language Environment Knowledge Center

z/OS MVS
JCL Reference, SA23-1385
JCL User's Guide, SA23-1386
System Commands, SA38-0666
See z/OS MVS Knowledge Center

z/OS TSO/E
Command Reference, SA32-0975
User's Guide, SA32-0971

z/OS UNIX System Services
z/OS UNIX System Services Command Reference, SA23-2280
z/OS UNIX System Services Programming: Assembler Callable Services Reference, SA23-2281
z/OS UNIX System Services User's Guide, SA23-2279

Unicode® and character representation
z/OS Support for Unicode: Using Conversion Services, SC33-7050
z/OS Unicode Services User's Guide and Reference, SA38-0680

214 Enterprise PL/I for z/OS IBM Developer for z/OS PL/I for Windows: Enterprise PL/I for z/OS Messages and
Codes

https://www.ibm.com/support/knowledgecenter/SSAL2T_9.1.0/com.ibm.cics.tx.doc/ic-homepage.html
http://www-01.ibm.com/support/docview.wss?uid=isg2b9de5f05a9d57819852571c500428f9a
https://www.ibm.com/support/knowledgecenter/en/SSLTBW_2.4.0/com.ibm.zos.v2r4.cee/cee.htm
https://www.ibm.com/support/knowledgecenter/en/SSLTBW_2.4.0/com.ibm.zos.v2r4.iea/iea.htm

IBM®

Product Number: 5655-PL5

GC27-8950-02

	Contents
	About this book
	Compiler and preprocessor messages
	How to send your comments
	Accessibility

	Chapter 1. Compiler Informational Messages (1000-1076, 2800-2999)
	Chapter 2. Compiler Warning Messages (1078-1225, 2600-2799)
	Chapter 3. Compiler Error Messages (1226-1499, 2400-2599)
	Chapter 4. Compiler Severe Messages (1500-2399)
	Chapter 5. MACRO, CICS, and SQL Preprocessor Messages (3000-3999)
	Chapter 6. Code Generation Messages (5000-5999)
	Chapter 7. Condition codes
	Condition codes 1 through 500
	Condition codes 501 through 1000
	Condition codes 1001 through 1499
	Condition codes 1500 through 2000
	Condition codes 2001 through 2500
	Condition codes 3000 through 4000
	Condition codes 4001 through 9999

	Notices
	Trademarks

	Bibliography
	PL/I publications
	Related publications

