
IBM z/OS Debugger
15.0.9

Reference and Messages

IBM

Note!

Before using this information and the product it supports, be sure to read the general information under
“Notices” on page 535.

Tenth Edition (May 2024)

This edition applies to IBM® z/OS® Debugger, 15.0.9 (Program Number 5724-T07 with the PTF for PH58404), which
supports the following compilers:

• Open Enterprise SDK for Go 1.17 (Program Number 5655-GOZ)
• z/OS XL C/C++ Version 2 (Program Number 5650-ZOS)
• C/C++ feature of z/OS Version 1 (Program Number 5694-A01)
• C/C++ feature of OS/390® (Program Number 5647-A01)
• C/C++ for MVS/ESA Version 3 (Program Number 5655-121)
• AD/Cycle C/370 Version 1 Release 2 (Program Number 5688-216)
• Enterprise COBOL for z/OS 6.1, 6.2, 6.3, and 6.4 (Program Number 5655-EC6)
• Enterprise COBOL for z/OS Version 5 (Program Number 5655-W32)
• Enterprise COBOL for z/OS Version 4 (Program Number 5655-S71)
• Enterprise COBOL for z/OS and OS/390 Version 3 (Program Number 5655-G53)
• COBOL for OS/390 & VM Version 2 (Program Number 5648-A25)
• COBOL for MVS™ & VM Version 1 Release 2 (Program Number 5688-197)
• COBOL/370 Version 1 Release 1 (Program Number 5688-197)
• VS COBOL II Version 1 Release 3 and Version 1 Release 4 (Program Numbers 5668-958, 5688-023) - with limitations
• OS/VS COBOL, Version 1 Release 2.4 (5740-CB1) - with limitations
• High Level Assembler for MVS & VM & VSE Version 1 Release 4, Version 1 Release 5, Version 1 Release 6 (Program

Number 5696-234)
• Enterprise PL/I for z/OS 6.1 (Program Number 5655-PL6)
• Enterprise PL/I for z/OS Version 5 Release 1, Release 2, and Release 3 (Program Number 5655-PL5)
• Enterprise PL/I for z/OS Version 4 (Program Number 5655-W67)
• Enterprise PL/I for z/OS and OS/390 Version 3 (Program Number 5655-H31)
• VisualAge® PL/I for OS/390 Version 2 Release 2 (Program Number 5655-B22)
• PL/I for MVS & VM Version 1 Release 1 (Program Number 5688-235)
• OS PL/I Version 2 Release 1, Version 2 Release 2, Version 2 Release 3 (Program Numbers 5668-909, 5668-910) - with

limitations

This edition also applies to all subsequent releases and modifications until otherwise indicated in new editions or
technical newsletters.

You can find out more about IBM z/OS Debugger by visiting the following IBM Web sites:

• IBM Debug for z/OS: https://www.ibm.com/products/debug-for-zos
• IBM Developer for z/OS: https://www.ibm.com/products/developer-for-zos
• IBM Z and Cloud Modernization Stack: https://www.ibm.com/docs/z-modernization-stack
© Copyright International Business Machines Corporation 1992, 2024.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract with
IBM Corp.

https://www.ibm.com/products/debug-for-zos
https://www.ibm.com/products/developer-for-zos
https://www.ibm.com/docs/z-modernization-stack

Contents

About this document...xi
Who might use this document.. xi
Accessing z/OS licensed documents on the Internet.. xi
How this document is organized.. xii
Terms used in IBM z/OS Debugger documentation.. xii
How to read syntax diagrams..xiii

Symbols.. xiv
Syntax items...xiv
Syntax examples.. xiv

How to provide your comments... xv

Summary of changes.. xvii

Overview of IBM z/OS Debugger... xxv

Chapter 1. z/OS Debugger runtime options...1
Non-Language Environment positional parameter...1
COUNTRY runtime option.. 2
NATLANG runtime option...2
NONLESP runtime option...2
TEST runtime option.. 2

Syntax of the TEST runtime option.. 3
TRAP runtime option..9

Chapter 2. Common syntax elements in z/OS Debugger commands.......................11
address...11
block_name... 11
block_spec... 12
condition.. 12
compile_unit_name... 13
cu_spec.. 13
expression..14
load_module_name...14
load_spec... 15
offset_spec...15
references.. 15
statement_id..16
statement_id_range and stmt_id_spec.. 16

Specifying a range of statements...17
statement_label...17
variable_name..18

Chapter 3. Syntax for assembler and disassembly expressions............................. 19
Common syntax elements... 19
Operators... 20

Operators that can be used in any expression.. 20
Operators that can be used only in conditional expressions.. 22

Arithmetic expression evaluation..22

 iii

Chapter 4. Syntax for LangX COBOL expressions.. 23
Restrictions on LangX COBOL expressions... 23
Common syntax elements... 24
Operators... 24

Operators that can be used in any expression.. 24
Operators that can be used only in conditional expressions.. 25

Chapter 5. z/OS Debugger commands.. 27
? command...31
ALLOCATE command... 31
ANALYZE command (PL/I)...32
Assignment command (assembler and disassembly).. 33

Assignment rules..34
Assignment command (LangX COBOL)... 35
Assignment command (PL/I)...36
AT command.. 37

every_clause syntax... 40
AT ALLOCATE (PL/I) command.. 41
AT APPEARANCE command...42
AT CALL command..43
AT CHANGE command (full screen mode, line mode, batch mode)... 45
AT CHANGE command (remote debug mode)...50
AT CURSOR command (full-screen mode).. 52
AT DATE command (COBOL).. 53
AT DELETE command... 53
AT ENTRY command...54
AT EXIT command.. 56
AT GLOBAL command.. 58
AT GLOBAL LABEL command (remote debug mode).. 59
AT LABEL command... 60
AT LABEL command (remote debug mode)...62
AT LINE command..63
AT LOAD command...63
AT OCCURRENCE command.. 65
AT OFFSET command (disassembly)...68
AT PATH command... 69
AT Prefix command (full-screen mode)... 70
AT STATEMENT command..70
AT TERMINATION command... 73

BEGIN command... 74
block command (C and C++)... 75
break command (C and C++)...75
CALL command.. 76

CALL %CEBR command... 77
CALL %CECI command.. 77
CALL %DUMP command.. 77
CALL %FA command.. 82
CALL %FM command... 82
CALL %HOGAN command..82
CALL %VER command..83
CALL entry_name command (COBOL)... 83
CALL procedure command...84

CC command.. 85
CHKSTGV command.. 85
CLEAR command..86

CLEAR prefix (full-screen mode)..92

iv

CLEAR AT command (remote debug mode)..93
COMMENT command...93
COMPUTE command (COBOL)...94
CURSOR command (full-screen mode)...95
Declarations (assembler, disassembly, and LangX COBOL)... 95
Declarations (C and C++)...96
Declarations (COBOL).. 99
DECLARE command (PL/I).. 101
DESCRIBE command...103
DISABLE command... 107

DISABLE prefix (full-screen mode)..109
DO command (assembler, disassembly, LangX COBOL, and COBOL)..110
do/while command (C and C++)..110
DO command (PL/I)...111
ENABLE command...113

ENABLE prefix (full-screen mode)...114
EVALUATE command (COBOL).. 115
Expression command (C and C++)..116
FIND command..117
FINDBP command... 121
for command (C and C++)... 123
FREE command..124
GO command... 124
GOTO command...125
GOTO LABEL command... 127
%IF command (programming language neutral)... 129
IF command (assembler, disassembly, and LangX COBOL)...130
if command (C and C++).. 130
IF command (COBOL)..131

Allowable comparisons for the IF command (COBOL)... 132
IF command (PL/I).. 134
IMMEDIATE command (full-screen mode)... 135
INPUT command (C, C++, and COBOL)...135
JUMPTO command.. 136
JUMPTO LABEL command...138
LIST command...140

LIST (blank) command...141
LIST AT command.. 141
LIST AT command (remote debug mode)... 144
LIST CALLS command..144
LIST CC command..145
LIST CONTAINER command.. 147
LIST CURSOR command (full-screen mode)...148
LIST DTCN or CADP command...149
LIST expression command.. 149
LIST FREQUENCY command..155
LIST LAST command..155
LIST LDD command..156
LIST LINE NUMBERS command.. 157
LIST LINES command.. 157
LIST MONITOR command..157
LIST NAMES command.. 157
LIST NAMES LABELS command (remote debug mode)..160
LIST ON (PL/I) command...160
LIST PROCEDURES command... 160
LIST REGISTERS command... 161
LIST STATEMENT NUMBERS command.. 162
LIST STATEMENTS command.. 162

 v

LIST STORAGE command.. 163
LIST TRACE LOAD command... 165

LOAD command... 166
LOADDEBUGDATA command.. 166

Using LDD for assembler or LangX COBOL compile units...167
Using LDD for high-level language compile units in explicit debug mode..168

MEMORY command... 169
MONITOR command..171

M prefix (full-screen mode)... 173
MOVE command (COBOL)... 175

Allowable moves for the MOVE command (COBOL)... 176
NAMES command.. 178

NAMES DISPLAY command... 179
NAMES EXCLUDE command.. 179
NAMES INCLUDE command.. 180

Null command..181
ON command (PL/I)...181
PANEL command (full-screen mode)..183
PERFORM command (COBOL)...185
PLAYBACK commands...187

PLAYBACK ENABLE command...188
PLAYBACK START command... 189
PLAYBACK FORWARD command...190
PLAYBACK BACKWARD command.. 190
PLAYBACK STOP command... 190
PLAYBACK DISABLE command... 191

POPUP command.. 191
POSITION command... 191
Prefix commands (full-screen mode)..192
PROCEDURE command... 193
QUALIFY RESET command..194
QUERY command...194

QUERY prefix (full-screen mode)...199
QUIT command..199
QQUIT command... 200
RESTORE command...201
RETRIEVE command (full-screen mode).. 202
RUN command...203
RUNTO command.. 203

RUNTO prefix command (full-screen mode)... 204
SCROLL command (full-screen mode)..204
SELECT command (PL/I)... 207
SET command..207

SET ASSEMBLER ON/OFF command...210
SET ASSEMBLER STEPOVER command.. 211
SET AUTOMONITOR command... 212
SET CHANGE command... 214
SET COLOR command (full-screen and line mode)...215
SET COUNTRY command... 218
SET DBCS command.. 218
SET DEFAULT DBG command.. 219
SET DEFAULT LISTINGS command... 220
SET DEFAULT MDBG command... 221
SET DEFAULT SCROLL command (full-screen mode)... 222
SET DEFAULT VIEW command...223
SET DEFAULT WINDOW command (full-screen mode)...224
SET DISASSEMBLY command..224
SET DYNDEBUG command.. 225

vi

SET ECHO command..226
SET EQUATE command.. 227
SET EXECUTE command.. 228
SET EXPLICITDEBUG command..228
SET FIND BOUNDS command... 229
SET FREQUENCY command...230
SET HISTORY command.. 231
SET IGNORELINK command..231
SET INTERCEPT command (C and C++)..232
SET INTERCEPT command (COBOL, full-screen mode, line mode, batch mode)............................233
SET INTERCEPT command (COBOL, remote debug mode)..234
SET KEYS command (full-screen mode)... 234
SET LDD command...235
SET LIST BY SUBSCRIPT command (COBOL)... 236
SET LIST BY SUBSCRIPT command (Enterprise PL/I, full-screen mode only)................................ 238
SET LIST TABULAR command... 239
SET LOG command...239
SET LOG NUMBERS command (full-screen mode)... 241
SET LONGCUNAME command... 241
SET MDBG command... 242
SET MONITOR command...243
SET MSGID command..245
SET NATIONAL LANGUAGE command.. 245
SET PACE command...246
SET PFKEY command...247
SET POPUP command..248
SET PROGRAMMING LANGUAGE command...248
SET PROMPT command (full-screen mode)..249
SET QUALIFY command...250
SET REFRESH command (full-screen mode).. 252
SET RESTORE command..253
SET REWRITE command (full-screen mode).. 254
SET REWRITE command (remote debug mode)... 255
SET SAVE command...255
SET SCREEN command (full-screen mode).. 258
SET SCROLL DISPLAY command (full-screen mode)..259
SET SEQUENCE command (PL/I)...259
SET SOURCE command..259
SET SUFFIX command (full-screen mode)..261
SET TEST command... 262
SET WARNING command (C, C++, COBOL, and PL/I)...263

SET command (COBOL)...266
Allowable moves for the z/OS Debugger SET command.. 267

SHOW prefix command (full-screen mode).. 269
STEP command..269
STORAGE command.. 271
switch command (C and C++)... 273
SYSTEM command (z/OS)..275
TRACE command... 276
TRIGGER command...276
TSO command (z/OS).. 280
USE command..280
while command (C and C++)... 281
WINDOW command (full-screen mode)... 282

WINDOW CLOSE command... 282
WINDOW OPEN command...283
WINDOW SIZE command.. 284
WINDOW SWAP command.. 284

 vii

WINDOW ZOOM command..285

Chapter 6. EQAOPTS commands...287
Format of the EQAOPTS command... 293
EQAOPTS commands that have equivalent z/OS Debugger commands... 294
Providing EQAOPTS commands at run time... 294
Creating EQAOPTS load module..295
Descriptions of EQAOPTS commands...295

ALTDISP..295
BROWSE... 296
CACHENUM.. 296
CCOUTPUTDSN.. 297
CCOUTPUTDSNALLOC..297
CCPROGSELECTDSN.. 298
CEEREACTAFTERQDBG..298
CODEPAGE..299
COMMANDSDSN...301
DEFAULTVIEW.. 302
DISABLERLIM...302
DLAYDBG.. 302
DTCNDELETEDEADPROF... 306
DTCNFORCExxxx.. 306
DYNDEBUG...307
EQAQPP.. 307
EXPLICITDEBUG.. 308
GPFDSN.. 308
HOSTPORTS... 309
IGNOREODOLIMIT...309
IMSISOORIGPSB..310
LOGDSN.. 310
LOGDSNALLOC... 312
MAXTRANUSER.. 312
MDBG..313
MULTIPROCESS..313
NAMES..314
NODISPLAY.. 315
PREFERENCESDSN.. 315
SAVEBPDSN, SAVESETDSN... 316
SAVESETDSNALLOC, SAVEBPDSNALLOC..316
SESSIONTIMEOUT... 318
STARTSTOPMSG...319
SUBSYS...320
SVCSCREEN..320
TCPIPDATADSN..323
THREADTERMCOND...324
TIMACB...324
END...325

Chapter 7. z/OS Debugger built-in functions... 327
%CHAR (assembler, disassembly, and LangX COBOL)...327
%DEC (assembler, disassembly, and LangX COBOL)... 327
%GENERATION (PL/I)... 328
%HEX... 328
%INSTANCES (C, C++, and PL/I)...329
%RECURSION (C, C++, and PL/I)..330
%WHERE (assembler, disassembly, and LangX COBOL)..331

viii

Chapter 8. z/OS Debugger variables... 333
%ADDRESS.. 335
%AMODE..335
%BLOCK...335
%CAAADDRESS... 336
%CC (assembler and disassembly only)...336
%CONDITION.. 336
%COUNTRY..336
%CU... 336
%EPA..336
%EPRn or %EPRHn (%EPRHn assembler and disassembly only)... 336
%EPRBn (assembler and disassembly only).. 337
%EPRDn (assembler and disassembly only).. 337
%FPRn or %FPRHn (%FPRHn assembler and disassembly only)... 337
%FPRBn (assembler and disassembly only).. 338
%FPRDn (assembler and disassembly only).. 338
%GPRn... 338
%GPRGn.. 339
%GPRHn.. 339
%HARDWARE.. 340
%LINE or %STATEMENT... 340
%LOAD... 340
%LPRn or %LPRHn (%LPRHn assembler and disassembly only)..340
%LPRBn (assembler and disassembly).. 341
%LPRDn (assembler and disassembly).. 341
%NLANGUAGE...341
%PATHCODE..341
%PLANGUAGE... 341
%PROGMASK (assembler and disassembly only)..342
%PROGRAM...342
%PSW (assembler and disassembly only)..342
%RC..342
%RSTDSETS...342
%RUNMODE...342
%Rn..342
%SUBSYSTEM..343
%SYSTEM...343
Attributes of z/OS Debugger variables in different languages... 343

Chapter 9. z/OS Debugger messages.. 345

Chapter 10. Debug Manager messages... 473

Chapter 11. Debug Profile Service API messages..477

Chapter 12. Non-Language Environment IMS messages...................................... 481

Chapter 13. Load Module Analyzer Messages..485

Chapter 14. z/OS Debugger Language Environment user exit messages...............487

Chapter 15. z/OS Debugger Terminal Interface Manager messages..................... 489

Chapter 16. IBM z/OS Debugger Utilities messages.. 493

 ix

Appendix A. z/OS Debugger commands supported in Debug Tool compatibility
mode...517
Specifying z/OS Debugger commands in launch configuration..519
Specifying the location of source, listing, or separate debug file in remote debug mode by using

environment variables..522

Appendix B. Changes in behavior of some commands... 523
Changes in the behavior introduced with Debug Tool for z/OS, Version 13.1....................................... 523
Changes in the behavior introduced with Debug Tool for z/OS, Version 12.1, with the PTF for APAR

PM85967 for Enterprise COBOL for z/OS Version 5.1...523
Changes in behavior introduced with Debug Tool for z/OS, Version 11.1... 524
Changes in behavior introduced with Debug Tool for z/OS, Version 10.1... 525
Changes in behavior introduced with Debug Tool for z/OS, Version 9.1, with the PTF for APAR

PK74749 applied..525

Appendix C. Limitations of 64-bit support in Debug Tool compatibility mode....... 527

Appendix D. Support resources and problem solving information........................ 529
Accessing the IBM Support portal.. 529
Getting fixes... 529
Subscribing to support updates.. 529
Contacting IBM Support.. 530

Determine the business impact of your problem..530
Gather diagnostic information... 530
Submit the problem to IBM Support... 531

Appendix E. Accessibility...533
Using assistive technologies .. 533
Keyboard navigation of the user interface.. 533
Accessibility of this document.. 533

Notices..535
Copyright license... 535
Privacy policy considerations.. 536
Programming interface information..536
Trademarks and service marks... 536

Glossary.. 537
IBM z/OS Debugger publications..539

Index.. 541

x

About this document

z/OS Debugger combines the richness of the z/OS environment with the power of Language Environment®

to provide a debugger for programmers to isolate and fix their program bugs and test their applications.
z/OS Debugger gives you the capability of testing programs in batch, using a nonprogrammable terminal
in full-screen mode, or using a workstation interface to remotely debug your programs.

This document contains descriptions of the commands, functions, and variables available through z/OS
Debugger, as well as the messages that you might see as you use z/OS Debugger. Many z/OS Debugger
commands are similar to statements from the supported high-level languages (HLLs). This document
also describes the TEST runtime option, syntax elements that are common for all commands, and syntax
elements for expressions written in assembler, disassembly, and LangX COBOL.

Who might use this document
This document is intended for programmers using z/OS Debugger to debug high-level languages (HLLs)
with Language Environment and assembler programs either with or without Language Environment.
Throughout this document, the HLLs are referred to as C, C++, COBOL, and PL/I.

z/OS Debugger runs on the z/OS operating system and supports the following subsystems:

• CICS®

• Db2®

• IMS
• JES batch
• TSO
• UNIX System Services in remote debug mode or full-screen mode using the Terminal Interface Manager

only

To use this document and debug a program written in one of the supported languages, you need to know
how to write, compile, and run such a program.

Accessing z/OS licensed documents on the Internet
z/OS licensed documentation is available on the Internet in PDF format at the IBM Resource Link® Web
site at:

http://www.ibm.com/servers/resourcelink

Licensed documents are available only to customers with a z/OS license. Access to these documents
requires an IBM Resource Link user ID and password, and a key code. With your z/OS order you received a
Memo to Licensees, (GI10-8928), that includes this key code.

To obtain your IBM Resource Link user ID and password, log on to:

http://www.ibm.com/servers/resourcelink

To register for access to the z/OS licensed documents:

1. Sign in to Resource Link using your Resource Link user ID and password.
2. Select User Profiles located on the left-hand navigation bar.

Note: You cannot access the z/OS licensed documents unless you have registered for access to them and
received an e-mail confirmation informing you that your request has been processed.

Printed licensed documents are not available from IBM.

© Copyright IBM Corp. 1992, 2024 xi

http://www.ibm.com/servers/resourcelink
http://www.ibm.com/servers/resourcelink

You can use the PDF format on either z/OS Licensed Product Library CD-ROM or IBM Resource Link to
print licensed documents.

How this document is organized
This document is divided into areas of similar information for easy retrieval of appropriate information.
The following list describes how the information is grouped:

• Chapter 1 describes the syntax of the TEST runtime option.
• Chapters 2, 3, 4, and 5 describe the complete syntax of the z/OS Debugger commands.
• Chapter 6 describes the complete syntax of the EQAOPTS commands.
• Chapters 7 and 8 describe the syntax of z/OS Debugger built-in functions and variables.
• Chapters 9, 10, 11, 12, 13, 14, 15, and 16 list all the messages that z/OS Debugger and other tools

shipped with z/OS Debugger might display.
• Appendix A, “z/OS Debugger commands supported in Debug Tool compatibility mode,” on page 517 has

a list of commands that are supported in remote debug mode. This topic also contains instructions on
how you can enter these commands.

• Appendix B, “Changes in behavior of some commands,” on page 523 describes changes to default
behavior, including a comparison of the previous behavior and the new behavior, and with which version
and release of z/OS Debugger the change was introduced.

• Appendix C, “Limitations of 64-bit support in Debug Tool compatibility mode,” on page 527 describes
the limitations when you debug 64-bit programs in Debug Tool compatibility mode.

• Appendix D, “Support resources and problem solving information,” on page 529 describes the resources
available to help you solve any problems you might have with z/OS Debugger.

• Appendix E, “Accessibility,” on page 533 describes the features and tools available to people with
physical disabilities that help them use z/OS Debugger and z/OS Debugger documents.

The last several topics list notices, glossary of terms, and bibliography.

Terms used in this document
Because of differing terminology among the various programming languages supported by z/OS
Debugger, as well as differing terminology between platforms, a group of common terms is established.
The following table lists these terms and their equivalency in each language.

z/OS Debugger
term

C and C++
equivalent

COBOL or LangX
COBOL equivalent

PL/I equivalent assembler

Compile unit C and C++ source
file

Program • Program
• PL/I source file

for Enterprise
PL/I

• A package
statement or the
name of the main
procedure for
Enterprise PL/I1

CSECT

Block Function or
compound
statement

Program, nested
program, method,
or PERFORM group
of statements

Block CSECT

Label Label Paragraph name or
section name

Label Label

xii IBM z/OS Debugger: Reference and Messages

Note:

1. The PL/I program must be compiled with and run in one of the following environments:

• Compiled with Enterprise PL/I for z/OS, Version 3.6 or later
• Compiled with Enterprise PL/I for z/OS, Version 3.5, with the PTFs for APARs PK35230 and PK35489

applied

z/OS Debugger provides facilities that apply only to programs compiled with specific levels of compilers.
Because of this, this document uses the following terms:

assembler
Refers to assembler programs with debug information assembled by using the High Level Assembler
(HLASM).

COBOL
Refers to the all COBOL compilers supported by z/OS Debugger except the COBOL compilers
described in the term LangX COBOL.

Disassembly or disassembled
Refers to high-level language programs compiled without debug information or assembler programs
without debug information. The debugging support z/OS Debugger provides for these programs is
through the disassembly view.

Enterprise PL/I
Refers to the Enterprise PL/I for z/OS and OS/390 and the VisualAge PL/I for OS/390 compilers.

LangX COBOL
Refers to any of the following COBOL programs that are supported through use of the EQALANGX
debug file:

• Programs compiled using the IBM OS/VS COBOL compiler.
• Programs compiled using the VS COBOL II compiler with the NOTEST compiler option.
• Programs compiled using the Enterprise COBOL for z/OS V3 and V4 compiler with the NOTEST

compiler option.

When you read through the information in this document, remember that OS/VS COBOL programs
are non-Language Environment programs, even though you might have used Language Environment
libraries to link and run your program.

VS COBOL II programs are non-Language Environment programs when you link them with the non-
Language Environment library. VS COBOL II programs are Language Environment programs when you
link them with the Language Environment library.

Enterprise COBOL programs are always Language Environment programs. Note that COBOL DLL's
cannot be debugged as LangX COBOL programs.

Read the information regarding non-Language Environment programs for instructions on how to start
z/OS Debugger and debug non-Language Environment COBOL programs, unless information specific
to LangX COBOL is provided.

PL/I
Refers to all levels of PL/I compilers. Exceptions will be noted in the text that describe which specific
PL/I compiler is being referenced.

How to read syntax diagrams
This section describes how to read syntax diagrams. It defines syntax diagram symbols, items that
may be contained within the diagrams (keywords, variables, delimiters, operators, fragment references,
operands) and provides syntax examples that contain these items.

Syntax diagrams pictorially display the order and parts (options and arguments) that comprise a
command statement. They are read from left to right and from top to bottom, following the main path of
the horizontal line.

About this document xiii

Symbols
The following symbols may be displayed in syntax diagrams:
Symbol

Definition
►►───

Indicates the beginning of the syntax diagram.
───►

Indicates that the syntax diagram is continued to the next line.
►───

Indicates that the syntax is continued from the previous line.
───►◄

Indicates the end of the syntax diagram.

Syntax items
Syntax diagrams contain many different items. Syntax items include:

• Keywords - a command name or any other literal information.
• Variables - variables are italicized, appear in lowercase and represent the name of values you can

supply.
• Delimiters - delimiters indicate the start or end of keywords, variables, or operators. For example, a left

parenthesis is a delimiter.
• Operators - operators include add (+), subtract (-), multiply (*), divide (/), equal (=), and other

mathematical operations that may need to be performed.
• Fragment references - a part of a syntax diagram, separated from the diagram to show greater detail.
• Separators - a separator separates keywords, variables or operators. For example, a comma (,) is a

separator.

Keywords, variables, and operators may be displayed as required, optional, or default. Fragments,
separators, and delimiters may be displayed as required or optional.
Item type

Definition
Required

Required items are displayed on the main path of the horizontal line.
Optional

Optional items are displayed below the main path of the horizontal line.
Default

Default items are displayed above the main path of the horizontal line.

Syntax examples
The following table provides syntax examples.

Table 1. Syntax examples

Item Syntax example

Required item.

Required items appear on the main path of the
horizontal line. You must specify these items.

KEYWORD required_item

xiv IBM z/OS Debugger: Reference and Messages

Table 1. Syntax examples (continued)

Item Syntax example

Required choice.

A required choice (two or more items) appears in a
vertical stack on the main path of the horizontal line.
You must choose one of the items in the stack.

KEYWORD required_choice1

required_choice2

Optional item.

Optional items appear below the main path of the
horizontal line.

KEYWORD

optional_item

Optional choice.

An optional choice (two or more items) appears in a
vertical stack below the main path of the horizontal
line. You may choose one of the items in the stack.

KEYWORD

optional_choice1

optional_choice2

Default.

Default items appear above the main path of the
horizontal line. The remaining items (required or
optional) appear on (required) or below (optional) the
main path of the horizontal line. The following example
displays a default with optional items.

KEYWORD

default_choice1

optional_choice2

optional_choice3

Variable.

Variables appear in lowercase italics. They represent
names or values.

KEYWORD variable

Repeatable item.

An arrow returning to the left above the main path
of the horizontal line indicates an item that can be
repeated.

A character within the arrow means you must separate
repeated items with that character.

An arrow returning to the left above a group of
repeatable items indicates that one of the items can
be selected, or a single item can be repeated.

KEYWORD repeatable_item

KEYWORD

,

repeatable_item

Fragment.

The ─┤ fragment ├─ symbol indicates that a labelled
group is described below the main syntax diagram.
Syntax is occasionally broken into fragments if the
inclusion of the fragment would overly complicate the
main syntax diagram.

KEYWORD fragment

fragment
, required_choice1

, required_choice2

, default_choice

, optional_choice

How to provide your comments
Your feedback is important in helping us to provide accurate, high-quality information. If you have
comments about this document or any other z/OS Debugger documentation, you can leave a comment in
IBM Documentation:

About this document xv

https://www.ibm.com/docs

• IBM Developer for z/OS and IBM Developer for z/OS Enterprise Edition: https://www.ibm.com/docs/
developer-for-zos

• IBM Debug for z/OS: https://www.ibm.com/docs/debug-for-zos
• IBM Z and Cloud Modernization Stack: https://www.ibm.com/docs/z-modernization-stack

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information
in any way it believes appropriate without incurring any obligation to you.

xvi IBM z/OS Debugger: Reference and Messages

https://www.ibm.com/docs/developer-for-zos
https://www.ibm.com/docs/developer-for-zos
https://www.ibm.com/docs/debug-for-zos
https://www.ibm.com/docs/z-modernization-stack

Summary of changes

15.0.8
EQAN0DBG

• EQAN0DBG is now available as an alias of EQANMDBG. It passes the unmodified input parameter
list to the application and collects all debugger parameters from EQANMDBG DD. For more
information, see "Starting z/OS Debugger for programs that start outside of Language Environment"
or "Passing parameters to EQANMDBG or EQAN0DBG using only the EQANMDBG DD statement" in
IBM z/OS Debugger User's Guide.

Debug Profile Service

• Debug Profile Service now runs on IBM z/OS Liberty Embedded instead of Apache Tomcat on
z/OS. Refresh the eqaprof.env with the latest sample file to include environment variable
liberty_dir. For more information, see "Customizing with the sample job EQAPRFSU" in IBM
z/OS Debugger Customization Guide.

Documentation updates

• A new page is added to list the requisites to use debug functions. For more information, see
"Requisite products" in IBM z/OS Debugger Customization Guide.

15.0.7
z/OS Debugger Profiles view

• On the IBM z/OS Debugger Preferences page, you can now choose whether to automatically
synchronize debug profiles in the view with those in the remote system when you establish an RSE
connection. For more information, see the "Setting debug preferences" topic in IBM Documentation.

15.0.6
Debug Profile Service

• On the IBM z/OS Debugger Preferences page, you can specify to ignore the SSL certificate errors
when the Debug Profile Service that you want to connect to does not have a valid SSL certificate. For
more information, see the "Setting debug preferences" topic in IBM Documentation.

15.0.5
z16, Compilers and CICS

• Support is added for the new IBM z16 hardware.
• Support is added for CICS Transaction Server for z/OS 6.1.
• Support is added for the following compiler versions in both 31-bit mode and 64-bit mode:

– Enterprise COBOL for z/OS 6.4
– Enterprise PL/I for z/OS 6.1

User-defined functions

• User-defined functions are supported for programs compiled with Enterprise COBOL for z/OS 6.4.

64-bit support

• Debug Tool compatibility mode now supports delay debug.
• The following EQAOPTS commands are now supported:

– DLAYDBG

© Copyright IBM Corp. 1992, 2024 xvii

https://www.ibm.com/docs
https://www.ibm.com/docs

– DLAYDBGDSN
– DLAYDBGTRC

For the remaining limitations, see Appendix C, “Limitations of 64-bit support in Debug Tool
compatibility mode,” on page 527.

Interoperability

• Interoperability is now supported between 31-bit and 64-bit COBOL programs. Use delay debug
mode to improve efficiency.

• You can now debug 31-bit COBOL programs called from 64-bit Java programs. Delay debug mode is
required when you debug this type of application.

For more information, see "Using delay debug mode to delay starting of a debug session" in IBM
z/OS Debugger User's Guide.

Automatic Binary Optimizer for z/OS

• Support is added for Automatic Binary Optimizer for z/OS 2.2.
• In Debug Tool compatibility mode, you can now debug programs compiled with Enterprise COBOL

for z/OS Version 5 or later that have been optimized by Automatic Binary Optimizer for z/OS 2.2. The
optimized programs can be debugged in the same manner as those that are not optimized.

Code Coverage

• You can now filter code coverage results for z/OS batch applications using existing JCL and z/OS
UNIX applications by specifying a filter list file in the launch configuration. For more information, see
"Filtering code coverage results during collection" in IBM Documentation.

• The module exclude list is deprecated and replaced by the filter list file.

Debug profile

• As a system administrator of Debug Profile Service, you can now use z/OS Debugger Profile
Management to identify and delete CICS (DTCN) profiles that might interfere with z/OS system
resources. For more information, see "Managing profiles with z/OS Debugger Profile Management"
in IBM z/OS Debugger Customization Guide.

Host configuration

• When not run as a started task, Debug Manager now queries your security product for explicit
permission to start. For more information, see "Starting Debug Manager as a user job" in IBM z/OS
Debugger Customization Guide.

15.0.4
IBM Z® Open Debug

• You can now connect to a debug session and start debugging when you list debug sessions that are
parked on a z/OS machine.

• With the Wazi for VS Code IDE, you can now use a single action to activate a debug profile, launch
and debug an application.

Code Coverage

• You can now merge and export code coverage results on z/OS from command line into a single
file of various formats with the ccexport.sh command. For more information, see "Merging and
exporting code coverage results from z/OS" in IBM Documentation.

• Code Coverage Service can now be started as part of Remote Debug Service. For more
information, see "Generating code coverage in headless mode using Remote Debug Service" in IBM
Documentation.

• When started via the headless code coverage collector, Code Coverage Service now supports
secured connections, and requires authentication.

xviii IBM z/OS Debugger: Reference and Messages

https://www.ibm.com/docs
https://www.ibm.com/docs
https://www.ibm.com/docs
https://www.ibm.com/docs

• In the Code Coverage Results view, you can now add a secured Code Coverage Service result
location (https). You can add and clear untrusted certificates in the CCS keystore file. For more
information, see "Working with result locations" in IBM Documentation.

• The code coverage output location specified in the o,output parameter is ignored in the startup
key unless you specify -a,allowoutputlocation=TRUE in the command line when you start the
code coverage collector and use headless code coverage. For more information, see "Specifying
code coverage options in the startup key" and "Starting and stopping the headless code coverage
daemon" in IBM Documentation.

• The Code Coverage API documentation is updated from version 10.1.2 to 11.0.0.

IBM Open Enterprise SDK for Go

• In Debug Tool compatibility mode, you can now debug Go programs compiled with IBM Open
Enterprise SDK for Go 1.17. For more information, see "Debugging programs compiled with IBM
Open Enterprise SDK for Go" in IBM z/OS Debugger User's Guide.

Decimal point

• In Debug Tool compatibility mode, if the DECIMAL-POINT IS COMMA clause is specified in a
COBOL program compiled with Enterprise COBOL for z/OS Version 6 Release 3 (UI78163) or later,
the debugger displays decimals as commas in the Variables and Monitors views in Eclipse IDEs,
and expressions accept commas, in addition to periods, as decimal points.

Host configuration

• You can now configure the eqahcc.enc file to start Code Coverage Service as part of Remote
Debug Service. For more information, see the "Customizing with the sample job EQARMTSU" topic in
IBM z/OS Debugger Customization Guide.

• With Debug Manager, you can leverage Dynamic Virtual IP Addressing (DVIPA) available in IBM
Explorer for z/OS to concurrently run identical setups on different systems in your sysplex, and have
TCP/IP, optionally with the help of WLM, distribute the client connections among these systems.
Ensure that each Debug Manager has a unique external port per system and the port is explicitly
defined in TCP/IP definitions. For more information, see the "Distributed Dynamic VIPA" section in
IBM z/OS Debugger Customization Guide.

• MVS data set userid.EQATIOUT is no longer needed when you install and configure the IMS
transaction isolation extension for Eclipse IDE users.

15.0.3
z/OS 2.5

• Support is added for z/OS 2.5.

IBM Open Enterprise SDK for Go

• In Debug Tool compatibility mode, you can now debug Go programs compiled with IBM Open
Enterprise SDK for Go 1.16. For more information, see "Debugging programs compiled with IBM
Open Enterprise SDK for Go" in IBM z/OS Debugger User's Guide.

64-bit support

• Debug Tool compatibility mode now supports playback for 64-bit COBOL programs. For the
remaining limitations, see Appendix C, “Limitations of 64-bit support in Debug Tool compatibility
mode,” on page 527.

Source Level Code Coverage for COBOL

• When you start a code coverage session with the Eclipse IDE or headless code coverage, you can
now choose to use the source listing. Source level code coverage offers direct mapping between
code coverage entries and the program source, to exclude the need to post process the code
coverage data. Source level code coverage improves integration with tools like ZUnit and SonarQube
as part of an automated pipeline. For more information, see "How does z/OS Debugger locate
COBOL source during code coverage" in IBM z/OS Debugger User's Guide.

Summary of changes xix

https://www.ibm.com/docs
https://www.ibm.com/docs

Code Coverage Service API

• Code Coverage Service (CCS) RESTful API is now available to enable custom extensions. For more
information, see "Code Coverage Service RESTful API Documentation" in IBM Documentation.

z/OS Debugger Profiles view

• Remote IMS Application with Isolation launch configurations have been replaced by the IMS
Isolation debug profiles. All existing IMS launch configurations are automatically migrated to the
z/OS Debugger Profiles view. You can create and activate IMS Isolation profiles in the view to
debug and run code coverage for IMS transactions in private regions.

To use this function, ensure that the system programmer installed and configured the IMS
transaction isolation extension for the ADFz Common Components server. If you want to configure
the region name for the private region, ask the system programmer to update z/OS Debugger to
15.0.3 or later, with the PTF for APAR PH41774 applied.

Note: IMS Isolation profiles are only available in IBM Developer for z/OS Enterprise Edition.
• You can now view the Remote System Explorer z/OS connection status in the view. A new option

Refresh z/OS Connections is provided in the view toolbar to establish all z/OS connections and
synchronize the profiles.

• You can now duplicate the content from an existing debug profile to create a new one efficiently.
• Generic profiles might trigger z/OS Debugger unexpectedly and consume unnecessary resources.

When you activate a generic profile, warnings are now displayed. You can choose to hide the
warnings.

• In the Debug Profile Editor, you can now save a debug profile without activating it, and leave it for
future use.

For more information, see "Managing debug profiles with the z/OS Debugger Profiles view" in IBM
Documentation.

Debug Profile Service

• You now only need to expose one port to use Debug Profile Service. A new configuration switch is
added to eqaprof.env to select whether to use secure HTTP protocol. For more information, see
"Customizing with the sample job EQAPRFSU" in IBM z/OS Debugger Customization Guide.

z/OS Debugger commands

• The following commands are now supported in Debug Tool compatibility mode for remote
debugging:

– STEP
– GO
– RUNTO
– JUMPTO
– COMMENT

Dark theme

• Dark theme is now supported for remote debugger in the Eclipse IDE.

Message EQA9924U

• Message ICH408I is now issued in the console with EQA9924U to provide you with more
information to address the issue.

15.0.2
IBM Z Open Debug

• You can now debug High Level Assembler (HLASM) z/OS programs with IBM Z Open Debug.
• For Wazi for Dev Spaces, the log files are now in /projects/.debug/logs.

xx IBM z/OS Debugger: Reference and Messages

https://www.ibm.com/docs
https://www.ibm.com/docs
https://www.ibm.com/docs

Code Coverage

• In the Code Coverage Results view, you can now export code coverage results in Cobertura
format. For more information, see "Exporting code coverage results in Cobertura format" in IBM
Documentation.

• You can now specify parameters in the startup key to generate code coverage results in Cobertura
and SonarQube formats. In addition, short parameters values -e,exportertype=SQ|PDF|COB
are added for you to use both in the startup key and in the headless code coverage daemon. For
more information, see "Specifying code coverage options in the startup key" and "Starting and
stopping the headless code coverage daemon" in IBM Documentation.

• When you view code coverage results in an editor, you can now see a code coverage summary of the
included files for PL/I source files with %INCLUDE statements. For more information, see "Viewing
code coverage results in an editor" in IBM Documentation.

z/OS Batch Applications launches

• In the Remote Systems or z/OS Projects view, or when you are editing the JCL source in the
editor, after you choose Debug As or Code Coverage As from the menu, the following options are
available:

– z/OS Batch Application: Launch a debug or code coverage session without a debug profile.
– z/OS Batch Application with a debug profile: Launch a debug or code coverage session with a

debug profile.
– z/OS Batch Application ...: Create a launch configuration to launch a debug or code coverage

session.

For more information, see "Launching a debug session for z/OS batch applications using existing
JCL" in IBM Documentation.

IBM z/OS Debugger JCL Wizard

• The Program/Procedure Selection List panel is updated to include procedures, in addition to
programs. Selecting a procedure will provide a panel to enter the procedure step override for the DD
statements generated. The After (A) and Before (B) line commands are no longer required.

• You can now select SVC screening to enable SVC screening for batch non-Language Environment
programs.

• You can now select Intercept on to show COBOL DISPLAY statements on the IBM z/OS Debugger
log or Debug Console in the Eclipse IDE.

• Error messages are improved.
• The END command (PF3) in the Program/Procedure Selection List panel is modified to cancel the

request. Previously, selecting PF3 would not exit the panel.
• When the process is completed, the cursor is now placed on the command line.
• The z/OS Debugger LDD Generation for Non-LE Programs panel is now populated with the initial

program name and subprograms selected in the Request AT ENTRY Sub-Program Breakpoints
panel. Program names provided in this panel can be modified.

• After you select Code Coverage from the parameters selection panel, the EQAXOPT lines
are generated to specify CCPROGSELECTDSN, CCOUTPUTDSN and CCOUTPUTDSNALLOC, if the
CODE_COVERAGE_SETUP value is configured to YES in the EQAJCL REXX procedure.

• Previously the wizard would verify the program source members identified in the z/OS Debugger
LDD Generation for Non-LE Programs panel with each library identified by the z/OS Debugger
Debug Libraries panel to verify that the members are present. This function is removed because
z/OS Debugger now flags any such members in the IBM z/OS Debugger log or Debug Console in the
Eclipse IDE when the LDD command is entered.

For more information, see "IBM z/OS Debugger JCL Wizard" in the IBM z/OS Debugger User's Guide

Summary of changes xxi

https://www.ibm.com/docs
https://www.ibm.com/docs
https://www.ibm.com/docs
https://www.ibm.com/docs
https://www.ibm.com/docs

AT LABEL * command

• For Enterprise COBOL for z/OS Version 5 and later, AT LABEL * now highlights the labels similar to
statement breakpoints.

• You can now use PF6 or AT LINE to remove or add a single global label hook if AT LABEL * was
issued. To disable this functionality, use DISABLE AT LABEL *.

• If you issue AT LABEL * again or use ENABLE AT LABEL *, the global label hooks are reset. The
hooks that you removed are added back.

For more information, see AT LABEL command.

15.0.1
64-bit support

• Debug Tool compatibility mode now supports the following features:

– Code coverage
– Source entry breakpoints
– CEETEST

For the remaining limitations, see Appendix C, “Limitations of 64-bit support in Debug Tool
compatibility mode,” on page 527.

Code Coverage

• With Concurrent Debug and Code Coverage, you can run code coverage collection in parallel with
the active debug session in the Eclipse IDE. The code coverage data is collected during the debug
run, and code coverage annotations are displayed and updated in the debug editor. Concurrent
Debug and Code Coverage requires z/OS Debugger 15.0.1 or later. For more information, see the
"Generating code coverage in a remote debug session" topic in IBM Documentation.

• Headless code coverage report can now be exported with a Cobertura exporter. For more
information, see the "Starting and stopping the headless code coverage daemon" topic in IBM
Documentation.

• Headless code coverage collector now supports filtering of module, compiler units, and files. For
more information, see the "Filtering code coverage results" topic in IBM Documentation.

Debug Profile Editor

• In the Debug Profile Editor of the Eclipse IDE, new key bindings are available to show the error
tooltip and the overall error summary. For more information, see the "Debug profile key bindings"
topic in IBM Documentation.

Debug Profile Service

• As an alternative of a keystore file, you can now use a RACF managed key ring to enable
secure communication with Debug Profile Service. For more information, see the "Enabling secure
communication with a RACF managed key ring" section in IBM z/OS Debugger Customization Guide.

• A new optional HOST attribute is added to the CICS region configuration. For more information, see
the instructions in the /etc/debug/dtcn.ports sample configuration file.

• The Debug Profile Service API now provides more detailed diagnostic messages when
authentication fails.

IBM Z Open Debug

• Log files can now be found in the user's home directory.

CICS trace entries

• A new parameter, DNT, is added to the CICS startup parameter INITPARM to support disabling
generation of z/OS Debugger trace entries. For more information, see the "Adding support for
debugging under CICS" topic in IBM z/OS Debugger Customization Guide.

xxii IBM z/OS Debugger: Reference and Messages

https://www.ibm.com/docs
https://www.ibm.com/docs
https://www.ibm.com/docs
https://www.ibm.com/docs
https://www.ibm.com/docs

15.0.0
64-bit support

• Debug Tool compatibility mode now supports the following compiler features:

– The 64-bit COBOL feature of z/OS for COBOL V6.3 and later
– The 64-bit C/C++ feature of z/OS

For the limitations, see Appendix C, “Limitations of 64-bit support in Debug Tool compatibility
mode,” on page 527.

The PTFs for z/OS Language Environment APARs PH26071 and PH28997 are required for this
support.

IBM Z Open Debug

• IBM Z Open Debug is now also available with the Wazi for Dev Spaces IDE, in addition to the Wazi
for VS Code IDE. Both IDEs are offered in IBM Wazi Developer for Red Hat CodeReady Workspaces
and IBM Developer for z/OS Enterprise Edition. For a comparison of features provided in different
products and IDEs, see Overview of IBM z/OS Debugger.

• You can now specify TEST(,,,RDS:*) for the TEST runtime option to start a debug session using
Remote Debug Service for Wazi for VS Code or Wazi for Dev Spaces.

Code Coverage

• Headless code coverage for z/OS is now included with IBM Debug for z/OS. Use the headless
code coverage collector to generate code coverage results of tests that are run as part of your
DEVOPS pipeline. For more information, see the "Generating code coverage in headless mode using
a daemon" section in IBM Documentation.

• Single letter parameters are now supported in the headless code coverage collector command
line and in EQA_STARTUP_KEY when you use JCL. For more information, see topics "Starting and
stopping the headless code coverage daemon" and "Specifying code coverage options in the startup
key" in IBM Knowledge Center.

• Support is added for PL/I programs compiled with LISTVIEW(SOURCE) to generate code coverage
results for main program and all %INCLUDE files. For more information, see the "Supported
compilers and options for code coverage in Debug Tool compatibility mode" topic in IBM Knowledge
Center.

• The Code Coverage Results view of the Eclipse IDE now supports CCS result locations. You can
add a CCS result location which collects and retrieves code coverage data by using RESTful API,
and interact with the results under the CCS result location in the same way as locally stored results.
CCS result locations require Headless Code Coverage 15.0.0 or later. For more information, see the
"Viewing code coverage results in the Code Coverage Results view" topic in IBM Knowledge Center.

• You can now also use Remote Debug Service to collect code coverage results similar to the headless
code coverage collector for IBM Wazi Developer for Red Hat CodeReady Workspaces or IBM
Developer for z/OS Enterprise Edition. For more information, see the "Generating code coverage
in headless mode using Remote Debug Service" topic in IBM Knowledge Center.

Debug Profile Editor

• In the Debug Profile Editor of the Eclipse IDE, you can now use the quick outline to navigate to
a field. For more information, see the "Quick outline for the Debug Profile Editor" topic in IBM
Knowledge Center.

z/OS XL C/C++

• Support is added for DEBUG(NOFILE). For more information, see topics "Choosing DEBUG compiler
suboptions for C programs" and "Choosing DEBUG compiler suboptions for C++ programs" in IBM
z/OS Debugger User's Guide.

Summary of changes xxiii

https://www.ibm.com/docs
https://www.ibm.com/docs
https://www.ibm.com/docs
https://www.ibm.com/docs
https://www.ibm.com/docs
https://www.ibm.com/docs
https://www.ibm.com/docs
https://www.ibm.com/docs

Debug Tool Plug-ins

• The following Debug Tool plug-ins of the Eclipse IDE are deprecated and will be removed in the next
release:

– DTCN Profile Manager plug-in
– DTSP Profile Manager plug-in
– Instrument JCL for Debug Tool Debugging plug-in
– Debug Tool Code Coverage plug-in
– Load Module Analyzer plug-in

You can use the z/OS Debugger Profiles view to create and manage debug profiles, z/OS batch
applications launches to dynamically instrument and submit JCL, and the Code Coverage Results
view to work with compiled code coverage results. For more information, see the following topics
in IBM Documentation: Managing debug profiles with the z/OS Debugger Profiles view, Launching a
debug session for z/OS batch applications using existing JCL, and Viewing code coverage results in
the Code Coverage Results view.

Load Module Analyzer

• The Load Module Analyzer is deprecated and will be removed in a future version.

Host configuration

• Remote Debug Service can now be configured to collect headless code coverage. For more
information, see the "Adding support for Remote Debug Service" section in IBM z/OS Debugger
Customization Guide.

• The record size for the DTCN VSAM file is increased to 3000 bytes. To use the DTCN VSAM
repository with z/OS Debugger 15.0, create a new file using the SEQASAMP(EQAWCRVS) sample
JCL. You can also convert your existing VSAM file to the new record size and format using the
EQADPCNV utility. For more information, see the "Migrating a debug profiles VSAM file from an
earlier release" topic in IBM z/OS Debugger Customization Guide.

• The IMS Transaction Isolation Facility is enhanced to utilize type 2 IMS commands for retrieving
information on transactions, in cases where the type 1 commands that are normally used are
disallowed. For more information, see the "Scenario F: Enabling the Transaction Isolation Facility"
topic in IBM z/OS Debugger Customization Guide.

xxiv IBM z/OS Debugger: Reference and Messages

https://www.ibm.com/docs

Overview of IBM z/OS Debugger

IBM z/OS Debugger is the next iteration of IBM debug technology on IBM Z and consolidates the IBM
Integrated Debugger and IBM Debug Tool engines into one unified technology. IBM z/OS Debugger is
progressing towards one remote debug mode based on Debug Tool compatibility mode. In support of this
direction, Debug Tool compatibility mode, when available in the user interface, is selected by default for
V14.1.2 or later.

IBM z/OS Debugger is a host component that supports various debug interfaces, like the Eclipse and
Visual Studio Code IDEs. z/OS Debugger and the supported debug interfaces are provided with the
following products:
IBM Developer for z/OS Enterprise Edition

This product is included in IBM Application Delivery Foundation for z/OS. IBM Developer for z/OS
Enterprise Edition provides all the debug features.
IBM Developer for z/OS Enterprise Edition currently provides debug functions in the following IDEs:

• IBM Developer for z/OS Eclipse
• Wazi for Dev Spaces, through IBM Z Open Debug
• Wazi for VS Code, through IBM Z Open Debug

See Table 3 on page xxvii for the debug features supported in different IDEs.
IBM Developer for z/OS

IBM Developer for z/OS is a subset of IBM Developer for z/OS Enterprise Edition. IBM Developer for
z/OS, previously known as IBM Developer for z Systems or IBM Rational® Developer for z Systems®, is
an Eclipse-based integrated development environment for creating and maintaining z/OS applications
efficiently.
IBM Developer for z/OS includes all enhancements in IBM Developer for z/OS Enterprise Edition
except for the debug features noted in Table 2 on page xxvi.

IBM Debug for z/OS
IBM Debug for z/OS is a subset of IBM Developer for z/OS Enterprise Edition. IBM Debug for z/OS
focuses on debugging solutions for z/OS application developers. See Table 2 on page xxvi for the
debug features supported.
IBM Debug for z/OS does not provide advanced developer features that are available in IBM
Developer for z/OS Enterprise Edition.
For information about how to install the IBM Debug for z/OS Eclipse IDE, see Installing the IBM Debug
for z/OS Eclipse IDE.

IBM Z and Cloud Modernization Stack
IBM Z and Cloud Modernization Stack brings together component capabilities from IBM Z into an
integrated platform that is optimized for Red Hat OpenShift Container Platform. With this solution, you
can analyze the impact of application changes on z/OS, create and deploy APIs for z/OS applications,
work on z/OS applications with cloud native tools, and standardize ID automation for z/OS. Starting
from 2.0, Wazi Code is delivered in IBM Z and Cloud Modernization Stack. Wazi Code 1.x is still
available in IBM Wazi Developer for Red Hat CodeReady Workspaces.
The debug functions are available in the IDEs provided with Wazi Code:

• Wazi for Dev Spaces, through IBM Z Open Debug
• Wazi for VS Code, through IBM Z Open Debug
• Wazi for Eclipse

See Table 2 on page xxvi and Table 3 on page xxvii for the debug features supported in the product
and different IDEs.

© Copyright IBM Corp. 1992, 2024 xxv

https://www.ibm.com/us-en/marketplace/developer-for-z-systems
https://www.ibm.com/products/app-delivery-foundation-on-zsystems
https://www.ibm.com/us-en/marketplace/developer-for-z-systems
https://www.ibm.com/us-en/marketplace/debug-for-z-systems
https://www.ibm.com/docs/debug-for-zos/15.0?topic=installing-debug-zos-eclipse-ide
https://www.ibm.com/docs/debug-for-zos/15.0?topic=installing-debug-zos-eclipse-ide
https://www.ibm.com/products/z-and-cloud-modernization-stack

Table 2 on page xxvi maps out the features that differ in products. Not all the available features are listed.
To find the features available in different remote IDEs, see Table 3 on page xxvii.

Table 2. Debug feature comparison

IBM Debug for
z/OS

IBM Developer for
z/OS

IBM Developer for
z/OS Enterprise
Edition

IBM Z and Cloud
Modernization
Stack (Wazi Code)

Main features

3270 interface,
including z/OS
Debugger Utilities

√ √

Eclipse IDE, see
Table 3 on page
xxvii for feature
details.1

√ √ √ √

IBM Z Open Debug
provided with the
Wazi for Dev
Spaces IDE, see
Table 3 on page
xxvii for feature
details.1

√ √

IBM Z Open Debug
provided with the
Wazi for VS Code
IDE, see Table 3
on page xxvii for
feature details.1

√ √

Code Coverage features

Compiled
Language Code
Coverage2

√ √ 3 √

Headless Code
Coverage

√ √ √

Java™ Code
Coverage

√ √

ZUnit Code
Coverage4

√ √

z/OS Debugger
Code Coverage
(3270 and remote
interfaces) 5

√ √

3270 features

z/OS Debugger full
screen, batch or
line mode

√ √

IMS Isolation
support

√ √

xxvi IBM z/OS Debugger: Reference and Messages

Table 2. Debug feature comparison (continued)

IBM Debug for
z/OS

IBM Developer for
z/OS

IBM Developer for
z/OS Enterprise
Edition

IBM Z and Cloud
Modernization
Stack (Wazi Code)

Compiler support features

Assembler
support: Create
EQALANGX files

√ √ √

Assembler
support:
Debugging 6

√ √ √7 √7

LANGX COBOL
support 8

√ √ √

Support for
Automatic Binary
Optimizer (ABO)

√ √ √

Load Module
Analyzer9

√ √

Notes:

1. The following features are supported only in remote debug mode:

• Support for 64-bit COBOL feature of z/OS for COBOL V6.3 and later
• Support for 64-bit Enterprise PL/I for z/OS Version 5
• Support for 64-bit C/C++ feature of z/OS
• Support for IBM Open Enterprise SDK for Go 1.16.

2. Code coverage does not support Go programs.
3. IBM Developer for z/OS includes z/OS Debugger remote debug and compiled code coverage Eclipse

interface, but does not include z/OS Debugger Code Coverage.
4. ZUnit Code Coverage is only supported in Debug Tool compatibility mode.
5. z/OS Debugger Code Coverage can only be enabled in the 3270 interface.
6. Debugging assembler requires that you have EQALANGX files that have been created via ADFz

Common Components or a product that ships the ADFz Common Components.
7. This feature is only available with the Eclipse IDE.
8. LANGX COBOL refers to any of the following programs:

• A program compiled with the IBM OS/VS COBOL compiler.
• A program compiled with the IBM VS COBOL II compiler with the NOTEST compiler option.
• A program compiled with the IBM Enterprise COBOL for z/OS Version 3 or Version 4 compiler with

the NOTEST compiler option.
9. Load Module Analyzer is deprecated and will be removed in a future version.

Table 3. Remote IDE debug feature comparison

Feature Eclipse-based debug interface IBM Z Open Debug 1,10

Debug Tool compatibility mode2 √ √

Standard mode3,10 √4

Overview of IBM z/OS Debugger xxvii

Table 3. Remote IDE debug feature comparison (continued)

Feature Eclipse-based debug interface IBM Z Open Debug 1,10

Integration with Language
Editors10

• COBOL Editor5

• PL/I Editor5

• Remote C/C++ Editor4,5

• System z LPEX Editor4,5

• Z Open Editor

Visual Debug √5,10

Debugging ZUnit tests √6,10

Debug profile management √4,10 √

IMS Isolation UI √7

Integration with CICS Explorer
views

√ 4,5

Integration with property groups √5,10

Team Debug support √4,5

Integrated launch10 • z/OS UNIX Application launch
configuration

• z/OS Batch Application using
existing JCL

• z/OS Batch Application using a
property group5

Debug Tool Plug-ins √4, 8

Modules √

Memory √

Program navigation

Step over/Next √ √

Step into/Step in √ √

Step return/Step out √ √

Jump to location √10

Run to location/Run to cursor √10 √

Resume/Continue √ √

Terminate √ √

Animated step √

Playback √10

Breakpoints

Line/statement breakpoints √ √

Entry breakpoints √

Source entry breakpoints √10

Event breakpoint √10

xxviii IBM z/OS Debugger: Reference and Messages

Table 3. Remote IDE debug feature comparison (continued)

Feature Eclipse-based debug interface IBM Z Open Debug 1,10

Address breakpoint √10

Watch breakpoint √10

Variables & Registers

Variables √ √

Registers √ √9

Modifying variable and register
values

√ √

Setting variable filter √

Changing variable representation √

Dereferencing variables √

Displaying in memory view √

Monitors

Displaying monitor √ √

Modifying monitor value √

Changing variable representation √

Dereferencing variables √

Debug Console

Evaluating variables and
expressions

√

z/OS Debugger commands √10

Notes:

1. IBM Z Open Debug is provided with Wazi for Dev Spaces and Wazi for VS Code.
2. Debug Tool compatibility mode does not support 64-bit Enterprise PL/I for z/OS Version 5.
3. Standard mode does not support 64-bit COBOL feature of z/OS for COBOL V6.3 and later. Source view

for COBOL V6.2 and later is supported only in standard mode.
4. This feature is not available in Wazi for Eclipse.
5. This feature is not available in IBM Debug for z/OS.
6. Debugging ZUnit tests is only supported in Debug Tool compatibility mode.
7. This feature is only available in IBM Developer for z/OS Enterprise Edition.
8. IBM Developer for z/OS includes Debug Tool plug-ins, but does not include Load Module Analyzer and

z/OS Debugger Code Coverage 3270 interfaces.
9. Registers are available in the Variables view.

10. Programs compiled with IBM Open Enterprise SDK for Go are not supported.

Overview of IBM z/OS Debugger xxix

xxx IBM z/OS Debugger: Reference and Messages

Chapter 1. z/OS Debugger runtime options

This topic describes the runtime options that you can use to control the operation of z/OS Debugger.

"Table 10" in the IBM z/OS Debugger User's Guide describes most of the methods you can use to specify
the TEST runtime options. Use that table with the information in the topic "Planning your debug session"
in IBM z/OS Debugger User's Guide to select the method that works best for your site.

Some methods use the standard Language Environment runtime options. Other methods use z/OS
Debugger keyword options with the same syntax and semantics as the corresponding Language
Environment option. In all cases, you can omit these options if the default values are acceptable.

When you specify runtime options for a Language Environment program, they are handled by Language
Environment and the following rules apply:

• You can mix them with other Language Environment runtime options in any order.
• Separate them with either blanks or commas.
• Separate all runtime options from user-program options with a slash ('/').
• The placement of these options (before or after the slash) depends on the programming language of the

MAIN routine.

When you specify runtime options for a non-Language Environment program by using EQANMDBG under
z/OS batch or TSO, z/OS Debugger processes the options and the following rules apply:

• You must specify the name of the program to be debugged as the first parameter; this is a positional
parameter.

• Specify the runtime options in any order following the name of the program to be debugged.
• Separate all options with commas.
• Separate the runtime options from user-program options with a slash ('/'). If you do not specify any

runtime options, the slash follows the name of the program.
• Specify any parameters to the user-program after the slash.
• If no user-program parameters are required, you can omit the slash.

Refer to the following topics for more information related to the material discussed in this topic.

Related tasks
"Planning your debug session" in IBM z/OS Debugger User's Guide

Related references
z/OS Language Environment Programming Reference

Non-Language Environment positional parameter
If you use EQANMDBG to start z/OS Debugger to debug MVS batch or TSO programs that do not run
in Language Environment, the first positional parameter must be the name of the program you want to
debug. This name must be immediately followed by one of the following options:

• one or more of the z/OS Debugger keyword runtime options described in the following sections of this
chapter and then a slash ('/') and any user-program parameters

• a slash ('/') and any user-program parameters

If no user-program parameters are required, the slash is optional.

Refer to the following topics for more information related to the material discussed in this topic.

Related tasks
"Planning your debug session" in IBM z/OS Debugger User's Guide.

© Copyright IBM Corp. 1992, 2024 1

COUNTRY runtime option
Use the COUNTRY option to specify the country code to be used by z/OS Debugger. The default is always
US.

The syntax for this option is:

COUNTRY (country_code)

country_code
A valid country code, one of:
US

United States of America
JP

Japan

NATLANG runtime option
Use the NATLANG option to specify the desired national language for z/OS Debugger. This determines the
language that is used to display z/OS Debugger output, such as messages. If you do not specify NATLANG,
the installation default is used.

The syntax for this option is:

NATLANG (language_Id)

language_Id
A valid national language identifier, one of:
ENU

English
UEN

Upper-case English
JPN

Japanese
KOR

Korean

If you set NATLANG to JPN or KOR and you are using full-screen mode, enter the SET DBCS ON
command so that z/OS Debugger displays messages in the correct format.

NONLESP runtime option
Use the NONLESP option to direct z/OS Debugger to use a different storage subpool for its storage, in
cases where the program being debugged does a FREEMAIN of subpool 1 (where z/OS Debugger places
its data by default).

The syntax for this option is:

NONLESP (n)

n
An integer with a value between 2 and 127

TEST runtime option
The TEST runtime option gives control of your program to z/OS Debugger.

2 IBM z/OS Debugger: Reference and Messages

This topic describes the TEST runtime option and its suboptions. The suboptions of the TEST runtime
option control how, when, and where z/OS Debugger gains control of your program. For a description of
how to specify the TEST runtime option, refer to "Planning your debug session" in the IBM z/OS Debugger
User's Guide.

Syntax of the TEST runtime option
For examples of using the TEST runtime option to illustrate runtime options available for your programs,
see the "Example: TEST runtime options" topic in IBM z/OS Debugger User's Guide.

You can combine any of the suboptions for the TEST runtime option but only in the order specified by the
TEST syntax. Any option or suboption referred to as "default" is the IBM-supplied default, and might have
been changed by your system administrator during installation.

The syntax for this option is:
NOTEST

TEST

(

test_level

,

commands_file

,

prompt_level

,

preferences_file

)

test_level
ALL

ERROR

NONE

commands_file
*

NULLFILE

commands_file_designator

VADSCP  nnnnn

prompt_level
PROMPT

NOPROMPT

;

*

"

;

command "

preferences_file

Chapter 1. z/OS Debugger runtime options 3

MFI

% terminal_id

%

network_identifier .

 VTAM_LU_id

:

VTAM%  user_id :

DIRECT&

TCPIP&
1

VADTCPIP&
1

tcpip_id
%8001

%port_id

:

DBM

DBMDT %user_id

:

RDS

INSPPREF

NULLFILE

preferences_file_designator

*

Notes:
1 Specifies remote debug mode. 64-bit COBOL, PL/I, and C/C++ programs are supported only in
remote debug mode.

The following list explains what actions are taken by each option and suboption.

NOTEST
Specifies that z/OS Debugger is not started at program initialization. However, Starting z/OS Debugger
is still possible through the use of CEETEST, PLITEST, or the __ctest() function. In such a case,
the suboptions specified with NOTEST are used when z/OS Debugger is started.

TEST
Specifies that z/OS Debugger is given control according to the specified suboptions. The TEST
suboptions supplied are used if z/OS Debugger is started with CEETEST, PLITEST, or __ctest().

If z/OS Debugger is started by using CALL CEETEST (or an equivalent entry), you cannot debug
higher-level non-Language Environment programs or intercept non-Language Environment events
that occur in higher-level programs after you return from the program that started z/OS Debugger.

test_level:

ALL (or blank)
Specifies that the occurrence of an attention interrupt, ABEND of a program, or any program or
Language Environment condition of Severity 1 and above causes z/OS Debugger to gain control,
regardless of whether a breakpoint is defined for that condition.

When a FINISH, CEE066 or CEE067 thread termination condition is raised by Language Environment,
z/OS Debugger can be prevented from stopping at this condition by specifying the EQAOPTS
THREADTERMCOND command. You or your system administrator can specify this command by creating
an EQAOPTS load module or providing the command at run time.

If a condition occurs and a breakpoint exists for the condition, the commands specified in the
breakpoint are executed. If a condition occurs and a breakpoint does not exist for that condition,
or if an attention interrupt occurs, z/OS Debugger does the following:

4 IBM z/OS Debugger: Reference and Messages

• In full-screen mode, z/OS Debugger reads commands from a commands file (if it exists and is
available) or prompts you for commands.

• In batch mode, z/OS Debugger reads commands from the commands file. If none is available, the
program runs uninterrupted.

ERROR
Specifies that only the following conditions cause z/OS Debugger to gain control without a user-
defined breakpoint.

• For C and C++:

– An attention interrupt
– Program termination
– A predefined Language Environment condition of Severity 2 or above
– Any C and C++ condition other than SIGUSR1, SIGUSR2, SIGINT or SIGTERM.

• For COBOL:

– An attention interrupt
– Program termination
– A predefined Language Environment condition of Severity 2 or above.

• For PL/I:

– An attention interrupt
– Program termination
– A predefined Language Environment condition of Severity 2 or above.

If a breakpoint exists for one of the above conditions, commands specified in the breakpoint are
executed. If no commands are specified, z/OS Debugger reads commands from a commands file or
prompts you for them in interactive mode.

NONE
Specifies that z/OS Debugger gains control from a condition only if a breakpoint is defined for that
condition. If a breakpoint exists for the condition, the commands specified in the breakpoint are
executed. An attention interrupt does not cause z/OS Debugger to gain control unless z/OS Debugger
was started. To change the TEST level after you start your debug session, use the SET TEST
command.

commands_file:

* (or blank)
Indicates that you did not supply a commands file.

In the following situation, z/OS Debugger reads commands from a default user commands file:

• You or your site specify a default naming pattern, through the EQAOPTS COMMANDSDSN command,
identifying a user commands file.

• The user commands file exists.
• The user commands file contains a member with a name that matches the initial load module name

of the first enclave.

If you or your site do not specify the name of a default user commands file or that file does not exist,
and you are debugging in line mode, z/OS Debugger reads commands from the terminal.

To learn how to supply the EQAOPTS COMMANDSDSN command, see Chapter 6, “EQAOPTS
commands,” on page 287.

NULLFILE
Indicates that you did not supply a commands file and z/OS Debugger ignores any specification of
the EQAOPTS COMMANDSDSN command. If you are debugging in line mode, z/OS Debugger reads
commands from the terminal.

Chapter 1. z/OS Debugger runtime options 5

commands_file_designator
Valid designation for the primary commands file. A commands file is used instead of the terminal as
the initial source of commands, and only after the preferences file, if specified, is processed.
If the designation contains non-alphanumeric characters (for example, a parenthesis), the designation
must be enclosed in either quotation marks (") or apostrophes ('). However, when a data set name
is enclosed in quotation marks or apostrophes, z/OS Debugger still considers the data set name a
partially-qualified data set name and prefixes the user ID to form the fully-qualified data set name.

The commands_file_designator has a maximum length of 80 characters.

If the specified DD name is longer than eight characters, it is automatically truncated. No error
message is issued.

The primary commands file is required when you debug in batch mode. z/OS Debugger reads and
executes commands listed in the commands file until the file runs out of commands or the program
finishes running. You can use a log file from one z/OS Debugger session as the commands file for a
subsequent z/OS Debugger session.

The primary commands file is shared across multiple enclaves.

VADSCPnnnnn
Specifies a CCSID (Coded Character Set Identifiers) to use when you are debugging programs in
remote debug mode and the source or compiler use a code page other than 037.

If your C/C++ source contains square brackets or other special characters, you might need to specify
the VADSCPnnnnn suboption to override the z/OS Debugger default code page (037). The C/C++
compiler uses a default code page of 1047 if you do not explicitly specify one. Check the code page
specified when you compiled your source. If the code page used is 1047 or a code page other than
037, you need to specify the VADSCPnnnnn suboption specifying that code page.

Note: Your system programmer might implement the EQAOPTS CODEPAGE command to set a new
code page. You can check that with the QUERY EQAOPTS command.

The following examples show how to use VADSCPnnnnn:

• For Japanese EBCDIC CCSID 930

TEST(ALL,VADSCP930,,TCPIP&9.10.11.12%8001:*)

• For Japanese EBCDIC CCSID 939

TEST(ALL,VADSCP939,,TCPIP&9.10.11.12%8001:*)

• For German EBCDIC CCSID 1141

TEST(ALL,VADSCP1141,,TCPIP&9.10.11.12%8001:*)

• For Korean EBCDIC CCSID 933

TEST(ALL,VADSCP933,,TCPIP&9.10.11.12%8001:*)

If a EQAOPTS CODEPAGE command exists, the code page specified in the EQAOPTS CODEPAGE
command overrides the CCSID specified in VADSCPnnnnn.

If neither the EQAOPTS CODEPAGE command or the VADSCPnnnnn option are specified, the default
code page is US code page (037).

prompt_level:

PROMPT (or ; or blank)
Indicates that you want z/OS Debugger started immediately after Language Environment initialization.
Commands are read from the preferences file and then any designated primary commands file. If
neither file exists, commands are read from your terminal or workstation.

6 IBM z/OS Debugger: Reference and Messages

NOPROMPT (or *)
Indicates that you do not want z/OS Debugger started immediately after Language Environment
initialization. Instead, your application begins running. When z/OS Debugger is running without the
Language Environment run time (started by using EQANMDBG), the NOPROMPT option is ignored;
PROMPT is always in effect.

If you specify the NOPROMPT suboption, you cannot debug higher-level non-Language Environment
programs or intercept non-Language Environment events that occur in higher-level programs after you
return from the program that started z/OS Debugger.

command
One or more valid z/OS Debugger commands. z/OS Debugger is started immediately after program
initialization, and then the command (or command string) is executed. The command string can
have a maximum length of 250 characters, and must be enclosed in quotation marks ("). Multiple
commands must be separated by a semicolon.

If you include a STEP command or GO command in your command string, none of the subsequent
commands are processed.

The use of a command in prompt_level is not supported in remote debug mode.

preferences_file:

MFI (Main Frame Interface)
Specifies z/OS Debugger should be started in full-screen mode for your debug sessions.

terminal_id (CICS only)
Specifies up to a four-character terminal id to receive z/OS Debugger screen output during dual
terminal session. The corresponding terminal should be in service and acquired, ready to receive z/OS
Debugger-related I/O.

network_identifier (full-screen mode using a dedicated terminal without Terminal Interface Manager
only)

Specifies an optional 1-8 character network name that identifies the network in which the partner LU,
identified by the VTAM_LU_Id parameter, resides.

VTAM_LU_id (full-screen mode using a dedicated terminal without Terminal Interface Manager only)
Specifies up to an eight-character VTAM® logical unit (LU) identifier for a terminal used in full-screen
mode using a dedicated terminal without Terminal Interface Manager. The VTAM_LU_id parameter
cannot be used to debug CICS applications. Contact your system programmer to determine how to
access this type of terminal LU at your site.

VTAM (full-screen mode using the Terminal Interface Manager only)
Specifies z/OS Debugger should be started in full-screen mode using the Terminal Interface Manager
for your debug sessions and that you have used the z/OS Debugger Terminal Interface Manager.

user_id (full-screen mode using the Terminal Interface Manager only)
Specifies the user ID that you used to log on to the z/OS Debugger Terminal Interface Manager.
Contact your system programmer to determine how to access this type of terminal at your site.

INSPPREF (or blank)
The default DD name, supplied by z/OS Debugger, for the preferences file.

In the following situation, z/OS Debugger reads commands from a default user preferences file:

• You specify INSPPREF or leave it blank, but do not allocate the DD name.
• You or your site specify a default naming pattern, through the EQAOPTS PREFERENCESDSN

command, identifying a user preferences file.
• The user preferences file exists.

Any preferences file you or your site specifies to z/OS Debugger becomes the first source of z/OS
Debugger commands after z/OS Debugger is started. Use preferences files to set up the z/OS
Debugger environment; for example, PF key assignments or screen layout.

preferences_file_designator
A valid DD name or data set designation specifying the preferences file to use.

Chapter 1. z/OS Debugger runtime options 7

This file is read the first time z/OS Debugger is started and must contain a sequence of z/OS Debugger
commands to be processed.

The designation can be either a DD name or a data set name. z/OS Debugger uses the following
procedure to determine if the designation is a DD name or data set name:

• If the designation does not contain periods (.), z/OS Debugger considers it a DD name.
• Otherwise, if you are running under CICS, z/OS Debugger considers it a fully-qualified data set

name.
• Otherwise, z/OS Debugger considers it a partially-qualified data set name and prefixes it with the

user ID to form the fully-qualified data set name. If you want z/OS Debugger to interpret the data
set name as a fully-qualified name, put a minus sign (-) in front of the name. In this case, z/OS
Debugger does not append the user ID to the data set name.

If the designation contains non-alphanumeric characters (for example, a parenthesis), the designation
must be enclosed in either quotation marks (") or apostrophes ('). However, when a data set name
is enclosed in quotation marks or apostrophes, z/OS Debugger still considers the data set name a
partially-qualified data set name and prefixes the user ID to form the fully-qualified data set name.

*
Specifies that you did not supply a preferences file.

If you or your site specifies a naming pattern, through the EQAOPTS PREFERENCESDSN command,
identifying a user preferences file, z/OS Debugger reads commands from that file.

To learn how to supply the EQAOPTS PREFERENCESDSN command, see Chapter 6, “EQAOPTS
commands,” on page 287.

NULLFILE
Indicates that you did not supply a preferences file and z/OS Debugger ignores any specification of the
EQAOPTS PREFERENCESDSN command.

The following TEST suboptions are for remote debug mode and code coverage:

DIRECT&, TCPIP&, or VADTCPIP&
Specifies that z/OS Debugger starts in remote debug mode with a client.
Use DIRECT& to start the debugger in standard mode. Use TCPIP& or VADTCPIP& to start the
debugger in Debug Tool compatibility mode.

Notes:

1. IBM Z and Cloud Modernization Stack (Wazi Code) can only be used in Debug Tool compatibility
mode.

2. Standard mode does not support commands files or preferences files. If they are specified, they
are ignored.

3. Debug Tool compatibility mode does not support 64-bit PL/I programs, and standard mode does
not support 64-bit COBOL programs. In Debug Tool compatibility mode, specify TCPIP& to debug
64-bit COBOL and C/C++ programs. In standard mode, specify DIRECT& for 64-bit PL/I and C/C++
programs.

tcpip_id
TCP/IP name or address where the remote debug daemon is running, in one of the following formats:
IPv4

You can specify the address as a symbolic address, such as some.name.com, or a numeric
address, such as 9.112.26.333.

IPv6
You must specify the address as a numeric address, such as 1080:0:FF::0970:1A21.

%port_id
Specifies a unique TCP/IP port on your workstation that is used by the remote debug daemon. The
default port number is 8001.

8 IBM z/OS Debugger: Reference and Messages

If you changed the default TCP/IP port settings used by the remote debugger client, you must
specify the new number as the port ID in your TEST runtime options string. For example,
if you changed the default TCP/IP port to 8003, your TEST runtime options string would be
TEST(ALL,'*',PROMPT,'TCPIP&9.112.26.333%8003:').

DBM and DBMDT
Specifies that z/OS Debugger uses the Debug Manager to automatically determine the client IP and
port number to connect to when you start remote debug mode with one of the remote debuggers
listed previously under DIRECT&, TCPIP& or VADTCPIP&.
Use DBM to start the debugger in standard mode. Use DBMDT to start the debugger in Debug Tool
compatibility mode.

Notes:

• DBM and DBMDT are only supported with Eclipse IDEs.
• Standard mode does not support commands files or preferences files. If they are specified, they are

ignored.
• Standard mode is not supported in IBM Z and Cloud Modernization Stack (Wazi Code).
• Debug Tool compatibility mode does not support 64-bit PL/I programs, and standard mode does not

support 64-bit COBOL programs. In Debug Tool compatibility mode, specify DBMDT% to debug 64-bit
COBOL and C/C++ programs. In standard mode, specify DBM% for 64-bit PL/I and C/C++ programs.

Before you start z/OS Debugger with DBM or DBMDT TEST runtime parameters, you must log on to the
host via the Remote System Explorer (RSE) in IBM Explorer for z/OS.
You can start a debug session only when Debug Manager and RSE both run in secured mode or
unsecured mode. To establish a secured connection between Debug Manager and RSE, they need to
use the same certificates or different chained certificates of the same CA root. Otherwise, you need
to import the certificates that are regarded as untrusted. For more information, see the "Encrypted
communication with Debug Manager" topic in IBM Documentation.

user_id
Optionally specifies a user ID for routing the debug session. By default the same user ID as the job
launching or running the debug session is assumed.

RDS
Specifies that z/OS Debugger connects to Remote Debug Service to initiate a remote debug session
with IBM Z Open Debug.

Usage notes

• If the code page is not specified correctly or the conversion images are not available in the system, the
default code page (00037) is used for the debug session.

• If the code page is specified correctly and the conversion images are available in the system, but the
string conversion is not successful, default code page (00037) is used for this conversion.

Refer to the following topics for more information related to the material discussed in this topic.

Related references
z/OS Language Environment Debugging Guide

Related tasks
IBM z/OS Debugger User's Guide

TRAP runtime option
Use the TRAP option to specify how z/OS Debugger handles ABENDs and program interrupts.

The syntax for this option is:

TRAP (

ON

OFF)

Chapter 1. z/OS Debugger runtime options 9

https://www.ibm.com/docs

ON
Enable z/OS Debugger to trap ABENDs.

OFF
Prevent z/OS Debugger from trapping ABENDs; an ABEND causes abnormal termination of both z/OS
Debugger and the program under test.

10 IBM z/OS Debugger: Reference and Messages

Chapter 2. Common syntax elements in z/OS
Debugger commands

Several syntax elements are used in multiple z/OS Debugger commands. These elements are described in
the following topics. Some of these syntax elements are generic and do not require a syntax diagram.

Refer to the following topics for more information related to the material discussed in this topic.

Related references
“block_name” on page 11
“block_spec” on page 12
“compile_unit_name” on page 13
“cu_spec” on page 13
“expression” on page 14
“load_module_name” on page 14
“load_spec” on page 15
“offset_spec” on page 15
“references” on page 15
“statement_id” on page 16
“statement_id_range and stmt_id_spec” on page 16
“statement_label” on page 17

address
A hexadecimal address for a location in memory. An address can contain up to 16 hexadecimal digits.
If address contains more than 8 significant hexadecimal digits, z/OS Debugger assumes that address
references 64-bit addressable storage. If address contains 7 or 8 significant hexadecimal digits, z/OS
Debugger assumes that address references 31-bit addressable storage. Otherwise, z/OS Debugger
assumes address references 24-bit addressable storage.

References to code (instructions) and save areas can contain no more than 8 significant hexadecimal
digits.

address must have one of the following formats:

• For all programming languages, x or X followed by apostrophes (') surrounding the hexadecimal value.
• For C, 0x preceding the hexadecimal value.
• For COBOL, H followed by apostrophes (') or quotation marks (") surrounding the hexadecimal value.

For COBOL or LangX COBOL, X followed by apostrophes (') or quotation marks (") surrounding the
hexadecimal value.

• For PL/I, the hexadecimal value surrounded by apostrophes (') or quotation marks ("), followed by PX.
• For assembler or disassembly, X followed by apostrophes (') or quotation marks (") surrounding the

hexadecimal value.

block_name
A block_name identifies:

• A C and C++ function or a block statement
• A COBOL nested program or method contained within a complete COBOL program
• A PL/I block

The current block qualification can be changed by using the SET QUALIFY BLOCK command.

© Copyright IBM Corp. 1992, 2024 11

• For C++ only:

Include full declaration in block qualification.
• For COBOL only:

Enclose the block name in quotation marks (") or apostrophes (') if it is case sensitive. If the name is
not inside quotation marks or apostrophes, z/OS Debugger will convert the name to uppercase.
If a name contains an internal quotation mark ("), you should enclose the name in apostrophes (').
Similarly, if the name contains an internal apostrophe ('), you should enclose the name in quotation
marks (").

You can use block_name only for blocks known in the current enclave.

block_spec
A block_spec identifies a block in the program being debugged.

block_name

%BLOCK :> block_name

cu_spec :> block_name

block_name
Name of the block. See “block_name” on page 11.

%BLOCK
Represents the currently qualified block. See Chapter 8, “z/OS Debugger variables,” on page 333.

cu_spec
A valid compile unit specification; see “cu_spec” on page 13.

You can use block_name only for blocks known in the current enclave.

• For C++ only:

– Block_spec must include the formal parameters for the function. The correct block qualification is:

int function(int, int) is function(int, int)

– Use Describe CUS to determine correct block_spec for blocks known in the current enclave.

Refer to the following topics for more information related to the material discussed in this topic.

Related references
“block_name” on page 11
Chapter 8, “z/OS Debugger variables,” on page 333
“cu_spec” on page 13

condition
A simple relational condition. Particular rules for forming the relational condition depend on the current
programming language setting.

Refer to the following topics for more information related to the material discussed in this topic.

Related references
“Allowable comparisons for the IF command (COBOL)” on page 132

12 IBM z/OS Debugger: Reference and Messages

compile_unit_name
A compile_unit_name identifies any of the following items:

• An assembler CSECT name
• A C or C++ source file
• A LangX COBOL program
• A COBOL program
• The external procedure name of a PL/I for MVS program
• The package statement or the name of the main procedure, for an Enterprise PL/I program compiled

with one of the following compilers and running in the following environment:

– Enterprise PL/I for z/OS, Version 3.6 or later
– Enterprise PL/I for z/OS, Version 3.5 with the PTFs for APARs PK35230 and PK35489 applied

• The name of the source file, for an Enterprise PL/I program compiled with a compiler earlier than
Enterprise PL/I for z/OS, Version 3.5 with the PTFs for APARs PK35230 and PK35489 applied.

• For C and C++ only:

– The compile unit name must always be enclosed in quotation marks ("). For example, the following
statement is ambiguous because the compile unit and a function in that compile unit have the same
name:

LIST CU2:>CU2:>var1

To avoid the ambiguity, use the following statement to list the value of the variable var1 correctly
scoped to the function CU2:

LIST "CU2":>CU2:>var1

– Escape sequences in compile unit names that are specified as strings are not processed if the string
is part of a qualification statement.

• For COBOL only:

Enclose the compile unit name in quotation marks (") or apostrophes (') if it is case sensitive. If
the name is not inside quotation marks (") or apostrophes ('), z/OS Debugger converts the name to
uppercase.

• For Enterprise PL/I only:

– The compile unit name must be enclosed in quotation marks (") or apostrophes ('). If your program
was compiled with one of the following compilers and is running in the following environment, you do
not need to enclose the compile unit name in quotation marks (") or apostrophes ('):

- Enterprise PL/I for z/OS, Version 3.6 or later
- Enterprise PL/I for z/OS, Version 3.5, with the PTFs for APARs PK35230 and PK35489 applied

If the compile unit name is not a valid identifier in the current programming language, it must be entered
as a character string constant in the current programming language.

The current compile unit qualification can be changed using the SET QUALIFY CU command.

cu_spec
A cu_spec identifies a compile unit in the application being debugged. In PL/I, the compile unit name is
the same as the outermost procedure name in the program.

Chapter 2. Common syntax elements in z/OS Debugger commands 13

load_spec ::>

compile_unit_name

%CU

%PROGRAM

If cu_spec is omitted, the current load module qualification is used.

compile_unit_name
The name of the compile unit, depending on the programming language. See “compile_unit_name” on
page 13.

load_spec
The name of the load module. See “load_spec” on page 15.

%CU
Represents the currently qualified compile unit. %CU is equivalent to %PROGRAM.

%PROGRAM
Is equivalent to %CU.

You can use cu_spec to specify compile units only in an enclave that is currently running. Therefore, you
can qualify only variable names, function names, labels, and statement_ids to blocks within compile units
in the current enclave.

Refer to the following topics for more information related to the material discussed in this topic.

Related references
“load_spec” on page 15
“compile_unit_name” on page 13
Chapter 8, “z/OS Debugger variables,” on page 333

expression
An expression is a combination of references and operators that result in a value. For example, it can
be a single constant, a program, session, or z/OS Debugger variable, a built-in function reference, or a
combination of constants, variables, and built-in function references, or operators and punctuation (such
as parentheses).

Particular rules for forming an expression depend on the current programming language setting and what
release level of the language run-time library under which z/OS Debugger is running. For example, if
you upgrade your version of the HLL compiler without upgrading your version of z/OS Debugger, certain
application programming interface inconsistencies might exist.

You can use expressions for only variables contained in the current enclave.

Refer to the following topics for more information related to the material discussed in this topic.

Related references
“references” on page 15

load_module_name
A load_module_name is the name of a file, object, or dynamic link library (DLL) that has been loaded by a
supported HLL load service or a subsystem. For example, an enclave can contain load modules, which in
turn contain compile units.

For C, escape sequences in load module names that are specified as strings are not processed if the string
is part of a qualification statement.

If the load_module_name is omitted from a name that allows it as a qualifier, the current load module
qualification is assumed. The load_module_name can be changed by using the SET QUALIFY LOAD
command.

14 IBM z/OS Debugger: Reference and Messages

If two enclaves contain duplicate modules, references to compile units in the modules will be ambiguous,
and will be flagged as errors. However, if the compile unit is in the currently executing load module, that
load module is assumed and no check for ambiguity will be performed. Therefore, for z/OS Debugger, load
module names must be unique.

load_spec
A load_spec identifies a load module in the program being debugged.

load_module_name

%LOAD

The load_spec can be specified as a string constant in the current programming language, for example, a
string literal in C or a character literal in COBOL. If not specified as such, it must be a valid identifier in the
current programming language.

load_module_name
Name of a file, object, or Dynamic Link Library (DLL) that has been loaded by a supported HLL load
service, or a subsystem. See “load_module_name” on page 14.

%LOAD
Represents the currently qualified load module.

Refer to the following topics for more information related to the material discussed in this topic.

Related references
“load_module_name” on page 14
Chapter 8, “z/OS Debugger variables,” on page 333

offset_spec
An offset_spec identifies an offset specification.

block_spec

cu_spec

:>

x' offset '

offset
A hexadecimal offset in the disassembly view as displayed in the Source window prefix area.

Refer to the following topics for more information related to the material discussed in this topic.

Related references
“block_spec” on page 12
“cu_spec” on page 13

references
A reference is a subset of an expression that resolves to an area of storage, that is, a possible target
of an assignment statement. For example, it can be a program, session, or z/OS Debugger variable, an
array or array element, or a structure or structure element, and any of these can be pointer-qualified (in
programming languages that allow it). Any identifying name in a reference can be optionally qualified by
containing structure names and names of blocks where the item is visible. It is optionally followed by
subscript and substring modifiers, following the rules of the current programming language.

The specification of a qualified reference includes all containing structures and blocks as qualifiers, and
can optionally begin with a load module name qualifier. For example, when the current programming
language setting is C, mod::>cu:>proc:>struc1.struc2.array[23]. However, in assembler,

Chapter 2. Common syntax elements in z/OS Debugger commands 15

disassembly, and LangX COBOL, variable names cannot be qualified with load module, compile unit,
or block names.

When the current programming language setting is C and C++, the term lvalue is used in place of
reference.

If you are debugging a program that was compiled with a version earlier than Enterprise PL/I Version 3.5
with the PTFs for APARs PK35230 and PK35489 applied, z/OS Debugger does not support the use of a
qualified reference that includes block_spec, cu_spec, or load_spec.

If you are debugging a program compiled with one of the following compilers and running in the following
environment, z/OS Debugger does support the use of a qualified reference that includes block_spec,
cu_spec, or load_spec:

• Enterprise PL/I for z/OS, Version 3.6 or later
• Enterprise PL/I for z/OS, Version 3.5 with the PTFs for APARs PK35230 and PK35489 applied

If you are debugging a program that was compiled with an Enterprise PL/I compiler and z/OS Debugger
is at an entry to a block, you cannot list or reference any variable or expression that includes variables
declared in the block being entered.

A COBOL reference can be a data name, which can be any of the following, according to the rules of the
COBOL language:

• qualified
• subscripted
• indexed
• reference modified

A COBOL reference can be to any special register, except for the following special registers:

• ADDRESS-OF
• LENGTH-OF
• WHEN-COMPILED

Particular rules for forming a reference depend on the current programming language setting and what
release level of the language run-time library z/OS Debugger is running under. For example, if you upgrade
your version of the HLL compiler without upgrading your version of z/OS Debugger, certain application
programming interface inconsistencies might exist.

statement_id
A statement_id identifies an executable statement in a manner appropriate for the current programming
language. This can be a statement number, sequence number, or source line number. The statement id is
an integer or integer.integer (where the first integer is the line number and the second integer is the relative
statement number). For example, you can specify 3, 3.0, or 3.1 to signify the first relative statement on
line 3. C, C++, COBOL, and PL/I allow multiple statements or verbs within a source line.

You can only use statement identifiers for statements that are known in the current enclave.

statement_id_range and stmt_id_spec
A statement_id_range identifies a source statement id or range of statement ids. Stmt_id_spec identifies a
statement id specification.

stmt_id_spec

- statement_id

%LINE

%STATEMENT

;

16 IBM z/OS Debugger: Reference and Messages

stmt_id_spec

block_spec

cu_spec

:>

statement_id

%LINE

%STATEMENT

block_spec
A valid block specification. The default is the currently qualified block. For the currently supported
programming languages, block qualification is extraneous because statement identifiers are unique
within a compile unit. Therefore, block qualification is ignored.

cu_spec
A valid compile unit specification; see “cu_spec” on page 13. The default is the currently qualified
compile unit.

statement_id
A valid statement identifier number; see “statement_id” on page 16.

%LINE
Represents the currently suspended source statement or line. See Chapter 8, “z/OS Debugger
variables,” on page 333. %LINE is equivalent to %STATEMENT.

%STATEMENT
Is equivalent to %LINE.

Specifying a range of statements
A range of statements can be identified by specifying a beginning and ending statement id, separated by
a hyphen (-). When the current programming language setting is COBOL, blanks are required around the
hyphen (-). Blanks are optional for C and C++ and PL/I. Both statement ids must be in the same block, the
second statement cannot occur before the first in the source program, and they cannot be equal.

A single statement id is also an acceptable statement id range and is considered to begin and end
at the same statement. A single statement id range consists of only one statement or verb even in a
multistatement line.

Refer to the following topics for more information related to the material discussed in this topic.

Related references
“block_spec” on page 12
“cu_spec” on page 13
“statement_id” on page 16
Chapter 8, “z/OS Debugger variables,” on page 333

statement_label
A statement_label identifies a statement using its source label. The specification of a qualified statement
label includes all containing compile unit names or block names, and can optionally begin with a load
module name qualifier. For example:

mod::>proc1:>proc2:>block1:>start

The form of a label depends on the current programming language:

• In C and C++, labels must be valid identifiers.
• In COBOL, labels must be valid identifiers and can be qualified with the section name.
• In PL/I, labels must be valid identifiers, which can include a label variable.

You can only use statement labels for labels that are known in the current enclave.

Chapter 2. Common syntax elements in z/OS Debugger commands 17

variable_name
A contiguous text string that represents a changeable value. You can create a variable_name that can
be used in several different programming languages. The variable_name must comply with the following
syntax rules:

• all uppercase
• starts with one of the characters A through Z
• characters A through Z
• decimal 0 through 9
• no spaces

z/OS Debugger also supports the creation of a variable_name that is written to programming language-
specific syntax rules. However, if you create a variable_name that is written to a specific programming
language syntax, you cannot use that variable_name in programs written in a different programming
language. For example, in COBOL a variable name can contain the dash character (-). If you create a
variable_name that contains a dash, you cannot use that variable_name in a PL/I or C/C++ program.

18 IBM z/OS Debugger: Reference and Messages

Chapter 3. Syntax for assembler and disassembly
expressions

Use the syntax defined in this section to write expressions for z/OS Debugger commands while you debug
an assembler or disassembly program.

Assembler expressions can be written in the following forms:

• A standard assembler expression with an implied length. The following are three examples:

– X
– 133
– X+15

• A standard assembler expression without an implied length. Expressions can be written in this form only
if the length can be specified or derived from an operand. For example: R3->+X'2C'

• A conditional assembler expression which is written with conditional operators and can be used only as
the operand of an IF command. For example: X+1=Y & Z=4

Common syntax elements
You can use the following syntax elements to write an assembler expression:

ddd
A decimal constant, where ddd are valid decimal digits. For example: 145

ddd.ddd, dd.dEdd, ddEdd, dd.dE+dd, ddE+dd, dd.dE-dd, ddE-dd
A floating-point constant, where d is one or more decimal digits and E is the letter "E". Examples:
1.23, 0.22, 12E+10, or 2.456E-5.

X'xxxx' or X"xxxx"
A hexadecimal constant, where xxxx are valid hexadecimal digits. Examples: X'1F4C' or X"1F4C"

If this constant is from 1 to 4 bytes in length, it can be used in arithmetic or string contexts.
Otherwise, it can only be used in string contexts.

C'cccc', 'cccc', or "cccc"
A character constant. For example: C'F$3' or "F$3"

If this constant is from 1 to 4 bytes in length, it can be used in arithmetic or string contexts.
Otherwise, it can only be used in string contexts.

symbol
A valid symbol used in the assembler source program. Examples: lastName, UserVar8

If a symbol is defined by using the EQU instruction and the first usage of the symbol is as a register,
the symbol is associated with that register. If you define a symbol with the intent to use the symbol as
a register but you never reference the symbol or the first reference to the symbol is not as a register,
z/OS Debugger defines the symbol as a constant, not as a register. For example, if you define the
symbol R7 by using the instruction R7 EQU 7 and you never reference R7 or the first reference is not
as a register, z/OS Debugger defines the symbol R7 as the constant 7, not as register R7.

z/OS Debugger implicitly defines the following symbols in all disassembly compilation units and in any
assembler compilation units where the symbol is not already defined:

• R0, R1, R2, R3, R4, R5, R6, R7, R8, R9, R10, R11, R12, R13, R14, R15. These symbols are implicitly
defined as z/OS Debugger 32-bit basic general purpose registers. For example, R0 is defined as %R0.
If you are debugging an assembler compilation unit that defines the symbol R0 and R0 is not used
as a register, you can use the %R0 variable to reference 32-bit General Purpose Register R0. These
are the low-order 32 bits of the 64 bit General Purpose Register.

© Copyright IBM Corp. 1992, 2024 19

• RH0, RH1, RH2, RH3, RH4, RH5, RH6, RH7, RH8, RH9, RH10, RH11, RH12, RH13, RH14, RH15.
These symbols are implicitly defined as z/OS Debugger 32-bit high general purpose registers. For
example, RH0 is defined as %GPRH0. If you are debugging an assembler compilation unit that
defines the symbol RH0 and RH0 is not used as a register, you can use the %GPRH0 variable to
reference 32-bit high General Purpose Register RH0. These are the high-order 32 bits of the 64 bit
General Purpose Register.

• RG0, RG1, RG2, RG3, RG4, RG5, RG6, RG7, RG8, RG9, RG10, RG11, RG12, RG13, RG14, RG15.
These symbols are implicitly defined as z/OS Debugger 64-bit General Purpose Registers. For
example, RG0 is defined as %GPRG0. If you are debugging an assembler compilation unit that
defines the symbol RG0 and RG0 is not used as a register, you can use the %GPRG0 variable
to reference 64-bit General Purpose Register R0. These symbols are available only when 64-bit
General Purpose Registers are available.

• _STORAGE. This symbol is implicitly defined as a symbol representing all of main memory. You can
reference any area of memory by using the _STORAGE symbol with the following syntax:

_STORAGE (address :: length)

For example, _STORAGE(X'1FF3C'::4) references the four bytes of storage at address X'1FF3C'.
A length of zero might be specified in which case no bytes of storage are accessed. This form is used
primarily by the AUTOMONITOR command when displaying an operand of an instruction such as LA
that computes an effective address but references no data at that address.

%symbol
A valid z/OS Debugger variable. For example: %ADDRESS

Operators
You can use the operators defined in this section to write assembler expression and conditional
assembler expressions.

Operators that can be used in any expression
Use the operators defined in this section to write assembler expressions.

+
Addition

–
Subtraction or prefix minus

*
Multiplication

/
Division

//
Remainder

||
Concatenation (C and X-type operands only)

&
Bitwise AND

|
Bitwise OR

(…)
Parenthesis to control the order of operation, specify the subscript of an array, or select a substring.
symbol(subscript)

Parenthesis to specify a subscript for an array. For example, if an array is defined by the
instruction X DS 5F, you can specify the first word in the array as X(1).

20 IBM z/OS Debugger: Reference and Messages

symbol(substring)
Parenthesis to select a substring of a single byte from a character or hexadecimal variable

symbol(substrstart:substrend)
Parenthesis to select a substring of the bytes from substrstart to substrend from a character or
hexadecimal variable

symbol(substrstart::substrlen)
Parenthesis to select a substring of substrlen bytes beginning at substrstart from a character or
hexadecimal variable

For an array of character or hexadecimal strings, these forms can be
combined by using symbol(subscript,substring), symbol(subscript,substrstart:substrend), or
symbol(subscript,substrstart::substrlen).

–>, =>, %>, or ==>
Indirection operator. You can use an indirection operator as follows:
operand1<indirection_operator>operand2

Use the contents of operand1 as the base address of the DSECT which contains operand2. For
example, R1->DCBDDNAME instructs z/OS Debugger to use the contents of register 1 as the base
address of the DSECT which contains DCBDDNAME.

operand1<indirection_operator> or operand2<indirection_operator>+operand2
If the <indirection_operator> is followed by a plus sign (+), use operand2 as an offset. For
example, X-> instructs z/OS Debugger to use the contents of X as the address of the storage. For a
second example, R3->+X'22' instructs z/OS Debugger to use the contents of register 3 and add
hexadecimal 22 (the offset) to determine the address of storage.

If the indirection operator is not followed by a symbol, no length is implied. This form is most
commonly used where the length can be determined by another operand. For example, the
command STORAGE(R10->,4)=22 provides the length in the second operand of the STORAGE
command. If you use this form in a situation where a length is required but not provided by
another operand, the length defaults to four.

The following indirection operators indicate which address specification to use:

->
Use the current Amode specification.

==>
Use a 64–bit address specification.

=>
Use a 31–bit address specification.

%>
Use a 24–bit address specification.

(.)
Dot operator (period). You can use a dot operator to qualify a name in a DSECT by the name on a
labeled USING statement. The dot operator must be immediately preceded by a label from a previous
labeled USING statement and must be immediately followed by a name defined in a DSECT.

ADDR'
Returns the address of a symbol. If the operand of ADDR' is a symbol that is known in the current
CU but resides in another CSECT, the ADDR' function returns 0. For example, ADDR'ABC returns the
address of symbol ABC.

If the address of the symbol is a 64-bit address, then ADDR' returns an 8-byte value. Otherwise,
ADDR' returns a 4-byte value.

L'
Returns the length of a symbol. For example, L'ABC returns the length of the symbol ABC.

Chapter 3. Syntax for assembler and disassembly expressions 21

Operators that can be used only in conditional expressions
The following operators can be used only in conditional expressions (for example, the IF command):

=
Compare the two operands for equality.

¬=
Compare the two operands for inequality.

<
Determines whether the left operand is less than the right operand.

>
Determines whether the left operand is greater than the right operand.

<=
Determines whether the left operand is less than or equal to the right operand.

>=
Determines whether the left operand is greater than or equal to the right operand.

&
Logical "and" operation.

|
Logical "or" operation.

Arithmetic expression evaluation
Assembler and disassembly expressions are evaluated in 32-bit precision until a 64-bit operand is
encountered. At that point, the precision of both operands is converted to 64-bit and all subsequent
operators in the expression are evaluated in 64-bit precision. If you want the entire expression evaluated
in 64-bit precision, you can use parentheses to alter the order of operations so that the first operand
evaluated has at least one 64-bit operand.

If you are running your program on hardware that does not support 64-bit instructions, z/OS Debugger
evaluates the 64-bit arithmetic expressions but you cannot access the 64-bit General Purpose Registers.

22 IBM z/OS Debugger: Reference and Messages

Chapter 4. Syntax for LangX COBOL expressions

Note: This chapter is not applicable to IBM Z and Cloud Modernization Stack (Wazi Code).

You can use the syntax defined in this section to write expressions for z/OS Debugger commands while
you debug LangX COBOL programs.

In general, whenever you enter a LangX COBOL expression as part of a command (for example, as the
operand of the LIST expression command, an assignment command, or the IF command), you must
enclose the LangX COBOL expression in apostrophes ('). The following example shows the appropriate
use of apostrophes:

LIST 'A-B IN C';
'A' = 'B';
IF 'A = 22' THEN...

There are some z/OS Debugger commands that can be used for debugging LangX COBOL programs that
use the assembler syntax. A note to this effect is found in the section describing each of these commands.
For example, while debugging a LangX COBOL program you might use the following command:

STORAGE(X"1B4C0",3) = X"0102FC";

Restrictions on LangX COBOL expressions
In addition to the requirement that LangX COBOL expressions be enclosed in apostrophes ('), the
following restrictions apply to LangX COBOL expressions:

• The following operators are supported by z/OS Debugger in LangX COBOL expressions:

– IN or OF
– Subscript / index
– LENGTH OF
– +, -, *, /
– // (remainder)
– || (concatenation)
– ()

• In a subscript or index list, the subscript or index expressions must be separated by a comma. A space
is not sufficient for separating subscript or index expressions.

• Lower-case letters are accepted in contexts other that non-numeric literals as a substitute for (and
equivalent to) upper case letters.

• z/OS Debugger does not support the use of COBOL special registers (for example, DAY, DATE, and TIME)
in LangX COBOL expressions.

• All non-numeric literals must be enclosed in quotation marks ("). Apostrophes (') cannot be used.
• You cannot list or alter level-88 variables in LangX COBOL.
• Only the following subset of figurative constants are supported in z/OS Debugger LangX COBOL

expressions:

– HIGH-VALUE, HIGH-VALUES
– LOW-VALUE, LOW-VALUES
– QUOTE, QUOTES
– SPACE, SPACES
– ZERO, ZEROES, ZEROS

© Copyright IBM Corp. 1992, 2024 23

Common syntax elements
You can use the following syntax elements to write a LangX COBOL expression:

ddd or ddd.ddd
A decimal constant, where ddd are valid decimal digits. For example: 145 or 12.72.

X"xxxxx"
A hexadecimal constant, where xxxx are valid hexadecimal digits. For example:

X"1F4C"

"cccc"
A non-numeric literal. For example:

"F$3"

symbol
A valid symbol used in the LangX COBOL source program. Examples:

LASTNAME
USERVAR8
12CENTS

z/OS Debugger implicitly defines the _STORAGE symbol in all LangX COBOL programs as a symbol
representing all of main memory. You can reference any area of memory by using the _STORAGE
symbol with the substring notation defined in “Operators that can be used in any expression” on page
24. For example, _STORAGE(X"1FF3C"::4) references the four bytes of storage at address X"1FF3C".
The substring notation used by the _STORAGE symbol specifies an actual address; therefore, to
reference the first byte of storage, use a 0 instead of a 1 in the substring notation.

%symbol
A valid z/OS Debugger variable or built-in function. For example:

%ADDRESS
%HEX(expression)

Operators
You can use the operators defined in this section to write LangX COBOL expressions and conditional
LangX COBOL expressions.

Operators that can be used in any expression
Use the operators defined in this section to write LangX COBOL expressions.

+
Addition

-
Subtraction or prefix minus

*
Multiplication

⁄
Division

⁄⁄
Remainder

||
Concatenation (non-arithmetic operands only)

(...)
Parenthesis to control the order of operation, specify the subscript of an array, or select a substring.

24 IBM z/OS Debugger: Reference and Messages

symbol(subscript,subscript,...)
Parenthesis to specify a subscript or index for an array. Note that commas are required between
subscript or index values. Blanks alone are not acceptable.

symbol(substrstart:substrend)
Parenthesis to select a substring of the bytes from substrstart to substrend from a character
variable.

symbol(substrstart::substrlen)
Parenthesis to select a substring of substrlen bytes beginning at substrstart from a character
variable.

For an array of character strings, these forms can be combined by using
symbol(subscript,substrstart:substrend), or symbol(subscript,substrstart::substrlen).

LENGTH OF
Returns the length of a symbol. For example, LENGTH OF ABC returns the length of the symbol ABC.

Operators that can be used only in conditional expressions
The following operators can be used only in conditional expressions (for example, the IF command):

=
Compare the two operands for equality.

¬=
Compare the two operands for inequality.

<
Determines whether the left operand is less than the right operand.

>
Determines whether the left operand is greater than the right operand.

<=
Determines whether the left operand is less than or equal to the right operand.

>=
Determines whether the left operand is greater than or equal to the right operand.

&
Logical "and" operation.

|
Logical "or" operation.

Chapter 4. Syntax for LangX COBOL expressions 25

26 IBM z/OS Debugger: Reference and Messages

Chapter 5. z/OS Debugger commands

Commands and keywords can be abbreviated. The abbreviations shown with some commands are the
minimum abbreviations. However, you can use a minimum abbreviation or any string from the minimum to
completely spelling out the keyword; all are valid. This is true of all keywords for commands.

If you are debugging in full-screen mode, you can get help with z/OS Debugger command syntax by
either pressing PF1 or entering a question mark (?) on the command line. This lists all z/OS Debugger
commands in the Log window.

To get a list of options for a command, enter a partial command followed by a question mark.

Remote debug mode only accepts these commands (if indicated) if you run it in Debug Tool compatibility
mode.

The table below summarizes the z/OS Debugger commands.

Command Description

“? command” on page 31 Displays all z/OS Debugger commands in the Log window.

“ALLOCATE command” on page 31 Allocates a file to an existing data set, a concatenation of
existing data sets, or a temporary data set.

“ANALYZE command (PL/I)” on page
32

Displays the process of evaluating an expression and the data
attributes of any intermediate results.

“Assignment command (assembler and
disassembly)” on page 33

Assigns the value of an expression to a specified storage
location or register.

“Assignment command (LangX COBOL)”
on page 35

Assigns the value of an expression to a specified reference.

“Assignment command (PL/I)” on page
36

Assigns the value of an expression to a specified reference.

“AT command” on page 37 Defines a breakpoint (gives control of your program to z/OS
Debugger under the specified circumstances).

“BEGIN command” on page 74 BEGIN and END delimit a sequence of one or more
commands to form one longer command.

“block command (C and C++)” on page
75

Allows you to group any number of z/OS Debugger commands
into one command.

“break command (C and C++)” on page
75

Allows you to terminate and exit a loop (that is, do, for, and
while) or switch command from any point other than the
logical end.

“CALL command” on page 76 The CALL command calls either a procedure, entry name, or
program name, or it requests that a utility function be run.

“CC command” on page 85 Controls whether code coverage data is collected.

“CLEAR command” on page 86 Removes the actions of previously issued z/OS Debugger
commands (such as breakpoints).

“COMMENT command” on page 93 Used to insert commentary into the session log.

“COMPUTE command (COBOL)” on page
94

Assigns the value of an arithmetic expression to a specified
reference.

© Copyright IBM Corp. 1992, 2024 27

Command Description

“CURSOR command (full-screen mode)”
on page 95

Moves the cursor between the last saved position on the z/OS
Debugger session panel (excluding the header fields) and the
command line.

“Declarations (assembler, disassembly,
and LangX COBOL)” on page 95

Declares session variables that are effective during a z/OS
Debugger session.

“Declarations (C and C++)” on page 96 Declares session variables and tags that are effective during a
z/OS Debugger session.

“Declarations (COBOL)” on page 99 Declares session variables that are effective during a z/OS
Debugger session.

“DECLARE command (PL/I)” on page
101

Declares session variables that are effective during a z/OS
Debugger session.

“DESCRIBE command” on page 103 Displays the attributes of references, compile units, and the
execution environment.

“DISABLE command” on page 107 Makes the AT breakpoint inoperative, but does not clear it;
you can ENABLE it later without typing the entire command
again.

“do/while command (C and C++)” on
page 110

Performs a command before evaluating the test expression.

“DO command (PL/I)” on page 111 Allows one or more commands to be collected into a group
which can (optionally) be run repeatedly.

“ENABLE command” on page 113 Makes AT breakpoints operative after they have been
disabled by the DISABLE command.

“EVALUATE command (COBOL)” on page
115

Provides a shorthand notation for a series of nested IF
statements.

“Expression command (C and C++)” on
page 116

Evaluates the given expression which can be used to either
assign a value to a variable or to call a function.

“FIND command” on page 117 Provides full-screen and line mode searching of source and
listing files, and full-screen searching of Log and Monitor
windows.

“FINDBP command” on page 121 Provides full-screen searching of the source for line,
statement, and offset breakpoints.

“for command (C and C++)” on page 123 Provides iterative looping.

“FREE command” on page 124 Frees (deallocates) an allocated file.

“GO command” on page 124 Causes z/OS Debugger to start or resume running your
program.

“GOTO command” on page 125 Causes z/OS Debugger to resume program execution at the
specified statement id.

“GOTO LABEL command” on page 127 Causes z/OS Debugger to resume running program at the
specified statement label.

“%IF command (programming language
neutral)” on page 129

Lets you conditionally perform a command; use this syntax if
you are constructing a command that might run in different
programming languages.

“IF command (assembler, disassembly,
and LangX COBOL)” on page 130

Lets you conditionally perform a command.

28 IBM z/OS Debugger: Reference and Messages

Command Description

“if command (C and C++)” on page 130 Lets you conditionally perform a command.

“IF command (COBOL)” on page 131 Lets you conditionally perform a command.

“IF command (PL/I)” on page 134 Lets you conditionally perform a command.

“IMMEDIATE command (full-screen
mode)” on page 135

Causes a command within a command list to be performed
immediately. For use with commands assigned to a PF key.

“INPUT command (C, C++, and COBOL)”
on page 135

Provides input for an intercepted read and is valid only when
there is a read pending for an intercepted file.

“JUMPTO command” on page 136 Jumps to the specified statement and then stops the program
at that statement.

“LIST command” on page 140 Displays information about your z/OS Debugger session.

“LOAD command” on page 166 Specifies that the named module should be loaded for
debugging purposes.

“LOADDEBUGDATA command” on page
166

Specifies that a compile unit (CU) as an assembler CU and
loads debug data.

“MEMORY command” on page 169 Identifies an address in memory to display in the Memory
window.

“MONITOR command” on page 171 Defines or redefines a command whose output is displayed in
the Monitor window (full-screen mode), terminal output (line
mode), or log file (batch mode).

“MOVE command (COBOL)” on page 175 Transfers data from one area of storage to another.

“NAMES command” on page 178 Specify names of load modules or compile units to debug
or ignore, and display the current setting of the NAMES
command.

“Null command” on page 181 A semicolon written where a command is expected.

“ON command (PL/I)” on page 181 Establishes the actions to be executed when the specified
PL/I condition is raised.

“PANEL command (full-screen mode)”
on page 183

Displays special panels (for example, to customize your full-
screen session).

“PERFORM command (COBOL)” on page
185

Identifies a series of commands to be run. The series of
commands can be run repeatedly, if you use the UNTIL
keyword of the command.

“PLAYBACK commands” on page 187 Commands to start and stop recording application execution
states and replay the recorded execution states.

“POPUP command” on page 191 Displays the Command pop-up window, where you type in
commands.

“POSITION command” on page 191 Positions the cursor to a specific line in the specified window.

“Prefix commands (full-screen mode)”
on page 192

Apply only to source listing lines and are typed into the
Source window.

“PROCEDURE command” on page 193 Allows the definition of a group of commands that can be
accessed using the CALL procedure command.

“QUALIFY RESET command” on page
194

Resets qualification to the block of the suspended program
and scrolls the Source window to display the current
statement line.

Chapter 5. z/OS Debugger commands 29

Command Description

“QUERY command” on page 194 Displays the current value of z/OS Debugger settings (such as
the current location in the suspended program).

“QUIT command” on page 199 Ends a z/OS Debugger session (with a return code, if
specified).

“QQUIT command” on page 200 Ends a z/OS Debugger session (without additional prompting)

“RETRIEVE command (full-screen
mode)” on page 202

Displays the last command entered on the command line.

“RESTORE command” on page 201 Enables explicit restoring of settings, breakpoints, and
monitor specifications.

“RUN command” on page 203 Causes z/OS Debugger to start or resume running your
program.

“RUNTO command” on page 203 Causes z/OS Debugger to run your program to a specific point
(without setting a breakpoint)

“SCROLL command (full-screen mode)”
on page 204

Provides horizontal and vertical scrolling in full-screen mode.

“SELECT command (PL/I)” on page 207 Chooses one of a set of alternate commands.

“SET command” on page 207 Controls various z/OS Debugger settings.

“SET command (COBOL)” on page 266 Assigns a value to a COBOL reference.

“SHOW prefix command (full-screen
mode)” on page 269

Specifies what relative statement (for C) or relative verb
(for COBOL) within the line is to have its frequency count
temporarily shown in the suffix area.

“STEP command” on page 269 Causes z/OS Debugger to dynamically step through a
program, running one or more program statements.

“STORAGE command” on page 271 Enables you to alter up to eight bytes of storage.

“switch command (C and C++)” on page
273

Enables you to transfer control to different commands within
the switch body, depending on the value of the switch
expression.

“SYSTEM command (z/OS)” on page 275 Lets you issue TSO commands during a z/OS Debugger
session.

“TRIGGER command” on page 276 Raises the specified AT condition in z/OS Debugger, or
raises the specified programming language condition in your
program.

“TSO command (z/OS)” on page 280 Lets you issue TSO commands during a z/OS Debugger
session (this command is valid only in a TSO environment).

“USE command” on page 280 Causes the z/OS Debugger commands in the specified file or
data set to be either performed or syntax checked.

“while command (C and C++)” on page
281

Enables you to repeatedly perform the body of a loop until the
specified condition is no longer met or evaluates to false

“WINDOW command (full-screen
mode)” on page 282

Opens, close, resizes, or expands to full screen (zooms) the
specified window on the z/OS Debugger session panel.

Refer to the following topics for more information related to the material discussed in this topic.

Related tasks

30 IBM z/OS Debugger: Reference and Messages

IBM z/OS Debugger User's Guide

Related references
Chapter 7, “z/OS Debugger built-in functions,” on page 327
Chapter 8, “z/OS Debugger variables,” on page 333

? command
The ? command displays a list of z/OS Debugger commands in the Log window.

? ;

Usage note

In the following cases, z/OS Debugger does not display the syntax help after you enter the ? command:

• The z/OS Debugger SYSTEM and TSO commands followed by the ? command do not display the syntax
help; instead the ? is sent to the host as part of the system command.

• The COMMENT command followed by the ? command does not display the syntax help.
• The SET PFx command accepts a ? as the "command" operand and, in this case, does not display

syntax help.

ALLOCATE command
The ALLOCATE command allocates a file to an existing data set, a concatenation of existing data sets, or a
temporary data set.

ALLOCATE FILE ddname attributes ;

attributes

DSNAME dsn
OLD

SHR

MOD

DSNAME (

,

dsn)
OLD

SHR

TEMP TRACKS (primspc , secspc)

FILE ddname
The DD name of the file.

DSNAME dsn
The name of an existing data set.

DSNAME (dsn,dsn,…)
The names of the existing data sets that need to be concatenated.

TEMP
A temporary data set is allocated.

TRACKS (primspc,secspc,…)
The number of tracks for the primary space (primspc) and secondary space (secspc) to allocate for the
temporary data set.

OLD
Set the disposition of the data set to OLD.

Chapter 5. z/OS Debugger commands 31

SHR
Set the disposition of the data set to SHR.

MOD
Set the disposition of the data set to MOD.

Usage note

This command is not available under CICS.

Refer to the following topics for more information related to the material discussed in this topic.

Related references
“FREE command” on page 124
“DESCRIBE command” on page 103

ANALYZE command (PL/I)
The ANALYZE command displays the process of evaluating an expression and the data attributes of any
intermediate results. To display the results of the expression, use the LIST command.

ANALYZE EXPRESSION (expression) ;

EXPRESSION
Requests that the accompanying expression be evaluated from the following points of view:

• What are the attributes of each element during the evaluation of the expression?
• What are the dimensions and bounds of the elements of the expression, if applicable?
• What are the attributes of any intermediate results that will be created during the processing of the

expression?

expression
A valid z/OS Debugger PL/I expression.

Usage notes

• If SET SCREEN ON is in effect, and you want to issue ANALYZE EXPRESSION for an expression in your
program, you can bring the expression from the Source window up to the command line by typing over
any character in the line that contains the expression. Then, edit the command line to form the desired
ANALYZE EXPRESSION command.

• If SET WARNING ON is in effect, z/OS Debugger displays messages about PL/I computational
conditions that might be raised when evaluating the expression.

• Although the PL/I compiler supports the concatenation of GRAPHIC strings, z/OS Debugger does not.
• The ANALYZE command cannot be used to debug Enterprise PL/I programs.
• The ANALYZE command cannot be used while you replay recorded statements by using the PLAYBACK

commands.
• The ANALYZE command cannot be used while you debug a disassembled program.

Example

This example is based on the following program segment:

DECLARE lo_point FIXED BINARY(31,5);
DECLARE hi_point FIXED BINARY(31,3);
DECLARE offset FIXED DECIMAL(12,2);
DECLARE percent CHARACTER(12);
lo_point = 5.4; hi_point = 28.13; offset = -6.77;
percent = '18';

32 IBM z/OS Debugger: Reference and Messages

The following is an example of the information prepared by issuing ANALYZE EXPRESSION. Specifically,
the following shows the effect that mixed precisions and scales have on intermediate and final results of
an expression:

ANALYZE EXPRESSION ((hi_point - lo_point) + offset / percent)
>>> Expression Analysis <<<
 (HI_POINT - LO_POINT) + OFFSET / PERCENT
| HI_POINT - LO_POINT
| | HI_POINT
| | FIXED BINARY(31,3) REAL
| | LO_POINT
| | FIXED BINARY(31,5) REAL
| FIXED BINARY(31,5) REAL
| OFFSET / PERCENT
| | OFFSET
| | FIXED DECIMAL(12,2) REAL
| | PERCENT
| | CHARACTER(12)
| FIXED DECIMAL(15,5) REAL
 FIXED BINARY(31,17) REAL

Refer to the following topics for more information related to the material discussed in this topic.

Related references
“SET WARNING command (C, C++, COBOL, and PL/I)” on page 263
“PLAYBACK commands” on page 187

Assignment command (assembler and disassembly)
The Assignment command assigns the value of an expression to a specified memory location or register.

receiver
<

receiverlen

>
= sourceexpr ;

receiver
A valid z/OS Debugger assembler reference or expression.

receiverlen
A valid z/OS Debugger assembler reference or expression enclosed in opening and closing brackets
(<, >). The value of this reference is used as the length of the receiver.

sourceexpr
A valid z/OS Debugger assembler expression.

Usage notes

• When the receiver expression does not have an implicit length, you must specify a length override
and enclose it in angle brackets (<>). For example %R1->+10 <4> = 20; requires an explicit length
expression because the receiver expression has no implicit length. However, X=X+1; (where X is
defined as X DS F) would not normally have an explicit length specification.

• The Assignment command cannot be used while you replay recorded statements by using the
PLAYBACK commands.

Examples

• Assign the value 6 to variable x.

x = 6 ;

• Increment the value of X by 5.

X = X + 5 ;

Chapter 5. z/OS Debugger commands 33

• Assign to R5 the address of name_table.

%R5 = addr'name_table ;

• Assign to the prg_name variable the value of the character string 'MYPROG'.

prg_name = 'MYPROG' ;

• Assign the value of X to the 4 bytes at offset 8 from the contents of R8.

%R8->+8 <l'x> = x;

• Move a string of 14 bytes pointed to by the contents of R8 (where R8 was an equated register used in
the program) to 6 bytes past the location pointed to by R2.

%R2->+6 <14> = R8->+0;

• Set 32 bytes pointed to by R6 to zero.

%R6->+0 <X'20'> = X'00';

Refer to the following topics for more information related to the material discussed in this topic.

Related references
“references” on page 15
“PLAYBACK commands” on page 187

Assignment rules
An assembler assignment is an arithmetic assignment, a bit assignment, or a character assignment.

• Arithmetic assignments are padded (usually with zeros) and truncated on the left. If the source has a
type of F or H, the arithmetic statement is padded with sign bits.

• Bit assignments are padded (with zeros) and truncated on the right.
• Character assignments are padded (with blanks) and truncated on the right.

The following table shows how the assignment type is determined from the source and receiver data
types. In this table, the following definitions are used:

?
Indicates an unknown type, for example, R1->+2.

*
Indicates any type or length.

Arithmetic
Indicates an arithmetic assignment. Padding is on left with sign bits.

Bit
Indicates a string assignment padded with zeros.

Character
Indicates a string assignment padded with blanks.

Hex Float
Hexadecimal floating point assignment.

String assignment
The number of bytes that correspond to the Min(receiver length, source length) are moved
from the source to the receiver. If the receiver length is larger, it is padded. If the source length is
larger, it is truncated. All padding and truncation is done on the right.

Move
The number of bytes that correspond to the receiver length are moved directly into the receiver
location.

34 IBM z/OS Debugger: Reference and Messages

Error
Statement that is flagged as not valid.

Table 4. Assignment rules depending on the source and receiver type

Receiver Source Assignment
type

Pad or
TruncateType Length Type Length

* 1 – * ? ? Move None

F, H, A, Y 1 – 4 F, H, A, Y, X, B,
C

1 – 4 Arithmetic Left

E, D, L 4, 8, 16 Hex Float Right - 0

P, Z 1 – * Arithmetic

X, B, C >4 Error

Other Other Error

X 1 – 4 F, H, A, Y 1 – 4 Arithmetic Left

P, Z 1 – * Arithmetic

1 – * X, B 1 – * Bit Right – 0

C Bit Right – 0

Other Error

C 1 – 4 F, H, A, Y 1 – 4 Arithmetic Left

P, Z 1 – * Arithmetic

1 – * X, B 1 – * Bit Right – 0

C Character Right – blank

Other Error

P, Z 1 – * P, Z 1 – * Packed

F, H, A, Y, X, B,
C

1 – 4 Packed

E, D, L 4, 8, 16 Hex Float Right - 0

E, D, L 4, 8, 16 X = Move None

E, D, L 4, 8, 16 Hex Float Right - 0

F, H, A, Y 1 - 4 Hex Float Right - 0

P, Z 1 - * Hex Float Right - 0

? 1 – 4 F, H, A, Y 1 – 4 Arithmetic Left

1 – * X, B, C 1 – * Bit Right – 0

All others Error

Assignment command (LangX COBOL)
The Assignment command assigns the value of an expression to a specified reference. It is the
equivalent of the COBOL COMPUTE statement.

Chapter 5. z/OS Debugger commands 35

' receiver ' = ' sourceexpr ' ;

receiver
A valid z/OS Debugger LangX COBOL reference enclosed in apostrophes (').

sourceexpr
A valid z/OS Debugger LangX COBOL expression enclosed in apostrophes (').

Usage notes

• When receiver is an arithmetic variable, then sourceexpr can be a hexadecimal string of the same
length as receiver. z/OS Debugger assumes that the correct internal representation is used and the
hexadecimal value is moved directly into receiver.

• When receiver is a non-numeric string, then sourceexpr can be a hexadecimal string of any length. If the
length of sourceexpr is less than the length of receiver, then receiver is padded on the right with binary
zeros.

• When receiver is a COBOL INDEX variable, then z/OS Debugger assumes that sourceexpr is a subscript
value and converts it to the proper offset before storing the value into receiver.

• The Assignment command cannot be used while you replay recorded statements by using the
PLAYBACK commands.

Examples

• Assign the value 6 to variable x.

'x' = '6' ;

• Increment the value of X by 5.

'X' = 'X + 5' ;

Refer to the following topics for more information related to the material discussed in this topic.

Related references
“references” on page 15
“PLAYBACK commands” on page 187

Assignment command (PL/I)
The Assignment command assigns the value of an expression to a specified reference.

reference = expression ;

reference
A valid z/OS Debugger PL/I reference.

expression
A valid z/OS Debugger PL/I expression.

Usage notes

• The PL/I repetition factor is not supported by z/OS Debugger.

For example, the following is not valid: rx = (16)'01'B;
• If z/OS Debugger was started because of a computational condition or an attention interrupt, using an

assignment to set a variable might not give the expected results. This is because z/OS Debugger cannot
determine variable values within statements, only at statement boundaries.

• The PL/I assignment statement option BY NAME is not valid in the z/OS Debugger.
• If you are debugging a Enterprise PL/I program, the target of an assignment command cannot be the

variables %EPRn, %FPRn, %GPRn, or %LPRn.

36 IBM z/OS Debugger: Reference and Messages

• The Assignment command cannot be used while you replay recorded statements by using the
PLAYBACK commands.

Examples

• Assign the value 6 to variable x.

x = 6;

• Assign to the z/OS Debugger variable %GPR5 the address of name_table.

%GPR5 = ADDR (name_table);

• Assign to the prg_name variable the value of z/OS Debugger variable %PROGRAM.

prg_name = %PROGRAM;

Refer to the following topics for more information related to the material discussed in this topic.

Related references
“references” on page 15
“PLAYBACK commands” on page 187

AT command
The AT command defines a breakpoint or a set of breakpoints. By defining breakpoints, you can
temporarily suspend program execution and use z/OS Debugger to perform other tasks. By specifying
an AT-condition in the AT command, you instruct z/OS Debugger when to gain control. You can also
specify in the AT command what action z/OS Debugger should take when the AT-condition occurs.

A breakpoint for the specified AT-condition remains established until either another AT command
establishes a new action for the same AT-condition or a CLEAR command removes the established
breakpoint. An informational message is issued when the first case occurs. Some breakpoints might
become obsolete during a debug session and will be cleared automatically by z/OS Debugger.

For MVS batch, TSO, and CICS programs, the SET SAVE and SET RESTORE commands can be used to
automatically save and restore breakpoints between z/OS Debugger sessions. For all other programs, the
SET SAVE and RESTORE commands can be used to automatically save and manually restore breakpoints
between sessions.

For CICS only: If you do not use the SET SAVE and SET RESTORE commands to control the saving and
restoring of breakpoints or monitor specifications and you use a DTCN profile to start a full-screen mode
debugging session, z/OS Debugger preserves the following breakpoints for that session until the DTCN
profile is deleted:

• APPEARANCE breakpoints
• CALL breakpoints
• DELETE breakpoints
• ENTRY breakpoints
• EXIT breakpoints
• GLOBAL APPEARANCE breakpoints
• GLOBAL CALL breakpoints
• GLOBAL DELETE breakpoints
• GLOBAL ENTRY breakpoints
• GLOBAL EXIT breakpoints
• GLOBAL LABEL breakpoints
• GLOBAL LOAD breakpoints
• GLOBAL STATEMENT/LINE breakpoints

Chapter 5. z/OS Debugger commands 37

• LABEL breakpoints
• LOAD breakpoints
• OCCURRENCE breakpoints
• STATEMENT/LINE breakpoints
• TERMINATION breakpoint

If a deferred AT ENTRY breakpoint has not been encountered, it is not saved nor restored.

For optimized COBOL programs: The order in which breakpoints are encountered in optimized programs
is generally the same as in unoptimized programs. There might be differences due to the effects of
optimization.

The following table summarizes the forms of the AT command.

Command Description

“AT ALLOCATE (PL/I)
command” on page 41

Gives z/OS Debugger control when storage for a named controlled
variable or aggregate is dynamically allocated by PL/I.

“AT APPEARANCE
command” on page 42

Gives z/OS Debugger control:

• For C and PL/I, when the specified compile unit is found in storage
• For COBOL, the first time the specified compile unit is called

“AT CALL command” on
page 43

Gives z/OS Debugger control on an attempt to call the specified entry
point.

“AT CHANGE command
(full screen mode,
line mode, batch
mode)” on page 45

Gives z/OS Debugger control when either the specified variable value or
storage location is changed.

“AT CHANGE command
(remote debug mode)”
on page 50

Gives z/OS Debugger control when the specified variable value is
changed.

“AT CURSOR command
(full-screen mode)” on
page 52

Defines a statement breakpoint by cursor pointing.

“AT DATE command
(COBOL)” on page 53

For COBOL, gives z/OS Debugger control for each date processing
statement within the specified block.

“AT DELETE command” on
page 53

Gives z/OS Debugger control when a load module is deleted.

“AT ENTRY command” on
page 54 or “AT ENTRY
command (remote debug
mode)” on page 56

Defines a breakpoint at the specified entry point.

“AT EXIT command” on
page 56

Defines a breakpoint at the specified exit point.

“AT GLOBAL command” on
page 58

Gives z/OS Debugger control for every instance of the specified AT-
condition.

“AT LABEL command” on
page 60

Gives z/OS Debugger control at the specified statement label.

“AT LINE command” on
page 63

Gives z/OS Debugger control at the specified line.

38 IBM z/OS Debugger: Reference and Messages

Command Description

“AT LOAD command” on
page 63 or “AT LOAD
command (remote debug
mode)” on page 65

Gives z/OS Debugger control when the specified load module is loaded.

“AT OCCURRENCE
command” on page 65

Gives z/OS Debugger control on a language or Language Environment
condition or exception.

“AT OFFSET command
(disassembly)” on page
68

Gives z/OS Debugger control at the specified offset in the disassembly
view.

“AT PATH command” on
page 69

Gives z/OS Debugger control at a path point.

“AT Prefix command
(full-screen mode)” on
page 70

Defines a statement breakpoint through the Source window prefix area.

“AT STATEMENT command”
on page 70 or
“AT STATEMENT command
(remote debug mode)”
on page 73

Gives z/OS Debugger control at the specified statement.

“AT TERMINATION
command” on page 73

Gives z/OS Debugger control when the application program is
terminated.

Usage notes

• To set breakpoints at specific locations in a program, z/OS Debugger depends on that program being
loaded into storage. If you issue an AT command for a specific EXIT, LABEL, LINE, or STATEMENT
breakpoint and the program is not known by z/OS Debugger, a warning message is issued and the
breakpoint is not set. For ENTRY, the breakpoint becomes a deferred breakpoint.

• To set a global breakpoint, you can specify an asterisk (*) with the AT command or you can specify an AT
GLOBAL command. For example, if you want to set a global AT ENTRY breakpoint, specify:

AT ENTRY *;
or
AT GLOBAL ENTRY;

• AT CHANGE, AT EXIT, AT LABEL, AT LINE, or AT STATEMENT breakpoints (when entered for a
specific block, label, line, or statement) are automatically cleared when the containing compile unit is
removed from storage. AT ENTRY breakpoints are converted to deferred AT ENTRY breakpoints.

• AT CHANGE breakpoints are usually automatically cleared when the containing blocks are no longer
active or if the relevant variables are in dynamic storage that is freed by a language construct in the
program (for example, a C call to free()). However, such breakpoints are not cleared when storage in
an assembler or disassembly program is freed via a STORAGE RELEASE macro.

• Clearing of a breakpoint is independent of whether the breakpoint is enabled by using the ENABLE
command or disable by using the DISABLE command.

• When multiple AT conditions are raised at the same statement or line, z/OS Debugger processes them in
the following order:

1. Any global breakpoints other than PATH.
2. Any PATH breakpoints.
3. Any statement breakpoints.
4. Any CHANGE breakpoints

Chapter 5. z/OS Debugger commands 39

• If you want breakpoints to stop your program only under certain conditions, you can use a combination
of the AT and IF command or the AT command with a WHEN condition to establish a conditional
breakpoint.

• The AT commands cannot be used while you replay recorded statements by using the PLAYBACK
commands.

Refer to the following topics for more information related to the material discussed in this topic.

Related tasks
IBM z/OS Debugger User's Guide

Related references
“LIST command” on page 140

every_clause syntax
Most forms of the AT command contain an optional every_clause that controls whether the specified
action is taken based on the number of times a situation has occurred. For example, you might want an
action to occur only every 10th time a breakpoint is reached.

The syntax for every_clause is:

EVERY integer FROM integer TO integer

EVERY

EVERY integer
Specifies how frequently the breakpoint is taken. For example, EVERY 5 means that z/OS Debugger is
started every fifth time the AT-condition is met. The default is EVERY 1.

FROM integer
Specifies when z/OS Debugger invocations are to begin. For example, FROM 8 means that z/OS
Debugger is not started until the eighth time the AT-condition is met. If the FROM value is not
specified, its value is equal to the EVERY value.

TO integer
Specifies when z/OS Debugger invocations are to end. For example, TO 20 means that after the 20th
time this AT-condition is met, it should no longer start z/OS Debugger. If the TO value is not specified,
the every_clause continues indefinitely.

Usage notes

• FROM integer cannot exceed TO integer and all integers must be ≥ 1.
• EVERY by itself is the same as EVERY 1 FROM 1.
• The EVERY, FROM, and TO clauses can be specified in any order.

Examples

• Break every third time statement 50 is reached, beginning with the 48th time and ending after the 59th
time. The breakpoint action is performed the 48th, 51st, 54th, and 57th time statement 50 is reached.

AT EVERY 3 FROM 48 TO 59 STATEMENT 50;

• At the fifth change of structure field member of the structure named mystruct, print a message
saying that it has changed and list its new value. In addition, clear the CHANGE breakpoint. The current
programming language setting is C.

AT FROM 5 CHANGE mystruct.member {
 LIST ("mystruct.member has changed.
 It is now", mystruct.member);
 CLEAR AT CHANGE mystruct.member;
}

40 IBM z/OS Debugger: Reference and Messages

AT ALLOCATE (PL/I) command
AT ALLOCATE gives z/OS Debugger control when storage for a named controlled variable or aggregate is
dynamically allocated by PL/I. When the AT ALLOCATE breakpoint occurs, the allocated storage has not
yet been initialized; initialization, if any, occurs when control is returned to the program.

AT

every_clause

ALLOCATE identifier

(

,

identifier)

*

command ;

identifier
The name of a PL/I controlled variable whose allocation causes an invocation of z/OS Debugger. If the
variable is the name of a structure, only the major structure name can be specified.

*
Sets a breakpoint at every ALLOCATE.

command
A valid z/OS Debugger command.

Usage notes

• The AT ALLOCATE command is not available to debug Enterprise PL/I programs.
• The AT ALLOCATE command cannot be used while you replay recorded statements by using the
PLAYBACK commands.

Examples

• When the major structure area_name is allocated, display the address of the storage that was
obtained.

AT ALLOCATE area_name LIST ADDR (area_name);

• List the changes to temp where the storage for temp has been allocated.

DECLARE temp CHAR(80) CONTROLLED INITIAL('abc');

AT ALLOCATE temp;
 BEGIN;
 AT CHANGE temp;
 BEGIN;
 LIST (temp);
 GO;
 END;
 GO;
 END;
GO;

temp = 'The first time.';
temp = 'The second time.';
temp = 'The second time.';

When temp is allocated the value of temp has not yet been initialized. When it is initialized to 'abc' by
the INITIAL phrase, the first AT CHANGE is recognized and 'abc' is listed. The three assignments to
temp cause the value to be set again but the third assignment doesn't change the value. This example
results in one ALLOCATE breakpoint and three CHANGE breakpoints.

Refer to the following topics for more information related to the material discussed in this topic.

Related references
“every_clause syntax” on page 40
“PLAYBACK commands” on page 187

Chapter 5. z/OS Debugger commands 41

AT APPEARANCE command
Gives z/OS Debugger control when the specified compile unit is found in storage. This is usually the result
of a new load module being loaded. However, for modules with the main compile unit in COBOL, the
breakpoint does not occur until the compile unit is first entered after being loaded.

AT

every_clause

APPEARANCE cu_spec

(

,

cu_spec)

*

command

;

*
Sets a breakpoint at every APPEARANCE of any compile unit.

command
A valid z/OS Debugger command.

Usage notes

• If this breakpoint is set in a parent enclave it can be triggered and operated on with breakpoint
commands while the application is in a child enclave.

• If the compile unit is qualified with a load module name, the AT APPEARANCE breakpoint will only be
recognized for the compile unit that is contained in the specified load module. For example, if a compile
unit cux that is in load module loady appears, the breakpoint AT APPEARANCE loadx::>cux will
not be triggered.

• If the compile unit is not qualified with a load module name, the current load module qualification is not
used.

• z/OS Debugger gains control when the specified compile unit is first recognized by z/OS Debugger. This
can occur when a program is reached that contains a reference to that compile unit. This occurs late
enough that the program can be operated on (setting breakpoints, for example), but early enough that
the program has not yet been executed. In addition, for C, static variables can also be referenced.

• The AT APPEARANCE command cannot be used while you replay recorded statements by using the
PLAYBACK commands.

• AT APPEARANCE is helpful when setting breakpoints in unknown compile units. You can set
breakpoints at locations currently unknown to z/OS Debugger by using the proper qualification and
embedding the breakpoints in the command list associated with an APPEARANCE breakpoint. However,
there can be only one APPEARANCE breakpoint set at any time for a given compile unit and you must
include all breakpoints for that unknown compile unit in a single APPEARANCE breakpoint.

• For a non-CICS application, the AT APPEARANCE breakpoint is cleared at the end of a process.
• Before you enter the AT APPEARANCE command while you debug an assembler or disassembled

program, enter the SET ASSEMBLER ON or SET DISASSEMBLY ON command.
• For C, C++, and Enterprise COBOL for z/OS Version 5 only: AT APPEARANCE is not triggered for

compile units that reside in a loaded module because the compile units are known at the time of the
load.

• For C, C++, Enterprise COBOL for z/OS Version 5, and PL/I only: An APPEARANCE breakpoint is
triggered when z/OS Debugger finds the specified compile unit in storage. To be triggered, however, the
APPEARANCE breakpoint must be set before the compile unit is loaded.

• For Enterprise COBOL for z/OS Version 4 or earlier: An APPEARANCE breakpoint is triggered when
z/OS Debugger finds the specified compile unit in storage. To be triggered, however, the APPEARANCE
breakpoint must be set before the compile unit is called.

At the time the APPEARANCE breakpoint is triggered, the compile unit you are monitoring has not
become the currently-running compile unit. The compile unit that is current when the new compile

42 IBM z/OS Debugger: Reference and Messages

unit appears in storage, triggering the APPEARANCE breakpoint, remains the current compile unit until
execution passes to the new compile unit.

• For CICS only: The AT APPEARANCE breakpoint is cleared at the end of the last process in the
application.

Examples

• Establish an entry breakpoint when compile unit cu is found in storage. The current programming
language setting is C.

AT APPEARANCE cu {
 AT ENTRY a;
 GO;
}

• Defer the AT EXIT and AT LABEL breakpoints until compile unit cuy is first entered after being loaded
into storage. The current programming language setting is COBOL.

AT APPEARANCE cuy PERFORM
 AT EXIT cuy:>blocky LIST ('Exiting blocky.');
 AT LABEL cuy:>lab1 QUERY LOCATION;
END-PERFORM;

If cuy is later deleted from storage, the breakpoints that are dependent on cuy are automatically
cleared. However, if cuy is then loaded again, the APPEARANCE breakpoint for cuy is triggered and the
AT EXIT and AT LABEL breakpoints are redefined.

Refer to the following topics for more information related to the material discussed in this topic.

Related references
“every_clause syntax” on page 40
“cu_spec” on page 13
“PLAYBACK commands” on page 187

AT CALL command
Gives z/OS Debugger control when the application code attempts to call the specified entry point. Using
CALL breakpoints, you can simulate the execution of unfinished subroutines, create dummy or stub
programs, or set variables to mimic resultant values, allowing you to test sections of code before the
whole is complete.

AT

every_clause

CALL entry_name

(

,

entry_name)

*

command ;

entry_name
A valid external entry point name constant or zero (0); however, 0 can only be specified if the current
programming language setting is C or PL/I.

*
Sets a breakpoint at every CALL of any entry point.

command
A valid z/OS Debugger command.

Usage notes

• AT CALL intercepts the call itself, not the subroutine entry point. C, COBOL, and PL/I programs
compiled with the PATH suboption of the TEST or DEBUG compiler option identify call targets even
if they are unresolved.

• A breakpoint set with AT CALL for a call to a C, C++, or PL/I built-in function is never triggered.

Chapter 5. z/OS Debugger commands 43

• AT CALL intercepts calls to entry points known to z/OS Debugger at compile time. Calls to entry
variables are not intercepted, except when the current programming language setting is either C or
COBOL (compiled with the TEST run-time option).

• AT CALL 0 intercepts calls to unresolved entry points when the current programming language setting
is C or PL/I (compiled with the TEST run-time option).

• AT CALL allows you to intercept or bypass the target program by using GO BYPASS or GOTO. If
resumed by a normal GO or STEP, execution resumes by performing the call.

• If you set a breakpoint in a parent enclave, the breakpoint can be triggered and operated on with
breakpoint commands while the application is in a child enclave.

• While debugging a CICS application, the breakpoint is cleared at the end of the last process in the CICS
application. While debugging a non-CICS application, the breakpoint is cleared at the end of a process.

• The AT CALL command cannot be used while you replay recorded statements by using the PLAYBACK
commands.

• You cannot use the AT CALL command while you debug a disassembly program.
• z/OS Debugger does not support the AT CALL command while you debug a LangX COBOL or any VS

COBOL II program.
• For C and C++ only: The following usage notes apply:

– If your C and C++ program has unresolved entry points or entry variables, enter the command AT
CALL 0.

– To be able to set breakpoints in a C program using the AT CALL command, you must compile your
program in one of the following ways:

- With either the PATH or ALL suboption of the TEST compiler option.
- With either the PATH or ALL suboption of the DEBUG compiler option.

– To be able to set breakpoints in a C++ program using the AT CALL command, you must compile your
program in one of the following ways:

- With the TEST compiler option.
- With either the PATH or ALL suboption of the DEBUG compiler option.

• For COBOL only: The following usage notes apply:

– entry_name can refer to a method as well as a procedure.
– If entry_name is case sensitive, enclose it in quotation marks (") or apostrophes (').
– To be able to set breakpoints in a COBOL program by using the AT CALL command, you must

compile your program with the correct TEST compiler suboptions. The following list describes the
TEST compiler suboptions to use for the corresponding version of the COBOL compiler:

- Specify the HOOK or NOHOOK suboption of the TEST compiler option for Enterprise COBOL for z/OS,
Version 4

- Specify the PATH, ALL, or NONE suboption of the TEST compiler option for the following compilers:

• Enterprise COBOL for z/OS and OS/390, Version 3
• COBOL for OS/390 & VM, Version 2

If you compile your program with one of the following compilers and suboptions, you cannot use the
AT CALL entry_name command:

- It is not supported for Enterprise COBOL for z/OS Version 5.
- NOHOOK suboption of the TEST compiler option for Enterprise COBOL for z/OS, Version 4.
- NONE suboption of the TEST compiler option for the following compilers:

• Enterprise COBOL for z/OS and OS/390, Version 3.
• COBOL for OS/390 & VM, Version 2.

Instead, use AT CALL *.

44 IBM z/OS Debugger: Reference and Messages

– AT CALL 0 is not supported for use with COBOL programs. However, COBOL is able to identify CALL
targets even if they are unresolved, and also identify entry variables and intercept them. Therefore,
not all external references need be resolved for COBOL programs.

• For PL/I only: The following usage notes apply:

– To be able to set CALL breakpoints in PL/I, you must compile your program with either the PATH or
ALL suboptions of the TEST compiler option. AT CALL 0 is supported and is called for unresolved
external references.

– CALL statements within an INITIAL attribute on a PL/I variable declaration will not trigger AT CALL
breakpoints.

• For assembler only: A CALL statement can be a call to an internal or external routine. A CALL
statement is defined to be one of the following opcodes: BALR, BASR, BASSM, BAL, BAS, BRASL,
SVC, or PC. You can use the command AT CALL MVS to give z/OS Debugger control at any SVC or PC
instruction.

Examples

• Intercept all calls and request input from the terminal.

AT CALL *;

• If the program starts function badsubr, intercept the call, set variable varbl to 50, and then bypass
the target function. The current programming language setting is C.

AT CALL badsubr {
 varbl = 50;
 GO BYPASS;
}

Refer to the following topics for more information related to the material discussed in this topic.

Related tasks
IBM z/OS Debugger User's Guide

Related references
“every_clause syntax” on page 40
“PLAYBACK commands” on page 187

AT CHANGE command (full screen mode, line mode, batch mode)
Gives z/OS Debugger control when either the program or z/OS Debugger command changes the specified
variable value or storage location.

Chapter 5. z/OS Debugger commands 45

AT

every_clause

CHANGE
GLOBAL

LOCAL %CU

cu_spec

reference

' reference '

WHEN condition

%STORAGE (address

, length

)

(

,

reference

' reference '

%STORAGE (address

, length

)

)

command ;

GLOBAL
Specifies that the AT CHANGE breakpoint is global. The AT CHANGE breakpoint is not limited to a
specific compile unit; it spans the entire application. This is the default.

LOCAL
Specifies that the AT CHANGE breakpoint is limited to a specific compile unit.
cu_spec

A valid compile unit specification. Specifies that the AT CHANGE breakpoint is limited to this
compile unit.

condition
A valid, simple z/OS Debugger conditional expression. Simple means that you use only one operator;
for example, a < b.

reference
A valid z/OS Debugger reference in the current programming language.

'reference'
A valid z/OS Debugger reference when the current programming language is LangX COBOL.

%STORAGE
A built-in function that provides an alternative way to select an AT CHANGE subject.
address

The starting address of storage to be watched for changes.
length

The number of bytes of storage being watched for changes. This must be a positive integer
constant. The default value is 1.

command
A valid z/OS Debugger command. If you are using remote debug mode, you can specify only
commands that are supported in remote debug mode.

Usage notes

• If an AT CHANGE breakpoint is set on a file record of a BLOCKED QSAM file that is open OUTPUT
or EXTEND, the breakpoint might not occur as expected when the WRITE statement is used. The
breakpoint behavior in this case is not predictable because the file record is mapped onto the data
management buffer.

46 IBM z/OS Debugger: Reference and Messages

To get predictable AT CHANGE behavior in this case, set up the file to use a SAME RECORD AREA clause.
• Data is watched only in storage; hence a value that is being kept in a register because of compiler

optimization cannot be watched. In addition, the z/OS Debugger variables %GPRn, %Rn, %FPRn, %LPRn,
%EPRn, and any assembler or disassembly symbols representing registers cannot be watched.

• Only entire bytes are watched; bits or bit strings within a byte cannot be singled out.
• Because AT CHANGE breakpoints are identified by storage address and length, it is not possible to

have two AT CHANGE breakpoints for the same area (address and length) of storage. That is, an AT
CHANGE command replaces a previous AT CHANGE command if the storage address and length are the
same. However, any other overlap is ignored and the breakpoints are considered to be for two separate
variables. For example, if the storage address is the same, but the length is different, the AT CHANGE
command does not replace the previous AT CHANGE.

• When more than one AT CHANGE breakpoint is triggered at a time, AT CHANGE breakpoints are
triggered in the order that they were entered. However, if the triggering of one breakpoint causes a
variable watched by a different breakpoint to change, the ordering of the triggers will not necessarily be
according to when they were originally entered. For example,

AT CHANGE y LIST y;
AT CHANGE x y = 4;
GO;

If the next statement to be executed in your program causes the value of x to change, the CHANGE x
breakpoint is triggered when z/OS Debugger gains control. Processing of CHANGE x causes the value of
y to change. If you type GO; after being informed that CHANGE x was triggered, z/OS Debugger triggers
the CHANGE y breakpoint (before returning control to your program).

In this case, the CHANGE y breakpoint was entered first, but the CHANGE x breakpoint was triggered
first (because it caused the CHANGE y breakpoint to be triggered).

• %STORAGE is a z/OS Debugger built-in function that is available only with the AT CHANGE command.
• For a CICS application on z/OS Debugger, the CHANGE %STORAGE breakpoint is cleared at the end of

the last process in the application. For a non-CICS application on z/OS Debugger, it is cleared at the end
of a process.

• The referenced variables must exist when the AT CHANGE breakpoint is defined. One way to ensure this
is to embed the AT CHANGE in an AT ENTRY.

• An AT CHANGE breakpoint gets removed automatically when the specified variable is no longer defined.
AT CHANGEs for C static variables are removed when the module defining the variable is removed from
storage. For C storage that is allocated using malloc() or calloc(), this occurs when the dynamic
storage is freed using free().

• Changes are not detected immediately, but only at the completion of any command that has the
potential of changing storage, variable values, or the logical condition. If you specify a single reference,
you can restrict the circumstances under which the CHANGE condition is raised by specifying a WHEN
condition. If you enter a z/OS Debugger command that modifies a variable being watched, the CHANGE
condition is raised immediately if no WHEN condition is specified. If a WHEN condition is specified, the
CHANGE condition is only raised if the variable is modified and the WHEN condition is true. You can force
more or less frequent checking by using the SET CHANGE command.

• C and C++ AT CHANGE breakpoint requirements

– The variable must be an lvalue or an array.
– The variable must be declared in an active block if the variable is a parameter or has a storage class

of auto.
– A CHANGE breakpoint defined for a static variable is automatically removed when the file in which

the variable was declared is no longer active. A CHANGE breakpoint defined for an external variable is
automatically removed when the module where the variable was declared is no longer active.

– If reference is a pointer, z/OS Debugger stops when the contents of storage at the address given by
that pointer changes.

• COBOL AT CHANGE breakpoint requirements

Chapter 5. z/OS Debugger commands 47

– AT CHANGE using a storage address should not reference a data item that follows a variable-size
element or subgroup within a group. COBOL dynamically remaps the group when a variable-size
element changes size.

– Be careful when examining a variable whose allocated storage follows that of a variable-size element.
COBOL dynamically remaps the storage for the element any time it changes size. This could alter the
address of the variable you want to examine.

– You cannot set a CHANGE breakpoint for a COBOL file record before the file is opened.
– The variable, when in the local storage section, must be declared in an active block.

• PL/I AT CHANGE breakpoint requirements

– CHANGE breakpoint is removed for based or controlled variables when they are FREEd and for
parameters and AUTOMATIC variables when the block in which they are declared is no longer active.

– CHANGE monitors only structures with single scalar elements. Structures containing more than one
scalar element are not supported.

– The variable must be a valid reference for the current block.
– The breakpoint is automatically removed after the referenced variable ceases to exist.
– A CHANGE breakpoint monitors the storage allocated to the current generation of a controlled

variable. If you subsequently allocate new generations, they are not monitored.
• For PL/I and C/C++, when you specify a reference, z/OS Debugger calculates the address of the

reference only once, when it runs the AT CHANGE command the first time. Thereafter, z/OS Debugger
monitors the storage location indicated by that address.

For the following items, z/OS Debugger recalculates the address of reference each time it monitors the
storage location. If the address of reference changes, z/OS Debugger uses the new storage location as
the address to monitor:

– COBOL variables whose address can change
– Assembler DSECT items that are in the range of an active USING when you enter the AT CHANGE

command
– Assembler absolute locations that are in the range of an active USING when you enter the AT
CHANGE command

• When you free storage with the STORAGE RELEASE macro in an assembler or disassembly program,
it is not possible to detect when the storage is freed. If you set an AT CHANGE breakpoint on storage
freed by a STORAGE RELEASE macro, unexpected results might occur, such as the triggering of the
breakpoint at unexpected times.

• The AT CHANGE command cannot be used while you replay recorded statements by using the
PLAYBACK commands.

• For optimized COBOL programs, the specified variable cannot be a variable that was discarded due to
compiler optimization.

• When you use a COBOL level-88 variable on an AT CHANGE command, the current setting of the value is
saved. z/OS Debugger stops at the breakpoint only if the setting of the COBOL level-88 variable changes
from the saved value to a different value. For example, if the saved value was TRUE and the new value
is FALSE, z/OS Debugger stops at the breakpoint. Note that level-88 variables cannot be listed in LangX
COBOL.

• To use a COBOL level-88 variable with the AT CHANGE command, you (through a z/OS Debugger
command) or the program must have previously set the variable to one of the values specified in the
variable's declaration. If you do not do this, z/OS Debugger behavior becomes unpredictable.

• When you use a condition, the variables used in the condition or the condition are not evaluated at the
time the breakpoint is set but when the location associated with the AT CHANGE command changes.

• Only the following conditional operators can be used in a condition:
=

Compare the two operands for equality.

48 IBM z/OS Debugger: Reference and Messages

¬=
Compare the two operands for inequality.

<
Determines whether the left operand is less than the right operand.

>
Determines whether the left operand is greater than the right operand.

<=
Determines whether the left operand is less than or equal to the right operand.

>=
Determines whether the left operand is greater than or equal to the right operand.

&
Logical "and" operation.

|
Logical "or" operation.

• If you use the AT CHANGE command with a WHEN condition, every time the variable changes the
condition is evaluated. If the condition evaluates to true, z/OS Debugger stops and runs the command
associated with the breakpoint.

• When z/OS Debugger evaluates the condition and the condition is invalid, z/OS Debugger does one of
the following actions:

– If SET WARNING is set to ON, z/OS Debugger stops and displays a message that it could not evaluate
the condition. You need to enter a command to indicate what action you want z/OS Debugger to take.

– If SET WARNING is set to OFF, z/OS Debugger does not stop nor display a message that it could not
evaluate the condition. z/OS Debugger continues running the program.

• If you specify address with more than 8 significant digits or if reference references 64-bit addressable
storage, z/OS Debugger assumes that the storage location is 64-bit addressable storage. Otherwise,
z/OS Debugger assumes that the storage location is 31-bit addressable storage.

Examples

• Identify the current location each time variable varbl1 or varbl2 is found to have a changed value.
The current programming language setting is COBOL.

AT CHANGE (varbl1, varbl2) PERFORM
 QUERY LOCATION;
 GO;
END-PERFORM;

• When storage at the hex address 22222 changes, print a message in the log. Eight bytes of storage are
to be watched. The current programming language setting is C.

AT CHANGE %STORAGE (0x00022222, 8)
 LIST "Storage has changed at hex address 22222";

• Set two breakpoints when storage at the hex address 1000 changes. The variable x is defined at hex
address 1000 and is 20 bytes in length. In the first breakpoint, 20 bytes of storage are to be watched.
In the second breakpoint, 50 bytes of storage are to be watched. The current programming language
setting is C.

AT CHANGE %STORAGE (0x00001000, 20) /* Breakpoint 1 set */
AT CHANGE %STORAGE (0x00001000, 50) /* Breakpoint 2 set */
AT CHANGE x /* Replaces breakpoint 1, since x is at */
 /* hex address 1000 and is 20 bytes long */

• Stop when a variable reaches a value that is greater than 200.

AT CHANGE MYVAR WHEN MYVAR > 200 ;

Chapter 5. z/OS Debugger commands 49

MYVAR > 200 is a condition. Every time the value of MYVAR changes, the condition MYVAR > 200 is
evaluated. Changes to MYVAR do not trigger the AT CHANGE breakpoint. Only when MYVAR changes and
the condition MYVAR > 200 becomes true is the AT CHANGE breakpoint triggered.

Refer to the following topics for more information related to the material discussed in this topic.

Related tasks
"Controlling how z/OS Debugger handles invalid comparisons" in the IBM z/OS Debugger User's Guide

Related references
“address” on page 11
“every_clause syntax” on page 40
“references” on page 15
“PLAYBACK commands” on page 187
Appendix A, “z/OS Debugger commands supported in Debug Tool compatibility mode,” on page 517

AT CHANGE command (remote debug mode)
Gives z/OS Debugger control when the program changes the specified variable value.

AT CHANGE " reference "

' reference '

;

'reference' or "reference"
A valid z/OS Debugger reference in the current programming language.

Usage notes

• When you enter an AT CHANGE command, the breakpoint is set relative to the location the program
is stopped, which might not be the program displayed in the source view. For example, your program
is stopped at program SUB1, which was called by program MAIN1, and the source view displays the
source for program SUB1. Then, you click on MAIN1 in the Debug view so that the source view displays
the source for MAIN1. If you enter the command AT CHANGE "Var1", a breakpoint is set to monitor
any changes to a variable called "Var1" in SUB1, not a variable called "Var1" in MAIN1.

• If an AT CHANGE breakpoint is set on a file record of a BLOCKED QSAM file that is open OUTPUT
or EXTEND, the breakpoint might not occur as expected when the WRITE statement is used. The
breakpoint behavior in this case is not predictable because the file record is mapped onto the data
management buffer.

To get predictable AT CHANGE behavior in this case, set up the file to use a SAME RECORD AREA clause.
• Data is watched only in storage; hence a value that is being kept in a register because of compiler

optimization cannot be watched. In addition, the z/OS Debugger variables %GPRn, %Rn, %FPRn, %LPRn,
%EPRn, and any assembler or disassembly symbols representing registers cannot be watched.

• Only entire bytes are watched; bits or bit strings within a byte cannot be singled out.
• Because AT CHANGE breakpoints are identified by storage address and length, it is not possible to

have two AT CHANGE breakpoints for the same area (address and length) of storage. That is, an AT
CHANGE command replaces a previous AT CHANGE command if the storage address and length are the
same. However, any other overlap is ignored and the breakpoints are considered to be for two separate
variables. For example, if the storage address is the same, but the length is different, the AT CHANGE
command does not replace the previous AT CHANGE.

• When more than one AT CHANGE breakpoint is triggered at a time, AT CHANGE breakpoints are
triggered in the order that they were entered. However, if the triggering of one breakpoint causes a

50 IBM z/OS Debugger: Reference and Messages

variable watched by a different breakpoint to change, the ordering of the triggers will not necessarily be
according to when they were originally entered. For example,

AT CHANGE y LIST y;
AT CHANGE x y = 4;
GO;

If the next statement to be executed in your program causes the value of x to change, the CHANGE x
breakpoint is triggered when z/OS Debugger gains control. Processing of CHANGE x causes the value of
y to change. If you type GO; after being informed that CHANGE x was triggered, z/OS Debugger triggers
the CHANGE y breakpoint (before returning control to your program).

In this case, the CHANGE y breakpoint was entered first, but the CHANGE x breakpoint was triggered
first (because it caused the CHANGE y breakpoint to be triggered).

• The referenced variable must exist when the AT CHANGE breakpoint is defined.
• An AT CHANGE breakpoint gets removed automatically when the specified variable is no longer defined.
AT CHANGEs for C static variables are removed when the module defining the variable is removed from
storage. For C storage that is allocated using malloc() or calloc(), this occurs when the dynamic
storage is freed using free().

• Changes are not detected immediately, but only at the completion of any command that has the
potential of changing storage or variable values.

• C and C++ AT CHANGE breakpoint requirements

– The variable must be an lvalue or an array.
– The variable must be declared in an active block if the variable is a parameter or has a storage class

of auto.
– A CHANGE breakpoint defined for a static variable is automatically removed when the file in which

the variable was declared is no longer active. A CHANGE breakpoint defined for an external variable is
automatically removed when the module where the variable was declared is no longer active.

– If reference is a pointer, z/OS Debugger stops when the contents of storage at the address given by
that pointer changes.

• COBOL AT CHANGE breakpoint requirements

– AT CHANGE using a storage address should not reference a data item that follows a variable-size
element or subgroup within a group. COBOL dynamically remaps the group when a variable-size
element changes size.

– Be careful when examining a variable whose allocated storage follows that of a variable-size element.
COBOL dynamically remaps the storage for the element any time it changes size. This could alter the
address of the variable you want to examine.

– You cannot set a CHANGE breakpoint for a COBOL file record before the file is opened.
– The variable, when in the local storage section, must be declared in an active block.

• PL/I AT CHANGE breakpoint requirements

– CHANGE breakpoint is removed for based or controlled variables when they are FREEd and for
parameters and AUTOMATIC variables when the block in which they are declared is no longer active.

– CHANGE monitors only structures with single scalar elements. Structures containing more than one
scalar element are not supported.

– The variable must be a valid reference for the current block.
– The breakpoint is automatically removed after the referenced variable ceases to exist.
– A CHANGE breakpoint monitors the storage allocated to the current generation of a controlled

variable. If you subsequently allocate new generations, they are not monitored.
• When you free storage with the STORAGE RELEASE macro in an assembler or disassembly program,

it is not possible to detect when the storage is freed. If you set an AT CHANGE breakpoint on storage
freed by a STORAGE RELEASE macro, unexpected results might occur, such as the triggering of the
breakpoint at unexpected times.

Chapter 5. z/OS Debugger commands 51

• For optimized COBOL programs, the specified variable cannot be a variable that was discarded due to
compiler optimization.

• When you use a COBOL level-88 variable on an AT CHANGE command, the current setting of the value is
saved. z/OS Debugger stops at the breakpoint only if the setting of the COBOL level-88 variable changes
from the saved value to a different value. For example, if the saved value was TRUE and the new value is
FALSE, z/OS Debugger stops at the breakpoint.

• To use a COBOL level-88 variable with the AT CHANGE command, you (through a z/OS Debugger
command) or the program must have previously set the variable to one of the values specified in the
variable's declaration. If you do not do this, z/OS Debugger behavior becomes unpredictable.

• If reference references 64-bit addressable storage, z/OS Debugger assumes that the storage location
is 64-bit addressable storage. Otherwise, z/OS Debugger assumes that the storage location is 31-bit
addressable storage.

Refer to the following topics for more information related to the material discussed in this topic.

Related references
“references” on page 15
“AT CHANGE command (full screen mode, line mode, batch mode)” on page 45
Appendix A, “z/OS Debugger commands supported in Debug Tool compatibility mode,” on page 517

AT CURSOR command (full-screen mode)
Provides a cursor controlled method for setting a statement breakpoint. It is most useful when assigned
to a PF key.

AT

TOGGLE

CURSOR
;

TOGGLE
Specifies that if the cursor-selected statement already has an associated statement breakpoint then
the breakpoint is removed rather than replaced.

Usage notes

• AT CURSOR does not allow specification of an every_clause or a command.
• Do not use a semicolon.
• The cursor must be in the Source window and positioned on a line where an executable statement

begins. An AT STATEMENT command for the first executable statement in the line is generated and
executed (or cleared if one is already defined and TOGGLE is specified). For optimized COBOL programs,
the first statement on the line might have been discarded due to optimization effects. Therefore, the
first executable statement might be the second statement or later.

• The AT CURSOR command cannot be used while you replay recorded statements by using the
PLAYBACK commands.

Example

Define a PF key to toggle the breakpoint setting at the cursor position.

SET PF10 = AT TOGGLE CURSOR;

Refer to the following topics for more information related to the material discussed in this topic.

Related references
“PLAYBACK commands” on page 187

52 IBM z/OS Debugger: Reference and Messages

AT DATE command (COBOL)
Gives z/OS Debugger control for each date processing statement within the specified block. A date
processing statement is a statement that references a date field, or an EVALUATE or SEARCH statement
WHEN phrase that references a date field.

AT

every_clause

DATE block_spec

(

,

block_spec)

*

command ;

*
Sets a breakpoint at every date processing statement.

command
A valid z/OS Debugger command.

Usage notes

• When you use AT DATE, execution is halted only for COBOL compile units compiled with the DATEPROC
compiler option.

• The AT DATE command cannot be used while you replay recorded statements by using the PLAYBACK
commands.

Examples

• Each time a date processing statement is encountered in the nested subprogram subrx, display the
location of the statement.

AT DATE subrx QUERY LOCATION;

• Each time a date processing statement is encountered in the compile unit, display the name of the
compile unit.

AT DATE * LIST %CU;

• Each time a date processing statement is encountered in the compile unit, display the location of the
statement, list a specific variable, and resume running the program.

AT DATE * PERFORM
 QUERY LOCATION;
 LIST DATE-FIELD
 GO;
END-PERFORM;

Refer to the following topics for more information related to the material discussed in this topic.

Related references
“every_clause syntax” on page 40
“block_spec” on page 12
“PLAYBACK commands” on page 187

AT DELETE command
Gives z/OS Debugger control when a load module is removed from storage by a Language Environment,
MVS, or CICS delete service, such as on completion of a successful C release(), COBOL CANCEL, PL/I
RELEASE, assembler DELETE macro, or EXEC CICS RELEASE.

Chapter 5. z/OS Debugger commands 53

AT

every_clause

DELETE load_spec

(

,

load_spec)

*

command ;

*
Sets a breakpoint at every DELETE of any load module.

command
A valid z/OS Debugger command.

Usage notes

• z/OS Debugger gains control for deletes that are affected by the Language Environment delete service,
MVS delete service, or EXEC CICS RELEASE. If the Dynamic Debug facility is deactivated (by entering
the SET DYNDEBUG OFF command) or SVC screening is disabled, z/OS Debugger is not notified
of deletes affected by the MVS delete service. Refer to IBM z/OS Debugger Customization Guide for
instructions on how to control SVC screening.

• AT DELETE cannot specify the initial load module.
• If this breakpoint is set in a parent enclave, it can be triggered and operated on with commands while

the application is in a child enclave.
• For a CICS application on z/OS Debugger, this breakpoint is cleared at the end of the last process in the

application. For a non-CICS application on z/OS Debugger, it is cleared at the end of a process.
• The AT DELETE command cannot be used while you replay recorded statements by using the
PLAYBACK commands.

Examples

• Each time a load module is deleted, request input from the terminal.

AT DELETE *;

• Stop watching variable var1:>x when load module mymod is deleted.

AT DELETE mymod CLEAR AT CHANGE (var1:>x);

Refer to the following topics for more information related to the material discussed in this topic.

Related references
“every_clause syntax” on page 40
“load_spec” on page 15
“PLAYBACK commands” on page 187

AT ENTRY command
Defines a breakpoint at the specified entry point in the specified block.

AT

every_clause

ENTRY block_spec

(

,

block_spec)

*

WHEN condition

command ;

54 IBM z/OS Debugger: Reference and Messages

*
Sets a breakpoint at every ENTRY of any block.

command
A valid z/OS Debugger command. If you are using remote debug mode, you can specify only
commands that are supported in remote debug mode.

condition
A valid z/OS Debugger conditional expression.

Usage notes

• For VS COBOL II programs, z/OS Debugger supports only the AT ENTRY * command.
• To specify an AT ENTRY breakpoint for a program that is not currently known to z/OS Debugger, you

must do one of the following:

– If the name of the program is the same as the block_spec, you do not need to qualify the block_spec
with the name of the program.

– If the name of the program is not the same as the block_spec, you need to qualify the block_spec with
a program name. When z/OS Debugger detects a program name that matches the one you specified,
it sets the breakpoint.

• An ENTRY breakpoint set for a compile unit that becomes nonactive (one that is not in the current
enclave), is suspended until the compile unit becomes active. An ENTRY breakpoint set for a compile
unit that is deleted from storage is suspended until the compile unit is reloaded. A suspended
breakpoint cannot be triggered until it is reactivated.

• For a CICS application on z/OS Debugger, this breakpoint is cleared at the end of the last process in the
application. For a non-CICS application on z/OS Debugger, it is cleared at the end of a process.

• ENTRY breakpoints for blocks in a fetched or loaded program are converted to deferred breakpoints
when that program is released.

• The AT ENTRY command cannot be used while you replay recorded statements by using the PLAYBACK
commands.

• You cannot use the AT ENTRY command to stop at the entry to a Language Environment MAIN routine
for an enclave other than the first enclave if you do not have debug data available for the containing
compile unit.

• You can restrict the circumstances under which the AT ENTRY break point is raised by specifying a
WHEN condition. If a WHEN condition is specified, z/OS Debugger stops at the AT ENTRY break point if
the specified entry point matches the current entry point and the WHEN condition is true.

• The following conditional operators can be used in a condition:
=

Compare the two operands for equality.
¬=

Compare the two operands for inequality.
<

Determines whether the left operand is less than the right operand.
>

Determines whether the left operand is greater than the right operand.
<=

Determines whether the left operand is less than or equal to the right operand.
>=

Determines whether the left operand is greater than or equal to the right operand.
&

Logical "and" operation.
|

Logical "or" operation.

Chapter 5. z/OS Debugger commands 55

• If you use the AT ENTRY command with a WHEN condition, every time z/OS Debugger reaches the
entry, it evaluates the condition. If the condition evaluates to true, z/OS Debugger stops and runs the
command associated with the breakpoint.

• When z/OS Debugger evaluates the condition and the condition is invalid, z/OS Debugger does one of
the following actions:

– If SET WARNING is set to ON, z/OS Debugger stops and displays a message that it could not evaluate
the condition. You need to enter a command to indicate what action you want z/OS Debugger to take.

– If SET WARNING is set to OFF, z/OS Debugger does not stop nor display a message that it could not
evaluate the condition. z/OS Debugger continues running the program.

• A deferred AT ENTRY command creates an implicit NAMES INCLUDE for the target of the deferred AT
ENTRY.

• You cannot use the AT ENTRY command to stop at the entry of a nested block in a C or C++ program. A
nested block is a group of statements delimited by { and }. The compiler assigns a name to these blocks
using the following pattern: %BLOCKn, where n is a sequentially-assigned number.

Examples

• At the entry of program subrx, initialize variable ix and continue program execution. The current
programming language setting is COBOL.

AT ENTRY subrx PERFORM
 SET ix TO 5;
 GO;
END-PERFORM;

• At the entry of program myprog with parameter myparm, to stop at the entry point to myprog only
when myparm equals 100, enter the following command:

AT ENTRY myprog WHEN myparm=100;

Refer to the following topics for more information related to the material discussed in this topic.

Related references
“every_clause syntax” on page 40
“condition” on page 12
“block_spec” on page 12
“AT APPEARANCE command” on page 42
“PLAYBACK commands” on page 187
Appendix A, “z/OS Debugger commands supported in Debug Tool compatibility mode,” on page 517

AT ENTRY command (remote debug mode)
Defines a breakpoint at the entry point of the specified block.

AT ENTRY block_spec ;

Refer to the following topics for more information related to the material discussed in this topic.

Related references
“block_spec” on page 12
“AT ENTRY command” on page 54
Appendix A, “z/OS Debugger commands supported in Debug Tool compatibility mode,” on page 517

AT EXIT command
Defines a breakpoint at the specified exit point in the specified block.

56 IBM z/OS Debugger: Reference and Messages

AT

every_clause

EXIT block_spec

(

,

block_spec)

*

command ;

*
Sets a breakpoint at every EXIT of any block.

command
A valid z/OS Debugger command.

Usage notes

• For VS COBOL II programs, z/OS Debugger supports only the AT EXIT * command.
• An AT EXIT breakpoint can only be set for programs that are currently fetched or loaded. To set an exit

breakpoint for a currently unknown compile unit, use the AT APPEARANCE command.
• An EXIT breakpoint set for a compile unit that becomes nonactive (one that is not in the current

enclave), is suspended until the compile unit becomes active. An EXIT breakpoint set for a compile unit
that is deleted from storage is suspended until the compile unit is reloaded. A suspended breakpoint
cannot be triggered until it is reactivated.

• For a CICS application on z/OS Debugger, this breakpoint is cleared at the end of the last process in the
application. For a non-CICS application on z/OS Debugger, it is cleared at the end of a process.

• EXIT breakpoints for blocks in a fetched or loaded program are removed when that program is
released.

• The AT EXIT command cannot be used while you replay recorded statements by using the PLAYBACK
commands.

• You cannot use the AT EXIT command when you are in a disassembly compile unit.
• You cannot use the AT EXIT command when you are in a LangX COBOL compile unit.
• For assembler only: AT EXIT gains control on exit from internal or external routines. An EXIT is
defined to be one of the following opcodes:

– BR
– BALR, BASR, or BASSM when it is not followed by a valid instruction

• You cannot use the AT EXIT command to stop at the exit of a nested block in a C or C++ program. A
nested block is a group of statements delimited by { and }. The compiler assigns a name to these blocks
using the following pattern: %BLOCKn, where n is a sequentially-assigned number.

Example

At exit of main, print a message and TRIGGER the SIGUSR1 condition. The current programming
language setting is C.

AT EXIT main {
 puts("At exit of the program");
 TRIGGER SIGUSR1;
 GO;
}

Refer to the following topics for more information related to the material discussed in this topic.

Related references
“every_clause syntax” on page 40
“block_spec” on page 12
“PLAYBACK commands” on page 187

Chapter 5. z/OS Debugger commands 57

AT GLOBAL command
Gives z/OS Debugger control for every instance of the specified AT-condition. These breakpoints are
independent of their nonglobal counterparts (except for AT PATH, which is identical to AT GLOBAL
PATH). Global breakpoints are always performed before their specific counterparts.

AT

every_clause

GLOBAL ALLOCATE

APPEARANCE

CALL

DATE

DELETE

ENTRY

WHEN condition

EXIT

LABEL

LINE

LOAD

OCCURRENCE

PATH

STATEMENT

WHEN condition

command ;

command
A valid z/OS Debugger command.

You should use GLOBAL breakpoints where you don't have specific information of where to set your
breakpoint. For example, you want to halt at entry to block Abcdefg_Unknwn but cannot remember the
name, you can issue AT GLOBAL ENTRY and z/OS Debugger will halt every time a block is being entered.
If you want to halt at every function call, you can issue AT GLOBAL CALL.

Usage notes

• z/OS Debugger does not support the AT CALL, AT LABEL and AT PATH commands for disassembled
or VS COBOL II programs.

• z/OS Debugger does not support the AT CALL command for LangX COBOL programs.
• To set a global breakpoint, you can specify an asterisk (*) with the AT command or you can specify an AT
GLOBAL command.

• Although you can define GLOBAL breakpoints to coexist with singular breakpoints of the same type at
the same location or event, COBOL does not allow you to define two or more single breakpoints of
the same type for the same location or event. The last breakpoint you define replaces any previous
breakpoint.

• The AT GLOBAL command cannot be used while you replay recorded statements by using the
PLAYBACK commands.

• The AT GLOBAL OCCURRENCE breakpoint takes precedence over an AT OCCURRENCE condition
breakpoint.

• The AT GLOBAL OCCURRENCE command takes precedence over the test_level setting of the TEST
runtime option. For example, if your test_level setting is ALL, a condition is raised, and you set an AT
GLOBAL OCCURRENCE breakpoint, then z/OS Debugger stops only for the breakpoint. z/OS Debugger
does not stop twice (once for the AT GLOBAL OCCURRENCE and once for the test_level setting of ALL).

58 IBM z/OS Debugger: Reference and Messages

• You cannot use the AT GLOBAL ENTRY, AT GLOBAL EXIT, and AT GLOBAL PATH commands to
stop at the entry or exit of a nested block in a C or C++ program. A nested block is a group of
statements delimited by { and }. The compiler assigns a name to these blocks using the following
pattern: %BLOCKn, where n is a sequentially-assigned number.

Examples

• If you want to set a global AT ENTRY breakpoint, specify:

AT ENTRY *;
or
AT GLOBAL ENTRY;

• At every statement or line, display a message identifying the statement or line. The current
programming language setting is COBOL.

AT GLOBAL STATEMENT LIST ('At Statement:', %STATEMENT);

• If you enter (for COBOL):

AT EXIT table1 PERFORM
LIST TITLED (age, pay);
GO;
END-PERFORM;

then enter:

AT EXIT table1 PERFORM
LIST TITLED (benefits, scale);
GO;
END-PERFORM;

only benefits and scale are listed when your program reaches the exit point of block table1. The
second AT EXIT replaces the first because the breakpoints are defined for the same location. However,
if you define the following GLOBAL breakpoint with the first EXIT breakpoint, when your program
reaches the exit from table1, all four variables (age, pay, benefits, and scale) are listed with their
values, because the GLOBAL EXIT breakpoint can coexist with the EXIT breakpoint set for table1:

AT GLOBAL EXIT PERFORM
LIST TITLED (benefits, scale);
GO;
END-PERFORM;

• To set a GLOBAL DATE breakpoint, specify:

AT DATE *;

or

AT GLOBAL DATE;

• To combine a global breakpoint with other z/OS Debugger commands, specify:

AT GLOBAL DATE QUERY LOCATION;

Refer to the following topics for more information related to the material discussed in this topic.

Related references
“every_clause syntax” on page 40
“PLAYBACK commands” on page 187

AT GLOBAL LABEL command (remote debug mode)
Gives z/OS Debugger control for every instance of the specified AT-Label condition. Global breakpoints
are always performed for all Compile Units that are known to z/OS Debugger.

Chapter 5. z/OS Debugger commands 59

AT GLOBAL LABEL ;

Use AT GLOBAL LABEL breakpoints if you do not have specific information of where to set your
breakpoint. For example, if you want to halt at a label that you do not know the name of, enter AT
GLOBAL LABEL command to halt z/OS Debugger when it encounters a label.

Usage note

To set a global breakpoint, specify an asterisk (*) with the AT command, or enter the AT GLOBAL
command.

Example

If you want to set a global AT LABEL breakpoint, specify one of the following commands:

AT LABEL *;

or

AT GLOBAL LABEL;

AT LABEL command
Gives z/OS Debugger control when execution has reached the specified statement label or group of
labels. For C and PL/I, if there are multiple labels associated with a single statement, you can specify
several labels and z/OS Debugger gains control at each label. For COBOL and LangX COBOL, AT LABEL
lets you specify several labels, but for any group of labels that are associated with a single statement,
z/OS Debugger gains control for that statement only once.

AT

every_clause

LABEL statement_label

'statement_label'

(

,

statement_label)

(

,

'statement_label')

*

LOCAL %CU

cu_spec

command ;

*
Sets a breakpoint at every LABEL.

LOCAL
Specifies that the AT LABEL breakpoint is limited to all labels in the specified compile unit.
cu_spec

A valid compile unit specification.
command

A valid z/OS Debugger command.

Usage notes

• Use the syntax of statement_label enclosed in apostrophes (') only for LangX COBOL programs. It is not
supported in any other programming language.

• z/OS Debugger does not support the AT LABEL command with VS COBOL II programs.

60 IBM z/OS Debugger: Reference and Messages

• A COBOL statement_label can have either of the following forms:

– name

This form can be used in COBOL for reference to a section name or for a COBOL paragraph name that
is not within a section or is in only one section of the block.

– name1 OF name2 or name1 IN name2

This form must be used for any reference to a COBOL paragraph (name1) that is within a section
(name2), if the same name also exists in other sections in the same block. You can specify either OF
or IN, but z/OS Debugger always uses OF for output.

Either form can be prefixed with the usual block, compile unit, and load module qualifiers.
• For C, C++ or PL/I, you can set a LABEL breakpoint at each label located at a statement. This is the only

circumstance where you can set more than one breakpoint at the same location.
• A LABEL breakpoint set for a nonactive compile unit (one that is not in the current enclave) is suspended

until the compile unit becomes active. A LABEL breakpoint set for a compile unit that is deleted from
storage is suspended until the compile unit is reloaded. A suspended breakpoint cannot be triggered
until it is reactivated.

• For a CICS application on z/OS Debugger, this breakpoint is cleared at the end of the last process in the
application. For a non-CICS application on z/OS Debugger, it is cleared at the end of a process.

• You cannot set LABEL breakpoints at PL/I label variables.
• LABEL breakpoints for label constants in a fetched, loaded program or DLL are removed when that

program is released.
• To be able to set LABEL breakpoints in PL/I, you must compile your program with either the PATH and
SYM suboptions or the ALL suboption of the TEST compiler option.

• For C, to be able to set LABEL breakpoints, you must compile your program in one of the following ways:

– With either the PATH and SYM suboptions or ALL suboption of the TEST compiler option.
– With either the PATH and SYM suboptions or ALL suboption of the DEBUG compiler option.

• For C++, to be able to set LABEL breakpoints, you must compile your program in one of the following
ways:

– With the TEST compiler option.
– With either the PATH and SYM suboptions or ALL suboption of the DEBUG compiler option.

• You can set breakpoints for more than one label at the same location. z/OS Debugger is entered for each
specified label.

• To be able to set LABEL breakpoints in COBOL programs, you must compile your program with one of
the following compilers and TEST compiler suboptions:

– Specify the HOOK suboption with Enterprise COBOL for z/OS, Version 4
– Specify the STMT, PATH, or ALL suboption and the SYM suboption with one of the following compilers:

- any release of the Enterprise COBOL for z/OS and OS/390, Version 3, compiler
- any release of the COBOL for OS/390 and VM, Version 2, compiler

When defining specific LABEL breakpoints z/OS Debugger sets a breakpoint for each label specified,
unless there are several labels on the same statement. In this case, only the last LABEL breakpoint
defined is set.

• For COBOL, a reference to a label or a label constant can take either of the following forms:

– name

This form is used to refer to a section name or the name of a paragraph contained in not more than
one section of the block.

– name1 OF name2 or name1 IN name2

Chapter 5. z/OS Debugger commands 61

This form is used to refer to a paragraph contained within a section if the paragraph name exists in
other sections in the same block. You can use either OF or IN, but z/OS Debugger only uses OF for
output to the log file.

• For PL/I users:

– If you are running any version of VisualAge PL/I or Enterprise PL/I Version 3 Release 1 through
Version 3 Release 3 programs, you cannot use the AT LABEL command.

– If you are running Enterprise PL/I for z/OS, Version 3.4, or later, programs and you comply with the
following requirements, you can use the AT LABEL command to set breakpoints (except at a label
variable):

- If you are compiling with Enterprise PL/I Version 3 Release 4, apply PTFs for APARs PK00118 and
PK00339.

• You cannot use the AT LABEL command while you use the disassembly view.
• The AT LABEL command cannot be used while you replay recorded statements by using the PLAYBACK

commands.
• For Enterprise COBOL for z/OS Version 5 and later, AT LABEL * highlights the labels similar to

statement breakpoints:

– When you use AT LABEL *, a global label breakpoint is created. You can use PF6 or AT LINE to
remove or recreate a hook at the label.

– When you toggle hooks, the global label breakpoint created with AT LABEL * is saved in SAVEBPS,
but the removal of any individual label hook is not saved.

– The EVERY clause is not supported, which means highlighting and use of PF6 do not work.
– PF6 only works in the currently running CU. Using SET QUALIFY CU LOAD::>CU shows highlighted

labels if the AT LABEL * command was issued, but PF6 does not work.
– Highlighting is disabled if PLAYBACK START is issued and enabled once again when PLAYBACK
STOP is issued.

Examples

• Set a breakpoint at label create in the currently qualified block.

AT LABEL create;

• At program label para OF sect1 display variable names x and y and their values, and continue
program execution. The current programming language setting is COBOL.

AT LABEL para OF sect1 PERFORM
 LIST TITLED (x, y);
 GO;
END-PERFORM;

• Set a breakpoint at labels label1 and label2, even though both labels are associated to the same
statement. The current programming language setting is C.

AT LABEL label1 LIST 'Stopped at label1'; /* Label1 is first */
AT LABEL label2 LIST 'Stopped at label2'; /* Label2 is second */

Refer to the following topics for more information related to the material discussed in this topic.

Related references
“every_clause syntax” on page 40
“statement_label” on page 17
“PLAYBACK commands” on page 187

AT LABEL command (remote debug mode)
Gives z/OS Debugger control when execution reaches the statement label that you specify. For C and PL/I
programs, if multiple labels are associated with a single statement, z/OS Debugger gains control at each

62 IBM z/OS Debugger: Reference and Messages

label that you set an AT LABEL breakpoint for. For COBOL programs, you can issue AT LABEL commands
for multiple labels on the same statement, but for any group of labels that are associated with a single
statement, z/OS Debugger gains control for that statement only once.

AT LABEL statement_label

*

;

*
Sets a breakpoint at every LABEL

Usage notes

• If you set a breakpoint for a specific label (for example, AT LABEL MYLABEL), and AT GLOBAL LABEL
command is also set, the remote debugger stops only one time.

• z/OS Debugger does not support the AT LABEL command for VS COBOL II programs.
• A COBOL statement_label can have only the form of – name.
• A LABEL breakpoint in remote mode is limited to labels in the currently executing compile unit.
• For more information about restrictions for the AT LABEL command, see Usage notes on “AT LABEL

command” on page 60

Example

Set a breakpoint at Label create in the currently qualified block.

AT LABEL create;

AT LINE command
Gives z/OS Debugger control at the specified line.

The AT LINE command is synonymous to the AT STATEMENT command.

You cannot use the AT LINE while you debug a disassembled program. Instead, use the AT OFFSET
command.

The AT LINE command cannot be used while you replay recorded statements by using the PLAYBACK
commands.

Refer to the following topics for more information related to the material discussed in this topic.

Related references
“AT OFFSET command (disassembly)” on page 68
“PLAYBACK commands” on page 187
“AT STATEMENT command” on page 70

AT LOAD command
Gives z/OS Debugger control when the specified load module is brought into storage. For example, z/OS
Debugger gains control on completion of a successful C fetch(), a PL/I FETCH, during a COBOL dynamic
CALL, MVS LOAD service, or EXEC CICS LOAD. To stop at a compile unit or program in a COBOL DLL, use
AT APPEARANCE. Once the breakpoint is raised for the specified load module, it is not raised again unless
either the load module is released and fetched again or another load module with the specified name is
fetched.

You can set LOAD breakpoints regardless of what compiler options are in effect.

Chapter 5. z/OS Debugger commands 63

AT

every_clause

LOAD module_name

(

,

module_name)

load_spec

(

,

load_spec)

*

command ;

*
Sets a breakpoint at every LOAD of any load module.

command
A valid z/OS Debugger command.

Usage notes

• z/OS Debugger gains control for loads that are affected by the Language Environment load service,
the MVS LOAD service, or EXEC CICS LOAD. A LOAD breakpoint is triggered when a new enclave is
entered. If the Dynamic Debug facility is deactivated (by entering the SET DYNDEBUG OFF command)
or SVC screening is disabled, z/OS Debugger is not notified of any loads that are affected by the MVS
LOAD service. Refer to IBM z/OS Debugger Customization Guide for instructions on how to control SVC
screening.

• AT LOAD can be used to detect the loading of specific language library load modules; however, the
loading of language library load modules does not trigger an AT GLOBAL LOAD or AT LOAD *.

• AT LOAD cannot specify the initial load module because it is already loaded when z/OS Debugger is
started.

• If this breakpoint is set in a parent enclave, it can be triggered and operated on with breakpoint
commands while the application is in a child enclave.

• For a CICS application on z/OS Debugger, this breakpoint is cleared at the end of the last process in the
application. For a non-CICS application on z/OS Debugger, it is cleared at the end of a process.

• AT LOAD on an implicitly or explicitly loaded DLL is not supported by z/OS Debugger.
• Depending on the version of the C or C++ compiler used, z/OS Debugger might recognize a compile unit

in a DLL only after it has had a function in it called. For example, if a DLL contains a function fn1 in
CU file1 and it contains a function fn2 in CU file2, a call to fn1 will not enable z/OS Debugger
to recognize file2, only file1. Similarly, a call to fn2 will not enable z/OS Debugger to recognize
file1.

• At the triggering of a LOAD breakpoint for C, C++, and PL/I, z/OS Debugger has enough information
about the loaded module to set breakpoints and examine variables of static and extern storage classes.

• At the triggering of a LOAD breakpoint for COBOL, C, and C++ DLL's, z/OS Debugger does not have
enough information about the loaded module to set breakpoints in blocks contained within the module.
At the triggering of an APPEARANCE breakpoint, however, you can set such breakpoints.

• The AT LOAD command cannot be used while you replay recorded statements by using the PLAYBACK
commands.

Examples

• Print a message when load module mymod is loaded. The current programming language setting is
either C, C++, or COBOL.

AT LOAD mymod LIST ("Load module mymod has been loaded");

64 IBM z/OS Debugger: Reference and Messages

• Establish an entry breakpoint when load module a is fetched and then resume execution. The current
programming language setting is C.

AT LOAD a {
 AT ENTRY a;
 GO;
}

Refer to the following topics for more information related to the material discussed in this topic.

Related references
“every_clause syntax” on page 40
“load_spec” on page 15
“PLAYBACK commands” on page 187

AT LOAD command (remote debug mode)
Gives z/OS Debugger control when the specified load module is brought into storage. For example, z/OS
Debugger gains control on completion of a successful C fetch(), a PL/I FETCH, during a COBOL dynamic
CALL, MVS LOAD service, or EXEC CICS LOAD. Once the breakpoint is raised for the specified load
module, it is not raised again unless either the load module is released and fetched again or another load
module with the specified name is fetched.

You can set LOAD breakpoints regardless of what compiler options are in effect.

AT LOAD module_name ;

Related references
“AT LOAD command” on page 63
Appendix A, “z/OS Debugger commands supported in Debug Tool compatibility mode,” on page 517

AT OCCURRENCE command
Gives z/OS Debugger control on a language or Language Environment condition or exception or an MVS or
CICS ABEND.

AT

every_clause

OCCURRENCE condition

(

,

condition)

command

;

condition
A valid condition or exception. This can be one of the following codes or conditions:

• A Language Environment symbolic feedback code.
• A language-oriented keyword or code, depending on the current programming language setting.
• An MVS System or User ABEND code Sxxx or Uxxx, where xxx is three hexadecimal digits

corresponding to the desired ABEND code. These codes are valid only when you are running without
the Language Environment run time.

• Any four-character string representing a CICS ABEND code. This code is valid only when you are
running without the Language Environment run time.

Following are the C and C++ condition constants; they must be uppercase and not abbreviated:

Chapter 5. z/OS Debugger commands 65

SIGABND
SIGABRT
SIGFPE

SIGILL
SIGINT
SIGIOERR
SIGSEGV

SIGTERM
SIGUSR1
SIGUSR2
THROWOBJ

When a C++ user specifies AT CONDITION THROWOBJ, z/OS Debugger transfers control to the user
at the point of the throw in C++ code.

PL/I condition constants can be used. For conditions associated with file handling, the file reference
can be a wildcard.

There are no COBOL condition constants. Instead, an Language Environment symbolic feedback code
must be used, for example, CEE347.

The TRAP(ON) run-time option must be used to stop on Language Environment conditions or MVS or
CICS Abends.

command
A valid z/OS Debugger command.

Program conditions and condition handling vary from language to language. The methods the
OCCURRENCE breakpoint uses to adapt to each language are described below.

For C and C++:

When a C and C++ or an Language Environment condition occurs during your session, the following series
of events takes place:

1. z/OS Debugger is started before any C or C++ signal handler.
2. If you set an OCCURRENCE breakpoint for that condition, z/OS Debugger processes that breakpoint and

executes any commands you have specified. If you did not set an OCCURRENCE breakpoint for that
condition, and:

• If the current test-level setting is ALL, z/OS Debugger prompts you for commands or reads them
from a commands file.

• If the current test-level setting is ERROR, and the condition has an error severity level (that
is, anything but SIGUSR1, SIGUSR2, SIGINT, or SIGTERM), z/OS Debugger gets commands by
prompting you or by reading from a commands file.

• If the current test-level setting is NONE, z/OS Debugger ignores the condition and returns control to
the program.

You can set OCCURRENCE breakpoints for equivalent C and C++ signals and Language Environment
conditions. For example, you can set AT OCCURRENCE CEE345 and AT OCCURRENCE SIGSEGV during
the same debug session. Both indicate an addressing exception and, if you set both breakpoints, no error
occurs. However, if you set OCCURRENCE breakpoints for a condition using both its C, C++, and Language
Environment designations, the Language Environment breakpoint is the only breakpoint triggered. Any
command list associated with the C condition is not executed.

You can use OCCURRENCE breakpoints to control your program's response to errors.

Usage notes

• If the application program also has established an exception handler for the condition then that handler
is entered when z/OS Debugger releases control, unless return is by use of GO BYPASS or GOTO or a
specific statement.

• OCCURRENCE breakpoints for COBOL IGZ conditions can only be set after a COBOL run-time module
has been initialized.

• For C, C++, and PL/I, certain Language Environment conditions map to C and C++ SIGxxx values
and PL/I condition constants. It is possible to enter two AT OCCURRENCE breakpoints for the
same condition. For example, one could be entered with the Language Environment condition name
and the other could be entered with the C and C++ SIGxxx condition constant. In this case, the

66 IBM z/OS Debugger: Reference and Messages

AT OCCURRENCE breakpoint for the Language Environment condition name is triggered and the AT
OCCURRENCE breakpoint for the C or C++ condition constant is not. However, if an AT OCCURRENCE
breakpoint for the Language Environment condition name is not defined, the corresponding mapped C,
C++, or PL/I condition constant is triggered.

• If this breakpoint is set in a parent enclave it can be triggered and operated on with breakpoint
commands while the application is in a child enclave.

• For a CICS application on z/OS Debugger, this breakpoint is cleared at the end of the last process in the
application. For a non-CICS application on z/OS Debugger, it is cleared at the end of a process.

• For COBOL and LangX COBOL, z/OS Debugger detects Language Environment conditions. If a Language
Environment condition occurs during your session, the following series of events takes place:

1. z/OS Debugger is started before any condition handler.
2. If you set an OCCURRENCE breakpoint for that condition, z/OS Debugger processes that breakpoint

and executes any commands you have specified. If you have not set an OCCURRENCE breakpoint for
that condition, and:

– If the current test-level setting is ALL, z/OS Debugger prompts you for commands or reads them
from a commands file.

– If the current test-level setting is ERROR, and the condition has a severity level of 2 or higher, z/OS
Debugger gets commands by prompting you or by reading from a commands file.

– If the current test-level setting is NONE, z/OS Debugger ignores the condition and returns control
to the program.

You can use OCCURRENCE breakpoints to control your program's response to errors.
• For PL/I, z/OS Debugger detects Language Environment and PL/I conditions. If a condition occurs,

z/OS Debugger is started before any condition handler. If you have issued an ON command or set an
OCCURRENCE breakpoint for the specified condition, z/OS Debugger runs the associated commands.

• If there is no AT OCCURRENCE or ON set, then:

– If the current test-level setting is ALL, z/OS Debugger prompts you for commands or reads them from
a commands file.

– If the current test-level setting is ERROR, and the condition has an error severity level of 2 or higher,
z/OS Debugger gets commands by prompting you or by reading from a commands file.

– If the current test-level setting is NONE, z/OS Debugger ignores the condition and returns control to
the program.

• Once z/OS Debugger returns control to the program, any relevant PL/I ON-unit is run.
• If you are debugging a program that uses SPIE or ESPIE, while SPIE or ESPIE is active, the program

behaves as if TRAP(OFF) was specified for all program checks except for a program check that might
arise from the use of the CALL command.

• If you are debugging a program that uses ESTAE or ESTAEX, while ESTAE or ESTAEX is active, the
program behaves as if TRAP(OFF) was specified for all abends except program checks. z/OS Debugger
does not handle any conditions. The ESTAE or ESTAEX exit handles any abends except for program
checks.

• The AT OCCURRENCE command cannot be used while you replay recorded statements using the
PLAYBACK commands.

Examples

• When a data exception occurs, query the current location. The current programming language setting is
either C or COBOL.

AT OCCURRENCE CEE347 QUERY LOCATION;

Chapter 5. z/OS Debugger commands 67

• When you are running in MVS without the Language Environment run time, that is under EQANMDBG,
when a System 0C1 ABEND occurs, list information about the current CUs with the following command:

AT OCCURRENCE S0C1 DESCRIBE CUS;

• When the SIGSEGV condition is raised, set an error flag and call a user termination routine. The current
programming language setting is C.

AT OCCURRENCE SIGSEGV {
 error = 1;
 terminate (error);
}

• Suppose SIGFPE maps to CEE347 and the following breakpoints are defined. The current programming
language setting is C.

AT OCCURRENCE SIGFPE LIST "SIGFPE condition";
AT OCCURRENCE CEE347 LIST "CEE347 condition";

If the Language Environment condition CEE347 is raised, the CEE347 breakpoint is triggered.

However, if a breakpoint had not been defined for CEE347 and the CEE347 condition is raised, the
SIGFPE breakpoint is triggered (because it is mapped to CEE347).

• Stop for every file where ENDFILE condition occurs. The current programming language is PL/I.

AT OCCURRENCE ENDFILE(*);

Refer to the following topics for more information related to the material discussed in this topic.

Related references
“every_clause syntax” on page 40
“ON command (PL/I)” on page 181
“PLAYBACK commands” on page 187
z/OS Language Environment Programming Guide
z/OS Language Environment Debugging Guide
PL/I for MVS and VM Language Reference

AT OFFSET command (disassembly)
Gives z/OS Debugger control at the specified offset in the disassembly view.

AT OFFSET offset_spec

(

,

offset_spec)

command ;

command
A valid z/OS Debugger command.

Usage note

The AT OFFSET command cannot be used while you replay recorded statements by using the PLAYBACK
commands.

Examples

• Set a breakpoint at offset '2A' in the current block:

AT OFFSET X'2A';

• Set a breakpoint at offsets '2A' and '30' in the current block:

AT OFFSET (X'2A',X'30');

68 IBM z/OS Debugger: Reference and Messages

• Set a breakpoint in the block MYPROG at offset '3A':

AT OFFSET MYPROG:>X'3A';

Refer to the following topics for more information related to the material discussed in this topic.

Related references
“PLAYBACK commands” on page 187
“offset_spec” on page 15

AT PATH command
Gives z/OS Debugger control when the flow of control changes (at a path point). AT PATH is identical to
AT GLOBAL PATH.

AT

every_clause

PATH command ;

command
A valid z/OS Debugger command.

Usage notes

• For Enterprise COBOL for z/OS Version 5, when z/OS Debugger stops at an AFTER CALL Path point
because of an AT PATH breakpoint, the location where z/OS Debugger stops is the statement after the
CALL statement.

• For a CICS application on z/OS Debugger, this breakpoint is cleared at the end of the last process in the
application. For a non-CICS application on z/OS Debugger, it is cleared at the end of a process.

• For C, to be able to set PATH breakpoints, you must compile your program in one of the following ways:

– With either the PATH or ALL suboption of the TEST compiler option.
– With either the PATH or ALL suboption of the DEBUG compiler option.

• For C++, to be able to set PATH breakpoints, you must compile your program in one of the following
ways:

– With the TEST compiler option.
– With either the PATH or ALL suboption of the DEBUG compiler option.

• For COBOL programs compiled with the following compilers, compile your program with the NONE,
PATH, or ALL suboption of the TEST compiler option to be able to set PATH breakpoints:

– Enterprise COBOL for z/OS and OS/390, Version 3
– COBOL for OS/390 and VM, Version 2

• For PL/I, to be able to set PATH breakpoints, you must compile your program with the PATH or ALL
suboption of the TEST compiler option.

• You cannot use the AT PATH command while you replay recorded statements by using the PLAYBACK
commands.

• z/OS Debugger does not support the AT PATH command while you debug a disassembled program or a
VS COBOL II program.

• You cannot use the AT PATH command to stop at the entry or exit of a nested block in a C or C++
program. A nested block is a group of statements delimited by { and }. The compiler assigns a name to
these blocks using the following pattern: %BLOCKn, where n is a sequentially-assigned number.

Examples

• Whenever a path point has been reached, display the five most recently processed breakpoints and
conditions.

AT PATH LIST LAST 5 HISTORY;

Chapter 5. z/OS Debugger commands 69

• Whenever a path point has been reached, display a message and query the current location. The current
programming language setting is COBOL.

AT PATH PERFORM
 LIST "Path point reached";
 QUERY LOCATION;
 GO;
END-PERFORM;

• Whenever a path point has been reached, the value of %PATHCODE contains the code representing the
type of path point stopped at. If the program is stopped at the entry to a block, display the %PATHCODE.

AT PATH LIST %PATHCODE;

Refer to the following topics for more information related to the material discussed in this topic.

Related tasks
IBM z/OS Debugger User's Guide

Related references
“every_clause syntax” on page 40
“%PATHCODE” on page 341
“PLAYBACK commands” on page 187

AT Prefix command (full-screen mode)
Sets a statement breakpoint when you issue this command through the Source window prefix area. When
one or more breakpoints have been set on a line, the prefix area for that line is highlighted.

AT

integer

;

integer
Selects a relative statement (for C, C++, and PL/I) or a relative verb (for COBOL) within the line. The
default value is 1. For optimized COBOL programs, the default value is the first executable statement
on the line, which was not discarded due to optimization effects.

Usage note

The AT Prefix command cannot be used while you replay recorded statements by using the PLAYBACK
commands.

Example

Set a breakpoint at the third statement or verb in the line (typed in the prefix area of the line where the
statement is found).

AT 3

No space is needed as a delimiter between the keyword and the integer; hence, AT 3 is equivalent to
AT3.

Refer to the following topics for more information related to the material discussed in this topic.

Related references
“PLAYBACK commands” on page 187

AT STATEMENT command
Gives z/OS Debugger control at each specified statement or line within the given set of ranges.

70 IBM z/OS Debugger: Reference and Messages

AT

every_clause LINE

STATEMENT

statement_id_range

(

,

statement_id_range)

*

WHEN condition

command ;

*
Sets a breakpoint at every STATEMENT or LINE.

command
A valid z/OS Debugger command. If you are using remote debug mode, you can specify only
commands that are supported in remote debug mode.

condition
A valid z/OS Debugger conditional expression.

Usage notes

• With Enterprise COBOL for z/OS Version 5, you cannot set AT STATEMENT breakpoints for statements
that are inside a declarative section.

• With Enterprise COBOL for z/OS Version 5, you can set AT STATEMENT breakpoints for the WHEN and
EVALUATE statements.

• You cannot use the AT STATEMENT command (except for the AT STATEMENT * form) while you debug
a disassembled program. Instead, use the AT OFFSET command.

• A STATEMENT breakpoint set for a nonactive compile unit (one that is not in the current enclave), is
suspended until the compile unit becomes active. A STATEMENT breakpoint set for a compile unit that
is deleted from storage is suspended until the compile unit is reloaded. A suspended breakpoint cannot
be triggered until it is reactivated.

• For a CICS application on z/OS Debugger, this breakpoint is cleared at the end of the last process in the
application. For a non-CICS application on z/OS Debugger, it is cleared at the end of a process.

• You can specify the first relative statement on each line in any one of three ways. If, for example, you
want to set a STATEMENT breakpoint at the first relative statement on line three, you can enter AT 3, AT
3.0, or AT 3.1. However, z/OS Debugger logs them differently according to the current programming
language as follows:

– For C and C++

The first relative statement on a line is specified with "0". All of the above breakpoints are logged as
AT 3.0.

– For COBOL or PL/I

The first relative statement on a line is specified with "1". All of the above breakpoints are logged
as AT 3.1. For optimized COBOL programs, the first relative statement is the first executable
statement. This might not be the first statement if the optimizer discarded the first statement.

• When the STORAGE run-time option is in effect, the AT STATEMENT command cannot be used to set a
breakpoint in the prologue of an assembler compile unit between the first BALR 14,15 instruction and
the following LR 13,x instruction.

• The AT STATEMENT command cannot be used while you replay recorded statements by using the
PLAYBACK command.

• You can restrict the circumstances under which the AT STATEMENT break point is raised by specifying
a WHEN condition. If a WHEN condition is specified, z/OS Debugger stops at the AT STATEMENT break
point if the specified statement matches the current statement and the WHEN condition is true.

Chapter 5. z/OS Debugger commands 71

• The following conditional operators can be used in a condition:
=

Compare the two operands for equality.
¬=

Compare the two operands for inequality.
<

Determines whether the left operand is less than the right operand.
>

Determines whether the left operand is greater than the right operand.
<=

Determines whether the left operand is less than or equal to the right operand.
>=

Determines whether the left operand is greater than or equal to the right operand.
&

Logical "and" operation.
|

Logical "or" operation.
• If you use the AT STATEMENT command with a WHEN condition, every time z/OS Debugger reaches the

statement, it evaluates the condition. If the condition evaluates to true, z/OS Debugger stops and runs
the command associated with the breakpoint.

• z/OS Debugger evaluates references in a WHEN condition before it runs a statement.
• When z/OS Debugger evaluates the condition and the condition is invalid, z/OS Debugger does one of

the following actions:

– If SET WARNING is set to ON, z/OS Debugger stops and displays a message that it could not evaluate
the condition. You need to enter a command to indicate what action you want z/OS Debugger to take.

– If SET WARNING is set to OFF, z/OS Debugger does not stop nor display a message that it could not
evaluate the condition. z/OS Debugger continues running the program.

Examples

• Set a breakpoint at statement or line number 23. The current programming language setting is COBOL.

AT 23 LIST 'About to close the file';

• Set breakpoints at statements 5 through 9 of compile unit mycu. The current programming language
setting is C.

AT STATEMENT "mycu":>5 - 9;

• Set breakpoints at lines 19 through 23 and at statements 27 and 31.

AT LINE (19 - 23, 27, 31);

or

AT LINE (27, 31, 19 - 23);

• To set a breakpoint at statement or line 100 that is raised only when the value of myvar is equal to 100,
enter the following command:

AT 100 WHEN myvar=100;

Refer to the following topics for more information related to the material discussed in this topic.

Related references
“every_clause syntax” on page 40
“statement_id_range and stmt_id_spec” on page 16

72 IBM z/OS Debugger: Reference and Messages

“AT OFFSET command (disassembly)” on page 68
“PLAYBACK commands” on page 187
Appendix A, “z/OS Debugger commands supported in Debug Tool compatibility mode,” on page 517

AT STATEMENT command (remote debug mode)
Gives z/OS Debugger control at the specified statement or line.

AT

LINE

STATEMENT

statement_id ;

Usage note

When you enter an AT STATEMENT command, the breakpoint is set relative to the location the program
is stopped, which might not be the program displayed in the source view. For example, your program is
stopped at program SUB1, which was called by program MAIN1, and the source view displays the source
for program SUB1. Then, you click on MAIN1 in the Debug view so that the source view displays the
source for MAIN1. If you enter the command AT STATEMENT 13, a breakpoint is set at statement 13 in
SUB1, not statement 13 in MAIN1.

Refer to the following topics for more information related to the material discussed in this topic.

Related references
“statement_id” on page 16
“AT STATEMENT command” on page 70
Appendix A, “z/OS Debugger commands supported in Debug Tool compatibility mode,” on page 517

AT TERMINATION command
Gives z/OS Debugger control when the application program is terminated.

AT TERMINATION command ;

command
A valid z/OS Debugger command.

Usage notes

• The setting of the current programming language when the application program terminates might be
unpredictable.

• AT TERMINATION does not allow specification of an every_clause because termination can only occur
once.

• If this breakpoint is set in a parent enclave, it can be triggered and operated on with breakpoint
commands while the application is in a child enclave.

• When z/OS Debugger gains control, normal execution of the program is complete; however, a CALL
or function invocation from z/OS Debugger can continue to perform program code. When the AT
TERMINATION breakpoint gives control to z/OS Debugger:

– Fetched load modules have not been released
– Files have not been closed
– Language-specific termination has been started yet no action has been taken

In C, the user atexit() lists have already been called.

In PL/I, the FINISH condition was already raised.
• You are allowed to enter any command with AT TERMINATION. However, normal error messages are

issued for any command that cannot be completed successfully because of lack of information about
your program.

Chapter 5. z/OS Debugger commands 73

• You can enter DISABLE AT TERMINATION; or CLEAR AT TERMINATION; at any time to disable or
clear the breakpoint. It remains disabled or cleared until you reenable or reset it.

• For a CICS application on z/OS Debugger, this breakpoint is cleared at the end of the last process in the
application. For a non-CICS application on z/OS Debugger, it is cleared at the end of a process.

• The AT TERMINATION command cannot be used while you replay recorded statements by using the
PLAYBACK commands.

Examples

• When the program ends, check the z/OS Debugger environment to see what files have not been closed.

AT TERMINATION DESCRIBE ENVIRONMENT;

• When the program ends, display the message "Program has ended" and end the z/OS Debugger session.
The current programming language setting is C.

AT TERMINATION {
 LIST "Program has ended";
 QUIT;
}

Refer to the following topics for more information related to the material discussed in this topic.

Related references
“PLAYBACK commands” on page 187

BEGIN command
BEGIN and END delimit a sequence of one or more commands to form one longer command. The BEGIN
and END keywords cannot be abbreviated.

BEGIN ; command END ;

command
A valid z/OS Debugger command.

Usage notes

• The BEGIN command is most helpful when used in AT or PROCEDURE commands.
• The BEGIN command is helpful when you use it as a programming language neutral command.

For example, if you create a commands file that might be used by an application created with
several different programming languages, the BEGIN command works for all supported programming
languages.

• For Enterprise PL/I, the BEGIN command is helpful when used in IF or ON commands.
• The BEGIN command does not imply a new block or name scope. It is equivalent to a PL/I simple DO.
• You cannot use the BEGIN command while you replay recorded statements by using the PLAYBACK

commands.

Examples

• Set a breakpoint at statement 320 listing the value of variable x and assigning the value of 2 to variable
a.

AT 320 BEGIN;
 LIST (x);
 a = 2;
END;

74 IBM z/OS Debugger: Reference and Messages

• When the PL/I condition FIXEDOVERFLOW is raised (that is, when the length of the result of a fixed-
point arithmetic operation exceeds the maximum length allowed) list the value of variable x and assign
the value of 2 to variable a. The current programming language setting is PL/I.

ON FIXEDOVERFLOW BEGIN; LIST (x); a=2; END;

block command (C and C++)
The block command allows you to group any number of z/OS Debugger commands into one command.
When you enclose z/OS Debugger commands within a single set of braces ({}), everything within the
braces is treated as a single command. You can place a block anywhere a command is allowed.

{

command

} ;

command
A valid z/OS Debugger command.

Usage notes

• Declarations are not allowed within a nested block.
• The C block command does not end with a semicolon. A semicolon after the closing brace is treated as

a Null command.
• You cannot use the block command while you replay recorded statements by using the PLAYBACK

commands.

Example

Establish an entry breakpoint when load module a is fetched.

AT LOAD a {
 AT ENTRY a;
 GO;
}

break command (C and C++)
The break command allows you to terminate and exit a loop (that is, do, for, and while) or switch
command from any point other than the logical end. You can place a break command only in the body
of a looping command or in the body of a switch command. The break keyword must be lowercase and
cannot be abbreviated.

break ;

In a looping statement, the break command ends the loop and moves control to the next command
outside the loop. Within nested statements, the break command ends only the smallest enclosing do,
for, switch, or while commands.

In a switch body, the break command ends the execution of the switch body and gives control to the
next command outside the switch body.

Usage notes

• You cannot use the break command while you replay recorded statements by using the PLAYBACK
commands.

Examples

Chapter 5. z/OS Debugger commands 75

• The following example shows a break command in the action part of a for command. If the i-th
element of the array string is equal to '\0', the break command causes the for command to end.

for (i = 0; i < 5; i++) {
 if (string[i] == '\0')
 break;
 length++;
}

• The following switch command contains several case clauses and one default clause. Each clause
contains a function call and a break command. The break commands prevent control from passing
down through subsequent commands in the switch body.

char key;

key = '-';
AT LINE 15 switch (key)
{
 case '+':
 add();
 break;
 case '-':
 subtract();
 break;
 default:
 printf("Invalid key\n");
 break;
}

CALL command
The CALL command calls either a procedure, entry name, or program name, or it requests that a utility
function be run. The C and C++ equivalent for CALL is a function reference. PL/I subroutines or functions
cannot be called dynamically during a z/OS Debugger session. The CALL keyword cannot be abbreviated.

In C++, calls can be made to any user function provided that the function is declared with the following
syntax:

extern "C"

In COBOL, the CALL command cannot be issued when z/OS Debugger is at initialization.

The following table summarizes the forms of the CALL command.

Command Description

“CALL %CEBR command” on page
77

Starts the CICS Temporary Storage Browser Program.

“CALL %CECI command” on page
77

Starts the CICS Command Level Interpreter Program.

“CALL %DUMP command” on page
77

Calls a dump service to obtain a formatted dump.

“CALL %FA command” on page 82 Calls IBM Fault Analyzer to provide a formatted dump of the
current machine state.

“CALL %HOGAN command” on page
82

Starts Computer Sciences Corporation's KORE-HOGAN
application.

“CALL %VER command” on page
83

Adds a line to the log describing the maintenance level of
z/OS Debugger that you have installed on your system.

“CALL entry_name command
(COBOL)” on page 83

Calls an entry name in the application program (COBOL).

76 IBM z/OS Debugger: Reference and Messages

Command Description

“CALL procedure command” on
page 84

Calls a procedure that has been defined with the PROCEDURE
command.

CALL %CEBR command
Starts the CICS Temporary Storage Browser Program.

CALL %CEBR ;

Usage notes

• z/OS Debugger performs an EXEC CICS LINK to the CICS browser program. When CEBR processing is
complete, control is returned to z/OS Debugger through an EXEC CICS return.

• You can use this command only when you debug CICS programs in single-terminal mode in full-screen
mode.

Refer to the following topics for more information related to the material discussed in this topic.

Related references
CICS Supplied Transactions
CICS Application Programming Guide

CALL %CECI command
Starts the CICS Command Level Interpreter Program.

CALL %CECI ;

Usage notes

• z/OS Debugger performs an EXEC CICS LINK to the CICS command level interpreter program. When
CECI processing is complete, control is returned to z/OS Debugger through an EXEC CICS return.

• You can use this command only when you debug CICS programs in single-terminal mode in full-screen
mode.

Refer to the following topics for more information related to the material discussed in this topic.

Related references
CICS Supplied Transactions
CICS Application Programming Guide

CALL %DUMP command
Calls a dump service to obtain a formatted dump.

CALL %DUMP

(options_string

, title

)

;

title
Specifies the identification printed at the top of each page of the dump. It must be a fixed-length
character string. It must conform to the syntax rules for a character string constant enclosed in
quotation marks (") or apostrophes (') for the current programming language. The string length cannot
exceed 80 bytes.

options_string
A fixed-length character string that specifies the type, format, and destination of dump information.
The string must conform to the syntax rules for a character string constant enclosed in quotation

Chapter 5. z/OS Debugger commands 77

marks (") or apostrophes (') for the current programming language. The string length cannot exceed
247 bytes.

Options are declared as a string of keywords separated by blanks or commas. Some options have
suboptions that follow the option keyword and are contained in parentheses. The options can be
specified in any order, but the last option declaration is honored if there is a conflict between it and
any preceding options.

The options_string can include the following:

THREAD(ALL|CURRENT)
Dumps the current thread or all threads associated with the current enclave. The default is to
dump only the current thread. Only one thread is supported. For enclaves that consist of a single
thread, THREAD(ALL) and THREAD(CURRENT) are equivalent.

THREAD can be abbreviated as THR.

CURRENT can be abbreviated as CUR.

CICS: This option is not supported when you are running under CICS without Language
Environment, where z/OS Debugger issues an EXEC CICS DUMP TRANSACTION.

TRACEBACK
Requests a traceback of active procedures, blocks, condition handlers, and library modules on the
call chain. The traceback shows transfers of control from either calls or exceptions. The traceback
extends backward to the main program of the current thread.

TRACEBACK can be abbreviated as TRACE.

NOTRACEBACK
Suppresses traceback.

NOTRACEBACK can be abbreviated as NOTRACE.

FILES
Requests a complete set of attributes of all files that are open and the contents of the buffers used
by the files.

FILES can be abbreviated as FILE.

NOFILES
Suppresses file attributes of files that are open.

NOFILES can be abbreviated as NOFILE.

VARIABLES
Requests a symbolic dump of all variables, arguments, and registers.

Variables include arrays and structures. Register values are those saved in the stack frame at the
time of call. There is no way to print a subset of this information.

Variables and arguments are printed only if the symbol tables are available. A symbol table is
generated if a program is compiled using the compile options shown below for each language:

Language Compiler option

C TEST(SYM)

C++ TEST

COBOL TEST or TEST(h,SYM)

PL/I TEST(,SYM)

The variables, arguments, and registers are dumped starting with z/OS Debugger. The dump
proceeds up the chain for the number of routines specified by the STACKFRAME option.

VARIABLES can be abbreviated as VAR.

78 IBM z/OS Debugger: Reference and Messages

NOVARIABLES
Suppresses dump of variables, arguments, and registers.

NOVARIABLES can be abbreviated as NOVAR.

BLOCKS
Produces a separate hexadecimal dump of control blocks.

Global control blocks and control blocks associated with routines on the call chain are printed.
Control blocks are printed for z/OS Debugger. The dump proceeds up the call chain for the number
of routines specified by the STACKFRAME option.

If FILES is specified, this is used to produce a separate hexadecimal dump of control blocks used
in the file analysis.

BLOCKS can be abbreviated as BLOCK.

CICS: This option is not supported when you are running under CICS without Language
Environment, where z/OS Debugger issues an EXEC CICS DUMP TRANSACTION.

NOBLOCKS
Suppresses the hexadecimal dump of control blocks.

NOBLOCKS can be abbreviated as NOBLOCK.

STORAGE
Dumps the storage used by the program.

The storage is displayed in hexadecimal and character format. Global storage and storage
associated with each routine on the call chain is printed. Storage is dumped for z/OS Debugger.
The dump proceeds up the call chain for the number of routines specified by the STACKFRAME
option. Storage for all file buffers is also dumped if the FILES option is specified. When the
Dynamic Debug facility is activated, some of the original application instructions are not displayed
because they are replaced by '0A91'x instructions.

STORAGE can be abbreviated as STOR.

NOSTORAGE
Suppresses storage dumps.

NOSTORAGE can be abbreviated as NOSTOR.

STACKFRAME(n|ALL)
Specifies the number of stack frames dumped from the call chain.

If STACKFRAME(ALL) is specified, all stack frames are dumped. No stack frame storage is
dumped if STACKFRAME(0) is specified.

The particular information dumped for each stack frame depends on the VARIABLE, BLOCK, and
STORAGE option declarations specified. The first stack frame dumped is the one associated with
z/OS Debugger, followed by its caller, and proceeding backward up the call chain.

STACKFRAME can be abbreviated to SF.

PAGESIZE(n)
Specifies the number of lines on each page of the dump.

This value must be greater than 9. A value of zero (0) indicates that there should be no page
breaks in the dump.

PAGESIZE can be abbreviated to PAGE.

FNAME(s)
Specifies the ddname of the file where the dump report is written.

The default ddname CEEDUMP is used if this option is not specified.

Chapter 5. z/OS Debugger commands 79

CONDITION
Specifies that for each condition active on the call chain, the following information is dumped from
the Condition Information Block (CIB):

• The address of the CIB
• The message associated with the current condition token
• The message associated with the original condition token, if different from the current one
• The location of the error
• The machine state at the time the condition manager was started
• The ABEND code and REASON code, if the condition occurred because of an ABEND.

The particular information that is dumped depends on the condition that caused the condition
manager to be started. The machine state is included only if a hardware condition or ABEND
occurred. The ABEND and REASON codes are included only if an ABEND occurred.

CONDITION can be abbreviated as COND.

NOCONDITION
Suppresses dump condition information for active conditions on the call chain.

NOCONDITION can be abbreviated as NOCOND.

ENTRY
Includes in the dump a description of the z/OS Debugger routine that called the dump service
and the contents of the registers at the point of the call. For the currently supported programming
languages, ENTRY is extraneous and will be ignored.

CICS: This option is not supported when you are running under CICS without Language
Environment, where z/OS Debugger issues an EXEC CICS DUMP TRANSACTION.

NOENTRY
Suppresses the description of the z/OS Debugger routine that called the dump service and the
contents of the registers at the point of the call.

CICS: This option is not supported when you are running under CICS without Language
Environment, where z/OS Debugger issues an EXEC CICS DUMP TRANSACTION.

The defaults for the preceding options are:

CONDITION
FILES
FNAME(CEEDUMP)
NOBLOCKS
NOENTRY
NOSTORAGE
PAGESIZE(60)
STACKFRAME(ALL)
THREAD(CURRENT)
TRACEBACK
VARIABLES

Usage notes

• If incorrect options are used, a default dump is written.
• The service used to format the dump is determined by the following conditions:

Language Environment is active
Language Environment dump service: z/OS Debugger does not analyze any of the CALL %DUMP
options, but just passes them to the Language Environment dump service. Some of these options
might not be appropriate, because the call is being made from z/OS Debugger rather than from your
program.

80 IBM z/OS Debugger: Reference and Messages

Language Environment not active and you are running under CICS
The command: EXEC CICS DUMP TRANSACTION DUMPCODE('DT') COMPLETE

Language Environment not active and you are not running under CICS
The MVS SNAP dump service

• When you use CALL %DUMP, one of the following DD names must be allocated for you to receive a
formatted dump:

– CEEDUMP (default)
– SYSPRINT.

Control might not be returned to z/OS Debugger after the dump is produced, depending on the option
string specified.

CICS: You do not need this allocation when you are running without Language Environment under CICS.
Under those conditions, EXEC CICS DUMP TRANSACTION is issued, and a transaction dump with a
code of DT is written to the CICS dump data set.

• COBOL does not do anything if the FILES option is specified; the BLOCKS option gives the file
information instead.

• Using a small n (like 1 or 2) with the STACKFRAME option will not produce useful results because only
the z/OS Debugger stack frames appear in your dump. Larger values of n or ALL should be used to
ensure that application stack frames are shown.

• When you use the CALL %DUMP command and the Language Environment run time is not active, the
MVS SNAP macro or the EXEC CICS DUMP command is used to generate the dump. When you are not
running under CICS, the following restrictions apply:

– The specified or default ddname must be allocated to a data set with these attributes: RECFM=VBA,
LRECL=125, and BLKSIZE=1632

– The previously described options are mapped into SNAP options as shown in the following table:

Table 5. %DUMP options mapping to SNAP options

%DUMP option SNAP option

THREAD ignored

TRACEBACK SDATA=(PCDATA),PDATA=(SA,SAH)

FILES SDATA=(DM,IO)

VARIABLES SDATA=(CB)

BLOCKS SDATA=(SQA,LSAQ,SWA)

STORAGE PDATA=(LPA,JPA,SPLS)

STACKFRAME ignored

PAGESIZE ignored

FNAME ddname for dump

CONDITION SDATA=(Q,TRT,ERR)

ENTRY PDATA=(SUBTASKS)

• The CALL %DUMP command cannot be used while you replay recorded statements by using the
PLAYBACK commands.

Examples

• Request a formatted dump that traces active procedures, blocks, condition handlers, and library
modules. Identify the dump as "Dump after read".

CALL %DUMP ("TRACEBACK", "Dump after read");

Chapter 5. z/OS Debugger commands 81

• Call the dump service to obtain a formatted dump including traceback information, file attributes, and
buffers.

CALL %DUMP ("TRACEBACK FILES");

Refer to the following topics for more information related to the material discussed in this topic.

Related references
“PLAYBACK commands” on page 187
z/OS Language Environment Programming Guide
z/OS Language Environment Debugging Guide

CALL %FA command
Starts and instructs IBM Fault Analyzer to provide a formatted dump of the current machine state.

CALL %FA ;

Usage notes

• If you are replaying recorded statements by using the PLAYBACK commands, CALL %FA provides a
formatted dump of the machine state when you entered PLAYBACK START.

• You can use this command in remote debug mode.
• This command does not support 64-bit programs.

Refer to the following topics for more information related to the material discussed in this topic.

• Appendix A, “z/OS Debugger commands supported in Debug Tool compatibility mode,” on page 517

CALL %FM command
Starts IBM File Manager for z/OS.

CALL %FM

userID BACKGROUND

;

userID
The ID of an MVS user. If you do not specify a userID, then File Manager takes one of the following
options:

• If you sign on using CESN and File Manager has been installed with either *DEFAULT=SIGNON or
*PASSWORD=REMEMBER, then userID is assigned the user ID used to sign on.

• If you have not signed on, then File Manager prompts you for a user ID before it displays the logon
panel.

BACKGROUND
Specifies that all non-terminal processing be routed to a background task.

Usage notes

• You can use this command only when you debug CICS programs.
• You need to have IBM File Manager for z/OS V9R1 installed in the CICS region.

CALL %HOGAN command
Starts Computer Sciences Corporation's KORE-HOGAN application, also known as SMART (System
Memory Access Retrieval Tool).

CALL %HOGAN ;

82 IBM z/OS Debugger: Reference and Messages

Usage notes

• You can use this command only when you debug CICS programs in single-terminal mode in full-screen
mode.

• If you do not have the KORE-HOGAN application, do not use this command. If you do use this
command, a Program not loadable error occurs, which raises an AEIO exception.

CALL %VER command
Adds a line to the log describing the maintenance level of z/OS Debugger that you have installed on your
system.

CALL %VER ;

Usage note

You can use this command in remote debug mode.

Example

You have z/OS Debugger, Version 14.2, installed on your system. Enter the CALL %VER command to
display the following information in the Log window:

IBM z/OS Debugger 15.0.n
07/22/2020 09:33:00 AM Level: 15.0.n PHnnnnn
5724-T07: Copyright IBM Corp. 1992, 2020

The time stamp that is shown is the product build date and time.

Refer to the following topics for more information related to the material discussed in this topic.

• Appendix A, “z/OS Debugger commands supported in Debug Tool compatibility mode,” on page 517

CALL entry_name command (COBOL)
Calls an entry name in the application program. The entry name must be a valid external entry point name
(that is, callable from other compile units).

CALL identifier

literal

USING identifier_clause

;

identifier_clause

BY

REFERENCE ADDRESS OF

identifier

BY

CONTENT

ADDRESS OF

LENGTH OF

identifier

literal

identifier
A valid z/OS Debugger COBOL identifier.

Chapter 5. z/OS Debugger commands 83

literal
A valid COBOL literal.

Usage notes

• If you have a COBOL entry point name that is the same as a z/OS Debugger procedure name, the
procedure name takes precedence when using the CALL command. If you want the entry name to take
precedence over the z/OS Debugger procedure name, you must qualify the entry name when using the
CALL command.

• You can use the CALL entry_name command to change program flow dynamically. You can pass
parameters to the called module.

• The CALL follows the same rules as calls within the COBOL language.
• The COBOL ON OVERFLOW and ON EXCEPTION phrases are not supported, so END-CALL is not

supported.
• Only calls to separately compiled programs are supported; nested programs are not callable by this

z/OS Debugger command (they can of course be started by GOTO or STEP to a compiled-in CALL).
• All calls are dynamic, that is, the called program (whether specified as a literal or as an identifier) is

loaded when it is called.
• See Enterprise COBOL for z/OS Language Reference for an explanation of the following COBOL keywords:
ADDRESS, BY, CONTENT, LENGTH, OF, REFERENCE, USING.

• An entry_name cannot refer to a method.
• A windowed date field cannot be specified as the identifier containing the entry name.
• The CALL entry_name command cannot be used while you replay recorded statements by using the
PLAYBACK commands by using the PLAYBACK command.

Example

Call the entry name sub1 passing the variables a, b, and c.

CALL "sub1" USING a b c;

Refer to the following topics for more information related to the material discussed in this topic.

Related references
“PLAYBACK commands” on page 187
Enterprise COBOL for z/OS Language Reference

CALL procedure command
Calls a procedure that has been defined with the PROCEDURE command.

CALL procedure_name ;

procedure_name
The name given to a sequence of z/OS Debugger commands delimited by a PROCEDURE command and
a corresponding END command.

Usage notes

• Because the z/OS Debugger procedure names are always uppercase, the procedure name is converted
to uppercase even for programming languages that have mixed-case symbols.

• The CALL keyword is required even for programming languages that do not use CALL for subroutine
invocations.

• The CALL command is restricted to calling procedures in the currently executing enclave.

Example

84 IBM z/OS Debugger: Reference and Messages

Create and call the procedure named proc1.

proc1: PROCEDURE;
 LIST (r, c);
END;
AT 54 CALL proc1;

CC command
Controls whether code coverage data is collected.

CC START

STOP

;

Usage notes

• The CC START command collects data for the following compile unit or programs:

– The currently qualified z/OS Debugger compile unit from the point in the program where the
command is entered.

– Programs that are run after the CC START command is issued and that are selected by a user-
specified action. This action can be stepping into a compile unit, setting a breakpoint in a compile
unit, or defining a compile unit in the DTCN or CADP profile.

• CC STOP deletes all code coverage data.
• To view the code coverage information generated by CC START, issue LIST CC before entering CC
STOP.

• The collection of code coverage data can add a substantial amount of overhead. Therefore, it is a good
practice to issue the CC START command only when you want to gather this data. Do not routinely issue
the CC START command in debug sessions in which you do not want to gather this data.

Examples

• Specify that code coverage data be collected.

CC START;

• List the code coverage data.

LIST CC;

• Specify that code coverage stop and the data be deleted.

CC STOP;

Related references
“LIST CC command” on page 145

CHKSTGV command
Checks whether the CICS storage check zone of a user-storage element has been overlaid.

CHKSTGV ;

Usage notes

• This command applies only to CICS applications.
• You can use this command in remote debug mode.
• Do not use this command to replace the practices described in CICS Problem Determination Guide in the

section Dealing with storage violations.

Chapter 5. z/OS Debugger commands 85

Refer to the following topics for more information related to the material discussed in this topic.

Related references
CICS Problem Determination Guide
Appendix A, “z/OS Debugger commands supported in Debug Tool compatibility mode,” on page 517

Related tasks
"Detecting CICS storage violations early" in the IBM z/OS Debugger User's Guide

CLEAR command
The CLEAR command removes the actions of previously entered z/OS Debugger commands. Some
breakpoints are removed automatically when z/OS Debugger determines that they are no longer
meaningful. For example, if you set a breakpoint in a fetched or loaded compile unit, the breakpoint
is discarded when the compile unit is released.

86 IBM z/OS Debugger: Reference and Messages

CLEAR AT

AT_command

generic_AT_command

DECLARE

identifier

(

,

identifier)

EQUATE

identifier

(

,

identifier)

LDD *

number

(

,

number)

ldd_number_range

LOAD module_name

(

,

module_name)

LOG

MEMORY

MONITOR

number

(

,

number)

monitor_number_range

CURSOR

ON

pli_condition

(

,

pli_condition)

PROCEDURE

procedure_name

(

,

procedure_name)

VARIABLES

identifier

(

,

identifier)

;

AT
Removes all breakpoints, including GLOBAL breakpoints, set by previously entered AT commands,
except for AT TERMINATION and suspended breakpoints.

Chapter 5. z/OS Debugger commands 87

AT_command
A valid AT command that includes at least one operand. The AT command must be complete
except that the every_clause and command are omitted.

generic_AT_command
A valid AT command without operands. It can be one of the following: ALLOCATE, APPEARANCE,
CALL, CHANGE, CURSOR, DATE, DELETE, ENTRY, EXIT, LABEL, LOAD, OFFSET, OCCURRENCE,
PATH, STATEMENT (the LINE keyword can be used in place of STATEMENTS), or TERMINATION.

DECLARE
Removes previously defined variables and tags. If no identifier follows DECLARE, all session variables
and tags are cleared. DECLARE is equivalent to VARIABLES.
identifier

The name of a session variable or tag declared during the z/OS Debugger session. This operand
must follow the rules for the current programming language.

EQUATE
Removes previously defined symbolic references. If no identifier follows EQUATE, all existing SET
EQUATE synonyms are cleared.
identifier

The name of a previously defined reference synonym declared during the z/OS Debugger session
using SET EQUATE. This operand must follow the rules for the current programming language.

LDD
Removes one or more LOADDEBUGDATA (LDD) commands known to z/OS Debugger. The LDD
command's sub-parameter must be one of those listed in the output of the LIST LDD command. It
is recommended that you enter the LIST LDD command before each CLEAR LDD command because
the LDD entry numbers are affected by previous CLEAR LDD commands. This command has the
following sub-parameters:
*

Removes all LDD commands known to z/OS Debugger across all enclaves.
number

A positive integer that refers to the output of the LIST LDD command. If a list of integers is
specified, all commands that are represented by the specified list are cleared.

ldd_number_range
Identifies the first and last number as seen in the LIST LDD command's output, separated by
a hyphen (-), that you want to clear. When the current programming language setting is COBOL,
blanks are required around the hyphen (-). Blanks are optional for other programming languages.
However, in remote debug mode, blanks are required around the hyphen (-) for all programming
languages.

Usage note

You can use the CLEAR LDD command in remote debug mode.

LOAD
Removes the load module. This command has the following sub-parameter:
module_name

The name of one or more load modules that were loaded by z/OS Debugger using the LOAD
command.

LOG
Erases the log file and clears out the data being retained for scrolling. In line mode, CLEAR LOG clears
only the log file.

If the log file is directed to a SYSOUT type file, CLEAR LOG will not clear the log contents in the file.

MEMORY
Clears the Memory window including the memory currently being displayed, the base address, and
the history area.

88 IBM z/OS Debugger: Reference and Messages

MONITOR
Clears the commands defined for MONITOR. If no number follows MONITOR, the entire list of
commands affecting the monitor window is cleared; the monitor window is empty.
number

A positive integer that refers to a monitored command. If a list of integers is specified, all
commands represented by the specified list are cleared.

monitor_number_range
Identifies the first and last monitor number in a range of monitors, separated by a hyphen (-),
that you want to delete. When the current programming language setting is COBOL, blanks are
required around the hyphen (-). Blanks are optional for other programming languages.

CURSOR
Indicates that you want to delete the variable identified by the cursor’s current location. The
cursor can be placed only in the Monitor window.

ON (PL/I)
Removes the effect of an earlier ON command. If no pli_condition follows ON, all existing ON
commands are cleared.
pli_condition

Identifies an exception condition for which there is an ON command defined.
PROCEDURE

Clears previously defined z/OS Debugger procedures. If no procedure_name follows PROCEDURE, all
inactive procedures are cleared.
procedure_name

The name given to a sequence of z/OS Debugger commands delimited by a PROCEDURE command
and a corresponding END command. The procedure must be currently in storage and not active.

VARIABLES
Removes previously defined variables and tags. If no identifier follows VARIABLES, all session
variables and tags are cleared. VARIABLES is equivalent to DECLARE.
identifier

The name of a session variable or tag declared during the z/OS Debugger session. This operand
must follow the rules for the current programming language.

Usage notes

• You can use the CLEAR AT command to clear either active or suspended breakpoints. However, you
cannot use it to clear suspended label breakpoints.

• If you want to clear a suspended breakpoint, you must specify both the load module and CU name.
• You can use the CLEAR LOAD command in remote debug mode.
• In some environments, a loaded module cannot be removed from storage. In this case the command

fails and the load module remains in storage.
• You can enter CL in the prefix area of the monitor window to clear the selected line in the Monitor

window. You can enter CC prefix commands to clear a selected block of lines from the Monitor window.
• You can use the CLEAR MONITOR n command to clear an automonitor entry in the Monitor window.
• Only an AT LINE or AT STATEMENT breakpoint can be cleared with a CLEAR AT CURSOR command.
• To clear every single breakpoint in the z/OS Debugger session, issue CLEAR AT followed by CLEAR AT
TERMINATION.

• To clear a global breakpoint, you can specify an asterisk (*) with the CLEAR AT command or you can
specify a CLEAR AT GLOBAL command.

If you have only a global breakpoint set and you specify CLEAR AT ENTRY without the asterisk (*) or
GLOBAL keyword, you get a message saying there are no such breakpoints.

• The CLEAR AT, CLEAR DECLARE, CLEAR LDD, CLEAR ON, and CLEAR VARIABLES commands cannot
be used while you replay recorded statements by using the PLAYBACK commands.

Chapter 5. z/OS Debugger commands 89

• To use the cursor to indicate which variable in the Monitor window to remove, do one of the following
methods:

– Assign the CLEAR MONITOR CURSOR to a PF key. Move the cursor to a variable in the Monitor
window and press the PF key. This method is more convenient.

– Type the CLEAR MONITOR command on the command line, then move the cursor to a variable in the
Monitor window. Press Enter.

• Based on the application flow and structure, the CLEAR LDD command might not take effect until the
next z/OS Debugger session is started.

• The CLEAR LDD * command removes all LDD commands known to z/OS Debugger across all enclaves.
• Because the SAVEBPS data set is updated during each enclave exit, if at any time the CLEAR LDD

command is issued afterwards, the LDD commands will have already been saved in the SAVEBPS data
set and thus will be restored during the next debug session.

• The SET EXPLICITDEBUG ON command takes precedence over the CLEAR LDD command. As a
result, even though the CLEAR LDD command is processed, it will not undo the already processed LDD
command.

Examples

• Remove the LABEL breakpoint set in the program at label create.

CLEAR AT LABEL create;

• Remove previously defined variables x, y, and z.

CLEAR DECLARE (x, y, z);

• Remove the effect of the ninth command defined for MONITOR.

CLEAR MONITOR 9;

• Remove the structure type definition tagone (assuming all variables declared interactively using the
structure tag have been cleared). The current programming language setting is C.

CLEAR VARIABLES struct tagone;

• Establish some breakpoints with the AT command and then remove them with the CLEAR command
(checking the results with the LIST command).

AT 50;
AT 56;
AT 55 LIST (r, c);
LIST AT;
CLEAR AT 50;
LIST AT;
CLEAR AT;
LIST AT;

• If you want to clear an AT ENTRY * breakpoint, specify:

CLEAR AT ENTRY *;
or
CLEAR AT GLOBAL ENTRY;

• If you want to remove the DATE breakpoint for block MYBLOCK, specify:

CLEAR AT DATE MYBLOCK;

• If you want to remove a generic DATE breakpoint, specify:

CLEAR AT DATE *;

• The following examples show how to display the LDD commands known to z/OS Debugger and how to
use the CLEAR LDD command:

90 IBM z/OS Debugger: Reference and Messages

– To display the LDD commands known to z/OS Debugger, specify:

LIST LDD;

Suppose that you get the following output:

1. LDD TBND003::>TBND003A;
2. LDD MYPROG;
3. LDD MYPROG3;
4. LDD PROG4::>PROG5;

To remove all the LDD commands, specify:

CLEAR LDD *;

If you then enter the following command:

LIST LDD;

You will get the following result:

There are no LDD commands established.

– To display the LDD commands known to z/OS Debugger, specify:

LIST LDD;

Suppose that you get the following output:

1. LDD 1A::>1AB;
2. LDD PGM1C;

To remove the LDD 1A::>1AB command, specify:

CLEAR LDD 1;

– To display the LDD commands known to z/OS Debugger, specify:

LIST LDD;

Suppose that you get the following output:

1. LDD TBND005::>TBND005A;
2. LDD MYPROG;
3. LDD MYPROG5;
4. LDD PROG5::>PROG5Y;

If you then enter the CLEAR LDD 5 command, you will get the following output:

No LDD command was established for LDD 5.

– To display the LDD commands known to z/OS Debugger, specify:

LIST LDD;

Suppose that you get the following output:

1. LDD TBND003::>TBND003A;
2. LDD MYPROG;
3. LDD MYPROG3;
4. LDD PROG3::>PROG3C;

If you then enter the CLEAR LDD (1,4) command, you will get the following output:

Removes LDD TBND003::>TBND003A and LDD PROG3::>PROG3C

Chapter 5. z/OS Debugger commands 91

– To display the LDD commands known to z/OS Debugger, specify:

LIST LDD;

Suppose that you get the following output:

1. LDD TBND003::>TBND003A;
2. LDD MYPROG;
3. LDD MYPROG3;
4. LDD PROG6::>PROG6F;

If you then enter the CLEAR LDD 4 – 5 command (for COBOL or all languages in remote debug
mode), you will get the following output:

No LDD command was established for LDD 5.

However, z/OS Debugger removes the LDD PROG6::>PROG6F command.

Refer to the following topics for more information related to the material discussed in this topic.

Related references
“CLEAR prefix (full-screen mode)” on page 92
“AT command” on page 37
“LIST command” on page 140
“PLAYBACK commands” on page 187
“Prefix commands (full-screen mode)” on page 192
Appendix A, “z/OS Debugger commands supported in Debug Tool compatibility mode,” on page 517

CLEAR prefix (full-screen mode)
Clears a breakpoint when you enter this command through the Source window prefix area or clears a
selected member of the current set of MONITOR commands when you enter this command through the
Monitor window prefix area.

CLEAR

integer

;

integer
Selects a relative statement (for C and PL/I) or a relative verb (for COBOL) within the line to remove
the breakpoint if there are multiple statements on that line. The default value is 1. For optimized
COBOL programs, the first relative statements is the first executable statement, which was not
discarded by the optimizer.

Usage notes

• The CLEAR prefix command cannot be used while you replay recorded statements by using the
PLAYBACK commands.

• Use CL in the Monitor window prefix area to clear a member of Monitor window.
• Use CC in the Monitor window prefix area to clear a selected block of lines from the Monitor window.

Examples

• In the Source window, clear a breakpoint at the third statement or verb in the line (typed in the prefix
area of the line where the statement is found).

CLEAR 3

No space is needed as a delimiter between the keyword and the integer; hence, CLEAR 3 is equivalent
to CLEAR3.

• In the Monitor window, type CL in the prefix area to on the line that displays the entry you want to
remove, then press Enter.

92 IBM z/OS Debugger: Reference and Messages

CLEAR AT command (remote debug mode)
You can use the CLEAR AT command to remove actions that were completed by using the AT GLOBAL
LABEL or the AT LABEL commands.

CLEAR AT GLOBAL LABEL

LABEL

statement_label

*

;

Usage note

To clear a global breakpoint, specify an asterisk (*) with the CLEAR AT LABEL command, or specify a
CLEAR AT GLOBAL LABEL command.

COMMENT command
The COMMENT command can be used to insert commentary in to the session log. The COMMENT keyword
cannot be abbreviated.

COMMENT

commentary

;

commentary
Commentary text not including a semicolon. An embedded semicolon is not allowed; text after a
semicolon is treated as another z/OS Debugger command. DBCS characters can be used within the
commentary.

Usage notes

• You can use the COMMENT command in remote debug mode by entering it in the Debug Console or the
Action field, which is in the Optional Parameters section of the Add a Breakpoint task.

Examples

• Comment that varblxx seems to have the wrong value.

COMMENT At this point varblxx seems to have the wrong value;

• Combine a commentary with valid z/OS Debugger commands.

COMMENT Entering subroutine testrun; LIST (x); GO;

The COMMENT command can be used as an executable command, but it is treated as a Null command
and no output is produced. For example, there will be no output of the COMMENT command in the
following cases:

• When it is specified as a command to be executed as an action of another command. For example:

AT 10 COMMENT xxx;

• When it is used inside of any command that allows one to specify a sequence of commands such as
DO/END, BEGIN/END, or PERFORM/END-PERFORM.

• When it is used inside of a PROCEDURE command.

To get output in these cases, use the LIST command instead of the COMMENT command. For example:

AT 10 LIST 'xxx';

Chapter 5. z/OS Debugger commands 93

COMPUTE command (COBOL)
The COMPUTE command assigns the value of an arithmetic expression to a specified reference. The
COMPUTE keyword cannot be abbreviated.

COMPUTE reference = expression ;

reference
A valid z/OS Debugger COBOL numeric reference.

expression
A valid z/OS Debugger COBOL numeric expression.

Usage notes

• If you are debugging an optimized COBOL program, you can use the COMPUTE command to assign a
value to a program variable only if you first enter the SET WARNING OFF command.

• If you are debugging an optimized COBOL program and you specify an expression, you can reference
program variables that were not discarded by the optimizer.

• If z/OS Debugger was started because of a computational condition or an attention interrupt, using an
assignment to set a variable might not give expected results. This is due to the uncertainty of variable
values within statements as opposed to their values at statement boundaries.

• COMPUTE assigns a value only to a single receiver; unlike COBOL, multiple receiver variables are not
supported.

• The COBOL EQUAL keyword is not supported ("=" must be used).
• The COBOL ROUNDED and SIZE ERROR phrases are not supported, so END-COMPUTE is not supported.
• COMPUTE cannot be used to perform a computation with a windowed date field if the expression

consists of more than one operand.
• Any expanded date field specified as an operand in the expression is treated as a nondate field.
• The result of the evaluation of the expression is always considered to be a nondate field.
• If the expression consists of a single numeric operand, the COMPUTE will be treated as a MOVE and

therefore subject to the same rules as the MOVE command.
• If the DATA parameter of the PLAYBACK ENABLE command is in effect for the current compile unit,

the COMPUTE command can be used while you replay recorded statements by using the PLAYBACK
commands. The target of the COMPUTE command must be a session variable.

• The value assigned to a variable is always assigned to the storage for that variable. In an optimized
program, a variable can be temporarily assigned to a register, and a new value assigned to that variable
does not necessarily alter the value used by the program.

Examples

• Assign to variable x the value of a + 6.

COMPUTE x = a + 6;

• Assign to the variable mycode the value of the z/OS Debugger variable %PATHCODE + 1.

COMPUTE mycode = %PATHCODE + 1;

• Assign to variable xx the result of the expression (a + e(1)) / c * 2.

COMPUTE xx = (a + e(1)) / c * 2;

You can also use table elements in such assignments as shown in the following example.

COMPUTE itm-2(1,2) = (a + 10) / e(2);

Refer to the following topics for more information related to the material discussed in this topic.

94 IBM z/OS Debugger: Reference and Messages

Related references
“MOVE command (COBOL)” on page 175
“PLAYBACK commands” on page 187
“SET WARNING command (C, C++, COBOL, and PL/I)” on page 263

CURSOR command (full-screen mode)
The CURSOR command moves the cursor between the last saved position on the z/OS Debugger session
panel (excluding the header fields) and the command line.

CURSOR ;

Usage notes

• The cursor position can be saved by typing the CURSOR command on the command line and moving the
cursor before pressing Enter, or by moving the cursor and pressing a PF key with the CURSOR command
assigned to it.

• If the CURSOR command precedes any command on the command line, the cursor is moved before the
other command is performed. This behavior can be useful in saving cursor movement for commands
that are performed repeatedly in one of the windows.

• The CURSOR command is not logged.

Example

Move the cursor between the last saved position on the z/OS Debugger session panel and the command
line.

CURSOR;

Declarations (assembler, disassembly, and LangX COBOL)
Use declarations to declare session variables that are effective during a z/OS Debugger session. Session
variables remain in effect for the entire debug session, or process in which they were declared. Variables
declared with declarations can be used in other z/OS Debugger commands as if they were declared to
the compiler. Declared variables are removed when your z/OS Debugger session ends or when the CLEAR
command is used to remove them.

Chapter 5. z/OS Debugger commands 95

identifier DS F

FL n

X

XL n

C

CL n

H

HL n

A

AL n

B

BL n

P

PL n

Z

ZL n

E

D

L

identifier
A valid assembler identifier.

F, FLn, X, XLn, C, CLn, H, HLn, A, ALn, B, BLn, P, PLn, Z, ZLn, E, D, L
Type codes that correspond to the types used in the assembler DC instruction. See the High Level
Assembler for MVS & VM & VSE: Language Reference for details about the meaning of these type
codes.

Usage note

The range of valid n values depends on the type specifier as follows:

• C and X: 1 to 65525
• F, H, and A: 1 to 4
• B: 1 to 256
• P and Z: 1 to 16

Declarations (C and C++)
Use declarations to declare session variables and tags that are effective during a z/OS Debugger
session. Session variables remain in effect for the entire debug session, or process in which they
were declared. Variables and tags declared with declarations can be used in other z/OS Debugger
commands as if they were declared to the compiler. Declared variables and tags are removed when your
z/OS Debugger session ends or when the CLEAR command is used to remove them. The keywords must
be the correct case and cannot be abbreviated.

You can also declare enum, struct, and union data types. The syntax is identical to C except that enum
members can only be initialized to an optionally signed integer constant.

96 IBM z/OS Debugger: Reference and Messages

scalar_def

,

declarator

enum_def

struct_def

union_def

,

declarator

;

scalar_def
char

signed

unsigned

double

long

float

int

signed

unsigned

long

short

long

signed

unsigned

int

double

short

signed

unsigned

int

signed

long

short

int

char

unsigned

long

short

int

char

void *

declarator

*

identifier

(identifier)

identifier [integer]

enum_def

Chapter 5. z/OS Debugger commands 97

enum

identifier

{

,

identifier

= constant_expr

}

struct_def

_Packed

struct

identifier

,

identifier

{

;

enum_def

scalar_def

struct_def

union_def

}

union_def

_Packed

union

identifier

,

identifier

{

;

enum_def

scalar_def

struct_def

union_def

}

*
A C indirect operator.

identifier
A valid C identifier.

integer
A valid C array bound integer constant.

constant_expr
A valid C integer constant.

Usage notes

• As in C and C++, the keywords can be specified in any order. For example, unsigned long int is equivalent
to int unsigned long. Some permutations are shown in the syntax diagram to make sure that every
keyword is shown at least once in the initial position.

• As in C and C++, the identifiers are case-sensitive; that is, "X" and "x" are different names.
• A structure definition must have either an identifier, a declarator, or both specified.
• Initialization is not supported.
• A declaration cannot be used in a command list; for example, as the subject of an if command or case

clause.
• Declarations of the form struct tag identifier must have the tag previously declared

interactively.

98 IBM z/OS Debugger: Reference and Messages

• See the C and C++ Language References for an explanation of the following keywords:

 char short
 double signed
 enum struct
 float union
 int unsigned
 long void
 _Packed(1)

(1) _Packed is not supported in C++.

• You cannot use the declarations command while you replay recorded statements by using the
PLAYBACK commands by using the PLAYBACK command.

Examples

• Define two C integers.

int myvar, hisvar;

• Define an enumeration variable status that represents the following values:

Enumeration Constant Integer Representation

run 0

create 1

delete 5

suspend 6

enum statustag {run, create, delete=5, suspend} status;

• Define a variable in a struct declaration.

struct atag {
 char foo;
 int var1;
} avar;

• Interactively declare variables using structure tags.

struct tagone {int a; int b;} c;

then specify:

struct tagone d;

Refer to the following topics for more information related to the material discussed in this topic.

Related tasks
IBM z/OS Debugger User's Guide

Declarations (COBOL)
Use declarations to declare session variables that are effective during a z/OS Debugger session. Session
variables remain in effect for the entire debug session, or process in which they were declared. Variables
declared with declarations can be used in other z/OS Debugger commands as if they were declared to
the compiler. Declared variables are removed when your z/OS Debugger session ends or when the CLEAR
command is used to remove them. The keywords cannot be abbreviated.

Chapter 5. z/OS Debugger commands 99

;

level identifier attribute

usage_attribute

;

attribute
PIC

PICTURE IS

picture usage_attribute

usage_attribute

USAGE

IS

POINTER

BINARY

COMP

COMPUTATIONAL

COMP-1

COMPUTATIONAL-1

COMP-2

COMPUTATIONAL-2

level
1 or 77.

identifier
A valid COBOL data name (including DBCS data names).

picture
A sequence of characters from the set: S X 9 (replication factor is optional).

If picture is not X(*), the COBOL USAGE clause is required.

Usage notes

• For Enterprise COBOL for z/OS Version 5, if you declare a session variable by using the attribute
UNSIGNED BINARY, it can be used only when the current qualification is an Enterprise COBOL for z/OS
Version 5 program.

• For Enterprise COBOL for z/OS Version 5, it enforces COBOL rules for variable names when session
variables are declared. Version 4 allows some invalid names to be used. Some examples are as follows:

– For Version 5, it does not allow the name "4-44"; however, the name is allowed in Version 4. The
name is invalid because COBOL requires at least one alphabetical character in a variable name.

– For Version 5, it does not allow the name "SV12#"; however, the name is allowed in Version 4. The
name is invalid because '#' is not allowed. Only '-', '_', and alphanumerical characters are allowed in a
COBOL variable name.

– For Version 5, it does not allow the name "_SV12"; however, the name is allowed in Version 4. The
name is invalid because '_' cannot be used as the first character in a variable name.

• For Enterprise COBOL for z/OS Version 5, COMP-4 and COMPUTATIONAL-4 are also accepted.
• A declaration cannot be used in a command list; for example, as the subject of an IF command or WHEN

clause.
• BINARY and COMP are equivalent.
• Use BINARY or COMP for COMPUTATIONAL-4.
• COMP-1 is short floating point (4 bytes).
• COMP-2 is long floating point (8 bytes).
• Only COBOL PICTURE and USAGE clauses are supported.

100 IBM z/OS Debugger: Reference and Messages

• Short forms of COMPUTATIONAL (COMP) are supported.

Examples

• Define a variable named floattmp to hold a floating-point number.

01 floattmp USAGE COMP-1;

• Define an integer variable name temp.

77 temp PIC S9(9) USAGE COMP;

Refer to the following topics for more information related to the material discussed in this topic.

Related tasks
IBM z/OS Debugger User's Guide
Related references
Enterprise COBOL for z/OS Language Reference

DECLARE command (PL/I)
The DECLARE command declares session variables that are effective during a z/OS Debugger session.
Variables declared this way can be used in other z/OS Debugger commands as if they were declared to
the compiler. They are removed with the CLEAR command or when your z/OS Debugger session ends. The
keywords cannot be abbreviated.

DCL

DECLARE

,

major_structure

scalar

;

major_structure
,

level name

attribute

scalar
,

name

(

,

name) attribute

level
An unsigned positive integer. Level 1 must be specified for major structure names.

name
A valid PL/I identifier. The name must be unique within a particular structure level.

When name conflicts occur, z/OS Debugger uses session variables before using other variables of the
same name that appear in the running programs. Use qualification to refer to the program variable
during a z/OS Debugger session. For example, to display the variable a declared with the DECLARE
command as well as the variable a in the program, issue the LIST command as follows:

LIST (a, %BLOCK:a);

Chapter 5. z/OS Debugger commands 101

If a name conflict occurs because the variable was declared earlier with a DECLARE command, the
new declaration overrides the previous one.

attribute
A PL/I data or storage attribute.

Acceptable PL/I data attributes include:

 BINARY CPLX FIXED LABEL PTR
 BIT DECIMAL FLOAT OFFSET REAL
 CHARACTERS EVENT GRAPHIC POINTER VARYING
 COMPLEX

Acceptable PL/I storage attributes include:

 BASED ALIGNED UNALIGNED

Pointers cannot be specified with the BASED option.

Only simple factoring of attributes is allowed. DECLAREs such as the following are not allowed:

DCL (a(2), b) PTR;
DCL (x REAL, y CPLX) FIXED BIN(31);

Also, the precision attribute and scale factor as well as the bounds of a dimension can be specified. If
a session variable has dimensions and bounds, these must be declared following PL/I language rules.

Usage notes

• DECLARE is not valid as a subcommand. That is, it cannot be used as part of a DO/END or BEGIN/END
block.

• Initialization is not supported.
• Program DEFAULT statements do not affect the DECLARE command.
• If you are debugging a Enterprise PL/I program, you cannot declare arrays, structures, factor attributes,

or multiple session variables in one command line.
• The DECLARE command cannot be used while you replay recorded statements by using the PLAYBACK

commands.

Examples

• Declare x, y, and z as variables that can be used as pointers.

DECLARE (x, y, z) POINTER;

• Declare a as a variable that can represent binary, fixed-point data items of 15 bits.

DECLARE a FIXED BIN(15);

• Declare d03 as a variable that can represent binary, floating-point, complex data items.

DECLARE d03 FLOAT BIN COMPLEX;

This d03 will have the attribute of FLOAT BINARY(21).
• Declare x as a pointer, and setx as a major structure with structure elements a and b as fixed-point

data items.

DECLARE x POINTER, 1 setx, 2 a FIXED, 2 b FIXED;

This a and b will have the attributes of FIXED DECIMAL(5).

Refer to the following topics for more information related to the material discussed in this topic.

Related tasks
IBM z/OS Debugger User's Guide

102 IBM z/OS Debugger: Reference and Messages

Refer to the following topics for more information related to the material discussed in this topic.

Related references
Enterprise PL/I for z/OS Language Reference

DESCRIBE command
The DESCRIBE command displays the file allocations or attributes of references, compile units, known
load modules, the run-time environment, and CICS channels and containers.

DESCRIBE

CURSOR

ALLOCATIONS

USER

ALL

SYSTEM

LINKLIST

LPALIST

APFLIST

CATALOG

PARMLIB

PROCLIB

ATTRIBUTES

reference

' reference '

(

,

reference

' reference '

)

*

CHANNEL

*

channel_name

SOAP

CUS

PROGRAMS cu_spec

(

,

cu_spec)

*

ENVIRONMENT

LOADMODS

*

load_spec

(

,

load_spec)

;

Chapter 5. z/OS Debugger commands 103

CURSOR (Full-Screen Mode only)
Provides a cursor-controlled method for describing variables, structures, and arrays. If you have
assigned DESCRIBE to a PF key, you can display the attributes of a selected variable by positioning
the cursor at that variable and pressing the assigned PF key.

ALLOCATIONS
Lists the current file allocations.
USER

Indicates that files allocated in the user's address space are to be described.
ALL

Indicates that both USER and SYSTEM allocations are to be described.
SYSTEM

Indicates that all of the following allocations are to be described.
LINKLIST

Indicates that the current LINKLIB, JOBLIB, STEPLIB, and TASKLIB allocations are to be
described.

LPALIST
Indicates that the current LPA list is to be described.

APFLIST
Indicates that the current list of APF authorized data sets is to be described.

CATALOG
Indicates that the current list of active catalogs is to be described.

PARMLIB
Indicates that the current PARMLIB concatenation is to be described.

PROCLIB
Indicates that the current PROCLIB concatenation is to be described.

ATTRIBUTES
Displays the attributes of a specified variable or, in C and C++, an expression. The attributes
are ordinarily those that appeared in the declaration of a variable or are assumed because of
the defaulting rules. DESCRIBE ATTRIBUTES works only for variables accessible to the current
programming language. All variables in the currently qualified block are described if no operand is
specified.
reference

A valid z/OS Debugger reference in the current programming language. Note the following points:

In C and C++, this can be a valid expression. For a C and C++ expression, the type is the only
attribute displayed. For a C and C++ structure or class, DESCRIBE ATTRIBUTES displays only the
attributes of the structure or class. To display the attributes of a data object within a structure or
data member in a class, use DESCRIBE ATTRIBUTES for the specific data object or member.

In COBOL, this can be any user-defined name appearing in the DATA DIVISION. Names can be
subscripted or substringed per their definitions (that is, if they are defined as alphanumeric data or
as arrays).

In PL/I, if the variable is in a structure, it can have inherited dimensions from a higher level parent.
The inherited dimensions appear as if they have been part of the declaration of the variable.

In optimized COBOL programs, if reference refers to a variable that was discarded by the optimizer,
the address information is replaced with a message.

'reference'
A valid z/OS Debugger LangX COBOL reference. This form must be used for LangX COBOL. It can
contain a simple variable or a variable with IN or OF qualifications.

*
Describes all variables in the compile unit. The * is not supported for assembler, disassembly,
PL/I, or LangX COBOL programs.

104 IBM z/OS Debugger: Reference and Messages

CHANNEL
Describes CICS channels and containers, including containers that hold Web services state data. You
can specify one of the following suboptions:
channel_name

Describe all containers in the channel channel_name.
*

Describe all the containers in all the channels in the current scope.
SOAP

Describe all SOAP containers. SOAP is a synonym for DFHNODE.
If you do not specify a suboption, z/OS Debugger lists all of the containers in the current channel.

CUS
Describes the attributes of compile units, including such things as the compiler options and list of
internal blocks. The information returned is dependent on the HLL that the compile unit was compiled
under. CUS is equivalent to PROGRAMS.
cu_spec

The name of the compile unit whose attributes you want to list.
*

Describes all compile units.
PROGRAMS

Is equivalent to CUS.
ENVIRONMENT

The information returned includes a list of the currently opened files. Names of files that have been
opened but are currently closed are excluded from the list. COBOL, LangX COBOL, assembler, and
disassembly do not provide any information for DESCRIBE ENVIRONMENT.

LOADMODS
This command displays information about load modules known to z/OS Debugger and the known or
potential CUs in these load modules.

If no operand is specified, the currently active load module is assumed.

*
Displays a list of all load modules known to z/OS Debugger along with the address, length, entry
point, and the dataset from which the module was loaded.

load_spec
Display information about the specified load module or load modules and all known and potential
CUs in these load modules. This CU information consists of CSECT name, address, length, and
programming language.

Usage notes

• For Enterprise COBOL for z/OS Version 5, the output of DESCRIBE ATTRUBUTES for RENAMES data
items shows PIC X instead of AN-GR.

• For Enterprise COBOL for z/OS Version 5, If two or more level 01 or 77 data items have the same name,
DESCRIBE ATTRIBUTES with no operand displays an error message when you attempt to show the
attributes of those data items.

• For Enterprise COBOL for z/OS Version 5, the output of DESCRIBE ATTRIBUTES for a level 88 variable
does not show an address.

• If you use the DESCRIBE ATTRIBUTES command without specifying any data item, it shows the
attributes of all data items defined in the currently qualified block. The output of this command is
changed for Enterprise COBOL for z/OS Version 5 in the following ways:

– For records, the output shows only the high-level attributes of the record, such as length and address.
The output does not show the attributes of each subordinate group or data item defined within the
record. This reduces the amount of the output produced. For Enterprise COBOL for z/OS Version 4, it
also shows the attributes of all subordinate data items within each record or group, that is, the entire

Chapter 5. z/OS Debugger commands 105

data hierarchy. To see this level of detail in Enterprise COBOL for z/OS Version 5, you can specify a
particular data item on the DESCRIBE ATTRIBUTES command. If the data item is a record or group,
it shows the attributes of all subordinate data items within that record or group.

– For data items that are not records, which are scalar data items, the type of the data item is no
longer displayed on a separate line in the output as it was in Enterprise COBOL for z/OS Version 4, but
instead it is shown after the data item name on the line that includes "ATTRIBUTES for". This further
reduces the number of lines of the output produced, and makes the output for scalar data items more
consistent with the output for records.

• You can use the DESCRIBE CUS, DESCRIBE CHANNEL, and DESCRIBE LOADMODS commands in
remote debug mode.

• The DESCRIBE ALLOCATIONS command is not available under CICS.
• Cursor pointing can be used by typing the DESCRIBE CURSOR command on the command line and

moving the cursor to a variable in the Source window before pressing Enter, or by moving the cursor and
pressing a PF key with the DESCRIBE CURSOR command assigned to it.

• When using the DESCRIBE CURSOR command for a variable that is located by the cursor position, the
variable's name cannot be split across different lines of the source listing.

• In C, C++, and COBOL, expressions containing parentheses () must be enclosed in another set
of parentheses when used with the DESCRIBE ATTRIBUTES command. For example, DESCRIBE
ATTRIBUTES ((x + y) ⁄ z);.

• For COBOL, if DESCRIBE ATTRIBUTES * is specified and your compile unit is large, you might receive
an out of storage error message.

• For PL/I, DESCRIBE ATTRIBUTES returns only the top-level names for structures. DESCRIBE
ATTRIBUTES * is not supported for PL/I. To get more detail, specify the structure name as the
reference.

• For Enterprise COBOL for z/OS Version 5, the PIC definition and other attributes of a variable are
displayed as declared in the program.

• For Enterprise COBOL for z/OS Version 5, the result of issuing DESCRIBE ATTRIBUTES for a z/OS
Debugger variable that represents a register does not include an address. For example, DESCRIBE
ATTRIBUTES %GPR15.

• For Enterprise COBOL for z/OS Version 5, the output of DESCRIBE ATTRIBUTES for a record or a group
variable is displayed with the levels as declared in the program.

• LangX COBOL PIC attributes might not match the original PIC specification in the following situations:

– A COMP-3 variable always has an odd number of digits in its PIC value.
– All non-numerical strings have a PIC value of X's.

• If the DATA option of the PLAYBACK ENABLE command is in effect for the current compile unit, the
DESCRIBE ATTRIBUTES and DESCRIBE CURSOR commands can be used while you replay recorded
statements by using the PLAYBACK commands.

• The DESCRIBE ENVIRONMENT command cannot be used while you replay recorded statements by
using the PLAYBACK commands.

• The DESCRIBE LOADMODS command does not display information about load modules or compile units
provided by operating system, subsystem, or runtime software (for example: MVS, CICS, Db2, IMS, and
Language Environment) because z/OS Debugger ignores these modules.

• The DESCRIBE LOADMODS command cannot display the DSNAME of load modules loaded by LPA, LLA,
AOS loader, or an unknown provider because the DSNAME for these providers is not available.

• CU information displayed by DESCRIBE LOADMODS includes information about the following types of
CUs:

– Known CUs (CUs that appear in LIST NAMES CUS output)
– Hidden disassembly CUs (If SET DISASSEMBLY OFF is in effect these are the names of the CUs that

would be created if you SET DISASSEMBLY ON)
– Hidden COBOL CUs (COBOL CUs that have not yet been entered)

106 IBM z/OS Debugger: Reference and Messages

– A CU name shown as a load module name followed by ">" indicates the entry point CU for a load
module that is the target of an AT LOAD command.

• You can use the DESCRIBE CHANNEL command only if your application program runs on CICS
Transaction Server Version 3.1 or later.

• For PL/I, COBOL, LangX COBOL, assembler, and disassembly, if a channel name is mixed case, you
must enclose it in quotation marks (") or apostrophes ('). If you do not enclose it in quotation marks or
apostrophes, z/OS Debugger converts it to all upper case.

• For C and C++, all channels names are case sensitive. The following table compares how the same
command must be typed differently, depending on the programming language you are debugging:

Table 6. Comparison of the same command used in different programming languages

If the
container
name is...

If the programming language is PL/I,
COBOL, LangX COBOL, assembler or
disassembly, type in...

If the programming language is C or C+
+, type in...

chname DESCRIBE CHANNEL 'chname' DESCRIBE CHANNEL chname

conNAME DESCRIBE CHANNEL 'conNAME' DESCRIBE CHANNEL conNAME

Examples

• Describe the attributes of argc, argv, boolean, i, ld, and structure.

DESCRIBE ATTRIBUTES (argc, argv, boolean, i, ld, structure);

• Describe the current environment.

DESCRIBE ENVIRONMENT;

• Display information describing program myprog.

DESCRIBE PROGRAMS myprog;

Refer to the following topics for more information related to the material discussed in this topic.

Related references
“references” on page 15
“cu_spec” on page 13
“LIST CONTAINER command” on page 147
Appendix A, “z/OS Debugger commands supported in Debug Tool compatibility mode,” on page 517

DISABLE command
The DISABLE command makes an AT or pattern-match breakpoint inoperative. However, the breakpoint
is not cleared. Later, you can make the breakpoint operative by using the ENABLE command.

Chapter 5. z/OS Debugger commands 107

DISABLE

AT_command

CADP *

PROGRAM prog_id

*

CU cu_id

*

DTCN *

LOADMOD loadmod_id

*

CU cu_id

*

;

AT_command
An enabled AT command. The AT command must be complete except that the every_clause and
command are omitted. Valid forms are the same as those allowed with CLEAR AT.

DTCN LOADMOD, DTCN CU, CADP PROGRAM, or CADP CU
Prevents z/OS Debugger from being started by a program, load module, or compile unit specified in
prog_id, loadmod_id, or cu_id that matches a program or compile unit specified in a DTCN or CADP
profile. The following comparisons are made:

• For DTCN, z/OS Debugger compares loadmod_id with the value in the LoadMod field and cu_id with
the value in the CU field.

• For CADP, prog_id is compared to what is specified in the Program field and cu_id is compared to
what is specified in the Compile Unit field.

You can specify a specific name (for example, PROG1) or a partial name with the wild card character
(for example, EMPL*).

Usage notes

• You can use the DISABLE CADP and DISABLE DTCN commands in remote debug mode.
• You can use the DISABLE command to disable either active or suspended breakpoints. However, you

cannot use it to disable suspended label breakpoints.
• If you want to disable a suspended breakpoint, you must specify both the load module and CU name.
• To reenable a disabled AT command, use the ENABLE command.
• Disabling an AT command does not affect its replacement by a new (enabled) version if an overlapping
AT command is later specified. It also does not prevent removal by a CLEAR AT command.

• Breakpoints already disabled within the range(s) specified in the specific AT command are unaffected;
however, a warning message is issued for any specified range found to contain no enabled breakpoints.

• The DISABLE command cannot be used while you replay recorded statements by using the PLAYBACK
commands.

• For pseudo-conversational applications running under CICS, the DISABLE CADP or DISABLE DTCN
commands apply only to the current CICS pseudo-conversational task.

• For PL/I, COBOL, LangX COBOL, assembler and disassembly, if the cu_id is mixed case or case
sensitive, you must enclose the name in quotation marks (") or apostrophes (').

• For C and C++, z/OS Debugger always treats the cu_id as case sensitive, even if it is not enclosed in
quotation marks (").

Examples

108 IBM z/OS Debugger: Reference and Messages

• Disable the breakpoint that was set by the command AT ENTRY myprog CALL proc1;.

DISABLE AT ENTRY myprog;

• If statement 25 is in a loop and you set the following breakpoint:

AT EVERY 5 FROM 1 TO 100 STATEMENT 25 LIST x;

to disable it, enter:

DISABLE AT STATEMENT 25;

You do not need to reenter the every_clause or the command list. To restore the breakpoint, enter:

ENABLE AT STATEMENT 25;

• z/OS Debugger starts every time PROGA runs because you have a DTCN profile that specifies an asterisk
(*) in the LoadMod field and PROGA in the CU field. field. If you do not want z/OS Debugger to start
every time PROGA runs, enter one of the following commands:

– DISABLE DTCN LOADMOD * CU PROGA;
– DISABLE DTCN CU PROGA;

• You have a CADP profile that specifies PROG1 in the Program field and CU1 in the Compile Unit field.
If you do not want z/OS Debugger to start every time this program and compile unit are run, enter the
following command:

DISABLE CADP PROGRAM PROG1 CU CU1;

• You have a CADP profile that specifies CU1 in the Compile Unit field. If you do not want z/OS Debugger
to start every time the compile unit is run, enter one of the following commands:

DISABLE CADP PROGRAM * CU CU1;
DISABLE CADP CU CU1;

• You have several CADP profiles and z/OS Debugger is started every time a program matches one of
these profiles. If you do not want z/OS Debugger to be started every time a program matches any of
these profiles, enter the following command:

DISABLE CADP *;

Refer to the following topics for more information related to the material discussed in this topic.

Related tasks
"Controlling pattern-match breakpoints with the ENABLE and DISABLE commands" in the IBM z/OS
Debugger User's Guide

Related references
“ENABLE command” on page 113
“DISABLE prefix (full-screen mode)” on page 109
“LIST DTCN or CADP command” on page 149
Appendix A, “z/OS Debugger commands supported in Debug Tool compatibility mode,” on page 517

DISABLE prefix (full-screen mode)
Disables a statement breakpoint or offset breakpoint when you issue this command through the Source
window prefix area.

DISABLE

integer

;

Chapter 5. z/OS Debugger commands 109

integer
Selects a relative statement (for C and C++ or PL/I) or a relative verb (for COBOL) within the line. The
default value is 1.

Example

Disable the breakpoint at the third statement or verb in the line by entering the following command in the
prefix area of the line where the statement is found.

DIS 3

You do not need to enter a space between the keyword and the integer: DIS 3 is equivalent to DIS3.

Refer to the following topics for more information related to the material discussed in this topic.

Related tasks
IBM z/OS Debugger User's Guide

DO command (assembler, disassembly, LangX COBOL, and COBOL)
The DO command performs one or more commands that are collected into a group. The DO and END
keywords delimit a group of commands called a DO group. The keywords cannot be abbreviated.

DO ;
,

command

END ;

command
A valid z/OS Debugger command.

do/while command (C and C++)
The do/while command performs a command before evaluating the test expression. Due to this order of
execution, the command is performed at least once. The do and while keywords must be lowercase and
cannot be abbreviated.

do command while (expression) ;

command
A valid z/OS Debugger command.

expression
A valid z/OS Debugger C and C++ expression.

The body of the loop is performed before the while clause (the controlling part) is evaluated. Further
execution of the do⁄while command depends on the value of the while clause. If the while clause
does not evaluate to false, the command is performed again. Otherwise, execution of the command ends.

A break command can cause the execution of a do⁄while command to end, even when the while
clause does not evaluate to false.

Usage note

The do/while command cannot be used while you replay recorded statements by using the PLAYBACK
commands by using the PLAYBACK command.

Example

The following command prompts you to enter a 1. If you enter a 1, the command ends execution.
Otherwise, the command displays another prompt.

int reply1;

110 IBM z/OS Debugger: Reference and Messages

do {
 printf("Enter a 1.\n");
 scanf("%d", &reply1);
} while (reply1 != 1);

DO command (PL/I)
The DO command allows one or more commands to be collected into a group that can (optionally) be
repeatedly executed. The DO and END keywords delimit a group of commands collectively called a DO
group. The keywords cannot be abbreviated.

Simple
DO ;

command

END ;

command
A valid z/OS Debugger command.

Repeating
DO WHILE (expression)

UNTIL (expression)

UNTIL (expression)

WHILE (expression)

;

command

END ;

WHILE
Specifies that expression is evaluated before each execution of the command list. If the expression
evaluates to true, the commands are executed and the DO group begins another cycle; if it evaluates
to false, execution of the DO group ends.

expression
A valid z/OS Debugger PL/I Boolean expression.

UNTIL
Specifies that expression is evaluated after each execution of the command list. If the expression
evaluates to false, the commands are executed and the DO group begins another cycle; if it evaluates
to true, execution of the DO group ends.

command
A valid z/OS Debugger command.

Iterative

DO reference =

,

iteration ;

command

END ;

iteration

Chapter 5. z/OS Debugger commands 111

expression

BY expression

TO expression

TO expression

BY expression

REPEAT expression

WHILE (expression)

UNTIL (expression)

UNTIL (expression)

WHILE (expression)

reference
A valid z/OS Debugger PL/I reference.

expression
A valid z/OS Debugger PL/I expression.

BY
Specifies that expression is evaluated at entry to the DO specification and saved. This saved value
specifies the increment to be added to the control variable after each execution of the DO group.

If BY expression is omitted from a DO specification and if TO expression is specified, expression
defaults to the value of 1.

If BY 0 is specified, the execution of the DO group continues indefinitely unless it is halted by a WHILE
or UNTIL option, or control is transferred to a point outside the DO group.

The BY option allows you to vary the control variable in fixed positive or negative increments.

TO
Specifies that expression is evaluated at entry of the DO specification and saved. This saved value
specifies the terminating value of the control variable.

If TO expression is omitted from a DO specification and if BY expression is specified, repetitive
execution continues until it is terminated by the WHILE or UNTIL option, or until some statement
transfers control to a point outside the DO group.

The TO option allows you to vary the control variable in fixed positive or negative increments.

REPEAT
Specifies that expression is evaluated and assigned to the control variable after each execution of the
DO group. Repetitive execution continues until it is terminated by the WHILE or UNTIL option, or until
some statement transfers control to a point outside the DO group.

The REPEAT option allows you to vary the control variable nonlinearly. This option can also be used for
nonarithmetic control variables, such as pointers.

WHILE
Specifies that expression is evaluated before each execution of the command list. If the expression
evaluates to true, the commands are executed and the DO group begins another cycle; if it evaluates
to false, execution of the DO group ends.

UNTIL
Specifies that expression is evaluated after each execution of the command list. If the expression
evaluates to false, the commands are executed and the DO group begins another cycle; if it evaluates
to true, execution of the DO group ends.

command
A valid z/OS Debugger command.

112 IBM z/OS Debugger: Reference and Messages

Usage note

You cannot use the DO command while you replay recorded statements by using the PLAYBACK
commands by using the PLAYBACK command.

Examples

• At statement 25, initialize variable a and display the values of variables x, y, and z.

AT 25 DO; %BLOCK:>a = 0; LIST (x, y, z); END;

• Execute the DO group until ctr is greater than 4 or less than 0.

DO UNTIL (ctr > 4) WHILE (ctr >= 0); END;

• Execute the DO group with i having the values 1, 2, 4, 8, 16, 32, 64, 128, and 256.

DO i = 1 REPEAT 2*i UNTIL (i = 256); END;

• Repeat execution of the DO group with j having values 1 through 20, but only if k has the value 1.

DO j = 1 TO 20 BY 1 WHILE (k = 1); END;

ENABLE command
The ENABLE command activates an AT or pattern-match breakpoint after it was disabled with the
DISABLE command.

ENABLE

AT_command

CADP *

PROGRAM prog_id

*

CU cu_id

*

DTCN *

LOADMOD loadmod_id

*

CU cu_id

*

;

AT_command
A disabled AT command. The AT command must be complete except that the every_clause and
command are omitted. Valid forms are the same as those allowed with CLEAR AT.

DTCN LOADMOD, DTCN CU, CADP PROGRAM, or CADP CU
Re-enable a CADP or DTCN profile that was previously disabled by the DISABLE command. The
names you specify for loadmod_id, prog_id, or cu_id must match the loadmod_id, prog_id, or cu_id
you specified in the DISABLE command.

If you do not specify a loadmod_id, prog_id, or cu_id, z/OS Debugger enables all previously disabled
DTCN or CADP profiles. If you try to specify a loadmod_id, prog_id, or cu_id for a profile that was not
disabled, z/OS Debugger displays an error message.

Usage notes

• You can use the ENABLE CADP and ENABLE DTCN commands in remote debug mode.
• You can use the ENABLE command to enable either active or suspended breakpoints. However, you

cannot use it to enable suspended label breakpoints.

Chapter 5. z/OS Debugger commands 113

• If you want to enable a suspended breakpoint, you must specify both the load module and CU name.
• To disable an AT command, use the DISABLE command.
• Breakpoints already enabled within the range(s) specified in the specific AT command are unaffected;

however, a warning message is issued for any specified range found to contain no disabled breakpoints.
• The ENABLE command cannot be used while you replay recorded statements by using the PLAYBACK

commands.
• For pseudo-conversational applications running under CICS, the ENABLE CADP or ENABLE DTCN

commands apply only to the current CICS pseudo-conversational task.
• For PL/I, COBOL, LangX COBOL, assembler and disassembly, if the cu_id is mixed case or case

sensitive, you must enclose the name in quotation marks (") or apostrophes (').
• For C and C++, z/OS Debugger always treats the cu_id as case sensitive, even if it is not enclosed in

quotation marks (").

Examples

• Reenable the previously disabled command AT ENTRY mysub CALL proc1;.

ENABLE AT ENTRY mysub;

• Allow DTCN to start z/OS Debugger every time PROGA runs, which was previously prevented with the
command DISABLE DTCN CU PROGA;, by entering the following command:

ENABLE DTCN CU PROGA;

• Allow CADP to start z/OS Debugger every time a program that matches any of the CADP profiles is run.
This was previously prevented with the command DISABLE CADP *;.

ENABLE CADP *;

Refer to the following topics for more information related to the material discussed in this topic.

Related tasks
"Controlling pattern-match breakpoints with the ENABLE and DISABLE commands" in the IBM z/OS
Debugger User's Guide

Related references
“DISABLE prefix (full-screen mode)” on page 109
“ENABLE prefix (full-screen mode)” on page 114
“LIST DTCN or CADP command” on page 149
Appendix A, “z/OS Debugger commands supported in Debug Tool compatibility mode,” on page 517

ENABLE prefix (full-screen mode)
Enables a disabled statement breakpoint or a disabled offset breakpoint when you issue this command
through the Source window prefix area.

ENABLE

integer

;

integer
Selects a relative statement (for C and C++ or PL/I) or a relative verb (for COBOL) within the line. The
default value is 1. For optimized COBOL programs, the default value is the first executable statement
which was not discarded by the optimizer.

Example

Enable the breakpoint at the third statement or verb in the line (typed in the prefix area of the line where
the statement is found).

114 IBM z/OS Debugger: Reference and Messages

ENABLE 3

No space is needed as a delimiter between the keyword and the integer; hence, ENABLE 3 is equivalent
to ENABLE3.

EVALUATE command (COBOL)
The EVALUATE command provides a shorthand notation for a series of nested IF statements. The
keywords cannot be abbreviated.

EVALUATE constant

expression

reference

TRUE

FALSE

WHEN any_clause command

WHEN OTHER command

END-EVALUATE ;

any_clause
ANY

condition

TRUE

FALSE

NOT

constant

reference THROUGH

THRU

constant

reference

constant
A valid z/OS Debugger COBOL constant.

expression
A valid z/OS Debugger COBOL arithmetic expression.

reference
A valid z/OS Debugger COBOL reference.

condition
A simple relation condition.

command
A valid z/OS Debugger command.

Usage notes

• Only a single subject is supported.
• Consecutive WHENs without associated commands are not supported.
• THROUGH⁄THRU ranges can be specified as constants or references.
• See Enterprise COBOL for z/OS Language Reference for an explanation of the following COBOL keywords:

ANY

Chapter 5. z/OS Debugger commands 115

FALSE
NOT
OTHER
THROUGH
THRU
TRUE
WHEN

• z/OS Debugger implements the EVALUATE command as a series of IF commands.
• If the DATA option of the PLAYBACK ENABLE command is in effect for the current compile unit,

the EVALUATE command can be used while you replay recorded statements by using the PLAYBACK
commands.

• For optimized COBOL programs, the value of reference cannot refer to any variables discarded by the
optimizer.

• If a COBOL variable is defined as National and it is an operand in a relation condition with an alphabetic,
alphanumeric operand, or National numeric, the operand that is not National is converted to Unicode
before that comparison is done, except for Group items. See Enterprise COBOL for z/OS Language
Reference for more information about using COBOL variables in conditional expressions.

Example

The following example shows an EVALUATE command and the equivalent coding for an IF command:

EVALUATE menu-input
 WHEN "0"
 CALL init-proc
 WHEN "1" THRU "9"
 CALL process-proc
 WHEN "R"
 CALL read-parms
 WHEN "X"
 CALL cleanup-proc
 WHEN OTHER
 CALL error-proc
END-EVALUATE;

The equivalent IF command:

IF (menu-input = "0") THEN
 CALL init-proc
ELSE
 IF (menu-input >= "1") AND (menu-input <= "9") THEN
 CALL process-proc
 ELSE
 IF (menu-input = "R") THEN
 CALL read-parms
 ELSE
 IF (menu-input = "X") THEN
 CALL cleanup-proc
 ELSE
 CALL error-proc
 END-IF;
 END-IF;
 END-IF;
END-IF;

Refer to the following topics for more information related to the material discussed in this topic.

Related references
“Allowable comparisons for the IF command (COBOL)” on page 132
Enterprise COBOL for z/OS Language Reference

Expression command (C and C++)
The Expression command evaluates the given expression. The expression can be used to either assign
a value to a variable or to call a function.

116 IBM z/OS Debugger: Reference and Messages

expression ;

expression
A valid z/OS Debugger C and C++ expression. Assignment is affected by including one of the C and
C++ assignment operators in the expression. No use is made of the value resulting from a stand-alone
expression.

Usage notes

• Function invocations in expressions are restricted to functions contained in the currently executing
enclave.

• The Expression command cannot be used while you replay recorded statements by using the
PLAYBACK commands.

Examples

• Initialize the variables x, y, z. You can use functions to provide values for variables.

x = 3 + 4⁄5;
y = 7;
z = 8 * func(x, y);

• Increment y and assign the remainder of the integer division of omega by 4 to alpha.

alpha = (y++, omega % 4);

• To list and assign a new value to R1 in the disassembly view:

LIST(R1);
R1 = 0x0001FAF0;

FIND command
The FIND command provides full-screen and line mode search capability in the source object, and
full-screen searching of the log and monitor objects.

FIND

string

* leftcolumn

rightcolumn

*

FIRST

LAST

NEXT

PREV

CURSOR

LOG

MONITOR

SOURCE

;

string
The string you want to find, which conforms to the syntax for a character string constant of the current
programming language. The string must comply with the following restrictions:

• The length of the string cannot exceed 128 bytes.
• If the string contains spaces, or is an asterisk (*), a question mark (?) or a semicolon (;) it must be

enclosed in quotation marks (") or apostrophes (') as described in the following rules:

– For C and C++, use quotation marks (").
– For COBOL, LangX COBOL, assembler, disassembly, or PL/I, use quotation marks (") or

apostrophes (').

Chapter 5. z/OS Debugger commands 117

Table 7. Examples of how to specify quotation marks (") and apostrophes (') for strings in a FIND
command.

C C++
COBOL or LangX
COBOL

Assembler or
disassembly PL/I

"ABC" "IntLink::*" "A5" or 'A5' 'ABC' or "ABC" or
C'ABC'

'ABC' or "ABC"

• If the string contains a quotation mark (") or apostrophe ('), you might have to specify the string with
an even number of quotation marks or apostrophes (also known as balance). Use the following rules
to determine how to balance the string:

– For PL/I, if the string has an apostrophe, you must add an apostrophe immediately following that
apostrophe. If the string contains a space, surround the entire string with apostrophes.

– For C and C++, if the string has a quotation mark, you must add a quotation mark immediately
following that quotation mark. If the string contains a space, surround the entire string with
quotation marks.

– For assembler, COBOL, LangX COBOL, or disassembly, if the string contains an apostrophe and it
is delimited by apostrophes, you must add an apostrophe immediately after the apostrophe that
is in the string. If the string contains a quotation mark and it is delimited by quotation marks, you
must add a quotation mark immediately after the quotation mark that is in the string. If the string
contains a space, you do not have to balance the quotation marks; however you must surround
the entire string with a quotation marks or apostrophes.

If no operands are specified, a repeat FIND is performed. The usage notes and IBM z/OS Debugger
User's Guide describes repeat FIND.

*
Use the string from the previous FIND command.

leftcolumn
A positive integer that specifies the leftmost column for the search. This is supported only in the
Source window and in line mode. It is ignored in the Log and Monitor windows. If rightcolumn and *
are omitted, then the string must start in leftcolumn.

rightcolumn
A positive integer that specifies the rightmost column for the search. This is supported only in the
Source window and in line mode. It is ignored in the Log and Monitor windows.

*
Specifies that the length of each source record is used as the right column for the search. This is
supported only in the Source window and in line mode. It is ignored in the Log and Monitor windows.

FIRST
Starts at the beginning of the object and searches forward to find the first occurrence of the string.

LAST
Starts at the end of the object and searches backward to find the last occurrence of the string.

NEXT
Starts at the first position after the current cursor location and searches forward to find the next
occurrence of the string.

PREV
Starts at the current cursor location and searches backward to find the previous occurrence of the
string.

CURSOR (Full-Screen Mode)
Specifies that the current cursor position selects the object searched.

LOG (Full-Screen Mode)
Selects the object in the session log window.

MONITOR (Full-Screen Mode)
Selects the object in the monitor window.

118 IBM z/OS Debugger: Reference and Messages

SOURCE (Full-Screen Mode)
Selects the object in the source listing window.

Usage notes

• If no operands are specified, a repeat FIND is performed. A repeat FIND behaves in the following ways:

– The string from the previous FIND that you entered is used.
– If no FIND string has been previously specified, z/OS Debugger displays an error message.
– If the previous FIND command that you entered specified or implied the FIRST or NEXT parameter,

z/OS Debugger uses the NEXT parameter.
– If the previous FIND command that you entered specified the LAST or PREV parameter, z/OS

Debugger uses the PREV parameter.
– If the previous FIND command that you entered specified a leftcolumn parameter, z/OS Debugger

uses that leftcolumn parameter.
– If the previous FIND command that you entered specified a rightcolumn parameter, z/OS Debugger

uses that rightcolumn parameter.
– If a repeat FIND immediately follows an unsuccessful FIND or repeat FIND, z/OS Debugger continues

searching, wrapping from the last line to the first line. If the original direction of the FIND was
backward to the beginning of the object, z/OS Debugger wraps from the first line to the last line.

– If the cursor is not in a window, z/OS Debugger uses the same window that was used for the previous
FIND command.

• In full-screen mode, z/OS Debugger chooses the window it searches through in the following ways:

– If you specify a string and you do not place the cursor in a window nor specify an object on
the command, z/OS Debugger searches the object in the window specified by the SET DEFAULT
WINDOW command or the Default window entry in your Profile Settings panel.

– If you place the cursor in a window and do not specify a different window on the command, z/OS
Debugger searches the object in the window where you placed the cursor.

• If you specify a string without a direction keyword, forward is the default direction.
• FIND can be made immediately effective in full-screen mode with the IMMEDIATE command.
• If the current programming language setting is C or C++, the search is case-sensitive. Otherwise, the

search is not case-sensitive.
• In full-screen mode, searches show the following behavior:

– If you specify FIRST, the search begins at the beginning of the first line of the object.
– If you specify LAST, the search begins at the end of the last line of the object.
– If you specify NEXT or the command defaults to NEXT and the cursor is within the window for the

object being searched, the search begins at the first position after the current cursor location.
– If you specify NEXT or the command defaults to NEXT and the cursor is outside the window for the

object being searched, the search begins at the beginning of the first line displayed in the window.
– If you specify PREV or the command defaults to PREV and the cursor is within the window for the

object being searched, the search begins at the current cursor location.
– If you specify PREV or the command defaults to PREV and the cursor is outside the window for the

object being searched, the search begins at the end of the line preceding the first line displayed in
the window of the object being searched. If the beginning of the object is displayed, z/OS Debugger
wraps to the end of the object and continues from the end of the last line in the object.

– If z/OS Debugger finds the string, the window for the object being searched is scrolled until the string
is visible. If the string is DBCS, it is displayed without alteration. If the string is not DBCS, the string is
highlighted as specified by the SET COLOR command and the cursor is placed at the beginning of the
string. The highlighted string is protected from overtyping. If you need to overtype the string, press
enter and place the cursor where you want to type and proceed with the overtype.

Chapter 5. z/OS Debugger commands 119

– If z/OS Debugger does not find the string, the screen does not change and the cursor is not moved. If
you specified NEXT or PREV or the command defaults to NEXT or PREV and z/OS Debugger searched
only part of the object, then z/OS Debugger displays the message 'Bottom of data reached' or 'Top of
data reached', as appropriate. If z/OS Debugger searched through the entire object, then it displays
the message 'Search target not found'.

• In line mode, searches show the following behavior:

– If you specify FIRST, the search begins at the beginning of the first line of the source.
– If you specify LAST, the search begins at the end of the last line of the source.
– If you specify NEXT or the command defaults to NEXT, z/OS Debugger begins searching at the first

character of the first line of the source or, if a previous FIND command was done in the same compile
unit, at the location after the last string that was successfully found by a FIND command.

– If you specify PREV or the command defaults to PREV, z/OS Debugger begins searching at the last
character of the last line of the source, or if a previous FIND command was done in the same compile
unit, at the location before the last string that was successfully found by a FIND command.

– If you specify NEXT or PREV or the command defaults to NEXT or PREV and z/OS Debugger searched
only part of the source and did not find the string, then z/OS Debugger displays the message 'Bottom
of data is reached' or 'Top of data is reached', as appropriate. If z/OS Debugger searched through the
entire source without finding the string, then it displays the message 'Search target not found'.

– If z/OS Debugger finds the string, the line that contains the string is displayed and marked with a
vertical bar character (|) beneath the string.

• The search in the Source window and in line mode can be limited to certain columns by choosing one of
the following methods:

– If you enter a pair of column numbers indicating the first and last columns to be searched, the string
is found if it is completely contained within the specified columns.

– If a single column is specified, the string must start in the specified column.
– If the second column specified is larger than the record size, the record size is used.
– If the columns are not specified, the columns to be searched default to the columns defined by

the SET FIND BOUNDS command. If you have not entered the SET FIND BOUNDS command, the
columns default to 1 *.

The column alignment of the source might not match the original source code. The leftcolumn and
rightcolumn specifications are related to the scale shown in the Source window, not the original source.

• The full-screen FIND command is not logged; however, the FIND command is logged in line mode.
• If you are searching for strings with trigraphs in them when debugging C or C++ code, the trigraphs

or their equivalents can be used as input, and z/OS Debugger matches them to trigraphs or their
equivalents. An exception is that column specifications other than 1 * are not allowed in FIND or SET
FIND BOUNDS if you search source code and trigraphs are found.

• If you are searching in the monitor window and SET MONITOR WRAP OFF is in effect, z/OS Debugger
will search all of the scrolled data.

• You cannot use the FIND command in the Memory window.

Examples

• Indicate that you want to search the monitor window for the name myvar.

FIND myvar MONITOR;

• If you want to search the Source window for the next occurrence of var1, just enter:

FIND

You do not need to provide the variable name, because the z/OS Debugger remembers the string you
last searched for. Again, the Source window is scrolled forward, var1 is highlighted, and the cursor
points to the variable.

120 IBM z/OS Debugger: Reference and Messages

• If you want to find a question mark (?) in the Source window and you are debugging a PL/I program,
enter the following command:

FIND '?' ;

• If you want to find the string User's in the Source window and you are debugging a PL/I program, enter
the following command:

FIND User''s ;

• If you want to find the string User's in the Source window and you are debugging a C program, enter
the following command:

FIND User's ;

• If you want to find the string User's Guide in the Source window and you are debugging a PL/I
program, enter the following command:

FIND 'User''s Guide' ;

• If you want to find the string User's Guide in the Source window and you are debugging a C program,
enter the following command:

FIND "User's Guide" ;

• If you entered the command FIND xyz LAST; or FIND xyz PREV; and the cursor is on the found
string ("xyz"), then press the PF key assigned to the FIND command to repeat the search. z/OS
Debugger runs the command FIND xyz PREV;.

• If you entered the command FIND xyz;, z/OS Debugger searches in the forward direction. To find the
string "xyz" in the backward direction, enter the command FIND * PREV;.

• If you want to find a COBOL paragraph definition named paraa that starts in column 8 in COBOL’s Area
A, enter the following command:

FIND paraa 8 ;

• If you want to find a reference to a COBOL paragraph named paraa in COBOL’s Area B, then enter one
of the following commands:

– FIND paraa 12 72;

– SET FIND BOUNDS 12 72;
FIND paraa;

FINDBP command
The FINDBP command provides full-screen search capability for line, statement and offset breakpoints in
the source object. The FINDBP keyword cannot be abbreviated.

FINDBP

FIRST

LAST

NEXT

PREV

ENABLED

DISABLED

;

FIRST
Starts at the beginning of the source object and searches forward to find the first line, statement, or
offset breakpoint.

Chapter 5. z/OS Debugger commands 121

LAST
Starts at the end of the source object and searches backward to find the last line, statement, or offset
breakpoint.

NEXT
Starts at the next line after the current cursor location in the Source window and searches forward to
find the next line, statement, or offset breakpoint

PREV
Starts at the previous line before the current cursor location in the Source window and searches
backward to find the previous line, statement, or offset breakpoint

ENABLED
Restricts the searching to enabled breakpoints. The default is to list both enabled and disabled
breakpoints.

DISABLED
Restricts the searching to disabled breakpoints. The default is to list both enabled and disabled
breakpoints.

Usage notes

• If no operands are specified, a repeat FINDBP is performed. A repeat FINDBP behaves in the following
ways:

– If the previous FINDBP command that you entered specified or implied the FIRST or NEXT
parameter, z/OS Debugger uses the NEXT parameter.

– If the previous FINDBP command that you entered specified or implied the LAST or PREV parameter,
z/OS Debugger uses the PREV parameter.

– If a repeat FINDBP immediately follows an unsuccessful FINDBP or repeat FINDBP, z/OS Debugger
continues searching, wrapping from the last line to the first line. If the original direction of the
FINDBP was backward to the beginning of the source object, z/OS Debugger wraps from the first line
to the last line.

– If the previous FINDBP command that you entered specified or implied the ENABLED or DISABLED
parameter, z/OS Debugger uses the ENABLED or DISABLED parameter, respectively.

– If you want to frequently use a repeat FINDBP, set a PF key (for example, PF17 or shift PF5) to
FINDBP. For instructions on assigning a command to a PF key, see “SET PFKEY command” on page
247.

• Searches show the following behavior:

– If you specify FIRST, the search begins at the first line of the source object.
– If you specify LAST, the search begins at the last line of the source object.
– If you specify NEXT or the command defaults to NEXT and the cursor is on a source line or in its prefix

or suffix area, the search begins at the line after the line the cursor is on.
– If you specify NEXT or the command defaults to NEXT and the cursor is not on a source line or in its

prefix or suffix area, the search begins at the first line in the Source window.
– If you specify PREV or the command defaults to PREV and the cursor is on a source line or in its prefix

or suffix area, the search begins at the line before the line the cursor is on.
– If you specify PREV or the command defaults to PREV and the cursor is not on a source line or in its

prefix or suffix area, the search begins at the line before the first line in the Source window. If the
first line of the source object is displayed, z/OS Debugger wraps to the end of the source object and
continues with the last source line.

– If z/OS Debugger finds the breakpoint, z/OS Debugger scrolls the Source window so that you can see
the breakpoint. z/OS Debugger places the cursor at the beginning of the prefix area for the source line
that contains the breakpoint.

– If z/OS Debugger does not find the breakpoint, the screen does not change and the cursor is not
moved. If you specified NEXT or PREV or the command defaults to NEXT or PREV and z/OS Debugger
searched only part of the source object, then z/OS Debugger displays the message "Bottom of data

122 IBM z/OS Debugger: Reference and Messages

reached" or "Top of data reached", as appropriate. If z/OS Debugger searched through the entire
source object, then it displays the message "No line, statement or offset breakpoints were found".

• If multiple line or statement breakpoints exist on the same source line, the FINDBP command finds only
one of them.

• The FINDBP command does not find AT STATEMENT * breakpoints.
• The FINDBP command searches only through the currently qualified compile unit, which is the compile

unit visible in the Source window.
• z/OS Debugger does not log the FINDBP command.
• If you know the line number or statement number of the breakpoint you are looking for, the quickest

way to find it is to use the SCROLL TO nnnnn or POSITION nnnnn command, which scrolls the Source
window so that the line containing nnnnn in the prefix area is the first line in the Source window.

Examples

• Search for the next line in the Source window that contains a line, statement, or offset breakpoint.

FINDBP

• Search for the first line in the source object that contains a line, statement, or offset breakpoint. Then
search for the next two breakpoints.

FINDBP FIRST
FINDBP
FINDBP

Related references

Related references
“AT LINE command” on page 63
“AT OFFSET command (disassembly)” on page 68
“AT STATEMENT command” on page 70
“LIST AT command” on page 141, with the LINE, OFFSET, or STATEMENT options
“POSITION command” on page 191
“SCROLL command (full-screen mode)” on page 204, with the TO option
“SET PFKEY command” on page 247

for command (C and C++)
The for command provides iterative looping similar to the C and C++ for statement. It enables you to do
the following:

• Evaluate an expression before the first iteration of the command ("initialization").
• Specify an expression to determine whether the command should be performed again ("controlling

part").
• Evaluate an expression after each iteration of the command.
• Perform the command, or block, if the controlling part does not evaluate to false.

The for keyword must be lowercase and cannot be abbreviated.

for (

expression

;

expression

;

expression

)

command ;

expression
A valid z/OS Debugger C and C++ expression.

Chapter 5. z/OS Debugger commands 123

command
A valid z/OS Debugger command.

z/OS Debugger evaluates the first expression only before the command is performed for the first time. You
can use this expression to initialize a variable. If you do not want to evaluate an expression before the first
iteration of the command, you can omit this expression.

z/OS Debugger evaluates the second expression before each execution of the command. If this expression
evaluates to false, the command does not run and control moves to the command following the for
command. Otherwise, the command is performed. If you omit the second expression, it is as if the
expression has been replaced by a nonzero constant and the for command is not terminated by failure of
this expression.

z/OS Debugger evaluates the third expression after each execution of the command. You might use this
expression to increase, decrease, or reinitialize a variable. If you do not want to evaluate an expression
after each iteration of the command, you can omit this expression.

A break command can cause the execution of a for command to end, even when the second expression
does not evaluate to false. If you omit the second expression, you must use a break command to stop the
execution of the for command.

Usage notes

• The for command cannot be used while you replay recorded statements by using the PLAYBACK
commands.

Examples

• The following for command lists the value of count 20 times. The for command initially sets the
value of count to 1. After each execution of the command, count is incremented.

for (count = 1; count <= 20; count++)
 LIST TITLED count;

Alternatively, the preceding example can be written with the following sequence of commands to
accomplish the same task.

count = 1;
while (count <= 20) {
 printf("count = %d\n", count);
 count++;
}

• The following for command does not contain an initialization expression.

for (; index > 10; --index) {
 varlist[index] = var1 + var2;
 printf("varlist[%d] = %d\n", index, varlist[index]);
}

FREE command
The FREE command frees a file that is currently allocated.

FREE FILE ddname ;

ddname
Name of the file to free.

GO command
The GO command causes z/OS Debugger to start or resume running your program.

124 IBM z/OS Debugger: Reference and Messages

GO

BYPASS

;

BYPASS
Bypasses the user or system action for the condition that caused the breakpoint. It is valid only when
z/OS Debugger is entered for an:

AT CALL Breakpoint
HLL or Language Environment condition
Condition that is raised by an MVS or CICS ABEND when running without the Language
Environment run time

Usage notes

• For CICS only: The ABEND is reported whether BYPASS is or is not specified. When there is a HANDLE
ABEND, control is passed to the abend handler, and the GO BYPASS command is ignored.

• If GO is specified in a command list (for example, as the subject of an IF command or WHEN clause), all
subsequent commands in the list are ignored.

• If GO is specified within the body of a loop, it causes the execution of the loop to end.
• To suppress the logging of GO commands, use the SET ECHO command.
• GO with no operand specified does not actually resume the program if there are additional AT-

conditions that have not yet been processed.
• The GO command cannot be used while you replay recorded statements by using the PLAYBACK

commands by using the PLAYBACK command.
• You can use the GO command in remote debug mode by entering it in the Debug Console or the Action
field, which is in the Optional Parameters section of the Add a Breakpoint task.

• When a COBOL IGZ condition of severity 2 or higher occurs, GO BYPASS will bypass the condition.
When the IGZ condition is raised by a COBOL program (for example the subscript out of range message
IGZ0006S), GO BYPASS will bypass the condition and resume control back into the COBOL program.
However, be aware that control might not return to the next statement of the program that raised the
condition, since the compiler might have rearranged the statements.

Examples

• Resume execution.

GO;

• Resume execution and bypass user and system actions for the condition that caused the breakpoint.

GO BYPASS;

• Your application has abended with a protection exception, so an OCCURRENCE breakpoint has been
triggered. Correct the results of the instruction that caused the exception and issue GO BYPASS; to
continue processing as if the abend had not occurred.

Refer to the following topics for more information related to the material discussed in this topic.

Related references
“AT command” on page 37

GOTO command
The GOTO command causes z/OS Debugger to resume program execution at the specified statement id.
The GOTO keyword cannot be abbreviated. If you want z/OS Debugger to return control to you at a target
location, make sure there is a breakpoint at that location.

Chapter 5. z/OS Debugger commands 125

GOTO

GO TO

statement_id ;

Usage notes

• You can use the GOTO command if the SET WARNING is set to OFF and the runtime level allows GOTO
without compiler enablement for the following programs:

– A COBOL program compiled without hooks being inserted by the compiler and with optimization, if
you compiled with the NOEJPD suboptions of the TEST compiler option

– A program compiled with Enterprise COBOL for z/OS Version 5 or later and optimized by Automatic
Binary Optimizer for z/OS

The use of GOTO in this case might cause unpredictable behaviors, including abends, when the GOTO
command is executed or followed. You can get the best behavior of GOTO command in programs that
are compiled with OPT and TEST(NOEJPD) options in either of the following situations:

– When the target of the GOTO or JUMPTO command is a paragraph name or a section name (label).
– When the target of the GOTO or JUMPTO command is the first statement in the paragraph or section.

You can get the best behavior especially if the statements are targets of COBOL statements PERFORM
or GOTO in the COBOL program. See “SET WARNING command (C, C++, COBOL, and PL/I)” on page
263.

• You cannot use the GOTO command while you debug a disassembled program.
• If GOTO is specified in a command list (for example, as the subject of an IF command or WHEN clause),

all subsequent commands in the list are ignored.
• Statement GOTO's are not restricted if the program is compiled with minimum optimization.
• The GOTO command cannot be used while you replay recorded statements by using the PLAYBACK

command.
• For C, C++, and PL/I, statements can be removed by the compiler during optimization, specify a

reference or statement with the GOTO command that can be reached during program execution. You can
issue the LIST STATEMENT NUMBERS command to determine the reachable statements.

• PL/I allows GOTO in a command list on a call to PLITEST or CEETEST.
• In PL/I, out-of-block GOTOs are allowed. However, qualification might be needed.
• For COBOL, the GOTO command follows the COBOL language rules for the GOTO statement. You can use

the GOTO command in the following situations:

– A COBOL program compiled with hooks inserted by the compiler. If you are using Enterprise COBOL
for z/OS, Version 4, compile your program with the HOOK suboption of the TEST compiler option.
If you are using any of the following compilers, compile your program with either PATH or ALL
suboption and the SYM suboption of the TEST compiler option:

- Enterprise COBOL for z/OS and OS/390, Version 3
- COBOL for OS/390 & VM, Version 2

– A COBOL program compiled without hooks inserted by the compiler and without optimization. If you
are using Enterprise COBOL for z/OS, Version 4, compile your program with the NOHOOK suboption of
the TEST compiler option. If you are using any of the following compilers, compile your program with
the NONE suboption of the TEST compiler option:

- Enterprise COBOL for z/OS and OS/390, Version 3 Release 2 or later
- Enterprise COBOL for z/OS and OS/390, Version 3 Release 1, with APAR PQ63235 installed
- COBOL for OS/390 & VM, Version 2 Release 2
- COBOL for OS/390 & VM, Version 2 Release 1, with APAR PQ63234 installed

– A COBOL program compiled without hooks inserted by the compiler and with optimization. You must
compile your program with Enterprise COBOL for z/OS, Version 4, and specify the EJPD and NOHOOK

126 IBM z/OS Debugger: Reference and Messages

suboption of the TEST compiler option. Specifying the EJPD suboption might cause some loss of
optimization.

– For Enterprise COBOL for z/OS Version 5, programs are always compiled without hooks inserted by
the compiler. If you are using the TEST compiler option in combination with any level of the OPT
compiler option, it is recommended to use the EJPD suboption of the TEST compiler option.

• This command cannot be used if you are stopped at an AT APPEARANCE breakpoint, an AT LOAD
breakpoint, or an AT DELETE breakpoint.

Examples

• Resume execution at statement 23, where statement 23 is in a currently active block.

GOTO 23;

If there's no breakpoint at statement 23, z/OS Debugger will run from statement 23 until a breakpoint is
hit.

• Resume execution at statement 45, where statement 45 is in a currently active block.

AT 45
GOTO 45

Refer to the following topics for more information related to the material discussed in this topic.

Related tasks
IBM z/OS Debugger User's Guide

Related references
“statement_id” on page 16

GOTO LABEL command
The GOTO LABEL command causes z/OS Debugger to resume program execution at the specified
statement label. The specified label must be in the same block. If you want z/OS Debugger to return
control to you at the target location, make sure there is a breakpoint at that location.

GOTO

GO TO LABEL

statement_label

' statement_label '

;

statement_label
A valid statement label within the currently executing program or, in PL/I, a label variable.

Usage notes

• For COBOL, if a GOTO LABEL command is issued and the specified label contains an EXIT statement,
the results might be unpredictable such as an ABEND because the EXIT statement might not be
specified with a return location.

• You can use the GOTO command if the SET WARNING is set to OFF and the runtime level allows GOTO
without compiler enablement for the following programs:

– A COBOL program compiled without hooks being inserted by the compiler and with optimization, if
you compiled with the NOEJPD suboptions of the TEST compiler option

– A program compiled with Enterprise COBOL for z/OS Version 5 or later and optimized by Automatic
Binary Optimizer for z/OS

The use of GOTO in this case might cause unpredictable behaviors, including abends, when the GOTO
command is executed or followed. You can get the best behavior of GOTO command in programs that
are compiled with OPT and TEST(NOEJPD) options in either of the following situations:

– When the target of the GOTO or JUMPTO command is a paragraph name or a section name (label).
– When the target of the GOTO or JUMPTO command is the first statement in the paragraph or section.

Chapter 5. z/OS Debugger commands 127

You can get the best behavior especially if the statements are targets of COBOL statements PERFORM
or GOTO in the COBOL program. See “SET WARNING command (C, C++, COBOL, and PL/I)” on page
263.

• Use the syntax of statement_label enclosed in apostrophes (') only for LangX COBOL programs. It is not
supported in any other programming language.

• In PL/I, out-of-block GOTOs are allowed. However, qualification might be needed.
• The LABEL keyword is optional when either the target statement_label is nonnumeric or if it is qualified

(whether the actual label was nonnumeric or not).
• A COBOL statement_label can have either of the following forms:

– name

This form can be used in COBOL for reference to a section name or for a COBOL paragraph name that
is not within a section or is in only one section of the block.

– name1 OF name2 or name1 IN name2

This form must be used for any reference to a COBOL paragraph (name1) that is within a section
(name2), if the same name also exists in other sections in the same block. You can specify either OF
or IN, but z/OS Debugger always uses OF for output.

Either form can be prefixed with the usual block, compile unit, and load module qualifiers.
• For C, to be able to use the GOTO LABEL command, you must compile your program in one of the

following ways:

– With either the PATH or ALL suboption and the SYM suboption of the TEST compiler option.
– With either the PATH or ALL suboption and the SYM suboption of the DEBUG compiler option.

There are no restrictions on using labels with the GOTO LABEL command.
• For C++, to be able to use the GOTO LABEL command, you must compile your program in one of the

following ways:

– With the TEST compiler option.
– With either the PATH or ALL suboption and the SYM suboption of the DEBUG compiler option.

There are no restrictions on using labels with the GOTO LABEL command.
• For COBOL programs, you can use GOTO LABEL command if you compile your program with the

following suboptions and compilers:

– The HOOK suboption of the TEST compiler option with Enterprise COBOL for z/OS, Version 4
– The PATH or ALL suboption and the SYM suboption of the TEST compiler option with the following

compilers:

- Enterprise COBOL for z/OS and OS/390, Version 3
- COBOL for OS/390 & VM, Version 2

– For Enterprise COBOL for z/OS Version 5, programs are always compiled without hooks inserted by
the compiler. If you are using the TEST compiler option in combination with any level of the OPT
compiler option, it is recommended to use the EJPD suboption of the TEST compiler option.

The label can take one of the following forms:

– name, where name is a section name, or the name of a paragraph not within a section or in only one
section of the block.

– name1 OF name2 or name1 IN name2, where name1 is duplicated by one or more other
paragraphs in one or more other sections in the block. You can use either OF or IN, but z/OS
Debugger always displays OF in the log.

• For PL/I, you can use GOTO LABEL only if you compiled your program with either the PATH or ALL
suboption and the SYM suboption of the TEST compiler option. There are no restrictions on using labels
with GOTO LABEL and label variables are supported.

128 IBM z/OS Debugger: Reference and Messages

• GOTO LABEL is not available while debugging Enterprise PL/I programs.
• You cannot use the GOTO LABEL command while you are replaying recorded steps by using the
PLAYBACK commands.

• You cannot use the GOTO LABEL command while you debug an optimized COBOL program.
• This command cannot be used if you are stopped at an AT APPEARANCE breakpoint, an AT LOAD

breakpoint, or an AT DELETE breakpoint.

Examples

• Go to the label constant laba in block suba in program prog1.

GOTO prog1:>suba:>laba;

• Go to the label constant para OF sect1. The current programming language setting is COBOL.

GOTO LABEL para OF sect1;

Refer to the following topics for more information related to the material discussed in this topic.

Related tasks
IBM z/OS Debugger User's Guide

Related references
“statement_label” on page 17

%IF command (programming language neutral)
The %IF command lets you conditionally perform a command. You can optionally specify an ELSE clause
on the %IF command. If the test expression evaluates to false and the ELSE clause exists, the command
associated with the ELSE clause is performed. The keywords cannot be abbreviated.

%IF condition THEN command

ELSE command

;

condition
A simple relation condition valid for all supported programming languages.

command
A valid z/OS Debugger command or a BEGIN-END group containing one or more valid z/OS Debugger
commands. The z/OS Debugger commands must be valid for all supported programming languages.

When %IF commands are nested and ELSE clauses are present, a given ELSE is associated with the
closest preceding %IF clause within the same block.

Usage notes

• The IF commands that are specific to a programming language might contain restrictions or usage
notes. Those restrictions and usage notes also apply to the %IF command.

• The variable names used in condition must be syntactically valid for all supported programming
languages.

• If you want to nest %IF commands, you cannot mix them with programming language-specific IF
commands.

Refer to the following topics for more information related to the material discussed in this topic.

Related references
“BEGIN command” on page 74
“IF command (assembler, disassembly, and LangX COBOL)” on page 130
“if command (C and C++)” on page 130
“IF command (COBOL)” on page 131

Chapter 5. z/OS Debugger commands 129

“IF command (PL/I)” on page 134

IF command (assembler, disassembly, and LangX COBOL)
The IF command lets you conditionally perform a command. You can optionally specify an ELSE clause
on the IF command. If the test expression evaluates to false and the ELSE clause exists, the command
associated with the ELSE clause is performed. The IF and ELSE keywords cannot be abbreviated.

IF condition

' condition '

THEN command

ELSE command

;

condition
An assembler conditional expression.

'condition'
A LangX COBOL conditional expression enclosed in apostrophes (').

command
A valid z/OS Debugger command or a DO group containing one or more valid z/OS Debugger
Commands.

When IF commands are nested and ELSE clauses are present, a given ELSE is associated with the closest
preceding IF clause within the same block.

Usage note

You cannot use the IF command while you replay recorded statements by using the PLAYBACK
command.

Examples

• If the value of register 1 is 0, then assign 0 to variable XYZ by using the following command:

IF %R1 = 0 THEN STORAGE(XYZ)=0;

• If the value of variable XYZ is equal to 22, set a breakpoint at statement 52 by using the following
command:

IF XYZ=22 THEN AT 52;

• If the value of the LangX COBOL variable XYZ is 2, assign 0 to variable XYZ by using the following
command:

IF 'XYZ = 2' THEN 'XYZ' = '0';

if command (C and C++)
The if command lets you conditionally perform a command. You can optionally specify an else clause
on the if command. If the test expression evaluates to false and an else clause exists, the command
associated with the else clause is performed. The if and else keywords must be lowercase and cannot
be abbreviated.

if (expression) command

else command

;

expression
A valid z/OS Debugger C and C++ expression.

command
A valid z/OS Debugger command.

When if commands are nested and else clauses are present, a given else is associated with the closest
preceding if clause within the same block.

130 IBM z/OS Debugger: Reference and Messages

Usage notes

• An else clause should always be included if the if clause causes z/OS Debugger to get more input (for
example, an if containing USE or other commands that cause z/OS Debugger to be restarted because
an AT-condition occurs).

• The if command cannot be used while you replay recorded statements by using the PLAYBACK
commands by using the PLAYBACK command.

Examples

• The following example causes grade to receive the value "A" if the value of score is greater than or
equal to 90.

if (score >= 90)
 grade = "A";

• The following example shows a nested if command.

if (paygrade == 7) {
 if (level >= 0 && level <= 8)
 salary *= 1.05;
 else
 salary *= 1.04;
}
else
 salary *= 1.06;

IF command (COBOL)
The IF command lets you conditionally perform a command. You can optionally specify an ELSE clause
on the IF command. If the test expression evaluates to false and an ELSE clause exists, the command
associated with the ELSE clause is performed. The keywords cannot be abbreviated.

IF condition

THEN

command

ELSE command

END-IF ;

condition
A simple relation condition with the following form: Item-1 operator Item-2. Item-1 and Item-2
can be a data-item or a literal. The operator can be one of the following operations:

• >
• <
• =
• NOT =
• >=
• <=
• NOT <
• NOT >

command
A valid z/OS Debugger command.

When IF commands are nested and ELSE clauses are present, a given ELSE or END-IF is associated with
the closest preceding IF clause within the same block.

Chapter 5. z/OS Debugger commands 131

Unlike COBOL, z/OS Debugger requires terminating punctuation (;) after commands. The END-IF keyword
is required.

Usage notes

• An ELSE clause should always be included if the IF clause causes z/OS Debugger to get more input (for
example, an IF containing USE or other commands that cause z/OS Debugger to be restarted because
an AT-condition occurs).

• The COBOL NEXT SENTENCE phrase is not supported.
• Comparison combinations with windowed date fields are not supported.
• Comparisons between expanded date fields with different DATE FORMAT clauses are not supported.
• If the DATA option of the PLAYBACK ENABLE command is in effect, the IF command can be used while

you replay recorded statements by using the PLAYBACK commands.
• For optimized COBOL programs, the IF clause cannot reference any variables discarded by the

optimizer.
• If a COBOL variable is defined as National and it is an operand in a relation condition with an alphabetic,

alphanumeric operand, or National numeric, the operand that is not National is converted to Unicode
before that comparison is done, except for Group items. See Enterprise COBOL for z/OS Language
Reference for more information about using COBOL variables in conditional expressions.

Refer to the following topics for more information related to the material discussed in this topic.

Related references
“Allowable comparisons for the IF command (COBOL)” on page 132

Allowable comparisons for the IF command (COBOL)
The following table shows the allowable comparisons for the z/OS Debugger IF command. A description
of the codes follows the table.

For Enterprise COBOL for z/OS Version 5, z/OS Debugger supports all the same comparisons that are
supported in the COBOL language, so the following table does not apply. See the Enterprise COBOL for
z/OS Language Reference for more information.

OPERAND GR AL AN ED BI NE ANE NDI NN
DI

ID IN IDI PTR @ IF EF D1

Group (GR) NN NN NN NN NN NN NN NN1
0

NN NN NN NN

Alphabetic (AL) NN NN NN

Alpha numeric
(AN)8

NN NN NN

External Decimal
(ED)8

NN NU

Binary NN NU NU4

Numeric Edited
(NE)

NN NN

Alphanumeric
Edited (ANE)

NN NN NN

FIGCON ZERO7 NN NU NU NN NU NU NU

FIGCON1,7 NN NN NN NN NN9 NU

National Data
Item (NDI)

NN1
0

NN NN NN NN

National Numeric
Data Item (NNDI)

NN

Numeric Literal7 NN NU NU NN NU NU4 NU NU

132 IBM z/OS Debugger: Reference and Messages

OPERAND GR AL AN ED BI NE ANE NDI NN
DI

ID IN IDI PTR @ IF EF D1

Alphanumeric
Literal2,7

NN NN
3

NN NN NN NN

Alphanumeric hex
literal11

NN NN NN NN NN

Internal Decimal
(ID)8

NN NU

Index Name (IN) NN NU4 IO4 NU

Index Data Item
(IDI)

NN NU IV

Pointer Data Item
(PTR)

 NU5 NU5

Address of (@) NU5 NU5

Floating Point
Literal7

X NU NU

Internal Floating
Point (IF)

NN NU NU

External Floating
Point (EF)

NN NU NU

DBCS data item
(D1)

 NN

DBCS Literal7 NN

Address hex
Literal6

 NU5 NU5

National Literal NN1
0

NN

National Hex
Literal12

NN1
0

NN

Notes:

1. FIGCON includes all figurative constants except ZERO and ALL.
2. A alphanumeric literal must be enclosed in quotation marks (") or apostrophes ('). A quotation mark

or apostrophe embedded in the string must be followed by another quotation mark or apostrophe
when it is used as the opening delimiter.

3. Must contain only alphabetic characters.
4. Index name converted to subscript value before compare.
5. Only comparison for equal and not equal can be made.
6. Must be hexadecimal characters only, delimited by either quotation marks (") or apostrophes (') and

preceded by H.
7. Constants and literals can also be compared against constants and literals of the same type.
8. Comparisons using windowed date fields are not supported.
9. The figurative constants HIGH-VALUES and LOW-VALUES are not allowed in comparisons with

national data items.
10. Conversion of internal format is not done before the comparison.
11. Must be hexadecimal characters only, delimited by either quotation marks (") or apostrophes (') and

preceded by X.
12. Must be hexadecimal characters only, delimited by either quotation marks (") or apostrophes (') and

preceded by NX.

Chapter 5. z/OS Debugger commands 133

Allowable comparisons are comparisons as described in IBM OS Full American National Standard COBOL
for the following:
NN

Nonnumeric operands
NU

Numeric operands
IO

Two index names
IV

Index data items
X

High potential for user error

Refer to the following topics for more information related to the material discussed in this topic.

Related references
IBM OS Full American National Standard COBOL

IF command (PL/I)
The IF command lets you conditionally perform a command. You can optionally specify an ELSE clause
on the IF command. If the test expression evaluates to false and an ELSE clause exists, the command
associated with the ELSE clause is performed. The keywords cannot be abbreviated.

IF expression THEN command

ELSE command

;

expression
A valid z/OS Debugger PL/I expression.

If necessary, the expression is converted to a BIT string.

command
A valid z/OS Debugger command.

When IF commands are nested and ELSE clauses are present, a given ELSE is associated with the closest
preceding IF clause within the same block.

Usage notes

• An ELSE clause should always be included if the IF clause causes z/OS Debugger to get more input (for
example, an IF containing USE or other commands that cause z/OS Debugger to be restarted because
an AT-condition occurs).

• The if command cannot be used while you replay recorded statements by using the LAYBACK
commands.

Examples

• If the value of array1 is equal to the value of array2, go to the statement with label constant
label_1. Execution of the user program continues at label_1. If array1 does not equal array2, the
GOTO is not performed and control is passed to the user program.

IF array1 = array2 THEN GOTO LABEL label_1; ELSE GO;

• Set a breakpoint at statement 23, which will test if variable j is equal to 10, display the names and
values of variables rmdr, totodd, and terms(j). If variable j is not equal to 10, continue program
execution.

AT 23 IF j = 10 THEN LIST TITLED (rmdr, totodd, terms(j)); ELSE GO;

134 IBM z/OS Debugger: Reference and Messages

IMMEDIATE command (full-screen mode)
The IMMEDIATE command causes a command within a command list to be performed immediately. It is
intended for use with commands assigned to a PF key.

IMMEDIATE can only be entered as an unnested command or within a compound command.

Prefix the PF key definitions for the FIND, FINDBP, RETRIEVE, SCROLL, and WINDOW commands with the
IMMEDIATE command so that these commands work when you enter a group of commands.

IMMEDIATE command ;

command
One of the following z/OS Debugger commands:

• FIND
• FINDBP
• RETRIEVE
• SCROLL commands

BOTTOM
DOWN
LEFT
NEXT
RIGHT
TO
TOP
UP

• WINDOW commands

CLOSE
OPEN
SIZE
ZOOM

Usage notes

• The IMMEDIATE command is not logged.

Examples

• Specify that the WINDOW OPEN LOG command be immediately effective.

IMMEDIATE WINDOW OPEN LOG;

• Specify that the SCROLL BOTTOM command be immediately effective.

IMMEDIATE SCROLL BOTTOM;

INPUT command (C, C++, and COBOL)
The INPUT command provides input for an intercepted read and is valid only when there is a read pending
for an intercepted file. The INPUT keyword cannot be abbreviated.

INPUT text ;

text
Specifies text input to a pending read.

Usage notes

Chapter 5. z/OS Debugger commands 135

• The text consists of everything between the INPUT keyword and the semicolon (or end-of-line). Any
leading or trailing blanks are removed by z/OS Debugger.

• If a semicolon (;) is included as part of the text, the text must be surrounded in quotation marks (") or
apostrophes (') and conform to the syntax rules for a character string constant enclosed in quotation
marks or apostrophes for the current programming language.

• If the text contains a quotation mark (") or apostrophe ('), the quotation mark or apostrophe must be
followed by a matching quotation mark or apostrophe.

• This command is not supported for CICS.
• To set interception to and from a file, use the SET INTERCEPT (C, C++, and COBOL) command.
• The INPUT command cannot be used while you replay recorded statements by using the PLAYBACK

commands.

Example

You have used SET INTERCEPT ON to make z/OS Debugger prompt you for input to a sequential file. The
prompt and the file's name appears in the Command Log.

To substitute the input that would have come from the DD name specified by the SET INTERCEPT ON
command with your desired input, enter:

INPUT text you want to input ;

Program input is recorded in your Log window.

A closing semicolon (;) is required for this command. Everything between the INPUT keyword and the
semicolon is considered input text. If you want to include a semicolon, you must enter your input as
a valid character string for your programming language. If you want to include a quotation mark (")
or apostrophe (') in your input, you must follow each quotation mark or apostrophe with a matching
quotation mark or apostrophe and enter the input as a valid character string for your programming
language.

Indicate that the phrase "quick brown fox" is input to a pending read. The phrase is written to the file.

INPUT quick brown fox;

Refer to the following topics for more information related to the material discussed in this topic.

Related references
“SET INTERCEPT command (C and C++)” on page 232
“SET INTERCEPT command (COBOL, full-screen mode, line mode, batch mode)” on page 233

JUMPTO command
The JUMPTO command moves the point at which the program resumes running to the specified statement
but does not resume running the program.

JUMPTO

JUMP TO

statement_id ;

Usage notes

• You can use the JUMPTO command if the SET WARNING is set to OFF and the runtime level allows
JUMPTO without compiler enablement for the following programs:

– A COBOL program compiled without hooks being inserted by the compiler and with optimization, if
you compiled with the NOEJPD suboptions of the TEST compiler option

– A program compiled with Enterprise COBOL for z/OS Version 5 or later and optimized by Automatic
Binary Optimizer for z/OS

136 IBM z/OS Debugger: Reference and Messages

The use of JUMPTO in this case might cause unpredictable behaviors, including abends, when the
JUMPTO command is executed or followed. You can get the best behavior of JUMPTO in programs that
are compiled with OPT and TEST(NOEJPD) options in either of the following situations:

– When the target of the GOTO or JUMPTO command is a paragraph name or a section name (label).
– When the target of the GOTO or JUMPTO command is the first statement in the paragraph or section.

You can get the best behavior especially if these statements are targets of COBOL statements PERFORM
or GOTO in the COBOL program. See “SET WARNING command (C, C++, COBOL, and PL/I)” on page
263.

• You cannot use the JUMPTO command while you debug a disassembled program.
• If you specify the JUMPTO command in a command list (for example, as the subject of an IF command

or WHEN clause), all subsequent commands in the list are ignored.
• If the program is compiled with minimum optimization, the JUMPTO command is not restricted to
specific statements.

• You cannot use the JUMPTO command while you replay recorded statements by using the PLAYBACK
command.

• For C, C++, and PL/I programs, statements can be removed by the compiler during optimization. Specify
a reference or statement for the JUMPTO command that can be reached while the program is running.
You can use the LIST STATEMENT NUMBERS command to determine the statements that can be
reached.

• For PL/I programs, you can use JUMPTO in a command list on a call to PLITEST or CEETEST.
• For PL/I programs, you cannot specify a statement that is out of the currently active block. However, you

might have to qualify the statement.
• For COBOL programs, the JUMPTO command follows the COBOL language rules that apply to the GOTO

statement. You can use the JUMPTO command in the following situations:

– A COBOL program compiled with hooks inserted by the compiler. If you are using Enterprise COBOL
for z/OS, Version 4, compile your program with the HOOK suboption of the TEST compiler option.
If you are using any of the following compilers, compile your program with either PATH or ALL
suboption and the SYM suboption of the TEST compiler option:

- Enterprise COBOL for z/OS and OS/390, Version 3
- COBOL for OS/390 & VM, Version 2

– A COBOL program compiled without hooks inserted by the compiler and without optimization. If you
are using Enterprise COBOL for z/OS, Version 4, compile your program with the NOHOOK suboption of
the TEST compiler option. If you are using any of the following compilers, compile your program with
the NONE suboption of the TEST compiler option:

- Enterprise COBOL for z/OS and OS/390, Version 3 Release 2 or later
- Enterprise COBOL for z/OS and OS/390, Version 3 Release 1, with APAR PQ63235 installed
- COBOL for OS/390 & VM, Version 2 Release 2
- COBOL for OS/390 & VM, Version 2 Release 1, with APAR PQ63234 installed

– A COBOL program compiled without hooks inserted by the compiler and with optimization. You must
compile your program with Enterprise COBOL for z/OS, Version 4, and specify the EJPD and NOHOOK
suboption of the TEST compiler option. Specifying the EJPD suboption might cause some loss of
optimization.

– For Enterprise COBOL for z/OS Version 5, programs are always compiled without hooks inserted by
the compiler. If you are using the TEST compiler option in combination with any level of the OPT
compile option, it is recommended to use the EJPD suboption of the TEST compile option.

• You can use the JUMPTO command in remote debug mode by entering it in the Debug Console or the
Action field, which is in the Optional Parameters section of the Add a Breakpoint task.

• This command cannot be used if you are stopped at an AT APPEARANCE breakpoint, an AT LOAD
breakpoint, or an AT DELETE breakpoint.

Chapter 5. z/OS Debugger commands 137

Example

You want to jump to statement 24 and then stop there. Enter the following command:

JUMPTO 24;

Refer to the following topics for more information related to the material discussed in this topic.

Related tasks
IBM z/OS Debugger User's Guide

Related references
“statement_id” on page 16

JUMPTO LABEL command
The JUMPTO LABEL command moves the point at which the program resumes running to the specified
label but does not resume running the program.

JUMPTO

JUMP TO LABEL

statement_label

' statement_label '

;

statement_label
A valid statement label within the currently executing program or, in PL/I, a label variable.

Usage notes

• For COBOL, if a JUMPTO LABEL command is issued and the specified label contains an EXIT statement,
the results might be unpredictable such as an ABEND because the EXIT statement might not be
specified with a return location.

• You can use the JUMPTO command if the SET WARNING is set to OFF and the runtime level allows
JUMPTO without compiler enablement for the following programs:

– A COBOL program compiled without hooks being inserted by the compiler and with optimization, if
you compiled with the NOEJPD suboptions of the TEST compiler option

– A program compiled with Enterprise COBOL for z/OS Version 5 or later and optimized by Automatic
Binary Optimizer for z/OS

The use of JUMPTO in this case might cause unpredictable behaviors, including abends, when the
JUMPTO command is executed or followed. You can get the best behavior of JUMPTO in programs that
are compiled with OPT and TEST(NOEJPD) options in either of the following situations:

– When the target of the GOTO or JUMPTO command is a paragraph name or a section name (label).
– When the target of the GOTO or JUMPTO command is the first statement in the paragraph or section.

You can get the best behavior especially if these statements are targets of COBOL statements PERFORM
or GOTO in the COBOL program. See “SET WARNING command (C, C++, COBOL, and PL/I)” on page
263.

• Use the syntax of statement_label enclosed in apostrophes (') only for LangX COBOL programs. It is not
supported in any other programming language.

• In PL/I, out-of-block JUMPTOs are allowed. However, qualification might be needed.
• The LABEL keyword is optional when either the target statement_label is nonnumeric or if it is qualified

(whether the actual label was nonnumeric or not). A COBOL statement_label can have either of the
following forms:

– name

This form can be used in COBOL for reference to a section name or for a COBOL paragraph name that
is not within a section or is in only one section of the block.

138 IBM z/OS Debugger: Reference and Messages

– name1 OF name2 or name1 IN name2

This form must be used for any reference to a COBOL paragraph (name1) that is within a section
(name2), if the same name also exists in other sections in the same block. You can specify either OF
or IN, but z/OS Debugger always uses OF for output.

Either form can be prefixed with the usual block, compile unit, and load module qualifiers.
• For C, to be able to use the JUMPTO LABEL command, you must compile your program in one of the

following ways:

– With either the PATH or ALL suboption and the SYM suboption of the TEST compiler option.
– With either the PATH or ALL suboption and the SYM suboption of the DEBUG compiler option.

There are no restrictions on using labels with the JUMPTO LABEL command.
• For C++, to be able to use the JUMPTO LABEL command, you must compile your program in one of the

following ways:

– With the TEST compiler option.
– With either the PATH or ALL suboption and the SYM suboption of the DEBUG compiler option.

There are no restrictions on using labels with the JUMPTO LABEL command.
• For COBOL programs, you can use JUMPTO LABEL command if you compile your program with the

following suboptions and compilers:

– The HOOK suboption of the TEST compiler option with Enterprise COBOL for z/OS, Version 4
– The PATH or ALL suboption and the SYM suboption of the TEST compiler option with the following

compilers:

- Enterprise COBOL for z/OS and OS/390, Version 3
- COBOL for OS/390 & VM, Version 2

– For Enterprise COBOL for z/OS Version 5, programs are always compiled without hooks inserted by
the compiler. If you are using the TEST compiler option in combination with any level of the OPT
compiler option, it is recommended to use the EJPD suboption of the TEST compiler option.

The label can take one of the following forms:

– name, where name is a section name, or the name of a paragraph not within a section or in only one
section of the block.

– name1 OF name2 or name1 IN name2, where name1 is duplicated by one or more other
paragraphs in one or more other sections in the block. You can use either OF or IN, but z/OS
Debugger always displays OF in the log.

• For PL/I, you can use JUMPTO LABEL only if you compiled your program with either the PATH or ALL
suboption and the SYM suboption of the TEST compiler option. There are no restrictions on using labels
with JUMPTO LABEL and label variables are supported.

• JUMPTO LABEL is not available while debugging Enterprise PL/I programs.
• You cannot use the JUMPTO LABEL command while you are replaying recorded steps by using the
PLAYBACK commands.

• You cannot use the JUMPTO LABEL command while you debug an optimized COBOL program.

Examples

• Jump to the label constant laba in block suba in program prog1.

JUMPTO prog1:>suba:>laba;

• Jump to the label constant para OF sect1. The current programming language setting is COBOL.

JUMPTO LABEL para OF sect1;

Refer to the following topics for more information related to the material discussed in this topic.

Chapter 5. z/OS Debugger commands 139

Related tasks
IBM z/OS Debugger User's Guide

Related references
“statement_label” on page 17

LIST command
The LIST command displays information about a program such as values of specified variables,
structures, arrays, registers, statement numbers, frequency information, and the flow of program
execution. The LIST command can be used to display information in any enclave. All information
displayed will be saved in the log file.

The following table summarizes the forms of the LIST command.

Command Description

“LIST (blank) command” on page
141

Displays Source Identification panel

“LIST AT command” on page 141 Lists the currently defined breakpoints.

“LIST CALLS command” on page
144

Displays the dynamic chain of active blocks.

“LIST CC command” on page 145 Lists code coverage data.

“LIST CONTAINER command” on
page 147

Displays the contents of a container.

“LIST CURSOR command (full-
screen mode)” on page 148

Displays the variable pointed to by the cursor.

“LIST DTCN or CADP command” on
page 149

List the load modules, programs, and compile units that were
disabled by the DISABLE command.

“LIST expression command” on
page 149

Displays values of expressions.

“LIST FREQUENCY command” on
page 155

Lists statement execution counts.

“LIST LAST command” on page
155

Displays a list of recent entries in the history table.

“LIST LDD command” on page 156 Displays a list of LOADDEBUGDATA (LDD) commands known
to z/OS Debugger.

“LIST LINE NUMBERS command” on
page 157

Lists all line numbers that are valid locations for an AT LINE
breakpoint.

“LIST LINES command” on page
157

Lists one or more lines from the current listing or source file
displayed in the Source window.

“LIST MONITOR command” on page
157

Lists the current set of MONITOR commands.

“LIST NAMES command” on page
157

Lists the names of variables, programs, or z/OS Debugger
procedures.

“LIST ON (PL/I) command” on
page 160

Lists the action (if any) currently defined for the specified PL/I
conditions.

140 IBM z/OS Debugger: Reference and Messages

Command Description

“LIST PROCEDURES command” on
page 160

Lists the commands contained in the specified z/OS Debugger
procedure.

“LIST REGISTERS command” on
page 161

Displays the current register contents.

“LIST STATEMENT NUMBERS
command” on page 162.

Lists all statement numbers that are valid locations for an AT
STATEMENT breakpoint.

“LIST STATEMENTS command” on
page 162

Lists one or more statements from the current listing or
source file displayed in the Source window.

“LIST STORAGE command” on page
163

Provides a dump-format display of storage.

“LIST TRACE LOAD command” on
page 165

Lists the load modules or DLLs in the TRACE LOAD table.

LIST (blank) command
Displays the Source Identification panel, where you associate compile units with the names of their
respective listing, source, or separate debug file. This association controls what z/OS Debugger displays in
the Source window. LIST is equivalent to PANEL LISTINGS and PANEL SOURCES.

Refer to the following topics for more information related to the material discussed in this topic.

Related references
“PANEL command (full-screen mode)” on page 183

LIST AT command
Lists the currently defined breakpoints, including the action taken when the specified breakpoint is
activated. If no action is defined, z/OS Debugger displays the NULL command.

Chapter 5. z/OS Debugger commands 141

LIST

AT_command

AT

ENABLED

DISABLED

ALLOCATE

APPEARANCE

CALL

CHANGE

DATE

DELETE

ENTRY

EXIT

GLOBAL ALLOCATE

APPEARANCE

CALL

DATE

DELETE

ENTRY

EXIT

LABEL

LINE

LOAD

PATH

STATEMENT

SUSPENDED

LABEL

LINE

LOAD

OCCURRENCE

OFFSET

PATH

STATEMENT

SUSPENDED

TERMINATION

;

AT_command
A valid AT command that includes at least one operand. The AT command must be complete except
that the every_clause and command are omitted.

ENABLED
Restricts the list to enabled breakpoints. The default is to list both enabled and disabled breakpoints.

DISABLED
Restricts the list to disabled breakpoints. The default is to list both enabled and disabled breakpoints.

ALLOCATE
Lists currently defined AT ALLOCATE breakpoints.

APPEARANCE
Lists currently defined AT APPEARANCE breakpoints.

142 IBM z/OS Debugger: Reference and Messages

CALL
Lists currently defined AT CALL breakpoints.

CHANGE
Lists currently defined AT CHANGE breakpoints. This displays the storage address and length for all
AT CHANGE subjects, and shows how they were specified (if other than by the %STORAGE function).

DATE
Lists currently defined AT DATE breakpoints.

DELETE
Lists currently defined AT DELETE breakpoints.

ENTRY
Lists currently defined AT ENTRY breakpoints.

EXIT
Lists currently defined AT EXIT breakpoints.

GLOBAL
Lists currently defined AT GLOBAL breakpoints for the specified AT-condition.

LABEL
Lists currently defined AT LABEL breakpoints.

LINE
Lists currently defined AT LINE or AT STATEMENT breakpoints. LINE is equivalent to STATEMENT.

LOAD
Lists currently defined AT LOAD breakpoints.

OCCURRENCE
Lists currently defined AT OCCURRENCE breakpoints.

OFFSET
Lists currently defined AT OFFSET breakpoints.

PATH
Lists currently defined AT PATH breakpoints.

STATEMENT
Is equivalent to LINE.

SUSPENDED
Lists all suspended breakpoints.

TERMINATION
Lists currently defined AT TERMINATION breakpoint.

If the AT command type (for example, LOAD) is not specified, LIST AT lists all currently defined
breakpoints (both disabled and enabled).

Usage notes

• To display a global breakpoint, you can specify an asterisk (*) with the LIST AT command or you can
specify a LIST AT GLOBAL command. For example, if you want to display an AT ENTRY * breakpoint,
specify:

LIST AT ENTRY *;
or
LIST AT GLOBAL ENTRY;

If you have only a global breakpoint set and you specify LIST AT ENTRY without the asterisk (*) or
GLOBAL keyword, you get a message saying there are no such breakpoints.

• The LIST AT command cannot be used while you replay recorded statements by using the PLAYBACK
commands.

Examples

• Display information about enabled breakpoints defined at block entries.

Chapter 5. z/OS Debugger commands 143

LIST AT ENABLED ENTRY;

• Display information about global DATE breakpoint entries.

LIST AT DATE *;

• Display breakpoint information for all disabled AT CHANGE breakpoints within the currently executing
program.

LIST AT DISABLED CHANGE;

• The current programming language setting is C. Here are some assorted LIST AT commands.

LIST AT LINE 22;

or

LIST AT OCCURRENCE SIGSEGV;

or

LIST AT CHANGE structure.un.m;

Refer to the following topics for more information related to the material discussed in this topic.

Related references
“AT command” on page 37

LIST AT command (remote debug mode)
Lists the currently defined AT GLOBAL LABEL or AT LABEL breakpoints.

LIST AT GLOBAL LABEL

LABEL

*

;

GLOBAL
Lists whether the AT GLOBAL LABEL breakpoint is defined

LABEL
Lists the AT LABEL breakpoints that are defined.

Usage notes

• To display a global breakpoint, you can specify an asterisk (*) with the LIST AT LABEL command, or
you can specify a LIST AT GLOBAL command. For example, if you want to display an AT LABEL *
breakpoint, specify:

LIST AT LABEL *;

or

LIST AT GLOBAL LABEL;
• If you have only a global breakpoint set and you specify LIST AT LABEL command without either an

asterisk (*) or GLOBAL keyword, you get a message that says such breakpoints do not exist.

LIST CALLS command
Displays the dynamic chain of active blocks. For languages without block structure, this is the CALL chain.
Under z/OS batch and TSO, LIST CALLS lists the call chain of the current active enclave in the process.

LIST CALLS ;

144 IBM z/OS Debugger: Reference and Messages

Usage notes

• For Enterprise COBOL for z/OS Version 5, when a program contains nested programs and your current
execution point is inside one of these nested programs, the output of LIST CALLS command shows the
main program and the nested programs.

Example:

– At ENTRY in COBOL program

NEST3TS ::> MYMAIN :> EST1A :> NT2A :> ESA
– From LINE 62.1 in COBOL program

NEST3TS ::> MYMAIN :> MAI :> NEST1A :> NEST2A
– From LINE 42.1 in COBOL program

NEST3TS::> MYMAIN :> MYMN :> NT1A
– From LINE 19.1 in COBOL program

NEST3TS::> MYMAIN :> MYMAIN

NEST1A, NEST2A, and NEST3A are all nested programs.
• For Enterprise COBOL for z/OS Version 5, if the actual execution of your program is in one of the

declarative sections, the output of the LIST CALLS command shows an extra entry for the declarative.
• For programs containing interlanguage communication (ILC), routines from previous enclaves are only

listed if they are written in a language that is active in the current enclave.
• If the enclave was created with the system() function, compile units in parent enclaves are not listed.
• If you are debugging a program that does not follow the standard linkage conventions for R13, R14, and
R15, the output of the LIST CALLS command can be incorrect or incomplete.

• If you are debugging a disassembled program and you encounter one of the following situations:

– The registers' save area has not been created.
– The registers are not chained to the other save areas.

Some of the programs or CSECTs in the call chain are not displayed.
• The LIST CALLS command cannot be used while you replay recorded statements by using the
PLAYBACK commands.

Example

Display the current dynamic chain of active blocks.

LIST CALLS;

LIST CC command
Lists code coverage data.

LIST CC
NOTEXECUTED

EXECUTED

ALL

NOSOURCE

SOURCE

;

NOTEXECUTED
Lists all unexecuted statements in all of the CUs in the scope of the CC START command.

EXECUTED
Lists all executed statements in all of the CUs in the scope of the CC START command.

Chapter 5. z/OS Debugger commands 145

ALL
Lists all statements in all of the CUs in the scope of the CC START command, indicating which have
been executed and which have not.

SOURCE
Displays the source statement.

NOSOURCE
Specifies that the source statement will not be displayed.

Usage notes

• LIST CC lists all captured code coverage data.
• A lowercase ‘x’ following the statement number indicates that the statement was executed. If the ‘x’ is

not present, the statement was not executed.
• CC START must be in effect for code coverage data to exist.
• CC STOP causes all code coverage data to be deleted.

Examples

The following examples show the output displayed in the z/OS Debugger Log.

LIST CC;

In this example, the user enters CC START in IBTH013.

0059 Code Coverage: not executed in IBTH013
0060 76.1
0063 79.1
0069 Total Statements=50 Total Statements Executed=25 Percent
Executed=50

LIST CC Executed;

In this example, the user enters CC START in IBTH013.

0059 Code Coverage: executed in IBTH013
0061 77.1 x
0062 78.1 x
0063 80.1 x
0064 Total Statements=24 Total Statements Executed=10 Percent
Executed=42

LIST CC SOURCE;

In this example, the user enters CC START in IBTH013 and has entry break points set in IBTH013A and
IBTH013B.

0059 Code Coverage: not executed in IBTH013
0060 76.1
0061 76 DISPLAY "IBTH013 - COBOL MAIN BEGINNING".
0062 79.1
0063 79 MOVE SPACES TO WK-TEXT-128-G
0064 Total Statements=24 Total Statements Executed=10 Percent Executed=42
0065 Code Coverage: not executed in IBTH013A
0066 45.1
0067 45 MOVE 0 TO WK-TIME.
0065 Total Statements=48 Total Statements Executed=20 Percent Executed=42
0066 Code Coverage: not executed in IBTH013B
0067 1103.1
0068 1103 MOVE SPACES TO WK-TEXT-128-G.
0069 Total Statements=72 Total Statements Executed=30 Percent
Executed=42

LIST CC ALL SOURCE;

In this example, the user enters CC START in IBTH013.

0059 Code Coverage: All in IBTH013
0060 76.1
0061 76 DISPLAY "IBTH013 - COBOL MAIN BEGINNING".
0062 77.1 x

146 IBM z/OS Debugger: Reference and Messages

0063 77 MOVE SPACES TO PROG.
0064 78.1 x
0065 78 MOVE SPACES TO ZED.
0066 79.1
0067 79 MOVE SPACES TO WK-TEXT-128-G.
0068 80.1 x
0069 80 END.
0069 Total Statements=50 Total Statements Executed=25 Percent
Executed=50

Related references
“CC command” on page 85

LIST CONTAINER command
Displays the contents of a container.

LIST CONTAINER

channel_name

container_name

(index)

(sub_string_start : sub_string_end)

(sub_string_start :: sub_string_length)

XML

(EBCDIC

ASCII

CODEPAGE (ccsid)

)

;

channel_name
The name of the channel that z/OS Debugger searches through to find a container. If you do not
provide a channel name, z/OS Debugger searches through the current channel.

container_name
The name of the container.

index
A decimal or hexadecimal value indicating the location of a single byte in the container to display.

sub_string_start
A decimal or hexadecimal value indicating the starting location of a series of bytes to display.

sub_string_end
A decimal or hexadecimal value indicating the ending location of a series of bytes to display.

sub_string_length
A decimal or hexadecimal value indicating the number of bytes to display.

XML
Indicates that the specified area contains a complete XML 1.0 or 1.1 document. The specified area is
passed to the z/OS XML parser for processing. If the parser detects any syntax errors, the error data
is shown in the z/OS Debugger log. Otherwise, z/OS Debugger displays a formatted version of the XML
document in the z/OS Debugger log.

EBCDIC
Indicates that the specified area contains EBCDIC characters.

ASCII
Indicates that the specified area contains ASCII characters.

CODEPAGE
Indicates that the specified area contains characters in the specified code page.

Chapter 5. z/OS Debugger commands 147

ccsid
Specifies the Coded Character Set Identifiers used to encode the XML. z/OS Debugger uses the z/OS
Unicode Services to convert the characters in the XML from this code page to the code page specified
by the EQAOPTS CODEPAGE command before the characters are displayed on the 3270 terminal. The
ccsid can be a decimal number in the range 1 to 65535.

Usage notes

• You can use the LIST CONTAINER command in remote debug mode, except for the XML option.
• For PL/I, COBOL, LangX COBOL, assembler, and disassembly, if the name is mixed case or case

sensitive, you must enclose the name in quotation marks (") or apostrophes (').
• For C and C++, the name is always treated as case sensitive, even if it is not enclosed in quotation marks

(").
• XML is supported only when you run on z/OS Version 1.8 or later.
• If you specify XML but not EBCDIC, ASCII, nor CODEPAGE, z/OS Debugger attempts to detect if the

encoding of the XML document is EBCDIC or ASCII.
• Some information in the XML document (for example, most of the DTD specification and some white

space) might not be listed because the z/OS XML parser does not return it to z/OS Debugger.

Examples

• For PL/I, COBOL, LangX COBOL, assembler, or disassembly, enter the following command to display two
bytes, starting at the first byte, of container CONNAME, which is in channel CHNAME:

LIST CONTAINER CHNAME CONNAME (1 :: 2);

• For PL/I, COBOL, LangX COBOL, assembler, or disassembly, enter the following command to display two
bytes, starting at the first byte, of container CONNAME, which is in channel chname:

LIST CONTAINER 'chname' CONNAME (1 :: 2);

• For C/C++, enter the following command to display the contents of container conName, which is in the
current channel:

LIST CONTAINER conName;

Refer to the following topics for more information related to the material discussed in this topic.

Related tasks
"Displaying containers and channels" in the IBM z/OS Debugger User's Guide
Related references
“DESCRIBE command” on page 103
Appendix A, “z/OS Debugger commands supported in Debug Tool compatibility mode,” on page 517

LIST CURSOR command (full-screen mode)
Provides a cursor controlled method for displaying variables, structures, and arrays. It is most useful
when assigned to a PF key.

LIST
CURSOR

;

Usage notes

• Cursor pointing can be used by typing the LIST CURSOR command on the command line and moving
the cursor to a variable in the Source window before pressing Enter, or by moving the cursor and
pressing a PF key with the LIST CURSOR command assigned to it.

• When you use the LIST CURSOR command for a variable that is located by the cursor position, the
variable's name nor its full qualification cannot be split across different lines of the source listing.

148 IBM z/OS Debugger: Reference and Messages

• If the DATA option of the PLAYBACK ENABLE command is in effect for the current compile unit, the
LIST CURSOR command can be used while you replay recorded statements by using the PLAYBACK
commands.

• For optimized COBOL programs, you cannot use the LIST CURSOR command to display the value of
variables discarded by the optimizer.

Examples

• Display the value of the variable at the current cursor position.

LIST CURSOR

• A COBOL program has a statement of the form:

MOVE a TO b
OF c

You cannot use the LIST CURSOR on the variable b because part of its qualification (OF c) is on the
next line.

LIST DTCN or CADP command
List the programs and compile units that were disabled by the DISABLE CADP or DISABLE DTCN
command.

LIST DTCN

CADP

;

DTCN
List the load modules and compile units that were disabled by the DISABLE DTCN command.

CADP
List the programs and compile units that were disabled by the DISABLE CADP command.

Usage note

You can use the LIST DTCN or LIST CADP command in remote debug mode.

Refer to the following topics for more information related to the material discussed in this topic.

Related references
“ENABLE command” on page 113
“DISABLE command” on page 107
Appendix A, “z/OS Debugger commands supported in Debug Tool compatibility mode,” on page 517

LIST expression command
Displays values of expressions.

Chapter 5. z/OS Debugger commands 149

LIST

TITLED

UNTITLED

expression

' expression '

GROUP
1

reference

(

,

expression

' expression '

GROUP
1

reference

)

TITLED

*

FS

WSS

LS

LOS

;

Notes:
1 Only for COBOL.

TITLED
Displays each expression in the list with its value. For PL/I, this is the default. For C and C++, this
is the default for expressions that are lvalues. For COBOL, this is the default except for expressions
consisting of only a single constant. For assembler, disassembly, and LangX COBOL, this is the default
for expressions that are valid as receivers of a z/OS Debugger assembler assignment statement.

If you specify TITLED with no keyword, all variables in the currently qualified block are listed. If you
specify TITLED with an asterisk (*) and you are debugging a C, C++, or COBOL program, all variables
in the currently qualified compile unit are listed.

If you are debugging a COBOL program, the following additional options are available with TITLED:

FS
Lists all variables defined in the COBOL File Section in the currently qualified compile unit.

WSS
Lists all variables defined in the COBOL Working-Storage Section in the currently qualified compile
unit.

LS
Lists all variables defined in the COBOL Linkage Section in the currently qualified compile unit.

LOS
List all variables defined in the COBOL Local-Storage Section in the currently qualified compile
unit.

* (C, C++, and COBOL)
Lists all variables in the currently qualified compile unit.

UNTITLED
Lists expression values without displaying the expressions themselves. For C and C++, this is the
default for expressions that are not lvalues. For COBOL, this is the default for expressions consisting
of only a single constant. For assembler, disassembly, and LangX COBOL, this is the default for
expressions that are not valid as receivers of a z/OS Debugger assembler assignment statement. For
the LIST command, an expression also includes character strings enclosed in either quotation marks
(") or apostrophes ('), depending on the current programming language.

In C and COBOL, expressions containing parentheses () must be enclosed in another set of
parentheses when used with the LIST command as in example LIST ((x + y) ⁄ z);.

150 IBM z/OS Debugger: Reference and Messages

GROUP (COBOL)
Displays a reference as an EBCDIC character string. If you specify GROUP on an elementary item, it
has no effect. The operand following the GROUP keyword must be a reference; for example, LIST
TITLED GROUP y;. You cannot specify expressions.

expression
An expression valid in the current programming language other than LangX COBOL.

'expression'
A valid LangX COBOL expression enclosed in apostrophes (').

Usage notes

• For Enterprise COBOL for z/OS Version 5, this command has the following usage notes:

– When you use the LIST command to display a record or group, the levels of the record or group are
shown as they are declared in the program.

– When you use the LIST command on an array (table), the output shows the value of each array
element, one per line. The output changes in the following ways:

- The subscripts for each array element are shown in parentheses after the name of the array. This
matches how array subscripts are specified in COBOL. Previously, each line of the output had the
word "SUB" at the beginning, and the subscripts were shown in parentheses after this word.

- If the array has subordinate data items, which means the elements are groups but not scalars, the
value of each subordinate data item is displayed for an array element before the values of the next
array element are displayed. In other words, array element n is displayed before array element
n+1. The output better reflects how the array is organized in memory.

– When you use the LIST command to list a single member of an array, the output is the same as a
variable of the given type.

Examples:

Given these arrays:

5 ARR1 OCCURS 2 TIMES INDEXED BY IX1.
 10 X PIC 99 USAGE BINARY.
 10 Y PIC 99 USAGE BINARY.
5 ARR2 PIC 9 USAGE BINARY OCCURS 2 TIMES INDEXED BY IX2.

The output is as follows:

LIST ARR1 (1) ;
10 X of 05 ARR1 = 00001
10 Y of 05 ARR1 = 00002

LIST ARR2 (1) ;
ARR2 (1) = 00000

– The output of LIST %EPA when inside a declarative section shows the internal entry point of the
declarative but not the entry point of the program.

– When you use the LIST TITLED * command, only those variables for active blocks are shown.
– When you use the LIST expression command to display the value of an element of an array and

you do not specify an array subscript or index, the value of the first element is displayed. That is, it
defaults to Index = 1.

– You cannot use index data items as an index name when you reference an array element. For
example, if you have the following declaration in your program, 77 IXDI1 USAGE IS INDEX, you
cannot use IXDI1 as index in LIST ARR(IXDI1).

– The number of digits that are displayed after you use the LIST command for a numerical value is
consistent with what is specified in the Enterprise COBOL for z/OS Version 5 Programming Guide.

– The result of displaying an expression with the LIST command shows the sign if either operand is
signed. In the following example, LIST SIGNED_ONE + TWO = +0003, the first operand is signed.

Chapter 5. z/OS Debugger commands 151

– When you use the LIST command to display a variable of National type, the output shows the N
prefix. Example: NAT= N'abcde'.

– You cannot display the values of variables in a Nested Program (block) if they are declared in the
Local or Linkage Section and the Nested Program (block) is not active.

– When you use the LIST TITLED command, the output that displays the value of a variable that has
unprintable character is shown as dots. It shows HEX values only if you use %HEX.

– For an object-oriented program, if a variable name is a part of both the Object name and the Method
name, and you use the LIST command with this variable, you can get an error message to indicate
that it is ambiguous.

– The DBCS string is prefixed with a G, for example, V_-DBCS = G'DBCS string'.
• For COBOL programs, if you want to use the LIST TITLED command with a variable that is named FS,

WSS, LS, or LOS, you must enclose the name of the variable in parenthesis. For example, the command
LIST TITLED (FS) lists the variable FS; the command LIST TITLED FS lists the variables in the
File Section.

• z/OS Debugger allows you to abbreviate many commands. This might result in unexpected results when
you use the LIST command with a single-letter expression. For example, LIST A can be interpreted as
the LIST AT command, which lists all breakpoints. However, if you wanted to display the value of a
variable labeled A in your program, you need to use parenthesis: LIST (A).

• If LIST TITLED * is specified and your compile unit is large, slow performance might result.
• For COBOL, if LIST TITLED * is specified and your compile unit is large, you might receive an out of

storage error message.
• For COBOL, the LIST command can reference a condition name, a file name, or an expression.
• For optimized COBOL programs, the LIST command cannot reference a variable that was discarded by

the optimizer.
• When using LIST TITLED with no parameters within the PL/I compile unit, only the first element of

any array will be listed. If the entire array needs to be listed, use LIST and specify the array name (i.e.,
LIST array where array is the name of an array).

• If a character variable contains character data that cannot be displayed in its declared data type, z/OS
Debugger displays the data with a special character. The topic "How z/OS Debugger handles characters
that can't be displayed in their declared data type" in the IBM z/OS Debugger User's Guide describes
what z/OS Debugger does in this situation. If you display the data in hexadecimal, it will require twice as
many bytes. The maximum number of bytes that can be displayed is 65,535.

• If the DATA option of the PLAYBACK ENABLE command is in effect for the current compile unit,
the LIST expression command can be used while you replay recorded statements by using the
PLAYBACK commands.

• If you are trying to display a scalar item, the maximum length that LIST can display is 65,535 bytes.
• You can enter the L prefix command by using the Source window prefix area to display the value of

the variables on that line. For the list of supported compile units, see “L prefix command (full-screen
mode)” on page 153.

• For Enterprise PL/I programs, to change the display format so that z/OS Debugger displays arrays and
elements as they are stored in memory, enter the SET LIST BY SUBSCRIPT ON command.

• If the Log window is not visible, z/OS Debugger displays the result of the LIST expression command
in the List pop-up window.

Examples

• Display the values for variables size and r and the expression c + r, with their respective names.

LIST TITLED (size, r, c + r);

• Display the COBOL references as if they were elementary items. The current programming language
setting is COBOL.

152 IBM z/OS Debugger: Reference and Messages

LIST (GROUP x OF z(1,2), GROUP a, w);

• Display the value of the z/OS Debugger variable %ADDRESS.

LIST %ADDRESS;

• In the disassembly view, display the value of register 1 (R1), which is the value of z/OS Debugger
variable %R1.

LIST R1 ;

• In COBOL, display the names and values of variables defined in the File Section.

LIST TITLED FS;

Refer to the following topics for more information related to the material discussed in this topic.

Related references
“expression” on page 14
“SET LIST TABULAR command” on page 239
“L prefix command (full-screen mode)” on page 153

L prefix command (full-screen mode)
The L prefix command, which you enter through the prefix area of the Source window, displays the value
of an operand or operands on that line in the Log window.

L

integer

,

integer

integer - integer

;

integer
Identifies specific operands to be listed. If you do not specify an integer, z/OS Debugger lists all
operands. If you use a single number or the form 1,2,3, z/OS Debugger lists the specified operand or
operands. If you use the form 1-4, z/OS Debugger lists operands 1 through 4.

For programs other than assembler and disassembly, integer identifies the position of a variable on
a line, beginning from the left. The first variable on the line is position 1, the second variable on the
line is position 2, and this pattern repeats until there are no more variables. If a variable is on the line
more than once, only the first instance of the variable is assigned a position number.

For assembler and disassembly programs, integer identifies operands of the machine instruction.
z/OS Debugger numbers them from left to right with the first operand numbered operand 1, the
second operand numbered operand 2, and repeating the pattern until there are no more operands.
If you do not specify an integer, z/OS Debugger lists all operands referenced explicitly or implicitly
by the instruction. If you specify any form of integer, z/OS Debugger lists only the operands explicitly
referenced by the specified operand or operands.

Usage notes

• For C/C++, integer values cannot be specified.
• The L prefix command can be entered only on lines that have valid executable statements.
• You can enter the L prefix command on multiple lines.
• The L prefix command works only for the following compile units:

– Assembler or disassembly compile units

Chapter 5. z/OS Debugger commands 153

– Enterprise COBOL compile units
– Enterprise PL/I compile units compiled with Enterprise PL/I for z/OS, Version 3.6 or 3.7 with the PTF

for APAR PK70606 applied, or later
– C/C++ compile units compiled with the z/OS 2.1 XL C/C++ compiler or later, with

DEBUG(FORMAT(DWARF)) option.
• You cannot use the L prefix command on a line that is in a block that is not currently active.
• The following notes apply when you use the L prefix command in an assembler or disassembly program:

– When you specify integer, it applies to an entire machine instruction operand, not to a single
symbol. For example, in the following instruction, operand 1 is the storage referenced by “SYM1-
SYM2(LEN,R8)” and operand 2 is the storage referenced by SOURCE:

MVC SYM1-SYM2(LEN,R8),SOURCE

– z/OS Debugger uses the current values in a register to evaluate any registers referenced by an
instruction. When you reference an instruction that is not the instruction where the program is
suspended, the current values in a register might differ from what the values would be if z/OS
Debugger stopped the program at the instruction you referenced.

– The L prefix command cannot access mask fields, immediate data fields, and any other constants
imbedded in the machine instructions. However, z/OS Debugger does number these fields when it
numbers the operands.

– For instructions that might be coded using extended mnemonics (BC, BCR, and BRC), z/OS Debugger
cannot determine whether the base form or the extended mnemonic was used. Therefore, you can
use both 1 and 2 to refer to the operand representing the branch target.

Examples

The following set of examples use the following lines of code:

...
 293 move 0 to c; move 0 to b; move 0 to IND; move b to a;
...
 319 if a + b < b + c
 320 then move ind to c;
 321 end-if;
...

• To display the value of IND on line 293, enter the L3 command in the prefix area of line 293.
• To display the value of c on line 319, enter the L3 command in the prefix area of line 319. The position

of c is not 4 because b is counted only once, the first time it is encountered, which is to the left of the <
operator. The second b, which is to the right of the < operator, is not assigned a position number.

• To display the value of all variables on line 293, enter the L command in the prefix area of 293.

The next set of examples use the following lines of assembler source code:

...
200 L R6,=X'31BA4038'
201 STM R1,R4,0(R6)
202 TM X'01',FLAGS
203
...

• Enter L on line 201. z/OS Debugger lists the following registers and memory locations: R1, R2, R3, R4,
R6, and the sixteen bytes of storage at location X'31BA4038'.

• Enter L1-2 on line 201. z/OS Debugger lists R1 and R4.
• Enter L1 on line 202. z/OS Debugger displays an error message because the L prefix command cannot

access mask and immediate fields.

Refer to the following topics for more information related to the material discussed in this topic.

Related references

154 IBM z/OS Debugger: Reference and Messages

“LIST expression command” on page 149

LIST FREQUENCY command
Lists statement execution counts.

LIST FREQUENCY

LINES

STATEMENTS

statement_id_range

(

,

statement_id_range)

*

;

*
Lists frequency for all statements in the currently qualified compile unit. If currently executing at the
AT TERMINATION breakpoint where there is no qualification available, it will list frequency for all
statements in all the compile units in the terminating enclave where frequency data exists.

LINES
Displays the source line after the frequency count.

STATEMENT
Equivalent to LINES.

Usage notes

• In the disassembly view, LIST FREQUENCY and LIST FREQUENCY * are not supported.
• When you replay recorded statements by using the PLAYBACK commands, the frequency count is not

updated.

Examples

• List frequency for statements 1-20.

LIST FREQUENCY 1 - 20;

• List frequency and statement for statements 18 - 19:

LIST FREQUENCY LINES 18-19;

• List frequency for all statements in the currently qualified compile unit.

LIST FREQUENCY *;

• List frequency for all statements in all compile units.

AT TERMINATION LIST FREQUENCY *;

Refer to the following topics for more information related to the material discussed in this topic.

Related references
“statement_id_range and stmt_id_spec” on page 16
“SET FREQUENCY command” on page 230

LIST LAST command
Displays a list of recent entries in the history table.

LIST

LAST
integer

HISTORY

LINES

PATHS

STATEMENTS

;

Chapter 5. z/OS Debugger commands 155

integer
Specifies the number of most recently processed breakpoints and conditions displayed.

HISTORY
Displays all processed breakpoints and conditions.

LINES
Displays processed statement or line breakpoints. LINES is equivalent to STATEMENTS.

PATHS
Displays processed path breakpoints.

STATEMENTS
Is equivalent to LINES.

Usage notes

• The LAST keyword is provided to make the LIST command readable. It does not perform any function.
• In the disassembly view, LIST LAST is not supported.

Examples

• Display all processed path breakpoints in the history table.

LIST PATHS;

• Display all program breakpoints and conditions for the last five times z/OS Debugger gained control.

LIST LAST 5 HISTORY;

Refer to the following topics for more information related to the material discussed in this topic.

Related references
“SET HISTORY command” on page 231

LIST LDD command
Displays the list of LDD commands known to z/OS Debugger.

LIST LDD ;

Usage notes

• Use the LIST LDD command if you want to see a list of LDD commands that z/OS Debugger knows
about.

• The output of the LIST LDD command is sorted alphabetically by compile unit name.
• When debugging C/C++ applications in EXPLICITDEBUG mode, the LIST LDD command might display

just one LDD entry that matches one of the several LDD commands containing main as the compile unit
name.

• You can use the LIST LDD command in remote debug mode.

Examples

• To display the LDD commands known to z/OS Debugger, specify:

LIST LDD;

You might get results similar to the following output:

1. LDD TBND003::>TBND003A;
2. LDD MYPROG;

• To display the LDD commands known to z/OS Debugger, specify:

LIST LDD;

156 IBM z/OS Debugger: Reference and Messages

You might get results similar to the following output:

There are no LDD commands.

Related references
“CLEAR command” on page 86

LIST LINE NUMBERS command
Equivalent to LIST STATEMENT NUMBERS.

Refer to the following topics for more information related to the material discussed in this topic.

Related references
“LIST STATEMENT NUMBERS command” on page 162

LIST LINES command
Equivalent to LIST STATEMENTS.

Refer to the following topics for more information related to the material discussed in this topic.

Related references
“LIST STATEMENTS command” on page 162

LIST MONITOR command
Lists all or selected members of the current set of MONITOR commands and any suspended MONITOR
LOCAL commands.

LIST MONITOR

integer

 - integer

;

integer
An unsigned integer identifying a MONITOR command. If two integers are specified, the first must not
be greater than or equal to the second. If omitted, all MONITOR commands are displayed.

Usage notes

• You can enter LIST in the prefix area of the monitor window to list the monitor command of the
selected line.

• When the current programming language setting is COBOL, blanks are required around the hyphen (-).
Blanks are optional for C.

• If integer is not specified, both the active monitors and any suspended local monitors are listed.

Example

List the fifth through the seventh commands currently being monitored.

LIST MONITOR 5 - 7;

LIST NAMES command
Lists the names of variables, programs, or z/OS Debugger procedures. If LIST NAMES is issued with no
keyword specified, the names of all program and session variables that can be referenced in the current
programming language and that are visible to the currently qualified block are displayed. A subset of the
names can be specified by supplying a pattern to be matched.

Chapter 5. z/OS Debugger commands 157

LIST NAMES

pattern

BLOCK block_spec

cu_spec

(

,

block_spec

cu_spec

)

CUS

LABELS

PROCEDURES

PROGRAMS

TEST

;

pattern
The pattern searched for, conforming to the current programming language syntax for a character
string constant. The pattern length cannot exceed 128 bytes, excluding the quotation marks (") or
apostrophes (').

If the DBCS setting is ON, the pattern can contain DBCS characters. DBCS shift codes are not
considered significant characters in the pattern. Within the pattern, an SBCS or DBCS asterisk
represents a string of zero or more insignificant SBCS or DBCS characters. As many as eight asterisks
can be included in the pattern, but adjacent asterisks are equivalent to a single asterisk.

Some examples of possible strings follow:

C Assembler, COBOL, and LangX
COBOL

PL⁄I

"ABC" "A5" 'MY'

 'A5'

Pattern matching is not case-sensitive outside of DBCS. Both the pattern and potential names outside
of shift codes are effectively uppercased, except when the current programming language setting is C.
Letters in the pattern must be the correct case when the current programming language setting is C.

BLOCK
Displays variable names that are defined within one or more specified blocks.

CUS
Displays the compile unit names. CUS is equivalent to PROGRAMS.

LABELS
Displays the names of all section and paragraph names in a COBOL or LangX COBOL program, and the
names of all instruction labels in an assembler program. Supported only for COBOL and assembler.

PROCEDURES
Displays the z/OS Debugger procedure names.

PROGRAMS
Is equivalent to CUS.

TEST
Displays the z/OS Debugger session variable names.

158 IBM z/OS Debugger: Reference and Messages

Usage notes

• For Enterprise COBOL for z/OS Version 5, the output of the command LIST NAMES shows only level 0
and 77 data items and index names. Subordinate data items within records are not displayed.

• For Enterprise COBOL for z/OS Version 5, when you issue LIST NAMES CUS and a load module is
linked with more than one Enterprise COBOL for z/OS Version 5 compilation unit, the output includes all
Enterprise COBOL for z/OS Version 5 compilation units in the load module.

• For Enterprise COBOL for z/OS Version 5, when you issue the LIST NAMES command for a program
with nested programs, the output for each block or nested program includes only the variables declared
in the block.

• For Enterprise COBOL for z/OS Version 5, when you issue the LIST NAMES LABEL command for a
program with nested blocks or programs, only the labels in the current block are displayed.

• LIST NAMES CUS applies to compile unit names.
• LIST NAMES TEST shows only those session variable names that can be referenced in the current

programming language.
• The output of LIST NAMES without any options depends on both the current qualification and

the current programming language setting. If the current programming language differs from the
programming language of the current qualification, the output of the command shows only those
session variable names that can be referenced in the current programming language.

• For structures, the pattern is tested against the complete name, hence "B" is not satisfied by "C OF B
OF A" (COBOL).

• If the DATA option of the PLAYBACK ENABLE command is in effect for the current compile unit, you
can use the LIST NAMES command while you replay recorded statements by using the PLAYBACK
commands.

• For optimized COBOL programs, the LIST NAMES command does not display variables discarded by the
optimizer.

• For LangX COBOL, if you specify the EQALANGX file as the source of debug information, when you
enter the LIST NAMES LABELS command, z/OS Debugger might not display all of the labels because
EQALANGX did not identify them with the LABEL attribute.

Examples

• Display all compile unit names that begin with the letters "MY" and end with "5". The current
programming language setting is either C or COBOL.

LIST NAMES "MY*5" PROGRAMS;

• Display the names of all the z/OS Debugger procedures that can be called.

LIST NAMES PROCEDURES;

• Display the names of variables whose names begin with 'R' and are in the mainprog block. The current
programming language setting is COBOL.

LIST NAMES 'R*' BLOCK (mainprog);

• Display all section and paragraph names that begin with the letters "LAB". The currently qualified
program is COBOL.

LIST NAMES "LAB*" LABELS;

Refer to the following topics for more information related to the material discussed in this topic.

Related references
“block_spec” on page 12
“cu_spec” on page 13

Chapter 5. z/OS Debugger commands 159

LIST NAMES LABELS command (remote debug mode)
Displays the names of all sections and paragraphs in a COBOL program, and the names of all instruction
labels in an assembler program.

LIST NAMES LABELS ;

Usage Notes®

• Use the Debug Console Command line to enter this command.
• This command displays the labels in the current executing program.
• For Enterprise COBOL for z/OS Version 5, if you specify the LIST NAMES LABEL command for a

program with nested blocks or multiple programs, only the labels in the current block are displayed.

Examples

If you want to display the names of all sections and paragraphs in the current program in COBOL, specify
the following commands:

LIST NAMES LABELS;

EQA4837I The following LABELS are known in IBCD590
PARA-IBCD590
L100
L101

LIST ON (PL/I) command
Lists the action (if any) currently defined for the specified PL/I conditions.

LIST ON

pli_condition

;

pli_condition
A valid PL/I condition specification. If omitted, all currently defined ON command actions are listed.

Usage notes

• You cannot use the LIST ON command while you replay recorded statements by using the PLAYBACK
commands.

Example

List the action for the ON ZERODIVIDE command.

LIST ON ZERODIVIDE;

Refer to the following topics for more information related to the material discussed in this topic.

Related references
“ON command (PL/I)” on page 181

LIST PROCEDURES command
Lists the commands contained in the specified z/OS Debugger PROCEDURE definitions.

LIST PROCEDURES
name

(

,

name)

;

160 IBM z/OS Debugger: Reference and Messages

name
A valid z/OS Debugger procedure name. If no procedure name is specified, the commands contained
in the currently running procedure are displayed. If no procedure is currently running, an error
message is issued.

Usage note

Examples

• Display the commands in the z/OS Debugger procedure p2.

LIST PROC p2;

• List the procedures abc and proc7.

LIST PROCEDURES (abc, proc7);

LIST REGISTERS command
Displays the current register contents.

LIST
32BIT

64BIT

REGISTERS

LONG

SHORT

FLOATING

REGISTERS

;

REGISTERS
Displays the General Purpose Registers. When this command is issued when you are qualified to an
Assembler or Disassembly CU other than the CU where execution was suspended, it also displays the
values of the %Rn symbols.

32BIT
Displays the 32-bit General Purpose Registers (%GPRn and %GPRHn).

64BIT
Displays the 64-bit General Purpose Registers (%GPRGn).

LONG
Displays the value of the long-precision floating-point registers.

SHORT
Displays the value of the short-precision floating-point registers.

FLOATING
Displays the floating-point registers.

Usage note

If your program is running on hardware that does not support 64-bit instructions or your program
is suspended at a point where the 64-bit general-purpose registers are not available, z/OS Debugger
displays only the sixteen, base 32-bit general-purpose registers.

Examples

• Display the General Purpose Registers at the point of a program interruption:

LIST REGISTERS;

• Display the floating-point registers.

LIST FLOATING REGISTERS;

Chapter 5. z/OS Debugger commands 161

LIST STATEMENT NUMBERS command
Lists all statement or line numbers that are valid locations for an AT LINE or AT STATEMENT breakpoint.

LIST LINE

STATEMENT

NUMBERS

block_spec

cu_spec

statement_id_range

;

NUMBERS
Displays the statement numbers that can be used to set STATEMENT breakpoints, assuming the
compile options used to generate statement hooks were specified at compile time. The list can also
be used for the GOTO command, however, you might not be able to GOTO all of the statement numbers
listed.

block_spec
A valid block specification. This operand lists all statement or line numbers in the specified block.

cu_spec
A valid compile unit specification. For C programs, cu_spec can be used to list the statement numbers
that are defined within the specified compile unit before the first function definition.

statement_id_range
A valid range of statement ids, separated by a hyphen (-).

Usage notes

• In the disassembly view, LIST STATEMENT NUMBERS is not supported.

Examples

• List the statement or line numbers in the currently qualified block.

LIST STATEMENT NUMBERS;

• Display the statement or line number of every statement in block earnings.

LIST STATEMENT NUMBERS earnings;

Refer to the following topics for more information related to the material discussed in this topic.

Related references
“block_spec” on page 12
“cu_spec” on page 13
“statement_id_range and stmt_id_spec” on page 16

LIST STATEMENTS command
Lists one or more statements or lines from a file. It is primarily intended for viewing portions of the source
listing or source file in line mode, but can also be used in full-screen mode to copy a portion of a source
listing or source file to the log.

LIST LINES

STATEMENTS

statement_id_range ;

Usage notes

• The specified lines are displayed in the same format as they would appear in the full-screen Source
window, except that wide lines are truncated.

• You might need to specify a range of line numbers to ensure that continued statements are completely
displayed.

162 IBM z/OS Debugger: Reference and Messages

• This command is not to be confused with the LIST LAST STATEMENTS command.
• In the disassembly view, LIST STATEMENTS is not supported.
• LIST LINES or LIST STATEMENTS without a statement_id_range are not valid to list one or more

lines, or statements, from a file. However, they are accepted commands, because they are valid in the
context of the LIST LAST command.

Examples

• List lines 25 through 30 in the source file associated with the currently qualified compile unit.

LIST LINES 25 - 30;

• List statement 100 from the current program listing file.

LIST STATEMENT 100;

Refer to the following topics for more information related to the material discussed in this topic.

Related references
“statement_id_range and stmt_id_spec” on page 16
“LIST LAST command” on page 155

LIST STORAGE command
Displays the contents of storage at a particular address in hexadecimal or XML format.

LIST STORAGE (address

reference

' reference ' , offset

, length

)

XML

(EBCDIC

ASCII

CODEPAGE (ccsid)

)

;

address
The starting address of storage to be listed.

reference
A variable whose storage location is to be listed.

In assembler or disassembly, this operand might be specified as any assembler expression that
represents a storage location. If the assembler expression does not have an implied length (for
example, R3->+10), you must specify the number of bytes to display by using the integer operand.

'reference'
A LangX COBOL variable whose storage location is to be listed. A LangX COBOL reference must be
enclosed in apostrophes (').

offset
The decimal or hexadecimal number of bytes indicating the starting offset from the memory location
pointed to by the reference's address or the address provided by the user. offset can be a negative
number. If offset is a hex constant, you must follow the same syntax rules for address. The default is 0.

length
The decimal number of bytes of storage displayed. The default is 16 bytes. The length must be an
integer number.

Chapter 5. z/OS Debugger commands 163

XML
Indicates that the specified area contains a complete XML 1.0 or 1.1 document. The specified area is
passed to the z/OS XML parser for processing. If the parser detects any syntax errors, the error data
is shown in the z/OS Debugger log. Otherwise, z/OS Debugger displays a formatted version of the XML
document in the z/OS Debugger log file.

EBCDIC
Indicates that the specified area contains EBCDIC characters.

ASCII
Indicates that the specified area contains ASCII characters.

CODEPAGE
Indicates that the specified area contains characters in the specified code page.

ccsid
Specifies the Coded Character Set Identifiers used to encode the XML. z/OS Debugger uses the z/OS
Unicode Services to convert the characters in the XML from this code page to the code page specified
by the EQAOPTS CODEPAGE command before the characters are displayed on the 3270 terminal. The
ccsid can be a decimal number in the range 1 to 65535.

Usage notes

• For C and C++, if reference is a pointer, z/OS Debugger displays the contents at the address given by that
pointer.

• Using z/OS Debugger, cursor pointing can be used by typing the LIST STORAGE command on the
command line and moving the cursor to a variable in the Source window before pressing Enter, or by
moving the cursor and pressing a PF key with the LIST STORAGE command assigned to it.

• When using the LIST STORAGE command in z/OS Debugger for a variable that is located by the cursor
position, the variable's name cannot be split across different lines of the source listing.

• If the referenced variable is a General Purpose Register (GPR) such as %GPR1, the result depends on
the programming language that is in effect:

– For all languages except assembler and disassembly, z/OS Debugger displays the storage at the
address contained in the referenced GPR.

– For assembler and disassembly, you must use the indirection notation (%GPR1->) to instruct z/OS
Debugger to display the storage at the address contained in the referenced register.

• If no operand is specified with LIST STORAGE, the command is cursor-sensitive.
• If you are replaying recorded statements by using PLAYBACK commands, the LIST STORAGE

command displays the contents of storage at the point where you entered the PLAYBACK START
command.

• For optimized COBOL programs, LIST STORAGE cannot display variables that were discarded by the
optimizer.

• XML is supported only when you run on z/OS Version 1.8 or later.
• If you specify XML but not EBCDIC, ASCII, nor CODEPAGE, z/OS Debugger attempts to detect if the

encoding of the XML document is EBCDIC or ASCII.
• Some information in the XML document (for example, most of the DTD specification and some white

space) might not be listed because the z/OS XML parser does not return it to z/OS Debugger.
• If you specify address with more than 8 significant digits or if reference references 64-bit addressable

storage, z/OS Debugger assumes that the storage location is 64-bit addressable storage. Otherwise,
z/OS Debugger assumes that the storage location is 31-bit addressable storage.

Examples

• Display the first 64 bytes of storage beginning at the address of variable table.

LIST STORAGE (table, 64);

164 IBM z/OS Debugger: Reference and Messages

• Display 16 bytes of storage at the address given by pointer table(1).

LIST STORAGE (table(1));

• Display the 16 bytes contained at locations 20CD0-20CDF. The current programming language setting is
COBOL.

LIST STORAGE (H'20CD0');

• Display the 16 bytes contained at locations 20CD0-20CDF. The current programming language setting is
PL/I.

LIST STORAGE ('20CD0'PX);

• In the disassembly view, display the storage at the address given by register R13.

LIST STORAGE (R13->);

• Display 10 characters starting at offset 2 for variable MYVAR. MYVAR is declared as CHAR (20).

LIST STORAGE (MYVAR, 2, 10);

• Display 20 bytes starting at offset 10 from address '20ACD0'PX. The current programming language
setting is PL/I.

LIST STORAGE ('20ACD0'PX, 10, 20);

• Display 10 bytes starting at offset -5 from address '20ACD0'PX. The current programming language
setting is PL/I.

LIST STORAGE ('20ACD0'PX, -5, 10);

Refer to the following topics for more information related to the material discussed in this topic.

Related references
“address” on page 11
“references” on page 15

LIST TRACE LOAD command
Displays the entries in the TRACE LOAD table that were created since the TRACE LOAD START command
was issued.

The syntax of this command is as follows:
LIST TRACE LOAD ;

Usage notes

• Use the LIST TRACE LOAD command if you want to see a list of the load modules or DLLs loaded since
the TRACE LOAD START command was issued.

Examples

To display the entries in the TRACE LOAD table, enter the following command:

LIST TRACE LOAD;

You might get results similar to the following output:

The following were loaded:
IBCD010 loaded from TSFANAY.TEST.LOAD
IBCD010A loaded from TSFANAY.TEST.LOAD

Related references

Chapter 5. z/OS Debugger commands 165

“TRACE command” on page 276.

LOAD command
Specifies that the named module should be loaded for debugging purposes. The LOAD command enables
you to debug preloaded load modules.

If you are running in Language Environment, the enclave-level load service is used to load the load
module or modules. The load module or modules remain active until the current enclave terminates or
you enter the CLEAR LOAD command for those load modules.

If you are not running in Language Environment, the load module or modules remain active until the
debugging task terminates or you enter the CLEAR LOAD command for those load modules. If you are
debugging CICS programs, the load is done by EXEC CICS LOAD. For all other programs, the load is done
by MVS LOAD services.

LOAD module_name

(

,

module_name)

LE

NONLE

;

module_name
The name of one or more load modules to be loaded by z/OS Debugger.

LE
Use the Language Environment enclave-level load service to load the load module or modules. The
load module or modules remain active until the current enclave terminates or you enter a CLEAR
LOAD command for the load module or modules.

NONLE
Use non-Language Environment services to load the load module or modules. The load module or
modules remain active until the debugging task terminates or you enter a CLEAR LOAD command for
the load module or modules. For CICS programs, the load module or modules are loaded by using
EXEC CICS LOAD. For all other programs, the load module or modules are loaded by using the MVS
LOAD services.

Usage notes

• You can use this command in remote debug mode.
• You can enter the SET QUALIFY CU command for a program or CSECT in the load module or load

modules that you just loaded unless the program is COBOL.
• If you set breakpoints in the programs or CSECTS in the module and then the same load module is

loaded again, the breakpoints might not work because location of the load module has changed.
• If the module to be debugged is RESIDENT or was loaded before z/OS Debugger was started, you can

use the LOAD command to make the module known to Language Environment.
• You cannot use this command to load a DLL.

Refer to the following topics for more information related to the material discussed in this topic.

Related references
Appendix A, “z/OS Debugger commands supported in Debug Tool compatibility mode,” on page 517

LOADDEBUGDATA command
z/OS Debugger automatically loads the debug information for a compile unit (CU) when all of the following
conditions apply:

• The compile unit was written in a Language Environment-enabled, high-level language.
• The compile unit was compiled with the TEST or DEBUG compiler option.

166 IBM z/OS Debugger: Reference and Messages

• Explicit debug mode is not active.

In the following situations, you must use the LOADDEBUGDATA (LDD) command to request that z/OS
Debugger load the debug data:

• The compile unit was written in assembler or LangX COBOL.
• Explicit debug mode is active and the compile unit was written in a Language Environment-enabled,

high-level language and compiled with the TEST or DEBUG compiler option.

Using LDD for assembler or LangX COBOL compile units
When you use the LDD command for assembler or LangX COBOL compile units, the LDD command
indicates that the compile unit (CU) is an assembler or LangX COBOL CU and z/OS Debugger loads debug
data from the default data set name, userid.EQALANGX(cu_name). If the debug data is stored in
a different data set, specify that data set name by using the SET SOURCE command, SET DEFAULT
LISTINGS command, or the EQADEBUG DD statement. In remote debug mode, specify the data set name
by using the SET DEFAULT LISTINGS command, the EQADEBUG DD statement, or providing the data
set name when the remote debugger prompts you for it.

Generate the required debug information by using the EQALANGX program or, if you are debugging an
assembler program, by assembling your program through IBM z/OS Debugger Utilities, as described in
IBM z/OS Debugger User's Guide.

LOADDEBUGDATA

LDD

load_module_name ::>

cu_name

%CU

%PROGRAM

(

,

load_module_name ::>

cu_name

%CU

%PROGRAM

)

;

load_module_name
The name of the load module containing the specified compile unit (cu_name). If the corresponding
load module is known to z/OS Debugger, the specified compile unit must be a disassembly compile
unit within the specified load module. If the load module is not known to z/OS Debugger, z/OS
Debugger defers the LOADDEBUGDATA command until a load module by the specified name and
containing the specified compile unit is loaded. load_module_name is folded to upper case, unless it
is enclosed in double-quotation marks or the current environment is UNIX System Services.

If you do not specify load_module_name, z/OS Debugger applies the LOADDEBUGDATA command to
all compile units by the specified name found in any load module.

cu_name
The name of the assembler or LangX COBOL compile unit for which the debug data is to be loaded. If
the compile unit is not currently known to z/OS Debugger, z/OS Debugger defers the LOADDEBUGDATA
command until a compile unit by the specified name becomes known to z/OS Debugger.

Usage notes (assembler and LangX COBOL form of LDD)

• When you use the SET SAVE command to save breakpoints or monitor specifications or you use the
RESTORE command to restore breakpoints or monitor specifications, all LDD settings including the data
set name of the data set from which the debug data was loaded is saved and restored.

Chapter 5. z/OS Debugger commands 167

• For CICS only: When a DTCN profile is active for a full screen mode debugging session, z/OS Debugger
preserves all LDD settings, including the data set name of the data set from which the debug data was
loaded, until the DTCN profile is deleted or the terminal session is terminated.

• You can use this command for assembler compile units in remote debug mode.
• After z/OS Debugger successfully processes a LOADDEBUGDATA command for a CU, if the CU is deleted

and then appears later, an implicit LDD command is run for the CU using the same EQALANGX data set
that was used initially.

• You cannot enter the LDD command for the same compile unit more than once.
• A deferred LDD creates an implicit NAMES INCLUDE for the target of the deferred LDD.

Refer to the following topics for more information related to the material discussed in this topic.

Related references
“CLEAR command” on page 86
“LIST LDD command” on page 156
“SET LDD command” on page 235
Appendix A, “z/OS Debugger commands supported in Debug Tool compatibility mode,” on page 517

Using LDD for high-level language compile units in explicit debug mode
When explicit debug mode is active, z/OS Debugger loads debug data only for compile units that you want
to debug. For an assembler compile unit, use the LDD command as described in “Using LDD for assembler
or LangX COBOL compile units” on page 167. The remainder of this topic describes how to use the LDD
command to load debug data for a compile unit written in a high-level language.

You can indicate that you want to debug a compile unit in this mode by using the LDD command. You must
write the compile unit in a Language Environment-enabled high-level language and compile it with the
TEST or DEBUG compiler option.

LOADDEBUGDATA

LDD

load_module_name ::> hidden_cu_name

(

,

load_module_name ::> hidden_cu_name)

;

load_module_name
The name of the load module containing the specified compile unit (hidden_cu_name). If z/OS
Debugger does not know the load module, z/OS Debugger defers the LOADDEBUGDATA command
until a load module by the specified name and containing the specified compile unit is loaded.
load_module_name is folded to upper case, unless it is enclosed in double-quotation marks or the
current environment is UNIX System Services.

hidden_cu_name
The name of the hidden compile unit for which the debug data is to be loaded. If this compile unit is
not currently known to z/OS Debugger, z/OS Debugger defers the LOADDEBUGDATA command until a
compile unit by the specified name becomes known to z/OS Debugger.

The following table describes how hidden_cu_name corresponds to the compile unit name, depending
on the programming language:

Programming language Hidden CU name Same as CU name?

COBOL First program name in the source file Yes

PL/I External procedure name Yes

Enterprise PL/I External procedure name No

168 IBM z/OS Debugger: Reference and Messages

Programming language Hidden CU name Same as CU name?

C First external function name in the source
file

No

Assembler CSECT name Yes

If the load module is currently loaded, enter the DESCRIBE LOAD command and review the output
to determine the value for hidden_cu_name. If the load module is not currently loaded, enter the AT
LOAD command. After z/OS Debugger gains control because of AT LOAD, you can run the DESCRIBE
LOAD command and review the output to determine the value for hidden_cu_name.

When explicit debug mode is active, z/OS Debugger automatically loads debug data for compile units
without using an LDD command in each of the following situations:

• You specified both a load module name and a compile unit name that is not a source file name enclosed
in quotes in a deferred AT ENTRY command and the compile unit name was the same name that would
have been used as the hidden_CU_name on the LDD command.

• The compile unit name is the entry point of the initial load module of an enclave, or a load module for
which an AT LOAD command was entered.

• The NAMES INCLUDE command either explicitly or implicitly included both the load module and
compile unit name. In the case of a compile unit name, it must be the same name that would have
been used as the hidden_CU_name on the LDD command (not a source file name enclosed in quotes).

Usage notes (high-level language form of LDD)

• You can use this command in remote debug mode.
• When you use the SET SAVE command to save breakpoints or monitor specifications or you use the
RESTORE command to restore breakpoints or monitor specifications, z/OS Debugger saves and restores
all LDD settings.

• For CICS only: When a DTCN profile is active for a full screen mode debugging session, z/OS Debugger
preserves all LDD settings until the DTCN profile is deleted or the terminal session is terminated.

• After z/OS Debugger successfully processes a LOADDEBUGDATA command for a compile unit, if the
compile unit is deleted and then appears later, z/OS Debugger runs an implicit LDD command for the
compile unit.

• You cannot enter the LDD command for the same compile unit more than once.
• A deferred LDD creates an implicit NAMES INCLUDE for the target of the deferred LDD.
• You cannot load debug data for a high-level language compile unit that is currently active. For example,

if compile unit A calls compile unit B, you cannot stop in compile unit B, then run an LDD command on
compile unit A.

Refer to the following topics for more information related to the material discussed in this topic.

Related references
“CLEAR command” on page 86
“LIST LDD command” on page 156
“SET EXPLICITDEBUG command” on page 228
“SET LDD command” on page 235
Appendix A, “z/OS Debugger commands supported in Debug Tool compatibility mode,” on page 517

MEMORY command
Specifies an address to use as the starting address for the memory displayed in the Memory window.

If the address you specify is invalid, z/OS Debugger displays an error message.

The MEMORY command cannot be saved and restored.

Chapter 5. z/OS Debugger commands 169

MEMORY address

reference

' reference '

simple_expression

;

address
The address to use as the starting address for the memory displayed in the Memory window.

reference
A variable whose location in memory is used as the starting address of the memory displayed in the
Memory window.

'reference'
A LangX COBOL variable whose location in memory is used as the starting address of the memory
displayed in the Memory window.

simple_expression
The address with a positive or negative hexadecimal or integer displacement. The resulting value is
the starting address of the memory displayed in the Memory window.

Usage notes

• For COBOL, if you specify a variable with reference modification, then the storage location of that
variable is used as a base address, not the location of the specified reference.

• If you specify address with more than 8 significant digits or if reference references 64-bit addressable
storage, z/OS Debugger assumes that the storage location is 64-bit addressable storage. Otherwise,
z/OS Debugger assumes that the storage location is 31-bit addressable storage.

• For C and C++, if reference is a pointer, z/OS Debugger displays the contents at the address given by that
pointer.

Examples

• Display memory starting at X'2503D008' by entering the following command:

MEMORY X'2503D008';

This address becomes the base address.
• Display memory starting at the storage location of variable Employee_name by entering the following

command:

MEMORY Employee_name;

The address of Employee_name becomes the base address.
• Display memory starting 100 hex bytes after X'0045CB00' by entering the following command:

MEMORY x'0045CB00' + x'100'

The base address is X'0045CC00'.

Refer to the following sections for more information related to the material discussed in this section.

Refer to the following topics for more information related to the material discussed in this topic.

Related tasks
"z/OS Debugger session panel" in the IBM z/OS Debugger User's Guide
"Switching between the Memory window and Log window" in the IBM z/OS Debugger User's Guide
"Displaying the Memory window" in the IBM z/OS Debugger User's Guide
Related references
“address” on page 11

170 IBM z/OS Debugger: Reference and Messages

MONITOR command
The MONITOR command defines or redefines a command and then displays the output in the monitor
window (full-screen mode) or log file (batch mode). The following commands are the only commands you
can use with the MONITOR command:

• DESCRIBE
• LIST
• Null
• QUERY

z/OS Debugger maintains a list of your most recently entered MONITOR commands. Each command
entered is assigned a number between 1 and 99 or you can assign it a number. Use these numbers to
indicate to z/OS Debugger which MONITOR command you want to redefine.

MONITOR

GLOBAL

LOCAL
cu_spec

integer

command
DEFAULT

HEX

integer HEX

DEFAULT

;

GLOBAL
Specifies that the monitor definition is global. That is, it is not associated with a particular compile
unit.

LOCAL
Specifies that the monitor definition is local to a specific compile unit. Using z/OS Debugger, the
specified output is displayed only when the current qualification is within the associated compile unit.
cu_spec

A valid compile unit specification. This specifies the compile unit associated with the monitor
definition.

integer
An integer in the range 1 to 99, indicating what command in the list is replaced with the specified
command and the order that the monitored commands are evaluated. If omitted, the next monitor
integer is assigned. An error message is displayed if the maximum number of monitoring commands
already exists.

command
A DESCRIBE, LIST, Null, or QUERY command whose output is displayed in the monitor window or
log file.

HEX
Specifies that the value of the variable be displayed in hexadecimal format. You can specify the HEX
parameter only with a MONITOR LIST expression command or the MONITOR n command where n
is the nth command in the MONITOR list and it must be a LIST expression command.

DEFAULT
Specifies that the value of the variable be displayed in its declared data type. You can specify the DEF
parameter only with a MONITOR LIST expression command or the MONITOR n command where n
is the nth command in the MONITOR list and it must be a LIST expression command.

Usage notes

Chapter 5. z/OS Debugger commands 171

• You can enter HEX or DEF in the prefix area of the monitor window to display the selected line in
hexadecimal or the default representation, respectively.

• The HEX and DEF prefix commands operate only on an individual structure element or array element
when you enter them in the prefix area associated with that element.

• A monitor number identifies a global monitor command, a local monitor command, or neither.
• Using z/OS Debugger, monitor output is presented in monitor number sequence.
• If a number is provided and a command omitted, a Null command is inserted on the line corresponding

to the number in the monitor window. This reserves the monitor number.
• You can only specify a monitor number that is at most one greater than the highest existing monitor

number.
• To clear a command from the monitor, use the CLEAR MONITOR command.
• Replacement only occurs if the command identified by the monitor number already exists.
• When SET AUTOMONITOR ON is in effect, z/OS Debugger adds an entry that is not visible after the last

active entry in the monitor list. If you specify a number and it is either equal to or one more than the last
active entry, z/OS Debugger inserts the new MONITOR command in the last active entry and uses the
next higher entry for SET AUTOMONITOR ON.

Note: The SET AUTOMONITOR ON command occupies 1 (for CURRENT or PREVIOUS) or 2 (for BOTH)
entries in the monitor list. These entries are not included in the list of Monitor commands from the LIST
MONITOR command.

• The MONITOR LIST command does not allow the POPUP, TITLED, and UNTITLED options, except
TITLED WSS. For more information about the TITLED WSS option, see “LIST expression command”
on page 149. If the Working-Storage Section contains large amounts of data, monitoring it can add a
substantial amount of overhead and might produce unpredictable results.

• When using the MONITOR LIST command, simple references (or C lvalues) display identifying
information with the values, whereas expressions and literals do not.

• The GLOBAL and LOCAL keywords also affect the default qualification for evaluation of an expression.
GLOBAL indicates that the default qualification is the currently executing point in the program. LOCAL
indicates that the default qualification is to the compile unit specified.

• LOCAL monitors are suspended when the enclave containing the compile unit terminates or when the
load module containing the compile unit is deleted. If the associated compile unit reappears later in
the same debugging session, the LOCAL monitors are restored. However, because the original monitor
number might be in use at that time, they will not always be restored with the same monitor number.

• If the DATA option of the PLAYBACK ENABLE command is in effect for the current compile unit, you can
use the MONITOR command while you replay recorded statements by using the PLAYBACK commands.

• A MONITOR LIST command can be evaluated only when the programming language currently in effect
is the same as it was when the MONITOR LIST command was issued. Therefore, if the programming
language is changed by one of the following actions, the evaluation of the MONITOR LIST command
fails, and a message is displayed:

– Suspending execution in a compile unit written in a language different from the programming
language that was in effect when the original MONITOR command was entered.

– Entering the SET PROGRAMMING LANGUAGE command.
– Entering the SET QUALIFY command.
– Entering the LOADDEBUGDATA command.

• You can enter the M prefix command by using the Source window prefix area to add the variables on that
line to the Monitor window. For the list of supported compile units, see “M prefix (full-screen mode)” on
page 173.

• If one or more variables in the Monitor Local List expression is not defined in the specified compile unit,
z/OS Debugger displays an error message and does not establish a MONITOR.

• If a duplicate MONITOR command is entered, z/OS Debugger ignores the command and issues a
message that a duplicate command has been entered. If the commands are the same when LIST

172 IBM z/OS Debugger: Reference and Messages

MONITOR is entered, they are considered to be duplicates; likewise, if they are different when LIST
MONITOR is entered, they are considered unique.

Examples

• Replace the 10th command in the monitor list with QUERY LOCATION. This is a global definition;
therefore, it is always present in the monitor output.

MONITOR 10 QUERY LOCATION;

• Add a monitor command that displays the variable abc and is local to compile unit myprog. The monitor
number is the next available number.

MONITOR LOCAL myprog LIST abc;

Refer to the following topics for more information related to the material discussed in this topic.

Related references
“cu_spec” on page 13
“CLEAR command” on page 86
“DESCRIBE command” on page 103
“LIST command” on page 140
“M prefix (full-screen mode)” on page 173
“QUERY command” on page 194
“SET MONITOR command” on page 243

M prefix (full-screen mode)
The M prefix command, which you enter through the prefix area of the Source window, adds an operand or
operands on that line to the Monitor window.

M

integer

,

integer

integer - integer

;

integer
Identifies specific operands to be monitored. If you do not specify an integer, z/OS Debugger monitors
all operands. If you enter a single number or the form 1,2,3, z/OS Debugger monitors the specified
operand or operands. If you use the form 1-4, z/OS Debugger monitors operands 1 through 4.

For programs other than assembler and disassembly, integer identifies the position of a variable on
a line, beginning from the left. The first variable on the line is position 1, the second variable on the
line is position 2, and this pattern repeats until there are no more variables. If a variable is on the line
more than once, only the first instance of the variable is assigned a position number. If no integer is
specified, all the variables on the line are added to the Monitor window.

For assembler and disassembly programs, integer identifies operands of the machine instruction. z/OS
Debugger numbers them from left to right with the first operand numbered operand 1, the second
operand numbered operand 2, and repeating the pattern until there are no more operands. If you
do not specify an integer, z/OS Debugger adds all operands referenced explicitly or implicitly by the
instruction to the Monitor window. If you specify any form of integer, z/OS Debugger adds only the
operands explicitly referenced by the specified operand or operands to the Monitor window.

Usage notes

• For C/C++, integer values cannot be specified.
• The M prefix command can be entered only on lines that have valid executable statements.

Chapter 5. z/OS Debugger commands 173

• You can enter the M prefix command on multiple lines.
• The M prefix command works only for the following compile units:

– Assembler or disassembly compile units
– Enterprise COBOL compile units
– Enterprise PL/I compile units compiled with Enterprise PL/I for z/OS, Version 3.6 or 3.7 with the PTF

for APAR PK70606 applied, or later
– C/C++ compile units, compiled with the z/OS 2.1 XL C/C++ compiler or later, with

DEBUG(FORMAT(DWARF)) option.
• You cannot use the M prefix command on a line that is in a block that is not currently active.
• The following notes apply when you use the M prefix command in an assembler or disassembly program:

– When you specify integer, it applies to an entire machine instruction operand, not to a single
symbol. For example, in the following instruction, operand 1 is the storage referenced by “SYM1-
SYM2(LEN,R8)” and operand 2 is the storage referenced by SOURCE:

MVC SYM1-SYM2(LEN,R8),SOURCE

– z/OS Debugger uses the current values in a register to evaluate any registers referenced by an
instruction. When you reference an instruction that is not the instruction where the program is
suspended, the current values in a register might differ from what the values would be if z/OS
Debugger stopped the program at the instruction you referenced.

– When you specify an explicit base or index register in an operand, z/OS Debugger computes the
effective address of the storage location when you enter the M prefix command. z/OS Debugger does
not recompute the effective address while it monitors the operand.

– When you specify a single symbol as a machine instruction operand, z/OS Debugger uses the current
value of any base register and the currently active USING as z/OS Debugger monitors the operand.

– The M prefix command cannot access mask fields, immediate data fields, and any other constants
imbedded in the machine instructions. However, z/OS Debugger does number these fields when it
numbers the operands.

– For instructions that might be coded using extended mnemonics (BC, BCR, and BRC), z/OS Debugger
cannot determine whether the base form or the extended mnemonic was used. Therefore, you can
use both 1 and 2 to refer to the operand representing the branch target.

Example

The following example uses the following lines of code:

...
 293 move 0 to c; move 0 to b; move 0 to IND; move b to a;
...
 319 if a + b < b + c
 320 then move ind to c;
 321 end-if;
...

To add the variable c on line 293 to the Monitor window, enter the M1 command in the prefix area of line
293.

The next set of examples use the following lines of assembler source code:

...
200 L R6,=X'31BA4038'
201 STM R1,R4,0(R6)
202 TM X'01',FLAGS
203
...

• Enter M on line 201. z/OS Debugger adds the following registers and memory locations to the Monitor
window: R1, R2, R3, R4, R6, and the sixteen bytes of storage at location X'31BA4038'.

174 IBM z/OS Debugger: Reference and Messages

• Enter M1-2 on line 201. z/OS Debugger adds R1 and R4 to the Monitor window.
• Enter M1 on line 202. z/OS Debugger displays an error message because the M prefix command cannot

access mask and immediate fields.

Refer to the following topics for more information related to the material discussed in this topic.

Related references
“MONITOR command” on page 171

MOVE command (COBOL)
The MOVE command transfers data from one area of storage to another. The keywords cannot be
abbreviated.

MOVE reference

literal

TO reference ;

reference
A valid z/OS Debugger COBOL reference.

literal
A valid COBOL literal.

Usage notes

• For Enterprise COBOL for z/OS Version 5, you can use the MOVE command to update the following
special registers:

JNIENVPTR
SHIFT-IN
SHIFT-OUT
LINAGE-COUNTER of <FD>

• For Enterprise COBOL for z/OS Version 5, you can use the MOVE command to update a numerical type
with a non-numerical character. For example: "Move "-999999909" to Znumed" where Znumed is
defined as "01 Znumed pic -9,999.909".

• If z/OS Debugger was started because of a computational condition or an attention interrupt, using an
assignment to set a variable might not give expected results. This is due to the uncertainty of variable
values within statements as opposed to their values at statement boundaries.

• MOVE assigns a value only to a single receiver; unlike COBOL, multiple receiver variables are not
supported.

• The COBOL CORRESPONDING phrase is not supported.
• MOVE does not support date windowing. Therefore, you cannot use the MOVE command to assign the

value of a windowed date field to an expanded date field or to a nondate field.
• You cannot use the MOVE command to assign the value of one expanded date field to another expanded

date field with a different DATE FORMAT clause, or to assign the value of one windowed date field to
another windowed date field with a different DATE FORMAT clause.

Enterprise COBOL for z/OS Version 5 compiler does not support the DATE FORMAT clause. Additional
information on the DATE FORMAT clause and other clauses no longer available can be found in
Enterprise COBOL for z/OS Migration Guide Version 5 Release 1.

• If the DATA parameter of the PLAYBACK ENABLE command is in effect for the current compile unit, the
MOVE command can be used while you replay recorded statements by using the PLAYBACK commands.
The target of the MOVE command must be a session variable, not a program variable.

• If you are debugging an optimized COBOL program, you can use the MOVE command to assign a value to
a program variable only if you first enter the SET WARNING OFF command.

• If you are debugging a COBOL program that was compiled with the OPTIMIZE compiler option, neither
operand of the MOVE command can be a variable that was discarded by the optimizer.

Chapter 5. z/OS Debugger commands 175

• If a COBOL variable defined as National is used as the receiving field in a MOVE command with an
alphabetic or alphanumeric operand, the operand that is not National is converted to Unicode before
that move is done, except for Group items.

• If a COBOL variable defined as UTF-8 is used as the receiving field in a MOVE command with an
alphabetic or alphanumeric operand, the operand that is not UTF-8 is converted to UTF-8 before that
move is done, except for Group items.

See Enterprise COBOL for z/OS Language Reference for more information about using COBOL variables
with the MOVE statement.

• Literals with an N or NX prefix are always treated as National data and can be moved only to other
National or UTF-8 Data Items or Group items.

• Literals with an U or UX prefix are always treated as UTF-8 data and can be moved only to other UTF-8
or National Data Items or Group items.

Examples

• Move the string constant "Hi There" to the variable field.

MOVE "Hi There" TO field;

• Move the value of session variable temp to the variable b.

MOVE temp TO b;

• To assign a new value to a DBCS variable when the current programming language is COBOL, enter the
following command in the Command/Log window.

MOVE G"D B C S V A L U E"

• Assign to the program variable c, found in structure d, the value of the program variable a, found in
structure b.

MOVE a OF b TO c OF d;

Note the qualification used in this example.
• Assign the value of 123 to the first table element of itm-2.

MOVE 123 TO itm-2(1,1);

• You can also use reference modification to assign values to variables as shown in the following two
examples.

MOVE aa(2:3) TO bb;

and

MOVE aa TO bb(1:4);

Refer to the following topics for more information related to the material discussed in this topic.

Related tasks
Enterprise COBOL for z/OS Programming Guide

Related references
“Allowable moves for the MOVE command (COBOL)” on page 176
“SET WARNING command (C, C++, COBOL, and PL/I)” on page 263

Allowable moves for the MOVE command (COBOL)
The following table shows the allowable moves for the z/OS Debugger MOVE command.

176 IBM z/OS Debugger: Reference and Messages

Source field Receiving field

GR AL AN ED BI NE ANE NDI NNDI ID IF EF D1 UT

GROUP (GR) Y Y Y Y1 Y1 Y1 Y1 Y1 Y1 Y1 Y1 Y1

ALPHABETIC (AL) Y Y Y Y

ALPHANUMERIC
(AN)4,5 Y Y Y Y

EXTERNAL
DECIMAL (ED)4,5 Y1 Y

BINARY (BI) Y1 Y

NUMERIC EDITED
(NE) Y

ALPHANUMERIC
EDITED (ANE) Y Y Y Y

FIGCON ZERO Y Y Y2 Y2 Y NU Y2 Y Y

FIGCON ZERO,
SPACE, or QUOTE Y Y

SPACES (AL) Y Y Y Y

HIGH-VALUE,
LOW-VALUE,
QUOTES

Y Y Y

NATIONAL DATA
ITEM (NDI) Y1 Y Y

NATIONAL
NUMERIC DATA
ITEM (NNDI)

NN

NUMERIC LITERAL Y1 Y Y NN Y Y Y

ALPHANUMERIC
LITERAL Y Y Y Y1 Y Y Y

ALPHANUMERIC
HEX LITERAL6 Y Y Y Y Y Y Y Y Y Y

INTERNAL
DECIMAL (ID)4,5 Y1 Y

FLOATING POINT
LITERAL Y1 Y Y

INTERNAL
FLOATING POINT
(IF)

Y1 Y Y

EXTERNAL
FLOATING POINT
(EF)

Y1 Y Y3

DBCS DATA ITEM
(D1) Y

DBCS LITERAL Y

Chapter 5. z/OS Debugger commands 177

Source field Receiving field

GR AL AN ED BI NE ANE NDI NNDI ID IF EF D1 UT

NATIONAL
LITERAL (NL) Y Y Y

NATIONAL HEX
LITERAL (NHL)7 Y1 Y Y

UTF-8 (UT) Y1 Y Y

UTF-8 LITERAL Y Y Y

UTF-8 HEX
LITERAL8 Y1 Y Y

Notes:
1

Move without conversion (like AN to AN)
2

Numeric move
3

Decimal-aligned and truncated, if necessary
4

MOVE does not support date windowing. For example, the MOVE statement cannot be used to move a
windowed date field to an expanded date field, or to a nondate field.

5
The MOVE command cannot be used to move one windowed date field to another windowed date field
with a different DATE FORMAT clause, or to move one expanded date field to another expanded date
field with a different DATE FORMAT clause.

6
Must be hexadecimal characters only, delimited by either quotation marks (") or apostrophes (') and
preceded by X.

7
Must be hexadecimal characters only, delimited by either quotation marks (") or apostrophes (') and
preceded by NX.

8
Must be hexadecimal characters only, delimited by either quotation marks (") or apostrophes (') and
preceded by UX.

Refer to the following topics for more information related to the material discussed in this topic.

Related tasks
Enterprise COBOL for z/OS Programming Guide

Related references
“MOVE command (COBOL)” on page 175

NAMES command
Use the NAMES command only as instructed in "Debugging user programs that use system prefixed
names" in the IBM z/OS Debugger User's Guide.

178 IBM z/OS Debugger: Reference and Messages

NAMES DISPLAY command
Use the NAMES DISPLAY command to indicate that you want a list of all the load modules or compile
units that are currently excluded or included. If you do not specify the ALL parameter, only the names
excluded by user commands appear in the list that is displayed. Names that z/OS Debugger excludes by
default are not included in the list that is displayed.

NAMES DISPLAY
USER

ALL

EXCLUDED

INCLUDED

LOADMODS

CUS

*

pattern

(

,

pattern)

;

USER
Indicates that you want a list of load modules or compile units that are currently excluded at your
request (by using NAMES EXCLUDE command).

ALL
Indicates that you want a list of all load modules or compile units that are currently excluded,
including those that z/OS Debugger excludes by default.

LOADMODS
Indicates that you want a list of load module names.

CUS
Indicates that you want a list of compile unit names.

pattern
Specifies the name of the load module or compile unit, or a string surrounded by quotation marks (")
or apostrophes (') that contains a partial load module or compile unit name followed by an asterisk to
indicate that you want a list of all load modules or compile units beginning with the specified string.

Usage note

You can use this command in remote debug mode.

Refer to the following topics for more information related to the material discussed in this topic.

Related tasks
"Debugging user programs that use system prefixed names" in the IBM z/OS Debugger User's Guide
Related references
Appendix A, “z/OS Debugger commands supported in Debug Tool compatibility mode,” on page 517

NAMES EXCLUDE command
The NAMES EXCLUDE command enables you to indicate to z/OS Debugger the names of load modules
or compile units that you do not need to debug. If these are data-only modules, z/OS Debugger does
not process them. If they contain executable code, z/OS Debugger might process them in some cases.
See "Optimizing the debugging of large applications" in the IBM z/OS Debugger User's Guide for more
information about these situations.

Chapter 5. z/OS Debugger commands 179

NAMES EXCLUDE LOADMOD

CU

pattern

(

,

pattern)

CU NOTEST

;

LOADMOD
Indicates that you do not want to debug the specified load module.

CU
Indicates that you do not want to debug the specified compile unit.

NOTEST
Indicates that you do not want to debug any compile units that were not compiled with debug data.

pattern
Specifies the name of the load module or compile unit, or a string surrounded by quotation marks (")
or apostrophes (') that contains a partial load module or compile unit name followed by an asterisk to
indicate that you do not want to debug all load modules or compile units beginning with the specified
string.

Usage notes

• You can use this command in remote debug mode.
• You cannot use the NAMES EXCLUDE command on load modules or compile units that are already

known to z/OS Debugger.

If you specify the name of a currently known load module or compile unit, it is added to the exclude
list so that if the name becomes unknown, it is excluded in subsequent appearances. However, the
currently known load module or compile unit remains known.

• You cannot use the NAMES EXCLUDE command to indicate to z/OS Debugger that you want to exclude
the initial load module or the compile units contained in the initial load module. If you want to do
this, you must specify the EQAOPTS NAMES command, as described in "Using the EQAOPTS NAMES
command to include or exclude the initial load module" in the IBM z/OS Debugger User's Guide.

• For C and C++ programs, the pattern parameter is case sensitive. For all other languages, the pattern is
not case sensitive.

Refer to the following topics for more information related to the material discussed in this topic.

Related tasks
"Debugging user programs that use system prefixed names" in the IBM z/OS Debugger User's Guide
"Debugging programs containing data-only modules" in the IBM z/OS Debugger User's Guide

Related references
Appendix A, “z/OS Debugger commands supported in Debug Tool compatibility mode,” on page 517

NAMES INCLUDE command
Use the NAMES INCLUDE command to indicate to z/OS Debugger that your program is a user load module
or compile unit, not a system program. See "Debugging user programs that use system prefix names" in
the IBM z/OS Debugger User's Guide for more information.

NAMES INCLUDE LOADMOD

CU

name

(

,

name)

;

LOADMOD
Indicates that you want to debug the specified load module.

180 IBM z/OS Debugger: Reference and Messages

CU
Indicates that you want to debug the specified compile unit.

name
Specifies the name of the load module or compile unit.

Usage notes

• You can use this command in remote debug mode.
• You cannot use the NAMES INCLUDE command on load modules or compile units that are already

known to z/OS Debugger.
• You cannot use the NAMES INCLUDE command to indicate to z/OS Debugger that you want to debug

the initial load module or the compile units contained in the initial load module. If you want to do
this, you must specify the EQAOPTS NAMES command, as described in "Using the EQAOPTS NAMES
command to include or exclude the initial load module" in the IBM z/OS Debugger User's Guide.

• Do not use the NAMES INCLUDE command to debug system components (for example, z/OS Debugger,
Language Environment, CICS, IMS, or compiler run-time modules). If you attempt to debug these
system components, you might experience unpredictable failures. Only use this command to debug user
programs that are named with prefixes that z/OS Debugger recognizes as system components.

• z/OS Debugger generates implicit NAMES INCLUDE commands for the following situations:

– The target of a deferred AT ENTRY command
– The target of an AT LOAD command
– The target of a LOADDEBUGDATA command
– In CICS, the programs specified in DTCN and CADP, unless they contain an asterisk (*)

Refer to the following topics for more information related to the material discussed in this topic.

Related tasks
"Debugging user programs that use system prefixed names" in the IBM z/OS Debugger User's Guide

Related references
Appendix A, “z/OS Debugger commands supported in Debug Tool compatibility mode,” on page 517

Null command
The Null command is a semicolon written where a command is expected. It is used for such things as an
IF command with no action in its THEN clause.

;

Example

Do nothing if array[x] > 0; otherwise, set a to 1. The current programming language setting is C.

if (array[x] > 0); else a = 1;

ON command (PL/I)
The ON command establishes the actions to be executed when the specified PL/I condition is raised. This
command is equivalent to AT OCCURRENCE.

Chapter 5. z/OS Debugger commands 181

ON CONDITION (condition_name)

ENDFILE

ENDPAGE

KEY

NAME

PENDING

RECORD

TRANSMIT

UNDEFINEDFILE

(file_reference)

AREA

ATTENTION

CONVERSION

ERROR

FINISH

FIXEDOVERFLOW

OVERFLOW

SIZE

STRINGRANGE

STRINGSIZE

SUBSCRIPTRANGE

UNDERFLOW

ZERODIVIDE

command ;

condition_name
A valid PL/I CONDITION condition name.

file_reference
A valid PL/I file constant, file variable (can be qualified), or an asterisk (*). If you use an asterisk
(*), the breakpoint is activated for all file references associated with the condition used in the ON
command.

command
A valid z/OS Debugger command.

Usage notes

• You must abide by the PL/I restrictions for the particular condition.
• An ON action for a specified PL/I condition remains established until:

– Another ON command establishes a new action for the same condition. In other words, the
breakpoint is replaced.

– A CLEAR command removes the ON definition.
• For Enterprise PL/I, you cannot use file variables in the file_reference field.
• The ON command occurs before any existing ON-unit in your application program. The ON-unit is

processed after z/OS Debugger returns control to the language.
• The following are accepted PL/I abbreviations for the PL/I condition constants:

ATTENTION or ATTN
FIXEDOVERFLOW or FOFL
OVERFLOW or OFL
STRINGRANGE or STRG

182 IBM z/OS Debugger: Reference and Messages

STRINGSIZE or STRZ
SUBSCRIPTRANGE or SUBRG
UNDEFINEDFILE([file_reference]) or UNDF([file_reference])
UNDERFLOW or UFL
ZERODIVIDE or ZDIV

• The preferred form of the ON command is AT OCCURRENCE. For compatibility with PLITEST and
INSPECT, however, it is recognized and processed. ON should be considered a synonym of AT
OCCURRENCE. Any ON commands entered are logged as AT OCCURRENCE commands.

• The ON command cannot be used while you replay recorded statements by using the PLAYBACK
commands.

Examples

• Display a message if a division by zero is detected.

ON ZERODIVIDE BEGIN;
 LIST 'A zero divide has been detected';
END;

• Display and patch the error character when converting character data to numeric.

Given a PL/I program that contains the following statements:

DECLARE i FIXED BINARY(31,0);
 .
 ..
 ..
i = '1s3';

The following z/OS Debugger command would display and patch the error character when converting
the character data to numeric:

ON CONVERSION
 BEGIN;
 LIST (%STATEMENT, ONCHAR);
 ONCHAR = '0';
 GO;
 END;

'1s3' cannot be converted to a binary number so CONVERSION is raised. The ON CONVERSION
command lists the offending statement number and the offending character: 's'. The data will be
patched by replacing the 's' with a character zero, 0, and processing will continue.

Refer to the following topics for more information related to the material discussed in this topic.

Related references
“AT OCCURRENCE command” on page 65
Enterprise PL/I for z/OS Language Reference

PANEL command (full-screen mode)
The PANEL command displays special panels. The PANEL keyword is optional.

The PANEL command cannot be used in a command list, any conditional command, or any multiway
command.

Chapter 5. z/OS Debugger commands 183

PANEL

COLORS

LAYOUT

RESET

LISTINGS

PROFILE

SOURCES

;

COLORS
Displays the Color Selection panel that allows the selection of color, highlighting, and intensity of the
fields of the z/OS Debugger session panel.

LAYOUT
Displays the Window Layout Selection panel that controls the configuration of the windows on the
z/OS Debugger session panel.
RESET

Restores the relative sizes of windows for the current configuration, without displaying the
window layout panel. For configurations 1 and 4, the three windows are evenly divided. For other
configurations, the point where the three windows meet is approximately the center of the screen.

LISTINGS
Displays the Source Identification panel, where you associate compile units with the names of their
respective listing, source, or separate debug file. LISTINGS is equivalent to SOURCES.

z/OS Debugger provides the Source Identification panel to maintain a record of compile units
associated with your program, as well as their associated source, listing, or separate debug files.

You can also make source or listings available to z/OS Debugger by entering their names on the
Source Identification panel.

The Source Identification panel associates compile units with the names of their respective listing,
source, separate debug file and controls what appears in the Source window. To explicitly name the
compile units being displayed in the Source window, access the Source Identification panel (shown
below) by entering the PANEL LISTINGS or PANEL SOURCES command.

 Source Identification Panel
 Command ===>

 Compile Unit Listings⁄Source File Display
 ---------------------- --------------------------------- -------
 DBKP515 TS64081.TEST.LISTING(IBME73) Y
 ___________ ____________________________ _

 Enter QUIT to return with current settings saved.
 CANCEL to return without current settings saved.
 UP⁄DOWN to scroll up and down.

Compile Unit
Is the name of a valid compile unit currently known to z/OS Debugger. New compile units are
added to the list as they become known.

Listing/Source File
Is the name of the listing, source, EQALANGX, or separate debug file containing the compilation
unit to be displayed in the Source window. If the file is a listing, only source program
statements are shown. The minimum required is the compile unit name. The default file
specification is pgmname LISTING * (COBOL and PL/I), where pgmname is the name of
your program. For TSO, the default file specification is userid.pgmname.C (C and C++),
userid.pgmname.list (COBOL), or userid.pgmname.list (PL/I) for sequential data sets
and userid.dsname.C(membername) (C and C++), userid.dsname.Listing(membername)
(COBOL), or userid.dsname.List(membername) (PL/I) for partitioned data sets. For
assembler and LangX COBOL the default is userid.EQALANGX(membername).

184 IBM z/OS Debugger: Reference and Messages

Display
Is a flag that specifies whether the listing or source is to be displayed in the Source window.

To display a listing view, take the following steps:

• Compile the program with the proper option to generate a source or source listing file.
• Make sure the file is available and accessible on your host operating system.
• Set the Display field on the Source Identification panel to Y for the compile unit. To save time and

avoid displaying listings or source you do not want to see, specify N.

If any of these conditions are not satisfied, the Source window remains empty until control reaches a
compile unit where the conditions are satisfied.

You can change the listing, source, or separate debug file associated with a compile unit by entering
the new name over the listing, source, or separate debug file displayed in the LISTING/SOURCE FILE
field.

Note: The new name must be followed by at least one blank.

After you modify the panel, return to the z/OS Debugger session panel either by issuing the QUIT
command, or by pressing the QUIT PF key.

PROFILE
Displays the Profile Settings panel, where parameters of a full-screen z/OS Debugger session can be
set.

SOURCES
Is equivalent to LISTINGS.

Usage notes

• For an Enterprise COBOL for z/OS Version 5 program, the contents that are displayed with PANEL
SOURCE and PANEL LISTING show the location of the load module.

• All information about the panels displayed by the PANEL command is saved when QUIT is used to leave
them. Saving the changes to the specified panels in this manner returns you to your z/OS Debugger
session with the current settings in effect. In addition, CANCEL can be used to leave the panels without
saving the changes.

• The PANEL command is not logged.

Examples

• Display the color and attribute panel.

PANEL COLORS;

• Reset the relative sizes of the windows for the current layout configuration.

PANEL LAYOUT RESET;

Refer to the following topics for more information related to the material discussed in this topic.

Related tasks
“SET SCREEN command (full-screen mode)” on page 258
"Customizing your full-screen session" in the IBM z/OS Debugger User's Guide

PERFORM command (COBOL)
The PERFORM command transfers control explicitly to one or more statements and implicitly returns
control to the next executable statement after execution of the specified statements is completed. The
keywords cannot be abbreviated.

Simple:

Chapter 5. z/OS Debugger commands 185

PERFORM command END-PERFORM ;

command
A valid z/OS Debugger command.

Repeating:
PERFORM

WITH

TEST
BEFORE

AFTER

VARYING reference FROM reference BY reference

UNTIL

condition command END-PERFORM ;

reference
A valid z/OS Debugger COBOL reference.

condition
A simple relation condition.

command
A valid z/OS Debugger command.

Usage notes

• A constant as a reference is allowed only on the right side of the FROM and BY keywords.
• Index-names and floating point variables cannot be used as the VARYING references.
• Index-names are not supported in the BY phrase.
• Only inline PERFORMs are supported (but the performed command can be a z/OS Debugger procedure

invocation).
• The COBOL AFTER phrase is not supported.
• Windowed date fields cannot be used as the VARYING reference, the FROM reference, or the BY

reference.
• See Enterprise COBOL for z/OS Language Reference for an explanation of the following COBOL keywords:

AFTER
BEFORE
BY
FROM
TEST
UNTIL
VARYING
WITH

• For optimized COBOL programs, the PERFORM command cannot reference any variable that was
discarded by the optimizer.

• For optimized COBOL programs, if the VARYING phrase is specified, the first reference can only refer to
a session variable.

186 IBM z/OS Debugger: Reference and Messages

• If the you entered the PLAYBACK ENABLED with the DATA parameter and the compile unit supports the
DATA parameter, the PERFORM command can reference a program variable and the VARYING operand (if
specified) must reference a session variable. For example:

PERFORM VARYING session-var-1 FROM program-var-1 BY program-var-2
 UNTIL program-var-3 = program-var-4

Examples

• Set a breakpoint at statement number 10 to move the value of variable a to the variable b and then list
the value of x.

AT 10 PERFORM
 MOVE a TO b;
 LIST (x);
END-PERFORM;

• List the value of height for each even value between 2 and 30, including 2 and 30.

PERFORM WITH TEST AFTER
 VARYING height FROM 2 BY 2
 UNTIL height = 30
 LIST height;
END-PERFORM;

• Position the cursor at the start of a COBOL performed paragraph and press PF5.

Refer to the following topics for more information related to the material discussed in this topic.

Related references
Enterprise COBOL for z/OS Language Reference

PLAYBACK commands
The PLAYBACK commands help you record and replay:

• Statements that you have run.
• Information about your program. For example, the value of variables and registers and the status of
files.

The following table summarizes the forms of the PLAYBACK commands.

Command Description

“PLAYBACK ENABLE
command” on page 188

Informs z/OS Debugger to record all subsequent statements that you
run and other information about your program.

“PLAYBACK START
command” on page 189

Informs z/OS Debugger to suspend normal debugging and to prepare to
replay recorded statements.

“PLAYBACK FORWARD
command” on page 190

Informs z/OS Debugger to replay recorded statements in forward
direction.

“PLAYBACK BACKWARD
command” on page 190

Informs z/OS Debugger to replay recorded statements in backward
direction.

“PLAYBACK STOP
command” on page 190

Informs z/OS Debugger to stop replaying statements, resume normal
debugging, and continue recording the statements that you run and
other information about your program.

“PLAYBACK DISABLE
command” on page 191

Informs z/OS Debugger to stop recording the statements that you run
and discard the information about your program that it recorded.

Usage notes

Chapter 5. z/OS Debugger commands 187

• In remote debugging, you can enable playback by using the Playback toolbar in the Debug view.
Playback is recording and replaying statements. Changes made to variables are also recorded and
available to replay. However, you cannot modify variables and registers during playback.

PLAYBACK ENABLE command
The PLAYBACK ENABLE command informs z/OS Debugger to begin recording the statements that you run
and information about your program. If z/OS Debugger is already recording the statements that you run,
you can use the PLAYBACK ENABLE command to inform z/OS Debugger to record the statements that
you run in other compile units or to change the effect of the DATA option.

PLAYBACK ENABLE
*

options ;

options

cuname

(

,

cuname)

integer

DATA

NODATA

cuname
Name of the compile unit or compile units where z/OS Debugger is to record the statements that you
run. You can specify only the names of the compile units currently known.

*
Specifies that z/OS Debugger is to record the statements that you run in all compile units. This is the
default.

integer
Specifies the maximum amount of memory to use to store data that is collected. The integer value
specifies a unit of K (1024) bytes. For example, an integer value of 2000 indicates 2,048,000 bytes.
The default value is 8000.

DATA
Specifies that z/OS Debugger is to save information about your program, such as the value of variables
and registers. z/OS Debugger saves this information for the compile units that you specify in the
cuname parameter or, if you specified the * parameter, for all compile units. The DATA parameter is
effective only for compile units compiled with the following compilers:

• Enterprise COBOL for z/OS, Version 6
• Enterprise COBOL for z/OS, Version 5
• Enterprise COBOL for z/OS, Version 4
• With the following compilers, you must also specify the SYM suboption of the TEST compiler option:

– Enterprise COBOL for z/OS, Version 3.3 and Version 3.4
– Enterprise COBOL for z/OS and OS/390, Version 3 Release 2
– Enterprise COBOL for z/OS and OS/390, Version 3 Release 1, with APAR PQ63235
– COBOL for OS/390 & VM, Version 2, with APAR PQ63234

DATA is the default.
NODATA

Specifies that z/OS Debugger does not save information about your program.

Usage notes

• For COBOL only: If you enter the PLAYBACK ENABLE DATA command, and a compile unit supports the
DATA parameter, the following information is recorded:

188 IBM z/OS Debugger: Reference and Messages

– FILE SECTION
– WORKING-STORAGE SECTION
– LOCAL-STORAGE SECTION
– LINKAGE SECTION
– All special registers except for: ADDRESS OF, LENGTH OF, and WHEN-COMPILED

PLAYBACK START command
The PLAYBACK START command suspends normal debugging and informs z/OS Debugger to prepare to
replay the statements it recorded. When normal debugging is suspended, all breakpoints are disabled
and many commands are unavailable. Use the STEP and RUNTO commands to navigate through recorded
statements in a forward or backward direction. Backward is the initial direction of the navigation.

PLAYBACK START ;

Usage notes

The following commands are available while you replay recorded statements:

“ALLOCATE command” on page
31

“FIND command” on page 117 “QQUIT command” on page 200

“CALL procedure command” on
page 84

“FREE command” on page 124 “RETRIEVE command (full-
screen mode)” on page 202

CLEAR EQUATE “IMMEDIATE command (full-
screen mode)” on page 135

“RUNTO command” on page 203

CLEAR LOG null “SCROLL command (full-screen
mode)” on page 204

CLEAR MONITOR “PANEL command (full-screen
mode)” on page 183

SET (most forms)

CLEAR PROCEDURE “PERFORM command (COBOL)”
on page 1851

“STEP command” on page 269

“COMMENT command” on page
93

“PLAYBACK commands” on page
187

“SYSTEM command (z/OS)” on
page 275

“CURSOR command (full-screen
mode)” on page 95

“Prefix commands (full-screen
mode)” on page 192

“TSO command (z/OS)” on page
280

“Declarations (COBOL)” on page
99

“PROCEDURE command” on
page 193

“USE command” on page 280

DESCRIBE CUS “QUERY command” on page 194 “WINDOW command (full-screen
mode)” on page 282

DESCRIBE PROGRAMS “QUIT command” on page 199

1Refer to “PERFORM command (COBOL)” on page 185 for restrictions.

If the DATA option is in effect and the compile unit supports the DATA option, the following commands are
available:

“COMPUTE command (COBOL)” on page 94 LIST

DESCRIBE ATTRIBUTES “MOVE command (COBOL)” on page 175 2

DESCRIBE CURSOR MONITOR

“EVALUATE command (COBOL)” on page 115 “SET command (COBOL)” on page 266 2

Chapter 5. z/OS Debugger commands 189

“IF command (COBOL)” on page 131 “SET AUTOMONITOR command” on page 212

2 The target must be session variable.

The following commands are not available while you replay recorded statements:

“ANALYZE command (PL/I)” on
page 32

“Declarations (C and C++)” on
page 96

“if command (C and C++)” on
page 130

“Assignment command
(assembler and disassembly)” on
page 33

“DECLARE command (PL/I)” on
page 101

“IF command (PL/I)” on page
134

“Assignment command (PL/I)”
on page 36

DESCRIBE ENVIRONMENT “INPUT command (C, C++, and
COBOL)” on page 135

“AT command” on page 37 “DISABLE command” on page
107

“ON command (PL/I)” on page
181

“break command (C and C++)”
on page 75

“do/while command (C and C++)”
on page 110

“RUN command” on page 203

“CALL %DUMP command” on
page 77

“DO command (PL/I)” on page
111

“SELECT command (PL/I)” on
page 207

“CALL entry_name command
(COBOL)” on page 83

“ENABLE command” on page 113 SET INTERCEPT

CLEAR AT “Expression command (C and C+
+)” on page 116

“switch command (C and C++)”
on page 273

CLEAR DECLARE “for command (C and C++)” on
page 123

“TRIGGER command” on page
276

CLEAR ON “GO command” on page 124 “while command (C and C++)” on
page 281

CLEAR VARIABLES “GOTO command” on page 125

PLAYBACK FORWARD command
The PLAYBACK FORWARD command informs z/OS Debugger to perform STEP and RUNTO commands
forward, starting from the current statement and going to the next statement.

PLAYBACK FORWARD ;

PLAYBACK BACKWARD command
The PLAYBACK BACKWARD command informs z/OS Debugger to perform STEP and RUNTO commands
backward, starting from the current statement and going to previous statements. Backward is the initial
direction when you enter the PLAYBACK START command.

PLAYBACK BACKWARD ;

PLAYBACK STOP command
The PLAYBACK STOP command resumes normal debugging at the statement where you entered the
PLAYBACK START command. All suspended breakpoints are enabled and all commands are available.
z/OS Debugger continues to record the statements you run and, if you specified the DATA option,
information about your program.

190 IBM z/OS Debugger: Reference and Messages

PLAYBACK STOP ;

PLAYBACK DISABLE command
The PLAYBACK DISABLE command informs z/OS Debugger to stop recording the statements that you
run and, if you specified the DATA option, information about your program. The information about the
program that z/OS Debugger collected while recording is discarded. You can instruct z/OS Debugger to
stop recording for one or more compile units. If you stop recording for one compile unit and continue
recording for other compile units, the information that you collected for the one compile unit is discarded.

PLAYBACK DISABLE
*

cuname

(

,

cuname)

;

cuname
Indicates to z/OS Debugger to stop recording for the compile unit or compile units specified. Only the
names of currently known compile units can be specified.

*
Indicates to z/OS Debugger to stop recording for all compile units. This is the default.

POPUP command
Displays the Command pop-up window, where you can type in multiline commands.

POPUP

integer

;

integer
The number of lines for the window.

If you do not specify an integer, z/OS Debugger opens the window with the number of lines specified by
the SET POPUP command.

Related references

“SET POPUP command” on page 248

POSITION command
Positions the cursor to a specific line in the specified window. This command does not work in the
disassembly view.

POSITION integer
CURSOR

LOG

MONITOR

SOURCE

;

integer
Specifies that z/OS Debugger scroll the specified window to line number integer. z/OS Debugger
matches integer to the line number in the prefix area of the specified window. z/OS Debugger can
scroll either up or down. The maximum value you can specify is 999999.

Chapter 5. z/OS Debugger commands 191

Prefix commands (full-screen mode)
The prefix commands apply to source listing lines and monitor lines. Prefix commands are commands that
are typed into the prefix area of the Source window or Monitor window, including the automonitor section.
For more information about the commands, see the section corresponding to the command name.

The following tables summarize the forms of the prefix commands.

Table 8. Source window prefix commands

Command Description

“AT Prefix command
(full-screen mode)” on
page 70

Defines a statement breakpoint through the Source window prefix area.

“CLEAR prefix (full-
screen mode)” on page
92

Clears a breakpoint through the Source window prefix area.

“DISABLE prefix (full-
screen mode)” on page
109

Disables a breakpoint through the Source window prefix area.

“ENABLE prefix (full-
screen mode)” on page
114

Enables a disabled breakpoint through the Source window prefix area.

“L prefix command
(full-screen mode)” on
page 153

Displays the values of the variables on that line.

“M prefix (full-screen
mode)” on page 173

Adds the variables on that line to the Monitor window.

“QUERY prefix (full-
screen mode)” on page
199

Queries what statements have breakpoints through the Source window
prefix area.

“RUNTO prefix command
(full-screen mode)” on
page 204

Runs the program to the location that the cursor or statement identifier
indicate in the Source window prefix area.

“SHOW prefix command
(full-screen mode)” on
page 269

Specifies what relative statement or verb within the line is to have its
frequency count shown in the suffix area.

Table 9. Monitor window prefix commands

Command Description

CC…CC “CLEAR command” on
page 86

Clears selected block of multiple items of the current set from the
MONITOR window.

CL (CLEAR MONITOR n)
“CLEAR command” on page
86

Clears selected member of the current set of MONITOR commands.

DEF (MONITOR
n DEFAULT)“MONITOR
command” on page 171

Displays selected member of the current set of MONITOR commands in
default representation.

192 IBM z/OS Debugger: Reference and Messages

Table 9. Monitor window prefix commands (continued)

Command Description

HEX (MONITOR n HEX)
“MONITOR command” on
page 171

Displays selected member of the current set of MONITOR commands in
hexadecimal representation.

LIST (LIST MONITOR n)
“LIST MONITOR command”
on page 157

Lists selected member of the current set of MONITOR commands.

PROCEDURE command
The PROCEDURE command allows the definition of a group of commands that can be accessed by using
the CALL procedure command. The CALL command is the only way to perform the commands within the
PROCEDURE. PROCEDURE definitions remain in effect for the entire debug session.

The PROCEDURE keyword can be abbreviated only as PROC. PROCEDURE definitions can be subcommands
of other PROCEDURE definitions. The name of a nested procedure has the scope of only the containing
procedure. Session variables cannot be declared within a PROCEDURE definition.

In addition, a procedure must be defined before it is called on a CALL statement.

name : PROCEDURE ; command END ;

name
A valid z/OS Debugger procedure name. It must be a valid identifier in the current programming
language. The maximum length is 31 characters.

command
A valid z/OS Debugger command other than a declaration or PANEL command.

Usage notes

• Because the z/OS Debugger procedure names are always uppercase, the procedure names are
converted to uppercase even for programming languages that have mixed-case symbols.

• If a GO or STEP command is issued within a procedure or a nested procedure, any statements following
the GO or STEP in that procedure and the containing procedure are ignored. If control returns to z/OS
Debugger, it returns to the statement following the CALL of the containing PROCEDURE.

• It is recommended that procedure names be chosen so that they are valid for all possible programming
language settings throughout the entire z/OS Debugger debug session.

Examples

• When procedure proc1 is called, the values of variables x, y, and z are displayed.

proc1: PROCEDURE; LIST (x, y, z); END;

• Define a procedure named setat34 that sets a breakpoint at statement 34. Procedure setat34
contains a nested procedure lister that lists current statement breakpoints. Procedure lister can
be called only from within setat34.

setat34: PROCEDURE;
 AT 34;
 lister: PROCEDURE;
 LIST AT STATEMENT;
 END;
 CALL lister;
END;

Chapter 5. z/OS Debugger commands 193

QUALIFY RESET command
The QUALIFY RESET command is equivalent to the SET QUALIFY RESET command.

QUERY command
The QUERY command displays the current value of the specified z/OS Debugger setting, the current
setting of all the z/OS Debugger settings, or the current location in the suspended program.

For an explanation of the z/OS Debugger settings, see the SET command.

QUERY Attributes A through I

Attributes J through P

Attributes Q through Z

;

Attributes A through I
ASSEMBLER

AUTOMONITOR

BROWSE MODE
1

CHANGE

COLORS

COUNTRY

CURRENT VIEW
1

DBCS

DEFAULT DBG
1

DEFAULT LISTINGS
1

DEFAULT MDBG
1

DEFAULT SCROLL

DEFAULT VIEW
1

DEFAULT WINDOW

DISASSEMBLY

DYNDEBUG

ECHO

EQAOPTS
1

EQUATES

EXECUTE

EXPLICITDEBUG
1

FIND BOUNDS

FREQUENCY

HISTORY

IGNORELINK
1

INTERCEPT
1

Attributes J through P

194 IBM z/OS Debugger: Reference and Messages

KEYS

LDD

LIST BY SUBSCRIPT
1 2

LIST BY SUBSCRIPT
3

LIST TABULAR

LOCATION

LOG

LOG NUMBERS

LONGCUNAME

MDBG

MONITOR COLUMN

DATATYPE

LIMIT

NUMBERS

WRAP

MSGID

NATIONAL

LANGUAGE

PACE

PFKEYS

PLAYBACK

PLAYBACK LOCATION

POPUP

PROGRAMMING LANGUAGE

PROMPT

Attributes Q through Z
QUALIFY

REFRESH

RESTORE

REWRITE
1

SAVE

SCREEN

SCROLL DISPLAY

SEQUENCE
4

SETS

SOURCE

SUFFIX

TEST

WARNING

WINDOW SIZES

Notes:

Chapter 5. z/OS Debugger commands 195

1 You can use this command in remote debug mode.
2 Only for COBOL.
3 Only for Enterprise PL/I.
4 Only for PL/I.

ASSEMBLER
Displays the current ASSEMBLER setting.

AUTOMONITOR
Displays the current AUTOMONITOR setting.

BROWSE MODE
Displays the current browse mode setting.

CHANGE
Displays the current CHANGE setting.

COLORS (full-screen mode)
Displays the current COLOR setting.

COUNTRY
Displays the current COUNTRY setting.

CURRENT VIEW
Displays the name of the view being used for the currently qualified CU.

DBCS
Displays the current DBCS setting.

DEFAULT DBG
Displays the current DEFAULT DBG setting.

DEFAULT LISTINGS
Displays the current DEFAULT LISTINGS setting.

DEFAULT MDBG
Displays the current DEFAULT MDBG setting.

DEFAULT SCROLL (full-screen mode)
Displays the current DEFAULT SCROLL setting.

DEFAULT VIEW
Displays the name of the view that will be used as the initial view when you enter the
LOADDEBUGDATA command for an assembler CU.

DEFAULT WINDOW (full-screen mode)
Displays the current DEFAULT WINDOW setting.

DISASSEMBLY
Displays the current DISASSEMBLY setting.

DYNDEBUG
Displays the current DYNDEBUG setting.

ECHO
Displays the current ECHO setting.

EQAOPTS
Displays the EQAOPTS commands in effect and any errors detected while processing EQAOPTS
commands.

EQUATES
Displays the current EQUATE definitions.

EXECUTE
Displays the current EXECUTE setting.

EXPLICITDEBUG
Displays whether explicit debug mode is active.

FIND BOUNDS
Displays the current FIND BOUNDS setting.

196 IBM z/OS Debugger: Reference and Messages

FREQUENCY
Displays the current FREQUENCY setting.

HISTORY
Displays the current HISTORY setting and size.

IGNORELINK
Displays the current IGNORELINK setting.

INTERCEPT
Displays the current INTERCEPT setting.

KEYS (full-screen mode)
Displays the current KEYS setting.

LDD
Displays the current LDD setting.

LIST BY SUBSCRIPT
Displays the current LIST BY SUBSCRIPT setting.

LIST TABULAR
Displays the current LIST TABULAR setting.

LOCATION
Displays the statement identifier where execution is suspended. The current statement identified
by QUERY LOCATION has not yet executed. If suspended at a breakpoint, the description of the
breakpoint is also displayed.

For an AT CHANGE breakpoint, if you set the breakpoint by providing a reference, z/OS Debugger
displays the reference. If the reference is a Level 88 variable, z/OS Debugger displays the current
setting of true or false.

For an AT CHANGE breakpoint, z/OS Debugger displays the old and new values in hexadecimal format.

LOG
Displays the current LOG setting.

LOG NUMBERS (full-screen mode)
Displays the current LOG NUMBERS setting.

LONGCUNAME
Displays the current LONGCUNAME setting.

MDBG
Displays the current MDBG setting.

MONITOR COLUMN
Displays the current MONITOR COLUMN setting. SET MONITOR COLUMN is accepted in batch mode,
but has no effect.

MONITOR DATATYPE
Displays the current MONITOR DATATYPE setting.

MONITOR LIMIT (full-screen mode)
Displays the current MONITOR LIMIT setting.

MONITOR NUMBERS (full-screen mode)
Displays the current MONITOR NUMBERS setting.

MONITOR WRAP
Displays the current MONITOR WRAP setting. SET MONITOR WRAP is accepted in batch mode, but has
no effect.

MSGID
Displays the current MSGID setting.

NATIONAL LANGUAGE
Displays the current NATIONAL LANGUAGE setting.

PACE
Displays the current PACE setting. This setting is not supported in batch mode.

Chapter 5. z/OS Debugger commands 197

PFKEYS
Displays the current PFKEY definitions. This setting is not supported in batch mode.

PLAYBACK
Displays the current status of PLAYBACK.

PLAYBACK LOCATION
Displays the statement identifier of the statement being replayed.

POPUP
Displays the current POPUP setting.

PROGRAMMING LANGUAGE
Displays the current PROGRAMMING LANGUAGE setting. z/OS Debugger does not differentiate
between C and C++, use this option for C++ as well a C programs.

PROMPT (full-screen mode)
Displays the current PROMPT setting.

QUALIFY
Displays the current QUALIFY BLOCK setting.

REFRESH (full-screen mode)
Displays the current REFRESH setting.

RESTORE
Displays the current RESTORE setting.

REWRITE
Displays the current REWRITE setting. This setting is not supported in batch mode.

SAVE
Displays the current SAVE setting.

SCREEN (full-screen mode)
Displays the current SCREEN setting.

SCROLL DISPLAY (full-screen mode)
Displays the current SCROLL DISPLAY setting.

SEQUENCE (PL/I)
Displays current SEQUENCE setting.

SETS
Displays all settings that are controlled by the SET command.

SOURCE
Displays the current SOURCE setting.

SUFFIX (full-screen mode)
Displays the current SUFFIX setting.

TEST
Displays the current TEST setting.

WARNING (C)
Displays the current WARNING setting.

WINDOW SIZES
Displays the current WINDOW SIZE values and WINDOW CLOSE information. The window sizes are
the values that apply when all windows are open.

Usage note

• For Enterprise COBOL for z/OS Version 5, the output for QUERY SOURCE is the location of the load
module.

• You can use the QUERY ASSEMBLER, QUERY AUTOMONITOR, QUERY CURRENT VIEW, QUERY
DEFAULT LISTINGS, QUERY DEFAULT VIEW, QUERY DISASSEMBLY, QUERY DYNDEBUG, QUERY
EQAOPTS, QUERY EXPLICITDEBUG, QUERY IGNORELINK, QUERY INTERCEPT, QUERY LDD, QUERY
LOCATION, QUERY LOG, QUERY QUALIFY, QUERY REWRITE, and QUERY WARNING commands in
remote debug mode.

198 IBM z/OS Debugger: Reference and Messages

Examples

• Display the current ECHO setting.

QUERY ECHO;

• Display all current settings.

QUERY SETS;

Refer to the following topics for more information related to the material discussed in this topic.

Related references
“QUERY prefix (full-screen mode)” on page 199
Appendix A, “z/OS Debugger commands supported in Debug Tool compatibility mode,” on page 517

QUERY prefix (full-screen mode)
Queries what statements on a particular line have statement breakpoints when you issue this command
through the Source window prefix area.

QUERY ;

Usage notes

• When the QUERY prefix command is issued, a sequence of characters corresponding to the
statements is displayed in the prefix area of the Source window. If the statement contains a breakpoint,
"*" is used, or ".", if it does not. If there are more than eight statements or verbs on the line, and one or
more past the eighth statement have breakpoints, the eighth character of the map is replaced by a "+".

For example, a display of "..*." indicates that four statements or verbs begin on the line and the third one
has a breakpoint defined.

• The QUERY prefix command is not logged.

Refer to the following topics for more information related to the material discussed in this topic.

• Related references
• “LIST command” on page 140

QUIT command
The QUIT command ends a z/OS Debugger session and, if an expression is specified, sets the return code.
In full-screen mode, it also displays a prompt panel that asks if you really want to quit the debug session.
In line, batch, and remote debug mode, the QUIT command ends the session without prompting.

QUIT

(expression)

ABEND

DEBUG

TASK

;

expression
A valid z/OS Debugger expression in the current programming language.

If expression is specified, this value is used as the application return code value. The actual return
code for the run is determined by the execution environment.

You cannot use expression in remote debug mode.

ABEND
If you specify ABEND, z/OS Debugger raises a CEE2F1 exception to terminate each active enclave.

Chapter 5. z/OS Debugger commands 199

DEBUG
If you specify DEBUG, z/OS Debugger ends and your program keeps running. Any calls to restart z/OS
Debugger are ignored. By default, when running under CICS, a pseudo-conversational application will
run until the end of the conversation (until EXEC CICS RETURN without TRANSID is issued to return to
CICS).

TASK
TASK applies to CICS pseudo-conversational applications. If you specify TASK, z/OS Debugger
processing will be terminated until the end of the current CICS pseudo-conversational task (EXEC
CICS RETURN TRANSID). When a new task is started in the pseudo-conversation, z/OS Debugger
debugging will resume.

Usage notes

• z/OS Debugger will only resume in a new pseudo-conversational task if CADP or DTCN successfully
match on a pattern.

• QUIT is always logged in a comment line except where it appears in a command list. This enables you to
reuse the log file as a primary commands file.

• If QUIT is entered from a z/OS Debugger commands file, no prompt is displayed. This behavior applies
to the z/OS Debugger preferences files, primary commands files, and USE files.

• For PL/I, the expression will be converted to FIXED BINARY (31,0), if necessary. In addition, if an
expression is specified, it is used as if your program called the PLIRETC built-in subroutine.

• For PL/I, the value of the expression must be nonnegative and less than 1000.
• If you enter the QUIT DEBUG command and then want to restart z/OS Debugger, you must first restart

your program.
• If you enter the QUIT or QQUIT command while you are debugging a non-Language Environment

assembler or LangX COBOL program running under CICS, z/OS Debugger behaves the same as if you
entered a QUIT ABEND command and a U4038 abend occurs.

• In remote debug mode, if any form of the QUIT command is found in a preferences or commands file,
the remote debugger displays the message "Connection with debug engine was lost."

Examples

• End a z/OS Debugger session.

QUIT;

• End a z/OS Debugger session and use the value in variable x as the application return code.

QUIT (x);

• End a z/OS Debugger session without ending the program.

QUIT DEBUG;

Refer to the following topics for more information related to the material discussed in this topic.

Related references
“expression” on page 14
Appendix A, “z/OS Debugger commands supported in Debug Tool compatibility mode,” on page 517

QQUIT command
The QQUIT command ends a z/OS Debugger session without further prompting.

QQUIT ;

Usage notes

200 IBM z/OS Debugger: Reference and Messages

• In full-screen mode, the QQUIT command does not display a prompt panel to verify that you want to
quit the debug session.

• If you enter the QQUIT command while you are debugging a non-Language Environment assembler or
LangX COBOL program running under CICS, z/OS Debugger behaves the same as if you had entered the
QUIT ABEND command and a U4038 abend occurs.

• In remote debug mode, if any form of the QQUIT command is found in a preferences or commands file,
the remote debugger displays the message "Connection with debug engine was lost."

Example

End a z/OS Debugger session.

QQUIT;

Refer to the following topics for more information related to the material discussed in this topic.

Related references
“QUIT command” on page 199

RESTORE command
The RESTORE command enables you to explicitly restore the settings, breakpoints, and monitor
specifications that were previously saved by the SET SAVE AUTO command when z/OS Debugger
terminated.

RESTORE SETTINGS

BPS

MONITORS

BPS MONITORS

MONITORS BPS

;

SETTINGS
Indicates that all SET values except the following values are to be restored:

• SET DBCS
• SET FREQUENCY
• SET NATIONAL LANGUAGE
• SET PROGRAMMING LANGUAGE
• FILE operand of SET RESTORE SETTINGS
• SET QUALIFY
• SET SOURCE
• SET TEST

BPS
Indicates that breakpoints and LOADDEBUGDATA (LDD) specifications are to be restored. The following
breakpoints are restored:

• APPEARANCE breakpoints
• CALL breakpoints
• DELETE breakpoints
• ENTRY breakpoints
• EXIT breakpoints
• GLOBAL APPEARANCE breakpoints
• GLOBALCALL breakpoints

Chapter 5. z/OS Debugger commands 201

• GLOBAL DELETE breakpoints
• GLOBAL ENTRY breakpoints
• GLOBAL EXIT breakpoints
• GLOBAL LABEL breakpoints
• GLOBAL LOAD breakpoints
• GLOBAL STATEMENT and GLOBAL LINE breakpoints
• LABEL breakpoints
• LOAD breakpoints
• OCCURRENCE breakpoints
• STATEMENT and LINE breakpoints
• TERMINATION breakpoint

If a deferred AT ENTRY breakpoint has not been encountered, it is not saved nor restored.

MONITORS
Indicates that monitor and LOADDEBUGDATA (LDD) specifications are to be restored.

Usage notes

• The data restored by this command is retrieved from the default data set or the data set specified by the
SET RESTORE SETTINGS, SET RESTORE BPS, or SET RESTORE MONITORS commands.

• The member name used to restore the breakpoints or monitor specifications is the name of the initial
load module for the current enclave.

• Do not precede the RESTORE command with any other z/OS Debugger command except SET SAVE or
another RESTORE command.

Example

• Restore the settings:

RESTORE SETTINGS;

• Restore the breakpoints and monitor specifications:

RESTORE BPS MONITORS;

Refer to the following topics for more information related to the material discussed in this topic.

Related tasks
IBM z/OS Debugger User's Guide

Related references
“SET RESTORE command” on page 253
“SET SAVE command” on page 255

RETRIEVE command (full-screen mode)
The RETRIEVE command displays the last command entered on the command line. For long commands
this might be only the last line of the command.

RETRIEVE
COMMAND

;

COMMAND
Retrieves commands. Any command retrieved to the command line can be performed by pressing
Enter. The retrieved command can also be modified before it is performed. Successive RETRIEVE
commands continue to display up to 12 commands previously entered on the command line. This
operand is most useful when assigned to a PF key.

202 IBM z/OS Debugger: Reference and Messages

Usage notes

• The RETRIEVE command is not logged.

Example

Retrieve the last line so that it can be reissued or modified.

RETRIEVE COMMAND;

RUN command
The RUN command is synonymous to the GO command.

Refer to the following topics for more information related to the material discussed in this topic.

Related references
“GO command” on page 124

RUNTO command
The RUNTO command runs your program to a valid executable statement without setting a breakpoint.
You can indicate at which statement to stop by specifying the statement id or by positioning the cursor on
a statement.

RUNTO

statement_id

;

statement_id
A valid statement identifier. If you are debugging a disassembled program, specify the statement
identifier as an offset in hexadecimal form (X'offset').

Usage notes

• If you indicate a statement by positioning the cursor on the statement, the cursor must be in the Source
window and positioned on a line where an executable statement begins.

• If you indicate a statement by positioning the cursor on the statement and there are multiple
statements on the same line, the target of the RUNTO command is the first relative statement on the
line. For optimized COBOL programs, the target of the command is the first executable command which
was not discarded by the optimizer.

• If you indicate a statement by providing a statement id, the statement id must be an executable
statement.

• Execution continues until one of the following conditions occurs:

– The location indicated by the cursor position or the statement id is reached.
– A previously set breakpoint is encountered.
– The end of the job is reached.

• For optimized COBOL programs, the RUNTO command remains in effect until the statement you
indicated is reached. For example, if your program encounters a breakpoint and then you enter the
GO or RUN command, the program runs until the next breakpoint is encountered or the statement you
indicated is reached.

• You can use the RUNTO command in remote debug mode by entering it in the Debug Console or the
Action field, which is in the Optional Parameters section of the Add a Breakpoint task.

Examples

• Run to statement 67, where statement 67 is in a currently active block.

RUNTO 67;

Chapter 5. z/OS Debugger commands 203

• Run to the statement 11 in the block IPLI11A, where IPLI11A is known in the current enclave.

RUNTO IPLI11A :> 11

• Run to statement 36, where statement 36 is located in the Source window.

1. Type RUNTO in the command line.
2. Place the cursor on statement 36.
3. Press Enter.

• Run to the statement 74, using a PF key.

1. Define a PF key to run to the cursor position.

SET PF13 = RUNTO;

2. Place the cursor at the statement 74 and hit shift+PF1 key.

Refer to the following topics for more information related to the material discussed in this topic.

Related references
“RUN command” on page 203

RUNTO prefix command (full-screen mode)
Runs to the statement when you issue this command through the Source window prefix area.

Usage notes

• For RUNTO prefix , no space is needed as a delimiter between the keyword and the integer; RUNTO 67 is
equivalent to RUNTO67.

• For optimized COBOL programs, if there are multiple statements on a line, the RUNTO prefix runs to the
first executable statement which was not discarded by the optimizer.

Example

Run to the statement 67, where statement 67 is located in the Source window.

• Type RUNTO in the prefix area of statement 67, then press Enter.

SCROLL command (full-screen mode)
The SCROLL command provides horizontal and vertical scrolling in full-screen mode. Scroll commands
can be made immediately effective with the IMMEDIATE command. The SCROLL keyword is optional.

The Log, Monitor, Memory, or Source window will not wrap around when scrolled.

SCROLL

DOWN

LEFT

NEXT

RIGHT

UP

CSR

DATA

HALF

integer

MAX

PAGE

BOTTOM

TO integer

TOP

CURSOR

LOG

MEMORY

MONITOR

SOURCE

;

204 IBM z/OS Debugger: Reference and Messages

DOWN
Scrolls the specified number of lines in a window toward the top margin of that window. DOWN is
equivalent to NEXT.

LEFT
Scrolls the specified number of columns in a window toward the right margin of that window. If
SET MONITOR WRAP OFF is in effect, using LEFT allows you to scroll toward the right the specified
number of characters in the monitor value area so data that is not visible to the left becomes visible.

NEXT
Is equivalent to DOWN.

RIGHT
Scrolls the specified number of columns in a window toward the left margin of that window. If SET
MONITOR WRAP OFF is in effect, using RIGHT allows you to scroll toward the left the specified
number of characters in the monitor value area so data that is not visible to the right becomes visible.

UP
Scrolls the specified number of lines in a window toward the bottom margin of that window.

CSR
Specifies scrolling based on the current position of the cursor in a selected window. The window
scrolls up, down, left, or right of the cursor position until the character where the cursor is positioned
reaches the edge of the window. If the cursor is not in a window or if it is already positioned at the
edge of a window, a full-page scroll occurs. If the cursor is in the monitor value area then the monitor
value area is scrolled left or right to the position of the cursor.

DATA
Scrolls by one line less than the window size or by one character less than the window size (if moving
left or right). If the cursor is in the monitor value area then the monitor value area scrolls left or right
by one character less than the monitor value area width.

HALF
Scrolls by half the window size or by half the monitor value area.

integer
Scrolls the specified number of lines (up or down) or the specified number of characters (left or right).
Maximum value is 9999.

MAX
Scrolls in the specified direction until the limit of the data is reached. To scroll the maximum amount,
you must use the MAX keyword. You cannot scroll the maximum amount by filling in the scroll amount
field. If the cursor is placed in the monitor value area then the monitor value area is scrolled left or
right until the limit of the data is reached.

PAGE
Scrolls by the window size or by the monitor value area size.

BOTTOM
Scrolls to the bottom of the data.

TO integer
Specifies that the selected window is to scroll to the given line (as indicated in the prefix area of the
selected window). This can be in either the UP or DOWN direction (for example, if you are line 30 and
issue TO 20, it will return to line 20). Maximum value is 999999.

TOP
Scrolls to the top of the data.

CURSOR
Selects the window where the cursor is currently positioned.

LOG
Selects the session log window.

MEMORY
Selects the Memory window.

Chapter 5. z/OS Debugger commands 205

MONITOR
Selects the monitor window.

SOURCE
Selects the source listing window.

Usage notes

• You cannot use the following commands in the Memory window:

– SCROLL TOP
– SCROLL BOTTOM
– SCROLL TO
– SCROLL LEFT
– SCROLL RIGHT
– SCROLL MAX

• If you do not specify an operand with the DOWN, LEFT, NEXT, RIGHT, or UP keywords, and the cursor
is outside the window areas, the window scrolled is determined by the current default window setting
(if the window is open) and the scroll amount is determined by the current default scroll setting, shown
in the SCROLL field on the z/OS Debugger session panel. Default scroll and default window settings are
controlled by SET DEFAULT SCROLL and SET DEFAULT WINDOW commands.

• When the SCROLL field on the z/OS Debugger session panel is typed over with a new value, the
equivalent SET DEFAULT SCROLL command is issued just as if you had typed the command into the
command line (that is, it is logged and retrievable).

• The SCROLL command is not logged.
• To scroll the monitor value area left or right, SET MONITOR WRAP OFF must be in effect and the cursor

must be in the monitor value area.
• When the List pop-up window displays the result of a LIST expression command and you enter

a SCROLL DOWN or SCROLL UP command without specifying a window (LOG, MEMORY, MONITOR, or
SOURCE), z/OS Debugger applies the command to the List pop-up window. The scrolling amount is
always PAGE, regardless of the SET DEFAULT SCROLL setting.

Examples

• Scroll one page down in the window containing the cursor.

SCROLL DOWN PAGE CURSOR;

• Scroll the monitor window 12 columns to the left.

SCROLL LEFT 12 MONITOR;

• Scroll the monitor value window 15 columns to the right.

SET MONITOR WRAP OFF;SCROLL RIGHT 15;

(Do not press Enter.) Place cursor in the monitor value area. Press Enter.
• Scroll the Source window to a line breakpoint.

LIST AT STATEMENT;
The STATEMENT COB019 ::> COB01A9 :> 56.1 breakpoint action is:
;
SCROLL TO 56;

Refer to the following topics for more information related to the material discussed in this topic.

Related references
“SET DEFAULT SCROLL command (full-screen mode)” on page 222

206 IBM z/OS Debugger: Reference and Messages

SELECT command (PL/I)
The SELECT command chooses one of a set of alternate commands.

If the reference can be satisfied by more than one of the WHEN clauses, only the first one is performed. If
there is no reference, the first WHEN clause containing an expression that is true is executed. If none of the
WHEN clauses are satisfied, the command specified on the OTHERWISE clause, if present, is performed. If
the OTHERWISE clause should be executed and it is not present, a z/OS Debugger message is issued.

SELECT

(reference)

;

WHEN (

,

expression) command

OTHERWISE command

END ;

reference
A valid z/OS Debugger PL/I scalar reference. An aggregate (array or structure) cannot be used as a
reference.

WHEN
Specifies that an expression or a group of expressions be evaluated and either compared with the
reference immediately following the SELECT keyword, or evaluated to true or false (if reference is
omitted).

expression
A valid z/OS Debugger PL/I expression.

command
A valid z/OS Debugger command.

OTHERWISE
Specifies the command to be executed when every test of the preceding WHEN statements fails.

Usage notes

• You cannot use the SELECT command while you replay recorded statements by using the PLAYBACK
commands.

Example

When sum is equal to the value of c+ev, display a message. When sum is equal to either fv or 0, display
a message. If sum is not equal to the value of either c+ev, fv, or 0, a z/OS Debugger error message is
issued.

SELECT (sum);
 WHEN (c + ev) LIST ('Match on when group number 1');
 WHEN (fv, 0) LIST ('Match on when group number 2');
END;

SET command
The SET command sets various switches that affect the operation of z/OS Debugger. Except where
otherwise specified, settings remain in effect for the entire debug session.

The following table summarizes the forms of the SET command.

Chapter 5. z/OS Debugger commands 207

Command Description

“SET ASSEMBLER ON/OFF command”
on page 210

Controls the enablement of assembler debugging.

“SET ASSEMBLER STEPOVER
command” on page 211

Controls the behavior of the STEP OVER command while
debugging assembler compile units.

“SET AUTOMONITOR command” on
page 212

Controls the addition of data items to the Monitor window.

“SET CHANGE command” on page
214

Controls the frequency of checking the AT CHANGE
breakpoints.

“SET COLOR command (full-
screen and line mode)” on page
215

Provides control of the color, highlighting, and intensity
attributes.

“SET COUNTRY command” on page
218

Changes the current national country setting.

“SET DBCS command” on page 218 Controls whether DBCS shift-in and shift-out codes are
recognized.

“SET DEFAULT DBG command” on
page 219

Defines a default partitioned data set DD name or DS name
that z/OS Debugger searches through to locate the .dbg files.

“SET DEFAULT LISTINGS command”
on page 220

Defines a default partitioned data set (PDS) ddname or
dsname searched for program source listings or source files.

“SET DEFAULT MDBG command” on
page 221

Defines a default partitioned data set DD name or DS name
that z/OS Debugger searches through to locate the .mdbg
files.

“SET DEFAULT SCROLL command
(full-screen mode)” on page
222

Sets the default scroll amount.

“SET DEFAULT VIEW command” on
page 223

Controls the default view for assembler compile units.

“SET DEFAULT WINDOW command
(full-screen mode)” on page
224

Sets the window that is affected by a window referencing
command.

“SET DISASSEMBLY command” on
page 224

Controls whether the disassembly view is displayed in the
Source window.

“SET DYNDEBUG command” on page
225

Controls whether the Dynamic Debug facility is activated.

“SET ECHO command” on page 226 Controls whether GO and STEP commands are recorded in the
log window.

“SET EQUATE command” on page
227

Equates a symbol to a string of characters.

“SET EXECUTE command” on page
228

Controls whether commands are performed or just syntax
checked.

“SET EXPLICITDEBUG command” on
page 228

Controls whether explicit debug mode is active.

“SET FIND BOUNDS command” on
page 229

Controls the columns searched in the Source window and in
line mode.

208 IBM z/OS Debugger: Reference and Messages

Command Description

“SET FREQUENCY command” on
page 230

Controls whether statement executions are counted.

“SET HISTORY command” on page
231

Specifies whether entries to z/OS Debugger are recorded in
the history table.

“SET IGNORELINK command” on
page 231

Specifies whether to ignore any new LINK level (nested
enclave).

“SET INTERCEPT command (C and
C++)” on page 232

Intercepts input to and output from specified files. Output
and prompts for input are displayed in the log.

“SET INTERCEPT command (COBOL,
full-screen mode, line mode,
batch mode)” on page 233

Intercepts input to and output from the CONSOLE. Output and
prompts for input are displayed in the log.

“SET INTERCEPT command (COBOL,
remote debug mode)” on page
234

Intercepts output from COBOL DISPLAY statements. Output is
displayed in the Debug Console.

“SET KEYS command (full-screen
mode)” on page 234

Controls whether PF key definitions are displayed.

“SET LDD command” on page 235 Controls how debug data is loaded for assemblies containing
multiple CSECTs.

“SET LIST BY SUBSCRIPT command
(COBOL)” on page 236

Controls whether z/OS Debugger displays elements in an
array as they are stored in memory.

“SET LIST BY SUBSCRIPT command
(Enterprise PL/I, full-screen
mode only)” on page 238

Controls whether z/OS Debugger displays elements in an
array as they are stored in memory.

“SET LIST TABULAR command” on
page 239

Controls the formatting of the output of the LIST command.

“SET LOG command” on page 239 Controls the logging of output and assignment to the log file.

“SET LOG NUMBERS command
(full-screen mode)” on page
241

Controls whether line numbers are shown in the log window.

“SET LONGCUNAME command” on
page 241

Controls whether a long or a short CU name is shown.

“SET MDBG command” on page 242 Associates a .mdbg files to one load module or DLL.

“SET MONITOR command” on page
243

Controls the format and layout of variable names and values
displayed in the Monitor window.

“SET MSGID command” on page
245

Controls whether message identifiers are shown.

“SET NATIONAL LANGUAGE
command” on page 245

Switches your application to a different run-time national
language.

“SET PACE command” on page 246 Specifies the maximum pace of animated execution.

“SET PFKEY command” on page
247

Associates a z/OS Debugger command with a PF key.

“SET POPUP command” on page
248

Controls the number of lines displayed in the Command pop-
up window.

Chapter 5. z/OS Debugger commands 209

Command Description

“SET PROGRAMMING LANGUAGE
command” on page 248

Sets the current programming language.

“SET PROMPT command (full-
screen mode)” on page 249

Controls the display of the current program location.

“SET QUALIFY command” on page
250

Simplifies the identification of references and statement
numbers by resetting the point of view.

“SET REFRESH command (full-
screen mode)” on page 252

Controls screen refreshing when the SCREEN setting is ON.

“SET RESTORE command” on page
253

Controls the automatic and manual restoring of settings,
breakpoints, and monitor specifications.

“SET REWRITE command (full-
screen mode)” on page 254

Forces a periodic screen rewrite.

“SET SAVE command” on page 255 Controls the automatic saving of settings, breakpoints, and
monitor specifications.

“SET SCREEN command (full-
screen mode)” on page 258

Controls how information is displayed on the screen.

“SET SCROLL DISPLAY command
(full-screen mode)” on page
259

Controls whether the scroll field is displayed.

“SET SEQUENCE command (PL/I)”
on page 259

Controls whether z/OS Debugger interprets data after column
72 as a sequence number.

“SET SOURCE command” on page
259

Associates a source listing or source file with one or more
compile units.

“SET SUFFIX command (full-
screen mode)” on page 261

Controls the display of the Source window suffix area.

“SET TEST command” on page 262 Overrides the initial TEST run-time options specified at
invocation.

“SET WARNING command (C, C++,
COBOL, and PL/I)” on page 263

Controls display of the z/OS Debugger warning messages and
whether exceptions are reflected to the application program.

Refer to the following topics for more information related to the material discussed in this topic.

Related references
“SET command (COBOL)” on page 266

SET ASSEMBLER ON/OFF command
A disassembled compilation unit is a CU that was not compiled with the TEST compiler option and has not
been used as the operand of a LOADDEBUGDATA command. The SET ASSEMBLER ON command enables
a subset of the functions enabled by the SET DISASSEMBLY ON command. The following behavior is
enabled for disassembled compilation units by the SET ASSEMBLER ON command:

• You can stop in a disassembly CU by using the commands:

– AT APPEARANCE *
– AT APPEARANCE name

• You can display the names of disassembled CUs by using the following commands:

– DESCRIBE CUS

210 IBM z/OS Debugger: Reference and Messages

– LIST
– LIST NAMES CUS
– QUERY SOURCE

SET ASSEMBLER
ON

OFF

;

OFF
Disables the display of data that is useful while you debug an assembler program.

ON
Enables the display of data that is useful while you debug an assembler program.

Usage notes

• You can also use the SET DISASSEMBLY ON to control the display of information that is useful while
you debug an assembler program.

• You can use this command in remote debug mode.

Example

To include disassembly compile units in the list of compile units displayed by the LIST NAMES CUS and
DESCRIBE CUS commands, enter the following command:

SET ASSEMBLER ON ;

The next time you enter the LIST NAMES CUS or DESCRIBE CUS command, the disassembly compile
units are displayed in the list of compile units.

Refer to the following topics for more information related to the material discussed in this topic.

Related references
“SET DISASSEMBLY command” on page 224
Appendix A, “z/OS Debugger commands supported in Debug Tool compatibility mode,” on page 517

SET ASSEMBLER STEPOVER command
Specifies how z/OS Debugger processes STEP OVER commands in assembler compile units. When
EXTONLY is in effect, z/OS Debugger only steps over calls to external subroutines. When EXTINT is in
effect, z/OS Debugger steps over calls to external and internal subroutines. External subroutines are
subroutines that are outside the current compile unit; internal subroutines are subroutines that are inside
the current compile unit.

z/OS Debugger returns control to you the next time it runs any instruction in the current compile unit
(CSECT) when either of the following situations occur:

• EXTONLY is in effect
• EXTINT is in effect and the assembler program calls an external subroutine

z/OS Debugger assumes that the subroutine you want to step over returns to the instruction that follows
the call to that subroutine when all of the following situations occur:

• EXTINT is in effect
• The function is an internal subroutine
• The address that immediately follows the instruction where you are currently stopped contains an

executable instruction (not data)

z/OS Debugger assumes that you use one of the following instructions to call internal subroutines:

• BAL
• BAS

Chapter 5. z/OS Debugger commands 211

• BRAS
• BALR
• BASR
• BASSM
• BRASL

SET ASSEMBLER STEPOVER
EXTONLY

EXTINT

;

EXTONLY
Specifies that z/OS Debugger steps over external subroutines and steps through internal subroutines.

EXTINT
Specifies that z/OS Debugger steps over external and internal subroutines.

Usage notes

• If EXTINT is in effect and an internal subroutine does not return to the instruction that immediately
follows the call to that subroutine, one of the following situations might occur:

– z/OS Debugger might not regain control
– z/OS Debugger might regain control only when another breakpoint is run
– z/OS Debugger might regain control only when an external event occurs
– z/OS Debugger might not regain control and the program runs until it terminates

• You can use this command in remote debug mode.

Refer to the following topics for more information related to the material discussed in this topic.

Related references
“SET ASSEMBLER ON/OFF command” on page 210
“STEP command” on page 269
Appendix A, “z/OS Debugger commands supported in Debug Tool compatibility mode,” on page 517

SET AUTOMONITOR command
Controls the monitoring of data items for the statement that z/OS Debugger will run next, the most recent
statement that z/OS Debugger ran, or both. The initial setting is OFF.

AUTOMONITOR works only for the following compile units:

• COBOL or PL/I compile units compiled with the SYM suboption of the TEST compiler option. COBOL
programs compiled with Enterprise COBOL for z/OS, Version 4.1 or later, or PL/I programs compiled
with Enterprise PL/I Version 4.4 or later do not need the SYM suboption of the TEST compiler option.

• assembler, disassembly, or LangX COBOL compile units
• C/C++ compile units compiled with the z/OS 2.1 XL C/C++ compiler or later, with the

DEBUG(FORMAT(DWARF)) compiler option.

The SET AUTOMONITOR command does not work for compile units written in any other language.
In addition, the compile unit must be compiled or assembled with one of the following compilers or
assemblers:

• Enterprise COBOL for z/OS, Version 4
• Enterprise COBOL for z/OS and OS/390, Version 3 Release 2 or later
• Enterprise COBOL for z/OS and OS/390, Version 3 Release 1, with APAR PQ63235 installed
• COBOL for OS/390 & VM, Version 2, with APAR PQ63234 installed
• OS/VS COBOL, Version 1 Release 2.4

212 IBM z/OS Debugger: Reference and Messages

• Enterprise PL/I for z/OS and OS/390, Version 3 Release 2 or later
• High Level Assembler for MVS & VM & VSE, Version 1 Release 4 or later
• Any compiler used to generate an EQALANGX file for LangX COBOL
• z/OS 2.1 XL C/C++ compiler or later

SET AUTOMONITOR

ON
NOLOG

LOG

CURRENT

PREVIOUS

BOTH

OFF

;

ON
Enables monitoring of data items for the statement that z/OS Debugger will run next, the most recent
statement that z/OS Debugger ran, or both. Specify the LOG suboption to save information in the log
file.

OFF
Disables monitoring of all data items. Information is not saved in the log file.

LOG
Saves information in the log file.

NOLOG
Does not save information in the log file.

CURRENT
Monitor data items on the statement that z/OS Debugger will run next. This is the default.

PREVIOUS
Monitor data items on the most recent statement that z/OS Debugger ran.

BOTH
Monitor data items for the statement that z/OS Debugger will run next and the most recent statement
that z/OS Debugger ran.

Usage notes

• For Enterprise COBOL for z/OS Version 5, if a statement uses LENGTH OF <reference>, it is the
length of the reference that is shown in the automonitor output, not the value of <reference>.

• You can use this command in remote debug mode.
• If the DATA option of the PLAYBACK ENABLE command is in effect for the current compile unit, you

can use the SET AUTOMONITOR command while you replay recorded statements with the PLAYBACK
commands. However, you cannot use the BOTH or PREVIOUS parameters.

• If you enter the SET AUTOMONITOR ON LOG command for a compile unit that was compiled with
a compiler that does not support automonitoring, then z/OS Debugger writes the breakpoint location
into the log. This provides a record of the breakpoints encountered (breakpoint trace). No variable
information is displayed.

• To record the breakpoints encountered (breakpoint trace) in the log file, enter the following commands:
SET AUTOMONITOR ON LOG; AT * GO;. For compile units compiled with a compiler that supports
automonitoring, the statement location, the variable names, and the value of the variables are saved
into the log. For other compile units, the statement location is saved into the log.

• If you are debugging programs compiled with a PL/I compiler earlier than Enterprise PL/I for z/OS
Version 3 Release 5, target variables are not listed. For example, in the following PL/I statement only J
and its value is displayed:

I = J + 1

Chapter 5. z/OS Debugger commands 213

• For assembler and disassembly, z/OS Debugger displays only 32-bit general registers, floating-point
registers, and storage operands. z/OS Debugger displays them in the following manner:

– Register operands are displayed in numeric order.
– Storage operands are displayed in the order S1, S2, and S4.
– When the storage operand is a single symbol, the symbol name is displayed in the

automonitor section of the Monitor window. Otherwise, the specified operand is displayed as
a comment and the _STORAGE function is used to display the storage contents. For example,
_STORAGE(X'1F3C8'::4)) is used to display a four-byte storage operand at address X'1F3C8'.

• In an assembler compile unit, the SET AUTOMONITOR command provides information about a single
machine instruction only. Even in the NOMACGEN view, SET AUTOMONITOR provides information about
only one machine instruction and not all operands of the current macro invocation.

• For LangX COBOL, array references are not included in the AUTOMONITOR output. In addition, when a
statement is continued to subsequent lines, operands coded on continuation lines will not be displayed
for VS COBOL II and Enterprise COBOL.

• To disable monitoring of all data items, you can enter the SET AUTOMONITOR OFF or CLEAR MONITOR
n commands, where n is the monitor number of an automonitor entry. You can also use CL prefix
command on an entry in Monitor window.

• In the AUTOMONITOR section of the Monitor window, z/OS Debugger displays the values of the
variables in their declared data type. You can change this behavior in the following ways:

– To display the value in hexadecimal format for one time, enter the HEX command in the prefix area
of that item. When you step through your program, z/OS Debugger reverts the display to the declared
data type.

– To continuously display the value in hexadecimal format, enter one of the following commands:

- MONITOR HEX n, where n is the monitor number of an entry in the AUTOMONITOR section. When
you step through your program, z/OS Debugger displays the value of the variable in hexadecimal
format until you enter the MONITOR DEF n command, where n is the same number you used for
the MONITOR HEX command.

- HEX in the prefix area of the AUTOMONITOR line ("********** AUTOMONITOR **********". When
you step through your program, z/OS Debugger displays the value of all the variables in the
AUTOMONITOR section in hexadecimal format until you enter the DEF command in the prefix area
of the AUTOMONITOR line.

• Use the PREVIOUS and BOTH options while you step (by using the STEP command) through a program
to see the values of a variables before and after a statement is run.

• If you use The PREVIOUS or BOTH options and run through your program with the GO command, z/OS
Debugger displays the value of a variable on the line that z/OS Debugger ran most recently, which might
not be the line that you see in the Source window immediately before the current line.

• When control is transferred between enclaves and any of the following settings are in effect, z/OS
Debugger cannot determine the data from the previous enclave:

– SET AUTOMONITOR ON LOG with PREVIOUS or BOTH
– SET AUTOMONITOR ON NOLOG with PREVIOUS or BOTH

z/OS Debugger displays a message.
• You can list a single element of an array only for programs compiled with Enterprise PL/I for z/OS,

Version 4 or later.

Refer to the following topics for more information related to the material discussed in this topic.

Related references
Appendix A, “z/OS Debugger commands supported in Debug Tool compatibility mode,” on page 517

SET CHANGE command
Controls the frequency of checking the AT CHANGE breakpoints. The initial setting is STATEMENT/LINE.

214 IBM z/OS Debugger: Reference and Messages

SET CHANGE
STATEMENT

ALL

BLOCK

LINE

PATH

;

STATEMENT
Specifies that the AT CHANGE breakpoints are checked at all statements. STATEMENT is equivalent to
LINE.

ALL
Specifies that the AT CHANGE breakpoints are checked at all statements, block entry and exits, and
path points.

BLOCK
Specifies that the AT CHANGE breakpoints are checked at all block entry and exits, except for C and
C++ nested blocks.

LINE
Is equivalent to STATEMENT.

PATH
Specifies that the AT CHANGE breakpoints are checked at all path points.

Examples

• Specify that AT CHANGE breakpoints are checked at all statements.

SET CHANGE;

• Specify that AT CHANGE breakpoints are checked at all path points.

SET CHANGE PATH;

SET COLOR command (full-screen and line mode)
Provides control of the color, highlighting, and intensity attributes when the SCREEN setting is ON. The
color, highlighting, and intensity keywords can be specified in any order.

SET COLOR color_attributes UI_elements ;

color_attributes
CYCLE

BLUE

GREEN

PINK

RED

TURQUOISE

WHITE

YELLOW

BLINK

NONE

REVERSE

UNDERLINE

HIGH

LOW

UI_elements

Chapter 5. z/OS Debugger commands 215

CURSOR

COMMAND LINE

LOG LINES

MEMORY ADDRESS

CHARACTER

HEXADECIMAL

INFORMATION

OFFSET

MONITOR AREA

LINES

PROGRAM OUTPUT

SOURCE AREA

BREAKPOINTS

CURRENT

PREFIX

SUFFIX

TARGET

FIELD

TEST INPUT

OUTPUT

TITLE FIELDS

HEADERS

TOFEOF

MARKER

WINDOW HEADERS

CYCLE
Causes the color to change to the next one in the sequence of colors. The sequence follows the order
shown in the syntax diagram.

BLINK
Causes the characters to blink (if supported by the terminal).

NONE
Causes the characters to appear in normal type.

REVERSE
Transforms the characters to reverse video (if supported by the terminal).

UNDERLINE
Causes the characters to be underlined (if supported by the terminal).

HIGH
Causes screen colors to be high intensity (if supported by the terminal).

LOW
Causes screen colors to be low intensity (if supported by the terminal).

CURSOR
Specifies that cursor pointing is used to select the field. Optionally, you can type in the field name (for
example, COMMAND LINE) as shown in the syntax diagram.

216 IBM z/OS Debugger: Reference and Messages

COMMAND LINE
Selects the command input line (preceded by ===>).

LOG LINES
Selects the line number portion of the log window.

MEMORY ADDRESS
Selects the address column of the memory dump area.

MEMORY BASE ADDRESS
Selects the history lines and the base address of the information area.

MEMORY CHARACTER
Selects the character column of the memory dump area.

MEMORY HEXADECIMAL
Selects the hexadecimal column of the memory dump area.

MEMORY INFORMATION
Selects the history lines of the information area.

MEMORY OFFSET
Selects the offset column of the memory dump area.

MONITOR AREA
Selects the primary area of the monitor window.

MONITOR LINES
Selects the line number portion of the monitor window.

PROGRAM OUTPUT
Selects the application program output displayed in the log window.

SOURCE AREA
Selects the primary area of the Source window.

SOURCE BREAKPOINTS
Selects the source prefix fields next to statements where breakpoints are set.

SOURCE CURRENT
Selects the line containing the source statement that is about to be performed.

SOURCE PREFIX
Selects the statement identifier column at the left of the Source window.

SOURCE SUFFIX
Selects the frequency column at the right of the Source window.

TARGET FIELD
Selects the target of a FIND command in full-screen mode, if found.

TEST INPUT
Selects the z/OS Debugger input displayed in the log window.

TEST OUTPUT
Selects the z/OS Debugger output displayed in the log window.

TITLE FIELDS
Selects the information fields in the top line of the screen, such as current programming language
setting or the current location within the program.

TITLE HEADERS
Selects the descriptive headers in the top line of the screen, such as location.

TOFEOF MARKER
Selects the top-of-file and end-of-file lines in the session panel windows.

WINDOW HEADERS
Selects the header lines for the windows in the main session panel.

Examples

• Set the Source window display area to yellow reverse video.

Chapter 5. z/OS Debugger commands 217

SET COLOR YELLOW REVERSE SOURCE AREA;

• Set the monitor window display area to high intensity green.

SET COLOR HIGH GREEN MONITOR AREA;

SET COUNTRY command
Changes the current national country setting for the application program. It is available only where
supported by Language Environment or when running without the Language Environment run time. The
IBM-supplied initial country code is US.

SET COUNTRY country_code ;

country_code
A valid two-letter set that identifies the country code used. The country code can have one of the
following values:

United States: US
Japanese: JP

Country codes cannot be truncated.

Usage notes

• This setting affects both your application and z/OS Debugger.
• At the beginning of an enclave, the settings are those provided by Language Environment, your

operating system, or the z/OS Debugger run-time options. For nested enclaves, the parent's settings
are restored upon return from a child enclave.

Example

Change the current country code to correspond to Japan.

SET COUNTRY JP;

SET DBCS command
Controls whether shift-in and shift-out codes are interpreted on input and supplied on DBCS output. SET
DBCS is valid for all programming languages. The initial setting is OFF.

SET DBCS
ON

OFF

;

ON
Interprets shift-in and shift-out codes. If you debugging in full-screen mode and your terminal is not
capable of displaying DBCS characters, this option is not available.

OFF
Ignores shift-in and shift-out codes.

Usage notes

• If you enter the commands SET NATIONAL LANGUAGE ENU and then SET DBCS ON, z/OS Debugger
resets the national language to UEN to remain compatible with DBCS characters.

• If NATIONAL LANGUAGE is set to JPN or KOR and you are using full-screen mode, enter the SET DBCS
ON command so that z/OS Debugger displays messages correctly.

Example

Specify that shift-in and shift-out codes are interpreted.

218 IBM z/OS Debugger: Reference and Messages

SET DBCS ON;

Refer to the following topics for more information related to the material discussed in this topic.

Related references
“SET NATIONAL LANGUAGE command” on page 245

SET DEFAULT DBG command
Defines a default partitioned data set DD name or DS name that z/OS Debugger searches through to
locate the .dbg files. The .dbg files are generated by the z/OS XL C/C++ compiler when you select the
FORMAT(DWARF) suboption of the DEBUG compiler option. The compiler assigns a name to the file based
on what you specified in the FILE suboption of the DEBUG compiler option.

SET DEFAULT DBG

ddname

dsn

(

,

dsn)

;

ddname
Specifies a valid z/OS DD name. If the operand is less than nine characters long and does not contain
a period, z/OS Debugger interprets it as a DD name.

dsn
Specifies a valid, fully-qualified z/OS partitioned data set name.

(dsn, dsn, …)
Specifies a list of valid z/OS partitioned data set names.

Usage notes

• You can use this command in remote debug mode.
• If you do not specify a ddname or dsn, z/OS Debugger clears any previous default dbg setting.
• If the data set name is too long to be typed on one line, suffix it with a trailing hyphen.
• If you are debugging in a CICS or UNIX System Services environment, you cannot use the ddname

parameter.

Examples

• Indicate that the default .dbg file is allocated to DS name SVTRSAMP.TS99992.MYDBG.

SET DEFAULT DBG SVTRSAMP.TS99992.MYDBG;

• The .dbg file for the program MYPROG is in SVTRSAMP.TS99992.MYDBG, which was allocated by using
the following command:

ALLOC DDNAME(ITEM1) DSNAME('SVTRSAMP.TS99992.MYDBG') SHR

To specify the location, enter the following command:

SET DEFAULT DBG ITEM1;

• The .dbg file for the program MYPROG is in JSMITH.CPGMS.DBG, which was allocated by using the
following command:

ALLOC FI(DBGLIST) DAT('MJONES.OTHER.DBG' 'JSMITH.CPGMS.DBG')

To specify the location, enter the following command:

Chapter 5. z/OS Debugger commands 219

SET DEFAULT DBG DBGLIST;

Refer to the following topics for more information related to the material discussed in this topic.

Related tasks
IBM z/OS Debugger User's Guide
“SET SOURCE command” on page 259
“SET DEFAULT MDBG command” on page 221
“SET MDBG command” on page 242
Appendix A, “z/OS Debugger commands supported in Debug Tool compatibility mode,” on page 517
“Specifying the location of source, listing, or separate debug file in remote debug mode by using
environment variables” on page 522
"How does z/OS Debugger locate source, listing, or separate debug files?" in the IBM z/OS Debugger
User's Guide

SET DEFAULT LISTINGS command
Defines a default partitioned data set DD name or DS name whose members are searched for program
source, listings, or separate debug files.

SET DEFAULT LISTINGS

ddname

dsn

(

,

dsn)

;

ddname
Specifies a valid z/OS DD name. If the operand is less than nine characters long and does not contain
a period, it is interpreted as a DD name.

The ddname form cannot be used if the data set allocated to it is C, C++ or Enterprise PL/I source and
you specify the EQAOPTS SUBSYS command to enable access to the source file in a library system.

dsn
Specifies a valid, fully-qualified z/OS partitioned data set name.

(dsn, dsn,)
Specifies a list of valid z/OS partitioned data set names.

Usage notes

• You can use this command in remote debug mode.
• The LISTINGS keyword cannot be abbreviated.
• If you do not specify a ddname or dsn, any previous default listing setting is cleared.
• If the data set name is too long to be typed on one line, suffix it with a trailing hyphen.
• The SET SOURCE ON command has a higher precedence than the SET DEFAULT LISTINGS

command.
• The SET DEFAULT LISTINGS command has no effect on a disassembly compile unit. However, it is

saved and it might apply later if the compile unit is specified as the operand of the LOADDEBUGDATA
command.

• If you are debugging in a CICS environment, you cannot use the ddname parameter.
• If you compiled your C or C++ program with the FORMAT(DWARF) suboption of the DEBUG compiler

option, you cannot use the SET DEFAULT LISTINGS command to specify the new location of the .dbg
file nor the .mdbg file.

Examples

220 IBM z/OS Debugger: Reference and Messages

• Indicate that the default listings file is allocated to DS name SVTRSAMP.TS99992.MYLIST.

SET DEFAULT LISTINGS SVTRSAMP.TS99992.MYLIST;

• The listing for the program MYPROG is in SVTRSAMP.TS99992.MYLIST, which was allocated by using
the following command:

ALLOC DDNAME(ITEM1) DSNAME('SVTRSAMP.TS99992.MYLIST') SHR

To specify the location, enter the following command:

SET DEFAULT LISTINGS ITEM1;

• The listing for the program MYPROG is in JSMITH.COBPGMS.LISTING, which was allocated by using
the following command:

ALLOC FI(CBLIST) DAT('MJONES.OTHER.LISTING' 'JSMITH.COBPGMS.LISTING')

To specify the location, enter the following command:

SET DEFAULT LISTINGS CBLIST

• The listing for the program AVER is in myid.source.listing(AVERLIST). If you enter the command
SET DEFAULT LISTINGS myid.source.listing, z/OS Debugger looks for a member named AVER
in the PDS myid.source.listing. Because the member is called AVERLIST, the listing is not found.
To specify the location, enter the following command:

SET SOURCE ON (AVER) myid.source.listing(AVERLIST);

Refer to the following topics for more information related to the material discussed in this topic.

Related tasks
IBM z/OS Debugger User's Guide
“SET SOURCE command” on page 259
Appendix A, “z/OS Debugger commands supported in Debug Tool compatibility mode,” on page 517
"How does z/OS Debugger locate source, listing, or separate debug files?" in the IBM z/OS Debugger
User's Guide

SET DEFAULT MDBG command
Defines a default partitioned data set DD name or DS name that z/OS Debugger searches through to
locate the .mdbg files. You create .mdbg files with the dbgld command or the CDADBGLD utility.

SET DEFAULT MDBG

ddname

dsn

(

,

dsn)

;

ddname
Specifies a valid z/OS DD name. If the operand is less than nine characters long and does not contain
a period, z/OS Debugger interprets it as a DD name.

dsn
Specifies a valid, fully-qualified z/OS partitioned data set name.

(dsn, dsn, …)
Specifies a list of valid z/OS partitioned data set names.

Usage notes

Chapter 5. z/OS Debugger commands 221

• Before you can use this command, you or your site must specify YES for the EQAOPTS MDBG command,
as described in Chapter 6, “EQAOPTS commands,” on page 287. In environments that support
environment variables, you can use the EQA_USE_MDBG environment variable to override this option
for a specific debugging session.

• You can use this command in remote debug mode.
• If you do not specify a ddname or dsn, z/OS Debugger clears any previous default mdbg setting.
• If the data set name is too long to be typed on one line, suffix it with a trailing hyphen.
• The SET MDBG command has a higher precedence than the SET DEFAULT MDBG command.
• If you are debugging in a CICS or UNIX System Services environment, you cannot use the ddname

parameter.

Examples

• Indicate that the default .mdbg file is allocated to DS name SVTRSAMP.TS99992.MYMDBG.

SET DEFAULT MDBG SVTRSAMP.TS99992.MYMDBG;

• The .mdbg file for the DLL MYPROG is in SVTRSAMP.TS99992.MYMDBG, which was allocated by using
the following command:

ALLOC DDNAME(ITEM1) DSNAME('SVTRSAMP.TS99992.MYMDBG') SHR

To specify the location, enter the following command:

SET DEFAULT MDBG ITEM1;

• The .mdbg file for load module MYLOAD is in JSMITH.CPGMS.MDBG, which was allocated by using the
following command:

ALLOC FI(CMDBG) DAT('MJONES.OTHER.MDBG' 'JSMITH.CPGMS.MDBG')

To specify the location, enter the following command:

SET DEFAULT MDBG CMDBG;

Refer to the following topics for more information related to the material discussed in this topic.

Related tasks
“SET SOURCE command” on page 259
“SET DEFAULT DBG command” on page 219
“SET MDBG command” on page 242
Appendix A, “z/OS Debugger commands supported in Debug Tool compatibility mode,” on page 517
“Specifying the location of source, listing, or separate debug file in remote debug mode by using
environment variables” on page 522
"How does z/OS Debugger locate source, listing, or separate debug files?" in the IBM z/OS Debugger
User's Guide.
"Specifying whether z/OS Debugger searches for .mdbg files" in the IBM z/OS Debugger Customization
Guide

SET DEFAULT SCROLL command (full-screen mode)
Sets the default scroll amount that is used when a SCROLL command is issued without the amount
specified. The initial setting is PAGE.

222 IBM z/OS Debugger: Reference and Messages

SET DEFAULT SCROLL CSR

DATA

HALF

integer

MAX

PAGE

;

CSR
Scrolls in the specified direction until the character where the cursor is positioned reaches the edge of
the window.

DATA
Scrolls by one line less than the window size or by one character less than the window size (if moving
left or right).

HALF
Scrolls by half the window size.

integer
Scrolls the specified number of lines (up or down) or the specified number of characters (left or right).
Maximum value is 9999.

MAX
Scrolls in the specified direction until the limit of the data is reached.

PAGE
Scrolls by the window size.

Example

Set the default amount to half the size of the window.

SET DEFAULT SCROLL HALF;

SET DEFAULT VIEW command
Controls the default view for assembler compile units.

SET DEFAULT VIEW STANDARD

NOMACGEN

;

STANDARD
Indicates that whenever a LOADDEBUGDATA (LDD) command is issued for an assembler CU, the initial
view is to contain all source statements.

NOMACGEN
Indicates that whenever a LOADDEBUGDATA (LDD) command is issued for an assembler CU, the initial
view is to contain only source statements that were not generated via macro expansion (similar to the
assembler listing when PRINT NOGEN is in effect).

Usage notes

• SET DEFAULT VIEW applies only to assembler compile units.
• You can use this command in remote debug mode.

Refer to the following topics for more information related to the material discussed in this topic.

Related references
Appendix A, “z/OS Debugger commands supported in Debug Tool compatibility mode,” on page 517

Chapter 5. z/OS Debugger commands 223

SET DEFAULT WINDOW command (full-screen mode)
Specifies which physical window is selected when a window referencing command (for example, FIND,
SCROLL, or WINDOW) is issued without explicit window identification and the cursor is outside the physical
window areas. The initial setting is SOURCE.

SET DEFAULT WINDOW LOG

MEMORY

MONITOR

SOURCE

;

LOG
Selects the session log window.

MEMORY
Selects the Memory window.

MONITOR
Selects the monitor window.

SOURCE
Selects the source listing window.

Example

Set the default to the monitor window for use with scrolling commands.

SET DEFAULT WINDOW MONITOR;

SET DISASSEMBLY command
A disassembled compilation unit is a CU that was not compiled with the TEST compiler option and has
not been used as the operand of a LOADDEBUGDATA command. The SET DISASSEMBLY ON command
enables the following behavior for disassembled compilation units:

• A disassembly view appears in the Source window whenever you qualify a disassembled compilation
unit. You can set breakpoints in the CU using the AT OFFSET command and you can step within the CU
using the STEP command.

• You can stop in a disassembly CU by using the following commands:

– AT APPEARANCE *
– AT APPEARANCE name
– AT ENTRY *
– STEP INTO

• You can display the names of disassembled CUs by using the following commands:

– DESCRIBE CUS
– LIST
– LIST NAMES CUS
– QUERY SOURCE

SET DISASSEMBLY

ON

OFF ;

ON
Specifies that the disassembly view is displayed in the Source window.

OFF
Turns off the disassembly view. This is the default setting.

224 IBM z/OS Debugger: Reference and Messages

Usage notes

• The disassembly view is provided only for disassembled programs or programs written in supported
languages that do not have debug information.

• SET DISASSEMBLY ON is not supported in explicit debug mode. When explicit debug mode is active,
z/OS Debugger forces SET DISASSEMBLY OFF.

• You can use this command in remote debug mode.

Refer to the following topics for more information related to the material discussed in this topic.

• Related references
• Appendix A, “z/OS Debugger commands supported in Debug Tool compatibility mode,” on page 517

SET DYNDEBUG command
Controls the activation or deactivation of the Dynamic Debug facility.

The Dynamic Debug facility must be activated in order to debug the following types of programs:

• COBOL programs compiled with the Enterprise COBOL for z/OS Version 4 compiler (and earlier)
compiled with the NONE or NOHOOK suboptions of the TEST compiler option.

• COBOL programs compiled with the Enterprise COBOL for z/OS Version 5 compiler compiled with the
TEST compiler option.

• PL/I programs compiled with Enterprise PL/I for z/OS, Version 3 Release 4 or later, and the NOHOOK
suboption of the TEST compiler option

• assembler programs
• disassembled programs (using the disassembly view)
• LangX COBOL programs1

• programs that run without the Language Environment run time1

You can use the Dynamic Debug facility to improve the performance of programs with compiled-in hooks
(compiled with COBOL, C/C++, and PL/I compilers) while you debug them.

The initial setting of DYNDEBUG can be controlled by the EQAOPTS DYNDEBUG command. If no EQAOPTS
DYNDEBUG command is used, the initial setting in ON.

SET DYNDEBUG
ON

OFF

;

ON
Activates the Dynamic Debug facility.

OFF
Deactivates the Dynamic Debug facility.

Usage notes

• After a dynamic debug hook is inserted, either explicitly or implicitly, into any program during a debug
session, you cannot change the setting of DYNDEBUG.

• You can use this command in remote debug mode.
• This command does not support 64-bit programs.
• You can debug COBOL programs compiled with the NOHOOK suboption of the TEST compiler option of

Enterprise COBOL for z/OS, Version 4, with the Dynamic Debug facility.

1 In non-CICS environments, SVC screening must be enabled to debug LangX COBOL programs, programs
that run without the Language Environment runtime, or programs that are loaded by using the MVS LOAD
and LINK macros. See IBM z/OS Debugger Customization Guide for instructions on how to manage SVC
screening.

Chapter 5. z/OS Debugger commands 225

• To debug COBOL programs compiled with the TEST(NONE) compiler option and use the Dynamic
Debug facility, you must compile with one of the following compilers:

– Enterprise COBOL for z/OS and OS/390, Version 3
– COBOL for OS/390 & VM, Version 2 Release 2
– COBOL for OS/390 & VM, Version 2 Release 1, with APAR PQ40298

• The Dynamic Debug facility does not support attention interrupts for assembler, disassembly, or LangX
COBOL programs or for programs compiled using the following suboptions of the compilers:

– NOHOOK suboption of the TEST compiler option for the following compilers:

- Enterprise COBOL for z/OS, Version 4
- Enterprise PL/I for z/OS, Version 3.4 or later

– NONE suboption of the TEST compiler option for the following compilers:

- Enterprise COBOL for z/OS and OS/390, Version 3
- COBOL for OS/390 & VM, Version 2

• When the following compilers are used with the suboption of the TEST compiler option that adds
compiled-in hooks, the Dynamic Debug facility can be used to add hooks at run time, which z/OS
Debugger uses instead of the compiled-in hooks. This can improve the performance of the program
while running under the control of z/OS Debugger.

– Any COBOL compiler supported by z/OS Debugger
– Any C/C++ compiler supported by z/OS Debugger
– Any PL/I compiler supported by z/OS Debugger

• Refer to your system administrator to determine if the Dynamic Debug facility is installed on your
system.

• The same program compiled with different TEST options may halt execution at different locations or
the same scenarios. For instance, if you compile a program with TEST(ALL,...) and step through
the first three lines, execution is halted on line four. However, if you compile the same program with
TEST(NONE,SYM,...) and step through the first three lines, execution is halted on line five. The
difference is due to optimization techniques used by the compiler.

A small arrowhead indicates where a z/OS Debugger would stop if the same program were compiled in
two different ways.

Program compiled with TEST(ALL) Program compiled with TEST(NONE)

000001 MOVE... 000001 MOVE...

000002 ADD... 000002 ADD...

►000003 LABEL: ... 000003 LABEL: ...

000004 MOVE... ►000004 MOVE...

Refer to the following topics for more information related to the material discussed in this topic.

Related references
Appendix A, “z/OS Debugger commands supported in Debug Tool compatibility mode,” on page 517

SET ECHO command
Controls whether GO and STEP commands are recorded in the log window when they are not
subcommands. The presence of long sequences of GO and STEP commands clutters the log window
and provides little additional information. SET ECHO makes it possible to suppress the display of these
commands. The contents of the log file are unaffected. The initial setting is ON.

226 IBM z/OS Debugger: Reference and Messages

SET ECHO ON

OFF

*

keyword

;

ON
Shows given commands in the log window.

OFF
Suppresses given commands in the log window.

keyword
Can be GO (with no operand) or STEP.

*
Specifies that the command is applied to the GO and STEP commands. This is the default.

Examples

• Specify that the display of GO and STEP commands is suppressed.

SET ECHO OFF;

• Specify that GO and STEP commands are displayed.

SET ECHO ON *;

SET EQUATE command
Equates a symbol to a string of characters. The equated symbol can be used anywhere a keyword,
identifier, or punctuation is used in a z/OS Debugger command. When an equated symbol is found in a
z/OS Debugger command (other than the identifier operand in SET EQUATE and CLEAR EQUATE), the
equated symbol is replaced by the specified string before parsing continues.

SET EQUATE identifier = string ;

identifier
An identifier that is valid in the current programming language. The maximum length of the identifier
is:

• For C, 32 SBCS characters
• For COBOL and LangX COBOL, 30 SBCS characters
• For PL/I, 31 SBCS characters

The identifier can contain DBCS characters.

string
A string constant in the current programming language. The maximum length of the replacement
string is 255 SBCS characters.

Usage notes

• Operands of the following commands are for environments other than the standard z/OS Debugger
environment (that is, TSO DS name, and so forth) and are not scanned for EQUATEd symbol substitution:

COMMENT
INPUT
SET DEFAULT LISTINGS
SET INTERCEPT ON/OFF FILE
SET LOG ON FILE
SET SOURCE (cu_spec)
SYSTEM/SYS
TSO

Chapter 5. z/OS Debugger commands 227

USE
• To remove an EQUATE definition, use the CLEAR EQUATE command.
• To remain accessible when the current programming language setting is changed, symbols that are

equated when the current programming language setting is C must be entered in uppercase and must
be valid in the other programming languages.

• If an EQUATE identifier coincides with an existing keyword or keyword abbreviation, EQUATE takes
precedence. If the EQUATE identifier is already defined, the new definition replaces the old.

• The equate string is not scanned for, or substituted with, symbols previously set with a SET EQUATE
command.

Examples

• Specify that the symbol INFO is equated to "ABC, DEF (H+1)". The current programming language
setting is either C or COBOL.

SET EQUATE INFO = "ABC, DEF (H+1)";

• Specify that the symbol tstlen is equated to the equivalent of a #define for structure pointing.
The current programming language setting is C. If the programming language changes, this lowercase
symbol might not be accessible.

SET EQUATE tstlen = "struct1->member.b->c.len";

• Specify that the symbol VARVALUE is equated to the command LIST x.

SET EQUATE VARVALUE = "LIST x";

SET EXECUTE command
Controls whether commands from all input sources are performed or just syntax checked (primarily for
checking USE files). The initial setting is ON.

SET EXECUTE
ON

OFF

;

ON
Specifies that commands are accepted and performed.

OFF
Specifies that commands are accepted and parsed; however, only the following commands are
performed: END, GO, SET EXECUTE ON, QUIT, and USE.

Example

Specify that all commands are accepted and performed.

SET EXECUTE ON;

SET EXPLICITDEBUG command
Controls whether explicit debug mode is active.

When explicit debug mode is not active, z/OS Debugger automatically loads debug data for all high-level
language compile units compiled with the TEST or DEBUG compiler option unless you excluded the
compile unit or its containing load module by using the NAMES EXCLUDE statement.

When explicit debug mode is active, z/OS Debugger loads debug data only in the following cases:

228 IBM z/OS Debugger: Reference and Messages

• z/OS Debugger always loads debug data for the compile unit which is active when z/OS Debugger first
becomes active, and the first compile unit of each enclave. In most cases, this is the entry compile unit
for the initial load module.

• When a compile unit appears, z/OS Debugger loads debug data whenever you previously entered a
LOADDEBUGDATA (LDD) command for the load module and compile unit.

• When a compile unit appears, z/OS Debugger loads debug data for a compile unit that you previously
specified on a NAMES INCLUDE CU statement and z/OS Debugger processed the containing load
module for any of the following reasons:

– It is the initial load module.
– It is a load module that was previously specified on an LDD command.
– It is a load module that was previously specified on a NAMES INCLUDE LOADMOD statement.
– It is a load module for which an implicit NAMES INCLUDE LOADMOD has been generated.

• z/OS Debugger loads debug data for the target of a deferred AT ENTRY command.
• z/OS Debugger loads debug data for the entry point compile unit for a load module processed by an AT
LOAD command.

• In CICS, when a matching DTCN or CADP profile is found, z/OS Debugger loads debug data for the
LoadMod and CU specified in DTCN or the Program and Compile Unit specified in CADP, unless the
specified name(s) contain a wildcard character (* or ?).

SET EXPLICITDEBUG
ON

OFF

;

ON
Activate explicit debug mode.

OFF
Deactivate explicit debug mode. Explicit debug mode is initially not active.

Usage notes

• You can use this command in remote debug mode.
• The SET EXPLICITDEBUG ON command takes effect when you enter the command. By the time

you enter the command, z/OS Debugger has already processed the initial load module. To enable
explicit debug mode before z/OS Debugger processes the initial load module, use the EQAOPTS
EXPLICITDEBUG command.

• z/OS Debugger does not support the SET DISASSEMBLY ON command in explicit debug mode. z/OS
Debugger forces it to OFF when you enable explicit debug mode.

• Use explicit debug mode to improve the performance of z/OS Debugger while debugging extremely
large or complex programs.

Refer to the following topics for more information related to the material discussed in this topic.

Related references
“LOADDEBUGDATA command” on page 166

SET FIND BOUNDS command
Specifies the default left and right columns for a FIND command in the Source window and in line mode
that does not specify any columns information. It is ignored in the Log and Monitor windows.

SET FIND BOUNDS

leftcolumn rightcolumn

*

;

Chapter 5. z/OS Debugger commands 229

leftcolumn
A positive integer that specifies the leftmost column for the search. This is supported only in the
Source window and in line mode. It is ignored in the Log and Monitor windows.

rightcolumn
A positive integer that specifies the rightmost column for the search. This is supported only in the
Source window and in line mode. It is ignored in the Log and Monitor windows.

*
Specifies that the length of each source record is used as the right column for the search. This is
supported only in the Source window and in line mode. It is ignored in the Log and Monitor windows.

Usage notes

• If SET FIND BOUNDS has not been set, the default is 1 for leftcolumn and * for rightcolumn.
• If you enter SET FIND BOUNDS without operands, the result is 1 for leftcolumn and * for rightcolumn.
• If you do not specify column boundaries in a FIND command for the Source window or in line mode, the

boundaries set by the SET FIND BOUNdS command are used for the FIND command.

Example

If you want to find two different strings (paraa and variable-b) in COBOL’s Area B, first enter the
following command to set the boundaries of the search:

SET FIND BOUNDS 12 72;

Then enter the following FIND commands to search for the two strings:

FIND paraa;
FIND variable-b;

Refer to the following topics for more information related to the material discussed in this topic.

Related references
“FIND command” on page 117
“QUERY command” on page 194

SET FREQUENCY command
Controls whether statement executions are counted. The initial setting is OFF.

SET FREQUENCY
ON

OFF cu_spec

(

,

cu_spec)

;

ON
Specifies that statement executions are counted.

OFF
Specifies that statement executions are not counted.

cu_spec
A valid compile unit specification. If omitted, all compile units with statement information are
processed.

Usage notes

• In the disassembly view, SET FREQUENCY is not supported.

230 IBM z/OS Debugger: Reference and Messages

• Because the collection of frequency data can add a substantial amount of overhead, set the SET
FREQUENCY command to ON only when you intend to make use of this data. Do not routinely set the SET
FREQUENCY command to ON in debug sessions in which you do not intend to make use of this data.

• If the DATA option of the PLAYBACK ENABLE command is in effect for the current compile unit, you
can use the SET FREQUENCY command while you replay recorded statements by using the PLAYBACK
commands.

Example

Specify that statement executions are counted in compile units main and subr1.

SET FREQUENCY ON (main, subr1);

Refer to the following topics for more information related to the material discussed in this topic.

Related references
“cu_spec” on page 13
“LIST FREQUENCY command” on page 155
“SET SUFFIX command (full-screen mode)” on page 261

SET HISTORY command
Specifies whether entries to z/OS Debugger are recorded in the history table and optionally adjusts the
size of the table. The history table contains information about the most recently processed breakpoints
and conditions. The initial setting is ON; the initial size is 100.

SET HISTORY
ON

OFF integer

;

ON
Maintains the history of invocations.

OFF
Suppresses the history of invocations.

integer
The number of entries kept in the history table.

Usage notes

• History is not collected for disassembly compile units.

Examples

• Adjust the history table size to 50 lines.

SET HISTORY 50;

• Turn off history recording.

SET HISTORY OFF;

Refer to the following topics for more information related to the material discussed in this topic.

Related references
“LIST LAST command” on page 155

SET IGNORELINK command
Specifies that any new LINK level (nested enclave) is ignored while the setting is ON. z/OS Debugger does
not gather information or stop at the programs in this newly created enclave. The initial setting is OFF.

Chapter 5. z/OS Debugger commands 231

SET IGNORELINK
ON

OFF

;

ON
Programs in new enclaves (links) are ignored. z/OS Debugger does not stop at programs in new
enclaves.

OFF
Programs in new enclaves (links) are not ignored. z/OS Debugger stops at any breakpoint for a
program in new enclaves.

Usage notes

• A new enclave is created by language constructs like EXEC LINK or EXEC XCTL, which invoke a new
main program.

• This command is valid only in CICS programs.
• You can use this command in remote debug mode.
• DTCN or CADP profiles override the setting of SET IGNORELINK.
• You can use the STEP INTO command to step into a new enclave, which overrides the SET
IGNORELINK setting. However, this does not change the setting of SET IGNORELINK.

• If you use the STEP RETURN command, you can only return to the parent enclave if it was not ignored
by z/OS Debugger because at the time it was created, the setting of SET IGNORELINK was OFF.
Otherwise, z/OS Debugger runs to the next breakpoint in a previous enclave that was not ignored by
z/OS Debugger or it runs to the end of the application.

• The DISABLE DTCN, ENABLE DTCN, DISABLE CADP, and ENABLE CADP commands override the
setting of SET IGNORELINK. This allows you to debug the new enclave, but does not change the setting
of SET IGNORELINK.

• Breakpoints are not restored for a compile unit in a new enclave when the SET IGNORELINK setting is
ON.

• z/OS Debugger does not stop for any deferred entry breakpoints for a compile unit in a new enclave
when the SET IGNORELINK setting is ON.

• z/OS Debugger does not stop for any breakpoint in the new enclave when the SET IGNORELINK setting
is ON.

• Conditions raised in the application are reported regardless of the setting of SET IGNORELINK.
• You can use this command in a preferences, commands, or global preferences file so that it is run at the

beginning of every new debugging session.
• When both SET IGNORELINK ON and SET EXPLICITDEBUG ON are in effect, and you have run an
LDD, AT ENTRY, or NAMES INCLUDE for the initial load module and compile unit for the LINK target,
z/OS Debugger ignores the SET IGNORELINK for that specific LINK. However, this does not change the
setting of SET IGNORELINK.

Refer to the following topics for more information related to the material discussed in this topic.

Related references
“DISABLE command” on page 107
“ENABLE command” on page 113
“QUERY command” on page 194
“STEP command” on page 269

SET INTERCEPT command (C and C++)
Intercepts input to and output from specified files. Output and prompts for input are displayed in the log.

Only sequential I/O can be intercepted. I/O intercepts remain in effect for the entire debug session,
unless you terminate them by entering SET INTERCEPT OFF command. The initial setting is OFF.

232 IBM z/OS Debugger: Reference and Messages

SET INTERCEPT
ON

OFF

FILE file_spec ;

ON
Turns on I/O interception for the specified file. Output appears in the log, preceded by the file specifier
for identification. Input causes a prompt entry in the log, with the file specifier identified. You can then
enter input for the specified file on the command line by using the INPUT command.

OFF
Turns off I/O interception for the specified file.

FILE file_spec
A valid fopen() file specifier including stdin, stdout, or stderr. The FILE keyword cannot be
abbreviated.

Usage notes

• For Enterprise COBOL for z/OS Version 5, ACCEPT is not supported.
• Intercepted streams or files cannot be part of any C I/O redirection during the execution of a nested

enclave.
• You cannot use the SET INTERCEPT command while you replay recorded statements by using the
PLAYBACK commands.

Examples

Turn on the I/O interception for the fopen() file specifier dd:mydd. The current programming language
setting is C.

SET INTERCEPT ON FILE dd:mydd;

Refer to the following topics for more information related to the material discussed in this topic.

Related references
“INPUT command (C, C++, and COBOL)” on page 135
“SET REFRESH command (full-screen mode)” on page 252

SET INTERCEPT command (COBOL, full-screen mode, line mode, batch
mode)

Intercepts input to and output from the console. Output and prompts for input are displayed in the log.

Console I/O intercepts remain in effect for the entire debug session, unless you terminate them by
entering SET INTERCEPT OFF command. The initial setting is OFF.

SET INTERCEPT
ON

OFF

CONSOLE ;

ON
Turns on console I/O interception. z/OS Debugger displays output in the log, preceded by the
CONSOLE keyword to identify the output. Input causes a prompt entry in the log, with the CONSOLE
identified. You can then enter input for the console on the command line by using the INPUT
command.

OFF
Turns off console I/O interception.

CONSOLE
Turns I/O interception on or off for the console.

This consists of:

Chapter 5. z/OS Debugger commands 233

• Job log output from DISPLAY UPON CONSOLE
• Screen output (and confirming input) from STOP 'literal'
• Terminal input for ACCEPT FROM CONSOLE or ACCEPT FROM SYSIN.

Usage notes

• For CICS, SET INTERCEPT is not supported.
• You cannot use the SET INTERCEPT command while you replay recorded statements by using the
PLAYBACK commands.

Examples

Turn on the I/O interception for the console. The current programming language setting is COBOL.

SET INTERCEPT CONSOLE;

Refer to the following topics for more information related to the material discussed in this topic.

Related references
“INPUT command (C, C++, and COBOL)” on page 135
“SET REFRESH command (full-screen mode)” on page 252

SET INTERCEPT command (COBOL, remote debug mode)
Intercepts output from COBOL DISPLAY statements. Output is displayed in the Debug Console. Output
intercepts remain in effect for the entire debug session, unless you terminate them by entering the SET
INTERCEPT OFF command. The initial setting is OFF.

SET INTERCEPT
ON

OFF

;

ON
Turns on output interception. Output appears in the Debug Console.

OFF
Turns off output interception.

Examples

Turn on the output interception for the console.

SET INTERCEPT ON;

Refer to the following topics for more information related to the material discussed in this topic.

Related references
“SET REWRITE command (full-screen mode)” on page 254

SET KEYS command (full-screen mode)
Controls whether PF key definitions are displayed when the SCREEN setting is ON. The initial setting is ON.

SET KEYS
ON

OFF

12

24

;

ON
Displays PF key definitions.

OFF
Suppresses the display of the PF key definitions.

234 IBM z/OS Debugger: Reference and Messages

12
Shows PF1-PF12 on the screen bottom.

24
Shows PF13-PF24 on the screen bottom.

Example

Specify that the display of the PF key definitions is suppressed.

SET KEYS OFF;

Refer to the following topics for more information related to the material discussed in this topic.

Related references
“SET PFKEY command” on page 247

SET LDD command
Controls how debug data is loaded for assemblies containing multiple CSECTs. The initial setting is
SINGLE.

SET LDD SINGLE

ALL

;

SINGLE
Indicates that subsequent LOADDEBUGDATA (LDD) commands that load debug data for a CU that was
assembled with other CSECTs are to load the debug data for the specified CU only.

ALL
Indicates that subsequent LOADDEBUGDATA (LDD) commands that load debug data for a CU that was
assembled with other CSECTs are to load the debug data for all CUs in the assembly.

Usage notes

• This command affects both deferred and non-deferred LDD commands.
• If the target of the LDD is a LangX COBOL CU, the command has no effect.
• If SET LDD ALL is in effect and you do the following tasks, you must enter a separate SET SOURCE

command for each CU in the assembly for which you previously entered an LDD command:

– You enter an LDD command for more than one CU in the same assembly.
– The debug data could not be found for these CUs.
– Subsequently, you enter a SET SOURCE command for one of these CUs.

• You can use this command in remote debug mode.

Examples

• Load debug data for all CSECTs in an assembly that contains CSECTs CS1, CS2, and CS3:

SET LDD ALL;
LDD CS1;

• Load debug data for CSECT’s CS1 and CS3 in an assembly that contains CSECTs CS1, CS2, and CS3:

SET LDD SINGLE;
LDD (CS1,CS3);

Refer to the following topics for more information related to the material discussed in this topic.

Related tasks
IBM z/OS Debugger User's Guide

Related references

Chapter 5. z/OS Debugger commands 235

“LOADDEBUGDATA command” on page 166
Appendix A, “z/OS Debugger commands supported in Debug Tool compatibility mode,” on page 517

SET LIST BY SUBSCRIPT command (COBOL)
Controls whether z/OS Debugger displays elements in an array as they are stored in memory.

The default setting is OFF.

SET LIST BY SUBSCRIPT
ON

OFF

;

ON
Indicates that z/OS Debugger displays elements of a COBOL array as they are stored in memory.

OFF
Indicates that z/OS Debugger displays elements of a COBOL array ordered by element.

Usage Notes

• For Enterprise COBOL for z/OS Version 5, the SET LIST BY SUBSCRIPT setting is ignored. The elements
of a COBOL array are always displayed as they are stored in memory.

• You can use this command in remote debug mode.
• For the remote debugger, you cannot change the setting of SET LIST BY SUBSCRIPT while

monitoring expressions. If you want to change the setting of SET LIST BY SUBSCRIPT, remove the
monitored expressions from the Monitor and Variables Views.

Examples

• Assume you declare the following structure in your program:

 01 TEAM.
 05 MyTeam OCCURS 3 TIMES.
 10 Name.
 15 LastName PIC X(20).
 15 FirstName PIC X(15).
 10 Phone PIC X(12).
 10 IBMLab PIC X(20)

If you monitor TEAM by using SET LIST BY SUBSCRIPT OFF (the default setting), z/OS Debugger
displays the following output in the monitor window for the remote debugger, when you expand all
values:

TEAM
 MYTEAM
 NAME
 LASTNAME
 SUB(1) = 'Smith '
 SUB(2) = 'Johnson '
 SUB(3) = 'Williams '
 FIRSTNAME
 SUB(1) = 'Eva '
 SUB(2) = 'Francisco '
 SUB(3) = 'Randy '
 PHONE
 SUB(1) = '408-463-1111'
 SUB(2) = '408-463-2222'
 SUB(3) = '408-463-3333'
 IBMLAB
 SUB(1) = 'Silicon Valley Lab '
 SUB(2) = 'Silicon Valley Lab '
 SUB(3) = 'Lexington, Ky '

236 IBM z/OS Debugger: Reference and Messages

If you monitor TEAM after running the SET LIST BY SUBSCRIPT ON command, z/OS Debugger
displays the following output in the monitor window for the remote debugger:

TEAM
 MYTEAM
 MYTEAM(1)
 NAME
 LASTNAME = 'Smith '
 FIRSTNAME = 'Eva '
 PHONE = '408-463-1111'
 IBMLAB = 'Silicon Valley Lab '
 MYTEAM(2)
 NAME
 LASTNAME = 'Johnson '
 FIRSTNAME = 'Francisco '
 PHONE = '408-463-2222'
 IBMLAB = 'Silicon Valley Lab '
 MYTEAM(3)
 NAME
 LASTNAME = 'Williams '
 FIRSTNAME = 'Randy '
 PHONE = '408-463-3333'
 IBMLAB = 'Lexington, Ky '

• Assume you declare the same structure as in the above example:

01 TEAM.
 05 MyTeam OCCURS 3 TIMES.
 10 Name.
 15 LastName PIC X(20).
 15 FirstName PIC X(15).
 10 Phone PIC X(12).
 10 IBMLab PIC X(20).

If you issue MONITOR LIST (TEAM) with SET LIST BY SUBSCRIPT OFF (the default setting), z/OS
Debugger displays the following output in the Monitor window in MFI:

MONITOR -+----1----+----2----+----3----+----4----+----5----+----6 LINE: 1 OF 19
******************************* TOP OF MONITOR ********************************
 ----+----1----+----2----+----3----+----4----
0001 1 01 TEAM
0002 02 MYTEAM
0003 03 NAME
0004 04 LASTNAME
0005 SUB(1) 'Smith '
0006 SUB(2) 'Johnson '
0007 SUB(3) 'Williams '
0008 04 FIRSTNAME
0009 SUB(1) 'Eva '
0010 SUB(2) 'Francisco '
0011 SUB(3) 'Randy '
0012 03 PHONE
0013 SUB(1) '408-463-1111'
0014 SUB(2) '408-463-2222'
0015 SUB(3) '408-463-3333'
0016 03 IBMLAB
0017 SUB(1) 'Silicon Valley Lab '
0018 SUB(2) 'Silicon Valley Lab '
0019 SUB(3) 'Lexington, Ky '
****************************** BOTTOM OF MONITOR ******************************

If you issue MONITOR LIST (TEAM) with SET LIST BY SUBSCRIPT ON, z/OS Debugger displays
the following output in the Monitor window in MFI:

MONITOR -+----1----+----2----+----3----+----4----+----5----+----6 LINE: 1 OF 20
******************************* TOP OF MONITOR ********************************
 ----+----1----+----2----+----3----+----4----
0001 1 01 TEAM
0002 02 MYTEAM
0003 02 MYTEAM(1)
0004 03 NAME
0005 04 LASTNAME 'Smith '
0006 04 FIRSTNAME 'Eva '
0007 03 PHONE '408-463-1111'
0008 03 IBMLAB 'Silicon Valley Lab '
0009 02 MYTEAM(2)

Chapter 5. z/OS Debugger commands 237

0010 03 NAME
0011 04 LASTNAME 'Johnson '
0012 04 FIRSTNAME 'Francisco '
0013 03 PHONE '408-463-2222'
0014 03 IBMLAB 'Silicon Valley Lab '
0015 02 MYTEAM(3)
0016 03 NAME
0017 04 LASTNAME 'Williams '
0018 04 FIRSTNAME 'Randy '
0019 03 PHONE '408-463-3333'
0020 03 IBMLAB 'Lexington, Ky '
****************************** BOTTOM OF MONITOR ******************************

SET LIST BY SUBSCRIPT command (Enterprise PL/I, full-screen mode only)
Controls whether z/OS Debugger displays elements in an array as they are stored in memory.

The default setting is OFF.

SET LIST BY SUBSCRIPT
ON

OFF

;

ON
Indicates that z/OS Debugger displays elements of a PL/I array as they are stored in memory.

OFF
Indicates that z/OS Debugger displays elements of a PL/I array ordered by element.

Examples

Assume you declare the following array in your program:

DCL 01 STRUCA(3),
 05 FIELD1 CHAR(9),
 05 FIELD2 CHAR(9);

If you run the command LIST STRUCA, with SET LIST BY SUBSCRIPT OFF (the default setting), z/OS
Debugger displays the following results:

 LIST STRUCA ;
STRUCA.FIELD1(1) = 'MYFIELDB1'
STRUCA.FIELD1(2) = 'MYFIELDB2'
STRUCA.FIELD1(3) = 'MYFIELDB3'
STRUCA.FIELD2(1) = 'MYFIELDB1'
STRUCA.FIELD2(2) = 'MYFIELDB2'
STRUCA.FIELD2(3) = 'MYFIELDB3'

If you run the command LIST STRUCA after running the command SET LIST BY SUBSCRIPT ON, z/OS
Debugger displays the following results:

 LIST STRUCA ;
STRUCA.FIELD1(1) = 'MYFIELDB1'
STRUCA.FIELD2(1) = 'MYFIELDB1'
STRUCA.FIELD1(2) = 'MYFIELDB2'
STRUCA.FIELD2(2) = 'MYFIELDB2'
STRUCA.FIELD1(3) = 'MYFIELDB3'
STRUCA.FIELD2(3) = 'MYFIELDB3'

Refer to the following topics for more information related to the material discussed in this topic.

Related tasks
IBM z/OS Debugger User's Guide

Related references
“LIST expression command” on page 149

238 IBM z/OS Debugger: Reference and Messages

SET LIST TABULAR command
Controls whether to format the output of the LIST command in a tabular format. The default setting is
OFF.

SET LIST TABULAR

OFF

ON ;

ON
Display the output of the LIST command in tabular format.

OFF
Display the output of the LIST command in linear format. This is the default setting.

SET LOG command
Controls whether z/OS Debugger writes each performed command and the resulting output to the log file
and defines (or redefines) the name of the log file.

SET LOG
ON

ON FILE fileid
OLD

MOD

OFF

KEEP count

;

ON
Specifies that commands and output are written to the log file.

FILE fileid
Identifies the log file used. The FILE keyword cannot be abbreviated.

In non-CICS, fileid is a DD name or a fully-qualified data set name. Partitioned data sets cannot be
used.

In CICS, fileid is a fully-qualified data set name. The CICS region must have update authorization to
the log file.

If fileid has the form of a DD name, z/OS Debugger checks to see if the file is allocated.

In full-screen mode, the log file should not be allocated to the 3270 terminal device.

OLD
Specifies that the new information is to replace any existing information in the specified file. This
operand is ignored if fileid specifies a DD name.

MOD
Specifies that the new information is appended after any existing information in the specified file. This
operand is ignored if fileid specifies a DD name.

KEEP count
Specifies the number of lines of log output retained for display. The initial setting is 1000; count
cannot equal zero (0).

OFF
Specifies that commands and output are not written to a log file.

Usage notes

• The following list describes how z/OS Debugger determines the initial setting for SET LOG:

Chapter 5. z/OS Debugger commands 239

– If a default user log file was not specified through the EQAOPTS LOGDSN command, the following
rules apply:

- In a non-CICS environment, if you do not allocate INSPLOG DD, the initial setting is OFF.
- In a non-CICS environment, if you do allocate INSPLOG DD, the initial setting is ON FILE
INSPLOG.

- In a CICS environment, the initial setting is OFF.
– If a default user log file was specified through the EQAOPTS LOGDSN command, the following rules

apply:

- In batch mode, if you do not allocate INSPLOG DD, the initial setting is OFF.
- In batch mode, if you do allocate INSPLOG DD, the initial setting is ON FILE INSPLOG.
- In full screen mode and a non-CICS environment, if you do not allocate INSPLOG DD, the initial

setting is ON FILE fileid. Specify fileid through the EQAOPTS LOGDSN command.
- In full screen mode and a non-CICS environment, if you do allocate INSPLOG DD, the initial setting

is ON FILE INSPLOG.
- In a CICS environment, the initial setting is ON FILE fileid. Specify fileid through the EQAOPTS
LOGDSN command.

• If the EQAOPTS LOGDSN command was specified, then the EQAOPTS LOGDSNALLOC command can be
specified to indicate that, if the log file data set does not exist, z/OS Debugger creates it. This can be
used to create the file for new z/OS Debugger users.

For existing z/OS Debugger users, if you use a SAVESETS data set, then the file contains a SET LOG
command. If a specification for the EQAOPTS LOGDSN command is created after you have saved
settings into your SAVESETS file, z/OS Debugger does not change your saved SET LOG command and
does not create a new log file data set.

To learn how to specify the EQAOPTS commands LOGDSN and LOGDSNALLOC, see Chapter 6, “EQAOPTS
commands,” on page 287.

FILE LOGDSN is used for the SET LOG ON command when both of the following conditions are true:

– A SET LOG ON without a FILE fileid is issued when LOG is OFF.
– ON FILE LOGDSN was used as the initial setting of SET LOG via the EQAOPTS LOGDSN command.

For CICS, if you are not logged in or are logged in under the default user ID, z/OS Debugger does not
create or use the file specified for fileid.

For Db2 stored procedures, do not set up z/OS Debugger to create or use the file specified for fileid.
Since multiple users share the same default data set, multiple users can attempt to write to the data set
at the same time. In this environment, if LOGDSN is specified, specify NULLFILE for file-name-pattern.

• The log output lines retained for display are always the last (that is, the most recent) lines.
• Setting LOG OFF does not suppress the log display.
• If you are debugging in full-screen mode and the log file is allocated to the terminal, issue a SET LOG
OFF command before issuing a QUIT command. If you do not issue the SET LOG OFF command, the
QUIT command fails.

• Ensure that you allocate a log file big enough to hold all the log output from a debug session, because
the log file is truncated after it becomes full. (A warning message is not issued before the log is
truncated.)

• For remote debug mode, you can only use the SET LOG ON and SET LOG OFF commands. The SET
LOG ON command displays messages that explain why it stopped at the current location. The SET LOG
ON command does not save the contents of the log to a permanent location. When the setting for SET
LOG is OFF, messages related to breakpoints are not displayed. For example, the message "Program
was stopped due to line/statement breakpoint at statement 232." is not displayed.

If you enter SET AUTOMONITOR ON LOG command, the SET LOG ON and SET LOG OFF commands
are ignored. All messages are displayed.

240 IBM z/OS Debugger: Reference and Messages

Examples

• Specify that commands and output are written to the log file named mainprog.

SET LOG ON FILE mainprog;

Another example using the data set name thing.

SET LOG ON FILE userid.thing.log

• Indicate that 500 lines of log output are retained for display.

SET LOG KEEP 500;

Refer to the following topics for more information related to the material discussed in this topic.

Related tasks
IBM z/OS Debugger User's Guide

Related references
Appendix A, “z/OS Debugger commands supported in Debug Tool compatibility mode,” on page 517

SET LOG NUMBERS command (full-screen mode)
Controls whether line numbers are shown in the log window. The initial setting is ON.

SET LOG NUMBERS
ON

OFF

;

ON
Shows line numbers in the log window.

OFF
Suppresses line numbers in the log window.

Example

Specify that log line numbers are not shown.

SET LOG NUMBERS OFF;

SET LONGCUNAME command
Controls whether a short or long CU name is displayed.

SET LONGCUNAME
ON

OFF

;

ON
Specifies that a long CU name is displayed.

OFF
Specifies that a short CU name is displayed. The short CU name is displayed in the session panel
header, source window header area, and the Source Identification Panel.

Usage notes

• You can enter the SET LONGCUNAME at any time, but it applies only to C, C++, and Enterprise PL/I
programs. If you compiled your program with one of the following compilers and it is running in the
following environment, this command has no effect.

Chapter 5. z/OS Debugger commands 241

– Enterprise PL/I for z/OS, Version 3.6 or later
– Enterprise PL/I for z/OS, Version 3.5, compiler with the PTFs for APARs PK35230 and PK35489

applied
• The CU name for programs compiled with C, C++, or Enterprise PL/I (before Enterprise PL/I for z/OS,

Version 3.6) compilers can have one of the following forms:

– Fully qualified partitioned data set name and member name
– A sequential file name
– An HFS or zFS path and file name

These forms can result in long CU names that are truncated in the session panel header, which makes it
difficult for you to identify the CU.

For these forms of compile unit names, z/OS Debugger displays short names in one of the following
manners:

– For PDS file names, the short name is only the member name
– For sequential file names, the short name is the lowest level qualifier (name segment)
– For HFS or zFS file names, the short name is the file name, without path name

• z/OS Debugger commands affected by the LONGCUNAME setting: QUERY LOCATION, SET SOURCE, and
AT ENTRY. All the other commands continue to require the long form of the CU name. For example, if
you use the short name with the AT command (AT ARRAY3 ::> 'ARRAY3' :> 10), z/OS Debugger
displays an error message and does not set the breakpoint. However, if you enter the command AT
ENTRY ARRAY3 ::> ’ARRAY3’ :>ARRAY3, z/OS Debugger sets the breakpoint or defers setting the
breakpoint until the entry point is known to z/OS Debugger.

• You cannot use the SET LONGCUNAME command in remote debug mode.

Examples

• If the CU name is SMITH.TEST.SRC(ARRAY3), the short name is ARRAY3.
• If the CU name is SMITH.TEST.SOURCE.ABCD, the short name is ABCD.
• If the CU name is /testenvir/applications/cicsprograms/project1/prog2.cpp, the short

name is prog2.cpp.

SET MDBG command
Associates a .mdbg file to one load module or DLL.

SET MDBG ( lm_spec) fileid ;

lm_spec
The name of a valid load module or DLL.

fileid
Identifies the .mdbg file that contains the debug information for the load module or DLL.

In z/OS, fileid is a DD name, a fully qualified partitioned data set and member name, a sequential file,
or an HFS or zFS path and file name.

In CICS, fileid is a fully-qualified data set name or an HFS or zFS path and file name.

If fileid is less than nine characters in length and does not contain a period, z/OS Debugger assumes it
is a DD name. z/OS Debugger checks to see if it is allocated. If it is not allocated, then z/OS Debugger
assumes fileid is a data set name.

Usage notes

• Before you can use this command, you or your site must specify YES for the EQAOPTS MDBG command,
as described in Chapter 6, “EQAOPTS commands,” on page 287. In environments that support

242 IBM z/OS Debugger: Reference and Messages

environment variables, you can use the EQA_USE_MDBG environment variable to override this option
for a specific debugging session.

• You can use this command if you created a .mdbg file that contains debug information, including
captured source.

• You can create .mdbg files that contain debug information, including captured source, only if you
compile your program with z/OS XL C/C++, Version 1.10, or later.

• z/OS Debugger does not search for the .mdbg file specified in fileid until the application loads that
load module or DLL. The following list provides some examples of when z/OS Debugger searches for
the .mdbg file:

– If you enter the SET MDBG command and you specify the currently running load module or DLL in
lm_spec, z/OS Debugger immediately searches for the .mdbg file specified in fileid. If z/OS Debugger
cannot find the file, it displays an error message.

– You specify the SET MDBG command in your commands file. When your application calls a function
in that load module or DLL, then z/OS Debugger searches for the .mdbg file. If z/OS Debugger cannot
find the file, it displays an error message.

– You enter the SET MDBG command, then you set an AT LOAD breakpoint for that load module or
DLL. When z/OS Debugger encounters that breakpoint, then it searches for the .mdbg file. If z/OS
Debugger cannot find the file, it displays an error message.

Examples

• Specify that FANAYA.MYLOAD.MDBG is the location of the .mdbg file for load module MYLOAD. z/OS
Debugger searches for this file when it needs to retrieve debug information for load module MYLOAD.

SET MDBG (MYLOAD) FANAYA.MYLOAD.MDBG;

• Indicate that the .mdbg file for DLL /u/userid/code/mydll is located in HFS or zFS under the path and file
name /u/userid/code/mydll.mdbg:

SET MDBG ("/u/userid/code/mydll") /u/userid/code/mydll.mdbg;

Refer to the following topics for more information related to the material discussed in this topic.

Related concepts
"How does z/OS Debugger locate source, listing, or separate debug files?" in the IBM z/OS Debugger
User's Guide
Related tasks
“Specifying the location of source, listing, or separate debug file in remote debug mode by using
environment variables” on page 522
"Specifying whether z/OS Debugger searches for .mdbg files" in the IBM z/OS Debugger Customization
Guide
Related references
“SET SOURCE command” on page 259
“SET DEFAULT DBG command” on page 219
“SET DEFAULT MDBG command” on page 221
Appendix A, “z/OS Debugger commands supported in Debug Tool compatibility mode,” on page 517

SET MONITOR command
Controls the format and layout of variable names and values displayed in the Monitor window.

Chapter 5. z/OS Debugger commands 243

SET MONITOR COLUMN

DATATYPE

NUMBERS

WRAP

ON

OFF

LIMIT integer

;

COLUMN
Controls whether to display the output in the Monitor window in column format. The initial setting is
SET MONITOR COLUMN ON. SET MONITOR COLUMN is accepted in batch mode, but has no effect.

DATATYPE
Controls whether to display the data type of the variable in the Monitor window. The initial setting is
SET MONITOR DATATYPE OFF.

LIMIT integer
Controls the number of scrollable lines that z/OS Debugger displays in the Monitor window. The
default value for integer is 1000. If you specify a new value, it must be greater than or equal to 1000,
but less than or equal to 30000.

NUMBERS (full-screen mode)
Controls whether to display line numbers in the Monitor window. The initial setting is SET MONITOR
NUMBERS ON.

WRAP
Controls whether to wrap the output in the Monitor window. The initial setting is SET MONITOR WRAP
ON. SET MONITOR WRAP is accepted in batch mode, but has no effect.

ON
Sets the corresponding switch to the following values:
COLUMN

Display the Monitor window output in column-aligned format.
DATATYPE

Display the data type attribute for variables in the Monitor window.
NUMBERS

Display line numbers in the Monitor window.
WRAP

Wraps the monitor value area variable in the monitor window.
OFF

Sets the corresponding switch to the following values:
COLUMN

Display the Monitor window output in non-column-aligned format.
DATATYPE

Do not display the data type attribute for variables in the Monitor window.
NUMBERS

Do not display line numbers in the Monitor window.
WRAP

Display the variable name and value on the same line in the monitor window. If any values are too
long to display in the Monitor window, then the area becomes scrollable.

Usage notes

If you enter the SET MONITOR WRAP OFF command while the SET MONITOR COLUMN switch is set to
OFF, the command is rejected because z/OS Debugger can only display values in one scrollable line when
the setting of MONITOR COLUMN is ON. You must first enter the SET MONITOR COLUMN ON command.

244 IBM z/OS Debugger: Reference and Messages

If you enter the SET MONITOR COLUMN OFF command while the SET MONITOR WRAP switch is set to
OFF, the command is rejected. The Monitor window must be in columnar format to be able to display
values in one scrollable line. You must first enter the SET MONITOR WRAP ON command.

Monitoring large amounts of data might require large amounts of storage; this might cause a problem at
some sites. Verify that there is enough storage to monitor large data items or data items that contain a
large number of elements.

Example

• Enter the following command to specify that you do not want line numbers displayed in the Monitor
window:

SET MONITOR NUMBERS OFF;

• Enter the following command to specify that you do not want variable values to wrap to the next line:

SET MONITOR WRAP OFF;

SET MSGID command
Controls whether the z/OS Debugger messages are displayed with the message prefix identifiers. The
initial setting is OFF.

SET MSGID
ON

OFF

;

ON
Displays message identifiers. The first 7 characters of the message contain the EQAnnnn message
prefix identifier, then a blank, then the original message text, such as: 'EQA2222 Program does not
exist.'

OFF
Displays only the message text.

Example

Specify that message identifiers are suppressed.

SET MSGID OFF;

SET NATIONAL LANGUAGE command
Switches your application to a different run-time national language that determines what translation is
used when a message is displayed. The switch is effective for the entire run-time environment; it is not
restricted to z/OS Debugger activity only. The initial setting is supplied by Language Environment or the
NATLANG z/OS Debugger run-time option, according to the setting in the current enclave.

SET
NATIONAL

LANGUAGE language_code ;

language_code
A valid three-letter set that identifies the language used or (for compatibility) one of the two-letter
language codes that was accepted in the previous release of INSPECT for C/370 and PL/I. The
language code can have one of the following values:

United States English: ENU
United States English (Uppercase): UEN
Japanese: JPN
Korean: KOR

Chapter 5. z/OS Debugger commands 245

If you enter the SET DBCS ON command and then you set the national language to ENU, z/OS
Debugger resets the national language to UEN to remain compatible with DBCS characters.

For compatibility with the previous release of INSPECT for C/370 and PL/I:

EN or ENGLISH is mapped to ENU
UE or UENGLISH is mapped to UEN
JA, JAPANESE, NI, or NIHONGO is mapped to JPN

Usage notes

• In order to display DBCS characters correctly in full-screen mode, the 3270 terminal emulator must be
capable of displaying DBCS characters, and the VTAM LOGMODE MODEENT macroinstruction used for
the terminal session must contain the following specification(s):

1. For CICS, full-screen mode using the Terminal Interface Manager and TSO, the LOGMODE MODEENT
macroinstruction must contain a PSERVIC parameter value that indicates that the terminal has
extended data stream capability and that the terminal is to be queried for alternate screen size.

2. For TSO, in addition, the LOGMODE MODEENT macroinstruction must contain a LANG parameter
value where BIT 0 is 1 (ON). TSO/VTAM uses this bit to indicate that devices with extended data
stream capability are queried for language information (DBCS capability).

You can query this bit in ISPF in the following way:

– In ISPF, select option 0 (Settings). Press Enter.
– On the command line, enter: environ. Press Enter.
– Tab to the section Terminal Status (TERMSTAT). In the Enable field, enter 2 (Query terminal

information). Press Enter.
– Several pages of statistics appear. In the section GTTERM Information, note the value of the

highest bit in the second byte of the ATTRIBUTE BYTE (the Language Field). The value of this
bit must be 1 (ON). For example, if the value of the ATTRIBUTE BYTE is x008000C9, then
DBCS characters display correctly because the second byte is x80. However, if the value of the
ATTRIBUTE BYTE is x000000C9, DBCS characters are not displayed properly.

• The language you select by using the SET NATIONAL LANGUAGE command affects both your
application and z/OS Debugger.

• At the beginning of an enclave, the settings are those provided by Language Environment, your
operating system, or the NATLANG z/OS Debugger run-time option. For nested enclaves, the parent's
settings are restored upon return from a child enclave.

• If NATIONAL LANGUAGE is set to JPN or KOR and you are using full-screen mode, enter the SET DBCS
ON command so that z/OS Debugger displays messages correctly.

Examples

• Set the current national language to Japanese.

SET NATIONAL LANGUAGE JPN;
SET DBCS ON;

• Set the current national language to United States English.

SET LANGUAGE ENU;

Refer to the following topics for more information related to the material discussed in this topic.

Related references
“SET DBCS command” on page 218

SET PACE command
Specifies the maximum pace of animated execution, in steps per second. The initial setting is two steps
per second. This setting is not supported in batch mode.

246 IBM z/OS Debugger: Reference and Messages

SET PACE number ;

number
A decimal number between 0 and 9999; it must be a multiple of 0.5.

Usage notes

• If you are debugging a CICS program, choose your pace carefully. After animated execution begins, you
might not be able to stop it. See the IBM z/OS Debugger User's Guide for information about requesting
an attention interrupt during interactive sessions.

• Associated with the SET PACE command is the STEP command. Animated execution is achieved by
defining a PACE and then issuing a STEP n command where n is the number of steps to be seen in
animated mode. STEP * can be used to see all steps to the next breakpoint in animated mode.

• When PACE is set to 0, no animation occurs.

Example

Set the animated execution pace to 1.5 steps per second.

SET PACE 1.5;

SET PFKEY command
Associates a z/OS Debugger command with a Program Function key (PF key). This setting is not supported
in batch mode.

SET PFn

string

=

command

;

PFn
A valid program function key specification (PF1 - PF24).

string
The label shown in the PF key display (if the KEYS setting is ON) that is entered as a string constant.
The string is truncated if longer than eight characters. If the string is omitted, the first eight characters
of the command are displayed. For C and C++, the string must be surrounded by quotation marks (").
For COBOL, LangX COBOL, PL/I, assembler, and disassembly, the string can be surrounded by either
quotation marks (") or apostrophes (').

command
A valid z/OS Debugger command, partial command, or multiple commands.

If you specify multiple commands, you must surround them with string delimiters. For C and C++,
you must surround them with quotation marks ("). For COBOL, LangX COBOL, PL/I, assembler, and
disassembly, you can surround them with either quotation marks (") or apostrophes (').

Usage notes

• If you specify the ? as the command, the ? is understood to be the command, not a request for syntax
help.

• In z/OS Debugger, if there is any text on the command line at the time the PF key is pressed, that text is
appended to the PF key string, with an intervening blank, for execution.

• The initial settings for PF keys 13-24 are equivalent to PF keys 1-12, respectively.

If you change the setting for a PF key in the 1–12 range, the equivalent key in the 13–24 range remains
the same.

Example

Define the PF5 key to scroll the cursor-selected window forward.

• If the programming language setting is COBOL:

Chapter 5. z/OS Debugger commands 247

SET PF5 "Down" = IMMEDIATE SCROLL DOWN;

• If the programming language setting is PL/I:

SET PF5 'Down' = IMMEDIATE SCROLL DOWN;

• If the programming language setting is C++:

SET PF5 "Down" = IMMEDIATE SCROLL DOWN;

In all cases, the setting for PF17 remains the same.

SET POPUP command
Controls the number of lines displayed in the Command pop-up window in the following situations:

• You enter the POPUP command without specifying the number of lines.
• z/OS Debugger opens the Command pop-up window when you enter a continuation character or an

incomplete command in the command line.

SET POPUP integer ;

integer
The number of lines in the Command pop-up window when z/OS Debugger opens it. The initial default
number of lines is 15.

Related references

“POPUP command” on page 191

SET PROGRAMMING LANGUAGE command
Sets the current programming language. You can only set the current programming language to the
selection of languages of the programs currently loaded. For example, if the current load module contains
both C and COBOL compile units, but not PL/I, you can set the language only to C or COBOL. However, if
you later STEP or GO into another load module that contains C, COBOL, and PL/I compile units, you can
set the language to any of the three.

The programming language setting affects the parsing of incoming z/OS Debugger commands. The
execution of a command is always consistent with the current programming language setting that was
in effect when the command was parsed. The programming language setting at execution time is ignored.

SET PROGRAMMING LANGUAGE
CYCLE

AUTOMATIC

HOLD

ASSEMBLER

C

COBOL

DISASSEMBLY

LANGXCOBOL

PLI

HOLD

;

CYCLE
Specifies that the programming language is set to the next language in the alphabetic sequence of
supported languages.

248 IBM z/OS Debugger: Reference and Messages

AUTOMATIC
Cancels a HOLD by specifying that the programming language is set according to the current
qualification and thereafter changed automatically each time the qualification changes or STEP or
GO is issued.

HOLD
Specifies that the given language (or the current language, if no language is specified) remains in
effect regardless of qualification changes. The language remains in effect until SET PROGRAMMING
LANGUAGE changes the language or releases the hold.

ASSEMBLER
Sets the current programming language to ASSEMBLER.

C
Sets the current programming language to C. z/OS Debugger does not differentiate between C and
C++, use this option for C++ as well as C programs.

COBOL
Sets the current programming language to COBOL.

DISASSEMBLY
Sets the current programming language to disassembly.

LANGXCOBOL
Sets the current programming language to LangX COBOL.

PLI
Sets the current programming language to PL/I.

Usage notes

• If CYCLE or one of the explicit programming language names is specified, the current programming
language setting is changed regardless of the currently suspended program or the current qualification.

• The current programming language setting affects how commands are parsed, not how they are
performed. Commands are always performed according to the programming language setting where
they were parsed. For example, it is not possible for a z/OS Debugger procedure to contain a mixture
of C and COBOL commands; there is no way for the programming language setting to be changed while
the procedure is being parsed. Also, it is not possible for a command parsed with one programming
language setting to reference variables, types, or labels in another programming language.

• If SET PROGRAMMING LANGUAGE AUTOMATIC is in effect (that is, HOLD is not in effect), changing the
qualification automatically sets the current programming language to the specified block or compile
unit.

• SET PROGRAMMING LANGUAGE can be used to set the programming language to any supported
language in the current or parent enclaves.

Example

Specify that C or C++ is the current programming language.

SET PROGRAMMING LANGUAGE C;

SET PROMPT command (full-screen mode)
Controls whether the current program location is automatically shown as part of the prompt message in
line mode. It has no effect in full-screen mode, because the current location is always shown in the panel
header in that case. The initial setting is LONG.

SET PROMPT LONG

SHORT

;

LONG
Uses long form of prompt message.

Chapter 5. z/OS Debugger commands 249

SHORT
Uses short form of prompt message.

Example

Specify that the long form of prompt message is used.

SET PROMPT LONG;

SET QUALIFY command
Simplifies the identification of references and statement numbers by resetting the point of view to a new
block, compile unit, or load module. In full-screen mode this affects the contents of the Source window. If
you are currently viewing one compile unit in your Source window and you want to view another, enter the
SET QUALIFY command to change the qualification. The SET keyword is optional. The QUALIFY keyword
can be abbreviated.

SET

QUALIFY BLOCK block_spec

CU

PROGRAM

cu_spec

address

LOAD

load_spec

RESET

RETURN

UP

;

BLOCK
Sets the current point of view to the specified block.
block_spec

A valid block specification.
CU

Sets the current point of view to the specified compile unit. CU is equivalent to PROGRAM.
cu_spec

A valid compile unit specification.
address

An address within the CU that you want to qualify to.
PROGRAM

Is equivalent to CU.
LOAD

Sets the current point of view to the specified load module.
load_spec

A valid load module specification. If omitted, the initial (primary) load module qualification is
used.

RESET
Resets qualification to the block of the suspended program and (if the SCREEN setting is ON) scrolls
the Source window to display the current statement line.

RETURN
Switches qualification to the next higher calling program.

UP
Switches qualification up one lexical level to the statically containing block.

Usage notes

250 IBM z/OS Debugger: Reference and Messages

• In the Source window, you can type over the name displayed in the SOURCE field of the header area,
then press Enter. z/OS Debugger creates and runs the corresponding SET QUALIFY CU command.

• If SET PROGRAMMING LANGUAGE AUTOMATIC is in effect (that is, HOLD is not in effect), changing the
qualification automatically sets the current programming language to the specified block or compile
unit.

• If you are debugging a program that has multiple enclaves, you can issue the SET QUALIFY command
only for the following items:

– Load modules, compile units, and blocks that are known to z/OS Debugger and are in the current
enclave

– Load modules, compile units, and blocks that are not known to z/OS Debugger
– Non-Language Environment assembler compile units in a higher-level enclave

You cannot issue the SET QUALIFY command for a load module that is part of a higher-level enclave.
You cannot issue the SET QUALIFY command for compile units in a higher-level enclave unless the
compile unit is non-Language Environment.

• The SET QUALIFY command does not imply a change in flow of control when the program is resumed
with the GO command.

• The SET QUALIFY command cannot modify the point of view to a z/OS Debugger or library block.
• SET QUALIFY LOAD will not change the results of the QUERY QUALIFY command.
• If you specify cu_spec as a CU name without a load module name, z/OS Debugger searches for the CU in

the following order:

1. CUs in the currently qualified load module.
2. All known CUs.
3. A CU by the specified name in a load module of the same name.

• When you use SET QUALIFY address, address can be any address within the corresponding CU. This
form can be especially useful when qualifying to a CU within a non-reentrant load module, when more
than one copy of the load module exists in memory.

• If you enter the SET QUALIFY LOAD command or SET QUALIFY CU command and specify the name
of a load module that is not currently known to z/OS Debugger, z/OS Debugger runs an implicit LOAD
command for the load module. If the implicit LOAD is successful, implicit CUs are created for the
following types of programs:

– All CUs in the load module except COBOL and disassembly CUs
– If SET DISASSEMBLY ON is in effect, disassembly CUs
– If the entry point of the load module is a disassembly program, regardless of the setting of SET
DISASSEMBLY.

With implicit CUs, you can do debugging tasks such as setting breakpoints and browsing the source of
the CU. When you run the program by entering a command such as GO or STEP, the implicitly loaded
modules are deleted, any breakpoints created in the implicitly created CUs are suspended, and all
implicitly created CUs are destroyed. If the CU is later created during normal program execution, the
suspended breakpoints are reactivated.

• You cannot use the SET QUALIFY LOAD or SET QUALIFY CU command to implicitly load a DLL.
• If you enter a SET QUALIFY CU command that specifies the name of a COBOL CU that has not yet

been created because the CU has not been run, z/OS Debugger creates an implicit CU. With implicit CUs,
you can do debugging tasks such as setting breakpoints and browsing the source of the CU. When you
run the program by entering a command such as GO or STEP, any breakpoints created in the implicitly
created CUs are suspended and all implicitly created CUs are destroyed. If the CU is later created during
normal program execution, the suspended breakpoints are reactivated.

• If you stop in an enclave where Language Environment is not yet active, you cannot use SET
QUALIFY LOAD or SET QUALIFY CU commands to load a Language Environment load module or
to create a Language Environment compile unit. You can only use these commands to load a Language

Chapter 5. z/OS Debugger commands 251

Environment load module or create a Language Environment compile unit after Language Environment
has been initialized in the current enclave.

• You can use the SET QUALIFY CU and SET QUALIFY LOAD commands in remote debug mode.
However, these commands in remote debug mode do not set the current point of view to the specified
compile unit or specified load module. Instead, the user should receive a message similar to 'EQA2476I
An implicit LOAD was issued for module module_name' in the Debug Console. The user must select the
specified compile unit or load module in the Modules view to update the current point of view.

Examples

• Indicate to z/OS Debugger that the load module statmod should be used when no load module is
specified.

SET QUALIFY LOAD statmod;

• Set the qualification back to the point of the suspended program.

SET QUALIFY RESET;

• Set the block qualification to blockx. As a result, the load module qualification and compile unit
qualification will be updated to the load module and compile unit that contain the block blockx.

SET QUALIFY BLOCK blockx;

Refer to the following topics for more information related to the material discussed in this topic.

Related references
“block_spec” on page 12
“cu_spec” on page 13
“load_spec” on page 15
Appendix A, “z/OS Debugger commands supported in Debug Tool compatibility mode,” on page 517

SET REFRESH command (full-screen mode)
Controls screen refreshing. This command is only valid when in full-screen mode, that is the SET SCREEN
setting is ON. The initial setting for REFRESH is OFF.

SET REFRESH
ON

OFF

;

ON
Clears the screen before each rewrite. This is a required setting if your application handles line mode
I/O.

OFF
Rewrites without clear.

Usage note

SET REFRESH ON is needed for applications that also make use of the screen; for example, applications
using ISPF services to display panels.

Example

Specify that rewrites only occur on those portions of the screen that have changed. The screen is not
cleared before being rewritten.

SET REFRESH OFF;

252 IBM z/OS Debugger: Reference and Messages

SET RESTORE command
Controls the restoring of settings, breakpoints, and monitor specifications.

SET RESTORE SETTINGS

BPS

MONITORS

NOAUTO

AUTO

;

SETTINGS
Indicates that SET values and WINDOW SIZE and WINDOW CLOSE settings are to be restored. The
following SET values are not restored:

• SET DBCS
• SET FREQUENCY
• SET NATIONAL LANGUAGE
• SET PROGRAMMING LANGUAGE
• FILE operand of SET RESTORE SETTINGS
• SET QUALIFY
• SET SOURCE
• SET TEST

BPS
Indicates that breakpoints and LOADDEBUGDATA (LDD) specifications are to be restored. The
following breakpoints are restored:

• APPEARANCE breakpoints
• CALL breakpoints
• DELETE breakpoints
• ENTRY breakpoints
• EXIT breakpoints
• GLOBAL APPEARANCE breakpoints
• GLOBALCALL breakpoints
• GLOBAL DELETE breakpoints
• GLOBAL ENTRY breakpoints
• GLOBAL EXIT breakpoints
• GLOBAL LABEL breakpoints
• GLOBAL LOAD breakpoints
• GLOBAL STATEMENT and GLOBAL LINE breakpoints
• LABEL breakpoints
• LOAD breakpoints
• OCCURRENCE breakpoints
• STATEMENT and LINE breakpoints
• TERMINATION breakpoint

MONITORS
Indicates that monitor and LOADDEBUGDATA (LDD) specifications are to be restored.

NOAUTO
Indicates that the specified data is not to be restored automatically at z/OS Debugger startup. It will
be restored only when you explicitly request it by entering the RESTORE command. NOAUTO is the
default until AUTO is specified.

Chapter 5. z/OS Debugger commands 253

AUTO
Indicates that, if possible, the specified data set is to be automatically restored by z/OS Debugger at
startup.

Usage notes

• When SETTINGS are restored, they are restored before any preference or commands files are
processed.

• If you use any of the following combinations of commands, z/OS Debugger restores only specific
settings:

– SET RESTORE BPS AUTO with SET SAVE SETTINGS AUTO and SET RESTORE SETTINGS
NOAUTO

– SET RESTORE MONITORS AUTO with SET SAVE SETTINGS AUTO and SET RESTORE SETTINGS
NOAUTO

With any of these combinations of commands, z/OS Debugger restores the following settings:

– SET RESTORE BPS
– SET RESTORE MONITORS
– SET SAVE BPS
– SET SAVE MONITORS

If you use SET RESTORE BPS NOAUTO and SET RESTORE MONITORS NOAUTO with SET RESTORE
SETTINGS NOAUTO, z/OS Debugger does not restore any settings.

• Monitors are not necessarily restored to the same slot number from which they were saved.
• If you are debugging a CICS program and you want to use SET RESTORE parameter_name AUTO,

you must log on with a user ID that is different from the default user ID.
• If you are debugging Db2 stored procedures, you must do one of the following tasks:

– Ensure that the default data set does not exist.
– Ensure that the name of the default data set is NULLFILE.
– Change the name of the data set by using the SET SAVE SETTINGS command.

Because multiple users share the same default data set, other users can alter the settings in that
data set. You can specify that NULLFILE be the name of the default data set through the EQAOPTS
commands SAVESETDSN and SAVEBPDSN.

• If the EQAOPTS commands SAVESETDSNALLOC and SAVEBPDSNALLOC are specified, z/OS Debugger
creates the data sets, if they don't exist, then runs the corresponding SET RESTORE SETTINGS AUTO
or SET RESTORE BPS AUTO commands to enable their usage. To learn how to specify the EQAOPTS
commands SAVESETDSNALLOC and SAVEBPDSNALLOC, see Chapter 6, “EQAOPTS commands,” on page
287.

Refer to the following topics for more information related to the material discussed in this topic.

Related references
“RESTORE command” on page 201
“SET SAVE command” on page 255

SET REWRITE command (full-screen mode)
Forces a periodic screen rewrite during long sequences of output.

SET REWRITE

EVERY

number ;

number
Specifies how many lines of intercepted output are written by the application program before z/OS
Debugger refreshes the screen. The initial setting is 50.

254 IBM z/OS Debugger: Reference and Messages

Examples

Force screen rewrite after each 100 lines of screen output.

SET REWRITE EVERY 100;

SET REWRITE command (remote debug mode)
Sets the maximum number of COBOL DISPLAY statements that the remote debugger displays in the
Debug Console.

SET REWRITE

EVERY

number ;

number
Specifies the maximum number of COBOL DISPLAY statements that the remote debugger displays in
the Debug Console. The initial setting is 50.

Usage note

If the remote debugger needs to display more than number, the remote debugger begins to delete the
oldest DISPLAY statements so that it can display the newest DISPLAY statements.

Examples

Set the maximum number of COBOL DISPLAY statements to display to 100:

SET REWRITE 100;

Related references
“SET INTERCEPT command (COBOL, remote debug mode)” on page 234

SET SAVE command
Controls the saving of settings, breakpoints, and monitor specifications.

SET SAVE SETTINGS NOAUTO

AUTO

ONCE

FILE *

setfileid

BPS NOAUTO

AUTO FILE *

bpfileid

MONITORS NOAUTO

AUTO

;

SETTINGS
Indicates that SET values and WINDOW SIZE and WINDOW CLOSE settings are to be saved. The
following SET values are not saved:

• SET DBCS
• SET FREQUENCY
• SET NATIONAL LANGUAGE
• SET PROGRAMMING LANGUAGE
• FILE operand of SET RESTORE SETTINGS
• SET QUALIFY
• SET SOURCE

Chapter 5. z/OS Debugger commands 255

• SET TEST

BPS
Indicates that breakpoints and LOADDEBUGDATA (LDD) specifications are to be saved. The following
breakpoints are saved:

• APPEARANCE breakpoints
• CALL breakpoints
• DELETE breakpoints
• ENTRY breakpoints
• EXIT breakpoints
• GLOBAL APPEARANCE breakpoints
• GLOBALCALL breakpoints
• GLOBAL DELETE breakpoints
• GLOBAL ENTRY breakpoints
• GLOBAL EXIT breakpoints
• GLOBAL LABEL breakpoints
• GLOBAL LOAD breakpoints
• GLOBAL STATEMENT and GLOBAL LINE breakpoints
• LABEL breakpoints
• LOAD breakpoints
• OCCURRENCE breakpoints
• STATEMENT and LINE breakpoints
• TERMINATION breakpoint

MONITORS
Indicates that all monitor and LOADDEBUGDATA (LDD) specifications are to be saved.

NOAUTO
Indicates that at z/OS Debugger termination, the specified settings, breakpoint, or specifications are
not to be saved. NOAUTO is the default until AUTO is specified.

AUTO
Indicates that, if possible, the specified data is to be saved at z/OS Debugger termination.

ONCE
Indicates that the settings information is to be saved once. The settings information is saved at
the termination of the current debugging session but the saved value for SET SAVE SETTINGS
is NOAUTO. This enables you save the settings of the current debugging session and not have the
settings updated at the termination of subsequent debug sessions.

*
Indicates that the default file name is to be used to save settings, breakpoints, and monitor
specifications at termination. The default name is userid.DBGTOOL.SAVESETS for settings and
userid.DBGTOOL.SAVEBPS for breakpoints and monitor specifications. You can modify the default
names by specifying the EQAOPTS commands SAVESETDSN and SAVEBPDSN.

FILE setfileid
Indicates the data set name to be used to save and restore settings. The data set must exist before
running this command.

In z/OS, setfileid is a DD name or a fully-qualified data set name (without apostrophes (')). In CICS,
setfileid is a fully-qualified data set name.

If setfileid is less than nine characters in length and does not contain a period, z/OS Debugger
assumes it is a DD name. Otherwise, it is assumed to be a fully-qualified data set name.

256 IBM z/OS Debugger: Reference and Messages

In batch mode, the data set name is ignored. Use the INSPSAFE DD statement to indicate the name of
the data set to use to restore and save settings.

This data set must be a sequential data set with a record format (RECFM) of VB and with a record
length (LRECL) greater than or equal to 3204.

FILE bpfileid
Indicates the data set to be used to save breakpoints and monitor specifications. The data set must
exist before running this command.

In z/OS, bpfileid is a DD name or a fully-qualified data set name (without apostrophes (')). In CICS,
bpfileid is a fully-qualified data set name.

If bpfileid is less than nine characters in length and does not contain a period, z/OS Debugger
assumes it is a DD name. Otherwise, it is assumed to be a fully-qualified data set name.

In batch mode, the data set name is ignored. Use the INSPBPM DD statement to indicate the name of
the data set to use to save breakpoints and monitor specifications.

This data set must be a PDS or PDSE (a PDSE is recommended) and you cannot specify a member
name. This data set must have a record format (RECFM) of VB and with a record length (LRECL)
greater than or equal to 3204. z/OS Debugger assigns a member name that is the load module name
at enclave start. The breakpoints for each enclave are saved in a separate member of the PDS or
PDSE. If you want to discard any saved breakpoints, LDD specifications, and monitor specifications,
you can delete the member that has the name of the load module that started the enclave. Do not
alter the contents of the member.

Usage notes

• You cannot use AUTO when you are debugging a CICS program and you are logged in with the same
user ID as the default user ID.

• When you are debugging a CICS program, the CICS region must have update authorization to the SAVE
SETTINGS and SAVE BPS data sets.

• When you enter the QUIT or QQ command from a nested enclave and the SET SAVE BPS AUTO, SET
SAVE MONTORS AUTO, or both are in effect, only the data for the lowest level enclave is saved. No data
for the higher level enclaves is saved.

• If you are debugging Db2 stored procedures, you must do one of the following tasks:

– Ensure that the default data set does not exist.
– Ensure that the name of the default data set is NULLFILE.
– Change the name of the data set by using the SET SAVE SETTINGS command.

Because multiple users share the same default data set, other users can alter the settings in that
data set. You can specify that NULLFILE be the name of the default data set through the EQAOPTS
commands SAVESETDSN and SAVEBPDSN.

• Specifying setdsn for SAVE SETTINGS does not change the name of the data set from which AUTO
RESTORE SETTINGS is done. It only changes the name of the data set used by AUTO SAVE SETTINGS
and the RESTORE SETTINGS commands. AUTO RESTORE SETTINGS is always done from the default
data set or DD name, depending on the environment.

• If the EQAOPTS commands SAVESETDSNALLOC and SAVEBPDSNALLOC are specified, z/OS Debugger
creates the data sets, if they don't exist, and then runs the corresponding SET SAVE SETTINGS AUTO
or SET SAVE BPS AUTO commands to enable their usage. To learn how to specify the EQAOPTS
commands SAVESETDSNALLOC and SAVEBPDSNALLOC, see Chapter 6, “EQAOPTS commands,” on page
287.

Refer to the following topics for more information related to the material discussed in this topic.

Related tasks
IBM z/OS Debugger User's Guide

Related references

Chapter 5. z/OS Debugger commands 257

“SET RESTORE command” on page 253
“RESTORE command” on page 201

SET SCREEN command (full-screen mode)
Controls how information is displayed on the screen. The initial setting is ON.

SET SCREEN
ON

CYCLE

integer
LOG

MEMORY

MONITOR

SOURCE

OFF

;

CYCLE
Switches to the next window configuration in sequence.

integer
An integer in the range 1 to 6, selecting the window configuration. The initial setting is 1.

LOG or MONITOR or SOURCE or MEMORY
Specifies the sequence of window assignments within the selected configuration (left to right, top to
bottom). There must be three objects specified and they must all be different. You cannot specify both
MEMORY and LOG in the same sequence.

ON
Activates the z/OS Debugger full-screen services.

OFF
Activates line mode. This mode is forced if the terminal is not a supported full-screen device.

Usage notes

• If neither CYCLE nor integer is specified, there is no change in the choice of configuration. If no
windows are specified, there is no change in the assignment of windows to the configuration.

• If SET SCREEN OFF is entered while debugging in full-screen mode using the Terminal Interface
Manager under TSO, the session enters line mode using the TSO terminal. If SET SCREEN ON is
later entered from the TSO terminal, control reverts to full-screen mode using the Terminal Interface
Manager.

• SET SCREEN OFF is ignored in CICS full-screen mode and in z/OS batch while debugging in full-screen
mode using the Terminal Interface Manager.

Examples

• Indicate that the z/OS Debugger full-screen services are used.

SET SCREEN ON;

• Indicate that the log window is positioned above the Source window on the left hand side of the screen
and the monitor window is to occupy the upper right side portion of the screen.

SET SCREEN 2 LOG MONITOR SOURCE;

Refer to the following topics for more information related to the material discussed in this topic.

Related tasks
“SET SCREEN command (full-screen mode)” on page 258
"Customizing your full-screen session" in the IBM z/OS Debugger User's Guide

258 IBM z/OS Debugger: Reference and Messages

SET SCROLL DISPLAY command (full-screen mode)
Controls whether the scroll field is displayed when operating in full-screen mode. The initial setting is ON.

SET SCROLL DISPLAY
ON

OFF

;

ON
Displays scroll field.

OFF
Suppresses scroll field.

Example

Specify that the scroll field is suppressed.

SET SCROLL DISPLAY OFF;

SET SEQUENCE command (PL/I)
Controls whether z/OS Debugger interprets data after column 72 in a commands or preference file as a
sequence number.

SET SEQUENCE

OFF

ON ;

ON
Allows sequence numbers in 73-80 columns in the commands or preferences file.

OFF
Does not allow sequence numbers in the commands or preferences file.

Usage note

If you have sequence numbers placed in 73-80 columns, you have to enter the SET SEQUENCE ON
command as the first command of your commands or preferences file. Afterward, z/OS Debugger
processes 1-72 columns and ignores everything after column 72.

SET SOURCE command
Associates a source file, compiler listing or separate debug file with one or more compile units and
specifies whether the source file or listing is displayed when the compile unit is active.

SET SOURCE
ON

OFF

(

,

cu_spec)

fileid

;

ON
Displays the source or listing for a compile unit when the compile unit is active.

OFF
Specifies that the file is not displayed.

cu_spec
A valid compile unit specification. Multiple compile units can be associated with the same source,
listing or separate debug file.

Chapter 5. z/OS Debugger commands 259

fileid
Identifies the source, listing or separate debug file to be used for the compile unit. The file that you
specify must be of fixed block format. You cannot specify concatenated data sets.

In z/OS, fileid is a DD name, a fully qualified partitioned data set and member name, a sequential file,
or an HFS or zFS path and file name.

In CICS, fileid is a fully-qualified data set name or an HFS or zFS path and file name.

If fileid is less than nine characters in length and does not contain a period, z/OS Debugger assumes
it is a DD name. z/OS Debugger checks to see if it is allocated. If it is not allocated, then fileid is
assumed to be a data set name.

Fileid specifies a file identifier used in place of the default file identifier for the compile unit. A valid
fileid is required unless it is already known to z/OS Debugger (by using a previous SET SOURCE
command) or the default fileid is valid.

Fileid cannot be a DD name if the data set allocated to it is C, C++ or Enterprise PL/I source and you
specify the EQAOPTS SUBSYS command to enable access to the source file in a library system.

Usage notes

• This command is not supported for the Enterprise COBOL for z/OS Version 5 compiler.
• If you compiled your C or C++ program with the FORMAT(DWARF) suboption of the DEBUG compiler

option, you cannot use the SET SOURCE command to specify the new location of the .dbg or .mdbg file.
• When SET SOURCE is issued for the currently executing compile unit, a test is performed for the

existence of the file. If the compile unit is not the current compile unit, this test is not performed until
the compile unit becomes current. The file associated with the source might not exist and the error
message for the nonexistent file does not appear until a function that requires this file is attempted.

• When you specify a cu_spec that identifies a compile unit that is not currently known to z/OS Debugger,
z/OS Debugger looks for a deferred LOADDEBUGDATA command with the specific cu_spec. If z/OS
Debugger finds such a deferred LOADDEBUGDATA command, z/OS Debugger associates the fileid
with the deferred LOADDEBUGDATA command. When the compile unit appears and is activated, z/OS
Debugger loads the EQALANGX data from the specified file.

• The SET SOURCE ON command has a higher precedence than the SET DEFAULT LISTINGS
command.

• For COBOL, if the cu_spec includes any names that are case sensitive, enclose the name in quotation
marks (") or apostrophes (').

• The SET SOURCE command has no effect on a disassembly compile unit. However, it is saved and might
apply later if the compile unit is specified as the operand of the LOADDEBUGDATA command.

• If the file name does not fit on one line, suffix it with a trailing hyphen.

Examples

• Indicate that the COBOL listing associated with compile unit prog1 is found in DD name mainprog. In
a TSO session, allocate the listing data set:

ALLOCATE FI(MAINPROG) DA('JSMITH.COBOL.LISTING(PROG1)') SHR

Start z/OS Debugger and issue:

SET SOURCE ON (prog1) mainprog;

When prog1 is made current during the debug session, z/OS Debugger searches for the listing in
JSMITH.COBOL.LISTING(PROG1).

• Indicate that the COBOL listing associated with compile unit prog1 is found in DD name mainprog. In
a TSO session:

SET SOURCE ON (prog1) JSMITH.COBOL.LISTING(PROG1)

260 IBM z/OS Debugger: Reference and Messages

This accomplishes the same result as the previous example without the execution of the ALLOCATE
command.

• Indicate that the source associated with compile unit "⁄u⁄userid⁄code⁄oefun.c" is found in the
HFS or zFS under the path and file name "⁄u⁄userid⁄code⁄oefun.c".

SET SOURCE ON ("⁄u⁄userid⁄code⁄oefun.c") ⁄u⁄userid⁄code⁄oefun.c;

• Indicate that the PL/I listing file associated with compile unit AVER is found in
MYID.PLI.LISTING(AVER)

SET SOURCE ON (AVER) myid.pli.listing(AVER) ;

• Indicate that the C source associated with compile unit JSMITH.C.SOURCE(myprog) is found in the
PDS and member CODE.CLIB.SOURCE(myprog).

SET SOURCE ON ("JSMITH.C.SOURCE(myprog)") CODE.CLIB.SOURCE(myprog)

• Enter the SET LONGCUNAME OFF command to indicate that you want to use short CU names, then
indicate that the C source associated with compile unit JSMITH.C.SOURCE(myprog) is found in the
PDS and member CODE.CLIB.SOURCE(myprog):

SET LONGCUNAME OFF;
SET SOURCE ON (myprog) CODE.CLIB.SOURCE(myprog)

• A PL/I program is compiled with a version of the Enterprise PL/I compiler that is earlier than Enterprise
PL/I for z/OS, Version 3.5 with the PTFs for APARs PK35230 and PK35489 applied. Indicate that the
PL/I source associated with compile unit JSMITH.PLI.SOURCE(myprog) is found in the PDS and
member CODE.PLILIB.SOURCE(myprog):

SET LONGCUNAME OFF;
SET SOURCE ON (myprog) CODE.PLILIB.SOURCE(myprog)

• A PL/I program is compiled with one of the following compilers and it is running in the following
environment:

– Enterprise PL/I for z/OS, Version 3.6 or later
– Enterprise PL/I for z/OS, Version 3.5, compiler with the PTFs for APARs PK35230 and PK35489

applied

Indicate that the PL/I source associated with compile unit JSMITH.PLI.SOURCE(myprog) is found in
the PDS and member CODE.PLILIB.SOURCE(myprog):

SET SOURCE ON (myprog) CODE.PLILIB.SOURCE(myprog)

Refer to the following topics for more information related to the material discussed in this topic.

Related references
“cu_spec” on page 13
“LIST command” on page 140
“SET DEFAULT LISTINGS command” on page 220
“SET DEFAULT DBG command” on page 219
“SET DEFAULT MDBG command” on page 221
“SET MDBG command” on page 242

SET SUFFIX command (full-screen mode)
Controls the display of frequency counts at the right edge of the Source window when in full-screen mode.
The initial setting is ON.

Chapter 5. z/OS Debugger commands 261

SET SUFFIX
ON

OFF

;

ON
Displays the suffix column.

OFF
Suppresses the suffix column.

Example

Specify that the suffix column is displayed.

SET SUFFIX ON;

SET TEST command
Overrides the initial TEST run-time options specified at invocation. The initial setting is ALL.

SET TEST test_level

(test_level)

;

test_level
Specifies what exception conditions cause z/OS Debugger to gain control, even though no breakpoint
exists. The parentheses are optional.

Test_level can include the following:

ALL
Specifies that z/OS Debugger gains control when any of the following conditions occur:

• An attention interrupt occurs.
• A Language Environment enclave is abnormally terminated or there is an MVS or CICS ABEND

when a program is running without the Language Environment run time.
• Language Environment terminates normally due to a COBOL STOP RUN, PL/I STOP, or EXEC

CICS RETURN.
• Language Environment raises a condition of severity 1 or above. If the FINISH, CEE066 or

CEE067 thread termination condition is raised by Language Environment and the EQAOPTS
THREADTERMCOND command is specified, z/OS Debugger does not gain control. You or your
system administrator can specify this command by creating an EQAOPTS load module or
providing the command at run time.

If a condition occurs and a breakpoint exists for the condition, z/OS Debugger runs the commands
specified in the breakpoint. If a condition occurs and a breakpoint does not exist for that
condition, or if an attention interrupt occurs, z/OS Debugger does one of the following options:

• In interactive mode, z/OS Debugger reads commands from a commands file (if it exists) or
prompts you for commands.

• In noninteractive mode, z/OS Debugger reads commands from the commands file.

ERROR
Specifies that only the following conditions cause z/OS Debugger to gain control without a user-
defined breakpoint.

• An MVS or CICS ABEND that occurs when you are running without the Language Environment
run time

• For C:

– An attention interrupt

262 IBM z/OS Debugger: Reference and Messages

– A predefined Language Environment condition of Severity 2 or above
– Any C condition other than SIGUSR1, SIGUSR2, SIGINT or SIGTERM.

• For COBOL:

– An attention interrupt
– A predefined Language Environment condition of Severity 2 or above.

• For PL/I:

– An attention interrupt, directed at either PL/I or z/OS Debugger
– A predefined Language Environment condition of Severity 2 or above.

If a breakpoint exists for one of the above conditions, any commands specified in the breakpoint
are executed. If no commands are specified, z/OS Debugger reads commands from a commands
file or prompts you for commands in interactive mode.

NONE
Specifies that z/OS Debugger gains control only at an attention interrupt, or at a condition if
a breakpoint is defined for that condition. If a breakpoint does exist for the condition, the
commands specified in the breakpoint are executed.

Usage note

If the EQAOPTS THREADTERMCOND command prevents z/OS Debugger from stopping when a FINISH,
CEE066, or CEE067 thread termination condition is raised by Language Environment, z/OS Debugger
does not gain control when these conditions are raised. If you want z/OS Debugger to gain control
when these conditions are raised, you can set an AT OCCURRENCE breakpoint or change the EQAOPTS
THREADTERMCOND command to allow z/OS Debugger to gain control.

Examples

• Indicate that only an attention interrupt or exception causes z/OS Debugger to gain control when no
breakpoint exists.

SET TEST ERROR;

• Indicate that no condition causes z/OS Debugger to gain control unless a breakpoint exists for that
condition.

SET TEST NONE;

Refer to the following topics for more information related to the material discussed in this topic.

Related tasks
IBM z/OS Debugger User's Guide

Related references
“AT OCCURRENCE command” on page 65
z/OS Language Environment Debugging Guide

SET WARNING command (C, C++, COBOL, and PL/I)
Controls display of the z/OS Debugger warning messages and whether exceptions are reflected to the C,
C++, and PL/I programs. For COBOL programs, controls the ability to modify variables while you debug
optimized code. The initial setting is ON.

SET WARNING
ON

OFF

;

Chapter 5. z/OS Debugger commands 263

ON
Displays the z/OS Debugger warning messages, and conditions such as a divide check result in a
diagnostic message. For COBOL programs, prohibits the modification of variables while you debug
optimized programs.

OFF
Suppresses the z/OS Debugger warning messages, and conditions raise an exception in the program.
For COBOL programs, allows the modification of variables while you debug optimized programs.

Exceptions that occur due to interaction with you are likely to be due to typing errors and are probably not
intended to be passed to the application program. However, you might want to raise a real exception in
the program, for example, to test some error recovery code. (TRIGGER is not always appropriate for this
because it does not set up the exception information.)

Usage notes

• For programs compiled with Enterprise COBOL for z/OS Version 5 or later, either with the OPTIMIZE
option and the TEST(NOEJPD) option specified or optimized by Automatic Binary Optimizer for z/OS,
you can control whether the GOTO or JUMPTO commands are used by executing SET WARNING OFF.
This functionality is provided with a strong warning, so be aware that the use of GOTO or JUMPTO might
cause abends in this configuration. When you use GOTO or JUMPTO with a program that is compiled by
using OPT and TEST(NOEJPD), any type of failures cannot be investigated by IBM service.

For example, if you get an abend on a GOTO command when debugging a COBOL program that is
compiled with OPT and TEST(NOEJPD), you might want to try the same GOTO in a program compiled
with OPT and TEST(EJPD). When a program is compiled with OPT and TEST(NOEJPD) , failures or
abends caused by GOTO or JUMPTO commands are not investigated by IBM Service.

You can get the best behavior of GOTO and JUMPTO in programs compiled with OPT and TEST(NOEJPD)
if any one of the following conditions is true:

– The target of the GOTO or JUMPTO command is a paragraph name or a section name (label).
– The target of the GOTO or JUMPTO command is the first statement in the paragraph or section.

These statements are targets of COBOL statements PERFORM or GOTO in the COBOL program.

To get GOTO and JUMPTO behavior that is fully supported, you must compile programs with NOOPT and
TEST, or with OPT and TEST(EJPD). However, these programs do not run as fast as programs compiled
with OPT and TEST(NOEJPD).

• After applying the z/OS Debugger PTF for APAR PM75819 and the COBOL runtime PTF for APAR
PM80361, you can control whether the GOTO or JUMPTO commands can be used when debugging
a COBOL program that is compiled with the OPTIMIZE option and the TEST(NOHOOK, NOEJPD) or
TEST(NONE) option. In those cases, the compiler has not enabled GOTO and JUMPTO, but if SET
WARNING OFF is used, you can use the GOTO and JUMPTO commands.

This functionality is provided with a strong warning, so be aware that the use of GOTO or JUMPTO might
cause abends in this configuration. When you use GOTO or JUMPTO with a program that is compiled by
using OPT and TEST(NOEJPD) or TEST(NONE) options, any type of failures cannot be reviewed by IBM
service.

For example, if you get an abend on a GOTO command when debugging a COBOL program that is
compiled with OPT and TEST(NOEJPD), you might want to try the same GOTO in a program compiled
with OPT and TEST(EJPD). When a program is compiled with OPT and TEST(NOEJPD) or TEST(NONE)
options, failures or abends caused by GOTO or JUMPTO commands are not investigated by IBM Service.

Without the PTF changes referenced above, GOTO and JUMPTO commands are disabled for COBOL
programs that are compiled with OPT and TEST(NOEJPD) or TEST(NONE), regardless of the SET
WARNING setting used.

With the PTF changes referenced above, you can compile your code for maximum performance and
use the GOTO and JUMPTO commands when SET WARNING OFF is set to ON. However, the results of
using the commands might be unpredictable. You can get the best behavior of GOTO and JUMPTO in
programs compiled with OPT and TEST(NOEJPD) or TEST(NONE) if any one of the following conditions is
true:

264 IBM z/OS Debugger: Reference and Messages

– The target of the GOTO or JUMPTO command is a paragraph name or a section name (label).
– The target of the GOTO or JUMPTO command is the first statement in the paragraph or section.
– These procedures are targets of COBOL statements PERFORM or GOTO in the COBOL program.

To get GOTO and JUMPTO behavior that is fully supported, you must compile programs with NOOPT and
TEST, or with OPT and TEST(EJPD). However, these programs do not run as fast as programs compiled
with OPT and TEST(NOEJPD).

• You can use this command in remote debug mode.
• z/OS Debugger detects C conditions such as the following:

– Division by zero
– Array subscript out of bounds for defined arrays
– Assignment of an integer value to a variable of enumeration data type where the integer value does

not correspond to an integer value of one of the enumeration constants of the enumeration data type.
• z/OS Debugger detects the following PL/I computational conditions:

– Invalid decimal data
– CHARACTER to BIT conversion errors
– Division by zero
– Invalid length in varying strings

• You can modify variables in an optimized program that was compiled with one the following compilers:

– Enterprise COBOL for z/OS, Version 4.1
– Enterprise COBOL for z/OS and OS/390, Version 3 Release 2 or later
– Enterprise COBOL for z/OS and OS/390, Version 3 Release 1 with APAR PQ63235 installed
– COBOL for OS/390 & VM, Version 2 Release 2
– COBOL for OS/390 & VM, Version 2 Release 1 with APAR PQ63234 installed

However, results might be unpredictable. To obtain more predictable results, compile your program with
Enterprise COBOL for z/OS, Version 4.1, and specify the EJPD suboption of the TEST compiler option.
However, variables that are declared with the VALUE clause to initialize them cannot be modified.

• When z/OS Debugger evaluates a conditional expression (for example, the condition of the WHEN clause
of the AT CHANGE command) and the conditional expression is invalid, then z/OS Debugger does one of
the following actions:

– If SET WARNING is set to ON, z/OS Debugger stops and displays a message that it could not evaluate
the conditional expression. You need to enter a command to indicate what action you want z/OS
Debugger to take.

– If SET WARNING is set to OFF, z/OS Debugger does not stop nor display a message that it could not
evaluate the conditional expression. z/OS Debugger continues running the program.

Example

Specify that conditions result in a diagnostic message.

SET WARNING ON;

Refer to the following topics for more information related to the material discussed in this topic.

Related tasks
"Controlling z/OS Debugger when a comparison is invalid" in the IBM z/OS Debugger User's Guide

Related references
Appendix A, “z/OS Debugger commands supported in Debug Tool compatibility mode,” on page 517

Chapter 5. z/OS Debugger commands 265

SET command (COBOL)
The SET command assigns a value to a COBOL reference. The SET keyword cannot be abbreviated.

SET reference TO reference

literal

TRUE

;

reference
A valid z/OS Debugger COBOL reference.

literal
A valid COBOL numeric literal constant.

TRUE
The value assigned to a COBOL level-88 reference.

Usage notes

• For Enterprise COBOL for z/OS Version 5, you cannot use the SET command to set an index with a
non-integer data item (e.g. PIC 9v9).

• For Enterprise COBOL for z/OS Version 5, you can set a pointer to the address of an array. The pointer is
set to the start of the array.

• You can assign the value TRUE only to a COBOL level-88 reference.
• If z/OS Debugger was started because of a computational condition or an attention interrupt, using an

assignment to set a variable might not give expected results. This is due to the uncertainty of variable
values within statements as opposed to their values at statement boundaries.

• SET assigns a value only to a single receiver; unlike COBOL, multiple receiver variables are not
supported.

• Only formats 1, 4 and 5 of the COBOL SET command are supported.
• Index-names can only be program variables (because OCCURS is not supported for the z/OS Debugger

session variables).
• COBOL ADDRESS OF identifier is supported only for identifiers that are LINKAGE SECTION variables.

In addition, COBOL ADDRESS OF as a receiver must be level 1 or 77, and COBOL ADDRESS OF as a
sender can be any level except 66 or 88.

• z/OS Debugger provides a hexadecimal constant that can be used with the SET command, where the
hexadecimal value is preceded by an "H" and delimited by quotation marks (") or apostrophes (').

• If the DATA option of the PLAYBACK ENABLE command is in effect, you can use the SET command to
assign a value only to a session variable. You cannot assign a value to a program variable.

• If you are debugging an optimized COBOL program, you can use the SET command to assign a value to
a program variable only if you first enter the SET WARNING OFF command. The source or target of the
SET command cannot reference a variable that was discarded by the optimizer.

Examples

• Assign the value 3 to inx1, the index to itm-1.

SET inx1 TO 3;

• Assign the value of inx1 to inx2.

SET inx2 TO inx1;

• Assign the value of an invalid address (nonnumeric 0) to ptr and:

SET ptr TO NULL;

266 IBM z/OS Debugger: Reference and Messages

• Assign the address of one to ptr.

SET ptr TO ADDRESS OF one;

• Assigns the hexadecimal value of '20000' to the pointer ptr.

SET ptr TO H'200000';

Refer to the following topics for more information related to the material discussed in this topic.

Related tasks
IBM z/OS Debugger User's Guide

Related references
“Allowable moves for the z/OS Debugger SET command” on page 267

Allowable moves for the z/OS Debugger SET command
The following table shows the allowable moves for the z/OS Debugger SET command.

Chapter 5. z/OS Debugger commands 267

So
ur

ce
 fi
el
d

Re
ce

iv
in

g
fie

ld

AO
IN

ID
I

PT
R

ED
BI

ID
O

R

Ad
dr

es
s

O
f (

AO
)

Y
Y

In
de

x
N

am
e

(I
N

)
Y

Y

Y
Y

Y

In
de

x
Da

ta
 It

em
 (I

DI
)

Y
Y

Po
in

te
r D

at
a

It
em

 (P
TR

)
Y

Y

Ad
dr

es
s

H
ex

 L
ite

ra
l1

Y

Y

N
UL

L
(N

UL
)

Y

Y

In
te

ge
r L

ite
ra

l
Y2

Ex
te

rn
al

 D
ec

im
al

 (E
D)

Y

Bi
na

ry
 (B

I)
Y

In
te

rn
al

 D
ec

im
al

 (I
D)

Y

O
bj

ec
t R

ef
er

en
ce

 (O
R)

Y

268 IBM z/OS Debugger: Reference and Messages

Notes:
1

Must be hexadecimal characters only, delimited by either quotation marks (") or apostrophes (') and
preceded by H.

2
Index name is converted to index value.

SHOW prefix command (full-screen mode)
The SHOW prefix command specifies what relative statement (for C) or relative verb (for COBOL) within
the line is to have its frequency count temporarily shown in the suffix area.

SHOW

integer

;

integer
Selects a relative statement (for C) or a relative verb (for COBOL) within the line. The default value is
1. For optimized COBOL programs, the default value is the first executable statement which was not
discarded by the optimizer.

Usage notes

• If SET SUFFIX is currently OFF, SHOW prefix forces it ON.
• The suffix display returns to normal on the next interaction.
• The SHOW prefix command is not logged.

Example

Display the frequency count of the third statement or verb in the line (typed in the prefix area of the line
where the statement is found).

SHOW 3

No space is needed as a delimiter between the keyword and the integer; hence, SHOW 3 is equivalent to
SHOW3.

STEP command
The STEP command causes z/OS Debugger to dynamically step through a program, executing one or more
program statements. In full-screen mode, it provides animated execution.

STEP ends if one or more of the following conditions is reached:

• User attention interrupt
• A breakpoint is encountered
• Normal or unusual termination of the program
• a programming language or Language Environment condition or exception

STEP

integer

*

INTO

OVER

RETURN

;

integer
Indicates the number of statements performed. The default value is 1. If integer is greater than 1, the
statement is performed as if it were that many repetitions of STEP with the same keyword and a count

Chapter 5. z/OS Debugger commands 269

of one. The speed of execution, or the pace of stepping, is set by either the SET PACE command, or
with the Pace of visual trace field on the Profile panels.

*
Specifies that the program should run until interrupted. STEP * is equivalent to GO.

INTO
Steps into any called procedures or functions. This means that stepping continues within called
procedures or functions.

OVER
Steps over any procedure call or function invocations. This operand provides full-speed execution
(with no animation) while in called procedures and functions, resuming STEP mode on return.

If you are debugging a disassembled program, verify that you have set a breakpoint in the calling
program. Without the breakpoint, z/OS Debugger cannot resume STEP mode on return and the
application continues to run until it ends.

RETURN
Steps to the return point the specified number of levels back, halting at the statement following the
corresponding procedure call or function invocation. This operand provides full-speed execution (with
no animation) for the remainder of the current procedure or function, and for any called procedures or
functions, resuming STEP mode on return.

If you are debugging a LangX COBOL or disassembled program, do not use the STEP RETURN
command because z/OS Debugger cannot identify the return point. Instead, set a breakpoint in the
calling program and enter the GO command.

Usage notes

• In the figure below, PGM A calls PGM B.

270 IBM z/OS Debugger: Reference and Messages

Assume that the current execution point is on PGM B and, at the line ADD 5 TO MYNUM. At this point,
you decide you don't need to see any more of the code in PGM B. By issuing STEP RETURN on the
command line, z/OS Debugger returns to the first line of code after the CALL command that called PGM
B, as indicated by the arrow. You can then continue stepping through PGM A.

• If STEP is specified in a command list (for example, as the subject of an IF command or WHEN clause),
all subsequent commands in the list are ignored.

• If STEP is specified within the body of a loop, it causes the execution of the loop to end.
• To suppress the logging of STEP commands, use the SET ECHO command.
• If two operands are given, they can be specified in either order.
• The animation execution timing is set by the SET PACE command.
• The source panel provides a means of suppressing the display of selected listings or files. This gives

some control of "debugging scope," because animated execution does not occur within a load module
where the source listing or source file is not displayed.

• If you are debugging a disassembled program and attempt to step out of the current CU, a message
appears. The message informs you to set a breakpoint outside the current CU. Without that breakpoint,
z/OS Debugger cannot stop the application. After you have set the breakpoint, you can resume running
your application by entering a z/OS Debugger command like STEP or GO.

• If you are debugging a program that does not use the standard linkage conventions for R13, R14, and
R15, and you enter the STEP RETURN or the STEP command on a statement that returns to a higher
level CU, z/OS Debugger does not stop at the expected instruction in the higher-level CU.

• When PLAYBACK ENABLE is in effect, you can use the STEP command to move forward or backward
one or more statements. You cannot use the INTO, OVER, and RETURN keywords. Each STEP command
moves forward or backward the number of statements specified or implied by the integer parameter.

• If the DATA option of the PLAYBACK ENABLE command is in effect, you can access program variables
after each STEP command.

• You can use the STEP command in remote debug mode by entering it in the Debug Console or the
Action field, which is in the Optional Parameters section of the Add a Breakpoint task.

• With Enterprise COBOL V5 (and later), STEP OVER, an out-of-line PERFORM, behaves the same as it
does when stepping over a called subroutine. However, you cannot use STEP RETURN from within the
out-of-line PERFORM to return to the statement after the PERFORM.

Examples

• Step through the next 25 statements and if an application subroutine or function is called, continue
stepping into that subroutine or function.

STEP 25 INTO;

• Step through the next 25 statements, but if any application subroutines or functions are called, switch
to full-speed execution without animation until the subroutine or function returns.

STEP 25 OVER;

• Return at full speed through three levels of calls.

STEP 3 RETURN;

STORAGE command
The STORAGE command enables you to alter storage. You must be careful when you alter storage because
the results can be unpredictable.

Chapter 5. z/OS Debugger commands 271

STORAGE (address

reference

' reference ' , offset

, length

) =

value ;

address
The address of the first byte of storage that you want to alter.

reference
A variable whose storage location is to be changed. In assembler or disassembly, this operand may be
specified as any assembler expression that represents a storage location.

'reference'
A LangX COBOL variable whose storage location is to be changed. In LangX COBOL, reference must be
enclosed in apostrophes (').

offset
The decimal or hexadecimal number of bytes indicating the starting offset from the memory location
pointed to by reference’s address or the address provided by the user. Offset can be a negative
number. If offset is a hex constant, it must follow the same syntax rules as address above. The default
is 0.

length
The decimal number of bytes you want to alter. This must equal the length of value.

value
The value you want to store. The notation for value must be one of the following:

• An address.
• A hexadecimal value surrounded by apostrophes (') and preceded by "X". You can also use a

different notation for the following programming languages:

– For PL/I, the hexadecimal value enclosed in quotation marks (") or apostrophes (') followed by PX.
– For assembler, COBOL, LangX COBOL, or disassembly, the hexadecimal value enclosed in

quotation marks (") and preceded by "X".
• A decimal value. For any decimal value, four bytes are altered. For example, STORAGE
(H'12345678') = 3 is the same as STORAGE(H'12345678') = H'00000003'.

• A character string up to 256 bytes long, using the character string notation appropriate for each
programming language or, for all programming languages, you can use enclose the string in
quotation marks (").

Usage notes

• If you specify only two parameters, z/OS Debugger assumes the second parameter is the length.
• If you specify only one parameter, z/OS Debugger assumes the offset is 0 and that the length is equal to

the length of value.
• The STORAGE command cannot be used while you replay recorded statements by using the PLAYBACK

commands.
• If you specify address with more than 8 significant digits or if reference references 64-bit addressable

storage, z/OS Debugger assumes that the storage location is 64-bit addressable storage. Otherwise,
z/OS Debugger assumes that the storage location is 31-bit addressable storage.

• If reference is a pointer, z/OS Debugger changes the contents at the address given by that pointer.

Examples

• For any programming language, enter the following command to alter two bytes of storage at address
X'12345678':

STORAGE (X'12345678') = 0x1234;

272 IBM z/OS Debugger: Reference and Messages

• For C, enter the following command to alter two bytes of storage at address X'12345678':

STORAGE (0x12345678) = 0x1234;

• For COBOL, enter the following command to alter four bytes of storage at address X'12345678':

STORAGE (H'12345678') = H'1234'

The command is changed to:

STORAGE (H'12345678') = H'00001234'

• For COBOL, enter the following command to alter six bytes of storage at address X'12345678':

STORAGE (H'12345678') = X'C1C1C1C1C1C1'

• For PL/I, enter the following command to alter six bytes of storage at address X'12345678':

STORAGE ('12345678'PX) = 'C1C1C1C1C1C1'X

• For PL/I enter the following command to alter 23 bytes of storage starting at address X'12345678':

STORAGE ('12345678'PX) = 'aaaaaaaaaaaaaaaaaaaaaaa'

• Enter the following command to alter 10 bytes of storage at MYVAR, starting at offset 2:

STORAGE (MYVAR, 2, 10) = 'new text: ';

• Enter the following command to alter 4 bytes of storage at address X'20CD0', starting at offset 10:

STORAGE ('20CD0'PX, 10, 4) = 99;

• Enter the following command to alter storage at MYVAR, starting at offset 0, for the same number of
bytes as the length of variable MYVAR:

STORAGE (MYVAR) = 10;

• For C, update the storage pointed by an address 1A3BE910, starting at offset -20 for 20 bytes:

 STORAGE (0x1A3BE910,-20,20) = 'first and last name ';

• Update 20 bytes of storage pointed by an address 162F0, language is COBOL, offset is 0:

STORAGE (H'162F0', 20) = 'clear that string ' ;

• For Assembler, update the storage pointed by address 00020CD0, starting at offset 16 for 4 bytes, and
the offset is specified as a hex constant:

 STORAGE (X'00020CD0', X'10', 4) = 5 ;

Refer to the following topics for more information related to the material discussed in this topic.

Related references
“address” on page 11

switch command (C and C++)
The switch command enables you to transfer control to different commands within the switch body,
depending on the value of the switch expression. The switch, case, and default keywords must be
lowercase and cannot be abbreviated.

switch (expression) { switch_body } ;

switch_body

Chapter 5. z/OS Debugger commands 273

case_clause

default_clause

case_clause

case_clause
case case_expression :

command

default_clause

default :

command

expression
A valid z/OS Debugger C expression.

case_expression
A valid character or optionally signed integer constant.

command
A valid z/OS Debugger command.

The value of the switch expression is compared with the value of the expression in each case clause.
If a matching value is found, control is passed to the command in the case clause that contains the
matching value. If a matching value is not found and a default clause appears anywhere in the switch
body, control is passed to the command in the default clause. Otherwise, control is passed to the
command following the switch body.

If control passes to a command in the switch body, control does not pass from the switch body until a
break command is encountered or the last command in the switch body is performed.

Usage notes

• Declarations are not allowed within a switch command.
• The switch command does not end with a semicolon. A semicolon after the closing brace is treated as

a Null command.
• Although this command is similar to the switch statement in C, it is subject to z/OS Debugger

restrictions on expressions.
• Duplicate case_expression values are not supported.
• You cannot use the switch command while you replay recorded statements by using the PLAYBACK

commands.

Examples

• The following switch command contains several case clauses and one default clause. Each clause
contains a function call and a break command. The break commands prevent control from passing
down through subsequent commands in the switch body.

If key has the value '⁄', the switch command calls the function divide. On return, control passes to
the command following the switch body.

char key;

printf("Enter an arithmetic operator\n");
scanf("%c",&key);

switch (key)

274 IBM z/OS Debugger: Reference and Messages

{
 case '+':
 add();
 LIST (key);
 break;
 case '-':
 subtract();
 LIST (key);
 break;
 case '*':
 multiply();
 LIST (key);
 break;
 case '⁄':
 divide();
 LIST (key);
 break;
 default:
 printf("Invalid key\n");
 break;
}

• In the following example, break commands are not present. If the value of c is equal to 'A', all 3
counters are incremented. If the value of c is equal to 'a', lettera and total are increased. Only
total is increased if c is not equal to 'A' or 'a'.

char text[100];
int capa, i, lettera, total;

for (i=0; i < sizeof(text); i++) {

 switch (text[i]) {
 case 'A':
 capa++;
 case 'a':
 lettera++;
 default:
 total++;
 }
}

SYSTEM command (z/OS)
The SYSTEM command lets you issue TSO commands during a z/OS Debugger session. The SYSTEM
keyword can only be abbreviated as SYS.

SYS

SYSTEM

system_command ;

system_command
A valid TSO system command or CLIST name that does not require a parameter.

Usage notes

• No parameters can be specified as part of the system command or CLIST invocation. To execute
noninteractively when parameters are required, you must enter the complete invocation in a CLIST and
then use a TSO or SYSTEM command to call that CLIST (without parameters).

• You cannot introduce a new z/OS Debugger session using the SYSTEM command.
• When operating interactively in TSO, there is no provision for entering a mode where commands are

accepted repeatedly; however, it is possible to write your own such iterative sequence in a CLIST.
• You cannot issue CICS commands using SYSTEM.

Examples

• List all the data sets in the user catalog.

SYSTEM LISTCAT;

• Temporarily places you in ISPF mode.

Chapter 5. z/OS Debugger commands 275

SYSTEM PDF;

Refer to the following topics for more information related to the material discussed in this topic.

Related references
“TSO command (z/OS)” on page 280

TRACE command
The TRACE command creates a TRACE LOAD table of all load modules and DLLs loaded during a debug
session. The TRACE LOAD table can then be listed at any point during the debug session.

The syntax of the TRACE command is as follows:
TRACE LOAD START

STOP

;

START
Instructs z/OS Debugger to start tracing new load modules and DLLs.

STOP
Instructs z/OS Debugger to stop tracing new load modules and DLLs.

Usage notes

• When you enter the TRACE LOAD START command, any load module that is already known to z/OS
Debugger is added to the TRACE LOAD table.

• You can list the TRACE LOAD table with the command LIST TRACE LOAD.
• The TRACE LOAD table is deleted when you issue TRACE LOAD STOP, and thus a subsequent LIST
TRACE LOAD will not return any information.

Examples

To instruct z/OS Debugger to start tracing loads of load modules and DLLs, and then list the traced load
modules/DLLs and their library names, enter the following commands:

TRACE LOAD START;
(Various z/OS Debugger commands that step, go, or run though the code.)
LIST TRACE LOAD;

You might get results similar to the following output:

The following were loaded.
IBCD010 loaded from TSFANAY.TEST.LOAD

Related references
“LIST TRACE LOAD command” on page 165

TRIGGER command
The TRIGGER command raises the specified AT-condition in z/OS Debugger, or it raises the specified
programming language condition in your program.

276 IBM z/OS Debugger: Reference and Messages

TRIGGER AT

CURSOR

condition

AT ALLOCATE identifier

*

AT APPEARANCE cu_spec

*

AT CALL entry_name

*

AT CHANGE reference

storage_clause

AT DATE block_spec

*

AT DELETE load_spec

*

AT ENTRY block_spec

*

AT EXIT block_spec

*

AT GLOBAL APPEARANCE

CALL

DATE

DELETE

ENTRY

EXIT

LABEL

LINE

LOAD

PATH

STATEMENT

AT LABEL statement_label

*

AT

LINE

stmt_id_spec

*

AT LOAD load_spec

*

AT OCCURRENCE condition

AT PATH

AT

STATEMENT

stmt_id_spec

*

;

storage_clause
%STORAGE (address

, length

)

Chapter 5. z/OS Debugger commands 277

condition
A valid condition or exception. Depending on the current programming language setting, this code can
be any one of the following types of codes:

• A Language Environment symbolic feedback code
• A language-oriented keyword or code
• When an application runs without the Language Environment run time, one of the ABEND codes

shown below.

If no active condition handler exists for the specified condition, the default condition handler can
cause the program to end prematurely.

Following are the C condition constants; they must be uppercase and not abbreviated.

SIGABND
SIGABRT
SIGFPE

SIGILL
SIGINT
SIGIOERR
SIGSEGV

SIGTERM
SIGUSR1
SIGUSR2

There are no COBOL condition constants. Instead, an Language Environment symbolic feedback code
must be used, for example, CEE347.

PL/I condition constants can be used; for syntax and acceptable abbreviations see the ON command.

When you are running without the Language Environment run time, use one of the following codes:

• Codes Sxxx and Uxxx to represent MVS System and User ABENDs. In this case the xxx is three
hexadecimal digits representing the ABEND code.

• Any four-character string to represent a CICS ABEND code.

cu_spec
A valid compile unit specification.

entry_name
A valid external entry point name constant or zero (0); however, 0 can only be specified if the current
programming language setting is C or PL/I.

reference
A valid z/OS Debugger reference in the current programming language.

%STORAGE
A built-in function that provides an alternative way to select an AT CHANGE subject.
address

The starting address of storage to be watched for changes.
length

The number of bytes of storage being watched for changes. This must be a positive integer
constant. The default value is 1.

load_spec
A valid load module specification.

block_spec
A valid block specification.

statement_label
A valid source label constant.

stmt_id_spec
A valid statement id specification.

Usage notes

• If the EQAOPTS THREADTERMCOND command prevents z/OS Debugger from stopping when a FINISH,
CEE066, or CEE067 thread termination condition is raised by Language Environment, z/OS Debugger

278 IBM z/OS Debugger: Reference and Messages

does not gain control when these conditions are raised. If you want z/OS Debugger to gain control
when these conditions are raised, you can set an AT OCCURRENCE breakpoint or change the EQAOPTS
THREADTERMCOND command to allow z/OS Debugger to gain control.

• AT TERMINATION cannot be raised by the TRIGGER command.
• An enclave cannot be stopped by the TRIGGER command.
• If you are replaying recorded statements by using the PLAYBACK commands, you cannot use the
TRIGGER command.

Examples

In the first example, note the following differences

• Triggering a breakpoint (TRIGGER AT OCCURRENCE CEE347), which performs z/OS Debugger
commands associated with the breakpoint. The condition is not raised.

• Triggering a condition (TRIGGER CEE347), which raises the condition and causes a corresponding
system action. A corresponding system action can be a condition handler.

• Perform the commands in the AT OCCURRENCE CEE347 breakpoint (the CEE347 condition is not
raised). The current programming language setting is COBOL.

AT OCCURRENCE CEE347 PERFORM
 SET ix TO 5;
END-PERFORM;

TRIGGER AT OCCURRENCE CEE347; ⁄* SET ix TO 5 is executed *⁄

• Raise the SIGTERM condition in your program. The current programming language setting is C.

TRIGGER SIGTERM;

• A previously defined STATEMENT breakpoint (for line 13) is triggered.

AT 13 LIST "at 13";
TRIGGER AT 13;
⁄* "at 13" will be the echoed output here *⁄

• Assume the following breakpoints exist in a program:

AT CHANGE x LIST TITLED (x); AT STATEMENT 10;

If z/OS Debugger is started for the STATEMENT breakpoint and you want to trigger the commands
associated with the AT CHANGE breakpoint, enter:

TRIGGER AT CHANGE x;

z/OS Debugger displays the value of x.

Refer to the following topics for more information related to the material discussed in this topic.

Related tasks
z/OS Language Environment Programming Guide

Related references
“ON command (PL/I)” on page 181
“address” on page 11
“cu_spec” on page 13
“references” on page 15
“load_spec” on page 15
“block_spec” on page 12
“statement_label” on page 17
“statement_id_range and stmt_id_spec” on page 16

Chapter 5. z/OS Debugger commands 279

TSO command (z/OS)
The TSO command lets you issue TSO commands during a z/OS Debugger session and is valid only in a
TSO environment. The TSO keyword cannot be abbreviated.

TSO tso_command ;

tso_command
A valid TSO system command or CLIST name that does not require a parameter.

Usage notes

• TSO is synonymous to SYSTEM.

Example

List all the data sets in the user catalog.

TSO LISTCAT;

Refer to the following topics for more information related to the material discussed in this topic.

Related references
“SYSTEM command (z/OS)” on page 275

USE command
The USE command causes the z/OS Debugger commands in the specified file or data set to be either
performed or syntax checked. This file can be a log file from a previous session. The specified file or
data set can itself contain another USE command. The maximum number of USE files open at any time is
limited to eight. The USE keyword cannot be abbreviated.

USE ddname

dsname

;

ddname
A valid ddname in z/OS.

dsname
A z/OS data set containing the z/OS Debugger commands to be performed. If dsname is not enclosed
in apostrophes ('), z/OS Debugger assumes it is a partially-qualified data set name and the user ID is
prefixed to form the fully-qualified data set name.

Usage notes

• To check the syntax of the commands in a USE file:

1. Set the EXECUTE setting to OFF.
2. Enter a USE command for the file.

• Commands read from a USE file are logged as comments.
• The log file can serve as a USE file in a subsequent z/OS Debugger session.
• Recursive calls are not allowed; that is, a commands file cannot be used if it is already active. This

includes the primary commands and preferences files. If another invocation of z/OS Debugger occurs
during the execution of a USE file (for example, if a condition is raised while executing a command from
a USE file), the USE file is not used for command input until control returns from the condition.

• The USE file is closed when the end of the file is reached.
• If a nonreturning command (such as GO) is performed from a USE file, the action taken (as far as closing

the USE file) depends on certain things:

280 IBM z/OS Debugger: Reference and Messages

– If the USE file was called directly or indirectly from the primary commands file or preferences file, it
has the same characteristics as the primary commands file or preferences file. That is, it "keeps its
place" and the next time z/OS Debugger requests a command, it reads from the USE file where it left
off.

– If the USE file was not called directly or indirectly from the primary commands file or preferences file,
the rest of the USE file and the file that called the USE file is skipped.

• If the end of the USE file is reached without encountering a QUIT command, z/OS Debugger returns to
the command source where the USE command was issued. This can be the terminal, a command string,
or another commands file.

• A USE file takes on the aspects of whatever command source issued the USE command, relative to
its behavior when a GO, GOTO, or STEP is executed. When called from the primary commands file,
it continues with its next sequential command at the next breakpoint. If it is called from any other
command sequence, the GO, GOTO, or STEP causes any remaining commands in the USE file to be
discarded.

Examples

• Perform the z/OS Debugger commands in the z/OS data set USERID.COMMANDS.FILE. The data set
must first be allocated with, for example, ALLOC FI(MYCMDS) DA('USERID.COMMANDS.FILE').

USE MYCMDS;

Alternatively, perform the commands in the z/OS data set USERID.COMMANDS.FILE.

USE COMMANDS.FILE

• On z/OS, perform the z/OS Debugger commands in the partitioned data set member
USERID.PDS(CMDS).

USE PDS(CMDS)

• For CICS, perform z/OS Debugger commands in the fully-qualified data set TS64081.USE.FILE.

USE 'TS64081.USE.FILE';

In addition to using sequential files, you can perform z/OS Debugger commands using partitioned data
sets.

USE 'userid.thing.file(usefile)'

while command (C and C++)
The while command enables you to repeatedly perform the body of a loop until the specified condition is
no longer met or evaluates to false. The while keyword must be lowercase and cannot be abbreviated.

while (expression) command ;

expression
A valid z/OS Debugger C expression.

command
A valid z/OS Debugger command.

The expression is evaluated to determine whether the body of the loop should be performed. If the
expression evaluates to false, the body of the loop never executes. Otherwise, the body does execute.
After the body has been performed, control is given once again to the evaluation of the expression.
Further execution of the action depends on the value of the condition.

A break command can cause the execution of a while command to end, even when the condition does
not evaluate to false.

Chapter 5. z/OS Debugger commands 281

Usage notes

• If you are replaying recorded statements by using the PLAYBACK commands, then you cannot use the
while command.

Examples

• List the values of x starting at 3 and ending at 9, in increments of 2.

x = 1;
while (x +=2, x < 10)
 LIST x;

• While --index is greater than or equal to zero (0), triple the value of the expression item[index].

while (--index >= 0) {
 item[index] *= 3;
 printf("item[%d] = %d\n", index, item[index]);
}

WINDOW command (full-screen mode)
The WINDOW command provides window manipulation functions. WINDOW commands can be made
immediately effective with the IMMEDIATE command. The cursor-sensitive form is most useful when
assigned to a PF key. The WINDOW keyword is optional.

The following table summarizes the forms of the WINDOW command.

Command Description

“WINDOW CLOSE command”
on page 282

Closes the specified window in the z/OS Debugger full-screen session
panel.

“WINDOW OPEN command”
on page 283

Opens a previously-closed window in the z/OS Debugger full-screen
session panel.

“WINDOW SIZE command”
on page 284

Controls the relative size of currently visible windows in the z/OS
Debugger full-screen session panel.

“WINDOW SWAP command”
on page 284

Replaces the logical window being displayed in a physical window with
another logical window.

“WINDOW ZOOM command”
on page 285

Expands the indicated window to fill the entire screen.

Usage notes

• If no operand is specified and the cursor is on the command line, then the default window id set by SET
DEFAULT WINDOW is used (if it is open, otherwise the precedence is SOURCE, LOG, MONITOR).

WINDOW CLOSE command
Closes the physical window of the specified logical window in the z/OS Debugger full-screen session
panel. The remaining open physical windows expand to fill the remainder of the screen. Closing a physical
window does not effect the logical window. For example, closing the physical window that is displaying
the Monitor window does not stop the monitoring of variable values assigned by the LIST MONITOR
command.

If you specify a logical window that is not assigned to a physical window, z/OS Debugger displays an error
message.

If there is only one physical window visible, WINDOW CLOSE is invalid.

282 IBM z/OS Debugger: Reference and Messages

WINDOW

CLOSE
CURSOR

LOG

MEMORY

MONITOR

SOURCE

;

CURSOR
Selects the window where the cursor is currently positioned unless on the command line.

LOG
Selects the session log window.

MEMORY
Selects the Memory window.

MONITOR
Selects the monitor window.

SOURCE
Selects the source listing window.

Example

Close the window containing the cursor.

WINDOW CLOSE CURSOR;

WINDOW OPEN command
Opens a previously-closed physical window in the z/OS Debugger full-screen session panel. Any existing
physical windows are resized according to the configuration selected with the PANEL LAYOUT command.

If you specify a logical window that is not assigned to a physical window, z/OS Debugger displays an error
message.

If the OPEN command is issued without an operand, z/OS Debugger opens the last closed physical
window.

WINDOW

OPEN

LOG

MEMORY

MONITOR

SOURCE

;

LOG
Selects the session log window.

MEMORY
Selects the Memory window.

MONITOR
Selects the monitor window.

SOURCE
Selects the source listing window.

Example

Open the monitor window.

WINDOW OPEN MONITOR;

Chapter 5. z/OS Debugger commands 283

WINDOW SIZE command
Controls the relative size of the currently visible physical windows in the z/OS Debugger full-screen
session panel.

WINDOW

SIZE

integer

CURSOR

LOG

MEMORY

MONITOR

SOURCE

;

integer
Specifies the number of rows or columns, as appropriate for the selected window and the current
window configuration.

CURSOR
Selects the window where the cursor is currently positioned unless on the command line. The
cursor form of WINDOW SIZE applies to that window if integer is specified. Otherwise, it redraws
the configuration of windows so that the intersection of the windows is at the cursor, or if the
configuration does not have a common intersection, so that the nearest border is at the cursor.

LOG
Selects the session log window.

MEMORY
Selects the Memory window.

MONITOR
Selects the monitor window.

SOURCE
Selects the source listing window.

Usage notes

• You cannot use WINDOW SIZE if a window is zoomed or if there is only one window open.
• Each window in any configuration has only one adjustable dimension:

– If one or more windows are as wide as the screen:

- The number of rows is adjustable for each window as wide as the screen
- The number of columns is adjustable for the remaining windows

– If one or more windows are as high as the screen:

- The number of columns is adjustable for each window as high as the screen
- The number of rows is adjustable for the remaining windows

Examples

• Adjust the size of the Source window to 15 rows.

WINDOW SIZE 15 SOURCE;

• Adjust the size of the window where the cursor is currently positioned to 20 rows.

SIZE 20 CURSOR;

WINDOW SWAP command
The SWAP command replaces the logical window being displayed in a physical window with another
logical window. The order of the operands is not important. The physical window retains its attributes. For

284 IBM z/OS Debugger: Reference and Messages

example, if the physical window was closed, it remains closed when you entered the SWAP command, it
remains closed until you enter the WINDOW OPEN command.

WINDOW

SWAP MEMORY

LOG

LOG

MEMORY

MEMORY
Selects the Memory window.

LOG
Selects the Log window.

Examples

• Replace the Log window, which is currently displayed in a physical window, with the Memory window,
which is not being displayed in a physical window by entering the following command:

SWAP MEM LOG

The Memory window assumes the size and location of the physical window.

Refer to the following topics for more information related to the material discussed in this topic.

Related tasks
"z/OS Debugger session panel in the IBM z/OS Debugger User's Guide.
"Switching between the Memory window and Log window" in the IBM z/OS Debugger User's Guide

WINDOW ZOOM command
Expands the specified logical window to fill the entire screen or restores the screen to the currently
defined physical window configuration. The logical window does not have to be assigned to a physical
window. This command provides a convenient way to display any logical window without having to
reassign physical windows. For example, because the MEMORY window and LOG window cannot be
displayed at the same time, you can use the WINDOW ZOOM LOG command to display the Log window
while the Memory window remains assigned to its physical window.

WINDOW

ZOOM
CURSOR

LOG

MEMORY

MONITOR

SOURCE

;

CURSOR
Selects the window where the cursor is currently positioned unless on the command line.

LOG
Selects the session log window.

MEMORY
Selects the Memory window.

MONITOR
Selects the monitor window.

SOURCE
Selects the source listing window.

If the selected window is currently zoomed, the zoom mode is toggled. That is, the currently defined
window configuration is restored.

Usage note

Chapter 5. z/OS Debugger commands 285

The WINDOW ZOOM command is not logged.

Example

Expand the log window.

WINDOW ZOOM LOG;

286 IBM z/OS Debugger: Reference and Messages

Chapter 6. EQAOPTS commands

EQAOPTS commands are commands that alter some of the basic behavior of z/OS Debugger. These
commands must be processed before normal z/OS Debugger command processing is available. You can
specify most EQAOPTS commands in the following ways:

• Add dynamically at run time, as described in “Providing EQAOPTS commands at run time” on page 294,
a text data set that contains the commands.

• Add to the search sequence, before the copy of EQAOPTS distributed by z/OS Debugger, a customized
version of the EQAOPTS load module.

If you want the commands to apply to only a few debugging sessions, it might be easier to supply the
EQAOPTS command dynamically at run time. If you want the commands to apply to a group of debugging
sessions, it might be better to supply the EQAOPTS commands through the EQAOPTS load module.

Except for commands that can be validly specified more than once (for example, the NAMES commands),
if z/OS Debugger finds a command more than once, it uses the first specification of the command.
z/OS Debugger processes EQAOPTS commands specified at run time before those specified through the
EQAOPTS load module. This means that commands specified at run time override duplicate commands
specified in the EQAOPTS load module.

Any or all of the following people can create EQAOPTS specifications:

• The system programmer that installs z/OS Debugger.
• Specific groups in the organization.
• An individual user.

If you are the system programmer or you are creating EQAOPTS specifications for specific groups, you
might change the EQAOPTS specifications less frequently, so specifying them by generating a new
EQAOPTS load module might be more efficient. If you are an individual user, you might change the
EQAOPTS specifications more frequently, so specifying them dynamically at run time might be more
efficient.

Table 10 on page 287 summarizes the available EQAOPTS commands and indicates whether a system
programmer (S), a specific group (G), or an individual user (U) most commonly uses a command.

Table 10. A brief description of each EQAOPTS command and the type of user most likely to use that command

Command Description
Commonl
y used by

ALTDISP Controls whether to add a character indicator to the MFI screen to
indicate a breakpoint, the current line, or the line with found text.

S, U

BROWSE Allows users with the authority to use z/OS Debugger in normal
mode to restrict their access to Browse Mode.

U

CACHENUM Controls the size of the z/OS Debugger cache to minimize rereading
the debug information.

U, G

CCOUTPUTDSN Specifies the default naming pattern that z/OS Debugger uses to
name the Code Coverage Observation file.

U, G, S

CCOUTPUTDSNALLOC Specifies the allocation parameters that z/OS Debugger uses when
it creates the Code Coverage Observation file.

U, G, S

CCPROGSELECTDSN Specifies the default naming pattern that z/OS Debugger uses to
name the Code Coverage Options file.

U, G, S

© Copyright IBM Corp. 1992, 2024 287

Table 10. A brief description of each EQAOPTS command and the type of user most likely to use that command
(continued)

Command Description
Commonl
y used by

CEEREACTAFTERQDBG Restarts z/OS Debugger if a CEETEST call is encountered after you
use QUIT DEBUG to end a debug session.

S

CODEPAGE Controls the codepage used by z/OS Debugger. U, G, S

COMMANDSDSN Specifies the default naming pattern that z/OS Debugger uses to
name the user's commands file.

U, G, S

DEFAULTVIEW Controls the default view of assembler programs. U, G

DISABLERLIM Disables Omegamon resource limiting (RLIM) during debug
sessions.

S

DLAYDBG Allows users to use delay debug mode. U, G, S

DLAYDBGCND Specifies monitoring condition events in the delay debug mode. U, G, S

DLAYDBGDSN Specifies delay debug profile data set naming pattern. U, G, S

DLAYDBGTRC Specifies delay debug pattern match trace message level. U, G, S

DLAYDBGXRF Specifies that z/OS Debugger uses a cross reference to find the user
ID when z/OS Debugger constructs the delay debug profile data set
name.

This is used when an IMS transaction or DB/2 stored procedure is
initiated from the web or MQ gateway, and thus the transaction is
run with a generic ID.

z/OS Debugger uses either the cross reference file or the Terminal
Interface Manager repository to find the ID of the user who wants
to debug the transaction or stored procedure.

U, G, S

DTCNDELETEDEADPROF Controls the deletion of dead DTCN profiles. S

DTCNFORCExxxx Controls whether to require certain fields in DTCN. S

DYNDEBUG Controls the initial (default) value of SET DYNDEBUG. U, G, S

EQAQPP Enables z/OS Debugger to debug MasterCraft Q++ programs. U, G, S

EXPLICITDEBUG Enables explicit debug mode. U

GPFDSN Specifies that z/OS Debugger process a global preferences file. U, G, S

HOSTPORTS Specifies a host port or range of ports to use for a TCP/IP
connection to the workstation for the remote debugger.

S

IGNOREODOLIMIT Specifies that z/OS Debugger can display COBOL table data items
even when an ODO value is out of range.

U, G, S

LOGDSN Specifies the default naming pattern that z/OS Debugger uses to
name the user's log file.

U, G, S

LOGDSNALLOC Specifies the allocation parameters that z/OS Debugger uses when
it creates the log file.

U, G, S

MAXTRANUSER Specifies the maximum number of IMS transactions that a single
user may register to debug using the IMS Transaction Isolation
Facility.

S

288 IBM z/OS Debugger: Reference and Messages

Table 10. A brief description of each EQAOPTS command and the type of user most likely to use that command
(continued)

Command Description
Commonl
y used by

MDBG Allows users of programs compiled with z/OS XL C/C++ Version
1.10, or later, to indicate whether z/OS Debugger searches
for .mdbg files.

U, G

MULTIPROCESS Controls the behavior of z/OS Debugger when a new POSIX process
is created by fork() or exec().

U, G, S

NAMES Controls whether z/OS Debugger processes or ignores certain load
module or compile unit names.

U, G

NODISPLAY Controls the z/OS Debugger behavior when the display requested
by the z/OS Debugger user is not available.

U, G, S

PREFERENCESDSN Specifies the default naming pattern that z/OS Debugger uses to
name the preferences file.

U, G, S

SAVEBPDSN, SAVESETDSN Specifies the default naming pattern for the data sets used to
save and restore the breakpoints and monitors (SAVEBPS) and the
settings (SAVESETS).

U, G, S

SAVEBPDSNALLOC,
SAVESETDSNALLOC

Specifies the allocation parameters that z/OS Debugger uses when
it creates the SAVEBPS and SAVESETS data sets.

U, G, S

SESSIONTIMEOUT Establishes a timeout for idle z/OS Debugger sessions that use the
Terminal Interface Manager. Timed out sessions are canceled after
a specified period of no user activity.

S

STARTSTOPMSG Controls whether to issue a message when each debugging session
is initiated or terminated.

S

STARTSTOPMSGDSN Specifies a message file for start and stop debug session messages. S

SUBSYS Specifies a subsystem used by certain library systems. G, S

SVCSCREEN Controls whether and how z/OS Debugger uses SVC screening
to intercept LOAD and LINK SVC’s. This is necessary for
debugging non-Language Environment assembler and LangX
COBOL programs.

S

TCPIPDATADSN Instructs z/OS Debugger to dynamically allocate the specified file-
name to the DDNAME SYSTCPD for the TCP/IP connection to the
workstation for the remote debugger.

S

THREADTERMCOND Controls whether z/OS Debugger prompts the user when it
encounters a FINISH, enclave termination, or thread termination
condition.

U, G

TIMACB Specifies that the z/OS Debugger Terminal Interface Manager (TIM)
use a name other than EQASESSM.

S

END Specifies the end of a list of EQAOPTS commands. You must specify
END.

U, G, S

Use the following list to help you record the commands and value you want to implement:

• EQAXOPT ALTDISP, then select one of the following options:

ON
OFF

Chapter 6. EQAOPTS commands 289

• EQAXOPT BROWSE, then select one of the following options:

RACF
ON
OFF

• EQAXOPT CACHENUM,number:_____________________________________
• EQAXOPT CCOUTPUTDSN,'file_name_pattern:_______________________'

Append ,LOUD if you want z/OS Debugger to display WTO messages, which helps you debug processing
done by this command.

• EQAXOPT CCOUTPUTDSNALLOC,allocation_parameters:_______________________

Append ,LOUD if you want z/OS Debugger to display WTO messages, which helps you debug processing
done by this command.

• EQAXOPT CCPROGSELECTDSN,'file_name_pattern:_______________________'

Append ,LOUD if you want z/OS Debugger to display WTO messages, which helps you debug processing
done by this command.

• EQAOPTS CEEREACTAFTERQDBG, then select one of the following options:

YES
NO

• EQAXOPT CODEPAGE,code_page_number:___________________________
• EQAXOPT COMMANDSDSN,'file_name_pattern:_______________________'

Append ,LOUD if you want z/OS Debugger to display WTO messages, which helps you debug processing
done by this command.

• EQAXOPT DEFAULTVIEW, then select one of the following options:

STANDARD
NOMACGEN

• EQAXOPT DISABLERLIM, then select one of the following options:

YES
NO

• EQAXOPT DLAYDBG, then select one of the following options:

YES
NO

• EQAXOPT DLAYDBGCND, then select one of the following options:

YES
NO

• EQAXOPT DLAYDBGDSN,'file_name_pattern:_____________________________'
• EQAXOPT DLAYDBGTRC,pattern_match_trace_level:__________________
• EQAXOPT DLAYDBGXRF, then select one of the following options:

DSN,'file_name:_____________'
REPOSITORY

• EQAXOPT DTCNDELETEDEADPROF, then select one of the following options:

YES
NO

• EQAXOPT DTCNFORCECUID, then select one of the following options:

YES
NO

290 IBM z/OS Debugger: Reference and Messages

This option performs the same function as DTCNFORCEPROGID. If you select YES for
DTCNFORCEPROGID, you do not need to specify this option.

• EQAXOPT DTCNFORCEIP, then select one of the following options:

YES
NO

• EQAXOPT DTCNFORCELOADMODID, then select one of the following options:

YES
NO

• EQAXOPT DTCNFORCENETNAME, then select one of the following options:

YES
NO

• EQAXOPT DTCNFORCEPROGID, then select one of the following options:

YES
NO

• EQAXOPT DTCNFORCETERMID, then select one of the following options:

YES
NO

• EQAXOPT DTCNFORCETRANID, then select one of the following options:

YES
NO

• EQAXOPT DTCNFORCEUSERID, then select one of the following options:

YES
NO

• EQAXOPT DYNDEBUG, then select one of the following options:

ON
OFF

• EQAXOPT EQAQPP, then select one of the following options:

ON
OFF

• EQAXOPT EXPLICITDEBUG, then select one of the following options:

ON
OFF

• EQAXOPT GPFDSN,'file_name:_______________________________________'
• EQAXOPT HOSTPORTS,range_of_ports:_____
• EQAXOPT IGNOREODOLIMIT, then select one of the following options:

YES
NO

• EQAXOPT LOGDSN,'file_name_pattern:_______________________'

Append ,LOUD if you want z/OS Debugger to display WTO messages, which helps you debug processing
done by this command.

• EQAXOPT LOGDSNALLOC,allocation_parameters:_______________________

Append ,LOUD if you want z/OS Debugger to display WTO messages, which helps you debug processing
done by this command.

• EQAXOPT MAXTRANUSER,number:_____________

Chapter 6. EQAOPTS commands 291

• EQAXOPT MDBG, then select one of the following options:

YES
NO

• EQAXOPT MULTIPROCESS, then select one of the following options:

PARENT
CHILD
PROMPT

Select one of the following options to indicate what you want z/OS Debugger to do with a process that
executes itself:

EXEC=ANY
EXEC=NONE

• EQAXOPT NAMES, then select one of the following options:

EXCLUDE,LOADMOD,pattern:____________________________________
EXCLUDE,CU,pattern:___
INCLUDE,LOADMOD,name:_______________________________________
INCLUDE,CU,name:__

• EQAXOPT NODISPLAY, then select one of the following options:

DEFAULT
QUITDEBUG

• EQAXOPT PREFERENCESDSN,'file_name_pattern:_______________________'

Append ,LOUD if you want z/OS Debugger to display WTO messages, which helps you debug processing
done by this command.

• EQAXOPT SAVEBPDSN,'file_name_pattern:____________________________________'
• EQAXOPT SAVESETDSN,'file_name_pattern:____________________________________'
• EQAXOPT SAVEBPDSNALLOC,allocation_parameters:_______________________

Append ,LOUD if you want z/OS Debugger to display WTO messages, which helps you debug processing
done by this command.

• EQAXOPT SAVESETDSNALLOC,allocation_parameters:_______________________

Append ,LOUD if you want z/OS Debugger to display WTO messages, which helps you debug processing
done by this command.

• EQAXOPT SESSIONTIMEOUT, then select one of the following options:

NEVER
QUITDEBUG,hhmmssnn
QUIT,hhmmssnn

• EQAXOPT STARTSTOPMSG, then select one of the following options:

NONE
ALL
CICS
TSO
BATCHTSO
IMS
OTHER
or any of CICS, TSO, BATCHTSO, IMS, and OTHER, or all of them enclosed in parenthesis and
separated by commas.

Append ,WTO if you want z/OS Debugger to display the messages via WTO.
• EQAXOPT STARTSTOPMSGDSN,'file_name:_______________'

292 IBM z/OS Debugger: Reference and Messages

Append ,LOUD if you want z/OS Debugger to display WTO messages, which helps you debug processing
done by this command.

• EQAXOPT SUBSYS,subsystem_name:____________________________
• EQAXOPT SVCSCREEN, then select one of the following options:

ON
OFF
(OFF,QUIET)

Select one of the following options to indicate what you want z/OS Debugger to do if there is an existing
SVC screening environment:

CONFLICT=OVERRIDE
CONFLICT=NOOVERIDE

Select one of the following options to indicate whether you want z/OS Debugger to temporarily replace
the existing SVC screening environment:

NOMERGE
MERGE=(COPE)

• TCPIPDATADSN,'file_name: _____'
• EQAXOPT THREADTERMCOND, then select one of the following options:

PROMPT
NOPROMPT

• EQAXOPT TIMACB,ACB_name:___
• EQAXOPT END Always specify this command.

After you have made all of you selections, define the options as described in “Creating EQAOPTS load
module” on page 295.

Format of the EQAOPTS command
When you specify EQAOPTS commands through the EQAOPTS load module, you create them as
assembler macro invocations and you must subsequently assemble and link-edit them into the EQAOPTS
load module. To provide a consistent format for all forms of EQAOPTS commands, when you specify the
EQAOPTS commands at run time, you must use the assembler macro invocation format. The following
format rules apply to all EQAOPTS commands:

• EQAOPTS commands must be contained in fixed-length, eighty-byte records.
• The commands must be contained between columns one and seventy-one, with column seventy-two

reserved for a continuation indicator. z/OS Debugger ignores columns seventy-three through eighty.
• Specify an asterisk (*) in column one to indicate a comment. z/OS Debugger ignores comments. Column

one must be blank for all non-comment statements.
• The op-code for each EQAOPTS statement must be EQAXOPT and must begin in or after column two

and followed by at least one blank.
• A list of one or more operands must follow the EQAXOPT op-code. Separate these operands by a

comma and do not embed blanks.
• If a command exceeds the length of one line, you can continue the command in one of the following

ways:

– You can end at the comma following an operand and place a non-blank character in column seventy-
two.

– You can use all of the columns through column seventy-one and place a non-blank character in
column seventy-two.

In either case, the statement that follows must be blank in columns one through fifteen and begin in
column sixteen.

Chapter 6. EQAOPTS commands 293

EQAOPTS commands that have equivalent z/OS Debugger
commands

Some EQAOPTS commands have equivalent z/OS Debugger commands. Table 11 on page 294 shows a
few examples.

Table 11. Examples of EQAOPTS commands and their equivalent z/OS Debugger commands

EQAOPTS command z/OS Debugger command

DEFAULTVIEW SET DEFAULTVIEW

DYNDEBUG SET DYNDEBUG

EXPLICITDEBUG SET EXPLICITDEBUG

NAMES NAMES

For these commands, specifying them as EQAOPTS commands or z/OS Debugger commands produces
the same action. The timing (when these commands take effect) differs between EQAOPTS commands
and z/OS Debugger commands.

z/OS Debugger processes z/OS Debugger commands after it processes the initial load module and creates
the compile units contained in the initial load modules. z/OS Debugger processes EQAOPTS commands
during z/OS Debugger initialization, prior to processing the initial load module. This means that when z/OS
Debugger processes the initial load module, z/OS Debugger commands like NAMES are not in effect but
the corresponding EQAOPTS commands are in effect and are applied to the initial load module.

EQAOPTS commands like DEFAULTVIEW provide a way of specifying a site- or group-wide default for the
corresponding z/OS Debugger command. However, a better way to specify a site- or group-wide default
for these types of commands is by putting the z/OS Debugger command in a global preferences file.

Providing EQAOPTS commands at run time
You can provide EQAOPTS commands to z/OS Debugger at run time. You must save the commands in a
data set with 80-byte, fixed-length records. The following list describes the methods of specifying this
data set to z/OS Debugger:

• In CICS, include the EQAOPTS commands through DTCN.
• In UNIX System Services, specify the name of the data set containing the EQAOPTS commands through

the EQA_OPTS_DSN environment variable.
• In IMS and Db2, specify the name of the data set containing the EQAOPTS commands through the z/OS

Debugger Language Environment user exit.
• In other environments, specify the name of the data set containing the commands through the

EQAOPTS DD statement.

The following example shows what the data set might contain:

EQAXOPT MDBG,YES
EQAXOPT NODISPLAY,QUITDEBUG
EQAXOPT NAMES,EXCLUDE,LOADMOD,USERMOD1
EQAXOPT NAMES,EXCLUDE,LOADMOD,USERMOD7
EQAXOPT END

The instructions in “Creating EQAOPTS load module” on page 295 contain examples with specifications
for CSECT, AMODE, RMODE, and END (without EQAXOPTS) statements. Do not include these
specifications if you provide EQAOPTS command at run time.

294 IBM z/OS Debugger: Reference and Messages

Creating EQAOPTS load module
If you have chosen to use the EQAOPTS load module to specify your EQAOPTS commands, do the
following steps:

1. Copy the EQAOPTS2 member from the hlq.SEQASAMP library to a private library.
2. Edit this copy of EQAOPTS and code the EQAOPTS command or commands you want. To this minimum

source, add each EQAXOPT option you want to include. The following example describes the minimum
assembler source required to generate the EQAOPTS load module:

EQAOPTS CSECT ,
EQAOPTS AMODE 31
EQAOPTS RMODE ANY
 Add your customized EQAXOPT statements here. For example:
 EQAXOPT MDBG,YES
 EQAXOPT NODISPLAY,QUITDEBUG
 EQAXOPT NAMES,EXCLUDE,LOADMOD,USERMOD1
 EQAXOPT NAMES,EXCLUDE,LOADMOD,USERMOD7
 EQAXOPT END
 END ,

Note: You can specify AMODE 64. However, AMODE 64 does not support Delay Debug for 64-bit
applications. For more information, see Appendix C, “Limitations of 64-bit support in Debug Tool
compatibility mode,” on page 527.

3. Follow the directions in the EQAOPTS sample to generate a new EQAOPTS load module. These
directions describe how to assemble the source and link-edit the generated object into a load module
named EQAOPTS.

4. Place the EQAOPTS load module in a private data set that is in the load module search path and
appears before hlq.SEQAMOD.

Descriptions of EQAOPTS commands
To learn how EQAOPTS commands work and how to specify them, see Chapter 6, “EQAOPTS commands,”
on page 287.

ALTDISP
You can use the EQAOPTS ALTDISP command to add a character indicator to the MFI screen to indicate
a breakpoint, the current line, or the line with found text. By default, z/OS Debugger uses coloring to
indicate these situations.

Use this command only if your 3270 color configuration and attributes make it difficult to detect the
coloring in the line. It is valid only when you are using interactive MFI mode.

The following diagram describes the syntax of the ALTDISP command:

EQAXOPT ALTDISP , ON

OFF

The following list describes the parameters of the EQAOPTS ALTDISP command:

ON
Indicates to add a character indicator to indicate a breakpoint, the current line, or the line with found
text.

OFF
Indicates not to add a character indicator to indicate a breakpoint, the current line, or the line with
found text. This is the default value.

2 USERMOD EQAUMODE is provided for updating EQAOPTS. See "SMP/E USERMODs" in the IBM z/OS
Debugger Customization Guide for an SMP/E USERMOD for this customization.

Chapter 6. EQAOPTS commands 295

Example

EQAXOPT ALTDISP,ON

BROWSE
z/OS Debugger browse mode can be controlled by either the browse mode RACF® facility, through the
EQAOPTS BROWSE command, or both. For a description of how to control browse mode through RACF, see
"Debugging in browse mode" in the IBM z/OS Debugger User's Guide.

Users who have sufficient RACF authority can specify the EQAOPTS BROWSE command to indicate that the
current invocation of z/OS Debugger be in browse mode.

The following diagram describes the syntax of the BROWSE command:

EQAXOPT BROWSE , RACF

ON

OFF

The following list describes the parameters of the EQAOPTS BROWSE command:

RACF
Indicates that you want z/OS Debugger to use the browse mode access as determined by the current
user’s RACF access to the applicable RACF profile. If you do not specify the BROWSE command, z/OS
Debugger defaults to RACF.

ON
Indicates that unless the user’s RACF access is NONE, set BROWSE MODE to ON.

OFF
Indicates that if no RACF profile exists or if the user has UPDATE access or higher, set BROWSE MODE
to OFF.

Examples

EQAXOPT BROWSE,ON
EQAXOPT BROWSE,RACF

CACHENUM
To reduce CPU consumption, z/OS Debugger stores information about the application programs being
debugged in a cache. By default, for each debug session, z/OS Debugger stores the information for a
maximum of 10 programs. Application programs that do a LINK, LOAD, or XCTL to more than 10 programs
can degrade z/OS Debugger's CPU performance. You can enhance the CPU performance of z/OS Debugger
for these application programs by specifying an increased CACHENUM value in EQAOPTS. An increased
value causes z/OS Debugger to use more storage for each debugging session.

The following diagram describes the syntax of the CACHENUM command:

EQAXOPT CACHENUM , cache_value

cache_value
Specifies the size of the z/OS Debugger cache. It must be no smaller than 10 and no larger then 999.

Example

EQAXOPT CACHENUM,40

296 IBM z/OS Debugger: Reference and Messages

CCOUTPUTDSN
This option provides the data set name to be used for the Code Coverage Observation file. Specify
NULLFILE if no Observation file is to be written to.

This data set must be preallocated as a sequential data set if CCOUTPUTDSNALLOC is not specified.
RECFM=VB, LRECL=255 is suggested.

The following diagram describes the syntax of the CCOUTPUTDSN command:

EQAXOPT CCOUTPUTDSN , ' file_name_pattern '

, LOUD

file_name_pattern
Specifies a naming pattern that determines the name of the data set that contains this file. Follow
these guidelines when you create the naming pattern:

• Create a data set name that includes &&USERID. as one of the qualifiers. z/OS Debugger
substitutes the user ID of the current user for this qualifier when it determines the name of the
data set.

• Specify NULLFILE to indicate that you do not want z/OS Debugger to process this file.

LOUD
Specifies that z/OS Debugger displays WTO messages, which helps you debug processing done by this
command. z/OS Debugger normally does not display any messages if it does not find the data set. If
you are trying to determine why z/OS Debugger is not processing this file, specify LOUD to see if it
displays a message that it can not find the data set.

CCOUTPUTDSNALLOC
This option is used to create the CCOUTPUTDSN data set for a new user and provides the allocation
parameters (in BPXWDYN format).

The following diagram describes the syntax of the CCOUTPUTDSNALLOC command:

EQAXOPT CCOUTPUTDSNALLOC , ' allocation_parms '

, LOUD

allocation_parms
Specifies the allocation parameters you want z/OS Debugger to use when it creates the data set. You
can specify only the keys in the following list:

• BLKSIZE
• BLOCK
• CYL
• DATACLAS
• DSNTYPE
• DSORG
• LRECL
• MGMTCLAS
• RECFM
• SPACE
• STORCLAS
• TRACKS
• UNIT
• VOL

Chapter 6. EQAOPTS commands 297

Separate the keys by one or more blanks. z/OS Debugger does not provide defaults for any of the keys.

For information about the format of the keys, see the chapter "BPXWDYN: a text interface to dynamic
allocation and dynamic output" in the z/OS Using REXX and z/OS UNIX System Services manual.
Specify that the data set be sequential. To learn about other formatting rules for the log file, see "Data
sets used by z/OS Debugger" of the IBM z/OS Debugger User's Guide.

LOUD
Specifies that z/OS Debugger displays WTO messages, which helps you debug processing done by this
command. z/OS Debugger normally does not display any messages when it creates this data set. If
you are trying to determine why this file was not created, specify LOUD to view any messages.

CCPROGSELECTDSN
This option provides the data set name that contains the Code Coverage Options file (which specifies the
Group IDs and the PROGRAM IDs of the COBOL routines that are to be processed). Specify NULLFILE if
no Code Coverage Options file is to be read.

This data set must be preallocated as a sequential data set. RECFM=VB, LRECL=255 is suggested.

The following diagram describes the syntax of the CCPROGSELECTDSN command:

EQAXOPT CCPROGSELECTDSN , ' file_name_pattern '

, LOUD

file_name_pattern
Specifies a naming pattern that determines the name of the data set that contains this file. Follow
these guidelines when you create the naming pattern:

• Create a data set name that includes &&USERID. as one of the qualifiers. z/OS Debugger
substitutes the user ID of the current user for this qualifier when it determines the name of the
data set.

• Specify NULLFILE to indicate you do not want z/OS Debugger to process this file.

LOUD
Specifies that z/OS Debugger displays WTO messages, which helps you debug processing done by this
command. z/OS Debugger normally does not display any messages if it does not find the data set or
data set member. If you are trying to determine why z/OS Debugger is not processing this file, specify
LOUD to see if it displays a message that it can not find the data set.

CEEREACTAFTERQDBG
You can specify this command to restart z/OS Debugger with CEETEST after you use QUIT DEBUG to end
a debug session. You can specify this command only in an EQAOPTS load module.

Note: You cannot use this command in standard mode for remote debugging.

The following diagram describes the syntax of the CEEREACTAFTERQDBG command:

EQAXOPT CEEREACTAFTERQDBG , NO

YES

The following list describes the parameters of the EQAOPTS CEEREACTAFTERQDBG command:
NO

Indicates that you do not want to restart z/OS Debugger if a CEETEST call is encountered after you
use QUIT DEBUG to end a debug session. This parameter is the default setting.

YES
Indicates that you want to restart z/OS Debugger if a CEETEST call is encountered after you use QUIT
DEBUG to end a debug session.

298 IBM z/OS Debugger: Reference and Messages

Example

EQAXOPT CEEREACTAFTERQDBG,NO

EQAXOPT CEEREACTAFTERQDBG,YES

CODEPAGE
The default code page used by z/OS Debugger and the remote debuggers is 037. For any of the following
situations, you need to use a different code page:

• Application programmers are debugging in remote debug mode and the source or compiler use a code
page other than 037.

If your C/C++ source contains square brackets or other special characters, you might need to specify an
EQAOPTS CODEPAGE command to override the z/OS Debugger default code page (037). Check the code
page specified when you compiled your source. The C/C++ compiler uses a default code page of 1047 if
you do not explicitly specify one. If the code page used is 1047 or a code page other than 037, you need
to specify an EQAOPTS CODEPAGE command specifying that code page.

• Application programmers are debugging in full screen mode and encounter one of the following
situations:

– They use the STORAGE command to update COBOL NATIONAL variables.
– The source is coded in a code page other than 037.

• Application programmers use the XML(CODEPAGE(ccsid)) parameter on a LIST CONTAINER or
LIST STORAGE command to specify an alternate code page.

z/OS Debugger uses the z/OS Unicode Services to process characters that need code page conversion.

The following diagram describes the syntax of the CODEPAGE command:

EQAXOPT CODEPAGE , nnnn

nnnn
A positive integer indicating the code page to use.

After implementing the EQAOPTS CODEPAGE command, if application programmers using full-screen
mode still cannot display some characters correctly, have them verify that their emulator's code page
matches the code page of the characters they need to display.

You might need to create your own conversion images as described in “Creating a conversion image for
z/OS Debugger” on page 299.

Example

EQAXOPT CODEPAGE,121

Creating a conversion image for z/OS Debugger
You might need to create a conversion image so that z/OS Debugger can properly transmit characters in
a code page other than 037 between the remote debugger and the host. A conversion image contains the
following information:

• The conversion table that specifies the source CCSID (Coded Character Set Identifiers) and target
CCSID. For z/OS Debugger, specify a pair of conversion images between the host code page and
Unicode code page (UTF-8). You can specify the host code page in the VADSCPnnnnn suboption of
TEST runtime option or with the CODEPAGE command in the EQAOPTS data set. If you specify both
the VADSCPnnnnn suboption and the CODEPAGE command, z/OS Debugger uses only the CODEPAGE
command. The following table shows the images required for CCSIDs 930, 939 (Japanese EBCDIC),
933 (Korean EBCDIC), 1141 (Germany EBCDIC), and 1047 (Latin 1/Open Systems, EBCDIC). See IBM
z/OS Debugger Reference and Messages for a detailed description of the suboption VADSCPnnnnn.

Chapter 6. EQAOPTS commands 299

Table 12. Source and target CCSID to specify, depending on the code page command used

VADSCPnnnn suboption or
CODEPAGE command

Source CCSID Target CCSID

VADSCP930 or CODEPAGE,930 13901 1208 (UTF-8)

1208 13901

VADSCP939 or CODEPAGE,939 13991 1208 (UTF-8)

1208 13991

VADSCP933 or CODEPAGE,933 933 1208 (UTF-8)

1208 933

VADSCP1141 or
CODEPAGE,1141

1141 1208 (UTF-8)

1208 1141

VADSCP1047 or
CODEPAGE,1047

1047 1208 (UTF-8)

1208 1047

Note:

1. For compatibility with earlier versions, 1390 and 1399 are used.

For each suboption, a pair of conversion images are needed for bidirectional conversion.
• The conversion technique, also called the technique search order. z/OS Debugger uses the technique

search order RECLM, which means roundtrip, enforced subset, customized, Language Environment-
behavior, and modified language. RECLM is the default technique search order, so you do not have to
specify the technique search order in the JCL.

You might need to create a conversion image so that users debugging COBOL programs in full screen or
batch mode can modify NATIONAL variables with the STORAGE command or to properly display C/C++
variables that contain characters in a code page other than 037. To create the conversion image, you need
to do the following steps:

1. Ask your system programmer for the host's CCSID.
2. Submit a JCL job that specifies the conversion image between the host CCSID, which you obtained in

step “1” on page 300, and CCSID 1200 (UTF-16).

“Example: JCL for generating conversion images” on page 300 describes how one JCL creates the
conversion images for both situations.

Example: JCL for generating conversion images
The following JCL generates the conversions images required for z/OS Debugger.

This JCL is a variation of the JCL located at hlq.SCUNJCL(CUNJIUTL), which is provided by the Unicode
conversion services package.

//CUNMIUTL EXEC PGM=CUNMIUTL
//SYSPRINT DD SYSOUT=*
//SYSUDUMP DD SYSOUT=*
//SYSIMG DD DSN=UNI.IMAGES(CUNIMG01),DISP=SHR
//TABIN DD DSN=UNI.SCUNTBL,DISP=SHR
//SYSIN DD *
 /**/
 /* Conversion image input for z/OS Debugger in Remote */
 /* debug mode */
 /**/
 CONVERSION 1390,1208; /* IBM-930 to UTF-8,RECLM */
 CONVERSION 1208,1390; /* UTF-8 to IBM-930,RECLM */
 CONVERSION 1399,1208; /* IBM-939 to UTF-8,RECLM */
 CONVERSION 1208,1399; /* UTF-8 to IBM-939,RECLM */

300 IBM z/OS Debugger: Reference and Messages

 CONVERSION 933,1208; /* IBM-933 to UTF-8,RECLM */
 CONVERSION 1208,933; /* UTF-8 to IBM-933,RECLM */
 CONVERSION 1141,1208; /* IBM-1141 to UTF-8,RECLM */
 CONVERSION 1208,1141; /* UTF-8 to IBM-1141,RECLM */
 CONVERSION 1047,1208; /* IBM-1047 to UTF-8,RECLM */
 CONVERSION 1208,1141; /* UTF-8 to IBM-1141,RECLM */
 /**/
 /* Conversion image input for z/OS Debugger to modify COBOL NATIONAL */
 /* variables with the STORAGE command while in full screen mode */
 /**/
 CONVERSION 0037,1200; /*IBM-37 to UTF-16,RECLM */
/*

z/OS Debugger uses the character conversion services but not the case conversion or the normalization
services of Unicode conversion services. You do not need to include CASE or NORMALIZE control
statements unless other applications require them.

COMMANDSDSN
Indicates that you want z/OS Debugger to read a user's commands file (with the name of the data set
containing the commands file determined by the specified naming pattern) each time it starts. This works
in the following situation:

• You do not specify a data set name or DD name for the user's commands file using any other method;
for example, the TEST runtime option.

• You or your site specifies the EQAOPTS COMMANDSDSN command.
• The data set specified by the EQAOPTS COMMANDSDSN command exists and contains a member whose

name matches the initial load module name in the first enclave.

The following diagram describes the syntax of the COMMANDSDSN command:

EQAXOPT COMMANDSDSN , ' file_name_pattern '

, LOUD

file_name_pattern
Specifies a naming pattern that determines the name of the data set that contains the user's
commands file. Follow these guidelines when you create the naming pattern:

• Create a data set name that includes &&USERID. as one of the qualifiers. z/OS Debugger
substitutes the user ID of the current user for this qualifier when it determines the name of the
data set.

• Specify NULLFILE to indicate you do not want z/OS Debugger to process a commands file.

LOUD
Specifies that z/OS Debugger display WTO messages, which helps you debug processing done by this
command. z/OS Debugger normally does not display any messages if it does not find the data set
or data set member. If you are trying to determine why z/OS Debugger is not processing a user's
commands file, specify LOUD to see if it displays a message that it cannot find the data set or the
member.

If you choose to implement this option, users who want to use this function must create the commands
file as a PDS or PDSE with the allocation parameters that are described in "Data sets used by z/OS
Debugger" in the IBM z/OS Debugger User's Guide. Then, users create a member for each program that
they want to debug, with the name of the member matching the initial load module name in the first
enclave.

Example

EQAXOPT COMMANDSDSN,'&&USERID.DBGTOOL.COMMANDS'

If you log in with user ID jsmith, z/OS Debugger determines the name of the data set to be
JSMITH.DBGTOOL.COMMMANDS.

Chapter 6. EQAOPTS commands 301

DEFAULTVIEW
A user can control whether to display the statements of an assembler macro in the Source window
by entering the SET DEFAULT VIEW command. Every time a LOADDEBUGDATA command is run for an
assembler compile unit, z/OS Debugger uses the setting of this command to determine whether to display
the macro-generated statements. You can control the initial default for this setting by using the EQAOPTS
DEFAULTVIEW command.

The following diagram describes the syntax of the DEFAULTVIEW command:

EQAXOPT DEFAULTVIEW , STANDARD

NOMACGEN

Each of these fields corresponds to the similar field in the SET DEFAULT VIEW command. If you do not
code the EQAOPTS DEFAULTVIEW command, the initial setting for DEFAULTVIEW is STANDARD.

Example

EQAXOPT DEFAULTVIEW,NOMACGEN

DISABLERLIM
You can specify this command only in the EQAOPTS load module. It cannot be specified at run time.

You can specify this command to control whether or not z/OS Debugger disables Omegamon Resource
Limiting (RLIM) during debug sessions in a CICS region.

The following diagram describes the syntax of the DLAYDBG command:
EQAXOPT DISABLERLIM YES

NO

The following list describes the parameters of the DISABLERLIM command:
YES

Indicates that you want z/OS Debugger to disable RLIM processing during debug sessions; this is the
default value.

NO
Indicates that you do not want z/OS Debugger to disable RLIM processing.

Example

EQAXOPT DISABLERLIM,YES
EQAXOPT DISABLERLIM,NO

DLAYDBG
You can specify this command only in the EQAOPTS load module. The only exception to this rule is a
transaction executing in a private message region under the IMS Transaction Isolation Facility, which
accepts this command in EQAOPTS DD as well.

You can specify this command to enable z/OS Debugger to delay the starting of a debug session until z/OS
Debugger recognizes a certain program name or C function name (compile unit) (along with an optional
load module name).

This command can be used only in the non-CICS environments.

The following diagram describes the syntax of the DLAYDBG command:

EQAXOPT DLAYDBG , NO

YES

302 IBM z/OS Debugger: Reference and Messages

The following list describes the parameters of the DLAYDBG command:
NO

Indicates that you do not want delay debug enabled; this is the default value.
YES

Indicates that you want delay debug enabled.

If you choose to implement this option, users who want to use this option must create the delay debug
profile as a physical sequential data set by using the option B of the IBM z/OS Debugger Utilities: Delay
Debug Profile.

Usage notes

• This command does not support 64-bit programs.

Example

EQAXOPT DLAYDBG,NO
EQAXOPT DLAYDBG,YES

DLAYDBGCND
You can specify this command only in the EQAOPTS load module. It cannot be specified at run time.

You can use this command to indicate whether you want z/OS Debugger to monitor condition events in
the delay debug mode.

This command can be used only in the non-CICS environments.

The following diagram describes the syntax of the DLAYDBGCND command:

EQAXOPT DLAYDBGCND ,

ALL

NONE

The following list describes the parameters of the DLAYDBGCND command:
ALL

Indicates that you want z/OS Debugger to monitor all condition events. This is the default option.
NONE

Indicates that you do not want z/OS Debugger to monitor condition events.

Usage notes

• This command does not support 64-bit programs.

Example

EQAXOPT DLAYDBGCND,NONE

DLAYDBGDSN
You can specify this command only in the EQAOPTS load module. The only exception to this rule is a
transaction executing in a private message region under the IMS Transaction Isolation Facility, which
accepts this command in EQAOPTS DD as well.

You can specify this command to indicate that you want z/OS Debugger to use the specified naming
pattern when it constructs the delay debug profile data set name.

This command can be used only in the non-CICS environments.

The following diagram describes the syntax of the DLAYDBGDSN command:

EQAXOPT DLAYDBGDSN , ' file_name_pattern '

Chapter 6. EQAOPTS commands 303

file_name_pattern
Specifies a naming pattern that determines the name of the data set that contains the delay debug
profile. Follow this guideline when you create the naming pattern:

• Create a data set name that includes &&USERID. as one of the qualifiers. z/OS Debugger
substitutes the user ID of the current user for this qualifier when it determines the name of the
data set.

The default naming pattern is &&USERID.DLAYDBG.EQAUOPTS.

Usage notes

• This command does not support 64-bit programs.

Example

EQAXOPT DLAYDBGDSN,'&&USERID.DLAYDBG.EQAUOPTS';

DLAYDBGTRC
You can specify this command only in the EQAOPTS load module. The only exception to this rule is a
transaction executing in a private message region under the IMS Transaction Isolation Facility, which
accepts this command in EQAOPTS DD as well.

You can specify this command to indicate that you want z/OS Debugger to generate trace during the
pattern match process in the delay debug mode. z/OS Debugger uses the WTO (write to operator)
command to output the trace.

This command can be used only in the non-CICS environments.

The following diagram describes the syntax of the DLAYDBGTRC command:

EQAXOPT DLAYDBGTRC , trace_level

trace_level
Specifies a trace level that determines the level of traces that z/OS Debugger generates. Valid levels
are:

• 0 - no trace message; this is the default value.
• 1 - error and warning messages
• 2 - error, warning, and diagnostic messages
• 3 - error, warning, diagnostic, and internal diagnostic messages

Usage notes

• This command does not support 64-bit programs.

Example

EQAXOPT DLAYDBGTRC,2

DLAYDBGXRF
You can specify this command only in the EQAOPTS load module. The only exception to this rule is a
transaction executing in a private message region under the IMS Transaction Isolation Facility, which
accepts this command in EQAOPTS DD as well.

In this section, the term generic ID refers to a user ID that executes a task but is not the ID that debugs
the task. Common examples include the user ID associated with a WebSphere® MQ for z/OS trigger
monitor, or the user ID that runs a web services-initiated program.

You can use the DLAYDBGXRF command to map a generic ID to a user ID that is obtained from one of the
following sources:

304 IBM z/OS Debugger: Reference and Messages

• The Delay Debug cross reference file
• Users logged on to Terminal Interface Manager

The user ID that is obtained by this method is used in place of the current user ID when the delay debug
profile data set name is constructed.

The generic ID-to-user ID mapping can occur in the following environments:

• In the IMS environment when an IMS transaction is started with a generic ID.
• In the DB/2 stored procedures environment. This environment is supported by the REPOSITORY and

CLIENTID options.

The following diagram describes the syntax of the DLAYDBGXRF command:
EQAXOPT DLAYDBGXRF , DSN , 'file_name'

REPOSITORY

CLIENTID

DSN
Specifies that the generic ID cross reference file 'file_name' should be used to map the generic ID to
the user ID of the z/OS Debugger user.

REPOSITORY
Specifies that z/OS Debugger communicates with Terminal Interface Manager (TIM) to determine
whether a user has logged on to TIM and requested to debug the current IMS transaction or DB/2
stored procedure.

The REPOSITORY option requires that the debugging user ID be granted RACF authority to debug
tasks initiated by the generic ID. This is done via the EQADTOOL.GENERICID.generic_user_ID facility.
To set this up, use the following RACF commands:

RDEFINE EQADTOOL.GENERICID.generic_user_ID CLASS(FACILITY) UACC(NONE)
PERMIT EQADTOOL.GENERICID.generic_user_ID ID(user) ACC(READ)

The generic_user_ID can be a pattern.

The REPOSITORY option also requires that you start the Terminal Interface Manager started task
with the REPOSITORY option. See "Starting the Terminal Interface Manager" in IBM z/OS Debugger
Customization Guide for more information.

CLIENTID
Specifies that z/OS Debugger uses the DB/2 client user ID for a stored procedure call to determine
whether a remote debug user has requested to debug DB/2 stored procedures that execute with that
client user ID. If such a user exists, their user ID will be used to locate the delay debug profile data
set.

'file_name'
Specifies an MVS sequential data set with FB LRECL 80 characteristics.

Usage notes

• This command does not support 64-bit programs.

Example

EQAXOPT DLAYDBGXRF,DSN,'EQAW.TRNUSRID.XREF'
EQAXOPT DLAYDBGXRF,REPOSITORY

Refer to the following topics for more information related to the material discussed in this topic.

Related references
Debugging tasks running under a generic user ID in the IBM z/OS Debugger User's Guide

Chapter 6. EQAOPTS commands 305

DTCNDELETEDEADPROF
You can specify this command only in the EQAOPTS load module. It cannot be specified at run time.

This command controls the deletion of DTCN profiles. A dead profile is a profile whose owner has logged
off or disconnected from the CICS region.

DTCN scans its repository for dead profiles from time to time, and on demand when EQADCDEL is called.
When a dead profile is found, it deactivates the profile by default. You can specify DTCNDELETEDEADPROF
to delete the profile instead. The dead profile is deactivated or deleted by the INACTIVATE or DELETE
DTCN function.

The following diagram describes the syntax of the DTCNDELETEDEADPROF command:

EQAXOPT DTCNDELETEDEADPROF ,

NO

YES

NO
Indicates that you want DTCN not to delete the profile. NO is the default option.

YES
Indicates that you want DTCN to delete the profile.

Example

EQAXOPT DTCNDELETEDEADPROF,YES

DTCNFORCExxxx
You can specify these commands only in the EQAOPTS load module. You cannot specify them at run time.

If your users create debugging profiles with DTCN, you can use the DTCNFORCExxxx commands to
require that certain DTCN fields are not left blank. The following list describes each resource type you can
require each user to specify:

• DTCNFORCECUID or DTCNFORCEPROGID, which requires the user to specify the name of a compile unit
or compile units.

• DTCNFORCEIP, which requires the user to specify the IP name or address.
• DTCNFORCELOADMODID, which requires the user to specify the name of a load module or load

modules.
• DTCNFORCENETNAME, which requires the user to specify the four character name of a CICS terminal or

a CICS system.
• DTCNFORCETERMID, which requires the user to specify the CICS terminal.
• DTCNFORCETRANID, which requires the user to specify a transaction ID.
• DTCNFORCEUSERID, which requires the user to specify a user ID.

If any of the statements are not included, the statement defaults to NO.

The following diagram describes the syntax of the DTCNFORCExxxx command:

EQAXOPT DTCNFORCECUID ,

DTCNFORCEIP ,

DTCNFORCELOADMODID ,

DTCNFORCENETNAME ,

DTCNFORCETERMID ,

DTCNFORCETRANID ,

DTCNFORCEUSERID ,

YES

NO

306 IBM z/OS Debugger: Reference and Messages

YES
Indicates that the specified field is required.

NO
Indicates that the specified field is not required.

Examples

EQAXOPT DTCNFORCEUSERID,YES
EQAXOPT DTCNFORCETRANID,NO

DYNDEBUG
z/OS Debugger Reference and Messages describes how you use the SET DYNDEBUG command to enable
or disable dynamic debug mode in z/OS Debugger.

The initial default setting is DYNDEBUG ON. If you want to change the initial default setting, use the
EQAOPTS DYNDEBUG command.

The following diagram describes the syntax of the DYNDEBUG command:

EQAXOPT DYNDEBUG , ON

OFF

ON
Sets the initial default to DYNDEBUG ON.

OFF
Sets the initial default to DYNDEBUG OFF.

Usage notes

• This command does not support 64-bit programs.

Example

EQAXOPT DYNDEBUG,OFF

EQAQPP
You must specify this command to enable z/OS Debugger to debug MasterCraft Q++ programs, provided
by Tata Consultancy Services Ltd. For more information about how to enable z/OS Debugger to support
MasterCraft Q++, contact Tata Consultancy Services Ltd.

The following diagram describes the syntax of the EQAQPP command:

EQAXOPT EQAQPP , ON

OFF

ON
Indicates z/OS Debugger supports Q++ debugging.

OFF
Indicates z/OS Debugger does not support Q++ debugging. If you do not specify the EQAQPP
command, OFF is the default.

Usage notes

• This command does not support 64-bit programs.

Example

EQAXOPT EQAQPP,ON

Chapter 6. EQAOPTS commands 307

EXPLICITDEBUG
The IBM z/OS Debugger Reference and Messages describes how you use the SET EXPLICITDEBUG
command to enable explicit debug mode in z/OS Debugger. However, before you can enter the SET
EXPLICITDEBUG command, z/OS Debugger has already processed the initial load module and loaded the
debug data for the compile units it contains. If you want to enable explicit debug mode prior to processing
the initial load module, use the EQAOPTS EXPLICITDEBUG command.

The following diagram describes the syntax of the EXPLICITDEBUG command:

EQAXOPT EXPLICITDEBUG , ON

OFF

ON
Enables explicit debug mode.

OFF
Disables explicit debug mode. This is the default.

Example

EQAXOPT EXPLICITDEBUG,ON

GPFDSN
You can create a global preferences file that runs a set of z/OS Debugger commands at the start of all
z/OS Debugger sessions. For example, a global preferences file can have a command that sets PF keys
to specific values. If your site uses the PF6 key as the program exit key, you can specify the SET PF6
"EXIT" = QUIT; command, which assigns the z/OS Debugger QUIT command to the PF6 key, in the
global preferences file. (See "Customizing your full-screen session" in the IBM z/OS Debugger User's
Guide for a description of the interface features you can change.)

Whenever a user starts z/OS Debugger, z/OS Debugger processes the commands in the global
preferences file first. The user can also create his or her own preferences file and a commands file.
In this situation, z/OS Debugger processes the files in the following order:

1. Global preferences file
2. User preferences file
3. Commands file

To create a global preferences file, do the following steps:

1. Create a preferences file that is stored as a sequential file or a PDS member. Refer to IBM z/OS
Debugger User's Guide for a description of preferences files.

The rules for the preferences file are dependant on the programming language of the first program
z/OS Debugger encounters. Because you might not know what programming language z/OS Debugger
will encounter first, use the following rules when you create the preferences file:

• Put the commands in columns 8 - 72.
• Do not put line numbers in the file.
• Use COMMENT or /* */ to delimit comments.

2. Specify the GPFDSN command to indicate the name of the global preferences file.

For 'file_name', specify the name of the data set where the global preferences file will be stored.

The following diagram describes the syntax of the GPFDSN command:

EQAXOPT GPFDSN

, ' file_name '

308 IBM z/OS Debugger: Reference and Messages

'file_name'
The name of the data set where you stored the global preferences file.

Examples

EQAXOPT GPFDSN,’GROUP1.COMMON.DTOOL.PREFS’
EQAXOPT GPFDSN

HOSTPORTS
You can specify this command only in the EQAOPTS load module. It cannot be specified at run time. To
use this command in the CICS environment, you must be using the TCP/IP Socket Interface for CICS. For
instructions on activating the TCP/IP Socket Interface for CICS, see the z/OS Communications Server IP
CICS Sockets Guide.

You can use this command to specify a host port or range of ports for a TCP/IP connection from the host
to a workstation when using remote debug mode.

The following diagram describes the syntax of the HOSTPORTS command:
EQAXOPT HOSTPORTS

, port_number

, port_number_range

, (

,

port_number

port_number_range

)

port_number
A positive integer (1-32767) identifying a TCP/IP port number.

port_number_range
The first and last port_number identifying a range of port numbers, separated by a hyphen (-).

Examples

EQAXOPT HOSTPORTS,29500-30499
EQAXOPT HOSTPORTS,(29500-30499,31500-32499)

IGNOREODOLIMIT
This command tells z/OS Debugger to display COBOL table data items even when an ODO value is out of
range, and to suppress the following messages:
MFI and batch:

EQA1471E Incorrect value for ODO variable data item
Remote:

EQA2377E Invalid data.

The following diagram describes the syntax of the IGNOREODOLIMIT command:

EQAXOPT IGNOREODOLIMIT , YES

NO

YES
Indicates that z/OS Debugger should display the requested table data item even when an ODO value
is out of range, and to suppress issuing EQA1471E or EQA2377E.

Chapter 6. EQAOPTS commands 309

NO
Indicates that z/OS Debugger should not display the requested table data item when an ODO value is
out of range, and to issue EQA1471E or EQA2377E.

Examples

EQAXOPT IGNOREODOLIMIT,YES
EQAXOPT IGNOREODOLIMIT,NO

Notes:

• The default setting is NO.
• IGNOREODOLIMIT only affects the behaviour of z/OS Debugger if the compilation unit was compiled

with one of the following compilers:

– COBOL for OS/390 & VM Version 2 (5648-A25)
– Enterprise COBOL for z/OS and OS/390 Version 3 (5655-G53)
– Enterprise COBOL for z/OS Version 4 (5655-S71)

• IGNOREODOLIMIT is ignored for LangX COBOL.

IMSISOORIGPSB
Note: This command is deprecated. It is accepted for compatibility but has no effect. The original PSB is
always preserved.

You can specify this command only in the EQAOPTS load module. It cannot be specified at run time. For
the command to take effect, the EQAOPTS load module that contains it must be in the search path of the
IMS control region.

This command instructs the IMS Transaction Isolation Facility to preserve the original PSB of the
transaction when a message is routed to a private message processing region.

For example, if you register to debug conversational transaction IVTCB, and the private message class
121 is assigned to you, a message routed to your private message processing region will be sent to
transaction EQAC1211. Ordinarily, the PSB name for EQAC1211 is EQAT1211. With IMSISOORIGPSB in
effect, EQAC1211 is changed to associate the PSB name with IVTCB, DFSIVP34.

The following diagram describes the syntax of the IMSISOORIGPSB command:

EQAXOPT IMSISOORIGPSB , YES

NO

YES
Indicates that you want IMS Isolation to preserve the original PSB of the transaction when a message
is routed to a private message. IMS Transaction Isolation bypasses its normal operations for bringing
up the transaction under the control of the debugger. Therefore, the debugger starts only for Language
Environment-enabled programs.

NO
Indicates that you want IMS Isolation not to preserve the original PSB of the transaction when a
message is routed to a private message. NO is the default setting.

LOGDSN
By default, z/OS Debugger handles the log file data set in one of the following ways:

• In a non-CICS environment, when z/OS Debugger starts in batch mode or full-screen mode, and you
allocate the INSPLOG DD name, z/OS Debugger runs the command SET LOG ON FILE INSPLOG OLD
and starts writing the log to INSPLOG.

310 IBM z/OS Debugger: Reference and Messages

• In a CICS environment, when z/OS Debugger starts in full-screen mode, it runs the command SET
LOG OFF. If you want a log file, you run the command SET LONG ON FILE fileid OLD and z/OS
Debugger starts writing the log to fileid.

LOGDSN allows a site or a user to specify the default data set name for the log file. If you specify the
LOGDSN command, z/OS Debugger handles the log file in the following way:

• In a non-CICS environment, when z/OS Debugger starts in batch mode or full-screen mode, and you
allocate the INSPLOG DD name, z/OS Debugger runs the command SET LOG ON FILE INSPLOG OLD
and starts writing the log to INSPLOG . This behavior remains the same.

• In a non-CICS environment, when z/OS Debugger starts in full-screen mode, if you do not allocate the
INSPLOG DD name, z/OS Debugger runs the command SET LOG ON FILE fileid OLD and starts
writing the log to the data set specified in the LOGDSN command.

• In CICS, when z/OS Debugger starts in full-screen mode, it runs the command SET LOG ON FILE
fileid OLD and starts writing the log to the data set specified in the LOGDSN command.

This allows a user to always write the log file to a data set, whether in CICS or not, and without having to
pre-allocate the log file data set.

For instructions on how to specify the allocation parameters for automatically creating the data set, see
“LOGDSNALLOC” on page 312. Use the EQAOPTS LOGDSN and LOGDSNALLOC commands to help a new
z/OS Debugger user automatically create and write to the log file.

If you are an existing z/OS Debugger user that uses a SAVESETS data set, and you or your site specify
the EQAOPTS commands LOGDSN and LOGDSNALLOC, then the SAVESETS data set contains a SET LOG
command that overrides the EQAOPTS command LOGDSN.

The following diagram describes the syntax of the LOGDSN command:

EQAXOPT LOGDSN , ' file_name_pattern '

, LOUD

file_name_pattern
Specifies a naming pattern that determines the name of the data set that contains the log file. Follow
these guidelines when you create the naming pattern:

• Create a data set name that includes &&USERID. as one of the qualifiers. z/OS Debugger
substitutes the user ID of the current user for this qualifier when it determines the name of the
data set.

• Specify NULLFILE to indicate you do not want z/OS Debugger to write to a log file.

LOUD
Specifies that z/OS Debugger display WTO messages, which helps you debug processing done by this
command. z/OS Debugger normally does not display any messages if it does not find the data set. If
you are trying to determine why z/OS Debugger is not writing to this log file, specify LOUD to see if it
displays any messages.

If you choose to implement this option, users who want to use the EQAOPTS LOGDSN command must
create a log file in one of the following ways:

• Instruct z/OS Debugger to create the log file by specifying the EQAOPTS LOGDSNALLOC command, as
described in “LOGDSNALLOC” on page 312.

• Create the log file manually with the allocation parameters that are described in "Data sets used by
z/OS Debugger" in the IBM z/OS Debugger User's Guide .

Example

EQAXOPT LOGDSN,'&&USERID.DBGTOOL.LOG'

If you log in with user ID jsmith, z/OS Debugger determines the name of the data set to be
JSMITH.DBGTOOL.LOG.

Chapter 6. EQAOPTS commands 311

LOGDSNALLOC
Indicates that you want z/OS Debugger to create the log file data set specified by EQAOPTS LOGDSN
command if it does not exist. You specify the EQAOPTS LOGDSNALLOC command with the corresponding
allocation parameters for the data set, which z/OS Debugger uses when it creates the data set.

The following diagram describes the syntax of the LOGDSNALLOC command:

EQAXOPT LOGDSNALLOC , ' allocation_parms '

, LOUD

allocation_parms
Specifies the allocation parameters you want z/OS Debugger to use when it creates the data set. You
can specify only the keys in the following list:

• BLKSIZE
• BLOCK
• CYL
• DATACLAS
• DIR
• DSNTYPE
• DSORG
• LRECL
• MGMTCLAS
• RECFM
• SPACE
• STORCLAS
• TRACKS
• UNIT
• VOL

Separate the keys by one or more blanks. z/OS Debugger does not provide defaults for any of the keys.

For information on the format of the keys, see the chapter "BPXWDYN: a text interface to dynamic
allocation and dynamic output" in the z/OS Using REXX and z/OS UNIX System Services manual.
Specify that the data set be sequential. To learn about other formatting rules for the log file, see "Data
sets used by z/OS Debugger" of the IBM z/OS Debugger User's Guide.

LOUD
Specifies that z/OS Debugger display WTO messages, which helps you debug processing done by this
command. z/OS Debugger normally does not display any messages when it creates this data set. If
you are trying to determine why the log file was not created, specify LOUD to view any messages.

Example

EQAXOPT LOGDSNALLOC,'MGMTCLAS(STANDARD) STORCLAS(DEFAULT) +
 LRECL(72) BLKSIZE(0) RECFM(F,B) DSORG(PS) SPACE(2,2) +

CYL'

MAXTRANUSER
You can specify this command only in the EQAOPTS load module. It cannot be specified at run time.

The MAXTRANUSER command defines the maximum number of IMS transactions that a single user can
register to debug using the IBM Transaction Isolation Facility. If this command is not specified, the default
value of 15 will be used.

312 IBM z/OS Debugger: Reference and Messages

The following diagram describes the syntax of the MAXTRANUSER command:

EQAXOPT MAXTRANUSER , max_trans

max_trans
An integer value between 1 and 15 to designate the maximum number of transactions a user can
register to debug.

MDBG
If you are using z/OS XL C/C++, Version 1.10 or later, you can indicate that z/OS Debugger always
searches for .mdbg files to retrieve the source and debug information by using the MDBG command.

The following diagram describes the syntax of the MDBG command:

EQAXOPT MDBG , YES

NO

YES
Indicates that z/OS Debugger searches for .mdbg files.

NO
Indicates that z/OS Debugger does not search for .mdbg files.

When you set MDBG to YES, z/OS Debugger retrieves the debug information from an .mdbg file and does
not try to find the debug information from the following sources, even if they exist:

• a .dbg file
• if the program was compiled with the ISD compiler option, the object

If you do not specify MDBG or set it to NO, z/OS Debugger retrieves the debug information from either
the .dbg file or, if the program was compiled with the ISD compiler option, the object.

Example

EQAXOPT MDBG,YES

MULTIPROCESS
Controls the behavior of z/OS Debugger when a new POSIX process is created by a fork() or exec()
function in the application.

With the MULTIPROCESS command, you can instruct z/OS Debugger to perform any of the following tasks
when a new POSIX process is created:

• Continue debugging the current process. The current process is also referred to as the PARENT process.
• Stop debugging the current process and start debugging the newly created process. The newly created

process is also referred to as the CHILD process.
• Prompt you to decide whether to follow the PARENT or CHILD process.

Note: The MULTIPROCESS command applies only to remote debug mode.

The following diagram describes the syntax of the MULTIPROCESS command:

EQAXOPT MULTIPROCESS ,

PARENT

CHILD

PROMPT

, EXEC=

NONE

ANY

The following list describes the parameters of the MULTIPROCESS command:

Chapter 6. EQAOPTS commands 313

PARENT
Indicates that z/OS Debugger continues with the current debug session; that is, z/OS Debugger
follows the PARENT process.

CHILD
Indicates that z/OS Debugger stops debugging the current process and starts debugging the newly
created process; that is, z/OS Debugger follows the CHILD process.

PROMPT
Indicates that the remote debug GUI prompts you to decide whether to follow the PARENT or CHILD
process.

EXEC=ANY
Indicates that z/OS Debugger debugs any process that is reinitialized by the exec() function.

EXEC=NONE
Indicates that z/OS Debugger does not debug a process that is reinitialized by the exec() function. If
you do not specify the EXEC option, the default setting is EXEC=NONE.

Examples

• Specify that z/OS Debugger follows the PARENT process and debugs the new process that is created by
the exec() function.

EQAXOPT MULTIPROCESS,PARENT,EXEC=ANY

• Specify that z/OS Debugger follows the CHILD process and does not debug the new process that is
created by the exec() function.

EQAXOPT MULTIPROCESS,CHILD,EXEC=NONE

• Specify that you are prompted to choose whether to follow the PARENT or CHILD process and z/OS
Debugger does not debug the new process that is created by the exec() function.

EQAXOPT MULTIPROCESS,PROMPT

NAMES
The topic "Solving Problems in Complex Applications" in the IBM z/OS Debugger User's Guide in the
describes how the NAMES command can be used to perform several specific functions dealing with load
module and compile unit names recognized by z/OS Debugger. However, the NAMES command cannot be
used to alter the behavior of load module or compile unit names that have already been seen by z/OS
Debugger at the time the NAMES command is processed.

If it becomes necessary to perform these functions on the initial load module processed by z/OS
Debugger or on any of the compile units contained in that load module, you must provide the information
(that would otherwise have been specified using the NAMES command) through the EQAOPTS NAMES
command.

One or more invocations of the EQAOPTS NAMES command can be used for this purpose.

The following diagram describes the syntax of the NAMES command:

EQAXOPT NAMES , EXCLUDE , LOADMOD

CU

, pattern

INCLUDE , LOADMOD

CU

, name

Each of these fields corresponds to the similar parameter in the z/OS Debugger NAMES command. If you
use an asterisk (*) in pattern to indicate a wildcard, you must enclose pattern in apostrophes.

314 IBM z/OS Debugger: Reference and Messages

Examples

EQAXOPT NAMES,EXCLUDE,LOADMOD,’ABC1*’
EQAXOPT NAMES,EXCLUDE,CU,MYCU22
EQAXOPT NAMES,EXCLUDE,CU,’MYCU*’
EQAXOPT NAMES,INCLUDE,LOADMOD,CEEMYMOD
EQAXOPT NAMES,INCLUDE,CU,EQATESTP

NODISPLAY
In the following two situations, in which a user can request a specific user interface, that interface might
not be available:

• Full-screen mode using the Terminal Interface Manager. If the terminal is not available, the program
being debugged terminates with a U4038 abend.

• Remote debugger. If the remote debugger is not available, z/OS Debugger will use full-screen mode if
the user is running under TSO. If the user is not running under TSO, z/OS Debugger will use batch mode.

In both cases, Write To Operator (WTO) messages also appear.

You can modify these behaviors by specifying the EQAOPTS NODISPLAY command so that z/OS Debugger
continues processing as if the user immediately entered a QUIT DEBUG command. This modification
prevents any forced abend or prevents the debugger from starting.

The following diagram describes the syntax of the NODISPLAY command:

EQAXOPT NODISPLAY , QUITDEBUG

DEFAULT

DEFAULT
z/OS Debugger follows the default behavior.

QUITDEBUG
z/OS Debugger displays a message that indicates that z/OS Debugger will quit, and that the user
interface could not be used. z/OS Debugger processing continues as if the user entered a QUIT
DEBUG command.

Example

EQAXOPT NODISPLAY,QUITDEBUG

PREFERENCESDSN
Indicates that you want z/OS Debugger to read a user's preferences file (with the name of the data set
containing the preferences file determined by the specified naming pattern) each time it starts. This works
in the following situation:

• You do not specify a data set name or DD name for the user's preferences file using any other method;
for example, the TEST runtime option.

• In a non-CICS environment, you do not allocate ISPPPREF DD.
• You or your site specifies the PREFERENCESDSN command.
• The data set specified by the PREFERENCESDSN command exists.

The following diagram describes the syntax of the PREFERENCESDSN command:

EQAXOPT PREFERENCESDSN , ' file_name_pattern '

, LOUD

file_name_pattern
Specifies a naming pattern that determines the name of the data set that contains the preferences
file. Follow these guidelines when you create the naming pattern:

Chapter 6. EQAOPTS commands 315

• Create a data set name that includes &&USERID. as one of the qualifiers. z/OS Debugger
substitutes the user ID of the current user for this qualifier when it determines the name of the
data set.

• Specify NULLFILE to indicate you do not want z/OS Debugger to process a preferences file.

LOUD
Specifies that z/OS Debugger display WTO messages, which helps you debug processing done by this
command. z/OS Debugger normally does not display any messages if it does not find the data set. If
you are trying to determine why z/OS Debugger is not processing your preferences file, specify LOUD
to see if it displays any messages about not finding the data set.

If you choose to implement this option, users who want to use this function must create the preferences
file as a sequential data set with the allocation parameters that are described in "Data sets used by z/OS
Debugger" in the IBM z/OS Debugger User's Guide.

Example

EQAXOPT PREFERENCESDSN,'&&USERID.DBGTOOL.PREFS'

If you log in with user ID jsmith, z/OS Debugger determines the name of the data set to be
JSMITH.DBGTOOL.PREFS.

SAVEBPDSN, SAVESETDSN
You can modify the default names of the data sets used to save and restore settings and breakpoints,
monitor values, and LOADDEBUGDATA (LDD) specifications. The following list describes the initial default
names:

• For settings: userid.DBGTOOL.SAVESETS
• For breakpoints, monitor values, and LOADDEBUGDATA (LDD) specifications:
userid.DBGTOOL.SAVEBPS

To change the default name for either or both of these data sets, you need to specify the EQAOPTS
SAVESETDSN and SAVEBPDSN commands, along with a corresponding naming pattern for the data set.

The following diagram describes the syntax of the SAVESETDSN and SAVEBPDSN commands:

EQAXOPT SAVEBPDSN

SAVESETDSN

, ' file_name_pattern '

file_name_pattern
Specifies a naming pattern for the data set that stores this information.

In most environments, you should choose one of the following rules for the naming pattern:

• Any data set name that includes &&USERID. as one of the qualifiers. z/OS Debugger substitutes the
user ID of the current user for this qualifier when it creates the data set.

• A DD name (Reminder: DD names are not supported under CICS)
• The string NULLFILE to indicate that saving and restoring this information is not supported

Examples

EQAXOPT SAVESETDSN,'CICS.DTDATA.&&USERID.SAVSET'
EQAXOPT SAVEBPDSN,'&&USERID.USERDATA.DTOOL.SAVBPMON';

SAVESETDSNALLOC, SAVEBPDSNALLOC
Indicates that you want z/OS Debugger to create the data sets for SAVESETS, SAVEBPS, or both (specified
by EQAOPTS SAVESETDSN or SAVEBPDSN commands) if they do not exist. You specify the EQAOPTS
SAVESETDSNALLOC and SAVEBPDSNALLOC commands with the corresponding allocation parameters for
the data sets, which z/OS Debugger uses when it creates the data sets. After creating each data set, z/OS

316 IBM z/OS Debugger: Reference and Messages

Debugger runs commands that save the information (settings, breakpoints, monitors, preferences, and
LDD specifications) in the corresponding data set.

The following diagram describes the syntax of the SAVEBPDSNALLOC and SAVESETDSNALLOC
commands:

EQAXOPT SAVEBPDSNALLOC

SAVESETDSNALLOC

, ' allocation_parms '

, LOUD

allocation_parms
Specifies the allocation parameters you want z/OS Debugger to use when it creates the data set. You
can specify only the keys in the following list:

• BLKSIZE
• BLOCK
• CYL
• DATACLAS
• DIR
• DSNTYPE
• DSORG
• LRECL
• MGMTCLAS
• RECFM
• SPACE
• STORCLAS
• TRACKS
• UNIT
• VOL

Separate the keys by one or more blanks. z/OS Debugger does not provide defaults for any of the keys.

For information on the format of the keys, see the chapter "BPXWDYN: a text interface to dynamic
allocation and dynamic output" in the z/OS Using REXX and z/OS UNIX System Services manual.
Specify that the data set be sequential for SAVESETS; a PDS or PDSE for SAVEBPS. To learn about
other formatting rules for these files, see "Data sets used by z/OS Debugger" of the IBM z/OS
Debugger User's Guide.

LOUD
Specifies that z/OS Debugger display WTO messages, which helps you debug processing done by this
command. z/OS Debugger normally does not display any messages when it creates these data sets. If
you are trying to determine why the data sets were not created, specify LOUD to view any messages.

z/OS Debugger does the following tasks when you specify these commands:

1. If you specified the SAVESETDSNALLOC command, it creates the SAVESETS data set.
2. If it creates the SAVESETS data set successfully, it runs the following commands:

SET SAVE SETTINGS AUTO;
SET RESTORES SETTINGS AUTO;

If it did not create the SAVESETS data set successfully, it skips the rest of these steps and does the
next processing task.

3. If you specified the SAVEBPDSNALLOC command, it creates the SAVEBPS data set.
4. If it creates the SAVEBPS data set successfully, it runs the following commands:

Chapter 6. EQAOPTS commands 317

SET SAVE BPS AUTO;
SET SAVE MONITORS AUTO;
SET RESTORE BPS AUTO;
SET RESTORE MONITORS AUTO;

In a CICS environment, review the performance implications discussed in the "Performance
considerations in multi-enclave environments" section of the "Using full-screen mode: overview" topic
in the IBM z/OS Debugger User's Guide before choosing to implement the SAVEBPDSNALLOC command.
If you think the performance implications might adversely affect your site, do not implement the
SAVEBPDSNALLOC command in the EQAOPTS for CICS.

Example

 EQAXOPT SAVESETDSNALLOC,'MGMTCLAS(STANDARD) STORCLAS(DEFAULT) +
 LRECL(3204) BLKSIZE(0) RECFM(V,B) DSORG(PS) SPACE(2,2) +
 TRACKS'
 EQAXOPT SAVEBPDSNALLOC,'MGMTCLAS(STANDARD) STORCLAS(DEFAULT) +
 LRECL(3204) BLKSIZE(0) RECFM(V,B) DSORG(PO) +
 DSNTYPE(LIBRARY) SPACE(1,3) CYL'

SESSIONTIMEOUT
You can specify this command only in the EQAOPTS load module. It cannot be specified at run time.

You can establish a timeout for idle z/OS Debugger sessions that use the Terminal Interface Manager.
Timed out sessions are canceled after a specified period of no user activity.

The following diagram describes the syntax of the SESSIONTIMEOUT command:
EQAXOPT SESSIONTIMEOUT , NEVER

QUITDEBUG , hhmmssnn

QUIT , hhmmssnn

NEVER
No timeout is enforced. Unattended sessions will not be canceled.

QUITDEBUG,hhmmssnn
Sessions left unattended for the specified time interval will be canceled, and the process being
debugged will proceed as though the QUIT DEBUG command had been entered.

The time interval is expressed as hhmmssnn, where

• hh is the number of hours,
• mm is the number of minutes,
• ss is the number of seconds,
• nn is the number of hundredths of seconds.

QUIT,hhmmssnn
Sessions left unattended for the specified time interval will be canceled, and the process being
debugged will be terminated with a U4038 abend, as though the QUIT ABEND command had been
entered.

The time interval is expressed as hhmmssnn, where

• hh is the number of hours,
• mm is the number of minutes,
• ss is the number of seconds,
• nn is the number of hundredths of seconds.

If the command is not specified in the EQAOPTS load module, the default behavior is "NEVER", which
means that any full-screen mode session using Terminal Interface Manager left unattended will not be
canceled.

318 IBM z/OS Debugger: Reference and Messages

Example

To specify a timeout interval of 1 hour and allow the debugged process to proceed after the debug session
is canceled, enter the following EQAOPTS command:

EQAXOPT SESSIONTIMEOUT,QUITDEBUG,01000000

STARTSTOPMSG
This command controls whether to issue a message when each debugging session is initiated or
terminated. By default, these messages are not issued.

The following diagram describes the syntax of the STARTSTOPMSG command:
EQAXOPT STARTSTOPMSG , ALL

NONE

CICS

TSO

BATCHTSO

IMS

OTHER

(

,

CICS

TSO

BATCHTSO

IMS

OTHER

)

, WTO

The following list describes the parameters of the STARTSTOPMSG command:
ALL

Indicates that the start/stop messages should be written in all environments.
NONE

Indicates that no start/stop messages should be written. If you do not specify EQAOPTS
STARTSTOPMSG, the default option is NONE.

CICS
Indicates that the start/stop messages should be written in the CICS environment.

TSO
Indicates that the start/stop messages should be written in the TSO environment.

BATCHTSO
Indicates that the start/stop messages should be written in the BATCH TSO environment.

IMS
Indicates that the start/stop messages should be written when running under IMS. In addition, an
informational message that contains the IMS system ID, region ID, and transaction ID is written.

OTHER
Indicates that the start/stop messages should be written in all other environments, such as MVS
batch.

WTO
Indicates that the start/stop messages should be written to the system log using a WTO.

Chapter 6. EQAOPTS commands 319

Examples

EQAXOPT STARTSTOPMSG,ALL,WTO
EQAXOPT STARTSTOPMSG,(TSO,OTHER),WTO

STARTSTOPMSGDSN
You can specify this command only in the EQAOPTS load module. It cannot be specified at run time.

You can use this command to indicate that you want z/OS Debugger to write a message in the message
file when the debug session is started and stopped.

The following diagram describes the syntax of the STARTSTOPMSGDSN command:
EQAXOPT STARTSTOPMSGDSN , 'file_name'

, LOUD

'file_name'
Specifies an MVS sequential data set with FB LRECL 80 characteristics. It is recommended that
you allocate sufficient space for the file and perform regular maintenance by removing outdated
messages. In a CICS environment, the region owner must have the update authority to the data set.

LOUD
Specifies that z/OS Debugger displays WTO messages, which help you debug processing done by this
command. z/OS Debugger normally does not display any messages when it operates on the data set.
If you try to determine problems related to the data set, specify LOUD to view any related messages.

Example

EQAXOPT STARTSTOPMSGDSN,'EQAW.SSMSG.LOG'

SUBSYS
If both of the following conditions apply at your site, you need to use the EQAOPTS SUBSYS command:

• The source code is managed by a library system that requires that you specify the
SUBSYS=library_subsystem_name allocation parameter when you allocate a data set.

• Your users are debugging C or C++ programs without using the EQAOPTS MDBG command or debugging
Enterprise PL/I programs compiled without the SEPARATE suboption of the TEST compiler option.

In this case, you must run z/OS Debugger and the specified subsystem on the same system.

You cannot use SUBSYS to debug programs that run under CICS.

The following diagram describes the syntax of the SUBSYS command:

EQAXOPT SUBSYS

, ' four_character_name '

four_character_name
Specifies the subsystem name to be used.

Examples

EQAXOPT SUBSYS
EQAXOPT SUBSYS,’SBSX’

SVCSCREEN
In a non-CICS environment, z/OS Debugger requires SVC screening for the following situations:

• Invoking z/OS Debugger by using EQANMDBG to debug programs that start outside Language
Environment including non-Language Environment COBOL programs.

320 IBM z/OS Debugger: Reference and Messages

• Debugging programs that do not run in Language Environment and are started by programs that begin in
Language Environment.

• Debugging LangX COBOL programs.
• Detecting services such as MVS LINK, LOAD, DELETE and ATTACH.

If you need to run z/OS Debugger in any of the following situations, you must specify the actions that z/OS
Debugger must take regarding SVC screening:

• Start z/OS Debugger by using EQANMDBG in an environment that already uses SVC screening.
• Run z/OS Debugger when debugging programs that do not run in Language Environment and are started

by programs that begin in Language Environment.
• Run z/OS Debugger when debugging LangX COBOL programs.
• Run z/OS Debugger when you need to detect services such as MVS LINK, LOAD and DELETE.
• Run z/OS Debugger when you debug subtasks within a multi-tasked application, where subtasks are

started by using the ATTACH assembler macro.
• Run z/OS Debugger in a situation that requires SVC screening and SVC screening is already in use

by a program with which z/OS Debugger supports MERGE SVC screening as described by the MERGE
operand that follows.

The following diagram describes the syntax of the SVCSCREEN command:

EQAXOPT SVCSCREEN , ON

OFF

(OFF , QUIET)

, CONFLICT =

OVERRIDE

NOOVERRIDE

,

NOMERGE

MERGE

= (COPE)

ON
Indicates that you want z/OS Debugger to use SVC screening in order to support MVS LOAD, DELETE,
and LINK SVCs.

OFF
Indicates that you want z/OS Debugger to not use SVC screening. z/OS Debugger will not know about
programs started through MVS LOAD, DELETE, and LINK SVCs. If you start z/OS Debugger by using the
EQANMDBG program, the OFF setting is ignored.

QUIET
Suppresses message EQA2458I, which is written to the z/OS Debugger log when SVC screening is
disabled by default.

CONFLICT=
Specifies what you want z/OS Debugger to do when ON is specified or defaulted and SVC screening is
already used by another program.

OVERRIDE
Indicates that you want z/OS Debugger to override the current SVC screening and take control of SVC
screening.

NOOVERRIDE
Indicates that if SVC screening is already in use, z/OS Debugger does not initiate SVC screening and
proceeds as if OFF were specified.

NOMERGE
Indicates that SVC screening is not to be merged with SVC screening used by any other product.
NOMERGE is the default.

Chapter 6. EQAOPTS commands 321

MERGE
Indicates that when SVC screening is already being used by another program when z/OS Debugger
starts, z/OS Debugger saves the current SVC screening environment, then enables SVC screening for
both z/OS Debugger and the other program. When z/OS Debugger terminates, it restores the original
SVC screening environment.

Currently, z/OS Debugger supports the MERGE command with only one other program: COPE.

If you specify the MERGE command and z/OS Debugger does not recognize the program that is using
the SVC screening, the MERGE command is ignored and z/OS Debugger starts based on the value of
the CONFLICT option.

MERGE=(COPE)
If COPE is active, z/OS Debugger saves the current SVC screening environment, then enables SVC
screening for both z/OS Debugger and COPE. When z/OS Debugger terminates, it restores COPE's SVC
screening environment.

If COPE is not active, z/OS Debugger starts based on the value of the CONFLICT option.

The default parameters for the EQAOPTS SVCSCREEN command is one of the following situations:

• If z/OS Debugger is started by using the EQANMDBG program:
SVCSCREEN,ON,CONFLICT=NOOVERRIDE,NOMERGE

• If z/OS Debugger is started by any other method:
SVCSCREEN,OFF,CONFLICT=NOOVERRIDE,NOMERGE

Use Table 13 on page 322 as a guide to select the appropriate suboptions.

Usage notes

• This command does not support 64-bit programs.

Example

EQAXOPT SVCSCREEN,ON,CONFLICT=OVERRIDE,NOMERGE
EQAXOPT SVCSCREEN,OFF,CONFLICT=NOOVERRIDE,NOMERGE

Combinations of suboptions for the EQAOPTS SVCSCREEN command
The following table shows examples of combinations of suboptions for the EQAOPTS SVCSCREEN
command:

Table 13. Combination of SVSCREEN options and their effects

SVCSCREEN options Type of z/OS Debugger session Action

OFF,CONFLICT=NOOVERRIDE
(default)

z/OS Debugger started by using
EQANMDBG

Same as for
ON,CONFLICT=NOOVERRIDE.

z/OS Debugger started by any other
method

• z/OS Debugger does not enable
its SVC screening.

• You cannot debug programs
that do not run in Language
Environment which were started
by programs that do run in
Language Environment.

• z/OS Debugger does not detect
the MVS services LINK, LOAD and
DELETE.

• The CONFLICT setting is ignored
when the OFF setting is specified.

322 IBM z/OS Debugger: Reference and Messages

Table 13. Combination of SVSCREEN options and their effects (continued)

SVCSCREEN options Type of z/OS Debugger session Action

OFF,CONFLICT=OVERRIDE z/OS Debugger started by using
EQANMDBG

Same as for
ON,CONFLICT=OVERRIDE.

z/OS Debugger started by any other
method

Same as for
OFF,CONFLICT=NOOVERRIDE.

The CONFLICT setting is ignored
when the OFF setting is specified.

ON,CONFLICT=NOOVERRIDE z/OS Debugger started by using
EQANMDBG

If SVC screening is active,
z/OS Debugger terminates. If
SVC screening is not active,
z/OS Debugger enables its SVC
screening, runs the debugging
session, and disables its SVC
screening after the debugging
session ends.

z/OS Debugger started by any other
method

If SVC screening is active, z/OS
Debugger does not enable its
SVC screening. You cannot debug
programs that do not run in
Language Environment which were
started by programs that do run
in Language Environment. z/OS
Debugger does not detect the MVS
services LINK, LOAD and DELETE.

If SVC screening is not active,
z/OS Debugger enables its SVC
screening, runs the debugging
session, and disables its SVC
screening after the debugging
session ends.

ON,CONFLICT=OVERRIDE z/OS Debugger started by using
EQANMDBG

If any SVC screening is active
and the NOMERGE option is in
effect, z/OS Debugger overrides
the existing SVC screening. This
is also the default behavior.
z/OS Debugger enables its SVC
screening, runs the debugging
session, and disables its SVC
screening after the debugging
session ends. If any SVC screening
was active, z/OS Debugger restores
the previous SVC screening. If you
specify the MERGE option, see the
following information about MERGE.

z/OS Debugger started by any other
method

TCPIPDATADSN
You can specify this command only in the EQAOPTS load module. It cannot be specified at run time.

You can use this command to instruct z/OS Debugger to dynamically allocate the specified 'file_name' to
DDNAME SYSTCPD (if SYSTCPD is not already allocated). This provides the data set name for TCPIP.DATA
when no GLOBALTCPIPDATA statement is configured in the system TCP/IP options.

Chapter 6. EQAOPTS commands 323

The following diagram describes the syntax of the TCPIPDATADSN command:
EQAXOPT TCPIPDATADSN

, 'file_name'

Example

EQAXOPT TCPIPDATADSN,'SYS2.TCPIP.DATA'

EQAXOPT TCPIPDATADSN,'SYS2.TCPIP.PARMLIB(TCPDATA)'

If you want to use an alternative TCP/IP stack, you can add an entry to the specified TCPIP.DATA dataset
with a TCPIPJOBNAME statement.

system_name:

TCPIPJOBNAME TCPIP

TCPIPJOBNAME tcpip_proc

Example

To specify TCPIPA as the name of the procedure that was used to start the TCP/IP address space, add the
following code to the specified TCPIP.DATA dataset:

TCPIPJOBNAME TCPIPA

THREADTERMCOND
You can indicate that z/OS Debugger should not prompt the user when a FINISH, CEE066, or CEE067
thread termination condition is raised by Language Environment, regardless of the suboptions used in the
TEST runtime option. These conditions are raised by statements like STOP RUN, GOBACK, or EXEC CICS
RETURN, which can occur frequently in an application program. Suppressing the display of these prompts
can reduce the number of times your users are interrupted by this prompt during a debugging session.

The following diagram describes the syntax of the THREADTERMCOND command:

EQAXOPT THREADTERMCOND , NOPROMPT

PROMPT

NOPROMPT
Suppress the display of termination prompts.

PROMPT
Prompts the user at termination. If you do nto specify the THREADTERMCOND command, the default
PROMPT is used.

Example

EQAXOPT THREADTERMCOND,NOPROMPT

TIMACB
You can include this command only in the EQAOPTS load module. You cannot specify it at run time.

TIMACB identifies the name of an ACB, other than EQASESSM, that z/OS Debugger uses to make full-
screen mode using the Terminal Interface Manager work in an environment where you want to run the
Terminal Interface Manager on more than one LPAR in the same VTAM network. You specify TIMACB as
the last step in "Example: Defining the VTAM EQAMVnnn and Terminal Interface Manager APPL definition
statements when z/OS Debugger runs on four LPARs" in the IBM z/OS Debugger Customization Guide.

The following diagram describes the syntax of the TIMACB command:

324 IBM z/OS Debugger: Reference and Messages

EQAXOPT TIMACB , ACB_name

ACB_name
The new ACB name you want used. The default name is EQASESSM.

Example

EQAXOPT TIMACB,EQASESS2

END
The END command identifies the last EQAOPTS command. You must always specify it and it must be the
last command in the input stream.

The following diagram describes the syntax of the END command:

EQAXOPT END

Example

EQAXOPT END

Chapter 6. EQAOPTS commands 325

326 IBM z/OS Debugger: Reference and Messages

Chapter 7. z/OS Debugger built-in functions

z/OS Debugger provides you with several built-in functions which allow you to manipulate variables. All
z/OS Debugger built-in function names begin with a percent sign (%).

The table below summarizes the z/OS Debugger built-in functions. Unless otherwise indicated, the
functions can be used with all supported languages.

z/OS Debugger built-in function Returns

“%CHAR (assembler, disassembly, and
LangX COBOL)” on page 327

Character value of an operand.

“%DEC (assembler, disassembly, and
LangX COBOL)” on page 327

Decimal value of an operand.

“%GENERATION (PL/I)” on page 328 A specific generation of a controlled variable

“%HEX” on page 328 Hexadecimal value of an operand

“%INSTANCES (C, C++, and PL/I)” on
page 329

Maximum value of %RECURSION for a block

“%RECURSION (C, C++, and PL/I)” on
page 330

An automatic variable or a parameter in a specific instance of
a recursive procedure

“%WHERE (assembler, disassembly, and
LangX COBOL)” on page 331

A string indicating the address of the operand.

%CHAR (assembler, disassembly, and LangX COBOL)
Returns the EBCDIC character value of an operand.

%CHAR (expression) ;

expression
A valid assembler, disassembly, or LangX COBOL expression.

Examples

Assuming that R6 contains the address of a character string of length five, enter the following command:

LIST %CHAR(_STORAGE(%GPR6+1::5))

The Log window displays the corresponding character string.

Refer to the following topics for more information related to the material discussed in this topic.

Related references
“LIST expression command” on page 149

%DEC (assembler, disassembly, and LangX COBOL)
Returns the decimal value of an operand.

%DEC (expression) ;

expression
A valid assembler, disassembly, or LangX COBOL expression.

© Copyright IBM Corp. 1992, 2024 327

Examples

Assuming register R1 contains the value 14, to display the value of the expression R1+2 in decimal, enter
the following command:

LIST %DEC(R1+2);

For LangX COBOL, the command is:

LIST %DEC('R1+2')

The Log window displays the value 16.

Refer to the following topics for more information related to the material discussed in this topic.

Related references
“LIST expression command” on page 149

%GENERATION (PL/I)
Returns a specific generation of a controlled variable in your program.

%GENERATION (reference , expression) ;

reference
A controlled variable.

expression
The generation number n of a controlled variable x, where:

1 ≤ n ≤ ALLOCATION(x)

To return the oldest instance of x, specify:

%GENERATION(x,1)

To return the most recent instance of x, specify:

%GENERATION(x,ALLOCATION(x))

Usage notes

• You cannot use the %GENERATION built-in function while you replay recorded steps.

Refer to the following topics for more information related to the material discussed in this topic.

Related tasks
IBM z/OS Debugger User's Guide

%HEX
Returns the hexadecimal value of an operand.

%HEX (reference) ;

('reference') ;

reference
One of the following:

• COBOL or PL/I reference
• C or C++ lvalue
• assembler, or disassembly

328 IBM z/OS Debugger: Reference and Messages

'reference'

Use the syntax of 'reference' enclosed in apostrophes (') only for LangX COBOL programs. It is not
supported in any other programming language.

Examples

C and C++: To display the internal representation of the packed decimal variable zvar1 whose external
representation is 235, enter the following command.

LIST %HEX(zvar1);

The Log window displays the hexadecimal string 235C.

COBOL: To display the external representation of the packed decimal pvar3, defined as PIC 9(9), from
1234 as its hexadecimal (or internal) equivalent, enter the following command.

LIST %HEX (pvar3);

The Log window displays the hexadecimal string 01234F.

Refer to the following topics for more information related to the material discussed in this topic.

Related references
“LIST expression command” on page 149

%INSTANCES (C, C++, and PL/I)
Returns the maximum value of %RECURSION (the most recent recursion number) for a given block.

%INSTANCES (reference) ;

reference
An automatic variable or a subroutine parameter. If necessary, you can use qualification to specify the
variable.

%INSTANCES can be used like a z/OS Debugger variable.

Usage notes

z/OS Debugger does not support the %INSTANCES built-in function for Enterprise PL/I programs.

You cannot use the %INSTANCES built-in function while you replay recorded steps.

Examples

C and C++:

• %INSTANCES and %RECURSION can be used together to determine the number of times a function
is recursively called. They can also give you access to an automatic variable or parameter in a
specific instance of a recursive procedure. Assume, for example, your program contains the following
statements.

int RecFn(unsigned int i) {
 if (i == 0) {
 __ctest("");

At this point, the __ctest() call gives control to z/OS Debugger, and you are prompted for commands.
Enter the following command.

LIST %INSTANCES(i);

The Log window displays the number of times that RecFn() was interactively called.

Chapter 7. z/OS Debugger built-in functions 329

To display the value of 'i' at the first call of RecFn(), enter the following command.

%RECURSION(i, 1);

• If necessary, you can use qualification to specify the parameter. For example, if the current point of
execution is in %block2, and %block3 is a recursive function containing the variable x, you can write
an expression using x by qualifying the variable, as shown in the example below.

%RECURSION(main:>%block3:>x, %INSTANCES(main:>%block3:>x, y+

• The following example gets a line of input from stdin using the C library routine gets.

char line[100];
char *result;
result = gets(line);

• The following example removes a file and checks for an error, issuing a message if an error occurs.

int result;
result = remove("mayfile.dat");
if (result != 0)
 perror("could not delete file");

• z/OS Debugger performs the necessary conversions when a call to a library function is made. The cast
operator can be used. In the following example, the integer 2 is converted to a double, which is the
required argument type for sqrt.

double sqrtval;
sqrtval = sqrt(2);

• Nested function calls can be performed, as shown in the example below.

printf("absolute value is %d\n", abs(-55));

• C library variables such as errno and stdout can be used, as shown in the example below.

fprintf(stdout, "value of errno is %d\n", errno);

Refer to the following topics for more information related to the material discussed in this topic.

Related references
“%RECURSION (C, C++, and PL/I)” on page 330

%RECURSION (C, C++, and PL/I)
Returns a specific instance of an automatic variable or a parameter in a recursive procedure.

%RECURSION (reference , expression) ;

reference
An automatic variable or a subroutine parameter. If necessary, you can use qualification to specify the
variable.

expression
The recursion number of the variable or parameter.

To return the oldest recursion of x, specify:

%RECURSION(x,1)

To return the most recent recursion of x, specify:

%RECURSION(x,%INSTANCES(x))

Usage notes

330 IBM z/OS Debugger: Reference and Messages

• The higher the value of the expression, the more recent the generation of the variable z/OS Debugger
references.

• %RECURSION can be used like a z/OS Debugger variable.
• You cannot use the %RECURSION built-in function while you replay recorded steps.

Refer to the following topics for more information related to the material discussed in this topic.

Related references
“%INSTANCES (C, C++, and PL/I)” on page 329

%WHERE (assembler, disassembly, and LangX COBOL)
Returns a string that describes the named area (if any) whose address is specified as the operand.
%WHERE can be used only as the outermost expression in the LIST command.

%WHERE (expression) ;

expression
An expression that evaluates to a hexadecimal value that is one to four bytes in length.

The following rules are used to evaluate the value of the expression, in the order listed:

1. If the expression value is less than 4096, a decimal number is returned.
2. If the expression value is an address within any known compile unit, the name of the compile unit with

a hexadecimal offset is returned.
3. If the expression value is within 4095 bytes of the value in a general register and a USING is in effect

for that register, the name of the DSECT that corresponds to the USING instruction with a hexadecimal
offset is returned.

4. A hexadecimal number representing the expression value is returned.

Although this function can be used only within an assembler, disassembly, or LangX COBOL compile unit,
the expression can evaluate to a compile unit in any language.

Usage note

You cannot nest %WHERE into another expression. For example, the following command is not valid:

LIST %WHERE(X'14B0')||'ABC'

Examples

• Assuming that CSECT ROUTINE1 is located at address X'1BC0400', the following command returns
"ROUTINE1+X'2A'":

LIST %WHERE(X'1BC042A')

• Assume that register R3 contains X'1C4A0' and that the program is stopped at the instruction
highlighted in the following lines of code:

 USING DATA1,R3
 …
 SLR R0,R0
 …

DATA1 DSECT ,
…

The command LIST %WHERE(X'1C4B4') returns DATA1+X'14'.
• The command LIST %WHERE(X'100') returns 256.
• If the expression cannot be resolved to a known location, the command LIST %WHERE(X'1B5C4')

returns X'1B5C4'.

Chapter 7. z/OS Debugger built-in functions 331

332 IBM z/OS Debugger: Reference and Messages

Chapter 8. z/OS Debugger variables

z/OS Debugger reserves several variables for its own information. These z/OS Debugger variable names
begin with a percent sign (%), to distinguish them from program variables. You can access z/OS Debugger
variables while testing programs in any supported language.

You can use all z/OS Debugger variables in expressions. Additionally, the variables %EPRn., %FPRn.,
%GPRn., and %LPRn. (representing the types of registers) can be modified, as shown in the COBOL
example below.

MOVE name_table TO %GPR5;

Note: Use caution when assigning new values to registers. Important program information can be lost. Do
not modify the base register.

To display the value of a z/OS Debugger variable, use the LIST command, as shown in the example below.

LIST %GPR15

The table below summarizes the z/OS Debugger variables.

z/OS Debugger variable Value

“%ADDRESS” on page 335 Address of the location where your program was interrupted

“%AMODE” on page 335 Current® AMODE of the suspended program

“%BLOCK” on page 335 Name of the current block

“%CAAADDRESS” on page
336

Address of the CAA control block associated with the suspended
program

“%CC (assembler and
disassembly only)” on
page 336

(Assembler and disassembly only) Condition code from current PSW

“%CONDITION” on page
336

Name or number of the condition when z/OS Debugger is entered
because of an AT OCCURRENCE

“%COUNTRY” on page 336 Current country code

“%CU” on page 336 Name of the primary entry point of the current compile unit

“%EPA” on page 336 Address of the primary entry point in the current compile unit

“%EPRn or %EPRHn
(%EPRHn assembler and
disassembly only)” on
page 336

(Assembler, disassembly, C and C++, and PL/I only) Extended-precision
floating-point registers

“%EPRBn (assembler and
disassembly only)” on
page 337

(Assembler and disassembly only) Extended-precision floating-point
registers in binary format

“%EPRDn (assembler and
disassembly only)” on
page 337

(Assembler and Disassembly only) Extended-precision floating-point
registers in decimal format

“%FPRn or %FPRHn
(%FPRHn assembler and
disassembly only)” on
page 337

Single-precision floating-point registers in hexadecimal format

© Copyright IBM Corp. 1992, 2024 333

z/OS Debugger variable Value

“%FPRBn (assembler and
disassembly only)” on
page 338

(Assembler and Disassembly only) Single-precision floating-point
registers in binary format

“%FPRDn (assembler and
disassembly only)” on
page 338

(Assembler and Disassembly only) Single-precision floating-point
registers in decimal format

“%GPRn” on page 338 32-bit base General Purpose Registers at the point of interruption in a
program

“%GPRGn” on page 339 64-bit General Purpose Registers at the point of interruption in a
program

“%GPRHn” on page 339 32-bit high General Purpose Registers at the point of interruption in a
program

“%HARDWARE” on page
340

Type of hardware where the application is running

“%LINE or %STATEMENT”
on page 340

Current source line number

“%LOAD” on page 340 Name of the load module of the current program, or an asterisk (*)

“%LPRn or %LPRHn
(%LPRHn assembler and
disassembly only)” on
page 340

Double-precision floating-point registers in hexadecimal format

“%LPRBn (assembler and
disassembly)” on page
341

(Assembler and Disassembly only) Double-precision floating-point
registers in binary format

“%LPRDn (assembler and
disassembly)” on page
341

(Assembler and Disassembly only) Double-precision floating-point
registers in decimal format

“%NLANGUAGE” on page
341

National language currently in use

“%PATHCODE” on page
341

Integer identifying the type of change occurring when the program flow
reaches a point of discontinuity, and the path condition is raised

“%PLANGUAGE” on page
341

Current programming language

“%PROGMASK (assembler
and disassembly only)”
on page 342

(Assembler and disassembly only) Program mask from current PSW

%PROGRAM Equivalent to %CU

“%PSW (assembler and
disassembly only)” on
page 342

(Assembler and disassembly only) Current Program Status Word

“%RC” on page 342 Return code from the most recent z/OS Debugger command

“%RSTDSETS” on page
342

A value of 1 if user settings have been restored and 0 otherwise

“%RUNMODE” on page 342 String identifying the presentation mode of z/OS Debugger

334 IBM z/OS Debugger: Reference and Messages

z/OS Debugger variable Value

“%Rn” on page 342 32-bit base General Purpose Registers for the currently qualified
assembler or disassembly CU

%STATEMENT Equivalent to %LINE

“%SUBSYSTEM” on page
343

Name of the underlying subsystem, if any, where the program is running

“%SYSTEM” on page 343 Name of the operating system supporting the program

You can access z/OS Debugger variables even when they have no intrinsic meaning in your operating
system or language.

Refer to the following topics for more information related to the material discussed in this topic.

Related references
“Attributes of z/OS Debugger variables in different languages” on page 343

%ADDRESS
Contains the address of the location where the program has been interrupted.

For COBOL only:

• You can use the OFFSET table in the compiler listing to determine statement numbers. To determine the
offset of the current statement, subtract %EPA (the address of the primary entry point) from %ADDRESS,
as shown in the example below.

LIST %ADDRESS - %EPA

• %ADDRESS might not locate a statement in your COBOL program in all instances. When an error occurs
outside of the program, in some instances, %ADDRESS contains the actual interrupt address. This occurs
only if z/OS Debugger is unable to locate the last statement that was executed before control left the
program.

%AMODE
Contains the current AMODE of the suspended program: 24, 31, or 64.

%BLOCK
Contains the name of the current block. The block name might not be unique within a compile unit.

To display the name of the current block, use one of the following commands:

• DESCRIBE PROGRAM;
• LIST %BLOCK;

To change the current block, use the SET QUALIFY command.

Refer to the following topics for more information related to the material discussed in this topic.

Related references
“DESCRIBE command” on page 103
“LIST expression command” on page 149
“SET QUALIFY command” on page 250

Chapter 8. z/OS Debugger variables 335

%CAAADDRESS
Contains the address of the Language Environment CAA control block associated with the suspended
program. When you are running without the Language Environment run time, the value NONE is returned.

%CC (assembler and disassembly only)
Contains the condition code portion of the current PSW.

%CONDITION
Contains the name or number of the condition when z/OS Debugger is entered because of an AT
OCCURRENCE.

Refer to the following topics for more information related to the material discussed in this topic.

Related references
“AT OCCURRENCE command” on page 65

%COUNTRY
Contains the current country code.

%CU
Contains the name of the primary entry point of the current compile unit.

To change the current compile unit, use the SET QUALIFY command.

%CU is equivalent to %PROGRAM.

Refer to the following topics for more information related to the material discussed in this topic.

Related references
“SET QUALIFY command” on page 250

%EPA
Contains the address of the primary entry point of the currently interrupted program. If you are replaying
recorded statements, the %EPA variable contains the name of the current location.

Usage note

The value of %EPA is valid only in programs that adhere to standard linkage conventions for R13, R14,
and R15.

%EPRn or %EPRHn (%EPRHn assembler and disassembly only)
(%EPR0 , %EPR1, %EPR4, %EPR5, %EPR8, %EPR9, %EPR12, and %EPR13. %EPRH0 , %EPRH1,
%EPRH4, %EPRH5, %EPRH8, %EPRH9, %EPRH12, and %EPRH13.)

Represent the extended-precision floating-point registers in hexadecimal format.

To modify one of these registers, assign a value to the associated %EPRn or %EPRHn variable.

%EPRn and %EPRHn cannot be used as the target of an assignment while debugging Enterprise PL/I
programs.

You cannot use the %EPRn or %EPRHn variable while you are replaying recorded statements.

Usage note

336 IBM z/OS Debugger: Reference and Messages

For assembler and disassembly, the LIST %EPRn command displays values in hexadecimal but the LIST
%EPRHn command displays values as hexadecimal floating point.

Refer to the following topics for more information related to the material discussed in this topic.

Related references
“Expression command (C and C++)” on page 116
“Assignment command (PL/I)” on page 36
“Assignment command (assembler and disassembly)” on page 33

%EPRBn (assembler and disassembly only)
(%EPRB0 , %EPRB1, %EPRB4, %EPRB5, %EPRB8, %EPRB9, %EPRB12, and %EPRB13.)

Represent the extended-precision floating-point registers in binary format.

To modify one of these registers, assign a value to the associated %EPRBn variable.

If 64-bit hardware is not present, these variables are not supported. Any reference to them in such an
environment will result in an “undefined symbol” message.

You cannot use the %EPRBn variable while you are replaying recorded statements.

Refer to the following topics for more information related to the material discussed in this topic.

Related references
“Assignment command (assembler and disassembly)” on page 33

%EPRDn (assembler and disassembly only)
(%EPRD0 , %EPRD1, %EPRD4, %EPRD5, %EPRD8, %EPRD9, %EPRD12, and %EPRD13.)

Represent the extended-precision floating-point registers in decimal format.

To modify one of these registers, assign a value to the associated %EPRDn variable.

If both Decimal Floating Point and 64-bit hardware are not present, these variables are not supported.
Any reference to them in such an environment will result in an “undefined symbol” message.

You cannot use the %EPRDn variable while you are replaying recorded statements.

Refer to the following topics for more information related to the material discussed in this topic.

Related references
“Assignment command (assembler and disassembly)” on page 33

%FPRn or %FPRHn (%FPRHn assembler and disassembly only)
(%FPR0, %FPR1, %FPR2, %FPR3, %FPR4, %FPR5, %FPR6, %FPR7, %FPR8, %FPR9, %FPR10, %FPR11,
%FPR12, %FPR13, %FPR14, and %FPR15. %FPRH0, %FPRH1, %FPRH2, %FPRH3, %FPRH4, %FPRH5,
%FPRH6, %FPRH7, %FPRH8, %FPRH9, %FPRH10, %FPRH11, %FPRH12, %FPRH13, %FPRH14, and
%FPRH15.)

Represent single-precision floating-point registers in hexadecimal format.

To modify one of these registers, assign a value to the associated %FPRn or %FPRHn variable.

%FPRn and %FPRHn cannot be used as the target of an assignment while debugging Enterprise PL/I
programs.

Usage note

For assembler and disassembly, the LIST %FPRn command displays values in hexadecimal, but for the
LIST %FPRHn command, values are listed as hexadecimal floating point.

Refer to the following topics for more information related to the material discussed in this topic.

Chapter 8. z/OS Debugger variables 337

Related references
“Expression command (C and C++)” on page 116
“MOVE command (COBOL)” on page 175
“Assignment command (PL/I)” on page 36
“Assignment command (assembler and disassembly)” on page 33

%FPRBn (assembler and disassembly only)
(%FPRB0, %FPRB1, %FPRB2, %FPRB3, %FPRB4, %FPRB5, %FPRB6, %FPRB7, %FPRB8, %FPRB9,
%FPRB10, %FPRB11, %FPRB12, %FPRB13, %FPRB14, and %FPRB5.)

Represent single-precision floating-point registers in binary format.

To modify one of these registers, assign a value to the associated %FPRBn variable.

If 64-bit hardware is not present, these variables are not supported. Any reference to them in such an
environment will result in an “undefined symbol” message.

Refer to the following topics for more information related to the material discussed in this topic.

Related references
“Assignment command (assembler and disassembly)” on page 33

%FPRDn (assembler and disassembly only)
(%FPRD0, %FPRD1, %FPRD2, %FPRD3, %FPRD4, %FPRD5, %FPRD6, %FPRD7, %FPRD8, %FPRD9,
%FPRD10, %FPRD11, %FPRD12, %FPRD13, %FPRD14, and %FPRD15.)

Represent single-precision floating-point registers in decimal format.

To modify one of these registers, assign a value to the associated %FPRDn variable.

If both Decimal Floating Point and 64-bit hardware are not present, these variables are not supported.
Any reference to them in such an environment will result in an “undefined symbol” message

Refer to the following topics for more information related to the material discussed in this topic.

Related references
“Assignment command (assembler and disassembly)” on page 33

%GPRn
(%GPR0 to %GPR15.)

Represent 32-bit General Purpose Registers at the point of interruption in a program.

To modify one of these registers, assign a value to the associated %GPRn variable.

Usage notes

• If you modify a %GPRn register, the change is reflected when you resume program execution.
• Do not modify base registers.
• %GPRn cannot be used as the target of an assignment while debugging Enterprise PL/I programs.
• In disassembly view, you can replace Rn with %GPRn.
• In assembler, you can replace %GPRn with any symbol defined in the program and whose first use in

the program was as a register. You can also use any of the R0, R1, ..., R15 symbols that were not defined
in the programs.

• For Enterprise PL/I, if you display the value of %GPRn by using the LIST command, the result is
displayed in FIXED BINARY(31) format.

• For PL/I for MVS & VM, if you display the value of %GPRn by using the LIST command, the result is
displayed in PX (hex pointer) format.

338 IBM z/OS Debugger: Reference and Messages

C and C++ only:

• If you modify the value of %GPR3, then the base register in the program can be lost.

Examples

COBOL:

MOVE name_table TO %GPR15;

C and C++:

%GPR15=name_table;

Refer to the following topics for more information related to the material discussed in this topic.

Related references
“Expression command (C and C++)” on page 116
“MOVE command (COBOL)” on page 175
“Assignment command (assembler and disassembly)” on page 33
“Assignment command (PL/I)” on page 36
“Assignment command (LangX COBOL)” on page 35

%GPRGn
(%GPRG0 to %GPRG15.)

Represent 64-bit General Purpose Registers at the point of interruption in a program.

To modify one of these registers, assign a value to the associated %GPRGn variable.

Usage notes

• If you modify a %GPRGn register, the change is reflected when you resume program execution.
• In disassembly and assembler, you can replace GRn with %GPRn.
• If your program is running on hardware that does not support 64-bit instructions or your program is

suspended at a point where the high-half of the General Purpose Registers are not available, these
variables are treated as undefined symbols.

Examples

Assembler:

LIST %GPRG0;
%GPRG0 = 12;

Refer to the following topics for more information related to the material discussed in this topic.

Related references
“Assignment command (assembler and disassembly)” on page 33
“Assignment command (LangX COBOL)” on page 35

%GPRHn
(%GPRH0 to %GPRH15.)

Represent 32-bit high General Purpose Registers at the point of interruption in a program.

To modify one of these registers, assign a value to the associated %GPRHn variable.

Usage note

If you modify a %GPRHn register, the change is reflected when you resume program execution.

Refer to the following topics for more information related to the material discussed in this topic.

Chapter 8. z/OS Debugger variables 339

Related references
“Expression command (C and C++)” on page 116
“MOVE command (COBOL)” on page 175
“Assignment command (assembler and disassembly)” on page 33
“Assignment command (PL/I)” on page 36
“Assignment command (LangX COBOL)” on page 35

%HARDWARE
Identifies the type of hardware where the application program is running. A possible value is: 370/ESA.

%LINE or %STATEMENT
Contains the current line number.

If the current statement is not the first statement on the line, then the line number is followed by a period
and the number of the statement with the line. For example, if %LINE = 4.3, then the current statement
is the third statement on the fourth source line.

If the program is at the entry or exit of a block, then %LINE contains ENTRY or EXIT, respectively.

If the line number cannot be determined (for example, a run-time line number does not exist or the
address where the program is interrupted is not in the program), then %LINE contains an asterisk (*).

For COBOL, %LINE does not return a relative verb (within the line) for labels.

%LINE is equivalent to %STATEMENT.

In the disassembly view, %LINE and %STATEMENT are not supported.

%LOAD
If the current program is part of a fetched or called load module, then %LOAD contains the name of the
load module.

If the current program is in the load module that was initially loaded, then %LOAD contains an asterisk (*).

z/OS Debugger uses the value of %LOAD when you make an unqualified reference to a program or variable.

To change the current load module, use the SET QUALIFY command.

When the Dynamic Debug facility is deactivated (by entering the SET DYNDEBUG OFF command) or SVC
screening is disabled3, z/OS Debugger does not recognize load modules that have been loaded by the
MVS LOAD service.

Refer to the following topics for more information related to the material discussed in this topic.

Related references
“SET QUALIFY command” on page 250

%LPRn or %LPRHn (%LPRHn assembler and disassembly only)
(%LPR0, %LPR1, %LPR2, %LPR3, %LPR4, %LPR5, %LPR6, %LPR7, %LPR8, %LPR9, %LPR10, %LPR11,
%LPR12, %LPR13, %LPR14, and %LPR15. %LPRH0, %LPRH1, %LPRH2, %LPRH3, %LPRH4, %LPRH5,
%LPRH6, %LPRH7, %LPRH8, %LPRH9, %LPRH10, %LPRH11, %LPRH12, %LPRH13, %LPRH14, and
%LPRH15.)

Represent the double-precision floating-point registers in hexadecimal format.

To modify one of these registers, assign a value to the associated %LPRn or %LPRHn variable.

%LPRn cannot be used as the target of an assignment while debugging Enterprise PL/I programs.

3 See the IBM z/OS Debugger Customization Guide for instructions on how to control SVC screening.

340 IBM z/OS Debugger: Reference and Messages

Usage note

For assembler and disassembly, the LIST %LPRn command displays values in hexadecimal, but for the
LIST %LPRHn command, values are listed as hexadecimal floating point.

Refer to the following topics for more information related to the material discussed in this topic.

Related references
“Expression command (C and C++)” on page 116
“MOVE command (COBOL)” on page 175
“Assignment command (PL/I)” on page 36
“Assignment command (assembler and disassembly)” on page 33

%LPRBn (assembler and disassembly)
(%LPRB0, %LPRB1, %LPRB2, %LPRB3, %LPRB4, %LPRB5, %LPRB6, %LPRB7, %LPRB8, %LPRB9,
%LPRB10, %LPRB11, %LPRB12, %LPRB13, %LPRB14, and %LPRB15.)

Represent the double-precision floating-point registers in binary format.

To modify one of these registers, assign a value to the associated %LPRBn variable.

If 64-bit hardware is not present, these variables are not supported. Any reference to them in such an
environment will result in an “undefined symbol” message.

Refer to the following topics for more information related to the material discussed in this topic.

Related references
“Assignment command (assembler and disassembly)” on page 33

%LPRDn (assembler and disassembly)
(%LPRD0, %LPRD1, %LPRD2, %LPRD3, %LPRD4, %LPRD5, %LPRD6, %LPRD7, %LPRD8, %LPRD9,
%LPRD10, %LPRD11, %LPRD12, %LPRD13, %LPRD14, and %LPRD15.)

Represent the double-precision floating-point registers in decimal format.

To modify one of these registers, assign a value to the associated %LPRDn variable.

If both Decimal Floating Point and 64-bit hardware are not present, these variables are not supported.
Any reference to them in such an environment will result in an “undefined symbol” message.

Refer to the following topics for more information related to the material discussed in this topic.

Related references
“Assignment command (assembler and disassembly)” on page 33

%NLANGUAGE
Indicates the national language currently in use: ENGLISH, UENGLISH, JAPANESE, or KOREAN.

%PATHCODE
Contains an integer value that identifies the kind of change occurring when the path of program execution
has reached a point of discontinuity and the path condition is raised.

The possible values vary according to the language of your program.

If you are replaying recorded statements, you cannot use the %PATHCODE variable.

%PLANGUAGE
Indicates the programming language currently in use.

Chapter 8. z/OS Debugger variables 341

%PLANGUAGE returns C for both C and C++.

%PROGMASK (assembler and disassembly only)
Contains the program mask portion of the current PSW.

%PROGRAM
Contains the name of the primary entry point of the current program.

%PROGRAM is equivalent to %CU. See “%CU” on page 336 for more information.

%PSW (assembler and disassembly only)
Contains the current Program Status Word.

%RC
Contains a return code whenever a z/OS Debugger command ends.

%RC initially has a value of zero unless the log file cannot be opened, in which case it has a value of -1.

Note: The %RC return code is a z/OS Debugger variable. It is not related to the return code that can be
found in Register 15.

%RSTDSETS
Contains a value of 1 if the user settings have been restored as a result of the SET RESTORE SETTINGS
AUTO command or the RESTORE SETTINGS command or a value of 0 otherwise.

Usage note

You can use this variable as part of an %IF statement in a preferences or commands file to avoid
modifying SET values that have been restored.

%RUNMODE
Contains a string identifying the presentation mode of z/OS Debugger. The possible values are listed
below.

LINE
SCREEN
BATCH

%Rn
(%R0 to %R15)

Represent the General Purpose Registers for the assembler or disassembly CU to which you are currently
qualified. These symbols are not valid in a CU in any other language. In addition, these symbols are
undefined in assembler and disassembly CUs that are not currently active or for which the applicable
General Purpose Registers cannot be located. Registers can be located for active assembler and
disassembly CUs only if:

• The CU was in control when the user program was suspended, or
• The CU was active in the call chain above the CU that was active when the user program was suspended

and all programs in the call chain use standard linkage conventions in relation to R13, R14, and R15 and
save all registers in a chained save area

To modify one of these registers, assign a value to the associated %Rn variable.

342 IBM z/OS Debugger: Reference and Messages

Usage notes

• If you modify a %Rn register, the change is reflected when you resume program execution.
• The use of these symbols is equivalent to the use of any register symbols defined in your program.
• The %Rn symbols differ from the %GPRn symbols in that %GPRn represents the value that was actually

in the hardware General Purpose Register when your user program was suspended, but %Rn represents
the value associated in the assembler or disassembly CU to which you are currently qualified. If you are
currently qualified to the CU that was active when your user program was suspended, %Rn and %GPRn
are identical. However, if you are currently qualified to a CU that was in the call chain but was not the
CU that was active when your program was suspended, %Rn and %GPRn will be different. If you are
qualified to a CU that was not active when your program was suspended, %Rn is undefined.

Examples

LIST %R1 ;

%R7 = 0 ;

%SUBSYSTEM
Contains the name of the underlying subsystem, if any, where the program is executing. The possible
values are listed below.

CICS
TSO
NONE

%SYSTEM
Contains the name of the operating system supporting the program. The only possible value is MVS.

Attributes of z/OS Debugger variables in different languages
The table below shows the attributes for z/OS Debugger variables when used with different programming
languages.

z/OS Debugger
variable

C and C++
attributes

COBOL attributes PL/I attributes Assembler/
disassembly
attributes

%ADDRESS void * USAGE POINTER POINTER A

%AMODE signed short int PICTURE S9(4)
USAGE COMP

FIXED
BINARY(15,0)

H

%BLOCK unsigned char[] PICTURE X(j) CHARACTER(j) CLj

%CAAADDRESS void * USAGE POINTER POINTER A

%CC n/a n/a n/a H

%CONDITION unsigned char[] PICTURE X(j) CHARACTER(j) CLj

%COUNTRY unsigned char[] PICTURE X(j) CHARACTER(j) CLj

%CU unsigned char[] PICTURE X(j) CHARACTER(j) CLj

%EPA void * USAGE POINTER POINTER A

%EPRn long double n/a FLOAT
DECIMAL(33)

L

Chapter 8. z/OS Debugger variables 343

z/OS Debugger
variable

C and C++
attributes

COBOL attributes PL/I attributes Assembler/
disassembly
attributes

%EPRBn n/a n/a n/a LB

%EPRDn n/a n/a n/a LD

%EPRHn n/a n/a n/a LH

%FPRn float USAGE COMP-1 FLOAT
DECIMAL(6)

E

%FPRBn n/a n/a n/a EB

%FPRDn n/a n/a n/a ED

%FPRHn n/a n/a n/a EH

%GPRn signed int PICTURE S9(9) FIXED
BINARY(31,0)

F

%GPRGn n/a n/a n/a FD

%GPRHn signed int PICTURE S9(9) FIXED
BINARY(31,0)

F

%HARDWARE unsigned char[] PICTURE X(j) CHARACTER(j) CLj

%LINE or
%STATEMENT

unsigned char[] PICTURE X(j) CHARACTER(j) CLj

%LOAD unsigned char[] PICTURE X(j) CHARACTER(j) CLj

%LPRn double USAGE COMP-2 FLOAT
DECIMAL(16)

D

%LPRBn n/a n/a n/a DB

%LPRDn n/a n/a n/a DD

%LPRHn n/a n/a n/a DH

%NLANGUAGE unsigned char[] PICTURE X(j) CHARACTER(j) CLj

%PATHCODE signed short int PICTURE S9(4)
USAGE COMP

FIXED
BINARY(15,0)

H

%PLANGUAGE unsigned char[] PICTURE X(j) CHARACTER(j) CLj

%PROGMASK n/a n/a n/a H

%PROGRAM unsigned char[] PICTURE X(j) CHARACTER(j) CLj

%PSW n/a n/a n/a CL8

%RC signed short int PICTURE S9(4)
USAGE COMP

FIXED
BINARY(15,0)

H

%RSTDSETS signed int PICTURE S9(9)
USAGE COMP

FIXED
BINARY(31,0)

F

%RUNMODE unsigned char[] PICTURE X(j) CHARACTER(j) CLj

%Rn n/a n/a n/a F

%SUBSYSTEM unsigned char[] PICTURE X(j) CHARACTER(j) CLj

%SYSTEM unsigned char[] PICTURE X(j) CHARACTER(j) CLj

344 IBM z/OS Debugger: Reference and Messages

Chapter 9. z/OS Debugger messages

All messages that are shown in this section are in mixed case English. The uppercase English message
text is the same, but is in uppercase letters.

Each message has a number of the form EQAnnnnx, where EQA indicates that the message is an z/OS
Debugger message, nnnn is the number of the message, and x indicates the severity level of each
message. The value of x is I, W, E, S, or U, as described below:

I
An informational message calls attention to some aspect of a command response that might assist
the programmer.

W
A warning message calls attention to a situation that might not be what is expected or to a situation
that z/OS Debugger attempted to fix.

E
An error message describes an error that z/OS Debugger detected or cannot fix.

S
A severe error message describes an error that indicates a command referring to bad data, control
blocks, program structure, or something similar.

U
An unrecoverable error message describes an error that prevents z/OS Debugger from continuing.

Symbols in messages

Many of the z/OS Debugger messages contain information that is inserted by the system when the
message is issued. In this publication, such inserted information is indicated by italicized symbols, as in
the following:

EQA1046I The breakpoint-id breakpoint is replaced.

The portion of z/OS Debugger located on the host notifies you of errors associated with debugging
functions carried out by the host.

Refer to the following topics for more information related to the material discussed in this topic.

Related tasks
z/OS Language Environment Programming Guide

Related references
“Allowable comparisons for the IF command (COBOL)” on page 132
“Allowable moves for the MOVE command (COBOL)” on page 176

EQA1000I TEST (cu_name initialization):

Explanation
z/OS Debugger is ready to accept a command from the
terminal. This message is used in line mode when an
initial prompt occurs after z/OS Debugger initialization
and before any program hooks are reached. Enter a
command. If you are not sure what you can enter,
enter HELP or ?. Information is displayed identifying
the commands you are allowed to enter.

EQA1001I The window configuration is
configuration; the sequence of
window is sequence

Explanation
Used to display SCREEN as part of QUERY SCREEN.

EQA1002I One window must be open at all
times.

Explanation
Only one window was open when a CLOSE command
was issued. At least one window must be open at all
times, so the CLOSE command is ignored.

EQA1003I Target window is closed; FIND not
performed.

© Copyright IBM Corp. 1992, 2024 345

Explanation
The window specified in the FIND command is closed.

EQA1004I Target window is closed; SIZE not
performed.

Explanation
The window specified in the SIZE command is closed.

EQA1005I Target window is closed; SCROLL
not performed.

Explanation
The window specified in the SCROLL command is
closed.

EQA1006I Command

Explanation
It is the character string 'Command' in the main panel
command line.

EQA1007I Step

Explanation
It is the character string 'Step' in the main panel
command line while stepping.

EQA1008I Scroll

Explanation
It is the character string 'Scroll' in the main panel
command line.

EQA1009I DBCS characters are not allowed.

Explanation
The user entered DBCS characters in scroll, window
object id, qualify, prefix, or panel input areas.

EQA1010I More...

Explanation
It is the character string 'More' in the main panel
command line.

EQA1011I Do you really want to terminate
this session?

Explanation
Asking for confirmation to terminate debug session.
Enter Y for YES or N for NO.

EQA1012I Enter Y for YES and N for NO

EQA1013I Current command is incomplete,
pending more input

Explanation
This informational message is displayed while entering
a block of commands, until the command block is
closed by an END statement.

EQA1014I Current command is incomplete,
enter more input below.

Explanation
This informational message is displayed while entering
a command continuation character or a block of
commands. Complete the command in the Command
pop-up window.

EQA1015I Source window is closed; FINDBP
not performed.

Explanation
The Source window must be open when a FINDBP
command is issued.

EQA1016I The following errors were
detected processing the run-time
EQAOPTS specifications

Explanation
Errors were detected processing the run-time
EQAOPTS commands. Each command containing an
error will be listed, followed by the applicable error
message.

EQA1017I EqaOpts-Cmd An EqaOpts
command.

Explanation
Errors were detected processing the run-time
EQAOPTS commands. Each command containing an
error will be listed, followed by the applicable error
message.

EQA1018I The following EQAOPTS were
specified at run-time.

Explanation
The EQAOPTS specifications shown following this
message were specified at run-time.

EQA1019I The following EQAOPTS were
obtained from the EQAOPTS load
module.

346 IBM z/OS Debugger: Reference and Messages

Explanation
The EQAOPTS specifications shown following this
message were obtained from the EQAOPTS load
module.

EQA1020E A close-quote in operand column-
number was not followed by a
blank or a comma.

Explanation
A close-quote indicates the end of an operand.
Therefore, it must be followed by a comma to indicate
that another operand is present or by a blank to
indicate that this is the last operand.

EQA1021E A continuation was not found.

Explanation
The last line contained a non-blank character in
column 72 indicating a continued statement but no
continuation line was found.

EQA1022E The last operand ended in a
comma but column 72 is blank.

Explanation
The last operand on the current line ended with a
comma but a non-blank was not present in column 72
to indicate a continuation.

EQA1023E The specified numeric value of
operand operand-number is not
within the expected range. It is
either too small or too large.

Explanation
The specified number is outside of the range allowed
for the indicated operand.

EQA1024E Not enough operands were
specified.

Explanation
Some of the operands required for this EQAOPTS
function were not specified.

EQA1025E More operands were specified
than are allowed for this EQAOPTS
function.

Explanation
Some of the operands required for this EQAOPTS
function were not specified.

EQA1026E EQAXOPT opcode was not found.

Explanation
All EQAOPTS functions must contain the EQAXOPT
opcode.

EQA1027E A value is not allowed for operand
operand-number.

Explanation
The indicated operand keyword was followed by an '='
and an operand. However, this operand does not allow
the specification of a value.

EQA1028E No value was specified for
operand operand-number.

Explanation
The indicated operand requires a value to be specified
but none was found.

EQA1029E Internal error (invalid operand
type) in operand operand-number.

Explanation
An unexpected situation was encountered. Contact
z/OS Debugger support.

EQA1030I PENDING:

Explanation
z/OS Debugger needs more input in order to
completely parse a command. This can occur in
COBOL, for example, because PERFORM; was entered
on the last line.

Programmer response
Complete the command.

EQA1031I The partially parsed command is:

Explanation
The explanation of a command was requested or a
command was determined to be in error.

Programmer response
Determine the cause of the error and reenter the
command.

EQA1032I The next word can be one of:

Chapter 9. z/OS Debugger messages 347

Explanation
This title line will be followed by message 1015.

EQA1033I list items

Explanation
This message is used to list all the items that can
follow a partially parsed command.

Programmer response
Reenter the acceptable part of the command and
suffix it with one of the items in this list.

EQA1034E The MONITOR LIMIT must be
greater than or equal to 1000.

Explanation
The MONITOR LIMIT specified in the SET MONITOR
LIMIT n command must be greater than or equal to
1000.

EQA1035E A non-decimal digit was found
in the numeric value for operand
operand-number.

Explanation
The indicated operand expects a numeric value.
However, a character other than a decimal digit was
found in the value.

EQA1036E The first operand is not a valid
EQAOPTS function.

Explanation
The first operand must be a valid EQAOPTS function
name.

EQA1037E EQAXOPT END is not the last
command.

Explanation
The 'EQAXOPT END' command must be the last
command entered.

EQA1038E Incorrect use of quotes in operand
operand-number.

Explanation
Quotes were incorrectly used in the indicated operand.
If you want to include a quote or an ampersand within
a quoted string, a pair of quotes or ampersands must
be specified.

EQA1039E Column 1 to 15 of a continuation
line are non-blank.

Explanation
Continuation lines must begin in column 16. Make sure
that you did not begin the continuation line before
column 15.

EQA1040E Operand operand-number is too
long.

Explanation
The indicated operand is longer than the maximum
length allowed.

EQA1041E Internal error (more than one
value for a function) in operand
operand-number.

Explanation
An unexpected situation was encountered. Contact
z/OS Debugger support.

EQA1042E Unmatched parenthesis were
found in operand operand-number.

Explanation
A left parenthesis was found without a corresponding
right parenthesis or vice-versa.

EQA1043E An asterisk was specified in
operand opernand-number but is
not allowed in that operand.

Explanation
An asterisk was detected in an operand that does not
allow an asterisk to be specified.

EQA1044E An unrecognized keyword was
specified in operand operand-
number.

Explanation
An unrecognized keyword was specified for the
indicated operand.

EQA1045E Return code RC and reason
code Reason were encountered
while obtaining the run-time
EQAOPTS specifications. The
run-time EQAOPTS were not
processed.

348 IBM z/OS Debugger: Reference and Messages

Explanation
The return code value indicates the function being
processed as follows: 1 = Allocating memory, 2 =
Obtaining data set attributes, 3 = Opening data set,
4 = Reading data set, and 5 = Closing data set.
The specified reason code indicates the specific error
encountered by this function.

EQA1046I The breakpoint-id breakpoint is
replaced.

Explanation
This alerts the user to the fact that a previous
breakpoint action existed and was replaced.

Programmer response
Verify that this was intended.

EQA1047I The breakpoint-id breakpoint is
replaced.

Explanation
This alerts the user to the fact that a previous
breakpoint action existed and was replaced.

Programmer response
Verify that this was intended.

EQA1048I Another generation of variable
name is allocated.

Explanation
An ALLOCATE occurred for a variable where an AT
ALLOCATE breakpoint was established.

EQA1049I The breakpoint-id breakpoint
action is:

Explanation
Used to display a command after LIST AT when
there is no every_clause. Enabled breakpoints only.
This message is followed by a message of one or more
lines showing the commands performed each time the
breakpoint is hit.

EQA1050I The breakpoint-id breakpoint has
an EVERY value of number, a
FROM value of number, and a TO
value of number. The breakpoint
action is:

Explanation
Used to display a command after LIST AT when
there is an every_clause. Enabled breakpoints only.
This message is followed by a message of one or more
lines showing the commands performed each time the
breakpoint is hit.

EQA1051I The (deferred) breakpoint-id
breakpoint action is:

Explanation
Used to display a command after LIST AT when there
is no every_clause. Deferred and enabled breakpoints
only. This message is followed by a message of one
or more lines showing the commands performed each
time the breakpoint is hit.

EQA1052I The (deferred) breakpoint-id
breakpoint has an EVERY value of
number, a FROM value of number,
and a TO value of number. The
breakpoint action is:

Explanation
Used to display a command after LIST AT when there
is an every_clause. Deferred and enabled breakpoints
only. This message is followed by a message of one
or more lines showing the commands performed each
time the breakpoint is hit.

EQA1053I The (disabled) breakpoint-id
breakpoint action is:

Explanation
Used to display a command after LIST AT when there
is not an every_clause. For disabled breakpoints only.
This message is followed by a message of one or more
lines showing the commands performed each time the
breakpoint is hit.

EQA1054I The (disabled) breakpoint-id
breakpoint has an EVERY value of
number, a FROM value of number,
and a TO value of number. The
breakpoint action is:

Explanation
Used to display a command after LIST AT when there
is an every_clause. For disabled breakpoints only. This
message is followed by a message of one or more
lines showing the commands performed each time the
breakpoint is hit.

EQA1055I The (disabled and deferred)
breakpoint-id breakpoint action is:

Chapter 9. z/OS Debugger messages 349

Explanation
Used to display a command after LIST AT when
there is not an every_clause. For disabled and deferred
breakpoints only. This message is followed by a
message of one or more lines showing the commands
performed each time the breakpoint is hit.

EQA1056I The (disabled and deferred)
breakpoint-id breakpoint has an
EVERY value of number, a FROM
value of number, and a TO value of
number. The breakpoint action is:

Explanation
Used to display a command after LIST AT when
there is an every_clause. For disabled and deferred
breakpoints only. This message is followed by a
message of one or more lines showing the commands
performed each time the breakpoint is hit.

EQA1057I AT stmt-number can be risky
because the code for that
statement might have been
merged with that of another
statement.

Explanation
You are trying to issue an AT STATEMENT command
against a statement but the code for that statement
was either optimized away or combined with other
statements.

EQA1058I RUNTO is active at statement_id.

Explanation
Display after LIST AT to reflect RUNTO position.

EQA1059I The Entry breakpoint command for
Load_Module_Name ::> CU Name
has been deferred until the CU
appears.

Explanation
The compilation unit (program) that you specified
could not be located by z/OS Debugger. The
breakpoint is deferred until this CU is entered.

EQA1060I The following suspended
breakpoint exists: BP_name.

Explanation
Used to display a command after LIST AT for
suspended breakpoints only.

EQA1061I The following suspended and
disabled breakpoint exists:
BP_name.

Explanation
Used to display a command after LIST AT for
suspended and disabled breakpoints only.

EQA1062E The specified load module does
not contain CU CU_name.

Explanation
The specified load module is known to z/OS Debugger
but it does not contain a CU by the specified name.

EQA1063E A load module name was not
specified for CU CU_name. Both
load module and CU names
must be specified in the form
LOADMOD::>CU.

Explanation
When an LDD is entered in Explicit Debug Mode, both
load module and CU names must be specified.

EQA1064I Previous value in memory:

Explanation
Shows the previous content in memory for area being
watched.

EQA1065I Current value in memory:

Explanation
Shows the current content in memory for area being
watched.

EQA1066I The current setting for the Level
88 variable is True.

Explanation
Shows the current setting for a Level 88 variable.

EQA1067I The current setting for the Level
88 variable is False.

Explanation
Shows the current setting for a Level 88 variable.

EQA1076I Direction an unknown program.

350 IBM z/OS Debugger: Reference and Messages

Explanation
The program might be written in an unsupported
language or may be a disassembled program. The
message is issued as a result of the LIST CALLS
command.

EQA1077I Direction address Address in a
PLANG NOTEST block.

Explanation
The compile unit was compiled without the TEST
option. The message is issued as a result of the LIST
CALLS command.

EQA1078I Direction Place in PLANG CU

Explanation
CU name of the call chain. The message is issued as a
result of the LIST CALLS command.

EQA1079I Direction address Address in
PLANG CU

Explanation
The compile unit was compiled without the TEST
option and is in the z/OS Debugger list of CUs.

EQA1080E This EQAXOPT command must
be entered in the EQAOPTS load
module.

Explanation
The indicated command cannot be specified at run-
time.

EQA1081E The EQAOPTS data set, ''DSName'',
cannot be opened or cannot be
read.

Explanation
An error occurred trying to OPEN or READ the
EQAOPTS data set.

EQA1086I The previous declaration of
variable name will be removed.

Explanation
You declared a variable whose name is the same
as a previously declared variable. This declaration
overrides the previous one.

EQA1090I The compiler data for program
cu_name is

Explanation
This is the title line for the DESCRIBE PROGRAM
command.

EQA1091I The program was compiled with
the following options:

Explanation
This is the first of a group of DESCRIBE PROGRAM
messages.

EQA1092I compile option

Explanation
Used to display a compile option without parameters,
for example, NOTEST.

EQA1093I compile option (compile suboption)

Explanation
Used to display a compile option with one parameter,
for example, OPT.

EQA1094I compile option (compile suboption,
compile suboption)

Explanation
Used to display a compile option with two parameters,
for example, TEST.

EQA1095I This program has no subblocks.

Explanation
A DESCRIBE PROGRAM command refers to a program
that is totally contained in one block.

EQA1096I The subblocks in this program are
nested as follows:

Explanation
The names of the blocks contained by the program are
displayed under this title line.

EQA1097I space characters block name

Explanation
The first insert controls the indentation while the
second is the block name without qualification.

EQA1098I The statement table has the short
format.

Chapter 9. z/OS Debugger messages 351

Explanation
The statement table is abbreviated such that no
relationship between storage locations and statement
identifications can be determined.

Programmer response
If statement identifications are required, the
program must be recompiled with different compiler
parameters.

EQA1099I The statement table has the
NUMBER format.

Explanation
The program named in the DESCRIBE PROGRAM
command was compiled with GONUMBER assumed.

EQA1100I The statement table has the STMT
format.

Explanation
The program named in the DESCRIBE PROGRAM
command was compiled with GOSTMT assumed.

EQA1101I file name

Explanation
This message is used in listing items returned from the
back end in response to the DESCRIBE ENVIRONMENT
command.

EQA1102I ATTRIBUTES for variable name

Explanation
Text of a DESCRIBE ATTRIBUTES message.

EQA1103I Its address is address

Explanation
Text of a DESCRIBE ATTRIBUTES message.

EQA1104I Compiler: Compiler version

Explanation
Indicate compiler version for DESCRIBE CU.

EQA1105I Its length is length

Explanation
Text of a DESCRIBE ATTRIBUTES message.

EQA1106I Programming language COBOL
does not return information for
DESCRIBE ENVIRONMENT

Explanation
COBOL run-time library does not return information to
support this command.

EQA1107I There are no open files.

Explanation
This is issued in response to DESCRIBE
ENVIRONMENT if no open files are detected.

EQA1108I The following conditions are
enabled:

Explanation
This is the header message issued in response to
DESCRIBE ENVIRONMENT before issuing the list of
enabled conditions.

EQA1109I The following conditions are
disabled:

Explanation
This is the header message issued in response to
DESCRIBE ENVIRONMENT before issuing the list of
disabled conditions.

EQA1110I This program has no Statement
Table.

Explanation
This message is used for the DESCRIBE CU command.
If a CU was compiled with NOTEST, no statement table
was generated.

EQA1111I Attributes for names in block block
name

Explanation
This is a title line that is the result of a DESCRIBE
ATTRIBUTES *;. It precedes the names of all
variables contained within a single block.

EQA1112I variable name and/or attributes

Explanation
The first insert controls the indentation while the
second is the qualified variable name followed by
attribute string. (for C, only the attributes are given.)

EQA1114I Currently open files are:

352 IBM z/OS Debugger: Reference and Messages

Explanation
This is the title line for the list of files that are known
to be open. This is in response to the DESCRIBE
ENVIRONMENT command.

EQA1115I The program has insufficient
compilation information for the
DESCRIBE CU command.

Explanation
This program has insufficient information. It might be
compiled without the TEST option.

EQA1116I Common Language Environment
math library is being used

Explanation
This is the response for the DESCRIBE ENVIRONMENT
command when the Language Environment math
library is being used.

EQA1117I PL/I Math library is being used

Explanation
This is the response for the DESCRIBE ENVIRONMENT
command when the PL/I math library is being used.

EQA1118I compile option (compile suboption,
compile suboption, compile
suboption)

Explanation
Used to display a compile option with three
parameters, for example TEST(ALL,SYM,SEPARATE)

EQA1119I Current allocations:

Explanation
Heading line for DESCRIBE ALLOCATIONS output.

EQA1120I VOLUME CAT DISP OPEN DDNAME
DSNAME

Explanation
Header for DESCRIBE ALLOCATIONS output.

EQA1121I ------ --- ---------- ----
-------- ------------------------------

Explanation
Header for DESCRIBE ALLOCATIONS output.

EQA1122I allocation description

Explanation
Description of the current allocation.

EQA1123I Insufficient storage is available to
process command.

Explanation
There was not enough main memory available
to process the command. This may occur when
attempting to load a source listing, debug data, etc.

EQA1124I Return code return code /reason
code reason code from macro name
macro invocation.

Explanation
During the processing of the command, the indicated
macro invocation failed with the indicated return and
reason codes.

EQA1125I ALLOCATE / FREE failed. Return
code return code /reason code
reason code from dynamic
allocation.

Explanation
The dynamic allocation failed with the indicated return
and reason codes.

EQA1126I ALLOCATE / FREE failed. Dataset
dsname was not found.

Explanation
The indicated data set was not cataloged or was not
found on the volume on which it was cataloged.

EQA1127I ALLOCATE / FREE failed. The FILE
specified was already in use
(ALLOCATE) or was not allocated
(FREE).

Explanation
If the command was ALLOCATE, the specified file
was already allocated. FREE the file and retry the
ALLOCATE. If the command was FREE, the specified
file was not allocated.

EQA1128I ALLOCATE / FREE failed. Dataset
dsame is already allocated to
another JOB or USER.

Chapter 9. z/OS Debugger messages 353

Explanation
The specified data set is already allocated in such
a way that it cannot be allocated with the specified
disposition.

EQA1129I Command not supported on the
current platform.

Explanation
The command is not supported in the current
environment (such as CICS)

EQA1130I The EQALANGX debug data also
contains data for the following
CUs:

Explanation
This is the header used to display the additional
CSECT's included in the EQALANGX data for the
current CU.

EQA1131I CU name CU language

Explanation
Used to display CSECT's also included in the
EQALANGX data for the current CU.

EQA1132I EQALANGX version for this CU:
EQALANGX_version

Explanation
This message is issued as part of the output of
DESCRIBE CUS. It indicates the version of the
EQALANGX program used to generate the debug
data for the specified CU. If this version is earlier
than the current version of the EQALANGX program,
unexpected results may occur in some situations.

EQA1133I Current EQALANGX version:
EQALANGX_version

Explanation
This message is issued as part of the output of
DESCRIBE CUS. It indicates the version of the
EQALANGX program that is current for this version of
z/OS Debugger.

EQA1134I The INCLUDE files in this
program are indexed as follows:
INCLUDE_file_names.

Explanation
The names of the INCLUDE files contained by the
program are displayed under this title line.

EQA1139I ***** PREVIOUS STATEMENT

Explanation
Automonitor Previous Statement area in the Monitor
window.

EQA1140I character

Explanation
This message is used to produce output for LIST
(...).

EQA1141I expression name = expression
value

Explanation
This message is used to produce output for LIST
TITLED (...) when an expression is a scalar.

EQA1142I expression element

Explanation
This insert is used for naming the expression for
expression element.

EQA1143I >>> EXPRESSION ANALYSIS <<<

Explanation
First line of output from the ANALYZE EXPRESSION
command.

EQA1144I alignment spaces. It is a bit field
with offset bit offset.

Explanation
Text of a DESCRIBE ATTRIBUTES message.

EQA1145I Its Offset is offset.

Explanation
Text of a DESCRIBE ATTRIBUTES message.

EQA1146I column elements

Explanation
This message is used to produce a columned list. For
example, it is used to format the response to LIST
STATEMENT NUMBERS.

EQA1147I name

354 IBM z/OS Debugger: Reference and Messages

Explanation
The name of a variable that satisfies a LIST NAMES
request is displayed.

EQA1148I name structure

Explanation
The name of a variable that satisfies a LIST NAMES
request is displayed. It is contained within an
aggregate but is a parent name and not an elemental
data item.

EQA1149I name in parent name

Explanation
The name of a variable that satisfies a LIST NAMES
request is displayed. It is contained within an
aggregate and is an elemental data item.

EQA1150I name structure in parent name

Explanation
The name of a variable that satisfies a LIST NAMES
request is displayed. It is an aggregate contained
within another aggregate.

EQA1151I The following names are known in
block block name

Explanation
This is a title line that is the result of a LIST NAMES
command. It precedes the names of all variables
contained within a single block.

EQA1152I The following session names are
known

Explanation
This is a title line that is the result of a LIST
NAMES command. It precedes the names of all session
variables contained within a single block.

EQA1153I The following names with pattern
pattern are known in block name

Explanation
This title line precedes the list of variable names that
satisfy the pattern in a LIST NAMES command.

EQA1154I The following session names with
pattern pattern are known

Explanation
This title line precedes the list of session names that
satisfy the pattern in a LIST NAMES command.

EQA1155I The following CUs are known in
Load Module name:

Explanation
This title line precedes a list of compile unit names
for noninitial load modules in a LIST NAMES CUS
command.

EQA1156I The following CUs with pattern
pattern are known in Load Module
name

Explanation
This title line precedes a list of compile unit names
for noninitial load modules that satisfy the pattern in a
LIST NAMES CUS command.

EQA1157I There are no CUs with pattern
pattern in Load Module name.

Explanation
This line appears when no compile unit satisfied the
pattern in a LIST NAMES CUS command for noninitial
load modules.

EQA1158I The following CUs have pattern
pattern

Explanation
This title line precedes a list of compile unit names
for an initial load module in a LIST NAMES CUS
command.

EQA1159I There are no CUs with pattern
pattern.

Explanation
This line appears when no compile unit satisfied the
pattern in a LIST NAMES CUS command for an initial
load module.

EQA1160I There are no Procedures with
pattern pattern.

Explanation
This line appears when no Procedures satisfied the
pattern in a LIST NAMES PROCEDURES command.

EQA1161I The following Procedures have
pattern pattern:

Chapter 9. z/OS Debugger messages 355

Explanation
This title line precedes a list of Procedure names for a
LIST NAMES PROCEDURES command.

EQA1162I There are no names in block block
name

Explanation
The LIST NAMES command found no variables in the
specified block.

EQA1163I There are no session names.

Explanation
The LIST NAMES command found no variables that
had been declared in the session for the current
programming language.

EQA1164I There are no names with pattern
pattern in block name.

Explanation
The LIST NAMES command found named variables in
the named block but none of the names satisfied the
pattern.

EQA1165I There are no session names with
pattern pattern.

Explanation
The LIST NAMES command found named variables
that had been declared in the session but none of the
names satisfied the pattern.

EQA1166I There are no known session
procedures.

Explanation
A LIST NAMES PROCEDURES was issued but no
session procedures exist.

EQA1167I register name = register value

Explanation
Used when listing registers.

EQA1168I No LIST STORAGE data is available
for the requested reference or
address.

Explanation
The given reference or address is invalid.

EQA1169I No frequency data is available

Explanation
This message is issued upon failure to find frequency
information.

EQA1170I Frequency of verb executions in
cu_name

Explanation
This is the header produced by the LIST FREQUENCY
command.

EQA1171I character string = count

Explanation
This is the frequency count produced by the LIST
FREQUENCY command.

EQA1172I TOTAL VERBS= total statements,
TOTAL VERBS EXECUTED= total
statements executed, PERCENT
EXECUTED= percent executed

Explanation
This is the trailer produced by the LIST FREQUENCY
command.

EQA1173I (history number) ENTRY hook for
cu_name

Explanation
This is a LIST HISTORY message.

EQA1174I (history number) ENTRY hook for
block block name in cu_name

Explanation
This is a LIST HISTORY message.

EQA1175I (history number) EXIT hook for
cu_name

Explanation
This is a LIST HISTORY message.

EQA1176I (history number) EXIT hook for
block block name in cu_name

Explanation
This is a LIST HISTORY message.

356 IBM z/OS Debugger: Reference and Messages

EQA1177I (history number) STATEMENT
hook at statement cu_name :>
statement_id

Explanation
This is a LIST HISTORY message.

EQA1178I (history number) PATH hook
at statement cu_name :>
statement_id

Explanation
This is a LIST HISTORY message.

EQA1179I (history number) Before CALL
hook at statement cu_name :>
statement_id

Explanation
This is a LIST HISTORY message.

EQA1180I (history number) CALL CEETEST
at statement cu_name :>
statement_id

Explanation
This is a LIST HISTORY message.

EQA1181I (history number) Waiting for
program input from ddname

Explanation
This is a LIST HISTORY message.

EQA1182I (history number) LOAD occurred
at statement cu_name :>
statement_id

Explanation
This is a LIST HISTORY message.

EQA1183I (history number) DELETE occurred
at statement cu_name :>
statement_id

Explanation
This is a LIST HISTORY message.

EQA1184I (history number) condition name
raised at statement cu_name :>
statement_id

Explanation
This is a LIST HISTORY message.

EQA1185I (history number) LABEL hook
at statement cu_name :>
statement_id

Explanation
This is a LIST HISTORY message.

EQA1186I Unable to display value of variable
name. Use LIST (variable name) for
further details

Explanation
This is used to inform the user that for some reason
one of the variables cannot be displayed for LIST
TITLED.

EQA1187I There are no data members in the
requested object.

Explanation
The requested object does not contain any data
members. It contains only methods.

EQA1188I (history number) DATE hook
at statement cu_name :>
statement_id

Explanation
This is a LIST HISTORY message.

EQA1189I There are no CUs compiled with
debug data. To see the CU
names, issue SET DISASSEMBLY
ON before LIST command.

Explanation
This line appears when the setting of Disassembly
is OFF and none of the compile units has a debug
data. To see all names of these CUS issue SET
DISASSEMBLY ON, and then repeat LIST NAMES
CUS

EQA1190I Unable to update the requested
location.

Explanation
The given reference or address is invalid.

EQA1191I The length of target and source
must be equal.

Chapter 9. z/OS Debugger messages 357

Explanation
The number of bytes to be altered must be equal the
length of source.

EQA1192I The number of bytes to be altered
is too large.

Explanation
A maximum of 8 bytes of storage can be change when
source is a hexadecimal number, and 4 bytes when
source is integer number.

EQA1193I There are no variables in
section_name.

Explanation
The LIST TITLED command found no variables that
had been declared in the section.

EQA1194I The following variables are known
in section section_name

Explanation
This is a title line that is the result of a LIST
TITLED command. It precedes the list of all variables
contained within a section.

EQA1195I Its linkage is Pre-Language
Environment OS/Standard

Explanation
This compile unit uses OS/Standard linkage and was
generated by a pre-Language Environment compiler.

EQA1196I Its linkage is Language
Environment FastLink

Explanation
This compile unit uses Language Environment FastLink
linkage.

EQA1197I Its linkage is Language
Environment OS/Standard

Explanation
This compile unit uses Language Environment OS/
Standard Linkage.

EQA1198I Its linkage is OS/Standard

Explanation
This non-Language Environment compile unit uses OS/
Standard linkage.

EQA1199I Its linkage is Language
Environment XPLINK precision-
subtype

Explanation
This compile unit uses Language Environment 31 or
64-bit XPLink linkage. The -1, -2, etc. indicates the
type of Language Environment header found.

EQA1200I Code Coverage: status in CU-name.

Explanation
This is the header produced by the LIST CC
command.

EQA1201I statement_id status

Explanation
This shows the execution status (x for executed, blank
for not-executed) for statement_id.

EQA1202I No code coverage data is
available.

Explanation
This message is issued upon failure to find code
coverage information.

EQA1203I The Source/Listing is not available
because this program is not in the
current enclave.

Explanation
The source or listing is not available for this program
because it is not in the current enclave.

EQA1204I The source/listing for this program
is not available.

Explanation
Source or Listing data is not available, or the CU was
not compiled with the correct compile options.

EQA1210I The MONITOR command has
already been established. The
duplicate is ignored.

Explanation
The MONITOR command entered is a duplicate of a
monitor command that was previously entered.

EQA1226I The EQUATE named EQUATE name
is replaced.

358 IBM z/OS Debugger: Reference and Messages

Explanation
This alerts the user to the fact that a previous EQUATE
existed and was replaced.

Programmer response
Verify that this was intended.

EQA1227I The following EQUATE definitions
are in effect:

Explanation
This is the header for the QUERY EQUATES command.

EQA1228I EQUATE identifier = "EQUATE
string"

Explanation
Used to display EQUATE identifiers and their
associated strings. The string is enclosed in quotation
marks so that any leading or trailing blanks are
noticeable.

EQA1229I The program is currently exiting
block block name.

Explanation
Shows the bearings in an interrupted program.

EQA1230I The program is currently executing
prolog code for block name.

Explanation
Shows the bearings in an interrupted program.

EQA1231I You are executing commands
within a __ctest function.

Explanation
Shows the bearings in an interrupted program.

EQA1232I You are executing commands
within a CEETEST function.

Explanation
Shows the bearings in an interrupted program.

EQA1233I The established MONITOR
commands are:

Explanation
This is the header produced by LIST MONITOR.

EQA1234I LanguageCode MONITOR monitor
number monitor type

Explanation
This is the line produced by LIST MONITOR before
each command is displayed.

EQA1235I The command for MONITOR
monitor number monitor type is:

Explanation
This is the header produced by LIST MONITOR
monitor number.

EQA1236I The MONITOR monitor number
command is replaced.

Explanation
This is a safety message: the user is reminded that a
MONITOR command is replacing an old one.

EQA1237I The current qualification is block
name at address CU-address.

Explanation
Shows the current point of view.

EQA1238I The current location is cu_name :>
statement id.

Explanation
Shows the place where the program was interrupted.

EQA1239I The program is currently entering
block block name.

Explanation
Shows the bearings in an interrupted program.

EQA1240I You are executing commands
within a CALL PLITEST statement.

Explanation
Shows the bearings in an interrupted program.

EQA1241I You are executing commands from
the run-time command-list.

Explanation
Shows the bearings in an interrupted program.

EQA1242I You are executing commands in
the breakpoint-id breakpoint.

Chapter 9. z/OS Debugger messages 359

Explanation
Shows the bearings in an interrupted program.

EQA1243I The setting of SET-command object
is status

Explanation
The status of the object of a SET command is
displayed when QUERYed individually.

EQA1244I SET-command object status

Explanation
The status of the object of a SET command is
displayed when issued as part of QUERY SET.

EQA1245I The current settings are:

Explanation
This is the header for QUERY SET.

EQA1246I PFKEY string command

Explanation
Used to display PFKEYS as part of QUERY PKFEYS.

EQA1247I COLOR color hilight intensity
colored area

Explanation
Used to display SCREEN as part of QUERY SCREEN.

EQA1248I You were prompted because STEP
ended.

Explanation
Shows the bearings in an interrupted program.

EQA1249I character string - The QUERY
source setting file name is not
available.

Explanation
The source listing name is not available. The source
listing was not required or set before this command.

EQA1250I SET INTERCEPT is already set on
or off for FILE filename.

Explanation
You tried to issue the SET INTERCEPT ON/OFF for
a file that is already set to ON/OFF. This is just an
informational message to notify you that you are trying

to duplicate the current setting. The command is
ignored.

EQA1251I You were prompted because
RUNTO ended.

Explanation
The program has stopped because RUNTO cursor/
statement command reached the cursor location or
pointed statement number.

EQA1252I ********** AUTOMONITOR

Explanation
Header for the automonitor area in the monitor
window.

EQA1253I You were prompted because
Playback replay mode ended.

Explanation
A PLAYBACK STOP command was processed, which
terminated Playback replay mode.

EQA1254I The LOADDEBUGDATA command
was not processed.

Explanation
An error occurred so the LLD command was not
processed.

EQA1255E The CU specified for the
LOADDEBUGDATA command is not
a disassembly CU.

Explanation
Only a disassembly CU can be identified as assembler
CU.

EQA1256E An error occurred while
attempting to load the debug
(EQALANGX) file for a specified
CU.

Explanation
Either the file containing the EQALANGX debug data
could not be found or there was an undetermined error
loading the EQALANGX file for a specified CU.

EQA1257E The MONITOR parameter HEX or
DEFAULT is valid only for LIST
reference command.

360 IBM z/OS Debugger: Reference and Messages

Explanation
MONITOR n HEX or MONITOR n DEFAULT are valid
only if n represents LIST reference command.

EQA1258E There is no MONITOR LIST
command with the referenced
integer.

Explanation
MONITOR n HEX or MONITOR n DEFAULT are valid
only if n represents valid LIST command.

EQA1259I The LOADDEBUGDATA command
for CU_name has been deferred
until the CU appears.

Explanation
The indicated CU is not currently known to z/OS
Debugger. The LOADDEBUGDATA will be executed
when the CU appears in a loaded module.

EQA1260I The CU specified for the
LOADDEBUGDATA command is
already an assembler or LangX
COBOL CU.

Explanation
An LDD has already been done for the CU specified
in the LDD command. This LDD may have been done
previously by the user or an implicit LDD may have
been done for the CU. This happens when a user-
entered LDD is successful and, subsequently, the CU
goes away and later reappears.

EQA1261I The requested view is already
active.

Explanation
A CHANGEVIEW command requested a view that is
already the active view for the currently qualified CU.

EQA1262I The requested view is not
supported by the currently
qualified CU.

Explanation
A CHANGEVIEW command requested a view that
not supported by the programming language of the
currently qualified CU.

EQA1263W Breakpoints have been set
on statements that would be
suppressed in the requested view.
The view is not changed.

Explanation
z/OS Debugger does not currently support changing to
a view that would suppress statements that currently
contain breakpoints.

EQA1264I The current view is Current_View.

Explanation
This message is displayed in response to the QUERY
CURRENT VIEW command.

EQA1265E Command failed due to an internal
communications error.

Explanation
The previous command could not be completed
because of an internal communications error.

EQA1266I You were prompted because
JUMPTO ended.

Explanation
The program has stopped because JUMPTO command
reached the cursor location or pointed statement
number.

EQA1267I ***** Previous Statement CU-
name :> statement id *****

Explanation
Automonitor Previous Statement area in the monitor
window.

EQA1268I The previous statement is out
of scope. No variables can be
displayed.

Explanation
The data from the statement in which z/OS Debugger
last had control cannot be resolved because the
statement is no longer in scope.

EQA1269I The previous location is CU-
name :> statement id .

Explanation
Shows the place in the program where the program
was previously interrupted.

EQA1270I ***** AUTOMONITOR -
PREVIOUS CU-name :> statement
id *****

Chapter 9. z/OS Debugger messages 361

Explanation
Header for the automonitor area in the Monitor
window when PREVIOUS is specified.

EQA1271I The program previously entered
block block name.

Explanation
Shows the location where z/OS Debugger previously
had control.

EQA1272I The program previously exited
block block name.

Explanation
Shows the bearings in an interrupted program.

EQA1273I The program previously executed
prolog code for block name.

Explanation
Shows the bearings in an interrupted program.

EQA1274I ***** AUTOMONITOR CU-name :>
statement id *****

Explanation
Header with location for the automonitor area in the
monitor window.

EQA1275I ********** AUTOMONITOR -
PREVIOUS **********

Explanation
Header without location information for the
automonitor area in the monitor window when
PREVIOUS is specified. Used when no location
information is available.

EQA1276I TEST:

Explanation
z/OS Debugger is ready to accept a command from the
terminal.

Programmer response
Enter a command. If you are not sure what you
can enter, enter HELP or ?. Information is displayed
identifying the commands you are allowed to enter.

EQA1277I The USE file is empty.

Explanation
z/OS Debugger tried to read commands from an empty
USE file. If unintentional, this could be because of an
incorrect file specification.

Programmer response
Correct the file specification and retry.

EQA1278I alignment spaces command part

Explanation
This is part of a command that is being displayed in
the log or in response to a LIST AT. Since a group
of commands can be involved, their appearance is
improved by indenting the subgroups. Therefore, the
first insert is used for indentation, and the second to
contain the command. This is the command as it is
understood by z/OS Debugger.

• Truncated keywords are no longer truncated.
• Lowercase to uppercase conversion was done where

appropriate.
• Only a single command is contained in a record. If

multiple commands are involved, additional records
are prepared using this format.

EQA1279I TEST (cu_name:> statement_id):

Explanation
z/OS Debugger is ready to accept a command from the
terminal. This message is used in line mode when an
initial prompt occurs at a statement and a statement
table is available.

Programmer response
Enter a command. If you are not sure what you
can enter, enter HELP or ?. Information is displayed
identifying the commands you are allowed to enter.

EQA1280I TEST (cu_name ENTRY):

Explanation
z/OS Debugger is ready to accept a command from the
terminal. This message is used in line mode when an
initial prompt occurs at a compile unit entry.

Programmer response
Enter a command. If you are not sure what you can
enter, enter HELP or ?. Information will be displayed
identifying the commands you are allowed to enter.

EQA1281I TEST (cu_name:> block name
ENTRY):

362 IBM z/OS Debugger: Reference and Messages

Explanation
z/OS Debugger is ready to accept a command from the
terminal. This message is used in line mode when an
initial prompt occurs at a block entry.

Programmer response
Enter a command. If you are not sure what you can
enter, enter HELP or ?. Information will be displayed
identifying the commands you are allowed to enter.

EQA1282I TEST (cu_name EXIT):

Explanation
z/OS Debugger is ready to accept a command from the
terminal. This message is used in line mode when an
initial prompt occurs at a compile unit exit.

Programmer response
Enter a command. If you are not sure what you can
enter, enter HELP or ?. Information will be displayed
identifying the commands you are allowed to enter.

EQA1283I TEST (cu_name:> block name
EXIT):

Explanation
z/OS Debugger is ready to accept a command from the
terminal. This message is used in line mode when an
initial prompt occurs at a block exit.

Programmer response
Enter a command. If you are not sure what you can
enter, enter HELP or ?. Information will be displayed
identifying the commands you are allowed to enter.

EQA1284I TEST (Application program has
terminated):

Explanation
z/OS Debugger is ready to accept a command from
the terminal. This message is used in line mode when
an initial prompt occurs at the termination of the
application program.

Programmer response
Enter a command. If you are not sure what you can
enter, enter HELP or ?. Information will be displayed
identifying the commands you are allowed to enter.

EQA1285I TEST (label-name LABEL);

Explanation
z/OS Debugger is ready to accept a command from the
terminal. This message is used in line mode when an
initial prompt occurs at a label.

Programmer response
Enter a command. If you are not sure what you
can enter, enter HELP or ?. Information is displayed
identifying the commands you are allowed to enter.

EQA1286I (Application program has
terminated)

Explanation
z/OS Debugger is ready to accept a command from
the terminal. This message is used in full-screen mode
when an initial prompt occurs at the termination of the
application program.

EQA1287I Unknown

Explanation
z/OS Debugger is ready to accept a command from
the terminal. This message is used in full-screen mode
when an initial prompt occurs and the location is
unknown.

EQA1288I initialization

Explanation
z/OS Debugger is ready to accept a command from
the terminal. This message is used in full-screen
mode when an initial prompt occurs after z/OS
Debugger initialization and before any program hooks
are reached.

EQA1289I ddname: program output

Explanation
Displays program output with the ddname preceding
the output.

EQA1290I The program is waiting for input
from ddname

Explanation
z/OS Debugger has gained control because the
program is waiting for input.

EQA1291I Use the INPUT command to
enter recsize characters for the
intercepted fixed-format file.

Chapter 9. z/OS Debugger messages 363

Explanation
Prompts you for intercepted input of fixed-format file.

EQA1292I Use the INPUT command to enter
up to a maximum of recsize
characters for the intercepted
variable-format file.

Explanation
Prompt user for intercepted input of variable-
formatted file.

EQA1293I TEST (cu-name):

Explanation
z/OS Debugger is ready to accept a command from the
terminal. This message is used in line mode when an
initial prompt occurs at a statement and a statement
table is not available.

Programmer response
Enter a command. If you are not sure of what you
can enter, enter HELP or ?. Information is displayed
identifying the available commands you are allowed to
enter.

EQA1294I The suspended LOCAL MONITOR
commands are:

Explanation
This is the header produced by LIST MONITOR when
suspended local monitors are present.

EQA1295I A System 0C1 Abend occurred at
an address that appears to be
the target of a BALR/BASR 14,15.
A CALL to an invalid address is
assumed. The current location is
positioned to the CALL statement.

Explanation
A System 0C1 Abend occurred at an address that is
not in any known Compile Unit. This address matches
the address in GPR 15 and GPR14 points to the
instruction immediately following a BALR 14,15 or a
BASR 14,15. The current location is assumed to be the
BALR or BASR instruction.

EQA1301I A ABEND code ABEND occurred.

Explanation
A system or user ABEND has been detected by z/OS
Debugger.

EQA1306I You were prompted because the
CONDITION name condition was
raised in your program.

Programmer response
The program has stopped running due to the
occurrence of the named condition.

EQA1307I You were prompted because an
ATTENTION interrupt occurred.

Explanation
The attention request from the terminal was
recognized and the z/OS Debugger was given control.

EQA1308I You were prompted because a
condition was raised in your
program.

Explanation
The program stopped running due to the occurrence of
a condition whose name is unknown.

EQA1309I CONDITION name is a severity or
class SEVERITY code condition.

Explanation
The condition named is described by its severity level
or class code. See the z/OS Language Environment
Programming Guide.

EQA1316I Block block name contains the
following statements:

Explanation
This message precedes the message that identifies all
statement numbers in the block.

EQA1317I block level space characters block
name

Explanation
This message is used instead of EQA1097I when the
number of block levels is greater than the indentation
allowed.

EQA1318I space_characters
INCLUDE_file_name index_number

Explanation
The first insert controls the indentation, the second
is the INCLUDE file name, and the third insert is the
source index block level.

364 IBM z/OS Debugger: Reference and Messages

EQA1320E A trigraph was found when the
FIND column specifications are
not 1 to *.

Explanation
When searching through C or C++ source code, you
can only specify FIND columns (explicitly or through
SET FIND BOUNDS) other than 1 to * if no trigraphs
exist in the source code.

EQA1321E The SET FIND BOUNDS column
specifications are invalid.

Explanation
The left column must be less than or equal to the right
column.

EQA1322E The FIND column specification(s)
is invalid.

Explanation
The left column must be less than or equal to the right
source margin. If left and right columns are specified,
the left column must be less than or equal to the right
column.

EQA1323E The FIND argument will not fit
between the specific columns.

Explanation
If left and right columns are specified or defaulted
for FIND, the argument must fit within the specified
columns. If only a left column is specified, the
argument must fit within the left column and the right
source margin.

EQA1324I Bottom of data reached.

Explanation
FIND has reached the bottom of the data without
finding the string being searched for.

EQA1325I Top of data reached.

Explanation
FIND has reached the top of the data without finding
the string being searched for.

EQA1326I character string

Explanation
This message is used to display the results of a
command that the user has entered, such as LIST
STORAGE.

EQA1327I character string character string

Explanation
This message is used to display the results of a
command that the user has entered.

EQA1329I The procedure named procedure
name has the form:

Explanation
This is the information that is produced when a LIST
PROCEDURE command is processed. This message is
followed by a message of one or more lines showing
the commands that form the procedure.

EQA1330I You are not currently within a
procedure.

Explanation
The LIST PROCEDURE command was issued without
naming a session procedure and the current command
context is outside of a session procedure.

Programmer response
Verify the request. Reenter the command and name a
specific procedure if necessary.

EQA1331I The RETRIEVE queue is empty.

Explanation
There are no entries in the retrieve queue.

EQA1332I FIND has continued from top of
area.

Explanation
FIND searched the file to the end of the string without
finding it and continues the search from the top, back
to the starting point of the search.

EQA1333I The string was found.

Explanation
FIND was successful in locating the target string. The
line on which the string was found is displayed just
above this message when operating in line mode.

Chapter 9. z/OS Debugger messages 365

EQA1334I The operating system has
generated the following message:

Explanation
The Operating System can issue its own messages.
These are relayed to the user.

EQA1335I OS message

Explanation
The operating system can issue its own messages.
These are relayed to the user.

EQA1336I IBM z/OS Debugger 15.0.m time
stamp 5724-T07: Copyright IBM
Corp. 1992, 2020

Explanation
This message is used to place the z/OS Debugger logo,
a timestamp, and copyright at the beginning of the log.

This message is also issued in response to the CALL
%VER command. See “CALL %VER command” on page
83 for further details on additional information about
the time stamp when CALL %VER is used.

EQA1337I Its address is address and its
length is length

Explanation
Text of a DESCRIBE ATTRIBUTES message for PL/I.

EQA1338I Its offset is offset and its length is
length

Explanation
Text of a DESCRIBE ATTRIBUTES message for PL/I.

EQA1339I Its length is length

Explanation
Text of a DESCRIBE ATTRIBUTES message for PL/I.

EQA1340I Its address is address

Explanation
Text of a DESCRIBE ATTRIBUTES message for PL/I.

EQA1341I Its Offset is offset

Explanation
Text of a DESCRIBE ATTRIBUTES message for PL/I.

EQA1342I ATTRIBUTES for variable name
variable type

Explanation
Text of a DESCRIBE ATTRIBUTES message for PL/I.

EQA1343I Presently not in accessible storage

Explanation
The requested variable cannot be accessed.

EQA1344I The OTHERWISE statement would
have been executed but was not
present

Explanation
The was no OTHERWISE clause present in the SELECT
statement and none of the WHEN clauses were
selected. This message is simply indicating that the
OTHERWISE clause would have been executed if it had
been present.

EQA1351I PLAYBACK statement sequence
error. PLAYBACK found stmt was
found before PLAYBACK req stmt.
Statement ignored.

Explanation
Playback was not is the proper state to process the
specified statement. The statement is ignored.

EQA1352I PLAYBACK statement sequence
error. PLAYBACK found stmt was
found after PLAYBACK req stmt.
Statement ignored.

Explanation
Playback was not is the proper state to process the
specified statement. The statement is ignored.

EQA1353I Not enough memory available
for PLAYBACK data collection.
Increase memory specification on
the PLAYBACK ENABLE command.

Explanation
Not enough memory was available for Playback data
collection. Increase the amount of memory available
to Playback on the PLAYBACK ENABLE command.

EQA1354I Return code RC from PLAYBACK
run-time API API name.
PLAYBACK disabled.

366 IBM z/OS Debugger: Reference and Messages

Explanation
The specified return code indicated an error condition
detected by the Playback run-time API. Playback is
disabled.

Programmer response
Return code 63 indicates not enough memory was
available for Playback. Restart your z/OS Debugger
session and enter the PLAYBACK ENABLE command
using the integer option. For example: PLAYBACK
ENABLE * 10000

EQA1355I The current status of PLAYBACK
is: PB insert1, PB insert2, PB
insert3, PB insert4.

Explanation
This message is issued in response to the QUERY
PLAYBACK command.

EQA1356I PLAYBACK START is not active.
You are not in PLAYBACK replay
mode.

Explanation
This message is issued in response to the QUERY
PLAYBACK LOCATION command when PLAYBACK
replay is not active.

EQA1357I PLAYBACK replay mode is active
with PB Data. The direction is PB
direction.

Explanation
This message is issued in response to the QUERY
PLAYBACK LOCATION command when PLAYBACK
replay is active.

EQA1358I The current location in the
PLAYBACK buffer is PB location.

Explanation
This message is issued in response to the QUERY
PLAYBACK LOCATION command when PLAYBACK
replay is active.

EQA1359I Command is not allowed in
PLAYBACK replay mode.

Explanation
The previous command is not supported after
PLAYBACK START.

EQA1360I Command is not allowed in
PLAYBACK NODATA replay mode.

Explanation
The previous command is not supported after
PLAYBACK START.

EQA1361I PLAYBACK command not
processed.

Explanation
The previous command was ignored because of errors
that were indicated by previous messages.

EQA1362I There is no data in the
PLAYBACK buffer. PLAYBACK
START command rejected.

Explanation
A PLAYBACK START command was entered but the
PLAYBACK buffer is empty. The PLAYBACK START
command is not processed.

EQA1363W PLAYBACK replay has reached
the first record in the PLAYBACK
buffer. You must enter PLAYBACK
FORWARD or PLAYBACK STOP.

Explanation
Playback replay has reached the first record in the
buffer. You cannot move farther backward.

EQA1364W PLAYBACK replay has reached
the last record in the PLAYBACK
buffer. You must enter PLAYBACK
FORWARD or PLAYBACK STOP.

Explanation
Playback replay has reached the last record in the
buffer. You cannot move farther forward.

EQA1365I PLAYBACK replay has stepped
over one or more deleted compile
units or compile units for which
PLAYBACK has been disabled.

Explanation
Playback replay has encountered data for a compile
unit that is no longer active because the load module
containing it was canceled or deleted, because the
enclave containing it terminated, etc. Playback cannot
replay this data because the necessary control blocks
are no longer present.

Chapter 9. z/OS Debugger messages 367

EQA1366I PLAYBACK START is not allowed
when AUTOMONITOR options
BOTH or PREVIOUS are in effect.

Explanation
Playback cannot be started while AUTOMONITOR with
option BOTH or AUTOMONITOR with option PREVIOUS
are in effect.

EQA1367I AUTOMONITOR options BOTH or
PREVIOUS are not allowed while
PLAYBACK is started.

Explanation
AUTOMONITOR with option PREVIOUS or
AUTOMONITOR with option BOTH is not allowed while
PLAYBACK is started.

EQA1368I Previous location is now out
of scope. No variables can be
displayed.

Explanation
The variables from the previous statement cannot be
resolved because the data is no longer available from
the runtime at the time of the request.

EQA1369I The previous statement is out
of scope. No variables can be
updated.

Explanation
The data from the statement in which z/OS Debugger
last had control cannot be updated because the
statement is no longer in scope.

EQA1370I The following name_type names
are currently exclude_or_included
by user_or_debugtool.

Explanation
This message precedes the output of the NAMES
QUERY command and indicates the type of names that
follow this message.

EQA1371I name

Explanation
This message lists the names output by the NAMES
QUERY command.

EQA1372I There are no name_type names
currently exclude_or_included by
user_or_debugtool.

Explanation
This message is issued by the NAMES QUERY
command when there is no data to be displayed.

EQA1373E A pattern of "*" is invalid.

Explanation
The NAMES EXCLUDE command does not allow a
pattern of "*".

EQA1376I Channel_Tag Channel_Name

Explanation
This message contains the output from the DESCRIBE
CHANNEL command.

EQA1377I A CICS Storage Violation has not
been detected.

Explanation
z/OS Debugger did not detect any storage violation.

EQA1378W A CICS Storage Violation has been
detected. The leading/trailing
check zone associated with the
storage that starts at Hex_Str
StgV_Address Quote_Str for a
length of StgV_Length has been
damaged.

Explanation
z/OS Debugger detected a storage violation.

EQA1379I No MEMORY data is available
for the requested reference or
address.

Explanation
The given reference or address is invalid.

EQA1380I The following LABELS are known
in Program name:

Explanation
This title line precedes a list of label names for a
program in a LIST NAMES LABELS command.

EQA1381I The following LABELS with pattern
pattern are known in PROGRAM
name:

368 IBM z/OS Debugger: Reference and Messages

Explanation
This title line precedes a list of label names for a
program that satisfy the pattern in a LIST NAMES
LABELS command.

EQA1382I There are no LABELS with pattern
pattern in PROGRAM NAME.

Explanation
This line appears when no LABELS satisfied the
pattern in a LIST NAMES LABELS command for the
currently qualified program.

EQA1383I This command is not supported
for currently qualified program
PROGRAM NAME.

Explanation
This line appears when the language of the currently
qualified program is PL/I, C, or C++.

EQA1384I There are no LABELS in currently
qualified program PROGRAM
NAME.

Explanation
This line appears when no labels are found after
issuing the LIST NAMES LABELS command for the
currently qualified program.

EQA1387I DTCN Pattern-match breakpoint
disabled for:

Explanation
This is the title line for the LIST DTCN command.

EQA1388I CADP Pattern-match breakpoint
disabled for:

Explanation
This is the title line for the LIST CADP command.

EQA1389I Load module = load_module_Name
CU = compile_unit_name

Explanation
This message lists the load module and compile unit
names output by the LIST DTCN command.

EQA1390I Program = program_name CU =
compile_unit_name

Explanation
This message lists the program and compile unit
names output by the LIST CADP command.

EQA1391I This program and/or compile
unit is not in the pattern-match
breakpoint list.

Explanation
The ENABLE CADP command is not allowed since this
particular program, compile unit, or both are not in the
pattern-match breakpoint list.

EQA1392I The pattern-match breakpoint list
is empty.

Explanation
There are no entries in the pattern-match breakpoint
list.

EQA1393I This load module and/or compile
unit is not in the pattern-match
breakpoint list.

Explanation
The ENABLE DTCN command is not allowed for this
particular program and/or compile unit.

EQA1394I This compile unit was optimized
by ABO.

Explanation
After this COBOL program was compiled, the module
was optimized by Automatic Binary Optimizer for z/OS.

For programs complied with Enterprise COBOL for
z/OS Version 5 or later, you can debug them as the
programs that are not optimized by ABO.

For programs complied with Enterprise COBOL for
z/OS Version 4 or earlier, you can use the LangX
COBOL support in z/OS Debugger to debug (with
restrictions) a load module or program object
generated by the ABO. For more information, see
"Debugging a program processed by the Automatic
Binary Optimizer for z/OS" in IBM z/OS Debugger
User's Guide.

EQA1396I Bottom of data reached.

Explanation
FINDBP has reached the bottom of the data without
finding a breakpoint of the specified (or defaulted)
status.

EQA1397I Top of data reached.

Chapter 9. z/OS Debugger messages 369

Explanation
FINDBP has reached the top of the data without
finding a breakpoint of the specified (or defaulted)
status.

EQA1398I An ENABLED breakpoint was
found.

Explanation
FINDBP has found an ENABLED breakpoint. The cursor
is placed in the prefix area of the line containing the
breakpoint.

EQA1399I An DISABLED breakpoint was
found.

Explanation
FINDBP has found an DISABLED breakpoint. The
cursor is placed in the prefix area of the line containing
the breakpoint.

EQA1400E The value entered is invalid.

Explanation
The user entered an invalid value.

EQA1401E The command entered is not a
valid panel sub-command.

Explanation
The user entered a command not recognized by panel
processor.

EQA1402E Each window must have unique
letters of L, M, S, and E.

Explanation
Look at the Window Layout Select Panel, verify that
each window has an L, M, S, or E and that each letter
is used only once. For example, you cannot have two
windows with the letter L.

EQA1403E Invalid prefix command was
entered.

Explanation
The user entered an invalid prefix command.

EQA1404E Search target not found.

Explanation
The target for the search command was not found.

EQA1405E No previous search arguments
exist; find not performed.

Explanation
A FIND command was issued without an argument.
Since the FIND command had not been issued
previously, z/OS Debugger had nothing to search for.

EQA1406E Invalid window ID.

Explanation
The window header field contains an invalid window
ID. Valid window IDs are SOURCE, MONITOR, and LOG.

EQA1407E Invalid scroll amount entered.

Explanation
Scroll field contains an invalid scroll amount.

EQA1408E Duplicate window ID

Explanation
More than one window header field contains the same
window id.

EQA1409E No line, statement or offset
breakpoints were found.

Explanation
No line, statement or offset breakpoints were found of
the specified (or defaulted) status.

EQA1410E Variable_name is a LABEL on
a modifiable instruction. No AT
commands can be issued against
it.

Explanation
The specified label is on an instruction that is modified
at some point in the program. Breakpoints cannot be
set on such an instruction.

EQA1411E Invalid operand number was
entered.

Explanation
The user entered a number corresponding to an invalid
operand.

EQA1412E Prefix command not supported for
current programming language.

370 IBM z/OS Debugger: Reference and Messages

Explanation
Prefix command not supported for current
programming language.

EQA1413E There are no operands in the
statement to display.

Explanation
The specified prefix command is on a statement with
no operands.

EQA1414E Prefix command was entered on
invalid statement.

Explanation
The user entered prefix command on an invalid line.

EQA1415E Specified operand number is too
big.

Explanation
The user entered an operand number that exceeds the
number of operands in that statement.

EQA1416E Multiple invalid prefix commands.
For details, reenter commands
individually.

Explanation
More then one invalid prefix commands. To see details
you must reenter the invalid command one at a time.

EQA1417E Invalid line for prefix command.
Line must be in the active block.

Explanation
The user entered a prefix command on a line that is
contained in a block that is not currently active.

EQA1418E One or more of multiple updates
were not processed.

Explanation
One or more invalid updates. The commands were not
processed. For details, please see messages in the
LOG.

EQA1419E Prefix command entered inside CC
block command.

Explanation
The user entered a prefix command inside a CC block
command.

EQA1420E Block command incomplete.

Explanation
The user entered only one CC in the Monitor prefix
area. A second CC is expected to finish the block
command.

EQA1421E The command is not supported in
the List Pop-up window. Results
are in the LOG.

Explanation
The user entered a LIST command that is not
supported in the List Pop-up window. Results are in
the LOG.

EQA1422E Invalid SCROLL command for List
pop-up window. Only SCROLL
DOWN/UP are allowed.

Explanation
The user entered an invalid SCROLL command when
the List pop-up window is shown. Only SCROLL
DOWN/UP are allowed.

EQA1423E List pop-up window shows first
1000 lines only. Complete results
are in the LOG.

Explanation
The output for LIST command is bigger than 1000
lines. The List pop-up window shows only the first
1000 lines. Complete results are in the LOG.

EQA1424W One or more variables undefined
in current CU. MONITOR command
or commands not defined.

Explanation
LOCAL was specified, limiting the monitor command to
the current compile unit.

Programmer response
Use the GLOBAL keyword to monitor variables in
noncurrent compile units.

EQA1425W One or more variables undefined
in current CU. MONITOR command
or commands not defined.

Explanation
The named variable could not be located or is
undefined.

Chapter 9. z/OS Debugger messages 371

EQA1426W An invalid qualifier in a qualified
reference. MONITOR command or
commands not defined.

Explanation
A qualified reference is invalid. One or more qualifiers
might be undefined, or they are not in the same
structure as the desired data item.

EQA1427W Expression error. MONITOR not
defined. Use LIST command to see
the details in LOG.

Explanation
Error occurred during processing. Use the LIST
command to see detailed message in the LOG.

EQA1428W Multiple errors. MONITOR or
MONITORS not defined. Use LIST
commands to see details in LOG.

Explanation
Multiple expression errors occurred during processing.
Use the LIST command to see detailed messages in
the LOG.

EQA1429E The label label-name has been
removed due to optimization.
Breakpoint not set.

Explanation
The label was removed by the compiler because of
optimization.

EQA1431W There are no EQUATE definitions in
effect.

Explanation
CLEAR EQUATE or QUERY EQUATES was issued but
there are no EQUATE definitions.

EQA1432E function is not supported.

Explanation
Language/Country is not supported.

Programmer response
Set National Language and Country.

EQA1433E Switching to the programming
language language-name is invalid
because there are no language-

name compilation units in the
initial load module.

Explanation
A SET PROGRAMMING LANGUAGE command was
issued, but the initial load module contains no
compilation units compiled in the language specified
(or implied).

EQA1434E Error in setting debug name
to ?????????.

Explanation
Refer to the maximum number of CUs allowed for
debugging.

EQA1435E Error in setting name.

Explanation
This is a generic message for SET command errors.

EQA1436W SET EXECUTE is OFF -- command
will not be executed.

Explanation
The command was parsed but not executed.

EQA1437W SET DYNDEBUG cannot be
executed at this time. SET
DYNDEBUG can only be executed
at the beginning of a debugging
session, before any STEP or GO
commands. The DYNDEBUG status
has not been changed.

Explanation
The Dynamic Debug facility setting cannot be changed
to ON in the middle of a debugging session.

EQA1438W SET DYNDEBUG cannot be
executed at this time. SET
DYNDEBUG can only be executed
at the beginning of a debugging
session, before any STEP or GO
commands. The DYNDEBUG status
has not been changed.

Explanation
The Dynamic Debug facility setting cannot be changed
to OFF in the middle of a debugging session.

EQA1439E This CU is not AUTOMONITOR
capable for expressions.

372 IBM z/OS Debugger: Reference and Messages

Explanation
The CU is not AUTOMONITOR capable.

Programmer response
Refer to the description of the SET AUTOMONITOR
command in the IBM z/OS Debugger Reference and
Messages document to determine the requirements
this CU must fulfill in order to use the SET
AUTOMONITOR command.

EQA1440E SET AUTOMONITOR ON is not
valid for this CU. Use the SET
AUTOMONITOR ON LOG command
to activate the statement trace
function.

Explanation
The current CU is not AUTOMONITOR capable. SET
AUTOMONITOR ON LOG will activate the statement
trace.

Programmer response
Refer to the description of the SET AUTOMONITOR
command in the IBM z/OS Debugger Reference and
Messages document to determine the requirements
this CU must fulfill in order to use the SET
AUTOMONITOR command.

EQA1441I The statement trace is now active.
Use the SET AUTOMONITOR
OFF command to deactivate the
statement trace.

Explanation
The statement trace is active for a CU that is not
AUTOMONITOR capable.

EQA1442E DYNDEBUG cannot be SET
OFF when running without the
Language Environment run-time.

Explanation
The Dynamic Debug facility cannot be deactivated
while running without the Language Environment run-
time.

EQA1443I There are no INTERCEPT
specifications in effect.

Explanation
QUERY INTERCEPT was issued but there are no
INTERCEPT specifications active.

EQA1444I For this command to be effective,
SETTINGS must be saved.

Explanation
In order for SET RESTORE BPS AUTO or SET
RESTORE MONITORS AUTO to be effective, the
settings must be saved. You entered one of these
commands but the current setting is SET SAVE
SETTINGS NOAUTO.

EQA1445E this_cmd conflicts with State,
default_cmd is used.

Explanation
The specified command (this_cmd) conflicts with
an existing setting (State). The altered command
(default_cmd) is used.

EQA1446E The label label_name has been
removed due to optimization. No
GOTO or JUMPTO are performed.

Explanation
The label was removed by the compiler because of
optimization.

EQA1447E The attempt to set this breakpoint
failed. The statement might be
invalid or was removed by the
compiler due to optimization.

Explanation
The program is compiled with OPT. Compiler might
have removed this state or the statement entered is
not a valid statement. The breakpoint is not set.

EQA1448W The MONITOR LIST command has
already been established.

Explanation
The MONITOR LIST command that was entered is a
duplicate of an existing MONITOR LIST command. The
new command is ignored.

EQA1449E The command is not supported
with PL/I. Use PL/I built-
in function HEX to obtain
hexadecimal values.

Explanation
%HEX and MONITOR LIST %HEX are not valid for
PL/I. It is recommended that the PL/I built-in function
HEX be used instead. For example: LIST HEX(expr) or
MONITOR LIST HEX(expr).

Chapter 9. z/OS Debugger messages 373

EQA1450E Unable to display the result from
expression evaluation

Explanation
The entire result from the expression evaluation
cannot be displayed; for example, the array is too
large.

EQA1451E operand contains incompatible
data type.

Explanation
Comparison or assignment involves incompatible data
types, or incompatible or unsupported date fields. If
you are using COBOL, see “Allowable comparisons for
the IF command (COBOL)” on page 132 for allowable
comparisons for the z/OS Debugger IF command, and
“Allowable moves for the MOVE command (COBOL)”
on page 176 for allowable moves for the z/OS
Debugger MOVE command.

EQA1452E argument name is not a valid
argument.

Explanation
The specified argument is not valid.

EQA1453E The number of arguments is not
correct.

Explanation
There are either too many or too few arguments
specified.

EQA1454E operand name is not a valid
operand.

Explanation
The specified operand is undefined or is an invalid
literal.

EQA1455E An unsupported operator/operand
is specified.

Explanation
An operator or an operand was not understood, and
therefore was not processed. Examples of when this
message is issued when using COBOL include:

• An attempt to perform arithmetic with a nonnumeric
data item

• An attempt to perform arithmetic with a windowed
date field or a year-last date field

EQA1456S The variable variable name
is undefined or is incorrectly
qualified.

Explanation
The named variable could not be located or undefined.

Programmer response
You need to qualify to a different block in order to
locate the variable.

EQA1457E The exponent exponent contains a
decimal point.

Explanation
This feature is not supported. No decimal point is
allowed in exponent specification.

EQA1458E The address of data item has been
determined to be invalid.

Explanation
This can happen for items within a data record where
the file is not active or the record area is not available;
for items in a structure following Occurs, depending on
the item where the ODO variable was not initialized; or
for items in the LINKAGE SECTION that are not based
on a valid address.

EQA1459E literal string is not a valid literal.

Explanation
The combination of characters specified for the literal
is not a valid literal.

EQA1460E Operand operand name should be
numeric.

Explanation
A nonnumeric operand was found where a numeric
operand was expected.

EQA1461E Invalid data for data item is found.

Explanation
The memory location for a data item contains data that
is inconsistent with the data type of the item. The item
might not have been initialized.

EQA1462E Invalid sign for data item is found.

374 IBM z/OS Debugger: Reference and Messages

Explanation
The sign position of a signed data item contains an
invalid sign. The item might not have been initialized.

EQA1463E A divisor of 0 is detected in a
divide operation.

Explanation
The expression contains a divide operation where the
divisor was determined to be zero.

EQA1464E data item is used as a receiver but
it is not a data name.

Explanation
The target of an assignment is not valid.

EQA1465E The TGT for a program is not
available.

Explanation
The program might have been deleted or canceled.

EQA1466E data item is not a valid subscript or
index.

Explanation
The subscript or index might be out of range or an ODO
variable might not be initialized.

EQA1467E No subscript or index is allowed
for data item

Explanation
One or more subscripts or indexes were specified
for a data item that was not defined as a table. The
reference to the data item is not allowed.

EQA1468E Missing subscripts or indexes for
data item

Explanation
A data item defined as a table was referenced without
specifying any subscripts or indexes. The reference is
not allowed.

EQA1469E Incorrect number of subscripts or
indexes for data item

Explanation
A data item defined as a table was referenced
with incorrect number of subscripts or indexes. The
reference is not allowed.

EQA1470E Incorrect length specification for
data item

Explanation
The length of a data item is incorrect for the definition,
usually due to a faulty ODO object.

EQA1471E Incorrect value for ODO variable
data item

Explanation
The ODO variable might not have been initialized, or
the current value is out of range.

EQA1472E Invalid specification of reference
modification.

Explanation
The specification of the reference modification is not
consonant with the length field.

EQA1473E Invalid zero value for data item

Explanation
The value of a data item is zero. A zero is invalid in the
current context.

EQA1474E procedure name was found where
a data name was expected.

Explanation
Invalid name is specified for a data item.

EQA1475E data item is an invalid qualifier in a
qualified reference.

Explanation
A qualified reference is invalid. One or more qualifiers
might be undefined or not in the same structure as the
desired data item.

EQA1476E Too many qualifiers in a qualified
reference.

Explanation
The qualified reference contains more than the legal
number of qualifiers.

EQA1477E DATA DIVISION does not contain
any entries.

Chapter 9. z/OS Debugger messages 375

Explanation
There is no data to display for a LIST * request
because the DATA DIVISION does not contain any
entries.

EQA1478E No status available for sort file
sort file

Explanation
Status was requested for a sort file. There is never a
status available for a sort file.

EQA1479E Unable to locate any TGT. An
attempt to locate any TGT failed.

Explanation
No COBOL program exists in TEST mode.

EQA1480E operand name is an invalid
operand for SET command.

Explanation
The operands for a SET command are incorrect. At
least one of the operands must be index name.

EQA1481E Too many digits for the exponent
of floating point literal data item

Explanation
The exponent specified for a floating-point literal
contains too many digits.

EQA1482E command name command is
terminated due to an error in
processing.

Explanation
The command is terminated unsuccessfully because
an error occurred during processing.

EQA1483E reference could not be formatted
for display.

Explanation
The requested data item could not be displayed due to
an error in locating or formatting the data item.

EQA1484E Resources (for example, heap
storage) are not available for
processing and the command is
terminated unsuccessfully.

Explanation
z/OS Debugger has an internal heap limit of 250M for
processing expressions. The command could not be
processed because this limit was exceeded.

Programmer response
Reduce the number of structure or array elements
being processed by explicitly listing only those of
interest.

EQA1485E The command is not supported
because the CU is compiled with
incorrect compiler options.

Explanation
For COBOL, the CUs must be compiled with VS COBOL
II Version 1 Release 3 and the TEST compiler or
FDUMP option, or AD/Cycle COBOL and the compile-
time TEST option.

EQA1486E variable name is presently not in
accessible storage.

Explanation
The variable might be CONTROLLED or AUTOMATIC
and does not yet exist.

EQA1487S The number of dimensions for
variable name is number -- but
number have been specified.

Explanation
The wrong number of subscripts were specified with
the variable reference.

EQA1488E The indices in variable name
are invalid. Use the DESCRIBE
ATTRIBUTES command (without
any indices specified) to see the
valid indices.

Explanation
The subscripts with the variable reference do not
properly relate to the variable's characteristics.

EQA1489S variable name is not a based
variable but a locator has been
supplied for it.

Explanation
A pointer cannot be used unless the variable is BASED.

376 IBM z/OS Debugger: Reference and Messages

Programmer response
Use additional qualification to get to the desired
variable.

EQA1490S variable name cannot be used as a
locator variable.

Explanation
Only variables whose data type is POINTER or OFFSET
can be used to locator with other variables.

EQA1491S There is no variable named
character string, and if it is meant
to be a built-in function, the
maximum number of arguments
to the character string built-in
function is number, but number
were specified. If it is meant to be
a STORAGE alteration command,
the syntax is not valid.

Explanation
A subscripted variable could not be found. Its name,
however, is also that of a PL/I built-in function. If
the built-in function was intended, the wrong number
of arguments were present. It can be also STORAGE
alteration function. If that command was intended,
then invalid syntax was present.

EQA1492S There is no variable named
character string, and if it is meant
to be a built-in function, the
minimum number of arguments
to the character string built-in
function is number, but number
were specified.

Explanation
A subscripted variable could not be found. Its name,
however, is also that of a PL/I built-in function. If the
built-in function was intended, more arguments must
be present.

EQA1493E There is no variable named
character string, and if it is
meant to be a built-in function,
remember built-in functions are
allowed only in expressions.

Explanation
A variable could not be found. Its name, however,
is also that of a PL/I built-in function. If the built-in
function was intended, it is not in the correct context.
Note that in z/OS Debugger, pseudo-variables cannot
be the target of assignments.

EQA1494S variable name is an aggregate.
It cannot be used as a locator
reference.

Explanation
The variable that is being as a locator is not the correct
data type.

EQA1495S The name variable name is
ambiguous and cannot be
resolved.

Explanation
Names of structure elements can be ambiguous if not
fully qualified. For example, in DCL 1 A, 2 B, 3 Z
POINTER, 2 C, 3 Z POINTER, the names Z and
A.Z are ambiguous.

Programmer response
Retry the command with enough qualification so that
the name is unambiguous.

EQA1496S The name variable name refers to
a structure, but structures are not
supported within this context.

Explanation
Given DCL 1 A, 2 B FIXED, 2 C FLOAT, the
name A refers to a structure.

Programmer response
Break the command into commands for each of the
basic elements of the structure, or use the DECLARE
command with a BASED variable to define a variable
overlaying the structure.

EQA1497S An aggregate cannot be used as an
index into an array.

Explanation
Given DCL A(2) FIXED BIN(15) and DCL B(2)
FIXED BIN(15), references to A(B), A(B+2), and so
on are invalid.

Programmer response
Use a scalar as the index.

EQA1498S Generation and recursion numbers
must be positive.

Chapter 9. z/OS Debugger messages 377

Explanation
In %GENERATION(x,y) and %RECURSION(x,y), y
must be positive.

EQA1499S Generation and recursion
expressions cannot be aggregate
expressions.

Explanation
In %GENERATION(x,y) and %RECURSION(x,y), y
must be a scalar.

EQA1500S %RECURSION can be applied
only to parameters and automatic
variables.

Explanation
In %RECURSION(x,y), x must be a parameter or an
automatic variable.

EQA1501S %RECURSION number of
procedure name does not exist.
The present number of recursions
of the block block name is number.

Explanation
In %RECURSION(x,y), y must be no greater than the
number of recursions of the block where x is declared.

EQA1502S %Generation can be applied only
to controlled variables.

Explanation
In %GENERATION(x,y), x must be controlled.

EQA1503S %Generation number of variable
name does not exist. The present
number of allocations of variable
name is number.

Explanation
In %GENERATION(x,y), y must be no greater than the
number of allocations of the variable x.

EQA1504S %Generation number of
%RECURSION (procedure name,
number) does not exist. The
present number of allocations of
%RECURSION (procedure name,
number) is number.

Explanation
In %GENERATION(x,y), y must be no greater than the
number of allocations of the variable x.

EQA1505S The variable variable name
belongs to a FETCHed procedure
and is a CONTROLLED variable
that is not a parameter. This
violates the rules of PL/I.

Explanation
PL/I does not allow FETCHed procedures to contain
CONTROLLED variable types.

Programmer response
Correct the program.

EQA1506S The variable character string
cannot be used.

Explanation
The variable belongs to the class of variables, such as
members of structures with REFER statements, which
z/OS Debugger does not support.

EQA1507E The expression in the QUIT
command must be a scalar that
can be converted to an integer
value.

Explanation
The expression in the QUIT command cannot be an
array, a structure or other data aggregate, and if it is
a scalar, it must have a type that can be converted to
integer.

EQA1508E An internal error occurred in C run
time during expression processing.

Explanation
This message applies to C. An internal error occurred
in the C run time and the command is terminated.

EQA1509E The unary operator operator name
requires a scalar operand.

Explanation
This message applies to the C unary operator ! (logical
negation).

EQA1510E The unary operator operator name
requires a modifiable lvalue for its
operand.

Explanation
This message applies to the C unary operators ++ and
--.

378 IBM z/OS Debugger: Reference and Messages

EQA1511E The unary operator operator name
requires an integer operand.

Explanation
This message applies to the C unary operator ~
(bitwise complement).

EQA1512E The unary operator operator
requires an operand that is either
arithmetic or a pointer to a type
with defined size.

Explanation
This message applies to the C unary operators + and
-. These operators cannot be applied to pointers to
void-function designators, or pointers to functions.

EQA1513E The unary operator operator
requires an arithmetic operand.

Explanation
This message applies to the C unary operator + and -.

EQA1514E Too many arguments specified in
function call.

Explanation
This message applies to C function calls.

EQA1515E Too few arguments specified in
function call.

Explanation
This message applies to C function calls.

EQA1516E The logical operator operator
requires a scalar operand.

Explanation
This message applies to the C binary operators &&
(logical and) and || (logical or).

EQA1517E The operand of the type cast
operator must be scalar.

Explanation
This message applies to the C type casts.

EQA1518E The named type of the type
cast operator must not be an
expression.

Explanation
This message applies to the C type casts.

EQA1519E A real type cannot be cast to a
pointer type.

Explanation
This message applies to C type casts. In the example
'float f;', the type cast '(float *) f' is invalid.

EQA1520E A pointer type cannot be cast to a
real type.

Explanation
Invalid operand for the type cast operator.

EQA1521E The operand in a typecast must be
scalar.

Explanation
This message applies to C type casts.

EQA1522E Argument argument in function
call function has an invalid type.

Explanation
This message applies to C function calls.

EQA1523E Invalid type for function call.

Explanation
This message applies to C function calls.

EQA1524E The first operand of the subscript
operator must be a pointer to a
type with defined size.

Explanation
This message applies to the C subscript operator. The
subscript operator cannot be applied to pointers to
void, function designators or pointers to functions.

EQA1525E Subscripts must have integer type.

Explanation
This message applies to the C subscript operator.

EQA1526E The first operand of the sizeof
operator must not be a function
designator, a typedef, a bitfield or
a void type.

Chapter 9. z/OS Debugger messages 379

Explanation
This message applies to the C unary operator sizeof.

EQA1527E The second operand of the
operator operator must be a
member of the structure or union
specified by the first operand.

Explanation
This message applies to the C operators (select
member) and –> (point at member).

EQA1528E The first operand of the operator
operator must have type pointer to
struct or pointer to union.

Explanation
This message applies to the C operator –> (point at
member).

EQA1529E The operand of the operator
operator must be an array, a
function designator, or a pointer to
a type other than void.

Explanation
This message applies to the C indirection operator.

EQA1530E The first operand of the operator
operator must have type struct or
union.

Explanation
This message applies to the C subscript operator
(select member).

EQA1531E The relational operator operator
requires comparable data types.

Explanation
This message applies to the C relational operators. For
example, <, >, <=, >=, and ==.

EQA1532E The subtraction operator requires
that both operands have
arithmetic type or that the left
operand is a pointer to a type with
defined size and the right operand
has the same pointer type or an
integral type.

Explanation
This message applies to the C binary operator -.
The difference between two pointers to void or two

pointers to functions is undefined because sizeof is not
defined for void types and function designators.

EQA1533E Assignment contains incompatible
types.

Explanation
This message applies to C assignments, for example,
+=, -=, and *=.

EQA1534E The TEST expression in the switch
operator must have integer type.

Explanation
This applies to the test expression in a C switch
command.

EQA1535E The addition operator requires
that both operands have
arithmetic or that one operand has
integer type and the other operand
is a pointer to a type with defined
size.

Explanation
This message applies to the C binary operator +.

EQA1536E The operand of the address
operator must be a function
designator or an lvalue that is not
a bitfield.

Explanation
This message applies to the C unary operator &
(address).

EQA1537E Invalid constant for the C
language.

Explanation
This message applies to C constants.

EQA1538E Argument argument in function
call function is incompatible with
the function definition. Since
Warning is on, the function call is
not made.

Explanation
This message applies to C function calls. The argument
must have a type that would be valid in an assignment
to the parameter.

EQA1539E The binary operator operator
requires integer operands.

380 IBM z/OS Debugger: Reference and Messages

Explanation
This message applies to the C binary operator
% (remainder), << (bitwise left shift), >> (bitwise
right shift), & (bitwise and), ??¬' (bitwise exclusive
or), |(bitwise inclusive or), and the corresponding
assignment operators (for example, %=, and <<=).

EQA1540E The binary operator operator
requires a modifiable lvalue for its
first operand.

Explanation
This message applies to the C binary assignment
operators.

EQA1541E The binary operator operator
requires arithmetic operands.

Explanation
This message applies to the C binary operators * and /.

EQA1542E Source in assignment to an enum
is not a member of the enum.
Since Warning is on, the operation
is not performed.

Explanation
This message applies to C. You attempted to assign a
value to enum, but the value is not legitimate for that
enum.

EQA1543E Invalid value for the shift operator
operator. Since Warning is on, the
operation will not be performed.

Explanation
This message applies to the C binary operators <<
(bitwise left shift) and >> (bitwise right shift). Shift
values must be nonnegative and less than 33. These
tests are made only when WARNING is on.

EQA1544E Array subscript is negative. Since
Warning is on, the operation is not
performed.

Explanation
This message applies to the C subscripts.

EQA1545E Array subscript exceeds maximum
declared value. Since Warning is
on, the operation is not performed.

Explanation
This message applies to the C subscripts.

EQA1546E ZeroDivide would have occurred
in performing a division operator.
Since Warning is on, the operation
is not performed.

Explanation
Divide by zero is detected by C run time.

EQA1547E variable is presently not in
accessible storage.

Explanation
This message applies to C. Use the LIST NAMES
command to list all known variables.

EQA1548E There is no variable named
variable

Explanation
This message applies to C. Use the LIST NAMES
command to list all known variables.

EQA1549E The function call function is not
performed because the function
linkages do not match.

Explanation
This message applies to C function calls and can occur,
for example, when a function's linkage is specified as
CEE, but the function was compiled with linkage OS.

EQA1550E There is no typedef identifier
named name

Explanation
This message applies to C. The message is issued,
for example, in response to the command DESCRIBE
ATTRIBUTE typedef x, if x is not a typedef
identifier.

EQA1551E name is the name of a member of
an enum type.

Explanation
This message applies to C.

EQA1552E The name name is invalid.

Explanation
This message applies to C declarations.

EQA1553E Linkage type for function call
function is unknown.

Chapter 9. z/OS Debugger messages 381

Explanation
This message applies to C function calls.

EQA1554E Function call function has linkage
type PL/I, which is not supported.

Explanation
This message applies to C function calls.

EQA1555E Function call function has linkage
type FORTRAN which is not
supported.

Explanation
This message applies to C function calls.

EQA1556E name is a tag name. This cannot
be listed since it has no storage
associated with it.

Explanation
This message applies to C tag names.

EQA1557E name is not an lvalue. This cannot
be listed since it has no storage
associated with it.

Explanation
This message applies to C names.

EQA1558E name has storage class void, not
permitted on the LIST command.

Explanation
This message applies to C. In the example 'void'
funcname (...), the command LIST TITLED
(funcname()) is invalid.

EQA1559E The second operand of the
%RECURSION operator must be
arithmetic.

Explanation
This message applies to C. In %RECURSION(x,y), the
second expression, y, must have arithmetic type.

EQA1560E The second operand of the
%RECURSION operator must be
positive.

Explanation
This message applies to C. In %RECURSION(x,y), the
second expression, y, must be positive.

EQA1561E The first operand of the
%RECURSION operator must be
a parameter or an automatic
variable.

Explanation
This message applies to C. In %RECURSION(x,y),
the first expression, x, must be a parameter or an
automatic variable.

EQA1562E The first operand of the
%INSTANCE operator must be
a parameter or an automatic
variable.

Explanation
This message applies to C. In %INSTANCE(x,y),
the first expression, x, must be a parameter or an
automatic variable.

EQA1563E Generation specified for
%RECURSION is too large.

Explanation
This message applies to C. In %RECURSION(x,y),
the recursion number, y, exceeds the number of
generations of x that are currently active.

EQA1564E The identifier identifier has been
replaced.

Explanation
This message applies to C declarations.

EQA1565E The declaration is too large

Explanation
This message applies to C declarations.

EQA1566E An attempt to modify a constant
was made. Since Warning is on,
the operation is not performed.

Explanation
This message applies to C.

EQA1567E An attempt to take the address
of a variable with register storage
was made. Since Warning is on,
the operation is not performed.

Explanation
This message applies to C.

382 IBM z/OS Debugger: Reference and Messages

EQA1568E Type of expression to %DUMP
must be a literal string.

Explanation
This message applies to CALL %DUMP for C.

EQA1569E Octal constant is too long.

Explanation
This message applies to C constants.

EQA1570E Octal constant is too big.

Explanation
This message applies to C constants.

EQA1571E Hex constant is too long.

Explanation
This message applies to C constants.

EQA1572E Decimal constant is too long.

Explanation
This message applies to C constants.

EQA1573E Decimal constant is too big.

Explanation
This message applies to C constants.

EQA1574E Float constant is too long.

Explanation
This message applies to C constants.

EQA1575E Float constant is too big.

Explanation
This message applies to C constants.

EQA1576E The environment is not yet fully
initialized.

Explanation
You can STEP and try the command again.

EQA1577E Reference is too large. Use LIST to
display

Explanation
The requested data item cannot be displayed with
automonitor because it is too large. Use MONITOR
LIST to display the item in the monitor. This could
cause a short of storage condition.

EQA1578E Only "=" and "¬=" are allowed as
operators in comparisons involving
program control data.

Explanation
Other relationships between program control data are
not defined.

Programmer response
Check to see if a variable was misspelled.

EQA1579E Program control data may be
compared only with program
control data of the same type.

Explanation
ENTRY vs ENTRY, LABEL vs LABEL, etc. are okay.
LABEL vs ENTRY is not.

EQA1580E Area variables cannot be
compared.

Explanation
Equivalency between AREA variables is not defined.

EQA1581E Aggregates are not allowed in
conditional expressions such as
the expressions in IF ... THEN,
WHILE (...), UNTIL (...), and
WHEN (...) clauses.

Explanation
This is not supported.

Programmer response
Check to see if the variable name was misspelled. If
this was not the problem, you must find other logic to
perform the task.

EQA1582E Only "=" and "¬=" are allowed as
operators in comparisons involving
complex numbers.

Chapter 9. z/OS Debugger messages 383

Explanation
Equal and not equal are defined for complex variables,
but you have attempted to relate them in some other
way.

EQA1583E Strings with the GRAPHIC
attribute may be concatenated
only with other strings with the
GRAPHIC attribute.

Explanation
You are not allowed to concatenate GRAPHIC (DBCS)
strings to anything other than other GRAPHIC (DBCS)
strings.

EQA1584E Strings with the GRAPHIC
attribute may be compared only
with other strings with the
GRAPHIC attribute.

Explanation
Equivalency between the GRAPHIC data type and
other data types has not been defined.

EQA1585E Only numeric data, character
strings, and bit strings may be the
source for conversion to character
data.

Explanation
You are trying to convert something to a character
format when such a relationship has not been defined.

EQA1586E Only numeric data, character
strings, and bit strings may be the
source for conversion to bit data.

Explanation
You are trying to convert something to a bit format
when such a relationship has not been defined.

EQA1587E Only numeric data, character
strings, bit strings, and pointers
may be the source for conversion
to numeric data.

Explanation
You are trying to convert something to a numeric
format when such a relationship has not been defined.

EQA1588E Aggregates are not allowed in
control expressions.

Explanation
This message applies to PL/I constants.

EQA1589W CONVERSION would have
occurred in performing a
CHARACTER to BIT conversion,
but since WARNING is on, the
conversion will not be performed.

Explanation
The specified conversion probably contained
characters that were something other than '0' or '1'.
Since the conversion to BIT could therefore not be
done, this message is displayed rather than raising the
CONVERSION condition.

EQA1590W Varying string variable name has
a length that is greater than its
declared maximum. It will not
be used in expressions until it is
fixed.

Explanation
The variable named has been declared as VARYING
with length n, but its current length is greater than n.
The variable might be uninitialized or might have been
written over.

EQA1591W Varying string variable name has a
negative string length. It will not
be used in expressions until it is
fixed.

Explanation
The variable named has been declared as VARYING
with length n, but its current length is less than 0. The
variable might be uninitialized or it might have been
written over.

EQA1592W Fixed decimal variable variable
name contains bad data. Since
WARNING is on, the operation will
not be performed.

Explanation
A variable contains bad decimal data if its usage would
cause a data exception to occur (that is, its numeric
digits are not 0–9 or its sign indicator is invalid), or
it has even precision but its leftmost digit is nonzero.
LIST STORAGE can be used to find the contents of
the variable, and an assignment statement can be
used to correct them.

EQA1593W The size of AREA variable variable
name is less than zero. Since

384 IBM z/OS Debugger: Reference and Messages

WARNING is on, the operation will
not be performed.

Explanation
Negative sizes are not understood and, therefore, are
not processed.

EQA1594W The size of AREA variable
variable name exceeds its declared
maximum size. Since WARNING
is on, the operation will not be
performed.

Explanation
Performing the operation would alter storage that is
outside of the AREA. Such an operation is not within
PL/I, so will be avoided.

EQA1595W Fixed binary variable variable
name contains more significant
digits than its precision allows.
Since WARNING is on, the
operation will not be performed.

Explanation
For example, a FIXED BIN(5,0) variable can have only
5 significant digits thus limiting its valid range of
values to -32 through 31 inclusive.

EQA1596E The subscripted variable variable
name was not found. The name
matches a built-in function, but
the parameters are wrong.

Explanation
This message applies to PL/I constants.

EQA1597E AREA condition would have been
raised

Explanation
This message applies to PL/I constants.

EQA1598E The bounds and dimensions of all
arrays in an expression must be
identical.

Explanation
Array elements of an expression (such as A + B or A =
B) must all have the same number of dimensions and
the same lower and upper bounds for each dimension.

EQA1599E You cannot assign an array to a
scalar.

Explanation
The PL/I language does not define how a scalar would
represent an array; the assignment is rejected as an
error.

EQA1600E Aggregate used in wrong context.

Explanation
This message applies to PL/I constants.

EQA1601E The second expression in the built-
in function name built-in function
must be greater than or equal to
1 and less than or equal to the
number of dimensions of the first
expression.

Explanation
The second expression of the named built-in function
is dependent upon the dimensions of the array (the
first built-in function argument).

Programmer response
Correct the relationship between the first and second
arguments.

EQA1602E The second expression in the built-
in function name built-in function
must not be an aggregate.

Explanation
z/OS Debugger does not support aggregates in this
context.

EQA1603E The first argument in the built-
in function name built-in function
must be an array expression.

Explanation
The named built-in function expects an array to be the
first argument.

EQA1604E Argument number number in the
built-in function name built-in
function must be a variable.

Explanation
You used something other than a variable name (for
example, a constant) in your invocation of the named
built-in function.

EQA1605E STRING(variable name) is invalid
because the STRING built-in

Chapter 9. z/OS Debugger messages 385

function can be used only with bit,
character and picture variables.

Explanation
You must use a variable of the correct data type with
the STRING built-in function.

EQA1606E POINTER(variable name ,...) is
invalid because the first argument
to the POINTER built-in function
must be an offset variable.

Explanation
The first argument to POINTER was determined to be
something other than an OFFSET data type.

EQA1607E POINTER(..., variable name)
is invalid because the second
argument to the POINTER built-in
function must be an area variable.

Explanation
The second argument to POINTER was determined to
be something other than an AREA data type.

EQA1608E OFFSET(variable name ,...) is
invalid because the first argument
to the OFFSET built-in function
must be a pointer variable.

Explanation
The first argument to OFFSET was determined to be
something other than a POINTER data type.

EQA1609E OFFSET(..., variable name) is
invalid because the second
argument to the OFFSET built-in
function must be an area variable.

Explanation
The second argument to OFFSET was determined to
be something other than an AREA data type.

EQA1610E built-in function name (variable
name) is invalid because the
argument to the built-in function
name built-in function must be a
file reference.

Explanation
The name built-in function requires the name of a FILE
to operate. Some other data type was used as the
argument.

EQA1611E COUNT(variable name) must refer
to an open STREAM file.

Explanation
You must name an open STREAM file in the COUNT
built-in function.

EQA1612E LINENO(variable name) must
refer to an open PRINT file.

Explanation
You must name an open PRINT file in the LINENO
built-in function.

EQA1613E SAMEKEY(variable name) must
refer to a RECORD file.

Explanation
You must name a RECORD file in the SAMEKEY built-
in function. This requirement is tested for all file
constants, but is tested for file variables only if the file
variable is associated with an open file.

EQA1614E The argument in the built-in
function name built-in function
must be a variable.

Explanation
The built-in function is expecting a variable but a
constant or some other invalid item appeared as one
of the arguments.

EQA1615E Argument to POINTER is an
aggregate when pointer is being
used as a locator.

Explanation
This message applies to PL/I constants.

EQA1616E The result of invoking the
GRAPHIC built-in function must
not require more than 16383 DBCS
characters.

Explanation
GRAPHIC(x,y) is illegal if y > 16383, and
GRAPHIC(x) is illegal if length(CHAR(X)) > 16383.

EQA1617W The first argument to the built-
in function name built-in function
is negative, but since WARNING
is on, the evaluation will not be
performed.

386 IBM z/OS Debugger: Reference and Messages

Explanation
The specified built-in function would fail if a negative
argument was passed. Use of the built-in function will
be avoided.

EQA1618W The second argument to the built-
in function name built-in function
is negative, but since WARNING
is on, the evaluation will not be
performed.

Explanation
The specified built-in function would fail if a negative
argument was passed. Use of the built-in function will
be avoided.

EQA1619W The third argument to the built-
in function name built-in function
is negative, but since WARNING
is on, the evaluation will not be
performed.

Explanation
The specified built-in function would fail if a negative
argument was passed. Use of the built-in function will
be avoided.

EQA1620E If the CHAR built-in function is
invoked with only one argument,
that argument must not have the
GRAPHIC attribute with length
16383.

Explanation
CHAR(x) is illegal if x is GRAPHIC with length
16383 since the resultant string would require 32768
characters.

EQA1621E built-in function (variable name) is
not defined since variable name is
not connected.

Explanation
This applies to the PL/I CURRENTSTORAGE and
STORAGE built-in functions.

EQA1622E built-in function (variable name)
is not defined since variable name
is an unaligned fixed-length bit
string.

Explanation
This applies to the PL/I CURRENTSTORAGE and
STORAGE built-in functions.

EQA1623E built-in function (x) is undefined if
ABS(x) > 1.

Explanation
This applies to the PL/I ASIN and ACOS built-in
functions.

EQA1624E ATANH(z) is undefined if z is
COMPLEX and z = +1 or z = -1.

Explanation
This applies to the PL/I ATANH built-in function.

EQA1625E ATAN(z) is undefined if z is
COMPLEX and z = +1i or z = -1i.

Explanation
This applies to the PL/I ATAN built-in function.

EQA1626E Built-in function not defined since
the argument is real and less than
or equal to zero

Explanation
This message applies to PL/I constants.

EQA1627E SQRT(x) is undefined if x is REAL
and x < 0.

Explanation
This applies to the PL/I SQRT built-in function.

EQA1628E built-in function (x,y) is undefined
if x or y is COMPLEX.

Explanation
This applies to the PL/I ATAN and ATAND built-in
functions.

EQA1629E Built-in function(X,Y) is undefined
if X=0 and Y=0

Explanation
This applies to PL/I constants.

EQA1630E The argument in built-in function is
too large.

Explanation
This applies to the PL/I trigonometric built-in
functions. For short floating-point arguments, the
limits are:

Chapter 9. z/OS Debugger messages 387

COS and SIN
ABS(X) <= (2**18)*pi

TAN
ABS(X) <= (2**18)*pi if x is real and ABS(REAL(X))
<= (2**17)*pi if x is complex

TANH
ABS(IMAG(X)) <= (2**17)*pi if x is complex

COSH, EXP and SINH
ABS(IMAG(X)) <= (2**18)*pi if x is complex

COSD, SIND and TAND
ABS(X) <= (2**18)*180

For long floating-point arguments, the limits are:
COS and SIN

ABS(X) <= (2**50)*pi
TAN

ABS(X) <= (2**50)*pi if x is real and ABS(REAL(X))
<= (2**49)*pi if x is complex

TANH
ABS(IMAG(X)) <= (2**49)*pi if x is complex

COSH, EXP and SINH
ABS(IMAG(X)) <= (2**50)*pi if x is complex

COSD, SIND and TAND
ABS(X) <= (2**50)*180

For extended floating-point arguments, the limits are:
COS and SIN

ABS(X) <= (2**106)*pi
TAN

ABS(X) <= (2**106)*pi if x is real and
ABS(REAL(X)) <= (2**105)*pi if x is complex

TANH
ABS(IMAG(X)) <= (2**105)*pi if x is complex

COSH, EXP and SINH
ABS(IMAG(X)) <= (2**106)*pi if x is complex

COSD, SIND and TAND
ABS(X) <= (2**106)*180

EQA1631E The subject of the SUBSTR
pseudovariable (character string)
is not a string.

Explanation
You are trying to get a substring from something other
than a string.

EQA1632E Argument to pseudovariable must
be complex numeric

Explanation
This message applies to PL/I constants.

EQA1633E The first argument to a
pseudovariable must refer to a
variable, not an expression or a
pseudovariable.

Explanation
The arguments that accompany a pseudovariable are
incorrect.

EQA1634E The length of the bit string that
would be returned by UNSPEC
is greater than the maximum for
a bit variable. Processing of the
expression will stop.

Explanation
This will occur in UNSPEC(A) where A is
CHARACTER(n) and n > 4095, where A is
CHARACTER(n) VARYING and n > 4093, where A is
AREA(n) and n > 4080, etc.

EQA1635E Maximum number of arguments to
PLIDUMP subroutine is two

Explanation
This message applies to PL/I constants.

EQA1636E Invalid argument in CALL %DUMP

Explanation
This message applies to PL/I constants.

EQA1637E PL/I cannot process the
expression expression name.

Explanation
This applies to PL/I constants.

EQA1638E Argument argument number to the
MPSTR built-in function must not
have the GRAPHIC attribute.

Explanation
GRAPHIC (DBCS) strings are prohibited as arguments
to the MPSTR built-in function.

EQA1639E ALLOCATION(variable name) is
invalid because the ALLOCATION
built-in function can be used only
with controlled variables.

Explanation
You must name a variable that is ALLOCATEable.

388 IBM z/OS Debugger: Reference and Messages

Programmer response
The variable by that name cannot be a controlled
variable within the current context. If the variable
exists somewhere else (and is a controlled variable),
you should use qualification with the variable name.

EQA1640E variable name is an aggregate and
hence is invalid as an argument
to the POINTER built-in function
when that built-in function is used
as a locator.

Explanation
The argument to the POINTER built-in function is
invalid. The argument to the POINTER built-in function
should be an OFFSET data type for the first argument,
or an AREA data type for the second argument.

EQA1641E Structures are not supported
within this context.

Explanation
Given DCL 1 A, 2 B FIXED, 2 C FLOAT, the
name A refers to a structure.

Programmer response
Break the command into commands for each of the
basic elements of the structure, or use the DECLARE
command with a BASED variable to define a variable
overlaying the structure.

EQA1642E The first argument to the built-
in function name built-in function
must have POINTER type.

Explanation
This applies to the POINTERADD built-in function. The
first argument must have pointer type, and it must be
possible to convert the other to FIXED BIN(31,0).

EQA1643E The argument in the built-in
function name built-in function
must have data type: data type.

Explanation
This message applies to various built-in functions. By
built-in function, the datatypes required are:
ENTRYADDR

ENTRY
BINARYVALUE

POINTER
BINVALUE

POINTER

EQA1644W STRINGRANGE is disabled and
the SUBSTR arguments are such
that STRINGRANGE ought to
be raised. z/OS Debugger will
revise the SUBSTR reference as if
STRINGRANGE were enabled.

Explanation
See the Language Reference built-in function chapter
for the description of when STRINGRANGE is raised.
See the Language Reference condition chapter for the
values of the revised SUBSTR reference.

EQA1645E The subject of the pseudovariable
name pseudovariable must have
data type: data type.

Explanation
This message applies to various pseudovariables. By
pseudovariable, the datatypes required are:
ENTRYADDR

ENTRY VARIABLE

EQA1646E built-in function (z) is undefined if
z is COMPLEX.

Explanation
This applies to the PL/I ACOS, ASIN, ATAND,
COSD, ERF, ERFC, LOG2, LOG10, SIND and
TAND built-in functions. This applies to PL/I constants.

EQA1647I Value is unprintable. Use LIST
%HEX (variable name to display
the value.

EQA1648S Only session variables may be
modified in PLAYBACK replay
mode.

Explanation
An attempt was made to modify storage during
PLAYBACK replay mode when DATA was in effect. Only
session variables can be modified in this situation.

EQA1649E Error: see Command Log.

Explanation
An error has occurred during expression evaluation.
See the z/OS Debugger Command Log for more
detailed information.

EQA1650E The range of statements
statement_id - statement_id
is invalid because the two

Chapter 9. z/OS Debugger messages 389

statements belong to different
blocks.

Explanation
AT stmt1-stmt2 is valid only if stmt1 and stmt2
are in the same block.

EQA1651W The breakpoint-id breakpoint has
not been established.

Explanation
You just issued a CLEAR/LIST command against a
breakpoint that does not exist.

Programmer response
Verify that you referred to the breakpoint using the
same syntax that was used to establish it. Perhaps
a CLEAR command occurred since the command that
established the breakpoint.

EQA1652E Since the program for the
statement statement-number does
not have hooks at statements,
AT commands are rejected for all
statements in the program.

Explanation
The program has not been prepared properly so AT
commands are rejected for all statements in the
program.

Programmer response
Make sure the program has been prepared properly by
checking Part 2. Preparing your program for debugging
and Appendix F. Syntax of the TEST Compiler option in
the IBM z/OS Debugger User's Guide. Also, the LIST
LINE NUMBERS command can be used to list all
statement or line numbers that are valid locations for
an AT LINE or AT STATEMENT breakpoint.

EQA1653E A file name is invalid in this
context.

Explanation
A command (for example, AT ENTRY) specified a C file
name where a function or compound statement was
expected.

EQA1654E Since the cu cu_name does not
have hooks at block entries and
exits, all AT ENTRY and AT EXIT
commands will be rejected for the
cu.

Explanation
A compile unit must have been compiled with
TEST(BLOCK), TEST(PATH) or TEST(ALL) for hooks
to be present at block exits and block entries.

EQA1655E Since the program for the label
label-name does not have hooks at
labels, AT commands are rejected
for all labels in the program.

Explanation
A compilation unit must have been compiled with
TEST(PATH) or TEST(ALL) for hooks to be present
at labels.

EQA1656E statement_id contains a value that
is invalid in this context.

Explanation
%STATEMENT and %LINE are invalid in AT commands
at block entry and block exit, and in AT and LIST
STATEMENT commands at locations that are outside of
the program.

EQA1657W There are no breakpoint-class
breakpoints set.

Explanation
The command CLEAR/LIST AT was entered but there
are no AT breakpoints presently set, or the command
CLEAR/LIST AT class was entered but there are no
AT breakpoints presently set in that class.

EQA1658W There are no enabled breakpoint-
class breakpoints set.

Explanation
The command CLEAR/LIST AT was entered but there
are no enabled AT breakpoints presently set in the
requested class of breakpoints.

EQA1659W There are no disabled breakpoint-
class breakpoints set.

Explanation
The command CLEAR/LIST AT was entered but there
are no disabled AT breakpoints presently set in the
requested class of breakpoints.

EQA1660W The breakpoint-id breakpoint is not
enabled.

390 IBM z/OS Debugger: Reference and Messages

Explanation
You issued a specific LIST AT ENABLED command
against a breakpoint that is not enabled.

EQA1661W The breakpoint-id breakpoint is not
disabled.

Explanation
You issued a specific LIST AT DISABLED command
against a breakpoint that is not disabled.

EQA1662W The breakpoint-id breakpoint
cannot be triggered because it is
disabled.

Explanation
You cannot TRIGGER a disabled breakpoint.

EQA1663W There are no breakpoints set. No
breakpoints are currently set.

EQA1664W There are no disabled breakpoints
set.

Explanation
No disabled breakpoints are currently set.

EQA1665W There are no enabled breakpoints
set.

Explanation
No enabled breakpoints are currently set.

EQA1666W The breakpoint-id breakpoint is
already enabled.

Explanation
You cannot ENABLE an enabled breakpoint.

EQA1667W The breakpoint-id breakpoint is
already disabled.

Explanation
You cannot DISABLE a disabled breakpoint.

EQA1668W The attempt to set this breakpoint
has failed.

Explanation
For some reason, when z/OS Debugger tried to set this
breakpoint, an error occurred. This breakpoint cannot
be set.

EQA1669W The FROM or EVERY value in a
breakpoint command must not
be greater than the specified TO
value.

Explanation
In an every_clause specified with a breakpoint
command, if the TO value was specified, the FROM or
EVERY value must be less than or equal to the TO
value.

EQA1670W GO/RUN BYPASS is ignored. It is
valid only when entered for an
AT CALL, AT GLOBAL CALL, or AT
OCCURRENCE.

Explanation
GO/RUN BYPASS is valid only when z/OS Debugger is
entered for an AT CALL, AT GLOBAL CALL, or AT
OCCURRENCE breakpoint.

EQA1671W AT OCCURRENCE breakpoint or
TRIGGER of condition condition-
name cannot have a reference
specified. This command not
processed.

Explanation
The following AT OCCURRENCE conditions must
have a qualifying reference: CONDITION, ENDFILE,
KEY, NAME, PENDING, RECORD, TRANSMIT a nd
UNDEFINEDFILE. This would also apply to the
corresponding TRIGGER commands.

EQA1672W AT OCCURRENCE breakpoint or
TRIGGER of condition condition-
name must have a valid reference
specified. This command not
processed.

Explanation
The following AT OCCURRENCE conditions must have
a valid qualifying reference: CONDITION, ENDFILE,
KEY, NAME, PENDING, RECORD, TRAN SMIT and
UNDEFINEDFILE. This would also apply to the
corresponding TRIGGER commands.

EQA1673W An attempt to automatically
restore an AT breakpoint type
breakpoint failed.

Explanation
z/OS Debugger was attempting to restore a breakpoint
that had been set in the previous process and has

Chapter 9. z/OS Debugger messages 391

failed in that attempt. There are two reasons this could
have happened. If the Compile Unit (CU) has been
changed (that is, modified and recompiled/linked)
between one process and the next or a breakpoint had
been established for a statement or variable that no
longer exists due to the change, when z/OS Debugger
attempts to reestablish that breakpoint, it will fail with
this message.

EQA1674W An attempt to automatically
disable an AT breakpoint type
breakpoint failed.

Explanation
z/OS Debugger was attempting to disable a breakpoint
for a CU that has been deleted from storage (or
deactivated), and failed in that attempt.

EQA1675E variable name is not a LABEL
variable or constant. No GOTO or
JUMPTO commands can be issued
against it.

Explanation
You are trying to use a GOTO or JUMPTO command with
a variable name that cannot be associated with a label
in the program.

EQA1676S label name is a label variable that
is uninitialized or that has been
zeroed out. It cannot be displayed
and should not be used except as
the target of an assignment.

Explanation
You are trying to make use of a LABEL variable, but
the control block representing that variable contains
improper information (for example, an address that is
zero).

EQA1677S file name is a file variable that
is uninitialized or that has been
zeroed out. It cannot be displayed
and should not be used except as
the target of an assignment.

Explanation
You are trying to make use of a FILE variable, but
the control block representing that variable contains
improper information (for example, an address that is
zero).

EQA1678E The program CU-name has a
short statement number table, and
therefore no statement numbers in
the program can be located.

Explanation
A command requires determining which statement
was associated with a particular storage address. A
statement table could not be located to relate storage
to statement identifications.

Programmer response
Check to see if the program had been compiled
using release name. If so, was the statement table
suppressed?

EQA1679E variable name is not a controlled
variable. An ALLOCATE breakpoint
cannot be established for it.

Explanation
You cannot establish an AT ALLOCATE breakpoint for
a variable that cannot be allocated.

EQA1680E variable name is a controlled
parameter. An ALLOCATE
breakpoint can be established for
it only when the block in which it
is declared is active.

Explanation
z/OS Debugger cannot, at this time, correlate a block
to the named variable. As a result, a breakpoint cannot
be established.

Programmer response
Establish the breakpoint via an AT ENTRY ... AT
ALLOCATE

EQA1681E variable name is not a FILE
variable or constant.

Explanation
ON⁄SIGNAL file-condition (variable) is invalid because
the variable is not a PL/I FILE variable.

EQA1682E variable name is not a CONDITION
variable.

Explanation
ON⁄SIGNAL CONDITION (variable) is invalid because
the variable is not a PL/I CONDITION variable.

EQA1683E Since the cu cu_name does not
have hooks at statements with
modified behavior due to the
Millennium Language Extensions,

392 IBM z/OS Debugger: Reference and Messages

all AT DATE commands will be
rejected for the cu.

Explanation
A compile unit must have been compiled with
the DATEPROC option and either TEST(STMT) or
TEST(ALL) for hooks to be present at statements
affected by the Millennium Language Extensions.

EQA1684E Since the program for the
statement statement-number has
DYNAMIC DEBUG turned off, AT
commands are rejected for all
statements in the program.

Explanation
A compile unit must have been compiled with
TEST(STMT) or TEST(ALL) or set DYNDEBUG ON for
at statements.

EQA1685E The command AT Keyword is not
supported in the Compile Unit
Cu_name.

Explanation
The command is not supported for a DISASSEMBLY
compile unit. Only the AT OFFSET form of the AT
command is supported for a DISASSEMBLY compile
unit.

EQA1686E The command/option Keyword is
not supported for Disassembly
View.

Explanation
The command or option is not supported for a
DISASSEMBLY compile unit. See the IBM z/OS
Debugger Reference and Messages document for
information about the restrictions on the use of this
command.

EQA1687E The command LISTKeyword is not
supported in the Compile Unit
Cu_name.

Explanation
The command is not supported for a DISASSEMBLY
compile unit. See the IBM z/OS Debugger Reference
and Messages document for information about the
restrictions on the use of this command.

EQA1688E Variable Variable is not available
during Playback replay.

Explanation
The expression cannot be evaluated during Playback
replay, because the indicated variable is not available
during replay.

EQA1689E A breakpoint cannot be set
on this statement when the
STORAGE runtime option is in
effect. Remove STORAGE or set
the breakpoint after the next LR
R13,Rx instruction.

Explanation
When the STORAGE runtime option is in effect,
breakpoints are not allowed on the prologue
instructions between the first BALR R14,R15 and
the next LR R13,Rx. You may set a breakpoint
on an instruction following the next LR R13,Rx or
you may rerun your program without the STORAGE
runtime option and set a breakpoint on the specified
statement.

EQA1690I The current programming
language does not return
information for DESCRIBE
ENVIRONMENT.

Explanation
The current programming language does not support
the DESCRIBE ENVIRONMENT command.

EQA1691I AT OCCURRENCE breakpoint or
trigger of condition string_ptr is
not supported with the current
language. This command is not
processed.

Explanation
The command is not supported for Enterprise PL/I.

EQA1692W Restoring of assembler
breakpoints is not currently
supported.

Explanation
Breakpoints in assembler compile units are not
restored.

EQA1693E The command AT Keyword is
not supported in the Compile
Unit Cu_name because it is PLI
compiled with the NOTEST option
and does not have the hook
necessary to set the breakpoint.

Chapter 9. z/OS Debugger messages 393

Explanation
The command is not supported for a Compile Unit
compiled with a High Level Language compiler with the
NOTEST option since the compile unit does not have
the hook necessary to set the breakpoint.

EQA1694I The command_name command
is not supported in the current
program.

Explanation
The command, command_name, is not supported in
programs that are compiled with Enterprise PL/I.

EQA1695E Variable Variable has a hex value
that is too long to display.

Explanation
The expression has a hex value that exceeds the
maximum length limit required to be displayable.

EQA1696E Conditional Expression
Conditional_Logic_Expression in
WHEN clause cannot be evaluated.

Explanation
The conditional expression is not valid. Make sure the
variable is known in current compile unit or that the
attributes are compatible.

EQA1697E Conditional Expression
Conditional_Logic_Expression in
WHEN clause cannot be evaluated
at current location.

Explanation
The conditional expression is not valid. Make sure the
variable is known in current compile unit or that the
attributes are compatible.

EQA1698E The CU containing a referenced
variable has not yet been entered.
Storage does not exist for the
referenced variable.

Explanation
You have attempted to evaluate a variable in an
implicitly created CU. Storage has not yet been
allocated for this variable.

EQA1699E Address_Length_Info Flags Name

Explanation
This message contains the output from the DESCRIBE
LOADMODS command.

EQA1700E The session procedure, procedure
name, is either undefined or is
hidden within a larger, containing
procedure.

Explanation
This is issued in response to a CALL, CLEAR or QUERY
command when the target session procedure cannot
be located. It cannot be located for one of two
reasons: it was not defined or it was imbedded with
another session procedure.

EQA1701E The maximum number of
arguments to the %DUMP built-in
subroutine is 2, but number were
specified.

Explanation
%DUMP does not accept more than two parameters.

EQA1702E Invalid argument in CALL %DUMP.

Explanation
In PL/I, the %DUMP arguments must be scalar data
that can be converted to character. In C, the %DUMP
arguments must be pointers to character or arrays of
character.

EQA1703E No arguments can be passed to a
session procedure.

Explanation
Parameters are not supported with the CALL
procedure command.

EQA1704E Invalid or incompatible dump
options or suboptions

Explanation
This message is from the feedback code of Language
Environment CEE3DMP call.

EQA1705E Dump argument exceeds the
maximum length allowed.

Explanation
The dump option allows a maximum of 255
characters. The dump title allows a maximum of 80
characters.

394 IBM z/OS Debugger: Reference and Messages

EQA1706E pgmname must be loaded before
calling the program.

Explanation
The CALL command was terminated unsuccessfully.

EQA1707E The following data was produced
by Fault Analyzer.

Explanation
This message is used as a header for the call %FA.

EQA1708I The HOGAN environment is not
available.

Explanation
The Computer Sciences Corporation's KORE-HOGAN
product is not installed.

EQA1709E Command CALL %HOGAN is only
available in a CICS environment.

Explanation
The CALL %HOGAN command is only valid in a CICS
environment with Computer Sciences Corporation's
KORE-HOGAN installed.

EQA1710E You are not authorized to execute
that function.

Explanation
The function that you requested has been rejected by
a security manager.

EQA1711E Program cannot be found.

Explanation
An error occurred in locating the program needed to
perform the function you requested.

EQA1712E Function not available in Dual
Terminal Mode.

Explanation
The function that you requested is not supported when
z/OS Debugger is running in Dual Terminal mode.

EQA1713E Load module load_module could
not be found.

Explanation
The indicated load module was specified as an
operand of the DESCRIBE LOADMODS command but
is not an active load module.

EQA1714I BP_Operation successful for
suspended breakpoint.

Explanation
The requested breakpoint was successfully performed
on a suspended breakpoint.

EQA1720E There is no declaration for variable
name.

Explanation
A command (for example, CLEAR VARIABLES)
requires the use of a variable, but the specified
variable was not declared (or was previously cleared).

Programmer response
For a list of session variables that can be referenced
in the current programming language, use the LIST
NAMES TEST command.

EQA1721E The size of the variable is too
large.

Explanation
A variable can require no more than 2**24 - 1 bytes in
a non-XA machine and no more than 2**31 - 1 bytes in
an XA machine.

EQA1722E Error in declaration; invalid
attribute variable name.

Explanation
A session variable is declared with invalid or
unsupported attribute.

EQA1723E There is no session variables
defined.

Explanation
The CLEAR VARIABLES command is entered but
there is no declaration for session variables.

EQA1724E There is no tag type tag named tag
name.

Chapter 9. z/OS Debugger messages 395

Explanation
This message applies to C. It is issued, for example,
after DESCRIBE ATTRIBUTES enum x if x is not an
enum tag.

EQA1725E tag type tag name is already
defined.

Explanation
This message applies to C. A tagged enum, struct, or
union type cannot be redefined, unless all variables
and type definitions referring to that type and then the
type itself are first cleared. For example, given

enum colors {red,yellow,blue} primary, *
ptrPrimary;

enum colors cannot be redefined unless primary,
ptrPrimary, and then enum colors are first
cleared.

EQA1726E tag type tag name cannot be
cleared while one or more
declarations refer to that type.

Explanation
This message applies to C. A CLEAR DECLARE of
a tagged enum, struct, or union type is invalid
while one or more declarations refer to that type. For
example, given

enum colors {red,yellow,blue} primary, *
ptrPrimary;

CLEAR DECLARE enum colors is invalid until
CLEAR DECLARE (primary, ptrPrimary) is
issued.

EQA1727E enum member name is the name of
a declared variable. It cannot be
used as the name of a member of
an enum type.

Explanation
This message applies to C. For example, given

int blue;

The use of the name blue in the following declaration
is invalid:

enum teamColors {blue,gold};

EQA1728E The tag type tag name is recursive:
it contains itself as a member.

Explanation
This message applies to C. A struct or union type
must not contain itself as a member. For example, the
following declaration is invalid:

struct record {
int member;
struct record next;
}

EQA1729E An error occurred during
declaration processing.

Explanation
Unable to process the declaration. The command is
terminated unsuccessfully.

EQA1739I Some or all of the
save_restore_cmd could not be
restored from dsname

Explanation
An attempt was made to restore breakpoints and/or
monitor settings from the specified data set. However,
the specified data set contained invalid data so some
or all of the breakpoints and/or monitor settings could
not be restored from the specified data set.

EQA1740E EQALANGX debug file cannot be
found for Compile_Unit_name. Use
the SET SOURCE command to
indicate the new location of the
EQALANGX file.

Explanation
The EQALANGX file containing the listing and the
debugging tables cannot be found. Some of the
possible conditions that could cause this are: The
debug file does not exist under the default DSName,
or the user does not have authorization to access the
debug file.

EQA1741E Error in setting DBCS ON when the
terminal is not DBCS capable.

Explanation
Error in setting DBCS ON when the debug session
terminal is not DBCS capable.

EQA1742I Debug Trace: Trace Data

Explanation
This is output generated by internal z/OS Debugger
trace for problem determination purposes only.

396 IBM z/OS Debugger: Reference and Messages

EQA1743I save_restore_cmd not restored
from dsname

Explanation
An attempt was made to read the specified data set in
order to determine if settings should be automatically
restored or to restore the breakpoints and/or monitor
settings. However, the member did not exist, the data
set could not be read, or the data set contained invalid
data. This might result from data having never been
saved in this data set.

EQA1744I save_restore_cmd is in effect for
dsname

Explanation
An attempt was made to automatically restore settings
from the specified data set. However, the SETTINGS
NOAUTO option was in effect when the set data was
saved and, therefore, the set data will not be restored.

EQA1745I save_restore_cmd restored from
dsname

Explanation
The specified data was successfully restored from the
specified data set.

EQA1746E save_restore_cmd were not saved.
Data set does not exist: dsname

Explanation
An attempt was made to save the indicated data in
the specified data set. However, the data set does not
exist. Allocate and catalog the data set and retry the
operation.

EQA1747I save_restore_cmd saved to dsname
with restore_cmd

Explanation
The indicated data was successfully saved to the
specified data set with the indicated restore options.

EQA1748E save_restore_cmd unable to open
dsname. Possible RACF error,
invalid member name, etc.

Explanation
An attempt was made to open the specified data set in
order to determine if settings should be automatically
restored or to save the current settings. However, the
data set could be allocated but could not be opened.
This may be the result of not having RACF access to

the data set, of having a member name specified that
did not exist, an invalid RECFM, or any other problem
that could cause a System 013 Abend.

EQA1749E save_restore_cmd data set dsname
is allocated to another user or job.

Explanation
An attempt was made to allocate the specified data
set in order to determine if settings should be
automatically restored or to save the current settings.
However, the data set could not be allocated because
it was already allocated to another user.

EQA1750E An error occurred during
expression evaluation.

Explanation
Unable to evaluate the expression. The command is
terminated unsuccessfully.

EQA1751E Program pgmname not found.

Explanation
A bad program name is specified in a CALL command
and processing is terminated unsuccessfully.

EQA1752S Comparison in command-name
command was invalid. The
command was ignored.

Explanation
This message applies to COBOL. The operands to be
compared are of incompatible types.

EQA1753S The nesting of "switch" command
exceeded the maximum.

Explanation
This message applies to C. There are too many nested
levels of switch commands.

EQA1754S An error occurred in "switch"
command processing. The
command is terminated.

Explanation
This message applies to C. The switch command
is terminated because an error occurred during
processing.

EQA1755S Comparison with the keyword-
name keyword in command-name
command was invalid. The
command was ignored.

Chapter 9. z/OS Debugger messages 397

Explanation
This message applies to COBOL. The operands to
be compared are incompatible. For example, the
following comparison is invalid:

EVALUATE TRUE
When 6 List ('invalid');
when other List ('other');
END-EVALUATE

EQA1756W EQALANGX file not available for
CSECT CMD_NAME.

Explanation
A debug data file is not found for the supplied CSECT
name.

EQA1757W Cannot save_restore breakpoints
and/or monitors because an OPEN
exit is active.

Explanation
Breakpoints and monitors cannot be saved or restored
when an OPEN exit is active because MVS does not
support using dynamic allocation in this situation.

EQA1758E Operation is not permitted in
Browse Mode.

Explanation
When Browse Mode is active, operations that modify
storage or registers are not permitted. In addition,
other operations such as clearing of the log are also
not permitted.

EQA1759E Operations that alter the control
flow are not permitted in Browse
Mode.

Explanation
When Browse Mode is active, operations that modify
the flow of control are not allowed.

EQA1760I Use QUIT DEBUG or QUIT ABEND
to exit z/OS Debugger in Browse
Mode.

Explanation
When Browse Mode is active, you cannot use QQUIT,
QUIT; or QUIT (expression) because this alters the
control flow. You must use either QUIT DEBUG or QUIT
ABEND.

EQA1763E save_restore_cmd failed because
dsname is not a partitioned data
set.

Explanation
The specified data set must be a partitioned data set.

EQA1764E save_restore_cmd could not locate
data set dsname.

Explanation
The specified data set could not be located.

EQA1765E save_restore_cmd error rc-reason
allocating dsname.

Explanation
The specified data set could not be allocated. The
return code and reason code are shown as ddd-
xxxxyyyy. In most cases, xxxx is the S99Error code
from dynamic allocation. You can use this code to
determine more information about the source of the
error. For more information about the S99Error codes,
see z/OS MVS Programming: Authorized Assembler
Services Guide. You should also inspect the MVS
console log for other messages associated with this
error.

EQA1766E The target of the GOTO command
is in an inactive block.

Explanation
You are trying to GOTO a block that is not active. If it
is inactive it doesn't have a register save area, base
registers, and so on (all of the mechanics established
that would allow the procedure to run).

EQA1767S No offset was found for label
"label".

Explanation
No offset associated with the label was found; the
code associated with the label might have been
removed by optimization.

EQA1768S The label "label" is not known.

Explanation
The label is not known.

EQA1769S The label "label" is ambiguous -
multiple labels of this name exist.

398 IBM z/OS Debugger: Reference and Messages

Explanation
The label is ambiguous; multiple labels of this name
exist.

EQA1770S The GOTO is not permitted,
perhaps because of optimization
and SET WARNING is ON.

Explanation
The GOTO command is not recommended. For COBOL,
this might be caused by optimization, or because
register contents other than the code base cannot be
guaranteed for the target. If SET WARNING is OFF,
z/OS Debugger executes the command, but the results
are unpredictable.

EQA1771S The GOTO is not permitted due to
language rules.

Explanation
The GOTO command is not recommended. For COBOL,
this might be due to optimization, or because
register contents other than the code base cannot be
guaranteed for the target.

EQA1772S The GOTO was not successful.

Explanation
There are various reasons why a GOTO command can
be unsuccessful; this message covers all the other
situations not covered by the other message in the
GOTO LABEL messages group.

EQA1773E GOTO is invalid when the target
statement number is in a C
function.

Explanation
The target statement number in a GOTO command
must belong to an active procedure.

EQA1776E The target of the JUMPTO
command is in an inactive block.

Explanation
You are trying to JUMPTO a block that is not active. If
it is inactive it doesn't have a register save area, base
registers, and so on -- all of the mechanics established
that would permit the procedure to execute.

EQA1777E variable_name is not a LABEL
variable or constant. No JUMPTO
commands can be issued against
it.

Explanation
You are trying to JUMPTO a variable name that cannot
be associated with a label in the program.

EQA1778S The JUMPTO is not allowed,
perhaps because of optimization
and SET WARNING is ON.

Explanation
The JUMPTO command is not recommended. For
COBOL, this might be caused by optimization, or
because register contents other than the code base
cannot be guaranteed for the target. If SET WARNING
is OFF, z/OS Debugger executes the command, but the
results are unpredictable.

EQA1779S The JUMPTO is not permitted due
to language rules.

Explanation
The JUMPTO command is not recommended. For
COBOL, this may be due to optimization, or because
register contents other than the code base cannot be
guaranteed for the target.

EQA1780S The JUMPTO was not successful.

Explanation
There are various reasons why a JUMPTO command
may not be successful; this message covers all the
other situations not covered by the other message in
the JUMPTO LABEL messages group.

EQA1781E JUMPTO is invalid when the target
statement number is in a C
function.

Explanation
The target statement number in a JUMPTO command
must belong to an active procedure.

EQA1782I EQALANGX data from
LANGX_File_ID will be used for
deferred LDD cu_spec.

Explanation
When the deferred LDD for the specified CU is
executed, the EQALANGX data will be loaded from the
specified data set.

EQA1786W There are no entries in the
HISTORY table.

Chapter 9. z/OS Debugger messages 399

Explanation
z/OS Debugger has not yet encountered any of the
situations that cause entries to be put into the
HISTORY table; so it is empty.

EQA1787W There are no STATEMENT entries
in the HISTORY table.

Explanation
LIST STATEMENTS or LIST LAST n STATEMENTS
was entered, but there are no STATEMENT entries in
the HISTORY table. z/OS Debugger was not invoked for
any STATEMENT hooks.

EQA1788W There are no PATH entries in the
HISTORY table.

Explanation
LIST PATH or LIST LAST n PATH was entered, but
there are no PATH entries in the HISTORY table. z/OS
Debugger was not invoked for any PATH hooks.

EQA1789W Requested register(s) not
available.

Explanation
You are trying to work with a register but none
exist in this context (for example, during environment
initialization).

EQA1790W There are no active blocks.

Explanation
The LIST CALLS command was issued before any
STEP or GO.

EQA1791E The pattern pattern is invalid.

Explanation
A pattern is invalid if it is longer than 128 bytes or
has more than 16 parts. (Each asterisk and each name
fragment forms a part.)

EQA1792S Only the ADDR and POINTER
built-in functions may be used to
specify an address in the LIST
STORAGE command.

Explanation
LIST STORAGE(built-in function(...)) is
invalid if the built-in function is not the ADDR or
POINTER built-in function.

EQA1793S ENTRY, FILE, LABEL, AREA, EVENT
or TASK variables are not valid in a
LIST command.

Explanation
The contents of these program control variables can
be displayed by using the HEX or UNSPEC built-in
functions or by using the LIST STORAGE command.

EQA1794S Block Block_name is not currently
active.

Explanation
The block is not currently active for LIST TITLED

Programmer response
Issue LIST TITLED or LIST TITLED * from within
the block.

EQA1795W Symbol information at current
location is not accessible.

Explanation
The symbols including variables or other data may not
have been allocated at this location, you may STEP and
issue the command again.

EQA1806E The command element character is
invalid.

Explanation
The command entered could not be parsed because
the specified element is invalid or unexpected.

Below are some examples that are not expected:

• An END-IF command outside an IF statement
• An END-PERFORM command outside a PERFORM

statement
• An IF statement without an END-IF command
• A PERFORM statement without an END-PERFORM

command

Programmer response:
Ensure that you enter a valid and expected command
within a statement.

EQA1807E The command element character is
ambiguous.

Explanation
The command entered could not be parsed because
the specified element is ambiguous.

400 IBM z/OS Debugger: Reference and Messages

EQA1808E The hyphen cannot appear as the
last character in an identifier.

Explanation
COBOL identifiers cannot end in a hyphen.

EQA1809E Incomplete command specified.

Explanation
The command, as it was entered, requires additional
command elements (for example, keywords, variable
names). Refer to the definition of the command and
verify that all required elements of the command are
present.

EQA1810E End-of-source has been
encountered after an unmatched
comment marker.

Explanation
A ⁄* ... was entered but an *⁄ was not present to close
the comment. The command is discarded.

Programmer response
You must either add an *⁄ to the end of the comment or
explicitly indicate continuation with an SBCS hyphen.

EQA1811E End-of-source has been
encountered after an unmatched
quotation mark.

Explanation
The start of a constant was entered (a quotation mark
started the constant) but another quotation mark was
not found to terminate the constant before the end of
the command was reached.

Programmer response
There could be several solutions for this, among them:

1. You must either add a quotation mark to the end
of the constant or explicitly indicate continuation
(with an SBCS hyphen).

2. If DBCS is ON you should also verify that you didn't
try to start a constant with an SBCS quotation mark
and terminate it with a DBCS quotation mark (or
vice versa).

3. You might have entered a character constant that
contained a quotation mark -- and you didn't
double it.

EQA1812E A decimal exponent is required.

Explanation
In COBOL, an E in a float constant must be followed
by at least one decimal digit (optionally preceded by a
sign). In C, if a + or - sign is specified after an E in a
float constant, it must followed by at least one decimal
digit.

EQA1813E Error reading DBCS character
codes.

Explanation
An unmatched or nested shift code was found.

EQA1814E Identifier is too long.

Explanation
All identifiers must be contained in 255 bytes or less.
COBOL identifiers must be contained in 30 bytes or
less and C identifiers in 255 bytes or less.

EQA1815E Invalid character code within
DBCS name, literal or DBCS
portion of mixed literal.

Explanation
A character code point was encountered that was not
within the defined code values for the first or second
byte of a DBCS character.

EQA1816E An error was found at line line-
number in the current input file.

Explanation
An error was detected while parsing a command within
a USE file, or within a file specified on the run-time
TEST option. It occurred at the record number that
was displayed.

EQA1817E Invalid hexadecimal integer
constant specified.

Explanation
A hexadecimal digit must follow 0x.

EQA1818E Invalid octal integer constant
specified.

Explanation
Only an octal digit can follow a digit-0.

EQA1819E A COBOL DBCS name must contain
at least one nonalphanumeric
double byte character.

Chapter 9. z/OS Debugger messages 401

Explanation
All COBOL DBCS names must have at least one
double byte character not defined as double byte
alphanumeric. For EBCDIC, these are characters with
X'42' in the leading byte, with the trailing byte in the
range X'41' to X'FE'. For ASCII, the leading byte is
X'82' and the trailing byte is in the range X'40' to X'7E'.

EQA1820E Invalid double byte alphanumeric
character found in a COBOL DBCS
name. Valid COBOL double byte
alphanumeric characters are: A-Z,
a-z, 0-9.

Explanation
Alphanumeric double-byte characters have a leading
byte of X'42' in EBCDIC and X'82' in ASCII. The trailing
byte is an alphanumeric character. The valid COBOL
subset of these is A-Z, a-z, 0-9.

EQA1821E The DBCS representation of the
hyphen was the first or last
character in a DBCS name.

Explanation
COBOL DBCS names cannot have a leading or trailing
DBCS hyphen.

EQA1822E A DBCS Name, DBCS literal or
mixed SBCS/DBCS literal may not
be continued.

Explanation
Continuation rules do not apply to DBCS names, DBCS
literals or mixed SBCS/DBCS literals. These items must
appear on a single line.

EQA1823E An end of line was encountered
before the end of a DBCS name or
DBCS literal.

Explanation
An end of line was encountered before finding a
closing shift-in control code. This message is for the
System/370 environment.

EQA1824E A DBCS literal or DBCS name
contains no DBCS characters.

Explanation
A shift-out shift-in pair of control characters were
found with no intervening DBCS characters. This
message is for the System/370 environment.

EQA1825E End-of-source was encountered
while processing a DBCS name or
DBCS literal.

Explanation
No closing Shift-In control code was found before
end of file. This message is for the System/370
environment.

EQA1826E A DBCS literal was not delimited
by a trailing quote or apostrophe.

Explanation
No closing quotation mark

EQA1827E Invalid separator character found
following a DBCS name.

EQA1828E Fixed binary constants are limited
to 31 digits.

Explanation
A fixed binary constant must be between -2**31 and
2**31 exclusive.

EQA1829E Fixed decimal constants are
limited to 20 digits.

Explanation
A fixed decimal constant must be between -10**20
and 10**20 exclusive.

EQA1830E Float binary constants are limited
to 109 digits.

Explanation
This limit applies to all PL/I FLOAT BINARY constants.

EQA1831E Float decimal constants are
limited to 33 digits.

Explanation
This limit applies to all PL/I FLOAT DECIMAL
constants.

EQA1832E Floating-point exponents are
limited to 3 digits.

Explanation
This limit applies to all C float constants and to all PL/I
FLOAT BINARY constants.

EQA1833E Float decimal exponents are
limited to 2 digits.

402 IBM z/OS Debugger: Reference and Messages

Explanation
This limit applies to all PL/I FLOAT DECIMAL
constants.

EQA1834E Float binary constants must be
less than 1E+252B.

Explanation
This limit applies to all PL/I FLOAT BINARY constants.

EQA1836E Float constants are limited to 35
digits.

Explanation
This limit applies to all C float constants.

EQA1837E Float constants must be bigger
than
5.3976053469340278908664699
142502496E -79 and less than
7.2370055773322622139731865
630429929E +75.

Explanation
This is the range of values allowed by C.

EQA1838E The DBCS representation of the
underscore was the first character
in a DBCS name.

Explanation
COBOL DBCS names cannot have a leading DBCS
underscore.

EQA1856S The module "module" cannot be
loaded - it was NOT found.

Explanation
The LOAD MODULE request failed, the module was not
found.

EQA1857S The module "module" cannot be
loaded - there is NOT enough
storage to do the load.

Explanation
The LOAD MODULE request failed, there is not enough
storage.

EQA1858S The module "module" cannot be
loaded.

Explanation
The LOAD MODULE request was unsuccessful.

EQA1860S The module "module" was NOT
loaded by the z/OS Debugger and
therefore CANNOT be deleted.

Explanation
Only modules loaded by the z/OS Debugger may be
deleted.

EQA1861S The module "module" cannot be
loaded because it was already
loaded by z/OS Debugger.

Explanation
The LOAD MODULE request was unsuccessful.

EQA1862E IDISNAP could not be loaded.
Verify Fault Analyzer is available
or loaded.

Explanation
IDISNAP is a part of the product Fault Analyzer. Verify
Fault Analyzer is installed properly.

Programmer response
Verify IDISNAP routine is available in the environment.

EQA1863I %FA complete. See your Fault
Analyzer history file.

Explanation
%FA was complete.

Programmer response
%FA was complete. See your Fault Analyzer history
file.

EQA1864S LOAD is not supported during
initialization. STEP or GO, then
retry the LOAD command.

Explanation
You cannot issue a LOAD request until z/OS Debugger
initialization is complete.

EQA1865I An implicit LOAD was issued for
module "loadmod".

Chapter 9. z/OS Debugger messages 403

Explanation
An implicit LOAD command was issued for the
specified load module as the result of a QUALIFY LOAD
or QUALIFY CU command for a load module that was
not currently loaded. A corresponding CLEAR LOAD
will be issued when execution is resumed.

EQA1866I An implicit CLEAR LOAD was
issued for module "loadmod".

Explanation
An implicit CLEAR LOAD command was issued for the
specified load module. This module was previously
loaded as the result of a QUALIFY LOAD or QUALIFY
CU command for a load module that was not currently
loaded.

EQA1867W A load module contains LE CUs but
LE is not active. The LE CUs will
not be created.

Explanation
A LOAD command was used in a non-Language
Environment environment to load a load module that
contained one or more Language Environment compile
units or an attempt was made to QUALIFY to an
Language Environment compile unit in a previously
loaded load module. These compile units cannot
be created until Language Environment is active.
Compile units will be created only for non-Language
Environment compile units.

EQA1868I An implicit CU was created for
"CU_name" in "loadmod".

Explanation
An implicit CU was created for the specified CU in the
specified load module as the result of a QUALIFY CU
command for a load module that was already loaded
and a COBOL CU that had not yet been executed. The
CU will be destroyed when execution is resumed.

EQA1869I Implicit CU "CU_name" in
"loadmod" is being destroyed.

Explanation
The specified implicitly created CU is being destroyed.
This module was previously created as the result of a
QUALIFY CU command for a CU that had not already
been created.

EQA1870S The CU CU_name cannot be
destroyed.

Explanation
The attempt to destroy the specified CU was
unsuccessful.

EQA1872E An error occurred while opening
file: file name. The file may not
exist, or is not accessible.

Explanation
An error during the initial processing (OPEN) of the file
occurred.

EQA1873E An error occurred during an input
or output operation.

Explanation
An error occurred performing an input or output
operation.

EQA1874I The command command name can
be used only in full screen mode.

Explanation
This command is one of a collection that is allowed
only when your terminal is operating in full-screen
mode. The function is not supported in line mode or
in a batch mode.

EQA1875I Insufficient storage available.

Explanation
This message is issued when not enough storage is
available to process the last command issued or to
handle the last invocation.

EQA1876E Not enough storage to display
results.

Explanation
Increase size of virtual storage.

EQA1877E An error occurred in writing
messages to the dump file.

Explanation
This could be caused by a bad file name specified with
the call dump FNAME option.

EQA1878E The cursor is not positioned at a
variable name.

404 IBM z/OS Debugger: Reference and Messages

Explanation
A command, such as LIST, LIST TITLED, LIST
STORAGE, or DESCRIBE ATTRIBUTES, which takes
input from the Source window was entered with the
cursor in the Source window, but the cursor was not
positioned at a variable name.

Programmer response
Reposition the cursor and reenter.

EQA1879E The listing file name given is too
long.

Explanation
Under MVS, data definition names are limited to 8
characters and data set names are limited to 44
characters. If a partitioned data set is named, the
member name must be specified (with up to 8
characters, enclosed in parentheses).

EQA1880E You may not resume execution
when the program is waiting for
input.

Explanation
The user attempted to issue a GOS/RUN or STEP
request when the program was waiting for input. The
input must be entered to resume execution.

EQA1881E The INPUT command is only valid
when the program is waiting for
input.

Explanation
The user attempted to enter the INPUT command
when the program was not waiting for any input.

EQA1882E The logical record length for
filename is out of bounds. It will
be set to the default.

Explanation
The logical record length is less than 32 bytes or
greater than 256 bytes.

EQA1883E Error closing previous log file;
Return code = rc

Explanation
The user attempted to open a new log file and the
old one could not be closed; the new log file is used,
however.

EQA1884E An error occurred when processing
the source listing. Check return
code return code in the Using the
z/OS Debugger manual for more
detail.

Explanation
An error occurred during processing of the list lines
command. Possible return codes:

2 - The listing file could not be found or allocated.
5 - The CU was not compiled with the correct
compile option.
7 - Failed due to inadequate resources.

EQA1885I Attempt to open INSPPREF
failed. User did not specify the
Preferences File TEST option
and/or did not allocate INSPPREF.

Explanation
If the Preferences File TEST option is not specified,
the default is INSPPREF. The user did not specify
the Preferences File TEST option, so z/OS Debugger
assumes INSPPREF and tries to open it. If INSPPREF
is not allocated, this open fails.

EQA1886I *** Global preferences file
commands follow ***

Explanation
Start of commands in the global preferences file.

EQA1887I *** User preferences file
commands follow ***

Explanation
Start of commands in the user preferences file.

EQA1888I *** Commands file commands
follow ***

Explanation
Start of commands in the commands file.

EQA1889I *** Global preferences file
commands end ***

Explanation
End of commands in the global preferences file.

EQA1890I *** User preferences file
commands end ***

Chapter 9. z/OS Debugger messages 405

Explanation
End of commands in the user preferences file.

EQA1891I *** Commands file commands
end ***

Explanation
End of commands in the commands file.

EQA1892I Global Preferences file exists: file
name

Explanation
The global preferences file is opened successfully.

EQA1893I Default User Preferences file
exists: file name.

Explanation
The default user preferences file is opened
successfully.

EQA1894I Default User Commands file
exists: file name.

Explanation
The default user commands file is opened
successfully.

EQA1902W The command has been
terminated because of the
attention request.

Explanation
The previously-executing command was terminated
because of an attention request. Normal debugging
can continue.

EQA1903E An attention request has been
issued. Enter QUIT to terminate
z/OS Debugger or GO or RUN to
resume execution.

Explanation
The attention key was pressed three times because
the application was looping either in system code or
application code without debugging hooks. Only the
GO/RUN and QUIT commands are valid at this point.

EQA1904E The STEP and GO/RUN commands
are not allowed at termination.

Explanation
The STEP and GO/RUN commands are not allowed after
the application program ends.

EQA1905W You cannot trigger a condition in
your program at this time.

Explanation
The environment is in a position that it would not be
meaningful to trigger a condition. For example, you
have control during environment initialization.

EQA1906S The condition named CONDITION
name is unknown.

Explanation
A condition name was expected, but the name entered
is not the name of a known condition.

EQA1907W The attempt to trigger this
condition has failed.

Explanation
For some reason, when z/OS Debugger tried to trigger
the specified condition, it failed and the condition was
not signaled.

EQA1918S The block name block-
qualification :> block_name is
ambiguous.

Explanation
There is another block that has the same name as this
block.

Programmer response
Provide further block name qualification: by load
module name, by compile unit name, or by additional
block names if a nested block.

EQA1919E The present block is not nested.
You cannot QUALIFY UP.

Explanation
While you can QUALIFY to any block, you cannot
QUALIFY UP (for example, change the qualification
to the block's parent) unless there really is a parent
of that block. In this case, there is no parent of the
currently-qualified block.

406 IBM z/OS Debugger: Reference and Messages

Programmer response
You have either misinterpreted your current execution
environment or you have to qualify to some block
explicitly.

EQA1920E The present block has no dynamic
parent. You cannot QUALIFY
RETURN.

Explanation
While you can QUALIFY to any block you
cannot QUALIFY RETURN (for example, change the
qualification to the block's invoker) unless there really
is an invoker of that block. In this case, there is no
invoker of the currently-qualified block.

Programmer response
You have either misinterpreted your current run-time
environment or you have to qualify to some block
explicitly.

EQA1921S There is no block named
block_name.

Explanation
The block that you named could not be located by
z/OS Debugger.

Programmer response
Provide further block name qualification: by load
module name, by compile unit name, or by additional
block name(s) if a nested block.

EQA1922S There is no block named
block_name within block block-
qualification.

Explanation
The qualification you are using (or the spelling of the
block names) prevented z/OS Debugger from locating
the target block.

Programmer response
Verify that the named block should be within the
current qualification.

EQA1923S There is no compilation unit
named cu_name.

Explanation
The compilation unit (program) that you named could
not be located by z/OS Debugger.

EQA1924S Statement statement_id is not
valid.

Explanation
The statement number does not exist or cannot be
used. Note that the statement number could exist but
is unknown.

EQA1925S There is no load module named
load module name.

Explanation
Load module qualification is referring to a load module
that cannot be located.

Programmer response
The load module might be missing or it might have
been loaded before z/OS Debugger was first used. On
the System/370, z/OS Debugger is aware of additional
load modules only if they were FETCHed after z/OS
Debugger got control for the first time.

EQA1926S There is no cu named cu_name
within load module load module
name.

Explanation
The compilation unit might be misspelled or missing.

EQA1927S There are number CUs named
cu_name, but neither belongs to
the current load module.

Explanation
The compilation unit you named is not unique.

Programmer response
Add further qualification so that the correct load
module will be known.

EQA1928S The block name block_name is
ambiguous.

Explanation
There is another block that has the same name as this
block.

Programmer response
Provide further block name qualification: by load
module name, by compile unit name, or by additional
block names if a nested block.

Chapter 9. z/OS Debugger messages 407

EQA1929S Explicit qualification is required
because the location is unknown.

Explanation
The current location is unknown; as such, the
reference or statement must be explicitly qualified.

Programmer response
Either explicitly set the qualification using the SET
QUALIFY command or supply the desired qualification
to the command in question.

EQA1930S There is no compilation unit
named CU-name in the current
enclave.

Explanation
The compilation unit (program) that you named
could not be located in the current enclave by z/OS
Debugger.

EQA1931S There is no cu named CU-name
within load module load module
name in the current enclave.

Explanation
The compilation unit might be misspelled or missing,
or it might be outside of the current enclave.

EQA1932S Block or CU block_name is not
currently available

Explanation
The block or CU that you named could not be located
by z/OS Debugger.

Programmer response
Provide further block name qualification--by load
module name, by compile unit name, or by additional
block name(s) if a nested block.

EQA1933W The program was compiled with
the OPTIMIZE compiler option
either by a release of the COBOL
compiler that does not support
debugging of optimized code, or
by a release of the compiler that
is missing the required service
for debugging of optimized code.
Until it is recompiled with the
proper release and service level
of the COBOL compiler, results

of z/OS Debugger commands are
unpredictable.

Explanation
z/OS Debugger does not have accurate information
about the program, and thus cannot provide reliable
results.

Programmer response
Recompile the program with one of the following or
later versions of the COBOL compiler:

• COBOL FOR OS/390 & VM Version 2 with APAR
PQ63234 installed

• Enterprise COBOL for z/OS and OS/390 Version 3
Release 1 with APAR PQ63235 installed

• Enterprise COBOL for z/OS and OS/390 Version 3
Release 2

EQA1934E The assignment was not
performed because the assigned
value might not be used by the
program, due to optimization.

Explanation
Results are unreliable, because the program might
use the previous value that was saved in temporary
storage or a register.

Programmer response
You can SET WARNING OFF to allow the update
to take place or recompile the program without
optimization.

EQA1935E Data Item variable name was
discarded due to optimization.

Explanation
The program was compiled with the
OPTIMIZE(FULL) option, and the compiler discarded
the data item because it was not referenced in the
program.

EQA1936W The assignment was performed
but the assigned value might not
be used by the program, due to
optimization.

Explanation
Results might be unreliable because the program
might use the previous value that was saved in
temporary storage or a register.

408 IBM z/OS Debugger: Reference and Messages

Programmer response
Recompile the program without the Optimize option.

EQA1937W This breakpoint is deferred.

Explanation
The compilation unit (program) that you specified
could not be located by the z/OS Debugger. The
breakpoint is deferred until this CU is entered.

EQA1938W Provide a CU (Program) Name to
qualify the block name.

Explanation
The CU name (Program) must be added to the block
name to allow z/OS Debugger to locate the block
named.

EQA1939W CU-name is an assembler CU name
that is longer than 8 characters.

Explanation
Assembler CU names longer than 8 characters are not
currently supported.

EQA1940E variable name is a not a level-one
identifier.

Explanation
You are trying to clear an element of a structure. You
must clear the entire structure by naming its level-one
identifier.

EQA1941E ATANH(x) is undefined if x is REAL
and ABS(x) >= 1.

Explanation
This applies to the PL/I ATANH built-in function.

EQA1942E LOG(z) is undefined if z is
COMPLEX and z = 0.

Explanation
This applies to the PL/I LOG built-in function.

EQA1943E built-in function (x) is undefined if
x is REAL and x <= 0.

Explanation
This applies to the PL/I LOG, LOG2 and LOG10 built-in
functions.

EQA1944E built-in function (x,y) is undefined
if x=0 and y=0.

Explanation
This applies to the PL/I ATAN and ATAND built-in
functions.

EQA1945I There are no variables in the
statement to display.

Explanation
The current statement has no variables.

EQA1946I The variable is too big to
be displayed. Resources (for
example, heap storage) are not
available.

Explanation
The command could not be completed due to
inadequate resources. The variable is too big.

EQA1947E The specified address does not
correspond to any known CU.

Explanation
The specified address is not within any known CU.

EQA1948E The .dbg file for CompileUnitName
created by the FORMAT(DWARF)
suboption of the DEBUG compiler
option cannot be found. Make
sure the file is in the
location specified during compile
time or use the EQADBG DD
statement, EQAUEDAT user exit, or
set EQA_DBG_PATH environment
variable before starting the debug
session to indicate the alternate
location of the file. If your debug
session is already started then use
the SET DEFAULT DBG command.

Explanation
The .dbg file containing the debugging tables cannot
be found. Some of the possible conditions that could
cause this are:

• The .dbg file was deleted.
• The .dbg file was moved to a new location.
• The user does not have RACF authorization to access

the file.

Chapter 9. z/OS Debugger messages 409

Programmer response
Make sure the file is in the location specified during
compile time or use the EQADBG DD statement,
EQAUEDAT user exit, or set EQA_DBG_PATH
environment variable before starting the debug
session to indicate the alternate location. If your
debug session is already started, then use the SET
DEFAULT DBG command.

EQA1949E The EQALANGX file does not
match the object for Compile Unit
name. The EQALANGX file cannot
be used.

Explanation
An EQALANGX file containing the assembler
debugging information does not match the object.
Either the CSECT length is different, selected object
code is different, or the EQALANGX file is not for the
correct language.

EQA1950E The MONITOR table is empty.
If the first MONITOR command
entered is numbered, it must have
number 1.

Explanation
A MONITOR n command was issued when the
MONITOR table is empty, but n is greater than 1.

EQA1951E The number of entries in the
MONITOR table is monitor-number.
New MONITOR commands must
be unnumbered or have a number
less than or equal to monitor-
number.

Explanation
A MONITOR n command was issued but n is greater
than 1 plus the highest numbered MONITOR command.

EQA1952E The MONITOR command table is
full. No unnumbered MONITOR
commands will be accepted.

Explanation
A MONITOR command was issued but the MONITOR
table is full.

Programmer response
The Monitor Window is used to display the value of
a variable and supports up to 99 instances. Variables
are added to the Monitor Window using the MONITOR
or AUTOMONITOR primary commands or via the M line

command in the Source window. Each time one of
these commands is issued, the variable is added to the
Monitor window followed by a distinct number (1, 2, ...
99). You can reduce the number of variables appearing
in the Monitor window by entering one of the following
commands:

• CLEAR MONITOR n (clears variable numbered n)
• CLEAR MONITOR (n1, n2, ...) (clears

variables numbered n1, n2, etc.)
• CLEAR MONITOR (clears all variables)

You can selectively replace an existing variable in the
Monitor window by using the distinct number of that
variable in the command MONITOR n LIST new-
variable. For example, MONITOR 10 LIST VAR9
replaces the 10th variable in the Monitor window with
the variable VAR9.

EQA1953E No command has been set for
MONITOR monitor-number.

Explanation
A LIST MONITOR n or CLEAR MONITOR n command
was issued, but n is greater than the highest numbered
MONITOR command.

EQA1954E The command for MONITOR
monitor-number has already been
cleared.

Explanation
A CLEAR MONITOR n command was issued, but
MONITOR has already been cleared.

EQA1955E There are no MONITOR commands
established.

Explanation
A LIST MONITOR or CLEAR MONITOR command
was issued, but there are no MONITOR commands
established.

EQA1956E No previous FIND argument exists.
FIND operation not performed.

Explanation
A FIND command must include a string to find when
no previous FIND command has been issued.

EQA1957E String could not be found.

Explanation
A FIND attempt failed to find the requested string.

410 IBM z/OS Debugger: Reference and Messages

EQA1958E The requested SYSTEM command
could not be run.

Explanation
A SYSTEM command was issued. The underlying
operating system received it but did not process it
successfully.

EQA1959E The requested SYSTEM command
was not recognized.

Explanation
The underlying operating system was passed a
command that was not recognized. The system could
not process the command.

EQA1960S There is an error in the definition
of variable variable name.
Attribute information cannot be
displayed.

Explanation
The specified variable has an error in its definition
or length and address information is not currently
available in the execution of the program.

EQA1961E Automonitor cannot be removed or
replaced. Use SET AUTOMONITOR
OFF command.

Explanation
The Automonitor can only be set off with the SET
AUTOMONITOR OFF command.

EQA1962E Automonitor is already set off.

Explanation
The Automonitor function is already off.

EQA1963S The command command is not
supported on this platform.

Explanation
The given command is not supported on the current
platform.

EQA1964E Source or Listing data is not
available, or the CU was not
compiled with the correct compile
options.

Explanation
The source or listing information is not available. Some
of the possible conditions that could cause this are:
The listing file could not be found, the CU was not
compiled with the correct compile options, inadequate
resources were available.

When using CICS this condition could occur because
one of more of the following TDQueues are not
defined:

• CINL (for source and listing support)
• CIGZ (for COBOL side file support)
• CIBM (for Enterprise PL/I side file support)

EQA1965E Attributes of source of assignment
statement conflict with target
variable name. The assignment
cannot be performed.

Explanation
The assignment contains incompatible data types; the
assignment cannot be made.

EQA1966E The AREA condition would have
been raised during an AREA
assignment, but since WARNING
is on, the assignment will not be
performed.

Explanation
The operation, if performed, would result in the AREA
condition. The condition is being avoided by rejecting
the operation.

EQA1967E The subject of the built-in function
name pseudovariable (character
string) must be complex numeric.

Explanation
You are trying to get apply the PL/I IMAG or REAL
pseudovariable to a variable that is not complex
numeric.

EQA1968W You cannot use the GOTO
command at this time.

Explanation
The program environment is such that a GOTO cannot
be performed correctly. For example, you could be
in control during environment initialization and base
registers (supporting the GOTO logic) have not been
established yet.

Chapter 9. z/OS Debugger messages 411

EQA1969E GOTO label-constant or JUMPTO
label-constant will not be
permitted because that constant is
the label for a FORMAT statement.

Explanation
There are several statement types that are not
allowable as the target of a GOTO or JUMPTO
command. FORMAT statements are one of them.

EQA1970E The 3-letter national language
code national language is not
supported for this installation of
z/OS Debugger. Uppercase United
States English (UEN) will be used
instead.

Explanation
The national-language-specified conflicts with the
supported national languages for this installation of
z/OS Debugger. Verify that the Language Environment
run-time NATLANG option is correct.

EQA1971E The return code in the QUIT
command must be nonnegative
and less than 1000.

Explanation
For PL/I, the value of the return code must be
nonnegative and less than 1000.

EQA1972E variable name is not a LABEL
constant No AT commands can be
issued against it

Explanation
LABEL variables cannot be the object of the AT
command.

EQA1973E The FIND argument cannot exceed
a string length of 64

Explanation
Shorten the search argument to a string length 64 or
less.

EQA1974E The FIND argument is invalid, the
string length is zero

Explanation
Supply a search argument inside the quotation marks.

EQA1975E SYSDEBUG/SEPARATE file cannot
be found for Compile_Unit_name

which was compiled with
SEPARATE compile option but
the debug file containing the
debugging tables and the
listing created by the compiler
cannot be found. Use the Set
Source command to indicate the
new location of the SYSDEBUG/
SEPARATE file.

Explanation
The Debug File containing the listing and the
debugging tables cannot be found. Some of the
possible conditions that could cause this are: The
Debug File was deleted from the system, or the user
does not have authorization to access the debug file.

EQA1976E The debug information for Compile
Unit name has already been
validated, changing the debug file
is not allowed. The command will
not be performed.

Explanation
A Debug File containing the listing and the debugging
tables has already being validated.

EQA1977E The Debug File creation date does
not match the object for Compile
Unit name, but further validation
showed that debug data in the file
can still be used.

Explanation
A Debug File containing the listing and the debugging
tables does not match the creation date of the object.

EQA1978E The Debug File creation date does
not match the object for Compile
Unit name. The Debug file cannot
be used.

Explanation
A Debug File containing the listing and the debugging
tables does not match the creation date of the object,
and the data it contains is not valid.

EQA1979E The Debug File for Compile Unit
name is not available or was not
found.

Explanation
The Debug File was nowhere to be found.

412 IBM z/OS Debugger: Reference and Messages

EQA1980E The Debug File for Compile Unit
name could not be opened or read.

Explanation
I/O errors when trying to open/read Debug File.

EQA1981E Invalid mode name,
transaction program name, or
partner LU name associated
with symbolic_destination_name.
Mode_name= mode_name
and partner_LU_name=
partner_LU_name

Explanation
A conversation allocation request failed due to
invalid conversation characteristics obtained from
the APPC/MVS side information file. There could be
several reasons for this:

1. The mode_name characteristic specifies a mode
name that is either not recognized by the LU as
valid or is reserved for SNA service transaction
programs.

2. The TP_name characteristic specifies an SNA
service transaction program name.

3. The partner_LU_name characteristic specifies a
partner LU name that is not recognized by the LU
as being valid.

Programmer response
Contact your APPC/MVS system administrator to
modify the characteristics associated with the given
symbolic_destination_name in the side information
file. For information about the recommended values
for mode_name and TP_name, see the CODE/370
Installation manual. The OS/2 system error log can
contain valuable diagnostic information. To access the
system error log, select System Error Log from the
FFST/2 folder or type SYSLOG at the OS/2 command
line.

EQA1982E Permanent conversation
allocation failure for
symbolic_destination_name.
Partner_LU_name=
partner_LU_name and
mode_name= mode_name

Explanation
The conversation cannot be allocated because of a
condition that is not temporary. There could be several
reasons for this:

1. The workstation where the partner_LU_name is
defined is turned off or Communications Manager/2
is not started.

2. The partner_LU_name has not been defined.
3. The current session limit for the specified

partner_LU_name and mode_name pair is zero.
4. A system definition error or a session-activation

protocol error has occurred.

Programmer response
Ensure that you specified the correct
symbolic_destination_name or contact your APPC/MVS
system administrator to correct the condition. The
OS/2 system error log can contain valuable diagnostic
information. To access the system error log, select
System Error Log from the FFST/2 folder or type
SYSLOG at the OS/2 command line.

EQA1983E Temporary conversation
allocation failure for
symbolic_destination_name.
Partner_LU_name=
partner_LU_name and
mode_name= mode_name.

Explanation
The conversation cannot be allocated because of a
condition that might be temporary. There could be
several reasons for this:

1. Undefined mode_name (not temporary)
2. Temporary lack of resources at the host LU or

workstation LU

Verify that mode_name is defined on the target
workstation using the CM/2 Communication Manager
Setup panels. If mode_name is defined on
the workstation, contact your MVS/ESA system
programmer to ensure that mode_name is also defined
on the MVS system. The OS/2 system error log can
contain valuable diagnostic information. To access the
system error log, select System Error Log from the
FFST/2 folder or type SYSLOG at the OS/2 command
line.

EQA1984E The workstation
transaction program is
permanently unavailable
at symbolic_destination_name.
Partner_LU_name=
partner_LU_name.

Explanation
Partner_LU_name rejected the allocation request
because the host program specified a workstation

Chapter 9. z/OS Debugger messages 413

program that partner_LU_name recognizes but it
cannot start. There could be several reasons for this:

1. Missing transaction program definition on the
workstation.

2. Invalid OS/2 program path and file name specified
in the transaction program definition.

Programmer response
Define the transaction program on the workstation
or ensure that the transaction program definition
is correct. The symbolic_destination_name can be
used to obtain the workstation transaction program
name from the APPC/MVS side information table.
For information about the recommended values for
TP_name, see the CODE/370 Installation manual. The
OS/2 system error log can contain valuable diagnostic
information. To access the system error log, select
System Error Log from the FFST/2 folder or type
SYSLOG at the OS/2 command line.

EQA1985E Unrecognized transaction
program name at
symbolic_destination_name.
Partner_LU_name=
partner_LU_name.

Explanation
Partner_LU_name rejected the allocation request
because the host program specified a workstation
TP_name that partner_LU_name does not recognize.
The transaction program definition is missing on the
workstation.

Programmer response
Define the transaction program on the workstation.
The symbolic_destination_name can be used to obtain
the workstation transaction program name from the
APPC/MVS side information table. For information
about the recommended values for TP_name, see the
CODE/370 Installation manual. The OS/2 system error
log can contain valuable diagnostic information. To
access the system error log, select System Error Log
from the FFST/2 folder or type SYSLOG at the OS/2
command line.

EQA1986E Unexpected TCP/IP error.
Module= module_name, Location=
location_id, TCP/IP call= call_type,
return_code= rc.

Explanation
The host communications code received an
unexpected return code from a TCP/IP call. The
information displayed is for diagnostic purposes.

• module_name is the name of the communications
module issuing the TCP/IP call

• location_id is an internal three-digit identifier for the
TCP/IP call within the module

• call_type is the TCP/IP call type (for example,
CONNECT or SHUTDOWN)

• rc is the unexpected return code that is displayed in
decimal format

Programmer response
For remote debug mode, you need to provide the
correct TCP/IP address and/or port number of the
workstation.

EQA1987E Debugger terminated, execution
continues.

Explanation
The initialization of the LU 6.2 conversation between
the host and the workstation (in a batch process)
has failed. The debugger is terminated and the
execution of the batch application continues. Note the
accompanying messages as to possible causes.

EQA1988I The environment variable
QPPLISTFILES is not defined.

Explanation
For Q++ programs, z/OS Debugger requires that you
specify the path where the list files are stored in the
environment variable QPPLISTFILES.

Programmer response
You can use the Language Environment runtime
option ENVAR to specify the path where the
list files are stored. For example, the following
runtime option specifies that the list files are
stored in the path /u/USER1/SAMPLE/list_files:
ENVAR("QPPLISTFILES=/u/USER1/SAMPLE/list
_files/") To learn more about specifying
environment variables using Language Environment
runtime options, see Language Environment
Customization.

EQA1989E Invalid session ID - session_ID

Explanation
Conversation initialization failed due to an invalid
session ID in the Session Parameter. There could be
several reasons for this,

1. The session ID is longer than 8 characters or
contains invalid characters. Valid session IDs
consist of 1-8 alphanumeric characters.

414 IBM z/OS Debugger: Reference and Messages

2. There is already another PWS z/OS Debugger
session with the given session ID.

Programmer response
Diagnostic information is recorded in either the
EVFERROR.LOG or the EQALU62.LOG. The path
where these logs are stored is in the CODETMPDIR
environment variable in CONFIG.SYS. If there is
already an existing PWS z/OS Debugger session with
the given session ID then a different session ID must
be provided for concurrent debug sessions on the
same workstation. If a session ID is not specified, it
defaults to CODEDT. For a description of the Session
Parameter and its contents, see the z/OS Debugger
manual.

EQA1990E Invalid session parameter -
session_parameter

Explanation
Conversation initialization failed. A batch program,
attempting to start an LU 6.2 debug session, has
passed an invalid Session Parameter. For example, LU2
or MFI has been specified for session type or a session
ID longer than eight characters has been specified.
For a description of the Session Parameter and its
contents, see the z/OS Debugger manual.

Programmer response
Correct the Session Parameter and invoke the batch
application again.

EQA1991E CICS terminal TERM is not
accessible

Explanation
The terminal id specified to receive z/OS Debugger
screen was detected but not acquired.

Programmer response
Correct the z/OS Debugger Term Id using DTCN
Replace function or logon to already defined one.

EQA1992E Missing workstation parameter

Explanation
Keywords APPC&, TCPIP&, VADAPPC&, and
VADTCPIP& require a workstation ID to be entered.

Programmer response
Correct or enter the workstation destination name.

EQA1993E Invalid TCP/IP portid parameter

Explanation
Keywords VADTCPIP& or TCPIP& require a port ID to
be entered. The value of this port id ranges from 1 to
65535 ('FFFF'x). If not entered or in error, a default
value of 8001 is used.

Programmer response
Correct or enter the TCP/IP port ID.

EQA1994E There is no load module named
loadmod_name.

Explanation
Load module qualification is referring to a load module
that cannot be located.

Programmer response
The load module might be missing or it might have
been loaded before z/OS Debugger was first used.
z/OS Debugger is aware of additional load modules
only if they were FETCHed after z/OS Debugger got
control for the first time.

EQA1995S There is no CU named &&&&
within load module &&&&.

Explanation
The compilation unit may be misspelled or missing.

EQA1996S Explicit qualification is required
because the location is unknown.

Explanation
The current location is unknown; as such, the
reference or statement must be explicitly qualified.

Programmer response
Either explicitly set the qualification using the SET
QUALIFY command or supply the desired qualification
to the command in question.

EQA1997I VTAM 3270 waiting for LU lu_name

Explanation
This message is issued if the specified dedicated
terminal is currently in use.

Programmer response
End the session that is currently using the LU.

Chapter 9. z/OS Debugger messages 415

EQA1998S VTAM 3270 error_type error, RC=rc
insert1 insert2 insert3

Explanation
An unrecoverable error occurred acquiring or
communicating with a dedicated terminal. error_type
is one of the following:
RPL or INQUIRE RPL

A nonzero return code was received from a VTAM
RPL operation.

ACB
A nonzero return code was received from a VTAM
ACB operation. This may result from improper
installation of z/OS Debugger.

MODCB
A nonzero return code was received from a VTAM
MODCB operation.

Logic
An internal logic error was detected.

Function
An internal logic error was detected.

Storage
Sufficient memory could not be obtained by the
VTAM interface program.

Undefined LU
The VTAM Logical Unit specified in the
MFI%xxxxxxxx: parameter was not known to
VTAM.

Unknown
An internal logic error was detected.

This message is issued whenever a permanent error is
detected communicating with the dedicated terminal.
A terminal condition is then signaled to LE causing
program termination.

Table 14. Definitions for error_type, insert1, insert2, and insert3

error_type insert1 insert2 insert3

RPL or
INQUIRE RPL
or No default
LOGMODE

ggnnoomm
where: gg -
CsFlag, nn -
CsFunc, oo -
CSFlagOf,
and mm -
CSReqMod

rcrnoooo where:
rc-R15, rn-R0,
or rcrn-RPLSense
if RtnCodeFdBk2
= 0404 or
0403, and oooo-
Error Offset in
EQAYVTAM

ppddkkkk
where: pp-
RPLCode, dd-
RtnCode, and
kkkk-FdBk2

ACB ggnnoomm
where: gg -
CsFlag, nn -
CsFunc, oo -
CSFlagOf,
and mm -
CSReqMod

Error Offset in
EQAYVTAM

ACBERR

MODCB ggnnoomm
where: gg -
CsFlag, nn -

Error Offset in
EQAYVTAM

xxxxyyzz
where:
xxxx-0000, yy-

Table 14. Definitions for error_type, insert1, insert2, and insert3
(continued)

error_type insert1 insert2 insert3

CsFunc, oo -
CSFlagOf,
and mm -
CSReqMod

MODCB R0,
and zz-MODCB
R15

Logic ggnnoomm
where: gg -
CsFlag, nn -
CsFunc, oo -
CSFlagOf,
and mm -
CSReqMod

Error Offset in
EQAYVTAM

0

Function ggnnoomm
where: gg -
CsFlag, nn -
CsFunc, oo -
CSFlagOf,
and mm -
CSReqMod

Error Offset in
EQAYVTAM

EQAYVTAM
function code

Storage ggnnoomm
where: gg -
CsFlag, nn -
CsFunc, oo -
CSFlagOf,
and mm -
CSReqMod

Error Offset in
EQAYVTAM

0

Undefined LU ggnnoomm
where: gg -
CsFlag, nn -
CsFunc, oo -
CSFlagOf,
and mm -
CSReqMod

Error Offset in
EQAYVTAM

0

Unknown ggnnoomm
where: gg -
CsFlag, nn -
CsFunc, oo -
CSFlagOf,
and mm -
CSReqMod

Error Offset in
EQAYVTAM

0

Programmer response
If an ACB error is reported, check with your installer
to ensure that the VTAM modifications required by
z/OS Debugger have been made. If Undefined LU
error is reported, check the MFI% operand of the
TEST parameter to ensure that the correct dedicated
terminal Logical Unit identifer was specified and that
the terminal in known to VTAM.

Otherwise, contact IBM support.

EQA1999I VTAM3270 acquired LU lu_name

Explanation
This message is issued when the LU is acquired after
EQA1997I is issued.

416 IBM z/OS Debugger: Reference and Messages

Programmer response
None.

EQA2000E The hardware required to support
a referenced symbol is not
present.

Explanation
A referenced symbol cannot be evaluated because
the required hardware is not present. Binary Floating
Point requires 64-bit hardware. Decimal Floating Point
requires 64-bit and decimal floating point hardware.

Programmer response
Correctly qualify the referenced variable and retry the
command.

EQA2001E Syntax error at '%1'.

Explanation
Invalid syntax was detected while parsing the
expression.

EQA2002E Syntax error: The expression is
incomplete.

Explanation
The specified expression is incomplete.

EQA2003E Cannot find the symbol '%1'.

Explanation
The given symbol name cannot be located.

EQA2004E The variable %1 is undefined or is
incorrectly qualified.

Explanation
The named variable cannot be located or is undefined.

Programmer response
You need to qualify with a different block , or specify
different IN/OF qualifiers.

EQA2005E The variable %1 is undefined, is
incorrectly qualified, or has been
removed due to optimization.

Explanation
The named variable cannot be located or is undefined.

Programmer response
You need to recompile the program without the
Optimize option, qualify with a different block, or
specify different IN/OF qualifiers.

EQA2009E Syntax error: Invalid literal
starting at %1.

Explanation
An invalid character was found while parsing the
expression.

EQA2011E %1 is not a valid operand.

Explanation
An unexpected operand was found.

EQA2013E %1 contains incompatible data
type.

Explanation
An unexpected operand type was found.

EQA2016E An unsupported operator/operand
is specified.

Explanation
An operator or an operand was not understood, and
therefore was not processed.

EQA2043E Operation is not permitted in
Browse Mode.

Explanation
The expression contains an operation that is not
permitted when running in browse mode.

EQA2046E A divisor of 0 is detected in a
divide operation.

Explanation
The expression contains a divide operation where the
divisor was determined to be zero.

EQA2047E Array subscript or index %1 is out
of bounds.

Explanation
An array subscript or index must be between 1 and the
number of elements in the array.

EQA2048E Incorrect value for ODO variable
%1.

Chapter 9. z/OS Debugger messages 417

Explanation
The ODO variable might not have been initialized, or
the current value is out of range.

EQA2049E Invalid specification of reference
modification.

Explanation
The leftmost-character-position field or the length
field contains invalid value.

EQA2050E Program %1 not found.

Explanation
A bad program name is specified in a CALL command
and the processing is terminated unsuccessfully.

EQA2051E The address of %1 has been
determined to be invalid.

Explanation
This can happen for items of one of the following
cases:

• Items within a data record where the file is not active
or the record area is not available

• Items in a structure following Occurs, depending on
the item where the ODO variable was not initialized

• Items in the LINKAGE SECTION that are not based
on a valid address

EQA2052E Incorrect number of subscripts or
indexes for %1.

Explanation
A data item defined as a table was referenced with
an incorrect number of subscripts or indexes. The
reference is not allowed.

EQA2053E No subscript or index is allowed
for %1.

Explanation
One or more subscripts or indexes were specified
for a data item that was not defined as a table. The
reference to the data item is not allowed.

EQA2054E String contains non-numeric
characters.

Explanation
The assignment of a string to a numerical variable
cannot be performed, because the string contains non-
numerical characters.

EQA2055E Invalid sign for %1 is found.

Explanation
The sign position of a signed data item contains an
invalid sign. The item might not have been initialized.

EQA2056E Invalid data for %1 is found.

Explanation
The memory location for a data item contains data that
is inconsistent with the data type of the item. The item
might not have been initialized.

EQA2057E Only session variables can be
modified in PLAYBACK replay
mode.

Explanation
An attempt was made to modify storage during
PLAYBACK replay mode when DATA was in effect. Only
session variables can be modified in this situation.

EQA2058W The assignment was performed,
but the assigned value might not
be used by the program, due to
optimization.

Explanation
Results might be unreliable, because the program
might use the previous value that was saved in
temporary storage or a register.

Programmer response
Recompile the program without the Optimize option.

EQA2059E The environment is not yet fully
initialized.

Explanation
You can STEP and try the command again.

EQA2060E The variable %1 has been
optimized and cannot be
accessed.

Explanation
Storage for the named variable was not allocated.

418 IBM z/OS Debugger: Reference and Messages

Programmer response
Recompile the program without the Optimize option.

EQA2061E The name %1 is ambiguous and
cannot be resolved.

Explanation
Names of data items might be ambiguous if they are
not sufficiently qualified.

EQA2201E The JUMPTO command is not
allowed, perhaps because of
optimization and SET WARNING is
ON.

Explanation
The JUMPTO command is not recommended. For
COBOL, this might be caused by optimization, or
because register contents other than the code base
cannot be guaranteed for the target. If SET WARNING
is OFF, z/OS Debugger executes the command, but the
results are unpredictable.

EQA2246E The specified load module does
not contain CU CU_name.

Explanation
The specified load module is known to z/OS Debugger
but it does not contain a CU by the specified name.

EQA2247E A load module name was not
specified for CU CU_name. Both
load module and CU names
must be specified in the form
LOADMOD::>CU.

Explanation
When an LDD is entered in Explicit Debug Mode, both
load module and CU names must be specified.

EQA2248I Explicit Debug Mode is now active.

Explanation
Explicit Debug Mode is now ON.

EQA2249I Explicit Debug Mode is no longer
active.

Explanation
Explicit Debug Mode is now OFF.

EQA2250I Command not supported on the
current platform.

Explanation
The command is not supported in the current
environment (e.g., non-CICS)

EQA2251I DTCN Pattern-match breakpoint
disabled for:

Explanation
This is the title line for the LIST DTCN command.

EQA2252I CADP Pattern-match breakpoint
disabled for:

Explanation
This is the title line for the LIST CADP command.

EQA2253I Load module = &&&& CU = &&&&

Explanation
This message lists the load module and CU names
output by the LIST DTCN command.

EQA2254I Program = &&&& CU = &&&&

Explanation
This message lists the program and compile unit
names output by the LIST CADP command.

EQA2255I This program and/or compile
unit is not in the pattern-match
breakpoint list.

Explanation
The ENABLE CADP command is not allowed since this
particular program and/or compile unit is not in the
pattern-match breakpoint list.

EQA2256I This load module and/or compile
unit is not in the pattern-match
breakpoint list.

Explanation
The ENABLE DTCN command is not allowed since
this particular program is not in the pattern-match
breakpoint list.

EQA2257I The pattern-match breakpoint list
is empty.

Explanation
There are no entries in the pattern-match breakpoint
list.

Chapter 9. z/OS Debugger messages 419

EQA2258R There is no SOAP (DFHNODE)
channel in the current program.

Explanation
There is no channel named DFHNODE known to the
current program.

EQA2259E z/OS Debugger encountered an
error evaluating the condition
expression following WHEN for
the break point. Use LIST AT to
view the break point and the
expression.

Explanation
There was an error evaluating the expression entered
for the WHEN condition for the break point. LIST AT
can be used to view the expression. z/OS Debugger
continues processing.

EQA2260E Failure to connect to the
remote debugger. Address:
address_name. Port: port_number.
IP sockets returned: rc. Possible
cause: invalid IP address.

Explanation
Please check the TCPIP address and port specified
and verify that the remote debugger daemon is
listening.

EQA2261E An error occurred while opening
file: &&&&. The file may not exist,
or is not accessible.

Explanation
An error during the initial processing (OPEN) of the file
occurred.

EQA2262E Ending location should be higher
than starting location.

Explanation
Modify the command providing an ending location that
is higher than starting location.

EQA2263E Total requested amount exceed
size of the container.

Explanation
Reduce size being requested. Use DESCRIBE
CHANNEL to verify the size of the container.

EQA2264I *** Global preferences file
commands follow ***

Explanation
Start of commands in the global preferences file.

EQA2265I *** User preferences file
commands follow ***

Explanation
Start of commands in the user preferences file.

EQA2266I *** Commands file commands
follow ***

Explanation
Start of commands in the commands file.

EQA2267I *** Global preferences file
commands end ***

Explanation
End of commands in the global preferences file.

EQA2268I *** User preferences file
commands end ***

Explanation
End of commands in the user preferences file.

EQA2269I *** Commands file commands
end ***

Explanation
End of commands in the commands file.

EQA2270I Global Preferences file exists:
&&&&

Explanation
The global preferences file is opened successfully.

EQA2271I The setting of DEFAULT LISTINGS
is:

Explanation
This message header is for QUERY DEFAULT LISTINGS.

EQA2272W A CICS Storage Violation has been
detected. The leading/trailing
check zone associated with the
storage that starts at '&&&&'X

420 IBM z/OS Debugger: Reference and Messages

for a length of &&&& has been
damaged.

Explanation
z/OS Debugger detected a storage violation.

EQA2273I &&&& &&&&

Explanation
This message contains the output from the DESCRIBE
CHANNEL command.

EQA2274I A CICS Storage Violation has not
been detected.

Explanation
z/OS Debugger did not detect any storage violation

EQA2275E Insufficient storage is available to
process command.

Explanation
There was not enough main memory available to
process the command.

EQA2276E The listing file name given is too
long.

Explanation
Under MVS data definition names are limited to 8
characters and dataset names are limited to 44
characters.

EQA2277I &&&&

Explanation
Display results of a command.

EQA2278E CHKSTGV command is only
available in a CICS Environment.

Explanation
The command is not supported on Non-CICS
Environments.

EQA2279E The Language Environment
attempted to present a Language
Environment event to z/OS
Debugger when the user program
was executing in AMode(64).
z/OS Debugger does not currently
support Language Environment
events in Amode(64). The event is
ignored.

Explanation

z/OS Debugger currently supports AMode(64) only for
assembler and disassembly.

EQA2280E LIST CONTAINER command is only
available in a CICS Environment.

Explanation
The command is not supported on Non-CICS
Environments.

EQA2281E DESCRIBE CHANNEL command
is only available in a CICS
Environment.

Explanation
The command is not supported on Non-CICS
Environments.

EQA2282E This command is not supported in
this CICS Version/Release.

Explanation
You must use CICS TS 3.1 or later to be able to use this
feature.

EQA2283E There is no container with that
name in the specified channel.

Explanation
The container name provided does not belong to the
channel specified or does not exist.

EQA2284E There are no containers to display.

Explanation
There are no containers known to the current program.

EQA2285E There are no channels to display.

Explanation
There are no channels known to the current program.

EQA2286E There is no channel with that
name in this program.

Explanation
A channel with that name was not found. Verify the
name of.

EQA2287E There is no current channel in this
program

Chapter 9. z/OS Debugger messages 421

Explanation
Read CICS Documentation on Channels and
Containers.

EQA2288S The module "module_name"
cannot be loaded - it was NOT
found.

Explanation
The LOAD MODULE request failed, the module was not
found.

EQA2289S The module "module_name"
cannot be loaded - there is NOT
enough storage to do the load.

Explanation
The LOAD MODULE request failed, there is not enough
storage.

EQA2290S The module "module_name"
cannot be loaded.

Explanation
The LOAD MODULE request was unsuccessful.

EQA2291S The module "module_name"
cannot be deleted.

Explanation
The DELETE MODULE request was unsuccessful.

EQA2292S The module "module_name" was
NOT loaded by the z/OS Debugger
and therefore CANNOT be deleted.

Explanation
Only modules loaded by z/OS Debugger may be
deleted.

EQA2293S The module "module_name"
cannot be loaded because it was
already loaded by z/OS Debugger.

Explanation
The LOAD MODULE request was unsuccessful.

EQA2294I The LOADDEBUGDATA command
for CU_name has been deferred
until the CU appears.

Explanation
The indicated CU is not currently known to z/OS
Debugger. The LOADDEBUGDATA will be run when the
CU appears in a loaded module.

EQA2295I The CU specified for the
LOADDEBUGDATA command is
already an assembler or LangX
COBOL CU.

Explanation
An LDD has already been done for the CU specified
in the LDD command. This LDD may have been done
previously by the user or an implicit LDD may have
been done for the CU. This happens when a user-
entered LDD is successful and, subsequently, the CU
goes away and later reappears.

EQA2296E The CU specified for the
LOADDEBUGDATA command is not
a disassembly CU.

Explanation
Only a disassembly CU can be identified as assembler
CU.

EQA2297E An error occurred while
attempting to load the debug
(EQALANGX) file for a specified
CU.

Explanation
Either the file containing the EQALANGX debug data
could not be found or there was an undetermined error
loading the EQALANGX file for a specified CU.

EQA2298S There is no compilation unit
named compile_unit_name.

Explanation
The compilation unit (program) that you named could
not be located by z/OS Debugger.

EQA2299E The EQALANGX file does not
match the object for object_name.
The EQALANGX file cannot be
used.

Explanation
An EQALANGX file containing the assembler
debugging information does not match the object.
Either the CSECT length is different, selected object
code is different, or the EQALANGX file is not for the
correct language.

422 IBM z/OS Debugger: Reference and Messages

EQA2300E A pattern of "*" is invalid.

Explanation
The NAMES EXCLUDE command does not allow a
pattern of "*".

EQA2301E Value too long to display.

EQA2302E Not allocated

EQA2303E The value specified in the fourth
operand of the TEST runtime
parameter is not valid.

Explanation
The value specified before the colon in the fourth
operand of the TEST runtime parameter is not in the
correct format.

Programmer response
Correct the specification of the fourth TEST operand.

EQA2304E Format of value failed

EQA2305E NULL

EQA2306E Register not used

EQA2307E Invalid string

EQA2308E Divide by zero

EQA2309E Invalid expression

EQA2310E Expression not supported

EQA2311E Incompatible types

EQA2312E Expression validation failed

EQA2313E Expression evaluation failed

EQA2314E Evaluation not supported

EQA2315E Expression not evaluated

EQA2316E Variable not found

EQA2317E Invalid value for update

EQA2318E Update of value not allowed at this
time

EQA2319E Update of value not supported

EQA2320E Operation not supported

EQA2321I Please see log window for
messages

EQA2322E Invalid address

EQA2323E Storage unit style is not supported

EQA2324E Storage address style is not
supported

EQA2325E Register variable(s) out of range

EQA2326E Invalid program name

EQA2327E Failure loading view information

EQA2328E Failure evaluating expression
context. Contact IBM support.

EQA2329E Frequency data is not allowed with
this breakpoint type.

EQA2330E Invalid line to set a line breakpoint

EQA2331E Initialization failure - z/OS
Debugger and front-end levels are
incompatible

EQA2332E Invalid storage data

EQA2333E Incomplete update - a portion of
storage is not updateable

EQA2334E Storage is not updateable

EQA2335E Failure updating storage contents

EQA2336E Procedure name is an internal
procedure, not an entry point

EQA2337E Breakpoint type not supported

EQA2338I Program at end of job

EQA2339E A DLL load occurred. Current
program location cannot be
determined

EQA2340I Target program(s) loaded - START/
CALL required

EQA2341E Insufficient storage to load view

EQA2342E Program exception has occurred

EQA2343I Debug session initialization
complete

EQA2344E Debug file name could not be
found

Explanation
The debug file name cannot be found. The following
list describes some of the possible conditions that
could cause this:

• The file was deleted from the system.
• The file was renamed.
• The user does not have authorization to access the
file.

EQA2345E Debug file version not supported

EQA2346I Maximum number of debug files
(256) reached

EQA2347E Invalid debug file name

Chapter 9. z/OS Debugger messages 423

EQA2348E Debug file format is invalid

EQA2349E Debug file not supported -
contains multiple "@PROCESS"
statements

EQA2350E Insufficient storage to read debug
file

EQA2351E I/O error reading debug file

EQA2352E I/O error opening debug file

EQA2353E Debug file CSECT name does not
match compile unit CSECT name

EQA2354I USE file processing has paused -
USE file is still active

EQA2355E Altering the PSW is not supported

EQA2356E Program not auto-started - debug
file name could not be found

EQA2357E Program not auto-started - debug
file version not supported

EQA2358E Program not auto-started - max
number of debug files (256)
reached

EQA2359E Program not auto-started - invalid
debug file name

EQA2360E Program not auto-started - debug
file format is invalid

EQA2361E Program not auto-started -
insufficient storage

EQA2362E Program not auto-started - I/O
error reading debug file

EQA2363E Program not auto-started - I/O
error opening debug file

EQA2364E Program not auto-started - failure
processing debug information

EQA2365E Exit point name must be a primary
entry

EQA2366E Exit breakpoints not allowed on
internal procedures

EQA2367E Failure processing debug
information. Program compiled
with NOTEST

EQA2368I Search has wrapped

EQA2369E Invalid link pointer

EQA2370I End of link chain reached

EQA2371E Invalid breakpoint label name

EQA2372E Jump to location must be within
currently active program

EQA2373E Initialization failure - extended
qualification is not supported

EQA2374E SOM object not instantiated

EQA2375E Field is not updatable

EQA2376E Update of field failed

EQA2377E Invalid data

EQA2378I Application has terminated

EQA2379E Internal error. Please, contact IBM
support

EQA2380E Jump to Location while at
initialization is not allowed

EQA2381E The target of the Jump to Location
is invalid

EQA2382E The target of the Run to Location is
invalid

EQA2383I The environment is not yet fully
initialized. Use Step or Run.

EQA2384E The Defer option is not permitted
for Line Breakpoints.

EQA2385E The entry point is not active or
debug data is not available.

EQA2386E You are monitoring an inaccessible
or uninitialized variable.

EQA2387E Cannot modify BreakPoints.
Delete existing BreakPoint then
add new.

EQA2388E Cannot monitor this type of
expression or variable

EQA2389E The C component of the LE
runtime has not been initialized.

EQA2390E Exec Imminent. Click any button
to continue.

EQA2391E Time stamp on listing does not
match time stamp on object.

EQA2392E Unable to find requested
executable module.

EQA2393E z/OS Debugger has frozen
this thread. Registers are not
available.

EQA2394E Stop at date field references.

EQA2395E The entered expression is invalid,
please check the expression.

EQA2396E Expression breakpoints are not
supported for this language.

424 IBM z/OS Debugger: Reference and Messages

EQA2397E The expression has inaccessable
or uninitialized data.

EQA2398E No hooks present at statements,
breakpoint not set.

EQA2399E z/OS Debugger has frozen this
thread. Call stack is not available.

EQA2400E Operations involving engine
settings are currently not
supported.

EQA2401E This register cannot be edited.
Changes have been ignored.

EQA2402I Program was stopped due to load
occurrence breakpoint.

EQA2403I Program was stopped due to
storage change breakpoint.

EQA2404E The debug information is not
accessible for the requested
thread.

EQA2405E The PL/I component of the LE
runtime has not been initialized.

EQA2406E The Cobol component of the LE
runtime has not been initialized.

EQA2407E Too many local variables for local
monitor. Use program monitor
instead.

EQA2408E Variable cannot be displayed
because this compile unit
was compiled without symbolic
information.

Explanation
The current compile unit was compiled without
symbolic information. Variable information is not
accessible to z/OS Debugger. The CU must be
recompiled with TEST to provide this information.

EQA2409E The LAST option on an EXEC
CICS SEND command has been
suppressed.

Explanation
The application has issued an EXEC CICS SEND
command with the LAST Option while being debugged
in single terminal mode. This would end the terminal
session being used by z/OS Debugger, so z/OS
Debugger has suppressed the LAST option.

Programmer response
If the LAST option needs to be exercised, consider
debugging the application in dual terminal mode.

EQA2410E Search target not found.

Explanation
The search string was not found.

EQA2411E Variable needs further
qualification or qualification is
invalid.

Explanation
A qualified reference is invalid. One or more qualifiers
may be undefined or not in the same structure as the
desired data item.

EQA2412I You are currently on an instruction
that will leave the current
Compile Unit and may cause z/OS
Debugger to lose control. You must
ensure that a breakpoint is set
on a subsequent instruction or
statement. At location LOCN.

Explanation
While stepping through a program in the disassembly
view, you are about to execute an instruction that will
cause a transfer (branch) out of the current Compile
Unit. A breakpoint is required where you would like to
obtain control.

Programmer response
Set a breakpoint and/or enter STEP or GO to continue.

EQA2413I You are currently on an instruction
that must run without a
breakpoint. z/OS Debugger may
lose control. You must ensure
that a breakpoint is set on
a subsequent instruction or
statement. At location LOCN.

Explanation
While stepping through a program in the disassembly
view, you are about to execute an instruction that
must run from the original location and therefore the
breakpoint must be temporarily removed. A breakpoint
is required where you would like to obtain control.

Programmer response
Set a breakpoint and/or enter STEP or GO to continue.

Chapter 9. z/OS Debugger messages 425

EQA2414I You are currently on an instruction
that is the target of an EX
instruction or one that is not
allowed to have a breakpoint. A
breakpoint should be set on the
EX or a subsequent instruction
or statement. This breakpoint is
removed at location LOCN.

Explanation
While stepping through a program in the disassembly
view, an instruction was encountered in an
unsupported location or an instruction that is not
allowed to have a breakpoint was found to have a
breakpoint. A breakpoint is required where you would
like to obtain control. The breakpoint is automatically
removed.

Programmer response
Set a breakpoint and/or enter STEP or GO to continue.

EQA2415I z/OS Debugger could not stop at
one or more instructions because a
valid save area backchain was not
found. At location LOCN.

Explanation
While debugging a program, z/OS Debugger could not
stop the application because a valid save area back
chain did not exist. The back chain pointer is located at
+4 in the save area pointed to by register 13. This will
most likely occur when stepping through the prolog
code of a Compile Unit.

EQA2416I z/OS Debugger detected a
missing or invalid z/OS Debugger
SVC EQA00SVC(IGC0014E). The
installed version is vers.
DYNDEBUG is disabled.

Explanation
During initialization z/OS Debugger did not find a
usable z/OS Debugger SVC. Either the SVC was not
found or a downlevel version was detected. The
Dynamic Debug facility is disabled.

Programmer response
Have your installer install the correct z/OS Debugger
SVC.

EQA2417I Not enough memory available for
PLAYBACK data collection. You
must DISABLE PLAYBACK.

Explanation
The run-time API did not have enough memory to save
application DATA during Playback data collection.

Programmer response
Use the PLAYBACK DISABLE command to disable
Playback. You can then re-start Playback and specify
more memory for use by Playback on the PLAYBACK
ENABLE command.

EQA2418I Return code RC from PLAYBACK
run-time API API name . You must
DISABLE PLAYBACK.

Explanation
The run-time API is no longer able to collect
application DATA. The return code indicates a terminal
error in the run-time.

Programmer response
Use the PLAYBACK DISABLE command to disable
Playback. Return code 63 indicates not enough
memory was available for Playback. Restart your z/OS
Debugger session and enter the PLAYBACK ENABLE
command using the integer option. For example:
PLAYBACK ENABLE * 10000.

EQA2419W Playback data collection has
wrapped. Earlier data has been
overlayed.

Explanation
Playback data collection has used all available
memory. The earliest collected data will be overlayed
with newer data.

Programmer response
If it is necessary to retain more Playback data, specify
a larger memory size on the PLAYBACK ENABLE
command.

EQA2420W The assignment was performed
but the assigned value might not
be used by the program, due to
optimization.

Explanation
Results might be unreliable because the program
might use the previous value that was saved in
temporary storage or a register.

426 IBM z/OS Debugger: Reference and Messages

Programmer response
Recompile the program without the Optimize option.

EQA2421E The assignment was not
performed because the assigned
value might not be used by the
program, due to optimization.

Explanation
Results would be unreliable because the program
might use the previous value that was saved in
temporary storage or a register.

Programmer response
You can SET WARNING OFF to allow the update
to take place or recompile the program without
optimization.

EQA2422E A breakpoint cannot be set
on this statement when the
STORAGE runtime option is in
effect. Remove STORAGE or set
the breakpoint after the next LR
R13,Rx instruction.

Explanation
When the STORAGE runtime option is in effect,
breakpoints are not allowed on the prologue
instructions between the first BALR R14,R15 and
the next LR R13,Rx. You may set a breakpoint
on an instruction following the next LR R13,Rx or
you may rerun your program without the STORAGE
runtime option and set a breakpoint on the specified
statement.

EQA2423S A AbendCode ABEND occurred.

Explanation
The indicated System or User ABEND was detected.

Programmer response
Investigate the cause of the ABEND.

EQA2424I z/OS Debugger detected a
missing or invalid z/OS Debugger
SVC EQA01SVC(IGX00051). The
installed version is vers.
DYNDEBUG is disabled for read
only programs.

Explanation
During initialization z/OS Debugger did not find
usable z/OS Debugger SVCs EQA00SVC(IGC0014E)

and EQA01SVC(IGX00051). Either the SVC was not
found or a downlevel version was detected. The
Dynamic Debug facility is disabled for read only
programs. Other Dynamic Debug facilities may not
operate correctly.

Programmer response
Have your installer install the correct z/OS Debugger
SVCs.

EQA2425I z/OS Debugger detected a
down level z/OS Debugger
SVC EQA01SVC(IGX00051). The
installed version is vers. Version
2 is required when using CICS
with TRANISO=YES. DYNDEBUG is
disabled.

Explanation
During initialization z/OS Debugger detected a
downlevel z/OS Debugger SVC version. The Dynamic
Debug facility is disabled for read only programs.

Programmer response
Have your installer install the correct z/OS Debugger
SVCs.

EQA2426I z/OS Debugger detected a
down level z/OS Debugger
SVC EQA01SVC(IGX00051). The
installed version is vers. Version
17 is required for this version of
z/OS Debugger.

Explanation
During initialization z/OS Debugger detected a
downlevel z/OS Debugger SVC version.

Programmer response
Have your installer install the correct z/OS Debugger
SVCs.

EQA2427I z/OS Debugger detected a
down level z/OS Debugger
SVC EQA01SVC(IGX00051) or
EQA00SVC(IGC0014E). EQA01SVC
is version VERS. EQA00SVC is
version VERS. EQA01SVC version
6 and EQA00SVC version 5 are
required.

Chapter 9. z/OS Debugger messages 427

Explanation
During initialization z/OS Debugger detected a
downlevel z/OS Debugger SVC version.

Programmer response
Have your installer install the correct z/OS Debugger
SVCs.

EQA2428E This command is either invalid or
unsupported.

EQA2429E This command is not supported.

EQA2430E This command is not supported
with this UI.

EQA2431I Automonitor is on for this debug
session.

EQA2432I Automonitor is off.

EQA2433E Load Debug Data failed for :

EQA2434E Unknown CU :

EQA2435I This program has no statement
table.

EQA2436I The statement table has the STMT
format.

EQA2437I The statement table has the
NUMBER format.

EQA2438I The statement table has the
SHORT format.

EQA2439I The program was compiled with
the following options:

EQA2440I Program Information for this
compile unit is:

EQA2441I IBM z/OS Debugger 15.0.m

Explanation
This message is used to place the z/OS Debugger logo,
a time stamp, and copyright at the beginning of the
line.

EQA2442I 5724-T07 Copyright IBM Corp.
1992, 2017

Explanation
This message is used to place the z/OS Debugger logo,
a time stamp, and copyright at the beginning of the
line.

EQA2443I Assembler debug mode is active.

EQA2444I Assembler debug mode is no
longer active.

EQA2445I Disassembly debug mode is now
active.

EQA2446I Disassembly debug mode is no
longer active.

EQA2447I The setting of LOG is on.

EQA2448I The setting of LOG is off.

EQA2449I Dynamic debug mode is on.

EQA2450I Dynamic debug mode is off.

EQA2451I The setting of WARNING is on.

EQA2452I The setting of WARNING is off.

EQA2453E The DYNDEBUG status was not
changed because SET DYNDEBUG
can only be executed at the
beginning of a debug session,
before you use STEP or GO
commands, or start code coverage

Programmer response:
For more information, see “SET DYNDEBUG
command” on page 225.

EQA2454I This CU is not AUTOMONITOR
capable for expressions.

Programmer response
Refer to the description of the SET AUTOMONITOR
command in the IBM z/OS Debugger Reference and
Messages document to determine the requirements
this CU must fulfill in order to use the SET
AUTOMONITOR command.

EQA2455E Program uses non-standard
linkage. R13 contains an invalid
address.

Explanation
z/OS Debugger has stopped in a program and the value
in GPR 13 is not a valid address.

Programmer response
z/OS Debugger will attempt to continue. However,
some information may be missing or incorrect.

EQA2456I Returning from enclave where
z/OS Debugger was initialized.
Handling of non-LE events has
been suspended. Debugging of
non-LE programs is suspended in
this z/OS Debugger session.

428 IBM z/OS Debugger: Reference and Messages

Explanation
The Language Environment was invoked with TEST/
NOPROMPT or NOTEST causing z/OS Debugger to be
initialized during an enclave that was not the top
enclave. The enclave in which z/OS Debugger was
initialize is now terminating. z/OS Debugger will no
longer intercept non-Language Environment events
and, therefore, you can no longer debug non-Language
Environment programs.

Programmer response
If you do not need to debug higher-level, non-
Language Environment programs or to intercept non-
Language Environment events, no action is required.
Otherwise, re-run the job without NOPROMPT or with
the CALL to CEETEST, PLITEST or ctest() in a higher-
level enclave.

EQA2457E This command is not supported in
Browse Mode.

Explanation
This command is not supported in Browse Mode
because it either alters storage or registers or it alters
the control flow.

EQA2458I SVC Screening is disabled by
EQAOPTS. Handling of non-LE
events is not available. Debugging
of non-LE programs will be
restricted in this z/OS Debugger
session.

Explanation
The z/OS Debugger was invoked with an EQAOPTS
options module that specified SVCSCREEN OFF.
z/OS Debugger will not intercept non-Language
Environment events and, therefore, debugging of non-
Language Environment programs will be limited.

Programmer response
If you do not need to debug non-Language
Environment programs or to intercept non-Language
Environment events, no action is required. Otherwise,
you must have your installer provide an EQAOPTS that
specifies SVCSCREEN ON.

EQA2459I SVC Screening is in use by another
product and SVC Screening
CONFLICT=NOOVERRIDE is
specified by EQAOPTS. Handling
of non-LE events is not available.
Debugging of non-LE programs

will be restricted in this z/OS
Debugger session.

Explanation
The z/OS Debugger was invoked with
an EQAOPTS options module that specified
CONFLICT=NOOVERRIDE. z/OS Debugger will not
intercept non-Language Environment events and,
therefore, debugging of non-Language Environment
program will be limited.

Programmer response
If you do not need to debug non-Language
Environment programs or to intercept non-Language
Environment events, no action is required. Otherwise,
you must terminate the prior use of SVC SCREENING
(TCBSVCS, TCBSVCSP, TCBSVCA2) before starting
z/OS Debugger or have your installer provide
an EQAOPTS that specifies CONFLICT=OVERRIDE.
CONFLICT=OVERRIDE allows z/OS Debugger to save
and restore the previous use of SVC SCREENING
(TCBSVCS, TCBSVCSP, TCBSVCA2).

EQA2460I SVC Screening is in use by another
product and SVC Screening
CONFLICT=OVERRIDE is specified
by EQAOPTS. Previous use of SVC
Screening will be restored at the
end of this z/OS Debugger session.

Explanation
The z/OS Debugger was invoked with an EQAOPTS
options module that specified CONFLICT=OVERRIDE.
z/OS Debugger will save and restore the SVC Screening
values.

SVC SCREENING is indicated by TCBSVCS, TCBSVCSP,
and TCBSVCA2. These values are saved during z/OS
Debugger startup and restored at z/OS Debugger
termination.

EQA2461W Code page in the VADSCP
suboption is not between 00001
and 99999. Default code page
00037 is assumed.

Explanation
z/OS Debugger was invoked with an invalid VADSCP
suboption in the TEST runtime option string. Internal
conversion tables for the default code page 00037 are
used for translation between z/OS Debugger and the
distributed debugger.

Chapter 9. z/OS Debugger messages 429

Programmer response
Correct the VADSCP suboption and restart the debug
session.

EQA2462W Code page conversion of string
failed. z/OS Unicode conversion
services return code is VERSand
reason code is VERS.

Explanation
Problem encountered in a code page conversion using
z/OS Unicode conversion services. Internal conversion
tables for the default code page 00037 are used.

Programmer response
See z/OS Support for Unicode: Using Conversion
Services book for explanation of return code, reason
code, and appropriate action.

EQA2463W z/OS Unicode conversion services
encountered a serious problem.
Default code page 00037 is used
in the debug session.

Explanation
z/OS Unicode conversion services failed. Internal
conversion tables for the default code page 00037 are
used in the debug session.

Programmer response
See z/OS Support for Unicode: Using Conversion
Services book for explanation of return code, reason
code, and appropriate action in the accompanied
EQA2462W message. A typical problem is that the
conversion images are not available. Consult with your
system programmer to see what is available on the
system.

EQA2464I There are no &&&& names
currently &&&& by &&&&.

Explanation
This message is issued by the NAMES command when
there is no data to be displayed.

EQA2465I The following &&&& names are
currently &&&& by &&&&.

Explanation
This message precedes the output of the NAMES
command and indicates the type of names that follow
this message.

EQA2466I &&&&

Explanation
This message lists the names output of the NAMES
command.

EQA2467I The EQALANGX debug data also
contains data for the following
CUs:

Explanation
This is the header used to display the additional
CSECTs included in the EQALANGX data for the current
CU.

EQA2468I &&&& &&&&

Explanation
Used to display CSECTs also included in the
EQALANGX data for the current CU.

EQA2469I The SVC Screening required for
z/OS Debugger will be merged
with the SVC Screening already
active for COPE.

Explanation
COPE's usage of SVC Screening will be restored at the
end of this z/OS Debugger session. z/OS Debugger
was invoked with an EQAOPTS options module that
specified MERGE. z/OS Debugger will save the COPE
screening values on entry, merge them with z/OS
Debugger's during the execution of the program, and
then restores the original COPE SVC Screening values
when z/OS Debugger terminates. SVC Screening is
indicated by TCBSVCS, TCBSVCSP, and TCBSVCA2.

Programmer response
If you did not intend to MERGE the z/OS Debugger SVC
Screening tables with another program, modify your
EQAOPTS to specify what you require.

EQA2471I Your Language Environment
enabled application has stopped
at a location where a non
Language Environment compliant
R13 savearea backchain exists. At
location LOCN. Commands such
as LIST CALLS will not operate
properly.

430 IBM z/OS Debugger: Reference and Messages

Explanation
In order to be Language Environment compliant your
application needs to follow the Language Environment
rules.

Programmer response
Follow the Language Environment rules.

EQA2472I Your Language Environment
enabled application has stopped
at a location where the non
Language Environment compliant
R13 savearea backchain no longer
exists. At location LOCN.

Explanation
The savearea has become Language Environment
compliant and all commands will work properly.

Programmer response
None.

EQA2473I EQAOPTS setting SUBSYS=ssss is
in effect for use when reading
source code from a library system.

Explanation
In a non-CICS environment, an EQAOPTS with a
SUBSYS specification of ssss was found. If z/OS
Debugger needs to allocate a C, C++ or Enterprise PL/I
source data set from a library system that stores the
source in a data set that has a DSORG of DA or VSAM,
then the SUBSYS=ssss allocation parameter will be
used when z/OS Debugger allocates the data set.

Programmer response
If you need this support, ensure that the ssss
subsystem is running on the system that you are
running z/OS Debugger on.

EQA2474I z/OS Debugger could not stop at
one or more instructions because
the program is executing with a
PSW that specifies AMODE 64. At
location LOCN.

Explanation
During execution of the program z/OS Debugger
encountered a hook or other event when the PSW
specified AMODE64. z/OS Debugger will ignore all
events that occur in this state and the program will
continue to execute.

Programmer response
None.

EQA2475I An implicit CU was created for
"&&&&" in "&&&&".

Explanation
An implicit CU was created for the specified CU in the
specified load module as the result of a QUALIFY CU
command for a load module that was already loaded
and a COBOL CU that had not yet been executed. The
CU will be destroyed when execution is resumed.

Programmer response
None.

EQA2476I An implicit LOAD was issued for
module "&&&&".

Explanation
An implicit LOAD command was issued for the
specified load module as the result of a QUALIFY
LOAD or QUALIFY CU command for a load module
that was not currently loaded. A corresponding CLEAR
LOAD will be issued when execution is resumed.

Programmer response
None.

EQA2477I An implicit CLEAR LOAD was
issued for module "&&&&".

Explanation
An implicit CLEAR LOAD command was issued for the
specified load module. This module was previously
LOADed as the result of a QUALIFY LOAD or QUALIFY
CU command for a load module that was not currently
loaded.

Programmer response
None.

EQA2478I Implicit CU "&&&&" in "&&&&" is
being destroyed.

Explanation
The specified implicitly created CU is being destroyed.
This module was previously created as the result of a
QUALIFY CU command for a CU that had not already
been created.

Chapter 9. z/OS Debugger messages 431

Programmer response
None.

EQA2479S CU "&&&&" cannot be destroyed.

Explanation
The attempt to destroy the specified CU was
unsuccessful.

Programmer response
None.

EQA2480E 'symbol' is an undefined symbol.

Explanation
The specified symbol was used in an assembler
expression. However, it is not a valid symbol in the
current compile unit.

Programmer response
Correct the assembler expression and retry the
command.

EQA2481E Invalid syntax in expression at or
near 'expression_fragment'.

Explanation
Invalid syntax was discovered at or near the part of the
expression shown in the error message.

Programmer response
Correct the assembler expression and retry the
command.

EQA2482E Invalid expression at or near
'expression_fragment'.

Explanation
The specified expression is invalid in the current
context.

Programmer response
Correct the assembler expression and retry the
command.

EQA2483E 'operator' is an invalid operator.

Explanation
The specified operator is not valid in an assembler
expression.

Programmer response
Correct the assembler expression and retry the
command.

EQA2484E A relational expression is not
allowed in the current context or
a relational expression was not
found where one was expected.

Explanation
A relational expression (an expression that contains a
conditional operator such as =, ^= or <=) was found
in an unexpected context or was not found where one
was expected.

Programmer response
Correct the assembler expression and retry the
command.

EQA2485S An internal error has occurred
processing an assembler
expression.

Explanation
An internal z/OS Debugger error has occurred
processing an assembler expression.

Programmer response
Report this error to your IBM representative.

EQA2486S The source and receiver are not
compatible for assignment.

Explanation
An assembler assignment contain a source and
receiver that are not compatible for assignment. For
example, a string longer than four bytes cannot be
assigned to an arithmetic receiver.

Programmer response
Correct the assignment operands and retry the
command.

EQA2490I The DEFAULT VIEW is now &&&&.

EQA2491I The setting of DEFAULT VIEW is
&&&&.

EQA2492I The setting of current view is
&&&&.

EQA2493I Program was stopped due to
watch breakpoint on COBOL
Level-88 condition-name &&&&.

432 IBM z/OS Debugger: Reference and Messages

EQA2494I Program was stopped due to
watch breakpoint on COBOL
Level-88 condition-name &&&&
and the condition &&&& evaluated
to be true.

EQA2495I Evaluation of the conditional
expression &&&& failed.

EQA2496I The setting of LDD is now &&&&.

Explanation
This message is issued by the remote interface in
response to the SET LDD command.

Programmer response
None.

EQA2497I The setting of LDD is &&&&.

Explanation
This message is issued by the remote interface in
response to the QUERY LDD command.

Programmer response
None.

EQA2498I LOAD is not supported during
initialization. STEP or GO and retry
LOAD command.

Explanation
A LOAD request cannot be issued until z/OS Debugger
initialization is complete.

EQA2499I A load module that was loaded
as the result of a LOAD command
contains LE CUs but LE is not
active. The LE CUs will not be
created.

Explanation
A LOAD command was used in a non-Language
Environment environment to load a load module
that contained one or more Language Environment
CUs. These CUs cannot be created until Language
Environment is active. CUs will be created only for
non-Language Environment CUs in this load module.

EQA2500E Incorrect or missing data

Explanation
The data at the cursor location is either incorrect or
some data is missing. There could be several reasons
for this:

1. Invalid combination of options specified.
2. Invalid data for field.
3. Data not entered, when required by options given.
4. Quotes specified when not allowed.

Programmer response
Correct the entry where the cursor is positioned and
invoke the function again. You can use Help (PF1) to
find the context sensitive help for that field.

EQA2502E Internal CICS error

Explanation
During processing, DTCN discovered an internal CICS
error

Programmer response
Correct the error and issue the command again. If the
error persists, contact your CICS system programmer
and/or IBM service.

EQA2503E Key Not Defined.

Explanation
There is no action defined with the PF key used by the
user.

Programmer response
Use the keys displayed in the bottom line. For more
information about the actions defined for this panel,
use PF2 key for general help.

EQA2504E Add failed - profile exists

Explanation
The add command failed because a profile for that
terminal is already stored in the z/OS Debugger Profile
Repository.

Programmer response
You can use Show(PF7) command to display the
profile or modify the TermId+TranId and Add a new
profile.

EQA2505E Replace failed - profile does not
exist

Chapter 9. z/OS Debugger messages 433

Explanation
The profile for that terminal does not exist in the z/OS
Debugger Profile Repository and cannot be updated.
Specify different terminal to update.

Programmer response
You can use Next(PF8) command to browse the Profile
Repository starting from any point.

EQA2506E Delete failed - profile does not
exist

Explanation
The profile for the terminal does not exist in the z/OS
Debugger Profile Repository and cannot be updated.

Programmer response
Specify different Terminal+Transaction Id to delete.
You can use Next(PF8) command to browse the Profile
Repository starting from any point.

EQA2507E Show failed - profile does not exist

Explanation
The profile for the Terminal does not exist in the z/OS
Debugger Profile Repository.

Programmer response
Specify different Terminal to display. You can use
Next(PF8) command to browse the Profile Repository
from any point.

EQA2508E Next failed - profile does not exist

Explanation
There are no more profiles in the z/OS Debugger
Profile Repository.

EQA2510I DTCN closed

Explanation
DTCN deleted all profiles stored in the z/OS Debugger
Profiles Repository. This action affects all users
working with that CICS region.

EQA2511E Specify at least one resource to
debug

Explanation
DTCN needs at least one identifier to identify the
resource you want to debug.

Programmer response
Provide one or more resources to be debugged.
DTCN uses a combination of resource IDs to uniquely
identify a resource. You should specify adequate
resource qualification to ensure that you debug only
the tasks you wish to debug.

EQA2512E TCP/IP SOCKETS for CICS is not
active

Explanation
You have tried to set up a debug session using TCP/IP,
but TCP/IP SOCKETS for CICS is not active in the CICS
region.

Programmer response
Either set up a non-TCP/IP session, or refer to the
TCP/IP SOCKETS for CICS publications for guidance on
activating it.

EQA2513I One or more of the LoadMod or CU
fields have been set to an '*'.

Explanation
When a LoadMod or CU field contains data and the
corresponding field does not contain data, then the
corresponding field will be set to an asterisk (*).

Programmer response
If this is not what you want, then enter the data you
want in the corresponding LoadMod field, CU field, or
both.

EQA2514I z/OS Debugger profile saved

Explanation
A profile was saved in the z/OS Debugger Profile
Repository.

EQA2515I z/OS Debugger profile replaced

Explanation
Existing profile was updated in the z/OS Debugger
Profile Repository.

EQA2516I z/OS Debugger profile deleted

Explanation
Existing profile was deleted from the z/OS Debugger
Profile Repository

EQA2517I Profile not saved. Press PF4, or
PF3 again to exit without saving.

434 IBM z/OS Debugger: Reference and Messages

Explanation
PF3 has been pressed, but the new profile has not
been saved in the repository.

Programmer response
Press PF4 to save the profile in the repository, or press
PF3 again to exit from DTCN without saving the new
profile.

EQA2518I Duplicate profile exists. Specify
additional debug resources.

Explanation
An attempt has been made to save a profile in the
DTCN repository, but its debug resources match an
existing profile.

Programmer response
Provide additional resource IDs to qualify your
debugging needs better.

EQA2519E Site rules require that this field be
filled in.

Explanation
Your site has specified in its EQAOPTS member that
this field must be filled in. For more information, refer
to DTCNFORCExxxx options in macro EQAXOPT.

Programmer response
Enter a resource name in the field.

EQA2520W Terminal mismatch. Press PF10
to set the value to the current
terminal identifier.

Explanation
The terminal ID at the highlighted cursor location does
not match the current terminal.

Programmer response
Press PF10 to set the value to the current terminal
identifier.

EQA2521E Invalid field. PF10 may only be
used to reset terminal or display
ID.

Explanation
The field at the current cursor location is invalid for the
PF10 action. This key may only be pressed when the

current cursor location is in the terminal or display ID
fields.

Programmer response
If you wish to update the terminal ID or display ID
fields, move the cursor to one of those fields and press
PF10 again. Otherwise, no further action is required.

EQA2522E You are not authorized to modify
or delete another user's profile.

Explanation
You have tried to modify or delete another user's
profile, but your USERID does not have sufficient
authority to do that. Your USERID needs to be
authorized to access the EQADTOOL.DTCNCHNGEANY
resource in your security facility.

Programmer response
Refer to the IBM z/OS Debugger Customization
Guide for information on granting authority for DTCN
functions.

EQA2523E Duplicate profile exists. Specify
more resources and press PF4 to
Save.

Explanation
You have tried to activate an inactive profile, but
there is already an active profile which specifies these
resources.

Programmer response
Add or change debug resources in your profile and
press PF4 to save the new profile.

EQA2600E In order to SET MONITOR COLUMN
OFF, you need to first SET
MONITOR WRAP ON.

Explanation
SET MONITOR COLUMN OFF was issued while SET
MONITOR WRAP is OFF. The command is rejected,
because the Monitor window already shows the values
in one, scrollable line. The Monitor window must stay
in columnar format.

Programmer response
Change the setting of MONITOR WRAP to ON, and then
issue SET MONITOR COLUMN OFF.

Chapter 9. z/OS Debugger messages 435

EQA2601E In order to SET MONITOR WRAP
OFF, you need to first SET
MONITOR COLUMN ON.

Explanation
SET MONITOR WRAP OFF was issued while SET
MONITOR COLUMN is OFF. The command is rejected,
because the Monitor window can show values in one
scrollable line only when the setting of MONITOR
COLUMN is ON.

Programmer response
Change the setting of MONITOR COLUMN to ON, and
then issue SET MONITOR WRAP OFF.

EQA2602E Because SET MONITOR COLUMN
is ON, the monitor window width
must be at least 36 characters.
The window size is not changed.

Explanation
Because SET MONITOR COLUMN is ON, the monitor
window width must be at least 36 characters. The
window size is not changed.

Programmer response
To change the Monitor window size, you need to first
SET MONITOR COLUMN OFF.

EQA2603E The width of the Monitor window
is less than 36 characters. SET
MONITOR COLUMN ON is not
allowed.

Explanation
Columnar format in the Monitor window can be
displayed only if the width of Monitor window is bigger
than 36 characters.

Programmer response
To SET MONITOR COLUMN ON, you need first change
the width of the Monitor window.

EQA2608E The MONITOR command entered
cannot be successfully executed
because the Monitor Command
Table is full and AUTOMONITOR
is ON. You must either turn
off AUTOMONITOR, replace
an existing Monitor command,
or clear an existing Monitor
command. Use the LIST MONITOR
command to list the Monitor

commands in the Monitor
Command Table. NOTE: When
AUTOMONITOR is ON it will occupy
1 (for CURRENT or PREVIOUS)
or 2 (for BOTH) slots in the
Monitor Command Table and will
not be included in the list of
Monitor commands from the LIST
MONITOR command.

Explanation
All 99 slots in the Monitor Command Table are
currently being used.

Programmer response
You must either turn off AUTOMONITOR, replace an
existing Monitor command, or clear an existing Monitor
command before this command can be successfully
executed.

EQA2609E The AUTOMONITOR command
entered cannot be successfully
executed because the Monitor
Command Table is full. You
must clear one or more existing
Monitor commands. Use the
LIST MONITOR command to list
the Monitor commands in the
Monitor Command Table. NOTE:
AUTOMONITOR will occupy 1
(for CURRENT or PREVIOUS)
or 2 (for BOTH) slots in the
Monitor Command Table and will
not be included in the list of
Monitor commands from the LIST
MONITOR command.

Explanation
All 99 slots in the Monitor Command Table are
currently being used.

Programmer response
You must clear one or more existing Monitor
commands before this command can be successfully
executed.

EQA2610E There is no current channel in
program.

Explanation
z/OS Debugger did not find a current channel in the
program. This could be because the program has not
been invoked with a channel.

436 IBM z/OS Debugger: Reference and Messages

Programmer response
Go to the CICS Transaction Server V3.1 (or later)
information center and look for the topic "The current
channel", which describes a current channel and gives
examples of how to invoke a channel.

EQA2611E The channel channel_name was
not found.

Explanation
z/OS Debugger could not find the channel for the
program. The name might be misspelled.

Programmer response
Verify that you have spelled the channel name
correctly. If you aren't sure about the channel name,
use DESCRIBE CHANNEL * command for a list of
channels known.

EQA2612E There are no channels to display.

Explanation
There are no channels known to the current program.

Programmer response
Go to the CICS Transaction Server V3.1 (or later)
information center and look for the topics "Creating a
channel" or "The scope of a channel" for instructions
and explanations.

EQA2613E There are no containers to display.

Explanation
z/OS Debugger could not find any channels known to
the program. This could be because no channels have
been created or assigned.

Programmer response
Go to the CICS Transaction Server V8.1 (or later)
information center and look for the topics "Discovering
which containers were passed to a program" or
"Discovering which containers were returned from
a link" to learn more about finding or identifying
containers.

EQA2614E There is no container with that
name in the specified channel.

Explanation
z/OS Debugger could not find the container in the
channel. The names might be misspelled.

Programmer response
Verify that you have spelled the container name
and channel name correctly. After you make any
corrections, retry the command. If you aren't sure
about the channel name or container name, use
DESCRIBE CHANNEL * command.

EQA2615E This command is not supported in
this CICS Version/Release.

Explanation
You must use CICS Transaction Server V3.1 or later to
be able to use this feature.

EQA2616E The DESCRIBE CHANNEL
command is available only in a
CICS environment.

Explanation
You cannot use the DESCRIBE CHANNEL command in
a non-CICS environment.

EQA2617E The LIST CONTAINER command
is available only in a CICS
environment.

Explanation
You cannot use the LIST CONTAINER command in a
non-CICS environment.

EQA2618E There is no SOAP (DFHNODE)
channel in the current program.

Explanation
There is no channel named DFHNODE known to the
current program.

Programmer response
Follow CICS directions on creating channels and
containers.

EQA2619E The CHKSTGV command is
available only in a CICS
environment.

Explanation
You cannot use the CHKSTGV command in a non-CICS
environment.

EQA2620E The requested bytes exceed the
end of the container.

Chapter 9. z/OS Debugger messages 437

Explanation
Reduce size being requested. Use DESCRIBE
CHANNEL to verify the size of the container.

EQA2621E Ending location should be higher
than starting location.

Explanation
Modify the command providing an ending location that
is higher than starting location.

EQA2622E The SET IGNORELINK command
is available only in a CICS
environment

Explanation
You cannot use the SET IGNORELINK command in a
non-CICS environment.

EQA2627E The command CALL %FM is
available only in a CICS
environment.

Explanation
This command requires CICS.

EQA2628E IBM File Manager for z/OS is not
installed in this CICS region.

Explanation
The CALL %FM command requires that IBM File
Manager be installed and customized for CICS.

Programmer response
Verify that IBM File Manager is installed and
customized for CICS as described in the topic
"Updating the CICS start up procedures" in the
Customization Guide for IBM File Manager.

EQA2629E IBM File Manager for z/OS could
not be started.

Explanation
This command requires that IBM File Manager be
installed.

Programmer response
Verify that IBM File Manager is installed and
customized for CICS as described in the topic
"Updating the CICS start up procedures" in the
Customization Guide for IBM File Manager.

EQA2630E AT ENTRY or AT EXIT is not
allowed for a C or C++ nested
block.

Explanation
You cannot set a breakpoint at the entry or exit point of
a nested block.

EQA2631E Invalid character found in an
address field.

Explanation
z/OS Debugger found an invalid character in the base
address field or in the address column of the Memory
window. You can put only hexadecimal characters or
the G or R commands in those areas.

Programmer response
Type in hexadecimal characters, the G or R commands,
or clear any characters you might have accidentally
entered. Then press Enter.

EQA2632E Invalid character found in a data
field.

Explanation
z/OS Debugger found an invalid character in the data
column of the Memory window. You can put only
hexadecimal characters or the G or R commands in
those areas.

Programmer response
Type in hexadecimal characters, the G or R commands,
or clear any characters you might have accidentally
entered. Then press Enter.

EQA2633E Invalid command found in a
history entry field.

Explanation
z/OS Debugger found an invalid command in the
history entry field of the Memory window. You can put
only the G or R commands in the history entry field.

Programmer response
Type in hexadecimal characters, the G or R commands,
or clear any characters you might have accidentally
entered. Then press Enter.

EQA2634E Multiple changes found in a history
entry field.

438 IBM z/OS Debugger: Reference and Messages

Explanation
z/OS Debugger found multiple changes in a history
entry field of the Memory window. You can only enter
one command at a time.

Programmer response
Clear the extra characters, then press Enter.

EQA2635E The FIND command is not valid in
the Memory window.

Explanation
You cannot use the FIND command in the Memory
window.

Programmer response
Do not use the FIND command in the Memory window.

EQA2636E Invalid scroll amount is specified
for the Memory window.

Explanation
You cannot use any one of the following scroll amounts
for the Memory window: TOP, BOTTOM, MAX, and TO.

EQA2637E Invalid window operation. The
logical window not assigned to a
physical window.

Explanation
You cannot use this command on a logical window that
has not been assigned to a physical window.

Programmer response
Use one of the following methods to assign the logical
window to a physical window:

• Enter the SWAP command to assign the logical
window you specified to a physical window.

• Enter the SET SCREEN command to assign the
logical window you specified to a physical window.

• Enter the PANEL LAYOUT command to choose a
window layout that assigns the logical window you
specified to a physical window.

EQA2638E Invalid Memory window width.

Explanation
The width of the physical window assigned to the
Memory window is less than the full screen width.

Programmer response
Do one of the following:

• Enter the SIZE SET SCREEN command and specify
a width that is at least the same size as the full
screen width.

• Enter the PANEL LAYOUT command to choose a
window layout that assigns the Memory window a
physical window with full screen width.

EQA2639E Invalid Amode value is specified.

Explanation
The valid Amode values are 24 and 31.

Programmer response
Enter a valid Amode value.

EQA2640E SCROLL LEFT is not valid in the
Memory window.

Explanation
You cannot enter the SCROLL LEFT command in
the Memory window. The Memory window displays
memory content in the entire width of the window.

EQA2641E SCROLL RIGHT is not valid in the
Memory window.

Explanation
You cannot enter the SCROLL RIGHT command in
the Memory window. The Memory window displays
memory content in the entire width of the window.

EQA2642E Top of the memory area is
reached.

Explanation
You have reached the top of memory space that the
Memory window can display.

Programmer response
Do not enter SCROLL UP command.

EQA2643E Bottom of the memory area is
reached.

Explanation
You have reached the bottom of memory space that
the Memory window can display.

Chapter 9. z/OS Debugger messages 439

Programmer response
Do not enter SCROLL DOWN command.

EQA2644E L and E letters cannot be both
used.

Explanation
Look at the Window Layout Select Panel. Verify that L
and E are not used in the panel layout.

EQA2645E SCROLL TO is not valid in the
Memory window.

Explanation
You cannot enter the SCROLL TO command in the
Memory window.

EQA2661W variable_name has a length that
is greater than its declared
maximum. Breakpoint cannot be
set until expression is fixed.

Explanation
The variable named has been declared as VARYING
with length n, but its current length is greater than n.
The variable may be unusable.

Programmer response
Check the length of the variable.

EQA2662E identifier is undefined.

Explanation
The specified identifier is used but has not been
defined.

Programmer response
Define the identifier before using it. Check its spelling.
If the identifier has been defined in a header file, check
that any required macros have been defined.

EQA2663E Unable to display the variable
based on an invalid pointer.

Explanation
The result from the expression evaluation cannot be
displayed. For example, the basing pointer has a zero
or uninitialized value.

EQA2664E The .dbg file for
compile_unit_name, created by the
FORMAT(DWARF) suboption of the
DEBUG compiler option cannot be

found. Use of the SET SOURCE
command to indicate the location
of the source file is not allowed at
this time.

Explanation
A .dbg file containing the debugging tables is not
available.

Programmer response
Make sure the .dbg file for the program is available.
If you know the location of the .dbg file, use the SET
DEFAULT DBG command to specify the location of the
file.

EQA2665E The .mdbg file for
compile_unit_name, cannot be
found and you specified
MDBG,YES in your EQAOPTS or
exported environment variable
EQA_USE_MDBG=YES.

Explanation
The .mdbg file containing the debugging tables cannot
be found. Some of the conditions that could cause this
are:

• the .mdbg file was deleted
• the .mdbg file was moved to a new location
• you do not have RACF authorization to access the file

Programmer response
Make sure the file is in the default location or use the
EQAUEDAT user exit, the EQAMDBG DD statement, or
export EQA_MDBG_PATH environment variable before
starting your debug session to indicate an alternate
location. If your debug session is already started, use
the SET DEFAULT MDBG or SET MDBG commands.

EQA2666E The .mdbg file for
compile_unit_name, cannot be
found. Use of the SET SOURCE
command to indicate the location
of the source file is not allowed at
this time.

Explanation
A .mdbg file containing the source, debugging tables,
or both is not available.

440 IBM z/OS Debugger: Reference and Messages

Programmer response
Make sure the .mdbg file for the program is available.
If you know the location of the .mdbg file, use the SET
DEFAULT MDBG or SET MDBG command to specify the
location of the file.

EQA2667E The location for the .mdbg file
File_Name, for load module or DLL
Load_Module_Name, could not be
validated.

Explanation
The .mdbg file containing the debug tables could not
be validated. Some of the possible conditions that
could cause this are:

• the .mdbg file was deleted
• the .mdbg file was moved to a new location
• you do not have RACF authorization to access the file
• the contents are not compatible with the load

module or DLL

Programmer response
Make sure the correct .mdbg file for the program is
available.

EQA2668W The .mdbg file for load module
or DLL Load_Module_Name, has
already been validated. You
cannot assign a new .mdbg file.

Explanation
The current .mdbg file for the load module or DLL is
correct.

Programmer response
None.

EQA2669E The MDBG setting in your
EQAOPTS or EQA_USE_MDBG is
NO. The command is not allowed.

Explanation
The MDBG setting in your EQAOPTS or
EQA_USE_MDBG is NO.

Programmer response
Modify the MDBG setting to YES or EQA_USE_MDBG to
YES.

EQA2670E The MDBG setting in your
EQAOPTS or EQA_USE_MDBG is
YES. The command is not allowed.

Explanation
The MDBG setting in your EQAOPTS or
EQA_USE_MDBG is YES

Programmer response
Modify the MDBG setting to NO or EQA_USE_MDBG to
NO.

EQA2671E The source for compile_unit, was
extracted from a .mdbg file and
cannot be changed.

Explanation
Your .mdbg file contains the captured source.

Programmer response
Rebuild your .mdbg file to make sure it uses the proper
source files.

EQA2672E The .mdbg file mdbg_file_name
for load module or DLL
load_module_name does not
match. The .mdbg file cannot be
used.

Explanation
Make sure you provide the location of the
correct .mdbg file.

Programmer response
Rebuild your .mdbg file or specify the proper location.

EQA2673E An .mdbg file was found but the
debug data does not match the
load module or DLL for program
cu_name

Explanation
Make sure you provide the location of the
correct .mdbg file.

Programmer response
Rebuild your .mdbg file or specify the proper location.

EQA2674E There are no .mdbg files to
display.

Chapter 9. z/OS Debugger messages 441

EQA2675E The .mdbg file associated
with Load_Module_Name is
mdbg_file_name

EQA2676I TRACE LOAD is already started.

Explanation
The TRACE LOAD command has been issued already.

EQA2677I TRACE LOAD is not active.

Explanation
The TRACE LOAD command has not been issued
previously.

EQA2678I The following were loaded:

EQA2679I Load Module Name loaded from
Load Library Name.

EQA2680E There are no LDD commands
established.

Explanation
A LIST LDD or CLEAR LDD command was issued but
there are no LDD commands established.

EQA2681E No LDD command was established
for LDD ldd-number.

Explanation
A CLEAR LDD command was issued but the number is
greater than the highest numbered LDD command.

EQA2682I LDD-command-entry

Explanation
A LIST LDD command output is being formatted for
display.

EQA2683I Debug information could not be
located for any CUs in load module
load module name.

Explanation
No debug information could be located for any CUs
in this load module. It appears that all CUs were
compiled using NOTEST.

Programmer response
To qualify to a CU in this module, the user
must either compile at least one CU with debug
information (e.g. TEST compiler option) or issue the

SET DISASSEMBLY ON command prior to the SET
QUALIFY LOAD command.

EQA2684E Prefix command not supported for
current CU.

Explanation
The CU was not compiled with the correct compile
option to support the M or the L prefix command.

Programmer response
User must compile with C/C++ Z/OS 2.1 or later using
the DEBUG(FORMAT(DWARF)) compile option.

EQA2685E Specified operand is not
supported for current
programming language.

Explanation
An operand is not supported for M and L prefix
commands in C/C++.

Prerequisite: The user must enter M or L prefix
command with no operand specified.

EQA3001I .

EQA3002I (|)

EQA3003I Licensed Materials - Property of
IBM

EQA3004I Copyright IBM Corp.| All Rights
Reserved

EQA3005I US Government Users Restricted
Rights - Use, duplication

EQA3006I or disclosure restricted by GSA
ADP Schedule Contract

EQA3007I with IBM Corporation.

EQA3009I ** Opened File List

EQA3010I |

EQA3011I ** End Opened File List

EQA3012I ** Job Search List

EQA3013I ** End Job Search List

EQA3014I ** Default Search List

EQA3015I ** End Default Search List

EQA3016I ** Referenced List

EQA3017I | | |

EQA3018I ** End Referenced List

EQA3019E Container name exceeds
maximum

442 IBM z/OS Debugger: Reference and Messages

EQA3020E File name exceeds maximum

EQA3021E Open failure on DD:JCLLIB,
specifies default concatenation
list

EQA3022E Number of containers exceeds
default concatenation limit

EQA3023E Container name read from file too
long

EQA3024E Number of containers on JCLLIB
exceeds limit

EQA3025E Attempt to nest source too deeply

EQA3026E Number of source files used
exceeds limit

EQA3027E File name for INCLUDE or external
PROC name is too long

EQA3028E INCLUDE file or cataloged PROC
not found: name

EQA3030E Container Name parameter is not
valid

EQA3031E File Name parameter is not valid

EQA3032E Open failure on DD:INFILE,
specifies JCL file

EQA3033E Comment continuation flag was
not followed by valid card

EQA3034E End of file after comment
continuation flag

EQA3038E DLM= delimiter not two characters

EQA3039E DLM= parameter on DD statement
< 2 chars.

EQA3040E DLM= contains & not followed by &

EQA3043E Illegal statement found in PROC
definition

EQA3046E Illegal statement within include
group

EQA3048E PEND without matching procedure
invocation

EQA3050E Memory allocation failure

EQA3054E Includes nested too deeply

EQA3058E Symbolic name too long

EQA3059E Multiple JOB cards

EQA3062E Too many parms

EQA3063E Parenthesis and apostrophe
nesting exceeded

EQA3065E If nesting exceeds limit

EQA3066E ENDIF without IF

EQA3067E Keyword parameter or SET
statement missing =

EQA3068E JCLLIB missing ORDER=

EQA3070E EXEC card has null first parameter

EQA3071E EXEC card PGM= has null value

EQA3072E DD concatenation without DD
statement

EQA3073E Missing JOB card

EQA3074E DD after JOB not JOBLIB or
JOBCAT or PROCLIB

EQA3075E Multiple JOBCAT statements

EQA3076E Multiple JOBLIB statements

EQA3078E Illegal statement in procedure

EQA3079E PROC nesting exceeded limit

EQA3080E Query empty context stack

EQA3081E PROC stack underflow

EQA3082I Statement: | | | |

EQA3083I Substitution: | | | |

EQA3084E Too many steps in job

EQA3086E StepName.DDName too long

EQA3087E Could not find step named on
override DD

EQA3088E Could not add DD; no PGM= steps
found

EQA3089I Added to Proc:| | | |

EQA3090I Override Proc:| | | |

EQA3091E Fatal Error: | | | |

EQA3092E Statement label is too long

EQA3093E Statement parameter text is too
long

EQA3095E Instream PROC has no name

EQA3096E Instream PROC PEND not found
before end of file

EQA3097I Input parameters:

EQA3098E Internal error

EQA3100W Could not substitute Db2 run unit
for SYSTSIN *

EQA3101W Could not open|

EQA3102W Could not find OUTPUT spec
named|

Chapter 9. z/OS Debugger messages 443

EQA3103W Could not open DD DDITV02 for
Db2/IMS

EQA3104W Could not read DD DDITV02

EQA3105W Could not substitute Db2 run unit
for DSNMVT01

EQA3108W Could not find IMS program name

EQA3109W Could not find IMS PSB name|

EQA3110E Internal error

EQA3111E Override not proceeded by named
DD stmt

EQA3112E Open failure on DD:ATTRBOUT,
specifies MA flat file

EQA3113E Open failure on DD:RDPRINT,
specifies logfile

EQA3119E Data set name is too long:|

EQA3120I 5724-T07: z/OS Debugger

EQA3130I Warning found in | | at line|

EQA3131I Warning found in | | at line|

EQA3140E Invalid input:|

EQA3141E Duplicate instream PROC name |
encountered

Explanation:
Since JES accepts duplicate in-stream PROC
statements, this message reports when these
duplicate statements are encountered.

System action:
Processing continues by matching the subsequent
EXEC PROC statement to the appropriate in-stream
PROC statement.

User response:
No action is required.

EQA3142E symbolic variable value is not set
at file| in line|

EQA4000E The length of CSECT CSectName
in memory is X'LMLength' which
does not match the length
of X'LangXLength' found in the
EQALANGX data

Explanation
The EQALANGX data does not correspond to the
CSECT in the loaded load module because the CSECT
length does not match.

Programmer response
Regenerate the EQALANGX data or ensure that the
matching object has been link-edited into the current
load module.

EQA4001E The object code at offset X'offset'
in CSECT CSectName in memory is
X'LMObject' which does not match
the instructions X'LangXObject'
found at that offset in the
EQALANGX data.

Explanation
The EQALANGX data does not correspond to the
CSECT in the loaded load module because the object
code at the specified offset does not match.

Programmer response
Regenerate the EQALANGX data or ensure that the
matching object has been link-edited into the current
load module.

EQA4002E The EQALANGX data for language
CSECT CSectName is for a different
programming language.

Explanation
The EQALANGX data does not correspond to the
CSECT in the loaded load module because CSECT
was coded in the specified programming language but
the EQALANGX data is for a different programming
language.

Programmer response
Regenerate the EQALANGX data or ensure that the
matching object has been link-edited into the current
load module.

EQA4003W The Debug File creation date
does not match the object for
CompileUnit, but further validation
showed that debug data in the file
can still be used.

Explanation
A Debug File containing the listing and the debugging
tables does not match the creation date of the object.

EQA4004I The setting of SET-command
keyword is query-status.

444 IBM z/OS Debugger: Reference and Messages

Explanation
The status of the object of a SET command is
displayed when QUERYed individually.

EQA4005I You cannot use the QUERY
QUALIFY command in remote
debug mode. However, the
Modules view displays a list of
currently loaded modules. You can
expand each node on the list to
view the compile unites in each
module.

Explanation
Use the Modules view to look at the load modules and
programs.

EQA4006I The current location is CU-
name:>Statement-id.

Explanation
Shows the place where the program was interrupted.

EQA4007I You are executing commands in
the Bkp-Id breakpoint.

Explanation
Shows the bearings in an interrupted program.

EQA4008I You are executing commands from
the run-time command-list.

Explanation
Shows the bearings in an interrupted program.

EQA4009I You were prompted because
promptCode ended.

Explanation
Shows the bearings in an interrupted program.

EQA4010I The program is currently entering
block Block-name.

Explanation
Shows the bearings in an interrupted program.

EQA4011I The program is currently exiting
block Block-name.

Explanation
Shows the bearings in an interrupted program.

EQA4012I The program is currently executing
prolog code for Block-name.

Explanation
Shows the bearings in an interrupted program.

EQA4013I You are executing commands
within a CeeCPliTest-name or
equivalent function.

Explanation
Shows the bearings in an interrupted program.

EQA4014E There was insufficient storage
to satisfy the request from
ModuleName for X'Length' bytes
of storage. z/OS Debugger might
abend or your results might be
unpredictable. Try increasing your
region size.

Explanation
This message is issued when there is not enough
storage available to satisfy the request.

Programmer response
Increase the storage limit (for example, the region
size).

EQA4015I Load module information could
not be retrieved for module
ModuleName because the loading
service (provider) that loaded the
module loaded it from a system
managed library (e.g. LPA). The
load module cannot be debugged.

Explanation
z/OS Debugger uses Binder APIs to retrieve necessary
information for the debugging of a load module. When
the load module is loaded from a system managed
library, the Binder APIs cannot retrieve this necessary
information. Hence, z/OS Debugger cannot debug the
module.

Programmer response
Contact your System Programmer and have them
place the module in a non-system managed library.

EQA4017I Load module ModuleName was
loaded from LLA. The load module
information was processed from a
data set found in file DDName.

Chapter 9. z/OS Debugger messages 445

Explanation
z/OS Debugger uses binder APIs to retrieve necessary
information for the debugging of a load module. When
the load module is loaded from a system managed
library the binder APIs cannot retrieve this necessary
information. In this case, a module by the same name
and with the same length was found in the data set(s)
allocated to the specified DDName. That module was
used by the binder APIs.

Programmer response
None.

EQA4018E Load module ModuleName was
loaded from LLA. A load module
by the same name was found in
a data set found in file DDName.
However, the lengths of the load
modules did not match.

Explanation
z/OS Debugger uses binder APIs to retrieve necessary
information for the debugging of a load module. When
the load module is loaded from a system managed
library the binder APIs cannot retrieve this necessary
information. In this case, a module by the same name
and but with a different length was found in the data
set(s) allocated to the specified DDName. Because the
lengths do not match, that module cannot be used
by the binder APIs and, therefore, the load module
cannot be debugged.

Programmer response
None.

EQA4019E When the binder APIs extracted
the debug information for load
module ModuleName the length of
the load module in memory did not
match the length extracted by the
binder APIs.

Explanation
z/OS Debugger uses binder APIs to retrieve necessary
information for the debugging of a load module. The
load module length returned by the binder APIs does
not match the length of the load module in memory.

Programmer response
None.

EQA4020E Load module information could
not be retrieved for module

ModuleName because the loading
service (provider) that loaded the
module loaded it from LLA and no
matching copy was found in either
EQALOAD or STEPLIB. The load
module cannot be debugged.

Explanation
z/OS Debugger uses binder APIs to retrieve necessary
information for the debugging of a load module. When
the load module is loaded from LLA, the binder
APIs cannot retrieve this necessary information. z/OS
Debugger then looks in file EQALOAD or STEPLIB to
attempt to find a load module with the same name and
length in order to obtain this information. No such copy
was found. Hence, z/OS Debugger cannot debug the
module.

Programmer response
Allocate either EQALOAD or STEPLIB to a data set
containing a copy of the specified program that
matches the copy in LLA or do an LLA refresh to ensure
that the system is using the latest copy.

EQA4021I The setting of ASSEMBLER
STEPOVER is now &&&&.

Explanation
This message is issued by the remote interface
in response to the SET ASSEMBLER STEPOVER
command.

Programmer response
None.

EQA4022I Console: File not suitable for I/O
interception.

Explanation
This message is issued by the remote interface in
response to SET INTERCEPT being turned on and for
COBOL DISPLAY UPON CONSOLE output.

Programmer response
None.

EQA4023I Console: I/O interception not
supported.

446 IBM z/OS Debugger: Reference and Messages

Explanation
This message is issued by the remote interface in
response to SET INTERCEPT being turned on and for
COBOL DISPLAY UPON CONSOLE output.

Programmer response
None.

EQA4024I Console: UponConsoleOP

Explanation
This message is issued by the remote interface in
response to SET INTERCEPT being turned on and for
COBOL DISPLAY UPON CONSOLE output.

Programmer response
None.

EQA4025I &&&& &&&& &&&& &&&&.

Explanation
This message contains the output from the DESCRIBE
LOADMODS command.

EQA4026E Load module loadmod_name could
not be found.

Explanation
The indicated load module was specified as an
operand of the DESCRIBE LOADMODS command but
is not an active load module.

EQA4027E The Debug File creation date does
not match the object for &&&&.
The Debug File cannot be used.

Explanation
A Debug File containing the listing and the debugging
tables does not match the creation date of the object,
and the data it contains is not valid.

EQA4028I Default User Preferences file
exists: &&&&

Explanation
The default user preferences file is opened
successfully.

EQA4029I Default User Commands file
exists: &&&&

Explanation
The default user commands file is opened
successfully.

EQA4030I Variable too large for automonitor.

Explanation
The variable is too large to view. Right-click and select
Evaluate large expression to display.

EQA4031E DYNDEBUG cannot be SET
OFF when running without the
Language Environment runtime.

Explanation
Dynamic Debug cannot be turned off when running
without the Language Environment runtime.

EQA4032I Its linkage is Pre-Language
Environment OS/Standard

Explanation
This compile unit uses OS/Standard linkage and was
generated by a pre-Language Environment compiler.

EQA4033I Its linkage is Language
Environment FastLink

Explanation
This compile unit uses Language Environment FastLink
linkage.

EQA4034I Its linkage is Language
Environment OS/Standard

Explanation
This compile unit uses Language Environment OS/
Standard Linkage.

EQA4035I Its linkage is OS/Standard

Explanation
This non-Language Environment compile unit uses OS/
Standard linkage.

EQA4036I Its linkage is Language
Environment XPLINK precision-
subtype

Explanation
This compile unit uses Language Environment 31 or
64-bit XPLink linkage. The -1, -2, etc. indicates the
type of Language Environment header found.

Chapter 9. z/OS Debugger messages 447

EQA4037I z/OS Debugger is starting debug
of Program in environment for user
userid.

Explanation
This message is issued during z/OS Debugger
initialization if requested by the EQAOPTS
STARTSTOPMSG command.

EQA4038I z/OS Debugger is ending debug of
Program in environment for user
userid.

Explanation
This message is issued during z/OS Debugger
termination if requested by the EQAOPTS
STARTSTOPMSG command.

EQA4039I IMS system ID: IMS_ID, Region ID:
IMS_RID, Transaction ID: tran_ID

Explanation
This message is issued during z/OS Debugger
initialization and termination if requested by the
EQAOPTS STARTSTOPMSG command.

EQA4040W The "Stop When Date Fields are
Accessed" breakpoint is set, but
only COBOL compile units support
these types of breakpoints.

Explanation
The "Stop When Date Fields are Accessed"
breakpoints are also known as DATE breakpoints,
which are supported only in COBOL compile units
compiled with the DATEPROC compiler option. The
application will not stop if a date field in any of the
following types of compile units is accessed:

• A COBOL compile unit compiled without the
DATEPROC compiler option.

• A compile unit that is not a COBOL compile unit.

Programmer response
If the application being debugged does not contain
a COBOL compile unit compiled with the DATEPROC
compiler option, remove this breakpoint.

EQA4041I The setting of LIST BY
SUBSCRIPT is on.

EQA4042I The setting of LIST BY
SUBSCRIPT is off.

EQA4043I The setting of LIST BY
SUBSCRIPT cannot be changed

while monitoring expressions.
Remove the monitored
expressions from Monitor and
Variables Views in order to
change the setting of LIST BY
SUBSCRIPT.

Explanation
z/OS Debugger is already monitoring expressions
and local variables using the current LIST BY
SUBSCRIPT settings. You cannot change the settings
at this point.

EQA4050E The expression or variable &&&&
is not valid, undefined, or not
correctly qualified.

Explanation
z/OS Debugger could not obtain an address for this
expression or variable. The expression or variable
might be out of scope or the syntax might not be valid.

Programmer response
Check that the expression or variable is typed in
correctly. Check that the variable or variables used
are within scope of the current compile unit. Check
that the expression or variables are supported in the
current programming language.

EQA4051E This command is only valid in a
CICS Environment

Explanation
The command is only valid in a CICS Environment.

Programmer response
None.

EQA4052I IGNORELINK mode is now active.

EQA4053I IGNORELINK mode is no longer
active.

EQA4054I The setting of DEFAULT DBG is:

Explanation
This message header is for QUERY DEFAULT DBG.

EQA4055I The setting of DEFAULT MDBG is:

Explanation
This message header is for QUERY DEFAULT MDBG.

448 IBM z/OS Debugger: Reference and Messages

EQA4056E You cannot change the location
of the source for this program
because the .mdbg file with the
debug information is not available
or the source is contained in
the .mdbg file.

Explanation
The source for this program might be part of the .mdbg
file.

EQA4057E The .mdbg file with the debug data
for program &&&& could not be
found.

Explanation
Make sure there is a .mdbg file available.

EQA4058E A .mdbg file was found, but
the debug data does not match
program &&&&.

Explanation
Make sure the proper .mdbg file is available.

EQA4059E The .dbg file with the debug data
for program &&&& could not be
found.

Explanation
Make sure there is a .dbg file available.

EQA4060E A .dbg file was found, but the
debug data does not match
program &&&&.

Explanation
Make sure the proper .dbg file is available.

EQA4061I The following errors were
detected processing the dynamic
EQAOPTS specifications.

Explanation
Errors were detected processing the dynamically
specified EQAOPTS commands. Each command
containing an error will be listed, followed by the
applicable error message.

EQA4062I &&&&

Explanation
An EqaOpts command.

EQA4063I The following EQAOPTS were
specified dynamically.

Explanation
The EQAOPTS specifications shown following this
message were specified dynamically.

EQA4064I The following EQAOPTS were
obtained from the EQAOPTS load
module.

Explanation
The EQAOPTS specifications shown following this
message were obtained from the EQAOPTS load
module.

EQA4065E A close-quote in operand &&&&
was not followed by a blank or a
comma.

Explanation
An close-quote indicates the end of an operand.
Therefore, it must be followed by a comma to indicate
that another operand is present or by a blank to
indicate that this is the last operand.

EQA4066E A continuation was not found.

Explanation
The last line contained a non-blank character in
column 72 indicating a continued statement but no
continuation line was found.

EQA4067E The last operand ended in a
comma but column 72 is blank.

Explanation
The last operand on the current line ended with a
comma but a non-blank was not present in column 72
to indicate a continuation.

EQA4068E The specified numeric value of
operand &&&& is not within the
expected range. It is either too
small or too large.

Explanation
The specified number is outside of the range allowed
for the indicated operand.

EQA4069E Not enough operands were
specified.

Chapter 9. z/OS Debugger messages 449

Explanation
Some of the operands required for this EQAOPTS
function were not specified.

EQA4070E Too many operand were specified.

Explanation
More operands were specified than are allowed for this
EQAOPTS function.

EQA4071E EQAXOPT opcode was not found.

Explanation
All EQAOPTS functions must contain the EQAXOPT
opcode.

EQA4072E A value is not allowed for operand
&&&&.

Explanation
The indicated operand keyword was followed by an '='
and an operand. However, this operand does not allow
the specification of a value.

EQA4073E No value was specified for
operand &&&&.

Explanation
The indicated operand requires a value to be specified
but none was found.

EQA4074E Internal error (invalid operand
type) in operand &&&&.

Explanation
An unexpected situation was encountered. Contact
z/OS Debugger support.

EQA4075E A non-decimal digit was found
in the numeric value for operand
&&&&.

Explanation
The indicated operand expects a numeric value.
However, a character other than a decimal digit was
found in the value.

EQA4076E The first operand is not a valid
EQAOPTS function.

Explanation
The first operand must be a valid EQAOPTS function
name.

EQA4077E EQAXOPT END is not the last
command.

Explanation
The 'EQAXOPT END' command must be the last
command entered.

EQA4078E Incorrect use of quotes in operand
&&&&.

Explanation
Quotes were incorrectly used in the indicated operand.
If you want to include a quote or an ampersand within
a quoted string, a pair of quotes or ampersands must
be specified.

EQA4079E Column 1 to 15 of a continuation
line are non-blank.

Explanation
Continuation lines must begin in column 16. Make sure
that you did not begin the continuation line before
column 15.

EQA4080E Operand &&&& is too long.

Explanation
The indicated operand is longer than the maximum
length allowed.

EQA4081E Internal error (more than one
value for a function) in operand
&&&&.

Explanation
An unexpected situation was encountered. Contact
z/OS Debugger support.

EQA4082E Unmatched parenthesis were
found in operand &&&&.

Explanation
A left parenthesis was found without a corresponding
right parenthesis or vice-versa.

EQA4083E An asterisk was specified in
operand &&&& but is not allowed
in that operand.

Explanation
An asterisk was detected in an operand that does not
allow an asterisk to be specified.

450 IBM z/OS Debugger: Reference and Messages

EQA4084E An unrecognized keyword was
specified in operand &&&&.

Explanation
An unrecognized keyword was specified for the
indicated operand.

EQA4085E Return code &&&& and reason
code &&&& were encounted
while obtaining the dynamic
EQAOPTS specifications. The
dynamic EQAOPTS were not
processed.

Explanation
The return code value indicates the function being
processed as follows: 1 = Allocating memory, 2 =
Obtaining data set attributes, 3 = Opening data set,
4 = Reading data set, and 5 = Closing data set.
The specified reason code indicates the specific error
encountered by this function.

EQA4086E This EQAXOPT command must
be entered in the EQAOPTS load
module.

Explanation
The indicated command cannot be specified
dynamically.

EQA4087E The EQAOPTS data set, 'DSName',
cannot be opened or cannot be
read.

Explanation
An error occurred trying to OPEN or READ the
EQAOPTS data set.

EQA4088W An ATTACH has been detected
which uses the GSPV parameter
to give ownership of subpool
SPNumber to the new task. Use
the NONLESP option to direct
z/OS Debugger to use a different
subpool.

Explanation
z/OS Debugger uses the indicated subpool to allocate
its data areas and control blocks. The ATTACH GSPV
parameter gives the ownership of the subpool to the
new task, and the entire subpool is freed when the
new task is completed. This causes unpredictable
behavior in z/OS Debugger, including abends.

Programmer response
If you need to use z/OS Debugger in this process after
the subtask is completed, use the NONLESP runtime
parameter to instruct z/OS Debugger to use a different
subpool for its storage.

EQA4089E The COBOL program CUName is
link-edited with an unsupported
level of the CSECT CEEBETBL.

Explanation
A COBOL program compiled with Version 5 or higher is
link-edited with an old copy of CEEBETBL.

Programmer response
Link-edit the load module with a current version of
CEEBETBL from the Language Environment SCEELKED
library.

EQA4090E The COBOL program CUName is
compiled with COBOL Version 5 or
higher and the debug data in the
load module does not match the
currently executing program.

Explanation
There is a mismatch between the currently executing
COBOL program and the debug data in the load
module. This can occur for a COBOL program compiled
with COBOL V5 with the TEST compiler option or for
a COBOL program compiled with COBOL V6 or higher
with the TEST(NOSEPARATE) compiler option.

Programmer response
If you are on CICS, do a CEMT SET PROGRAM(xxxx)
NEWCOPY before you run the program. For more
information, see the "CEMT SET PROGRAM" topic in
the CICS documentation and the "Running NEWCOPY
on programs by using DTNP transaction" topic in IBM
z/OS Debugger User's Guide.

EQA4091W The version of the z/OS
Debugger SVC installed on
the system does not support
STEP processing for GO
programs. The installed version
is installed_version. The required
version is required_version. STEP
will be disabled for this debug
session.

Chapter 9. z/OS Debugger messages 451

Explanation
Version 20 or higher of the z/OS Debugger SVC must
be active to allow STEP processing for GO programs.

Programmer response
Contact your systems programmer to ensure the
correct SVC version is activated.

EQA4092E The COBOL program CUName is in
a load module linkedited with the
binder PAGE statement.

Explanation
The debug information for the COBOL program
cannot be located in the load module because the
load module was link-edited with the binder PAGE
statement. The problem can occur for a COBOL
program compiled with COBOL V5 with the TEST
compiler option or for a COBOL program compiled with
COBOL V6 or higher with the TEST(NOSEPARATE)
compiler option.

Programmer response
Link-edit the load module without the binder PAGE
statement or compile the program with the compiler
option TEST(SEPERATE).

EQA4093E A valid DBRM file for CUName is
not found.

Explanation
A valid DBRM file for the compile unit is not found.

Programmer response
Specify the name of the data set that contains the
DBRM file in either the EQA_DBG_DBRM environment
variable or the EQADBRM DD name.

EQA4094I

Explanation
This compile unit was optimized by ABO.

After this COBOL program was compiled, the module
was optimized by Automatic Binary Optimizer for z/OS.

For programs complied with Enterprise COBOL for
z/OS Version 5 or later, you can debug them as the
programs that are not optimized by ABO.

For programs complied with Enterprise COBOL for
z/OS Version 4 or earlier, you can use the LangX
COBOL support in z/OS Debugger to debug (with
restrictions) a load module or program object

generated by the ABO. For more information, see
"Debugging a program processed by the Automatic
Binary Optimizer for z/OS" in IBM z/OS Debugger
User's Guide.

EQA4700E A parse error was detected
by the z/OS XML System
Services parser: Return
Code=rc, Reason Code=X'reason',
Offset=X'buffoffset'. See the XML
System Services User's Guide and
Reference for a description of this
error.

Explanation
The z/OS XML System Services parser returned the
indicate return code and reason code. See the z/OS
XML System Services documentation for a complete
description of the associated error. This message
may be accompanied by message EQA4701I and/or
EQA4702I and EQA4703I.

EQA4701I error_description

Explanation
This message may be issued following message
EQA4700E. It contains a short description of the error
associated with the Return Code and Reason Code
included in that message.

EQA4702I Context=|context|

Explanation
This message may be issued following message
EQA4700E and will be followed by message
EQA4703I. It contains a few characters of the XML
source surrounding the point at which the error was
detected by the XML parser.

EQA4703I |cursor|

Explanation
This message follows message EQA4702I and uses
an asterisk to indicate the column in that message at
which the error was detected by the XML parser.

EQA4704I XML(EBCDICorASCII) assumed.

Explanation
The XML keyword was specified without the EBCDIC
or ASCII suboperand. In this case, all characters with
a value less than X'80', except for X'40', are assumed
to be ASCII characters. All characters with a value
greater than or equal to X'80' are assumed to be
EBCDIC characters. If the specified area contains

452 IBM z/OS Debugger: Reference and Messages

more ASCII characters than EBCDIC characters, ASCII
is defaulted. Otherwise, EBCDIC is defaulted.

Programmer response
If the correct encoding was not defaulted, specify the
EBCDIC or ASCII keyword suboperand of the XML
keyword.

EQA4705E z/OS XML System Services are not
installed. The command cannot be
processed.

Explanation
z/OS Debugger XML processing requires the z/OS XML
System Services that are only available when running
z/OS V1R8 or later or on z/OS V1R7 with the proper
APAR installed. The command cannot be processed.

EQA4836E You can not step back into a
parent enclave when PLAYBACK
BACKWARD is in effect.

Explanation
PLAYBACK BACKWARD into parent enclave is not
allowed for programs compiled with Enterprise COBOL
for z/OS Version 5.

EQA4837I The following LABELS are known
in CU_Name.

Explanation
This message is for informational purposes only.

EQA4838I There are no LABELS in the current
program CU_Name.

Explanation
There are no LABELS in the current program.

EQA4839E This command is not supported for
program CU_Name.

Explanation
Programming language that the program is written in is
not supported.

EQA4840W The GLOBAL LABEL breakpoint is
already established.

Explanation
The AT GLOBAL LABEL breakpoint is already
established.

EQA4841W The GLOBAL LABEL breakpoint has
not been established.

Explanation
The AT GLOBAL LABEL breakpoint is not established.

EQA4842I The GLOBAL LABEL breakpoint is
established.

Explanation
The AT GLOBAL LABEL breakpoint is active.

EQA4843E IDISNAP could not be loaded.
Verify Fault Analyzer is available.

Explanation
IDISNAP is a part of the product IBM Fault Analyzer.

EQA4844I IBM Fault Analyzer History File
Created.

Explanation
An IBM Fault Analyzer History File is created.

EQA4845I Program was stopped due to a
LABEL breakpoint.

Explanation
The program was stopped due to a label breakpoint.

EQA4846I The following label breakpoints
exist for program ProgramName.

Explanation
Label breakpoints exist in the program.

EQA4847I LabelName

Explanation
Label breakpoint.

EQA4848W A Label breakpoint does not exist
for label LabelName.

Explanation
A Label breakpoint does not exist for this label.

EQA4849E The label variable is not in scope
or does not exist in current
compilation unit.

Chapter 9. z/OS Debugger messages 453

Explanation
The label variable is not in scope or does not exist in
current compilation unit.

EQA4850W Label breakpoints are not
established.

Explanation
Label breakpoints are not defined LabelName.

EQA4851I A Label breakpoint already exists
for label LabelName.

Explanation
A Label breakpoint already exists for this label.

EQA9870E IMS with ID imsid is inactive or not
set up for transaction isolation.

Explanation
A program was called to generate resource definitions
for the IMS Transaction Isolation facility. However, the
program could not find an active IMS control region
with ID imsid configured for transaction isolation.

Programmer response
Verify that step 4 in "Scenario F: Enabling the
Transaction Isolation Facility" in the IBM z/OS
Debugger Customization Guide has been completed
with the IMS control region configured for transaction
isolation running, and that the correct IMS ID is
provided to the program.

EQA9871E IBM z/OS Debugger - No product
registration that supports running
with Rational Integration Tester
was found.
The enclave will be terminated.

Explanation
Running the debugger with Rational Integration
Tester is supported only when an enabled product
registration for one of the following products is found:

• Application Delivery Foundation for z/OS
• IBM Developer for z/OS Enterprise Edition
• IBM Debug for z/OS

However, none was found.

User response
Ask the installer to check the product registration.
If z/OS Debugger is not licensed for any of these

products, do not run the debugger with Rational
Integration Tester.

Programmer response
If IBM z/OS Debugger is licensed to run on this
machine as Application Delivery Foundation for z/OS,
IBM Developer for z/OS Enterprise Edition, or IBM
Debug for z/OS, register and enable the product
registration.

For more information about how to register, see IBM
z/OS Debugger Customization Guide.

If z/OS Debugger is not licensed for one of these
products, do not run the debugger with Rational
Integration Tester.

EQA9872E CSL message ID: message-id

Explanation
IMS Transaction Isolation Facility received an error
response to a type-2 IMS command. The message
identifier message-id is associated with the error. See
message EQA9873E for the corresponding message
text.

System action
None.

User response
Consult the IMS Messages and Codes, Volume 2: Non-
DFS Messages book for a description of the error
message.

EQA9873E CSL message text: message-text

Explanation
IMS Transaction Isolation Facility received an error
response to a type-2 IMS command. The message
text message-text is associated with the error. See
message EQA9872E for the corresponding message
identifier.

System action
None.

User response
See User Response in message EQA9872E.

EQA9874E Debug Tool compatibility mode
does not support source level
debug of 64-bit PL/I programs.

454 IBM z/OS Debugger: Reference and Messages

Processing will continue as if the
PL/I program had no debug data.

Explanation
The debugger does not support debugging PL/I
programs that are compiled for 64-bit (AMODE(64)) in
Debug Tool compatibility mode.

System action
Processing will continue as if the PL/I program had no
debug data.

Programmer response
Use standard mode to debug 64-bit PL/I programs.
Specify DBM% or DIRECT& in the TEST runtime option.

EQA9875E z/OS Debugger does not support
line, batch, or full-screen mode
for 64-bit COBOL, PL/I, and C/C++
programs.
Processing will continue as if a
QUIT DEBUG command had been
entered.

Explanation
The debugger does not support debugging COBOL,
PL/I, or C/C++ programs that are compiled for 64-
bit (AMODE(64)) in line, batch, or full-screen (3270)
mode.

System action
Processing will continue as if a QUIT DEBUG command
had been entered.

Programmer response
Use remote debug mode to debug this type of
program. Specify DBMDT% or TCPIP& in the TEST
runtime option to debug 64-bit COBOL and C/C++
programs in Debug Tool compatibility mode, or DBM%
or DIRECT& to debug 64-bit PL/I and C/C++ programs
in standard mode.

EQA9876W The saved Binder Info should be in
short form. However, a long form
was detected.

Explanation:
IBM z/OS Debugger detected a wrong form when
processing information from the z/OS Binder. z/OS
Debugger might not be able to provide correct
module information. For example, the CU length from
DESCRIBE CUS might not be accurate.

Programmer response:

If the problem persists, contact IBM Software Support.

EQA9878E IBM z/OS Debugger - No product
registration that supports an
EQA_STARTUP_KEY value of DCC
was found.
The enclave will be terminated.

Explanation
The EQA_STARTUP_KEY environment variable with a
value of DCC is supported only when an enabled
product registration for one of the following products
is found:

• Application Delivery Foundation for z/OS
• IBM Developer for z/OS Enterprise Edition
• IBM Debug for z/OS
• IBM Developer for z/OS

User response:
Ask the installer to check the product registration. If
z/OS Debugger is licensed for IBM Wazi Developer
for Red Hat CodeReady Workspaces or IBM Z and
Cloud Modernization Stack, do not run with an
EQA_STARTUP_KEY value of DCC.

Programmer response
If IBM z/OS Debugger is licensed to run on this
machine as Application Delivery Foundation for z/OS,
IBM Developer for z/OS Enterprise Edition, IBM Debug
for z/OS or IBM Developer for z/OS, register and
enable the product registration.

For more information about how to register, see IBM
z/OS Debugger Customization Guide.

If z/OS Debugger is not licensed for any of these
products, do not use an EQA_STARTUP_KEY value of
DCC.

EQA9879E IBM z/OS Debugger - No product
registration that supports full-
screen mode was found.
The enclave will be terminated.

Explanation
To use full-screen mode on a 3270, z/OS Debugger
must find an enabled product registration for one of
the following products:

• Application Delivery Foundation for z/OS
• IBM Developer for z/OS Enterprise Edition
• IBM Debug for z/OS

However, none was found.

User response:
Ask the installer to check the product registration. Do
not use full-screen mode on a 3270 if z/OS Debugger

Chapter 9. z/OS Debugger messages 455

is not licensed for Application Delivery Foundation for
z/OS, IBM Developer for z/OS Enterprise Edition or
IBM Debug for z/OS.

Programmer response
If IBM z/OS Debugger is licensed to run on this
machine as Application Delivery Foundation for z/OS,
IBM Developer for z/OS Enterprise Edition or IBM
Debug for z/OS, register and enable the product
registration.

For more information about how to register, see IBM
z/OS Debugger Customization Guide.

If z/OS Debugger is not licensed for one of these
products, full-screen mode on a 3270 in not available.

EQA9880E IBM z/OS Debugger - No product
registration that supports an
EQA_STARTUP_KEY value of LD
was found.
The enclave will be terminated.

Explanation
The EQA_STARTUP_KEY environment variable with a
value of LD is supported only when an enabled product
registration for one of the following products is found:

• Application Delivery Foundation for z/OS
• IBM Developer for z/OS Enterprise Edition
• IBM Debug for z/OS
• IBM Developer for z/OS

However, none was found.

User response:
Ask the installer to check the product registration. If
z/OS Debugger is licensed for IBM Wazi Developer
for Red Hat CodeReady Workspaces or IBM Z and
Cloud Modernization Stack, do not run with an
EQA_STARTUP_KEY value of LD.

Programmer response
If IBM z/OS Debugger is licensed to run on this
machine as Application Delivery Foundation for z/OS,
IBM Developer for z/OS Enterprise Edition, IBM Debug
for z/OS, IBM Developer for z/OS, register and enable
the product registration.

For more information about how to register, see IBM
z/OS Debugger Customization Guide.

If z/OS Debugger is not licensed for one of these
products, do not run with an EQA_STARTUP_KEY value
of LD.

EQA9882S DEREGISTER transaction_name
IMSId * is not supported. Use
DEREGISTER ALL IMSId * instead.

Explanation
DEREGISTER transaction_name IMSId * is not a
supported syntax for batch EQANIPSB. The command
is ignored.

Programmer response:
Use DEREGISTER ALL IMSId * instead.

EQA9884E DTCN Cache is corrupted

Explanation
A z/OS Debugger control block has been corrupted.

Programmer response:
z/OS Debugger will attempt to recover the control
block. If the problem persists, investigate any
application storage violations. If the problem still
persists after all application storage violations have
been resolved, contact IBM Software Support.

EQA9885I EQA10XSC terminating - abend
code

Explanation
The debugger is terminating via abend code abend
code.

Programmer response
No action is required.

EQA9886E IBM z/OS Debugger - the
workstation could not be reached
to check license. The enclave will
be terminated.

Explanation
z/OS Debugger called IFAEDREG to check for an
enabled product registration for Application Delivery
Foundation for z/OS, IBM Developer for z/OS
Enterprise Edition, or IBM Debug for z/OS. No enabled
product registration was found. The TEST parm
specified that remote debug mode was to be used,
so the debugger attempted to reach the workstation
to determine whether it was licensed (typically as
IBM Developer for z/OS, IBM Wazi Developer for Red
Hat CodeReady Workspaces, or IBM Z and Cloud
Modernization Stack). However, the debugger could
not reach the workstation.

Programmer response:
Correct the communications problem with reaching
the workstation.

EQA9887E IBM z/OS Debugger - workstation
failed the license check. The
enclave will be terminated.

456 IBM z/OS Debugger: Reference and Messages

Explanation
z/OS Debugger called IFAEDREG to check for an
enabled product registration for Application Delivery
Foundation for z/OS, IBM Developer for z/OS
Enterprise Edition, or IBM Debug for z/OS. No enabled
product registration was found. The TEST parm
specified that remote debug mode was to be used, so
the debugger asked the workstation whether it was
licensed (typically as IBM Developer for z/OS, IBM
Wazi Developer for Red Hat CodeReady Workspaces,
or IBM Z and Cloud Modernization Stack). Either the
workstation code was not licensed or was too old to
respond with license information (older than Rational
Developer for System z® 9.5.1).

Programmer response:
License the workstation or use a newer workstation
code that can respond with license information.

EQA9888I EQANCDBG can not continue.
User: CICS_Userid is not
authorised to issue EXEC CICS
INQUIRE.

Explanation
User CICS_Userid is not authorized to issue EXEC CICS
INQUIRE.

Programmer response:
Authorize User CICS_Userid to be able to issue EXEC
CICS INQUIRE.

EQA9889I z/OS Debugger unable to initialize.

Explanation
z/OS Debugger was not able to load the operating
system services module.

Programmer response:
Review your installation to ensure that the z/OS
Debugger SEQAMOD library is in the search path for
the current task.

EQA9890E EQA00OHT Invalid type address

Explanation
Standard mode is being used. An invalid type address
was selected.

Programmer response:
If the problem persists, contact IBM Software Support.

EQA9891S Installed SVC version is not
sufficient to support this function.
Aborting EQANIPSB.

Explanation
During initialization, z/OS Debugger detected a
downlevel z/OS Debugger SVC version. The IMS
Transaction Isolation Facility is disabled.

Programmer response:
Have your installer install the correct z/OS Debugger
SVCs.

EQA9892S Installed SVC version is not
sufficient to support this function.
Aborting EQANBSWT.

Explanation
During initialization, z/OS Debugger detected a
downlevel z/OS Debugger SVC version. The IMS
Transaction Isolation Facility is disabled.

Programmer response:
Have your installer install the correct z/OS Debugger
SVCs.

EQA9893I Userid MVS_UserId received an
IOERR response when trying
to access resource datasetname.
Possible NOTAUTH condition.

Explanation
z/OS Debugger received an IOERR response from CICS
while trying to access a data set.

Programmer response:
Investigate the cause of the IOERR response.

EQA9894S EXTNAME string HAS AN INVALID
LENGTH length

Explanation
The EXTNAME tag in the code coverage Options data
set has a string value that is longer than 8 characters.

Programmer response:
Correct the value of the EXTNAME tag so that it has 8
or less characters.

EQA9895I Unsupported option specified

Explanation
An unsupported option was specified in the parm
string for EQAYSESM, the Terminal Interface Manager
started task. For a list of the options for EQAYSESM,
see the "Enabling debugging in full-screen mode using
the Terminal Interface Manager" in the IBM z/OS
Debugger Customization Guide.

Programmer response:
Correct or remove the unsupported option.

Chapter 9. z/OS Debugger messages 457

EQA9896I Z/OS DEBUGGER TIM USERS
USER ID FLAGS TERMINAL
JOBNAME

Explanation
This is header of a list of Terminal Interface Manager
users shown on the z/OS console.

Programmer response
No action is required.

EQA9897I EQADCDEL: DTCN profile owned
by terminal terminal action

Explanation
The Profile Clean Up mechanism of DTCN has
processed a profile.

Programmer response
No action is required.

EQA9898E nonLECAA 0 and LE CAA 0
ABENDING

Explanation
z/OS Debugger is unable to locate vital control blocks.

Programmer response:
Save the system dump that is produced, and send it to
IBM Software Support.

EQA9899E nonLECAA 0 and LE CAA 0
ABENDING

Explanation
z/OS Debugger is unable to locate vital control blocks.

Programmer response:
Save the system dump that is produced, and send it to
IBM Software Support.

EQA9900S EQADBFIL Could not allocate
'xxxxxxxx' X bytes of storage.
Process terminated.

Explanation
EQADBFIL was processing a SYSDEBUG file and could
not get enough storage to complete.

Response
Specify a larger region size.

EQA9901E Data set 'dsname' member not
specfied; process is aborted.

Explanation
EQAOPTS command CCPROGSELECTDSN specified a
PDS or PDSE, but no member name was specified.

Response
Specify a member name.

EQA9902E Data set 'dsname' does not exist;
process is aborted.

Explanation
z/OS Debugger detected an allocation error for the
specified data set. If no data set is specified in the
message, it was not entered in EQAOPTS command
CCPROGSELECTDSN.

Response
Check the spelling of the specified data set or specify
it by EQAOPTS command CCPROGSELECTDSN.

EQA9903E Data set 'dsname' contains invalid
data; process is aborted.

Explanation
z/OS Debugger detected invalid XML data in the
specified data set.

Response
Correct the XML error in the specified data set and
resubmit the job.

EQA9904E Error reading code coverage data
set 'dsname'; process is aborted.

Explanation
z/OS Debugger encountered a read error in the
specified data set.

Response
Correct the data set and resubmit the job.

EQA9905I Data set 'dsname' contains an
unsupported XML tag.

Explanation
z/OS Debugger encountered an unsupported XML tag
in the specified data set.

458 IBM z/OS Debugger: Reference and Messages

Response
Processing continues. Correct the tag and resubmit the
job if this is unexpected.

EQA9906I Data set 'dsname' is held by
another process; waiting for it to
be available.

Explanation
z/OS Debugger can not allocate the specified data set
as MOD, because it is in use by another process.

Response
z/OS Debugger waits for the specified data set to
become available. Cancel the job if the waiting is not
desired.

EQA9907S Cannot open XML output data set
'dsname'; process is aborted.

Explanation
z/OS Debugger encountered an error while attempting
to open the specified data set.

Response
Verify that the data set exists and that it is spelled
correctly in the EQAOPTS command CCOUTPUTDSN
and resubmit the job.

EQA9908S Partitioned data set specified
for the XML output; process is
aborted.

Explanation
A partitioned data set was specified for the z/OS
Debugger output XML data set. This is not supported.

Response
Specify a sequential data set for the z/OS Debugger
XML output and resubmit the job.

EQA9909I XML output data set 'dsname' is
not cataloged; will create new
data set with default attributes.

Explanation
The specified output data set cannot be found. The
data set is created using the default attributes.

Response
Specify the EQAOPTS command CCOUTPUTDSNALLOC
if you want to control the allocation of the XML output
data set.

EQA9910I DTST User Userid has changed
storage at address, address from
oldvalue to newvalue.

Explanation
A CICS user has used the DTST transaction to change
storage.

Response
None.

EQA9911W VTAM session terminated due to
inactivity. Elapsed time between
user inputs exceeded hh:mm:ss:tt.

Explanation
A z/OS Debugger session using full-screen mode
on a dedicated terminal or full-screen mode using
Terminal Interface Manager has been idle for longer
than the elapsed time specified in the EQAXOPT
SESSIONTIMEOUT command. The time out parameter
from the EQAXOPT SESSIONTIMEOUT command is
presented in the message, in the form hh:mm:ss:tt,
where hh is the number of hours, mm is the
number of minutes, ss is the number of seconds,
and tt is the number of hundredths of seconds. This
message will be followed by message EQA9931W
if the QUITDEBUG option of SESSIONTIMEOUT was
selected; it will be followed by a CEE2F1 Language
Environment condition if the QUIT option was chosen.

EQA9912W VTAM% specified and user is
already in a z/OS Debugger
session.

Explanation
The TEST parameter specifies that a full-screen
mode using Terminal Interface Manager session
is to be started, but the specified user is
already in a debugging session using the Terminal
Interface Manager. This message will be followed
by EQA9931W, which indicates that z/OS Debugger
will quit processing events and the application will
continue to run, as though QUIT DEBUG had been
specified.

EQA9913E EQADTCN2 invalid recordsize.
All regions which share the
EQADTCN2 queue must be at the
same version of DT.

Chapter 9. z/OS Debugger messages 459

Explanation
The DTCN TS-Queue Repository EQADTCN2 has items
which have an incorrect record size for this version of
z/OS Debugger. This could be because you are sharing
the repository among regions which are using different
versions of z/OS Debugger.

Response
Ensure that all regions which share the EQADTCN2
repository are using the same version of z/OS
Debugger.

EQA9914I SAVE of invalid MONITOR command
suppressed.

Explanation
An invalid MONITOR command was detected during
SAVE or RESTORE of MONITORS. The invalid command
is ignored.

EQA9914I RESTORE of invalid MONITOR
command suppressed.

Explanation
An invalid MONITOR command was detected during
SAVE or RESTORE of MONITORS. The invalid command
is ignored.

EQA9915E EQADPFMB invalid recordsize.
File must be rebuilt. See
SEQASAMP(EQAWCRVS).

Explanation
The DTCN VSAM Repository data set EQADPFMB
has an incorrect record size for this version of z/OS
Debugger. This could be because it was created for an
older version of z/OS Debugger than the one that is in
use.

Response
Allocate and use a new EQADPFMB data set using the
JCL in member EQAWCRVS of the SEQASAMP data set
for the version of z/OS Debugger that is in use. Also
consider using the JCL in member EQADPCNV of the
SEQASAMP data set to convert EQADPFMB profiles
from previous versions of z/OS Debugger to the new
format.

EQA9916I RPL error closing session RPL
error codes :rpl-error-codes: RPL
sense codes :rpl-sense-codes: RPL
request :rpl-request

Explanation
z/OS Debugger has attempted to close an existing
Terminal Interface Manager debug session, but has
encountered a SNA RPL error. This message is
informational, but may be necessary to diagnose
ongoing issues with the z/OS Debugger VTAM
interface.

rpl-errror-codes is formatted as rcfbr0rf, where rc is
the RPL error code, fb is the RPL feedback code,
r0 is the register 0 value returned from the RPL
macroinstruction, and rf is the register 15 value
returned by the RPL macroinstruction. All values are
hexadecimal.

rpl-sense-codes is the hexadecimal value of the
RplErrFdBk2 field, which contains the sense codes
returned by the RPL macroinstruction.

rpl-request is the name of the RPL macroinstruction
that caused the error.

EQA9918U Unexpected LangX COBOL code
sequence detected at <hex-
address>. Abend.

Explanation
An unexpected situation was encountered. Contact
z/OS Debugger support.

EQA9919W Last lock owner: <owner_token>,
New lock owner: <owner_token> .

Explanation
z/OS Debugger has detected a problem when trying
to secure a lock on its hook table. z/OS Debugger has
recovered from this problem. This message is reported
in case it is needed for diagnostic purposes.

Programmer response
This message can be ignored unless it is issued as part
of another z/OS Debugger problem.

EQA9920E EQA00OHT: Bad control block

Explanation
z/OS Debugger has found that one of its control blocks
has been corrupted.

Programmer response
If the application that is being debugged has
caused a storage violation which might have
corrupted z/OS Debugger storage, then investigate
that storage violation. If the message is not related
to an application problem, set a SLIP trap with

460 IBM z/OS Debugger: Reference and Messages

ACTION=SVCD and MSGID=EQA9920E to capture an
SVC dump and send the resulting SDUMP to IBM for
analysis.

EQA9921U SCREEN SIZE IS TOO LARGE.
ROWS x COLUMNS MUST BE <
10923.

Explanation
When CICS or a VTAM terminal is used, the maximum
screen size (number of rows times the number of
columns) must be less than 10923. For example,
68x160 is acceptable but 69x160 is invalid.

EQA9922I loud-processing-message

Explanation
The LOUD parameter was used in one of
these EQAOPTS commands: COMMANDSDSN,
LOGDSN, LOGDSNALLOC, PREFERENCESDSN,
SAVEBPDSNALLOC and SAVESETDSNALLOC. This is
an informational message that indicates various
processing or error conditions.

Programmer response
Correct any errors noted in the message (if any).

EQA9923E BPXWDYN not loaded. Return
Code = rc

Explanation
The BPXWDYN load module could not be loaded.
This module is needed for the following EQAOPTS
commands; LOGDSNALLOC, SAVEBPDSNALLOC and
SAVESETDSNALLOC

Programmer response
1. Have your system support person verify that the

BPXWDYN module is available (in the search path).
2. Check the z/OS Debugger web site for any

applicable service updates your system might
require.

3. If the problem persists, report the error message
text to your IBM representative.

EQA9924U The current user, userid, does not
have RACF access to use z/OS
Debugger.

Explanation
The current user has RACF access of NONE to
the currently active RACF facility. Under CICS, the
facility EQADTOOL.BROWSE.CICS is used. In other

environments, the facility EQADTOOL.BROWSE.MVS is
used. When z/OS Debugger is not able to determine
the user ID, UNKNOWN is displayed.

Programmer response
Ask the administrator of the RACF facility in effect to
grant READ access or higher to this user ID.

For more information, check console message
ICH408I.

EQA9926I *** Allocate attempted from
OPEN exit.

Explanation
z/OS Debugger attempted to allocate a file while the
user program was processing in a OPEN exit. MVS does
not allow this. This message should be followed by
another message explaining the action taken by z/OS
Debugger.

Programmer response
Refer to the following message and take the
appropriate action.

EQA9927I ***Did ESPIE with CeeCaaXHCL
on

Explanation
This message is an internal diagnostic message and
should not be seen unless you are using special
processes as instructed by z/OS Debugger support.

Programmer response
Report this message to z/OS Debugger support.

EQA9928W ***No ESPIE with CeeCaaXHCL on

Explanation
z/OS Debugger was entered for an SVC or overlay
hook after Language Environment routines had set the
CeeCAAXHCL flag but z/OS Debugger was not able to
establish and ESPIE.

Programmer response
If this message is followed by unexpected z/OS
Debugger behavior, report the message to z/OS
Debugger support.

EQA9929E z/OS Debugger failed Product
Registration. IFAEDREG RC =
00000004. The enclave will be
terminated.

Chapter 9. z/OS Debugger messages 461

Explanation
z/OS Debugger called IFAEDREG to check for an
enabled product registration for z/OS Debugger.
IFAEDREG indicated that the check did not succeed.

Programmer response
If z/OS Debugger is licensed to run on this machine
as Application Delivery Foundation for z/OS, IBM
Developer for z/OS Enterprise Edition, or IBM Debug
for z/OS, the system programmer should register and
enable the product registration per the IBM z/OS
Debugger Customization Guide.

EQA9930W EQA50DSP did not find a matching
shift-in character so one was
inserted.

Explanation
z/OS Debugger found a DBCS shift-out control
character in the screen buffer, but was unable to find
a corresponding shift-in control character. A shift-in
control character has been inserted. Debugging results
may be unpredictable now.

Programmer response
Make sure there is a matching shift-in control
character for each shift-out control character.

EQA9931W Requested user interface not
available. Processing will continue
as if a QUIT DEBUG command had
been entered.

Explanation
The requested user interface is not available so
z/OS Debugger will quit processing events and the
application will continue to run. (Note that any
calls to restart z/OS Debugger are ignored.) This
behavior was specified in the EQAOPTS customization
module via the EQAXOPT macro invocation option
NODISPLAY,QUITDEBUG.

Programmer response
Make sure the user interface specified as a suboption
in the TEST runtime option is correct and available.
However, if you do not want the processing of a
QUIT DEBUG command when this situation is detected
then change the EQAXOPT macro invocation option to
NODISPLAY,DEFAULT in your EQAOPTS customization
module.

EQA9932S Association does not exist for
VTAM% specification

Explanation
The user name specified on the VTAM% option has not
been associated to a terminal using the z/OS Debugger
Terminal Interface Manager.

Programmer response
Use the z/OS Debugger Terminal Interface Manager to
associate the user name with a terminal and rerun the
application.

EQA9933W CEE3MBR failed for load-module.
FC=xxxxxxxx

Explanation
The Language Environment routine CEE3MBR failed
and returned the indicated feedback code.

Programmer response
Determine the cause of the error using the indicated
feedback code.

EQA9934W z/OS Debugger EQA00CIC:
Error loading Program. See
**.SEQASAMP(EQACCDS)

Explanation
z/OS Debugger Program EQA00CIC in load module
EQA00OSX was unable to load the specified program.

Programmer response
Ensure that the group (EQA) that contains the z/OS
Debugger run time routines is in the group list used
during CICS start-up. If required, rerun the EQACCSD
job and restart the CICS region. Check the z/OS
Debugger website for any applicable updates your
system might require. If the problem persists, contact
z/OS Debugger support.

EQA9935E XXXXXXXX

Explanation
z/OS Debugger has experienced a problem, and is
reporting diagnostic information (usually return codes
given to z/OS Debugger by a subsystem.)

Programmer response
Check the log for further diagnostic messages. If there
is no obvious cause for the problem, contact IBM
Support.

EQA9936I EQA00CIC Bad response from
EXEC CICS cmd.

462 IBM z/OS Debugger: Reference and Messages

Explanation
z/OS Debugger has issued an EXEC CICS command
and has received an unexpected response.

Programmer response
Check the log for further diagnostic messages. If there
is no obvious cause for the problem, contact IBM
Support.

EQA9937W XPCFTCH MEA conflict-
XXXXXXXX: YYYYYYYYY

Explanation
z/OS Debugger is reporting that another CICS
XPCFTCH global user exit has set a modified entry
address (MEA) and prevented z/OS Debugger from
any possible debugging of a specific non-Language
Environment program. XXXXXXXXX can be either :
'Prior MEA' or 'Program' or 'Transid' and YYYYYYYYY
is the data associated with each. Note this message
is only issued once when this occurs the first time
after the z/OS Debugger CICS exits are activated.
Subsequent conflicts are not written to the CICS JES
log.

Programmer response
Multiple XPCFTCH exits running in the same CICS
region which can each set the MEA and return to
CICS is usually not recommended. For z/OS Debugger,
you will be unable to debug any non-Language
Environment programs when the MEA was changed by
another XPCFTCH exit. The behavior of z/OS Debugger
in this kind of scenario will likely be unpredictable.

EQA9938E Error in deactivate of NewProg
exits.

Explanation
z/OS Debugger detected an error in attempting to
deactivate the NewProg supporting exits.

Programmer response
An error has likely occurred during z/OS Debugger
CICS region initialization. Ensure that z/OS Debugger
is properly installed in the CICS region. Also verify that
the z/OS Debugger hlq.SEQAMOD data set is in the
region DFHRPL DD and the CICS resource definitions
from hlq.SEQASAMP(EQACCSD) have been added.

EQA9939I IBM z/OS Debugger NewProg
support deactivated.

Explanation
z/OS Debugger is reporting that NewProg support is
now disabled in the current CICS region after a DTCP
transaction was issued with the 'F' parameter. This
support is to allow multi-region CICS configurations
(for example, TOR/AOR), where DTCN is used, to work
properly when DTCN is executed in one region (TOR)
and tasks to be debugged are routed to an alternate
region (AOR). This is only required in the regions where
DTCN does not run.

EQA9940I IBM z/OS Debugger NonLE exits
enabled.

Explanation
z/OS Debugger is reporting that the non-Language
Environment-supporting CICS exits are now enabled
in the current CICS region. This was accomplished
by using PLTPI program EQA0CPLT and starting with
INITPARM=(EQA0CPLT='NLE').

EQA9941I IBM z/OS Debugger NewProg
support activated.

Explanation
z/OS Debugger is reporting that NewProg support
is now enabled in the current CICS region. This
support is to allow multi-region CICS configurations
(for example, TOR/AOR), where DTCN is used, to work
properly when DTCN is executed in one region (TOR)
and tasks to be debugged might be routed to an
alternate region (AOR). This is only required in the
regions where DTCN does not execute.

EQA9942I IBM z/OS Debugger Screen stack
exits enabled.

Explanation
z/OS Debugger is reporting that its single-terminal
mode screen stacking exits are now enabled.
This is to support installations where starting
CICS exits is restricted by an external security
manager (for example, RACF) and prevents z/OS
Debugger from starting the exits when it starts a
debug session for a user. This was accomplished
using PLTPI program EQA0CPLT and starting with
INITPARM=(EQA0CPLT='STK').

EQA9943E Error in activate of NonLE exits.

Explanation
z/OS Debugger detected an error while attempting
to activate the non-Language Environment supporting
exits.

Chapter 9. z/OS Debugger messages 463

Programmer response
The error most likely occurred during z/OS Debugger
CICS region initialization. Verify that the z/OS
Debugger hlq.SEQAMOD data set is the in the region
DFHRPL and the CICS resource definitions from
hlq.SEQASAMP(EQACCSD) have been added.

EQA9944E Error in activate of NewProg exits.

Explanation
z/OS Debugger detected an error in attempting to
activate the NewProg supporting exits.

Programmer response
An error has likely occurred during z/OS Debugger
CICS region initialization. Ensure that Language
Environment is properly installed in the CICS region.
Also verify that the z/OS Debugger hlq.SEQAMOD
data set is in the region DFHRPL DD and the CICS
resource definitions from hlq.SEQASAMP(EQACCSD)
have been added.

EQA9945S z/OS Debugger DTRCB
Unavailable.

Explanation
The z/OS Debugger non-Language Environment CICS
global user exits were made active in a CICS region
where z/OS Debugger did not successfully initialize
during CICS region startup.

Programmer response
Ensure that Language Environment is installed
in the CICS region and verify that the z/OS
Debugger installation steps were executed properly.
For example, the z/OS Debugger hlq.SEQAMOD
data set is in the DFHRPL DD and that the
hlq.SEQASAMP(EQACCSD) job was run to add z/OS
Debugger resource definitions to the CICS region.

EQA9946S EQA01SVC TCBSVCA2 invalid - xxx
where xxx=start, stop, term, strtX,
stopX

Explanation
Internal z/OS Debugger SVC Screening error or z/OS
Debugger SVC (109 extended code 51) issued outside
z/OS Debugger. The SVC will abend.

Programmer response
If using z/OS Debugger contact your IBM
representative.

EQA9947S EQA01SVC EQASVCSCREEN N/T
create

Explanation
Internal z/OS Debugger SVC Screening error or z/OS
Debugger SVC (109 extended code 51) issued outside
z/OS Debugger. The SVC will abend.

Programmer response
If using z/OS Debugger contact your IBM
representative.

EQA9948S EQA01SVC No DTRCB at
InitScreen

Explanation
Internal z/OS Debugger SVC Screening error or z/OS
Debugger SVC (109 extended code 51) issued outside
z/OS Debugger. The SVC will abend.

Programmer response
If using z/OS Debugger contact your IBM
representative.

EQA9949S or
EQA9949I

TCB SVC Screening already active
and NOOVERRIDE is specified by
EQAOPTS.

Explanation
SVC Screening is in use by another product and
SVC Screening CONFLICT=NOOVERRIDE is specified
by EQAOPTS. Handling of non-Language Environment
events is not available. Debugging of non-Language
Environment programs will be restricted in this z/OS
Debugger session.

System action
The z/OS Debugger was invoked with
an EQAOPTS options module that specified
CONFLICT=NOOVERRIDE. z/OS Debugger will not
intercept non-Language Environment events and,
therefore debugging of no-Language Environment
programs will be limited.

Programmer response
If you do not need to debug non-Language
Environment programs or to intercept non-Language
Environment events, no action is required. Otherwise,
you must terminate the prior use of SVC SCREENING
(TCBSVCS, TCBSVCSP, TCBSVCA2) before starting
z/OS Debugger or have your installer provide
an EQAOPTS that specified CONFLICT=OVERRIDE.

464 IBM z/OS Debugger: Reference and Messages

CONFLICT=OVERRIDE allow z/OS Debugger to save
and restore the previous use of SVC SCREENING
(TCBSVCS, TCBSVCSP, TCBSVCA2).

EQA9950E Error enabling XEIIN screen exit.

Explanation
z/OS Debugger detected an error during the ENABLE of
a required CICS exit program.

Programmer response
Determine if the z/OS Debugger hlq.SEQAMOD library
is available in the DFHRPL concatenation of the
CICS region and the resource definitions provided in
hlq.SEQASAMP(EQACCSD) have been added to the
CICS region that is initializing.

EQA9951E Error enabling XEIOUT screen exit.

Explanation
z/OS Debugger detected an error during the ENABLE of
a required CICS exit program.

Programmer response
Determine if the z/OS Debugger hlq.SEQAMOD library
is available in the DFHRPL concatenation of the
CICS region and the resource definitions provided in
hlq.SEQASAMP(EQACCSD) have been added to the
CICS region that is initializing.

EQA9952E Error in locate of z/OS Debugger
RCB.

Explanation
z/OS Debugger CICS PLT program EQA0CPLT detected
an error during the search for z/OS Debugger region-
level resources.

Programmer response
An error has likely occurred during z/OS Debugger
CICS region initialization. Ensure that Language
Environment is properly installed in the CICS region.
Also, verify that the z/OS Debugger hlq.SEQAMOD
data set is in the region DFHRPL DD and the CICS
resource definitions from hlq.SEQASAMP(EQACCSD)
have been added.

EQA9953E NOTAUTH Error issuing CICS
EXTRACT EXIT.

Explanation
z/OS Debugger detected a NOTAUTH condition during
an EXTRACT EXIT call to CICS.

Programmer response
Determine if the current z/OS Debugger user has
external security-manager (RACF) access to the
EXITPROGRAM CICS CLASS. This includes the ability
to issue the EXEC CICS EXTRACT/ENABLE/DISABLE
EXIT commands. If this is not permitted, then use of
z/OS Debugger PLT initialization routine, EQA0CPLT,
is recommended. Refer to the IBM z/OS Debugger
Customization Guide for information on EQA0CPLT.

EQA9954E Invalid EXIT ENABLE request.

Explanation
z/OS Debugger CICS PLT program EQA0CPLT detected
an error during the ENABLE of a required CICS exit
program.

Programmer response
An INVREQ response was received during a call to
CICS to ENABLE the z/OS Debugger screen-stack exits.
Contact IBM Support Center and report the error.

EQA9955E User not authorized for EXIT
ENABLE.

Explanation
z/OS Debugger CICS PLT program EQA0CPLT detected
an error during the ENABLE of a required CICS exit
program.

Programmer response
Determine if the CICS region user id has external
security-manager (RACF) access to the EXITPROGRAM
CICS CLASS. This includes the ability to issue the EXEC
CICS EXTRACT/ENABLE/DISABLE EXIT commands.

EQA9956E Invalid program name on EXIT
ENABLE.

Explanation
z/OS Debugger CICS PLT program EQA0CPLT detected
an error during the ENABLE of a required CICS exit
program.

Programmer response
Determine if the z/OS Debugger hlq.SEQAMOD library
is available in the DFHRPL concatenation of the
CICS region and the resource definitions provided in
hlq.SEQASAMP(EQACCSD) have been added to the
CICS region that is initializing.

EQA9957E Invalid CICS release. Latest CICS
used.

Chapter 9. z/OS Debugger messages 465

Explanation
z/OS Debugger detected an unsupported release of
CICS and defaults to the latest release of CICS that
this version of z/OS Debugger supports.

Programmer response
Determine if z/OS Debugger is starting on a supported
release of CICS. See the Program Directory for IBM
z/OS Debugger for the list of CICS releases that are
supported.

EQA9958I IBM z/OS Debugger CICS PLT init
start.

Explanation
z/OS Debugger program EQA0CPLT is starting.
This program activates various z/OS Debugger
resources during CICS region startup. This
includes starting up z/OS Debugger support
for running in CICS multi-region configurations
(INITPARM=(EQA0CPLT='NWP')) and starting z/OS
Debugger screen stack exits once at region
initialization (INITPARM=(EQA0CPLT='STK')) and
starting z/OS Debugger non-Language Environment-
supporting exits (INITPARM=(EQA0CPLT='NLE')).
Combinations of these selections are also supported.
For example:

INITPARM=(EQA0CPLT='NWP,STK,NLE')

EQA9959I IBM z/OS Debugger CICS PLT init
end.

Explanation
z/OS Debugger program EQA0CPLT is ending.
This program activates various z/OS Debugger
resources during CICS region startup. This
includes starting up z/OS Debugger support
for running in CICS multi-region configurations
(INITPARM=(EQA0CPLT='NWP')) and starting z/OS
Debugger screen stack exits once at region
initialization (INITPARM=(EQA0CPLT='STK')) and
starting z/OS Debugger non-Language Environment-
supporting exits (INITPARM=(EQA0CPLT='NLE')).

EQA9960I Program abend: Abcode Prog:
Abprogram Ret@: XXXXXXXX

Explanation
z/OS Debugger has detected abend Abcode while
processing program Abprogram under CICS. Ret@ is
the address of the location where the abend was
issued.

Programmer response
This message occurs when the non-Language
Environment z/OS Debugger CICS exits are active and
an abend has occurred in the application currently
being debugged. It is trapped as a result of the
TRAP(ON) runtime option. The default behavior for the
STEP or GO command at this time is for z/OS Debugger
to display the abend and allow the task to terminate or
allow any active CICS HANDLE abend routines to run
or, if applicable, allow any Language Environment user
handlers or signal catchers to run. Use the TRAP(OFF)
runtime option if you do not want z/OS Debugger to
capture abends. This message is written to the CICS
region's JES message log.

EQA9961I Program interrupt: Intcd Prog:
Abprogram Int@: XXXXXXXX

Explanation
z/OS Debugger has detected program check interrupt
code Intcd while processing program Abprogram
under CICS. Int@ is the address of the location where
the program check occurred.

Programmer response
This message occurs when the non-Language
Environment z/OS Debugger CICS exits are active
and a program check has occurred in the application
currently being debugged. It is trapped as a result of
the TRAP(ON) runtime option. The default behavior
for the STEP or GO command at this time is for z/OS
Debugger to display the abend and allow the task
to terminate or allow any active CICS HANDLE abend
routines to run or, if applicable, allow any Language
Environment user handlers or signal catchers to run.
Use the TRAP(OFF) runtime option if you do not want
z/OS Debugger to capture program checks. This
message is written to the CICS region's JES message
log.

EQA9962I IBM z/OS Debugger Exit Activation
PLT start.

Explanation
z/OS Debugger program EQANCPLT is starting. This
program activates the z/OS Debugger non-Language
Environment CICS global exits which must be
executed as either a stage 2 or 3 PLT post initialization
program.

EQA9963I IBM z/OS Debugger Exit Activation
PLT end.

466 IBM z/OS Debugger: Reference and Messages

Explanation
z/OS Debugger program EQANCPLT is ending. This
program activates the z/OS Debugger non-Language
Environment CICS global exits which must be
executed as either a stage 2 or 3 PLT post initialization
program.

EQA9964E Create EQADTA name/token error.
RC: RC

Explanation
z/OS Debugger is unable to initialize for a non-
Language Environment assembler program under
CICS.

Programmer response
Contact IBM support center and report the error.
If this message occurs repeatedly, disable the non-
Language Environment CICS exits using transaction
DTCX (DTCXXF) or by removing the EQANCPLT from
the CICS PLT.

EQA9965E CEEDBGEVNTEXT Error. RC: RC

Explanation
z/OS Debugger is unable to initialize for a non-
Language Environment assembler program under
CICS.

Programmer response
Contact IBM support center and report the error.
If this message occurs repeatedly, disable the non-
Language Environment CICS exits using transaction
DTCX (DTCXXF) or by removing the EQANCPLT from
the CICS PLT.

EQA9966E Back-level z/OS Debugger SVC
detected. V5R1 or later SVCs
required for Non-LE support.

Explanation
z/OS Debugger is unable to initialize for a non-
Language Environment assembler program under CICS
due to back-level z/OS Debugger SVCs.

Programmer response
Verify that the latest version of the z/OS
Debugger SVCs are installed. The level of the
SVCs can be checked by running the exec in
hlq.SEQAEXEC(EQADTSVC).

EQA9967I EQA00SVC Level:Eqa00svcVersion
EQA01SVC Level:Eqa01svcVersion

Explanation
z/OS Debugger is unable to initialize for a non-
Language Environment assembler program under CICS
due to back-level z/OS Debugger SVCs. This message
occurs with message EQA9966E and indicates the
detected levels of the two z/OS Debugger SVCs.

Programmer response
Verify that the latest version of the z/OS
Debugger SVCs are installed. The level of the
SVCs can be checked by running the exec
in hlq.SEQAEXEC(EQADTSVC). For non-Language
Environment support, EQA00SVC must be at least 04
and EQA01SVC at least 05.

EQA9968E Invalid Exit Type ...

Explanation
z/OS Debugger CICS exit activation transaction DTCX
is unable to determine a valid exit type to start or stop.

Programmer response
Verify that DTCX is issued with an exit type of X=all
exits or F=XPCFTCH exit or E=E=XEIIN or A=XPCTA
or H=XPCHAIR. Note there is no blank space between
DTCX and this parameter (for example: DTCXXO = turn
all exits ON and DTCXXF = turn all exits OFF).

EQA9969E Select O=On or F=Off

Explanation
z/OS Debugger CICS exit activation transaction DTCX
or Newprog activation transaction DTCP is unable to
determine a valid action to take, O=ON or F=OFF.

Programmer response
Re-enter the transaction with an O or F parameter
where O=On and F=Off.

EQA9970I CICS exit activation successful.

Explanation
z/OS Debugger CICS global user exits activated
successfully.

EQA9971I CICS exit deactivation successful.

Explanation
z/OS Debugger CICS global user exits deactivated
successfully.

Chapter 9. z/OS Debugger messages 467

EQA9972I z/OS Debugger glueexitname CICS
exit now ON.

Explanation
z/OS Debugger CICS exit activation transaction DTCX
successfully started the glueexitname exit where
glueexitname is either XPCFTCH, XEIIN, XEIOUT,
XPCTA, or XPCHAIR.

EQA9973I z/OS Debugger glueexitname CICS
exit now OFF.

Explanation
z/OS Debugger CICS exit activation transaction DTCX
successfully stopped the glueexitname exit where
glueexitname is either XPCFTCH, XEIIN, XEIOUT,
XPCTA, or XPCHAIR.

EQA9974E Error enabling glueexitname -
dtexitname.

Explanation
z/OS Debugger CICS exit activation transaction DTCX
was unable to activate glueexitname - dtexitname
where glueexitname is either XPCFTCH, XEIIN,
XEIOUT, XPCTA, or XPCHAIR and dtexitname is either
EQANCFTC, EQANCXEI, EQANCXAB, or EQANCXHA.

Programmer response
Verify that the latest hlq.SEQASAMP(EQACCSD)
CICS resource definitions are installed and the z/OS
Debugger hlq.SEQAMOD library is in the CICS DFHRPL
DD concatenation. If this has already been done,
contact IBM support center and report the error.

EQA9975E Error disabling glueexitname -
dtexitname.

Explanation
z/OS Debugger CICS exit activation transaction DTCX
was unable to deactivate glueexitname - dtexitname
where glueexitname is either XPCFTCH, XEIIN,
XEIOUT, XPCTA, or XPCHAIR and dtexitname is either
EQANCFTC, EQANCXEI, EQANCXAB, or EQANCXHA.

Programmer response
Verify that the latest hlq.SEQASAMP(EQACCSD)
CICS resource definitions are installed and the z/OS
Debugger hlq.SEQAMOD library is in the CICS DFHRPL
DD concatenation. If this has already been done,
contact IBM support center and report the error.

EQA9976I z/OS Debugger glueexitname exit
already active.

Explanation
The requested CICS global user exit for non-Language
Environment assembler support was already active.
glueexitname is either XPCFTCH, XEIIN, XEIOUT,
XPCTA, or XPCHAIR.

EQA9977E dtsvcname is backlevel. Exits not
enabled.

Explanation
z/OS Debugger is unable to activate the non-Language
Environment CICS global exits due to back-level z/OS
Debugger SVCs. dtsvcname is either EQA00SVC or
EQA01SVC.

Programmer response
Verify that the latest version of the z/OS
Debugger SVCs are installed. The level of the
SVCs can be checked by running the exec
in hlq.SEQAEXEC(EQADTSVC). For non-Language
Environment support, EQA00SVC must be at least 04
and EQA01SVC at least 05.

EQA9978I Unable to set hook because
debug data cannot be located for
program_name

Explanation
z/OS Debugger is unable to set a hook and stop in this
program because the separate debug file cannot be
located. This program was specified using a DTCN or
CADP profile.

Programmer response
Verify that the debug data file exists and make its
location known to z/OS Debugger by using the SET
DEFAULT LISTINGS or SET SOURCE command, the
EQAUEDAT user exit or the EQADEBUG DD name.

EQA9979I Unable to load user program
UserProgram

Explanation
EQANMDBG was unable to load the user program
specified as the first positional parameter.

468 IBM z/OS Debugger: Reference and Messages

Programmer response
Ensure that the specified program name is spelled
correctly and that the program is available in the
standard search path for load modules.

EQA9980E error_description

Explanation
error_description is replaced with the following text:

• z/OS Debugger unrecoverable CICS task error.
• CICS abend code is aaaa
• z/OS Debugger session ending.

(where aaaa is the CICS abend code.)

Programmer response
Look up the CICS abend code in the CICS Messages
and Codes manual and take the appropriate action to
resolve the CICS abend

EQA9981I EQAx0STO Internal Error
WTO_Num

Explanation
The internal z/OS Debugger storage allocation chains
have been corrupted. Other forms of this message
might also appear with additional information about
the error.

Programmer response
Ensure that your program is not overwriting z/OS
Debugger storage. Check the z/OS Debugger web
site for any applicable service updates your system
might require. If the problem persists, contact z/OS
Debugger support.

EQA9982E A non-zero response code
was returned from EXEC CICS
"command". Resp value =
EIBRESP

Explanation
z/OS Debugger has issued an EXEC CICS command,
and has received an unexpected response.

Programmer response
Review the command and response to determine if
CICS configuration needs to be changed. If there is
no obvious cause for the error condition, contact IBM
Support.

EQA9983I Invalid keyword value: value

Explanation
An invalid value was specified for the indicated
runtime parameter.

Programmer response
Correct the specified value.

EQA9984I No user program name was
specified.

Explanation
EQANMDBG was invoked without a positional
parameter specifying the name of the program to be
debugged.

Programmer response
Specify an initial positional parameter indicating the
name of the program to be debugged.

EQA9985I Dynamic Debug is required for
non-LE z/OS Debugger.

Explanation
The non-Language Environment version of z/OS
Debugger (EQANMDBG) was invoked but the z/OS
Debugger SVCs required for dynamic debug support
have not been installed.

Programmer response
Have your system programmer complete the
installation of the required z/OS Debugger SVCs.

EQA9986E Error in CEEEV006 loading OSI

Explanation
One of the required z/OS Debugger load modules is
missing.

Programmer response
Contact your system programmer to verify the proper
installation of z/OS Debugger.

EQA9987I First parameter to load_module is
not addressable. z/OS Debugger
might not be able to debug this
module.

Explanation
A non-Language Environment program issued a
LINK SVC for the specified load module. However,
an invalid address was specified for the first

Chapter 9. z/OS Debugger messages 469

positional parameter that is used to specify
Language Environment runtime parameters and user
parameters. This parameter must be valid, so that
z/OS Debugger can add the TEST parameter.

Programmer response
Correct the parameter address passed to the LINK
SVC.

EQA9988S z/OS Debugger has terminated the
enclave.

Explanation
A z/OS Debugger QUIT command was issued in a
multi-enclave environment.

Programmer response
No action is necessary.

EQA9989I EQANMDBG requires z/OS
Debugger V5R1 or later SVC.

Explanation
The z/OS Debugger V5R1 (or later) non-Language
Environment program was invoked but the installed
version of the z/OS Debugger SVCs were from a earlier
version of z/OS Debugger.

Programmer response
Have your system programmer install the current z/OS
Debugger SVCs.

EQA9990I LOAD detect.

Programmer response
This is an internal z/OS Debugger message. No user
response is required.

EQA9991E Error loading load_module

Explanation
An error was encountered loading the specified load
module.

Programmer response
Retry the z/OS Debugger session. Check the z/OS
Debugger website for any applicable service updates
your system might require. If the problem persists,
contact z/OS Debugger support.

EQA9992E Internal error processing
Language Environment service
FunctionCode

Explanation
An internal z/OS Debugger error has occurred.

Programmer response
Check the z/OS Debugger web site for any applicable
service updates your system might require. If the
problem persists, contact z/OS Debugger support.

EQA9993I EQA00OHT: Failed to set hook in
R/O storage

Explanation
The Dynamic Debug facility was unable to successfully
use the Authorized Debug facility to place a hook into
an application that has been loaded into protected
(read only) storage.

System action
If the application has been compiled with hooks (for
example, with TEST(ALL)) then you will be able to
debug this application. If the application has been
compiled with TEST(NONE,..) then you will not be
able to STEP or set breakpoints.

Programmer response
Ensure that both the Dynamic Debug facility and
Authorized Debug facility have been activated.
Ensure that you have the access through your
security system to resource EQADTOOL.AUTHDEBUG in
CLASS(FACILITY).

EQA9994E No storage for z/OS Debugger RCB

Explanation
There is insufficient storage for z/OS Debugger to
initialize.

Programmer response
Increase the region size available to the program and
rerun.

EQA9995E REQUIRED TEXT

Explanation
All EQA9995E messages signify that a severe error
has occurred in the z/OS Debugger SVC routine while
processing an 0A91 instruction.

470 IBM z/OS Debugger: Reference and Messages

Programmer response
1. Make sure none of the applications you are

debugging issue the reserved 0A91 (SVC 145)
instruction.

2. If you have non-IBM products installed on your
system, make sure none of them issue the reserved
0A91 (SVC 145) instruction.

3. Try running the Dynamic Debug facility IVP
(Installation Verification Program). This program
can be found in member EQAWIVPS of data set
hlq.SEQASAMP.

4. Have your system support person re-install the
z/OS Debugger SVCs using member EQAWISVC of
data set hlq.SEQASAMP and then run the IVP (see
step 3). If the IVP runs normally, have your support
person add hlq.SEQALPA to your system LPA list.
This ensures that the z/OS Debugger SVCs are
available after the next IPL.

5. Check the z/OS Debugger web site for any
applicable service updates your system might
require.

6. If the problem persists, report the error message
text, return code, and reason code to your IBM
representative.

EQA9996E ERROR DESCRIPTION

Explanation
A severe error has occurred in the z/OS Debugger
SVC routine EQA01SVC. EQA01SVC is SVC 109 with
extended function code 51.

Programmer response
Check the z/OS Debugger web site for any applicable
service updates your system might require. If the
problem persists, report the error message text, return
code, and reason code to your IBM representative.

EQA9997E ERROR DESCRIPTION

Explanation
The ASMADOP module could not be loaded.
Debugging via a Disassembly View cannot be
supported.

Programmer response
1. Have your system support person verify that the

ASMADOP module is available (in the search path).

2. Check the z/OS Debugger web site for any
applicable service updates your system might
require.

3. If the problem persists, report the error message
text to your IBM representative.

EQA9998I z/OS Debugger DTCN profile
skipped.

Explanation
The z/OS Debugger profile has been skipped because
a more qualified profile has been found or an older,
equally qualified, profile has been found.

Programmer response
Additional EQA9998I messages will follow. See
the details of these additional messages for the
appropriate response.

EQA9999E ERROR DESCRIPTION

Explanation
Severe Internal Error in z/OS Debugger Module
Please contact your IBM Representative
Failure address - xxxxxxxx
Program Check at module+offset

Programmer response
See details of message issued for appropriate
response or indication of potential problem. Check the
z/OS Debugger web site for any applicable service
updates your system might require. If the problem
persists, contact z/OS Debugger support.

EQA9999W ERROR DESCRIPTION

Explanation
Warning Message issued by z/OS Debugger Module

Programmer response
See details of message issued for appropriate
response or indication of potential problem. Check
the z/OS Debugger web site for any applicable service
updates your system might require.

Chapter 9. z/OS Debugger messages 471

472 IBM z/OS Debugger: Reference and Messages

Chapter 10. Debug Manager messages

All messages shown in this section are in mixed case English. The uppercase English message text is the
same, but is in uppercase letters.

Each message has a number of the form EQACM nnnx, where CM indicates that the message is a Debug
Manager message, nnn is the number of the message, and x indicates the severity level of each message.
The variable x can be any of the following values:

I
An informational message calls attention to some aspect of a command response that might assist
the programmer.

W
A warning message calls attention to a situation that might not be what is expected or to a situation
that z/OS Debugger attempted to fix.

E
An error message describes an error that Debug Manager detected or cannot fix.

S
A severe error message describes an error that indicates a command referring to bad data, control
blocks, program structure, or something similar.

U
An unrecoverable error message describes an error that prevents Debug Manager from continuing.

Symbols in messages

Many of the Debug Manager messages contain information that is inserted by the system when the
message is issued. In this publication, such inserted information is indicated by italicized symbols, as in
the following:

EQACM001I Debug Manager startup complete (external_port/internal_port),
build date: date, time,trace level: trace_level

EQACM001I Debug Manager startup complete
(external_port/internal_port), build
date:date, time, trace
level:trace_level

Explanation
All the components were successfully loaded. The
information of the external/internal ports used, build
date, and trace level is displayed.

System action
None.

User response
No action is required.

EQACM010E Debug Manager must be APF
authorized.

Explanation
The Debug Manager executable does not reside in an
APF-authorized library.

System action
Debug Manager exits.

User response
Ask the system administrator to mark the Debug
Manager library as APF-authorized.

EQACM011E Debug Manager invoked with
invalid parameters

Explanation
Debug Manager was started. However, the parameters
that invoked Debug Manager contain an invalid port
number or SVC number. The range for port number is 1
- 65535, and the range for SVC number is 200 - 255.

© Copyright IBM Corp. 1992, 2024 473

The SVC number is needed only in versions earlier than
V14.0.

System action
Debug Manager exits.

User response
Update JCL with valid parameters.

EQACM0012E A secured z/OS Debugger
connection to the Debug Manager
on IP address:external_port could
not be established. Refer to the
IBM z/OS Debugger Customization
Guide to ensure that the Remote
System Explorer (RSE) and the
Debug Manager host components
are configured correctly.

Explanation
An attempt was made to establish a secured
connection to the Debug Manager on IP
address:external_port. However, the connection
cannot be established because RSE and Debug
Manager host components are not configured in the
same security mode.

System action
A secured connection cannot be established.

User response
Ensure that RSE and Debug Manager are configured
in the same security mode. By default, the host
certificates used by the secured RSE connections will
be re-used by the secured z/OS Debugger connection.
If the RSE and Debug Manager ports are configured
to use different certificates or signing authorities, use
the z/OS Debugger Preference page to override the
keystore and certificates used by z/OS Debugger. Ask
the System z system programmer for the keystore file.

EQACM0018E The debug session cannot
be established because Debug
Manager is in secure mode but
RSE is in unsecured mode.

Explanation
The debug session is not established.

System action
The debug session cannot be established.

User response
Connect to a secured RSE port or change Debug
Manager to unsecured mode to start a debug session.

EQACM0019W A secured z/OS Debugger
connection cannot be established.
Do you want to try in unsecured
mode?

Explanation
The debug session cannot be established because
Debug Manager is in secured mode but RSE is in
unsecured mode.

System action
The debug session is not established.

User response
Click Yes to establish the debug session in unsecure
mode. Click No to stop the current handshake.

EQACM100E Invalid command entered

Explanation
The command entered is not supported.

System action
None.

User response
Enter a valid command and try again. For more
information about the Debug Manager commands, see
IBM z/OS Debugger Customization Guide.

EQACM101I TRACE command processed
normally

Explanation
The trace level was updated successfully with the
TRACE command.

System action
None.

User response
No action is required.

EQACM102E TRACE command has invalid
option

474 IBM z/OS Debugger: Reference and Messages

Explanation
A TRACE command was issued to update the trace
level. However, the trace level was not updated
successfully because the trace level entered is invalid,
or the command format is not supported.

System action
The trace level is not updated.

User response
Follow the correct command format, and enter a valid
trace level. The valid trace levels are E, I, D, and V.

EQACM103I There are no active users.

Explanation
No users are connected to RSE.

System action
None.

User response
No action is required.

EQACM104I Listing active users

Explanation
The users that are connected to RSE are displayed.

System action
None.

User response
No action is required.

EQACM105I Incompatible RSE and DBM

Explanation
In Debug Tool compatibility mode, both RSE and DBM
must be at version 1.1.1. Otherwise, the debug session
cannot be established.

System action
The debug session is not established.

User response
To start a debug session in Debug Tool compatibility
mode, ensure that both RSE and DBM are at V1.1.1.

EQACM112I Invalid SVC number svc_number
(valid values are 200 to 255)

Explanation
Debug Manager was started. However, it was invoked
by parameters that contain an invalid SVC value. The
valid values for SVC are 200 - 255. You can ignore this
message if you are using V14.0, or later.

System action
Processing stops.

User response
Update the SVC number in JCL with a valid value.

EQACM114I SVC svc_number replaced (version,
time).

Explanation
SVC was replaced with a newer version. SVC will be
reverted to the original version on exit. You can ignore
this message if you are using V14.0, or later.

System action
None.

User response
No action is required.

EQACM115I SVC svc_number installed (version,
time).

Explanation
SVC was successfully installed. You can ignore this
message if you are using V14.0, or later.

System action
None.

User response
No action is required.

EQACM116I Current SVC svc_number is
version, time.

Explanation
The number and version of the current SVC is
displayed. You can ignore this message if you are using
V14.0, or later.

Chapter 10. Debug Manager messages 475

System action
None.

User response
No action is required.

EQACM117E Internal error - cannot update SVC

Explanation
SVC cannot be updated because of an internal error.
This message applies only to versions earlier than
V14.0.

System action
SVC is not updated.

User response
Ask the system administrator to reinstall SVC, and
restart Debug Manager. IPL the system if necessary.

EQACM120I SVC code restored to the original
version

Explanation
SVC was reverted to the system installed version on
exit.

System action
None.

User response
No action is required.

EQACM130E Failed to create communications
token

Explanation
Debug Manager cannot create a name and token pair.

System action
Debug Manager exits.

User response
Check the system abend code. IPL the system if
necessary.

EQACM150E This program is not authorized to
start as a job.

Explanation
Debug Manager was started as a batch job. However,
the RACF profile defined to start Debug Manager as a
user job is missing, or the security class is not active.

System action
Debug Manager failed to start.

User response
Define a RACF profile named
EQADTOOL.START.BATCH.jobname.port. For more
information, see "Starting Debug Manager as a user
job" in IBM z/OS Debugger Customization Guide.

476 IBM z/OS Debugger: Reference and Messages

Chapter 11. Debug Profile Service API messages

All messages shown in this section are in mixed case English. The uppercase English message text is the
same, but is in uppercase letters.

Each message has a number of the form EQAPS nnnx, where PS indicates that the message is a Debug
Profile Service API message, nnn is the number of the message, and x indicates the severity level of each
message. The variable x can be any of the following values:

I
An informational message calls attention to some aspect of a command response that might assist
the programmer.

W
A warning message calls attention to a situation that might not be what is expected or to a situation
that z/OS Debugger attempted to fix.

E
An error message describes an error that Debug Profile Service API detected or cannot fix.

S
A severe error message describes an error that indicates a command referring to bad data, control
blocks, program structure, or something similar.

U
An unrecoverable error message describes an error that prevents Debug Profile Service API from
continuing.

EQAPS1000E The dtcn.ports file or TCP/IP
service resource is not configured
correctly, or the CICS region is
offline.

Explanation
Debug Profile Service was unable to contact the
specified region, or the region was not correctly
configured.

System action
The debug profile was not activated.

User response
Ensure that the CICS region is running.

If necessary, ask the system programmer to
confirm whether the ports configured in /etc/debug/
dtcn.ports are accurate and verify that the DTCN
API TCPIPSERVICE is configured as described in
"Defining the CICS TCPIPSERVICE resource" in the
IBM z/OS Debugger Customization Guide.

EQAPS1001E The password is incorrect.

Explanation
The password entered was incorrect for the user ID.

System action
Connection to Debug Profile Service fails.

User response
Provide a correct password for the specified user ID.

EQAPS1002E Access was revoked for the user
ID. Reset or unlock your password
and try again.

Explanation
Access to the system was revoked after incorrect
passwords were provided in previous attempts.

System action
Connection to Debug Profile Service fails.

User response
Unlock or reset your password before you try again.

EQAPS1003E The user ID is invalid.

Explanation
Authentication failed because an invalid user ID was
provided. The user ID does not exist or has no access
to this system.

© Copyright IBM Corp. 1992, 2024 477

System action
Connection to Debug Profile Service fails.

User response
Provide a user ID that has access to the system.

EQAPS1004E The password or password phrase
has expired. Reset your password
and try again.

Explanation
The password or password phrase provided has
expired.

System action
Connection to Debug Profile Service fails.

User response
Reset your password before you try again.

EQAPS1005E Debug Profile Service is already
running. Stop the existing instance
before starting a new one.

Explanation
An attempt was made to start Debug Profile Service
again when an instance was already running. Only a
single instance of Debug Profile Service can be running
on the system.

System action
Debug Profile Service failed to start again.

User response
Stop the first instance of Debug Profile Service before
you try again.

EQAPS1006E Debug Profile Service is not
supported by the currently
installed SVC.

Explanation
Debug Profile Service attempted to register its ports
using the z/OS Debugger SVC.

System action
Debug Profile Service failed to start.

User response
Ensure that the z/OS Debugger SVC of Version14.2 or
later is installed.

EQAPS1007E The CICS profile was not activated
because the region requires that a
terminal ID be specified.

Explanation
The region requires a terminal ID to activate the CICS
profile.

System action
The CICS profile was not activated.

User response
Specify a terminal ID.

EQAPS1008E The CICS profile was not activated
because the region requires that
at least one load module be
specified.

Explanation
The region requires at least one load module to
activate the CICS profile.

System action
The CICS profile was not activated.

User response
Specify at least one load module.

EQAPS1009E The CICS profile was not activated
because the region requires that a
transaction be specified.

Explanation
The region requires a transaction to activate the CICS
profile.

System action
The CICS profile was not activated.

User response
Specify a transaction.

EQAPS1010E The CICS profile was not activated
because the region requires that

478 IBM z/OS Debugger: Reference and Messages

at least one compile unit be
specified.

Explanation
The region requires at least one compile unit to
activate the CICS profile.

System action
The CICS profile was not activated.

User response
Specify at least one compile unit.

EQAPS1011E The CICS profile was not activated
because the region requires that a
user ID be specified.

Explanation
The region requires a user ID to activate the CICS
profile.

System action
The CICS profile was not activated.

User response
Specify a user ID.

EQAPS1012E The CICS profile was not activated
because the region requires that a
net name be specified.

Explanation
The region requires a net name to activate the CICS
profile.

System action
The CICS profile was not activated.

User response
Specify a net name.

EQAPS1013E The CICS profile was not activated
because the region requires that a
client IP be specified.

Explanation
The region requires a client IP to activate the CICS
profile.

System action
The CICS profile was not activated.

User response
Specify a client IP.

EQAPS1014E Specify environment variables
‘port’ and ‘SECURE’ in the
eqaprof.env file to start Debug
Profile Service on a specific port.

Explanation
A port needs to be specified in the eqaprof.env file
to start Debug Profile Service.

System action
Debug Profile Service was not started.

User response
Specify port=port_number and SECURE=Y/N in the
eqaprof.env file, and start Debug Profile Service
again.

EQAPS1015E The user ID is not authorized to
manage other users' profiles.

Explanation
Only authorized user IDs can modify or delete other
users' profiles.

User response
If you need to manage other users' profiles, ask the
security administrator to give you UPDATE permission
to the EQADTOOL.DTCNCHNGEANY RACF profile. For
more information, see "Defining who can create,
modify, or delete DTCN profiles" in the IBM z/OS
Debugger Customization Guide.

EQAPS2000E The profile does not contain a
specific user ID, IP, or terminal ID.
Debug sessions might be triggered
for other users unexpectedly.

Explanation
The profile does not contain a specific user ID, IP, or
terminal ID. The profile that contains generic values
might unexpectedly trigger z/OS Debugger to consume
unnecessary resources.

Chapter 11. Debug Profile Service API messages 479

User response
Evaluate if this profile is causing problems. Ask the
owner to specify a user ID, IP, or terminal ID in the
profile. You can delete the profile in z/OS Debugger
Profile Management if necessary.

To prevent generic profiles, you can specify the
DTCNFORCExxxx settings to make some fields
mandatory.

EQAPS2001E The profile contains generic values
for load module or program
name without a transaction filter
specified. Debug sessions might
be triggered unexpectedly.

Explanation
The profile contains an empty or wildcard value for
load module or program, and there is no additional

transaction filter. The profile that contains generic
values might unexpectedly trigger z/OS Debugger to
consume unnecessary resources.

User response
Evaluate if this profile is causing problems. Ask the
owner to modify the profile with more specific values
for the load module or program name, or alternatively
provide a transaction name. You can delete the profile
in z/OS Debugger Profile Management if necessary.

To prevent generic profiles, you can specify the
DTCNFORCExxxx settings to make some fields
mandatory.

480 IBM z/OS Debugger: Reference and Messages

Chapter 12. Non-Language Environment IMS
messages

Each message has a number of the form EQAInnnnx, where EQAI indicates that the message is non-
Language Environment IMS message, nnnn is the number of the message, and x indicates the severity
level of each message. The variable x can be any of the following values:

I
An informational message calls attention to some aspect of a command response that might assist
the programmer.

W
A warning message calls attention to a situation that might not be what is expected or to a situation
that z/OS Debugger attempted to fix.

E
An error message describes an error that z/OS Debugger detected or cannot fix.

S
A severe error message describes an error that indicates a command referring to bad data, control
blocks, program structure, or something similar.

U
An unrecoverable error message describes an error that prevents z/OS Debugger from continuing.

Symbols in messages

Many of the z/OS Debugger messages contain information that is inserted by the system when the
message is issued. In this publication, such inserted information is indicated by italicized symbols, as in
the following:

EQA1046I The breakpoint-id breakpoint is replaced.

The portion of z/OS Debugger located on the host notifies you of errors associated with debugging
functions carried out by the host.

EQAI1002S CSVQUERY failure

Explanation
Query application MPP failed.

User response
Consult your system programmer.

EQAI1003S Environment AIB call failed

Explanation
Query environment AIB call failed.

User response
Consult your system programmer.

EQAI1004S Environment IOPCB call failed

Explanation
Query environment IOPCB call failed.

User response
Consult your system programmer.

EQAI1008S Error loading EQANIDBG

Explanation
Load z/OS Debugger non-Language Environment front
end failed.

User response
Consult your system programmer.

EQAI1009S Invalid EQASET specification

© Copyright IBM Corp. 1992, 2024 481

Explanation
Load z/OS Debugger non-Language Environment front
end failed.

User response
Consult your system programmer.

EQAI1013S Retrieve of token failed with rc
returncode

Explanation
Fail to retrieve token (EQAuser_ID). The return code is
returncode.

User response
Run the EQASET transaction from the terminal where
the application transaction is invoked.

EQAI1020S Retrieve token failed

Explanation
Fail to retrieve token.

User response
Start EQASET transaction with a valid keyword (MFI,
TCP, VTCP, VTAM).

EQAI2005I DEBUG SET ON FOR MFI SETTING

Explanation
Debugging is turned on and setting is MFI.

User response
None.

EQAI2006I DEBUG SET ON FOR TCP SETTING

Explanation
Debugging is turned on and setting is TCP.

User response
None.

EQAI2007I DEBUG SET ON FOR VTCP
SETTING

Explanation
Debugging is turned on and setting is VTCP.

User response
None.

EQAI2008I DEBUG SET OFF

Explanation
Debugging is turned off.

User response
None.

EQAI2009I DEBUG SET ON FOR SPECIFIED
MFI LU

Explanation
Debugging is turned on and setting is the specified MFI
LU name.

User response
None.

EQAI2010I DEBUG SET ON FOR SPECIFIED
TCP IP

Explanation
Debugging is turned on and setting is the specified TCP
IP address.

User response
None.

EQAI2011I DEBUG SET ON FOR SPECIFIED
VTCP IP

Explanation
Debugging is turned on and setting is the specified
VTCP IP address.

User response
None.

EQAI2012I VALID KEYWORDS: ON, OFF,
MFI=, TCP=, VTCP, VTAM=,
STATUS

Explanation
Valid keywords for EQASET transaction.

482 IBM z/OS Debugger: Reference and Messages

User response
None.

EQAI2013E USERID FROM IMS ENVIRONMENT
IS BLANK

Explanation
User ID is blank or cannot be found.

User response
Contact your system programmer.

EQAI2014E NO DATA RECEIVED

Explanation
EQASET transaction is entered without keyword.

User response
Reference documentation for EQASET definition and
usage.

EQAI2015E NAME/TOKEN SAVE FAILED RC=
returnCode

Explanation
Fail to save setting value.

User response
Contact your system programmer.

EQAI2016E MFI/TCP/VTCP VALUE MUST BE
SET TO USE KEYWORD ON

Explanation
No setting exists when debugging is turned on with
EQASET ON.

User response
Set value of one of the settings (MFI, TCP, VTCP) with
EQASET transaction.

EQAI2017I NO STATUS

Explanation
No on/off switch exists.

User response
Set value of one of the settings (MFI, TCP, VTCP) with
EQASET transaction.

EQAI2018I DEBUG SET ON FOR SPECIFIED
VTAM LU

Explanation
Debugging is turned on and setting is the specified
VTAM LU associated with user id.

User response
None.

EQAI2019I DEBUG SET ON FOR VTAM
SETTING

Explanation
Debugging is turned on and setting is VTAM.

User response
None.

EQAI2020I USERID:userid STATUS:status
ID:value

Explanation
Displays the current debugging preferences for IMS
user ID userid. status is one of the following: OFF,
VTAM, TCP, VTCP, MFI. value is one of the following
values:

• Blank, if status is OFF.
• TSO or IMS user ID, if status is VTAM.
• IP address (and port number), if status is TCP or
VTCP.

• Network identifier (and terminal LU name), if status
is MFI.

User response
None.

EQAI2021I The TSO user ID tsoid has been
associated with the current IMS
terminal.

User response
None.

EQAI2022I z/OS Debugger SVC IS
BACKLEVEL. CANNOT USE
EQASET.

Chapter 12. Non-Language Environment IMS messages 483

Explanation
The EQASET transaction detected a down level z/OS
Debugger SVC EQA01SVC(IGX00051). Version 13 is
required for this version of EQASET.

User response
Have your installer install the correct z/OS Debugger
SVCs.

484 IBM z/OS Debugger: Reference and Messages

Chapter 13. Load Module Analyzer Messages

All messages shown in this section are in mixed case English. The uppercase English message text is the
same, but is in uppercase letters.

Each message has a number of the form EQALMnnnx, where EQA indicates that the message is an Load
Module Analyzer message, nnn is the number of the message, and x indicates the severity level of each
message. The variable x can be any of the following values:

I
An informational message calls attention to some aspect of a command response that might assist
the programmer.

W
A warning message calls attention to a situation that might not be what is expected or to a situation
that z/OS Debugger attempted to fix.

E
An error message describes an error that Load Module Analyzer detected or cannot fix.

S
A severe error message describes an error that indicates a command referring to bad data, control
blocks, program structure, or something similar.

U
An unrecoverable error message describes an error that prevents Load Module Analyzer from
continuing.

Symbols in messages

Many of the Load Module Analyzer messages contain information that is inserted by the system when the
message is issued. In this publication, such inserted information is indicated by italicized symbols, as in
the following:

EQA1046I The breakpoint-id breakpoint is replaced.

The portion of Load Module Analyzer located on the host notifies you of errors associated with debugging
functions carried out by the host.

EQALM000S **** UNKNOWN ERROR ****

Explanation
An unexpected or unrecognized error has occurred.

EQALM001E **** Unable to open filename

Explanation
This indicated file cannot be opened.

EQALM002I **** Unable to open EQAIN. All
members will be processed. ****

Explanation
The EQAIN file was not allocated. All members of
the PDS(E) concatenation allocated to EQALIB will be
processed.

EQALM003E **** Unknown member specified
in SELECT statement ****

Explanation
The member specified on the SELECT statement was
not found in the EQALIB concatenation.

EQALM004E **** Unrecognized control
statement ****

Explanation
An unrecognized control statement was encountered
while processing the EQAIN file.

EQALM005E **** Work area overflow ****

Explanation
An internal work area has overflowed.

© Copyright IBM Corp. 1992, 2024 485

EQALM006E **** Error rc-reason returned
from Binder API ****

Explanation
The indicated return and reason codes were returned
from the Binder interface module. This message may
be accompanied by EQALM999W messages written to
the Job Log indicating the associated IEWBIND return
and reason codes.

EQALM007W **** text is an unrecognized
option ****

Explanation
The specified text is not a supported option.

EQALM008S **** z/OS Debugger failed
Product Registration. ****

Explanation
A valid license for this program could not be found on
the current system.

EQALM009S **** Unable to load EQALMER2.

Explanation
The indicated load module could not be found in the
current STEPLIB, system link-list, etc. This program
is part of the SEQAMOD data set shipped with the
Japanese feature of z/OS Debugger.

EQALM010E **** Unable to obtain list of
EQALIB members. RC returned
from DESERV macro. ****

Explanation
The indicated return code was generated by the
DEServ function. Refer to the appropriate Data Facility
Product publication for a description of the error.

EQALM011E **** Return code/reason code
from IEWBIND Function: rc/
reason.

Explanation
The specified return code was received from the
Binder API's.

EQALM012S **** Unable to obtain storage

Explanation
Sufficient storage was not available for processing.

Programmer response
Increase the region size and rerun the application.

EQALM999W error description

Explanation
This message is issued to the Job Log via a Write To
Operator (WTO). It contains information about errors
returned by IEWBIND. See the appropriate Binder
documentation for a description of the indicated return
code and reason code.

486 IBM z/OS Debugger: Reference and Messages

Chapter 14. z/OS Debugger Language Environment
user exit messages

Each message has a number of the form EQAUnnnx, where EQAU indicates that the message is a z/OS
Debugger Language Environment user exit message, nnn is the number of the message, and x indicates
the severity level of each message.

The following messages apply to all environments.

The variable x can be any of the following values:

I
An informational message calls attention to some aspect of a command response that might assist
the programmer.

W
A warning message calls attention to a situation that might not be what is expected or to a situation
that z/OS Debugger attempted to fix.

E
An error message describes an error that z/OS Debugger detected or cannot fix.

S
A severe error message describes an error that indicates a command referring to bad data, control
blocks, program structure, or something similar.

U
An unrecoverable error message describes an error that prevents z/OS Debugger from continuing.

Symbols in messages

Many of the z/OS Debugger messages contain information that is inserted by the system when the
message is issued. In this publication, such inserted information is indicated by italicized symbols, as in
the following:

EQAU046I The breakpoint-id breakpoint is replaced.

The portion of z/OS Debugger located on the host notifies you of errors associated with debugging
functions carried out by the host.

The following messages apply to all environments:

EQAU999I NO READ ACCESS OF z/OS
DEBUGGER USER EXIT DATA SET

Explanation
z/OS Debugger tries to read the user exit data set but
the access is denied because of RACF or other security
protection.

System action
No debug session is started.

User response
Contact system administrator to allow the owner ID
of a job (batch), WLM address space (Db2 stored

procedure), or IMS region (IMS transaction) read
access to the data set.

EQAU999I SEE ICH408I MESSAGE

Explanation
Direct the user to the ICH408I message for more
details of the NO READ ACCESS OF z/OS Debugger
USER EXIT DATA SET problem.

System action
None.

User response
Look for ICH408I message in the system log.

© Copyright IBM Corp. 1992, 2024 487

488 IBM z/OS Debugger: Reference and Messages

Chapter 15. z/OS Debugger Terminal Interface
Manager messages

Each message has a number of the form EQAYnnnx, where EQAY indicates that the message is a z/OS
Debugger Terminal Interface Manager message, nnn is the number of the message, and x indicates the
severity level of each message. The variable x can be any of the following values:

I
An informational message calls attention to some aspect of a command response that might assist
the programmer.

W
A warning message calls attention to a situation that might not be what is expected or to a situation
that z/OS Debugger attempted to fix.

E
An error message describes an error that z/OS Debugger detected or cannot fix.

S
A severe error message describes an error that indicates a command referring to bad data, control
blocks, program structure, or something similar.

U
An unrecoverable error message describes an error that prevents z/OS Debugger from continuing.

Symbols in messages

Many of the z/OS Debugger messages contain information that is inserted by the system when the
message is issued. In this publication, such inserted information is indicated by italicized symbols, as in
the following:

EQA1046I The breakpoint-id breakpoint is replaced.

The portion of z/OS Debugger located on the host notifies you of errors associated with debugging
functions carried out by the host.

EQAY001E User not authorized to edit data
set

Explanation
The user does not have authority to edit the specified
TEST runtime options data set.

Programmer response
Specify a data set name to which the user ID has
UPDATE access.

EQAY002E Data set does not exist on the
specified volume

Explanation
The TEST runtime options data set you specified does
not exist on the volume specified in the Volume Serial
field.

Programmer response
Correct the Volume Serial specification.

EQAY003E TEST run-time option data set
name must be fully-qualified

Explanation
The TEST runtime options data set name must be
preceded and followed by an apostrophe ('), to
designate a fully-qualified data set name.

EQAY004E EQAOPTS data set name must be
fully-qualified

Explanation
The EQAOPTS data set name must be preceded and
followed by an apostrophe ('), to designate a fully-
qualified data set name.

EQAY005E TEST option must be either TEST
or NOTEST

© Copyright IBM Corp. 1992, 2024 489

Explanation
Please specify either TEST or NOTEST in the Test
Option field.

EQAY006E TEST level must be one of ALL,
ERROR, or NONE

Explanation
Please specify either ALL, ERROR, or NONE in the Test
Level field.

EQAY008E Full screen mode selected, but no
user ID supplied.

Explanation
You have selected Full-screen mode using the
z/OS DebuggerTerminal Interface Manager,
but you have not supplied a user ID. This field is
required.

Programmer response
Specify a user ID in the User ID field.

EQAY009E No session type selected. Please
select one of the options.

Explanation
You must select either Full-screen mode using
the z/OS Debugger Terminal Interface
Manager or Remote debug mode.

EQAY010E Remote debug mode selected, but
address not supplied.

Programmer response
Please supply the IP address or host name of
the remote workstation where you run the remote
debugger.

EQAY011E Remote debug mode selected, but
port not supplied.

Programmer response
Please supply the port number on which the remote
debugger is listening.

EQAY012I Security check failed for debug
session for ID=userid

Explanation
The specified userid does not have authority to debug
tasks that are executed by a generic ID.

Programmer response
Contact your security administrator to
permit the specified userid to access
the EQADTOOL.GENERICID.generic_user_id
FACILITY.

EQAY013I Generic ID debugging not enabled
for ID=userid

Explanation
The current task is running under a generic user
ID, but the security administrator has not created a
FACILITY to control debugging tasks that are run by
that user ID.

Programmer response
See the usage notes for the DLAYDBGXRF EQAOPTS
command in the IBM z/OS Debugger Customization
Guide for more information.

EQAY014I TEST RUN-TIME OPTION DATA SET
MUST HAVE DSORG OF PS

Explanation
The TEST run-time option data set must be a
sequential data set.

Programmer response
Specify a TEST run-time option data set that has a
DSORG of PS.

EQAY999S Invalid userid/password.
Respecify.

Explanation
An invalid userid or incorrect password has been
specified to z/OS Debugger Terminal Interface
Manager.

Programmer response
Respecify the userid and/or password.

EQAY999S Error receiving lu name

Explanation
Severe internal error (VTAM 3270) in z/OS Debugger
Terminal Interface Manager. Please contact your IBM
representative.

EQAY999S Screen dimensions could not be
determined

490 IBM z/OS Debugger: Reference and Messages

Explanation
Severe internal error (VTAM 3270) in z/OS Debugger
Terminal Interface Manager. Please contact your IBM
representative.

EQAY999S Logon message not available

Explanation
Severe internal error (VTAM 3270) in z/OS Debugger
Terminal Interface Manager. Please contact your IBM
representative.

EQAY999S Session parameters inquiry error

Explanation
Severe internal error (VTAM 3270) in z/OS Debugger
Terminal Interface Manager. Please contact your IBM
representative.

EQAY999S TPEND exit entered

Explanation
Severe internal error (VTAM 3270) in z/OS Debugger
Terminal Interface Manager. Please contact your IBM
representative.

EQAY999S LOSTERM entered with reason
code X'xx'

Explanation
Severe internal error (VTAM 3270) in z/OS Debugger
Terminal Interface Manager. Please contact your IBM
representative.

EQAY999S No appl ids available.

Explanation
Severe internal error (VTAM 3270) in z/OS Debugger
Terminal Interface Manager. Please contact your IBM
representative.

EQAY999S Session not connected

Explanation
Severe internal error (VTAM 3270) in z/OS Debugger
Terminal Interface Manager. Please contact your IBM
representative.

EQAY999I Shutting down z/OS Debugger
Terminal Interface Manager

Explanation
z/OS Debugger Terminal Interface Manager has been
requested to shut down.

Chapter 15. z/OS Debugger Terminal Interface Manager messages 491

492 IBM z/OS Debugger: Reference and Messages

Chapter 16. IBM z/OS Debugger Utilities messages

All messages are shown in this section are in mixed case English. The uppercase English message text is
the same, but is in uppercase letters.

Each message has a number of the form EQAZnnnx, where EQAZ indicates that the message is an IBM
z/OS Debugger Utilities message, nnn is the number of the message, and x indicates the severity level of
each message. The value of x is I, W, E, S, or U, as described below:
I

An informational message calls attention to some aspect of a command response that might assist
the programmer.

W
A warning message calls attention to a situation that might not be what is expected or to a situation
that z/OS Debugger Utilities attempted to fix.

E
An error message describes an error that IBM z/OS Debugger Utilities detected or cannot fix.

S
A severe error message describes an error that indicates a command referring to bad data, control
blocks, program structure, or something similar.

U
An unrecoverable error message describes an error that prevents IBM z/OS Debugger Utilities from
continuing.

Symbols in messages

Many of the IBM z/OS Debugger Utilities messages contain information that is inserted by the system
when the message is issued. In this publication, such inserted information is indicated by italicized
symbols, as in the following:

EQA1046I The breakpoint-id breakpoint is replaced.

EQAZ005S Install Error cmdName has no
value for hlq

Explanation
cmdName exec detects that no value is assigned for
variable hlq.

System action
hlq is used as the high level qualifiers for data set
names.

User response
Follow the instructions "Customizing IBM z/OS
Debugger Utilities" in IBM z/OS Debugger
Customization Guide to modify EQASTART to
customize data set names.

EQAZ006S Install DSN Error cmdName.
Missing 'dataSet'

Explanation
cmdName cannot find dataSet.

System action
cmdName exec ends.

User response
Follow the 'Customizing IBM z/OS Debugger Utilities'
in IBM z/OS Debugger Customization Guide to modify
EQASTART to customize data set names.

EQAZ007S libType LIBDEF Failed for lib

Explanation
Allocation of application library of type libType failed
for data set lib.

System action
z/OS Debugger Utility ends.

© Copyright IBM Corp. 1992, 2024 493

User response
Follow the instructions "Customizing IBM z/OS
Debugger Utilities" in IBM z/OS Debugger
Customization Guide to modify EQASTART to
customize data set names.

EQAZ008S libType ALTLIB Failed for lib

Explanation
Define of alternative application library of type libType
failed for lib

System action
z/OS Debugger Utility ends.

User response
Follow the instructions "Customizing IBM z/OS
Debugger Utilities" in IBM z/OS Debugger
Customization Guide to modify EQASTART to
customize data set names.

EQAZ010W Allocation Error: dsnName

Explanation
Allocation failed for dsnName.

System action
dsnName is not processed.

User response
Make sure that dsnName exists.

EQAZ011I Invalid Command cmd for Panel
pnlId

Explanation
Invalid command cmd is entered in panel pnlId.

System action
The command is not processed

User response
Enter a valid command.

EQAZ012I Invalid Member name specified.
Dataset dsnName is not
partitioned.

Explanation
Data set dsnName is a sequential file. A member name
cannot be specified.

System action
You are prompted to correct the problem.

User response
Remove the member name or specify a partitioned
data set

EQAZ013W EXECIO Error for Data Set
dsnName.

Explanation
I/O error in read/write data set dsnName.

System action
I/O is ended.

User response
Report the problem to the system administrator.

EQAZ014E Multiple jobs detected. Only one
job is allowed. By default, only the
first job in the sequence will be
run.

Explanation
Multiple jobs are found in the JCL being copied into the
setup file.

System action
Only the first job is copied.

User response
Make sure that you select only one job when copying in
the JCL.

EQAZ015W Multiple programs detected. Only
one program is allowed. By
default, only the first program in
the sequence will be selected.

Explanation
Multiple steps in a job are selected in the JCL that is
being copied into the setup file.

494 IBM z/OS Debugger: Reference and Messages

System action
Only the first step is copied.

User response
Make sure that you select only one step in the job.

EQAZ016W Invalid Concatenation ddn. DISP
disposition not allowed in the
middle of a concatenation.

Explanation
DISP disposition is not allowed in the middle of a
concatenation.

System action
RUN command ends.

User response
Make sure that DISP is specified correctly.

EQAZ017I Program pgmName ended with
Return Code rc

Explanation
Program pgmName has been executed in the
foreground with a return code of rc.

System action
none

User response
Make sure that return code rc is what you expect.

EQAZ018I Specify the allocation defaults for
new Setup File fileName

Explanation
A new setup file fileName is entered.

System action
You are prompted for allocation defaults.

User response
Enter allocation defaults in the next panel.

EQAZ019W cmd allowed for the first library of
concatenation only.

Explanation
Delete or Rename command is allowed for the first
library of concatenation only.

System action
cmd is not executed.

User response
None.

EQAZ020I fileName has been
actionPerformed.

Explanation
File fileName has been actionPerformed. (such as
saved)

System action
Processing continues.

User response
None.

EQAZ021W Member not found in copy from
data set dsnName. No data has
been copied.

Explanation
dsnName is not found in a copy command processing.

System action
Copy command ends; no data is copied.

User response
Enter an existing data set name.

EQAZ022W dsnName does not contain JCL or a
valid setup file.

Explanation
dsnName is not a valid JCL file or a valid setup file.

System action
Copy command ends; no data is copied.

User response
Enter an valid file.

Chapter 16. IBM z/OS Debugger Utilities messages 495

EQAZ023W You must select either MFI or
TCPIP session type.

Explanation
Both MFI and TCPIP session types are selected.

System action
You are prompted to select again.

User response
Select only one session type.

EQAZ024W You must specify the workstation
TCP/IP identifier.

Explanation
TCP/IP identifier field is empty.

System action
You are prompted to enter the identifier.

User response
Enter TCP/IP identifier.

EQAZ025W You must specify a load module or
program name to be run.

Explanation
Load Module Name field is empty.

System action
Run command ends.

User response
Enter a load module name.

EQAZ026W You must specify Directory blocks
with Data set name type dsType.

Explanation
Directory block must be greater than zero for data set
name type dsType.

System action
You are prompted for the correct value.

User response
Enter an non-zero directory block.

EQAZ027E Invalid line command detected.
cmd is not allowed for ddn DD
statement.

Explanation
Invalid line command entered.

System action
cmd is not executed.

User response
Enter a valid command.

EQAZ029W cmd return code rc

Explanation
cmd (edit, view, or browse) command has a return
code of rc.

System action
Processing continues.

User response
Refer to the ISPF documentation for return code
meaning.

EQAZ030W Member specified for fileName but
type is not PDSE or PDS.

Explanation
A member is specified for fileName, but its type is not
PDSE or PDS.

System action
You are prompted to correct the problem.

User response
Remove the member name, or specify a PDSE or PDS.

EQAZ031W Member not specified for fileName
for type PDSE or PDS

Explanation
No member is specified for fileName of type PDSE or
PDS

496 IBM z/OS Debugger: Reference and Messages

System action
You are prompted to correct the problem.

User response
Enter a member name.

EQAZ033W An invalid data set pattern
character pChar was used.

Explanation
An invalid character pChar was used in a data set
pattern in the program preparation.

System action
You are prompted to correct the problem.

User response
Use field help to choose a valid pattern character. (To
see field help, press the HELP key with the cursor
positioned in the field.)

EQAZ034S fileName is multiply included.
Circular definitions are not
allowed.

Explanation
fileName is included multiple times in the settings file
or files.

System action
Include statement is not processed.

User response
Contact your system administrator. Make sure that
fileName is not included more than once in the same
settings file or nested settings file.

EQAZ035S Too many INCLUDE statements
were found in the settings file

Explanation
More than sixteen INCLUDE statements were found in
the settings file or files.

System action
Include statements starting with the sixteenth are not
processed.

User response
Contact your system administrator. Make sure that
the number of INCLUDE statements does not exceed
sixteen in the same settings file or nested settings file.

EQAZ036E End of file for member fileName
while processing statement

Explanation
Incomplete statement is found in fileName settings file.

System action
The statement is not processed.

User response
Contact your system administrator. Make sure that
the statement in fileName is properly ended with a
semicolon.

EQAZ037E Invalid keyword kwd found in
member fileName.lineNo

Explanation
Invalid keyword kwd found in line lineNo of settings file
member fileName.

System action
Include statement is not processed.

User response
Contact your system administrator. Make sure that
the statement in line lineNo of settings file member
fileName is a valid statement.

EQAZ038I You must supply a valid job card to
use batch.

Explanation
A request to run the application in batch is submitted
but no valid job card is found.

System action
You are prompted for job card information.

User response
Enter job card information.

EQAZ039W An invalid sequence number
seqValue was entered.

Chapter 16. IBM z/OS Debugger Utilities messages 497

Explanation
A non-numeric value seqValue is entered in the
sequence number field.

System action
seqValue is removed from the field.

User response
Enter a numeric value.

EQAZ040I Action started for srcName using
inName.

Explanation
Action, which can be any program preparation action
(compile, assemble, link-edit, create FA side file, or
convert old COBOL program), is started for source
srcName using input inName.

System action
Processing continues.

User response
None.

EQAZ041I loadlib library: modName invoked.

Explanation
The load module modName in library loadlib, which is
the data set where a compiler or assembler resides, is
invoked.

System action
Processing continues.

User response
None.

EQAZ042I CICS translator started for
fileName.

Explanation
CICS translator starts to translate fileName.

System action
Processing continues.

User response
None.

EQAZ043I CICS translator transName
invoked from complib.

Explanation
CICS translator transName is invoked from complib
(LINKLIST or a library).

System action
Processing continues.

User response
None.

EQAZ044I Converter convName invoked from
complib.

Explanation
COBOL converter convName is invoked from complib
(LINKLIST or a library).

System action
Processing continues.

User response
None.

EQAZ045I Db2 preprocessor started for
fileName.

Explanation
Db2 preprocessor starts to process fileName.

System action
Processing continues.

User response
None.

EQAZ046I Db2 Preprocessor db2preName
invoked from complib.

Explanation
Db2 Preprocessor db2preName is invoked from
complib (LINKLIST or a library).

498 IBM z/OS Debugger: Reference and Messages

System action
Processing continues.

User response
None.

EQAZ047I IDILANGX started for fileName.

Explanation
IDILANGX starts to process fileName.

System action
Processing continues.

User response
None.

EQAZ048I IDILANGX idilName invoked from
complib.

Explanation
IDILANGX idilName is invoked from complib (LINKLIST
or a library).

System action
Processing continues.

User response
None.

EQAZ049W You must specify the parameter
string format.

Explanation
You must specify the parameter string format in order
to modify parameters.

System action
You are prompted for the correct choice.

User response
Choose a format (1 or 2).

EQAZ050W Allocation of a temporary data set
failed.

Explanation
The allocation of a temporary data set for the SYSIN
DD statement failed when the RUN command was run.

System action
The RUN command ends.

User response
Report the problem to your system administrator.

EQAZ051S Internal error in exec execName.
Invalid panel = panelName.

Explanation
execName exec is invoked with an invalid panel
(panelName) in the parameter list.

System action
execName exec ends.

User response
Report the problem to IBM.

EQAZ052S Internal error in exec execName.
Invalid command = cmdName.

Explanation
execName exec is invoked with an invalid command
(cmdName) in the parameter list.

System action
execName exec ends.

User response
Report the problem to IBM.

EQAZ053W Invalid DSN type entered -
dsnType.

Explanation
An invalid DSN type (dsnType) was entered. Valid types
are PDS, PDSE, and SEQ.

System action
You are prompted for the correct value.

User response
Enter a valid value.

Chapter 16. IBM z/OS Debugger Utilities messages 499

EQAZ054W LISTDSI failed for dsnName
Level1ErrorMsg Level2ErrorMsg

Explanation
LISTDSI was performed on dsnName but it
returned with error messages - Level1ErrorMsg and
Level2ErrorMsg

System action
The starting panel of program preparation is
presented.

User response
Report the problem to the system administrator.

EQAZ055S Internal error in exec execName.
Too many variable types,
varTypeList.

Explanation
execName exec was invoked with too many variable
types (varTypeList) in the parameter list.

System action
execName exec ends.

User response
Report the problem to IBM.

EQAZ056S Internal error in exec execName.
Invalid variable type = varType.

Explanation
execName exec was invoked with invalid variable type
(varType) in the parameter list.

System action
execName exec ends.

User response
Report the problem to IBM.

EQAZ057W Data set dsnName is not available
- errorMsg.

Explanation
The data set is not available for the reason specified in
errorMsg.

System action
The action on the data set is not performed. The
program preparation completion panel is presented.

User response
Check the program preparation return code on the
panel. Some data sets might not be available if
program preparation fails.

EQAZ058W dsnUse Data set dsnName is not
available - errorMsg.

Explanation
The data set is not available for the reason specified in
errorMsg.

System action
The action on the data set is not performed. The
program preparation panel is presented.

User response
Check the program preparation return code on the
panel. Report the problem to the system administrator.

EQAZ059W No IMSPlex ID

Explanation
IMSPlex ID is required.

System action
You are prompted for an IMSPlex ID.

User response
Enter a valid IMSPlex ID. Contact your system
administrator if you do not have an ID.

EQAZ060E No REXX IMS SPOC

Explanation
REXX IMS SPOC environment is not available. Return
Code = RC.

System action
The action on LE runtime options is not performed.

User response
Contact your system administrator and verify that IMS
V8 is installed on your system and that z/OS Debugger

500 IBM z/OS Debugger: Reference and Messages

Utility is properly installed and configured. See IBM
z/OS Debugger Customization Guide for details.

EQAZ061E IMS SPOC command failed

Explanation
IMS SPOC command failed. Return Code = RC.

System action
The action on LE runtime options is not performed.

User response
Verify that IMSPlex ID is correctly specified. Contact
your system administrator and verify that IMS V8
is installed on your system and that z/OS Debugger
Utility is properly installed and configured. See IBM
z/OS Debugger Customization Guide for details.

EQAZ062E IMS OM security error

Explanation
IMS Operations Manager security check failed. SAF
return Code = SAF_RC; RACF return code = RACF_RC,
reason code = reason_code; Exit return code =
EXIT_RC, user data = user_data.

System action
The action on LE runtime options is not performed.

User response
Contact your system administrator to request that your
ID be authorized to use IMS QUERY LE and UPD LE
commands.

EQAZ063E Incorrect data

Explanation
Quote is not allowed in this field.

System action
You are prompted for correct data.

User response
Enter a valid value for this field.

EQAZ064E IMS command failed

Explanation
IMS command_name command failed. Return code =
IMS_RC, Reason code = IMS_reason_code.

System action
The action on LE runtime options is not performed.

User response
Contact your system administrator and verify that IMS
V8 is installed on your system and that z/OS Debugger
Utility is properly installed and configured. See IBM
z/OS Debugger Customization Guide for details.

EQAZ065E Non-LE program cannot have load
module name = EQANMDBG

Explanation
EQANMDBG is a reserved load module name for
z/OS Debugger when debugging a non-Language
Environment program.

System action
You are prompted to correct the problem.

User response
Enter a correct load module name.

EQAZ066E Invalid DTU setup file

Explanation
The input file is not a valid DTU setup file and may be
overwritten. Press Cancel to return.

System action
The original content of the input file may be
overwritten if processing continues.

User response
Press Cancel to return and enter a valid input file or an
empty file.

EQAZ067W Not enabled for MORE

Explanation
This field is not enabled for additional input space.

EQAZ068W Cursor not in a field

Explanation
Cursor is not in a field when MORE command is
entered.

EQAZ069E dsnName is not a sequential data
set

Chapter 16. IBM z/OS Debugger Utilities messages 501

Explanation
dsnName is not a sequential data set. The TEST
runtime option data set must be a sequential data set.

System action
The action on the data set is not performed.

User response
Provide a sequential data set.

EQAZ070E GDSname is not a valid generation
data set names.

Explanation
GDSname is not a valid generation data set name. The
generation base name may not exist.

System action
GDSname data set is not allocated.

User response
Provide a valid generation data set name.

EQAZ071E No generation data set name for
GDSname.

Explanation
GDSname is not a generation data set name. The last
qualifier is not in GnnnnVnn format.

System action
GDSname data set is not allocated.

User response
Provide a valid generation data set name.

EQAZ072E Generation number exceeds 9999
for GDSname.

Explanation
The generation number for GDSname exceeds the
maximum number allowed.

System action
GDSname data set is not allocated.

User response
Provide a valid generation data set name.

EQAZ076W CHARS 'charstring' was not found
on any rows.

Explanation
Search for 'charstring' was not successful.

Programmer response
Provide a different search argument.

EQAZ077I Search for CHARS 'charstring' was
successful.

Explanation
The row that contains 'charstring' is positioned as the
top row.

EQAZ078W CHARS 'charstring' was not found.
Enter TOP command and press
FINDNEXT key to continue from
row 1.

Explanation
Search for 'charstring' was not found from the cursor
position to the bottom of the list.

EQAZ079W The FINDNEXT command works
only after a FIND command
character string is entered.

Explanation
FINDNEXT command requires a previously entered
search argument.

Programmer response
Use FIND command with a search argument.

EQAZ080W Data set datasetname is not found.

Explanation
Data set datasetname does not exist or is not
cataloged.

Programmer response
Provide a valid data set name.

EQAZ081I Multiple actions are present. Only
the first one is processed.

Explanation
More than one step has an action specified. The utility
processes the first one and ignores the rest.

502 IBM z/OS Debugger: Reference and Messages

Programmer response
Specify one action at a time.

The window that displays this message might display
the name of the window (EQAPMGP) and the
instruction to press Enter to continue. Press Enter to
close the message window.

EQAZ082E Allocate data set datasetname
failed. Return code is retcode.

Explanation
The user exit data set datasetname cannot be created.
User exit invocation method will not work.

Programmer response
Consult with system administrator.

EQAZ083W Allocate data set datasetname
failed. Return code is retcode.

Explanation
datasetname data set cannot be created. The updated
JCL is not saved.

Programmer response
Consult with system administrator.

EQAZ084I A new data set datasetname is
created.

Explanation
datasetname data set is created. The data set is a user
exit data set or contains the copy of the updated JCL.

EQAZ085W CEEOPTS DD statement invocation
method cannot be used in steptype
of step (number: stepno).

Explanation
IMS batch does not process the CEEOPTS DD
statement.

Programmer response
Choose one of the user exit invocation methods in the
user settings panel.

EQAZ100W A member name must be specified
when the output: datasetname is a
partitioned data set.

Explanation
The output data set datasetname is a partitioned data
set and a member name must be specified.

Programmer response
Add a member name to the data set or specify a
different data set.

EQAZ101W A member name cannot be
specified when the output:
datasetname is a sequential data
set.

Explanation
The output data set, datasetname is a sequential data
set and a member name cannot be specified.

Programmer response
Remove the member name or specify a different data
set.

EQAZ102W A valid job card is required to
generate proper JCL.

Explanation
There is no job card setting or the job card is not valid.

Programmer response
Enter job card information in the User Settings panel.

EQAZ103W No IMS ID defined in the system.

Explanation
No IMS ID is defined in the table in SEQATLIB data set.

Programmer response
Check EQAZDSYS and EQAZDUSR members for IMS
system ID variable (yb2iidn) definition.

EQAZ104W IMS ID does not match the ones in
the system.

Explanation
IMS ID is not defined in the table in SEQATLIB data
set.

Programmer response
Choose one from the list shown on the panel.

Chapter 16. IBM z/OS Debugger Utilities messages 503

EQAZ105W JCL not defined for IMS system:
imsid.

Explanation
The base JCL is not found for IMS system ‘imsid’.

Programmer response
Check EQAZDSYS and EQAZDUSR members for JCL
variable definition.

EQAZ109W Invalid substitution variable
found: &variablename

Explanation
Invalid substitution variable is found in z/OS Debugger
user exit data set naming pattern.

Programmer response
Check EQAZDSYS and EQAZDUSR members z/OS
Debugger user exit data set naming pattern variable
(yb2dtnmp) definition.

EQAZ110W Default base JCL cannot be edited.

Explanation
The base JCL contains the common components for a
IMS system and cannot be edited.

EQAZ111W JCL parser failed on JCL: jclname

Explanation
z/OS Debugger JCL parser failed on parsing jclname
JCL. The JCL could be the base JCL or user
provided JCL that contains additional application DD
statements.

Programmer response
Check EQAZDSYS and EQAZDUSR members z/OS
Debugger user exit data set naming pattern variable
(yb2dtnmp) definition.

EQAZ112W commandname command is
invalid for IMS BTS debugging.

Explanation
The commandname command is not valid in panel
EQAPFORB for IMS BTS debugging.

Programmer response
Do not use the command.

EQAZ114W User exit data set naming pattern
is required for invocation method:
invmethod.

Explanation
For user exit invocation method (‘E’ or ‘A’), the user
exit data set naming pattern must be present. The
utility needs it to open and update the data set.

Programmer response
Provide the naming pattern.

EQAZ115W Data set datasetname is not found.

Explanation
Data set datasetname in a file list does not exist or is
not cataloged.

Programmer response
Provide a valid data set name.

EQAZ116W Member in data set datasetname is
not found.

Explanation
Member does not exist in data set datasetname.

Programmer response
Provide a valid member.

EQAZ117W Data set datasetname is not valid.

Explanation
Data set datasetname is not a valid data set name.

Programmer response
Provide a valid data set name.

EQAZ118W Line command command is not
valid.

Explanation
Line command command is not a valid command.

Programmer response
Provide a valid line command.

EQAZ119W String has mismatched or uneven
number of quotation marks: string.

504 IBM z/OS Debugger: Reference and Messages

Explanation
The string is enclosed in quotation marks. Either the
enclosing quotation marks are mismatched, or there
are quotation marks within the string without an
escape sequence.

User response
Correct the problem.

EQAZ120W String containing blanks should
be enclosed in quotation marks:
string.

Explanation
The string contains blanks. It should be enclosed in
quotation marks.

User response
Correct the problem.

EQAZ121W Token is not supported in naming
pattern: namingpattern.

Explanation
The naming pattern contains a token that is not
supported.

User response
Correct the problem.

EQAZ122E Incomplete XML tag: xmltag in
data set: datasetname.

Explanation
Incomplete XML tag is found in the cross reference
table data set.

User response
Consult with system administrator.

EQAZ123E Transaction ID, transctionid, exists
in cross reference table.

Explanation
The transaction ID used in the CREATE command
already exists in the cross reference table.

User response
Use a different transaction ID or use the UPDATE
command.

EQAZ124E Transaction ID, transctionid, does
not exist in cross reference table.

Explanation
The transaction ID used in the UPDATE command does
not exist in the cross reference table.

User response
Use a different transaction ID.

EQAZ125E The command, command, must
have one operand.

Explanation
The command requires one operand: transaction ID.

User response
Provide a transaction ID.

EQAZ126W The maximum number of entries
allowed is: maxentry

Explanation
The maximum number of entries allowed in the cross
reference table is reached.

User response
Consult with system administrator.

EQAZ127W The maximum number of generic
IDs allowed is: maxentry

Explanation
The maximum number of generic IDs allowed in the
cross reference table is reached.

User response
Consult with system administrator.

EQAZ128W One or more table entries are
expired. They are deleted from the
table when Exit.

Explanation
One or more table entries are expired, exceeding the
active period. They will be deleted when you exit the
panel.

Chapter 16. IBM z/OS Debugger Utilities messages 505

User response
Use the KEEP command to change the entry
timestamp if you want to keep the entry in the table.

EQAZ129E Cross reference data set name
is not defined in table library
(EQAZDSYS).

Explanation
The data set name of the cross reference table is not
found in the table library (EQAZDSYS).

User response
Consult with system administrator.

EQAZ130E Generic ID cannot be used in the
cross reference table entry.

Explanation
Generic ID cannot be used in the CREATE or UPDATE
command.

User response
Use your own user ID.

EQAZ131E Transaction ID, transactionid,
exceeds the maximum length of 8.

Explanation
The transaction ID specified in the CREATE, UPDATE,
or DELETE command must be eight characters or less
in length.

User response
Use a valid transaction ID.

EQAZ132E Only one ID is allowed.

Explanation
You can use only one user ID in the CREATE or UPDATE
command.

User response
Enter only one ID in the User ID field.

EQAZ133E The command, command, has only
one operand.

Explanation
The CREATE, UPDATE, or DELETE command has only
one operand: transaction ID.

User response
Use only one transaction ID in the command.

EQAZ134E Line command is not allowed on
row, **TOP OF DATA**.

Explanation
The row, **TOP OF DATA**, does not accept line
command.

User response
Do not use line command on this row.

EQAZ135E Transaction ID, transactionid,
contains non-alphanumeric
character.

Explanation
Non-alphanumeric characters are not allowed in
transaction ID.

User response
Use only alphanumeric characters.

EQAZ136I datasetname data set has been
saved.

Explanation
The changes in the data set have been saved.

User response
None.

EQAZ137E Debug session start and stop
message data set name is
not defined in table library
(EQAZDSYS).

Explanation
The data set name of the start and stop message file is
not found in the table library (EQAZDSYS).

User response
Consult with system administrator.

506 IBM z/OS Debugger: Reference and Messages

EQAZ138E Duplicate sort order, sortorder, is
specified in column: columnname.

Explanation
A sort order in a column must be unique among the
sort orders specified.

User response
Use a unique sort order.

EQAZ139E No source/listing is available.

Explanation
No SYSDEBUG file is associated with the code
coverage observation. The SYSDEBUG file is needed
for source or listing extraction.

System action
No source or listing is shown.

User response
Make sure that the SYSDEBUG file from the application
compilation exists.

EQAZ140E Code coverage observation data
set name is not defined in table
library (EQAZDSYS).

Explanation
A code coverage observation data set name is not
defined in table library (EQAZDSYS).

System action
Code coverage function is stopped.

User response
Consult with system administrator.

EQAZ141E More than max xmltag tags in data
set: datasetname.

Explanation
The number of xmltag tags exceeds the maximum
value.

System action
Processing of XML tags in the data set datasetname is
stopped.

User response
Make sure that the number of xmltag tags that the data
set has does not exceed the maximum number.

EQAZ142E Invalid value: xmltagvalue, in tag:
xmltag, in data set: datasetname

Explanation
The value of xmltag tag is not valid. It is not a valid
attribute name or a numerical value.

System action
Processing of XML tags in the data set datasetname is
stopped.

User response
Provide a valid value for the xmltagvalue .

EQAZ143E Error processing file: filename

Explanation
A problem occurred during the processing of filename
data set, like data set allocation, reading from or
writing to the data set.

System action
Processing of the data set is stopped.

User response
Make sure that the data set exists and you have proper
access authority.

EQAZ144I Code coverage observation
extraction is completed.

Explanation
The extraction operation is completed.

System action
Processing continues.

User response
None.

EQAZ145E Invalid XML tag: xmltag, in DS or
DD name: datasetname

Chapter 16. IBM z/OS Debugger Utilities messages 507

Explanation
A problem occurred with xmltag tag, for example, no
tag value or no corresponding end tag.

System action
Processing of XML tags in the data set datasetname is
stopped.

User response
Correct the problem in the xmltag tag.

EQAZ146I Code coverage report generation is
completed.

Explanation
The report generation operation is completed.

System action
Processing continues.

User response
None.

EQAZ147E The column start: column number
is greater than column end:
column number.

Explanation
The source marker has the column start number
greater than the column end number.

System action
Panel EQAPCCS2 is displayed with the error message.

User response
Enter a correct column number for the source marker.

EQAZ148E The column start or column end:
column number is greater than 80.

Explanation
The source marker has a column start or end number
greater than 80.

System action
Panel EQAPCCS2 is displayed with the error message.

User response
Enter a correct column number for the source marker.

EQAZ149E The string: stringValue contains
non-hexadecimal characters.

Explanation
The source marker has invalid characters in the hex
adecimal string.

System action
Panel EQAPCCS2 is displayed with the error message.

User response
Enter a correct hex adecimal string value.

EQAZ150E The SECTION markers are not
in pairs. SECTIONBEGIN without
SECTIONEND or vice versa.

Explanation
The SECTION source markers are not in pairs.

System action
Panel EQAPCCS2 is displayed with the error message.

User response
Make sure that the SECTION markers are in pairs.

EQAZ151E The source marker type:
markertype is not valid.

Explanation
Valid source marker types are SINGLE,
SECTIONBEGIN, and SECTIONEND.

System action
Panel EQAPCCS2 is displayed with the error message.

User response
Enter a correct source marker type.

EQAZ152E The source marker selection:
markertype is not valid.

Explanation
Valid source marker selections are INCLUDE and
EXCLUDE.

508 IBM z/OS Debugger: Reference and Messages

System action
Panel EQAPCCS2 is displayed with the error message.

User response
Enter a correct source marker selection.

EQAZ153E Code coverage report XML tag
xmltag is found in DS name or DD
name: datasetname.

Explanation
The report XML data set is specified as input to
where the code coverage observation XML data set is
expected.

System action
Processing of XML tags in the data set datasetname is
stopped.

User response
Enter a correct data set name.

EQAZ154E No value is entered in required
field: fieldname

Explanation
The named field of a source marker is a required field.
You must provide a value.

User response
Provide a value for the named field.

EQAZ155W No observation meets selection
criteria.

Explanation
The observation extraction process did not find any
observation in the input code coverage observation
data set that meets the selection criteria.

User response
Check the selection criteria using the E.3 option:
Observation selection criteria to ensure that selection
criteria is specified correctly, and then retry the
extraction process.

EQAZ156W No observation found in file:
filename

Explanation
The report generation process did not find any
observation in the input code coverage extracted
observation data set, filename.

User response
Check the input data set to ensure it is not empty, and
then retry the report generation process.

EQAZ157E Cannot SAVE a template file. Use
SAVE AS to save to a private DTSU
library.

Explanation
You used the SAVE command to save changes to a
message region template. The templates are read-only
from this panel.

System action
Panel EQAPMPRT is displayed with the error message.

User response:
To save your changes to a private library, use the SAVE
AS command.

EQAZ158E The CEEOPTS DD is present but
references a data set. Debugging
may be inhibited.

Explanation
Debugging is enabled by modifying an inline CEEOPTS
DD to include the TEST option. The chosen region
specifies a data set for the CEEOPTS DD; therefore,
z/OS Debugger was not able to update CEEOPTS to
include a TEST parameter.

System action
Panel EQAPMPRT is displayed with the error message.

User response
Contact a message region template administrator to
convert the contents of the data set specified on the
CEEOPTS DD to an inline DD in the template.

EQAZ159E The CEEOPTS DD was not present.
A default in-line CEEOPTS has
been added.

Explanation
In order to specify a TEST runtime parameter, z/OS
Debugger has created an inline CEEOPTS DD for this
message region template.

Chapter 16. IBM z/OS Debugger Utilities messages 509

System action
Panel EQAPMPRS is displayed with the error message.

User response
None required.

EQAZ160E The specified message region
template data set does not exist.
Please supply a valid data set
name.

Explanation
The data set specified for Template Data Set does not
exist.

System action
Panel EQAPMPRS is displayed with the error message.

User response
Supply a valid message region template data set. If
you are unsure, contact a message region template
administrator for a list of valid data set names.

EQAZ161E The data set you have chosen is
already used to store message
region templates that have been
pre-defined by an administrator.
Please select a different data set
for storing your private copy of the
message region template.

Explanation
You have used the SAVE AS command to save a private
copy of a message region template. However, you
have chosen a data set which is already used to store
shared message region templates.

System action
Panel EQAPMPRS is displayed with the error message.

User response
Specify a data set name that is not used to contain
shared message region templates.

EQAZ162E The data set you have chosen
is not a valid template data
set. Please enter the name of a
data set that contains templates
that have been pre-defined by
an administrator. You may also
place / in the first line of the

member list to select a private
message region template.

Explanation
The data set that you specified as the Template Data
Set does not contain pre-defined message region
templates.

System action
Panel EQAPMPRS is displayed with the error message.

User response
Supply a data set name that contains pre-defined
message region templates. If you wish to select a data
set with private message region templates, place a
forward slash (/) next to the first line of the member
list.

EQAZ163E The data set you have chosen
is not a valid template data set.
The data set is not partitioned,
or it has members that are
not pre-defined message region
templates.

Explanation
The data set that you specified as the Template Data
Set does not contain pre-defined message region
templates.

System action
Panel EQAPMPRS is displayed with the error message.

User response
Supply a data set name that contains pre-defined
message region templates.

EQAZ164E Cross reference table data set
datasetname is not available.
Enqueue return code is RC

Explanation
The option, IMS Transaction and User ID Cross
Reference Table, allows you to update the data set.
You must have exclusive control of the data set.
Currently, another user is using the option.

System action
None

510 IBM z/OS Debugger: Reference and Messages

User response
Try to access the option at a later time.

To determine who is holding the cross reference table
data set, issue TSO ISRDDN from the ISPF command
line, type ENQ and press enter. Fill in SPFEDIT as the
Major name prefix, clear the other input fields and
press enter. You should then see who has an enqueue
on that data set held by another user using the same
function or ISPF editor.

EQAZ165E Debug profile data set
datasetname is not available.
Enqueue return code is RC.

Explanation
You can update the data set by using this option. You
must have exclusive control of the data set. Currently,
another user is using the option.

System action
None.

User response
Try to access the option at a later time.

To determine who is holding the cross reference table
data set, issue TSO ISRDDN from the ISPF command
line, type ENQ and press enter. Fill in SPFEDIT as the
Major name prefix, clear the other input fields and
press enter. You should then see who has an enqueue
on that data set held by another user using the same
function or ISPF editor.

EQAZ166I Breakpoints data set: datasetname
is updated.

Explanation
The breakpoints data set or the debug commands data
set is updated successfully.

System action
Processing continues.

User response
None.

EQAZ167E The chosen transaction is not
assigned to a class which
has an active message region.
Therefore, z/OS Debugger cannot
use an active region to build the
debugging region.

Explanation
The IMS Transaction Isolation facility uses the current
execution environment for the selected transaction to
clone a new, private message region. z/OS Debugger
cannot find an active message region that serves the
assigned class of the selected transaction. Therefore,
z/OS Debugger cannot start your private message
region.

System action
The private message region is not started.

User response
Ensure that the transaction is assigned to a class with
an active message region.

EQAZ168E The selection that was entered
is invalid. Valid selections
are (R)egister, (D)eregister,
(S)tart, Sto(P), and (E)dit.

Explanation
An invalid selection character was entered.

System action
None.

User response
Use one of the supported selection characters.

EQAZ169E The identifier that was entered
for the IMS system is invalid.
The IMS system is not set up
for transaction isolation or the
identifier does not correspond to a
valid IMS subsystem ID.

Explanation
The IMS Transaction Isolation facility was not set
up for the IMS system that was entered in the IMS
system field.

System action
None.

User response
Check that the IMS system name was entered
correctly. If the string that was entered is a valid IMS
system, check with the IMS administrator whether the

Chapter 16. IBM z/OS Debugger Utilities messages 511

IMS Transaction Isolation facility is set up for that IMS
system.

EQAZ170E The number of transactions
exceeded the maximum number.
To register for this transaction,
de-register from one of the other
transactions in the list.

Explanation
The IMS system administrator placed a limit on the
number of transactions. The selection that was made
exceeded that limit.

System action
The selected transaction is not registered for debug.

User response
De-register from another transaction that was
registered. You can also request that the IMS system
administrator increase the limit of transactions.

EQAZ171E There are no free IMS region
classes to reserve. Please ask the
administrator to add more classes
for IMS Transaction Isolation
or wait until a class becomes
available.

Explanation
A set of message classes were reserved for z/OS
Debugger to use when the private message regions
were created. All of those classes are currently
reserved by other users.

System action
The transaction that was selected is not registered for
debug.

User response
You can contact one of the users who registered
to debug in the list of transactions to request that
they de-register from their transactions. To view the
list, change the Filter selection to Display full
transaction list. You can also request that the
IMS system administrator add more classes to those
that were reserved for z/OS Debugger.

EQAZ172E A private message region was
started, but no delay debug
options data set was allocated.
The region was started with a
hardcoded TEST parameter of

TEST(ALL,*,PROMPT,VTAM%userid
:*).

Explanation
z/OS Debugger attempts to start your private message
region in Delay Debug mode, so that you can use an
extra level of pattern-matching when the transaction
is routed to your private message region. However,
to use the Delay Debug mode, you must have a data
set allocated that conforms to your site's Delay Debug
options data set naming pattern. Because the data set
does not exist, z/OS Debugger started your region with
a hardcoded TEST parameter.

System action
The private message region is started with the
parameter TEST(ALL,*,PROMPT,VTAM%userid:*).

User response
You can use Delay Debug mode in your private
message region by using IBM z/OS Debugger Utilities
option B, Delay Debug Profile, to create the data
set.

EQAZ173E This function requires z/OS
Debugger SVC Version 18. The
installed z/OS Debugger SVC is
back-level.

Explanation
The IMS Transaction Isolation facility requires at least
Version 18 of the z/OS Debugger SVC.

System action
The requested action is not performed.

User response
Install the proper version of the z/OS Debugger SVC.

EQAZ174I z/OS Debugger commands data
set: datasetname is updated.

Explanation
The z/OS Debugger commands data set is updated
with z/OS Debugger commands created from
breakpoint definitions.

System action
Processing continues.

512 IBM z/OS Debugger: Reference and Messages

User response
None.

EQAZ175E The specified data set does not
exist. Make sure the data set name
is spelled correctly.

Explanation
The specified data set does not exist and a decision is
made not to create one. Make sure the data set name
is spelled correctly.

System action
No z/OS Debugger command is created and saved in
the specified data set.

User response
Check the spelling of the data set name and try it
again.

EQAZ176I The breakpoint table is empty.
No z/OS Debugger command is
created.

Explanation
There is no breakpoint definition in the table. No z/OS
Debugger commands can be created.

System action
Processing continues.

User response
None.

EQAZ177E A partitioned data set for output-
ds was specified, but no member
name was specified.

Explanation
The data set name that was entered for the output
data set is a partitioned data set, but no member name
was specified.

System action
None.

User response
Specify a member name for the output data set, or
specify the name of a sequential data set.

EQAZ178E The character char is not a valid
selection. Use the / character to
select classes for debug.

Explanation
The selection character char that was entered for a
message class is not valid.

System action
The selected class is not reserved for debug users.

User response
Use the / character to select message classes to
reserve for z/OS Debugger.

EQAZ179I The IMS ID list is empty. Consult
with your IMS administrator.

Explanation
No IMS system ID is available.

System action
No transaction is displayed.

User response
Consult with your IMS system administrator whether
the IMS Transaction Isolation facility is enabled.

EQAZ180I No transaction matches the
selection criteria. Check your
transaction filter setting.

Explanation
No transaction matches the selection criteria.

System action
No transaction is displayed.

User response
Check your transaction filter setting:

• Transaction name filter: ensure that the name
pattern is spelled correctly.

• User ID filter: confirm whether you registered any
transaction for debug.

• All transactions: check with your IMS system
administrator whether any transaction is defined in
the selected IMS system.

Chapter 16. IBM z/OS Debugger Utilities messages 513

EQAZ181I More transactions match the
selection criteria. Check your
transaction filter setting.

Explanation
More transactions match the selection criteria than the
maximum number of transactions that are allowed for
display.

System action
The maximum number of transactions are displayed.

User response
Change the maximum number of transactions that are
allowed for display to a larger number or 0 (no limit).

EQAZ182E The private message region is busy
performing a debug session. It
cannot be stopped at this time.
Please try again later.

Explanation
An attempt was made to stop the private message
region. However, the region cannot be stopped
because a debug session is running in the region.

System action
The private message region is not stopped.

User response
Wait until debugging is completed and try again.

EQAZ183E You are attempting to deregister
the last transaction, which will
free up the class you have been
assigned. However, your private
region is still started. Please STOP
your region and try again.

Explanation
An IMS message class is reserved for use if any
transaction is registered for debugging using IMS
Transaction Isolation facility. The request made
would deregister the last transaction and release the
message class. However, the private message region
is still started. When another user who registers for
a transaction receives the released message class
and starts a private message region serving the class,
unpredictable results can happen.

System action
None.

User response
Stop the private message region and try again.

EQAZ184E You are attempting to start a
private message region for the
selected transaction. However a
private region is already started
for your assigned class. You will be
registered for the transaction, but
no region will be started.

Explanation
An attempt was made to start a private message
region for the selected transaction. However, no
private region is started because the region is already
started for the assigned class.

System action
The transaction is registered for debugging, but no
region will be started.

User response
No action is required.

EQAZ185E A private message region region-
name was started, but the job
may not be running. Double check
if region-name is running. If not,
use (P) Stop Region to stop the
private region and then use (S)
Start Region to start it again.

Explanation
A private region was started for IMS Transaction
Isolation. However, the region is not running now and
IMS Transaction Isolation might not know that. The
private region was probably stopped from an IMS
terminal, or abended because of the debugger or user
code.

System action
None.

User response
Manually stop the private region in IMS Transaction
Isolation by entering P. After the status of the private
region is changed to Stopped, restart the private
region by entering S.

514 IBM z/OS Debugger: Reference and Messages

EQAZ186E IMS Transaction Isolation Facility
attempted to execute a type-2
IMS command, but cannot
register with the Structured Call
Interface(SCI). Check with your
systems programmer to ensure
that the IMSplex has been
properly identified.

Explanation
IMS Transaction Isolation Facility uses type-2 IMS
commands in cases where the type-1 equivalents
are disallowed. To issue the type-2 command, IMS
Transaction Isolation must register with the Structured
Call Interface (SCI) for the appropriate IMSplex. The
registration for the IMSplex identified for the selected
IMS system has failed.

System action
The list of transactions failed to be retrieved.

User response
Work with your systems programmer to ensure that
the IMSplex is properly identified for the IMS system
you have chosen.

EQAZ187E IMS Transaction Isolation Facility
attempted to execute a type-2
IMS command, but the Common
Service Layer (CSL) returned
an error. Ask your systems
programmer to check the
Operations Manager (OM) job log
for error messages.

Explanation
An error was encountered after a type-2 IMS
command was issued.

System action
The list of transactions failed to be retrieved.

User response
Ask your systems programmer to examine the
Operations Manager (OM) component job log for error
messages.

EQAZ188E IMS Transaction Isolation Facility
attempted to execute the QUERY
type-2 IMS command, but your
user ID is not authorized to issue
the command. Ask your systems
programmer to grant you the
proper authority.

Explanation
IMS Transaction Isolation Facility attempted the
QUERY type-2 IMS command, but authorization failed
for your user ID.

System action
The list of transactions failed to be retrieved.

User response
Ask your systems programmer to authorize your user
ID to the IMS.CSLimplx.QRY.TRAN resource in the
OPERCMDS class, where implx is the IMSplex name.

Chapter 16. IBM z/OS Debugger Utilities messages 515

516 IBM z/OS Debugger: Reference and Messages

Appendix A. z/OS Debugger commands supported in
Debug Tool compatibility mode

Note: This section is applicable only to Debug Tool compatibility mode, a subset of the remote debug
mode.

You can use some z/OS Debugger commands in Debug Tool compatibility mode through the following
methods:

• Enter these commands through the Debug Engine Command field or the Debug Console Commands
window of the remote debugger.

• When you add a breakpoint through the remote debugger, specify these commands in the Action field,
which is in the Optional Parameters section of the Add a Breakpoint task.

• Use them in a commands or preferences file.

Using any of these methods, you can use the following commands in remote debug mode:

• “AT CHANGE command (remote debug mode)” on page 50
• “AT ENTRY command (remote debug mode)” on page 56
• “AT GLOBAL LABEL command (remote debug mode)” on page 59
• “AT LABEL command (remote debug mode)” on page 62
• AT LABEL *, which is described in “AT LABEL command (remote debug mode)” on page 62
• “AT LOAD command (remote debug mode)” on page 65
• “AT STATEMENT command (remote debug mode)” on page 73
• “CALL %FA command” on page 82
• “CALL %VER command” on page 83
• “CHKSTGV command” on page 85
• CLEAR AT GLOBAL LABEL, which is described in “CLEAR AT command (remote debug mode)” on page

93
• CLEAR AT LABEL, which is described in “CLEAR AT command (remote debug mode)” on page 93
• CLEAR LDD, which is described in “CLEAR command” on page 86
• CLEAR LOAD, which is described in “CLEAR command” on page 86
• DESCRIBE CHANNEL, which is described in “DESCRIBE command” on page 103
• DESCRIBE CUS, which is described in “DESCRIBE command” on page 103
• DESCRIBE LOADMODS, which is described in “DESCRIBE command” on page 103
• DISABLE CADP, which is described in “DISABLE command” on page 107
• DISABLE DTCN, which is described in “DISABLE command” on page 107
• ENABLE CADP, which is described in “ENABLE command” on page 113
• ENABLE DTCN, which is described in “ENABLE command” on page 113
• LIST AT GLOBAL LABEL, which is described in “LIST AT command (remote debug mode)” on page 144
• LIST AT LABEL, which is described in “LIST AT command (remote debug mode)” on page 144
• LIST CADP, which is described in “LIST DTCN or CADP command” on page 149
• “LIST CONTAINER command” on page 147
• LIST DTCN, which is described in “LIST DTCN or CADP command” on page 149
• “LIST LDD command” on page 156
• “LIST NAMES LABELS command (remote debug mode)” on page 160

© Copyright IBM Corp. 1992, 2024 517

• “LOAD command” on page 166
• “LOADDEBUGDATA command” on page 166 (for assembler only)
• “NAMES DISPLAY command” on page 179
• “NAMES EXCLUDE command” on page 179
• “NAMES INCLUDE command” on page 180
• QUERY ASSEMBLER, which is described in “QUERY command” on page 194
• QUERY AUTOMONITOR, which is described in “QUERY command” on page 194
• QUERY BROWSE MODE, which is described in “QUERY command” on page 194
• QUERY CURRENT VIEW, which is described in “QUERY command” on page 194
• QUERY DEFAULT DBG, which is described in “QUERY command” on page 194
• QUERY DEFAULT LISTINGS, which is described in “QUERY command” on page 194
• QUERY DEFAULT MDBG, which is described in “QUERY command” on page 194
• QUERY DEFAULT VIEW, which is described in “QUERY command” on page 194
• QUERY DISASSEMBLY, which is described in “QUERY command” on page 194
• QUERY DYNDEBUG, which is described in “QUERY command” on page 194
• QUERY EQAOPTS, which is described in “QUERY command” on page 194
• QUERY EXPLICITDEBUG, which is described in “QUERY command” on page 194
• QUERY IGNORELINK, which is described in “QUERY command” on page 194
• QUERY INTERCEPT, which is described in “QUERY command” on page 194
• QUERY LDD, which is described in “QUERY command” on page 194
• QUERY LIST BY SUBSCRIPT, which is described in “QUERY command” on page 194
• QUERY LOCATION, which is described in “QUERY command” on page 194
• QUERY LOG, which is described in “QUERY command” on page 194
• QUERY REWRITE, which is described in “QUERY command” on page 194
• QUERY WARNING, which is described in “QUERY command” on page 194
• “QUIT command” on page 199
• QUIT ABEND, which is described in “QUIT command” on page 199
• QUIT DEBUG, which is described in “QUIT command” on page 199
• “QQUIT command” on page 200
• “SET ASSEMBLER ON/OFF command” on page 210
• “SET ASSEMBLER STEPOVER command” on page 211
• “SET AUTOMONITOR command” on page 212
• “SET DEFAULT DBG command” on page 219
• “SET DEFAULT LISTINGS command” on page 220
• “SET DEFAULT MDBG command” on page 221
• “SET DEFAULT VIEW command” on page 223
• “SET DISASSEMBLY command” on page 224
• “SET DYNDEBUG command” on page 225
• “SET EXPLICITDEBUG command” on page 228
• “SET IGNORELINK command” on page 231
• “SET INTERCEPT command (COBOL, remote debug mode)” on page 234
• “SET LDD command” on page 235
• “SET LIST BY SUBSCRIPT command (COBOL)” on page 236

518 IBM z/OS Debugger: Reference and Messages

• SET LOG OFF, which is described in “SET LOG command” on page 239
• SET LOG ON, which is described in “SET LOG command” on page 239
• SET QUALIFY CU, which is described in “SET QUALIFY command” on page 250
• SET QUALIFY LOAD, which is described in “SET QUALIFY command” on page 250
• “SET REWRITE command (remote debug mode)” on page 255
• “SET WARNING command (C, C++, COBOL, and PL/I)” on page 263

You can use the following commands in remote debug mode only in the Action field, which is in the
Optional Parameters section of the Add a Breakpoint task:

• “JUMPTO command” on page 136
• “RUNTO command” on page 203

You can use the following commands in remote debug mode in the Action field, which is in the Optional
Parameters section of the Add a Breakpoint task, and in the Startup Commands section of RD/z Debug
Configuration:

• “GO command” on page 124
• “STEP command” on page 269

Through the Debug Engine Command field or the Debug Console Commands window, you can view a list
of z/OS Debugger commands supported in remote debug mode by doing one of the following tasks:

• Press Ctrl+SPACE BAR.
• Type in the first few letters of a command name. Press Ctrl+SPACE BAR. A list of z/OS Debugger

commands that begin with those same letters is displayed.

z/OS Debugger supports Remote Playback through the Playback Toolbar in the Debug View.

You can display z/OS Debugger variables in remote debug mode. z/OS Debugger reserves variables for
its own information. To distinguish z/OS Debugger variables from program variables, the names of z/OS
Debugger variables begin with a percent sign. You can access z/OS Debugger variables when you test
programs in supported languages. To display the value of a z/OS Debugger variable, add it as a monitor
expression in the Monitors view. For more information about z/OS Debugger variables, see Chapter 8,
“z/OS Debugger variables,” on page 333.

Example

If you want to know the value of the PSW when you debug an assembler program, add the following z/OS
Debugger variable to the Monitors view:

%PSW

Specifying z/OS Debugger commands in launch configuration
Access the Debug Configuration by selecting RUN -> Debug Configurations. After selecting this option
you are presented with the following view:

Appendix A. z/OS Debugger commands supported in Debug Tool compatibility mode 519

On the left side, you will see a list of programs under Incoming Remote Debug Session. Pick the program
that you are interested in debugging and for which you want to add z/OS Debugger commands. For this
example CICK511 is selected.

Select the Debug Console Commands tab.

520 IBM z/OS Debugger: Reference and Messages

The top section labeled as Startup Commands is where you specify the z/OS Debugger commands that
are to be executed at the start of the z/OS Debugger session.

All commands that you can execute in the Debug Console Commands can also be specified as Startup
commands. The only two commands that you can only specify as Startup commands are STEP and GO.

You can specify more than one command separated by a semicolon (;). If you specify STEP or GO, all the
commands that follow are not executed, and z/OS Debugger returns back to the application in STEP or GO
mode.

In the following example, three commands are specified: CALL %VER; QUERY LOCATION; GO;

All three commands are executed and because of the GO at the end z/OS Debugger runs back to the
application until a breakpoint is found, a condition is raised, or the application terminates.

In the following example, the order of the commands is changed to CALL %VER; GO; QUERY LOCATION.
In this example, the command QUERY LOCATION is not executed because the GO command tells z/OS
Debugger to return to the application.

Appendix A. z/OS Debugger commands supported in Debug Tool compatibility mode 521

Specifying the location of source, listing, or separate debug file in
remote debug mode by using environment variables

z/OS Debugger retrieves the information it displays in the Source window from one of the following files:

• source or listing files
• separate debug files (.dbg files or SYSDEBUG)
• EQALANGX files
• .mdbg files (module map files)

If your build or run your applications on UNIX System Services and you move these files, you can use the
following environment variables to specify the new location of these files:
EQA_SRC_PATH

Specifies the location of the source, listing, SYSDEBUG, or EQALANGX files.
EQA_DBG_PATH

Specifies the location of the .dbg file.
EQA_MDBG_PATH

Specifies the location of the .mdbg file.
EQA_DBG_SYSDEBUG

Specifies the location of SYSDEBUG

The following example shows you how to declare an environment variable that specifies the location of a
listing file:

export EQA_SRC_PATH="/u/build1/try1:/u/build2/try3:evaf.test.listing"

You can have a combination of data sets and UNIX file system paths separated by a colon (:) and enclosed
in quotation marks.

522 IBM z/OS Debugger: Reference and Messages

Appendix B. Changes in behavior of some commands

This topic summarizes changes in the default behavior of some commands and in which version of z/OS
Debugger those changes were introduced.

Changes in the behavior introduced with Debug Tool for z/OS,
Version 13.1

• The EQALANGP and EQALANGX modules are moved from Debug Tool's EQAW.SEQAMOD library to
Common Component's IPV.SIPVMODA library. They are now aliases of IPVLANGP and IPVLANGX
respectively. This removes duplication between the two tools.

• Appendix "Quick start guide for compiling and assembling programs for use with IBM Problem
Determination Tools products" in the Debug Tool User's Guide is removed because this has been placed
in the IBM Problem Determination Tools for z/OS Common Component: Customization Guide and User
Guide instead.

Note: Debug Tool for z/OS is now named z/OS Debugger, and Problem Determination Tools for z/OS
Common Component is now named IBM Application Delivery Foundation for z/OS Common Components.

Changes in the behavior introduced with Debug Tool for z/OS,
Version 12.1, with the PTF for APAR PM85967 for Enterprise
COBOL for z/OS Version 5.1

• BINARY data items are treated the same as "native" binary data items, that is, COMP-5.
• Values for Debug Tool variables of string type are displayed with quotation marks around them. For

example, LIST %SYSTEM is displayed as %SYSTEM = 'MVS'.
• The output of LIST %RC is changed to be consistent with the display of the program variables of type
S9(4) COMP. For example, LIST %RC result is displayed as %RC = +00000.

• When displaying the value of a variable, Debug Tool does not show the block qualification.
• If a Debug Tool session variable has the same name as a program variable, the session variable takes

precedence. For example, if you use a LIST or DESCRIBE ATTRIBUTES command for such a variable,
the values that are displayed correspond to the session variable.

• The output of AUTOMONITOR for a scalar variable does not show the level number associated with the
variable.

• If a statement uses ADDRESS OF <reference>, it is the address of the reference that is shown in the
automonitor output, not the value of <reference>.

• With SET MONITOR DATATYPE ON, Debug Tool displays the attributes as declared in the program.
• With SET MONITOR DATATYPE ON, Debug Tool displays the resulting attributes of the expression.
• When referencing an array element, you can use an integer literal to increment or decrement an index

value, for example, LIST ARR4(IX3 + 5, 1).
• When using a subscript as part of an expression, you need to follow COBOL language rules that specify

that the data name or index name should be followed by the operator + or - and a positive or unsigned
integer literal.

• Simple assignment between compatible types can be done by using the SET, MOVE, or COMPUTE
command.

• Object-oriented programs do not have Factory and Object blocks. Commands like LIST NAMES,
DESCRIBE CUS, LIST TITLED will not show any information about these blocks.

© Copyright IBM Corp. 1992, 2024 523

• Reference modifications can be applied only to character types that have usage DISPLAY, DISPLAY-1,
or NATIONAL. If a reference modification is applied to any other type, an error message is displayed.

Changes in behavior introduced with Debug Tool for z/OS, Version
11.1

Beginning with Debug Tool for z/OS, Version 11.1, Debug Tool changed how it processed nested blocks in
C and C++ programs, thereby improving performance.

The z/OS XL C/C++ compiler defines a block statement (or block) as all definitions, declarations, and
statements enclosed with a single set of braces: {}. You can nest blocks and the compiler assigns names
to these blocks using the following pattern: %BLOCKn, where n is a sequential number.

To describe the difference in behavior, review the following example:

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#define NUM_INVOKE 5

main()
{ /* block 1 start */
 int elm1 = 5, qvar1, qvar2, i;

 qvar1 = 1;
 qvar2 = 9;

 for(i=0; i<NUM_INVOKE; ++i)
 { /* block 2 start */
 qvar1 = qvar1 + 1;
 qvar2 = qvar2 + 1;
 } /* block 2 end */

 qvar1 = qvar1 + 1;
 qvar2 = qvar2 + 1;

 if(elm1 = 5)
 { /* block 3 start */
 qvar1 = qvar1 + 5;
 qvar1 = qvar1 + 5;
 } /* block 3 end */
 else
 { /* block 4 start */
 qvar1 = qvar1 - 5;
 qvar2 = qvar2 - 5;
 } /* block 4 end */

 qvar1 = qvar1 - 1;
 qvar2 = qvar2 - 1;

 } /* block 1 end */

Previous behavior
After you enter the AT ENTRY, AT EXIT, AT GLOBAL, or AT PATH command, z/OS Debugger would
stop at the start, end, or both (depending on which command you entered) of all the blocks.

New behavior
After you enter the AT ENTRY, AT EXIT, AT GLOBAL, or AT PATH command, z/OS Debugger stops
only at the start, end, or both (depending on which command you entered) of block 1.

Refer to the following topics for more information related to the material discussed in this topic.

Related references
Description of block statements in z/OS XL C/C++ Language Reference
“AT ENTRY command” on page 54
“AT EXIT command” on page 56
“AT GLOBAL command” on page 58
“AT PATH command” on page 69

524 IBM z/OS Debugger: Reference and Messages

Changes in behavior introduced with Debug Tool for z/OS, Version
10.1

Beginning with Debug Tool for z/OS, Version 10.1, the Debug Tool DTCN Primary Menu changed how to
identify the program or programs you want to debug. Previously, you identified a program through the
Program ID field. This changed to two fields: LoadMod and CU.

Changes in behavior introduced with Debug Tool for z/OS, Version
9.1, with the PTF for APAR PK74749 applied

Beginning with Debug Tool for z/OS, Version 9.1, with the PTF for APAR PK74749 applied, Debug Tool
changed how it handled pointers in C/C++ programs to better match the semantics of C/C++. The
following commands were affected by this change:

• An AT CHANGE command that references a pointer. For example, AT CHANGE p.
Previous behavior

Debug Tool stops when p changes.
New behavior

Debug Tool stops when the value of what p points to changes.
• A LIST STORAGE command that references a pointer. For example, LIST STORAGE(p,0,4).

Previous behavior
Debug Tool displays the contents of p.

New behavior
Debug Tool displays the contents of what p points to.

• A MEMORY command that references a pointer. For example, MEMORY p.
Previous behavior

Debug Tool displays the contents of p.
New behavior

Debug Tool displays the contents of what p points to.
• A STORAGE command that references a pointer. For example, STORAGE(p,0,4).

Previous behavior
Debug Tool changes the contents of p

New behavior
Debug Tool changes the contents of what p points to.

Refer to the following topics for more information related to the material discussed in this topic.

Related references
“AT CHANGE command (full screen mode, line mode, batch mode)” on page 45
“LIST STORAGE command” on page 163
“MEMORY command” on page 169
“WINDOW SWAP command” on page 284
“STORAGE command” on page 271

Appendix B. Changes in behavior of some commands 525

526 IBM z/OS Debugger: Reference and Messages

Appendix C. Limitations of 64-bit support in Debug
Tool compatibility mode

Debug Tool compatibility mode, a subset of remote debug mode, supports 64-bit COBOL and C/C++
programs with some limitations. For 64-bit PL/I programs, use standard mode, another subset of remote
debug mode, instead.

Subsystems IMS, Db2, and CICS are not supported.

The following functions are not supported for 64-bit COBOL and C/C++ programs in Debug Tool
compatibility mode:

• The EQAUEDAT user exit, EQA_DBG_PATH environment variable, and EQA_SRC_PATH environment
variable

• Language Environment user exit (CEEBXITA)
• Compiled in hooks

In addition to all the commands strictly related to the unsupported subsystems and functions mentioned
above, the following commands are not supported for 64-bit COBOL and C/C++ programs in Debug Tool
compatibility mode:

• z/OS Debugger commands:

– CALL %FA
– SET DYNDEBUG

• EQAOPTS commands:

– EQAQPP
– DLAYDBGCND
– DLAYDBGXRF
– DYNDEBUG
– SVCSCREEN

© Copyright IBM Corp. 1992, 2024 527

528 IBM z/OS Debugger: Reference and Messages

Appendix D. Support resources and problem solving
information

This section shows you how to quickly locate information to help answer your questions and solve your
problems. If you have to call IBM support, this section provides information that you need to provide to
the IBM service representative to help diagnose and resolve the problem.

Accessing the IBM Support portal
You must be a registered user on the IBM Support portal to download fixes and to submit a problem
online to the IBM Support community.

If you need to look beyond IBM Documentation to answer your question or resolve your problem, you can
use one or more of the following approaches:

• Open the IBM Support portal.

• Click to log in using your IBM.com username.
• On the IBM Support portal, you can do the following tasks:

– Search for known issues, documentation, and support forums.
– Open a case or view cases you opened.
– Open a chat window with a Support representative.
– Open Fix Central to view product downloads and updates.
– Access product documentation and support forums.
– Manage your support account, including notifications, invoices, orders, contracts, and warranties. For

more information about notifications, see “Subscribing to support updates” on page 529.

Getting fixes
A product fix might be available to resolve your problem. To determine what fixes and other updates are
available, select a link from the following list:

• Latest PTFs for z/OS Debugger
• Latest PTFs for IBM Developer for z/OS Enterprise Edition
• Latest PTFs for ADFz Common Components

When you find a fix that you are interested in, click the name of the fix to read its description and to
optionally download the fix.

Subscribe to receive e-mail notifications about fixes and other IBM Support information as described in
Subscribing to Support updates.

Subscribing to support updates
To receive automatic updates when IBM publishes new support content for your products, subscribe to
weekly email updates or RSS feeds. Support content might include information about new releases, fixes,
technotes, APARs, and support flashes.

To sign up for email updates, you must be a registered user on the IBM Support community website.

To subscribe to Support updates, follow the steps below.

1. Open the IBM Support portal website.

2. Click to log in using your IBM.com username.

© Copyright IBM Corp. 1992, 2024 529

https://www.ibm.com/docs
https://www.ibm.com/mysupport/
http://www.ibm.com/support/docview.wss?uid=swg27049405
http://www.ibm.com/support/docview.wss?uid=swg27048755
http://www.ibm.com/support/docview.wss?uid=swg21612547
https://www.ibm.com/mysupport/

3. Click Manage support account > Notifications to view your notifications.
4. Type the product name in the search field or click Browse for a product.
5. Type the product name in the Product lookup field, or click Browse for a product.
6. Click Subscribe beside your product, and in the Select document types window, select the types of

documents for which you want to receive information. Click Submit.
7. Optionally, you can click the RSS/Atom feed by clicking Links. Then, copy and paste the link into your

feeder.
8. To see any notifications that were sent to you, click View.

Contacting IBM Support
To submit your problem to IBM Support, you must have an active Passport Advantage® software
maintenance agreement. Passport Advantage is the IBM comprehensive software licensing and software
maintenance (product upgrades and technical support) offering. You can enroll online on the Passport
Advantage website.

• To learn more about Passport Advantage, see the Passport Advantage FAQs.
• For further assistance, contact your IBM representative.

To submit your problem online (from the IBM website) to IBM Support:

• Be a registered user on the IBM Support website. For details about registering, see Registering on the
IBM Support website.

• Be listed as an authorized caller in the service request tool.

Determine the business impact of your problem
When you report a problem to IBM, you are asked to supply a severity level. Therefore, you must
understand and assess the business impact of the problem that you are reporting.
Severity 1

The problem has a critical business impact: You are unable to use the program, resulting in a critical
impact on operations. This condition requires an immediate solution.

Severity 2
This problem has a significant business impact: The program is usable, but it is severely limited.

Severity 3
The problem has some business impact: The program is usable, but less significant features (not
critical to operations) are unavailable.

Severity 4
The problem has minimal business impact: The problem causes little impact on operations or a
reasonable circumvention to the problem was implemented.

Gather diagnostic information
To save time, if there is a MustGather document available for the product, refer to the MustGather
document and gather the information specified. MustGather documents contain specific instructions for
submitting your problem to IBM and gathering information needed by the IBM support team to resolve
your problem. To determine if there is a MustGather document for this product, go to the product support
page and search on the term MustGather. At the time of this publication, the following MustGather
documents are available:

• MustGather: Read first for problems encountered with z/OS Debugger: https://www.ibm.com/support/
pages/node/89125

• MustGather: Read first for problems encountered with code coverage: https://www.ibm.com/support/
pages/node/6561317

If the product does not have a MustGather document, provide answers to the following questions:

530 IBM z/OS Debugger: Reference and Messages

https://www.ibm.com/software/passportadvantage/howtoenroll.html
https://www.ibm.com/software/passportadvantage/howtoenroll.html
https://www.ibm.com/software/passportadvantage/brochures_faqs_quickguides.html
https://www.ibm.com/support/pages/node/89125
https://www.ibm.com/support/pages/node/89125
https://www.ibm.com/support/pages/node/6561317
https://www.ibm.com/support/pages/node/6561317

• What software versions were you running when the problem occurred?
• Do you have logs, traces, and messages that are related to the problem symptoms? IBM Software

Support is likely to ask for this information.
• Can you re-create the problem? If so, what steps were performed to re-create the problem?
• Did you make any changes to the system? For example, did you make changes to the hardware,

operating system, networking software, and so on.
• Are you currently using a workaround for the problem? If so, be prepared to explain the workaround

when you report the problem.

Submit the problem to IBM Support
You can submit your problem to IBM Support in the following ways:

• Online: Open the IBM Support community website. Click Open a case to open a service request and
describe the problem in detail.

• By phone: For the phone number to call in your country or region, see the IBM Directory of worldwide
contacts and click the name of your country or geographic region.

• Through your IBM Representative: If you cannot access IBM Support online or by phone, contact your
IBM Representative. If necessary, your IBM Representative can open a service request for you. You can
find complete contact information for each country at IBM Directory of worldwide contacts.

If the problem you submit is for a software defect or for missing or inaccurate documentation, IBM
Support creates an Authorized Program Analysis Report (APAR). The APAR describes the problem in
detail. Whenever possible, IBM Support provides a workaround that you can implement until the APAR is
resolved and a fix is delivered. IBM publishes resolved APARs on the IBM Support website daily, so that
other users who experience the same problem can benefit from the same resolution.

Appendix D. Support resources and problem solving information 531

https://www.ibm.com/mysupport/
http://www.ibm.com/planetwide/
http://www.ibm.com/planetwide/
http://www.ibm.com/planetwide/

532 IBM z/OS Debugger: Reference and Messages

Appendix E. Accessibility

Accessibility features help a user who has a physical disability, such as restricted mobility or limited
vision, to use software products successfully. The accessibility features in z/OS provide accessibility for
z/OS Debugger.

The major accessibility features in z/OS enable users to:

• Use assistive technology products such as screen readers and screen magnifier software
• Operate specific or equivalent features by using only the keyboard
• Customize display attributes such as color, contrast, and font size

IBM Documentation, and its related publications, are accessibility-enabled. The accessibility features of
the information center are described at https://www.ibm.com/docs.

Using assistive technologies
Assistive technology products work with the user interfaces that are found in z/OS. For specific guidance
information, consult the documentation for the assistive technology product that you use to access z/OS
interfaces.

Keyboard navigation of the user interface
Users can access z/OS user interfaces by using TSO/E or ISPF. Refer to z/OS TSO/E Primer, z/OS TSO/E
User’s Guide, and z/OS ISPF User’s Guide Volume 1 for information about accessing TSO/E and ISPF
interfaces. These guides describe how to use TSO/E and ISPF, including the use of keyboard shortcuts
or function keys (PF keys). Each guide includes the default settings for the PF keys and explains how to
modify their functions.

Accessibility of this document
Information in the following format of this document is accessible to visually impaired individuals who use
a screen reader:

• HTML format when viewed from IBM Documentation
• PDF format

Syntax diagrams start with the word Format or the word Fragments. Each diagram is preceded by two
images. For the first image, the screen reader will say "Read syntax diagram". The associated link leads to
an accessible text diagram. When you return to the document at the second image, the screen reader will
say "Skip visual syntax diagram" and has a link to skip around the visible diagram.

© Copyright IBM Corp. 1992, 2024 533

https://www.ibm.com/docs

534 IBM z/OS Debugger: Reference and Messages

Notices

This information was developed for products and services offered in the U.S.A. IBM might not offer the
products, services, or features discussed in this document in other countries. Consult your local IBM
representative for information on the products and services currently available in your area. Any reference
to an IBM product, program, or service is not intended to state or imply that only that IBM product,
program, or service may be used. Any functionally equivalent product, program, or service that does not
infringe any IBM intellectual property right may be used instead. However, it is the user's responsibility to
evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter in this document. The
furnishing of this document does not give you any license to these patents. You can send license inquiries,
in writing, to:

IBM Corporation
J46A/G4
555 Bailey Avenue
San Jose, CA 95141-1003
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM Intellectual Property
Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan, Ltd.
3-2-12, Roppongi, Minato-ku, Tokyo 106-8711

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with the local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION “AS IS”
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE.

Some states do not allow disclaimer of express or implied warranties in certain transactions; therefore,
this statement might not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically
made to the information herein; these changes will be incorporated in new editions of the publication.
IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Copyright license
This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs
in any form without payment to IBM, for the purposes of developing, using, marketing or distributing
application programs conforming to the application programming interface for the operating platform
for which the sample programs are written. These examples have not been thoroughly tested under
all conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these
programs. The sample programs are provided "AS IS", without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

Each copy or any portion of these sample programs or any derivative work must include a copyright
notice as follows:
© (your company name) (year).

© Copyright IBM Corp. 1992, 2024 535

Portions of this code are derived from IBM Corp. Sample Programs.
© Copyright IBM Corp. _enter the year or years_.

Privacy policy considerations
IBM Software products, including software as a service solutions, ("Software Offerings") may use cookies
or other technologies to collect product usage information, to help improve the end user experience, or
to tailor interactions with the end user, or for other purposes. In many cases no personally identifiable
information is collected by the Software Offerings. Some of our Software Offerings can help enable you
to collect personally identifiable information. If this Software Offering uses cookies to collect personally
identifiable information, specific information about this offering's use of cookies is set forth below.

This Software Offering does not use cookies or other technologies to collect personally identifiable
information.

If the configurations deployed for this Software Offering provide you as customer the ability to collect
personally identifiable information from end users via cookies and other technologies, you should seek
your own legal advice about any laws applicable to such data collection, including any requirements for
notice and consent.

For more information about the use of various technologies, including cookies, for these purposes,
see IBM's Privacy Policy at http://www.ibm.com/privacy and IBM's Online Privacy Statement at http://
www.ibm.com/privacy/details in the section entitled "Cookies, Web Beacons and Other Technologies",
and "the IBM Software Products and Software-as-a-Service Privacy Statement" at http://www.ibm.com/
software/info/product-privacy.

Programming interface information
This document is intended to help you debug application programs. This publication documents intended
Programming Interfaces that allow you to write programs to obtain the services of z/OS Debugger.

Trademarks and service marks
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business
Machines Corp., registered in many jurisdictions worldwide. Other product and service names might be
trademarks of IBM or other companies. A current list of IBM trademarks is available on the web at
"Copyright and trademark information" at www.ibm.com/legal/copytrade.shtml.

Other company, product, or service names may be trademarks or service marks of others.

536 IBM z/OS Debugger: Reference and Messages

http://www.ibm.com/privacy
http://www.ibm.com/privacy/details
http://www.ibm.com/privacy/details
http://www.ibm.com/software/info/product-privacy
http://www.ibm.com/software/info/product-privacy
http://www.ibm.com/legal/us/en/copytrade.shtml

Glossary

This glossary defines technical terms and abbreviations used in IBM z/OS Debugger Reference and
Messages documentation. If you do not find the term you are looking for, refer to the IBM Glossary of
Computing Terms, located at the IBM Terminology web site:

http://www.ibm.com/ibm/terminology

D
DTCN

z/OS Debugger Control utility, a CICS transaction that enables the user to identify which CICS
programs to debug.

debugging profile
Data that specifies a set of application programs which are to be debugged together.

E
eXtra Performance LINKage (XPLINK)

A new call linkage between functions that has the potential for a significant performance increase
when used in an environment of frequent calls between small functions. XPLINK makes subroutine
calls more efficient by removing nonessential instructions from the main path. When all functions are
compiled with the XPLINK option, pointers can be used without restriction, which makes it easier to
port new applications to z/OS.

I
index

A computer storage position or register, the contents of which identify a particular element in a table.

M
minor node

In VTAM, a uniquely defined resource within a major node.
multitasking

A mode of operation that provides for concurrent performance, or interleaved execution of two or
more tasks.

N
network identifier

In TCP/IP, that part of the IP address that defines a network. The length of the network ID depends on
the type of network class (A, B, or C).

O
offset

The number of measuring units from an arbitrary starting point to some other point.

S
Single Point of Control

The control interface that sends commands to one or more members of an IMSplex and receives
command responses.

© Copyright IBM Corp. 1992, 2024 537

SPOC
See Single Point of Control.

statement
An instruction in a program or procedure.
In programming languages, a language construct that represents a step in a sequence of actions or a
set of declarations.

X
XPLINK

See eXtra Performance LINKage (XPLINK).

538 IBM z/OS Debugger: Reference and Messages

IBM z/OS Debugger publications

You can access the IBM z/OS Debugger publications by visiting any of the following pages:

• IBM Debug for z/OS:

– IBM Documentation: https://www.ibm.com/docs/SSVSZX_15.0.0/com.ibm.debug.z.doc/topics/
pdf.html

– Library page: https://www.ibm.com/support/pages/node/713283
• IBM Developer for z/OS:

– IBM Documentation: https://www.ibm.com/docs/SSQ2R2_15.0.0/com.ibm.debug.z.doc/topics/
pdf.html

– Library page: https://www.ibm.com/support/pages/node/713179
• IBM Z and Cloud Modernization Stack:

– IBM Documentation: https://www.ibm.com/docs/SSV97FN_latest/com.ibm.debug.z.doc/topics/
pdf.html

© Copyright IBM Corp. 1992, 2024 539

https://www.ibm.com/docs/SSVSZX_15.0.0/com.ibm.debug.z.doc/topics/pdf.html
https://www.ibm.com/docs/SSVSZX_15.0.0/com.ibm.debug.z.doc/topics/pdf.html
https://www.ibm.com/support/pages/node/713283
https://www.ibm.com/docs/SSQ2R2_15.0.0/com.ibm.debug.z.doc/topics/pdf.html
https://www.ibm.com/docs/SSQ2R2_15.0.0/com.ibm.debug.z.doc/topics/pdf.html
https://www.ibm.com/support/pages/node/713179
https://www.ibm.com/docs/SSV97FN_latest/com.ibm.debug.z.doc/topics/pdf.html
https://www.ibm.com/docs/SSV97FN_latest/com.ibm.debug.z.doc/topics/pdf.html

540 IBM z/OS Debugger: Reference and Messages

Index

Special Characters
_STORAGE, how z/OS Debugger implicitly defines 20
? command 31
.dbg file

SET DEFAULT DBG command 219
.mdbg file

SET DEFAULT MDBG command 221
SET MDBG command 242

%ADDRESS variable 335
%AMODE variable

description 335
%BLOCK variable 335
%CAAADDRESS variable 336
%CC variable 336
%CEBR command, CALL 77
%CECI command, CALL 77
%CHAR built-in function 327
%CONDITION variable

description 336
%COUNTRY variable 336
%CU variable 336
%DEC built-in function 327
%DUMP command, CALL 77
%EPA variable 336
%EPRBn variable 337
%EPRDn variable 337
%EPRn variable 336
%FA command, CALL 82
%FM command, CALL 82
%FPRBn variable 338
%FPRDn variable 338
%FPRn variable 337
%GENERATION built-in function 328
%GPRGn variable 339
%GPRHn variable 339
%GPRn variable 338
%HARDWARE variable 340
%HEX built-in function 328
%IF command (programming language neutral) 129
%INSTANCES built-in function

restriction with replay 329
%LINE variable 340
%LOAD variable 340
%LPRBn variable 341
%LPRDn variable 341
%LPRn variable 340
%NLANGUAGE variable 341
%PATHCODE variable

description 341
restriction with replay 341

%PLANGUAGE variable 341
%port_id suboption of TEST runtime option 8
%PROGMASK variable 342
%PROGRAM variable 336, 342
%PSW variable 342
%RC variable 342

%RECURSION built-in function 330
%Rn variable 342
%RUNMODE variable 342
%STATEMENT variable 340
%SUBSYSTEM variable 342, 343
%SYSTEM variable 343
%VER command, CALL 83
%WHERE built-in function 331

Numerics
64-bit operands, how z/OS Debugger handles 22

A
abbreviating commands 27
address description 11
ALL suboption of TEST runtime option 4
ALLOCATE command (PL/I) 31
ALLOCATE, AT command (PL/I) 41
allowable comparisons for z/OS Debugger IF command
(COBOL) 132
allowable moves

for z/OS Debugger MOVE command
176
for z/OS Debugger SET command 267

ANALYZE command (PL/I) 32
APPEARANCE, AT command 42
assembler

commands
assignment 33

EQU instruction 19
symbols implicitly defined 19
WHERE built-in function 331

assembler commands
declarations 95
DO 110
IF 130
LOADDEBUGDATA (explicit debug mode) 168
MEMORY 169
SET ASSEMBLER 210

assembler expression syntax
common syntax elements 19
conditional operators 22
operators 20

assembler, definition of xiii
ASSEMBLER, QUERY command 196
ASSEMBLER, SET command 210
assignment command (assembler) 33
assignment command (LangX COBOL) 35
assignment command (PL/I) 36
AT commands

AT ALLOCATE (PL/I) 41
AT APPEARANCE 42
AT CALL

description 43
restriction with playback 44

Index 541

AT commands (continued)
AT CHANGE 45
AT CHANGE (remote debug mode) 50
AT CURSOR

restriction with playback 52
AT DATE

restriction with playback 53
AT DATE (COBOL) 53
AT DELETE

restriction with playback 54
AT ENTRY

restriction with playback 55
AT ENTRY (remote debug mode) 56
AT ENTRY/EXIT

restriction with playback 57
AT EXIT 56
AT GLOBAL

restriction with playback 58
AT GLOBAL LABEL 59
AT LABEL command

restriction with playback 62
AT LINE

restriction with playback 63
AT LINE (remote debug mode) 73
AT LOAD

restriction with DLL 64
restriction with playback 64

AT LOAD (remote debug mode) 65
AT OCCURRENCE

restriction with playback 67
AT OFFSET (disassembly) 68
AT PATH

restriction with playback 69
AT prefix (full-screen mode)

restriction with playback 70
AT STATEMENT

restriction with playback 71
AT STATEMENT (remote debug mode) 73
AT TERMINATION

restriction with playback 74
summary 37

AUTOMONITOR, QUERY command 196
AUTOMONITOR, SET command 212

B
batch mode

restrictions 197, 246, 247, 254
BEGIN command 74
BEGIN command (PL/I)

restriction with playback 74
block command (C and C++)

restriction with playback 75
block_name, description 11
block_spec, description 12
break command (C and C++)

restriction with playback 75
breakpoint

AT command, setting with 37
in unknown compile unit 42
removing 86

breakpoints
saving and restoring

CICS-specific information 37

browse mode
controlled by EQAOPTS 295, 296

BROWSE MODE, QUERY command 196

C
C and C++

%INSTANCES built-in function 329
%STORAGE function 46
commands

block 75
break 75
do/while 110
for 123
if 130
INPUT 135
SET INTERCEPT 232
SET LONGCUNAME 241
SET WARNING 263
switch 273
while 281

declarations 96
expression 116
HEX built-in function 328
nested blocks, z/OS Debugger changes how it handles
523, 524
RECURSION built-in function 330

CALL %CEBR command 77
CALL %CECI command 77
CALL %DUMP command

corresponding SNAP options 81
restriction with playback 81

CALL commands
CALL %CEBR 77
CALL %CECI 77
CALL %DUMP 77
CALL %FA 82
CALL %FM 82
CALL %VER 83
CALL entry_name

restriction with playback 84
CALL entry_name (COBOL) 83
CALL HOGAN 82
CALL procedure 84
summary 76

CALLS, LIST command 144
CCSID 299
CEEREACTAFTERQDBG command

syntax of EQAXOPT macro for 298
CEETEST 298
CHANGE, AT command 45
CHANGE, AT command (remote debug mode) 50
CHANGE, QUERY command 196
CHANGE, SET command 214
changes

how z/OS Debugger handles nested blocks in C and C++
523, 524
how z/OS Debugger handles pointers in C and C++ 525
how z/OS Debugger identifies programs in DTCN primary
menu 525

CHKSTGV command 85
CLEAR AT command 93
CLEAR command

restriction with playback 89

542 IBM z/OS Debugger: Reference and Messages

CLEAR prefix (full-screen mode)
restriction with playback 92

CLOSE, WINDOW command 282
COBOL

%STORAGE function 46
AT DATE command 53
commands

CALL entry_name 83
COMPUTE 94
EVALUATE 115
IF 131
INPUT 135
MOVE 175
PERFORM 185
SET 266
SET INTERCEPT 233
SET INTERCEPT (remote debug mode) 234
SET, allowable moves 267

declarations 99
HEX built-in function 328
non-Language Environment

operators for any expression 24
operators for conditional expression 25
supported operators 23
syntax elements for expressions 24

SET WARNING, to modify variables in optimized code
263

code page, default 9
code pages

creating conversion images for 299
COLOR, SET command 215
COLORS, QUERY command 196
COLUMN, SET MONITOR command 244
command

syntax diagrams xiii
command suboption of TEST runtime option 7
Command window, command to display 191
commands

delimiting 74
commands_file of TEST runtime option 5
commands_file_designator suboption of TEST runtime
option 6
COMMANDSDSN command

syntax of EQAXOPT macro for 297, 298, 301
COMMANDSDSN, EQAOPTS command 5
COMMENT command 93
common syntax elements 11
comparisons, allowable (IF command for COBOL) 132
compile unit

record of associations, z/OS Debugger
184

compile_unit_name, description 13
COMPUTE command (COBOL) 94
condition

constants, for C 278
for C 65

condition, description 12
COUNTRY, QUERY command 196
COUNTRY, SET command 218
cu_spec, description 13
CURRENT VIEW, QUERY command 196
CURSOR command 95
cursor commands

CURSOR, AT 52

cursor commands (continued)
CURSOR, LIST (full-screen mode) 148

cursor, command to move 191
customer support 530

D
DATATYPE, SET MONITOR command 244
DATE, AT command 53
DBCS

SET DBCS command 218
variable, assigning new value to 176

DBCS, QUERY command 196
DBCS, SET command 218
declarations

for assembler 95
for C and C++ 96
for COBOL 99
for disassembly 95
for LangX COBOL 95

declarations (C and C++)
restriction with playback 99

DECLARE command (PL/I)
restriction with playback 102

DEFAULT DBG, QUERY command 196
DEFAULT DBG, SET command 219
DEFAULT LISTINGS, QUERY command 196
DEFAULT LISTINGS, SET command 220
DEFAULT MDBG, QUERY command 196
DEFAULT MDBG, SET command 221
DEFAULT SCROLL, QUERY command 196
DEFAULT SCROLL, SET command 222
DEFAULT VIEW, QUERY command 196
DEFAULT VIEW, SET command 223
DEFAULT WINDOW, QUERY command 196, 197
DEFAULT WINDOW, SET command 224
DEFAULTVIEW command

syntax of EQAXOPT macro for 302
deferred breakpoints

how breakpoints become 39
DELETE, AT command 53
DELETE, detecting 321
DESCRIBE command

description 103
restriction with playback 106

DISABLE command
restriction with playback 108

DISABLERLIM command
description of 302
syntax of EQAXOPT macro for 302

disassembly
commands not supported for

GOTO 126
JUMPTO 137
PLAYBACK 188

WHERE built-in function 331
disassembly commands

AT OFFSET 68
declarations 95
DO 110
IF 130
SET DISASSEMBLY 224
while 281

DISASSEMBLY, QUERY command 196

Index 543

DISASSEMBLY, SET command 224
display point of execution 252
DLAYDBG command

description of 302
syntax of EQAXOPT macro for 302

DLAYDBGDSN command
syntax of EQAXOPT macro for 303

DLAYDBGTRC command
syntax of EQAXOPT macro for 304

DO command (assembler, disassembly, LangX COBOL) 110
DO command (PL/I)

restriction with playback 113
do/while command (C and C++)

restriction with playback 110
documents, licensed xi
DYNDEBUG, QUERY command 196
DYNDEBUG, SET command 225

E
ECHO, QUERY command 196
ECHO, SET command 226
ENABLE command

restriction with playback 114
Enterprise PL/I

commands not supported for
GOTO LABEL 129

Enterprise PL/I, definition of xiii
entry_name, CALL command (COBOL) 83
ENTRY, AT command 54
ENTRY, AT command (remote debug mode) 56
EQANMDBG

and using the positional parameter 1
rules to follow 1

EQAOPTS CODEPAGE command vs. VADSCPnnnn option 6
EQAOPTS, QUERY command 196
EQAOPTS, using to set global preferences 308
EQAOPTS, using to set SVC screening option 321
EQUATE, SET command

description 227
EQUATES, QUERY command 196
ERROR suboption of TEST runtime option 5
EVALUATE command (COBOL)

description 115
every_clause, description 40
example

JCL that generates conversion images 300
examples

assembler instructions with implied length 19
assembler instructions without implied length 19
compile_unit_name 13

EXECUTE, QUERY command 196
EXECUTE, SET command 228
EXIT, AT command 56
EXPLICITDEBUG, QUERY command 196
EXPLICITDEBUG, SET command 228
expression command (C and C++)

restriction with playback 117
expression, LIST command 149
expressions

description 14
LangX COBOL similar to assembler 23
subset, description 15

F
FIND command

description 117
FINDBP command

description 121
fixes, getting 529
for command (C and C++) 123
FREE command 124
FREQUENCY, LIST command 155
FREQUENCY, QUERY command 197
FREQUENCY, SET command 230
full-screen mode

AT CURSOR command 52
AT prefix 70
CLEAR prefix 92
CURSOR command 95
DESCRIBE CURSOR 104
DISABLE prefix 109
ENABLE prefix 114
FIND 117
FINDBP 121
IMMEDIATE 135
LIST CONTAINER 147
LIST CURSOR 148
LIST DTCN or CADP 149
PANEL 183
PANEL LISTINGS 184
PANEL SOURCE 184
prefix commands 192
QUERY prefix 199
RETRIEVE 202
SET COLOR 215
SET DEFAULT SCROLL 222
SET DEFAULT WINDOW 224
SET KEYS 234
SET LOG NUMBERS 241
SET MONITOR 243
SET MONITOR COLUMN 244
SET MONITOR DATATYPE 244
SET MONITOR LIMIT 244
SET MONITOR NUMBERS 244
SET MONITOR WRAP 244
SET PROMPT 249
SET SAVE 255
SET SCREEN 258
SET SCROLL DISPLAY 259
SET SUFFIX 261
SHOW prefix 269
WINDOW CLOSE 282
WINDOW OPEN 283
WINDOW SIZE 284
WINDOW SWAP 284
WINDOW ZOOM 285

function, z/OS Debugger
%CHAR 327
%DEC 327
%GENERATION 328
%HEX 328
%INSTANCES 329
%RECURSION 330
%WHERE 331

functions, z/OS Debugger
%STORAGE 46

544 IBM z/OS Debugger: Reference and Messages

functions, z/OS Debugger (continued)
summary 327

G
GENERATION built-in function 328
GLOBAL LABEL, AT command 59
global preferences file 308
GLOBAL, AT command 58
GO command 124
GOTO command

restriction with COBOL 126
restriction with playback 126

GOTO LABEL command
restriction with playback 129

H
HEX built-in function 328
HISTORY, QUERY command 197
HISTORY, SET command 231
HOGAN command, CALL 82
HOSTPORTS 309

I
IBM Support Assistant, searching for problem resolution 529
IF command

allowable comparisons (for COBOL) 132
for C and C++

restriction with playback 131
for PL/I

restriction with playback 134
IF command (assembler, disassembly, LangX COBOL) 130
IF command (C and C++) 130
IF command (COBOL) 131
IF command (PL/I) 134
IGNORELINK, QUERY command 197
IGNOREODOLIMIT 309
IMMEDIATE command 135
IMSISOORIGPSB 310
initial default data set names

LDD specifications file 316
saved breakpoints file 316
saved monitor values file 316
saved settings file 316

INPUT command
restriction with playback 136

INPUT command (C, C++, COBOL) 135
INSPLOG

using with SET LOG command 239
INSPPREF suboption of TEST runtime option 7
INSTANCES built-in function 329
INTERCEPT, QUERY command 197
Internet

searching for problem resolution 529
ISPF

SET REFRESH command 252

J
JUMP TO command 136
JUMPTO command

JUMPTO command (continued)
restriction with playback 137

JUMPTO LABEL command
restriction with playback 139

K
KEYS, SET command 234

L
LABEL, AT command 60, 62
Language Environment

order in which to specify options 1
LANGUAGE, SET NATIONAL command 245
LANGUAGE, SET PROGRAMMING command 248
LangX COBOL

commands
assignment 35

commands not supported for
AT CALL 44, 58

LangX COBOL commands
declarations 95
DO 110
IF 130

LAST, LIST command 155
LDD

assembler commands 167
LDD (explicit debug mode) 168
LDD command, how, works with SET EXPLICITDEBUG 229
LDD, QUERY command 197
LDD, SET command 235
licensed documents xi
LIMIT, SET MONITOR command 244
line commands 192
LINE NUMBERS, LIST command 162
LINE, AT command 63, 70
LINE, AT command (remote debug mode) 73
LINES, LIST command 162
LINK, detecting 321
LIST BY SUBSCRIPT, QUERY command 197
LIST BY SUBSCRIPT, SET command 236, 238
LIST commands

LIST (blank) 141
LIST AT

restriction with playback 143
LIST CALLS

restriction with playback 145
LIST CONTAINER 147
LIST CURSOR (full-screen mode) 148
LIST DTCN or CADP 149
LIST expression 149
LIST FREQUENCY 155
LIST LAST 155
LIST MONITOR 157
LIST NAMES 157
LIST ON (PL/I) 160
LIST PROCEDURES 160
LIST REGISTERS

description 161
LIST STATEMENT NUMBERS 162
LIST STATEMENTS 162
LIST STORAGE

Index 545

LIST commands (continued)
LIST STORAGE (continued)

description 163
summary 140

LIST TRACE LOAD command 165
LIST, QUERY command 197
LIST, SET command 239
listing

SET DEFAULT LISTINGS command 220
LOAD command 166
load_module_name, description 14
load_spec, description 15
LOAD, AT command 63
LOAD, AT command (remote debug mode) 65
LOAD, detecting 321
LOADDEBUGDATA 167
LOADDEBUGDATA command 167
LOADDEBUGDATA command (explicit debug mode) 168
loaded modules

clearing 86
LOCATION, QUERY command 197
LOG NUMBERS, QUERY command 197
LOG NUMBERS, SET command 241
LOG, QUERY command 197
log, session

clearing 86
LOG, SET command 239
LOGDSN command

syntax of EQAXOPT macro for 310, 312
Logical Unit Name 7
LONGCUNAME, QUERY command 197
loops

for command (C and C++) 123
LU Name 7
lvalue for C 16

M
MDBG, QUERY command 197
MDBG, SET command 242
MEM 169
MEMORY command 169
MFI suboption of TEST runtime option 7
MONITOR COLUMN, QUERY command 197
MONITOR COLUMN, SET command 244
MONITOR command

description 171
MONITOR DATATYPE, QUERY command 197
MONITOR DATATYPE, SET command 244
MONITOR LIMIT, QUERY command 197
MONITOR LIMIT, SET command 244
MONITOR NUMBERS, QUERY command 197
MONITOR NUMBERS, SET command 244
MONITOR WRAP, QUERY command 197
MONITOR WRAP, SET command 244
MONITOR, LIST command 157
MONITOR, SET command 243
monitors

clearing 86
MOVE command (COBOL)

allowable moves 176
MSGID, QUERY command 197
MSGID, SET command 245
multiple AT conditions, how z/OS Debugger processes 39

MULTIPROCESS
MULTIPROCESS CHILD 313
MULTIPROCESS PARENT 313
MULTIPROCESS PROMPT 313

N
NAMES command

description of 314
NAMES DISPLAY command 179
NAMES EXCLUDE command 179
NAMES INCLUDE command 180
NAMES, LIST command 157
NATIONAL LANGUAGE, QUERY command 197
NATIONAL LANGUAGE, SET command 245
NATLANG runtime option 2
NONE suboption of TEST runtime option 5
NONLESP runtime option 2
NOPROMPT suboption of TEST runtime option 7
NOTEST suboption of TEST runtime option 4
null command 181
NULLFILE with COMMANDSDSN 5
NULLFILE with PREFERENCESDSN 8
NUMBERS, LIST STATEMENT command 162
NUMBERS, SET LOG command 241
NUMBERS, SET MONITOR command 244

O
OCCURRENCE, AT command 65
offset_spec, description 15
OFFSET, AT command (disassembly) 68
ON command (PL/I)

restriction with playback 183
ON, LIST command (PL/I)

restriction with playback 160
OPEN, WINDOW command 283
operators

LangX COBOL
any expression 24
conditional expressions 25

optimized COBOL
commands not supported for

GOTO LABEL 129
JUMPTO LABEL 139

order in which commands and preferences files are
processed 308

P
PACE, QUERY command 197
PACE, SET command 246
panel

Source Identification 184
PANEL command (full-screen mode)

description 183
path point

differences between languages 69
PATH, AT command 69
PERFORM command (COBOL) 185
PFKEY, SET command 247
PFKEYS, QUERY command 198
PL/I

546 IBM z/OS Debugger: Reference and Messages

PL/I (continued)
%INSTANCES built-in function 329
%STORAGE function 46
commands

ANALYZE 32
assignment 36
AT ALLOCATE 41
DECLARE 101
DO 111
IF 134
LIST ON 160
ON 181
SELECT 207
SET LONGCUNAME 241

HEX built-in function 328
RECURSION built-in function 330
SET commands 266
SET WARNING 263

PL/I, definition of xiii
playback

available commands 189
PLAYBACK commands

BACKWARD 190
DISABLE 191
ENABLE 188
FORWARD 190
START 189
STOP 190
summary 187

PLAYBACK LOCATION, QUERY command 198
PLAYBACK, QUERY command 198
POPUP command 191
POPUP, QUERY command 198
POSITION command 191
preferences file, setting global 308
preferences_file_designator suboption of TEST runtime
option 7
PREFERENCESDSN command

syntax of EQAXOPT macro for 315
PREFERENCESDSN, EQAOPTS command 7, 8
prefix commands

AT 70
CLEAR 92
description 192
DISABLE 109
ENABLE 114
QUERY 199
SHOW 269

problem determination
describing problems 530
determining business impact 530
submitting problems 531

PROCEDURE command 193
procedure, CALL 84
PROCEDURES, LIST command 160
PROGRAMMING LANGUAGE, QUERY command 198
PROGRAMMING LANGUAGE, SET command 248
PROMPT suboption of TEST runtime option 6
PROMPT, QUERY command 198
PROMPT, SET command 249

Q
QQUIT command 200

QUALIFY RESET command 194
QUALIFY, QUERY command 198
QUERY command 194
QUERY prefix 199
QUIT command 199

R
RACF profiles

as option for BROWSE 296
range of statements, specifying 17
RECURSION built-in function 330
reference

C lvalue 16
COBOL data name 16
COBOL special register 16
description 15

REFRESH, QUERY command 198
REGISTERS, LIST command 161
remote debug mode

tcpip_id suboption 8
TCPIP& suboption 8
VADTCPIP& suboption 8

repeating breakpoints 40
RESTORE command 201
RESTORE, QUERY command 198
RESTORE, SET command 253
RETRIEVE command

description 202
return to point of execution 252
REWRITE for remote debug mode, SET command 255
REWRITE, QUERY command 198
REWRITE, SET command 254
RUNTO command 203

S
SAVE, QUERY command 198
SAVE, SET command 255
SAVEBPDSN command

syntax of EQAXOPT macro for 316
SAVESETDSN command

syntax of EQAXOPT macro for 316
SCREEN, QUERY command 198
SCREEN, SET command 258
screening, setting SVC 320
SCROLL command

description 204
SCROLL DISPLAY, QUERY command 198
SCROLL, SET DEFAULT command 222
SELECT command (PL/I) 207
separate debug file

SET DEFAULT DBG command 219
SET DEFAULT MDBG command 221
SET MDBG command 242

SEQUENCE, QUERY command 198
SEQUENCE, SET command 259
SESSIONTIMEOUT 318
SET command (COBOL)

description 266
SET commands

SET ASSEMBLER 210
SET AUTOMONITOR 212

Index 547

SET commands (continued)
SET CHANGE 214
SET COLOR 215
SET COUNTRY 218
SET DBCS 218
SET DEFAULT DBG 219
SET DEFAULT LISTINGS 220
SET DEFAULT MDBG 221
SET DEFAULT SCROLL

description 222
SET DEFAULT VIEW 223
SET DEFAULT WINDOW 224
SET DISASSEMBLY 224
SET DYNDEBUG 225
SET ECHO 226
SET EQUATE

description 227
SET EXECUTE 228
SET EXPLICITDEBUG 228
SET FREQUENCY 230
SET HISTORY 231
SET IGNORELINK

description 231
SET INTERCEPT

description 232–234
restriction with playback 233, 234

SET KEYS 234
SET LDD 235
SET LIST BY SUBSCRIPT 236, 238
SET LIST TABULAR 239
SET LOG 239
SET LOG NUMBERS 241
SET LONGCUNAME

description 241
SET MDBG 242
SET MONITOR 243
SET MONITOR COLUMN 244
SET MONITOR DATATYPE 244
SET MONITOR LIMIT 244
SET MONITOR NUMBERS 244
SET MONITOR WRAP 244
SET MSGID 245
SET NATIONAL LANGUAGE 245
SET PACE 246
SET PFKEY

description 247
SET PROGRAMMING LANGUAGE 248
SET PROMPT 249
SET QUALIFY

description 250
SET REFRESH

description 252
SET RESTORE 253
SET REWRITE 254
SET REWRITE for remote debug mode 255
SET SAVE 255
SET SCREEN 258
SET SCROLL DISPLAY

description 259
SET SEQUENCE (PL/I) 259
SET SOURCE 259
SET SUFFIX 261
SET TEST 262
summary 207

SET DEFAULT VIEW command
description of 302

SETS, QUERY command 198
setting global preferences file 308
SHOW prefix command 269
SIZE, WINDOW command 284
Software Support

contacting 530
describing problems 530
determining business impact 530
receiving updates 529
submitting problems 531

Source Identification panel, z/OS Debugger 184
SOURCE, QUERY command 198
SOURCE, SET command 259
Starting z/OS Debugger

TEST runtime option 3
STARTSTOPMSG 319
STATEMENT NUMBERS, LIST command 162
statement_id_range, description 16
statement_id, description 16
statement_label, description 17
STATEMENT, AT command 70
STATEMENT, AT command (remote debug mode) 73
statements

specifying a range 17
STATEMENTS, LIST command 162
STEP command

description 269
stmt_id_spec, description 16
STORAGE command

restriction with playback 272
string

searching for 120
SUFFIX, QUERY command 198
SUFFIX, SET command 261
SVC

setting screening option 320
SVC screening 320
SWAP, WINDOW command 284
switch command (C and C++)

restriction with playback 274
syntax diagrams

how to read xiii
syntax, assembler expression

conditional operators 22
operators 20

syntax, assembler expressions
common syntax elements 19

syntax, common elements 11
SYSTEM command (z/OS) 275

T
TABULAR, SET LIST command 239
tcpip_id suboption of TEST runtime option 8
TCPIP& suboption of TEST runtime option 8
TCPIPDATADSN 323
terminal_id suboption of TEST runtime option 7
TERMINATION, AT command 73
terminology, z/OS Debugger xii
TEST runtime option

%port_id suboption 8
ALL suboption 4

548 IBM z/OS Debugger: Reference and Messages

TEST runtime option (continued)
command suboption 7
commands_file suboptions 5
commands_file_designator suboption 6
ERROR suboption 5
INSPPREF suboption 7
MFI suboption 7
NONE suboption 5
NOPROMPT suboption 7
NOTEST suboption 4
preferences_file_designator suboption 7
PROMPT suboption 6
syntax 3
tcpip_id suboption 8
TCPIP& suboption 8
terminal_id suboption 7
TEST suboption 4
VADTCPIP& suboption 8
VTAM_LU_id suboption 7

TEST suboption of TEST runtime option 4
TEST, QUERY command 198
TEST, SET command

SET commands
SET WARNING description 263

TRACE command 276
TRAP runtime option 9
TRIGGER command 276
TSO command (z/OS)

description 280

U
USE command 280

V
VADSCPnnnn

description of 6
VADSCPnnnn option vs. EQAOPTS CODEPAGE command 6
VADTCPIP& suboption of TEST runtime option 8
variable_name description 18
variables

DBCS, assigning new value to 176
modifiable z/OS Debugger

%EPRBn 337
%EPRDn 337
%EPRn 336
%FPRBn 338
%FPRDn 338
%FPRn 337
%GPRGn 339
%GPRHn 339
%GPRn 338
%LPRBn 341
%LPRDn 341
%LPRn 340

nonmodifiable z/OS
Debugger

%ADDRESS 335
%AMODE 335
%BLOCK 335
%CAAADDRESS 336
%CONDITION 336

variables (continued)
nonmodifiable z/OS Debugger (continued)

%COUNTRY 336
%CU 336
%EPA 336
%HARDWARE 340
%LINE 340
%LOAD 340
%NLANGUAGE 341
%PATHCODE 341
%PLANGUAGE 341
%PROGRAM 336, 342
%RC 342
%Rn 342
%RUNMODE 342
%STATEMENT 340
%SUBSYSTEM 343
%SYSTEM 343

removing 86
VIEW, SET DEFAULT command 223
VS COBOL II

commands not supported for
AT LABEL 60
AT PATH 69

VTAM_LU_id suboption of TEST runtime option 7

W
WARNING, QUERY command 198
WHERE built-in function 331
while command (C and C++)

restriction with playback 282
WINDOW command

description 282
WINDOW commands

CLOSE 282
OPEN 283
SIZE 284
SWAP 284
ZOOM 285

WINDOW SIZES, QUERY command 198
WINDOW, SET DEFAULT command 224
WRAP, SET MONITOR command 244
writing assembler instructions, introduction to 19

Z
z/OS

TSO command 280
z/OS Debugger

terminology xii
ZOOM, WINDOW command 285

Index 549

550 IBM z/OS Debugger: Reference and Messages

IBM®

Product Number: 5724-T07

	Contents
	About this document
	Who might use this document
	Accessing z/OS licensed documents on the Internet
	How this document is organized
	Terms used in IBM z/OS Debugger documentation
	How to read syntax diagrams
	Symbols
	Syntax items
	Syntax examples

	How to provide your comments

	Summary of changes
	Overview of IBM z/OS Debugger
	Chapter 1. z/OS Debugger runtime options
	Non-Language Environment positional parameter
	COUNTRY runtime option
	NATLANG runtime option
	NONLESP runtime option
	TEST runtime option
	Syntax of the TEST runtime option

	TRAP runtime option

	Chapter 2. Common syntax elements in z/OS Debugger commands
	address
	block_name
	block_spec
	condition
	compile_unit_name
	cu_spec
	expression
	load_module_name
	load_spec
	offset_spec
	references
	statement_id
	statement_id_range and stmt_id_spec
	Specifying a range of statements

	statement_label
	variable_name

	Chapter 3. Syntax for assembler and disassembly expressions
	Common syntax elements
	Operators
	Operators that can be used in any expression
	Operators that can be used only in conditional expressions

	Arithmetic expression evaluation

	Chapter 4. Syntax for LangX COBOL expressions
	Restrictions on LangX COBOL expressions
	Common syntax elements
	Operators
	Operators that can be used in any expression
	Operators that can be used only in conditional expressions

	Chapter 5. z/OS Debugger commands
	? command
	ALLOCATE command
	ANALYZE command (PL/I)
	Assignment command (assembler and disassembly)
	Assignment rules

	Assignment command (LangX COBOL)
	Assignment command (PL/I)
	AT command
	every_clause syntax
	AT ALLOCATE (PL/I) command
	AT APPEARANCE command
	AT CALL command
	AT CHANGE command (full screen mode, line mode, batch mode)
	AT CHANGE command (remote debug mode)
	AT CURSOR command (full-screen mode)
	AT DATE command (COBOL)
	AT DELETE command
	AT ENTRY command
	AT ENTRY command (remote debug mode)

	AT EXIT command
	AT GLOBAL command
	AT GLOBAL LABEL command (remote debug mode)
	AT LABEL command
	AT LABEL command (remote debug mode)
	AT LINE command
	AT LOAD command
	AT LOAD command (remote debug mode)

	AT OCCURRENCE command
	AT OFFSET command (disassembly)
	AT PATH command
	AT Prefix command (full-screen mode)
	AT STATEMENT command
	AT STATEMENT command (remote debug mode)

	AT TERMINATION command

	BEGIN command
	block command (C and C++)
	break command (C and C++)
	CALL command
	CALL %CEBR command
	CALL %CECI command
	CALL %DUMP command
	CALL %FA command
	CALL %FM command
	CALL %HOGAN command
	CALL %VER command
	CALL entry_name command (COBOL)
	CALL procedure command

	CC command
	CHKSTGV command
	CLEAR command
	CLEAR prefix (full-screen mode)

	CLEAR AT command (remote debug mode)
	COMMENT command
	COMPUTE command (COBOL)
	CURSOR command (full-screen mode)
	Declarations (assembler, disassembly, and LangX COBOL)
	Declarations (C and C++)
	Declarations (COBOL)
	DECLARE command (PL/I)
	DESCRIBE command
	DISABLE command
	DISABLE prefix (full-screen mode)

	DO command (assembler, disassembly, LangX COBOL, and COBOL)
	do/while command (C and C++)
	DO command (PL/I)
	ENABLE command
	ENABLE prefix (full-screen mode)

	EVALUATE command (COBOL)
	Expression command (C and C++)
	FIND command
	FINDBP command
	for command (C and C++)
	FREE command
	GO command
	GOTO command
	GOTO LABEL command
	%IF command (programming language neutral)
	IF command (assembler, disassembly, and LangX COBOL)
	if command (C and C++)
	IF command (COBOL)
	Allowable comparisons for the IF command (COBOL)

	IF command (PL/I)
	IMMEDIATE command (full-screen mode)
	INPUT command (C, C++, and COBOL)
	JUMPTO command
	JUMPTO LABEL command
	LIST command
	LIST (blank) command
	LIST AT command
	LIST AT command (remote debug mode)
	LIST CALLS command
	LIST CC command
	LIST CONTAINER command
	LIST CURSOR command (full-screen mode)
	LIST DTCN or CADP command
	LIST expression command
	L prefix command (full-screen mode)

	LIST FREQUENCY command
	LIST LAST command
	LIST LDD command
	LIST LINE NUMBERS command
	LIST LINES command
	LIST MONITOR command
	LIST NAMES command
	LIST NAMES LABELS command (remote debug mode)
	LIST ON (PL/I) command
	LIST PROCEDURES command
	LIST REGISTERS command
	LIST STATEMENT NUMBERS command
	LIST STATEMENTS command
	LIST STORAGE command
	LIST TRACE LOAD command

	LOAD command
	LOADDEBUGDATA command
	Using LDD for assembler or LangX COBOL compile units
	Using LDD for high-level language compile units in explicit debug mode

	MEMORY command
	MONITOR command
	M prefix (full-screen mode)

	MOVE command (COBOL)
	Allowable moves for the MOVE command (COBOL)

	NAMES command
	NAMES DISPLAY command
	NAMES EXCLUDE command
	NAMES INCLUDE command

	Null command
	ON command (PL/I)
	PANEL command (full-screen mode)
	PERFORM command (COBOL)
	PLAYBACK commands
	PLAYBACK ENABLE command
	PLAYBACK START command
	PLAYBACK FORWARD command
	PLAYBACK BACKWARD command
	PLAYBACK STOP command
	PLAYBACK DISABLE command

	POPUP command
	POSITION command
	Prefix commands (full-screen mode)
	PROCEDURE command
	QUALIFY RESET command
	QUERY command
	QUERY prefix (full-screen mode)

	QUIT command
	QQUIT command
	RESTORE command
	RETRIEVE command (full-screen mode)
	RUN command
	RUNTO command
	RUNTO prefix command (full-screen mode)

	SCROLL command (full-screen mode)
	SELECT command (PL/I)
	SET command
	SET ASSEMBLER ON/OFF command
	SET ASSEMBLER STEPOVER command
	SET AUTOMONITOR command
	SET CHANGE command
	SET COLOR command (full-screen and line mode)
	SET COUNTRY command
	SET DBCS command
	SET DEFAULT DBG command
	SET DEFAULT LISTINGS command
	SET DEFAULT MDBG command
	SET DEFAULT SCROLL command (full-screen mode)
	SET DEFAULT VIEW command
	SET DEFAULT WINDOW command (full-screen mode)
	SET DISASSEMBLY command
	SET DYNDEBUG command
	SET ECHO command
	SET EQUATE command
	SET EXECUTE command
	SET EXPLICITDEBUG command
	SET FIND BOUNDS command
	SET FREQUENCY command
	SET HISTORY command
	SET IGNORELINK command
	SET INTERCEPT command (C and C++)
	SET INTERCEPT command (COBOL, full-screen mode, line mode, batch mode)
	SET INTERCEPT command (COBOL, remote debug mode)
	SET KEYS command (full-screen mode)
	SET LDD command
	SET LIST BY SUBSCRIPT command (COBOL)
	SET LIST BY SUBSCRIPT command (Enterprise PL/I, full-screen mode only)
	SET LIST TABULAR command
	SET LOG command
	SET LOG NUMBERS command (full-screen mode)
	SET LONGCUNAME command
	SET MDBG command
	SET MONITOR command
	SET MSGID command
	SET NATIONAL LANGUAGE command
	SET PACE command
	SET PFKEY command
	SET POPUP command
	SET PROGRAMMING LANGUAGE command
	SET PROMPT command (full-screen mode)
	SET QUALIFY command
	SET REFRESH command (full-screen mode)
	SET RESTORE command
	SET REWRITE command (full-screen mode)
	SET REWRITE command (remote debug mode)
	SET SAVE command
	SET SCREEN command (full-screen mode)
	SET SCROLL DISPLAY command (full-screen mode)
	SET SEQUENCE command (PL/I)
	SET SOURCE command
	SET SUFFIX command (full-screen mode)
	SET TEST command
	SET WARNING command (C, C++, COBOL, and PL/I)

	SET command (COBOL)
	Allowable moves for the z/OS Debugger SET command

	SHOW prefix command (full-screen mode)
	STEP command
	STORAGE command
	switch command (C and C++)
	SYSTEM command (z/OS)
	TRACE command
	TRIGGER command
	TSO command (z/OS)
	USE command
	while command (C and C++)
	WINDOW command (full-screen mode)
	WINDOW CLOSE command
	WINDOW OPEN command
	WINDOW SIZE command
	WINDOW SWAP command
	WINDOW ZOOM command

	Chapter 6. EQAOPTS commands
	Format of the EQAOPTS command
	EQAOPTS commands that have equivalent z/OS Debugger commands
	Providing EQAOPTS commands at run time
	Creating EQAOPTS load module
	Descriptions of EQAOPTS commands
	ALTDISP
	BROWSE
	CACHENUM
	CCOUTPUTDSN
	CCOUTPUTDSNALLOC
	CCPROGSELECTDSN
	CEEREACTAFTERQDBG
	CODEPAGE
	Creating a conversion image for z/OS Debugger
	Example: JCL for generating conversion images

	COMMANDSDSN
	DEFAULTVIEW
	DISABLERLIM
	DLAYDBG
	DLAYDBGCND
	DLAYDBGDSN
	DLAYDBGTRC
	DLAYDBGXRF

	DTCNDELETEDEADPROF
	DTCNFORCExxxx
	DYNDEBUG
	EQAQPP
	EXPLICITDEBUG
	GPFDSN
	HOSTPORTS
	IGNOREODOLIMIT
	IMSISOORIGPSB
	LOGDSN
	LOGDSNALLOC
	MAXTRANUSER
	MDBG
	MULTIPROCESS
	NAMES
	NODISPLAY
	PREFERENCESDSN
	SAVEBPDSN, SAVESETDSN
	SAVESETDSNALLOC, SAVEBPDSNALLOC
	SESSIONTIMEOUT
	STARTSTOPMSG
	STARTSTOPMSGDSN

	SUBSYS
	SVCSCREEN
	Combinations of suboptions for the EQAOPTS SVCSCREEN command

	TCPIPDATADSN
	THREADTERMCOND
	TIMACB
	END

	Chapter 7. z/OS Debugger built-in functions
	%CHAR (assembler, disassembly, and LangX COBOL)
	%DEC (assembler, disassembly, and LangX COBOL)
	%GENERATION (PL/I)
	%HEX
	%INSTANCES (C, C++, and PL/I)
	%RECURSION (C, C++, and PL/I)
	%WHERE (assembler, disassembly, and LangX COBOL)

	Chapter 8. z/OS Debugger variables
	%ADDRESS
	%AMODE
	%BLOCK
	%CAAADDRESS
	%CC (assembler and disassembly only)
	%CONDITION
	%COUNTRY
	%CU
	%EPA
	%EPRn or %EPRHn (%EPRHn assembler and disassembly only)
	%EPRBn (assembler and disassembly only)
	%EPRDn (assembler and disassembly only)
	%FPRn or %FPRHn (%FPRHn assembler and disassembly only)
	%FPRBn (assembler and disassembly only)
	%FPRDn (assembler and disassembly only)
	%GPRn
	%GPRGn
	%GPRHn
	%HARDWARE
	%LINE or %STATEMENT
	%LOAD
	%LPRn or %LPRHn (%LPRHn assembler and disassembly only)
	%LPRBn (assembler and disassembly)
	%LPRDn (assembler and disassembly)
	%NLANGUAGE
	%PATHCODE
	%PLANGUAGE
	%PROGMASK (assembler and disassembly only)
	%PROGRAM
	%PSW (assembler and disassembly only)
	%RC
	%RSTDSETS
	%RUNMODE
	%Rn
	%SUBSYSTEM
	%SYSTEM
	Attributes of z/OS Debugger variables in different languages

	Chapter 9. z/OS Debugger messages
	Chapter 10. Debug Manager messages
	Chapter 11. Debug Profile Service API messages
	Chapter 12. Non-Language Environment IMS messages
	Chapter 13. Load Module Analyzer Messages
	Chapter 14. z/OS Debugger Language Environment user exit messages
	Chapter 15. z/OS Debugger Terminal Interface Manager messages
	Chapter 16. IBM z/OS Debugger Utilities messages
	Appendix A. z/OS Debugger commands supported in Debug Tool compatibility mode
	Specifying z/OS Debugger commands in launch configuration
	Specifying the location of source, listing, or separate debug file in remote debug mode by using environment variables

	Appendix B. Changes in behavior of some commands
	Changes in the behavior introduced with Debug Tool for z/OS, Version 13.1
	Changes in the behavior introduced with Debug Tool for z/OS, Version 12.1, with the PTF for APAR PM85967 for Enterprise COBOL for z/OS Version 5.1
	Changes in behavior introduced with Debug Tool for z/OS, Version 11.1
	Changes in behavior introduced with Debug Tool for z/OS, Version 10.1
	Changes in behavior introduced with Debug Tool for z/OS, Version 9.1, with the PTF for APAR PK74749 applied

	Appendix C. Limitations of 64-bit support in Debug Tool compatibility mode
	Appendix D. Support resources and problem solving information
	Accessing the IBM Support portal
	Getting fixes
	Subscribing to support updates
	Contacting IBM Support
	Determine the business impact of your problem
	Gather diagnostic information
	Submit the problem to IBM Support

	Appendix E. Accessibility
	Using assistive technologies
	Keyboard navigation of the user interface
	Accessibility of this document

	Notices
	Copyright license
	Privacy policy considerations
	Programming interface information
	Trademarks and service marks

	Glossary
	IBM z/OS Debugger publications
	Index
	Special Characters
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	Z

