IBM Open XL C/C++ for AIX17.1.1

Migration Guide

.||I

Note

Before using this information and the product it supports, read the information in “Notices” on page
73.

First edition

This edition applies to IBM® Open XL C/C++ for AIX® 17.1.1 (Program 5765-J18; 5725-C72) and to all subsequent
releases and modifications until otherwise indicated in new editions. Make sure you are using the correct edition for the
level of the product.

© Copyright International Business Machines Corporation 2022.
US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract with
IBM Corp.

Contents

About this doCUMENTt......ccieiiiiiiiiiiiririrrcrcrcretree et tatetessasssnssessessassansans v
Who should read this dOCUMENT.......ciiiiiriiiiieeece ettt e be e saa e sbeesaaessbeesaaessseeneans v
HOW t0 USE thiS dOCUMENT...cctiiiiiiieeie ettt ettt s te e st s e e st e ssbeesbeesase e baesasesbeesanesnseanes v
CONVENTIONS. ¢ ttittertt ettt et e rte et e st e steesteesbe s beesstesssaesseesssaenseesabaeaseesaseenbeesaseenbeesaseenseesaseenseessseenseenssennses v
Related INFOrMAtioN.....iiiiiiiecieceee ettt e st e s be e s e e sbeesbeesabeesbaesaseesbeesanesnsaensaesnses viii

Available help iINfOrMatioN........iiciie e et e et e e et e e e tee s e teeeenteeeeataeeensaeeans viii
Standards and SPECITICATIONS.uiii e e e ree e s e e e e e e e be e e e be e e s bee e e nbaeeeareas X
e gL a1 or=Y U] o] oo S5 SS X
HOW 10 SEN YOUI COMMENTS..c.tiiiiiiieiiieerieseesiestesteseeseeeesreetesreesseseessesssessesssessesssesseessessaessesssessesssessenns X
INCLUSIVE LANGUAEE. .. uvieeerieectieeccteecctee et e ettt e et e e et e e e satee s ate e e stee s ssee e ssae s staeassaeansseeasseeesseeensseesnsseennnsaenn X

Chapter 1. Migrating from Classic XL compilers.....c.cccceiiuiiniiniinnieiieiieiiececeeceeceanes 1
LANBUAEE SUPPOI ... ittt ettt ettt e e s e s s s sarbrraeeeeeeeeesesssssssrsaaaeaeaeeesessssssssersaataeeeesesssssssssssrnaeneeeeeses 1
Binary COMPAtiDILITY....ueieiieieieeee et e e e et e e et e e e aae e e abe e e stee e nteeennaeeenntaeennreeennees 1
INVOCAtION COMMEANGS.....iiiiiiiiieiiiieieeieeste et e e st e s teste e st e sbe s beesabe e baesasessbaesssesaseesseesaseenseessseenseesssesnsen 4
Compiler utilities and COMMANGS........iiiciie et re e e ee e et e e e bee e e bee e s bee e e sreeesbeeesnseeesnsens 5

Supported utilities aNd COMMEANGS......uiiiiieccee e et ere e et e e et e e e rteesentaesstaesnseeeenes 5
Unsupported utilities and COMMAaNGS......ccuii ittt eeete e seree e s reee s ste e s raeesesteeenns 5
Migration considerations of individual compiler UtilitieS.........eccveiievieiciee e e 5
(080T 0] o1 L=T o] o 14 Te] o 1TSS 7
SUPPOrted COMPILET OPLIONS....iiiiiieeciie ettt et et e e te e e e te e e e tee e e be e e s ateeeeaseeeesseeennseeenntesenenns 7
UNsSupported COMPILEr OPTIONS.......uiiiciiiecctee ettt ctre e et e e e ste e e s bee e e bae e ebeeeebaeesnbaeesnsaeesnseeennes 8
(01 aF=YaY=(=Te ot aa] o1 K=Y atoT 1 4 o1 T 8
Discrepancies for 0ption defaUltS........icciie i e e e e 8
N FT o] o1 Y= 8 e] il o] o1 L] o 1TSS 8
Migration considerations for individual compiler OpPtioNS.......cueecieeeciiieeciie e 18
(000]] o1 LT ol oY= Y= { g F- LTRSS 33
SUPPOIrtEd COMPILET PraZMas. . cccciieeeieeeeieeeeteeeeteeeeteeesteeesteeesseeesaseeesssseessseeesssasasssaessssesenssasesseeans 33
(0o T 0] o] o o] g =T o = =d 1 1 = T SRS 33
Migration considerations of individual compiler Pragmas........cccccveeecveeeceeeecieeeeee e 35
(00T 0] 011 L= gl g ¥ T o T-F SRS 43
SUPPOItEd COMPILET MACIOS...ciciiiieciieeeiieeecee et eetee e etee e etee e etee e e tee e s teeesabaeesasaeesasaeesssaessnsaessnseeennseas 43
O] aT 0] o] o o] g (=T Retoln] o1 LT ol g g ¥- Tod o L F USRSt 43
(01 aF=YaY=(=Te I ot aa] o1 K=Y a1 0 F= Tl {1 46
Compiler BUILE-IN FUNCHIONS. .. .iiieieeccee et e e te e e e e e e ste e e steeeeabaeesataeesnsaeesnsaeesnsanennes 46
SUPPOrted BUIlt-in FUNCHIONS....iii e e e e e rte e e e te e e s tae e etae e eabaeesataeans 46
Unsupported bUilt-in fFUNCHIONS.uiiceee et e e ae e e aa e e e b e e eaaeeenaae s 46
(04 aF=Y oY= (= Te l o TU 1N e T T VT g ot o S 50
Mapping Of BUILE-IN FUNCHIONS.....iiiiiiieeeeee e e e ee e e ae e e aae e e ra e e s eaeeeenaeesnnaeas 51
oY=t T oI LT] (] = USSP 56
(080T 0] 011 LY gl 1=y 4 =L TSROSOt 56
J N S Y= Yol T gl o X=X] o 11 Ll £ 2SS 57
DiagnosStiC MESSAZE CONTIOL..uuiiiiiieeiiieiiiie et et e et ectee et e e e eteeseatee s ate e e steessseessssee s sseesssaeesseesnnseenns 58
EXCEPLION COMPAtIDILITY..uiieieiieciee ettt e st e e s ete e e str e e sbee e saeeessaeessaeesseaennns 59
B 1T 0T = =] o] o To] FA S 60
LY aaTeY g A=Y | (o Tor- N 4 o] PO TSP 60
(0] 01271 \7 U] o] o Lo f SO PP UPPPPPPRRRRPPIIRE 61
IBM DEBUZZET FOr ALX..oitiiiiiteeiieeesieeieseste st esteseeessesseesseeeesseessesssessesseessesssessesssesseessesssessesssesseessesssessanns 61
Optimization and tuning COMPatibDility.....c.ccueieciiieiie e e e e e e e e 61
Link Time Optimization (LTO)....ccccueeiciieeeeieeeeieeecieesetteeeeteeeeteesevteesesteessstaesestaesstaesssseessseesssssassnssessnns 61

Profile Guided Optimization (PGO).......ccciiiiiiieeiee et e ettt ettt eeite e e teeeetteeeeree e seteeeeaeeesseeessseesseaenans 63

UNINitialized Variables. ..o ettt st s e 64
Changes to compiler default DENAVIOIS......ouiiiiii e s sare e s eree e s reeesane 64
Chapter 2. Migrating from earlier Open XL releases......cc.ccceveeirerirnirniieecreecrncsenenes 67
Discrepancies for OPtioN AEfAULLS.uiic e e e e e e e e e earee e e e e nnteee e sesnbeeeeesnnnens 67
Compatibility imitations Of LIDCH4....eei e ree e e e e e e e s e enbee e e e s nteeeeeennes 67
SUPPOrt fOr VISIDILITY attriDULES...ci e e e e e e s e r e e e s e sanseeeeeennes 67
Chapter 3. Using 32-bit and 64-bit modes.......cccccceruiruiiniiniinincciciciecienieciaciacnene 69
ASSIZNING LONEG VALUES....eiiiiieieiieeeiee ettt ettt et e sttt e st e e s sate e s bee e s aaeessseesasseessseesssaessseesnssaenn 69
Assigning constant values t0 LoNg Variables. ...t 70
Bit-Shifting LONE VAlUES.....cii ettt ettt ee s st e s s e s sbe e e s e e s sbeessbeessaseesnans 71
ASSISNING POINTEIS Leiiuiiiiiiieiiiee ittt e st e st esetteeseteesesteesasteesasteesasteesstaesseeesansessaseeessstessastesssseessssessnne 71
ALIZNINEG ABEIEgate ata....iicciiieiiiiiiee ittt sete e s ee e s te s s aee e s saee e ssbeeesbteesseeesseeesneeesseessnsees 71
CalliNg FOMTran COUB....uuiiiiiiiiiiieeeiiee ettt sttt ettt s et e e s sate e s aae e s b te e s bteesseaessseessseesasseessseesssaesnssaenn 72
NOTICES.cuuieniiiitiicieirtirtcrtcrt et re s eeeereeeereaeetaesstansstassssassseasesensenanes 73
Lo =T 4= T T TSSO P USRS 75
11T L= U 77

About this document

This document contains migration considerations applicable to IBM Open XL C/C++ for AIX 17.1.1.

Who should read this document

This document is intended for C and C++ developers who are to use IBM Open XL C/C++ for AIX 17.1.1
to compile programs that were previously compiled on different platforms, by previous IBM XL C/C++
releases, or by other compilers.

How to use this document

Unless indicated otherwise, all of the text in this reference pertains to both C and C++ languages.
Where there are differences between languages, these are indicated through qualifying text and icons, as
described in “Conventions” on page v.

While this document covers migration considerations applicable to IBM Open XL C/C++ for AIX 17.1.1, it
does not include the following topics:

« An executive overview of new functions: see the What's New for IBM Open XL C/C++.

« Compiler installation: see the IBM Open XL C/C++ Installation Guide.

« Compiler features including options, pragmas, and built-in functions: see the IBM Open XL C/C++ User's
Guide for detailed information about the usage of compiler features.

Conventions

Typographical conventions

The following table shows the typographical conventions used in the IBM Open XL C/C++ for AIX 17.1.1

documentation.

Table 1. Typographical conventions
Typeface Indicates Example
bold Lowercase commands, executable The compiler provides basic invocation
names, compiler options, and commands, ibm-clang, ibm-clang_r, and
directives. ibm-clang++_r, along with several other
compiler invocation commands to support
various C/C++ language levels and
compilation environments.
italics Parameters or variables whose actual | Make sure that you update the size
names or values are to be supplied parameter if you return more than the size
by the user. Italics are also used to requested.
introduce new terms.
underlining The default setting of a parameter of a | nomaf | maf
compiler option or directive.
monospace Programming keywords and library To compile and optimize myprogram.c,
functions, compiler builtins, examples |enter: ibm-clang myprogram.c -03.
of program code, command strings, or
user-defined names.

© Copyright IBM Corp. 2022

Qualifying elements (icons)

Most features described in this documentation apply to both C and C++ languages. In descriptions of
language elements where a feature is exclusive to one language, or where functionality differs between
languages, this documentation uses icons to delineate segments of text as follows:

Table 2. Qualifying elements
Icon Short description Meaning
C only begins / The text describes a feature that is supported in the C
language only; or describes behavior that is specific to the C
C only ends
language.
= C++ only begins / The text describes a feature that is supported in the C++
language only; or describes behavior that is specific to the
LGt | C++ only ends C++ language.
[IEM IBM extension begins / | The text describes a feature that is an IBM extension to the
1 IBM extension ends standard language specifications.

Syntax diagrams

Throughout this information, diagrams illustrate IBM Open XL C/C++ syntax. This section helps you to
interpret and use those diagrams.

« Read the syntax diagrams from left to right, from top to bottom, following the path of the line.
The »»——symbol indicates the beginning of a command, directive, or statement.

The —» symbol indicates that the command, directive, or statement syntax is continued on the next
line.

The »—— symbol indicates that a command, directive, or statement is continued from the previous line.
The —» <« symbol indicates the end of a command, directive, or statement.

Fragments, which are diagrams of syntactical units other than complete commands, directives, or
statements, start with the | — symbol and end with the —| symbol.

« Required items are shown on the horizontal line (the main path):

»— keyword — required_argument -»<

 Optional items are shown below the main path:

»— keyword L J >«
optional_argument

« If you can choose from two or more items, they are shown vertically, in a stack.

If you must choose one of the items, one item of the stack is shown on the main path.
»— keyword T required_argument1 j—N

required_argument2
If choosing one of the items is optional, the entire stack is shown below the main path.

»— keyword >
toptional_argumentl j
optional_argument2

vi About this document

An arrow returning to the left above the main line (a repeat arrow) indicates that you can make more
than one choice from the stacked items or repeat an item. The separator character, if it is other than a
blank, is also indicated:

»w— keyword L repeatable_argument ln

The item that is the default is shown above the main path.
_E default_argument
»— keyword alternate_argument 1»4

Keywords are shown in nonitalic letters and should be entered exactly as shown.

Variables are shown in italicized lowercase letters. They represent user-supplied names or values.

If punctuation marks, parentheses, arithmetic operators, or other such symbols are shown, you must
enter them as part of the syntax.

The following is an example of a syntax diagram with an interpretation:

Z e j name_list >«

1
»— EXAMPLE —— char_constant W a [
’ t j j
d

Notes:
11BM extension
Interpret the diagram as follows:
 Enter the keyword EXAMPLE.
« EXAMPLE is an IBM extension.
« Enter a value for char_constant.
« Enter a value for a or b, but not for both.
« Optionally, enter a value for c or d.
« Enter at least one value for e. If you enter more than one value, you must put a comma between each.

« Enter the value of at least one name for name_list. If you enter more than one value, you must put a
comma between each. (The _list syntax is equivalent to the previous syntax for e.)

How to read syntax statements

Syntax statements are read from left to right:

Individual required arguments are shown with no special notation.

When you must make a choice between a set of alternatives, they are enclosed by { and } symbols.
Optional arguments are enclosed by [and] symbols.

When you can select from a group of choices, they are separated by | characters.

Arguments that you can repeat are followed by ellipses (...).

Example of a syntax statement

EXAMPLE char_constant {al|b%[c|d]el[,e]... name_listiname_list}...

About this document vii

The following list explains the syntax statement:

« Enter the keyword EXAMPLE.

« Enter a value for char_constant.

« Enter a value for a or b, but not for both.

« Optionally, enter a value for c or d.

« Enter at least one value for e. If you enter more than one value, you must put a comma between each.

« Optionally, enter the value of at least one name for name_list. If you enter more than one value, you
must put a comma between each name.

Note: The same example is used in both the syntax-statement and syntax-diagram representations.

Examples in this documentation

The examples in this documentation, except where otherwise noted, are coded in a simple style that
does not try to conserve storage, check for errors, achieve fast performance, or demonstrate all possible
methods to achieve a specific result.

Related information

The following sections provide related information for IBM Open XL C/C++:

Available help information

IBM Open XL C/C++ for AIX information
IBM Open XL C/C++ for AIX provides product information in the following formats:
» Quick Start Guide

The Quick Start Guide (quickstart. pdf) is intended to get you started with IBM Open XL C/C++ for
AIX 17.1.1. 1t is located by default in the IBM Open XL C/C++ for AIX directory.

- README files

README files contain late-breaking information, including changes and corrections to the product
information. README files are located by default in the IBM Open XL C/C++ for AIX directory.

« Online product documentation

The fully searchable HTML-based documentation is viewable in IBM Documentation at https://
www.ibm.com/docs/openx|-c-and-cpp-aix/17.1.1.

« PDF documents

PDF documents are available online at https://www.ibm.com/docs/openx|-c-and-cpp-aix/17.1.1?
topic=pdf-format-documentation.

The following files comprise the full set of IBM Open XL C/C++ for AIX product information.

Note: To ensure that you can access cross-reference links to other IBM Open XL C/C++ for AIX PDF
documents, download and unzip the .zip file that contains all the product documentation files, or you
can download each document into the same directory on your local machine.

Table 3. IBM Open XL C/C++ for AIX PDF files

Document title PDF file name Description

What's New for IBM Open |whats_new.pdf Provides an executive overview of new

XL C/C++ for AIX17.1.1, functions in the IBM Open XL C/C++ for

5C28-3310-01 AIX 17.1.1 compiler, with new functions
categorized according to user benefits.

viii About this document

https://www.ibm.com/docs/openxl-c-and-cpp-aix/17.1.1
https://www.ibm.com/docs/openxl-c-and-cpp-aix/17.1.1
https://www.ibm.com/docs/openxl-c-and-cpp-aix/17.1.1?topic=pdf-format-documentation
https://www.ibm.com/docs/openxl-c-and-cpp-aix/17.1.1?topic=pdf-format-documentation

Table 3. IBM Open XL C/C++ for AIX PDF files (continued)

Document title PDF file name

Description

AIX 17.1.1 Installation
Guide, GC28-3311-01

IBM Open XL C/C++ for install.pdf

Contains information for installing,
upgrading, and uninstalling IBM Open XL
C/C++ for AIX.

for AIX 17.1.1 Migration
Guide, GC28-3309-01

IBM Open XL C/C++ migrate.pdf

Contains migration considerations for using
IBM Open XL C/C++ for AIX to compile
programs that were previously compiled on
different platforms, by previous IBM Open
XL C/C++ for AIX releases, or by other
compilers.

IBM Open XL C/C++ for user.pdf
AIX 17.1.1 User's Guide,
5C28-3312-01

Contains information about basic compiler
usage, various compiler options, pragmas,
macros, built-in functions, and high-
performance libraries.

To read a PDF file, use Adobe Reader. If you do not have Adobe Reader, you can download it (subject to
license terms) from the Adobe website at http://www.adobe.com.

For more information about the compiler, see C/C++ and Fortran compilers on the IBM Power® community

at http://ibm.biz/openxl-power-compilers.

Other IBM information

 Parallel Environment for ALX: Operation and Use

« The IBM Systems documentation, at https://www.ibm.com/docs/aix, is a resource for AIX information.

You can find the following books for your specific AIX system:

AIX Commands Reference, Volumes 1 - 6

AIX Assembler Language Reference

Open-source community documentation

« libc++ documentation

« Clang documentation

e LLVM documentation

« LLVM Release Notes
— Libc++15.0.1 - 15.0.7 Release Notes
— Libc++ 15.0.0 Release Notes
— Libc++ 14.0.0 Release Notes
— Libc++ 13.0.0 Release Notes
— Libc++ 12.0.0 Release Notes
— Libc++ 11.0.0 Release Notes
— Libc++ 10.0.0 Release Notes
— Libc++ 9.0.0 Release Notes
— Libc++ 8.0.0 Release Notes

AIX National Language Support Guide and Reference
AIX General Programming Concepts: Writing and Debugging Programs

Technical Reference: Base Operating System and Extensions, Volumes 1 & 2

About this document ix

http://www.adobe.com
http://ibm.biz/openxl-power-compilers
https://www.ibm.com/docs/aix
https://ibm.biz/llvm-v14
https://releases.llvm.org/
https://ibm.biz/libcxx_15_ReleaseNotes
https://ibm.biz/libcxx_14_ReleaseNotes
https://ibm.biz/libcxx_13_ReleaseNotes
https://ibm.biz/libcxx_12_ReleaseNotes
https://ibm.biz/libcxx_11_ReleaseNotes
https://ibm.biz/libcxx_10_ReleaseNotes
https://ibm.biz/libcxx_9_ReleaseNotes
https://ibm.biz/libcxx_8_ReleaseNotes

Other information
 Using the GNU Compiler Collection available at http://gcc.gnu.org/onlinedocs.

Standards and specifications

IBM Open XL C/C++ is designed to support the following standards and specifications. You can refer
to these standards and specifications for precise definitions of some of the features found in this
information.

« Information Technology - Programming languages - C, ISO/IEC 9899:1990, also known as C89.
« Information Technology - Programming languages - C, ISO/IEC 9899:1999, also known as C99.
Information Technology - Programming languages - C, ISO/IEC 9899:2011, also known as C11.
Information Technology - Programming languages - C, ISO/IEC 9899:2017, also known as C17.
Information Technology - Programming languages - C++, ISO/IEC 14882:1998, also known as C++98.
« Information Technology - Programming languages - C++, ISO/IEC 14882:2003, also known as C++03.
« Information Technology - Programming languages - C++, ISO/IEC 14882:2011, also known as C++11.
« Information Technology - Programming languages - C++, ISO/IEC 14882:2014, also known as C++14.
« Information Technology - Programming languages - C++, ISO/IEC 14882:2017, also known as C++17.

 Draft Technical Report on C++ Library Extensions, ISO/IEC DTR 19768. This draft technical report has
been submitted to the C++ standards committee, and is available at http://www.open-std.org/JTC1/
SC22/WG21/docs/papers/2005/n1836.pdf.

- AltiVec Technology Programming Interface Manual, Motorola Inc. This specification for vector data
types, to support vector processing technology, is available at https://www.nxp.com/docs/reference-
manual/ALTIVECPIM.pdf.

- ANSI/IEEE Standard for Binary Floating-Point Arithmetic, ANSI/IEEE Std 754-1985.

Technical support

Additional technical support is available from the IBM Open XL C/C++ Support page at https://
www.ibm.com/mysupport/s/topic/0TO0z0000006v6TGAQ/xl-cc?productld=01t0z000007g72LAAQ. This
page provides a portal with search capabilities to a large selection of Technotes and other support
information.

If you have any question on the product, raise it in the IBM C/C++ and Fortran compilers on Power
community or open a case at https://www.ibm.com/mysupport/s/topic/0TO0z0000006v6 TGAQ/xl-cc?
productId=01t0z000007g72LAAQ.

For the latest information about IBM Open XL C/C++ and IBM XL C/C++, visit the product information site
at https://www.ibm.com/products/open-xl-cpp-aix-compiler-power.

How to send your comments

Your feedback is important for helping IBM to provide accurate and high-quality information. If you have
any comments or questions about this document or any other IBM Open XL C/C++ documentation, send
an email to compinfo@cn.ibm.com.

Be sure to include the name of the manual, the part number of the manual, the version of IBM Open XL
C/C++, and, if applicable, the specific location of the text you are commenting on (for example, a page
number or table number).

Inclusive language

As other industry leaders join IBM in embracing the use of inclusive language, IBM will continue to update
the documentation, product code, and user interfaces to reflect those changes. While IBM values the use

X About this document

http://gcc.gnu.org/onlinedocs
http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2005/n1836.pdf
http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2005/n1836.pdf
https://www.nxp.com/docs/reference-manual/ALTIVECPIM.pdf
https://www.nxp.com/docs/reference-manual/ALTIVECPIM.pdf
https://www.ibm.com/mysupport/s/topic/0TO0z0000006v6TGAQ/xl-cc?productId=01t0z000007g72LAAQ
https://www.ibm.com/mysupport/s/topic/0TO0z0000006v6TGAQ/xl-cc?productId=01t0z000007g72LAAQ
http://ibm.biz/openxl-power-compilers
http://ibm.biz/openxl-power-compilers
https://www.ibm.com/mysupport/s/topic/0TO0z0000006v6TGAQ/xl-cc?productId=01t0z000007g72LAAQ
https://www.ibm.com/mysupport/s/topic/0TO0z0000006v6TGAQ/xl-cc?productId=01t0z000007g72LAAQ
https://www.ibm.com/products/open-xl-cpp-aix-compiler-power
mailto:compinfo@cn.ibm.com

of inclusive language, terms that are outside of IBM's direct influence are sometimes required for the sake
of maintaining user understanding.

To learn more about this initiative, read the Words matter blog on ibm.com®

About this document xi

https://www.ibm.com/blogs/think/2020/08/words-matter-driving-thoughtful-change-toward-inclusive-language-in-technology/

xii IBM Open XL C/C++: Migration Guide

Chapter 1. Migrating from Classic XL compilers

When you migrate programs from IBM XL C/C++ for AIX 16.1.0 or earlier releases to IBM Open XL C/C++
for AIX 17.1.1, consider factors such as changed compiler options, built-in functions, and environment
variables.

Language support

This topic discusses the support for language standard features and IBM extension features in IBM Open
XL C/C++ for AIX 17.1.1.

Language standard features

IBM Open XL C/C++ for AIX 17.1.1 incorporates the LLVM and Clang compiler infrastructure. IBM

Open XL C/C++ for AIX 17.1.1 supports all of the =std options that are available in the LLVM Clang
compiler on which it is based, all C language specifications up to and including C17, and all C++
language specifications up to and including C++17. Additionally, IBM Open XL C/C++ for AIX 17.1.1
offers experimental availability of C++20 features. Refer to Enhanced LLVM and Clang support for more
information of LLVM and Clang.

Note: C++ library features that are newer than C++14 might not be available in IBM Open XL C/C++ for
AIX17.1.1.

IBM extension features

IBM Open XL C/C++ for AIX 17.1.1 does not support all IBM extension features that are supported by
IBM XL C/C++ for AIX 16.1.0 or earlier releases. For details of the IBM extension features, refer to the
Language Reference of IBM XL C/C++ for AIX 16.1.0 or earlier releases.

The constructor and destructor function attributes
When you invoked IBM XL C/C++ for AIX 16.1.0 using the x1clang or x1lclang++ invocation command,
the constructoxr and destructox function attributes applied to the following types of programs:

e C++ programs
« C programs if they are linked using a C++ link invocation command

IBM Open XL C/C++ for AIX 17.1.1 supports constructor and destructor function attributes in both
C and C++ programs.

Binary compatibility

In general, C++ objects built with IBM Open XL C/C++ for AIX 17.1.1 are binary compatible with C++
objects built with IBM XL C/C++ for AIX 16.1.0 invoked by x1clang++.

The exception is that object files created by IBM XL C/C++ for AIX 16.1.0 with the -qpd£1 option, when
the compiler is invoked by x1clang or x1clang++, need to be recompiled. This is because the object
files make calls to a different PDF library from the ones used in IBM Open XL C/C++. Refer to Profile
Guided Optimization (PGO) for more information.

The implementation of the C++11 language standard requires an update to the std library 1ibc++, and
causes a breakage in C++ binary compatibility. Therefore, C++ object files built with IBM Open XL C/C++
for AIX 17.1.1 are not directly interoperable with C++ object files generated by IBM XL C/C++ for AIX
16.1.0 that is invoked by x1C or earlier releases. You must recompile your classic programs with IBM
Open XL C/C++ for AIX 17.1.1 to solve such binary incompatibility and link object files successfully.

Note: However, the incompatibility does not prohibit coexistence of C++ object files that do not pass
objects or exceptions. Refer to the “Compatibility with Classic XL C++ object files” on page 2 section for
details.

© Copyright IBM Corp. 2022

C object files built with IBM Open XL C/C++ for AIX 17.1.1 are binary compatible with C object files built
with IBM XL C/C++ for AIX 16.1.0 and earlier releases when both of the following conditions are satisfied:

- Symbol names with external linkage contain only the dollar sign and characters from the basic character
set.

- Bitfields in C programs are declared only with the types allowed by the C standard regardless of any
types allowed as implementation-defined.

Compatibility with Classic XL C++ object files

Refer to the following types of object files as using 1ibc++ ABI, which denotes the C++ standard library
implementation on which the object files are based:

« C++ object files built with IBM Open XL C/C++ for AIX. These object files utilize interfaces provided by
C++ runtime libraries 1ibc++.a, 1ibc++abi.a, and 1ibunwind. a, which are from the 1ibc++.rte,
libc++abi.rte,and libunwind. rte fileset, respectively.

« C++ object files built with IBM XL C/C++ for AIX 16.1.0 that is invoked by x1clang++. These object files
utilize interfaces provided by C++ runtime 1ibc++. a, which is from the 1ibc++. rte fileset.

Similarly, refer to the following type of object files as using 1ibC ABI:

« C++ object files built with IBM XL C/C++ for AIX 16.1.0 that is invoked by x1C or earlier releases. The
object files utilize interfaces provided by C++ runtime 1ibC. a, which is from the x1C. rte fileset.

Different mangled names

The names of C++ functions and other entities are mangled using different name mangling schemes in
libc++ ABI and libC ABI to prevent linking of incompatible code. libc++ ABI utilizes the CXA mangling
scheme that is defined in the Itanium C++ ABI specification, while libC ABI uses the IBM proprietary
mangling scheme. Consequently, the corresponding symbols for a C++ function in these ABIs are
different; for example, the symbol of C++ function func () is _Z4funcv in libc++ ABI, whereas it is
func__FvinlibC ABI. In the CXA mangling scheme, mangled names have the _Z prefix.

Different object model and layout

The C++ object model and layout differ between libc++ ABI and libC ABI. Accessing C++ objects from one
C++ ABI in code that is compiled in another C++ ABI results in undefined behavior, except where the type
is subject to rules for compatibility with C.

Different exception handling

The implementation of exception handling differs between libc++ ABI and libC ABI. There are exception
handling limitations when exceptions are thrown from the libc++ ABI side and caught or unwound through
the libC ABI side, and vice versa. Refer to “Exception compatibility” on page 59 for details.

Due to these differences, libc++ ABI and libC ABI are incompatible and can be considered as different
languages, even though both are referred to as C++. However, they can still coexist in the same
application with limitations. In such cases, there can be instances of different C++ runtimes coexisting in
the same process space without interacting with each other. For example, input and output are buffered
separately and are not visible to the other runtime.

Libraries built with coexisting shared objects

Although libc++ ABI and libC ABI are incompatible, you can package their shared objects into a single
library so that the library can be used for an application built with either libc++ ABI or libC ABI if all of the
following conditions are met:

« The libc++ ABI or libC ABI shared objects in the library are mutually exclusive.

« Each shared object in the library that presents a C++ API supports only one of libc++ ABI and libC ABI.
« Exported symbols from these ABIs are disjoint.

« There are no cross references between libc++ ABI and libC ABI.

If the libc++ ABI and libC ABI shared objects have cross references, or if there is an executable file
referencing symbols from two types of shared objects, the shared objects will be linked with the resulting

2 IBM Open XL C/C++: Migration Guide

executable file. This results in two different C++ runtime implementations coexisting in the same process
space, which might cause unexpected behavior. To confirm the load dependencies of an executable, use
the l[dd command on the executable.

Mangled C++ symbols in libc++ ABI and libC ABI are disjoint. To prevent symbol name overlapping across
ABIs of C/C++ shared objects, it is recommended that symbols such as global variables and C functions
be renamed to encode the ABI in the symbol names. For example, you can map a function name to
different names either by changing the identifier or by using an asm label. In the following example, name
externCFunctionV2 is used for the externCFunction function in libc++ ABI and its original name
externCFunctionis usedin libC ABI.

#if defined(_AIX) && defined(__clang__)

extern "C" void externCFunction(void) asm("externCFunctionV2");
i#else

extern "C" void externCFunction(void);
ftendif

Export only the desired symbols from these shared objects and ensure that exported symbols across

C++ ABIs in your shared objects do not overlap. To learn about how to export symbols, refer to Symbol
exports and visibilities.When a C++ ABIis no longer needed for linking new applications but you
want to retain load compatibility, a shared object can be made load-only with the stxip =-e command.

Unlike shared objects, where exported symbols are controlled by export lists or attribute visibility, having
static archive members for both libc++ ABI and libC ABI in the same archive library might result in
unexpected behavior. For example, static constructors for both libc++ ABI and libC ABI are executed

by the resulting executable, which might not be expected. It is recommended to not include static
archive members for both libc++ ABI and libC ABI in the same archive library unless the behavior is well
understood.

Example
The following example shows how to build a dual-ABI library from a single source to support both libc++
ABI and libC ABI:

$ cat build_example.sh

#!/usxr/bin/ksh

rm -f xlc.shr.o ibmclang.shr.o libfunc.a xlc.a.out ibmclang.a.out

x1C -gmkshrobj func.cpp -o xlc.shr.o -bE:xlc.exp

ibm-clang++_r -shared func.cpp -o ibmclang.shr.o -bE:ibmclang.exp

ar -v -q libfunc.a xlc.shr.o ibmclang.shr.o

x1C main.cpp -o xlc.a.out libfunc.a -blibpath:.:/usx/lib

ibm-clang++_r main.cpp -o ibmclang.a.out libfunc.a -blibpath:.:/usr/1lib

$ cat func.hpp
#include <iostream>

#if defined(_AIX) && defined(__clang__)
extern "C" void bar(void) asm("bar2");
jtelse

extern "C" void bar(void);

ftendif

void func(void);

$ cat func.cpp
#include "func.hpp"

#if defined(_AIX) && defined(__clang__)

#define BUILD_COMPILER "build compiler is ibm-clang++_r"
{telse

#define BUILD_COMPILER "build compiler is x1C"

#tendif

void func(void)

std::cout << "func(): " << BUILD_COMPILER << std::endl;

extern "C" void bar(void)
std::cout << "bar(): " << BUILD_COMPILER << std::endl;

$ cat main.cpp

Chapter 1. Migrating from Classic XL compilers 3

https://www.ibm.com/docs/en/aix/latest?topic=l-ldd-command

#include "func.hpp

int main() £
func();
bar();
return O;

$ cat xlc.exp

!

func__Fv

bar

$ cat ibmclang.exp

!

_ZA4funcv

bar2

$ build_example.sh

$ xlc.a.out

func(): build compiler is x1C

bar(): build compiler is x1C

$ ibmclang.a.out

func(): build compiler is ibm-clang++_x
bar(): build compiler is ibm-clang++_r

In this example, the main program built with either the x1C or ibm-clang++_x command can call both
the func and bar functions from the dual-ABI library. Shared object ibmclang.shr.oin libfunc.a

is built using the IBM Open XL C/C++ compiler. The shared object can be used by both IBM Open XL
C/C++ for AIX and IBM XL C/C++ for AIX 16.1.0 invoked by x1clang++. Because ibmclang.shxr.o has
dependencies on the C++ runtime of the IBM Open XL C/C++ compiler, applications generated by IBM XL
C/C++ for AIX 16.1.0 invoked by x1clang++ require the appropriate version of the IBM Open XL C/C++
for AIX runtime to be available on the system. Similarly, ibmclang.shxr.o can also be built using IBM XL
C/C++ for AIX 16.1.0 invoked by x1clang++ and used by both IBM Open XL C/C++ for AIX and IBM XL
C/C++ for AIX 16.1.0 invoked by x1clang++.

You can confirm the load dependencies of your executable using the AIX command 1dd. The following is
the output from using 1dd on x1c.a.out and ibmclang.a.out in the example above:

$ 1dd xlc.a.out
xlc.a.out needs:

Just/1ib/1ibC.a(shr.0)

/usr/1lib/1ibC.a(shxcore.o)

/usr/lib/1ibC.a(ansi_32.0)

Jusr/1lib/1ibC.a(ansicore_32.0)
$ 1dd ibmclang.a.out
ibmclang.a.out needs:

/usr/lib/libc++.a(shr2.0)
/usr/lib/libc++abi.a(libc++abi.so.1)
Jusr/1lib/libunwind.a(libunwind.so.1)
Jusr/lib/libc++.a(libc++.s0.1)

$

According to the output, x1c.a.out has dependencies on the C++ runtime of the classic XL C/C++
compiler, which is 1ibC. a, but it does not have dependencies on the C++ runtime of the Open XL C/C++
compiler, which are 1ibc++.4a, 1ibc++abi.a, and 1ibunwind.a. On the other hand, ibmclang.a.out
has dependencies on 1ibc++.a, libc++abi.a, and 1ibunwind.a but does not have dependencies on
libC.a.

Invocation commands

The classic invocation commands supported by IBM XL C/C++ for AIX 16.1.0 or earlier releases including
x1c and x1C are not supported in IBM Open XL C/C++ for AIX 17.1.1. The x1clang and x1clang++
invocation commands are not supported either.

In IBM Open XL C/C++ for AIX 17.1.1, use the ibm-clang, ibm-clang_r, and ibm-clang++_r invocation
commands instead.

Note:

4 IBM Open XL C/C++: Migration Guide

« -pthread is not implied when the compiler is invoked by ibm-clang.

- ibm-clang_r replaces xlc which is an invocation command in IBM XL C/C++ for AIX 16.1.0 or earlier
releases. Similarly, ibm-clang++_r replaces xIC.

For more information on the classic invocation commands, see classic invocation commands.

Compiler utilities and commands

Consider a number of changes to compiler utilities and commands when you migrate your program from
IBM XL C/C++ for AIX 16.1.0 or earlier releases to IBM Open XL C/C++ for AIX 17.1.1.

Supported utilities and commands
This topic discusses utilities and commands that are supported by IBM Open XL C/C++ for AIX 17.1.1.

IBM Open XL C/C++ for AIX 17.1.1 introduces support for new utilities, as well as continuing to support
the utilities and commands that were supported by IBM XL C/C++ for AIX 16.1.0, except those described
in Unsupported utilities and commands. Find details of all supported utilities and commands in Utilities
and commands.

Unsupported utilities and commands

IBM Open XL C/C++ for AIX 17.1.1 no longer supports compiler utilities and commands that are described
in this section.

- Utilization reporting tool

« The c++filt name demangling utility
« The linkxIC utility

« The makeC++SharedLib utility

e The genhtml command

« The cleanpdf command

« The mergepdf command

« The showpdf command

Migration considerations of individual compiler utilities

This section lists individual compiler utilities that need to be considered for migration.

linkxIC

In IBM XL C/C++ for AIX 16.1.0 or earlier releases, the 1inkx1C utility links C++ .0 and . a files. It can be
used on systems where the compiler is not installed.

In IBM Open XL C/C++ for AIX 17.1.1, 1inkx1C is not supported. Use ibm-clang++_x to link Open XL
C/C++ binaries instead. Contact your customer service if you need to link Open XL C++ binaries where the
ibm-clang++_x utility is not available.

To link binaries that are compiled with IBM XL C/C++ for AIX 16.1.0 using x1C and binaries that are
compiled with IBM Open XL C/C++ for AIX 17.1.1 using ibm-clang++_x, you can perform one of the
following tasks:

« Link mixed binaries with the x1C or V16 1inkx1C command and add necessary V17 linker options. Run
the ibm-clang++_x -v command to obtain the linker options that IBM Open XL C/C++ for AIX 17.1.1
provides.

« Link mixed binaries with the ibm-clang++_x command and add necessary V16 linker options. Run the
x1C -v command to obtain the linker options that IBM XL C/C++ for AIX 16.1.0 provides.

Chapter 1. Migrating from Classic XL compilers 5

https://www.ibm.com/docs/xl-c-and-cpp-aix/16.1?topic=applications-invoking-compiler

makeC++SharedLib

In IBM XL C/C++ for AIX 16.1.0 or earlier releases, the makeC++SharedLib utility permits the creation of
C++ shared libraries on systems where the compiler is not installed.

In IBM Open XL C/C++ for AIX 17.1.1, the makeC++SharedLib utility is not supported. Use ibm-clang+
+_x -shared to create Open XL C++ shared libraries instead. Contact your customer service if you need
to create Open XL C++ shared libraries where the ibm-clang++_x utility is not available.

In Open XL, similar to what occurs when makeC++SharedLib was used in classic XL compilers, an
automatic export list is generated when -shaxed is specified without either an export list or the ~bexp*
export options.

Option mapping

Options of makeC++SharedLib are recognized by Open XL as linker options, except for the following
ones.

Table 4. Mapping options of MakeC++SharedLib to Open XL linker options

Option of MakeC++SharedLib Linker option

-e None. The similar function can be obtained by
separately running the CxreateExpoxtList utility
over the input files.

-E<export_list> -bE:<export_list>

-I<import_Llist> -bI:<import_list>

-n -e

-p -bcdtors::[priority]

-W None

-X 32 -m32

-X 64 -mé64

Notes:

« In Classic XL compilers, the -p option is mandatory in MakeC++SharedLib to specify the priority
level for the initialization order of static C++ objects declared in the shared object. However,
~-bcdtoxs:: [prioxrity] can be omitted in Open XL. If no priority is specified, Open XL uses the
default priority of zero.

« In Open XL compilers, if neither =-m32 nor -m64 is set, the mode specified by the OBJECT_MODE
environment variable takes effect. This behavior is the same as that of classic XL compilers when
neither =X 32 nor -X 64 is set in MakeC++SharedLib.

An option that is meant to be passed to the linker 1d needs to be preceded by the -W1, option; for
example, -W1, -eMy_entry. Note that the comma is included as part of the =W1, option.

Creating shared libraries

To create shared binaries from object files that are compiled with IBM XL C/C++ for AIX 16.1.0 using x1C
and object files that are compiled with IBM Open XL C/C++ for AIX 17.1.1 using ibm-clang++_x, you
can perform one of the following tasks:

« Link mixed binaries with the x1C or V16 makeC++SharedLib command and add necessary V17 linker
options. Run the ibm-clang++_xr -v command to obtain the linker options that IBM Open XL C/C++
for AIX 17.1.1 provides.

6 IBM Open XL C/C++: Migration Guide

« Link mixed binaries with the ibm-clang++_x command and add necessary V16 linker options. Run the
x1C -v command to obtain the linker options that IBM XL C/C++ for AIX 16.1.0 provides.

Related information

« MakeC++SharedLib
« Utilities and commands

« Linking shared libraries

e ld command

Compiler options

Consider a number of changes to compiler options when you migrate your program from IBM XL C/C++ for
AIX 16.1.0 or earlier releases to IBM Open XL C/C++ for AIX 17.1.1.

Supported compiler options

This topic describes Clang, GCC, and IBM compiler options that are supported by IBM Open XL C/C++ for
AIX17.1.1.

Clang and GCC options

The new ibm-clang, ibm-clang_r, and ibm-clang++_r invocation commands accept Clang options. For
more information about Clang options, see Clang options.

Meanwhile, GCC options that were supported by IBM XL C/C++ for AIX 16.1.0 are also supported by IBM
Open XL C/C++ for AIX 17.1.1. Refer to GCC options for details.

Supported IBM compiler options
IBM Open XL C/C++ for AIX 17.1.1 introduces support for new options.

Additionally, the following options that were supported by IBM XL C/C++ for AIX 16.1.0 are also
supported by IBM Open XL C/C++ for AIX 17.1.1.

- -b

- -B

« -bmaxdata
e -brtl

Chapter 1. Migrating from Classic XL compilers 7

https://www.ibm.com/docs/en/xl-c-and-cpp-aix/16.1?topic=utilities-creating-shared-library-makecsharedlib-utility
https://www.ibm.com/docs/aix/latest?topic=l-ld-command

. -w

Find details of all supported options in Compiler options.

Unsupported compiler options

The classic XL C/C++ compiler options that usually start with =¢ are not supported in IBM Open XL C/C++
for AIX 17.1.1.

You must remove the specified classic options or replace them with the appropriate Clang options.

Changed compiler options
Some compiler options have been changed in IBM Open XL C/C++ for AIX 17.1.1.

-maltivec
In IBM Open XL C/C++ and classic release IBM XL C/C++ for AIX 16.1.0, the altivec.h file is not
implicitly included when -maltivec is in effect.

Discrepancies for option defaults

The section shows the discrepancies for compiler option defaults between IBM Open XL C/C++ for AIX
17.1.1 and IBM XL C/C++ for AIX 16.1.0.

Table 5. Option defaults on IBM Open XL C/C++ for AIX 17.1.1 and IBM XL C/C++ for AIX 16.1.0

Default on IBM XL C/C++ for AIX 16.1.0 invoked
by xlclang or xlclang++

Default on IBM Open XL C/C++ for AIX 17.1.1

-mcpu=powerd

-mcpu=power7

-gnolibansi

-fbuiltin, which is an equivalent option to -glibansi

-gnortti

-frtti, which is an equivalent option to -qrtti or
-grtti=all

-gnostrict is implied when -03 is in effect

-ffast-math is not implied when -03 is in effect

-std=gnu99

-std=gnul?7

EE) -std=gnu++11

-std=gnu++14

Mapping of options

The topic provides a mapping of classic IBM XL C/C++ compiler options and Clang options that have the

same or similar functions.

Note: Suboptions of these options do not necessarily have a one-to-one mapping.

Table 6. Mapping of compiler options

Classic options supported by IBM XL C/C++ for
AIX 16.1.0

Similar/equivalent Clang options supported by
IBM Open XL C/C++ for AIX 17.1.1

-# -HH##

-+ -X C++

-C! None; the default compiler behavior is as if -C! was
in effect.

-E -E or -E -x c for files with unrecognized file name

suffixes

-W\,-f

8 IBM Open XL C/C++: Migration Guide

https://www.ibm.com/docs/xl-c-and-cpp-aix/16.1?topic=reference-compiler-options

Table 6. Mapping of compiler options (continued)

Classic options supported by IBM XL C/C++ for
AIX 16.1.0

Similar/equivalent Clang options supported by
IBM Open XL C/C++ for AIX 17.1.1

-F None

-G -shared -W\,-G
Refer to Linking a shared Library with runtime
linking for more information.

-ma None

-0 -00, -01, -02, -03, or -Ofast

-p None

-pg None

-P -E -P -o file.i obtains behavior similar to the classic
-P option.

-q32 -m32

-q64 -mé4

-gaggrcopy None; the default compiler behavior is as if

-gaggrcopy was in effect.

-galias=[no]ansi

-f[no-]strict-aliasing

-galias=suboption, where suboption is not [nolansi

None

-galign=bit_packed

-fpack-struct

-galignrulefor None
-qalloca None
-g[nolaltivec -m[no-Jaltivec
-garch -mcpu
-gasm -fasm
-gasm_as None
-gassert None
-qattr None

-gbitfields=signed

-fsigned-bitfields

-gbitfields=unsigned None
-qc_stdinc -isystem
-qcpp_stdinc -isystem
-qcache None

-qchars=signed

-fsigned-char

-gchars=unsigned

-funsigned-char

-gcheck=bounds

-fsanitize=bounds -fsanitize-trap=bounds

-qcheck=divzero

-fsanitize=integer-divide-by-zero -fsanitize-
trap=integer-divide-by-zero

Chapter 1. Migrating from Classic XL compilers 9

Table 6. Mapping of compiler options (continued)

Classic options supported by IBM XL C/C++ for
AIX 16.1.0

Similar/equivalent Clang options supported by
IBM Open XL C/C++ for AIX 17.1.1

-qcheck=nullptr

-fsanitize=null -fsanitize-trap=null

-qgcinc None

-gcommon None

-gcompact -Os and -0z

-gconcurrentupdate None

-qcpluscmt None; the default compiler behavior is as if
-gcpluscmt was in effect.

-qcrt None; the default compiler behavior is as if -qcrt
was in effect.

-gnocrt -nostartfiles

-qdataimported

-mdataimported

-qdatalocal

-mdatalocal

-gnodatalocal

-mdataimported

-qdbcs None; the compiler supports UTF-8 source files all
the time.

-qdbgfmt=dwarf -gdwarf-3

-qdbgfmt=dwarf4 -gdwarf-4

-qdbgfmt=stabstring None

-qdbxextra -fno-eliminate-unused-debug-types
-qdfp None
-g[no]digraph -f[no-]digraphs

-qdirectstorage

None

-qdollar

-fdollars-in-identifiers

-qdpcl

None

“-gqdump_class_hierarchy” on page 22

-fdump-class-hierarchy or -Xclang -fdump-record-
layouts

-geh -fexceptions
-gnoeh -fignore-exceptions
-genum None

-gexpfile None

-gextchk None

-gfdpr None

-qflag None
-gfloat=[no]dfpemulate None
-gfloat=[no]fenv None

10 IBM Open XL C/C++: Migration Guide

Table 6. Mapping of compiler options (continued)

Classic options supported by IBM XL C/C++ for
AIX 16.1.0

Similar/equivalent Clang options supported by
IBM Open XL C/C++ for AIX 17.1.1

-gfloat=[no]fltint None
-gfloat=[no]fold None
-gfloat=[no]hscmplx None
-gfloat=[no]hsflt None
-gfloat=[no]hssngl None

-gfloat=maf

-ffp-contract=fast

-gfloat=nomaf

-ffp-contract=off

-gfloat=[no]nans

None

-gfloat=relax

-fno-honor-nans -fno-honor-infinities -fdenormal-
fp-math=positive-zero -fno-signed-zeros -fno-
rounding-math -freciprocal-math

-gfloat=norelax

-fhonor-nans -fhonor-infinities -fdenormal-fp-
math=ieee -fsighed-zeros -frounding-math -fno-
reciprocal-math

-gfloat=[no]rndsngl

None

-gfloat=[no]rngchk

None

-gfloat=[no]rrm

-f[no-Jrounding-math

-gfloat=[no]rsqrt None
-gfloat=[no]single None
-gfloat=[no]spnans None
-gfloat=[no]subnormals None
-gflttrap=enable:inexact None
-qflttrap=enable:invalid None
-gflttrap=enable:overflow None
-gflttrap=enable:underflow None

-gflttrap=enable:zerodivide

-fsanitize=float-divide-by-zero -fsanitize-
trap=float-divide-by-zero

-gflttrap=imprecise None

-gflttrap=nanqg None

-qformat -Wformat

-gfullpath None; the default compiler behavior is as if

-gfullpath was in effect.

-g[no]funcsect

-f[no-]function-sections

-gfunctrace None
-ggcc_c_stdinc None
-qgcc_cpp_stdinc None

Chapter 1. Migrating from Classic XL compilers 11

Table 6. Mapping of compiler options (continued)

Classic options supported by IBM XL C/C++ for
AIX 16.1.0

Similar/equivalent Clang options supported by
IBM Open XL C/C++ for AIX 17.1.1

-qgenproto None
-ghalt=w -Werror
-ghaltonmsg None
-gheapdebug None
-ghelp -help
“-ghot” on page 25 -Ofast
-ghot=suboption None
-qidirfirst None
-gignerrno -fno-math-errno
-gignprag None
-ginclude -include

-ginfo=[noJunset

-WI[no-]uninitialized

-ginfo=suboption, where suboption is not [noJunset | None

-ginitauto None

-ginlglue None; the default compiler behavior is as if
-gnoinlglue was in effect.

-g[nolinline -f[no-Jinline

-ginline=auto

-finline-functions

-ginline=noauto

-finline-hint-functions

-ginline=level=1

-mllvm --inline-threshold=45 -mllvm --inlinehint-
threshold=325

-ginline=level=2

-mllvm --inline-threshold=90 -mllvm --inlinehint-
threshold=325

-ginline=level=3

-mllvm --inline-threshold=135 -mllvm --inlinehint-
threshold=325

-ginline=level=4

-mllvm --inline-threshold=180 -mllvm --inlinehint-
threshold=325

-ginline=level=5

-mllvm --inline-threshold=225 -mllvm --inlinehint-
threshold=325

-ginline=level=6

-mllvm --inline-threshold=270 -mllvm --inlinehint-
threshold=395

-ginline=level=7

-mllvm --inline-threshold=315 -mllvm --inlinehint-
threshold=465

-ginline=level=8

-mllvm --inline-threshold=360 -mllvm --inlinehint-
threshold=535

-ginline=level=9

-mllvm --inline-threshold=405 -mllvm --inlinehint-
threshold=605

12 IBM Open XL C/C++: Migration Guide

Table 6. Mapping of compiler options (continued)

Classic options supported by IBM XL C/C++ for

AIX 16.1.0

Similar/equivalent Clang options supported by
IBM Open XL C/C++ for AIX 17.1.1

-ginline=level=10

-mllvm --inline-threshold=450 -mllvm --inlinehint-
threshold=650

-qipa -flto
-gisolated_call None
-gkeepinlines None
-gkeepparm None
-gkeyword None
-glanglvl=stdc89 -std=c89 | c90

-glanglvl=extc89

-std=gnu89 | gnu90

-glanglvl=stdc99 -std=c99
-glanglvl=extc99 -std=gnu99
-glanglvl=stdc11 -std=c11
-glanglvl=extclx -std=gnull
-glanglvl=extended -std=gnu89

E2) -glanglvl=strict98

-std=c++98/c++03

[E2» -glanglvl=extended

-std=gnu++98 | gnu++03

[EZ» -glanglvl=extendedOx

-std=c++0x | gnu++11 | gnu++0x

[EX»-glanglvl=extendedly

-std=gnu++1y | gnu++14

-glanglvl=[no]gnu_warning

-W[no-]#warnings

-glargepage None

-qldbl128 None

-glongdouble None

-gnolib -nodefaultlibs

-gnolibansi -fno-builtin

-glibmpi None; the default compiler behavior is as if
-gnolibmpi was in effect.

-glinedebug -g1 or -gline-tables-only

-qglist -S

-glistfmt None

-glistopt None

-glonglit None

-glonglong None; the default compiler behavior is as if
-glonglong was in effect.

-gmacpstr -fpascal-strings

Chapter 1. Migrating from Classic XL compilers 13

Table 6. Mapping of compiler options (continued)

Classic options supported by IBM XL C/C++ for
AIX 16.1.0

Similar/equivalent Clang options supported by
IBM Open XL C/C++ for AIX 17.1.1

-gmakedep None

-gmaxerr -ferror-limit

-gmaxmem None

-gmbcs None; the compiler supports UTF-8 source files all
the time.

-gminimaltoc None

-gmkshrobj -shared

Refer to Linking shared libraries for more
information.

-gmkshrobj=priority

-bcdtors::priority:
Refer to Linking shared libraries for more
information.

-gnamemangling None
-qobjmodel None
-qoldpassbyvalue None
-qoptdebug None
-qoptfile @file
-qoptimize --optimize

-gpack_semantic=gnu

-fno-xl-pragma-pack

-gpack_semantic=ibm

-fxl-pragma-pack

-(pagesize None

-gpath None

-qpdfl -fprofile-generate
-qpdf2 -fprofile-use
-gphsinfo -ftime-report
-gpic=small -fpic

-gpic=large -fpic -mcmodel=large -Wl,-bbigtoc
-gppline None

-gnoppline -E -P

-qprefetch None

-qgprint None

-gpriority None
-qprocimported None

-gproclocal None
-gprocunknown None

14 IBM Open XL C/C++: Migration Guide

Table 6. Mapping of compiler options (continued)

Classic options supported by IBM XL C/C++ for
AIX 16.1.0

Similar/equivalent Clang options supported by
IBM Open XL C/C++ for AIX 17.1.1

-qprofile None

-qproto None; the default compiler behavior is as if
-gnoproto was in effect.

-qreport None

-greserved_reg None

-grestrict -frestrict-args

-qro None; the default compiler behavior is as if -qro
was in effect.

-groconst None; the default compiler behavior is as if
-groconst was in effect.

-qroptr None; the default compiler behavior is as if
-gnoroptr was in effect.

-q[no]rtti -f[no-]rtti

-gsaveopt None

-gshowinc None

-qgshowmacros -dM

-qshowpdf None

-gsimd=noauto -fno-vectorize -fno-slp-vectorize

-qgskipsrc None

-gslmtags None

-gsmallstack None

-gsmp None

-qsource None

-gsourcetype -X

-qsourcetype=default -X hone

-gspeculateabsolutes None

-gspill None

-g[no]srcmsg -f[no-]caret-diagnostics

-qstackprotect -fstack-protector

-gstaticinline None

-gstaticlink None

-gstatsym None

-gstdinc -nostdinc

-gnostdinc -nostdinc++

-gstrict=association

-fno-associative-math

Chapter 1. Migrating from Classic XL compilers 15

Table 6. Mapping of compiler options (continued)

Classic options supported by IBM XL C/C++ for
AIX 16.1.0

Similar/equivalent Clang options supported by
IBM Open XL C/C++ for AIX 17.1.1

-gstrict=noassociation

-fassociative-math

-gstrict=[no]nans

-f[no-]honor-nans

-gstrict=[nolinfinities

-f[no-]honor-infinities

-gstrict=[nolzerosigns

-f[no-]signed-zeros

-gstrict=subnormals

-fdenormal-fp-math=ieee

-gstrict=nosubnormals

-fdenormal-fp-math=positive-zero or -fdenormal-
fp-math=preserve-sign

-qstrict=operationprecision

-fno-reciprocal-math

-gstrict=nooperationprecision

-freciprocal-math

-gstrict=[no]vectorprecision None
-gstrict=[no]reductionorder None
-gstrict=[no]guards None
-gstrict=[no]library None

-qstrict=order

-fno-associative-math

-qstrict=noorder

-fassociative-math

-qstrict=ieeefp

-fhonor-nans -fhonor-infinities -fdenormal-fp-
math=ieee -fsigned-zeros -frounding-math -fno-
reciprocal-math

-gstrict=noieeefp

-fno-honor-nans -fno-honor-infinities -fdenormal-
fp-math=positive-zero -fno-signed-zeros -fno-
rounding-math -freciprocal-math

-gstrict=exceptions

-fhonor-nans -fhonor-infinities -fdenormal-fp-
math=ieee -ffp-exception-behavior=strict

-gstrict=noexceptions

-fno-honor-nans -fno-honor-infinities
-fdenormal-fp-math=positive-zero -ffp-exception-
behavior=ignore

-gstrict=precision

-fno-associative-math -fdenormal-fp-math=ieee
-fno-reciprocal-math

-gstrict=noprecision

-fassociative-math -fdenormal-fp-math=positive-
zero -freciprocal-math

-gstrict_induction None
-qsuppress None
-gsymtab None

-gsyntaxonly

-fsyntax-only

-qtabsize None

-qtbtable None; the default compiler behavior is as if
-gtbtable=full was in effect.

-qtempinc None

16 IBM Open XL C/C++: Migration Guide

Table 6. Mapping of compiler options (continued)

Classic options supported by IBM XL C/C++ for
AIX 16.1.0

Similar/equivalent Clang options supported by
IBM Open XL C/C++ for AIX 17.1.1

-qtemplatedepth

-ftemplate-depth

-qtemplaterecompile None

-gtemplateregistry None

-qtempmax None

-gthreaded -pthread

-qtimestamps None

-qtls -ftls-model

-gqtmplinst None

-gqtmplparse None

-gtocdata None

-qtocmerge None

-gtrigraph -trigraphs

-qtune None

-qtwolink -bcdtors:mbr

-qunique None

-g[nojunroll -f[no-]Junroll-loops

-qunroll=yes None

-qunwind None

-qupconv None; the default compiler behavior is as if
-gnoupconv was in effect.

-qutf None

-qvecnvol -mabi=vec-extabi

-gnovecnvol -mabi=default

-gversion --version

-qvisibility -fvisibility; see also -fvisibility-inlines-hidden.

-qvrsave None; the default compiler behavior is as if
-gnovrsave was in effect.

-qwarn0x None

-qwarn64 None

-qweakexp None

-qweaksymbol None; the default compiler behavior is as if
-gweaksymbol was in effect.

-gxcall None

-gxlcompatmacros None

-gxref None

Chapter 1. Migrating from Classic XL compilers 17

Table 6. Mapping of compiler options (continued)

Classic options supported by IBM XL C/C++ for | Similar/equivalent Clang options supported by
AIX 16.1.0 IBM Open XL C/C++ for AIX 17.1.1

-5 -WL,-s

-t None

-v -v

ﬂ '

-y None

-7 -WL,-Z

Related information

- The "Clang command line argument reference" section in the Clang documentation

Migration considerations for individual compiler options

This section contains migration considerations for individual compiler options.

Related information
« “Mapping of options” on page 8

 “Discrepancies for option defaults” on page 8

-+ (plus sign) (C++ only)

In IBM XL C/C++ for AIX 16.1.0 or earlier releases, you could use the -+ option to compile any file as a
C++ language file. The =x c++ option, which is supported by IBM Open XL C/C++ for AIX 17.1.1, has an
equivalent function that treats input files as C++ source files regardless of their file suffixes.

Note the following differences between new =x c++ and classic -+ options:

« The -+ option is not sensitive to position on the command line. You can specify the input files and the
=+ option in any order on the command line. However, the =x c++ option affects only the files that are
specified following the option on the command line, but not those that precede the option.

- The -+ option does not accept files that have the . a, .0, .so, .S, or . s suffixes. However, the =-x option
accepts all such files. For example, if you specify the a. o file after =x c++ on the command line, the
compiler treats a. o as a c++ file, which might result in errors.

Related information

- The "Clang command line argument reference" section in the Clang documentation

-b

In IBM Open XL C/C++ for AIX 17.1.1, options starting with =b that are not otherwise recognized by
the compiler are implicitly forwarded to the linker. Linker options with the -W1 prefix can be explicitly
forwarded to the linker.

-E

Unlike IBM XL C/C++ for AIX 16.1.0 and earlier releases, IBM Open XL C/C++ for AIX 17.1.1 ignores the
=-E option for input files with unrecognized file name suffixes. You can simulate the behavior of classic
XL releases by specifying the C language type through the =x ¢ option when you have input files with
unrecognized file name suffixes.

18 IBM Open XL C/C++: Migration Guide

In the following example, the classic XL compiler preprocesses file. sqc using the C language type and
emits the preprocessed output to stdout:

x1lc -E file.sqc

In IBM Open XL C/C++ for AIX 17.1.1, to obtain similar behavior, specify the C language type before input
files that have unrecognized file name suffixes. See the following example:

ibm-clang -E -x ¢ file.sqc #-x -c indicates the C language type

-f

In IBM XL C/C++ for AIX 16.1.0 or earlier releases, the - £ option names a file that stores a list of object
files for the compiler to pass to the linker.

In IBM Open XL C/C++ for AIX 17.1.1, use the -W1, - £ option instead. However, if the linker is invoked to
produce a shared object but an export file is not provided, the resulting shared object might not export the
correct symbols. In addition, the =W1, -£ option doesn't work if no objects or source files are provided on
the command line.

-0
IBM Open XL C/C++ for AIX 17.1.1 supports the =00, -01, -02, -03, and -0fast optimization levels.
Note the following migration considerations for -0:

« The -01 optimization level does not exist in IBM XL C/C++ for AIX 16.1.0 or earlier releases. This
optimization level is less aggressive than -02.

« IBM XL C/C++ for AIX 16.1.0 or earlier releases has the =05 optimization level but the level is not
available in IBM Open XL C/C++ for AIX 17.1.1.

- The =04 level is currently treated as equivalent to =03. However, the behavior of =04 might change in
the future, so you are recommended not to use =04 in IBM Open XL C/C++ for AIX 17.1.1.

« The -0 optimization level is equivalent to =02 in IBM XL C/C++ for AIX 16.1.0 or earlier releases, but it
is equivalent to =01 in IBM Open XL C/C++ for AIX 17.1.1.

« If you were using =04 or =05 in IBM XL C/C++ for AIX 16.1.0 or earlier releases, use -Ofast
-mcpu=native -fltoinIBM Open XL C/C++ for AIX 17.1.1 instead.

Related information

« -mcpu

-p, -pg, -qprofile

In IBM XL C/C++ for AIX 16.1.0 or earlier releases, the -p, -pg, or -gprofile option prepares the
object files produced by the compiler for profiling. When you compile your program with one of the
options, the compiler produces monitoring code that counts the number of times each routine is called.
When you execute an application compiled with -p or ~qprofile=p, the application writes the recorded
information to a mon. out file. When you execute an application compiled with -pg or ~qprofile=pg,
the application writes the recorded information to a gmon . out file.

In IBM Open XL C/C++ for AIX 17.1.1, the =p and -pg options are accepted, but the instrumentation does
not work correctly. When you execute an application compiled with -p, the application links and runs

but the generated mon . out file does not contain any call information. When you execute an application
compiled with -pg, the following link error message is issued:

1d: 0711-317 ERROR: Undefined symbol: .mcount

Profile guided optimization (PGO) is an alternative for the -pg option. The ibm-11lvm-profdata show
utility can be used to display information from the PGO profile file.

Chapter 1. Migrating from Classic XL compilers 19

Related information

 “Profile Guided Optimization (PGO)” on page 63
« Utilities and commands

-P

In IBM XL C/C++ for AIX 16.1.0 or earlier releases, the =P option preprocesses the source files specified
in the compiler invocation, without compiling, and creates an output preprocessed file for each input file.
The preprocessor does not generate line markers.

IBM Open XL C/C++ for AIX 17.1.1 still supports the =P option, but its behavior has been changed to be
consistent with that of =P in GCC. Specifically, =P no longer generates preprocessed output files. Instead,
it disables the generation of line markers in the preprocessed output generated by other options such as
-E.

To obtain similar behavior of =P in IBM XL C/C++ for AIX 16.1.0 or earlier releases, use the =E -P and -o
options in IBM Open XL C/C++ for AIX 17.1.1.

Example

This is a classic XL command. After executing the command, £ile. c is preprocessed without line
markers generated in the preprocessed output.

xlc -P file.c
This classic XL command can be replaced by the following command in IBM Open XL C/C++:
ibm-clang -E -P -o file.i file.c

where,

- The -E option instructs the compiler to preprocess £ile. c without compiling.
« The =P option instructs the compiler to not insert line markers in the preprocessed output.
« The o file. i option instructs the compiler to store the preprocessed output to file. 1.

Related information

« GCC online documentation

-qaggrcopy

In IBM XL C/C++ for AIX 16.1.0 or earlier releases, the =qaggrcopy option enables destructive copy
operations for structures and unions.

IBM Open XL C/C++ for AIX 17.1.1 does not support a functionally equivalent option to -qaggrcopy.
By default, the compiler uses a destructive copy for structure or union assignments. If a non-destructive
copy for structure or union assignments is desired, you are recommended to use the memmove library
function.

Related information

« movement subroutine

-gqalias

In IBM XL C/C++ for AIX 16.1.0 or earlier releases, the -galias option indicates whether a program
contains certain categories of aliasing or does not conform to C/C++ standard aliasing rules.

In IBM Open XL C/C++ for AIX 17.1.1, classic compiler option -qalias=ansi mapsto -fstrict-
aliasing and -galias=noansi maps to -fno-strict-aliasing. You can use -fno-strict-
aliasing to compile code that does not adhere to the ANSI C/C++ standard aliasing rules. However,

20 IBM Open XL C/C++: Migration Guide

https://gcc.gnu.org/onlinedocs/
https://www.ibm.com/docs/aix/latest?topic=m-memccpy-memchr-memcmp-memcpy-memset-memset-s-memmove-subroutine

it is recommended to compile all files with -fstrict-aliasing during an LTO build to achieve the best
performance.

IBM Open XL C/C++ for AIX 17.1.1 does not support a functionally equivalent option to
-gqalias=restrict. Optimizations for pointers that are qualified with the C99 restrict keyword or
the C++ __restrict keyword are always enabled in IBM Open XL C/C++ for AIX 17.1.1 and cannot be
disabled.

Related information
« Link Time Optimization (LTO)
« GCC online documentation

- The "Clang command line argument reference" section in the Clang documentation

-galign

In IBM XL C/C++ for AIX 16.1.0 or earlier releases, the =galign option specifies the alignment of data
objects in storage, which avoids performance problems with misaligned data.

If you used the ~qalign option to compile your program, remove this option and add the corresponding
{fpragma alignandkfpragma align(reset) directives in your program when you migrate the
program to IBM Open XL C/C++ for AIX 17.1.1.

Related information

- #pragma align

-galloca, -ma (C only)

In IBM XL C/C++ for AIX 16.1.0 or earlier releases, the ~qalloca or -ma option provides an inline
definition of system function alloca when it is called from source code that does not include the
alloca.h header file.

IBM Open XL C/C++ for AIX 17.1.1 does not support a functionally equivalent option to -qalloca or -ma.
However, you can achieve a similar function using one of the following ways:

« Specify =-Dalloca=__builtin_alloca on the command line to map -qallocato the
__builtin_alloca function. This built-in function can be called without including the alloca.h
header file.

« Include the alloca. h header file in source files.

Related information
« “#pragma alloca (C only)” on page 35

e __builtin_alloca

-gassert

In IBM XL C/C++ for AIX 16.1.0 or earlier releases, the -~qassext option provides information about the
characteristics of the programs that can help to fine-tune optimizations.

In IBM Open XL C/C++ for AIX 17.1.1, there is no option that is functionally equivalent to
-gassert. However, you can get similar optimization hints through the __builtin_assume() or
__builtin_assume_aligned() function.

-qcompact

In IBM XL C/C++ for AIX 16.1.0 or earlier releases, the -qcompact option avoids optimizations that
increase code size.

Chapter 1. Migrating from Classic XL compilers 21

https://gcc.gnu.org/onlinedocs/

In IBM Open XL C/C++ for AIX 17.1.1, the -0z or -0s option provides a similar function to control output
code size, but -0z and -0s work only at the =02 optimization level. For example, if you specify =03 -0s,
=03 is overridden.

When you port your program from IBM XL C/C++ for AIX 16.1.0 or earlier releases to IBM Open XL C/C++
for AIX 17.1.1, reevaluate the size of the output generated by IBM Open XL C/C++ for AIX 17.1.1. If
reduction in code size is required, try using the =0s option and note any performance trade-offs. If further
reduction in code size is required, try using the =0z option.

Related information

- The "Clang command line argument reference" section in the Clang documentation

-qc_stdinc (C only), -qcpp_stdinc (C++ only)

In IBM XL C/C++ for AIX 16.1.0 or earlier releases, the =gqc_stdinc or -qcpp_stdinc option changes
the standard search location for system header files and XL C header files or XL C/C++ header files.

In IBM Open XL C/C++ for AIX 17.1.1, use the -isystem option to achieve the same effect.

Note: The directory for the compiler to search for header files needs to be updated for IBM Open XL
C/C++ for AIX17.1.1.

Related information

- The "Clang command line argument reference" section in the Clang documentation

-gcinc (C++ only)

In IBM XL C/C++ for AIX 16.1.0 or earlier releases, the -gqcinc option places an extern "C" { %
wrapper around the contents of header files that are located in a specified directory.

In IBM Open XL C/C++ for AIX 17.1.1, there is no option that is functionally equivalent to -=gcinc. You
need to manually add the extern "C" { % wrapper inyour program.

-gcpluscmt (C only)

In IBM XL C/C++ for AIX 16.1.0 or earlier releases, the =qcpluscmt option enables the recognition of
C++-style comments in C source files.

In IBM Open XL C/C++ for AIX 17.1.1, C++ comments are accepted in C source files. There is no way to
disable the recognition of C++-style comments in C source files.

-qdump_class_hierarchy

IBM Open XL C/C++ for AIX 17.1.1 does not support an option that is functionally equivalent to
-qdump_class_hieraxchy. In IBM Open XL C/C++ for AIX 17.1.1, -Xclang -fdump-recoxd-
layouts can be used to produce a similar report of structure layouts; however, the format of the report
is different from the report generated by -qdump_class_hieraxrchy in IBM XL C/C++ for AIX 16.1.0 or
earlier releases.

Related information

- The "Clang command line argument reference" section in the Clang documentation

-genum

In IBM XL C/C++ for AIX 16.1.0 or earlier releases, the -genum option specifies the amount of storage
occupied by enumerations.

22 IBM Open XL C/C++: Migration Guide

In IBM Open XL C/C++ for AIX 17.1.1, use -fshoxt-enums as a functionally equivalent option to
-genum=small. Other -qenum suboptions are not supported. For C++ programs, you can also use the
C++11 scoped enumeration feature to specify the underlying type of enumerations.

Related information

- “#pragma enum” on page 36

« GCC online documentation

- The "Clang command line argument reference" section in the Clang documentation

-gexpfile

In IBM XL C/C++ for AIX 16.1.0 or earlier releases, the ~gexpfile option saves all exported symbols in a
designated file when used together with the -qmkshxobj or -G option.

IBM Open XL C/C++ for AIX 17.1.1 does not support a functionally equivalent option to ~qexpfile. The
CreateExportList utility that has a similar function to ~qexpfile is available in IBM Open XL C/C++ for
AIX 17.1.1. This utility creates a file that contains a list of all the exportable symbols found in a given set
of object files.

-gflag, -qghaltonmsg, -qinfo, -qsuppress

The mechanism of diagnostic message control of Clang is different from that of the classic XL compilers.
Refer to the "Diagnostic flags in Clang" section in the Clang documentation for details.

-qfloat

In IBM XL C/C++ for AIX 16.1.0 or earlier releases, the -qfloat option selects different strategies for
speeding up or improving the accuracy of floating-point calculations. The majority of ~qfloat suboptions
do not have functionally equivalent options in IBM Open XL C/C++ for AIX 17.1.1.

If you specified =qfloat when compiling your program with IBM XL C/C++ for AIX 16.1.0 or earlier
releases, consider the following guidelines when migrating your program to IBM Open XL C/C++ for AIX
17.1.1:

« The -ffp-model=strict option ensures correct compiler behavior but disables almost all floating-
point optimizations. Use this option with discretion.

« Aspects of ~qfloat=[no]fenv that pertain to rounding mode can be controlled via
-f[no-]rounding-math. Similarly, aspects of ~qfloat=[no]fenv that pertain to exception
behaviors can be controlled via -ffp-exception-behavior.

« InIBM XL C/C++ for AIX 16.1.0 or earlier releases, the ~qfloat=[no] fold option could evaluate
constant floating-point expressions at compile time. In IBM Open XL C/C++ for AIX 17.1.1, you can use
the -f[no-Jxrounding-math option to control constant folding in some cases, but this option affects
more than just constant folding and might have performance and accuracy implications that go beyond
what -qfloat=[no]fold controlled.

« InIBM XL C/C++ for AIX 16.1.0 or earlier releases, the ~qfloat=[no]hscmplx option could speed
up operations that involve complex division and complex absolute value, and the -qfloat=[no]hsflt
option could speed up calculations by preventing rounding for single-precision expressions and by
replacing floating-point division by multiplication with the reciprocal of the divisor. In IBM Open XL C/C+
+ for AIX 17.1.1, use the =£[no-]rounding-math option to control optimizations that might result in
different rounding behaviors and use the -f[no-]reciprocal-math option to control replacement of
divide operations with a multiplication of the numerator by the reciprocal of the denominator.

« InIBM XL C/C++ for AIX 16.1.0 or earlier releases, the -qfloat=[no]nans allowed you to
use the -qflttrap=invalid:enable option to detect and deal with exception conditions that
involve signaling NaN (not-a-number) values. In IBM Open XL C/C++ for AIX 17.1.1, use the
-ffp-exception-behavior option to control some aspects of the semantics controlled by
-gqfloat=[no]lnans, but the impact goes beyond just signaling NaNs. Furthermore, unlike IBM XL

Chapter 1. Migrating from Classic XL compilers 23

https://gcc.gnu.org/onlinedocs/

C/C++ for AIX 16.1.0 or earlier releases, there is no way to control exceptions when converting an SNaN
from single to double precision in IBM Open XL C/C++ for AIX 17.1.1.

« InIBM XL C/C++ for AIX 16.1.0 or earlier releases, the ~qfloat=[no]xsqxrt speeded up some
calculations by replacing division by the result of a square root with multiplication by the reciprocal of
the square root. In IBM Open XL C/C++ for AIX 17.1.1, use the =£[no-]xreciprocal-math option to
achieve a similar effect, but the impact goes beyond just division by the square root.

« The -qfloat=[no]spnans option was deprecated and replaced with -qfloat=nans. Consider the
migration guidelines of ~qfloat=[no]nans if you used -qfloat=[no]spnans to compile your
program.

Related information

- The "Clang command line argument reference" section in the Clang documentation

-qflttrap

In IBM XL C/C++ for AIX 16.1.0 or earlier releases, the -qflttxap option determines what types of
floating-point exceptions to detect at runtime.

In IBM Open XL C/C++ for AIX 17.1.1, you can use -fsanitize=float-divide-

by-zero -fsanitize-trap=float-divide-by-zero to achieve the same effect of
-qflttrap=enable:zerodivide to detect and trap floating-point divisions by zeros. Other floating-
point exception detections using software traps that are enabled by -qflttrap=enable are no longer
supported.

In IBM Open XL C/C++ for AIX 17.1.1, you are recommended to use hardware traps to get SIGFPE. You
can use facilities such as £p_trap and £p_enable_all in the program to enable the detection and
generation of the SIGFPE signals. Note that the facilities are not portable between platforms so you need
to update and recompile your program when migrating the program from AIX to Linux®, or vice versa. In
addition, the imprecise and nanq trappings are no longer supported because hardware traps do not need
them.

The -ftrapping-math option is available in IBM Open XL C/C++ for AIX 17.1.1 to prevent optimizations
that can change the trapping behavior of the program, but it does not control whether a signal is
generated when a floating-point exception happens.

Related information

- The "Clang command line argument reference" section in the Clang documentation

-qfullpath

In IBM XL C/C++ for AIX 16.1.0 or earlier releases, the =¢q[no] fullpath option records the absolute or
relative path names of source and header files in object files compiled with debugging information so that
debugging tools can correctly locate the source files. When =qfullpath is in effect, the absolute path
names of source files are preserved. When -gnofullpath is in effect, the relative path names of source
files are preserved.

In IBM Open XL C/C++ for AIX 17.1.1, only the DWARF debugging information is supported. The default
compiler behavior is as if ~qfullpath were in effect, which means the compiler embeds the absolute
paths for source files in the debug information. However, if the source files are not located in the absolute
path location, the debugger might resort to the relative path location.

In addition, the -fdebug-prefix-map option is a related option to =qfullpath, which remaps file
source paths in the debug information.

Related information

- The "Clang command line argument reference" section in the Clang documentation

24 1IBM Open XL C/C++: Migration Guide

-gqfunctrace

In IBM XL C/C++ for AIX 16.1.0 or earlier releases, the =qfunctrace option calls the tracing routines to
trace the entry and exit points of the specified functions in a compilation unit.

In IBM Open XL C/C++ for AIX 17.1.1, the ~finstrument-functions option has a similar function,
which generates calls to instrument entry and exit points of functions.

Related information

 “#pragma nofunctrace” on page 40

- The "Clang command line argument reference" section in the Clang documentation

-qhot

In IBM XL C/C++ for AIX 16.1.0 or earlier releases, the =ghot option performs high-order loop analysis
and transformations (HOT) during optimization.

If you specified =qhot when compiling your program with IBM XL C/C++ for AIX 16.1.0 or earlier
releases, consider the following guidelines when migrating your program to IBM Open XL C/C++ for AIX
17.1.1:

« If you used -ghot without any suboption in IBM XL C/C++ for AIX 16.1.0 or earlier releases, use
-0fast instead in IBM Open XL C/C++ for AIX 17.1.1.

 If you used -gnohot, try using -0fast in IBM Open XL C/C++ for AIX 17.1.1. However, if you encounter
any floating-point precision issues, try using =03 instead. If the issues can be resolved, you can go back
to use -0fast and achieve finer control over the floating-point optimizations with one or more of the
following options:

— -f[no-Jhonor-infinities
— -f[no-Jhonor-nans

— -f[no-]math-exxno

— =-f[no-]finite-math-only
— -f[no-]associative-math
— -f[no-]reciprocal-math
— -f[no-]signed-zeros

— -f[no-]trapping-math

— -ffp-contract

— =f[no-]rounding-math

 There is not an option that is functionally equivalent to -qhot=1evel=0]|1]| 2. However, you can control
the level of optimizations including some loop optimizations with the =02, -03, or -0fast option.

« The effect of =ghot=vectox can be achieved by specifying =-ml1lvm -vector-libraxry=MASSV along
with an optimization level that triggers loop vectorization.

» The effect of ~ghot=fastmath can be achieved by specifying -03 -fapprox-func or -0fast that
invokes scalar MASS library and triggers loop vectorization.

Related information

e -mllvm
« The "Clang command line argument reference" section in the Clang documentation

Chapter 1. Migrating from Classic XL compilers 25

-gignerrno

In IBM XL C/C++ for AIX 16.1.0 or earlier releases, the -~qignerxrno option allows the compiler to
perform optimizations as if system calls would not modify exrno. The __IGNERRNO__ macro is defined
to 1 when the -qignexrno option is in effect.

In IBM Open XL C/C++ for AIX 17.1.1, the -fno-math-exxno option provides the same function as
-gignerrno. However, the __IGNERRNO__ macro is not supported in IBM Open XL C/C++ for AIX
17.1.1, so ~fno-math-exxrno does not predefine __IGNERRNO__.

Related information

- The "Clang command line argument reference" section in the Clang documentation

-ginitauto

In IBM XL C/C++ for AIX 16.1.0 or earlier releases, the =qinitauto option initializes uninitialized
automatic variables to a specific value for debugging purposes.

In IBM Open XL C/C++ for AIX 17.1.1, the -ftrivial-auto-var-init=pattexn option can be used
to improve the reproducibility of issues that are caused by using uninitialized variables. However, unlike
-ginitauto, you cannot specify the value to be assigned to an uninitialized automatic variable.

Related information

« The "Clang command line argument reference" section in the Clang documentation

-qinline

In IBM XL C/C++ for AIX 16.1.0 or earlier releases, when you specified the -ginline=noauto option,
only the following types of functions were considered for inlining;:

« Functions that are defined with the inline specifier
« Small functions that are identified by the compiler

To achieve the same effect to inline explicitly or implicitly hinted functions, specify =finline-hint-
functions in IBM Open XL C/C++ for AIX 17.1.1.

In IBM XL C/C++ for AIX 16.1.0 and earlier releases, -ginline+<function_name> and -qinline-
<function_name> controlled automatic inlining for individual functions. In IBM Open XL C/C++ for AIX
17.1.1, there is not a functionally equivalent option. To achieve the same effect, mark the functions with
the always_inline or noinline attribute.

Notes:

« The -finline-functions and -finline-hint-functions take effect only at =01 or higher.

« The effect of ~finline-hint-functions is not cumulative. For example, if the option comes after
-finline-functions, -finline-functions is overridden, and only explicitly or implicitly hinted
functions get inlined.

« The -fno-inline option is overridden if it is specified together with -finline-functions or
-finline-hint-function.

e The =fno-inline-hint-functions option is not supported by IBM Open XL C/C++ for AIX 17.1.1.

Related information

« GCC online documentation

- The "Clang command line argument reference" section in the Clang documentation

26 IBM Open XL C/C++: Migration Guide

https://gcc.gnu.org/onlinedocs/

-gisolated_call

In IBM XL C/C++ for AIX 16.1.0 or earlier releases, the ~gisolated_call option specifies functions in
the source file that have no side effects other than those implied by their parameters.

IBM Open XL C/C++ for AIX 17.1.1 does not support a functionally equivalent option to
-gqisolated_call. Mark functions with the __attribute__((pure)) function attribute instead.

Related information

- “#pragma isolated_call” on page 38

« GCC online documentation

-gkeepinlines (C++ only)

In IBM XL C/C++ for AIX 16.1.0 or earlier releases, the -qgkeepinlines option keeps or discards
definitions for unreferenced extexrn inline functions.

IBM Open XL C/C++ for AIX 17.1.1 does not support a functionally equivalent option to ~qkeepinlines.
Usethe __attribute__ ((__used__)) function attribute as an alternative. For templates, you are
recommended to use C++11 explicit template instantiations.

Related information

« GCC online documentation

-gkeepparm

In IBM XL C/C++ for AIX 16.1.0 or earlier releases, the -~gkeeppaxm option specifies whether procedure
parameters are stored on the stack when used with =02 or higher optimization level.

IBM Open XL C/C++ for AIX 17.1.1 does not support a functionally equivalent option to -qkeeppaxm. A
workaround is to compile your program without optimization enabled.

-gqlargepage

In IBM XL C/C++ for AIX 16.1.0 or earlier releases, the -qlaxrgepage option takes advantage of large
pages for applications that are designed to execute in a large page memory environment.

IBM Open XL C/C++ for AIX 17.1.1 does not have an option that is functionally equivalent to
-gqlargepage. To make your application use large pages, large pages must be configured on the system
and you must link the application with =W1, -blpdata. See Large pages in the AIX operating system
documentation for details.

-glonglong

In IBM XL C/C++ for AIX 16.1.0 or earlier releases, the =qlonglong option allows IBM long long
integer types in your program.

In IBM Open XL C/C++ for AIX 17.1.1, the long long type is allowed by default.

-qgmakedep

In IBM XL C/C++ for AIX 16.1.0 or earlier releases, the ~gmakedep option produces the dependency files
that are used by the make tool for each source file.

In IBM Open XL C/C++ for AIX 17.1.1, the =M family of options achieve the similar effect of -gmakedep.

Related information

« The "Clang command line argument reference" section in the Clang documentation

Chapter 1. Migrating from Classic XL compilers 27

https://gcc.gnu.org/onlinedocs/
https://gcc.gnu.org/onlinedocs/
https://www.ibm.com/docs/aix/latest?topic=performance-large-pages

-gminimaltoc

In IBM XL C/C++ for AIX 16.1.0 or earlier releases, the ~=gminimaltoc option ensures that the compiler
creates only one TOC entry for each compilation unit. Specifying this option can minimize the use of
available TOC entries. In addition, the compiler used -qpic=laxrge to support larger TOCs on AIX.

The method of using -gminimaltoc to reduce the number of TOC entries on AIX is no longer supported
in IBM Open XL C/C++ for AIX 17.1.1. To let programs support large TOCs, specify the -mcmodel=large
and -W1, -bbigtoc options in IBM Open XL C/C++ for AIX 17.1.1.

Related information

- The "Clang command line argument reference" section in the Clang documentation

-gnamemangling (C++ only)

In IBM XL C/C++ for AIX 16.1.0 or earlier releases, the ~gnamemangling option chooses the name
mangling scheme for external symbol names that are generated from C++ source code.

In IBM Open XL C/C++ for AIX 17.1.1, the Itanium-based C++ABI of ibm-clang++ does not support
prior C++ABI name mangling.

Related information

« “#pragma namemangling (C++ only), #pragma namemanglingrule (C++ only)” on page 40

-gobjmodel (C++ only)

In IBM XL C/C++ for AIX 16.1.0 or earlier releases, the ~qobjmodel option sets the object model to be
used for structures, unions, and classes.

In IBM Open XL C/C++ for AIX 17.1.1, the Itanium-based C++ABI of ibm-clang++ does not support the
prior C++ABI object models.

Related information
« “#pragma object_model (C++ only)” on page 40

-qoptimize

In IBM XL C/C++ for AIX 16.1.0 or earlier releases, the ~qoptimize option specifies whether to optimize
code during compilation and, if so, at which level.

If you were using -qoptimize in IBM XL C/C++ for AIX 16.1.0 or earlier releases, use ==
optimize=<level>, -00, -01, -02, -02, or -0fast in IBM Open XL C/C++ for AIX 17.1.1 to achieve
the same effect.

Related information

« The "Clang command line argument reference" section in the Clang documentation

-qpdfl, -qpdf2, -gshowpdf

In IBM XL C/C++ for AIX 16.1.0 or earlier releases, the -qpd£1, -qpd£2, and -qshowpdf options tune
optimizations through profile-directed feedback (PDF).

IBM Open XL C/C++ for AIX 17.1.1 no longer support the PDF feature. Profile-guided optimization (PGO)
is a replacement, which is a compiler optimization technique that uses profiling to improve program
runtime performance. For details, see Profile Guided Optimization (PGO).

28 IBM Open XL C/C++: Migration Guide

-gppline

In IBM XL C/C++ for AIX 16.1.0 or earlier releases, the =q[no]ppline option enables or disables the
generation of #1ine directives when used with the -E or =P option.

In IBM Open XL C/C++ for AIX 17.1.1, use -E =P to suppress emitting ##1ine directives to achieve a
similar effect to ~gnoppline.

Note: The =P option in IBM Open XL C/C++ for AIX 17.1.1 has a completely different meaning from the
=P option IBM XL C/C++ for AIX 16.1.0. In IBM Open XL C/C++ for AIX 17.1.1, the behavior of =P is
consistent with that of GCC, which disables line markers in the preprocessed output for the compiler.

Related information
« “-P” on page 20

« GCC online documentation

-qprefetch

In IBM XL C/C++ for AIX 16.1.0 or earlier releases, the -qpxrefetch option inserts prefetch instructions
automatically where there are opportunities to improve code performance.

IBM Open XL C/C++ for AIX 17.1.1 does not provide functionally equivalent options to
-gprefetch=[no]assistthread and -qprefetch=[no]aggressive. In IBM Open XL C/C++ for
AIX 17.1.1, specify the =ml1lvm -ppc-set-dscxr=<n> option to set the Data Stream Control Register
(DSCR). For an LTO build, specify -W1, -bplugin_opt: - -ppc-set-dscr=<n> on the link step.

Related information

« =mllvm
 “Link Time Optimization (LTO)” on page 61

-qpriority (C++ only)

In IBM XL C/C++ for AIX 16.1.0 or earlier releases, the =gqpxrioxrity option specifies the priority level for
the initialization of static objects.

IBM Open XL C/C++ for AIX 17.1.1 does not support a functionally equivalent option to -qpriority,
nor does it support pragma priority.IBM Open XL C/C++ for AIX 17.1.1 supports the
__attribute__((init_priority)) attribute that provides a similar function to -gpxrioxity, with
which you can specify non-default priorities for initialization in source code. The default priority between
IBM XL C/C++ for AIX 16.1.0 and IBM Open XL C/C++ for AIX 17.1.1 is the same. However, the

value range of the priority levelin __attribute__((init_priority)) is different from that of
-gprioxrity. As a result, there is no guarantee of relative ordering between the objects compiled with
IBM Open XL C/C++ for AIX 17.1.1 and the objects compiled with IBM XL C/C++ for AIX 16.1.0 or earlier
releases.

Related information
 “dpragma priority (C++ only)” on page 41

« GCC online documentation

-qrestrict

In IBM XL C/C++ for AIX 16.1.0 or earlier releases, you could use the -qrestrict option to imply that
pointer type parameters in all functions had the restrict keyword.

In IBM Open XL C/C++ for AIX 17.1.1, use -frestrict-axrgs to achieve the same effect.

Chapter 1. Migrating from Classic XL compilers 29

https://gcc.gnu.org/onlinedocs/
https://gcc.gnu.org/onlinedocs/

Related information

- -frestrict-args

-gsimd
In IBM XL C/C++ for AIX 16.1.0 or earlier releases, the -gsimd=noauto option disabled the conversion
of loop array operations into vector instructions.

In IBM Open XL C/C++ for AIX 17.1.1, use -fno-vectorize and -fno-slp-vectoxrize options to
achieve the same effect to disable auto vectorization features. For an LTO build, you need to add -W1, -
bplugin_opt:-vectorize-loops=false -W1l,-bplugin_opt:-vectorize-slp=£false onthe
link step.

Related information

« “#pragma nosimd” on page 40

- The "Clang command line argument reference" section in the Clang documentation

-gsmp

IBM Open XL C/C++ for AIX 17.1.1 supports neither automatic parallelization transformations nor
OpenMP. The -gsmp option is not available in IBM Open XL C/C++ for AIX 17.1.1.

-gsourcetype

In IBM XL C/C++ for AIX 16.1.0 or earlier releases, the -qsouxcetype option instructs the compiler

to treat all recognized source files as a specified source type, regardless of the actual file name suffix.
All source files following -gqsouxrcetype=assemblexr are compiled as if they were assembler language
source files.

In IBM XL C/C++ for AIX 16.1.0 or earlier releases, files with either the .S or . s suffix are preprocessed
before being passed to the assembler. In IBM Open XL C/C++ for AIX 17.1.1, only files with the .S suffix
can be preprocessed. Hence, if a . s file needs to be preprocessed, either rename it to the . S file or use
the =x assemblex-with-cpp option to let the compiler treat it as an assembler language source file.

Related information

- The "Clang command line argument reference" section in the Clang documentation

-gstatsym

IBM Open XL C/C++ for AIX 17.1.1 produces static variables as symbols in the symbol table when the
compiler does not perform optimizations. If you used -gstatsymin IBM XL C/C++ for AIX 16.1.0 or
earlier releases, compile your program without optimization enabled when you migrate the program to
IBM Open XL C/C++ for AIX 17.1.1.

-qstrict

In IBM XL C/C++ for AIX 16.1.0 or earlier releases, =03 implies -~gnostrict, which enables many
floating-point optimizations. However, in IBM Open XL C/C++ for AIX 17.1.1, -03 does not enable most
of the floating-point optimizations that old releases enabled. If -03 =-qgstxrict was used in classic XL
compilers, it maps to just =03 in Open XL. To enable more floating-point optimizations in IBM Open XL
C/C++ for AIX 17.1.1, try the following steps:

1. Specify =03 to let the program produce expected results.
2. Specify =0fast to further optimize the program.

3. Customize the usage of the following options to achieve the right balance between accuracy in floating
point operations and speed:

30 IBM Open XL C/C++: Migration Guide

e -f[no-Jhonoxr-infinities
e =f[no-]honoxr-nans

« -f[no-]math-exxno

« -f[no-]finite-math-only
- -f[no-]associative-math
« -f[no-]xeciprocal-math
« -f[no-]signed-zeros

e -f[no-]trapping-math

« -ffp-contract

e -f[no-]rounding-math

Related information

- The "Clang command line argument reference" section in the Clang documentation

-qtbtable

In IBM XL C/C++ for AIX 16.1.0 or earlier releases, the -qtbhtable option controls the amount of
debugging traceback information that is included in object files.

In IBM Open XL C/C++ for AIX 17.1.1, full function traceback tables are enabled by default.

Related information

e =mllvm

-qtls

In IBM XL C/C++ for AIX 16.1.0 or earlier releases, the =qtls option enables the recognition of the
__thread storage class specifier and specifies the thread-local storage model to be used. The __thread
storage class specifier designates thread-local storage for variables.

The -ftls-model is functionally equivalent to -qtls. In IBM Open XL C/C++ for AIX 17.1.1, only the
global-dynamic suboption of this option is supported. The other tls models such as 1local-dynamic
and initial-exec are not supported.

Note: To use thread-local storage, -pthread is required. -pthread is implied when the compiler is
invoked by ibm-clang_r and ibm-clang++_r, but not implied when the compiler is invoked by ibm-clang.

Related information

- The "Clang command line argument reference" section in the Clang documentation

-gqtmplinst (C++ only)

In IBM XL C/C++ for AIX 16.1.0 or earlier releases, the -qtmplinst option manages the implicit
instantiation of templates.

IBM Open XL C/C++ for AIX 17.1.1 does not support a functionally equivalent option to =qtmplinst. You
are recommended to use C++11 explicit template instantiations to control template instantiation in your
program.

Related information

« GCC online documentation

Chapter 1. Migrating from Classic XL compilers 31

https://gcc.gnu.org/onlinedocs/

-qunroll

In IBM XL C/C++ for AIX 16.1.0 or earlier releases, automatic unrolling is enabled by the
-qunroll=auto option at =02 or higher.

In IBM Open XL C/C++ for AIX 17.1.1, automatic unrolling is enabled by default at =02 or higher. You can
also enable automatic unrolling at =01 by specifying the =funxroll-1oops option. In addition, -fno-
unroll-loops can be used to disable unrolling of all loops to achieve the same effect as-gnounxoll.

In IBM Open XL C/C++ for AIX 17.1.1, there is not an option that is functionally equivalent
to -qunxroll=n; however, you can use #fpragma unxroll(n) or{#pragma clang loop
unroll_count(n) to control unrolling at the source level.

Related information

« #pragma unroll

-qutf

In IBM XL C/C++ for AIX 16.1.0 or earlier releases, the -qutf option enables the recognition of UTF literal
syntax.

IBM Open XL C/C++ for AIX 17.1.1 does not support a functionally equivalent option to -qut£. UTF literal
support is determined by the language level that is in effect.
-v, =V

In IBM XL C/C++ for AIX 16.1.0 or earlier releases, the =v or =V option reports the progress of
compilation by naming the programs being invoked and the options being specified to each program.

In IBM Open XL C/C++ for AIX 17.1.1, use the -v option instead. Its format and compilation steps are
somewhat different from those of -v or =V in the old releases.

Related information

« The "Clang command line argument reference" section in the Clang documentation

"y
In IBM XL C/C++ for AIX 16.1.0 or earlier releases, the =y option specifies the rounding mode for the
compiler when the compiler evaluates constant floating-point expressions at compile time.

In IBM Open XL C/C++ for AIX 17.1.1, -y is not supported. There is no option to control the compile-time
floating-point evaluation rounding mode. The Clang option -frounding-math gives you the ability to
disable the optimizer from folding floating-point values that cannot be exactly represented; however, this
might result in slower runtime performance.

The FE_TONEAREST macro, which is available in IBM Open XL C/C++ for AIX 17.1.1, matches the -y
semantics. In IBM Open XL C/C++ for AIX 17.1.1, floating-point folding that is required by the language
features such as initialization of global floating-point variables is done through FE_TONEAREST.

Related information

« "Clang Compiler User's Manual" in the Clang documentation

- The "Clang command line argument reference" section in the Clang documentation

32 IBM Open XL C/C++: Migration Guide

Compiler pragmas

Consider a number of changes to compiler pragmas when you migrate your program from IBM XL C/C++
for AIX 16.1.0 or earlier releases to IBM Open XL C/C++ for AIX 17.1.1.

Supported compiler pragmas
This topic discusses compiler pragmas that are supported by IBM Open XL C/C++ for AIX 17.1.1.

Clang pragmas
Community Clang pragmas for LLVM Clang on AIX are supported in IBM Open XL C/C++ for AIX 17.1.1.

Note: Unlike IBM programs, Clang pragmas are case sensitive.

Supported IBM pragmas

The following pragmas that were supported by IBM XL C/C++ for AIX 16.1.0 are also supported by IBM
Open XL C/C++ for AIX 17.1.1. Find details of these pragmas in Compiler pragmas.

« #pragma align

- #pragma GCC visibility push
 #pragma GCC visibility pop

« #pragma nosimd

- #pragma pack

« #pragma STDC FENV_ACCESS
« #pragma STDC FP_CONTRACT
« #pragma unroll

 #pragma nounroll

« #pragma unrollandfuse

Note: #pragma nosimd and #pragma unrollandfuse are supported but deprecated in IBM Open XL
C/C++ for AIX 17.1.1.

Unsupported pragmas

IBM Open XL C/C++ for AIX 17.1.1 no longer supports compiler pragmas that are described in this
section.

« #pragma align(bit_packed)

« #pragma align(full)

« #pragma align(twobyte)
 #pragma align(mac68k)

« #pragma alloca (C only)

- #pragma block_loop
 #pragma chars

« #pragma comment

« #pragma complexgcc
 #pragma define

 #pragma disjoint

« #pragma do_not_instantiate (C++ only)
« #pragma enum

 #pragma execution_frequency

Chapter 1. Migrating from Classic XL compilers 33

- #pragma expected_value

« #pragma fini (C only)

« #pragma hashome (C++ only)
 #pragma ibm independent_loop

« #pragma ibm iterations

- #pragma ibm max_iterations
 #pragma ibm min_iterations

« #pragma ibm snapshot

« #pragma implementation (C++ only)
 #pragma info

« #pragma init (C only)

« #pragma instantiate (C++ only)

« #pragma ishome (C++ only)

« #pragma isolated_call

« #pragma langlvl (C only)

- #pragma leaves

« #pragma loopid

« #pragma map

 #pragma mc_func

« #pragma namemangling (C++ only)
« #pragma namemanglingrule (C++ only)
« #pragma nofunctrace

« #pragma novector

« #pragma object_model (C++ only)

« #pragma operator_new (C++ only)

- #pragma options

 #pragma option_override

« #pragma pass_by value (C++ only)
 #pragma priority (C++ only)

- #pragma reachable

- #pragmareg_killed_by

« #pragma report (C++ only)

- #pragma simd_level

« #pragma STDC CX_LIMITED_RANGE
 #pragma stream_unroll

 #pragma strings

- #pragma weak

« #pragma ibm independent_calls (C only)
« #pragma ibm permutation (C only)

« #pragma ibm schedule (C only)

« #pragma ibm sequential_loop (C only)
- #pragma omp atomic

 #pragma omp parallel

34 1IBM Open XL C/C++: Migration Guide

 #pragma omp for
 #pragma omp ordered
 #pragma omp parallel for

« #pragma omp section

« #pragma omp sections
 #pragma omp parallel sections
 #pragma omp single

- #pragma omp master
 #pragma omp critical
 #pragma omp barrier

« #pragma omp flush
 #pragma omp threadprivate
 #pragma omp task

« #pragma omp taskyield
 #pragma omp taskwait

Migration considerations of individual compiler pragmas

This section lists individual compiler pragmas that need to be considered for migration.

#pragma alloca (C only)

In IBM XL C/C++ for AIX 16.1.0 or earlier releases, #pragma alloca is functionally equivalent to the
-galloca or -ma option. This pragma provides an inline definition of system function alloca when the
function is called from source code that does not include the alloca.h header.

IBM Open XL C/C++ for AIX 17.1.1 does not support #fpragma alloca. However, you can achieve a
similar function using one of the following ways:

« Specify =-Dalloca=__builtin_alloca on the command line to map -qalloca to the
__builtin_alloca function.

« Include the alloca.h header file in source files.

Related information

« “-galloca, -ma (C only)” on page 21

e __builtin_alloca

#pragma chars

In IBM XL C/C++ for AIX 16.1.0 or earlier releases, #fpragma chars determines whether all variables of
type char are treated as signed or unsigned.

IBM Open XL C/C++ for AIX 17.1.1 does not support f#fpragma chars. However, you can use the
-fsigned-chaxr or -funsigned-chax Clang option to achieve the same effect.

Related information

- The "Clang command line argument reference" section in the Clang documentation

#pragma comment

In IBM XL C/C++ for AIX 16.1.0 or earlier releases, #fpragma comment places a comment into object
modules to indicate the program and compiler information such as the compiler version.

Chapter 1. Migrating from Classic XL compilers 35

IBM Open XL C/C++ for AIX 17.1.1 does not support #fpragma comment. However, when the compiler
uses the AIX system assembler, the compiler version string is embedded in the object symbol table. To
extract the compiler version, you can use the dump -tv <object-file> command or leverage other
object dumpling utilities.

#pragma define (C++ only), #pragma instantiate (C++ only), #pragma
do_not_instantiate (C++ only)

In IBM XL C/C++ for AIX 16.1.0 or earlier releases, #pragma define, #pragma instantiate, and
{ipragma do_not_instantiate provide an alternative method when explicitly instantiating a template
class.

In IBM Open XL C/C++ for AIX 17.1.1, these pragmas are not supported. You are recommended to use
C++11 explicit template instantiations instead.

Related information

« GCC online documentation

#pragma disjoint

In IBM XL C/C++ for AIX 16.1.0 or earlier releases, #pragma disjoint lists identifiers that are

not aliased to each other within the scope of their use. This pragma provides more opportunities for
optimizations by informing the compiler that none of the identifiers listed in the pragma shares the same
physical storage.

IBM Open XL C/C++ for AIX 17.1.1 does not support f#fpragma disjoint. You are recommended to use
the restrict type qualifier for C programs or the __restrict__ type qualifier for C/C++ programs to
assert that points are not aliased.

Related information

« GCC online documentation

#pragma enum

In IBM XL C/C++ for AIX 16.1.0 or earlier releases, #pragma enum is functionally equivalent to the
-genum option. It specifies the amount of storage occupied by enumerations.

In IBM Open XL C/C++ for AIX 17.1.1, use -fshoxt-enums as a functionally equivalent option to
-genum=small. Other -qenum suboptions are not supported. For C++ programs, you can also use the
C++11 scoped enumeration feature to specify the underlying type of enumerations.

Related information

- “-qenum” on page 22

« GCC online documentation

- The "Clang command line argument reference" section in the Clang documentation

#pragma execution_frequency

In IBM XL C/C++ for AIX 16.1.0 or earlier releases, #fpragma execution_frequency marks programs
that you expect to be either very frequently or very infrequently executed.

IBM Open XL C/C++ for AIX 17.1.1 does not support #fpragma execution_frequency. You are
recommended to use the __builtin_expect built-in function instead.

Related information

« The __builtin_expect built-in function

36 IBM Open XL C/C++: Migration Guide

https://gcc.gnu.org/onlinedocs/
https://gcc.gnu.org/onlinedocs/
https://gcc.gnu.org/onlinedocs/

#pragma expected_value

In IBM XL C/C++ for AIX 16.1.0 or earlier releases, #fpragma expected_value specifies the value
that a parameter passed in a function call is most likely to take at run time. The compiler can use this
information to perform certain optimizations, such as function cloning and inlining.

IBM Open XL C/C++ for AIX 17.1.1 does not support #fpragma expected_value. You are recommended
touse the __builtin_expect built-in function instead.

Related information

« #__builtin_expect

#pragma fini (C only), #pragma init (C only)

In IBM XL C/C++ for AIX 16.1.0 or earlier releases, #fpragma init specifies the order in which the
runtime library calls a list of functions before main () is called, and #pragma f£ini specifies the order in
which the runtime library calls a list of functions after main () completes or exit () is called.

IBM Open XL C/C++ for AIX 17.1.1 does not support these pragmas. You are recommended to use

the __attribute__((constructor)) function attribute to achieve the similar function to f#fpragma
init and usethe __attribute__((destructor)) function attribute to achieve the similar function to
{fpragma fini.

Related information

« GCC online documentation

#pragma GCC visibility push, #pragma GCC visibility pop

In IBM XL C/C++ for AIX 16.1.0 or earlier releases, you could selectively set visibility attributes for entities
by using pairs of the #fpragma GCC visibility push and#pragma GCC visibility pop compiler
directives throughout your program. #fpragma GCC visibility push had the following parameters to
specify visibility attributes for external linkage entities in object files:

« default
- protected
« hidden

« internal

IBM Open XL C/C++ for AIX 17.1.1 accepts and processes #pragma GCC visibility push

and #fpragma GCC visibility pop. However, only the default parameter of #pragma GCC
visibility push is supported in IBM Open XL C/C++ for AIX 17.1.1, meaning either the visibility
attribute or #fpragma GCC visibility push specified in the source code is ignhored by the compiler.

Related information
- #pragma GCC visibility push, #pragma GCC visibility pop

#pragma hashome (C++ only), #pragma ishome (C++ only)

In IBM XL C/C++ for AIX 16.1.0 or earlier releases, #pragma ishome informs the compiler that the home
module of the specified class is the current compilation unit. The home module is where items, such as
the virtual function table, are stored. #fpragma hashome informs the compiler that the specified class
has a home module that is specified by #pragma ishome. The virtual function table of the specified
class, along with certain inline functions, are referenced as externals in the compilation unit of the class in
which #fpragma ishome is specified.

IBM Open XL C/C++ for AIX 17.1.1 does not support these pragmas. Virtual function tables are emitted
according to the Itanium C++ ABI rules in IBM Open XL C/C++ for AIX 17.1.1.

Chapter 1. Migrating from Classic XL compilers 37

https://gcc.gnu.org/onlinedocs/

#pragma ibm independent_loop

In IBM XL C/C++ for AIX 16.1.0 or earlier releases, #pragma ibm independent_loop explicitly states
that the iterations of the chosen loop are independent and that the iterations can be executed in parallel.

IBM Open XL C/C++ for AIX 17.1.1 does not support f#fpragma ibm independent_loop. You are
recommended to use the #fpragma clang loop vectorize(assume_safety) Clang pragma instead
in the context of loop vectorization.

Related information

« "Clang Compiler User's Manual" in the Clang documentation

#pragma implementation (C++ only)

In IBM XL C/C++ for AIX 16.1.0 or earlier releases, when used with the -qtempinc option, #fpragma
implementation supplies the name of the file that contains the template definitions corresponding to
the template declarations contained in a header file.

In IBM Open XL C/C++ for AIX 17.1.1, neither #fpragma implementation nor -qtempinc is supported.
Use C++11 explicit template instantiations instead, which is a standard-compliant means of managing
where template instantiations occur.

Related information

« GCC online documentation

#pragma info, #pragma report (C++ only)

In IBM XL C/C++ for AIX 16.1.0 or earlier releases, #pragma info is functionally equivalent to -ginfo
that produces or suppresses groups of informational messages, and #pragma repoxrt controls the
generation of diagnostic messages.

IBM Open XL C/C++ for AIX 17.1.1 adopts the Clang infrastructure and has an entirely different diagnostic
implementation. In IBM Open XL C/C++ for AIX 17.1.1, you can use either of the following Clang option or
pragma to suppress or control the generation of diagnostic messages:

« Clang options in the form of -W[no-]
- {fpragma clang diagnostic ignored

Related information

- “Diagnostic message control” on page 58

- The "Diagnostic flags in Clang" section in the Clang documentation

- The "Clang command line argument reference" section in the Clang documentation

#pragma isolated_call

In IBM XL C/C++ for AIX 16.1.0 or earlier releases, #fpragma isolated_call specifies functions that
have no side effects in the source file other than those implied by their parameters.

IBM Open XL C/C++ for AIX 17.1.1 does not support #fpragma isolated_call. You are recommended
tousethe __attribute__ ((pure)) function attribute instead.

Related information

« “-qisolated_call” on page 27

« GCC online documentation

38 IBM Open XL C/C++: Migration Guide

https://gcc.gnu.org/onlinedocs/
https://gcc.gnu.org/onlinedocs/

#pragma langlvl (C only)

In IBM XL C/C++ for AIX 16.1.0 or earlier releases, #fpragma langlvl determines whether the source
code conforms to a specific language standard, or subset or superset of a standard.

IBM Open XL C/C++ for AIX 17.1.1 does not support #fpragma langlvl. You are recommended to use
the =-std Clang option instead.

Related information

« The "Clang command line argument reference" section in the Clang documentation

#pragma leaves

In IBM XL C/C++ for AIX 16.1.0 or earlier releases, #fpragma leaves informs the compiler that a named
function never returns to the instruction following a call to that function.

IBM Open XL C/C++ for AIX 17.1.1 does not support #fpragma leaves. You are recommended to use the
__attribute__((noretuxrn)) function attribute or #fpragma clang attribute instead.

Related information

« GCC online documentation

- The "#pragma clang attribute" section in the Clang documentation

#pragma map

In IBM XL C/C++ for AIX 16.1.0 or earlier releases, #fpragma map converts all references to an identifier
to another externally defined identifier.

IBM Open XL C/C++ for AIX 17.1.1 does not support ffpragma map. You are recommended to use the
_attribute__((alias)) function attribute or GNU asm labels as alternatives. For example, replace
#pragma map(foo, "bar") withthe asm("bar") when you migrate the following code example from
IBM XL C/C++ for AIX 16.1.0 or earlier releases to IBM Open XL C/C++ for AIX 17.1.1.

Original program in IBM XL C/C++ for AIX 16.1.0

#pragma map(foo, "bar")
void foo();
void baz() { foo(); %

Migrated program in IBM Open XL C/C++ for AIX 17.1.1

void foo() asm("bar");
void baz() § foo(); ?

Related information
« The "ASM Goto with Output Constraints" in the Clang documentation

« Inline assembly statements

#pragma mc_func

In IBM XL C/C++ for AIX 16.1.0 or earlier releases, #pragma mc_f£unc allows you to embed a short
sequence of machine instructions "inline" within your program source code.

IBM Open XL C/C++ for AIX 17.1.1 does not support #fpragma mc_f£unc. You are recommended to use
GCCinline asm labels as an alternative.

Related information
« The "ASM Goto with Output Constraints" in the Clang documentation

Chapter 1. Migrating from Classic XL compilers 39

https://gcc.gnu.org/onlinedocs/

« Inline assembly statements

#pragma namemangling (C++ only), #pragma namemanglingrule (C++ only)

In IBM XL C/C++ for AIX 16.1.0 or earlier releases, #fpragma namemangling chooses the name
mangling scheme for external symbol names generated from C++ source code, and #pragma
namemanglingrule provides fine-grained control over the name mangling scheme in effect for selected
portions of source code, specifically with respect to the mangling of cv-qualifiers in function parameters.

In IBM Open XL C/C++ for AIX 17.1.1, neither of these pragmas is supported. IBM Open XL C/C++ for
AIX 17.1.1 adopts name mangling based on the Itanium C++ ABI, so classic XL mangled names cannot
be generated. This prevents you from accidentally linking objects files that are generated by IBM Open
XL C/C++ for AIX 17.1.1 with objected files that are generated by IBM XL C/C++ for AIX 16.1.0 or earlier
releases.

Related information

« “-gnamemangling (C++ only)” on page 28

#pragma nofunctrace

In IBM XL C/C++ for AIX 16.1.0 or earlier releases, ##pragma nofunctrace disables tracing for a given
function or a list of specified functions.

IBM Open XL C/C++ for AIX 17.1.1 does not support f#fpragma nofunctrace. You are recommended
to use the no_instrument_function function attribute in conjunction with the -finstxument-
functions option as an alternative.

Related information

« “-gfunctrace” on page 25

« GCC online documentation

- The "Clang command line argument reference" section in the Clang documentation

#pragma nosimd

In IBM XL C/C++ for AIX 16.1.0 or earlier releases, #fpragma nosimd disables the automatic generation
of vector instructions. This pragma needs to be specified on a per-loop basis.

IBM Open XL C/C++ for AIX 17.1.1 accepts #pragma nosimd and maps it to the #fpragma clang
loop vectorize(disable) Clang pragma. If you used #pragma nosimd in your program, you are
recommended to replace it with #fpragma clang loop vectorize(disable) when you migrate the
program to IBM Open XL C/C++ for AIX 17.1.1.

Related information
« “-qsimd” on page 30
« "Clang Compiler User's Manual" in the Clang documentation

#pragma object_model (C++ only)

In IBM XL C/C++ for AIX 16.1.0 or earlier releases, #fpragma object_model sets the object model to be
used for structures, unions, and classes.

IBM Open XL C/C++ for AIX 17.1.1 does not support #fpragma object_model. IBM Open XL C/C++ for
AIX 17.1.1 adopts the Itanium C++ ABI for object model; however, IBM XL C/C++ for AIX 16.1.0 that is
invoked by x1C and earlier releases adopt a different object model. New and old object models are not
compatible.

40 IBM Open XL C/C++: Migration Guide

https://gcc.gnu.org/onlinedocs/

Related information
« “-qobjmodel (C++ only)” on page 28

- “Diagnostic message control” on page 58

- The "Diagnostic flags in Clang" section in the Clang documentation

#pragma operator_new (C++ only)

In IBM XL C/C++ for AIX 16.1.0 or earlier releases, #fpragma operator_new determines whether the
new and new[] operators throw an exception if the requested memory cannot be allocated.

IBM Open XL C/C++ for AIX 17.1.1 does not support #fpragma operatoxr_new. The new expressions in
IBM Open XL C/C++ for AIX 17.1.1 are instrumented according to the C++ standard requirements, which
require that a null check is instrumented if the operator new invoked is declared non-throwing; otherwise,
astd::bad_alloc exception must be thrown on allocation failure.

#pragma option_override

In IBM XL C/C++ for AIX 16.1.0 or earlier releases, #fpragma option_override allows you to specify
optimization options at the subprogram level that override optimization options given on the command
line. This pragma enables finer control of program optimization and can help debug errors that occur only
under optimization.

IBM Open XL C/C++ for AIX 17.1.1 does not support ffpragma option_override. If you specified
pragma options_override(func, "opt(level, 0)") inyour program to disable optimization for
a specific function, use __attribute__ ((optnone)) as an alternative when you migrate the program
from IBM XL C/C++ for AIX 16.1.0 or earlier releases to IBM Open XL C/C++ for AIX 17.1.1.

Related information

« GCC online documentation

#pragma priority (C++ only)

In IBM XL C/C++ for AIX 16.1.0 or earlier releases, #fpragma priority specifies the priority level for the
initialization of static objects.

IBM Open XL C/C++ for AIX 17.1.1 does not support #fpragma priority. However, IBM Open XL C/C+

+ for AIX 17.1.1 supports the __attribute__((init_priority)) attribute that provides a similar
function to #fpragma priority, with which you can specify non-default priorities for static objects in
source code. However, the value range of the priority level in __attribute__((init_priority))is
different from that of #fpragma priority. As aresult, there is no guarantee of relative ordering between
the objects compiled with IBM Open XL C/C++ for AIX 17.1.1 and the objects compiled with IBM XL
C/C++ for AIX 16.1.0 or earlier releases.

Related information
» “-gpriority (C++ only)” on page 29

« GCC online documentation

#pragma reg_killed_by

In IBM XL C/C++ for AIX 16.1.0 or earlier releases, #pragma reg_killed_by specifies registers that
might be altered by functions that are specified by #pragma mc_£func.

IBM Open XL C/C++ for AIX 17.1.1 does not support #fpragma mc_func, so #pragma reg_killed_by
is not needed. If you use inline asm labels in place of #pragma mc_f£unc in IBM Open XL C/C++ for AIX
17.1.1, you can use the clobber list to specify which registers are altered.

Chapter 1. Migrating from Classic XL compilers 41

https://gcc.gnu.org/onlinedocs/
https://gcc.gnu.org/onlinedocs/

Related information

« “dpragma mc_func” on page 39

« Inline assembly statements

« The "ASM Goto with Output Constraints" in the Clang documentation

#pragma simd_level

In IBM XL C/C++ for AIX 16.1.0 or earlier releases, #fpragma simd_level controls the compiler code
generation of vector instructions for individual loops.

When you migrate your program from IBM XL C/C++ for AIX 16.1.0 or earlier releases to IBM Open XL
C/C++ for AIX 17.1.1, you can replace #fpragma simd_level(0) or #pragma nosimd with #pragma
clang loop vectorize(disabled) and replace #fpragma simd_level (10) with f#fpragma clang
loop vectorize(enable) respectively. IBM Open XL C/C++ for AIX 17.1.1 does not have mapping
pragmas for #fpragma simd_level when the simd level is from 1 to 9, inclusive.

Related information

« "Clang Compiler User's Manual" in the Clang documentation

#pragma STDC CX_LIMITED_RANGE

In IBM XL C/C++ for AIX 16.1.0 or earlier releases, #fpragma STDC CX_LIMITED_RANGE informs the
compiler that complex division and absolute value are only invoked with values such that intermediate
calculation will not overflow or lose significance.

In IBM Open XL C/C++ for AIX 17.1.1, ##pxragma STDC CX_LIMITED_RANGE is accepted but silently
ignored.

#pragma strings

In IBM XL C/C++ for AIX 16.1.0 or earlier releases, #fpragma strings specifies the storage type for
string literals. When #fpragma strings(xreadonly) is in effect, strings are placed in read-only memory.
When #fpragma strings(writeable) is in effect, strings are placed in read-write memory.

IBM Open XL C/C++ for AIX 17.1.1 does not support f#fpragma strings. All strings are placed in
read-only memory.

#pragma unrollandfuse

In IBM XL C/C++ for AIX 16.1.0 or earlier releases, #fpragma unrollandfuse instructs the compiler to
attempt an unroll and fuse operation on nested for loops.

IBM Open XL C/C++ for AIX 17.1.1 still accepts #pragma unrollandfuse but maps it to the
{fpragma unroll_and_jam pragma. If you used #pragma unrollandfuse in your program, you are
recommended to replace it with #fpragma unroll_and_jam when you migrate the program to IBM
Open XL C/C++ for AIX 17.1.1.

Related information

« “-qunroll” on page 32

« "Clang Compiler User's Manual" in the Clang documentation

#pragma weak

In IBM XL C/C++ for AIX 16.1.0 or earlier releases, #pragma weak prevents the linker from issuing error
messages if it encounters a symbol multiply-defined during linking, or if it does not find a definition for a
symbol.

42 1BM Open XL C/C++: Migration Guide

IBM Open XL C/C++ for AIX 17.1.1 does not support #fpragma weak. You are recommended to use
the __attribute__((weak)) attribute or the #fpragma clang attribute push ([[weak]],
apply_to = any(function)) as alternatives.

Related information

« GCC online documentation

« "Clang Compiler User's Manual" in the Clang documentation

Compiler macros

Consider a number of changes to compiler macros when you migrate your program from IBM XL C/C++ for
AIX 16.1.0 or earlier releases to IBM Open XL C/C++ for AIX 17.1.1.

Supported compiler macros
This topic discusses compiler macros that are supported by IBM Open XL C/C++ for AIX 17.1.1.

IBM Open XL C/C++ for AIX 17.1.1 introduces support for new macros. Additionally, the macros that were
supported by IBM XL C/C++ for AIX 16.1.0 are also supported by IBM Open XL C/C++ for AIX 17.1.1
except those described in . Find details of all supported macros in Compiler predefined macros.

Note:

IBM Open XL C/C++ for AIX 17.1.1 fully supports the C++17 language standard and predefines the
__cplusplus macro to 201703L when the C++17 mode is enabled via the -std=c++17 option.

Unsupported compiler macros

IBM Open XL C/C++ for AIX 17.1.1 is based on the community Clang 14.0.0 compiler. To process
programs consistently with Clang, IBM Open XL C/C++ for AIX 17.1.1 no longer supports compiler macros
that are described in this section.

« Macros to identify the XL C/C++ compiler

- __IBMC__

— __IBMCPP__

— __ibmxl__

— __ibmxl_modification__
— __ibmxl_ptf_fix_level__
— __ibmxl_release__

— __ibmxl_version__

— __ibmxl_vrm__

- __Xle__

- _xlC__

- __xIC_ver__
- Macros related to compiler option settings
— __DEBUG_ALLOC__
- __IBM_DFP__
— __IBM_DFP_SW_EMULATION__
- __IBM_GCC_ASM
— __IBM_STDCPP_ASM
— __IBM_UTF_LITERAL
— __IGNERRNO__

Chapter 1. Migrating from Classic XL compilers 43

https://gcc.gnu.org/onlinedocs/

__INITAUTO__

— __INITAUTO.W__

— __LIBANSI__

- __LONGDOUBLE128

- __NO_RTTI__

— __OBJECT_MODEL_CLASSIC__
- __OBJECT_MODEL_IBM__

- __RTTLALL__

- __TEMPINC__
_CHAR_SIGNED, __CHAR_SIGNED__
_CHAR_UNSIGNED

_IBMSMP

Note: CHAR_UNSIGNED_ remains defined in IBM Open XL C/C++ for AIX 17.1.1.
« Macros related to architecture settings

_ARCH_COM

_ARCH_PPC64GR
_ARCH_PPC64GRSQ
_ARCH_PPC64V
_ARCH_PPC970
_ARCH_PWR6E

_ARCH_PWR6X

« Macros related to language levels

- __BOOL__
- __C99__FUNC__

- __C99_BOOL

— __C99_COMPLEX

— __C99_COMPLEX_HEADER__

- __C99_COMPOUND_LITERAL

— __C99_CPLUSCMT

— __C99_DESIGNATED_INITIALIZER
~ __C99_DUP_TYPE_QUALIFIER

— __C99_EMPTY_MACRO_ARGUMENTS
— __C99_FLEXIBLE_ARRAY_MEMBER
— __C99_HEX_FLOAT CONST

— __C99_INLINE

- __C99_LLONG

- __C99_MACRO_WITH_VA_ARGS

— __C99_MAX_LINE_NUMBER

— __C99_MIXED_DECL_AND_CODE

— __C99_MIXED_STRING_CONCAT

— __C99_NON_CONST_AGGR_INITIALIZER
— __C99_NON_LVALUE_ARRAY_SUB

— __C99_PRAGMA_OPERATOR

44 1BM Open XL C/C++: Migration Guide

__C99_REQUIRE_FUNC_DECL
__C99_RESTRICT
__C99_STATIC_ARRAY_SIZE
__C99_STD_PRAGMAS
__C99_TGMATH

__C99_UCN
__C99_VAR_LEN_ARRAY
__C99_VARIABLE_LENGTH_ARRAY
__DIGRAPHS__

__EXTENDED__

__IBM__ALIGN
__IBM__ALIGNOF__
__IBM_ALIGNOF__
__IBM_ATTRIBUTES
__IBM_COMPUTED_GOTO
__IBM_DOLLAR_IN_ID
__IBM_EXTENSION_KEYWORD
__IBM_GCC__INLINE__
__IBM_GENERALIZED_LVALUE
__IBM_INCLUDE_NEXT
__IBM_LABEL_VALUE
__IBM_LOCAL_LABEL
__IBM_MACRO_WITH_VA_ARGS
__IBM_NESTED_FUNCTION
__IBM_PP_PREDICATE
__IBM_PP_WARNING
__IBM_REGISTER_VARS
__IBM__TYPEOF__
__IBMC_COMPLEX_INIT
__IBMC_GENERIC
__IBMC_NORETURN
__IBMC_STATIC_ASSERT
__IBMCPP_AUTO_TYPEDEDUCTION
__IBMCPP_C99_LONG_LONG
__IBMCPP_C99_PREPROCESSOR
__IBMCPP_COMPLEX_INIT
__IBMCPP_CONSTEXPR
__IBMCPP_DECLTYPE
__IBMCPP_DEFAULTED_AND_DELETED_FUNCTIONS
__IBMCPP_DELEGATING_CTORS
__IBMCPP_EXPLICIT_CONVERSION_OPERATORS
__IBMCPP_EXTENDED_FRIEND
__IBMCPP_EXTERN_TEMPLATE

Chapter 1. Migrating from Classic XL compilers 45

__IBMCPP_INLINE_NAMESPACE

- __IBMCPP_NULLPTR

— __IBMCPP_REFERENCE_COLLAPSING
— __IBMCPP_RIGHT_ANGLE_BRACKET
— __IBMCPP_RVALUE_REFERENCES

- __IBMCPP_SCOPED_ENUM

— __IBMCPP_STATIC_ASSERT

— __IBMCPP_VARIADIC_TEMPLATES

~ __SAA_

- _SAA_L2__

The __ibmx1 family macros are no longer supported. Instead, the __open_x1 family macros are newly
added to identify the Open XL C/C++ compiler.

Using macros to query the support of individual language features is no longer supported. You need to
write source code to target language standards.

Changed compiler macros
The values of some compiler macros are changed in IBM Open XL C/C++ for AIX 17.1.1.
In IBM XL C/C++ for AIX 16.1.0, the __OPTIMIZE__ macro has the following predefined values:

« 2 when the optimization level is =0 or =02
« 3 when the optimization is =03, -04, or -05

In IBM Open XL C/C++ for AIX 17.1.1, the predefined value of __OPTIMIZE__ is 1 for all optimization
levels.

Compiler built-in functions

Consider a number of changes to compiler built-in functions when you migrate your program from IBM XL
C/C++ for AIX 16.1.0 or earlier releases to IBM Open XL C/C++ for AIX 17.1.1.

Supported built-in functions
This topic discusses compiler built-in functions that are supported by IBM Open XL C/C++ for AIX 17.1.1.

IBM Open XL C/C++ for AIX 17.1.1 introduces support for Powerl0 built-in functions. Additionally, the
built-in functions that were supported by IBM XL C/C++ for AIX 16.1.0 are also supported by IBM Open
XL C/C++ for AIX 17.1.1 except those described in “Unsupported built-in functions” on page 46. Find
details of all supported built-in functions in Compiler built-in functions.

Unsupported built-in functions
IBM Open XL C/C++ for AIX 17.1.1 no longer supports built-in functions that are described in this section.

- Binary floating-point built-in functions

__builtin_max

— __builtin_min

— __dfp_get_rounding_mode
— __dfp_set_rounding_mode
- __fadd

— __fadds

- __fmul

46 1BM Open XL C/C++: Migration Guide

- __fmuls

- max

- min

Binary-coded decimal built-in functions

__builtin_bcdcopysign

— __builtin_bcdsetsign

— __builtin_bcdshift

— __builtin_bcdshiftround

— __builtin_bcdtruncate

— __builtin_bcdunsignedshift

— __builtin_bcdunsignedtruncate
— __builtin_national2packed

— __builtin_packed2national

— __builtin_packed2zoned

— __builtin_zoned2packed
Cache-related built-in functions

— __dcbtna

— __partial_dcbt

— __prefetch_by_load

— __prefetch_by_stream

— __protected_stream_count

— __protected_stream_count_depth

— __protected_stream_go

— __protected_stream_set

— __protected_stream_stride

— __protected_stream_stop

— __protected_stream_stop_all

— __protected_store_stream_set

— __protected_unlimited_stream_set

— __protected_unlimited_store_stream_set

— __transient_protected_stream_count_depth
— __transient_unlimited_protected_stream_depth

__unlimited_protected_stream_depth
Cryptography built-in functions

— __vsbox

— __vshasigmad

— __vshasigmaw

Decimal floating-point built-in functions
— __addgés

— __chcdtd

— __cdtbcd

— _d32_sNaN

— __d64_sNaN

Chapter 1. Migrating from Classic XL compilers 47

_d128_sNaN

— __d32_gNaN

— __d64_gNaN

— __d128_gNaN

— __dé64_abs

— __d128_abs

— __d64_biased_exponent

— __d128_biased_exponent
— __d64_compare_exponents
— __d128_compare_exponents
— __d64_compare_signaling
— __d128_compare_signaling
— __dé4_copysign

— __d128_copysign

— __d64_insert_biased_exponent
— __d128_insert_biased_exponent
— __dé4_integral

— __d128_integral

— __dé4_integral_no_inexact
— __d128_integral_no_inexact
— __d64_isfinite

— __d128_isfinite

- __dé64_isinf

— __d128_isinf

— __dé4_isnan

— __d128_isnan

— __dé64_isnormal

— _d128_isnormal

— __dé4_issignaling

— __d128_issignaling

— __dé4_issigned

— __d128_issigned

— __dé64_issubnormal

— _d128_issubnormal

— __dé64_iszero

— _d128_iszero

— __d64_nabs

— _d128_nabs

— __d64_shift_left

— __d128_shift_left

— __dé4_shift_right

— __d128_shift_right

— __dé4_to_gpr

48 1IBM Open XL C/C++: Migration Guide

__d128_to_gprs

— __dé4_to_long_long

— __d128_to_long_long

— __dé4_to_long_long_rounding
— __d128_to_long_long_rounding
— __dé4_to_signed_BCD

— __d128_to_signed_BCD

— __d64_to_unsigned_BCD

— __d128_to_unsigned_BCD
— __d64_qguantize

— __d128_quantize

- __dé64_reround

— _ d128_reround

— __d64_same_quantum

— __d128_same_quantum

— __d64_test_data_class

— _ d128_test_data_class

— __dé4_test_data_group

— __d128_test_data_group

— __d64_test_significance

— __d128_test_significance
— __gpr_to_dé4

— __gprs_to_d128

— __signed_BCD_to_d64

— __signed_BCD_to_d128

— __unsigned_BCD_to_dé4
__unsigned_BCD_to_d128
Fixed-point built-in functions

— __assertl

— __assert2

— __imul_dbl

IBM SMP built-in functions (C only)

— __parthds

— __usrthds

Synchronization and atomic built-in functions

__check_lock_mp
— __check_lockd_mp
— __check_lock_up
— __check_lockd_up
— __clear_lock_mp
— __clear_lockd_mp
— __clear_lock_up
— __clear_lockd_up

Chapter 1. Migrating from Classic XL compilers 49

— __iospace_eieio
— __lgarx
- __stgcx

- Transactional memory built-in functions

- __TM_abort
— __TM_begin
- __TM_end
— __TM_failure_address
— __TM_failure_code
— __TM_is_conflict
— __TM_is_failure_persistent
— __TM_is_footprint_exceeded
— __TM_is_illegal
— __TM_is_named_user_abort
— __TM_is_nested_too_deep
— __TM_is_user_abort
— __TM_is_named_abort
— __TM_nesting_depth
— __TM_simple_begin

« Vector built-in functions
— vec_extshd
— vec_extsbw
— vec_extshd
— vec_extshw
- vec_extswd
— vec_xxsldi

« Miscellaneous built-in functions

- __fence
— __mem_delay
- __mftb

Changed built-in functions
Some built-in functions have been changed in IBM Open XL C/C++ for AIX 17.1.1.

In this release, you must include altivec. h to use the following built-in functions. For more information,
see IBM Open XL C/C++ User's Guide.

« BCD add and subtract functions
BCD test add and subtract for overflow functions

- BCD comparison functions

BCD load and store functions

Vector built-in functions

vec_cntlz
In IBM Open XL C/C++ and IBM XL C/C++ for AIX 16.1.0, the data types of the returned value are
changed. Now the compiler returns the same type as the argument, instead of always returning an
unsigned type.

50 IBM Open XL C/C++: Migration Guide

You can refer to the following table for the differences:

Table 7. Result and argument types of different releases

Argument

Result (classic releases before
IBM XL C/C++ for AIX 16.1.0)

Result (IBM XL C/C++ for AIX
16.1.0 and IBM Open XL C/C++
releases)

vector signed char

vector unsigned char

vector signed char

vector unsigned char

vector unsigned char

vector unsigned char

vector signed short

vector unsigned short

vector signed short

vector unsigned short

vector unsigned short

vector unsigned short

vector signed int

vector unsigned int

vector signed int

vector unsigned int

vector unsigned int

vector unsigned int

vector signed long long

vector unsigned long long

vector signed long long

vector unsigned long long

vector unsigned long long

vector unsigned long long

When you migrate programs to the latest release, this change might cause incompatibility. It is
recommended that you change your code according to the new behavior.

For more information, see vec_cntlz in the IBM Open XL C/C++ User's Guide.

Mapping of built-in functions

The names of some built-in functions are different in IBM Open XL C/C++ for AIX 17.1.1 from those in

IBM XL C/C++ for AIX 16.1.0.

The following table shows the mappings of these built-in functions.

Table 8. Mapping of built-in functions

Built-in functions in IBM Open XL C/C++ for AIX [Built-in functions in IBM XL C/C++ for AIX 16.1.0
17.1.1

__builtin_ppc_addex __addex
__builtin_ppc_alignx __alignx
__builtin_alloca __alloca
__builtin_ppc_bcdadd __bcdadd
__builtin_ppc_bcdsub __bcdsub
__builtin_bpermd __bpermd
__builtin_ppc_cmpb __cmpb
__builtin_ppc_cmpeqgb __cmpeqgb
__builtin_complex __cmplx
__builtin_complex __cmplxf
__builtin_complex __cmplxl
__builtin_ppc_cmpzb __cmprb
__builtin_clz __cntlz4
__builtin_clz11 __cntlzs

Chapter 1. Migrating from Classic XL compilers 51

Table 8. Mapping of built-in functions (continued)

Built-in functions in IBM Open XL C/C++ for AIX
17.1.1

Built-in functions in IBM XL C/C++ for AIX 16.1.0

__builtin_ctz

__cnttz4

__builtin_ctzll

__cnttz8

__builtin_ppc_compare_and_swap

__compare_and_swap

__builtin_ppc_compare_and_swaplp

__compazre_and_swaplp

__builtin_ppc_compare_exp_uo

__compare_exp_uo

__builtin_ppc_compare_exp_1t

__compare_exp_1lt

__builtin_ppc_compare_exp_eq

__compare_exp_eq

__builtin_ppc_compare_exp_gt

__compare_exp_gt

__builtin_dazrn __darn
__builtin_darn_32 __darn_32
__builtin_darn_raw __darn_raw
__builtin_dcbf __dcbt
__builtin_ppc_dcbfl __dcbfl
__builtin_ppc_dcbflp __dcbflp
__builtin_ppc_dcbst __dcbst
__builtin_ppc_dcbt __dcbt
__builtin_ppc_dchtst __dcbtst
__builtin_ppc_dcbtstt __dcbtstt
__builtin_ppc_dcbtt __dcbtt
__builtin_ppc_dchbz __dchbz
__builtin_divde __divde
__builtin_divdeu __divdeu
__builtin_divwe __divwe
__builtin_divweu __divweu
__builtin_ppc_eieio __eieio

__builtin_ppc_extract_exp

__extract_exp

__builtin_ppc_extract_sig

__extract_sig

__builtin_ppc_£fnabss __fnabss
__builtin_ppc_£fnabs __fnabs
__builtin_ppc_£fcfid __fcfid
__builtin_ppc_£fcfud __fcfud
__builtin_ppc_=£ctid __Tfctid
__builtin_ppc_£fctidz __fctidz
__builtin_ppc_=£fctiw __fctiw

52 IBM Open XL C/C++: Migration Guide

Table 8. Mapping of built-in functions (continued)

Built-in functions in IBM Open XL C/C++ for AIX
17.1.1

Built-in functions in IBM XL C/C++ for AIX 16.1.0

__builtin_ppc_£fctiwz __fctiwz
__builtin_ppc_=£ctudz __fctudz
__builtin_ppc_=£fctuwz __fctuwz

__builtin_ppc_£fetch_and_add

__fetch_and_add

__builtin_ppc_fetch_and_addlp

__fetch_and_addlp

__builtin_ppc_fetch_and_and

__fetch_and_and

__builtin_ppc_fetch_and_andlp

__Tetch_and_andlp

__builtin_ppc_£fetch_and_ox

__fetch_and_or

__builtin_ppc_fetch_and_ozrlp

__fetch_and_orlp

__builtin_ppc_£fetch_and_swap

__fetch_and_swap

__builtin_ppc_fetch_and_swaplp

__fetch_and_swaplp

__builtin_fma __Tmadd
__builtin_£fmaf __fmadds
__builtin_ppc_£fmsub __fmsub
__builtin_ppc_£fmsubs __fmsubs
__builtin_ppc_£fnmadd __fnmadd
__builtin_ppc_£fnmadds __fnmadds
__builtin_ppc_£fnmsub __Tnmsub
__builtin_ppc_£fnmsubs __fnmsubs
__builtin_ppc_=£re __fre
__builtin_ppc_£res __fres
__builtin_ppc_=£ric __fric
__builtin_ppc_£frim __frim
__builtin_ppc_£frims __frims
__builtin_ppc_=£frin __frin
__builtin_ppc_=£rins __frins
__builtin_ppc_=£rip __frip
__builtin_ppc_=£rips __frips
__builtin_ppc_£friz __friz
__builtin_ppc_£frizs __frizs
__builtin_ppc_£frsqrte __frsqgrte
__builtin_ppc_=£frsqrtes __frsqrtes
__builtin_ppc_=£sel __Tsel
__builtin_ppc_=£sels __Tfsels

Chapter 1. Migrating from Classic XL compilers 53

Table 8. Mapping of built-in functions (continued)

Built-in functions in IBM Open XL C/C++ for AIX [Built-in functions in IBM XL C/C++ for AIX 16.1.0
17.1.1

__builtin_ppc_£fsqrt __fsqgrt
__builtin_ppc_=£fsqrts __fsqrts
__builtin_ppc_ichbt __icbt
__builtin_ppc_insert_exp __insert_exp
__builtin_ppc_iospace_eieio __lospace_eieio
__builtin_ppc_iospace_lwsync __iospace_lwsync
__builtin_ppc_iospace_sync __iospace_sync
__builtin_ppc_isync __isync
__builtin_1labs __labs
__builtin_ppc_1lbarx __1barx
__builtin_ppc_ldazrx __ldarx
__builtin_ppc_lhazrx __lharx
__builtin_11labs __llabs
__builtin_ppc_load2r __load2r
__builtin_ppc_load4r __load4r
__builtin_ppc_load8r __load8r
__builtin_ppc_lwazrx __lwarx
__builtin_ppc_lwsync __lwsync
__builtin_ppc_maddhd __maddhd
__builtin_ppc_maddhdu __maddhdu
__builtin_ppc_maddld __maddld
__builtin_ppc_mimsr __mfmsr
__builtin_ppc_mfspzr __mispr
__builtin_ppc_mftbu __mftbu
__builtin_ppc_mtfsbh0o __mtfsh0
__builtin_ppc_mtfshl __mtfsbl
__builtin_ppc_mtfst __mtfsft
__builtin_ppc_mtfsfi __mtfsfi
__builtin_ppc_mtmszx __mtmsr
__builtin_ppc_mtspzr __mtspr
__builtin_ppc_mulhd __mulhd
__builtin_ppc_mulhdu __mulhdu
__builtin_ppc_mulhw __mulhw
__builtin_ppc_mulhwu __mulhwu

54 IBM Open XL C/C++: Migration Guide

Table 8. Mapping of built-in functions (continued)

Built-in functions in IBM Open XL C/C++ for AIX
17.1.1

Built-in functions in IBM XL C/C++ for AIX 16.1.0

__builtin_popcount __popcntd
__builtin_popcountll __popcnt8
__builtin_ppc_popcntb __popcntb
__builtin_ppc_poppard __poppaz4d
__builtin_ppc_poppar8 __poppazr8
__builtin_ppc_xdlam __xdlam
__builtin_readflm __readflm
__builtin_ppc_zrldimi __rldimi
__builtin_ppc_rlwimi __rlwimi
__builtin_ppc_xrlwnm __rlwnm
__builtin_rotateleft32 __rotateld
__builtin_rotateleft64 __rotatel8
__builtin_ppc_setb __setb
__builtin_setflm __setflm
__builtin_setrnd __setrnd
__builtin_ppc_stbcx __stbcx
__builtin_ppc_stdcx __stdcx
__builtin_ppc_stfiw __stfiw
__builtin_ppc_sthcx __sthcx
__builtin_ppc_store2r __store2r
__builtin_ppc_storedr __store4dr
__builtin_ppc_store8r __store8r
__builtin_ppc_stwcx __stwcx
__builtin_ppc_swdiv __swdiv
__builtin_ppc_swdivs __swdivs

__builtin_ppc_swdiv_nochk

__swdiv_nochk

__builtin_ppc_swdivs_noch

__swdivs_nochk

__builtin_ppc_sync

__sync

__builtin_ppc_test_data_class

__test _data_class

__builtin_ppc_tdw __tdw
__builtin_ppc_trap __trap
__builtin_ppc_trapd __trapd
__builtin_ppc_tw __tw
__builtin_altivec_crypto_vcipher __vcipher

Chapter 1. Migrating from Classic XL compilers 55

Table 8. Mapping of built-in functions (continued)

Built-in functions in IBM Open XL C/C++ for AIX | Built-in functions in IBM XL C/C++ for AIX 16.1.0
17.1.1

__builtin_altivec_crypto_vcipherlast __vcipherlast
__builtin_altivec_crypto_vncipher __vncipher
__builtin_altivec_crypto_vncipherlast |__vncipherlast
__builtin_altivec_crypto_vpermxor __vpermxor
__builtin_altivec_crypto_vpmsumb __vpmsumb
__builtin_altivec_crypto_vpmsumd __vpmsumd
__builtin_altivec_crypto_vpmsumh __vpmsumh
__builtin_altivec_crypto_vpmsumw __vpmsumw

To compile source code that uses the old names of the built-in functions with IBM Open XL C/C++ for AIX
17.1.1, perform either of the following actions:

« Define the macros on the command line.
For example:

-D__alignx=__builtin_ppc_alignx

- Define the equivalent macros in the source code

Program linking

Consider changes to program linking when you migrate your program to IBM Open XL C/C++ for AIX
17.1.1.

You are not recommended to specify the ~bcdtors:csect linker option for object code that is generated
by IBM Open XL C/C++ for AIX 17.1.1. Otherwise, it might lead to crashes or incorrect results at run time.
To avoid this issue, use ~bcdtoxs :mbx instead on the link step.

In IBM Open XL C/C++ for AIX 17.1.1, many libraries are no longer linked implicitly, such as 1ibatomic
and 1ibm. If operations related to these libraries are used in your program, specify the corresponding
linking options explicitly, such as =1latomic and -1m.

Compiler listings

In IBM XL C/C++ for AIX 16.1.0 and earlier releases, the -qlist option was used to produce a compiler
listing file that includes object and constant area sections. In IBM Open XL C/C++ for AIX 17.1.1, you can
use the ibm-11vm-objdump utility utility instead. This utility can be leveraged to print the contents of
object files and final linked images named on the command line. The functionality of listing files is not
provided in IBM Open XL C/C++ for AIX 17.1.1. Using the =S option, you can get an assembler language
file for each source file.

In IBM XL C/C++ for AIX 16.1.0 and earlier releases, the -qrepoxt option was used to show how
sections of code have been optimized. Starting from IBM Open XL C/C++ for AIX 17.1.1, you can use

the -Rpass, -Rpass-analysis, or -fsave-optimization-recoxd LLVM options to get optimization
reports. However, the reports have a different format from the listing files generated by IBM XL C/C++ for
AIX 16.1.0 or earlier releases, and the information is also different. For details of -Rpass-xremaxks, refer
to the "Options to Emit Optimization Reports" section in the Clang documentation.

Important: Differences in messages and listings between previous releases and IBM Open XL C/C++ for
AIX 17.1.1 might impact compiler builds and tooling environments.

56 IBM Open XL C/C++: Migration Guide

Related information

e LLVM remark diagnostics

Altivec compatibility

This section describes the changes in compiler diagnosis on incompatible vector element order, vector
types, and vector built-in functions for IBM Open XL C/C++ for AIX 17.1.1 in comparison to IBM XL C/C++
for AIX 16.1.0 or earlier releases.

Compatibility of vector types
Compiler diagnosis on incompatible vector types

In IBM XL C/C++ for AIX 16.1.0 or earlier releases, different vector types are incompatible. For example,
if a variable of type vector unsigned int is assigned to another variable of type vector signed
int, the compiler diagnoses the assignment. In IBM Open XL C/C++ for AIX 17.1.1, assignments between
variables of different vector types are not diagnosed by default, which might result in programming
errors. To enable the compiler diagnostic function in IBM Open XL C/C++ for AIX 17.1.1, specify the
-fno-lax-vectoxr-convexrsions option.

Operations on the vector bool and vector pixel types

IBM XL C/C++ for AIX 16.1.0 or earlier releases treat operations on the vector bool and vector
pixel types differently. See the following two examples:

« Example 1

In IBM XL C/C++ for AIX 16.1.0 or earlier releases, when a variable of the vector pixel orvectoxr
bool type is to be initialized with a scalar value, all elements of the vector variable are initialized with
the scalar value. However, the community Clang compiler initializes only the first element of the vector
variable with the scalar value while initializes the rest of elements with zero.

« Example 2

In IBM XL C/C++ for AIX 16.1.0 or earlier releases, comparing two vector bool variables resultsin a
scalar value. However, this comparison results in a vector variable in the community Clang compiler.

In IBM Open XL C/C++ for AIX 17.1.1, you can control the compiler behavior through the -faltivec-
sxrc-compat option. By default, the option value is -faltivec-sxc-compat=x1in IBM Open XL C/C++
for AIX 17.1.1 and the compiler behaves the same as IBM XL C/C++ for AIX 16.1.0 or earlier releases.
However, you can change the compiler behavior to make it consistent with that of the community Clang
compiler by specifying the -faltivec-src-compat=mixed option.

Compatibility of vector built-in functions
Built-in function arguments

The second argument of the following built-in functions needs to be a constant integer that ranges from
0to 31, inclusive. In IBM XL C/C++ for AIX 16.1.0 or earlier releases, if out-of-range values are passed

to the built-in functions, the compiler issues messages. However, in IBM Open XL C/C++ for AIX 17.1.1,
when out-of-range values are input, the compiler does not issue messages but the behavior is undefined.

« vec_ctd
- vec_ctf
» vec_cts
- vec_ctu
« vec_ctsl
« vec_ctul

Some built-in functions expect the same argument types for two or more arguments. For example,
the prototype of the vec_add (a, b) built-in function requires that argument b has the same type as
argument a. However, in IBM XL C/C++ for AIX 16.1.0 or earlier releases, the compiler tolerates the

Chapter 1. Migrating from Classic XL compilers 57

https://ibm.biz/openxl-1711-llvm-remarks

mismatching types of a and b. In IBM Open XL C/C++ for AIX 17.1.1, the mismatching types are not
allowed and the compiler issues an error message for it.

Built-in function prototypes

In IBM XL C/C++ for AIX 16.1.0 or earlier releases, the vec_ctf, vec_cts, and vec_ctu built-in
functions have the following prototypes:

- vector float vec_ctf(vector signed long long)

- vector float vec_ctf(vector unsigned long long)
« vector signed int vec_cts(vector double)

- vector unsigned int vec_ctu(vector double)

However, these built-in functions have the following different prototypes in GCC, which are incompatible
with those in IBM XL C/C++ for AIX 16.1.0 or earlier releases:

« vector double vec_ctf(vector signed long long)
- vector double vec_ctf(vector unsigned long long)
- vector signed long long vec_cts(vector double)
- vector unsigned long long vec_ctu(vector double)

In IBM Open XL C/C++ for AIX 17.1.1, you can control which set of built-in prototypes to use through
the __XL_COMPAT_ALTIVEC__ macro. By default, IBM Open XL C/C++ for AIX 17.1.1 defines the
__XL_COMPAT_ALTIVEC__ macro and provides built-in prototypes that are identical to those in IBM
XL C/C++ for AIX 16.1.0 or earlier releases. If compatibility with GCC is required, you can undefine this
macro by specifying the -U__XL_COMPAT_ALTIVEC__ option.

Note: The community Clang compiler leaves __XL_COMPAT_ALTIVEC__ undefined by default.

Unsupported built-in functions

IBM Open XL C/C++ for AIX 17.1.1 no longer supports the following built-ins that were supported in IBM
XL C/C++ for AIX 16.1.0 or earlier releases:

- vec_extshdl
- vec_extshwl
. vec_extshd?
- vec_extshwl
. vec_extswdl
« vec_xxsldi2
Note:

1. InIBM Open XL C/C++ for AIX 17.1.1, use vec_signextior vec_signextll as the replacement of
the vec_extsbd, vec_extsbw, vec_extshd, vec_extshw, or vec_extswd.

2. vec_xxsldi was added in IBM XL C/C++ for AIX 16.1.0 invoked by x1clang or xlclang++. In IBM
Open XL C/C++ for AIX 17.1.1, use vec_sldw as the replacement of vec_xxs1di.

Related information

« Vector processing support

« Vector built-in functions

Diaghostic message control

In IBM XL C/C++ for AIX 16.1.0 invoked by x1C or earlier releases, when the compiler encounters a
programming error while you compile a C or C++ source program, it issues a diagnostic message to

58 IBM Open XL C/C++: Migration Guide

the standard error device or to a listing file. Diagnostic messages contain message numbers, message
severity, message describing texts, and so on.

IBM Open XL C/C++ for AIX 17.1.1 adopts the Clang infrastructure. The diagnostic implementation in
Clang is entirely different from that of the classic XL compilers. Clang provides an expressive set of
diagnostic messages that do not have individual message numbers. In IBM Open XL C/C++ for AIX 17.1.1,
use either of the following Clang option or pragma to suppress or control the generation of diagnostic
messages:

« Clang options in the form of -W[no-]
- #pragma clang diagnostic ignored

Example

//t.c

#include <stdio.h>

void £(int x) {
printf("%f", x);

Compile t. c with the following command:

ibm-clang t.c -c
The compiler issues the following warning message:

t.c:3:30: warning: format specifies type 'double' but the argument has type 'int' [-Wformat]
You can specify the =Wno-foxrmat option to suppress the warning message:

ibm-clang t.c -c -Wno-format

Then the compiler compiles the program with no warning messages issued.

Related information

- The "Diagnostic flags in Clang" section in the Clang documentation

Exception compatibility

This section describes the changes in compiler exception handling and propagation for IBM Open XL
C/C++ for AIX 17.1.1 in comparison to IBM XL C/C++ for AIX 16.1.0 or earlier releases.

Exception handling

IBM Open XL C/C++ and IBM XL C/C++ for AIX 16.1.0 that is invoked by x1clang++ generate C++ objects
based on the Itanium C++ ABL.

IBM XL C/C++ for AIX 16.1.0 that is invoked by x1C or earlier releases generate C++ objects with a
different C++ ABI. New and old C++ ABIs are not compatible.

If C++ objects with different C++ ABIs coexist in an application, there are limitations on exceptions
thrown from objects compiled in one C++ ABI, and caught or unwound through functions compiled in a
different C++ ABI.

« If an exception that is generated from code compiled with x1C is attempted to be caught or unwound in
code compiled with x1clang++ or ibm-clang++_r, the std: : terminate handler is called.

- If an exception that is generated from code compiled with x1clang++ or ibm-clang++_r is attempted
to be caught in code compiled with x1C, the std: :terminate handler is called.

Chapter 1. Migrating from Classic XL compilers 59

Exception propagation (C only)

In IBM Open XL C/C++ for AIX, the default value of the -fexceptions option is -fno-exceptions.
When compiling C functions, the compiler might assume that C++ exceptions cannot propagate out of the
C functions by default unless the -fexceptions option is specified.

The default behavior of IBM XL C/C++ for AIX 16.1.0 and earlier releases is same as the -fexceptions
option being enabled in IBM Open XL C/C++ for AIX. By default, C++ exceptions might propagate out of C
functions.

Debug support

Use the =g option to enable debug support. In IBM XL C/C++ for AIX 16.1.0 and earlier releases, both the
stabstrings and DWARF debugging information formats were supported and the default was stabstrings.

IBM Open XL C/C++ for AIX 17.1.1 supports only the DWARF debugging information format and the
default DWARF version is DWARF 3.

In IBM Open XL C/C++ for AIX 17.1.1, you can use the following options to switch DWARF versions:

- -gdwarf-2
e -gdwarf, -gdwarf-3
- -gdwarf-4

IBM Open XL C/C++ for AIX 17.1.1 can generate DWARF information tuned for the following debuggers:

« The DBX debugger by using the =gdbx option, which is the default
- The GDB debugger by using the =ggdb option

Note: The current release of DBX does not support the DWARF information generated by IBM Open XL
C/C++ for AIX 17.1.1. A future release of DBX is planned to add this support.

TLS migration considerations for debugging

For debugging purposes, it is recommended that you inspect Thread-Local Storage (TLS) variables by
compiling helper functions that return the addresses of these variables and then calling these helper
functions from the debugger.

Related information

- -ginthe IBM Open XL C/C++ User's Guide
« The "Clang command line argument reference" section in the Clang documentation

Memory allocation

There might be heap memory allocation issues when you migrate your program to IBM Open XL C/C++ for
AIX17.1.1.

IBM Open XL C/C++ for AIX 17.1.1 pre-defines the __VEC__ macro by default because the compiler
supports POWER7° and higher processors. The _ALL_SOURCE macro is defined by the AIX system
headers unless the macro is suppressed by other macros like _XOPEN_SOURCE. When both the
__VEC__and _ALL_SOURCE macros are defined, the malloc and calloc system calls are mapped
tovec_malloc and vec_calloc respectively in the AIX system header file /usr/include/stdlib.h.

Note: When both the __VEC__and _ALL_SOURCE macros are defined, the effect of the
_LINUX_SOURCE_COMPAT macro on malloc and calloc system calls is ignored.

Themalloc and calloc system calls give 8-byte aligned allocations, while vec_malloc and
vec_calloc give 16-byte aligned allocations. After malloc and calloc are mapped to vec_malloc
and vec_calloc, heap memory consumption is greatly increased if an application makes a lot of small

60 IBM Open XL C/C++: Migration Guide

heap allocations, which causes the application to run out of memory unexpectedly if the application is
built with a certain maxdata value.

To fix the problem, try one of the following approaches:

1. Compile your program without the _ALL_SOURCE macro and call the vec_malloc, vec_calloc,or
posix_memalign system call explicitly where 16-byte alignment is required.

2. Compile your program with the =-mno-altivec option.

3. If the above approaches are not feasible, then for 32-bit applications, link the generated application
with a larger ~bmaxdata value to accommodate the extra space required due to vec_malloc and
vec_calloc. For example, if you had originally specified ~bmaxdata:0x80000000, you need to
change the setting to a larger value, such as ~-bmaxdata:0xaB@00000/dsa. The actual amount of
additional memory depends on how the application allocates heap memory.

4. For an existing binary, set a new maxdata value using either the LDR_CNTRL environment variable or
the 1dedit command. For details, see Large program support.

OpenMP support

OpenMP is not supported in IBM Open XL C/C++ for AIX 17.1.1.

IBM Debugger for AIX

IBM Open XL C/C++ and IBM XL C/C++ for AIX 16.1 do not ship IBM Debugger for AIX.

Optimization and tuning compatibility

IBM Open XL C/C++ for AIX 17.1.1 has different optimization technology from IBM XL C/C++ for AIX
16.1.0 and earlier releases.

When you migrate programs from IBM XL C/C++ for AIX 16.1.0 or earlier releases to IBM Open XL C/C++
for AIX 17.1.1, specify LLVM options to utilize LLVM optimization features.

Link Time Optimization (LTO)
The Link Time Optimization (LTO) feature is supported in IBM Open XL C/C++ for AIX 17.1.1.

The LTO information generated by IBM Open XL C/C++ for AIX 17.1.1 is incompatible with the
Interprocedural Analysis (IPA) information of IBM XL C/C++ for AIX 16.1.0 in the following aspects:

- The IPA information in object files that are created by IBM XL C/C++ for AIX 16.1.0 or earlier releases is
silently ignored by IBM Open XL C/C++ for AIX 17.1.1.

« Object files that are created by IBM XL C/C++ for AIX 16.1.0 or earlier releases using the
-gipa=noobject option contain only IPA information, so they are unusable in IBM Open XL C/C++
for AIX 17.1.1.

- By default, object files that are created by IBM Open XL C/C++ for AIX 17.1.1 using the -£1to option
are not readable by IBM XL C/C++ for AIX 16.1.0 or earlier releases.

To compile a program with LTO, specify the =£1to option on both the compile and link steps:

- When -f1to is specified on the compile step, the compiler generates LLVM IR instead of object code, in
preparation for LTO on the link step.

« When -flto is specified on the link step, the compiler adds extra linker options such as
-bplugin:<path-to-libLTO.so> when invoking the linker. The linker can handle a mixture of native
XCOFF objects and LLVM IR objects, and then invokes the LTO optimizations on the LLVM IR objects via
the 1ibLTO. so plugin.

Q Attention:

» Pay attention to the system requirements when using LTO:

Chapter 1. Migrating from Classic XL compilers 61

https://www.ibm.com/docs/aix/latest?topic=concepts-large-program-support

Table 9. System requirements of LTO

Feature Minimum requirement for Minimum requirement for
AIX 7.2 AIX 7.3

-flto AIX 7.2 TL5 SP52 AIX 7.3 TL1Z

-ffat-1to-objects AIX 7.2 TL5 SP5 AIX7.3TL1

Notes:

1. LTO is also supported on IBM AIX 7.2 TL5 SP4 or earlier, and IBM AIX 7.3 TLO SP2 or earlier;
however, note that non-default visibility symbols defined in the objects that are compiled
with -=£1to are not necessarily retained to satisfy references from the objects that are
compiled without -£1to during linking.

« When both the -fl1to and -ffat-1to-objects options are specified, object files that are
created by IBM Open XL C/C++ for AIX 17.1.1 are readable by IBM XL C/C++ for AIX 16.1.0 and
earlier releases, but the LTO information embedded in the object files is silently ignored.

» InIBM Open XL C/C++ for AIX 17.1.1, the =£1to=thin option is not supported. LTO mode can
be set only to the full mode.

Detecting LTO usage in object files

LTO works by storing LLVM bit code, which describes the program, into object files at the compile step.
During the link step, the LLVM bitcode is used to perform link-time optimization.

Detecting LTO enablement in non-fat LTO object files

By default, if a source file is compiled with the -£1to option, only LLVM bitcode is stored into the object
file. You can identify files built this way using the following file command, which identifies the object file
as an LLVM IR bitcode file:

file file.o
file.o: LLVM IR bitcode

Detecting LTO enablement in fat LTO object files

If a source file is compiled with both the -£1to and -ffat-1to-objects options, the resulting object
file is an XCOFF obiject file that contains both native object code and LLVM bitcode. The LLVM bitcode is

stored in the . info section of the XCOFF object file and is labeled with LLVMLTO. You can identify files

built this way using the following file command:

strings -a file.o | grep 'LLVMLTO'
LLVMLTO

Alternatively, you can disassemble the object file and look for LLVMLTO in the . info section. Here is an
example of a disassembled . info section that contains LTO information:

/opt/IBM/openx1C/17.1.1/1ibexec/ibm-11vm-objdump --section=.info --full-contents file.o
Contents of section .info:

0000 ffffffff OOOOOOOO OOOORaad 4c4dc564d LLVM

0010 4c544f00 0OOOEOO18 4243cOde 35140000 LTO..... BC..5...

Note: If the object file does not contain LTO information, the ibm-11vm-objdump utility either issues a
warning message indicating the object file does not contain a . info section or displays a . info section
that does not contain LLVMLTO.

Detecting LTO during linking
To detect whether LTO occurs at link time, use one of the following methods:

« Specify the ~bloadmap: <filename> or ~bnoquiet option during the link step, and look for 1to in the
output. All object files that participated in LTO will be displayed.

62 IBM Open XL C/C++: Migration Guide

« Specify the =bmap: <filename> option during the link step, and look for 1d-temp. o in the generated
file. If 1d-temp. o is found, it indicates some source files were compiled using =f1to, and their
corresponding object files participated in LTO.

Profile Guided Optimization (PGO)

Profile guided optimization (PGO), also known as profile-directed feedback (PDF), is a compiler
optimization technique in computer programming that uses profiling to improve program runtime

performance.

Important: IBM Open XL C/C++ for AIX 17.1.1 supports the following operating systems:

« IBMAIX 7.2: TL5 SP3 or later
« IBMAIX 7.3: TLO or later

However, to use PGO, your operating system must be IBM AIX 7.2 TL5 SP4 or later, or IBM AIX 7.3 TLO

SP2 or later.

If you use PGO on IBM AIX 7.2 TL5 SP3 or earlier, or IBM AIX 7.3 TLO SP1 or earlier, you might encounter
the following errors:

- A segmentation fault when using the ibm-11vm-profdata utility:

PLEASE submit a bug report to https://ibm.biz/openxlcpp-support and include the crash

backtrace.
Stack dump:

0. Program arguments: /opt/IBM/openx1C/17.1.1/bin/ibm-1lvm-profdata "ibm-1llvm-profdata merge"

-0 default.profdata

default_15853201381331839107_0.profraw Location Ox0000e944

--- End of call chain ---
Segmentation fault(coredump)

« Undefined symbols when linking:

1d: 0711-317
1d: 0711-317
1d: 0711-317
1d: 0711-317
1d: 0711-317
1d: 0711-317
1d: 0711-317
1d: 0711-317

« Linker errors:

ERROR:
ERROR:
ERROR:
ERROR:
ERROR:
ERROR:
ERROR:
ERROR:

Undefined
Undefined
Undefined
Undefined
Undefined
Undefined
Undefined
Undefined

symbol:
symbol:
symbol:
symbol:
symbol:
symbol:
symbol:
symbol:

__start___11lvm_prf_cnts
__stop___11vm_prf_cnts
__start___1lvm_prf_data
__stop___11vm_prf_data
__stop___11vm_prf_names
__start___1lvm_prf_names
__stop___11vm_prf_vnds
__start___11lvm_prf_vnds

1d: 0711-151 SEVERE ERROR: SETOPT: Invalid option name: NAMEDSECTS:ss

PGO is supported in IBM Open XL C/C++ for AIX 17.1.1. There are two ways to generate and use

profile data. For more information on PGO, refer to the "Profile Guided Optimization" section in Clang
documentation. PGO data files generated in IBM Open XL C/C++ for AIX 17.1.1 are incompatible with the
PDF files of IBM XL C/C++ for AIX 16.1.0 or earlier releases.

The cleanpdf, showpdf, and mexgepdf commands are replaced by the ibm-11vm-profdata utility in

IBM Open XL C/C++ for AIX 17.1.1.

Example:

$ cat x.c

#include <stdio.h>
f##include <stdlib.h>

int main(int argc, char xargv[]) {

long i = strtol(argv[1], NULL, 10);

if (i > 5)

printf("i is bigger than 5\n");

else

printf("i is <= 5\n");

Chapter 1. Migrating from Classic XL compilers 63

return 0;

%

To enable PGO instrumentation and instruct the compiler to instrument the code that is being compiled,
specify the -fprofile-generate[=<directoxy>] option. If a directory is specified, the raw profile
file is stored in that directory. Otherwise, it is stored in the current directory. The raw profile file is called
default_%m.profraw.

$ ibm-clang x.c -Ofast -fprofile-generate

$./a.out

43

i is bigger than 5

$ 1s

a.out default_15822678448124319226_0.profraw x.c

After the raw profile file is generated, run the ibm-11vm-profdata utility on the raw profile file to make
it consumable by the compiler. Note that this step is necessary even when there is only one raw profile,
since the merge operation also changes the file format.

$ ibm-1lvm-profdata merge -o default.profdata default_15822678448124319226_0.profraw
$ 1s
a.out default_15822678448124319226_0.profraw default.profdata x.c

To instruct the compiler to use the instrumentation data to optimize the program, specify the
-fprofile-use[=<merge profile file path>] option, where merge profile file pathis
the file location of the merged profile file. If nexrge profile file pathisadirectory or omitted, the
name of the merged profile file is assumed to be default.profdata.

$ ibm-clang x.c -Ofast -fprofile-use
$

Uninitialized variables

IBM Open XL C/C++ for AIX 17.1.1 enables more aggressive optimizations than IBM Open XL C/C++
17.1.0 and earlier classic releases. As a result, errors in programs, such as undefined behaviour due to
the use of uninitialized variables are more likely to cause errors.

To detect occurrences of uninitialized local variables, compile your program using the =Wuninitialized
-lWsometimes-uninitialized options; however, some occurrences might still remain undetected. To
address the uninitialized local variable issue, initialize all local variables explicitly at their declarations.
You can also use the -ftrivial-auto-var-init=pattexrn option to improve the reproducibility of the
issue.

Related information
« Enhanced LLVM and Clang support

Changes to compiler default behaviors

The section shows the compiler default behavior changes between IBM Open XL C/C++ for AIX 17.1.1
and classic XL C/C++ compilers.

Changes to option defaults

The default values or behaviors of many options differ between IBM Open XL C/C++ for AIX 17.1.1 and
IBM XL C/C++ for AIX 16.1.0. You can find detailed information in “Discrepancies for option defaults” on
page 8 and “Migration considerations for individual compiler options” on page 18.

Allocation of uninitialized global variables

When you compile your program using the classic XL C/C++ compilers, uninitialized global variables are
allocated in the common section of the object file by default.

64 1BM Open XL C/C++: Migration Guide

The C mode of Open XL C/C++ compilers does not place uninitialized variables in the common section by
default. To achieve behavior similar to the classic XL C/C++ compilers, specify the -fcommon option.

The C++ mode of Open XL C/C++ does not place uninitialized variables in the common section of the
object file, even if you specify the -£common option.

Exception propagation (C only)

The exception propagation default behavior differs between IBM Open XL C/C++ for AIX and classic XL
C/C++ for AIX compilers. Find details in “Exception compatibility” on page 59.

Chapter 1. Migrating from Classic XL compilers 65

66 IBM Open XL C/C++: Migration Guide

Chapter 2. Migrating from earlier Open XL releases

When you migrate programs from earlier Open XL releases, consider a number of changes such as ABI
compatibility.

Discrepancies for option defaults

The section shows the discrepancies for compiler option defaults between IBM Open XL C/C++ for AIX
17.1.1 and earlier Open XL compilers.

Table 10. Option defaults on IBM Open XL C/C++ for AIX 17.1.1 and IBM Open XL C/C++ for AIX 17.1.0

Default on IBM Open XL C/C++ for AIX 17.1.0 Default on IBM Open XL C/C++ for AIX 17.1.1

-mllvm --enable-ppc-gen-scalar-mass=false when |-mllvm --enable-ppc-gen-scalar-mass=true when
-mllvm is not specified -mllvm is not specified

Compatibility limitations of libc++

Consider compatibility limitations of 1ibc++ when you use IBM Open XL C/C++ for AIX 17.1.1.2 or earlier
Open XL C/C++ releases.

If you use the LIBCXX_ENABLE_ASSERTIONS macro to enable related library assertions features in your
program and compile your program using IBM Open XL C/C++ for AIX 17.1.1.2 or earlier Open XL C/C++
releases, the library assertions erroneously invoke the __libcpp_assertion_handler runtime library
function. The __libcpp_assertion_handlexr function is not a part of the 1ibc++ ABI from LLVM 15
and might not be supported in future versions of C++ runtime libraries.

To avoid potential issues, re-compile your program with IBM Open XL C/C++ for AIX 17.1.1.3 or

later releases to enable library assertions to invoke the __1libcpp_verbose_abort function instead.
Additionally, if you provide a replacement implementation of __libcpp_assertion_handler when

using IBM Open XL C/C++ for AIX 17.1.1.3 or later releases, provide a replacement implementation for
__libcpp_verbose_abort as well.

Support for visibility attributes

IBM Open XL C/C++ for AIX 17.1.1 no longer ignores visibility attributes as in IBM Open XL C/C++ for AIX
17.1.0 and the -fvisibility and -fvisibility-inlines-hidden options are provided to modify
visibility at a translation unit level.

For more details, see Linking shared libraries and controlling symbol visibility in the User's Guide.

© Copyright IBM Corp. 2022 67

68 IBM Open XL C/C++: Migration Guide

Chapter 3. Using 32-bit and 64-bit modes

You can use the IBM Open XL C/C++ compiler to develop either 32-bit or 64-bit applications.

To do so, specify =m32 (the default) or -m64, respectively, during compilation. Alternatively, you can
set the OBJECT_MODE environment variable to 32 or 64 at compile time. If both OBJECT_MODE and
-m32/-m64 are specified, -m32/-m64 takes precedence.

However, porting existing applications from 32-bit to 64-bit mode can lead to a number of problems,
mostly related to the differences in C/C++ long and pointer data type sizes and alignment between the
two modes. The following table summarizes these differences.

Table 11. Size and alignment of data types in 32-bit and 64-bit modes

Data type 32-bhit mode 64-bit mode
Size Alignment Size Alignment

long, signed long, unsigned long 4 bytes 4-byte boundaries | 8 bytes 8-byte boundaries
pointer 4 bytes 4-byte boundaries | 8 bytes 8-byte boundaries
size_t (defined in the header file |4 bytes 4-byte boundaries | 8 bytes 8-byte boundaries
<cstddef>)

ptrdiff_t (defined in the header file | 4 bytes 4-byte boundaries | 8 bytes 8-byte boundaries
<cstddef>)

The following sections discuss some of the common pitfalls implied by these differences, as well as
recommended programming practices to help you avoid most of these issues:

- “Assigning long values” on page 69

« “Assigning pointers ” on page 71

- “Aligning aggregate data” on page 71

 “Calling Fortran code” on page 72

Assigning long values

The limits of long type integers that are defined in the 1imits.h standard library header file are
different in 32-bit and 64-bit modes, as shown in the following table.

Table 12. Constant limits of long integers in 32-bit and 64-bit modes

Symbolic constant Mode |Value |Hexadecimal Decimal

LONG_MIN 32-bit [-(231) |o0x80000000L —2,147,483,648
(smallest signed long) I'0 LT~ 563) | 0x8000000000000000L | —9,223,372,036,854,775,808
LONG_MAX 32-bit |231-1 |Ox7FFFFFFFL 2,147,483,647
(largest signed long) I i (2631 | Ox7FFFFFFFFFFFFFFFL 9,223,372,036,854,775,807
ULONG_MAX 32-bit |232-1 |OxFFFFFFFFUL 4,294,967,295
(largest unsigned long) [*)t 17641 | OxFFFFFFFFFFFFFFFFUL | 18,446,744,073,709,551,615

These differences have the following implications:

- Assigning a long value to a double variable can cause loss of accuracy.

© Copyright IBM Corp. 2022

69

« Assigning constant values to 1long variables can lead to unexpected results. This issue is explored in
more detail in “Assigning constant values to long variables” on page 70.

« Bit-shifting long values will produce different results, as described in “Bit-shifting long values” on page
71.

« Using int and long types interchangeably in expressions will lead to implicit conversion through
promotions, demotions, assignments, and argument passing, and it can result in truncation of
significant digits, sign shifting, or unexpected results, without warning. These operations can impact
performance.

In situations where a 1ong value can overflow when assigned to other variables or passed to functions,
you must observe the following guidelines:

 Avoid implicit type conversion by using explicit type casting to change types.
 Ensure that all functions that accept or return long types are properly prototyped.
« Ensure that 1ong type parameters can be accepted by the functions to which they are being passed.

Assigning constant values to long variables

Although type identification of constants follows explicit rules in C and C++, many programs
use hexadecimal or unsuffixed constants as "typeless" variables and rely on a twos complement
representation to truncate values that exceed the limits permitted on a 32-bit system.

As these large values are likely to be extended into a 64-bit 1ong type in 64-bit mode, unexpected results
can occur, generally at the following boundary areas:

« constant > UINT_MAX
» constant < INT_MIN
» constant > INT_MAX

Some examples of unexpected boundary side effects are listed in the following table.

Table 13. Unexpected boundary results of constants assigned to long types

Constant assigned to long Equivalent value 32-bit mode 64-bit mode
-2,147,483,649 INT_MIN-1 +2,147,483,647 -2,147,483,649
+2,147,483,648 INT_MAX+1 -2,147,483,648 +2,147,483,648
+4,294,967,726 UINT_MAX+1 0 +4,294,967,296
OxFFFFFFFF UINT_MAX -1 +4,294,967,295
0x100000000 UINT_MAX+1 0 +4,294,967,296
OxFFFFFFFFFFFFFFFF ULONG_MAX -1 -1

Unsuffixed constants can lead to type ambiguities that can affect other parts of your program, such

as when the results of sizeof operations are assigned to variables. For example, in 32-bit mode, the
compiler types a number like 4294967295 (UINT_MAX) as an unsigned long and sizeof returns 4 bytes.
In 64-bit mode, this same number becomes a signed long and sizeof returns 8 bytes. Similar problems
occur when the compiler passes constants directly to functions.

You can avoid these problems by using the suffixes L (for long constants), UL (for unsigned long
constants), LL (for long long constants), or ULL (for unsigned long long constants) to explicitly type all
constants that have the potential of affecting assignment or expression evaluation in other parts of your
program. In the example cited in the preceding paragraph, suffixing the number as 4294967295U forces
the compiler to always recognize the constant as an unsigned int in 32-bit or 64-bit mode. These
suffixes can also be applied to hexadecimal constants.

70 IBM Open XL C/C++: Migration Guide

Bit-shifting long values
Left-bit-shifting long values produces different results in 32-bit and 64-bit modes.

The examples in Table 14 on page 71 show the effects of performing a bit-shift on long constants using
the following code segment:

long l=valuel<<1;

Table 14. Results of bit-shifting long values
Initial value Symbolic Value after bit shift by one bit

constant 32-bit mode 64-bit mode
Ox7FFFFFFFL INT_MAX OxFFFFFFFE 0x00000000FFFFFFFE
0x80000000L INT_MIN 0x00000000 0x0000000100000000
OXFFFFFFFFL UINT_MAX OxFFFFFFFE Ox00000001FFFFFFFE

In 32-bhit mode, OXFFFFFFFE is negative. In 64-bit mode, Ox00000000FFFFFFFE and
OxOOOROOOLFFFFFFFE are both positive.

Assigning pointers

In 64-bit mode, pointers and int types are no longer of the same size.

The implications of this are as follows:

« Exchanging pointers and int types causes segmentation faults.
- Passing pointers to a function expecting an int type results in truncation.

« Functions that return a pointer but are not explicitly prototyped as such, return an int instead and
truncate the resulting pointer, as illustrated in the following example.

In C, the following code is valid in 32-bit mode without a prototype:

a=(charx) calloc(25);

Without a function prototype for calloc, when the same code is compiled in 64-bit mode, the compiler
assumes the function returns an int, so a is silently truncated and then sign-extended. Type casting the
result does not prevent the truncation, as the address of the memory allocated by calloc was already
truncated during the return. In this example, the best solution is to include the header file, stdlib.h,
which contains the prototype for calloc. An alternative solution is to prototype the function as it is in the
header file.

To avoid these types of problems, you can take the following measures:

- Prototype any functions that return a pointer, where possible by using the appropriate header file.

« Ensure that the type of parameter you are passing in a function, pointer or int, call matches the type
expected by the function being called.

« For applications that treat pointers as an integer type, use type long or unsigned long in either
32-bit or 64-bit mode.

Aligning aggregate data

Normally, structures are aligned according to the most strictly aligned member in both 32-bit and 64-
bit modes. However, since 1ong types and pointers change size and alignment in 64-bit modes, the

Chapter 3. Using 32-bit and 64-bit modes 71

alignment of a structure's strictest member can change, resulting in changes to the alignment of the
structure itself.

Structures that contain pointers or Long types cannot be shared between 32-bit and 64-bit applications.
Unions that attempt to share 1long and int types or overlay pointers onto int types can change

the alignment. In general, you need to check all but the simplest structures for alignment and size
dependencies.

In 64-bit mode, member values in a structure passed by value to a va_arg argument might not be
accessed properly if the size of the structure is not a multiple of 8-bytes.

Any aggregate data written to a file in one mode cannot be correctly read in the other mode. Data
exchanged with other languages has the similar problems.

Calling Fortran code

A significant number of applications use C, C++, and Fortran together by calling each other or sharing files.

It is currently easier to modify data sizes and types on the C and C++ sides than on the Fortran side
of such applications. The following table lists C and C++ types and the equivalent Fortran types in the
different modes.

Table 15. Equivalent C/C++ and Fortran data types
C/C++ type Fortran type

32-bit 64-bit
signed int INTEGER INTEGER
signed long INTEGER INTEGER*8
pointer TYPE(C_PTRY) TYPE(C_PTR)
Note:
1. C_PTRis provided by the ISO_C_BINDING intrinsic module.

72 IBM Open XL C/C++: Migration Guide

Notices

Programming interfaces: Intended programming interfaces allow the customer to write programs to
obtain the services of IBM Open XL C/C++ for AIX.

This information was developed for products and services offered in the U.S.A. IBM may not offer the
products, services, or features discussed in this document in other countries. Consult your local IBM
representative for information on the products and services currently available in your area. Any reference
to an IBM product, program, or service is not intended to state or imply that only that IBM product,
program, or service may be used. Any functionally equivalent product, program, or service that does not
infringe any IBM intellectual property right may be used instead. However, it is the user's responsibility to
evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this
document. The furnishing of this document does not give you any license to these patents. You can
send license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive, MD-NC119
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM Intellectual Property
Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing

Legal and Intellectual Property Law

IBM Japan, Ltd.

19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of
express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically
made to the information herein; these changes will be incorporated in new editions of the publication.
IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM websites are provided for convenience only and do not in
any manner serve as an endorsement of those websites. The materials at those websites are not part of
the materials for this IBM product and use of those websites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Licensees of this program who want to have information about it for the purpose of enabling: (i) the
exchange of information between independently created programs and other programs (including this
one) and (ii) the mutual use of the information which has been exchanged, should contact:

Intellectual Property Dept. for Rational Software
IBM Corporation

5 Technology Park Drive

Westford, MA 01886

© Copyright IBM Corp. 2022 73

U.S.A.

Such information may be available, subject to appropriate terms and conditions, including in some cases,
payment of a fee.

The licensed program described in this document and all licensed material available for it are provided by
IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement or any
equivalent agreement between us.

Any performance data contained herein was determined in a controlled environment. Therefore, the
results obtained in other operating environments may vary significantly. Some measurements may have
been made on development-level systems and there is no guarantee that these measurements will be
the same on generally available systems. Furthermore, some measurements may have been estimated
through extrapolation. Actual results may vary. Users of this document should verify the applicable data
for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of those products, their
published announcements or other publicly available sources. IBM has not tested those products and
cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM
products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of
those products.

All statements regarding IBM's future direction or intent are subject to change or withdrawal without
notice, and represent goals and objectives only.

This information contains examples of data and reports used in daily business operations. To illustrate
them as completely as possible, the examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to the names and addresses used by an
actual business enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrates programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs
in any form without payment to IBM, for the purposes of developing, using, marketing or distributing
application programs conforming to the application programming interface for the operating platform

for which the sample programs are written. These examples have not been thoroughly tested under

all conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these
programs. The sample programs are provided "AS IS", without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

Each copy or any portion of these sample programs or any derivative work, must include a copyright
notice as follows:

© (your company name) (year). Portions of this code are derived from IBM Corp. Sample Programs. ©
Copyright IBM Corp. 1998, 2022.

PRIVACY POLICY CONSIDERATIONS:

IBM Software products, including software as a service solutions, ("Software Offerings") may use cookies
or other technologies to collect product usage information, to help improve the end user experience, or
to tailor interactions with the end user, or for other purposes. In many cases no personally identifiable
information is collected by the Software Offerings. Some of our Software Offerings can help enable you
to collect personally identifiable information. If this Software Offering uses cookies to collect personally
identifiable information, specific information about this offering's use of cookies is set forth below.

This Software Offering does not use cookies or other technologies to collect personally identifiable
information.

If the configurations deployed for this Software Offering provide you as customer the ability to collect
personally identifiable information from end users via cookies and other technologies, you should seek
your own legal advice about any laws applicable to such data collection, including any requirements for
notice and consent.

74 1BM Open XL C/C++: Migration Guide

For more information about the use of various technologies, including cookies, for these purposes,

see IBM's Privacy Policy at http://www.ibm.com/privacy and IBM's Online Privacy Statement at http://
www.ibm.com/privacy/details in the section entitled "Cookies, Web Beacons and Other Technologies,"
and the "IBM Software Products and Software-as-a-Service Privacy Statement" at http://www.ibm.com/
software/info/product-privacy.

Trademarks

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business
Machines Corp., registered in many jurisdictions worldwide. Other product and service names might be
trademarks of IBM or other companies. A current list of IBM trademarks is available on the web at
“Copyright and trademark information” at http://www.ibm.com/legal/copytrade.shtml.

Adobe and the Adobe logo are either registered trademarks or trademarks of Adobe Systems
Incorporated in the United States, other countries, or both.

Intel, Intel logo, Intel Inside, Intel Inside logo, Intel Centrino, Intel Centrino logo, Celeron, Intel Xeon,
Intel SpeedStep, Itanium, and Pentium are trademarks or registered trademarks of Intel Corporation or
its subsidiaries in the United States and other countries.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Notices 75

http://www.ibm.com/privacy
http://www.ibm.com/privacy/details
http://www.ibm.com/privacy/details
http://www.ibm.com/software/info/product-privacy
http://www.ibm.com/software/info/product-privacy
http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/legal/copytrade.shtml

76 1BM Open XL C/C++: Migration Guide

Index

Numerics

32-bit mode
bit-shifting 71

64-bit mode
bit-shifting 71

binary compatibility 1

bit-shifting 71

built-in functions
unsupported 46

(o

c++filt name demangling utility 5
Clang options 7, 8, 50, 61
cleanpdf 5

D

DBX debugger 60
diagnostic messages 58
DWARF debugging 60

F

Fortran data types 72

G

GDB debugger 60
genhtml 5

I

ibm-clang 4
ibm-clang++_r 4-6
invocation commands 4

L

Link Time Optimization 61
linkxIC 5

linkxIC utility 5

LLVM 1, 67

LLVM optimization 61
LLVM options 61

M

macros 43, 46, 60

makeC++SharedLib 6
makeC++SharedLib utility 5

mergepdf 5

messages
diagnostic 58

migration 56

P

pragmas

unsupported 33
profile guided optimization 1
Profile guided optimization 19, 63
Profile-directed feedback 63

S

shared libraries 6
showpdf 5

U

utilization reporting tool 5

X

xlc 4

xIC 4
xlclang 4
xlclang++ 4

Index 77

78 IBM Open XL C/C++: Migration Guide

Product Number: 5765-J18; 5725-
C72

GC28-3309-01

	Contents
	About this document
	Who should read this document
	How to use this document
	Conventions
	Related information
	Available help information
	Standards and specifications

	Technical support
	How to send your comments
	Inclusive language

	Chapter 1. Migrating from Classic XL compilers
	Language support
	Binary compatibility
	Invocation commands
	Compiler utilities and commands
	Supported utilities and commands
	Unsupported utilities and commands
	Migration considerations of individual compiler utilities
	linkxlC
	makeC++SharedLib

	Compiler options
	Supported compiler options
	Unsupported compiler options
	Changed compiler options
	Discrepancies for option defaults
	Mapping of options
	Migration considerations for individual compiler options
	-+ (plus sign) (C++ only)
	-b
	-E
	-f
	-O
	-p, -pg, -qprofile
	-P
	-qaggrcopy
	-qalias
	-qalign
	-qalloca, -ma (C only)
	-qassert
	-qcompact
	-qc_stdinc (C only), -qcpp_stdinc (C++ only)
	-qcinc (C++ only)
	-qcpluscmt (C only)
	-qdump_class_hierarchy
	-qenum
	-qexpfile
	-qflag, -qhaltonmsg, -qinfo, -qsuppress
	-qfloat
	-qflttrap
	-qfullpath
	-qfunctrace
	-qhot
	-qignerrno
	-qinitauto
	-qinline
	-qisolated_call
	-qkeepinlines (C++ only)
	-qkeepparm
	-qlargepage
	-qlonglong
	-qmakedep
	-qminimaltoc
	-qnamemangling (C++ only)
	-qobjmodel (C++ only)
	-qoptimize
	-qpdf1, -qpdf2, -qshowpdf
	-qppline
	-qprefetch
	-qpriority (C++ only)
	-qrestrict
	-qsimd
	-qsmp
	-qsourcetype
	-qstatsym
	-qstrict
	-qtbtable
	-qtls
	-qtmplinst (C++ only)
	-qunroll
	-qutf
	-v, -V
	-y

	Compiler pragmas
	Supported compiler pragmas
	Unsupported pragmas
	Migration considerations of individual compiler pragmas
	#pragma alloca (C only)
	#pragma chars
	#pragma comment
	#pragma define (C++ only), #pragma instantiate (C++ only), #pragma do_not_instantiate (C++ only)
	#pragma disjoint
	#pragma enum
	#pragma execution_frequency
	#pragma expected_value
	#pragma fini (C only), #pragma init (C only)
	#pragma GCC visibility push, #pragma GCC visibility pop
	#pragma hashome (C++ only), #pragma ishome (C++ only)
	#pragma ibm independent_loop
	#pragma implementation (C++ only)
	#pragma info, #pragma report (C++ only)
	#pragma isolated_call
	#pragma langlvl (C only)
	#pragma leaves
	#pragma map
	#pragma mc_func
	#pragma namemangling (C++ only), #pragma namemanglingrule (C++ only)
	#pragma nofunctrace
	#pragma nosimd
	#pragma object_model (C++ only)
	#pragma operator_new (C++ only)
	#pragma option_override
	#pragma priority (C++ only)
	#pragma reg_killed_by
	#pragma simd_level
	#pragma STDC CX_LIMITED_RANGE
	#pragma strings
	#pragma unrollandfuse
	#pragma weak

	Compiler macros
	Supported compiler macros
	Unsupported compiler macros
	Changed compiler macros

	Compiler built-in functions
	Supported built-in functions
	Unsupported built-in functions
	Changed built-in functions
	Mapping of built-in functions

	Program linking
	Compiler listings
	Altivec compatibility
	Diagnostic message control
	Exception compatibility
	Debug support
	Memory allocation
	OpenMP support
	IBM Debugger for AIX
	Optimization and tuning compatibility
	Link Time Optimization (LTO)
	Profile Guided Optimization (PGO)
	Uninitialized variables

	Changes to compiler default behaviors

	Chapter 2. Migrating from earlier Open XL releases
	Discrepancies for option defaults
	Compatibility limitations of libc++
	Support for visibility attributes

	Chapter 3. Using 32-bit and 64-bit modes
	Assigning long values
	Assigning constant values to long variables
	Bit-shifting long values

	Assigning pointers
	Aligning aggregate data
	Calling Fortran code

	Notices
	Trademarks

	Index

