
IBM Open XL C/C++ for AIX 17.1.1

Migration Guide

IBM

GC28-3309-01

Note

Before using this information and the product it supports, read the information in “Notices” on page
73.

First edition

This edition applies to IBM® Open XL C/C++ for AIX® 17.1.1 (Program 5765-J18; 5725-C72) and to all subsequent
releases and modifications until otherwise indicated in new editions. Make sure you are using the correct edition for the
level of the product.
© Copyright International Business Machines Corporation 2022.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract with
IBM Corp.

Contents

About this document..v
Who should read this document.. v
How to use this document... v
Conventions.. v
Related information... viii

Available help information... viii
Standards and specifications... x

Technical support... x
How to send your comments... x
Inclusive language..x

Chapter 1. Migrating from Classic XL compilers.. 1
Language support...1
Binary compatibility... 1
Invocation commands... 4
Compiler utilities and commands..5

Supported utilities and commands..5
Unsupported utilities and commands..5
Migration considerations of individual compiler utilities.. 5

Compiler options..7
Supported compiler options...7
Unsupported compiler options.. 8
Changed compiler options... 8
Discrepancies for option defaults.. 8
Mapping of options... 8
Migration considerations for individual compiler options...18

Compiler pragmas..33
Supported compiler pragmas.. 33
Unsupported pragmas..33
Migration considerations of individual compiler pragmas.. 35

Compiler macros..43
Supported compiler macros...43
Unsupported compiler macros.. 43
Changed compiler macros... 46

Compiler built-in functions.. 46
Supported built-in functions.. 46
Unsupported built-in functions..46
Changed built-in functions...50
Mapping of built-in functions... 51

Program linking.. 56
Compiler listings.. 56
Altivec compatibility.. 57
Diagnostic message control.. 58
Exception compatibility... 59
Debug support... 60
Memory allocation... 60
OpenMP support.. 61
IBM Debugger for AIX..61
Optimization and tuning compatibility.. 61

Link Time Optimization (LTO)...61

 iii

Profile Guided Optimization (PGO).. 63
Uninitialized variables.. 64

Changes to compiler default behaviors...64

Chapter 2. Migrating from earlier Open XL releases...67
Discrepancies for option defaults..67
Compatibility limitations of libc++.. 67
Support for visibility attributes..67

Chapter 3. Using 32-bit and 64-bit modes...69
Assigning long values...69

Assigning constant values to long variables..70
Bit-shifting long values...71

Assigning pointers ...71
Aligning aggregate data... 71
Calling Fortran code...72

Notices..73
Trademarks.. 75

Index.. 77

iv

About this document

This document contains migration considerations applicable to IBM Open XL C/C++ for AIX 17.1.1.

Who should read this document
This document is intended for C and C++ developers who are to use IBM Open XL C/C++ for AIX 17.1.1
to compile programs that were previously compiled on different platforms, by previous IBM XL C/C++
releases, or by other compilers.

How to use this document
Unless indicated otherwise, all of the text in this reference pertains to both C and C++ languages.
Where there are differences between languages, these are indicated through qualifying text and icons, as
described in “Conventions” on page v.

While this document covers migration considerations applicable to IBM Open XL C/C++ for AIX 17.1.1, it
does not include the following topics:

• An executive overview of new functions: see the What's New for IBM Open XL C/C++.
• Compiler installation: see the IBM Open XL C/C++ Installation Guide.
• Compiler features including options, pragmas, and built-in functions: see the IBM Open XL C/C++ User's

Guide for detailed information about the usage of compiler features.

Conventions

Typographical conventions
The following table shows the typographical conventions used in the IBM Open XL C/C++ for AIX 17.1.1
documentation.

Table 1. Typographical conventions

Typeface Indicates Example

bold Lowercase commands, executable
names, compiler options, and
directives.

The compiler provides basic invocation
commands, ibm-clang, ibm-clang_r, and
ibm-clang++_r, along with several other
compiler invocation commands to support
various C/C++ language levels and
compilation environments.

italics Parameters or variables whose actual
names or values are to be supplied
by the user. Italics are also used to
introduce new terms.

Make sure that you update the size
parameter if you return more than the size
requested.

underlining The default setting of a parameter of a
compiler option or directive.

nomaf | maf

monospace Programming keywords and library
functions, compiler builtins, examples
of program code, command strings, or
user-defined names.

To compile and optimize myprogram.c,
enter: ibm-clang myprogram.c -O3.

© Copyright IBM Corp. 2022 v

Qualifying elements (icons)
Most features described in this documentation apply to both C and C++ languages. In descriptions of
language elements where a feature is exclusive to one language, or where functionality differs between
languages, this documentation uses icons to delineate segments of text as follows:

Table 2. Qualifying elements

Icon Short description Meaning

C only begins /

C only ends

The text describes a feature that is supported in the C
language only; or describes behavior that is specific to the C
language.

C++ only begins /

C++ only ends

The text describes a feature that is supported in the C++
language only; or describes behavior that is specific to the
C++ language.

IBM extension begins /

IBM extension ends

The text describes a feature that is an IBM extension to the
standard language specifications.

Syntax diagrams
Throughout this information, diagrams illustrate IBM Open XL C/C++ syntax. This section helps you to
interpret and use those diagrams.

• Read the syntax diagrams from left to right, from top to bottom, following the path of the line.

The ▶▶─── symbol indicates the beginning of a command, directive, or statement.

The ───▶ symbol indicates that the command, directive, or statement syntax is continued on the next
line.

The ▶─── symbol indicates that a command, directive, or statement is continued from the previous line.

The ───▶◀ symbol indicates the end of a command, directive, or statement.

Fragments, which are diagrams of syntactical units other than complete commands, directives, or
statements, start with the │─── symbol and end with the ───│ symbol.

• Required items are shown on the horizontal line (the main path):
keyword required_argument

• Optional items are shown below the main path:
keyword

optional_argument

• If you can choose from two or more items, they are shown vertically, in a stack.

If you must choose one of the items, one item of the stack is shown on the main path.

keyword required_argument1

required_argument2

If choosing one of the items is optional, the entire stack is shown below the main path.
keyword

optional_argument1

optional_argument2

vi About this document

• An arrow returning to the left above the main line (a repeat arrow) indicates that you can make more
than one choice from the stacked items or repeat an item. The separator character, if it is other than a
blank, is also indicated:

keyword

,

repeatable_argument

• The item that is the default is shown above the main path.

keyword

default_argument

alternate_argument

• Keywords are shown in nonitalic letters and should be entered exactly as shown.
• Variables are shown in italicized lowercase letters. They represent user-supplied names or values.
• If punctuation marks, parentheses, arithmetic operators, or other such symbols are shown, you must

enter them as part of the syntax.

The following is an example of a syntax diagram with an interpretation:

EXAMPLE
1

char_constant a

b c

d

,

e name_list

Notes:
1 IBM extension

Interpret the diagram as follows:

• Enter the keyword EXAMPLE.
• EXAMPLE is an IBM extension.
• Enter a value for char_constant.
• Enter a value for a or b, but not for both.
• Optionally, enter a value for c or d.
• Enter at least one value for e. If you enter more than one value, you must put a comma between each.
• Enter the value of at least one name for name_list. If you enter more than one value, you must put a

comma between each. (The _list syntax is equivalent to the previous syntax for e.)

How to read syntax statements
Syntax statements are read from left to right:

• Individual required arguments are shown with no special notation.
• When you must make a choice between a set of alternatives, they are enclosed by { and } symbols.
• Optional arguments are enclosed by [and] symbols.
• When you can select from a group of choices, they are separated by | characters.
• Arguments that you can repeat are followed by ellipses (…).

Example of a syntax statement

EXAMPLE char_constant {a|b}[c|d]e[,e]... name_list{name_list}...

About this document vii

The following list explains the syntax statement:

• Enter the keyword EXAMPLE.
• Enter a value for char_constant.
• Enter a value for a or b, but not for both.
• Optionally, enter a value for c or d.
• Enter at least one value for e. If you enter more than one value, you must put a comma between each.
• Optionally, enter the value of at least one name for name_list. If you enter more than one value, you

must put a comma between each name.

Note: The same example is used in both the syntax-statement and syntax-diagram representations.

Examples in this documentation
The examples in this documentation, except where otherwise noted, are coded in a simple style that
does not try to conserve storage, check for errors, achieve fast performance, or demonstrate all possible
methods to achieve a specific result.

Related information
The following sections provide related information for IBM Open XL C/C++:

Available help information

IBM Open XL C/C++ for AIX information
IBM Open XL C/C++ for AIX provides product information in the following formats:

• Quick Start Guide

The Quick Start Guide (quickstart.pdf) is intended to get you started with IBM Open XL C/C++ for
AIX 17.1.1. It is located by default in the IBM Open XL C/C++ for AIX directory.

• README files

README files contain late-breaking information, including changes and corrections to the product
information. README files are located by default in the IBM Open XL C/C++ for AIX directory.

• Online product documentation

The fully searchable HTML-based documentation is viewable in IBM Documentation at https://
www.ibm.com/docs/openxl-c-and-cpp-aix/17.1.1.

• PDF documents

PDF documents are available online at https://www.ibm.com/docs/openxl-c-and-cpp-aix/17.1.1?
topic=pdf-format-documentation.

The following files comprise the full set of IBM Open XL C/C++ for AIX product information.

Note: To ensure that you can access cross-reference links to other IBM Open XL C/C++ for AIX PDF
documents, download and unzip the .zip file that contains all the product documentation files, or you
can download each document into the same directory on your local machine.

Table 3. IBM Open XL C/C++ for AIX PDF files

Document title PDF file name Description

What's New for IBM Open
XL C/C++ for AIX 17.1.1,
SC28-3310-01

whats_new.pdf Provides an executive overview of new
functions in the IBM Open XL C/C++ for
AIX 17.1.1 compiler, with new functions
categorized according to user benefits.

viii About this document

https://www.ibm.com/docs/openxl-c-and-cpp-aix/17.1.1
https://www.ibm.com/docs/openxl-c-and-cpp-aix/17.1.1
https://www.ibm.com/docs/openxl-c-and-cpp-aix/17.1.1?topic=pdf-format-documentation
https://www.ibm.com/docs/openxl-c-and-cpp-aix/17.1.1?topic=pdf-format-documentation

Table 3. IBM Open XL C/C++ for AIX PDF files (continued)

Document title PDF file name Description

IBM Open XL C/C++ for
AIX 17.1.1 Installation
Guide, GC28-3311-01

install.pdf Contains information for installing,
upgrading, and uninstalling IBM Open XL
C/C++ for AIX.

IBM Open XL C/C++
for AIX 17.1.1 Migration
Guide, GC28-3309-01

migrate.pdf Contains migration considerations for using
IBM Open XL C/C++ for AIX to compile
programs that were previously compiled on
different platforms, by previous IBM Open
XL C/C++ for AIX releases, or by other
compilers.

IBM Open XL C/C++ for
AIX 17.1.1 User's Guide,
SC28-3312-01

user.pdf Contains information about basic compiler
usage, various compiler options, pragmas,
macros, built-in functions, and high-
performance libraries.

To read a PDF file, use Adobe Reader. If you do not have Adobe Reader, you can download it (subject to
license terms) from the Adobe website at http://www.adobe.com.

For more information about the compiler, see C/C++ and Fortran compilers on the IBM Power® community
at http://ibm.biz/openxl-power-compilers.

Other IBM information
• Parallel Environment for AIX: Operation and Use
• The IBM Systems documentation, at https://www.ibm.com/docs/aix, is a resource for AIX information.

You can find the following books for your specific AIX system:

– AIX Commands Reference, Volumes 1 - 6
– Technical Reference: Base Operating System and Extensions, Volumes 1 & 2
– AIX National Language Support Guide and Reference
– AIX General Programming Concepts: Writing and Debugging Programs
– AIX Assembler Language Reference

Open-source community documentation
• libc++ documentation
• Clang documentation
• LLVM documentation
• LLVM Release Notes

– Libc++ 15.0.1 - 15.0.7 Release Notes
– Libc++ 15.0.0 Release Notes
– Libc++ 14.0.0 Release Notes
– Libc++ 13.0.0 Release Notes
– Libc++ 12.0.0 Release Notes
– Libc++ 11.0.0 Release Notes
– Libc++ 10.0.0 Release Notes
– Libc++ 9.0.0 Release Notes
– Libc++ 8.0.0 Release Notes

About this document ix

http://www.adobe.com
http://ibm.biz/openxl-power-compilers
https://www.ibm.com/docs/aix
https://ibm.biz/llvm-v14
https://releases.llvm.org/
https://ibm.biz/libcxx_15_ReleaseNotes
https://ibm.biz/libcxx_14_ReleaseNotes
https://ibm.biz/libcxx_13_ReleaseNotes
https://ibm.biz/libcxx_12_ReleaseNotes
https://ibm.biz/libcxx_11_ReleaseNotes
https://ibm.biz/libcxx_10_ReleaseNotes
https://ibm.biz/libcxx_9_ReleaseNotes
https://ibm.biz/libcxx_8_ReleaseNotes

Other information
• Using the GNU Compiler Collection available at http://gcc.gnu.org/onlinedocs.

Standards and specifications
IBM Open XL C/C++ is designed to support the following standards and specifications. You can refer
to these standards and specifications for precise definitions of some of the features found in this
information.

• Information Technology - Programming languages - C, ISO/IEC 9899:1990, also known as C89.
• Information Technology - Programming languages - C, ISO/IEC 9899:1999, also known as C99.
• Information Technology - Programming languages - C, ISO/IEC 9899:2011, also known as C11.
• Information Technology - Programming languages - C, ISO/IEC 9899:2017, also known as C17.
• Information Technology - Programming languages - C++, ISO/IEC 14882:1998, also known as C++98.
• Information Technology - Programming languages - C++, ISO/IEC 14882:2003, also known as C++03.
• Information Technology - Programming languages - C++, ISO/IEC 14882:2011, also known as C++11.
• Information Technology - Programming languages - C++, ISO/IEC 14882:2014, also known as C++14.
• Information Technology - Programming languages - C++, ISO/IEC 14882:2017, also known as C++17.
• Draft Technical Report on C++ Library Extensions, ISO/IEC DTR 19768. This draft technical report has

been submitted to the C++ standards committee, and is available at http://www.open-std.org/JTC1/
SC22/WG21/docs/papers/2005/n1836.pdf.

• AltiVec Technology Programming Interface Manual, Motorola Inc. This specification for vector data
types, to support vector processing technology, is available at https://www.nxp.com/docs/reference-
manual/ALTIVECPIM.pdf.

• ANSI/IEEE Standard for Binary Floating-Point Arithmetic, ANSI/IEEE Std 754-1985.

Technical support
Additional technical support is available from the IBM Open XL C/C++ Support page at https://
www.ibm.com/mysupport/s/topic/0TO0z0000006v6TGAQ/xl-cc?productId=01t0z000007g72LAAQ. This
page provides a portal with search capabilities to a large selection of Technotes and other support
information.

If you have any question on the product, raise it in the IBM C/C++ and Fortran compilers on Power
community or open a case at https://www.ibm.com/mysupport/s/topic/0TO0z0000006v6TGAQ/xl-cc?
productId=01t0z000007g72LAAQ.

For the latest information about IBM Open XL C/C++ and IBM XL C/C++, visit the product information site
at https://www.ibm.com/products/open-xl-cpp-aix-compiler-power.

How to send your comments
Your feedback is important for helping IBM to provide accurate and high-quality information. If you have
any comments or questions about this document or any other IBM Open XL C/C++ documentation, send
an email to compinfo@cn.ibm.com.

Be sure to include the name of the manual, the part number of the manual, the version of IBM Open XL
C/C++, and, if applicable, the specific location of the text you are commenting on (for example, a page
number or table number).

Inclusive language
As other industry leaders join IBM in embracing the use of inclusive language, IBM will continue to update
the documentation, product code, and user interfaces to reflect those changes. While IBM values the use

x About this document

http://gcc.gnu.org/onlinedocs
http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2005/n1836.pdf
http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2005/n1836.pdf
https://www.nxp.com/docs/reference-manual/ALTIVECPIM.pdf
https://www.nxp.com/docs/reference-manual/ALTIVECPIM.pdf
https://www.ibm.com/mysupport/s/topic/0TO0z0000006v6TGAQ/xl-cc?productId=01t0z000007g72LAAQ
https://www.ibm.com/mysupport/s/topic/0TO0z0000006v6TGAQ/xl-cc?productId=01t0z000007g72LAAQ
http://ibm.biz/openxl-power-compilers
http://ibm.biz/openxl-power-compilers
https://www.ibm.com/mysupport/s/topic/0TO0z0000006v6TGAQ/xl-cc?productId=01t0z000007g72LAAQ
https://www.ibm.com/mysupport/s/topic/0TO0z0000006v6TGAQ/xl-cc?productId=01t0z000007g72LAAQ
https://www.ibm.com/products/open-xl-cpp-aix-compiler-power
mailto:compinfo@cn.ibm.com

of inclusive language, terms that are outside of IBM's direct influence are sometimes required for the sake
of maintaining user understanding.

To learn more about this initiative, read the Words matter blog on ibm.com®

About this document xi

https://www.ibm.com/blogs/think/2020/08/words-matter-driving-thoughtful-change-toward-inclusive-language-in-technology/

xii IBM Open XL C/C++: Migration Guide

Chapter 1. Migrating from Classic XL compilers
When you migrate programs from IBM XL C/C++ for AIX 16.1.0 or earlier releases to IBM Open XL C/C++
for AIX 17.1.1, consider factors such as changed compiler options, built-in functions, and environment
variables.

Language support
This topic discusses the support for language standard features and IBM extension features in IBM Open
XL C/C++ for AIX 17.1.1.

Language standard features
IBM Open XL C/C++ for AIX 17.1.1 incorporates the LLVM and Clang compiler infrastructure. IBM
Open XL C/C++ for AIX 17.1.1 supports all of the -std options that are available in the LLVM Clang
compiler on which it is based, all C language specifications up to and including C17, and all C++
language specifications up to and including C++17. Additionally, IBM Open XL C/C++ for AIX 17.1.1
offers experimental availability of C++20 features. Refer to Enhanced LLVM and Clang support for more
information of LLVM and Clang.

Note: C++ library features that are newer than C++14 might not be available in IBM Open XL C/C++ for
AIX 17.1.1.

IBM extension features
IBM Open XL C/C++ for AIX 17.1.1 does not support all IBM extension features that are supported by
IBM XL C/C++ for AIX 16.1.0 or earlier releases. For details of the IBM extension features, refer to the
Language Reference of IBM XL C/C++ for AIX 16.1.0 or earlier releases.

The constructor and destructor function attributes
When you invoked IBM XL C/C++ for AIX 16.1.0 using the xlclang or xlclang++ invocation command,
the constructor and destructor function attributes applied to the following types of programs:

• C++ programs
• C programs if they are linked using a C++ link invocation command

IBM Open XL C/C++ for AIX 17.1.1 supports constructor and destructor function attributes in both
C and C++ programs.

Binary compatibility
In general, C++ objects built with IBM Open XL C/C++ for AIX 17.1.1 are binary compatible with C++
objects built with IBM XL C/C++ for AIX 16.1.0 invoked by xlclang++.

The exception is that object files created by IBM XL C/C++ for AIX 16.1.0 with the -qpdf1 option, when
the compiler is invoked by xlclang or xlclang++, need to be recompiled. This is because the object
files make calls to a different PDF library from the ones used in IBM Open XL C/C++. Refer to Profile
Guided Optimization (PGO) for more information.

The implementation of the C++11 language standard requires an update to the std library libc++, and
causes a breakage in C++ binary compatibility. Therefore, C++ object files built with IBM Open XL C/C++
for AIX 17.1.1 are not directly interoperable with C++ object files generated by IBM XL C/C++ for AIX
16.1.0 that is invoked by xlC or earlier releases. You must recompile your classic programs with IBM
Open XL C/C++ for AIX 17.1.1 to solve such binary incompatibility and link object files successfully.

Note: However, the incompatibility does not prohibit coexistence of C++ object files that do not pass
objects or exceptions. Refer to the “Compatibility with Classic XL C++ object files” on page 2 section for
details.

© Copyright IBM Corp. 2022 1

C object files built with IBM Open XL C/C++ for AIX 17.1.1 are binary compatible with C object files built
with IBM XL C/C++ for AIX 16.1.0 and earlier releases when both of the following conditions are satisfied:

• Symbol names with external linkage contain only the dollar sign and characters from the basic character
set.

• Bitfields in C programs are declared only with the types allowed by the C standard regardless of any
types allowed as implementation-defined.

Compatibility with Classic XL C++ object files
Refer to the following types of object files as using libc++ ABI, which denotes the C++ standard library
implementation on which the object files are based:

• C++ object files built with IBM Open XL C/C++ for AIX. These object files utilize interfaces provided by
C++ runtime libraries libc++.a, libc++abi.a, and libunwind.a, which are from the libc++.rte,
libc++abi.rte, and libunwind.rte fileset, respectively.

• C++ object files built with IBM XL C/C++ for AIX 16.1.0 that is invoked by xlclang++. These object files
utilize interfaces provided by C++ runtime libc++.a, which is from the libc++.rte fileset.

Similarly, refer to the following type of object files as using libC ABI:

• C++ object files built with IBM XL C/C++ for AIX 16.1.0 that is invoked by xlC or earlier releases. The
object files utilize interfaces provided by C++ runtime libC.a, which is from the xlC.rte fileset.

Different mangled names
The names of C++ functions and other entities are mangled using different name mangling schemes in
libc++ ABI and libC ABI to prevent linking of incompatible code. libc++ ABI utilizes the CXA mangling
scheme that is defined in the Itanium C++ ABI specification, while libC ABI uses the IBM proprietary
mangling scheme. Consequently, the corresponding symbols for a C++ function in these ABIs are
different; for example, the symbol of C++ function func() is _Z4funcv in libc++ ABI, whereas it is
func__Fv in libC ABI. In the CXA mangling scheme, mangled names have the _Z prefix.

Different object model and layout
The C++ object model and layout differ between libc++ ABI and libC ABI. Accessing C++ objects from one
C++ ABI in code that is compiled in another C++ ABI results in undefined behavior, except where the type
is subject to rules for compatibility with C.

Different exception handling
The implementation of exception handling differs between libc++ ABI and libC ABI. There are exception
handling limitations when exceptions are thrown from the libc++ ABI side and caught or unwound through
the libC ABI side, and vice versa. Refer to “Exception compatibility” on page 59 for details.

Due to these differences, libc++ ABI and libC ABI are incompatible and can be considered as different
languages, even though both are referred to as C++. However, they can still coexist in the same
application with limitations. In such cases, there can be instances of different C++ runtimes coexisting in
the same process space without interacting with each other. For example, input and output are buffered
separately and are not visible to the other runtime.

Libraries built with coexisting shared objects
Although libc++ ABI and libC ABI are incompatible, you can package their shared objects into a single
library so that the library can be used for an application built with either libc++ ABI or libC ABI if all of the
following conditions are met:

• The libc++ ABI or libC ABI shared objects in the library are mutually exclusive.
• Each shared object in the library that presents a C++ API supports only one of libc++ ABI and libC ABI.
• Exported symbols from these ABIs are disjoint.
• There are no cross references between libc++ ABI and libC ABI.

If the libc++ ABI and libC ABI shared objects have cross references, or if there is an executable file
referencing symbols from two types of shared objects, the shared objects will be linked with the resulting

2 IBM Open XL C/C++: Migration Guide

executable file. This results in two different C++ runtime implementations coexisting in the same process
space, which might cause unexpected behavior. To confirm the load dependencies of an executable, use
the ldd command on the executable.

Mangled C++ symbols in libc++ ABI and libC ABI are disjoint. To prevent symbol name overlapping across
ABIs of C/C++ shared objects, it is recommended that symbols such as global variables and C functions
be renamed to encode the ABI in the symbol names. For example, you can map a function name to
different names either by changing the identifier or by using an asm label. In the following example, name
externCFunctionV2 is used for the externCFunction function in libc++ ABI and its original name
externCFunction is used in libC ABI.

#if defined(_AIX) && defined(__clang__)
 extern "C" void externCFunction(void) asm("externCFunctionV2");
#else
 extern "C" void externCFunction(void);
#endif

Export only the desired symbols from these shared objects and ensure that exported symbols across
C++ ABIs in your shared objects do not overlap. To learn about how to export symbols, refer to Symbol
exports and visibilities. When a C++ ABI is no longer needed for linking new applications but you
want to retain load compatibility, a shared object can be made load-only with the strip -e command.

Unlike shared objects, where exported symbols are controlled by export lists or attribute visibility, having
static archive members for both libc++ ABI and libC ABI in the same archive library might result in
unexpected behavior. For example, static constructors for both libc++ ABI and libC ABI are executed
by the resulting executable, which might not be expected. It is recommended to not include static
archive members for both libc++ ABI and libC ABI in the same archive library unless the behavior is well
understood.

Example
The following example shows how to build a dual-ABI library from a single source to support both libc++
ABI and libC ABI:

$ cat build_example.sh
#!/usr/bin/ksh
rm -f xlc.shr.o ibmclang.shr.o libfunc.a xlc.a.out ibmclang.a.out
xlC -qmkshrobj func.cpp -o xlc.shr.o -bE:xlc.exp
ibm-clang++_r -shared func.cpp -o ibmclang.shr.o -bE:ibmclang.exp
ar -v -q libfunc.a xlc.shr.o ibmclang.shr.o
xlC main.cpp -o xlc.a.out libfunc.a -blibpath:.:/usr/lib
ibm-clang++_r main.cpp -o ibmclang.a.out libfunc.a -blibpath:.:/usr/lib

$ cat func.hpp
#include <iostream>

#if defined(_AIX) && defined(__clang__)
extern "C" void bar(void) asm("bar2");
#else
extern "C" void bar(void);
#endif

void func(void);

$ cat func.cpp
#include "func.hpp"

#if defined(_AIX) && defined(__clang__)
#define BUILD_COMPILER "build compiler is ibm-clang++_r"
#else
#define BUILD_COMPILER "build compiler is xlC"
#endif

void func(void)
{
 std::cout << "func(): " << BUILD_COMPILER << std::endl;
}

extern "C" void bar(void)
{
 std::cout << "bar(): " << BUILD_COMPILER << std::endl;
}
$ cat main.cpp

Chapter 1. Migrating from Classic XL compilers 3

https://www.ibm.com/docs/en/aix/latest?topic=l-ldd-command

#include "func.hpp"

int main() {
 func();
 bar();
 return 0;
}
$ cat xlc.exp
#!
func__Fv
bar
$ cat ibmclang.exp
#!
_Z4funcv
bar2
$ build_example.sh
$ xlc.a.out
func(): build compiler is xlC
bar(): build compiler is xlC
$ ibmclang.a.out
func(): build compiler is ibm-clang++_r
bar(): build compiler is ibm-clang++_r
$

In this example, the main program built with either the xlC or ibm-clang++_r command can call both
the func and bar functions from the dual-ABI library. Shared object ibmclang.shr.o in libfunc.a
is built using the IBM Open XL C/C++ compiler. The shared object can be used by both IBM Open XL
C/C++ for AIX and IBM XL C/C++ for AIX 16.1.0 invoked by xlclang++. Because ibmclang.shr.o has
dependencies on the C++ runtime of the IBM Open XL C/C++ compiler, applications generated by IBM XL
C/C++ for AIX 16.1.0 invoked by xlclang++ require the appropriate version of the IBM Open XL C/C++
for AIX runtime to be available on the system. Similarly, ibmclang.shr.o can also be built using IBM XL
C/C++ for AIX 16.1.0 invoked by xlclang++ and used by both IBM Open XL C/C++ for AIX and IBM XL
C/C++ for AIX 16.1.0 invoked by xlclang++.

You can confirm the load dependencies of your executable using the AIX command ldd. The following is
the output from using ldd on xlc.a.out and ibmclang.a.out in the example above:

$ ldd xlc.a.out
xlc.a.out needs:
 ...
 /usr/lib/libC.a(shr.o)
 ...
 /usr/lib/libC.a(shrcore.o)
 /usr/lib/libC.a(ansi_32.o)
 /usr/lib/libC.a(ansicore_32.o)
$ ldd ibmclang.a.out
ibmclang.a.out needs:
 ...
 /usr/lib/libc++.a(shr2.o)
 /usr/lib/libc++abi.a(libc++abi.so.1)
 /usr/lib/libunwind.a(libunwind.so.1)
 /usr/lib/libc++.a(libc++.so.1)
 ...
$

According to the output, xlc.a.out has dependencies on the C++ runtime of the classic XL C/C++
compiler, which is libC.a, but it does not have dependencies on the C++ runtime of the Open XL C/C++
compiler, which are libc++.a, libc++abi.a, and libunwind.a. On the other hand, ibmclang.a.out
has dependencies on libc++.a, libc++abi.a, and libunwind.a but does not have dependencies on
libC.a.

Invocation commands
The classic invocation commands supported by IBM XL C/C++ for AIX 16.1.0 or earlier releases including
xlc and xlC are not supported in IBM Open XL C/C++ for AIX 17.1.1. The xlclang and xlclang++
invocation commands are not supported either.

In IBM Open XL C/C++ for AIX 17.1.1, use the ibm-clang, ibm-clang_r, and ibm-clang++_r invocation
commands instead.

Note:

4 IBM Open XL C/C++: Migration Guide

• -pthread is not implied when the compiler is invoked by ibm-clang.
• ibm-clang_r replaces xlc which is an invocation command in IBM XL C/C++ for AIX 16.1.0 or earlier

releases. Similarly, ibm-clang++_r replaces xlC.

For more information on the classic invocation commands, see classic invocation commands.

Compiler utilities and commands
Consider a number of changes to compiler utilities and commands when you migrate your program from
IBM XL C/C++ for AIX 16.1.0 or earlier releases to IBM Open XL C/C++ for AIX 17.1.1.

Supported utilities and commands
This topic discusses utilities and commands that are supported by IBM Open XL C/C++ for AIX 17.1.1.

IBM Open XL C/C++ for AIX 17.1.1 introduces support for new utilities, as well as continuing to support
the utilities and commands that were supported by IBM XL C/C++ for AIX 16.1.0, except those described
in Unsupported utilities and commands. Find details of all supported utilities and commands in Utilities
and commands.

Unsupported utilities and commands
IBM Open XL C/C++ for AIX 17.1.1 no longer supports compiler utilities and commands that are described
in this section.

• Utilization reporting tool
• The c++filt name demangling utility
• The linkxlC utility
• The makeC++SharedLib utility
• The genhtml command
• The cleanpdf command
• The mergepdf command
• The showpdf command

Migration considerations of individual compiler utilities
This section lists individual compiler utilities that need to be considered for migration.

linkxlC
In IBM XL C/C++ for AIX 16.1.0 or earlier releases, the linkxlC utility links C++ .o and .a files. It can be
used on systems where the compiler is not installed.

In IBM Open XL C/C++ for AIX 17.1.1, linkxlC is not supported. Use ibm-clang++_r to link Open XL
C/C++ binaries instead. Contact your customer service if you need to link Open XL C++ binaries where the
ibm-clang++_r utility is not available.

To link binaries that are compiled with IBM XL C/C++ for AIX 16.1.0 using xlC and binaries that are
compiled with IBM Open XL C/C++ for AIX 17.1.1 using ibm-clang++_r, you can perform one of the
following tasks:

• Link mixed binaries with the xlC or V16 linkxlC command and add necessary V17 linker options. Run
the ibm-clang++_r -v command to obtain the linker options that IBM Open XL C/C++ for AIX 17.1.1
provides.

• Link mixed binaries with the ibm-clang++_r command and add necessary V16 linker options. Run the
xlC -v command to obtain the linker options that IBM XL C/C++ for AIX 16.1.0 provides.

Chapter 1. Migrating from Classic XL compilers 5

https://www.ibm.com/docs/xl-c-and-cpp-aix/16.1?topic=applications-invoking-compiler

makeC++SharedLib
In IBM XL C/C++ for AIX 16.1.0 or earlier releases, the makeC++SharedLib utility permits the creation of
C++ shared libraries on systems where the compiler is not installed.

In IBM Open XL C/C++ for AIX 17.1.1, the makeC++SharedLib utility is not supported. Use ibm-clang+
+_r -shared to create Open XL C++ shared libraries instead. Contact your customer service if you need
to create Open XL C++ shared libraries where the ibm-clang++_r utility is not available.

In Open XL, similar to what occurs when makeC++SharedLib was used in classic XL compilers, an
automatic export list is generated when -shared is specified without either an export list or the -bexp*
export options.

Option mapping
Options of makeC++SharedLib are recognized by Open XL as linker options, except for the following
ones.

Table 4. Mapping options of MakeC++SharedLib to Open XL linker options

Option of MakeC++SharedLib Linker option

-e None. The similar function can be obtained by
separately running the CreateExportList utility
over the input files.

-E<export_list> -bE:<export_list>

-I<import_list> -bI:<import_list>

-n -e

-p -bcdtors::[priority]

-w None

-X 32 -m32

-X 64 -m64

Notes:

• In Classic XL compilers, the -p option is mandatory in MakeC++SharedLib to specify the priority
level for the initialization order of static C++ objects declared in the shared object. However,
-bcdtors::[priority] can be omitted in Open XL. If no priority is specified, Open XL uses the
default priority of zero.

• In Open XL compilers, if neither -m32 nor -m64 is set, the mode specified by the OBJECT_MODE
environment variable takes effect. This behavior is the same as that of classic XL compilers when
neither -X 32 nor -X 64 is set in MakeC++SharedLib.

An option that is meant to be passed to the linker ld needs to be preceded by the -Wl, option; for
example, -Wl,-eMy_entry. Note that the comma is included as part of the -Wl, option.

Creating shared libraries
To create shared binaries from object files that are compiled with IBM XL C/C++ for AIX 16.1.0 using xlC
and object files that are compiled with IBM Open XL C/C++ for AIX 17.1.1 using ibm-clang++_r, you
can perform one of the following tasks:

• Link mixed binaries with the xlC or V16 makeC++SharedLib command and add necessary V17 linker
options. Run the ibm-clang++_r -v command to obtain the linker options that IBM Open XL C/C++
for AIX 17.1.1 provides.

6 IBM Open XL C/C++: Migration Guide

• Link mixed binaries with the ibm-clang++_r command and add necessary V16 linker options. Run the
xlC -v command to obtain the linker options that IBM XL C/C++ for AIX 16.1.0 provides.

Related information
• MakeC++SharedLib
• Utilities and commands
• Linking shared libraries
• ld command

Compiler options
Consider a number of changes to compiler options when you migrate your program from IBM XL C/C++ for
AIX 16.1.0 or earlier releases to IBM Open XL C/C++ for AIX 17.1.1.

Supported compiler options
This topic describes Clang, GCC, and IBM compiler options that are supported by IBM Open XL C/C++ for
AIX 17.1.1.

Clang and GCC options
The new ibm-clang, ibm-clang_r, and ibm-clang++_r invocation commands accept Clang options. For
more information about Clang options, see Clang options.

Meanwhile, GCC options that were supported by IBM XL C/C++ for AIX 16.1.0 are also supported by IBM
Open XL C/C++ for AIX 17.1.1. Refer to GCC options for details.

Supported IBM compiler options
IBM Open XL C/C++ for AIX 17.1.1 introduces support for new options.

Additionally, the following options that were supported by IBM XL C/C++ for AIX 16.1.0 are also
supported by IBM Open XL C/C++ for AIX 17.1.1.

• -b
• -B
• -bmaxdata
• -brtl
• -c
• -C
• -D
• -e
• -E
• -g
• -I
• -l
• -L
• -o
• -r
• -S
• -U
• -w

Chapter 1. Migrating from Classic XL compilers 7

https://www.ibm.com/docs/en/xl-c-and-cpp-aix/16.1?topic=utilities-creating-shared-library-makecsharedlib-utility
https://www.ibm.com/docs/aix/latest?topic=l-ld-command

• -W

Find details of all supported options in Compiler options.

Unsupported compiler options
The classic XL C/C++ compiler options that usually start with -q are not supported in IBM Open XL C/C++
for AIX 17.1.1.

You must remove the specified classic options or replace them with the appropriate Clang options.

Changed compiler options
Some compiler options have been changed in IBM Open XL C/C++ for AIX 17.1.1.

-maltivec
In IBM Open XL C/C++ and classic release IBM XL C/C++ for AIX 16.1.0, the altivec.h file is not
implicitly included when -maltivec is in effect.

Discrepancies for option defaults
The section shows the discrepancies for compiler option defaults between IBM Open XL C/C++ for AIX
17.1.1 and IBM XL C/C++ for AIX 16.1.0.

Table 5. Option defaults on IBM Open XL C/C++ for AIX 17.1.1 and IBM XL C/C++ for AIX 16.1.0

Default on IBM XL C/C++ for AIX 16.1.0 invoked
by xlclang or xlclang++

Default on IBM Open XL C/C++ for AIX 17.1.1

-mcpu=power4 -mcpu=power7

-qnolibansi -fbuiltin, which is an equivalent option to -qlibansi

-qnortti -frtti, which is an equivalent option to -qrtti or
-qrtti=all

-qnostrict is implied when -O3 is in effect -ffast-math is not implied when -O3 is in effect

-std=gnu99 -std=gnu17

-std=gnu++11 -std=gnu++14

Mapping of options
The topic provides a mapping of classic IBM XL C/C++ compiler options and Clang options that have the
same or similar functions.

Note: Suboptions of these options do not necessarily have a one-to-one mapping.

Table 6. Mapping of compiler options

Classic options supported by IBM XL C/C++ for
AIX 16.1.0

Similar/equivalent Clang options supported by
IBM Open XL C/C++ for AIX 17.1.1

-# -###

-+ -x c++

-C! None; the default compiler behavior is as if -C! was
in effect.

-E -E or -E -x c for files with unrecognized file name
suffixes

-f -Wl,-f

8 IBM Open XL C/C++: Migration Guide

https://www.ibm.com/docs/xl-c-and-cpp-aix/16.1?topic=reference-compiler-options

Table 6. Mapping of compiler options (continued)

Classic options supported by IBM XL C/C++ for
AIX 16.1.0

Similar/equivalent Clang options supported by
IBM Open XL C/C++ for AIX 17.1.1

-F None

-G -shared -Wl,-G
Refer to Linking a shared Library with runtime
linking for more information.

-ma None

-O -O0, -O1, -O2, -O3, or -Ofast

-p None

-pg None

-P -E -P -o file.i obtains behavior similar to the classic
-P option.

-q32 -m32

-q64 -m64

-qaggrcopy None; the default compiler behavior is as if
-qaggrcopy was in effect.

-qalias=[no]ansi -f[no-]strict-aliasing

-qalias=suboption, where suboption is not [no]ansi None

-qalign=bit_packed -fpack-struct

-qalignrulefor None

-qalloca None

-q[no]altivec -m[no-]altivec

-qarch -mcpu

-qasm -fasm

-qasm_as None

-qassert None

-qattr None

-qbitfields=signed -fsigned-bitfields

-qbitfields=unsigned None

-qc_stdinc -isystem

-qcpp_stdinc -isystem

-qcache None

-qchars=signed -fsigned-char

-qchars=unsigned -funsigned-char

-qcheck=bounds -fsanitize=bounds -fsanitize-trap=bounds

-qcheck=divzero -fsanitize=integer-divide-by-zero -fsanitize-
trap=integer-divide-by-zero

Chapter 1. Migrating from Classic XL compilers 9

Table 6. Mapping of compiler options (continued)

Classic options supported by IBM XL C/C++ for
AIX 16.1.0

Similar/equivalent Clang options supported by
IBM Open XL C/C++ for AIX 17.1.1

-qcheck=nullptr -fsanitize=null -fsanitize-trap=null

-qcinc None

-qcommon None

-qcompact -Os and -Oz

-qconcurrentupdate None

-qcpluscmt None; the default compiler behavior is as if
-qcpluscmt was in effect.

-qcrt None; the default compiler behavior is as if -qcrt
was in effect.

-qnocrt -nostartfiles

-qdataimported -mdataimported

-qdatalocal -mdatalocal

-qnodatalocal -mdataimported

-qdbcs None; the compiler supports UTF-8 source files all
the time.

-qdbgfmt=dwarf -gdwarf-3

-qdbgfmt=dwarf4 -gdwarf-4

-qdbgfmt=stabstring None

-qdbxextra -fno-eliminate-unused-debug-types

-qdfp None

-q[no]digraph -f[no-]digraphs

-qdirectstorage None

-qdollar -fdollars-in-identifiers

-qdpcl None

“-qdump_class_hierarchy” on page 22 -fdump-class-hierarchy or -Xclang -fdump-record-
layouts

-qeh -fexceptions

-qnoeh -fignore-exceptions

-qenum None

-qexpfile None

-qextchk None

-qfdpr None

-qflag None

-qfloat=[no]dfpemulate None

-qfloat=[no]fenv None

10 IBM Open XL C/C++: Migration Guide

Table 6. Mapping of compiler options (continued)

Classic options supported by IBM XL C/C++ for
AIX 16.1.0

Similar/equivalent Clang options supported by
IBM Open XL C/C++ for AIX 17.1.1

-qfloat=[no]fltint None

-qfloat=[no]fold None

-qfloat=[no]hscmplx None

-qfloat=[no]hsflt None

-qfloat=[no]hssngl None

-qfloat=maf -ffp-contract=fast

-qfloat=nomaf -ffp-contract=off

-qfloat=[no]nans None

-qfloat=relax -fno-honor-nans -fno-honor-infinities -fdenormal-
fp-math=positive-zero -fno-signed-zeros -fno-
rounding-math -freciprocal-math

-qfloat=norelax -fhonor-nans -fhonor-infinities -fdenormal-fp-
math=ieee -fsigned-zeros -frounding-math -fno-
reciprocal-math

-qfloat=[no]rndsngl None

-qfloat=[no]rngchk None

-qfloat=[no]rrm -f[no-]rounding-math

-qfloat=[no]rsqrt None

-qfloat=[no]single None

-qfloat=[no]spnans None

-qfloat=[no]subnormals None

-qflttrap=enable:inexact None

-qflttrap=enable:invalid None

-qflttrap=enable:overflow None

-qflttrap=enable:underflow None

-qflttrap=enable:zerodivide -fsanitize=float-divide-by-zero -fsanitize-
trap=float-divide-by-zero

-qflttrap=imprecise None

-qflttrap=nanq None

-qformat -Wformat

-qfullpath None; the default compiler behavior is as if
-qfullpath was in effect.

-q[no]funcsect -f[no-]function-sections

-qfunctrace None

-qgcc_c_stdinc None

-qgcc_cpp_stdinc None

Chapter 1. Migrating from Classic XL compilers 11

Table 6. Mapping of compiler options (continued)

Classic options supported by IBM XL C/C++ for
AIX 16.1.0

Similar/equivalent Clang options supported by
IBM Open XL C/C++ for AIX 17.1.1

-qgenproto None

-qhalt=w -Werror

-qhaltonmsg None

-qheapdebug None

-qhelp -help

“-qhot” on page 25 -Ofast

-qhot=suboption None

-qidirfirst None

-qignerrno -fno-math-errno

-qignprag None

-qinclude -include

-qinfo=[no]unset -W[no-]uninitialized

-qinfo=suboption, where suboption is not [no]unset None

-qinitauto None

-qinlglue None; the default compiler behavior is as if
-qnoinlglue was in effect.

-q[no]inline -f[no-]inline

-qinline=auto -finline-functions

-qinline=noauto -finline-hint-functions

-qinline=level=1 -mllvm --inline-threshold=45 -mllvm --inlinehint-
threshold=325

-qinline=level=2 -mllvm --inline-threshold=90 -mllvm --inlinehint-
threshold=325

-qinline=level=3 -mllvm --inline-threshold=135 -mllvm --inlinehint-
threshold=325

-qinline=level=4 -mllvm --inline-threshold=180 -mllvm --inlinehint-
threshold=325

-qinline=level=5 -mllvm --inline-threshold=225 -mllvm --inlinehint-
threshold=325

-qinline=level=6 -mllvm --inline-threshold=270 -mllvm --inlinehint-
threshold=395

-qinline=level=7 -mllvm --inline-threshold=315 -mllvm --inlinehint-
threshold=465

-qinline=level=8 -mllvm --inline-threshold=360 -mllvm --inlinehint-
threshold=535

-qinline=level=9 -mllvm --inline-threshold=405 -mllvm --inlinehint-
threshold=605

12 IBM Open XL C/C++: Migration Guide

Table 6. Mapping of compiler options (continued)

Classic options supported by IBM XL C/C++ for
AIX 16.1.0

Similar/equivalent Clang options supported by
IBM Open XL C/C++ for AIX 17.1.1

-qinline=level=10 -mllvm --inline-threshold=450 -mllvm --inlinehint-
threshold=650

-qipa -flto

-qisolated_call None

-qkeepinlines None

-qkeepparm None

-qkeyword None

-qlanglvl=stdc89 -std=c89 | c90

-qlanglvl=extc89 -std=gnu89 | gnu90

-qlanglvl=stdc99 -std=c99

-qlanglvl=extc99 -std=gnu99

-qlanglvl=stdc11 -std=c11

-qlanglvl=extc1x -std=gnu11

-qlanglvl=extended -std=gnu89

-qlanglvl=strict98 -std=c++98/c++03

-qlanglvl=extended -std=gnu++98 | gnu++03

-qlanglvl=extended0x -std=c++0x | gnu++11 | gnu++0x

-qlanglvl=extended1y -std=gnu++1y | gnu++14

-qlanglvl=[no]gnu_warning -W[no-]#warnings

-qlargepage None

-qldbl128 None

-qlongdouble None

-qnolib -nodefaultlibs

-qnolibansi -fno-builtin

-qlibmpi None; the default compiler behavior is as if
-qnolibmpi was in effect.

-qlinedebug -g1 or -gline-tables-only

-qlist -S

-qlistfmt None

-qlistopt None

-qlonglit None

-qlonglong None; the default compiler behavior is as if
-qlonglong was in effect.

-qmacpstr -fpascal-strings

Chapter 1. Migrating from Classic XL compilers 13

Table 6. Mapping of compiler options (continued)

Classic options supported by IBM XL C/C++ for
AIX 16.1.0

Similar/equivalent Clang options supported by
IBM Open XL C/C++ for AIX 17.1.1

-qmakedep None

-qmaxerr -ferror-limit

-qmaxmem None

-qmbcs None; the compiler supports UTF-8 source files all
the time.

-qminimaltoc None

-qmkshrobj -shared
Refer to Linking shared libraries for more
information.

-qmkshrobj=priority -bcdtors::priority:
Refer to Linking shared libraries for more
information.

-qnamemangling None

-qobjmodel None

-qoldpassbyvalue None

-qoptdebug None

-qoptfile @file

-qoptimize --optimize

-qpack_semantic=gnu -fno-xl-pragma-pack

-qpack_semantic=ibm -fxl-pragma-pack

-qpagesize None

-qpath None

-qpdf1 -fprofile-generate

-qpdf2 -fprofile-use

-qphsinfo -ftime-report

-qpic=small -fpic

-qpic=large -fpic -mcmodel=large -Wl,-bbigtoc

-qppline None

-qnoppline -E -P

-qprefetch None

-qprint None

-qpriority None

-qprocimported None

-qproclocal None

-qprocunknown None

14 IBM Open XL C/C++: Migration Guide

Table 6. Mapping of compiler options (continued)

Classic options supported by IBM XL C/C++ for
AIX 16.1.0

Similar/equivalent Clang options supported by
IBM Open XL C/C++ for AIX 17.1.1

-qprofile None

-qproto None; the default compiler behavior is as if
-qnoproto was in effect.

-qreport None

-qreserved_reg None

-qrestrict -frestrict-args

-qro None; the default compiler behavior is as if -qro
was in effect.

-qroconst None; the default compiler behavior is as if
-qroconst was in effect.

-qroptr None; the default compiler behavior is as if
-qnoroptr was in effect.

-q[no]rtti -f[no-]rtti

-qsaveopt None

-qshowinc None

-qshowmacros -dM

-qshowpdf None

-qsimd=noauto -fno-vectorize -fno-slp-vectorize

-qskipsrc None

-qslmtags None

-qsmallstack None

-qsmp None

-qsource None

-qsourcetype -x

-qsourcetype=default -x none

-qspeculateabsolutes None

-qspill None

-q[no]srcmsg -f[no-]caret-diagnostics

-qstackprotect -fstack-protector

-qstaticinline None

-qstaticlink None

-qstatsym None

-qstdinc -nostdinc

-qnostdinc -nostdinc++

-qstrict=association -fno-associative-math

Chapter 1. Migrating from Classic XL compilers 15

Table 6. Mapping of compiler options (continued)

Classic options supported by IBM XL C/C++ for
AIX 16.1.0

Similar/equivalent Clang options supported by
IBM Open XL C/C++ for AIX 17.1.1

-qstrict=noassociation -fassociative-math

-qstrict=[no]nans -f[no-]honor-nans

-qstrict=[no]infinities -f[no-]honor-infinities

-qstrict=[no]zerosigns -f[no-]signed-zeros

-qstrict=subnormals -fdenormal-fp-math=ieee

-qstrict=nosubnormals -fdenormal-fp-math=positive-zero or -fdenormal-
fp-math=preserve-sign

-qstrict=operationprecision -fno-reciprocal-math

-qstrict=nooperationprecision -freciprocal-math

-qstrict=[no]vectorprecision None

-qstrict=[no]reductionorder None

-qstrict=[no]guards None

-qstrict=[no]library None

-qstrict=order -fno-associative-math

-qstrict=noorder -fassociative-math

-qstrict=ieeefp -fhonor-nans -fhonor-infinities -fdenormal-fp-
math=ieee -fsigned-zeros -frounding-math -fno-
reciprocal-math

-qstrict=noieeefp -fno-honor-nans -fno-honor-infinities -fdenormal-
fp-math=positive-zero -fno-signed-zeros -fno-
rounding-math -freciprocal-math

-qstrict=exceptions -fhonor-nans -fhonor-infinities -fdenormal-fp-
math=ieee -ffp-exception-behavior=strict

-qstrict=noexceptions -fno-honor-nans -fno-honor-infinities
-fdenormal-fp-math=positive-zero -ffp-exception-
behavior=ignore

-qstrict=precision -fno-associative-math -fdenormal-fp-math=ieee
-fno-reciprocal-math

-qstrict=noprecision -fassociative-math -fdenormal-fp-math=positive-
zero -freciprocal-math

-qstrict_induction None

-qsuppress None

-qsymtab None

-qsyntaxonly -fsyntax-only

-qtabsize None

-qtbtable None; the default compiler behavior is as if
-qtbtable=full was in effect.

-qtempinc None

16 IBM Open XL C/C++: Migration Guide

Table 6. Mapping of compiler options (continued)

Classic options supported by IBM XL C/C++ for
AIX 16.1.0

Similar/equivalent Clang options supported by
IBM Open XL C/C++ for AIX 17.1.1

-qtemplatedepth -ftemplate-depth

-qtemplaterecompile None

-qtemplateregistry None

-qtempmax None

-qthreaded -pthread

-qtimestamps None

-qtls -ftls-model

-qtmplinst None

-qtmplparse None

-qtocdata None

-qtocmerge None

-qtrigraph -trigraphs

-qtune None

-qtwolink -bcdtors:mbr

-qunique None

-q[no]unroll -f[no-]unroll-loops

-qunroll=yes None

-qunwind None

-qupconv None; the default compiler behavior is as if
-qnoupconv was in effect.

-qutf None

-qvecnvol -mabi=vec-extabi

-qnovecnvol -mabi=default

-qversion --version

-qvisibility -fvisibility; see also -fvisibility-inlines-hidden.

-qvrsave None; the default compiler behavior is as if
-qnovrsave was in effect.

-qwarn0x None

-qwarn64 None

-qweakexp None

-qweaksymbol None; the default compiler behavior is as if
-qweaksymbol was in effect.

-qxcall None

-qxlcompatmacros None

-qxref None

Chapter 1. Migrating from Classic XL compilers 17

Table 6. Mapping of compiler options (continued)

Classic options supported by IBM XL C/C++ for
AIX 16.1.0

Similar/equivalent Clang options supported by
IBM Open XL C/C++ for AIX 17.1.1

-s -Wl,-s

-t None

-v -v

-V -v

-y None

-Z -Wl,-Z

Related information
• The "Clang command line argument reference" section in the Clang documentation

Migration considerations for individual compiler options
This section contains migration considerations for individual compiler options.

Related information
• “Mapping of options” on page 8
• “Discrepancies for option defaults” on page 8

-+ (plus sign) (C++ only)
In IBM XL C/C++ for AIX 16.1.0 or earlier releases, you could use the -+ option to compile any file as a
C++ language file. The -x c++ option, which is supported by IBM Open XL C/C++ for AIX 17.1.1, has an
equivalent function that treats input files as C++ source files regardless of their file suffixes.

Note the following differences between new -x c++ and classic -+ options:

• The -+ option is not sensitive to position on the command line. You can specify the input files and the
-+ option in any order on the command line. However, the -x c++ option affects only the files that are
specified following the option on the command line, but not those that precede the option.

• The -+ option does not accept files that have the .a, .o, .so, .S, or .s suffixes. However, the -x option
accepts all such files. For example, if you specify the a.o file after -x c++ on the command line, the
compiler treats a.o as a c++ file, which might result in errors.

Related information
• The "Clang command line argument reference" section in the Clang documentation

-b
In IBM Open XL C/C++ for AIX 17.1.1, options starting with -b that are not otherwise recognized by
the compiler are implicitly forwarded to the linker. Linker options with the -Wl prefix can be explicitly
forwarded to the linker.

-E
Unlike IBM XL C/C++ for AIX 16.1.0 and earlier releases, IBM Open XL C/C++ for AIX 17.1.1 ignores the
-E option for input files with unrecognized file name suffixes. You can simulate the behavior of classic
XL releases by specifying the C language type through the -x c option when you have input files with
unrecognized file name suffixes.

18 IBM Open XL C/C++: Migration Guide

In the following example, the classic XL compiler preprocesses file.sqc using the C language type and
emits the preprocessed output to stdout:

xlc -E file.sqc

In IBM Open XL C/C++ for AIX 17.1.1, to obtain similar behavior, specify the C language type before input
files that have unrecognized file name suffixes. See the following example:

ibm-clang -E -x c file.sqc #-x -c indicates the C language type

-f
In IBM XL C/C++ for AIX 16.1.0 or earlier releases, the -f option names a file that stores a list of object
files for the compiler to pass to the linker.

In IBM Open XL C/C++ for AIX 17.1.1, use the -Wl,-f option instead. However, if the linker is invoked to
produce a shared object but an export file is not provided, the resulting shared object might not export the
correct symbols. In addition, the -Wl,-f option doesn't work if no objects or source files are provided on
the command line.

-O
IBM Open XL C/C++ for AIX 17.1.1 supports the -O0, -O1, -O2, -O3, and -Ofast optimization levels.

Note the following migration considerations for -O:

• The -O1 optimization level does not exist in IBM XL C/C++ for AIX 16.1.0 or earlier releases. This
optimization level is less aggressive than -O2.

• IBM XL C/C++ for AIX 16.1.0 or earlier releases has the -O5 optimization level but the level is not
available in IBM Open XL C/C++ for AIX 17.1.1.

• The -O4 level is currently treated as equivalent to -O3. However, the behavior of -O4 might change in
the future, so you are recommended not to use -O4 in IBM Open XL C/C++ for AIX 17.1.1.

• The -O optimization level is equivalent to -O2 in IBM XL C/C++ for AIX 16.1.0 or earlier releases, but it
is equivalent to -O1 in IBM Open XL C/C++ for AIX 17.1.1.

• If you were using -O4 or -O5 in IBM XL C/C++ for AIX 16.1.0 or earlier releases, use -Ofast
-mcpu=native -flto in IBM Open XL C/C++ for AIX 17.1.1 instead.

Related information
• -mcpu

-p, -pg, -qprofile
In IBM XL C/C++ for AIX 16.1.0 or earlier releases, the -p, -pg, or -qprofile option prepares the
object files produced by the compiler for profiling. When you compile your program with one of the
options, the compiler produces monitoring code that counts the number of times each routine is called.
When you execute an application compiled with -p or -qprofile=p, the application writes the recorded
information to a mon.out file. When you execute an application compiled with -pg or -qprofile=pg,
the application writes the recorded information to a gmon.out file.

In IBM Open XL C/C++ for AIX 17.1.1, the -p and -pg options are accepted, but the instrumentation does
not work correctly. When you execute an application compiled with -p, the application links and runs
but the generated mon.out file does not contain any call information. When you execute an application
compiled with -pg, the following link error message is issued:

ld: 0711-317 ERROR: Undefined symbol: .mcount

Profile guided optimization (PGO) is an alternative for the -pg option. The ibm-llvm-profdata show
utility can be used to display information from the PGO profile file.

Chapter 1. Migrating from Classic XL compilers 19

Related information
• “Profile Guided Optimization (PGO)” on page 63
• Utilities and commands

-P
In IBM XL C/C++ for AIX 16.1.0 or earlier releases, the -P option preprocesses the source files specified
in the compiler invocation, without compiling, and creates an output preprocessed file for each input file.
The preprocessor does not generate line markers.

IBM Open XL C/C++ for AIX 17.1.1 still supports the -P option, but its behavior has been changed to be
consistent with that of -P in GCC. Specifically, -P no longer generates preprocessed output files. Instead,
it disables the generation of line markers in the preprocessed output generated by other options such as
-E.

To obtain similar behavior of -P in IBM XL C/C++ for AIX 16.1.0 or earlier releases, use the -E -P and -o
options in IBM Open XL C/C++ for AIX 17.1.1.

Example

This is a classic XL command. After executing the command, file.c is preprocessed without line
markers generated in the preprocessed output.

xlc -P file.c

This classic XL command can be replaced by the following command in IBM Open XL C/C++:

ibm-clang -E -P -o file.i file.c

where,

• The -E option instructs the compiler to preprocess file.c without compiling.
• The -P option instructs the compiler to not insert line markers in the preprocessed output.
• The -o file.i option instructs the compiler to store the preprocessed output to file.i.

Related information
• GCC online documentation

-qaggrcopy
In IBM XL C/C++ for AIX 16.1.0 or earlier releases, the -qaggrcopy option enables destructive copy
operations for structures and unions.

IBM Open XL C/C++ for AIX 17.1.1 does not support a functionally equivalent option to -qaggrcopy.
By default, the compiler uses a destructive copy for structure or union assignments. If a non-destructive
copy for structure or union assignments is desired, you are recommended to use the memmove library
function.

Related information
• movement subroutine

-qalias
In IBM XL C/C++ for AIX 16.1.0 or earlier releases, the -qalias option indicates whether a program
contains certain categories of aliasing or does not conform to C/C++ standard aliasing rules.

In IBM Open XL C/C++ for AIX 17.1.1, classic compiler option -qalias=ansi maps to -fstrict-
aliasing and -qalias=noansi maps to -fno-strict-aliasing. You can use -fno-strict-
aliasing to compile code that does not adhere to the ANSI C/C++ standard aliasing rules. However,

20 IBM Open XL C/C++: Migration Guide

https://gcc.gnu.org/onlinedocs/
https://www.ibm.com/docs/aix/latest?topic=m-memccpy-memchr-memcmp-memcpy-memset-memset-s-memmove-subroutine

it is recommended to compile all files with -fstrict-aliasing during an LTO build to achieve the best
performance.

IBM Open XL C/C++ for AIX 17.1.1 does not support a functionally equivalent option to
-qalias=restrict. Optimizations for pointers that are qualified with the C99 restrict keyword or
the C++ __restrict keyword are always enabled in IBM Open XL C/C++ for AIX 17.1.1 and cannot be
disabled.

Related information
• Link Time Optimization (LTO)
• GCC online documentation
• The "Clang command line argument reference" section in the Clang documentation

-qalign
In IBM XL C/C++ for AIX 16.1.0 or earlier releases, the -qalign option specifies the alignment of data
objects in storage, which avoids performance problems with misaligned data.

If you used the -qalign option to compile your program, remove this option and add the corresponding
#pragma align and #pragma align(reset) directives in your program when you migrate the
program to IBM Open XL C/C++ for AIX 17.1.1.

Related information
• #pragma align

-qalloca, -ma (C only)
In IBM XL C/C++ for AIX 16.1.0 or earlier releases, the -qalloca or -ma option provides an inline
definition of system function alloca when it is called from source code that does not include the
alloca.h header file.

IBM Open XL C/C++ for AIX 17.1.1 does not support a functionally equivalent option to -qalloca or -ma.
However, you can achieve a similar function using one of the following ways:

• Specify -Dalloca=__builtin_alloca on the command line to map -qalloca to the
__builtin_alloca function. This built-in function can be called without including the alloca.h
header file.

• Include the alloca.h header file in source files.

Related information
• “#pragma alloca (C only)” on page 35
• __builtin_alloca

-qassert
In IBM XL C/C++ for AIX 16.1.0 or earlier releases, the -qassert option provides information about the
characteristics of the programs that can help to fine-tune optimizations.

In IBM Open XL C/C++ for AIX 17.1.1, there is no option that is functionally equivalent to
-qassert. However, you can get similar optimization hints through the __builtin_assume() or
__builtin_assume_aligned() function.

-qcompact
In IBM XL C/C++ for AIX 16.1.0 or earlier releases, the -qcompact option avoids optimizations that
increase code size.

Chapter 1. Migrating from Classic XL compilers 21

https://gcc.gnu.org/onlinedocs/

In IBM Open XL C/C++ for AIX 17.1.1, the -Oz or -Os option provides a similar function to control output
code size, but -Oz and -Os work only at the -O2 optimization level. For example, if you specify -O3 -Os,
-O3 is overridden.

When you port your program from IBM XL C/C++ for AIX 16.1.0 or earlier releases to IBM Open XL C/C++
for AIX 17.1.1, reevaluate the size of the output generated by IBM Open XL C/C++ for AIX 17.1.1. If
reduction in code size is required, try using the -Os option and note any performance trade-offs. If further
reduction in code size is required, try using the -Oz option.

Related information
• The "Clang command line argument reference" section in the Clang documentation

-qc_stdinc (C only), -qcpp_stdinc (C++ only)
In IBM XL C/C++ for AIX 16.1.0 or earlier releases, the -qc_stdinc or -qcpp_stdinc option changes
the standard search location for system header files and XL C header files or XL C/C++ header files.

In IBM Open XL C/C++ for AIX 17.1.1, use the -isystem option to achieve the same effect.

Note: The directory for the compiler to search for header files needs to be updated for IBM Open XL
C/C++ for AIX 17.1.1.

Related information
• The "Clang command line argument reference" section in the Clang documentation

-qcinc (C++ only)
In IBM XL C/C++ for AIX 16.1.0 or earlier releases, the -qcinc option places an extern "C" { }
wrapper around the contents of header files that are located in a specified directory.

In IBM Open XL C/C++ for AIX 17.1.1, there is no option that is functionally equivalent to -qcinc. You
need to manually add the extern "C" { } wrapper in your program.

-qcpluscmt (C only)
In IBM XL C/C++ for AIX 16.1.0 or earlier releases, the -qcpluscmt option enables the recognition of
C++-style comments in C source files.

In IBM Open XL C/C++ for AIX 17.1.1, C++ comments are accepted in C source files. There is no way to
disable the recognition of C++-style comments in C source files.

-qdump_class_hierarchy
IBM Open XL C/C++ for AIX 17.1.1 does not support an option that is functionally equivalent to
-qdump_class_hierarchy. In IBM Open XL C/C++ for AIX 17.1.1, -Xclang -fdump-record-
layouts can be used to produce a similar report of structure layouts; however, the format of the report
is different from the report generated by -qdump_class_hierarchy in IBM XL C/C++ for AIX 16.1.0 or
earlier releases.

Related information
• The "Clang command line argument reference" section in the Clang documentation

-qenum
In IBM XL C/C++ for AIX 16.1.0 or earlier releases, the -qenum option specifies the amount of storage
occupied by enumerations.

22 IBM Open XL C/C++: Migration Guide

In IBM Open XL C/C++ for AIX 17.1.1, use -fshort-enums as a functionally equivalent option to
-qenum=small. Other -qenum suboptions are not supported. For C++ programs, you can also use the
C++11 scoped enumeration feature to specify the underlying type of enumerations.

Related information
• “#pragma enum” on page 36
• GCC online documentation
• The "Clang command line argument reference" section in the Clang documentation

-qexpfile
In IBM XL C/C++ for AIX 16.1.0 or earlier releases, the -qexpfile option saves all exported symbols in a
designated file when used together with the -qmkshrobj or -G option.

IBM Open XL C/C++ for AIX 17.1.1 does not support a functionally equivalent option to -qexpfile. The
CreateExportList utility that has a similar function to -qexpfile is available in IBM Open XL C/C++ for
AIX 17.1.1. This utility creates a file that contains a list of all the exportable symbols found in a given set
of object files.

-qflag, -qhaltonmsg, -qinfo, -qsuppress
The mechanism of diagnostic message control of Clang is different from that of the classic XL compilers.
Refer to the "Diagnostic flags in Clang" section in the Clang documentation for details.

-qfloat
In IBM XL C/C++ for AIX 16.1.0 or earlier releases, the -qfloat option selects different strategies for
speeding up or improving the accuracy of floating-point calculations. The majority of -qfloat suboptions
do not have functionally equivalent options in IBM Open XL C/C++ for AIX 17.1.1.

If you specified -qfloat when compiling your program with IBM XL C/C++ for AIX 16.1.0 or earlier
releases, consider the following guidelines when migrating your program to IBM Open XL C/C++ for AIX
17.1.1:

• The -ffp-model=strict option ensures correct compiler behavior but disables almost all floating-
point optimizations. Use this option with discretion.

• Aspects of -qfloat=[no]fenv that pertain to rounding mode can be controlled via
-f[no-]rounding-math. Similarly, aspects of -qfloat=[no]fenv that pertain to exception
behaviors can be controlled via -ffp-exception-behavior.

• In IBM XL C/C++ for AIX 16.1.0 or earlier releases, the -qfloat=[no]fold option could evaluate
constant floating-point expressions at compile time. In IBM Open XL C/C++ for AIX 17.1.1, you can use
the -f[no-]rounding-math option to control constant folding in some cases, but this option affects
more than just constant folding and might have performance and accuracy implications that go beyond
what -qfloat=[no]fold controlled.

• In IBM XL C/C++ for AIX 16.1.0 or earlier releases, the -qfloat=[no]hscmplx option could speed
up operations that involve complex division and complex absolute value, and the -qfloat=[no]hsflt
option could speed up calculations by preventing rounding for single-precision expressions and by
replacing floating-point division by multiplication with the reciprocal of the divisor. In IBM Open XL C/C+
+ for AIX 17.1.1, use the -f[no-]rounding-math option to control optimizations that might result in
different rounding behaviors and use the -f[no-]reciprocal-math option to control replacement of
divide operations with a multiplication of the numerator by the reciprocal of the denominator.

• In IBM XL C/C++ for AIX 16.1.0 or earlier releases, the -qfloat=[no]nans allowed you to
use the -qflttrap=invalid:enable option to detect and deal with exception conditions that
involve signaling NaN (not-a-number) values. In IBM Open XL C/C++ for AIX 17.1.1, use the
-ffp-exception-behavior option to control some aspects of the semantics controlled by
-qfloat=[no]nans, but the impact goes beyond just signaling NaNs. Furthermore, unlike IBM XL

Chapter 1. Migrating from Classic XL compilers 23

https://gcc.gnu.org/onlinedocs/

C/C++ for AIX 16.1.0 or earlier releases, there is no way to control exceptions when converting an SNaN
from single to double precision in IBM Open XL C/C++ for AIX 17.1.1.

• In IBM XL C/C++ for AIX 16.1.0 or earlier releases, the -qfloat=[no]rsqrt speeded up some
calculations by replacing division by the result of a square root with multiplication by the reciprocal of
the square root. In IBM Open XL C/C++ for AIX 17.1.1, use the -f[no-]reciprocal-math option to
achieve a similar effect, but the impact goes beyond just division by the square root.

• The -qfloat=[no]spnans option was deprecated and replaced with -qfloat=nans. Consider the
migration guidelines of -qfloat=[no]nans if you used -qfloat=[no]spnans to compile your
program.

Related information
• The "Clang command line argument reference" section in the Clang documentation

-qflttrap
In IBM XL C/C++ for AIX 16.1.0 or earlier releases, the -qflttrap option determines what types of
floating-point exceptions to detect at runtime.

In IBM Open XL C/C++ for AIX 17.1.1, you can use -fsanitize=float-divide-
by-zero -fsanitize-trap=float-divide-by-zero to achieve the same effect of
-qflttrap=enable:zerodivide to detect and trap floating-point divisions by zeros. Other floating-
point exception detections using software traps that are enabled by -qflttrap=enable are no longer
supported.

In IBM Open XL C/C++ for AIX 17.1.1, you are recommended to use hardware traps to get SIGFPE. You
can use facilities such as fp_trap and fp_enable_all in the program to enable the detection and
generation of the SIGFPE signals. Note that the facilities are not portable between platforms so you need
to update and recompile your program when migrating the program from AIX to Linux®, or vice versa. In
addition, the imprecise and nanq trappings are no longer supported because hardware traps do not need
them.

The -ftrapping-math option is available in IBM Open XL C/C++ for AIX 17.1.1 to prevent optimizations
that can change the trapping behavior of the program, but it does not control whether a signal is
generated when a floating-point exception happens.

Related information
• The "Clang command line argument reference" section in the Clang documentation

-qfullpath
In IBM XL C/C++ for AIX 16.1.0 or earlier releases, the -q[no]fullpath option records the absolute or
relative path names of source and header files in object files compiled with debugging information so that
debugging tools can correctly locate the source files. When -qfullpath is in effect, the absolute path
names of source files are preserved. When -qnofullpath is in effect, the relative path names of source
files are preserved.

In IBM Open XL C/C++ for AIX 17.1.1, only the DWARF debugging information is supported. The default
compiler behavior is as if -qfullpath were in effect, which means the compiler embeds the absolute
paths for source files in the debug information. However, if the source files are not located in the absolute
path location, the debugger might resort to the relative path location.

In addition, the -fdebug-prefix-map option is a related option to -qfullpath, which remaps file
source paths in the debug information.

Related information
• The "Clang command line argument reference" section in the Clang documentation

24 IBM Open XL C/C++: Migration Guide

-qfunctrace
In IBM XL C/C++ for AIX 16.1.0 or earlier releases, the -qfunctrace option calls the tracing routines to
trace the entry and exit points of the specified functions in a compilation unit.

In IBM Open XL C/C++ for AIX 17.1.1, the -finstrument-functions option has a similar function,
which generates calls to instrument entry and exit points of functions.

Related information
• “#pragma nofunctrace” on page 40
• The "Clang command line argument reference" section in the Clang documentation

-qhot
In IBM XL C/C++ for AIX 16.1.0 or earlier releases, the -qhot option performs high-order loop analysis
and transformations (HOT) during optimization.

If you specified -qhot when compiling your program with IBM XL C/C++ for AIX 16.1.0 or earlier
releases, consider the following guidelines when migrating your program to IBM Open XL C/C++ for AIX
17.1.1:

• If you used -qhot without any suboption in IBM XL C/C++ for AIX 16.1.0 or earlier releases, use
-Ofast instead in IBM Open XL C/C++ for AIX 17.1.1.

• If you used -qnohot, try using -Ofast in IBM Open XL C/C++ for AIX 17.1.1. However, if you encounter
any floating-point precision issues, try using -O3 instead. If the issues can be resolved, you can go back
to use -Ofast and achieve finer control over the floating-point optimizations with one or more of the
following options:

– -f[no-]honor-infinities
– -f[no-]honor-nans
– -f[no-]math-errno
– -f[no-]finite-math-only
– -f[no-]associative-math
– -f[no-]reciprocal-math
– -f[no-]signed-zeros
– -f[no-]trapping-math
– -ffp-contract
– -f[no-]rounding-math

• There is not an option that is functionally equivalent to -qhot=level=0|1|2. However, you can control
the level of optimizations including some loop optimizations with the -O2, -O3, or -Ofast option.

• The effect of -qhot=vector can be achieved by specifying -mllvm -vector-library=MASSV along
with an optimization level that triggers loop vectorization.

• The effect of -qhot=fastmath can be achieved by specifying -O3 -fapprox-func or -Ofast that
invokes scalar MASS library and triggers loop vectorization.

Related information
• -mllvm
• The "Clang command line argument reference" section in the Clang documentation

Chapter 1. Migrating from Classic XL compilers 25

-qignerrno
In IBM XL C/C++ for AIX 16.1.0 or earlier releases, the -qignerrno option allows the compiler to
perform optimizations as if system calls would not modify errno. The __IGNERRNO__ macro is defined
to 1 when the -qignerrno option is in effect.

In IBM Open XL C/C++ for AIX 17.1.1, the -fno-math-errno option provides the same function as
-qignerrno. However, the __IGNERRNO__ macro is not supported in IBM Open XL C/C++ for AIX
17.1.1, so -fno-math-errno does not predefine __IGNERRNO__.

Related information
• The "Clang command line argument reference" section in the Clang documentation

-qinitauto
In IBM XL C/C++ for AIX 16.1.0 or earlier releases, the -qinitauto option initializes uninitialized
automatic variables to a specific value for debugging purposes.

In IBM Open XL C/C++ for AIX 17.1.1, the -ftrivial-auto-var-init=pattern option can be used
to improve the reproducibility of issues that are caused by using uninitialized variables. However, unlike
-qinitauto, you cannot specify the value to be assigned to an uninitialized automatic variable.

Related information
• The "Clang command line argument reference" section in the Clang documentation

-qinline
In IBM XL C/C++ for AIX 16.1.0 or earlier releases, when you specified the -qinline=noauto option,
only the following types of functions were considered for inlining:

• Functions that are defined with the inline specifier
• Small functions that are identified by the compiler

To achieve the same effect to inline explicitly or implicitly hinted functions, specify -finline-hint-
functions in IBM Open XL C/C++ for AIX 17.1.1.

In IBM XL C/C++ for AIX 16.1.0 and earlier releases, -qinline+<function_name> and -qinline-
<function_name> controlled automatic inlining for individual functions. In IBM Open XL C/C++ for AIX
17.1.1, there is not a functionally equivalent option. To achieve the same effect, mark the functions with
the always_inline or noinline attribute.

Notes:

• The -finline-functions and -finline-hint-functions take effect only at -O1 or higher.
• The effect of -finline-hint-functions is not cumulative. For example, if the option comes after
-finline-functions, -finline-functions is overridden, and only explicitly or implicitly hinted
functions get inlined.

• The -fno-inline option is overridden if it is specified together with -finline-functions or
-finline-hint-function.

• The -fno-inline-hint-functions option is not supported by IBM Open XL C/C++ for AIX 17.1.1.

Related information
• GCC online documentation
• The "Clang command line argument reference" section in the Clang documentation

26 IBM Open XL C/C++: Migration Guide

https://gcc.gnu.org/onlinedocs/

-qisolated_call
In IBM XL C/C++ for AIX 16.1.0 or earlier releases, the -qisolated_call option specifies functions in
the source file that have no side effects other than those implied by their parameters.

IBM Open XL C/C++ for AIX 17.1.1 does not support a functionally equivalent option to
-qisolated_call. Mark functions with the __attribute__((pure)) function attribute instead.

Related information
• “#pragma isolated_call” on page 38
• GCC online documentation

-qkeepinlines (C++ only)
In IBM XL C/C++ for AIX 16.1.0 or earlier releases, the -qkeepinlines option keeps or discards
definitions for unreferenced extern inline functions.

IBM Open XL C/C++ for AIX 17.1.1 does not support a functionally equivalent option to -qkeepinlines.
Use the __attribute__((__used__)) function attribute as an alternative. For templates, you are
recommended to use C++11 explicit template instantiations.

Related information
• GCC online documentation

-qkeepparm
In IBM XL C/C++ for AIX 16.1.0 or earlier releases, the -qkeepparm option specifies whether procedure
parameters are stored on the stack when used with -O2 or higher optimization level.

IBM Open XL C/C++ for AIX 17.1.1 does not support a functionally equivalent option to -qkeepparm. A
workaround is to compile your program without optimization enabled.

-qlargepage
In IBM XL C/C++ for AIX 16.1.0 or earlier releases, the -qlargepage option takes advantage of large
pages for applications that are designed to execute in a large page memory environment.

IBM Open XL C/C++ for AIX 17.1.1 does not have an option that is functionally equivalent to
-qlargepage. To make your application use large pages, large pages must be configured on the system
and you must link the application with -Wl,-blpdata. See Large pages in the AIX operating system
documentation for details.

-qlonglong
In IBM XL C/C++ for AIX 16.1.0 or earlier releases, the -qlonglong option allows IBM long long
integer types in your program.

In IBM Open XL C/C++ for AIX 17.1.1, the long long type is allowed by default.

-qmakedep
In IBM XL C/C++ for AIX 16.1.0 or earlier releases, the -qmakedep option produces the dependency files
that are used by the make tool for each source file.

In IBM Open XL C/C++ for AIX 17.1.1, the -M family of options achieve the similar effect of -qmakedep.

Related information
• The "Clang command line argument reference" section in the Clang documentation

Chapter 1. Migrating from Classic XL compilers 27

https://gcc.gnu.org/onlinedocs/
https://gcc.gnu.org/onlinedocs/
https://www.ibm.com/docs/aix/latest?topic=performance-large-pages

-qminimaltoc
In IBM XL C/C++ for AIX 16.1.0 or earlier releases, the -qminimaltoc option ensures that the compiler
creates only one TOC entry for each compilation unit. Specifying this option can minimize the use of
available TOC entries. In addition, the compiler used -qpic=large to support larger TOCs on AIX.

The method of using -qminimaltoc to reduce the number of TOC entries on AIX is no longer supported
in IBM Open XL C/C++ for AIX 17.1.1. To let programs support large TOCs, specify the -mcmodel=large
and -Wl,-bbigtoc options in IBM Open XL C/C++ for AIX 17.1.1.

Related information
• The "Clang command line argument reference" section in the Clang documentation

-qnamemangling (C++ only)
In IBM XL C/C++ for AIX 16.1.0 or earlier releases, the -qnamemangling option chooses the name
mangling scheme for external symbol names that are generated from C++ source code.

In IBM Open XL C/C++ for AIX 17.1.1, the Itanium-based C++ABI of ibm-clang++ does not support
prior C++ABI name mangling.

Related information
• “#pragma namemangling (C++ only), #pragma namemanglingrule (C++ only)” on page 40

-qobjmodel (C++ only)
In IBM XL C/C++ for AIX 16.1.0 or earlier releases, the -qobjmodel option sets the object model to be
used for structures, unions, and classes.

In IBM Open XL C/C++ for AIX 17.1.1, the Itanium-based C++ABI of ibm-clang++ does not support the
prior C++ABI object models.

Related information
• “#pragma object_model (C++ only)” on page 40

-qoptimize
In IBM XL C/C++ for AIX 16.1.0 or earlier releases, the -qoptimize option specifies whether to optimize
code during compilation and, if so, at which level.

If you were using -qoptimize in IBM XL C/C++ for AIX 16.1.0 or earlier releases, use --
optimize=<level>, -O0, -O1, -O2, -O2, or -Ofast in IBM Open XL C/C++ for AIX 17.1.1 to achieve
the same effect.

Related information
• The "Clang command line argument reference" section in the Clang documentation

-qpdf1, -qpdf2, -qshowpdf
In IBM XL C/C++ for AIX 16.1.0 or earlier releases, the -qpdf1, -qpdf2, and -qshowpdf options tune
optimizations through profile-directed feedback (PDF).

IBM Open XL C/C++ for AIX 17.1.1 no longer support the PDF feature. Profile-guided optimization (PGO)
is a replacement, which is a compiler optimization technique that uses profiling to improve program
runtime performance. For details, see Profile Guided Optimization (PGO).

28 IBM Open XL C/C++: Migration Guide

-qppline
In IBM XL C/C++ for AIX 16.1.0 or earlier releases, the -q[no]ppline option enables or disables the
generation of #line directives when used with the -E or -P option.

In IBM Open XL C/C++ for AIX 17.1.1, use -E -P to suppress emitting #line directives to achieve a
similar effect to -qnoppline.

Note: The -P option in IBM Open XL C/C++ for AIX 17.1.1 has a completely different meaning from the
-P option IBM XL C/C++ for AIX 16.1.0. In IBM Open XL C/C++ for AIX 17.1.1, the behavior of -P is
consistent with that of GCC, which disables line markers in the preprocessed output for the compiler.

Related information
• “-P” on page 20
• GCC online documentation

-qprefetch
In IBM XL C/C++ for AIX 16.1.0 or earlier releases, the -qprefetch option inserts prefetch instructions
automatically where there are opportunities to improve code performance.

IBM Open XL C/C++ for AIX 17.1.1 does not provide functionally equivalent options to
-qprefetch=[no]assistthread and -qprefetch=[no]aggressive. In IBM Open XL C/C++ for
AIX 17.1.1, specify the -mllvm -ppc-set-dscr=<n> option to set the Data Stream Control Register
(DSCR). For an LTO build, specify -Wl,-bplugin_opt:--ppc-set-dscr=<n> on the link step.

Related information
• -mllvm
• “Link Time Optimization (LTO)” on page 61

-qpriority (C++ only)
In IBM XL C/C++ for AIX 16.1.0 or earlier releases, the -qpriority option specifies the priority level for
the initialization of static objects.

IBM Open XL C/C++ for AIX 17.1.1 does not support a functionally equivalent option to -qpriority,
nor does it support pragma priority. IBM Open XL C/C++ for AIX 17.1.1 supports the
__attribute__((init_priority)) attribute that provides a similar function to -qpriority, with
which you can specify non-default priorities for initialization in source code. The default priority between
IBM XL C/C++ for AIX 16.1.0 and IBM Open XL C/C++ for AIX 17.1.1 is the same. However, the
value range of the priority level in __attribute__((init_priority)) is different from that of
-qpriority. As a result, there is no guarantee of relative ordering between the objects compiled with
IBM Open XL C/C++ for AIX 17.1.1 and the objects compiled with IBM XL C/C++ for AIX 16.1.0 or earlier
releases.

Related information
• “#pragma priority (C++ only)” on page 41
• GCC online documentation

-qrestrict
In IBM XL C/C++ for AIX 16.1.0 or earlier releases, you could use the -qrestrict option to imply that
pointer type parameters in all functions had the restrict keyword.

In IBM Open XL C/C++ for AIX 17.1.1, use -frestrict-args to achieve the same effect.

Chapter 1. Migrating from Classic XL compilers 29

https://gcc.gnu.org/onlinedocs/
https://gcc.gnu.org/onlinedocs/

Related information
• -frestrict-args

-qsimd
In IBM XL C/C++ for AIX 16.1.0 or earlier releases, the -qsimd=noauto option disabled the conversion
of loop array operations into vector instructions.

In IBM Open XL C/C++ for AIX 17.1.1, use -fno-vectorize and -fno-slp-vectorize options to
achieve the same effect to disable auto vectorization features. For an LTO build, you need to add -Wl,-
bplugin_opt:-vectorize-loops=false -Wl,-bplugin_opt:-vectorize-slp=false on the
link step.

Related information
• “#pragma nosimd” on page 40
• The "Clang command line argument reference" section in the Clang documentation

-qsmp
IBM Open XL C/C++ for AIX 17.1.1 supports neither automatic parallelization transformations nor
OpenMP. The -qsmp option is not available in IBM Open XL C/C++ for AIX 17.1.1.

-qsourcetype
In IBM XL C/C++ for AIX 16.1.0 or earlier releases, the -qsourcetype option instructs the compiler
to treat all recognized source files as a specified source type, regardless of the actual file name suffix.
All source files following -qsourcetype=assembler are compiled as if they were assembler language
source files.

In IBM XL C/C++ for AIX 16.1.0 or earlier releases, files with either the .S or .s suffix are preprocessed
before being passed to the assembler. In IBM Open XL C/C++ for AIX 17.1.1, only files with the .S suffix
can be preprocessed. Hence, if a .s file needs to be preprocessed, either rename it to the .S file or use
the -x assembler-with-cpp option to let the compiler treat it as an assembler language source file.

Related information
• The "Clang command line argument reference" section in the Clang documentation

-qstatsym
IBM Open XL C/C++ for AIX 17.1.1 produces static variables as symbols in the symbol table when the
compiler does not perform optimizations. If you used -qstatsym in IBM XL C/C++ for AIX 16.1.0 or
earlier releases, compile your program without optimization enabled when you migrate the program to
IBM Open XL C/C++ for AIX 17.1.1.

-qstrict
In IBM XL C/C++ for AIX 16.1.0 or earlier releases, -O3 implies -qnostrict, which enables many
floating-point optimizations. However, in IBM Open XL C/C++ for AIX 17.1.1, -O3 does not enable most
of the floating-point optimizations that old releases enabled. If -O3 -qstrict was used in classic XL
compilers, it maps to just -O3 in Open XL. To enable more floating-point optimizations in IBM Open XL
C/C++ for AIX 17.1.1, try the following steps:

1. Specify -O3 to let the program produce expected results.
2. Specify -Ofast to further optimize the program.
3. Customize the usage of the following options to achieve the right balance between accuracy in floating

point operations and speed:

30 IBM Open XL C/C++: Migration Guide

• -f[no-]honor-infinities
• -f[no-]honor-nans
• -f[no-]math-errno
• -f[no-]finite-math-only
• -f[no-]associative-math
• -f[no-]reciprocal-math
• -f[no-]signed-zeros
• -f[no-]trapping-math
• -ffp-contract
• -f[no-]rounding-math

Related information
• The "Clang command line argument reference" section in the Clang documentation

-qtbtable
In IBM XL C/C++ for AIX 16.1.0 or earlier releases, the -qtbtable option controls the amount of
debugging traceback information that is included in object files.

In IBM Open XL C/C++ for AIX 17.1.1, full function traceback tables are enabled by default.

Related information
• -mllvm

-qtls
In IBM XL C/C++ for AIX 16.1.0 or earlier releases, the -qtls option enables the recognition of the
__thread storage class specifier and specifies the thread-local storage model to be used. The __thread
storage class specifier designates thread-local storage for variables.

The -ftls-model is functionally equivalent to -qtls. In IBM Open XL C/C++ for AIX 17.1.1, only the
global-dynamic suboption of this option is supported. The other tls models such as local-dynamic
and initial-exec are not supported.

Note: To use thread-local storage, -pthread is required. -pthread is implied when the compiler is
invoked by ibm-clang_r and ibm-clang++_r, but not implied when the compiler is invoked by ibm-clang.

Related information
• The "Clang command line argument reference" section in the Clang documentation

-qtmplinst (C++ only)
In IBM XL C/C++ for AIX 16.1.0 or earlier releases, the -qtmplinst option manages the implicit
instantiation of templates.

IBM Open XL C/C++ for AIX 17.1.1 does not support a functionally equivalent option to -qtmplinst. You
are recommended to use C++11 explicit template instantiations to control template instantiation in your
program.

Related information
• GCC online documentation

Chapter 1. Migrating from Classic XL compilers 31

https://gcc.gnu.org/onlinedocs/

-qunroll
In IBM XL C/C++ for AIX 16.1.0 or earlier releases, automatic unrolling is enabled by the
-qunroll=auto option at -O2 or higher.

In IBM Open XL C/C++ for AIX 17.1.1, automatic unrolling is enabled by default at -O2 or higher. You can
also enable automatic unrolling at -O1 by specifying the -funroll-loops option. In addition, -fno-
unroll-loops can be used to disable unrolling of all loops to achieve the same effect as-qnounroll.

In IBM Open XL C/C++ for AIX 17.1.1, there is not an option that is functionally equivalent
to -qunroll=n; however, you can use #pragma unroll(n) or #pragma clang loop
unroll_count(n) to control unrolling at the source level.

Related information
• #pragma unroll

-qutf
In IBM XL C/C++ for AIX 16.1.0 or earlier releases, the -qutf option enables the recognition of UTF literal
syntax.

IBM Open XL C/C++ for AIX 17.1.1 does not support a functionally equivalent option to -qutf. UTF literal
support is determined by the language level that is in effect.

-v, -V
In IBM XL C/C++ for AIX 16.1.0 or earlier releases, the -v or -V option reports the progress of
compilation by naming the programs being invoked and the options being specified to each program.

In IBM Open XL C/C++ for AIX 17.1.1, use the -v option instead. Its format and compilation steps are
somewhat different from those of -v or -V in the old releases.

Related information
• The "Clang command line argument reference" section in the Clang documentation

-y
In IBM XL C/C++ for AIX 16.1.0 or earlier releases, the -y option specifies the rounding mode for the
compiler when the compiler evaluates constant floating-point expressions at compile time.

In IBM Open XL C/C++ for AIX 17.1.1, -y is not supported. There is no option to control the compile-time
floating-point evaluation rounding mode. The Clang option -frounding-math gives you the ability to
disable the optimizer from folding floating-point values that cannot be exactly represented; however, this
might result in slower runtime performance.

The FE_TONEAREST macro, which is available in IBM Open XL C/C++ for AIX 17.1.1, matches the -y
semantics. In IBM Open XL C/C++ for AIX 17.1.1, floating-point folding that is required by the language
features such as initialization of global floating-point variables is done through FE_TONEAREST.

Related information
• "Clang Compiler User's Manual" in the Clang documentation
• The "Clang command line argument reference" section in the Clang documentation

32 IBM Open XL C/C++: Migration Guide

Compiler pragmas
Consider a number of changes to compiler pragmas when you migrate your program from IBM XL C/C++
for AIX 16.1.0 or earlier releases to IBM Open XL C/C++ for AIX 17.1.1.

Supported compiler pragmas
This topic discusses compiler pragmas that are supported by IBM Open XL C/C++ for AIX 17.1.1.

Clang pragmas
Community Clang pragmas for LLVM Clang on AIX are supported in IBM Open XL C/C++ for AIX 17.1.1.

Note: Unlike IBM programs, Clang pragmas are case sensitive.

Supported IBM pragmas
The following pragmas that were supported by IBM XL C/C++ for AIX 16.1.0 are also supported by IBM
Open XL C/C++ for AIX 17.1.1. Find details of these pragmas in Compiler pragmas.

• #pragma align
• #pragma GCC visibility push
• #pragma GCC visibility pop
• #pragma nosimd
• #pragma pack
• #pragma STDC FENV_ACCESS
• #pragma STDC FP_CONTRACT
• #pragma unroll
• #pragma nounroll
• #pragma unrollandfuse

Note: #pragma nosimd and #pragma unrollandfuse are supported but deprecated in IBM Open XL
C/C++ for AIX 17.1.1.

Unsupported pragmas
IBM Open XL C/C++ for AIX 17.1.1 no longer supports compiler pragmas that are described in this
section.

• #pragma align(bit_packed)
• #pragma align(full)
• #pragma align(twobyte)
• #pragma align(mac68k)
• #pragma alloca (C only)
• #pragma block_loop
• #pragma chars
• #pragma comment
• #pragma complexgcc
• #pragma define
• #pragma disjoint
• #pragma do_not_instantiate (C++ only)
• #pragma enum
• #pragma execution_frequency

Chapter 1. Migrating from Classic XL compilers 33

• #pragma expected_value
• #pragma fini (C only)
• #pragma hashome (C++ only)
• #pragma ibm independent_loop
• #pragma ibm iterations
• #pragma ibm max_iterations
• #pragma ibm min_iterations
• #pragma ibm snapshot
• #pragma implementation (C++ only)
• #pragma info
• #pragma init (C only)
• #pragma instantiate (C++ only)
• #pragma ishome (C++ only)
• #pragma isolated_call
• #pragma langlvl (C only)
• #pragma leaves
• #pragma loopid
• #pragma map
• #pragma mc_func
• #pragma namemangling (C++ only)
• #pragma namemanglingrule (C++ only)
• #pragma nofunctrace
• #pragma novector
• #pragma object_model (C++ only)
• #pragma operator_new (C++ only)
• #pragma options
• #pragma option_override
• #pragma pass_by_value (C++ only)
• #pragma priority (C++ only)
• #pragma reachable
• #pragma reg_killed_by
• #pragma report (C++ only)
• #pragma simd_level
• #pragma STDC CX_LIMITED_RANGE
• #pragma stream_unroll
• #pragma strings
• #pragma weak
• #pragma ibm independent_calls (C only)
• #pragma ibm permutation (C only)
• #pragma ibm schedule (C only)
• #pragma ibm sequential_loop (C only)
• #pragma omp atomic
• #pragma omp parallel

34 IBM Open XL C/C++: Migration Guide

• #pragma omp for
• #pragma omp ordered
• #pragma omp parallel for
• #pragma omp section
• #pragma omp sections
• #pragma omp parallel sections
• #pragma omp single
• #pragma omp master
• #pragma omp critical
• #pragma omp barrier
• #pragma omp flush
• #pragma omp threadprivate
• #pragma omp task
• #pragma omp taskyield
• #pragma omp taskwait

Migration considerations of individual compiler pragmas
This section lists individual compiler pragmas that need to be considered for migration.

#pragma alloca (C only)
In IBM XL C/C++ for AIX 16.1.0 or earlier releases, #pragma alloca is functionally equivalent to the
-qalloca or -ma option. This pragma provides an inline definition of system function alloca when the
function is called from source code that does not include the alloca.h header.

IBM Open XL C/C++ for AIX 17.1.1 does not support #pragma alloca. However, you can achieve a
similar function using one of the following ways:

• Specify -Dalloca=__builtin_alloca on the command line to map -qalloca to the
__builtin_alloca function.

• Include the alloca.h header file in source files.

Related information
• “-qalloca, -ma (C only)” on page 21
• __builtin_alloca

#pragma chars
In IBM XL C/C++ for AIX 16.1.0 or earlier releases, #pragma chars determines whether all variables of
type char are treated as signed or unsigned.

IBM Open XL C/C++ for AIX 17.1.1 does not support #pragma chars. However, you can use the
-fsigned-char or -funsigned-char Clang option to achieve the same effect.

Related information
• The "Clang command line argument reference" section in the Clang documentation

#pragma comment
In IBM XL C/C++ for AIX 16.1.0 or earlier releases, #pragma comment places a comment into object
modules to indicate the program and compiler information such as the compiler version.

Chapter 1. Migrating from Classic XL compilers 35

IBM Open XL C/C++ for AIX 17.1.1 does not support #pragma comment. However, when the compiler
uses the AIX system assembler, the compiler version string is embedded in the object symbol table. To
extract the compiler version, you can use the dump -tv <object-file> command or leverage other
object dumpling utilities.

#pragma define (C++ only), #pragma instantiate (C++ only), #pragma
do_not_instantiate (C++ only)
In IBM XL C/C++ for AIX 16.1.0 or earlier releases, #pragma define, #pragma instantiate, and
#pragma do_not_instantiate provide an alternative method when explicitly instantiating a template
class.

In IBM Open XL C/C++ for AIX 17.1.1, these pragmas are not supported. You are recommended to use
C++11 explicit template instantiations instead.

Related information
• GCC online documentation

#pragma disjoint
In IBM XL C/C++ for AIX 16.1.0 or earlier releases, #pragma disjoint lists identifiers that are
not aliased to each other within the scope of their use. This pragma provides more opportunities for
optimizations by informing the compiler that none of the identifiers listed in the pragma shares the same
physical storage.

IBM Open XL C/C++ for AIX 17.1.1 does not support #pragma disjoint. You are recommended to use
the restrict type qualifier for C programs or the __restrict__ type qualifier for C/C++ programs to
assert that points are not aliased.

Related information
• GCC online documentation

#pragma enum
In IBM XL C/C++ for AIX 16.1.0 or earlier releases, #pragma enum is functionally equivalent to the
-qenum option. It specifies the amount of storage occupied by enumerations.

In IBM Open XL C/C++ for AIX 17.1.1, use -fshort-enums as a functionally equivalent option to
-qenum=small. Other -qenum suboptions are not supported. For C++ programs, you can also use the
C++11 scoped enumeration feature to specify the underlying type of enumerations.

Related information
• “-qenum” on page 22
• GCC online documentation
• The "Clang command line argument reference" section in the Clang documentation

#pragma execution_frequency
In IBM XL C/C++ for AIX 16.1.0 or earlier releases, #pragma execution_frequency marks programs
that you expect to be either very frequently or very infrequently executed.

IBM Open XL C/C++ for AIX 17.1.1 does not support #pragma execution_frequency. You are
recommended to use the __builtin_expect built-in function instead.

Related information
• The __builtin_expect built-in function

36 IBM Open XL C/C++: Migration Guide

https://gcc.gnu.org/onlinedocs/
https://gcc.gnu.org/onlinedocs/
https://gcc.gnu.org/onlinedocs/

#pragma expected_value
In IBM XL C/C++ for AIX 16.1.0 or earlier releases, #pragma expected_value specifies the value
that a parameter passed in a function call is most likely to take at run time. The compiler can use this
information to perform certain optimizations, such as function cloning and inlining.

IBM Open XL C/C++ for AIX 17.1.1 does not support #pragma expected_value. You are recommended
to use the __builtin_expect built-in function instead.

Related information
• #__builtin_expect

#pragma fini (C only), #pragma init (C only)
In IBM XL C/C++ for AIX 16.1.0 or earlier releases, #pragma init specifies the order in which the
runtime library calls a list of functions before main() is called, and #pragma fini specifies the order in
which the runtime library calls a list of functions after main() completes or exit() is called.

IBM Open XL C/C++ for AIX 17.1.1 does not support these pragmas. You are recommended to use
the __attribute__((constructor)) function attribute to achieve the similar function to #pragma
init and use the __attribute__((destructor)) function attribute to achieve the similar function to
#pragma fini.

Related information
• GCC online documentation

#pragma GCC visibility push, #pragma GCC visibility pop
In IBM XL C/C++ for AIX 16.1.0 or earlier releases, you could selectively set visibility attributes for entities
by using pairs of the #pragma GCC visibility push and #pragma GCC visibility pop compiler
directives throughout your program. #pragma GCC visibility push had the following parameters to
specify visibility attributes for external linkage entities in object files:

• default
• protected
• hidden
• internal

IBM Open XL C/C++ for AIX 17.1.1 accepts and processes #pragma GCC visibility push
and #pragma GCC visibility pop. However, only the default parameter of #pragma GCC
visibility push is supported in IBM Open XL C/C++ for AIX 17.1.1, meaning either the visibility
attribute or #pragma GCC visibility push specified in the source code is ignored by the compiler.

Related information
• #pragma GCC visibility push, #pragma GCC visibility pop

#pragma hashome (C++ only), #pragma ishome (C++ only)
In IBM XL C/C++ for AIX 16.1.0 or earlier releases, #pragma ishome informs the compiler that the home
module of the specified class is the current compilation unit. The home module is where items, such as
the virtual function table, are stored. #pragma hashome informs the compiler that the specified class
has a home module that is specified by #pragma ishome. The virtual function table of the specified
class, along with certain inline functions, are referenced as externals in the compilation unit of the class in
which #pragma ishome is specified.

IBM Open XL C/C++ for AIX 17.1.1 does not support these pragmas. Virtual function tables are emitted
according to the Itanium C++ ABI rules in IBM Open XL C/C++ for AIX 17.1.1.

Chapter 1. Migrating from Classic XL compilers 37

https://gcc.gnu.org/onlinedocs/

#pragma ibm independent_loop
In IBM XL C/C++ for AIX 16.1.0 or earlier releases, #pragma ibm independent_loop explicitly states
that the iterations of the chosen loop are independent and that the iterations can be executed in parallel.

IBM Open XL C/C++ for AIX 17.1.1 does not support #pragma ibm independent_loop. You are
recommended to use the #pragma clang loop vectorize(assume_safety) Clang pragma instead
in the context of loop vectorization.

Related information
• "Clang Compiler User's Manual" in the Clang documentation

#pragma implementation (C++ only)
In IBM XL C/C++ for AIX 16.1.0 or earlier releases, when used with the -qtempinc option, #pragma
implementation supplies the name of the file that contains the template definitions corresponding to
the template declarations contained in a header file.

In IBM Open XL C/C++ for AIX 17.1.1, neither #pragma implementation nor -qtempinc is supported.
Use C++11 explicit template instantiations instead, which is a standard-compliant means of managing
where template instantiations occur.

Related information
• GCC online documentation

#pragma info, #pragma report (C++ only)
In IBM XL C/C++ for AIX 16.1.0 or earlier releases, #pragma info is functionally equivalent to -qinfo
that produces or suppresses groups of informational messages, and #pragma report controls the
generation of diagnostic messages.

IBM Open XL C/C++ for AIX 17.1.1 adopts the Clang infrastructure and has an entirely different diagnostic
implementation. In IBM Open XL C/C++ for AIX 17.1.1, you can use either of the following Clang option or
pragma to suppress or control the generation of diagnostic messages:

• Clang options in the form of -W[no-]
• #pragma clang diagnostic ignored

Related information
• “Diagnostic message control” on page 58
• The "Diagnostic flags in Clang" section in the Clang documentation
• The "Clang command line argument reference" section in the Clang documentation

#pragma isolated_call
In IBM XL C/C++ for AIX 16.1.0 or earlier releases, #pragma isolated_call specifies functions that
have no side effects in the source file other than those implied by their parameters.

IBM Open XL C/C++ for AIX 17.1.1 does not support #pragma isolated_call. You are recommended
to use the __attribute__((pure)) function attribute instead.

Related information
• “-qisolated_call” on page 27
• GCC online documentation

38 IBM Open XL C/C++: Migration Guide

https://gcc.gnu.org/onlinedocs/
https://gcc.gnu.org/onlinedocs/

#pragma langlvl (C only)
In IBM XL C/C++ for AIX 16.1.0 or earlier releases, #pragma langlvl determines whether the source
code conforms to a specific language standard, or subset or superset of a standard.

IBM Open XL C/C++ for AIX 17.1.1 does not support #pragma langlvl. You are recommended to use
the -std Clang option instead.

Related information
• The "Clang command line argument reference" section in the Clang documentation

#pragma leaves
In IBM XL C/C++ for AIX 16.1.0 or earlier releases, #pragma leaves informs the compiler that a named
function never returns to the instruction following a call to that function.

IBM Open XL C/C++ for AIX 17.1.1 does not support #pragma leaves. You are recommended to use the
__attribute__((noreturn)) function attribute or #pragma clang attribute instead.

Related information
• GCC online documentation
• The "#pragma clang attribute" section in the Clang documentation

#pragma map
In IBM XL C/C++ for AIX 16.1.0 or earlier releases, #pragma map converts all references to an identifier
to another externally defined identifier.

IBM Open XL C/C++ for AIX 17.1.1 does not support #pragma map. You are recommended to use the
_attribute__((alias)) function attribute or GNU asm labels as alternatives. For example, replace
#pragma map(foo, "bar") with the asm("bar") when you migrate the following code example from
IBM XL C/C++ for AIX 16.1.0 or earlier releases to IBM Open XL C/C++ for AIX 17.1.1.

Original program in IBM XL C/C++ for AIX 16.1.0

#pragma map(foo, "bar")
void foo();
void baz() { foo(); }

Migrated program in IBM Open XL C/C++ for AIX 17.1.1

void foo() asm("bar");
void baz() { foo(); }

Related information
• The "ASM Goto with Output Constraints" in the Clang documentation
• Inline assembly statements

#pragma mc_func
In IBM XL C/C++ for AIX 16.1.0 or earlier releases, #pragma mc_func allows you to embed a short
sequence of machine instructions "inline" within your program source code.

IBM Open XL C/C++ for AIX 17.1.1 does not support #pragma mc_func. You are recommended to use
GCC inline asm labels as an alternative.

Related information
• The "ASM Goto with Output Constraints" in the Clang documentation

Chapter 1. Migrating from Classic XL compilers 39

https://gcc.gnu.org/onlinedocs/

• Inline assembly statements

#pragma namemangling (C++ only), #pragma namemanglingrule (C++ only)
In IBM XL C/C++ for AIX 16.1.0 or earlier releases, #pragma namemangling chooses the name
mangling scheme for external symbol names generated from C++ source code, and #pragma
namemanglingrule provides fine-grained control over the name mangling scheme in effect for selected
portions of source code, specifically with respect to the mangling of cv-qualifiers in function parameters.

In IBM Open XL C/C++ for AIX 17.1.1, neither of these pragmas is supported. IBM Open XL C/C++ for
AIX 17.1.1 adopts name mangling based on the Itanium C++ ABI, so classic XL mangled names cannot
be generated. This prevents you from accidentally linking objects files that are generated by IBM Open
XL C/C++ for AIX 17.1.1 with objected files that are generated by IBM XL C/C++ for AIX 16.1.0 or earlier
releases.

Related information
• “-qnamemangling (C++ only)” on page 28

#pragma nofunctrace
In IBM XL C/C++ for AIX 16.1.0 or earlier releases, #pragma nofunctrace disables tracing for a given
function or a list of specified functions.

IBM Open XL C/C++ for AIX 17.1.1 does not support #pragma nofunctrace. You are recommended
to use the no_instrument_function function attribute in conjunction with the -finstrument-
functions option as an alternative.

Related information
• “-qfunctrace” on page 25
• GCC online documentation
• The "Clang command line argument reference" section in the Clang documentation

#pragma nosimd
In IBM XL C/C++ for AIX 16.1.0 or earlier releases, #pragma nosimd disables the automatic generation
of vector instructions. This pragma needs to be specified on a per-loop basis.

IBM Open XL C/C++ for AIX 17.1.1 accepts #pragma nosimd and maps it to the #pragma clang
loop vectorize(disable) Clang pragma. If you used #pragma nosimd in your program, you are
recommended to replace it with #pragma clang loop vectorize(disable) when you migrate the
program to IBM Open XL C/C++ for AIX 17.1.1.

Related information
• “-qsimd” on page 30
• "Clang Compiler User's Manual" in the Clang documentation

#pragma object_model (C++ only)
In IBM XL C/C++ for AIX 16.1.0 or earlier releases, #pragma object_model sets the object model to be
used for structures, unions, and classes.

IBM Open XL C/C++ for AIX 17.1.1 does not support #pragma object_model. IBM Open XL C/C++ for
AIX 17.1.1 adopts the Itanium C++ ABI for object model; however, IBM XL C/C++ for AIX 16.1.0 that is
invoked by xlC and earlier releases adopt a different object model. New and old object models are not
compatible.

40 IBM Open XL C/C++: Migration Guide

https://gcc.gnu.org/onlinedocs/

Related information
• “-qobjmodel (C++ only)” on page 28
• “Diagnostic message control” on page 58
• The "Diagnostic flags in Clang" section in the Clang documentation

#pragma operator_new (C++ only)
In IBM XL C/C++ for AIX 16.1.0 or earlier releases, #pragma operator_new determines whether the
new and new[] operators throw an exception if the requested memory cannot be allocated.

IBM Open XL C/C++ for AIX 17.1.1 does not support #pragma operator_new. The new expressions in
IBM Open XL C/C++ for AIX 17.1.1 are instrumented according to the C++ standard requirements, which
require that a null check is instrumented if the operator new invoked is declared non-throwing; otherwise,
a std::bad_alloc exception must be thrown on allocation failure.

#pragma option_override
In IBM XL C/C++ for AIX 16.1.0 or earlier releases, #pragma option_override allows you to specify
optimization options at the subprogram level that override optimization options given on the command
line. This pragma enables finer control of program optimization and can help debug errors that occur only
under optimization.

IBM Open XL C/C++ for AIX 17.1.1 does not support #pragma option_override. If you specified
pragma options_override(func, "opt(level, 0)") in your program to disable optimization for
a specific function, use __attribute__((optnone)) as an alternative when you migrate the program
from IBM XL C/C++ for AIX 16.1.0 or earlier releases to IBM Open XL C/C++ for AIX 17.1.1.

Related information
• GCC online documentation

#pragma priority (C++ only)
In IBM XL C/C++ for AIX 16.1.0 or earlier releases, #pragma priority specifies the priority level for the
initialization of static objects.

IBM Open XL C/C++ for AIX 17.1.1 does not support #pragma priority. However, IBM Open XL C/C+
+ for AIX 17.1.1 supports the __attribute__((init_priority)) attribute that provides a similar
function to #pragma priority, with which you can specify non-default priorities for static objects in
source code. However, the value range of the priority level in __attribute__((init_priority)) is
different from that of #pragma priority. As a result, there is no guarantee of relative ordering between
the objects compiled with IBM Open XL C/C++ for AIX 17.1.1 and the objects compiled with IBM XL
C/C++ for AIX 16.1.0 or earlier releases.

Related information
• “-qpriority (C++ only)” on page 29
• GCC online documentation

#pragma reg_killed_by
In IBM XL C/C++ for AIX 16.1.0 or earlier releases, #pragma reg_killed_by specifies registers that
might be altered by functions that are specified by #pragma mc_func.

IBM Open XL C/C++ for AIX 17.1.1 does not support #pragma mc_func, so #pragma reg_killed_by
is not needed. If you use inline asm labels in place of #pragma mc_func in IBM Open XL C/C++ for AIX
17.1.1, you can use the clobber list to specify which registers are altered.

Chapter 1. Migrating from Classic XL compilers 41

https://gcc.gnu.org/onlinedocs/
https://gcc.gnu.org/onlinedocs/

Related information
• “#pragma mc_func” on page 39
• Inline assembly statements
• The "ASM Goto with Output Constraints" in the Clang documentation

#pragma simd_level
In IBM XL C/C++ for AIX 16.1.0 or earlier releases, #pragma simd_level controls the compiler code
generation of vector instructions for individual loops.

When you migrate your program from IBM XL C/C++ for AIX 16.1.0 or earlier releases to IBM Open XL
C/C++ for AIX 17.1.1, you can replace #pragma simd_level(0) or #pragma nosimd with #pragma
clang loop vectorize(disabled) and replace #pragma simd_level(10) with #pragma clang
loop vectorize(enable) respectively. IBM Open XL C/C++ for AIX 17.1.1 does not have mapping
pragmas for #pragma simd_level when the simd level is from 1 to 9, inclusive.

Related information
• "Clang Compiler User's Manual" in the Clang documentation

#pragma STDC CX_LIMITED_RANGE
In IBM XL C/C++ for AIX 16.1.0 or earlier releases, #pragma STDC CX_LIMITED_RANGE informs the
compiler that complex division and absolute value are only invoked with values such that intermediate
calculation will not overflow or lose significance.

In IBM Open XL C/C++ for AIX 17.1.1, #pragma STDC CX_LIMITED_RANGE is accepted but silently
ignored.

#pragma strings
In IBM XL C/C++ for AIX 16.1.0 or earlier releases, #pragma strings specifies the storage type for
string literals. When #pragma strings(readonly) is in effect, strings are placed in read-only memory.
When #pragma strings(writeable) is in effect, strings are placed in read-write memory.

IBM Open XL C/C++ for AIX 17.1.1 does not support #pragma strings. All strings are placed in
read-only memory.

#pragma unrollandfuse
In IBM XL C/C++ for AIX 16.1.0 or earlier releases, #pragma unrollandfuse instructs the compiler to
attempt an unroll and fuse operation on nested for loops.

IBM Open XL C/C++ for AIX 17.1.1 still accepts #pragma unrollandfuse but maps it to the
#pragma unroll_and_jam pragma. If you used #pragma unrollandfuse in your program, you are
recommended to replace it with #pragma unroll_and_jam when you migrate the program to IBM
Open XL C/C++ for AIX 17.1.1.

Related information
• “-qunroll” on page 32
• "Clang Compiler User's Manual" in the Clang documentation

#pragma weak
In IBM XL C/C++ for AIX 16.1.0 or earlier releases, #pragma weak prevents the linker from issuing error
messages if it encounters a symbol multiply-defined during linking, or if it does not find a definition for a
symbol.

42 IBM Open XL C/C++: Migration Guide

IBM Open XL C/C++ for AIX 17.1.1 does not support #pragma weak. You are recommended to use
the __attribute__((weak)) attribute or the #pragma clang attribute push ([[weak]],
apply_to = any(function)) as alternatives.

Related information
• GCC online documentation
• "Clang Compiler User's Manual" in the Clang documentation

Compiler macros
Consider a number of changes to compiler macros when you migrate your program from IBM XL C/C++ for
AIX 16.1.0 or earlier releases to IBM Open XL C/C++ for AIX 17.1.1.

Supported compiler macros
This topic discusses compiler macros that are supported by IBM Open XL C/C++ for AIX 17.1.1.

IBM Open XL C/C++ for AIX 17.1.1 introduces support for new macros. Additionally, the macros that were
supported by IBM XL C/C++ for AIX 16.1.0 are also supported by IBM Open XL C/C++ for AIX 17.1.1
except those described in . Find details of all supported macros in Compiler predefined macros.

Note:

IBM Open XL C/C++ for AIX 17.1.1 fully supports the C++17 language standard and predefines the
__cplusplus macro to 201703L when the C++17 mode is enabled via the -std=c++17 option.

Unsupported compiler macros
IBM Open XL C/C++ for AIX 17.1.1 is based on the community Clang 14.0.0 compiler. To process
programs consistently with Clang, IBM Open XL C/C++ for AIX 17.1.1 no longer supports compiler macros
that are described in this section.

• Macros to identify the XL C/C++ compiler

– __IBMC__
– __IBMCPP__
– __ibmxl__
– __ibmxl_modification__
– __ibmxl_ptf_fix_level__
– __ibmxl_release__
– __ibmxl_version__
– __ibmxl_vrm__
– __xlc__
– __xlC__
– __xlC_ver__

• Macros related to compiler option settings

– __DEBUG_ALLOC__
– __IBM_DFP__
– __IBM_DFP_SW_EMULATION__
– __IBM_GCC_ASM
– __IBM_STDCPP_ASM
– __IBM_UTF_LITERAL
– __IGNERRNO__

Chapter 1. Migrating from Classic XL compilers 43

https://gcc.gnu.org/onlinedocs/

– __INITAUTO__
– __INITAUTO_W__
– __LIBANSI__
– __LONGDOUBLE128
– __NO_RTTI__
– __OBJECT_MODEL_CLASSIC__
– __OBJECT_MODEL_IBM__
– __RTTI_ALL__
– __TEMPINC__
– _CHAR_SIGNED, __CHAR_SIGNED__
– _CHAR_UNSIGNED
– _IBMSMP

Note: _CHAR_UNSIGNED_ remains defined in IBM Open XL C/C++ for AIX 17.1.1.
• Macros related to architecture settings

– _ARCH_COM
– _ARCH_PPC64GR
– _ARCH_PPC64GRSQ
– _ARCH_PPC64V
– _ARCH_PPC970
– _ARCH_PWR6E
– _ARCH_PWR6X

• Macros related to language levels

– __BOOL__
– __C99__FUNC__
– __C99_BOOL
– __C99_COMPLEX
– __C99_COMPLEX_HEADER__
– __C99_COMPOUND_LITERAL
– __C99_CPLUSCMT
– __C99_DESIGNATED_INITIALIZER
– __C99_DUP_TYPE_QUALIFIER
– __C99_EMPTY_MACRO_ARGUMENTS
– __C99_FLEXIBLE_ARRAY_MEMBER
– __C99_HEX_FLOAT_CONST
– __C99_INLINE
– __C99_LLONG
– __C99_MACRO_WITH_VA_ARGS
– __C99_MAX_LINE_NUMBER
– __C99_MIXED_DECL_AND_CODE
– __C99_MIXED_STRING_CONCAT
– __C99_NON_CONST_AGGR_INITIALIZER
– __C99_NON_LVALUE_ARRAY_SUB
– __C99_PRAGMA_OPERATOR

44 IBM Open XL C/C++: Migration Guide

– __C99_REQUIRE_FUNC_DECL
– __C99_RESTRICT
– __C99_STATIC_ARRAY_SIZE
– __C99_STD_PRAGMAS
– __C99_TGMATH
– __C99_UCN
– __C99_VAR_LEN_ARRAY
– __C99_VARIABLE_LENGTH_ARRAY
– __DIGRAPHS__
– __EXTENDED__
– __IBM__ALIGN
– __IBM__ALIGNOF__
– __IBM_ALIGNOF__
– __IBM_ATTRIBUTES
– __IBM_COMPUTED_GOTO
– __IBM_DOLLAR_IN_ID
– __IBM_EXTENSION_KEYWORD
– __IBM_GCC__INLINE__
– __IBM_GENERALIZED_LVALUE
– __IBM_INCLUDE_NEXT
– __IBM_LABEL_VALUE
– __IBM_LOCAL_LABEL
– __IBM_MACRO_WITH_VA_ARGS
– __IBM_NESTED_FUNCTION
– __IBM_PP_PREDICATE
– __IBM_PP_WARNING
– __IBM_REGISTER_VARS
– __IBM__TYPEOF__
– __IBMC_COMPLEX_INIT
– __IBMC_GENERIC
– __IBMC_NORETURN
– __IBMC_STATIC_ASSERT
– __IBMCPP_AUTO_TYPEDEDUCTION
– __IBMCPP_C99_LONG_LONG
– __IBMCPP_C99_PREPROCESSOR
– __IBMCPP_COMPLEX_INIT
– __IBMCPP_CONSTEXPR
– __IBMCPP_DECLTYPE
– __IBMCPP_DEFAULTED_AND_DELETED_FUNCTIONS
– __IBMCPP_DELEGATING_CTORS
– __IBMCPP_EXPLICIT_CONVERSION_OPERATORS
– __IBMCPP_EXTENDED_FRIEND
– __IBMCPP_EXTERN_TEMPLATE

Chapter 1. Migrating from Classic XL compilers 45

– __IBMCPP_INLINE_NAMESPACE
– __IBMCPP_NULLPTR
– __IBMCPP_REFERENCE_COLLAPSING
– __IBMCPP_RIGHT_ANGLE_BRACKET
– __IBMCPP_RVALUE_REFERENCES
– __IBMCPP_SCOPED_ENUM
– __IBMCPP_STATIC_ASSERT
– __IBMCPP_VARIADIC_TEMPLATES
– __SAA__
– __SAA_L2__

The __ibmxl family macros are no longer supported. Instead, the __open_xl family macros are newly
added to identify the Open XL C/C++ compiler.

Using macros to query the support of individual language features is no longer supported. You need to
write source code to target language standards.

Changed compiler macros
The values of some compiler macros are changed in IBM Open XL C/C++ for AIX 17.1.1.

In IBM XL C/C++ for AIX 16.1.0, the __OPTIMIZE__ macro has the following predefined values:

• 2 when the optimization level is -O or -O2
• 3 when the optimization is -O3, -O4, or -O5

In IBM Open XL C/C++ for AIX 17.1.1, the predefined value of __OPTIMIZE__ is 1 for all optimization
levels.

Compiler built-in functions
Consider a number of changes to compiler built-in functions when you migrate your program from IBM XL
C/C++ for AIX 16.1.0 or earlier releases to IBM Open XL C/C++ for AIX 17.1.1.

Supported built-in functions
This topic discusses compiler built-in functions that are supported by IBM Open XL C/C++ for AIX 17.1.1.

IBM Open XL C/C++ for AIX 17.1.1 introduces support for Power10 built-in functions. Additionally, the
built-in functions that were supported by IBM XL C/C++ for AIX 16.1.0 are also supported by IBM Open
XL C/C++ for AIX 17.1.1 except those described in “Unsupported built-in functions” on page 46. Find
details of all supported built-in functions in Compiler built-in functions.

Unsupported built-in functions
IBM Open XL C/C++ for AIX 17.1.1 no longer supports built-in functions that are described in this section.

• Binary floating-point built-in functions

– __builtin_max
– __builtin_min
– __dfp_get_rounding_mode
– __dfp_set_rounding_mode
– __fadd
– __fadds
– __fmul

46 IBM Open XL C/C++: Migration Guide

– __fmuls
– __max
– __min

• Binary-coded decimal built-in functions

– __builtin_bcdcopysign
– __builtin_bcdsetsign
– __builtin_bcdshift
– __builtin_bcdshiftround
– __builtin_bcdtruncate
– __builtin_bcdunsignedshift
– __builtin_bcdunsignedtruncate
– __builtin_national2packed
– __builtin_packed2national
– __builtin_packed2zoned
– __builtin_zoned2packed

• Cache-related built-in functions

– __dcbtna
– __partial_dcbt
– __prefetch_by_load
– __prefetch_by_stream
– __protected_stream_count
– __protected_stream_count_depth
– __protected_stream_go
– __protected_stream_set
– __protected_stream_stride
– __protected_stream_stop
– __protected_stream_stop_all
– __protected_store_stream_set
– __protected_unlimited_stream_set
– __protected_unlimited_store_stream_set
– __transient_protected_stream_count_depth
– __transient_unlimited_protected_stream_depth
– __unlimited_protected_stream_depth

• Cryptography built-in functions

– __vsbox
– __vshasigmad
– __vshasigmaw

• Decimal floating-point built-in functions

– __addg6s
– __cbcdtd
– __cdtbcd
– __d32_sNaN
– __d64_sNaN

Chapter 1. Migrating from Classic XL compilers 47

– __d128_sNaN
– __d32_qNaN
– __d64_qNaN
– __d128_qNaN
– __d64_abs
– __d128_abs
– __d64_biased_exponent
– __d128_biased_exponent
– __d64_compare_exponents
– __d128_compare_exponents
– __d64_compare_signaling
– __d128_compare_signaling
– __d64_copysign
– __d128_copysign
– __d64_insert_biased_exponent
– __d128_insert_biased_exponent
– __d64_integral
– __d128_integral
– __d64_integral_no_inexact
– __d128_integral_no_inexact
– __d64_isfinite
– __d128_isfinite
– __d64_isinf
– __d128_isinf
– __d64_isnan
– __d128_isnan
– __d64_isnormal
– __d128_isnormal
– __d64_issignaling
– __d128_issignaling
– __d64_issigned
– __d128_issigned
– __d64_issubnormal
– __d128_issubnormal
– __d64_iszero
– __d128_iszero
– __d64_nabs
– __d128_nabs
– __d64_shift_left
– __d128_shift_left
– __d64_shift_right
– __d128_shift_right
– __d64_to_gpr

48 IBM Open XL C/C++: Migration Guide

– __d128_to_gprs
– __d64_to_long_long
– __d128_to_long_long
– __d64_to_long_long_rounding
– __d128_to_long_long_rounding
– __d64_to_signed_BCD
– __d128_to_signed_BCD
– __d64_to_unsigned_BCD
– __d128_to_unsigned_BCD
– __d64_quantize
– __d128_quantize
– __d64_reround
– __d128_reround
– __d64_same_quantum
– __d128_same_quantum
– __d64_test_data_class
– __d128_test_data_class
– __d64_test_data_group
– __d128_test_data_group
– __d64_test_significance
– __d128_test_significance
– __gpr_to_d64
– __gprs_to_d128
– __signed_BCD_to_d64
– __signed_BCD_to_d128
– __unsigned_BCD_to_d64
– __unsigned_BCD_to_d128

• Fixed-point built-in functions

– __assert1
– __assert2
– __imul_dbl

• IBM SMP built-in functions (C only)

– __parthds
– __usrthds

• Synchronization and atomic built-in functions

– __check_lock_mp
– __check_lockd_mp
– __check_lock_up
– __check_lockd_up
– __clear_lock_mp
– __clear_lockd_mp
– __clear_lock_up
– __clear_lockd_up

Chapter 1. Migrating from Classic XL compilers 49

– __iospace_eieio
– __lqarx
– __stqcx

• Transactional memory built-in functions

– __TM_abort
– __TM_begin
– __TM_end
– __TM_failure_address
– __TM_failure_code
– __TM_is_conflict
– __TM_is_failure_persistent
– __TM_is_footprint_exceeded
– __TM_is_illegal
– __TM_is_named_user_abort
– __TM_is_nested_too_deep
– __TM_is_user_abort
– __TM_is_named_abort
– __TM_nesting_depth
– __TM_simple_begin

• Vector built-in functions

– vec_extsbd
– vec_extsbw
– vec_extshd
– vec_extshw
– vec_extswd
– vec_xxsldi

• Miscellaneous built-in functions

– __fence
– __mem_delay
– __mftb

Changed built-in functions
Some built-in functions have been changed in IBM Open XL C/C++ for AIX 17.1.1.

In this release, you must include altivec.h to use the following built-in functions. For more information,
see IBM Open XL C/C++ User's Guide.

• BCD add and subtract functions
• BCD test add and subtract for overflow functions
• BCD comparison functions
• BCD load and store functions
• Vector built-in functions

vec_cntlz
In IBM Open XL C/C++ and IBM XL C/C++ for AIX 16.1.0, the data types of the returned value are
changed. Now the compiler returns the same type as the argument, instead of always returning an
unsigned type.

50 IBM Open XL C/C++: Migration Guide

You can refer to the following table for the differences:

Table 7. Result and argument types of different releases

Argument
Result (classic releases before
IBM XL C/C++ for AIX 16.1.0)

Result (IBM XL C/C++ for AIX
16.1.0 and IBM Open XL C/C++
releases)

vector signed char vector unsigned char vector signed char

vector unsigned char vector unsigned char vector unsigned char

vector signed short vector unsigned short vector signed short

vector unsigned short vector unsigned short vector unsigned short

vector signed int vector unsigned int vector signed int

vector unsigned int vector unsigned int vector unsigned int

vector signed long long vector unsigned long long vector signed long long

vector unsigned long long vector unsigned long long vector unsigned long long

When you migrate programs to the latest release, this change might cause incompatibility. It is
recommended that you change your code according to the new behavior.
For more information, see vec_cntlz in the IBM Open XL C/C++ User's Guide.

Mapping of built-in functions
The names of some built-in functions are different in IBM Open XL C/C++ for AIX 17.1.1 from those in
IBM XL C/C++ for AIX 16.1.0.

The following table shows the mappings of these built-in functions.

Table 8. Mapping of built-in functions

Built-in functions in IBM Open XL C/C++ for AIX
17.1.1

Built-in functions in IBM XL C/C++ for AIX 16.1.0

__builtin_ppc_addex __addex

__builtin_ppc_alignx __alignx

__builtin_alloca __alloca

__builtin_ppc_bcdadd __bcdadd

__builtin_ppc_bcdsub __bcdsub

__builtin_bpermd __bpermd

__builtin_ppc_cmpb __cmpb

__builtin_ppc_cmpeqb __cmpeqb

__builtin_complex __cmplx

__builtin_complex __cmplxf

__builtin_complex __cmplxl

__builtin_ppc_cmprb __cmprb

__builtin_clz __cntlz4

__builtin_clzll __cntlz8

Chapter 1. Migrating from Classic XL compilers 51

Table 8. Mapping of built-in functions (continued)

Built-in functions in IBM Open XL C/C++ for AIX
17.1.1

Built-in functions in IBM XL C/C++ for AIX 16.1.0

__builtin_ctz __cnttz4

__builtin_ctzll __cnttz8

__builtin_ppc_compare_and_swap __compare_and_swap

__builtin_ppc_compare_and_swaplp __compare_and_swaplp

__builtin_ppc_compare_exp_uo __compare_exp_uo

__builtin_ppc_compare_exp_lt __compare_exp_lt

__builtin_ppc_compare_exp_eq __compare_exp_eq

__builtin_ppc_compare_exp_gt __compare_exp_gt

__builtin_darn __darn

__builtin_darn_32 __darn_32

__builtin_darn_raw __darn_raw

__builtin_dcbf __dcbf

__builtin_ppc_dcbfl __dcbfl

__builtin_ppc_dcbflp __dcbflp

__builtin_ppc_dcbst __dcbst

__builtin_ppc_dcbt __dcbt

__builtin_ppc_dcbtst __dcbtst

__builtin_ppc_dcbtstt __dcbtstt

__builtin_ppc_dcbtt __dcbtt

__builtin_ppc_dcbz __dcbz

__builtin_divde __divde

__builtin_divdeu __divdeu

__builtin_divwe __divwe

__builtin_divweu __divweu

__builtin_ppc_eieio __eieio

__builtin_ppc_extract_exp __extract_exp

__builtin_ppc_extract_sig __extract_sig

__builtin_ppc_fnabss __fnabss

__builtin_ppc_fnabs __fnabs

__builtin_ppc_fcfid __fcfid

__builtin_ppc_fcfud __fcfud

__builtin_ppc_fctid __fctid

__builtin_ppc_fctidz __fctidz

__builtin_ppc_fctiw __fctiw

52 IBM Open XL C/C++: Migration Guide

Table 8. Mapping of built-in functions (continued)

Built-in functions in IBM Open XL C/C++ for AIX
17.1.1

Built-in functions in IBM XL C/C++ for AIX 16.1.0

__builtin_ppc_fctiwz __fctiwz

__builtin_ppc_fctudz __fctudz

__builtin_ppc_fctuwz __fctuwz

__builtin_ppc_fetch_and_add __fetch_and_add

__builtin_ppc_fetch_and_addlp __fetch_and_addlp

__builtin_ppc_fetch_and_and __fetch_and_and

__builtin_ppc_fetch_and_andlp __fetch_and_andlp

__builtin_ppc_fetch_and_or __fetch_and_or

__builtin_ppc_fetch_and_orlp __fetch_and_orlp

__builtin_ppc_fetch_and_swap __fetch_and_swap

__builtin_ppc_fetch_and_swaplp __fetch_and_swaplp

__builtin_fma __fmadd

__builtin_fmaf __fmadds

__builtin_ppc_fmsub __fmsub

__builtin_ppc_fmsubs __fmsubs

__builtin_ppc_fnmadd __fnmadd

__builtin_ppc_fnmadds __fnmadds

__builtin_ppc_fnmsub __fnmsub

__builtin_ppc_fnmsubs __fnmsubs

__builtin_ppc_fre __fre

__builtin_ppc_fres __fres

__builtin_ppc_fric __fric

__builtin_ppc_frim __frim

__builtin_ppc_frims __frims

__builtin_ppc_frin __frin

__builtin_ppc_frins __frins

__builtin_ppc_frip __frip

__builtin_ppc_frips __frips

__builtin_ppc_friz __friz

__builtin_ppc_frizs __frizs

__builtin_ppc_frsqrte __frsqrte

__builtin_ppc_frsqrtes __frsqrtes

__builtin_ppc_fsel __fsel

__builtin_ppc_fsels __fsels

Chapter 1. Migrating from Classic XL compilers 53

Table 8. Mapping of built-in functions (continued)

Built-in functions in IBM Open XL C/C++ for AIX
17.1.1

Built-in functions in IBM XL C/C++ for AIX 16.1.0

__builtin_ppc_fsqrt __fsqrt

__builtin_ppc_fsqrts __fsqrts

__builtin_ppc_icbt __icbt

__builtin_ppc_insert_exp __insert_exp

__builtin_ppc_iospace_eieio __iospace_eieio

__builtin_ppc_iospace_lwsync __iospace_lwsync

__builtin_ppc_iospace_sync __iospace_sync

__builtin_ppc_isync __isync

__builtin_labs __labs

__builtin_ppc_lbarx __lbarx

__builtin_ppc_ldarx __ldarx

__builtin_ppc_lharx __lharx

__builtin_llabs __llabs

__builtin_ppc_load2r __load2r

__builtin_ppc_load4r __load4r

__builtin_ppc_load8r __load8r

__builtin_ppc_lwarx __lwarx

__builtin_ppc_lwsync __lwsync

__builtin_ppc_maddhd __maddhd

__builtin_ppc_maddhdu __maddhdu

__builtin_ppc_maddld __maddld

__builtin_ppc_mfmsr __mfmsr

__builtin_ppc_mfspr __mfspr

__builtin_ppc_mftbu __mftbu

__builtin_ppc_mtfsb0 __mtfsb0

__builtin_ppc_mtfsb1 __mtfsb1

__builtin_ppc_mtfsf __mtfsf

__builtin_ppc_mtfsfi __mtfsfi

__builtin_ppc_mtmsr __mtmsr

__builtin_ppc_mtspr __mtspr

__builtin_ppc_mulhd __mulhd

__builtin_ppc_mulhdu __mulhdu

__builtin_ppc_mulhw __mulhw

__builtin_ppc_mulhwu __mulhwu

54 IBM Open XL C/C++: Migration Guide

Table 8. Mapping of built-in functions (continued)

Built-in functions in IBM Open XL C/C++ for AIX
17.1.1

Built-in functions in IBM XL C/C++ for AIX 16.1.0

__builtin_popcount __popcnt4

__builtin_popcountll __popcnt8

__builtin_ppc_popcntb __popcntb

__builtin_ppc_poppar4 __poppar4

__builtin_ppc_poppar8 __poppar8

__builtin_ppc_rdlam __rdlam

__builtin_readflm __readflm

__builtin_ppc_rldimi __rldimi

__builtin_ppc_rlwimi __rlwimi

__builtin_ppc_rlwnm __rlwnm

__builtin_rotateleft32 __rotatel4

__builtin_rotateleft64 __rotatel8

__builtin_ppc_setb __setb

__builtin_setflm __setflm

__builtin_setrnd __setrnd

__builtin_ppc_stbcx __stbcx

__builtin_ppc_stdcx __stdcx

__builtin_ppc_stfiw __stfiw

__builtin_ppc_sthcx __sthcx

__builtin_ppc_store2r __store2r

__builtin_ppc_store4r __store4r

__builtin_ppc_store8r __store8r

__builtin_ppc_stwcx __stwcx

__builtin_ppc_swdiv __swdiv

__builtin_ppc_swdivs __swdivs

__builtin_ppc_swdiv_nochk __swdiv_nochk

__builtin_ppc_swdivs_noch __swdivs_nochk

__builtin_ppc_sync __sync

__builtin_ppc_test_data_class __test_data_class

__builtin_ppc_tdw __tdw

__builtin_ppc_trap __trap

__builtin_ppc_trapd __trapd

__builtin_ppc_tw __tw

__builtin_altivec_crypto_vcipher __vcipher

Chapter 1. Migrating from Classic XL compilers 55

Table 8. Mapping of built-in functions (continued)

Built-in functions in IBM Open XL C/C++ for AIX
17.1.1

Built-in functions in IBM XL C/C++ for AIX 16.1.0

__builtin_altivec_crypto_vcipherlast __vcipherlast

__builtin_altivec_crypto_vncipher __vncipher

__builtin_altivec_crypto_vncipherlast __vncipherlast

__builtin_altivec_crypto_vpermxor __vpermxor

__builtin_altivec_crypto_vpmsumb __vpmsumb

__builtin_altivec_crypto_vpmsumd __vpmsumd

__builtin_altivec_crypto_vpmsumh __vpmsumh

__builtin_altivec_crypto_vpmsumw __vpmsumw

To compile source code that uses the old names of the built-in functions with IBM Open XL C/C++ for AIX
17.1.1, perform either of the following actions:

• Define the macros on the command line.
For example:

-D__alignx=__builtin_ppc_alignx

• Define the equivalent macros in the source code

Program linking
Consider changes to program linking when you migrate your program to IBM Open XL C/C++ for AIX
17.1.1.

You are not recommended to specify the -bcdtors:csect linker option for object code that is generated
by IBM Open XL C/C++ for AIX 17.1.1. Otherwise, it might lead to crashes or incorrect results at run time.
To avoid this issue, use -bcdtors:mbr instead on the link step.

In IBM Open XL C/C++ for AIX 17.1.1, many libraries are no longer linked implicitly, such as libatomic
and libm. If operations related to these libraries are used in your program, specify the corresponding
linking options explicitly, such as -latomic and -lm.

Compiler listings
In IBM XL C/C++ for AIX 16.1.0 and earlier releases, the -qlist option was used to produce a compiler
listing file that includes object and constant area sections. In IBM Open XL C/C++ for AIX 17.1.1, you can
use the ibm-llvm-objdump utility utility instead. This utility can be leveraged to print the contents of
object files and final linked images named on the command line. The functionality of listing files is not
provided in IBM Open XL C/C++ for AIX 17.1.1. Using the -S option, you can get an assembler language
file for each source file.

In IBM XL C/C++ for AIX 16.1.0 and earlier releases, the -qreport option was used to show how
sections of code have been optimized. Starting from IBM Open XL C/C++ for AIX 17.1.1, you can use
the -Rpass, -Rpass-analysis, or -fsave-optimization-record LLVM options to get optimization
reports. However, the reports have a different format from the listing files generated by IBM XL C/C++ for
AIX 16.1.0 or earlier releases, and the information is also different. For details of -Rpass-remarks, refer
to the "Options to Emit Optimization Reports" section in the Clang documentation.

Important: Differences in messages and listings between previous releases and IBM Open XL C/C++ for
AIX 17.1.1 might impact compiler builds and tooling environments.

56 IBM Open XL C/C++: Migration Guide

Related information
• LLVM remark diagnostics

Altivec compatibility
This section describes the changes in compiler diagnosis on incompatible vector element order, vector
types, and vector built-in functions for IBM Open XL C/C++ for AIX 17.1.1 in comparison to IBM XL C/C++
for AIX 16.1.0 or earlier releases.

Compatibility of vector types
Compiler diagnosis on incompatible vector types

In IBM XL C/C++ for AIX 16.1.0 or earlier releases, different vector types are incompatible. For example,
if a variable of type vector unsigned int is assigned to another variable of type vector signed
int, the compiler diagnoses the assignment. In IBM Open XL C/C++ for AIX 17.1.1, assignments between
variables of different vector types are not diagnosed by default, which might result in programming
errors. To enable the compiler diagnostic function in IBM Open XL C/C++ for AIX 17.1.1, specify the
-fno-lax-vector-conversions option.

Operations on the vector bool and vector pixel types

IBM XL C/C++ for AIX 16.1.0 or earlier releases treat operations on the vector bool and vector
pixel types differently. See the following two examples:

• Example 1

In IBM XL C/C++ for AIX 16.1.0 or earlier releases, when a variable of the vector pixel or vector
bool type is to be initialized with a scalar value, all elements of the vector variable are initialized with
the scalar value. However, the community Clang compiler initializes only the first element of the vector
variable with the scalar value while initializes the rest of elements with zero.

• Example 2

In IBM XL C/C++ for AIX 16.1.0 or earlier releases, comparing two vector bool variables results in a
scalar value. However, this comparison results in a vector variable in the community Clang compiler.

In IBM Open XL C/C++ for AIX 17.1.1, you can control the compiler behavior through the -faltivec-
src-compat option. By default, the option value is -faltivec-src-compat=xl in IBM Open XL C/C++
for AIX 17.1.1 and the compiler behaves the same as IBM XL C/C++ for AIX 16.1.0 or earlier releases.
However, you can change the compiler behavior to make it consistent with that of the community Clang
compiler by specifying the -faltivec-src-compat=mixed option.

Compatibility of vector built-in functions
Built-in function arguments

The second argument of the following built-in functions needs to be a constant integer that ranges from
0 to 31, inclusive. In IBM XL C/C++ for AIX 16.1.0 or earlier releases, if out-of-range values are passed
to the built-in functions, the compiler issues messages. However, in IBM Open XL C/C++ for AIX 17.1.1,
when out-of-range values are input, the compiler does not issue messages but the behavior is undefined.

• vec_ctd
• vec_ctf
• vec_cts
• vec_ctu
• vec_ctsl
• vec_ctul

Some built-in functions expect the same argument types for two or more arguments. For example,
the prototype of the vec_add(a,b) built-in function requires that argument b has the same type as
argument a. However, in IBM XL C/C++ for AIX 16.1.0 or earlier releases, the compiler tolerates the

Chapter 1. Migrating from Classic XL compilers 57

https://ibm.biz/openxl-1711-llvm-remarks

mismatching types of a and b. In IBM Open XL C/C++ for AIX 17.1.1, the mismatching types are not
allowed and the compiler issues an error message for it.

Built-in function prototypes

In IBM XL C/C++ for AIX 16.1.0 or earlier releases, the vec_ctf, vec_cts, and vec_ctu built-in
functions have the following prototypes:

• vector float vec_ctf(vector signed long long)
• vector float vec_ctf(vector unsigned long long)
• vector signed int vec_cts(vector double)
• vector unsigned int vec_ctu(vector double)

However, these built-in functions have the following different prototypes in GCC, which are incompatible
with those in IBM XL C/C++ for AIX 16.1.0 or earlier releases:

• vector double vec_ctf(vector signed long long)
• vector double vec_ctf(vector unsigned long long)
• vector signed long long vec_cts(vector double)
• vector unsigned long long vec_ctu(vector double)

In IBM Open XL C/C++ for AIX 17.1.1, you can control which set of built-in prototypes to use through
the __XL_COMPAT_ALTIVEC__ macro. By default, IBM Open XL C/C++ for AIX 17.1.1 defines the
__XL_COMPAT_ALTIVEC__ macro and provides built-in prototypes that are identical to those in IBM
XL C/C++ for AIX 16.1.0 or earlier releases. If compatibility with GCC is required, you can undefine this
macro by specifying the -U__XL_COMPAT_ALTIVEC__ option.

Note: The community Clang compiler leaves __XL_COMPAT_ALTIVEC__ undefined by default.

Unsupported built-in functions

IBM Open XL C/C++ for AIX 17.1.1 no longer supports the following built-ins that were supported in IBM
XL C/C++ for AIX 16.1.0 or earlier releases:

• vec_extsbd1

• vec_extsbw1

• vec_extshd1

• vec_extshw1

• vec_extswd1

• vec_xxsldi2

Note:

1. In IBM Open XL C/C++ for AIX 17.1.1, use vec_signexti or vec_signextll as the replacement of
the vec_extsbd, vec_extsbw, vec_extshd, vec_extshw, or vec_extswd.

2. vec_xxsldi was added in IBM XL C/C++ for AIX 16.1.0 invoked by xlclang or xlclang++. In IBM
Open XL C/C++ for AIX 17.1.1, use vec_sldw as the replacement of vec_xxsldi.

Related information
• Vector processing support
• Vector built-in functions

Diagnostic message control
In IBM XL C/C++ for AIX 16.1.0 invoked by xlC or earlier releases, when the compiler encounters a
programming error while you compile a C or C++ source program, it issues a diagnostic message to

58 IBM Open XL C/C++: Migration Guide

the standard error device or to a listing file. Diagnostic messages contain message numbers, message
severity, message describing texts, and so on.

IBM Open XL C/C++ for AIX 17.1.1 adopts the Clang infrastructure. The diagnostic implementation in
Clang is entirely different from that of the classic XL compilers. Clang provides an expressive set of
diagnostic messages that do not have individual message numbers. In IBM Open XL C/C++ for AIX 17.1.1,
use either of the following Clang option or pragma to suppress or control the generation of diagnostic
messages:

• Clang options in the form of -W[no-]
• #pragma clang diagnostic ignored

Example

//t.c
#include <stdio.h>

void f(int x) {
 printf("%f", x);
}

Compile t.c with the following command:

ibm-clang t.c -c

The compiler issues the following warning message:

t.c:3:30: warning: format specifies type 'double' but the argument has type 'int' [-Wformat]

You can specify the -Wno-format option to suppress the warning message:

ibm-clang t.c -c -Wno-format

Then the compiler compiles the program with no warning messages issued.

Related information
• The "Diagnostic flags in Clang" section in the Clang documentation

Exception compatibility
This section describes the changes in compiler exception handling and propagation for IBM Open XL
C/C++ for AIX 17.1.1 in comparison to IBM XL C/C++ for AIX 16.1.0 or earlier releases.

Exception handling
IBM Open XL C/C++ and IBM XL C/C++ for AIX 16.1.0 that is invoked by xlclang++ generate C++ objects
based on the Itanium C++ ABI.

IBM XL C/C++ for AIX 16.1.0 that is invoked by xlC or earlier releases generate C++ objects with a
different C++ ABI. New and old C++ ABIs are not compatible.

If C++ objects with different C++ ABIs coexist in an application, there are limitations on exceptions
thrown from objects compiled in one C++ ABI, and caught or unwound through functions compiled in a
different C++ ABI.

• If an exception that is generated from code compiled with xlC is attempted to be caught or unwound in
code compiled with xlclang++ or ibm-clang++_r, the std::terminate handler is called.

• If an exception that is generated from code compiled with xlclang++ or ibm-clang++_r is attempted
to be caught in code compiled with xlC, the std::terminate handler is called.

Chapter 1. Migrating from Classic XL compilers 59

Exception propagation (C only)
In IBM Open XL C/C++ for AIX, the default value of the -fexceptions option is -fno-exceptions.
When compiling C functions, the compiler might assume that C++ exceptions cannot propagate out of the
C functions by default unless the -fexceptions option is specified.

The default behavior of IBM XL C/C++ for AIX 16.1.0 and earlier releases is same as the -fexceptions
option being enabled in IBM Open XL C/C++ for AIX. By default, C++ exceptions might propagate out of C
functions.

Debug support
Use the -g option to enable debug support. In IBM XL C/C++ for AIX 16.1.0 and earlier releases, both the
stabstrings and DWARF debugging information formats were supported and the default was stabstrings.

IBM Open XL C/C++ for AIX 17.1.1 supports only the DWARF debugging information format and the
default DWARF version is DWARF 3.

In IBM Open XL C/C++ for AIX 17.1.1, you can use the following options to switch DWARF versions:

• -gdwarf-2
• -gdwarf, -gdwarf-3
• -gdwarf-4

IBM Open XL C/C++ for AIX 17.1.1 can generate DWARF information tuned for the following debuggers:

• The DBX debugger by using the -gdbx option, which is the default
• The GDB debugger by using the -ggdb option

Note: The current release of DBX does not support the DWARF information generated by IBM Open XL
C/C++ for AIX 17.1.1. A future release of DBX is planned to add this support.

TLS migration considerations for debugging
For debugging purposes, it is recommended that you inspect Thread-Local Storage (TLS) variables by
compiling helper functions that return the addresses of these variables and then calling these helper
functions from the debugger.

Related information
• -g in the IBM Open XL C/C++ User's Guide
• The "Clang command line argument reference" section in the Clang documentation

Memory allocation
There might be heap memory allocation issues when you migrate your program to IBM Open XL C/C++ for
AIX 17.1.1.

IBM Open XL C/C++ for AIX 17.1.1 pre-defines the __VEC__ macro by default because the compiler
supports POWER7® and higher processors. The _ALL_SOURCE macro is defined by the AIX system
headers unless the macro is suppressed by other macros like _XOPEN_SOURCE. When both the
__VEC__ and _ALL_SOURCE macros are defined, the malloc and calloc system calls are mapped
to vec_malloc and vec_calloc respectively in the AIX system header file /usr/include/stdlib.h.

Note: When both the __VEC__ and _ALL_SOURCE macros are defined, the effect of the
_LINUX_SOURCE_COMPAT macro on malloc and calloc system calls is ignored.

The malloc and calloc system calls give 8-byte aligned allocations, while vec_malloc and
vec_calloc give 16-byte aligned allocations. After malloc and calloc are mapped to vec_malloc
and vec_calloc, heap memory consumption is greatly increased if an application makes a lot of small

60 IBM Open XL C/C++: Migration Guide

heap allocations, which causes the application to run out of memory unexpectedly if the application is
built with a certain maxdata value.

To fix the problem, try one of the following approaches:

1. Compile your program without the _ALL_SOURCE macro and call the vec_malloc, vec_calloc, or
posix_memalign system call explicitly where 16-byte alignment is required.

2. Compile your program with the -mno-altivec option.
3. If the above approaches are not feasible, then for 32-bit applications, link the generated application

with a larger -bmaxdata value to accommodate the extra space required due to vec_malloc and
vec_calloc. For example, if you had originally specified -bmaxdata:0x80000000, you need to
change the setting to a larger value, such as -bmaxdata:0xa0000000/dsa. The actual amount of
additional memory depends on how the application allocates heap memory.

4. For an existing binary, set a new maxdata value using either the LDR_CNTRL environment variable or
the ldedit command. For details, see Large program support.

OpenMP support
OpenMP is not supported in IBM Open XL C/C++ for AIX 17.1.1.

IBM Debugger for AIX
IBM Open XL C/C++ and IBM XL C/C++ for AIX 16.1 do not ship IBM Debugger for AIX.

Optimization and tuning compatibility
IBM Open XL C/C++ for AIX 17.1.1 has different optimization technology from IBM XL C/C++ for AIX
16.1.0 and earlier releases.

When you migrate programs from IBM XL C/C++ for AIX 16.1.0 or earlier releases to IBM Open XL C/C++
for AIX 17.1.1, specify LLVM options to utilize LLVM optimization features.

Link Time Optimization (LTO)
The Link Time Optimization (LTO) feature is supported in IBM Open XL C/C++ for AIX 17.1.1.

The LTO information generated by IBM Open XL C/C++ for AIX 17.1.1 is incompatible with the
Interprocedural Analysis (IPA) information of IBM XL C/C++ for AIX 16.1.0 in the following aspects:

• The IPA information in object files that are created by IBM XL C/C++ for AIX 16.1.0 or earlier releases is
silently ignored by IBM Open XL C/C++ for AIX 17.1.1.

• Object files that are created by IBM XL C/C++ for AIX 16.1.0 or earlier releases using the
-qipa=noobject option contain only IPA information, so they are unusable in IBM Open XL C/C++
for AIX 17.1.1.

• By default, object files that are created by IBM Open XL C/C++ for AIX 17.1.1 using the -flto option
are not readable by IBM XL C/C++ for AIX 16.1.0 or earlier releases.

To compile a program with LTO, specify the -flto option on both the compile and link steps:

• When -flto is specified on the compile step, the compiler generates LLVM IR instead of object code, in
preparation for LTO on the link step.

• When -flto is specified on the link step, the compiler adds extra linker options such as
-bplugin:<path-to-libLTO.so> when invoking the linker. The linker can handle a mixture of native
XCOFF objects and LLVM IR objects, and then invokes the LTO optimizations on the LLVM IR objects via
the libLTO.so plugin.

Attention:

• Pay attention to the system requirements when using LTO:

Chapter 1. Migrating from Classic XL compilers 61

https://www.ibm.com/docs/aix/latest?topic=concepts-large-program-support

Table 9. System requirements of LTO

Feature Minimum requirement for
AIX 7.2

Minimum requirement for
AIX 7.3

-flto AIX 7.2 TL5 SP51 AIX 7.3 TL11

-ffat-lto-objects AIX 7.2 TL5 SP5 AIX 7.3 TL1

Notes:

1. LTO is also supported on IBM AIX 7.2 TL5 SP4 or earlier, and IBM AIX 7.3 TL0 SP2 or earlier;
however, note that non-default visibility symbols defined in the objects that are compiled
with -flto are not necessarily retained to satisfy references from the objects that are
compiled without -flto during linking.

• When both the -flto and -ffat-lto-objects options are specified, object files that are
created by IBM Open XL C/C++ for AIX 17.1.1 are readable by IBM XL C/C++ for AIX 16.1.0 and
earlier releases, but the LTO information embedded in the object files is silently ignored.

• In IBM Open XL C/C++ for AIX 17.1.1, the -flto=thin option is not supported. LTO mode can
be set only to the full mode.

Detecting LTO usage in object files
LTO works by storing LLVM bit code, which describes the program, into object files at the compile step.
During the link step, the LLVM bitcode is used to perform link-time optimization.

Detecting LTO enablement in non-fat LTO object files

By default, if a source file is compiled with the -flto option, only LLVM bitcode is stored into the object
file. You can identify files built this way using the following file command, which identifies the object file
as an LLVM IR bitcode file:

file file.o
file.o: LLVM IR bitcode

Detecting LTO enablement in fat LTO object files

If a source file is compiled with both the -flto and -ffat-lto-objects options, the resulting object
file is an XCOFF object file that contains both native object code and LLVM bitcode. The LLVM bitcode is
stored in the .info section of the XCOFF object file and is labeled with LLVMLTO. You can identify files
built this way using the following file command:

strings -a file.o | grep 'LLVMLTO'
LLVMLTO

Alternatively, you can disassemble the object file and look for LLVMLTO in the .info section. Here is an
example of a disassembled .info section that contains LTO information:

/opt/IBM/openxlC/17.1.1/libexec/ibm-llvm-objdump --section=.info --full-contents file.o
Contents of section .info:
0000 ffffffff 00000000 00000aa4 4c4c564dLLVM
0010 4c544f00 00000018 4243c0de 35140000 LTO.....BC..5...

Note: If the object file does not contain LTO information, the ibm-llvm-objdump utility either issues a
warning message indicating the object file does not contain a .info section or displays a .info section
that does not contain LLVMLTO.

Detecting LTO during linking
To detect whether LTO occurs at link time, use one of the following methods:

• Specify the -bloadmap:<filename> or -bnoquiet option during the link step, and look for lto in the
output. All object files that participated in LTO will be displayed.

62 IBM Open XL C/C++: Migration Guide

• Specify the -bmap:<filename> option during the link step, and look for ld-temp.o in the generated
file. If ld-temp.o is found, it indicates some source files were compiled using -flto, and their
corresponding object files participated in LTO.

Profile Guided Optimization (PGO)
Profile guided optimization (PGO), also known as profile-directed feedback (PDF), is a compiler
optimization technique in computer programming that uses profiling to improve program runtime
performance.

Important: IBM Open XL C/C++ for AIX 17.1.1 supports the following operating systems:

• IBM AIX 7.2: TL5 SP3 or later
• IBM AIX 7.3: TL0 or later

However, to use PGO, your operating system must be IBM AIX 7.2 TL5 SP4 or later, or IBM AIX 7.3 TL0
SP2 or later.

If you use PGO on IBM AIX 7.2 TL5 SP3 or earlier, or IBM AIX 7.3 TL0 SP1 or earlier, you might encounter
the following errors:

• A segmentation fault when using the ibm-llvm-profdata utility:

PLEASE submit a bug report to https://ibm.biz/openxlcpp-support and include the crash
backtrace.
Stack dump:
0. Program arguments: /opt/IBM/openxlC/17.1.1/bin/ibm-llvm-profdata "ibm-llvm-profdata merge"
-o default.profdata
default_15853201381331839107_0.profraw Location 0x0000e944

--- End of call chain ---
Segmentation fault(coredump)

• Undefined symbols when linking:

ld: 0711-317 ERROR: Undefined symbol: __start___llvm_prf_cnts
ld: 0711-317 ERROR: Undefined symbol: __stop___llvm_prf_cnts
ld: 0711-317 ERROR: Undefined symbol: __start___llvm_prf_data
ld: 0711-317 ERROR: Undefined symbol: __stop___llvm_prf_data
ld: 0711-317 ERROR: Undefined symbol: __stop___llvm_prf_names
ld: 0711-317 ERROR: Undefined symbol: __start___llvm_prf_names
ld: 0711-317 ERROR: Undefined symbol: __stop___llvm_prf_vnds
ld: 0711-317 ERROR: Undefined symbol: __start___llvm_prf_vnds

• Linker errors:

ld: 0711-151 SEVERE ERROR: SETOPT: Invalid option name: NAMEDSECTS:ss

PGO is supported in IBM Open XL C/C++ for AIX 17.1.1. There are two ways to generate and use
profile data. For more information on PGO, refer to the "Profile Guided Optimization" section in Clang
documentation. PGO data files generated in IBM Open XL C/C++ for AIX 17.1.1 are incompatible with the
PDF files of IBM XL C/C++ for AIX 16.1.0 or earlier releases.

The cleanpdf, showpdf, and mergepdf commands are replaced by the ibm-llvm-profdata utility in
IBM Open XL C/C++ for AIX 17.1.1.

Example:

$ cat x.c
#include <stdio.h>
#include <stdlib.h>

int main(int argc, char *argv[]) {
 long i = strtol(argv[1], NULL, 10);
 if (i > 5)
 printf("i is bigger than 5\n");
 else
 printf("i is <= 5\n");

Chapter 1. Migrating from Classic XL compilers 63

 return 0;
}

To enable PGO instrumentation and instruct the compiler to instrument the code that is being compiled,
specify the -fprofile-generate[=<directory>] option. If a directory is specified, the raw profile
file is stored in that directory. Otherwise, it is stored in the current directory. The raw profile file is called
default_%m.profraw.

$ ibm-clang x.c -Ofast -fprofile-generate
$./a.out
43
i is bigger than 5
$ ls
a.out default_15822678448124319226_0.profraw x.c

After the raw profile file is generated, run the ibm-llvm-profdata utility on the raw profile file to make
it consumable by the compiler. Note that this step is necessary even when there is only one raw profile,
since the merge operation also changes the file format.

$ ibm-llvm-profdata merge -o default.profdata default_15822678448124319226_0.profraw
$ ls
a.out default_15822678448124319226_0.profraw default.profdata x.c

To instruct the compiler to use the instrumentation data to optimize the program, specify the
-fprofile-use[=<merge profile file path>] option, where merge profile file path is
the file location of the merged profile file. If merge profile file path is a directory or omitted, the
name of the merged profile file is assumed to be default.profdata.

$ ibm-clang x.c -Ofast -fprofile-use
$

Uninitialized variables
IBM Open XL C/C++ for AIX 17.1.1 enables more aggressive optimizations than IBM Open XL C/C++
17.1.0 and earlier classic releases. As a result, errors in programs, such as undefined behaviour due to
the use of uninitialized variables are more likely to cause errors.

To detect occurrences of uninitialized local variables, compile your program using the -Wuninitialized
-Wsometimes-uninitialized options; however, some occurrences might still remain undetected. To
address the uninitialized local variable issue, initialize all local variables explicitly at their declarations.
You can also use the -ftrivial-auto-var-init=pattern option to improve the reproducibility of the
issue.

Related information
• Enhanced LLVM and Clang support

Changes to compiler default behaviors
The section shows the compiler default behavior changes between IBM Open XL C/C++ for AIX 17.1.1
and classic XL C/C++ compilers.

Changes to option defaults
The default values or behaviors of many options differ between IBM Open XL C/C++ for AIX 17.1.1 and
IBM XL C/C++ for AIX 16.1.0. You can find detailed information in “Discrepancies for option defaults” on
page 8 and “Migration considerations for individual compiler options” on page 18.

Allocation of uninitialized global variables
When you compile your program using the classic XL C/C++ compilers, uninitialized global variables are
allocated in the common section of the object file by default.

64 IBM Open XL C/C++: Migration Guide

The C mode of Open XL C/C++ compilers does not place uninitialized variables in the common section by
default. To achieve behavior similar to the classic XL C/C++ compilers, specify the -fcommon option.

The C++ mode of Open XL C/C++ does not place uninitialized variables in the common section of the
object file, even if you specify the -fcommon option.

Exception propagation (C only)
The exception propagation default behavior differs between IBM Open XL C/C++ for AIX and classic XL
C/C++ for AIX compilers. Find details in “Exception compatibility” on page 59.

Chapter 1. Migrating from Classic XL compilers 65

66 IBM Open XL C/C++: Migration Guide

Chapter 2. Migrating from earlier Open XL releases
When you migrate programs from earlier Open XL releases, consider a number of changes such as ABI
compatibility.

Discrepancies for option defaults
The section shows the discrepancies for compiler option defaults between IBM Open XL C/C++ for AIX
17.1.1 and earlier Open XL compilers.

Table 10. Option defaults on IBM Open XL C/C++ for AIX 17.1.1 and IBM Open XL C/C++ for AIX 17.1.0

Default on IBM Open XL C/C++ for AIX 17.1.0 Default on IBM Open XL C/C++ for AIX 17.1.1

-mllvm --enable-ppc-gen-scalar-mass=false when
-mllvm is not specified

-mllvm --enable-ppc-gen-scalar-mass=true when
-mllvm is not specified

Compatibility limitations of libc++
Consider compatibility limitations of libc++ when you use IBM Open XL C/C++ for AIX 17.1.1.2 or earlier
Open XL C/C++ releases.

If you use the LIBCXX_ENABLE_ASSERTIONS macro to enable related library assertions features in your
program and compile your program using IBM Open XL C/C++ for AIX 17.1.1.2 or earlier Open XL C/C++
releases, the library assertions erroneously invoke the __libcpp_assertion_handler runtime library
function. The __libcpp_assertion_handler function is not a part of the libc++ ABI from LLVM 15
and might not be supported in future versions of C++ runtime libraries.

To avoid potential issues, re-compile your program with IBM Open XL C/C++ for AIX 17.1.1.3 or
later releases to enable library assertions to invoke the __libcpp_verbose_abort function instead.
Additionally, if you provide a replacement implementation of __libcpp_assertion_handler when
using IBM Open XL C/C++ for AIX 17.1.1.3 or later releases, provide a replacement implementation for
__libcpp_verbose_abort as well.

Support for visibility attributes
IBM Open XL C/C++ for AIX 17.1.1 no longer ignores visibility attributes as in IBM Open XL C/C++ for AIX
17.1.0 and the -fvisibility and -fvisibility-inlines-hidden options are provided to modify
visibility at a translation unit level.

For more details, see Linking shared libraries and controlling symbol visibility in the User's Guide.

© Copyright IBM Corp. 2022 67

68 IBM Open XL C/C++: Migration Guide

Chapter 3. Using 32-bit and 64-bit modes
You can use the IBM Open XL C/C++ compiler to develop either 32-bit or 64-bit applications.

To do so, specify -m32 (the default) or -m64, respectively, during compilation. Alternatively, you can
set the OBJECT_MODE environment variable to 32 or 64 at compile time. If both OBJECT_MODE and
-m32/-m64 are specified, -m32/-m64 takes precedence.

However, porting existing applications from 32-bit to 64-bit mode can lead to a number of problems,
mostly related to the differences in C/C++ long and pointer data type sizes and alignment between the
two modes. The following table summarizes these differences.

Table 11. Size and alignment of data types in 32-bit and 64-bit modes

Data type 32-bit mode 64-bit mode

Size Alignment Size Alignment

long, signed long, unsigned long 4 bytes 4-byte boundaries 8 bytes 8-byte boundaries

pointer 4 bytes 4-byte boundaries 8 bytes 8-byte boundaries

size_t (defined in the header file
<cstddef>)

4 bytes 4-byte boundaries 8 bytes 8-byte boundaries

ptrdiff_t (defined in the header file
<cstddef>)

4 bytes 4-byte boundaries 8 bytes 8-byte boundaries

The following sections discuss some of the common pitfalls implied by these differences, as well as
recommended programming practices to help you avoid most of these issues:

• “Assigning long values” on page 69
• “Assigning pointers ” on page 71
• “Aligning aggregate data” on page 71
• “Calling Fortran code” on page 72

Assigning long values
The limits of long type integers that are defined in the limits.h standard library header file are
different in 32-bit and 64-bit modes, as shown in the following table.

Table 12. Constant limits of long integers in 32-bit and 64-bit modes

Symbolic constant Mode Value Hexadecimal Decimal

LONG_MIN
(smallest signed long)

32-bit –(231) 0x80000000L –2,147,483,648

64-bit –(263) 0x8000000000000000L –9,223,372,036,854,775,808

LONG_MAX
(largest signed long)

32-bit 231–1 0x7FFFFFFFL 2,147,483,647

64-bit 263–1 0x7FFFFFFFFFFFFFFFL 9,223,372,036,854,775,807

ULONG_MAX
(largest unsigned long)

32-bit 232–1 0xFFFFFFFFUL 4,294,967,295

64-bit 264–1 0xFFFFFFFFFFFFFFFFUL 18,446,744,073,709,551,615

These differences have the following implications:

• Assigning a long value to a double variable can cause loss of accuracy.

© Copyright IBM Corp. 2022 69

• Assigning constant values to long variables can lead to unexpected results. This issue is explored in
more detail in “Assigning constant values to long variables” on page 70.

• Bit-shifting long values will produce different results, as described in “Bit-shifting long values” on page
71.

• Using int and long types interchangeably in expressions will lead to implicit conversion through
promotions, demotions, assignments, and argument passing, and it can result in truncation of
significant digits, sign shifting, or unexpected results, without warning. These operations can impact
performance.

In situations where a long value can overflow when assigned to other variables or passed to functions,
you must observe the following guidelines:

• Avoid implicit type conversion by using explicit type casting to change types.
• Ensure that all functions that accept or return long types are properly prototyped.
• Ensure that long type parameters can be accepted by the functions to which they are being passed.

Assigning constant values to long variables
Although type identification of constants follows explicit rules in C and C++, many programs
use hexadecimal or unsuffixed constants as "typeless" variables and rely on a twos complement
representation to truncate values that exceed the limits permitted on a 32-bit system.

As these large values are likely to be extended into a 64-bit long type in 64-bit mode, unexpected results
can occur, generally at the following boundary areas:

• constant > UINT_MAX
• constant < INT_MIN
• constant > INT_MAX

Some examples of unexpected boundary side effects are listed in the following table.

Table 13. Unexpected boundary results of constants assigned to long types

Constant assigned to long Equivalent value 32-bit mode 64-bit mode

–2,147,483,649 INT_MIN–1 +2,147,483,647 –2,147,483,649

+2,147,483,648 INT_MAX+1 –2,147,483,648 +2,147,483,648

+4,294,967,726 UINT_MAX+1 0 +4,294,967,296

0xFFFFFFFF UINT_MAX –1 +4,294,967,295

0x100000000 UINT_MAX+1 0 +4,294,967,296

0xFFFFFFFFFFFFFFFF ULONG_MAX –1 –1

Unsuffixed constants can lead to type ambiguities that can affect other parts of your program, such
as when the results of sizeof operations are assigned to variables. For example, in 32-bit mode, the
compiler types a number like 4294967295 (UINT_MAX) as an unsigned long and sizeof returns 4 bytes.
In 64-bit mode, this same number becomes a signed long and sizeof returns 8 bytes. Similar problems
occur when the compiler passes constants directly to functions.

You can avoid these problems by using the suffixes L (for long constants), UL (for unsigned long
constants), LL (for long long constants), or ULL (for unsigned long long constants) to explicitly type all
constants that have the potential of affecting assignment or expression evaluation in other parts of your
program. In the example cited in the preceding paragraph, suffixing the number as 4294967295U forces
the compiler to always recognize the constant as an unsigned int in 32-bit or 64-bit mode. These
suffixes can also be applied to hexadecimal constants.

70 IBM Open XL C/C++: Migration Guide

Bit-shifting long values
Left-bit-shifting long values produces different results in 32-bit and 64-bit modes.

The examples in Table 14 on page 71 show the effects of performing a bit-shift on long constants using
the following code segment:

long l=valueL<<1;

Table 14. Results of bit-shifting long values

Initial value Symbolic
constant

Value after bit shift by one bit

32-bit mode 64-bit mode

0x7FFFFFFFL INT_MAX 0xFFFFFFFE 0x00000000FFFFFFFE

0x80000000L INT_MIN 0x00000000 0x0000000100000000

0xFFFFFFFFL UINT_MAX 0xFFFFFFFE 0x00000001FFFFFFFE

In 32-bit mode, 0xFFFFFFFE is negative. In 64-bit mode, 0x00000000FFFFFFFE and
0x00000001FFFFFFFE are both positive.

Assigning pointers
In 64-bit mode, pointers and int types are no longer of the same size.

The implications of this are as follows:

• Exchanging pointers and int types causes segmentation faults.
• Passing pointers to a function expecting an int type results in truncation.
• Functions that return a pointer but are not explicitly prototyped as such, return an int instead and

truncate the resulting pointer, as illustrated in the following example.

In C, the following code is valid in 32-bit mode without a prototype:

a=(char*) calloc(25);

Without a function prototype for calloc, when the same code is compiled in 64-bit mode, the compiler
assumes the function returns an int, so a is silently truncated and then sign-extended. Type casting the
result does not prevent the truncation, as the address of the memory allocated by calloc was already
truncated during the return. In this example, the best solution is to include the header file, stdlib.h,
which contains the prototype for calloc. An alternative solution is to prototype the function as it is in the
header file.

To avoid these types of problems, you can take the following measures:

• Prototype any functions that return a pointer, where possible by using the appropriate header file.
• Ensure that the type of parameter you are passing in a function, pointer or int, call matches the type

expected by the function being called.
• For applications that treat pointers as an integer type, use type long or unsigned long in either

32-bit or 64-bit mode.

Aligning aggregate data
Normally, structures are aligned according to the most strictly aligned member in both 32-bit and 64-
bit modes. However, since long types and pointers change size and alignment in 64-bit modes, the

Chapter 3. Using 32-bit and 64-bit modes 71

alignment of a structure's strictest member can change, resulting in changes to the alignment of the
structure itself.

Structures that contain pointers or long types cannot be shared between 32-bit and 64-bit applications.
Unions that attempt to share long and int types or overlay pointers onto int types can change
the alignment. In general, you need to check all but the simplest structures for alignment and size
dependencies.

In 64-bit mode, member values in a structure passed by value to a va_arg argument might not be
accessed properly if the size of the structure is not a multiple of 8-bytes.

Any aggregate data written to a file in one mode cannot be correctly read in the other mode. Data
exchanged with other languages has the similar problems.

Calling Fortran code
A significant number of applications use C, C++, and Fortran together by calling each other or sharing files.

It is currently easier to modify data sizes and types on the C and C++ sides than on the Fortran side
of such applications. The following table lists C and C++ types and the equivalent Fortran types in the
different modes.

Table 15. Equivalent C/C++ and Fortran data types

C/C++ type Fortran type

32-bit 64-bit

signed int INTEGER INTEGER

signed long INTEGER INTEGER*8

pointer TYPE(C_PTR1) TYPE(C_PTR)

Note:

1. C_PTR is provided by the ISO_C_BINDING intrinsic module.

72 IBM Open XL C/C++: Migration Guide

Notices

Programming interfaces: Intended programming interfaces allow the customer to write programs to
obtain the services of IBM Open XL C/C++ for AIX.

This information was developed for products and services offered in the U.S.A. IBM may not offer the
products, services, or features discussed in this document in other countries. Consult your local IBM
representative for information on the products and services currently available in your area. Any reference
to an IBM product, program, or service is not intended to state or imply that only that IBM product,
program, or service may be used. Any functionally equivalent product, program, or service that does not
infringe any IBM intellectual property right may be used instead. However, it is the user's responsibility to
evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this
document. The furnishing of this document does not give you any license to these patents. You can
send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive, MD-NC119
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM Intellectual Property
Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan, Ltd.
19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of
express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically
made to the information herein; these changes will be incorporated in new editions of the publication.
IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM websites are provided for convenience only and do not in
any manner serve as an endorsement of those websites. The materials at those websites are not part of
the materials for this IBM product and use of those websites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Licensees of this program who want to have information about it for the purpose of enabling: (i) the
exchange of information between independently created programs and other programs (including this
one) and (ii) the mutual use of the information which has been exchanged, should contact:

Intellectual Property Dept. for Rational Software
IBM Corporation
5 Technology Park Drive
Westford, MA 01886

© Copyright IBM Corp. 2022 73

U.S.A.

Such information may be available, subject to appropriate terms and conditions, including in some cases,
payment of a fee.

The licensed program described in this document and all licensed material available for it are provided by
IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement or any
equivalent agreement between us.

Any performance data contained herein was determined in a controlled environment. Therefore, the
results obtained in other operating environments may vary significantly. Some measurements may have
been made on development-level systems and there is no guarantee that these measurements will be
the same on generally available systems. Furthermore, some measurements may have been estimated
through extrapolation. Actual results may vary. Users of this document should verify the applicable data
for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of those products, their
published announcements or other publicly available sources. IBM has not tested those products and
cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM
products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of
those products.

All statements regarding IBM's future direction or intent are subject to change or withdrawal without
notice, and represent goals and objectives only.

This information contains examples of data and reports used in daily business operations. To illustrate
them as completely as possible, the examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to the names and addresses used by an
actual business enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrates programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs
in any form without payment to IBM, for the purposes of developing, using, marketing or distributing
application programs conforming to the application programming interface for the operating platform
for which the sample programs are written. These examples have not been thoroughly tested under
all conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these
programs. The sample programs are provided "AS IS", without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

Each copy or any portion of these sample programs or any derivative work, must include a copyright
notice as follows:
© (your company name) (year). Portions of this code are derived from IBM Corp. Sample Programs. ©
Copyright IBM Corp. 1998, 2022.

PRIVACY POLICY CONSIDERATIONS:

IBM Software products, including software as a service solutions, ("Software Offerings") may use cookies
or other technologies to collect product usage information, to help improve the end user experience, or
to tailor interactions with the end user, or for other purposes. In many cases no personally identifiable
information is collected by the Software Offerings. Some of our Software Offerings can help enable you
to collect personally identifiable information. If this Software Offering uses cookies to collect personally
identifiable information, specific information about this offering's use of cookies is set forth below.

This Software Offering does not use cookies or other technologies to collect personally identifiable
information.

If the configurations deployed for this Software Offering provide you as customer the ability to collect
personally identifiable information from end users via cookies and other technologies, you should seek
your own legal advice about any laws applicable to such data collection, including any requirements for
notice and consent.

74 IBM Open XL C/C++: Migration Guide

For more information about the use of various technologies, including cookies, for these purposes,
see IBM's Privacy Policy at http://www.ibm.com/privacy and IBM's Online Privacy Statement at http://
www.ibm.com/privacy/details in the section entitled "Cookies, Web Beacons and Other Technologies,"
and the "IBM Software Products and Software-as-a-Service Privacy Statement" at http://www.ibm.com/
software/info/product-privacy.

Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business
Machines Corp., registered in many jurisdictions worldwide. Other product and service names might be
trademarks of IBM or other companies. A current list of IBM trademarks is available on the web at
“Copyright and trademark information” at http://www.ibm.com/legal/copytrade.shtml.

Adobe and the Adobe logo are either registered trademarks or trademarks of Adobe Systems
Incorporated in the United States, other countries, or both.

Intel, Intel logo, Intel Inside, Intel Inside logo, Intel Centrino, Intel Centrino logo, Celeron, Intel Xeon,
Intel SpeedStep, Itanium, and Pentium are trademarks or registered trademarks of Intel Corporation or
its subsidiaries in the United States and other countries.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Notices 75

http://www.ibm.com/privacy
http://www.ibm.com/privacy/details
http://www.ibm.com/privacy/details
http://www.ibm.com/software/info/product-privacy
http://www.ibm.com/software/info/product-privacy
http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/legal/copytrade.shtml

76 IBM Open XL C/C++: Migration Guide

Index

Numerics
32-bit mode

bit-shifting 71
64-bit mode

bit-shifting 71

B
binary compatibility 1
bit-shifting 71
built-in functions

unsupported 46

C
c++filt name demangling utility 5
Clang options 7, 8, 50, 61
cleanpdf 5

D
DBX debugger 60
diagnostic messages 58
DWARF debugging 60

F
Fortran data types 72

G
GDB debugger 60
genhtml 5

I
ibm-clang 4
ibm-clang++_r 4–6
invocation commands 4

L
Link Time Optimization 61
linkxlC 5
linkxlC utility 5
LLVM 1, 67
LLVM optimization 61
LLVM options 61

M
macros 43, 46, 60
makeC++SharedLib 6
makeC++SharedLib utility 5

mergepdf 5
messages

diagnostic 58
migration 56

P
pragmas

unsupported 33
profile guided optimization 1
Profile guided optimization 19, 63
Profile-directed feedback 63

S
shared libraries 6
showpdf 5

U
utilization reporting tool 5

X
xlc 4
xlC 4
xlclang 4
xlclang++ 4

Index 77

78 IBM Open XL C/C++: Migration Guide

IBM®

Product Number: 5765-J18; 5725-
C72

GC28-3309-01

	Contents
	About this document
	Who should read this document
	How to use this document
	Conventions
	Related information
	Available help information
	Standards and specifications

	Technical support
	How to send your comments
	Inclusive language

	Chapter 1. Migrating from Classic XL compilers
	Language support
	Binary compatibility
	Invocation commands
	Compiler utilities and commands
	Supported utilities and commands
	Unsupported utilities and commands
	Migration considerations of individual compiler utilities
	linkxlC
	makeC++SharedLib

	Compiler options
	Supported compiler options
	Unsupported compiler options
	Changed compiler options
	Discrepancies for option defaults
	Mapping of options
	Migration considerations for individual compiler options
	-+ (plus sign) (C++ only)
	-b
	-E
	-f
	-O
	-p, -pg, -qprofile
	-P
	-qaggrcopy
	-qalias
	-qalign
	-qalloca, -ma (C only)
	-qassert
	-qcompact
	-qc_stdinc (C only), -qcpp_stdinc (C++ only)
	-qcinc (C++ only)
	-qcpluscmt (C only)
	-qdump_class_hierarchy
	-qenum
	-qexpfile
	-qflag, -qhaltonmsg, -qinfo, -qsuppress
	-qfloat
	-qflttrap
	-qfullpath
	-qfunctrace
	-qhot
	-qignerrno
	-qinitauto
	-qinline
	-qisolated_call
	-qkeepinlines (C++ only)
	-qkeepparm
	-qlargepage
	-qlonglong
	-qmakedep
	-qminimaltoc
	-qnamemangling (C++ only)
	-qobjmodel (C++ only)
	-qoptimize
	-qpdf1, -qpdf2, -qshowpdf
	-qppline
	-qprefetch
	-qpriority (C++ only)
	-qrestrict
	-qsimd
	-qsmp
	-qsourcetype
	-qstatsym
	-qstrict
	-qtbtable
	-qtls
	-qtmplinst (C++ only)
	-qunroll
	-qutf
	-v, -V
	-y

	Compiler pragmas
	Supported compiler pragmas
	Unsupported pragmas
	Migration considerations of individual compiler pragmas
	#pragma alloca (C only)
	#pragma chars
	#pragma comment
	#pragma define (C++ only), #pragma instantiate (C++ only), #pragma do_not_instantiate (C++ only)
	#pragma disjoint
	#pragma enum
	#pragma execution_frequency
	#pragma expected_value
	#pragma fini (C only), #pragma init (C only)
	#pragma GCC visibility push, #pragma GCC visibility pop
	#pragma hashome (C++ only), #pragma ishome (C++ only)
	#pragma ibm independent_loop
	#pragma implementation (C++ only)
	#pragma info, #pragma report (C++ only)
	#pragma isolated_call
	#pragma langlvl (C only)
	#pragma leaves
	#pragma map
	#pragma mc_func
	#pragma namemangling (C++ only), #pragma namemanglingrule (C++ only)
	#pragma nofunctrace
	#pragma nosimd
	#pragma object_model (C++ only)
	#pragma operator_new (C++ only)
	#pragma option_override
	#pragma priority (C++ only)
	#pragma reg_killed_by
	#pragma simd_level
	#pragma STDC CX_LIMITED_RANGE
	#pragma strings
	#pragma unrollandfuse
	#pragma weak

	Compiler macros
	Supported compiler macros
	Unsupported compiler macros
	Changed compiler macros

	Compiler built-in functions
	Supported built-in functions
	Unsupported built-in functions
	Changed built-in functions
	Mapping of built-in functions

	Program linking
	Compiler listings
	Altivec compatibility
	Diagnostic message control
	Exception compatibility
	Debug support
	Memory allocation
	OpenMP support
	IBM Debugger for AIX
	Optimization and tuning compatibility
	Link Time Optimization (LTO)
	Profile Guided Optimization (PGO)
	Uninitialized variables

	Changes to compiler default behaviors

	Chapter 2. Migrating from earlier Open XL releases
	Discrepancies for option defaults
	Compatibility limitations of libc++
	Support for visibility attributes

	Chapter 3. Using 32-bit and 64-bit modes
	Assigning long values
	Assigning constant values to long variables
	Bit-shifting long values

	Assigning pointers
	Aligning aggregate data
	Calling Fortran code

	Notices
	Trademarks

	Index

