
Clang Documentation

version 15

The Clang Team

The community version of the Clang documentation from https://clang.llvm.org is provided as-is
and for reference only. It does not constitute support of all features in the Open XL C/C++

product. Refer to the Open XL C/C++ compiler documentation for features that are officially
supported.





Contents
Clang pre-release 15 Release Notes 1

Introduction 2

What’s New in Clang pre-release 15? 2

Potentially Breaking Changes 2

Major New Features 2

Bug Fixes 2

Improvements to Clang’s diagnostics 4

Non-comprehensive list of changes in this release 5

New Compiler Flags 5

Deprecated Compiler Flags 5

Modified Compiler Flags 5

Removed Compiler Flags 5

New Pragmas in Clang 5

Attribute Changes in Clang 6

Windows Support 6

AIX Support 6

C Language Changes in Clang 6

C2x Feature Support 6

C++ Language Changes in Clang 7

C++20 Feature Support 7

C++2b Feature Support 7

CUDA/HIP Language Changes in Clang 7

Objective-C Language Changes in Clang 8

OpenCL C Language Changes in Clang 8

ABI Changes in Clang 8

OpenMP Support in Clang 8

CUDA Support in Clang 8

X86 Support in Clang 8

DWARF Support in Clang 8

Arm and AArch64 Support in Clang 8

Floating Point Support in Clang 8

Internal API Changes 8

Build System Changes 8

AST Matchers 8

clang-format 8

libclang 9

Static Analyzer 9

Undefined Behavior Sanitizer (UBSan) 9

Core Analysis Improvements 9

New Issues Found 9

Python Binding Changes 9

Significant Known Problems 9

Additional Information 9

Using Clang as a Compiler 10



Clang Compiler User’s Manual 10

Introduction 12

Terminology 12

Basic Usage 12

Command Line Options 13

Options to Control Error and Warning Messages 13

Formatting of Diagnostics 13

Individual Warning Groups 17

Options to Control Clang Crash Diagnostics 18

Options to Emit Optimization Reports 18

Current limitations 19

Options to Emit Resource Consumption Reports 19

Other Options 20

Configuration files 20

Language and Target-Independent Features 21

Controlling Errors and Warnings 21

Controlling How Clang Displays Diagnostics 21

Diagnostic Mappings 22

Diagnostic Categories 22

Controlling Diagnostics via Command Line Flags 22

Controlling Diagnostics via Pragmas 22

Controlling Diagnostics in System Headers 23

Controlling Deprecation Diagnostics in Clang-Provided C Runtime Headers 23

Enabling All Diagnostics 24

Controlling Static Analyzer Diagnostics 24

Precompiled Headers 24

Generating a PCH File 24

Using a PCH File 24

Relocatable PCH Files 25

Controlling Floating Point Behavior 25

A note about __FLT_EVAL_METHOD__ 29

A note about Floating Point Constant Evaluation 29

Controlling Code Generation 30

Profile Guided Optimization 33

Differences Between Sampling and Instrumentation 34

Using Sampling Profilers 34

Sample Profile Formats 34

Sample Profile Text Format 35

Profiling with Instrumentation 36

Disabling Instrumentation 38

Instrumenting only selected files or functions 38

Profile remapping 39

GCOV-based Profiling 40

Controlling Debug Information 40

Controlling Size of Debug Information 40

Controlling Macro Debug Info Generation 41



Controlling Debugger “Tuning” 41

Controlling LLVM IR Output 41

Controlling Value Names in LLVM IR 41

Comment Parsing Options 42

C Language Features 42

Extensions supported by clang 42

Differences between various standard modes 42

GCC extensions not implemented yet 43

Intentionally unsupported GCC extensions 43

Microsoft extensions 44

C++ Language Features 44

Controlling implementation limits 44

Objective-C Language Features 44

Objective-C++ Language Features 44

OpenMP Features 44

Controlling implementation limits 45

OpenCL Features 45

OpenCL Specific Options 45

OpenCL Targets 46

Specific Targets 46

Generic Targets 46

OpenCL Header 47

OpenCL Extensions 47

OpenCL-Specific Attributes 47

nosvm 47

opencl_unroll_hint 48

convergent 48

noduplicate 48

C++ for OpenCL 49

Constructing and destroying global objects 49

Libraries 50

Target-Specific Features and Limitations 50

CPU Architectures Features and Limitations 50

X86 50

ARM 50

PowerPC 50

Other platforms 50

Operating System Features and Limitations 51

Windows 51

Cygwin 51

MinGW32 51

MinGW-w64 51

AIX 51

SPIR-V support 52

clang-cl 52

Command-Line Options 53



The /clang: Option 57

The /Zc:dllexportInlines- Option 57

Finding Clang runtime libraries 58

Assembling a Complete Toolchain 59

Introduction 59

Tools 60

Clang frontend 60

Language frontends for other languages 60

Assembler 60

Linker 60

Runtime libraries 61

Compiler runtime 61

compiler-rt (LLVM) 61

libgcc_s (GNU) 61

Atomics library 61

compiler-rt (LLVM) 61

libatomic (GNU) 62

Unwind library 62

libunwind (LLVM) 62

libgcc_s (GNU) 62

libunwind (nongnu.org) 62

libunwind (PathScale) 62

Sanitizer runtime 62

C standard library 62

C++ ABI library 62

libc++abi (LLVM) 63

libsupc++ (GNU) 63

libcxxrt (PathScale) 63

C++ standard library 63

libc++ (LLVM) 63

libstdc++ (GNU) 63

Clang Language Extensions 64

Objective-C Literals 65

Introduction 65

NSNumber Literals 65

Examples 65

Discussion 65

Boxed Expressions 66

Boxed Enums 66

Boxed C Strings 67

Boxed C Structures 67

Container Literals 68

Examples 68

Discussion 68

Object Subscripting 68

Examples 68



Subscripting Methods 69

Array-Style Subscripting 69

Dictionary-Style Subscripting 69

Discussion 70

Caveats 70

Grammar Additions 70

Availability Checks 71

Language Specification for Blocks 72

Revisions 72

Overview 72

The Block Type 72

Block Variable Declarations 72

Block Literal Expressions 73

The Invoke Operator 74

The Copy and Release Operations 74

The __block Storage Qualifier 74

Control Flow 74

Objective-C Extensions 74

C++ Extensions 75

Block Implementation Specification 76

History 76

High Level 77

Imported Variables 78

Imported const copy variables 79

Imported const copy of Block reference 79

Importing __attribute__((NSObject)) variables 80

Imported __block marked variables 81

Layout of __block marked variables 81

Access to __block variables from within its lexical scope 81

Importing __block variables into Blocks 82

Importing __attribute__((NSObject)) __block variables 83

__block escapes 83

Nesting 83

Objective C Extensions to Blocks 83

Importing Objects 83

Blocks as Objects 83

__weak __block Support 84

C++ Support 85

Runtime Helper Functions 86

Copyright 87

Objective-C Automatic Reference Counting (ARC) 88

About this document 89

Purpose 89

Background 89

Evolution 90

General 91



Retainable object pointers 91

Retain count semantics 92

Retainable object pointers as operands and arguments 92

Consumed parameters 93

Retained return values 93

Unretained return values 94

Bridged casts 95

Restrictions 95

Conversion of retainable object pointers 95

Conversion to retainable object pointer type of expressions with known semantics 95

Conversion from retainable object pointer type in certain contexts 96

Ownership qualification 96

Spelling 97

Property declarations 98

Semantics 98

Restrictions 99

Weak-unavailable types 99

Storage duration of __autoreleasing objects 99

Conversion of pointers to ownership-qualified types 100

Passing to an out parameter by writeback 101

Ownership-qualified fields of structs and unions 102

Formal rules for non-trivial types in C 102

Application of the formal C rules to nontrivial ownership qualifiers 104

C/C++ compatibility for structs and unions with non-trivial members 104

Ownership inference 105

Objects 105

Indirect parameters 105

Template arguments 106

Method families 106

Explicit method family control 107

Semantics of method families 107

Semantics of init 107

Related result types 108

Optimization 108

Object liveness 109

No object lifetime extension 110

Precise lifetime semantics 110

Miscellaneous 111

Special methods 111

Memory management methods 111

dealloc 111

@autoreleasepool 112

Externally-Retained Variables 113

self 113

Fast enumeration iteration variables 114

Blocks 114



Exceptions 114

Interior pointers 115

C retainable pointer types 115

Auditing of C retainable pointer interfaces 116

Runtime support 116

id objc_autorelease(id value); 117

void objc_autoreleasePoolPop(void *pool); 117

void *objc_autoreleasePoolPush(void); 117

id objc_autoreleaseReturnValue(id value); 117

void objc_copyWeak(id *dest, id *src); 118

void objc_destroyWeak(id *object); 118

id objc_initWeak(id *object, id value); 118

id objc_loadWeak(id *object); 118

id objc_loadWeakRetained(id *object); 119

void objc_moveWeak(id *dest, id *src); 119

void objc_release(id value); 119

id objc_retain(id value); 119

id objc_retainAutorelease(id value); 119

id objc_retainAutoreleaseReturnValue(id value); 119

id objc_retainAutoreleasedReturnValue(id value); 119

id objc_retainBlock(id value); 120

void objc_storeStrong(id *object, id value); 120

id objc_storeWeak(id *object, id value); 120

id objc_unsafeClaimAutoreleasedReturnValue(id value); 120

Matrix Types 121

Draft Specification 121

Matrix Type 121

Matrix Type Attribute 121

Standard Conversions 121

Arithmetic Conversions 122

Matrix Type Element Access Operator 122

Matrix Type Binary Operators 122

Matrix Type Builtin Operations 123

TODOs 124

Decisions for the Implementation in Clang 124

Introduction 124

Feature Checking Macros 124

__has_builtin 124

__has_feature and __has_extension 125

__has_cpp_attribute 126

__has_c_attribute 126

__has_attribute 126

__has_declspec_attribute 127

__is_identifier 127

Include File Checking Macros 127

__has_include 127



__has_include_next 128

__has_warning 128

Builtin Macros 128

Vectors and Extended Vectors 129

Boolean Vectors 130

Vector Literals 130

Vector Operations 131

Vector Builtins 131

Matrix Types 133

Half-Precision Floating Point 134

Messages on deprecated and unavailable Attributes 135

Attributes on Enumerators 135

C++11 Attributes on using-declarations 135

‘User-Specified’ System Frameworks 135

Checks for Standard Language Features 136

C++98 136

C++ exceptions 136

C++ RTTI 136

C++11 136

C++11 SFINAE includes access control 136

C++11 alias templates 136

C++11 alignment specifiers 136

C++11 attributes 136

C++11 generalized constant expressions 136

C++11 decltype() 137

C++11 default template arguments in function templates 137

C++11 defaulted functions 137

C++11 delegating constructors 137

C++11 deleted functions 137

C++11 explicit conversion functions 137

C++11 generalized initializers 137

C++11 implicit move constructors/assignment operators 137

C++11 inheriting constructors 137

C++11 inline namespaces 137

C++11 lambdas 137

C++11 local and unnamed types as template arguments 138

C++11 noexcept 138

C++11 in-class non-static data member initialization 138

C++11 nullptr 138

C++11 override control 138

C++11 reference-qualified functions 138

C++11 range-based for loop 138

C++11 raw string literals 138

C++11 rvalue references 138

C++11 static_assert() 138

C++11 thread_local 138



C++11 type inference 138

C++11 strongly typed enumerations 139

C++11 trailing return type 139

C++11 Unicode string literals 139

C++11 unrestricted unions 139

C++11 user-defined literals 139

C++11 variadic templates 139

C++14 139

C++14 binary literals 139

C++14 contextual conversions 139

C++14 decltype(auto) 139

C++14 default initializers for aggregates 139

C++14 digit separators 139

C++14 generalized lambda capture 140

C++14 generic lambdas 140

C++14 relaxed constexpr 140

C++14 return type deduction 140

C++14 runtime-sized arrays 140

C++14 variable templates 140

C11 140

C11 alignment specifiers 140

C11 atomic operations 140

C11 generic selections 141

C11 _Static_assert() 141

C11 _Thread_local 141

Modules 141

Type Trait Primitives 141

Blocks 144

ASM Goto with Output Constraints 144

Objective-C Features 145

Related result types 145

Automatic reference counting 146

Weak references 146

Enumerations with a fixed underlying type 147

Interoperability with C++11 lambdas 147

Object Literals and Subscripting 147

Objective-C Autosynthesis of Properties 148

Objective-C retaining behavior attributes 148

Objective-C @available 148

Objective-C++ ABI: protocol-qualifier mangling of parameters 149

Initializer lists for complex numbers in C 149

OpenCL Features 150

__cl_clang_bitfields 150

__cl_clang_function_pointers 150

__cl_clang_variadic_functions 151

__cl_clang_non_portable_kernel_param_types 151



Remove address space builtin function 152

Legacy 1.x atomics with generic address space 152

Builtin Functions 152

__builtin_alloca 152

__builtin_alloca_with_align 153

__builtin_assume 153

__builtin_call_with_static_chain 154

__builtin_readcyclecounter 154

__builtin_dump_struct 154

__builtin_shufflevector 155

__builtin_convertvector 156

__builtin_bitreverse 156

__builtin_rotateleft 157

__builtin_rotateright 157

__builtin_unreachable 158

__builtin_unpredictable 158

__builtin_expect 158

__builtin_expect_with_probability 159

__builtin_prefetch 159

__sync_swap 159

__builtin_addressof 160

__builtin_function_start 160

__builtin_operator_new and __builtin_operator_delete 160

__builtin_preserve_access_index 161

__builtin_debugtrap 161

__builtin_trap 161

__builtin_sycl_unique_stable_name 162

Multiprecision Arithmetic Builtins 162

Checked Arithmetic Builtins 162

Floating point builtins 163

__builtin_canonicalize 163

String builtins 163

Memory builtins 164

Guaranteed inlined copy 164

Atomic Min/Max builtins with memory ordering 164

__c11_atomic builtins 165

Low-level ARM exclusive memory builtins 165

Non-temporal load/store builtins 166

C++ Coroutines support builtins 166

Source location builtins 167

Alignment builtins 168

Non-standard C++11 Attributes 169

Target-Specific Extensions 169

ARM/AArch64 Language Extensions 169

Memory Barrier Intrinsics 169

X86/X86-64 Language Extensions 169



Memory references to specified segments 169

PowerPC Language Extensions 170

Set the Floating Point Rounding Mode 170

PowerPC cache builtins 170

Extensions for Static Analysis 170

Extensions for Dynamic Analysis 170

Extensions for selectively disabling optimization 171

Extensions for loop hint optimizations 172

Vectorization, Interleaving, and Predication 172

Loop Unrolling 173

Loop Distribution 173

Additional Information 174

Extensions to specify floating-point flags 174

Specifying an attribute for multiple declarations (#pragma clang attribute) 176

Subject Match Rules 177

Supported Attributes 178

Specifying section names for global objects (#pragma clang section) 178

Specifying Linker Options on ELF Targets 179

Evaluating Object Size Dynamically 179

Deprecating Macros 179

Restricted Expansion Macros 179

Final Macros 180

Line Control 180

Extended Integer Types 181

Intrinsics Support within Constant Expressions 181

Clang command line argument reference 183

Introduction 184

Actions 193

Compilation flags 194

Preprocessor flags 197

Include path management 198

Dependency file generation 200

Dumping preprocessor state 200

Diagnostic flags 201

Target-independent compilation options 201

OpenCL flags 219

SYCL flags 220

Target-dependent compilation options 220

AARCH64 226

AMDGPU 227

ARM 227

Hexagon 228

Hexagon 228

M68k 228

MIPS 229

PowerPC 230



WebAssembly 231

WebAssembly Driver 231

X86 231

RISCV 233

Long double flags 234

Optimization level 234

Debug information generation 234

Kind and level of debug information 234

Debug level 234

Debugger to tune debug information for 235

Debug information flags 235

Static analyzer flags 235

Fortran compilation flags 235

Linker flags 237

<clang-dxc options> 238

Attributes in Clang 239

Introduction 244

AMD GPU Attributes 245

amdgpu_flat_work_group_size 245

amdgpu_num_sgpr 245

amdgpu_num_vgpr 246

amdgpu_waves_per_eu 246

Calling Conventions 247

aarch64_sve_pcs 247

aarch64_vector_pcs 247

fastcall 248

ms_abi 248

pcs 248

preserve_all 249

preserve_most 249

regcall 250

regparm 250

stdcall 250

thiscall 250

vectorcall 251

Consumed Annotation Checking 251

callable_when 251

consumable 252

param_typestate 252

return_typestate 252

set_typestate 252

test_typestate 253

Customizing Swift Import 253

swift_async 253

swift_async_error 254

swift_async_name 254



swift_attr 255

swift_bridge 255

swift_bridged 255

swift_error 256

swift_name 256

swift_newtype 257

swift_objc_members 257

swift_private 257

Declaration Attributes 258

Owner 258

Pointer 258

_Packed 259

__single_inhertiance, __multiple_inheritance, __virtual_inheritance 260

asm 260

deprecated 261

empty_bases 261

enum_extensibility 262

external_source_symbol 263

flag_enum 263

layout_version 264

lto_visibility_public 264

managed 264

novtable 264

ns_error_domain 265

objc_boxable 265

objc_direct 266

objc_direct_members 267

objc_non_runtime_protocol 267

objc_nonlazy_class 268

objc_runtime_name 268

objc_runtime_visible 268

objc_subclassing_restricted 269

preferred_name 269

randomize_layout, no_randomize_layout 269

randomize_layout, no_randomize_layout 270

selectany 270

transparent_union 270

trivial_abi 271

using_if_exists 272

Field Attributes 272

no_unique_address 272

Function Attributes 273

#pragma omp declare simd 273

#pragma omp declare target 273

#pragma omp declare variant 274

SV_GroupIndex 275



_Export 275

_Noreturn 275

abi_tag 275

acquire_capability, acquire_shared_capability 276

alloc_align 276

alloc_size 277

allocator 277

always_inline, __force_inline 278

artificial 278

assert_capability, assert_shared_capability 279

assume 279

assume_aligned 279

availability 280

btf_decl_tag 282

callback 282

carries_dependency 283

cf_consumed 283

cf_returns_not_retained 284

cf_returns_retained 285

cfi_canonical_jump_table 286

clang::builtin_alias, clang_builtin_alias 286

clang_arm_builtin_alias 287

cmse_nonsecure_entry 287

code_seg 287

convergent 288

cpu_dispatch 288

cpu_specific 289

diagnose_as_builtin 290

diagnose_if 291

disable_sanitizer_instrumentation 292

disable_tail_calls 292

enable_if 293

enforce_tcb 295

enforce_tcb_leaf 295

error, warning 295

exclude_from_explicit_instantiation 296

export_name 297

flatten 297

force_align_arg_pointer 297

format 298

gnu_inline 299

guard 299

ifunc 300

import_module 300

import_name 300

internal_linkage 301



interrupt (ARM) 301

interrupt (AVR) 302

interrupt (MIPS) 302

interrupt (RISCV) 302

kernel 303

lifetimebound 303

long_call, far 304

malloc 304

micromips 305

mig_server_routine 305

min_vector_width 305

no_builtin 306

no_caller_saved_registers 306

no_profile_instrument_function 307

no_sanitize 307

no_sanitize_address, no_address_safety_analysis 308

no_sanitize_memory 308

no_sanitize_thread 308

no_speculative_load_hardening 309

no_split_stack 310

no_stack_protector 310

noalias 310

nocf_check 310

nodiscard, warn_unused_result 311

noduplicate 311

noinline 312

nomicromips 312

noreturn, _Noreturn 313

not_tail_called 313

nothrow 314

ns_consumed 314

ns_consumes_self 315

ns_returns_autoreleased 316

ns_returns_not_retained 317

ns_returns_retained 317

numthreads 318

objc_method_family 319

objc_requires_super 319

optnone 320

os_consumed 320

os_consumes_this 321

os_returns_not_retained 322

os_returns_retained 322

os_returns_retained_on_non_zero 323

os_returns_retained_on_zero 324

overloadable 325



patchable_function_entry 326

preserve_access_index 327

reinitializes 327

release_capability, release_shared_capability 328

retain 328

shader 328

short_call, near 329

signal 329

speculative_load_hardening 329

sycl_kernel 330

target 331

target_clones 332

try_acquire_capability, try_acquire_shared_capability 332

used 333

xray_always_instrument, xray_never_instrument, xray_log_args 333

xray_always_instrument, xray_never_instrument, xray_log_args 334

zero_call_used_regs 334

Handle Attributes 335

acquire_handle 335

release_handle 335

use_handle 335

Nullability Attributes 336

_Nonnull 336

_Null_unspecified 337

_Nullable 337

_Nullable_result 337

nonnull 338

returns_nonnull 338

OpenCL Address Spaces 339

[[clang::opencl_global_device]], [[clang::opencl_global_host]] 339

[[clang::opencl_global_device]], [[clang::opencl_global_host]] 339

__constant, constant, [[clang::opencl_constant]] 340

__generic, generic, [[clang::opencl_generic]] 340

__global, global, [[clang::opencl_global]] 340

__local, local, [[clang::opencl_local]] 341

__private, private, [[clang::opencl_private]] 341

Statement Attributes 341

#pragma clang loop 341

#pragma unroll, #pragma nounroll 342

__read_only, __write_only, __read_write (read_only, write_only, read_write) 343

fallthrough 344

intel_reqd_sub_group_size 345

likely and unlikely 345

likely and unlikely 347

musttail 350

nomerge 350



opencl_unroll_hint 351

suppress 351

sycl_special_class 351

Type Attributes 352

__ptr32 352

__ptr64 353

__sptr 353

__uptr 353

align_value 353

arm_sve_vector_bits 354

btf_type_tag 354

clang_arm_mve_strict_polymorphism 354

cmse_nonsecure_call 355

device_builtin_surface_type 355

device_builtin_texture_type 356

noderef 356

objc_class_stub 357

Type Safety Checking 357

argument_with_type_tag 358

pointer_with_type_tag 358

type_tag_for_datatype 359

Variable Attributes 361

always_destroy 361

called_once 361

dllexport 362

dllimport 362

init_priority 363

init_seg 363

leaf 363

loader_uninitialized 364

maybe_unused, unused 364

no_destroy 364

nodebug 365

noescape 365

nosvm 366

objc_externally_retained 366

pass_object_size, pass_dynamic_object_size 367

require_constant_initialization, constinit (C++20) 369

section, __declspec(allocate) 369

standalone_debug 370

swift_async_context 370

swift_context 370

swift_error_result 370

swift_indirect_result 371

swiftasynccall 372

swiftcall 372



thread 373

tls_model 373

uninitialized 373

Diagnostic flags in Clang 375

Introduction 396

Diagnostic flags 396

-W 396

-W#pragma-messages 396

-W#warnings 396

-WCFString-literal 396

-WCL4 396

-WIndependentClass-attribute 396

-WNSObject-attribute 396

-Wabi 397

-Wabsolute-value 397

-Wabstract-final-class 397

-Wabstract-vbase-init 397

-Waddress 397

-Waddress-of-packed-member 397

-Waddress-of-temporary 397

-Waggregate-return 397

-Waggressive-restrict 397

-Waix-compat 398

-Walign-mismatch 398

-Wall 398

-Walloca 398

-Walloca-with-align-alignof 398

-Walways-inline-coroutine 398

-Wambiguous-delete 398

-Wambiguous-ellipsis 398

-Wambiguous-macro 399

-Wambiguous-member-template 399

-Wambiguous-reversed-operator 399

-Wanalyzer-incompatible-plugin 399

-Wanon-enum-enum-conversion 399

-Wanonymous-pack-parens 399

-Warc 399

-Warc-bridge-casts-disallowed-in-nonarc 399

-Warc-maybe-repeated-use-of-weak 400

-Warc-non-pod-memaccess 400

-Warc-performSelector-leaks 400

-Warc-repeated-use-of-weak 400

-Warc-retain-cycles 400

-Warc-unsafe-retained-assign 400

-Wargument-outside-range 400

-Wargument-undefined-behaviour 400



-Warray-bounds 401

-Warray-bounds-pointer-arithmetic 401

-Wasm 401

-Wasm-operand-widths 401

-Wassign-enum 401

-Wassume 401

-Wat-protocol 401

-Watimport-in-framework-header 401

-Watomic-access 402

-Watomic-alignment 402

-Watomic-implicit-seq-cst 402

-Watomic-memory-ordering 402

-Watomic-properties 402

-Watomic-property-with-user-defined-accessor 402

-Wattribute-packed-for-bitfield 402

-Wattribute-warning 402

-Wattributes 403

-Wauto-disable-vptr-sanitizer 403

-Wauto-import 403

-Wauto-storage-class 403

-Wauto-var-id 403

-Wavailability 403

-Wavr-rtlib-linking-quirks 404

-Wbackend-plugin 404

-Wbackslash-newline-escape 404

-Wbad-function-cast 404

-Wbinary-literal 404

-Wbind-to-temporary-copy 404

-Wbinding-in-condition 404

-Wbit-int-extension 405

-Wbitfield-constant-conversion 405

-Wbitfield-enum-conversion 405

-Wbitfield-width 405

-Wbitwise-conditional-parentheses 405

-Wbitwise-instead-of-logical 405

-Wbitwise-op-parentheses 405

-Wblock-capture-autoreleasing 405

-Wbool-conversion 405

-Wbool-conversions 406

-Wbool-operation 406

-Wbraced-scalar-init 406

-Wbranch-protection 406

-Wbridge-cast 406

-Wbuiltin-assume-aligned-alignment 406

-Wbuiltin-macro-redefined 406

-Wbuiltin-memcpy-chk-size 407



-Wbuiltin-requires-header 407

-Wc++-compat 407

-Wc++0x-compat 407

-Wc++0x-extensions 407

-Wc++0x-narrowing 407

-Wc++11-compat 407

-Wc++11-compat-deprecated-writable-strings 408

-Wc++11-compat-pedantic 408

-Wc++11-compat-reserved-user-defined-literal 408

-Wc++11-extensions 408

-Wc++11-extra-semi 409

-Wc++11-inline-namespace 409

-Wc++11-long-long 409

-Wc++11-narrowing 409

-Wc++14-attribute-extensions 410

-Wc++14-binary-literal 410

-Wc++14-compat 410

-Wc++14-compat-pedantic 410

-Wc++14-extensions 410

-Wc++17-attribute-extensions 410

-Wc++17-compat 410

-Wc++17-compat-mangling 410

-Wc++17-compat-pedantic 411

-Wc++17-extensions 411

-Wc++1y-extensions 411

-Wc++1z-compat 411

-Wc++1z-compat-mangling 411

-Wc++1z-extensions 412

-Wc++20-attribute-extensions 412

-Wc++20-compat 412

-Wc++20-compat-pedantic 412

-Wc++20-designator 412

-Wc++20-extensions 412

-Wc++2a-compat 413

-Wc++2a-compat-pedantic 413

-Wc++2a-extensions 413

-Wc++2b-extensions 413

-Wc++98-c++11-c++14-c++17-compat 414

-Wc++98-c++11-c++14-c++17-compat-pedantic 414

-Wc++98-c++11-c++14-compat 414

-Wc++98-c++11-c++14-compat-pedantic 414

-Wc++98-c++11-compat 414

-Wc++98-c++11-compat-binary-literal 414

-Wc++98-c++11-compat-pedantic 414

-Wc++98-compat 414

-Wc++98-compat-bind-to-temporary-copy 416



-Wc++98-compat-extra-semi 416

-Wc++98-compat-local-type-template-args 416

-Wc++98-compat-pedantic 416

-Wc++98-compat-unnamed-type-template-args 417

-Wc11-extensions 417

-Wc2x-extensions 417

-Wc99-compat 417

-Wc99-designator 418

-Wc99-extensions 418

-Wcall-to-pure-virtual-from-ctor-dtor 418

-Wcalled-once-parameter 418

-Wcast-align 419

-Wcast-calling-convention 419

-Wcast-function-type 419

-Wcast-of-sel-type 419

-Wcast-qual 419

-Wcast-qual-unrelated 419

-Wchar-align 419

-Wchar-subscripts 419

-Wclang-cl-pch 420

-Wclass-conversion 420

-Wclass-varargs 420

-Wcmse-union-leak 420

-Wcomma 420

-Wcomment 420

-Wcomments 421

-Wcompare-distinct-pointer-types 421

-Wcompletion-handler 421

-Wcomplex-component-init 421

-Wcompound-token-split 421

-Wcompound-token-split-by-macro 421

-Wcompound-token-split-by-space 421

-Wconcepts-ts-compat 421

-Wconditional-type-mismatch 421

-Wconditional-uninitialized 422

-Wconfig-macros 422

-Wconstant-conversion 422

-Wconstant-evaluated 422

-Wconstant-logical-operand 422

-Wconstexpr-not-const 422

-Wconsumed 422

-Wconversion 423

-Wconversion-null 423

-Wcoroutine 423

-Wcoroutine-missing-unhandled-exception 423

-Wcovered-switch-default 423



-Wcpp 423

-Wcstring-format-directive 423

-Wctad-maybe-unsupported 424

-Wctor-dtor-privacy 424

-Wctu 424

-Wcuda-compat 424

-Wcustom-atomic-properties 424

-Wcxx-attribute-extension 424

-Wdangling 424

-Wdangling-else 424

-Wdangling-field 425

-Wdangling-gsl 425

-Wdangling-initializer-list 425

-Wdarwin-sdk-settings 425

-Wdate-time 425

-Wdealloc-in-category 425

-Wdebug-compression-unavailable 425

-Wdeclaration-after-statement 426

-Wdefaulted-function-deleted 426

-Wdelegating-ctor-cycles 426

-Wdelete-abstract-non-virtual-dtor 426

-Wdelete-incomplete 426

-Wdelete-non-abstract-non-virtual-dtor 426

-Wdelete-non-virtual-dtor 426

-Wdelimited-escape-sequence-extension 426

-Wdeprecate-lax-vec-conv-all 427

-Wdeprecated 427

-Wdeprecated-altivec-src-compat 427

-Wdeprecated-anon-enum-enum-conversion 427

-Wdeprecated-array-compare 427

-Wdeprecated-attributes 428

-Wdeprecated-comma-subscript 428

-Wdeprecated-copy 428

-Wdeprecated-copy-dtor 428

-Wdeprecated-copy-with-dtor 428

-Wdeprecated-copy-with-user-provided-copy 428

-Wdeprecated-copy-with-user-provided-dtor 428

-Wdeprecated-coroutine 428

-Wdeprecated-declarations 428

-Wdeprecated-dynamic-exception-spec 429

-Wdeprecated-enum-compare 429

-Wdeprecated-enum-compare-conditional 429

-Wdeprecated-enum-enum-conversion 429

-Wdeprecated-enum-float-conversion 429

-Wdeprecated-experimental-coroutine 429

-Wdeprecated-implementations 429



-Wdeprecated-increment-bool 430

-Wdeprecated-non-prototype 430

-Wdeprecated-objc-isa-usage 430

-Wdeprecated-objc-pointer-introspection 430

-Wdeprecated-objc-pointer-introspection-performSelector 430

-Wdeprecated-pragma 430

-Wdeprecated-register 430

-Wdeprecated-this-capture 431

-Wdeprecated-type 431

-Wdeprecated-volatile 431

-Wdeprecated-writable-strings 431

-Wdeprecated-xl-loop-pragmas 431

-Wdirect-ivar-access 431

-Wdisabled-macro-expansion 431

-Wdisabled-optimization 431

-Wdiscard-qual 432

-Wdistributed-object-modifiers 432

-Wdiv-by-zero 432

-Wdivision-by-zero 432

-Wdll-attribute-on-redeclaration 432

-Wdllexport-explicit-instantiation-decl 432

-Wdllimport-static-field-def 432

-Wdocumentation 432

-Wdocumentation-deprecated-sync 433

-Wdocumentation-html 433

-Wdocumentation-pedantic 433

-Wdocumentation-unknown-command 433

-Wdollar-in-identifier-extension 434

-Wdouble-promotion 434

-Wdtor-name 434

-Wdtor-typedef 434

-Wduplicate-decl-specifier 434

-Wduplicate-enum 434

-Wduplicate-method-arg 434

-Wduplicate-method-match 435

-Wduplicate-protocol 435

-Wdynamic-class-memaccess 435

-Wdynamic-exception-spec 435

-Weffc++ 435

-Welaborated-enum-base 435

-Welaborated-enum-class 435

-Wembedded-directive 435

-Wempty-body 435

-Wempty-decomposition 436

-Wempty-init-stmt 436

-Wempty-margins 436



-Wempty-translation-unit 436

-Wencode-type 436

-Wendif-labels 436

-Wenum-compare 436

-Wenum-compare-conditional 437

-Wenum-compare-switch 437

-Wenum-conversion 437

-Wenum-enum-conversion 437

-Wenum-float-conversion 437

-Wenum-too-large 437

-Wexceptions 437

-Wexcess-initializers 438

-Wexit-time-destructors 438

-Wexpansion-to-defined 438

-Wexplicit-initialize-call 438

-Wexplicit-ownership-type 438

-Wexport-unnamed 438

-Wexport-using-directive 438

-Wextern-c-compat 439

-Wextern-initializer 439

-Wextra 439

-Wextra-qualification 439

-Wextra-semi 439

-Wextra-semi-stmt 439

-Wextra-tokens 439

-Wfinal-dtor-non-final-class 440

-Wfinal-macro 440

-Wfixed-enum-extension 440

-Wfixed-point-overflow 440

-Wflag-enum 440

-Wflexible-array-extensions 440

-Wfloat-conversion 440

-Wfloat-equal 440

-Wfloat-overflow-conversion 441

-Wfloat-zero-conversion 441

-Wfor-loop-analysis 441

-Wformat 441

-Wformat-extra-args 442

-Wformat-insufficient-args 442

-Wformat-invalid-specifier 442

-Wformat-non-iso 442

-Wformat-nonliteral 442

-Wformat-pedantic 443

-Wformat-security 443

-Wformat-type-confusion 443

-Wformat-y2k 443



-Wformat-zero-length 443

-Wformat=2 443

-Wfortify-source 443

-Wfour-char-constants 443

-Wframe-address 444

-Wframe-larger-than 444

-Wframe-larger-than= 444

-Wframework-include-private-from-public 444

-Wfree-nonheap-object 444

-Wfunction-def-in-objc-container 444

-Wfunction-multiversion 444

-Wfuse-ld-path 444

-Wfuture-attribute-extensions 445

-Wfuture-compat 445

-Wgcc-compat 445

-Wglobal-constructors 445

-Wglobal-isel 445

-Wgnu 445

-Wgnu-alignof-expression 446

-Wgnu-anonymous-struct 446

-Wgnu-array-member-paren-init 446

-Wgnu-auto-type 446

-Wgnu-binary-literal 446

-Wgnu-case-range 446

-Wgnu-complex-integer 446

-Wgnu-compound-literal-initializer 446

-Wgnu-conditional-omitted-operand 447

-Wgnu-designator 447

-Wgnu-empty-initializer 447

-Wgnu-empty-struct 447

-Wgnu-flexible-array-initializer 447

-Wgnu-flexible-array-union-member 447

-Wgnu-folding-constant 447

-Wgnu-imaginary-constant 447

-Wgnu-include-next 448

-Wgnu-inline-cpp-without-extern 448

-Wgnu-label-as-value 448

-Wgnu-line-marker 448

-Wgnu-null-pointer-arithmetic 448

-Wgnu-pointer-arith 448

-Wgnu-redeclared-enum 448

-Wgnu-statement-expression 448

-Wgnu-statement-expression-from-macro-expansion 449

-Wgnu-static-float-init 449

-Wgnu-string-literal-operator-template 449

-Wgnu-union-cast 449



-Wgnu-variable-sized-type-not-at-end 449

-Wgnu-zero-line-directive 449

-Wgnu-zero-variadic-macro-arguments 449

-Wgpu-maybe-wrong-side 449

-Wheader-guard 449

-Wheader-hygiene 450

-Whip-only 450

-Whlsl-extensions 450

-Widiomatic-parentheses 450

-Wignored-attributes 450

-Wignored-availability-without-sdk-settings 453

-Wignored-optimization-argument 453

-Wignored-pragma-intrinsic 453

-Wignored-pragma-optimize 453

-Wignored-pragmas 453

-Wignored-qualifiers 455

-Wignored-reference-qualifiers 456

-Wimplicit 456

-Wimplicit-atomic-properties 456

-Wimplicit-const-int-float-conversion 456

-Wimplicit-conversion-floating-point-to-bool 456

-Wimplicit-exception-spec-mismatch 456

-Wimplicit-fallthrough 456

-Wimplicit-fallthrough-per-function 456

-Wimplicit-fixed-point-conversion 456

-Wimplicit-float-conversion 457

-Wimplicit-function-declaration 457

-Wimplicit-int 457

-Wimplicit-int-conversion 457

-Wimplicit-int-float-conversion 457

-Wimplicit-retain-self 458

-Wimplicitly-unsigned-literal 458

-Wimport 458

-Wimport-preprocessor-directive-pedantic 458

-Winaccessible-base 458

-Winclude-next-absolute-path 458

-Winclude-next-outside-header 458

-Wincompatible-exception-spec 458

-Wincompatible-function-pointer-types 458

-Wincompatible-library-redeclaration 459

-Wincompatible-ms-struct 459

-Wincompatible-pointer-types 459

-Wincompatible-pointer-types-discards-qualifiers 459

-Wincompatible-property-type 459

-Wincompatible-sysroot 459

-Wincomplete-framework-module-declaration 459



-Wincomplete-implementation 460

-Wincomplete-module 460

-Wincomplete-setjmp-declaration 460

-Wincomplete-umbrella 460

-Winconsistent-dllimport 460

-Winconsistent-missing-destructor-override 460

-Winconsistent-missing-override 460

-Wincrement-bool 460

-Winfinite-recursion 461

-Winit-self 461

-Winitializer-overrides 461

-Winjected-class-name 461

-Winline 461

-Winline-asm 461

-Winline-namespace-reopened-noninline 461

-Winline-new-delete 461

-Winstantiation-after-specialization 462

-Wint-conversion 462

-Wint-conversions 462

-Wint-in-bool-context 462

-Wint-to-pointer-cast 462

-Wint-to-void-pointer-cast 462

-Winteger-overflow 462

-Winterrupt-service-routine 462

-Winvalid-command-line-argument 463

-Winvalid-constexpr 463

-Winvalid-iboutlet 463

-Winvalid-initializer-from-system-header 463

-Winvalid-ios-deployment-target 463

-Winvalid-no-builtin-names 463

-Winvalid-noreturn 464

-Winvalid-offsetof 464

-Winvalid-or-nonexistent-directory 464

-Winvalid-partial-specialization 464

-Winvalid-pch 464

-Winvalid-pp-token 464

-Winvalid-source-encoding 464

-Winvalid-token-paste 465

-Wjump-seh-finally 465

-Wkeyword-compat 465

-Wkeyword-macro 465

-Wknr-promoted-parameter 465

-Wlanguage-extension-token 465

-Wlarge-by-value-copy 465

-Wliblto 465

-Wlinker-warnings 466



-Wliteral-conversion 466

-Wliteral-range 466

-Wlocal-type-template-args 466

-Wlogical-not-parentheses 466

-Wlogical-op-parentheses 466

-Wlong-long 466

-Wloop-analysis 467

-Wmacro-redefined 467

-Wmain 467

-Wmain-return-type 467

-Wmalformed-warning-check 467

-Wmany-braces-around-scalar-init 467

-Wmax-tokens 467

-Wmax-unsigned-zero 468

-Wmemset-transposed-args 468

-Wmemsize-comparison 468

-Wmethod-signatures 468

-Wmicrosoft 468

-Wmicrosoft-abstract 468

-Wmicrosoft-anon-tag 469

-Wmicrosoft-cast 469

-Wmicrosoft-charize 469

-Wmicrosoft-comment-paste 469

-Wmicrosoft-const-init 469

-Wmicrosoft-cpp-macro 469

-Wmicrosoft-default-arg-redefinition 469

-Wmicrosoft-drectve-section 469

-Wmicrosoft-end-of-file 470

-Wmicrosoft-enum-forward-reference 470

-Wmicrosoft-enum-value 470

-Wmicrosoft-exception-spec 470

-Wmicrosoft-exists 470

-Wmicrosoft-explicit-constructor-call 470

-Wmicrosoft-extra-qualification 470

-Wmicrosoft-fixed-enum 471

-Wmicrosoft-flexible-array 471

-Wmicrosoft-goto 471

-Wmicrosoft-inaccessible-base 471

-Wmicrosoft-include 471

-Wmicrosoft-mutable-reference 471

-Wmicrosoft-pure-definition 471

-Wmicrosoft-redeclare-static 471

-Wmicrosoft-sealed 471

-Wmicrosoft-static-assert 472

-Wmicrosoft-template 472

-Wmicrosoft-template-shadow 472



-Wmicrosoft-union-member-reference 472

-Wmicrosoft-unqualified-friend 472

-Wmicrosoft-using-decl 473

-Wmicrosoft-void-pseudo-dtor 473

-Wmisexpect 473

-Wmisleading-indentation 473

-Wmismatched-new-delete 473

-Wmismatched-parameter-types 473

-Wmismatched-return-types 473

-Wmismatched-tags 473

-Wmissing-braces 474

-Wmissing-constinit 474

-Wmissing-declarations 474

-Wmissing-exception-spec 474

-Wmissing-field-initializers 474

-Wmissing-format-attribute 474

-Wmissing-include-dirs 474

-Wmissing-method-return-type 474

-Wmissing-noescape 474

-Wmissing-noreturn 475

-Wmissing-prototype-for-cc 475

-Wmissing-prototypes 475

-Wmissing-selector-name 475

-Wmissing-sysroot 475

-Wmissing-variable-declarations 475

-Wmisspelled-assumption 475

-Rmodule-build 475

-Wmodule-conflict 476

-Wmodule-file-config-mismatch 476

-Wmodule-file-extension 476

-Rmodule-import 476

-Wmodule-import-in-extern-c 476

-Rmodule-lock 476

-Wmodules-ambiguous-internal-linkage 476

-Wmodules-import-nested-redundant 476

-Wmost 477

-Wmove 477

-Wmsvc-include 477

-Wmsvc-not-found 477

-Wmultichar 477

-Wmultiple-move-vbase 477

-Wnarrowing 477

-Wnested-anon-types 477

-Wnested-externs 477

-Wnew-returns-null 477

-Wnewline-eof 478



-Wnoderef 478

-Wnoexcept-type 478

-Wnon-c-typedef-for-linkage 478

-Wnon-gcc 478

-Wnon-literal-null-conversion 478

-Wnon-modular-include-in-framework-module 478

-Wnon-modular-include-in-module 478

-Wnon-pod-varargs 479

-Wnon-power-of-two-alignment 479

-Wnon-virtual-dtor 479

-Wnonnull 479

-Wnonportable-cfstrings 479

-Wnonportable-include-path 479

-Wnonportable-system-include-path 479

-Wnonportable-vector-initialization 479

-Wnontrivial-memaccess 480

-Wnsconsumed-mismatch 480

-Wnsreturns-mismatch 480

-Wnull-arithmetic 480

-Wnull-character 480

-Wnull-conversion 480

-Wnull-dereference 480

-Wnull-pointer-arithmetic 481

-Wnull-pointer-subtraction 481

-Wnullability 481

-Wnullability-completeness 481

-Wnullability-completeness-on-arrays 481

-Wnullability-declspec 481

-Wnullability-extension 481

-Wnullability-inferred-on-nested-type 482

-Wnullable-to-nonnull-conversion 482

-Wobjc-autosynthesis-property-ivar-name-match 482

-Wobjc-bool-constant-conversion 482

-Wobjc-boxing 482

-Wobjc-circular-container 482

-Wobjc-cocoa-api 482

-Wobjc-designated-initializers 482

-Wobjc-dictionary-duplicate-keys 483

-Wobjc-flexible-array 483

-Wobjc-forward-class-redefinition 483

-Wobjc-interface-ivars 483

-Wobjc-literal-compare 483

-Wobjc-literal-conversion 483

-Wobjc-macro-redefinition 483

-Wobjc-messaging-id 484

-Wobjc-method-access 484



-Wobjc-missing-property-synthesis 484

-Wobjc-missing-super-calls 484

-Wobjc-multiple-method-names 484

-Wobjc-noncopy-retain-block-property 484

-Wobjc-nonunified-exceptions 484

-Wobjc-property-assign-on-object-type 485

-Wobjc-property-implementation 485

-Wobjc-property-implicit-mismatch 485

-Wobjc-property-matches-cocoa-ownership-rule 485

-Wobjc-property-no-attribute 485

-Wobjc-property-synthesis 485

-Wobjc-protocol-method-implementation 485

-Wobjc-protocol-property-synthesis 486

-Wobjc-protocol-qualifiers 486

-Wobjc-readonly-with-setter-property 486

-Wobjc-redundant-api-use 486

-Wobjc-redundant-literal-use 486

-Wobjc-root-class 486

-Wobjc-signed-char-bool 486

-Wobjc-signed-char-bool-implicit-float-conversion 486

-Wobjc-signed-char-bool-implicit-int-conversion 487

-Wobjc-string-compare 487

-Wobjc-string-concatenation 487

-Wobjc-unsafe-perform-selector 487

-Wodr 487

-Wold-style-cast 488

-Wold-style-definition 488

-Wopencl-unsupported-rgba 488

-Wopenmp 488

-Wopenmp-51-extensions 488

-Wopenmp-clauses 488

-Wopenmp-loop-form 489

-Wopenmp-mapping 489

-Wopenmp-target 489

-Woption-ignored 489

-Wordered-compare-function-pointers 490

-Wout-of-line-declaration 490

-Wout-of-scope-function 490

-Wover-aligned 490

-Woverflow 491

-Woverlength-strings 491

-Woverloaded-shift-op-parentheses 491

-Woverloaded-virtual 491

-Woverride-init 491

-Woverride-module 491

-Woverriding-method-mismatch 491



-Woverriding-t-option 491

-Wpacked 492

-Wpadded 492

-Wparentheses 492

-Wparentheses-equality 492

-Wpartial-availability 492

-Rpass 492

-Rpass-analysis 492

-Wpass-failed 492

-Rpass-missed 493

-Wpch-date-time 493

-Wpedantic 493

-Wpedantic-core-features 496

-Wpedantic-macros 496

-Wpessimizing-move 496

-Wpointer-arith 496

-Wpointer-bool-conversion 496

-Wpointer-compare 496

-Wpointer-integer-compare 496

-Wpointer-sign 497

-Wpointer-to-enum-cast 497

-Wpointer-to-int-cast 497

-Wpointer-type-mismatch 497

-Wpoison-system-directories 497

-Wpotentially-direct-selector 497

-Wpotentially-evaluated-expression 497

-Wpragma-clang-attribute 497

-Wpragma-once-outside-header 498

-Wpragma-pack 498

-Wpragma-pack-suspicious-include 498

-Wpragma-system-header-outside-header 498

-Wpragmas 498

-Wpre-c++14-compat 498

-Wpre-c++14-compat-pedantic 499

-Wpre-c++17-compat 499

-Wpre-c++17-compat-pedantic 499

-Wpre-c++20-compat 500

-Wpre-c++20-compat-pedantic 500

-Wpre-c++2b-compat 501

-Wpre-c++2b-compat-pedantic 501

-Wpre-c2x-compat 501

-Wpre-c2x-compat-pedantic 501

-Wpre-openmp-51-compat 501

-Wpredefined-identifier-outside-function 501

-Wprivate-extern 502

-Wprivate-header 502



-Wprivate-module 502

-Wprofile-instr-missing 502

-Wprofile-instr-out-of-date 502

-Wprofile-instr-unprofiled 502

-Wproperty-access-dot-syntax 502

-Wproperty-attribute-mismatch 503

-Wprotocol 503

-Wprotocol-property-synthesis-ambiguity 503

-Wpsabi 503

-Wquoted-include-in-framework-header 503

-Wrange-loop-analysis 503

-Wrange-loop-bind-reference 503

-Wrange-loop-construct 503

-Wreadonly-iboutlet-property 504

-Wreceiver-expr 504

-Wreceiver-forward-class 504

-Wredeclared-class-member 504

-Wredundant-consteval-if 504

-Wredundant-decls 504

-Wredundant-move 504

-Wredundant-parens 504

-Wregister 504

-Wreinterpret-base-class 505

-Rremark-backend-plugin 505

-Wreorder 505

-Wreorder-ctor 505

-Wreorder-init-list 505

-Wrequires-super-attribute 505

-Wreserved-id-macro 505

-Wreserved-identifier 505

-Wreserved-macro-identifier 505

-Wreserved-user-defined-literal 506

-Wrestrict-expansion 506

-Wretained-language-linkage 506

-Wreturn-stack-address 506

-Wreturn-std-move 506

-Wreturn-type 506

-Wreturn-type-c-linkage 507

-Wrewrite-not-bool 507

-Rround-trip-cc1-args 507

-Wrtti 507

-Rsanitize-address 507

-Rsearch-path-usage 507

-Wsection 507

-Wselector 508

-Wselector-type-mismatch 508



-Wself-assign 508

-Wself-assign-field 508

-Wself-assign-overloaded 508

-Wself-move 508

-Wsemicolon-before-method-body 508

-Wsentinel 508

-Wsequence-point 509

-Wserialized-diagnostics 509

-Wshadow 509

-Wshadow-all 509

-Wshadow-field 509

-Wshadow-field-in-constructor 509

-Wshadow-field-in-constructor-modified 509

-Wshadow-ivar 509

-Wshadow-uncaptured-local 510

-Wshift-count-negative 510

-Wshift-count-overflow 510

-Wshift-negative-value 510

-Wshift-op-parentheses 510

-Wshift-overflow 510

-Wshift-sign-overflow 510

-Wshorten-64-to-32 510

-Wsign-compare 510

-Wsign-conversion 511

-Wsign-promo 511

-Wsigned-enum-bitfield 511

-Wsigned-unsigned-wchar 511

-Wsizeof-array-argument 511

-Wsizeof-array-decay 511

-Wsizeof-array-div 511

-Wsizeof-pointer-div 511

-Wsizeof-pointer-memaccess 512

-Wslash-u-filename 512

-Wslh-asm-goto 512

-Wsometimes-uninitialized 512

-Wsource-mgr 512

-Wsource-uses-openmp 512

-Wspir-compat 513

-Wspirv-compat 513

-Wstack-exhausted 513

-Wstack-protector 513

-Wstatic-float-init 513

-Wstatic-in-inline 513

-Wstatic-inline-explicit-instantiation 513

-Wstatic-local-in-inline 513

-Wstatic-self-init 514



-Wstdlibcxx-not-found 514

-Wstrict-aliasing 514

-Wstrict-aliasing=0 514

-Wstrict-aliasing=1 514

-Wstrict-aliasing=2 514

-Wstrict-overflow 514

-Wstrict-overflow=0 514

-Wstrict-overflow=1 514

-Wstrict-overflow=2 514

-Wstrict-overflow=3 514

-Wstrict-overflow=4 514

-Wstrict-overflow=5 514

-Wstrict-potentially-direct-selector 515

-Wstrict-prototypes 515

-Wstrict-selector-match 515

-Wstring-compare 515

-Wstring-concatenation 515

-Wstring-conversion 515

-Wstring-plus-char 515

-Wstring-plus-int 515

-Wstrlcpy-strlcat-size 516

-Wstrncat-size 516

-Wsuggest-destructor-override 516

-Wsuggest-override 516

-Wsuper-class-method-mismatch 516

-Wsuspicious-bzero 516

-Wsuspicious-memaccess 516

-Wswift-name-attribute 516

-Wswitch 517

-Wswitch-bool 517

-Wswitch-default 517

-Wswitch-enum 517

-Wsync-fetch-and-nand-semantics-changed 517

-Wsynth 518

-Wtarget-clones-mixed-specifiers 518

-Wtautological-bitwise-compare 518

-Wtautological-compare 518

-Wtautological-constant-compare 518

-Wtautological-constant-in-range-compare 518

-Wtautological-constant-out-of-range-compare 518

-Wtautological-objc-bool-compare 518

-Wtautological-overlap-compare 519

-Wtautological-pointer-compare 519

-Wtautological-type-limit-compare 519

-Wtautological-undefined-compare 519

-Wtautological-unsigned-char-zero-compare 519



-Wtautological-unsigned-enum-zero-compare 519

-Wtautological-unsigned-zero-compare 519

-Wtautological-value-range-compare 519

-Wtcb-enforcement 519

-Wtentative-definition-incomplete-type 520

-Wthread-safety 520

-Wthread-safety-analysis 520

-Wthread-safety-attributes 520

-Wthread-safety-beta 521

-Wthread-safety-negative 521

-Wthread-safety-precise 521

-Wthread-safety-reference 521

-Wthread-safety-verbose 521

-Wtrigraphs 521

-Wtype-limits 522

-Wtype-safety 522

-Wtypedef-redefinition 522

-Wtypename-missing 522

-Wunable-to-open-stats-file 522

-Wunaligned-access 522

-Wunaligned-qualifier-implicit-cast 522

-Wunavailable-declarations 522

-Wundeclared-selector 523

-Wundef 523

-Wundef-prefix 523

-Wundefined-bool-conversion 523

-Wundefined-func-template 523

-Wundefined-inline 523

-Wundefined-internal 523

-Wundefined-internal-type 523

-Wundefined-reinterpret-cast 523

-Wundefined-var-template 524

-Wunderaligned-exception-object 524

-Wunevaluated-expression 524

-Wunguarded-availability 524

-Wunguarded-availability-new 524

-Wunicode 524

-Wunicode-homoglyph 525

-Wunicode-whitespace 525

-Wunicode-zero-width 525

-Wuninitialized 525

-Wuninitialized-const-reference 525

-Wunknown-argument 525

-Wunknown-assumption 526

-Wunknown-attributes 526

-Wunknown-cuda-version 526



-Wunknown-directives 526

-Wunknown-escape-sequence 526

-Wunknown-pragmas 526

-Wunknown-sanitizers 527

-Wunknown-warning-option 527

-Wunnamed-type-template-args 527

-Wunneeded-internal-declaration 527

-Wunneeded-member-function 528

-Wunqualified-std-cast-call 528

-Wunreachable-code 528

-Wunreachable-code-aggressive 528

-Wunreachable-code-break 528

-Wunreachable-code-fallthrough 528

-Wunreachable-code-generic-assoc 528

-Wunreachable-code-loop-increment 528

-Wunreachable-code-return 528

-Wunsequenced 529

-Wunsupported-abi 529

-Wunsupported-abs 529

-Wunsupported-availability-guard 529

-Wunsupported-cb 529

-Wunsupported-dll-base-class-template 529

-Wunsupported-floating-point-opt 529

-Wunsupported-friend 530

-Wunsupported-gpopt 530

-Wunsupported-nan 530

-Wunsupported-target-opt 530

-Wunsupported-visibility 530

-Wunusable-partial-specialization 530

-Wunused 530

-Wunused-argument 531

-Wunused-but-set-parameter 531

-Wunused-but-set-variable 531

-Wunused-command-line-argument 531

-Wunused-comparison 531

-Wunused-const-variable 531

-Wunused-exception-parameter 532

-Wunused-function 532

-Wunused-getter-return-value 532

-Wunused-label 532

-Wunused-lambda-capture 532

-Wunused-local-typedef 532

-Wunused-local-typedefs 532

-Wunused-macros 532

-Wunused-member-function 532

-Wunused-parameter 532



-Wunused-private-field 533

-Wunused-property-ivar 533

-Wunused-result 533

-Wunused-template 533

-Wunused-value 533

-Wunused-variable 533

-Wunused-volatile-lvalue 534

-Wused-but-marked-unused 534

-Wuser-defined-literals 534

-Wuser-defined-warnings 534

-Wvarargs 534

-Wvariadic-macros 534

-Wvec-elem-size 534

-Wvector-conversion 535

-Wvector-conversions 535

-Wvexing-parse 535

-Wvisibility 535

-Wvla 535

-Wvla-extension 535

-Wvoid-pointer-to-enum-cast 535

-Wvoid-pointer-to-int-cast 535

-Wvoid-ptr-dereference 536

-Wvolatile-register-var 536

-Wwasm-exception-spec 536

-Wweak-template-vtables 536

-Wweak-vtables 536

-Wwritable-strings 536

-Wwrite-strings 536

-Wxor-used-as-pow 536

-Wzero-as-null-pointer-constant 536

-Wzero-length-array 537

Cross-compilation using Clang 537

Introduction 537

Cross compilation issues 537

General Cross-Compilation Options in Clang 537

Target Triple 537

CPU, FPU, ABI 538

Toolchain Options 538

Target-Specific Libraries 539

Multilibs 539

Clang Static Analyzer 539

Available Checkers 539

Default Checkers 544

core 544

core.CallAndMessage (C, C++, ObjC) 544

core.DivideZero (C, C++, ObjC) 545



core.NonNullParamChecker (C, C++, ObjC) 545

core.NullDereference (C, C++, ObjC) 545

core.StackAddressEscape (C) 546

core.UndefinedBinaryOperatorResult (C) 546

core.VLASize (C) 547

core.uninitialized.ArraySubscript (C) 547

core.uninitialized.Assign (C) 547

core.uninitialized.Branch (C) 547

core.uninitialized.CapturedBlockVariable (C) 547

core.uninitialized.UndefReturn (C) 547

cplusplus 548

cplusplus.InnerPointer (C++) 548

cplusplus.NewDelete (C++) 548

cplusplus.NewDeleteLeaks (C++) 549

cplusplus.PlacementNewChecker (C++) 549

cplusplus.SelfAssignment (C++) 549

cplusplus.StringChecker (C++) 549

deadcode 549

deadcode.DeadStores (C) 549

nullability 550

nullability.NullPassedToNonnull (ObjC) 550

nullability.NullReturnedFromNonnull (ObjC) 550

nullability.NullableDereferenced (ObjC) 550

nullability.NullablePassedToNonnull (ObjC) 550

nullability.NullableReturnedFromNonnull (ObjC) 551

optin 551

optin.cplusplus.UninitializedObject (C++) 551

optin.cplusplus.VirtualCall (C++) 552

optin.mpi.MPI-Checker (C) 553

optin.osx.cocoa.localizability.EmptyLocalizationContextChecker (ObjC) 553

optin.osx.cocoa.localizability.NonLocalizedStringChecker (ObjC) 553

optin.performance.GCDAntipattern 553

optin.performance.Padding 554

optin.portability.UnixAPI 554

security 554

security.FloatLoopCounter (C) 554

security.insecureAPI.UncheckedReturn (C) 554

security.insecureAPI.bcmp (C) 554

security.insecureAPI.bcopy (C) 554

security.insecureAPI.bzero (C) 554

security.insecureAPI.getpw (C) 554

security.insecureAPI.gets (C) 554

security.insecureAPI.mkstemp (C) 555

security.insecureAPI.mktemp (C) 555

security.insecureAPI.rand (C) 555

security.insecureAPI.strcpy (C) 555



security.insecureAPI.vfork (C) 555

security.insecureAPI.DeprecatedOrUnsafeBufferHandling (C) 555

unix 555

unix.API (C) 556

unix.Malloc (C) 556

unix.MallocSizeof (C) 557

unix.MismatchedDeallocator (C, C++) 557

unix.Vfork (C) 558

unix.cstring.BadSizeArg (C) 558

unix.cstring.NullArg (C) 559

osx 559

osx.API (C) 559

osx.NumberObjectConversion (C, C++, ObjC) 559

osx.ObjCProperty (ObjC) 559

osx.SecKeychainAPI (C) 559

osx.cocoa.AtSync (ObjC) 560

osx.cocoa.AutoreleaseWrite 561

osx.cocoa.ClassRelease (ObjC) 561

osx.cocoa.Dealloc (ObjC) 561

osx.cocoa.IncompatibleMethodTypes (ObjC) 562

osx.cocoa.Loops 562

osx.cocoa.MissingSuperCall (ObjC) 562

osx.cocoa.NSAutoreleasePool (ObjC) 562

osx.cocoa.NSError (ObjC) 562

osx.cocoa.NilArg (ObjC) 563

osx.cocoa.NonNilReturnValue 563

osx.cocoa.ObjCGenerics (ObjC) 563

osx.cocoa.RetainCount (ObjC) 563

osx.cocoa.RunLoopAutoreleaseLeak 564

osx.cocoa.SelfInit (ObjC) 564

osx.cocoa.SuperDealloc (ObjC) 564

osx.cocoa.UnusedIvars (ObjC) 564

osx.cocoa.VariadicMethodTypes (ObjC) 565

osx.coreFoundation.CFError (C) 565

osx.coreFoundation.CFNumber (C) 565

osx.coreFoundation.CFRetainRelease (C) 565

osx.coreFoundation.containers.OutOfBounds (C) 565

osx.coreFoundation.containers.PointerSizedValues (C) 565

Fuchsia 566

fuchsia.HandleChecker 566

WebKit 566

webkit.RefCntblBaseVirtualDtor 566

webkit.NoUncountedMemberChecker 566

webkit.UncountedLambdaCapturesChecker 567

Experimental Checkers 567

alpha.clone 567



alpha.clone.CloneChecker (C, C++, ObjC) 567

alpha.core 567

alpha.core.BoolAssignment (ObjC) 567

alpha.core.C11Lock 568

alpha.core.CallAndMessageUnInitRefArg (C,C++, ObjC) 568

alpha.core.CastSize (C) 568

alpha.core.CastToStruct (C, C++) 568

alpha.core.Conversion (C, C++, ObjC) 568

alpha.core.DynamicTypeChecker (ObjC) 569

alpha.core.FixedAddr (C) 569

alpha.core.IdenticalExpr (C, C++) 569

alpha.core.PointerArithm (C) 569

alpha.core.PointerSub (C) 570

alpha.core.SizeofPtr (C) 570

alpha.core.StackAddressAsyncEscape (C) 570

alpha.core.TestAfterDivZero (C) 570

alpha.cplusplus 570

alpha.cplusplus.DeleteWithNonVirtualDtor (C++) 570

alpha.cplusplus.EnumCastOutOfRange (C++) 571

alpha.cplusplus.InvalidatedIterator (C++) 571

alpha.cplusplus.IteratorRange (C++) 571

alpha.cplusplus.MismatchedIterator (C++) 571

alpha.cplusplus.MisusedMovedObject (C++) 572

alpha.cplusplus.SmartPtr (C++) 572

alpha.deadcode 572

alpha.deadcode.UnreachableCode (C, C++) 572

alpha.fuchsia 572

alpha.fuchsia.Lock 572

alpha.llvm 573

alpha.llvm.Conventions 573

alpha.osx 573

alpha.osx.cocoa.DirectIvarAssignment (ObjC) 573

alpha.osx.cocoa.DirectIvarAssignmentForAnnotatedFunctions (ObjC) 573

alpha.osx.cocoa.InstanceVariableInvalidation (ObjC) 573

alpha.osx.cocoa.MissingInvalidationMethod (ObjC) 574

alpha.osx.cocoa.localizability.PluralMisuseChecker (ObjC) 574

alpha.security 575

alpha.security.ArrayBound (C) 575

alpha.security.ArrayBoundV2 (C) 575

alpha.security.MallocOverflow (C) 576

alpha.security.MmapWriteExec (C) 576

alpha.security.ReturnPtrRange (C) 576

alpha.security.cert 577

alpha.security.cert.pos 577

alpha.security.cert.pos.34c 577

alpha.security.cert.env 577



alpha.security.cert.env.InvalidPtr 577

alpha.security.taint 578

alpha.security.taint.TaintPropagation (C, C++) 578

alpha.unix 579

alpha.unix.StdCLibraryFunctionArgs (C) 579

alpha.unix.BlockInCriticalSection (C) 580

alpha.unix.Chroot (C) 580

alpha.unix.PthreadLock (C) 580

alpha.unix.SimpleStream (C) 581

alpha.unix.Stream (C) 581

alpha.unix.cstring.BufferOverlap (C) 582

alpha.unix.cstring.NotNullTerminated (C) 582

alpha.unix.cstring.OutOfBounds (C) 582

alpha.unix.cstring.UninitializedRead (C) 582

alpha.nondeterminism.PointerIteration (C++) 583

alpha.nondeterminism.PointerSorting (C++) 583

alpha.WebKit 583

alpha.webkit.UncountedCallArgsChecker 583

alpha.webkit.UncountedLocalVarsChecker 584

Debug Checkers 585

debug 585

debug.AnalysisOrder 585

debug.ConfigDumper 585

debug.DumpCFG Display 585

debug.DumpCallGraph 585

debug.DumpCalls 586

debug.DumpDominators 586

debug.DumpLiveVars 586

debug.DumpTraversal 586

debug.ExprInspection 586

debug.Stats 586

debug.TaintTest 586

debug.ViewCFG 586

debug.ViewCallGraph 586

debug.ViewExplodedGraph 586

User Docs 586

Cross Translation Unit (CTU) Analysis 586

Overview 587

PCH-based analysis 587

Manual CTU Analysis 587

Automated CTU Analysis with CodeChecker 588

Automated CTU Analysis with scan-build-py (don’t do it) 589

On-demand analysis 589

Manual CTU Analysis 589

Automated CTU Analysis with CodeChecker 591

Automated CTU Analysis with scan-build-py (don’t do it) 591



Taint Analysis Configuration 592

Overview 592

Example configuration file 593

Configuration file syntax and semantics 594

Filter syntax and semantics 594

Propagation syntax and semantics 594

Sink syntax and semantics 595

Developer Docs 595

Debug Checks 595

General Analysis Dumpers 595

Path Tracking 596

State Checking 596

ExprInspection checks 596

Statistics 599

Output testing checkers 599

Inlining 599

c++-inlining 600

c++-template-inlining 600

c++-stdlib-inlining 600

c++-container-inlining 600

Basics of Implementation 601

Retry Without Inlining 601

Deciding When to Inline 601

Dynamic Calls and Devirtualization 602

DynamicTypeInfo 602

RuntimeDefinition 602

Inlining Dynamic Calls 602

Bifurcation 603

Objective-C Message Heuristics 603

C++ Caveats 603

CallEvent 604

Initializer List 604

Nullability Checks 608

Inlining 609

Annotations on multi level pointers 609

Implementation notes 609

Region Store 610

Binding Invalidation 610

ObjCIvarRegions 610

Region Invalidation 611

Default Bindings 611

Lazy Bindings (LazyCompoundVal) 611

Thread Safety Analysis 612

Introduction 612

Getting Started 612

Running The Analysis 613



Basic Concepts: Capabilities 613

Reference Guide 613

GUARDED_BY(c) and PT_GUARDED_BY(c) 614

REQUIRES(…), REQUIRES_SHARED(…) 614

ACQUIRE(…), ACQUIRE_SHARED(…), RELEASE(…), RELEASE_SHARED(…),
RELEASE_GENERIC(…)

614

EXCLUDES(…) 615

NO_THREAD_SAFETY_ANALYSIS 616

RETURN_CAPABILITY(c) 616

ACQUIRED_BEFORE(…), ACQUIRED_AFTER(…) 616

CAPABILITY(<string>) 617

SCOPED_CAPABILITY 617

TRY_ACQUIRE(<bool>, …), TRY_ACQUIRE_SHARED(<bool>, …) 617

ASSERT_CAPABILITY(…) and ASSERT_SHARED_CAPABILITY(…) 617

GUARDED_VAR and PT_GUARDED_VAR 617

Warning flags 617

Negative Capabilities 618

Frequently Asked Questions 619

Known Limitations 619

Lexical scope 619

Private Mutexes 619

No conditionally held locks. 620

No checking inside constructors and destructors. 620

No inlining. 620

No alias analysis. 621

ACQUIRED_BEFORE(…) and ACQUIRED_AFTER(…) are currently unimplemented. 621

mutex.h 621

Data flow analysis: an informal introduction 626

Abstract 626

Data flow analysis 626

The purpose of data flow analysis 626

Sample problem and an ad-hoc solution 626

Too much information and “top” values 627

Uninitialized variables and “bottom” values 628

A practical lattice that tracks sets of concrete values 628

Formalization 628

Symbolic execution: a very short informal introduction 629

Symbolic values 629

Flow condition 630

Symbolic pointers 630

Example: finding output parameters 630

Problem description 631

Lattice design 632

Using data flow results to identify output parameters 632

Example: finding dead stores 633

Example: definitive initialization 633

Example: refactoring raw pointers to unique_ptr 634



Example: finding redundant branch conditions 636

Example: finding unchecked std::optional unwraps 636

Example: finding dead code behind A/B experiment flags 637

Example: finding inefficient usages of associative containers 637

Example: refactoring types that implicitly convert to each other 638

AddressSanitizer 639

Introduction 639

How to build 639

Usage 640

Symbolizing the Reports 640

Additional Checks 641

Initialization order checking 641

Stack Use After Return (UAR) 641

Memory leak detection 641

Issue Suppression 641

Suppressing Reports in External Libraries 641

Conditional Compilation with __has_feature(address_sanitizer) 642

Disabling Instrumentation with __attribute__((no_sanitize("address"))) 642

Suppressing Errors in Recompiled Code (Ignorelist) 642

Suppressing memory leaks 642

Code generation control 643

Instrumentation code outlining 643

Limitations 643

Supported Platforms 643

Current Status 643

More Information 643

ThreadSanitizer 643

Introduction 643

How to build 644

Supported Platforms 644

Usage 644

__has_feature(thread_sanitizer) 644

__attribute__((no_sanitize("thread"))) 645

__attribute__((disable_sanitizer_instrumentation)) 645

Ignorelist 645

Limitations 645

Current Status 645

More Information 645

MemorySanitizer 646

Introduction 646

How to build 646

Usage 646

__has_feature(memory_sanitizer) 647

__attribute__((no_sanitize("memory"))) 647

__attribute__((disable_sanitizer_instrumentation)) 647

Ignorelist 647



Report symbolization 647

Origin Tracking 647

Use-after-destruction detection 648

Handling external code 648

Supported Platforms 648

Limitations 648

Current Status 649

More Information 649

UndefinedBehaviorSanitizer 649

Introduction 649

How to build 650

Usage 650

Available checks 650

Volatile 652

Minimal Runtime 652

Stack traces and report symbolization 652

Logging 652

Silencing Unsigned Integer Overflow 653

Issue Suppression 653

Disabling Instrumentation with __attribute__((no_sanitize("undefined"))) 653

Suppressing Errors in Recompiled Code (Ignorelist) 653

Runtime suppressions 653

Supported Platforms 653

Current Status 654

Additional Configuration 654

Example 654

More Information 654

DataFlowSanitizer 654

DataFlowSanitizer Design Document 654

Use Cases 654

Interface 654

Taint label representation 656

Origin tracking trace representation 656

Memory layout and label management 656

Propagating labels through arguments 657

Implementing the ABI list 657

Checking ABI Consistency 658

Introduction 658

How to build libc++ with DFSan 658

Usage 659

ABI List 659

Compilation Flags 660

Environment Variables 661

Example 661

Origin Tracking 662

Current status 663



Design 663

LeakSanitizer 663

Introduction 663

Usage 663

Supported Platforms 663

More Information 664

SanitizerCoverage 664

Introduction 664

Tracing PCs with guards 664

Inline 8bit-counters 666

Inline bool-flag 666

PC-Table 666

Tracing PCs 667

Instrumentation points 667

Edge coverage 667

Tracing data flow 667

Disabling instrumentation with __attribute__((no_sanitize("coverage"))) 668

Disabling instrumentation without source modification 669

Default implementation 669

Sancov data format 670

Sancov Tool 670

Coverage Reports 670

Output directory 670

SanitizerStats 671

Introduction 671

How to build and run 671

Sanitizer special case list 671

Introduction 672

Goal and usage 672

Example 672

Format 672

Control Flow Integrity 673

Control Flow Integrity Design Documentation 673

Forward-Edge CFI for Virtual Calls 673

Optimizations 674

Stripping Leading/Trailing Zeros in Bit Vectors 674

Short Inline Bit Vectors 675

Virtual Table Layout 675

Alignment 676

Padding to Powers of 2 676

Eliminating Bit Vector Checks for All-Ones Bit Vectors 677

Forward-Edge CFI for Virtual Calls by Interleaving Virtual Tables 677

Split virtual table groups into separate virtual tables 677

Order virtual tables by a pre-order traversal of the class hierarchy 677

Interleave virtual tables 678

Forward-Edge CFI for Indirect Function Calls 679



Shared library support 680

CallSiteTypeId 681

CFI_Check 681

CFI Shadow 681

CFI_SlowPath 682

Position-independent executable requirement 682

Backward-edge CFI for return statements (RCFI) 682

Leaf Functions 682

Functions called once 682

Functions called in a small number of call sites 682

General case 683

Returns from functions called indirectly 683

Cross-DSO calls 683

Non-goals 683

Hardware support 683

Introduction 684

Available schemes 685

Trapping and Diagnostics 685

Forward-Edge CFI for Virtual Calls 685

Performance 685

Bad Cast Checking 685

Non-Virtual Member Function Call Checking 686

Strictness 686

Indirect Function Call Checking 686

-fsanitize-cfi-icall-generalize-pointers 686

-fsanitize-cfi-canonical-jump-tables 687

-fsanitize=cfi-icall and -fsanitize=function 687

Member Function Pointer Call Checking 688

Ignorelist 688

Shared library support 688

Design 688

Publications 688

LTO Visibility 689

Example 689

SafeStack 690

Introduction 690

Performance 691

Compatibility 691

Known compatibility limitations 691

Security 691

Known security limitations 691

Usage 692

Supported Platforms 692

Low-level API 692

__has_feature(safe_stack) 692

__attribute__((no_sanitize("safe-stack"))) 692



__builtin___get_unsafe_stack_ptr() 692

__builtin___get_unsafe_stack_bottom() 692

__builtin___get_unsafe_stack_top() 692

__builtin___get_unsafe_stack_start() 692

Design 692

setjmp and exception handling 693

Publications 693

ShadowCallStack 693

Introduction 693

Comparison 693

Compatibility 693

Security 694

Usage 694

Low-level API 695

__has_feature(shadow_call_stack) 695

__attribute__((no_sanitize("shadow-call-stack"))) 695

Example 695

Source-based Code Coverage 696

Introduction 696

The code coverage workflow 696

Compiling with coverage enabled 697

Running the instrumented program 697

Creating coverage reports 697

Exporting coverage data 699

Interpreting reports 699

Format compatibility guarantees 699

Impact of llvm optimizations on coverage reports 700

Using the profiling runtime without static initializers 700

Using the profiling runtime without a filesystem 700

Collecting coverage reports for the llvm project 700

Drawbacks and limitations 700

Clang implementation details 701

Gap regions 701

Branch regions 701

Switch statements 701

Modules 702

Introduction 702

Problems with the current model 703

Semantic import 703

Problems modules do not solve 704

Using Modules 704

Objective-C Import declaration 704

Includes as imports 704

Module maps 705

Compilation model 705

Command-line parameters 705



-cc1 Options 707

Using Prebuilt Modules 707

Module Semantics 708

Macros 709

Module Map Language 709

Lexical structure 710

Module map file 710

Module declaration 710

Requires declaration 711

Header declaration 713

Umbrella directory declaration 714

Submodule declaration 714

Export declaration 715

Re-export Declaration 716

Use declaration 716

Link declaration 717

Configuration macros declaration 717

Conflict declarations 718

Attributes 718

Private Module Map Files 718

Modularizing a Platform 719

Future Directions 720

Where To Learn More About Modules 720

MSVC compatibility 721

ABI features 721

Template instantiation and name lookup 722

Misexpect 722

OpenCL Support 724

Missing features or with limited support 724

Internals Manual 724

OpenCL Metadata 724

OpenCL Specific Options 724

OpenCL builtins 725

OpenCL Extensions and Features 725

Implementation guidelines 726

Address spaces attribute 726

C++ for OpenCL Implementation Status 727

Missing features or with limited support 727

OpenCL C 3.0 Usage 727

OpenCL C 3.0 Implementation Status 727

Experimental features 728

C++ libraries for OpenCL 728

OpenMP Support 729

General improvements 729

Cuda devices support 729

Directives execution modes 729



Data-sharing modes 730

Features not supported or with limited support for Cuda devices 730

OpenMP 5.0 Implementation Details 730

OpenMP 5.1 Implementation Details 733

OpenMP Extensions 735

SYCL Compiler and Runtime architecture design 735

Introduction 735

Address space handling 735

HLSL Support 737

Introduction 737

Project Goals 737

Non-Goals 737

Guiding Principles 737

Architectural Direction 737

DXC Driver 738

Parser 738

Sema 738

CodeGen 738

HLSL Language 738

An Aside on GPU Languages 738

Pointers & References 739

HLSL this Keyword 739

Bitshifts 739

Non-short Circuiting Logical Operators 739

Precise Qualifier 739

Differences in Templates 739

Vector Extensions 739

Standard Library 739

Unsupported C & C++ Features 739

ThinLTO 740

Introduction 740

Current Status 741

Clang/LLVM 741

Linkers 741

Usage 741

Basic 741

Controlling Backend Parallelism 741

Incremental 742

Cache Pruning 742

Clang Bootstrap 742

More Information 743

API Notes: Annotations Without Modifying Headers 743

Usage 743

Limitations 744

“Versioned” API Notes 744

Reference 744



Clang “man” pages 747

Basic Commands 747

clang - the Clang C, C++, and Objective-C compiler 747

SYNOPSIS 747

DESCRIPTION 747

OPTIONS 748

Stage Selection Options 748

Language Selection and Mode Options 748

Target Selection Options 751

Code Generation Options 751

Driver Options 753

Diagnostics Options 754

Preprocessor Options 754

ENVIRONMENT 754

BUGS 755

SEE ALSO 755

diagtool - clang diagnostics tool 755

SYNOPSIS 755

DESCRIPTION 755

SUBCOMMANDS 755

find-diagnostic-id 755

list-warnings 755

show-enabled 755

tree 755

Frequently Asked Questions (FAQ) 756

Driver 756

I run clang -cc1 ... and get weird errors about missing headers 756

I get errors about some headers being missing (stddef.h, stdarg.h) 756

Using Clang as a Library 756

Choosing the Right Interface for Your Application 756

LibClang 756

Clang Plugins 757

LibTooling 757

External Clang Examples 758

Introduction 758

List of projects and tools 758

Introduction to the Clang AST 759

Introduction 759

Examining the AST 759

AST Context 760

AST Nodes 760

LibTooling 760

Introduction 760

Parsing a code snippet in memory 760

Writing a standalone tool 761

Parsing common tools options 761



Creating and running a ClangTool 761

Putting it together — the first tool 761

Running the tool on some code 762

Builtin includes 763

Linking 763

LibFormat 763

Design 763

Interface 763

Style Options 763

Clang Plugins 764

Introduction 764

Writing a PluginASTAction 764

Registering a plugin 764

Defining pragmas 764

Defining attributes 765

Putting it all together 765

Running the plugin 765

Using the compiler driver 765

Using the cc1 command line 766

Using the clang command line 766

Interaction with -clear-ast-before-backend 766

How to write RecursiveASTVisitor based ASTFrontendActions. 766

Introduction 766

Creating a FrontendAction 766

Creating an ASTConsumer 767

Using the RecursiveASTVisitor 767

Accessing the SourceManager and ASTContext 768

Putting it all together 768

Tutorial for building tools using LibTooling and LibASTMatchers 769

Step 0: Obtaining Clang 769

Step 1: Create a ClangTool 770

Intermezzo: Learn AST matcher basics 772

Step 2: Using AST matchers 772

Step 3.5: More Complicated Matchers 773

Step 4: Retrieving Matched Nodes 775

Matching the Clang AST 776

Introduction 776

How to create a matcher 777

Binding nodes in match expressions 777

Writing your own matchers 777

VariadicDynCastAllOfMatcher<Base, Derived> 777

AST_MATCHER_P(Type, Name, ParamType, Param) 777

Matcher creation functions 777

Clang Transformer Tutorial 777

What is Clang Transformer? 778

Who is Clang Transformer for? 778



Getting Started 778

Example: style-checking names 779

Example: renaming a function 779

Example: method to function 779

Example: rewriting method calls 780

Reference: ranges, stencils, edits, rules 780

Rewriting ASTs to… Text? 780

Range Selectors 780

Stencils 781

Edits 781

EditGenerators (Advanced) 781

Rules 782

Using a RewriteRule as a clang-tidy check 782

Related Reading 782

ASTImporter: Merging Clang ASTs 782

Introduction 783

Algorithm of the import 783

API 784

Errors during the import process 787

Error propagation 788

Polluted AST 788

Using the -ast-merge Clang front-end action 790

Example for C 790

Example for C++ 791

How To Setup Clang Tooling For LLVM 791

Introduction 791

Setup Clang Tooling Using CMake and Make 791

Setup Clang Tooling Using CMake on Windows 792

Using Clang Tools 792

Using Ninja Build System 793

JSON Compilation Database Format Specification 794

Background 794

Supported Systems 794

Format 794

Build System Integration 795

Alternatives 795

Clang’s refactoring engine 795

Introduction 796

Refactoring Action Rules 796

Rule Types 796

How to Create a Rule 797

Refactoring Action Rule Requirements 797

Selection Requirements 798

Other Requirements 798

Refactoring Options 798

Using Clang Tools 798



Overview 798

Clang Tools Organization 799

Core Clang Tools 799

clang-check 799

clang-format 799

Extra Clang Tools 799

clang-tidy 799

Ideas for new Tools 799

ClangCheck 800

ClangFormat 800

Standalone Tool 801

Vim Integration 802

Emacs Integration 802

BBEdit Integration 803

CLion Integration 803

Visual Studio Integration 803

Visual Studio Code Integration 803

Script for patch reformatting 803

Current State of Clang Format for LLVM 804

Clang-Format Style Options 804

Configuring Style with clang-format 804

Disabling Formatting on a Piece of Code 805

Configuring Style in Code 805

Configurable Format Style Options 805

Adding additional style options 860

Examples 860

Clang Formatted Status 861

Clang Linker Wrapper 914

Introduction 915

Usage 915

Example 915

Clang Nvlink Wrapper 915

Introduction 915

Use Case 916

Working 916

Clang Offload Bundler 916

Introduction 916

Supported File Formats 917

Bundled Text File Layout 917

Bundled Binary File Layout 917

Bundle Entry ID 918

Target ID 919

Target Specific information 919

Archive Unbundling 920

Clang Offload Wrapper 920

Introduction 920



Usage 920

Example 921

OpenMP Device Binary Embedding 921

Enum Types 921

Structure Types 921

Global Variables 922

Binary Descriptor for Device Images 922

Global Constructor and Destructor 923

Image Binary Embedding and Execution for OpenMP 923

Clang Offload Packager 923

Introduction 923

Binary Format 924

Usage 925

Example 925

Design Documents 926

“Clang” CFE Internals Manual 926

Introduction 927

LLVM Support Library 928

The Clang “Basic” Library 928

The Diagnostics Subsystem 928

The Diagnostic*Kinds.td files 928

The Format String 929

Formatting a Diagnostic Argument 929

Producing the Diagnostic 932

Fix-It Hints 932

The DiagnosticConsumer Interface 933

Adding Translations to Clang 933

The SourceLocation and SourceManager classes 933

SourceRange and CharSourceRange 934

The Driver Library 934

Precompiled Headers 934

The Frontend Library 934

Compiler Invocation 934

Command Line Interface 934

Command Line Parsing 935

Command Line Generation 935

Adding new Command Line Option 935

Option Marshalling Infrastructure 937

Option Marshalling Annotations 938

The Lexer and Preprocessor Library 939

The Token class 940

Annotation Tokens 940

The Lexer class 941

The TokenLexer class 942

The MultipleIncludeOpt class 942

The Parser Library 942



The AST Library 942

Design philosophy 942

Immutability 942

Faithfulness 943

The Type class and its subclasses 943

Canonical Types 944

The QualType class 944

Declaration names 945

Declaration contexts 946

Redeclarations and Overloads 946

Lexical and Semantic Contexts 947

Transparent Declaration Contexts 947

Multiply-Defined Declaration Contexts 948

Error Handling 949

Recovery AST 949

Types and dependence 950

ContainsErrors bit 950

The ASTImporter 951

Abstract Syntax Graph 951

Structural Equivalency 951

Redeclaration Chains 952

Traversal during the Import 953

Error Handling 953

Lookup Problems 954

ExternalASTSource 955

Class Template Instantiations 955

Visibility of Declarations 956

Strategies to Handle Conflicting Names 956

The CFG class 956

Basic Blocks 956

Entry and Exit Blocks 956

Conditional Control-Flow 957

Constant Folding in the Clang AST 958

Implementation Approach 958

Extensions 959

The Sema Library 959

The CodeGen Library 959

How to change Clang 959

How to add an attribute 959

Attribute Basics 960

include/clang/Basic/Attr.td 960

Spellings 960

Subjects 961

Documentation 961

Arguments 962

Other Properties 962



Boilerplate 963

Semantic handling 963

How to add an expression or statement 963

Driver Design & Internals 965

Introduction 966

Features and Goals 966

GCC Compatibility 966

Flexible 966

Low Overhead 966

Simple 966

Internal Design and Implementation 966

Internals Introduction 967

Design Overview 967

Driver Stages 968

Additional Notes 971

The Compilation Object 971

Unified Parsing & Pipelining 971

ToolChain Argument Translation 971

Unused Argument Warnings 971

Relation to GCC Driver Concepts 971

Offloading Design & Internals 972

Introduction 972

OpenMP Offloading 972

Offloading Overview 972

Compilation Process 973

Generating Offloading Entries 973

Accessing Entries on the Device 974

Debugging Information 974

Offload Device Compilation 974

Creating Fat Objects 975

Linking Target Device Code 975

Device Binary Wrapping 975

Structure Types 975

Global Variables 976

Binary Descriptor for Device Images 976

Global Constructor and Destructor 977

Offloading Example 977

Precompiled Header and Modules Internals 978

Using Precompiled Headers with clang 978

Design Philosophy 978

AST File Contents 979

Metadata Block 980

Source Manager Block 981

Preprocessor Block 981

Types Block 981

Declarations Block 981



Statements and Expressions 982

Identifier Table Block 982

Method Pool Block 983

AST Reader Integration Points 983

Chained precompiled headers 984

Modules 984

ABI tags 985

Introduction 985

Declaration 985

Mangling 985

Active tags 985

Required tags for a function 986

Required tags for a variable 986

Available tags 986

Hardware-assisted AddressSanitizer Design Documentation 986

Introduction 986

Algorithm 986

Short granules 987

Instrumentation 987

Memory Accesses 987

Heap 988

Stack 988

Globals 988

Error reporting 989

Attribute 989

Comparison with AddressSanitizer 989

Supported architectures 989

Related Work 990

Constant Interpreter 990

Introduction 990

Bytecode Compilation 990

Primitive Types 990

Composite types 991

Bytecode Execution 991

Memory Organisation 991

Blocks 991

Descriptors 992

Pointers 993

BlockPointer 993

ExternPointer 994

TargetPointer 994

TypeInfoPointer 994

InvalidPointer 994

TODO 994

Missing Language Features 994

Known Bugs 995



Indices and tables 995



Clang pre-release 15 Release Notes
Introduction 2

What’s New in Clang pre-release 15? 2

Potentially Breaking Changes 2

Major New Features 2

Bug Fixes 2

Non-comprehensive list of changes in this release 5

New Compiler Flags 5

Deprecated Compiler Flags 5

Modified Compiler Flags 5

Removed Compiler Flags 5

New Pragmas in Clang 5

Attribute Changes in Clang 6

Windows Support 6

AIX Support 6

C Language Changes in Clang 6

C2x Feature Support 6

C++ Language Changes in Clang 7

CUDA/HIP Language Changes in Clang 7

Objective-C Language Changes in Clang 8

OpenCL C Language Changes in Clang 8

ABI Changes in Clang 8

OpenMP Support in Clang 8

CUDA Support in Clang 8

X86 Support in Clang 8

DWARF Support in Clang 8

Arm and AArch64 Support in Clang 8

Floating Point Support in Clang 8

Internal API Changes 8

Build System Changes 8

AST Matchers 8

clang-format 8

libclang 9

Static Analyzer 9

Undefined Behavior Sanitizer (UBSan) 9

Core Analysis Improvements 9

New Issues Found 9

Python Binding Changes 9

Significant Known Problems 9

Additional Information 9

Written by the LLVM Team with modifications by IBM.

Clang pre-release 15 Release Notes

1

https://llvm.org/


Introduction
This document contains the release notes for the Clang C/C++/Objective-C frontend, part of the LLVM Compiler
Infrastructure, pre-release 15, on which Open XL C/C++ 17.1.1 is based. Open XL C/C++ 17.1.1 provides a
customized subset of the LLVM Compiler infrastructure. This documentation is provided as-is and for reference only.
It does not constitute support of all features in the Open XL C/C++ 17.1.1 product. Refer to the Open XL C/C++
compiler documentation for features that are officially supported. Here we describe the status of Clang in some
detail, including major improvements from the previous LLVM release and new feature work. For the general LLVM
release notes, see the LLVM documentation. All LLVM releases may be downloaded from the LLVM releases web
site.

For more information about Clang or LLVM, including information about the latest release, please see the Clang Web
Site or the LLVM Web Site.

Note that if you are reading this file from a Git checkout or the main Clang web page, this document applies to the
next release, not the current one. To see the release notes for a specific release, please see the releases page.

What’s New in Clang pre-release 15?
Some of the major new features and improvements to Clang are listed here. Generic improvements to Clang as a
whole or to its underlying infrastructure are described first, followed by language-specific sections with improvements
to Clang’s support for those languages.

Potentially Breaking Changes
These changes are ones which we think may surprise users when upgrading to Clang 15 because of the opportunity
they pose for disruption to existing code bases.

• The -Wimplicit-function-declaration and -Wimplicit-int warning diagnostics are now enabled by
default in C99, C11, and C17. As of C2x, support for implicit function declarations and implicit int has been
removed, and the warning options will have no effect. Specifying -Wimplicit-int in C89 mode will now
issue warnings instead of being a noop. NOTE these warnings are expected to default to an error in Clang 16.
We recommend that projects using configure scripts verify the results do not change before/after setting
-Werror=implicit-function-declarations or -Wimplicit-int to avoid incompatibility with Clang
16.

Major New Features

• Clang now supports the -fzero-call-used-regs feature for x86. The purpose of this feature is to limit
Return-Oriented Programming (ROP) exploits and information leakage. It works by zeroing out a selected class
of registers before function return — e.g., all GPRs that are used within the function. There is an analogous
zero_call_used_regs attribute to allow for finer control of this feature.

• Clang now supports randomizing structure layout in C. This feature is a compile-time hardening technique,
making it more difficult for an attacker to retrieve data from structures. Specify randomization with the
randomize_layout attribute. The corresponding no_randomize_layout attribute can be used to turn the
feature off.

A seed value is required to enable randomization, and is deterministic based on a seed value. Use the
-frandomize-layout-seed= or -frandomize-layout-seed-file= flags.

Note

Randomizing structure layout is a C-only feature.

Bug Fixes

Introduction

2

https://llvm.org/docs/ReleaseNotes.html
https://llvm.org/releases/
https://llvm.org/releases/
https://clang.llvm.org
https://clang.llvm.org
https://llvm.org
https://llvm.org/releases/


• CXXNewExpr::getArraySize() previously returned a llvm::Optional wrapping a nullptr when the
CXXNewExpr did not have an array size expression. This was fixed and ::getArraySize() will now always
either return None or a llvm::Optional wrapping a valid Expr*. This fixes Issue 53742.

• We now ignore full expressions when traversing cast subexpressions. This fixes Issue 53044.

• Allow -Wno-gnu to silence GNU extension diagnostics for pointer arithmetic diagnostics. Fixes Issue 54444.

• Placeholder constraints, as in Concept auto x = f();, were not checked when modifiers like auto& or
auto** were added. These constraints are now checked. This fixes Issue 53911 and Issue 54443.

• Previously invalid member variables with template parameters would crash clang. Now fixed by setting
identifiers for them. This fixes Issue 28475 (PR28101).

• Now allow the restrict and _Atomic qualifiers to be used in conjunction with __auto_type to match the
behavior in GCC. This fixes Issue 53652.

• No longer crash when specifying a variably-modified parameter type in a function with the naked attribute. This
fixes Issue 50541.

• Allow multiple #pragma weak directives to name the same undeclared (if an alias, target) identifier instead of
only processing one such #pragma weak per identifier. Fixes Issue 28985.

• Assignment expressions in C11 and later mode now properly strip the _Atomic qualifier when determining the
type of the assignment expression. Fixes Issue 48742.

• Improved the diagnostic when accessing a member of an atomic structure or union object in C; was previously
an unhelpful error, but now issues a -Watomic-access warning which defaults to an error. Fixes Issue 54563.

• Unevaluated lambdas in dependant contexts no longer result in clang crashing. This fixes Issues 50376, 51414,
51416, and 51641.

• The builtin function __builtin_dump_struct would crash clang when the target struct contains a bitfield. It now
correctly handles bitfields. This fixes Issue Issue 54462.

• Statement expressions are now disabled in default arguments in general. This fixes Issue Issue 53488.

• According to CWG 1394 and C++20 [dcl.fct.def.general]p2, Clang should not diagnose incomplete types in
function definitions if the function body is “= delete;”. This fixes Issue Issue 52802.

• Unknown type attributes with a [[]] spelling are no longer diagnosed twice. This fixes Issue Issue 54817.

• Clang should no longer incorrectly diagnose a variable declaration inside of a lambda expression that shares
the name of a variable in a containing if/while/for/switch init statement as a redeclaration. This fixes Issue
54913.

• Overload resolution for constrained function templates could use the partial order of constraints to select an
overload, even if the parameter types of the functions were different. It now diagnoses this case correctly as an
ambiguous call and an error. Fixes Issue 53640.

• No longer crash when trying to determine whether the controlling expression argument to a generic selection
expression has side effects in the case where the expression is result dependent. This fixes Issue 50227.

• Fixed an assertion when constant evaluating an initializer for a GCC/Clang floating-point vector type when the
width of the initialization is exactly the same as the elements of the vector being initialized. Fixes Issue 50216.

• Fixed a crash when the __bf16 type is used such that its size or alignment is calculated on a target which does
not support that type. This fixes Issue 50171.

• Fixed a false positive diagnostic about an unevaluated expression having no side effects when the expression
is of VLA type and is an operand of the sizeof operator. Fixes Issue 48010.

• Fixed a false positive diagnostic about scoped enumerations being a C++11 extension in C mode. A scoped
enumeration’s enumerators cannot be named in C because there is no way to fully qualify the enumerator
name, so this “extension” was unintentional and useless. This fixes Issue 42372.

• Clang will now find and emit a call to an allocation function in a promise_type body for coroutines if there is any
allocation function declaration in the scope of promise_type. Additionally, to implement CWG2585, a coroutine
will no longer generate a call to a global allocation function with the signature (std::size_t, p0, …, pn). This fixes
Issue Issue 54881.

Introduction

3

https://github.com/llvm/llvm-project/issues/53742
https://github.com/llvm/llvm-project/issues/53044
https://github.com/llvm/llvm-project/issues/54444
https://github.com/llvm/llvm-project/issues/53911
https://github.com/llvm/llvm-project/issues/54443
https://github.com/llvm/llvm-project/issues/28475
https://github.com/llvm/llvm-project/issues/53652
https://github.com/llvm/llvm-project/issues/50541
https://github.com/llvm/llvm-project/issues/28985
https://github.com/llvm/llvm-project/issues/48742
https://github.com/llvm/llvm-project/issues/54563
https://github.com/llvm/llvm-project/issues/50376
https://github.com/llvm/llvm-project/issues/51414
https://github.com/llvm/llvm-project/issues/51416
https://github.com/llvm/llvm-project/issues/51641
https://github.com/llvm/llvm-project/issues/54462
https://github.com/llvm/llvm-project/issues/53488
https://wg21.link/cwg1394
https://timsong-cpp.github.io/cppwp/n4868/dcl.fct.def#general-2.sentence-3
https://github.com/llvm/llvm-project/issues/52802
https://github.com/llvm/llvm-project/issues/54817
https://github.com/llvm/llvm-project/issues/54913
https://github.com/llvm/llvm-project/issues/54913
https://github.com/llvm/llvm-project/issues/53640
https://github.com/llvm/llvm-project/issues/50227
https://github.com/llvm/llvm-project/issues/50216
https://github.com/llvm/llvm-project/issues/50171
https://github.com/llvm/llvm-project/issues/48010
https://github.com/llvm/llvm-project/issues/42372
https://github.com/llvm/llvm-project/issues/54881


• Implement CWG 2394: Const class members may be initialized with a defaulted default constructor under the
same conditions it would be allowed for a const object elsewhere.

• __has_unique_object_representations no longer reports that _BitInt types have unique object
representations if they have padding bits.

Improvements to Clang’s diagnostics

• -Wliteral-range will warn on floating-point equality comparisons with constants that are not representable
in a casted value. For example, (float) f == 0.1 is always false.

• -Winline-namespace-reopened-noninline now takes into account that the inline keyword must
appear on the original but not necessarily all extension definitions of an inline namespace and therefore points
its note at the original definition. This fixes Issue 50794 (PR51452).

• -Wunused-but-set-variable now also warns if the variable is only used by unary operators.

• -Wunused-variable no longer warn for references extending the lifetime of temporaries with side effects.
This fixes Issue 54489.

• Modified the behavior of -Wstrict-prototypes and added a new, related diagnostic
-Wdeprecated-non-prototype. The strict prototypes warning will now only diagnose deprecated
declarations and definitions of functions without a prototype where the behavior in C2x will remain correct. This
diagnostic remains off by default but is now enabled via -pedantic due to it being a deprecation warning.
-Wstrict-prototypes has no effect in C2x or when -fno-knr-functions is enabled.
-Wdeprecated-non-prototype will diagnose cases where the deprecated declarations or definitions of a
function without a prototype will change behavior in C2x. Additionally, it will diagnose calls which pass
arguments to a function without a prototype. This warning is enabled only when the
-Wdeprecated-non-prototype option is enabled at the function declaration site, which allows a developer
to disable the diagnostic for all callers at the point of declaration. This diagnostic is grouped under the
-Wstrict-prototypes warning group, but is enabled by default. -Wdeprecated-non-prototype has no
effect in C2x or when -fno-knr-functions is enabled.

• Clang now appropriately issues an error in C when a definition of a function without a prototype and with no
arguments is an invalid redeclaration of a function with a prototype. e.g., void f(int); void f() {} is
now properly diagnosed.

• No longer issue a “declaration specifiers missing, defaulting to int” diagnostic in C89 mode because it is not an
extension in C89, it was valid code. The diagnostic has been removed entirely as it did not have a diagnostic
group to disable it, but it can be covered wholly by -Wimplicit-int.

• -Wmisexpect warns when the branch weights collected during profiling conflict with those added by
llvm.expect.

• -Wthread-safety-analysis now considers overloaded compound assignment and increment/decrement
operators as writing to their first argument, thus requiring an exclusive lock if the argument is guarded.

• -Wenum-conversion now warns on converting a signed enum of one type to an unsigned enum of a different
type (or vice versa) rather than -Wsign-conversion.

• Added the -Wunreachable-code-generic-assoc diagnostic flag (grouped under the
-Wunreachable-code flag) which is enabled by default and warns the user about _Generic selection
associations which are unreachable because the type specified is an array type or a qualified type.

• Added the -Wgnu-line-marker diagnostic flag (grouped under the -Wgnu flag) which is a portability warning
about use of GNU linemarker preprocessor directives. Fixes Issue 55067.

• Using #elifdef and #elifndef that are incompatible with C/C++ standards before C2x/C++2b are now
warned via -pedantic. Additionally, on such language mode, -Wpre-c2x-compat and
-Wpre-c++2b-compat diagnostic flags report a compatibility issue. Fixes Issue 55306.

• Clang now checks for stack resource exhaustion when recursively parsing declarators in order to give a
diagnostic before we run out of stack space. This fixes Issue 51642.

• Unknown preprocessor directives in a skipped conditional block are now given a typo correction suggestion if
the given directive is sufficiently similar to another preprocessor conditional directive. For example, if #esle

Introduction

4

https://wg21.link/cwg2394
https://github.com/llvm/llvm-project/issues/50794
https://github.com/llvm/llvm-project/issues/54489
https://github.com/llvm/llvm-project/issues/55067
https://github.com/llvm/llvm-project/issues/55306
https://github.com/llvm/llvm-project/issues/51642


appears in a skipped block, we will warn about the unknown directive and suggest #else as an alternative.
#elifdef and #elifndef are only suggested when in C2x or C++2b mode. Fixes Issue 51598.

• The -Wdeprecated diagnostic will now warn on out-of-line constexpr declarations downgraded to definitions
in C++1z, in addition to the existing warning on out-of-line const declarations.

Non-comprehensive list of changes in this release

• Improve __builtin_dump_struct:

• Support bitfields in struct and union.

• Improve the dump format, dump both bitwidth(if its a bitfield) and field value.

• Remove anonymous tag locations and flatten anonymous struct members.

• Beautify dump format, add indent for struct members.

• Support passing additional arguments to the formatting function, allowing use with fprintf and similar
formatting functions.

• Support use within constant evaluation in C++, if a constexpr formatting function is provided.

• Support formatting of base classes in C++.

• Support calling a formatting function template in C++, which can provide custom formatting for
non-aggregate types.

• Previously disabled sanitizer options now enabled by default: -
ASAN_OPTIONS=detect_stack_use_after_return=1 (only on Linux). - MSAN_OPTIONS=poison_in_dtor=1.

New Compiler Flags

• Added the -fno-knr-functions flag to allow users to opt into the C2x behavior where a function with an
empty parameter list is treated as though the parameter list were void. There is no -fknr-functions or
-fno-no-knr-functions flag; this feature cannot be disabled in language modes where it is required, such
as C++ or C2x.

• A new ARM pass to workaround Cortex-A57 Erratum 1742098 and Cortex-A72 Erratum 1655431 can be
enabled using -mfix-cortex-a57-aes-1742098 or -mfix-cortex-a72-aes-1655431. The pass is
enabled when using either of these cpus with -mcpu= and can be disabled using
-mno-fix-cortex-a57-aes-1742098 or -mno-fix-cortex-a72-aes-1655431.

Deprecated Compiler Flags

Modified Compiler Flags

Removed Compiler Flags

• Removed the -fno-concept-satisfaction-caching flag. The flag was added at the time when the draft
of C++20 standard did not permit caching of atomic constraints. The final standard permits such caching, see
WG21 P2104R0.

New Pragmas in Clang

• Added support for MSVC’s #pragma function, which tells the compiler to generate calls to functions listed in
the pragma instead of using the builtins.

• Added support for MSVC’s #pragma alloc_text. The pragma names the code section functions are placed
in. The pragma only applies to functions with C linkage.

• …

Introduction

5

https://github.com/llvm/llvm-project/issues/51598
http://wg21.link/p2104r0


Attribute Changes in Clang

• Added support for parameter pack expansion in clang::annotate.

• The overloadable attribute can now be written in all of the syntactic locations a declaration attribute may
appear. This fixes Issue 53805.

• Improved namespace attributes handling:

• Handle GNU attributes before a namespace identifier and subsequent attributes of different kinds.

• Emit error on GNU attributes for a nested namespace definition.

• Statement attributes [[clang::noinline]] and [[clang::always_inline]] can be used to control
inlining decisions at callsites.

• #pragma clang attribute push now supports multiple attributes within a single directive.

• The __declspec(naked) attribute can no longer be written on a member function in Microsoft compatibility
mode, matching the behavior of cl.exe.

• Attribute no_builtin should now affect the generated code. It now disables builtins (corresponding to the
specific names listed in the attribute) in the body of the function the attribute is on.

Windows Support

• Add support for MSVC-compatible /JMC//JMC- flag in clang-cl (supports X86/X64/ARM/ARM64). /JMC could
only be used when /Zi or /Z7 is turned on. With this addition, clang-cl can be used in Visual Studio for the
JustMyCode feature. Note, you may need to manually add /JMC as additional compile options in the Visual
Studio since it currently assumes clang-cl does not support /JMC.

AIX Support

• The driver no longer adds -mignore-xcoff-visibility by default for AIX targets when no other visibility
command-line options are in effect, as ignoring hidden visibility can silently have undesirable side effects (e.g
when libraries depend on visibility to hide non-ABI facing entities). The -mignore-xcoff-visibility option
can be manually specified on the command-line to recover the previous behavior if desired.

C Language Changes in Clang

• Finished implementing support for DR423. We already correctly handled stripping qualifiers from cast
expressions, but we did not strip qualifiers on function return types. We now properly treat the function as
though it were declarated with an unqualified, non-atomic return type. Fixes Issue 39595.

C2x Feature Support

• Implemented WG14 N2674 The noreturn attribute.

• Implemented WG14 N2935 Make false and true first-class language features.

• Implemented WG14 N2763 Adding a fundamental type for N-bit integers.

• Implemented WG14 N2775 Literal suffixes for bit-precise integers.

• Implemented the *_WIDTH macros to complete support for WG14 N2412 Two’s complement sign
representation for C2x.

• Implemented WG14 N2418 Adding the u8 character prefix.

• Removed support for implicit function declarations. This was a C89 feature that was removed in C99, but
cannot be supported in C2x because it requires support for functions without prototypes, which no longer exist
in C2x.

• Implemented WG14 N2841 No function declarators without prototypes and WG14 N2432 Remove support for
function definitions with identifier lists.

Introduction

6

https://github.com/llvm/llvm-project/issues/53805
https://github.com/llvm/llvm-project/issues/39595
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2764.pdf
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2935.pdf
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2763.pdf
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2775.pdf
https://www9.open-std.org/jtc1/sc22/wg14/www/docs/n2412.pdf
https://www9.open-std.org/jtc1/sc22/wg14/www/docs/n2412.pdf
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2418.pdf
https://www9.open-std.org/jtc1/sc22/wg14/www/docs/n2841.htm
https://www9.open-std.org/jtc1/sc22/wg14/www/docs/n2432.pdf
https://www9.open-std.org/jtc1/sc22/wg14/www/docs/n2432.pdf


C++ Language Changes in Clang

• Improved -O0 code generation for calls to std::move, std::forward, std::move_if_noexcept,
std::addressof, and std::as_const. These are now treated as compiler builtins and implemented
directly, rather than instantiating the definition from the standard library.

• Fixed mangling of nested dependent names such as T::a::b, where T is a template parameter, to conform to
the Itanium C++ ABI and be compatible with GCC. This breaks binary compatibility with code compiled with
earlier versions of clang; use the -fclang-abi-compat=14 option to get the old mangling.

• Preprocessor character literals with a u8 prefix are now correctly treated as unsigned character literals. This
fixes Issue 54886.

• Stopped allowing constraints on non-template functions to be compliant with dcl.decl.general p4.

C++20 Feature Support

• Diagnose consteval and constexpr issues that happen at namespace scope. This partially addresses Issue
51593.

• No longer attempt to evaluate a consteval UDL function call at runtime when it is called through a template
instantiation. This fixes Issue 54578.

• Implemented __builtin_source_location(), which enables library support for
std::source_location.

• The mangling scheme for C++20 modules has incompatibly changed. The initial mangling was discovered not
to be reversible, and the weak ownership design decision did not give the backwards compatibility that was
hoped for. C++20 since added extern "C++" semantics that can be used for such compatibility. The
demangler now demangles symbols with named module attachment.

• Enhanced the support for C++20 Modules, including: Partitions, Reachability, Header Unit and extern "C++"
semantics.

• Implemented P1103R3: Merging Modules.

• Implemented P1779R3: ABI isolation for member functions.

• Implemented P1874R1: Dynamic Initialization Order of Non-Local Variables in Modules.

• Partially implemented P1815R2: Translation-unit-local entities.

• As per “Conditionally Trivial Special Member Functions” (P0848), it is now possible to overload destructors
using concepts. Note that the rest of the paper about other special member functions is not yet implemented.

• Skip rebuilding lambda expressions in arguments of immediate invocations. This fixes GH56183, GH51695,
GH50455, GH54872, GH54587.

C++2b Feature Support

• Implemented P2128R6: Multidimensional subscript operator.

• Implemented P0849R8: auto(x): decay-copy in the language.

• Implemented P2242R3: Non-literal variables (and labels and gotos) in constexpr functions.

CUDA/HIP Language Changes in Clang

• Added __noinline__ as a keyword to avoid diagnostics due to usage of __attribute__((__noinline__)) in
CUDA/HIP programs.

Introduction

7

https://github.com/llvm/llvm-project/issues/54886
https://github.com/llvm/llvm-project/issues/51593
https://github.com/llvm/llvm-project/issues/51593
https://github.com/llvm/llvm-project/issues/54578
https://wg21.link/P1103R3
https://wg21.link/P1779R3
https://wg21.link/P1874R1
https://wg21.link/P1815R2
https://github.com/llvm/llvm-project/issues/56183
https://github.com/llvm/llvm-project/issues/51695
https://github.com/llvm/llvm-project/issues/50455
https://github.com/llvm/llvm-project/issues/54872
https://github.com/llvm/llvm-project/issues/54587
https://wg21.link/P2128R6
https://wg21.link/P0849R8
https://wg21.link/P2242R3


Objective-C Language Changes in Clang

OpenCL C Language Changes in Clang
…

ABI Changes in Clang

• GCC doesn’t pack non-POD members in packed structs unless the packed attribute is also specified on the
member. Clang historically did perform such packing. Clang now matches the gcc behavior (except on Darwin
and PS4). You can switch back to the old ABI behavior with the flag: -fclang-abi-compat=14.0.

OpenMP Support in Clang
…

CUDA Support in Clang

• …

X86 Support in Clang

• Support -mharden-sls=[none|all|return|indirect-jmp] for straight-line speculation hardening.

DWARF Support in Clang

Arm and AArch64 Support in Clang

Floating Point Support in Clang

Internal API Changes

• Added a new attribute flag AcceptsExprPack that when set allows expression pack expansions in the parsed
arguments of the corresponding attribute. Additionally it introduces delaying of attribute arguments, adding
common handling for creating attributes that cannot be fully initialized prior to template instantiation.

Build System Changes

• CMake -DCLANG_DEFAULT_PIE_ON_LINUX=ON is now the default. This is used by linux-gnu systems to
decide whether -fPIE -pie is the default (instead of -fno-pic -no-pie). This matches GCC installations
on many Linux distros. Note: linux-android and linux-musl always default to -fPIE -pie, ignoring this variable.
-DCLANG_DEFAULT_PIE_ON_LINUX may be removed in the future.

AST Matchers

• Expanded isInline narrowing matcher to support C++17 inline variables.

• Added forEachTemplateArgument matcher which creates a match every time a templateArgument
matches the matcher supplied to it.

clang-format

Introduction

8



• Important change: Renamed IndentRequires to IndentRequiresClause and changed the default for all
styles from false to true.

• Reworked and improved handling of concepts and requires. Added the RequiresClausePosition option as
part of that.

• Changed BreakBeforeConceptDeclarations from Boolean to an enum.

• Option InsertBraces has been added to insert optional braces after control statements.

libclang

• …

Static Analyzer

• New CTU implementation that keeps the slow-down around 2x compared to the single-TU analysis, even in
case of complex C++ projects. Still, it finds the majority of the “old” CTU findings. Besides, not more than ~3%
of the bug reports are lost compared to single-TU analysis, the lost reports are highly likely to be false positives.

• Added a new checker alpha.unix.cstring.UninitializedRead this will check for uninitialized reads
from common memory copy/manipulation functions such as memcpy, mempcpy, memmove, memcmp, ` strcmp`,
strncmp, strcpy, strlen, strsep and many more. Although this checker currently is in list of alpha
checkers due to a false positive.

Undefined Behavior Sanitizer (UBSan)

Core Analysis Improvements

• …

New Issues Found

• …

Python Binding Changes
The following methods have been added:

• …

Significant Known Problems

Additional Information
A wide variety of additional information is available on the Clang web page. The web page contains versions of the
API documentation which are up-to-date with the Git version of the source code. You can access versions of these
documents specific to this release by going into the “clang/docs/” directory in the Clang tree.

Core Analysis Improvements

9

https://discourse.llvm.org/t/rfc-much-faster-cross-translation-unit-ctu-analysis-implementation/61728
https://clang.llvm.org/


Using Clang as a Compiler

Clang Compiler User’s Manual
Introduction 12

Terminology 12

Basic Usage 12

Command Line Options 13

Options to Control Error and Warning Messages 13

Formatting of Diagnostics 13

Individual Warning Groups 17

Options to Control Clang Crash Diagnostics 18

Options to Emit Optimization Reports 18

Current limitations 19

Options to Emit Resource Consumption Reports 19

Other Options 20

Configuration files 20

Language and Target-Independent Features 21

Controlling Errors and Warnings 21

Controlling How Clang Displays Diagnostics 21

Diagnostic Mappings 22

Diagnostic Categories 22

Controlling Diagnostics via Command Line Flags 22

Controlling Diagnostics via Pragmas 22

Controlling Diagnostics in System Headers 23

Controlling Deprecation Diagnostics in Clang-Provided C Runtime Headers 23

Enabling All Diagnostics 24

Controlling Static Analyzer Diagnostics 24

Precompiled Headers 24

Generating a PCH File 24

Using a PCH File 24

Relocatable PCH Files 25

Controlling Floating Point Behavior 25

A note about __FLT_EVAL_METHOD__ 29

A note about Floating Point Constant Evaluation 29

Controlling Code Generation 30

Profile Guided Optimization 33

Differences Between Sampling and Instrumentation 34

Using Sampling Profilers 34

Sample Profile Formats 34

Sample Profile Text Format 35

Profiling with Instrumentation 36

Disabling Instrumentation 38

Instrumenting only selected files or functions 38

Profile remapping 39

Using Clang as a Compiler

10



GCOV-based Profiling 40

Controlling Debug Information 40

Controlling Size of Debug Information 40

Controlling Macro Debug Info Generation 41

Controlling Debugger “Tuning” 41

Controlling LLVM IR Output 41

Controlling Value Names in LLVM IR 41

Comment Parsing Options 42

C Language Features 42

Extensions supported by clang 42

Differences between various standard modes 42

GCC extensions not implemented yet 43

Intentionally unsupported GCC extensions 43

Microsoft extensions 44

C++ Language Features 44

Controlling implementation limits 44

Objective-C Language Features 44

Objective-C++ Language Features 44

OpenMP Features 44

Controlling implementation limits 45

OpenCL Features 45

OpenCL Specific Options 45

OpenCL Targets 46

Specific Targets 46

Generic Targets 46

OpenCL Header 47

OpenCL Extensions 47

OpenCL-Specific Attributes 47

nosvm 47

opencl_unroll_hint 48

convergent 48

noduplicate 48

C++ for OpenCL 49

Constructing and destroying global objects 49

Libraries 50

Target-Specific Features and Limitations 50

CPU Architectures Features and Limitations 50

X86 50

ARM 50

PowerPC 50

Other platforms 50

Operating System Features and Limitations 51

Windows 51

Cygwin 51

MinGW32 51

Using Clang as a Compiler

11



MinGW-w64 51

AIX 51

SPIR-V support 52

clang-cl 52

Command-Line Options 53

The /clang: Option 57

The /Zc:dllexportInlines- Option 57

Finding Clang runtime libraries 58

Introduction
The Clang Compiler is an open-source compiler for the C family of programming languages, aiming to be the best in
class implementation of these languages. Clang builds on the LLVM optimizer and code generator, allowing it to
provide high-quality optimization and code generation support for many targets. For more general information,
please see the Clang Web Site or the LLVM Web Site.

This document describes important notes about using Clang as a compiler for an end-user, documenting the
supported features, command line options, etc. If you are interested in using Clang to build a tool that processes
code, please see “Clang” CFE Internals Manual. If you are interested in the Clang Static Analyzer, please see its
web page.

Clang is one component in a complete toolchain for C family languages. A separate document describes the other
pieces necessary to assemble a complete toolchain.

Clang is designed to support the C family of programming languages, which includes C, Objective-C, C++, and
Objective-C++ as well as many dialects of those. For language-specific information, please see the corresponding
language specific section:

• C Language: K&R C, ANSI C89, ISO C90, ISO C94 (C89+AMD1), ISO C99 (+TC1, TC2, TC3).

• Objective-C Language: ObjC 1, ObjC 2, ObjC 2.1, plus variants depending on base language.

• C++ Language

• Objective C++ Language

• OpenCL Kernel Language: OpenCL C 1.0, 1.1, 1.2, 2.0, 3.0, and C++ for OpenCL 1.0 and 2021.

In addition to these base languages and their dialects, Clang supports a broad variety of language extensions, which
are documented in the corresponding language section. These extensions are provided to be compatible with the
GCC, Microsoft, and other popular compilers as well as to improve functionality through Clang-specific features. The
Clang driver and language features are intentionally designed to be as compatible with the GNU GCC compiler as
reasonably possible, easing migration from GCC to Clang. In most cases, code “just works”. Clang also provides an
alternative driver, clang-cl, that is designed to be compatible with the Visual C++ compiler, cl.exe.

In addition to language specific features, Clang has a variety of features that depend on what CPU architecture or
operating system is being compiled for. Please see the Target-Specific Features and Limitations section for more
details.

The rest of the introduction introduces some basic compiler terminology that is used throughout this manual and
contains a basic introduction to using Clang as a command line compiler.

Terminology

Front end, parser, backend, preprocessor, undefined behavior, diagnostic, optimizer

Basic Usage

Intro to how to use a C compiler for newbies.

compile + link compile then link debug info enabling optimizations picking a language to use, defaults to C17 by
default. Autosenses based on extension. using a makefile

Using Clang as a Compiler

12

https://clang.llvm.org
https://llvm.org
https://clang-analyzer.llvm.org


Command Line Options
This section is generally an index into other sections. It does not go into depth on the ones that are covered by other
sections. However, the first part introduces the language selection and other high level options like -c, -g, etc.

Options to Control Error and Warning Messages

-Werror
Turn warnings into errors.

-Werror=foo

Turn warning “foo” into an error.

-Wno-error=foo
Turn warning “foo” into a warning even if -Werror is specified.

-Wfoo
Enable warning “foo”. See the diagnostics reference for a complete list of the warning flags that can be specified in
this way.

-Wno-foo
Disable warning “foo”.

-w
Disable all diagnostics.

-Weverything
Enable all diagnostics.

-pedantic
Warn on language extensions.

-pedantic-errors
Error on language extensions.

-Wsystem-headers
Enable warnings from system headers.

-ferror-limit=123
Stop emitting diagnostics after 123 errors have been produced. The default is 20, and the error limit can be
disabled with -ferror-limit=0.

-ftemplate-backtrace-limit=123
Only emit up to 123 template instantiation notes within the template instantiation backtrace for a single warning or
error. The default is 10, and the limit can be disabled with -ftemplate-backtrace-limit=0.

Formatting of Diagnostics

Clang aims to produce beautiful diagnostics by default, particularly for new users that first come to Clang. However,
different people have different preferences, and sometimes Clang is driven not by a human, but by a program that
wants consistent and easily parsable output. For these cases, Clang provides a wide range of options to control the
exact output format of the diagnostics that it generates.

-f[no-]show-column

Print column number in diagnostic.

This option, which defaults to on, controls whether or not Clang prints the column number of a diagnostic. For
example, when this is enabled, Clang will print something like:

test.c:28:8: warning: extra tokens at end of #endif directive [-Wextra-tokens]
#endif bad
       ^
       //

When this is disabled, Clang will print “test.c:28: warning…” with no column number.

The printed column numbers count bytes from the beginning of the line; take care if your source contains
multibyte characters.

Using Clang as a Compiler

13



-f[no-]show-source-location

Print source file/line/column information in diagnostic.

This option, which defaults to on, controls whether or not Clang prints the filename, line number and column
number of a diagnostic. For example, when this is enabled, Clang will print something like:

test.c:28:8: warning: extra tokens at end of #endif directive [-Wextra-tokens]
#endif bad
       ^
       //

When this is disabled, Clang will not print the “test.c:28:8: ” part.

-f[no-]caret-diagnostics

Print source line and ranges from source code in diagnostic. This option, which defaults to on, controls whether
or not Clang prints the source line, source ranges, and caret when emitting a diagnostic. For example, when this
is enabled, Clang will print something like:

test.c:28:8: warning: extra tokens at end of #endif directive [-Wextra-tokens]
#endif bad
       ^
       //

-f[no-]color-diagnostics

This option, which defaults to on when a color-capable terminal is detected, controls whether or not Clang prints
diagnostics in color.

When this option is enabled, Clang will use colors to highlight specific parts of the diagnostic, e.g.,

When this is disabled, Clang will just print:

test.c:2:8: warning: extra tokens at end of #endif directive [-Wextra-tokens]
#endif bad
       ^
       //

-fansi-escape-codes

Controls whether ANSI escape codes are used instead of the Windows Console API to output colored
diagnostics. This option is only used on Windows and defaults to off.

-fdiagnostics-format=clang/msvc/vi
Changes diagnostic output format to better match IDEs and command line tools.
This option controls the output format of the filename, line number, and column printed in diagnostic messages.
The options, and their affect on formatting a simple conversion diagnostic, follow:

clang (default)

t.c:3:11: warning: conversion specifies type 'char *' but the argument has type 'int'

msvc

t.c(3,11) : warning: conversion specifies type 'char *' but the argument has type 'int'

vi

t.c +3:11: warning: conversion specifies type 'char *' but the argument has type 'int'

-f[no-]diagnostics-show-option

Enable [-Woption] information in diagnostic line.

This option, which defaults to on, controls whether or not Clang prints the associated warning group option name
when outputting a warning diagnostic. For example, in this output:

test.c:28:8: warning: extra tokens at end of #endif directive [-Wextra-tokens]
#endif bad
       ^
       //

Using Clang as a Compiler

14



Passing -fno-diagnostics-show-option will prevent Clang from printing the [-Wextra-tokens] information in the
diagnostic. This information tells you the flag needed to enable or disable the diagnostic, either from the
command line or through #pragma GCC diagnostic.

-fdiagnostics-show-category=none/id/name
Enable printing category information in diagnostic line.
This option, which defaults to “none”, controls whether or not Clang prints the category associated with a
diagnostic when emitting it. Each diagnostic may or many not have an associated category, if it has one, it is listed
in the diagnostic categorization field of the diagnostic line (in the []’s).
For example, a format string warning will produce these three renditions based on the setting of this option:
t.c:3:11: warning: conversion specifies type 'char *' but the argument has type 'int' [-Wformat]
t.c:3:11: warning: conversion specifies type 'char *' but the argument has type 'int' [-Wformat,1]
t.c:3:11: warning: conversion specifies type 'char *' but the argument has type 'int' [-Wformat,Format String]

This category can be used by clients that want to group diagnostics by category, so it should be a high level
category. We want dozens of these, not hundreds or thousands of them.

-f[no-]save-optimization-record[=<format>]
Enable optimization remarks during compilation and write them to a separate file.
This option, which defaults to off, controls whether Clang writes optimization reports to a separate file. By
recording diagnostics in a file, users can parse or sort the remarks in a convenient way.
By default, the serialization format is YAML.
The supported serialization formats are:

• -fsave-optimization-record=yaml: A structured YAML format.

• -fsave-optimization-record=bitstream: A binary format based on LLVM Bitstream.
The output file is controlled by -foptimization-record-file.
In the absence of an explicit output file, the file is chosen using the following scheme:
<base>.opt.<format>
where <base> is based on the output file of the compilation (whether it’s explicitly specified through -o or not)
when used with -c or -S. For example:

• clang -fsave-optimization-record -c in.c -o out.o will generate out.opt.yaml

• clang -fsave-optimization-record -c in.c `` will generate ``in.opt.yaml
When targeting (Thin)LTO, the base is derived from the output filename, and the extension is not dropped.
When targeting ThinLTO, the following scheme is used:
<base>.opt.<format>.thin.<num>.<format>
Darwin-only: when used for generating a linked binary from a source file (through an intermediate object file), the
driver will invoke cc1 to generate a temporary object file. The temporary remark file will be emitted next to the
object file, which will then be picked up by dsymutil and emitted in the .dSYM bundle. This is available for all
formats except YAML.
For example:
clang -fsave-optimization-record=bitstream in.c -o out will generate

• /var/folders/43/9y164hh52tv_2nrdxrj31nyw0000gn/T/a-9be59b.o

• /var/folders/43/9y164hh52tv_2nrdxrj31nyw0000gn/T/a-9be59b.opt.bitstream

• out

• out.dSYM/Contents/Resources/Remarks/out
Darwin-only: compiling for multiple architectures will use the following scheme:
<base>-<arch>.opt.<format>
Note that this is incompatible with passing the -foptimization-record-file option.

-foptimization-record-file

Control the file to which optimization reports are written. This implies -fsave-optimization-record.

On Darwin platforms, this is incompatible with passing multiple -arch <arch> options.

-foptimization-record-passes

Only include passes which match a specified regular expression.

When optimization reports are being output (see -fsave-optimization-record), this option controls the passes that
will be included in the final report.

Using Clang as a Compiler

15



If this option is not used, all the passes are included in the optimization record.

-f[no-]diagnostics-show-hotness

Enable profile hotness information in diagnostic line.

This option controls whether Clang prints the profile hotness associated with diagnostics in the presence of
profile-guided optimization information. This is currently supported with optimization remarks (see Options to
Emit Optimization Reports). The hotness information allows users to focus on the hot optimization remarks that
are likely to be more relevant for run-time performance.

For example, in this output, the block containing the callsite of foo was executed 3000 times according to the
profile data:

s.c:7:10: remark: foo inlined into bar (hotness: 3000) [-Rpass-analysis=inline]
  sum += foo(x, x - 2);
         ^

This option is implied when -fsave-optimization-record is used. Otherwise, it defaults to off.

-fdiagnostics-hotness-threshold

Prevent optimization remarks from being output if they do not have at least this hotness value.

This option, which defaults to zero, controls the minimum hotness an optimization remark would need in order to
be output by Clang. This is currently supported with optimization remarks (see Options to Emit Optimization
Reports) when profile hotness information in diagnostics is enabled (see -fdiagnostics-show-hotness).

-f[no-]diagnostics-fixit-info

Enable “FixIt” information in the diagnostics output.

This option, which defaults to on, controls whether or not Clang prints the information on how to fix a specific
diagnostic underneath it when it knows. For example, in this output:

test.c:28:8: warning: extra tokens at end of #endif directive [-Wextra-tokens]
#endif bad
       ^
       //

Passing -fno-diagnostics-fixit-info will prevent Clang from printing the “//” line at the end of the message. This
information is useful for users who may not understand what is wrong, but can be confusing for machine
parsing.

-fdiagnostics-print-source-range-info

Print machine parsable information about source ranges. This option makes Clang print information about
source ranges in a machine parsable format after the file/line/column number information. The information is a
simple sequence of brace enclosed ranges, where each range lists the start and end line/column locations. For
example, in this output:
exprs.c:47:15:{47:8-47:14}{47:17-47:24}: error: invalid operands to binary expression ('int *' and '_Complex float')
   P = (P-42) + Gamma*4;
       ~~~~~~ ^ ~~~~~~~

The {}’s are generated by -fdiagnostics-print-source-range-info.

The printed column numbers count bytes from the beginning of the line; take care if your source contains
multibyte characters.

-fdiagnostics-parseable-fixits
Print Fix-Its in a machine parseable form.
This option makes Clang print available Fix-Its in a machine parseable format at the end of diagnostics. The
following example illustrates the format:

fix-it:"t.cpp":{7:25-7:29}:"Gamma"

The range printed is a half-open range, so in this example the characters at column 25 up to but not including
column 29 on line 7 in t.cpp should be replaced with the string “Gamma”. Either the range or the replacement
string may be empty (representing strict insertions and strict erasures, respectively). Both the file name and the
insertion string escape backslash (as “\”), tabs (as “\t”), newlines (as “\n”), double quotes(as “\””) and non-printable
characters (as octal “\xxx”).

Using Clang as a Compiler

16



The printed column numbers count bytes from the beginning of the line; take care if your source contains multibyte
characters.

-fno-elide-type
Turns off elision in template type printing.
The default for template type printing is to elide as many template arguments as possible, removing those which
are the same in both template types, leaving only the differences. Adding this flag will print all the template
arguments. If supported by the terminal, highlighting will still appear on differing arguments.
Default:
t.cc:4:5: note: candidate function not viable: no known conversion from 'vector<map<[...], map<float, [...]>>>' to 'vector<map<[...], map<double, [...]>>>' for 1st argument;

-fno-elide-type:
t.cc:4:5: note: candidate function not viable: no known conversion from 'vector<map<int, map<float, int>>>' to 'vector<map<int, map<double, int>>>' for 1st argument;

-fdiagnostics-show-template-tree
Template type diffing prints a text tree.
For diffing large templated types, this option will cause Clang to display the templates as an indented text tree, one
argument per line, with differences marked inline. This is compatible with -fno-elide-type.
Default:
t.cc:4:5: note: candidate function not viable: no known conversion from 'vector<map<[...], map<float, [...]>>>' to 'vector<map<[...], map<double, [...]>>>' for 1st argument;

With -fdiagnostics-show-template-tree:

t.cc:4:5: note: candidate function not viable: no known conversion for 1st argument;
  vector<
    map<
      [...],
      map<
        [float != double],
        [...]>>>

Individual Warning Groups

TODO: Generate this from tblgen. Define one anchor per warning group.

-Wextra-tokens
Warn about excess tokens at the end of a preprocessor directive.
This option, which defaults to on, enables warnings about extra tokens at the end of preprocessor directives. For
example:

test.c:28:8: warning: extra tokens at end of #endif directive [-Wextra-tokens]
#endif bad
       ^

These extra tokens are not strictly conforming, and are usually best handled by commenting them out.

-Wambiguous-member-template
Warn about unqualified uses of a member template whose name resolves to another template at the location of
the use.
This option, which defaults to on, enables a warning in the following code:

template<typename T> struct set{};
template<typename T> struct trait { typedef const T& type; };
struct Value {
  template<typename T> void set(typename trait<T>::type value) {}
};
void foo() {
  Value v;
  v.set<double>(3.2);
}

C++ [basic.lookup.classref] requires this to be an error, but, because it’s hard to work around, Clang downgrades it
to a warning as an extension.

-Wbind-to-temporary-copy
Warn about an unusable copy constructor when binding a reference to a temporary.

Using Clang as a Compiler

17



This option enables warnings about binding a reference to a temporary when the temporary doesn’t have a usable
copy constructor. For example:

struct NonCopyable {
  NonCopyable();
private:
  NonCopyable(const NonCopyable&);
};
void foo(const NonCopyable&);
void bar() {
  foo(NonCopyable());  // Disallowed in C++98; allowed in C++11.
}

struct NonCopyable2 {
  NonCopyable2();
  NonCopyable2(NonCopyable2&);
};
void foo(const NonCopyable2&);
void bar() {
  foo(NonCopyable2());  // Disallowed in C++98; allowed in C++11.
}

Note that if NonCopyable2::NonCopyable2() has a default argument whose instantiation produces a compile
error, that error will still be a hard error in C++98 mode even if this warning is turned off.

Options to Control Clang Crash Diagnostics

As unbelievable as it may sound, Clang does crash from time to time. Generally, this only occurs to those living on
the bleeding edge. Clang goes to great lengths to assist you in filing a bug report. Specifically, Clang generates
preprocessed source file(s) and associated run script(s) upon a crash. These files should be attached to a bug report
to ease reproducibility of the failure. Below are the command line options to control the crash diagnostics.

-fno-crash-diagnostics
Disable auto-generation of preprocessed source files during a clang crash.

The -fno-crash-diagnostics flag can be helpful for speeding the process of generating a delta reduced test case.

-fcrash-diagnostics-dir=<dir>
Specify where to write the crash diagnostics files; defaults to the usual location for temporary files.

Clang is also capable of generating preprocessed source file(s) and associated run script(s) even without a crash.
This is specially useful when trying to generate a reproducer for warnings or errors while using modules.

-gen-reproducer
Generates preprocessed source files, a reproducer script and if relevant, a cache containing: built module pcm’s
and all headers needed to rebuild the same modules.

Options to Emit Optimization Reports

Optimization reports trace, at a high-level, all the major decisions done by compiler transformations. For instance,
when the inliner decides to inline function foo() into bar(), or the loop unroller decides to unroll a loop N times, or
the vectorizer decides to vectorize a loop body.

Clang offers a family of flags which the optimizers can use to emit a diagnostic in three cases:

1. When the pass makes a transformation (-Rpass).

2. When the pass fails to make a transformation (-Rpass-missed).

3. When the pass determines whether or not to make a transformation (-Rpass-analysis).

NOTE: Although the discussion below focuses on -Rpass, the exact same options apply to -Rpass-missed and
-Rpass-analysis.

Using Clang as a Compiler

18

https://llvm.org/releases/download.html#svn


Since there are dozens of passes inside the compiler, each of these flags take a regular expression that identifies the
name of the pass which should emit the associated diagnostic. For example, to get a report from the inliner, compile
the code with:

$ clang -O2 -Rpass=inline code.cc -o code
code.cc:4:25: remark: foo inlined into bar [-Rpass=inline]
int bar(int j) { return foo(j, j - 2); }
                        ^

Note that remarks from the inliner are identified with [-Rpass=inline]. To request a report from every optimization
pass, you should use -Rpass=.* (in fact, you can use any valid POSIX regular expression). However, do not expect a
report from every transformation made by the compiler. Optimization remarks do not really make sense outside of
the major transformations (e.g., inlining, vectorization, loop optimizations) and not every optimization pass supports
this feature.

Note that when using profile-guided optimization information, profile hotness information can be included in the
remarks (see -fdiagnostics-show-hotness).

Current limitations

1. Optimization remarks that refer to function names will display the mangled name of the function. Since these
remarks are emitted by the back end of the compiler, it does not know anything about the input language, nor its
mangling rules.

2. Some source locations are not displayed correctly. The front end has a more detailed source location tracking
than the locations included in the debug info (e.g., the front end can locate code inside macro expansions).
However, the locations used by -Rpass are translated from debug annotations. That translation can be lossy,
which results in some remarks having no location information.

Options to Emit Resource Consumption Reports

These are options that report execution time and consumed memory of different compilations steps.

-fproc-stat-report=
This option requests driver to print used memory and execution time of each compilation step. The clang driver
during execution calls different tools, like compiler, assembler, linker etc. With this option the driver reports total
execution time, the execution time spent in user mode and peak memory usage of each the called tool. Value of
the option specifies where the report is sent to. If it specifies a regular file, the data are saved to this file in CSV
format:

$ clang -fproc-stat-report=abc foo.c
$ cat abc
clang-11,"/tmp/foo-123456.o",92000,84000,87536
ld,"a.out",900,8000,53568

The data on each row represent:

• file name of the tool executable,

• output file name in quotes,

• total execution time in microseconds,

• execution time in user mode in microseconds,

• peak memory usage in Kb.
It is possible to specify this option without any value. In this case statistics are printed on standard output in human
readable format:

$ clang -fproc-stat-report foo.c
clang-11: output=/tmp/foo-855a8e.o, total=68.000 ms, user=60.000 ms, mem=86920 Kb
ld: output=a.out, total=8.000 ms, user=4.000 ms, mem=52320 Kb

The report file specified in the option is locked for write, so this option can be used to collect statistics in parallel
builds. The report file is not cleared, new data is appended to it, thus making posible to accumulate build statistics.

Using Clang as a Compiler

19



You can also use environment variables to control the process statistics reporting. Setting CC_PRINT_PROC_STAT
to 1 enables the feature, the report goes to stdout in human readable format. Setting
CC_PRINT_PROC_STAT_FILE to a fully qualified file path makes it report process statistics to the given file in the
CSV format. Specifying a relative path will likely lead to multiple files with the same name created in different
directories, since the path is relative to a changing working directory.
These environment variables are handy when you need to request the statistics report without changing your build
scripts or alter the existing set of compiler options. Note that -fproc-stat-report take precedence over
CC_PRINT_PROC_STAT and CC_PRINT_PROC_STAT_FILE.

$ export CC_PRINT_PROC_STAT=1
$ export CC_PRINT_PROC_STAT_FILE=~/project-build-proc-stat.csv
$ make

Other Options

Clang options that don’t fit neatly into other categories.

-fgnuc-version=
This flag controls the value of __GNUC__ and related macros. This flag does not enable or disable any GCC
extensions implemented in Clang. Setting the version to zero causes Clang to leave __GNUC__ and other
GNU-namespaced macros, such as __GXX_WEAK__, undefined.

-MV
When emitting a dependency file, use formatting conventions appropriate for NMake or Jom. Ignored unless
another option causes Clang to emit a dependency file.

When Clang emits a dependency file (e.g., you supplied the -M option) most filenames can be written to the file
without any special formatting. Different Make tools will treat different sets of characters as “special” and use different
conventions for telling the Make tool that the character is actually part of the filename. Normally Clang uses
backslash to “escape” a special character, which is the convention used by GNU Make. The -MV option tells Clang to
put double-quotes around the entire filename, which is the convention used by NMake and Jom.

Configuration files

Configuration files group command-line options and allow all of them to be specified just by referencing the
configuration file. They may be used, for example, to collect options required to tune compilation for particular target,
such as -L, -I, -l, –sysroot, codegen options, etc.

The command line option –config can be used to specify configuration file in a Clang invocation. For example:

clang --config /home/user/cfgs/testing.txt
clang --config debug.cfg

If the provided argument contains a directory separator, it is considered as a file path, and options are read from that
file. Otherwise the argument is treated as a file name and is searched for sequentially in the directories:

• user directory,

• system directory,

• the directory where Clang executable resides.

Both user and system directories for configuration files are specified during clang build using CMake parameters,
CLANG_CONFIG_FILE_USER_DIR and CLANG_CONFIG_FILE_SYSTEM_DIR respectively. The first file found is
used. It is an error if the required file cannot be found.

Another way to specify a configuration file is to encode it in executable name. For example, if the Clang executable is
named armv7l-clang (it may be a symbolic link to clang), then Clang will search for file armv7l.cfg in the directory
where Clang resides.

If a driver mode is specified in invocation, Clang tries to find a file specific for the specified mode. For example, if the
executable file is named x86_64-clang-cl, Clang first looks for x86_64-cl.cfg and if it is not found, looks for
x86_64.cfg.

If the command line contains options that effectively change target architecture (these are -m32, -EL, and some
others) and the configuration file starts with an architecture name, Clang tries to load the configuration file for the
effective architecture. For example, invocation:

Using Clang as a Compiler

20



x86_64-clang -m32 abc.c

causes Clang search for a file i368.cfg first, and if no such file is found, Clang looks for the file x86_64.cfg.

The configuration file consists of command-line options specified on one or more lines. Lines composed of
whitespace characters only are ignored as well as lines in which the first non-blank character is #. Long options may
be split between several lines by a trailing backslash. Here is example of a configuration file:

# Several options on line
-c --target=x86_64-unknown-linux-gnu

# Long option split between lines
-I/usr/lib/gcc/x86_64-linux-gnu/5.4.0/../../../../\
include/c++/5.4.0

# other config files may be included
@linux.options

Files included by @file directives in configuration files are resolved relative to the including file. For example, if a
configuration file ~/.llvm/target.cfg contains the directive @os/linux.opts, the file linux.opts is searched for in the
directory ~/.llvm/os.

To generate paths relative to the configuration file, the <CFGDIR> token may be used. This will expand to the
absolute path of the directory containing the configuration file.

In cases where a configuration file is deployed alongside SDK contents, the SDK directory can remain fully portable
by using <CFGDIR> prefixed paths. In this way, the user may only need to specify a root configuration file with
–config to establish every aspect of the SDK with the compiler:

--target=foo
-isystem <CFGDIR>/include
-L <CFGDIR>/lib
-T <CFGDIR>/ldscripts/link.ld

Language and Target-Independent Features

Controlling Errors and Warnings

Clang provides a number of ways to control which code constructs cause it to emit errors and warning messages,
and how they are displayed to the console.

Controlling How Clang Displays Diagnostics

When Clang emits a diagnostic, it includes rich information in the output, and gives you fine-grain control over which
information is printed. Clang has the ability to print this information, and these are the options that control it:

1. A file/line/column indicator that shows exactly where the diagnostic occurs in your code [-fshow-column,
-fshow-source-location].

2. A categorization of the diagnostic as a note, warning, error, or fatal error.

3. A text string that describes what the problem is.

4. An option that indicates how to control the diagnostic (for diagnostics that support it)
[-fdiagnostics-show-option].

5. A high-level category for the diagnostic for clients that want to group diagnostics by class (for diagnostics that
support it) [-fdiagnostics-show-category].

6. The line of source code that the issue occurs on, along with a caret and ranges that indicate the important
locations [-fcaret-diagnostics].

7. “FixIt” information, which is a concise explanation of how to fix the problem (when Clang is certain it knows)
[-fdiagnostics-fixit-info].

Using Clang as a Compiler

21



8. A machine-parsable representation of the ranges involved (off by default)
[-fdiagnostics-print-source-range-info].

For more information please see Formatting of Diagnostics.

Diagnostic Mappings

All diagnostics are mapped into one of these 6 classes:

• Ignored

• Note

• Remark

• Warning

• Error

• Fatal

Diagnostic Categories

Though not shown by default, diagnostics may each be associated with a high-level category. This category is
intended to make it possible to triage builds that produce a large number of errors or warnings in a grouped way.

Categories are not shown by default, but they can be turned on with the -fdiagnostics-show-category option. When
set to “name”, the category is printed textually in the diagnostic output. When it is set to “id”, a category number is
printed. The mapping of category names to category id’s can be obtained by running
‘clang   --print-diagnostic-categories’.

Controlling Diagnostics via Command Line Flags

TODO: -W flags, -pedantic, etc

Controlling Diagnostics via Pragmas

Clang can also control what diagnostics are enabled through the use of pragmas in the source code. This is useful
for turning off specific warnings in a section of source code. Clang supports GCC’s pragma for compatibility with
existing source code, as well as several extensions.

The pragma may control any warning that can be used from the command line. Warnings may be set to ignored,
warning, error, or fatal. The following example code will tell Clang or GCC to ignore the -Wall warnings:

#pragma GCC diagnostic ignored "-Wall"

In addition to all of the functionality provided by GCC’s pragma, Clang also allows you to push and pop the current
warning state. This is particularly useful when writing a header file that will be compiled by other people, because you
don’t know what warning flags they build with.

In the below example -Wextra-tokens is ignored for only a single line of code, after which the diagnostics return to
whatever state had previously existed.

#if foo
#endif foo // warning: extra tokens at end of #endif directive

#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wextra-tokens"

#if foo
#endif foo // no warning

#pragma clang diagnostic pop

The push and pop pragmas will save and restore the full diagnostic state of the compiler, regardless of how it was
set. That means that it is possible to use push and pop around GCC compatible diagnostics and Clang will push and

Using Clang as a Compiler

22



pop them appropriately, while GCC will ignore the pushes and pops as unknown pragmas. It should be noted that
while Clang supports the GCC pragma, Clang and GCC do not support the exact same set of warnings, so even
when using GCC compatible #pragmas there is no guarantee that they will have identical behaviour on both
compilers.

In addition to controlling warnings and errors generated by the compiler, it is possible to generate custom warning
and error messages through the following pragmas:

// The following will produce warning messages
#pragma message "some diagnostic message"
#pragma GCC warning "TODO: replace deprecated feature"

// The following will produce an error message
#pragma GCC error "Not supported"

These pragmas operate similarly to the #warning and #error preprocessor directives, except that they may also
be embedded into preprocessor macros via the C99 _Pragma operator, for example:

#define STR(X) #X
#define DEFER(M,...) M(__VA_ARGS__)
#define CUSTOM_ERROR(X) _Pragma(STR(GCC error(X " at line " DEFER(STR,__LINE__))))

CUSTOM_ERROR("Feature not available");

Controlling Diagnostics in System Headers

Warnings are suppressed when they occur in system headers. By default, an included file is treated as a system
header if it is found in an include path specified by -isystem, but this can be overridden in several ways.

The system_header pragma can be used to mark the current file as being a system header. No warnings will be
produced from the location of the pragma onwards within the same file.

#if foo
#endif foo // warning: extra tokens at end of #endif directive

#pragma clang system_header

#if foo
#endif foo // no warning

The –system-header-prefix= and –no-system-header-prefix= command-line arguments can be used to override
whether subsets of an include path are treated as system headers. When the name in a #include directive is found
within a header search path and starts with a system prefix, the header is treated as a system header. The last prefix
on the command-line which matches the specified header name takes precedence. For instance:

$ clang -Ifoo -isystem bar --system-header-prefix=x/ \
    --no-system-header-prefix=x/y/

Here, #include "x/a.h" is treated as including a system header, even if the header is found in foo, and
#include "x/y/b.h" is treated as not including a system header, even if the header is found in bar.

A #include directive which finds a file relative to the current directory is treated as including a system header if the
including file is treated as a system header.

Controlling Deprecation Diagnostics in Clang-Provided C Runtime Headers

Clang is responsible for providing some of the C runtime headers that cannot be provided by a platform CRT, such
as implementation limits or when compiling in freestanding mode. Define the
_CLANG_DISABLE_CRT_DEPRECATION_WARNINGS macro prior to including such a C runtime header to disable the
deprecation warnings. Note that the C Standard Library headers are allowed to transitively include other standard
library headers (see 7.1.2p5), and so the most appropriate use of this macro is to set it within the build system using
-D or before any include directives in the translation unit.

Using Clang as a Compiler

23



#define _CLANG_DISABLE_CRT_DEPRECATION_WARNINGS
#include <stdint.h>    // Clang CRT deprecation warnings are disabled.
#include <stdatomic.h> // Clang CRT deprecation warnings are disabled.

Enabling All Diagnostics

In addition to the traditional -W flags, one can enable all diagnostics by passing -Weverything. This works as
expected with -Werror, and also includes the warnings from -pedantic. Some diagnostics contradict each other,
therefore, users of -Weverything often disable many diagnostics such as -Wno-c++98-compat and
-Wno-c++-compat because they contradict recent C++ standards.

Since -Weverything enables every diagnostic, we generally don’t recommend using it. -Wall -Wextra are a better
choice for most projects. Using -Weverything means that updating your compiler is more difficult because you’re
exposed to experimental diagnostics which might be of lower quality than the default ones. If you do use
-Weverything then we advise that you address all new compiler diagnostics as they get added to Clang, either by
fixing everything they find or explicitly disabling that diagnostic with its corresponding Wno- option.

Note that when combined with -w (which disables all warnings), disabling all warnings wins.

Controlling Static Analyzer Diagnostics

While not strictly part of the compiler, the diagnostics from Clang’s static analyzer can also be influenced by the user
via changes to the source code. See the available annotations and the analyzer’s FAQ page for more information.

Precompiled Headers

Precompiled headers are a general approach employed by many compilers to reduce compilation time. The
underlying motivation of the approach is that it is common for the same (and often large) header files to be included
by multiple source files. Consequently, compile times can often be greatly improved by caching some of the
(redundant) work done by a compiler to process headers. Precompiled header files, which represent one of many
ways to implement this optimization, are literally files that represent an on-disk cache that contains the vital
information necessary to reduce some of the work needed to process a corresponding header file. While details of
precompiled headers vary between compilers, precompiled headers have been shown to be highly effective at
speeding up program compilation on systems with very large system headers (e.g., macOS).

Generating a PCH File

To generate a PCH file using Clang, one invokes Clang with the -x <language>-header option. This mirrors the
interface in GCC for generating PCH files:

$ gcc -x c-header test.h -o test.h.gch
$ clang -x c-header test.h -o test.h.pch

Using a PCH File

A PCH file can then be used as a prefix header when a -include-pch option is passed to clang:

$ clang -include-pch test.h.pch test.c -o test

The clang driver will check if the PCH file test.h.pch is available; if so, the contents of test.h (and the files it
includes) will be processed from the PCH file. Otherwise, Clang will report an error.

Note

Clang does not automatically use PCH files for headers that are directly included within a source file or indirectly
via -include. For example:

$ clang -x c-header test.h -o test.h.pch
$ cat test.c
#include "test.h"
$ clang test.c -o test

Using Clang as a Compiler

24

https://clang-analyzer.llvm.org
https://clang-analyzer.llvm.org/annotations.html
https://clang-analyzer.llvm.org/faq.html#exclude_code
https://en.wikipedia.org/wiki/Precompiled_header


In this example, clang will not automatically use the PCH file for test.h since test.h was included directly in
the source file and not specified on the command line using -include-pch.

Relocatable PCH Files

It is sometimes necessary to build a precompiled header from headers that are not yet in their final, installed
locations. For example, one might build a precompiled header within the build tree that is then meant to be installed
alongside the headers. Clang permits the creation of “relocatable” precompiled headers, which are built with a given
path (into the build directory) and can later be used from an installed location.

To build a relocatable precompiled header, place your headers into a subdirectory whose structure mimics the
installed location. For example, if you want to build a precompiled header for the header mylib.h that will be
installed into /usr/include, create a subdirectory build/usr/include and place the header mylib.h into that
subdirectory. If mylib.h depends on other headers, then they can be stored within build/usr/include in a way
that mimics the installed location.

Building a relocatable precompiled header requires two additional arguments. First, pass the --relocatable-pch
flag to indicate that the resulting PCH file should be relocatable. Second, pass -isysroot /path/to/build,
which makes all includes for your library relative to the build directory. For example:

# clang -x c-header --relocatable-pch -isysroot /path/to/build /path/to/build/mylib.h mylib.h.pch

When loading the relocatable PCH file, the various headers used in the PCH file are found from the system header
root. For example, mylib.h can be found in /usr/include/mylib.h. If the headers are installed in some other
system root, the -isysroot option can be used provide a different system root from which the headers will be
based. For example, -isysroot /Developer/SDKs/MacOSX10.4u.sdk will look for mylib.h in
/Developer/SDKs/MacOSX10.4u.sdk/usr/include/mylib.h.

Relocatable precompiled headers are intended to be used in a limited number of cases where the compilation
environment is tightly controlled and the precompiled header cannot be generated after headers have been installed.

Controlling Floating Point Behavior

Clang provides a number of ways to control floating point behavior, including with command line options and source
pragmas. This section describes the various floating point semantic modes and the corresponding options.

Floating Point Semantic Modes

Mode Values

ffp-exception-behavi
or

{ignore, strict, may_trap}

fenv_access {off, on} (none)

frounding-math {dynamic, tonearest, downward, upward,
towardzero}

ffp-contract {on, off, fast, fast-honor-pragmas}

fdenormal-fp-math {IEEE, PreserveSign, PositiveZero}

fdenormal-fp-math-f
p32

{IEEE, PreserveSign, PositiveZero}

fmath-errno {on, off}

fhonor-nans {on, off}

fhonor-infinities {on, off}

fsigned-zeros {on, off}

freciprocal-math {on, off}

Using Clang as a Compiler

25



Mode Values

allow_approximate_
fns

{on, off}

fassociative-math {on, off}

This table describes the option settings that correspond to the three floating point semantic models: precise (the
default), strict, and fast.

Floating Point Models

Mode Precise Strict Fast

except_behavior ignore strict ignore

fenv_access off on off

rounding_mode tonearest dynamic tonearest

contract on off fast

denormal_fp_math IEEE IEEE PreserveSign

denormal_fp32_math IEEE IEEE PreserveSign

support_math_errno on on off

no_honor_nans off off on

no_honor_infinities off off on

no_signed_zeros off off on

allow_reciprocal off off on

allow_approximate_fns off off on

allow_reassociation off off on

-ffast-math

Enable fast-math mode. This option lets the compiler make aggressive, potentially-lossy assumptions about
floating-point math. These include:

• Floating-point math obeys regular algebraic rules for real numbers (e.g. + and * are associative,
x/y == x * (1/y), and (a + b) * c == a * c + b * c),

• Operands to floating-point operations are not equal to NaN and Inf, and

• +0 and -0 are interchangeable.

-ffast-math also defines the __FAST_MATH__ preprocessor macro. Some math libraries recognize this
macro and change their behavior. With the exception of -ffp-contract=fast, using any of the options
below to disable any of the individual optimizations in -ffast-math will cause __FAST_MATH__ to no longer
be set.

This option implies:

• -fno-honor-infinities

• -fno-honor-nans

• -fno-math-errno

• -ffinite-math-only

• -fassociative-math

• -freciprocal-math

• -fno-signed-zeros

• -fno-trapping-math

Using Clang as a Compiler

26



• -ffp-contract=fast

-fdenormal-fp-math=<value>
Select which denormal numbers the code is permitted to require.
Valid values are:

• ieee - IEEE 754 denormal numbers

• preserve-sign - the sign of a flushed-to-zero number is preserved in the sign of 0

• positive-zero - denormals are flushed to positive zero
Defaults to ieee.

-f[no-]strict-float-cast-overflow

When a floating-point value is not representable in a destination integer type, the code has undefined behavior
according to the language standard. By default, Clang will not guarantee any particular result in that case. With
the ‘no-strict’ option, Clang will saturate towards the smallest and largest representable integer values instead.
NaNs will be converted to zero.

-f[no-]math-errno

Require math functions to indicate errors by setting errno. The default varies by ToolChain. -fno-math-errno
allows optimizations that might cause standard C math functions to not set errno. For example, on some
systems, the math function sqrt is specified as setting errno to EDOM when the input is negative. On these
systems, the compiler cannot normally optimize a call to sqrt to use inline code (e.g. the x86 sqrtsd
instruction) without additional checking to ensure that errno is set appropriately. -fno-math-errno permits
these transformations.

On some targets, math library functions never set errno, and so -fno-math-errno is the default. This
includes most BSD-derived systems, including Darwin.

-f[no-]trapping-math

Control floating point exception behavior. -fno-trapping-math allows optimizations that assume that floating
point operations cannot generate traps such as divide-by-zero, overflow and underflow.

• The option -ftrapping-math behaves identically to -ffp-exception-behavior=strict.

• The option -fno-trapping-math behaves identically to -ffp-exception-behavior=ignore. This is the
default.

-ffp-contract=<value>
Specify when the compiler is permitted to form fused floating-point operations, such as fused multiply-add (FMA).
Fused operations are permitted to produce more precise results than performing the same operations separately.
The C standard permits intermediate floating-point results within an expression to be computed with more
precision than their type would normally allow. This permits operation fusing, and Clang takes advantage of this by
default. This behavior can be controlled with the FP_CONTRACT and clang fp contract pragmas. Please refer
to the pragma documentation for a description of how the pragmas interact with this option.
Valid values are:

• fast (fuse across statements disregarding pragmas, default for CUDA)

• on (fuse in the same statement unless dictated by pragmas, default for languages other than CUDA/HIP)

• off (never fuse)

• fast-honor-pragmas (fuse across statements unless dictated by pragmas, default for HIP)

-f[no-]honor-infinities

If both -fno-honor-infinities and -fno-honor-nans are used, has the same effect as specifying
-ffinite-math-only.

-f[no-]honor-nans

If both -fno-honor-infinities and -fno-honor-nans are used, has the same effect as specifying
-ffinite-math-only.

-f[no-]approx-func

Using Clang as a Compiler

27



Allow certain math function calls (such as log, sqrt, pow, etc) to be replaced with an approximately equivalent
set of instructions or alternative math function calls. For example, a pow(x, 0.25) may be replaced with
sqrt(sqrt(x)), despite being an inexact result in cases where x is -0.0 or -inf. Defaults to
-fno-approx-func.

-f[no-]signed-zeros

Allow optimizations that ignore the sign of floating point zeros. Defaults to -fno-signed-zeros.

-f[no-]associative-math

Allow floating point operations to be reassociated. Defaults to -fno-associative-math.

-f[no-]reciprocal-math

Allow division operations to be transformed into multiplication by a reciprocal. This can be significantly faster
than an ordinary division but can also have significantly less precision. Defaults to -fno-reciprocal-math.

-f[no-]unsafe-math-optimizations

Allow unsafe floating-point optimizations. Also implies:

• -fassociative-math

• -freciprocal-math

• -fno-signed-zeroes

• -fno-trapping-math.

Defaults to -fno-unsafe-math-optimizations.

-f[no-]finite-math-only

Allow floating-point optimizations that assume arguments and results are not NaNs or +-Inf. This defines the
__FINITE_MATH_ONLY__ preprocessor macro. Also implies:

• -fno-honor-infinities

• -fno-honor-nans

Defaults to -fno-finite-math-only.

-f[no-]rounding-math

Force floating-point operations to honor the dynamically-set rounding mode by default.

The result of a floating-point operation often cannot be exactly represented in the result type and therefore must be
rounded. IEEE 754 describes different rounding modes that control how to perform this rounding, not all of which are
supported by all implementations. C provides interfaces (fesetround and fesetenv) for dynamically controlling
the rounding mode, and while it also recommends certain conventions for changing the rounding mode, these
conventions are not typically enforced in the ABI. Since the rounding mode changes the numerical result of
operations, the compiler must understand something about it in order to optimize floating point operations.

Note that floating-point operations performed as part of constant initialization are formally performed prior to the start
of the program and are therefore not subject to the current rounding mode. This includes the initialization of global
variables and local static variables. Floating-point operations in these contexts will be rounded using
FE_TONEAREST.

• The option -fno-rounding-math allows the compiler to assume that the rounding mode is set to
FE_TONEAREST. This is the default.

• The option -frounding-math forces the compiler to honor the dynamically-set rounding mode. This prevents
optimizations which might affect results if the rounding mode changes or is different from the default; for
example, it prevents floating-point operations from being reordered across most calls and prevents
constant-folding when the result is not exactly representable.

-ffp-model=<value>
Specify floating point behavior. -ffp-model is an umbrella option that encompasses functionality provided by
other, single purpose, floating point options. Valid values are: precise, strict, and fast. Details:

• precise Disables optimizations that are not value-safe on floating-point data, although FP contraction
(FMA) is enabled (-ffp-contract=on). This is the default behavior.

Using Clang as a Compiler

28



• strict Enables -frounding-math and -ffp-exception-behavior=strict, and disables
contractions (FMA). All of the -ffast-math enablements are disabled. Enables STDC FENV_ACCESS: by
default FENV_ACCESS is disabled. This option setting behaves as though #pragma STDC FENV_ACESS ON
appeared at the top of the source file.

• fast Behaves identically to specifying both -ffast-math and ffp-contract=fast
Note: If your command line specifies multiple instances of the -ffp-model option, or if your command line option
specifies -ffp-model and later on the command line selects a floating point option that has the effect of negating
part of the ffp-model that has been selected, then the compiler will issue a diagnostic warning that the override
has occurred.

-ffp-exception-behavior=<value>
Specify the floating-point exception behavior.
Valid values are: ignore, maytrap, and strict. The default value is ignore. Details:

• ignore The compiler assumes that the exception status flags will not be read and that floating point
exceptions will be masked.

• maytrap The compiler avoids transformations that may raise exceptions that would not have been raised by
the original code. Constant folding performed by the compiler is exempt from this option.

• strict The compiler ensures that all transformations strictly preserve the floating point exception semantics
of the original code.

-ffp-eval-method=<value>
Specify the floating-point evaluation method for intermediate results within a single expression of the code.
Valid values are: source, double, and extended. For 64-bit targets, the default value is source. For 32-bit x86
targets however, in the case of NETBSD 6.99.26 and under, the default value is double; in the case of NETBSD
greater than 6.99.26, with NoSSE, the default value is extended, with SSE the default value is source. Details:

• source The compiler uses the floating-point type declared in the source program as the evaluation method.

• double The compiler uses double as the floating-point evaluation method for all float expressions of type
that is narrower than double.

• extended The compiler uses long double as the floating-point evaluation method for all float expressions
of type that is narrower than long double.

-f[no-]protect-parens:
This option pertains to floating-point types, complex types with floating-point components, and vectors of these
types. Some arithmetic expression transformations that are mathematically correct and permissible according to
the C and C++ language standards may be incorrect when dealing with floating-point types, such as reassociation
and distribution. Further, the optimizer may ignore parentheses when computing arithmetic expressions in
circumstances where the parenthesized and unparenthesized expression express the same mathematical value.
For example (a+b)+c is the same mathematical value as a+(b+c), but the optimizer is free to evaluate the additions
in any order regardless of the parentheses. When enabled, this option forces the optimizer to honor the order of
operations with respect to parentheses in all circumstances.
Note that floating-point contraction (option -ffp-contract=) is disabled when -fprotect-parens is enabled. Also note
that in safe floating-point modes, such as -ffp-model=precise or -ffp-model=strict, this option has no effect because
the optimizer is prohibited from making unsafe transformations.

A note about __FLT_EVAL_METHOD__

The macro __FLT_EVAL_METHOD__ will expand to either the value set from the command line option
ffp-eval-method or to the value from the target info setting. The __FLT_EVAL_METHOD__ macro cannot expand
to the correct evaluation method in the presence of a #pragma which alters the evaluation method. An error is
issued if __FLT_EVAL_METHOD__ is expanded inside a scope modified by #pragma clang fp eval_method.

A note about Floating Point Constant Evaluation

In C, the only place floating point operations are guaranteed to be evaluated during translation is in the initializers of
variables of static storage duration, which are all notionally initialized before the program begins executing (and thus
before a non-default floating point environment can be entered). But C++ has many more contexts where floating
point constant evaluation occurs. Specifically: for static/thread-local variables, first try evaluating the initializer in a
constant context, including in the constant floating point environment (just like in C), and then, if that fails, fall back to
emitting runtime code to perform the initialization (which might in general be in a different floating point environment).

Using Clang as a Compiler

29



Consider this example when compiled with -frounding-math

constexpr float func_01(float x, float y) {
  return x + y;
}
float V1 = func_01(1.0F, 0x0.000001p0F);

The C++ rule is that initializers for static storage duration variables are first evaluated during translation (therefore, in
the default rounding mode), and only evaluated at runtime (and therefore in the runtime rounding mode) if the
compile-time evaluation fails. This is in line with the C rules; C11 F.8.5 says: All computation for automatic
initialization is done (as if) at execution time; thus, it is affected by any operative modes and raises floating-point
exceptions as required by IEC 60559 (provided the state for the FENV_ACCESS pragma is ‘‘on’’). All computation
for initialization of objects that have static or thread storage duration is done (as if) at translation time. C++
generalizes this by adding another phase of initialization (at runtime) if the translation-time initialization fails, but the
translation-time evaluation of the initializer of succeeds, it will be treated as a constant initializer.

Controlling Code Generation

Clang provides a number of ways to control code generation. The options are listed below.

-f[no-]sanitize=check1,check2,…

Turn on runtime checks for various forms of undefined or suspicious behavior.

This option controls whether Clang adds runtime checks for various forms of undefined or suspicious behavior,
and is disabled by default. If a check fails, a diagnostic message is produced at runtime explaining the problem.
The main checks are:

• -fsanitize=address: AddressSanitizer, a memory error detector.

• -fsanitize=thread: ThreadSanitizer, a data race detector.

• -fsanitize=memory: MemorySanitizer, a detector of uninitialized reads. Requires instrumentation of all
program code.

• -fsanitize=undefined: UndefinedBehaviorSanitizer, a fast and compatible undefined behavior
checker.

• -fsanitize=dataflow: DataFlowSanitizer, a general data flow analysis.

• -fsanitize=cfi: control flow integrity checks. Requires -flto.

• -fsanitize=safe-stack: safe stack protection against stack-based memory corruption errors.

There are more fine-grained checks available: see the list of specific kinds of undefined behavior that can be
detected and the list of control flow integrity schemes.

The -fsanitize= argument must also be provided when linking, in order to link to the appropriate runtime
library.

It is not possible to combine more than one of the -fsanitize=address, -fsanitize=thread, and
-fsanitize=memory checkers in the same program.

-f[no-]sanitize-recover=check1,check2,…

-f[no-]sanitize-recover[=all]

Controls which checks enabled by -fsanitize= flag are non-fatal. If the check is fatal, program will halt after
the first error of this kind is detected and error report is printed.

By default, non-fatal checks are those enabled by UndefinedBehaviorSanitizer, except for
-fsanitize=return and -fsanitize=unreachable. Some sanitizers may not support recovery (or not
support it by default e.g. AddressSanitizer), and always crash the program after the issue is detected.

Note that the -fsanitize-trap flag has precedence over this flag. This means that if a check has been
configured to trap elsewhere on the command line, or if the check traps by default, this flag will not have any
effect unless that sanitizer’s trapping behavior is disabled with -fno-sanitize-trap.

Using Clang as a Compiler

30



For example, if a command line contains the flags -fsanitize=undefined
-fsanitize-trap=undefined, the flag -fsanitize-recover=alignment will have no effect on its own;
it will need to be accompanied by -fno-sanitize-trap=alignment.

-f[no-]sanitize-trap=check1,check2,…

-f[no-]sanitize-trap[=all]

Controls which checks enabled by the -fsanitize= flag trap. This option is intended for use in cases where
the sanitizer runtime cannot be used (for instance, when building libc or a kernel module), or where the binary
size increase caused by the sanitizer runtime is a concern.

This flag is only compatible with control flow integrity schemes and UndefinedBehaviorSanitizer checks other
than vptr.

This flag is enabled by default for sanitizers in the cfi group.

-fsanitize-ignorelist=/path/to/ignorelist/file
Disable or modify sanitizer checks for objects (source files, functions, variables, types) listed in the file. See
Sanitizer special case list for file format description.

-fno-sanitize-ignorelist
Don’t use ignorelist file, if it was specified earlier in the command line.

-f[no-]sanitize-coverage=[type,features,…]

Enable simple code coverage in addition to certain sanitizers. See SanitizerCoverage for more details.

-f[no-]sanitize-address-outline-instrumentation

Controls how address sanitizer code is generated. If enabled will always use a function call instead of inlining
the code. Turning this option on could reduce the binary size, but might result in a worse run-time performance.

See :doc: AddressSanitizer for more details.

-f[no-]sanitize-stats

Enable simple statistics gathering for the enabled sanitizers. See SanitizerStats for more details.

-fsanitize-undefined-trap-on-error
Deprecated alias for -fsanitize-trap=undefined.

-fsanitize-cfi-cross-dso
Enable cross-DSO control flow integrity checks. This flag modifies the behavior of sanitizers in the cfi group to
allow checking of cross-DSO virtual and indirect calls.

-fsanitize-cfi-icall-generalize-pointers
Generalize pointers in return and argument types in function type signatures checked by Control Flow Integrity
indirect call checking. See Control Flow Integrity for more details.

-fstrict-vtable-pointers
Enable optimizations based on the strict rules for overwriting polymorphic C++ objects, i.e. the vptr is invariant
during an object’s lifetime. This enables better devirtualization. Turned off by default, because it is still
experimental.

-fwhole-program-vtables
Enable whole-program vtable optimizations, such as single-implementation devirtualization and virtual constant
propagation, for classes with hidden LTO visibility. Requires -flto.

-fforce-emit-vtables
In order to improve devirtualization, forces emitting of vtables even in modules where it isn’t necessary. It causes
more inline virtual functions to be emitted.

-fno-assume-sane-operator-new
Don’t assume that the C++’s new operator is sane.
This option tells the compiler to do not assume that C++’s global new operator will always return a pointer that
does not alias any other pointer when the function returns.

-ftrap-function=[name]
Instruct code generator to emit a function call to the specified function name for __builtin_trap().
LLVM code generator translates __builtin_trap() to a trap instruction if it is supported by the target ISA.
Otherwise, the builtin is translated into a call to abort. If this option is set, then the code generator will always

Using Clang as a Compiler

31



lower the builtin to a call to the specified function regardless of whether the target ISA has a trap instruction. This
option is useful for environments (e.g. deeply embedded) where a trap cannot be properly handled, or when some
custom behavior is desired.

-ftls-model=[model]
Select which TLS model to use.
Valid values are: global-dynamic, local-dynamic, initial-exec and local-exec. The default value is
global-dynamic. The compiler may use a different model if the selected model is not supported by the target, or
if a more efficient model can be used. The TLS model can be overridden per variable using the tls_model
attribute.

-femulated-tls
Select emulated TLS model, which overrides all -ftls-model choices.
In emulated TLS mode, all access to TLS variables are converted to calls to __emutls_get_address in the runtime
library.

-mhwdiv=[values]
Select the ARM modes (arm or thumb) that support hardware division instructions.
Valid values are: arm, thumb and arm,thumb. This option is used to indicate which mode (arm or thumb)
supports hardware division instructions. This only applies to the ARM architecture.

-m[no-]crc
Enable or disable CRC instructions.
This option is used to indicate whether CRC instructions are to be generated. This only applies to the ARM
architecture.
CRC instructions are enabled by default on ARMv8.

-mgeneral-regs-only
Generate code which only uses the general purpose registers.
This option restricts the generated code to use general registers only. This only applies to the AArch64
architecture.

-mcompact-branches=[values]
Control the usage of compact branches for MIPSR6.
Valid values are: never, optimal and always. The default value is optimal which generates compact
branches when a delay slot cannot be filled. never disables the usage of compact branches and always
generates compact branches whenever possible.

-f[no-]max-type-align=[number]

Instruct the code generator to not enforce a higher alignment than the given number (of bytes) when accessing
memory via an opaque pointer or reference. This cap is ignored when directly accessing a variable or when the
pointee type has an explicit “aligned” attribute.

The value should usually be determined by the properties of the system allocator. Some builtin types, especially
vector types, have very high natural alignments; when working with values of those types, Clang usually wants
to use instructions that take advantage of that alignment. However, many system allocators do not promise to
return memory that is more than 8-byte or 16-byte-aligned. Use this option to limit the alignment that the
compiler can assume for an arbitrary pointer, which may point onto the heap.

This option does not affect the ABI alignment of types; the layout of structs and unions and the value returned by
the alignof operator remain the same.

This option can be overridden on a case-by-case basis by putting an explicit “aligned” alignment on a struct,
union, or typedef. For example:

#include <immintrin.h>
// Make an aligned typedef of the AVX-512 16-int vector type.
typedef __v16si __aligned_v16si __attribute__((aligned(64)));

void initialize_vector(__aligned_v16si *v) {
  // The compiler may assume that ‘v’ is 64-byte aligned, regardless of the
  // value of -fmax-type-align.
}

-faddrsig, -fno-addrsig
Controls whether Clang emits an address-significance table into the object file. Address-significance tables allow
linkers to implement safe ICF without the false positives that can result from other implementation techniques such

Using Clang as a Compiler

32

https://research.google.com/pubs/archive/36912.pdf


as relocation scanning. Address-significance tables are enabled by default on ELF targets when using the
integrated assembler. This flag currently only has an effect on ELF targets.

-f[no]-unique-internal-linkage-names

Controls whether Clang emits a unique (best-effort) symbol name for internal linkage symbols. When this option
is set, compiler hashes the main source file path from the command line and appends it to all internal symbols. If
a program contains multiple objects compiled with the same command-line source file path, the symbols are not
guaranteed to be unique. This option is particularly useful in attributing profile information to the correct function
when multiple functions with the same private linkage name exist in the binary.

It should be noted that this option cannot guarantee uniqueness and the following is an example where it is not
unique when two modules contain symbols with the same private linkage name:

$ cd $P/foo && clang -c -funique-internal-linkage-names name_conflict.c
$ cd $P/bar && clang -c -funique-internal-linkage-names name_conflict.c
$ cd $P && clang foo/name_conflict.o && bar/name_conflict.o

-fbasic-block-sections=[labels, all, list=<arg>, none]

Controls how Clang emits text sections for basic blocks. With values all and list=<arg>, each basic block or
a subset of basic blocks can be placed in its own unique section. With the “labels” value, normal text sections
are emitted, but a .bb_addr_map section is emitted which includes address offsets for each basic block in the
program, relative to the parent function address.

With the list=<arg> option, a file containing the subset of basic blocks that need to placed in unique sections
can be specified. The format of the file is as follows. For example, list=spec.txt where spec.txt is the
following:

!foo
!!2
!_Z3barv

will place the machine basic block with id 2 in function foo in a unique section. It will also place all basic
blocks of functions bar in unique sections.

Further, section clusters can also be specified using the list=<arg> option. For example, list=spec.txt
where spec.txt contains:

!foo
!!1 !!3 !!5
!!2 !!4 !!6

will create two unique sections for function foo with the first containing the odd numbered basic blocks and the
second containing the even numbered basic blocks.

Basic block sections allow the linker to reorder basic blocks and enables link-time optimizations like whole
program inter-procedural basic block reordering.

Profile Guided Optimization

Profile information enables better optimization. For example, knowing that a branch is taken very frequently helps the
compiler make better decisions when ordering basic blocks. Knowing that a function foo is called more frequently
than another function bar helps the inliner. Optimization levels -O2 and above are recommended for use of profile
guided optimization.

Clang supports profile guided optimization with two different kinds of profiling. A sampling profiler can generate a
profile with very low runtime overhead, or you can build an instrumented version of the code that collects more
detailed profile information. Both kinds of profiles can provide execution counts for instructions in the code and
information on branches taken and function invocation.

Regardless of which kind of profiling you use, be careful to collect profiles by running your code with inputs that are
representative of the typical behavior. Code that is not exercised in the profile will be optimized as if it is unimportant,
and the compiler may make poor optimization choices for code that is disproportionately used while profiling.

Using Clang as a Compiler

33



Differences Between Sampling and Instrumentation

Although both techniques are used for similar purposes, there are important differences between the two:

1. Profile data generated with one cannot be used by the other, and there is no conversion tool that can convert
one to the other. So, a profile generated via -fprofile-instr-generate must be used with
-fprofile-instr-use. Similarly, sampling profiles generated by external profilers must be converted and
used with -fprofile-sample-use.

2. Instrumentation profile data can be used for code coverage analysis and optimization.

3. Sampling profiles can only be used for optimization. They cannot be used for code coverage analysis. Although
it would be technically possible to use sampling profiles for code coverage, sample-based profiles are too
coarse-grained for code coverage purposes; it would yield poor results.

4. Sampling profiles must be generated by an external tool. The profile generated by that tool must then be
converted into a format that can be read by LLVM. The section on sampling profilers describes one of the
supported sampling profile formats.

Using Sampling Profilers

Sampling profilers are used to collect runtime information, such as hardware counters, while your application
executes. They are typically very efficient and do not incur a large runtime overhead. The sample data collected by
the profiler can be used during compilation to determine what the most executed areas of the code are.

Using the data from a sample profiler requires some changes in the way a program is built. Before the compiler can
use profiling information, the code needs to execute under the profiler. The following is the usual build cycle when
using sample profilers for optimization:

1. Build the code with source line table information. You can use all the usual build flags that you always build your
application with. The only requirement is that you add -gline-tables-only or -g to the command line. This
is important for the profiler to be able to map instructions back to source line locations.

$ clang++ -O2 -gline-tables-only code.cc -o code

2. Run the executable under a sampling profiler. The specific profiler you use does not really matter, as long as its
output can be converted into the format that the LLVM optimizer understands. Currently, there exists a
conversion tool for the Linux Perf profiler (https://perf.wiki.kernel.org/), so these examples assume that you are
using Linux Perf to profile your code.

$ perf record -b ./code

Note the use of the -b flag. This tells Perf to use the Last Branch Record (LBR) to record call chains. While this
is not strictly required, it provides better call information, which improves the accuracy of the profile data.

3. Convert the collected profile data to LLVM’s sample profile format. This is currently supported via the AutoFDO
converter create_llvm_prof. It is available at https://github.com/google/autofdo. Once built and installed,
you can convert the perf.data file to LLVM using the command:

$ create_llvm_prof --binary=./code --out=code.prof

This will read perf.data and the binary file ./code and emit the profile data in code.prof. Note that if you
ran perf without the -b flag, you need to use --use_lbr=false when calling create_llvm_prof.

4. Build the code again using the collected profile. This step feeds the profile back to the optimizers. This should
result in a binary that executes faster than the original one. Note that you are not required to build the code with
the exact same arguments that you used in the first step. The only requirement is that you build the code with
-gline-tables-only and -fprofile-sample-use.

$ clang++ -O2 -gline-tables-only -fprofile-sample-use=code.prof code.cc -o code

Sample Profile Formats

Since external profilers generate profile data in a variety of custom formats, the data generated by the profiler must
be converted into a format that can be read by the backend. LLVM supports three different sample profile formats:

Using Clang as a Compiler

34

https://perf.wiki.kernel.org/
https://github.com/google/autofdo


1. ASCII text. This is the easiest one to generate. The file is divided into sections, which correspond to each of the
functions with profile information. The format is described below. It can also be generated from the binary or
gcov formats using the llvm-profdata tool.

2. Binary encoding. This uses a more efficient encoding that yields smaller profile files. This is the format
generated by the create_llvm_prof tool in https://github.com/google/autofdo.

3. GCC encoding. This is based on the gcov format, which is accepted by GCC. It is only interesting in
environments where GCC and Clang co-exist. This encoding is only generated by the create_gcov tool in
https://github.com/google/autofdo. It can be read by LLVM and llvm-profdata, but it cannot be generated by
either.

If you are using Linux Perf to generate sampling profiles, you can use the conversion tool create_llvm_prof
described in the previous section. Otherwise, you will need to write a conversion tool that converts your profiler’s
native format into one of these three.

Sample Profile Text Format

This section describes the ASCII text format for sampling profiles. It is, arguably, the easiest one to generate. If you
are interested in generating any of the other two, consult the ProfileData library in LLVM’s source tree
(specifically, include/llvm/ProfileData/SampleProfReader.h).

function1:total_samples:total_head_samples
 offset1[.discriminator]: number_of_samples [fn1:num fn2:num ... ]
 offset2[.discriminator]: number_of_samples [fn3:num fn4:num ... ]
 ...
 offsetN[.discriminator]: number_of_samples [fn5:num fn6:num ... ]
 offsetA[.discriminator]: fnA:num_of_total_samples
  offsetA1[.discriminator]: number_of_samples [fn7:num fn8:num ... ]
  offsetA1[.discriminator]: number_of_samples [fn9:num fn10:num ... ]
  offsetB[.discriminator]: fnB:num_of_total_samples
   offsetB1[.discriminator]: number_of_samples [fn11:num fn12:num ... ]

This is a nested tree in which the indentation represents the nesting level of the inline stack. There are no blank lines
in the file. And the spacing within a single line is fixed. Additional spaces will result in an error while reading the file.

Any line starting with the ‘#’ character is completely ignored.

Inlined calls are represented with indentation. The Inline stack is a stack of source locations in which the top of the
stack represents the leaf function, and the bottom of the stack represents the actual symbol to which the instruction
belongs.

Function names must be mangled in order for the profile loader to match them in the current translation unit. The two
numbers in the function header specify how many total samples were accumulated in the function (first number), and
the total number of samples accumulated in the prologue of the function (second number). This head sample count
provides an indicator of how frequently the function is invoked.

There are two types of lines in the function body.

• Sampled line represents the profile information of a source location.
offsetN[.discriminator]: number_of_samples [fn5:num fn6:num ... ]

• Callsite line represents the profile information of an inlined callsite.
offsetA[.discriminator]: fnA:num_of_total_samples

Each sampled line may contain several items. Some are optional (marked below):

a. Source line offset. This number represents the line number in the function where the sample was collected. The
line number is always relative to the line where symbol of the function is defined. So, if the function has its
header at line 280, the offset 13 is at line 293 in the file.

Note that this offset should never be a negative number. This could happen in cases like macros. The debug
machinery will register the line number at the point of macro expansion. So, if the macro was expanded in a line
before the start of the function, the profile converter should emit a 0 as the offset (this means that the optimizers
will not be able to associate a meaningful weight to the instructions in the macro).

Using Clang as a Compiler

35

https://github.com/google/autofdo
https://github.com/google/autofdo


b. [OPTIONAL] Discriminator. This is used if the sampled program was compiled with DWARF discriminator
support (http://wiki.dwarfstd.org/index.php?title=Path_Discriminators). DWARF discriminators are unsigned
integer values that allow the compiler to distinguish between multiple execution paths on the same source line
location.

For example, consider the line of code if (cond) foo(); else bar();. If the predicate cond is true 80%
of the time, then the edge into function foo should be considered to be taken most of the time. But both calls to
foo and bar are at the same source line, so a sample count at that line is not sufficient. The compiler needs to
know which part of that line is taken more frequently.

This is what discriminators provide. In this case, the calls to foo and bar will be at the same line, but will have
different discriminator values. This allows the compiler to correctly set edge weights into foo and bar.

c. Number of samples. This is an integer quantity representing the number of samples collected by the profiler at
this source location.

d. [OPTIONAL] Potential call targets and samples. If present, this line contains a call instruction. This models both
direct and number of samples. For example,

130: 7  foo:3  bar:2  baz:7

The above means that at relative line offset 130 there is a call instruction that calls one of foo(), bar() and
baz(), with baz() being the relatively more frequently called target.

As an example, consider a program with the call chain main -> foo -> bar. When built with optimizations
enabled, the compiler may inline the calls to bar and foo inside main. The generated profile could then be
something like this:

main:35504:0
1: _Z3foov:35504
  2: _Z32bari:31977
  1.1: 31977
2: 0

This profile indicates that there were a total of 35,504 samples collected in main. All of those were at line 1 (the call
to foo). Of those, 31,977 were spent inside the body of bar. The last line of the profile (2: 0) corresponds to line 2
inside main. No samples were collected there.

Profiling with Instrumentation

Clang also supports profiling via instrumentation. This requires building a special instrumented version of the code
and has some runtime overhead during the profiling, but it provides more detailed results than a sampling profiler. It
also provides reproducible results, at least to the extent that the code behaves consistently across runs.

Here are the steps for using profile guided optimization with instrumentation:

1. Build an instrumented version of the code by compiling and linking with the -fprofile-instr-generate
option.

$ clang++ -O2 -fprofile-instr-generate code.cc -o code

2. Run the instrumented executable with inputs that reflect the typical usage. By default, the profile data will be
written to a default.profraw file in the current directory. You can override that default by using option
-fprofile-instr-generate= or by setting the LLVM_PROFILE_FILE environment variable to specify an
alternate file. If non-default file name is specified by both the environment variable and the command line
option, the environment variable takes precedence. The file name pattern specified can include different
modifiers: %p, %h, and %m.

Any instance of %p in that file name will be replaced by the process ID, so that you can easily distinguish the
profile output from multiple runs.

$ LLVM_PROFILE_FILE="code-%p.profraw" ./code

Using Clang as a Compiler

36

http://wiki.dwarfstd.org/index.php?title=Path_Discriminators


The modifier %h can be used in scenarios where the same instrumented binary is run in multiple different host
machines dumping profile data to a shared network based storage. The %h specifier will be substituted with the
hostname so that profiles collected from different hosts do not clobber each other.

While the use of %p specifier can reduce the likelihood for the profiles dumped from different processes to
clobber each other, such clobbering can still happen because of the pid re-use by the OS. Another side-effect
of using %p is that the storage requirement for raw profile data files is greatly increased. To avoid issues like
this, the %m specifier can used in the profile name. When this specifier is used, the profiler runtime will substitute
%m with a unique integer identifier associated with the instrumented binary. Additionally, multiple raw profiles
dumped from different processes that share a file system (can be on different hosts) will be automatically
merged by the profiler runtime during the dumping. If the program links in multiple instrumented shared
libraries, each library will dump the profile data into its own profile data file (with its unique integer id embedded
in the profile name). Note that the merging enabled by %m is for raw profile data generated by profiler runtime.
The resulting merged “raw” profile data file still needs to be converted to a different format expected by the
compiler ( see step 3 below).

$ LLVM_PROFILE_FILE="code-%m.profraw" ./code

3. Combine profiles from multiple runs and convert the “raw” profile format to the input expected by clang. Use the
merge command of the llvm-profdata tool to do this.

$ llvm-profdata merge -output=code.profdata code-*.profraw

Note that this step is necessary even when there is only one “raw” profile, since the merge operation also
changes the file format.

4. Build the code again using the -fprofile-instr-use option to specify the collected profile data.

$ clang++ -O2 -fprofile-instr-use=code.profdata code.cc -o code

You can repeat step 4 as often as you like without regenerating the profile. As you make changes to your code,
clang may no longer be able to use the profile data. It will warn you when this happens.

Profile generation using an alternative instrumentation method can be controlled by the GCC-compatible flags
-fprofile-generate and -fprofile-use. Although these flags are semantically equivalent to their GCC
counterparts, they do not handle GCC-compatible profiles. They are only meant to implement GCC’s semantics with
respect to profile creation and use. Flag -fcs-profile-generate also instruments programs using the same
instrumentation method as -fprofile-generate.

-fprofile-generate[=<dirname>]

The -fprofile-generate and -fprofile-generate= flags will use an alternative instrumentation
method for profile generation. When given a directory name, it generates the profile file
default_%m.profraw in the directory named dirname if specified. If dirname does not exist, it will be
created at runtime. %m specifier will be substituted with a unique id documented in step 2 above. In other
words, with -fprofile-generate[=<dirname>] option, the “raw” profile data automatic merging is turned
on by default, so there will no longer any risk of profile clobbering from different running processes. For
example,

$ clang++ -O2 -fprofile-generate=yyy/zzz code.cc -o code

When code is executed, the profile will be written to the file yyy/zzz/default_xxxx.profraw.

To generate the profile data file with the compiler readable format, the llvm-profdata tool can be used with
the profile directory as the input:

$ llvm-profdata merge -output=code.profdata yyy/zzz/
If the user wants to turn off the auto-merging feature, or simply override the the profile dumping path specified at
command line, the environment variable LLVM_PROFILE_FILE can still be used to override the directory and
filename for the profile file at runtime.

-fcs-profile-generate[=<dirname>]
The -fcs-profile-generate and -fcs-profile-generate= flags will use the same instrumentation
method, and generate the same profile as in the -fprofile-generate and -fprofile-generate= flags. The
difference is that the instrumentation is performed after inlining so that the resulted profile has a better context
sensitive information. They cannot be used together with -fprofile-generate and -fprofile-generate=

Using Clang as a Compiler

37



flags. They are typically used in conjunction with -fprofile-use flag. The profile generated by
-fcs-profile-generate and -fprofile-generate can be merged by llvm-profdata. A use example:

$ clang++ -O2 -fprofile-generate=yyy/zzz code.cc -o code
$ ./code
$ llvm-profdata merge -output=code.profdata yyy/zzz/

The first few steps are the same as that in -fprofile-generate compilation. Then perform a second round of
instrumentation.

$ clang++ -O2 -fprofile-use=code.profdata -fcs-profile-generate=sss/ttt \
  -o cs_code
$ ./cs_code
$ llvm-profdata merge -output=cs_code.profdata sss/ttt code.profdata

The resulted cs_code.prodata combines code.profdata and the profile generated from binary cs_code.
Profile cs_code.profata can be used by -fprofile-use compilation.

$ clang++ -O2 -fprofile-use=cs_code.profdata

The above command will read both profiles to the compiler at the identical point of instrumentations.

-fprofile-use[=<pathname>]
Without any other arguments, -fprofile-use behaves identically to -fprofile-instr-use. Otherwise, if
pathname is the full path to a profile file, it reads from that file. If pathname is a directory name, it reads from
pathname/default.profdata.

-fprofile-update[=<method>]
Unless -fsanitize=thread is specified, the default is single, which uses non-atomic increments. The
counters can be inaccurate under thread contention. atomic uses atomic increments which is accurate but has
overhead. prefer-atomic will be transformed to atomic when supported by the target, or single otherwise.
This option currently works with -fprofile-arcs and -fprofile-instr-generate, but not with
-fprofile-generate.

Disabling Instrumentation

In certain situations, it may be useful to disable profile generation or use for specific files in a build, without affecting
the main compilation flags used for the other files in the project.

In these cases, you can use the flag -fno-profile-instr-generate (or -fno-profile-generate) to
disable profile generation, and -fno-profile-instr-use (or -fno-profile-use) to disable profile use.

Note that these flags should appear after the corresponding profile flags to have an effect.

Note

When none of the translation units inside a binary is instrumented, in the case of Fuchsia the profile runtime will
not be linked into the binary and no profile will be produced, while on other platforms the profile runtime will be
linked and profile will be produced but there will not be any counters.

Instrumenting only selected files or functions

Sometimes it’s useful to only instrument certain files or functions. For example in automated testing infrastructure, it
may be desirable to only instrument files or functions that were modified by a patch to reduce the overhead of
instrumenting a full system.

This can be done using the -fprofile-list option.

-fprofile-list=<pathname>
This option can be used to apply profile instrumentation only to selected files or functions. pathname should point
to a file in the Sanitizer special case list format which selects which files and functions to instrument.

$ echo "fun:test" > fun.list
$ clang++ -O2 -fprofile-instr-generate -fprofile-list=fun.list code.cc -o code

Using Clang as a Compiler

38



The option can be specified multiple times to pass multiple files.
$ echo "!fun:*test*" > fun.list
$ echo "src:code.cc" > src.list
% clang++ -O2 -fprofile-instr-generate -fcoverage-mapping -fprofile-list=fun.list -fprofile-list=code.list code.cc -o code

To filter individual functions or entire source files using fun:<name> or src:<file> respectively. To exclude a
function or a source file, use !fun:<name> or !src:<file> respectively. The format also supports wildcard
expansion. The compiler generated functions are assumed to be located in the main source file. It is also possible to
restrict the filter to a particular instrumentation type by using a named section.

# all functions whose name starts with foo will be instrumented.
fun:foo*

# except for foo1 which will be excluded from instrumentation.
!fun:foo1

# every function in path/to/foo.cc will be instrumented.
src:path/to/foo.cc

# bar will be instrumented only when using backend instrumentation.
# Recognized section names are clang, llvm and csllvm.
[llvm]
fun:bar

When the file contains only excludes, all files and functions except for the excluded ones will be instrumented.
Otherwise, only the files and functions specified will be instrumented.

Profile remapping

When the program is compiled after a change that affects many symbol names, pre-existing profile data may no
longer match the program. For example:

• switching from libstdc++ to libc++ will result in the mangled names of all functions taking standard library
types to change

• renaming a widely-used type in C++ will result in the mangled names of all functions that have parameters
involving that type to change

• moving from a 32-bit compilation to a 64-bit compilation may change the underlying type of size_t and
similar types, resulting in changes to manglings

Clang allows use of a profile remapping file to specify that such differences in mangled names should be ignored
when matching the profile data against the program.

-fprofile-remapping-file=<file>
Specifies a file containing profile remapping information, that will be used to match mangled names in the profile
data to mangled names in the program.

The profile remapping file is a text file containing lines of the form

fragmentkind fragment1 fragment2

where fragmentkind is one of name, type, or encoding, indicating whether the following mangled name
fragments are <name>s, <type>s, or <encoding>s, respectively. Blank lines and lines starting with # are ignored.

For convenience, built-in <substitution>s such as St and Ss are accepted as <name>s (even though they technically
are not <name>s).

For example, to specify that absl::string_view and std::string_view should be treated as equivalent when
matching profile data, the following remapping file could be used:

# absl::string_view is considered equivalent to std::string_view
type N4absl11string_viewE St17basic_string_viewIcSt11char_traitsIcEE

# std:: might be std::__1:: in libc++ or std::__cxx11:: in libstdc++
name 3std St3__1
name 3std St7__cxx11

Using Clang as a Compiler

39

https://itanium-cxx-abi.github.io/cxx-abi/abi.html#mangle.name
https://itanium-cxx-abi.github.io/cxx-abi/abi.html#mangle.type
https://itanium-cxx-abi.github.io/cxx-abi/abi.html#mangle.encoding


Matching profile data using a profile remapping file is supported on a best-effort basis. For example, information
regarding indirect call targets is currently not remapped. For best results, you are encouraged to generate new profile
data matching the updated program, or to remap the profile data using the llvm-cxxmap and
llvm-profdata merge tools.

Note

Profile data remapping is currently only supported for C++ mangled names following the Itanium C++ ABI
mangling scheme. This covers all C++ targets supported by Clang other than Windows.

GCOV-based Profiling

GCOV is a test coverage program, it helps to know how often a line of code is executed. When instrumenting the
code with --coverage option, some counters are added for each edge linking basic blocks.

At compile time, gcno files are generated containing information about blocks and edges between them. At runtime
the counters are incremented and at exit the counters are dumped in gcda files.

The tool llvm-cov gcov will parse gcno, gcda and source files to generate a report .c.gcov.

-fprofile-filter-files=[regexes]
Define a list of regexes separated by a semi-colon. If a file name matches any of the regexes then the file is
instrumented.

$ clang --coverage -fprofile-filter-files=".*\.c$" foo.c
For example, this will only instrument files finishing with .c, skipping .h files.

-fprofile-exclude-files=[regexes]
Define a list of regexes separated by a semi-colon. If a file name doesn’t match all the regexes then the file is
instrumented.

$ clang --coverage -fprofile-exclude-files="^/usr/include/.*$" foo.c

For example, this will instrument all the files except the ones in /usr/include.

If both options are used then a file is instrumented if its name matches any of the regexes from
-fprofile-filter-list and doesn’t match all the regexes from -fprofile-exclude-list.

$ clang --coverage -fprofile-exclude-files="^/usr/include/.*$" \
        -fprofile-filter-files="^/usr/.*$"

In that case /usr/foo/oof.h is instrumented since it matches the filter regex and doesn’t match the exclude
regex, but /usr/include/foo.h doesn’t since it matches the exclude regex.

Controlling Debug Information

Controlling Size of Debug Information

Debug info kind generated by Clang can be set by one of the flags listed below. If multiple flags are present, the last
one is used.

-g0
Don’t generate any debug info (default).

-gline-tables-only
Generate line number tables only.
This kind of debug info allows to obtain stack traces with function names, file names and line numbers (by such
tools as gdb or addr2line). It doesn’t contain any other data (e.g. description of local variables or function
parameters).

-fstandalone-debug
Clang supports a number of optimizations to reduce the size of debug information in the binary. They work based
on the assumption that the debug type information can be spread out over multiple compilation units. For instance,

Using Clang as a Compiler

40



Clang will not emit type definitions for types that are not needed by a module and could be replaced with a forward
declaration. Further, Clang will only emit type info for a dynamic C++ class in the module that contains the vtable
for the class.
The -fstandalone-debug option turns off these optimizations. This is useful when working with 3rd-party libraries
that don’t come with debug information. Note that Clang will never emit type information for types that are not
referenced at all by the program.

-fno-standalone-debug
On Darwin -fstandalone-debug is enabled by default. The -fno-standalone-debug option can be used to get to
turn on the vtable-based optimization described above.

-fuse-ctor-homing
This optimization is similar to the optimizations that are enabled as part of -fno-standalone-debug. Here, Clang
only emits type info for a non-trivial, non-aggregate C++ class in the modules that contain a definition of one of its
constructors. This relies on the additional assumption that all classes that are not trivially constructible have a
non-trivial constructor that is used somewhere. The negation, -fno-use-ctor-homing, ensures that constructor
homing is not used.
This flag is not enabled by default, and needs to be used with -cc1 or -Xclang.

-g
Generate complete debug info.

-feliminate-unused-debug-types
By default, Clang does not emit type information for types that are defined but not used in a program. To retain the
debug info for these unused types, the negation -fno-eliminate-unused-debug-types can be used.

Controlling Macro Debug Info Generation

Debug info for C preprocessor macros increases the size of debug information in the binary. Macro debug info
generated by Clang can be controlled by the flags listed below.

-fdebug-macro
Generate debug info for preprocessor macros. This flag is discarded when -g0 is enabled.

-fno-debug-macro
Do not generate debug info for preprocessor macros (default).

Controlling Debugger “Tuning”

While Clang generally emits standard DWARF debug info (http://dwarfstd.org), different debuggers may know how to
take advantage of different specific DWARF features. You can “tune” the debug info for one of several different
debuggers.

-ggdb, -glldb, -gsce, -gdbx
Tune the debug info for the gdb, lldb, Sony PlayStation® debugger, or dbx, respectively. Each of these options
implies -g. (Therefore, if you want both -gline-tables-only and debugger tuning, the tuning option must come first.)

Controlling LLVM IR Output

Controlling Value Names in LLVM IR

Emitting value names in LLVM IR increases the size and verbosity of the IR. By default, value names are only
emitted in assertion-enabled builds of Clang. However, when reading IR it can be useful to re-enable the emission of
value names to improve readability.

-fdiscard-value-names
Discard value names when generating LLVM IR.

-fno-discard-value-names
Do not discard value names when generating LLVM IR. This option can be used to re-enable names for release
builds of Clang.

Using Clang as a Compiler

41

http://dwarfstd.org


Comment Parsing Options

Clang parses Doxygen and non-Doxygen style documentation comments and attaches them to the appropriate
declaration nodes. By default, it only parses Doxygen-style comments and ignores ordinary comments starting with
// and /*.

-Wdocumentation
Emit warnings about use of documentation comments. This warning group is off by default.
This includes checking that \param commands name parameters that actually present in the function signature,
checking that \returns is used only on functions that actually return a value etc.

-Wno-documentation-unknown-command
Don’t warn when encountering an unknown Doxygen command.

-fparse-all-comments
Parse all comments as documentation comments (including ordinary comments starting with // and /*).

-fcomment-block-commands=[commands]
Define custom documentation commands as block commands. This allows Clang to construct the correct AST for
these custom commands, and silences warnings about unknown commands. Several commands must be
separated by a comma without trailing space; e.g. -fcomment-block-commands=foo,bar defines custom
commands \foo and \bar.
It is also possible to use -fcomment-block-commands several times; e.g.
-fcomment-block-commands=foo -fcomment-block-commands=bar does the same as above.

C Language Features
The support for standard C in clang is feature-complete except for the C99 floating-point pragmas.

Extensions supported by clang

See Clang Language Extensions.

Differences between various standard modes

clang supports the -std option, which changes what language mode clang uses. The supported modes for C are c89,
gnu89, c94, c99, gnu99, c11, gnu11, c17, gnu17, c2x, gnu2x, and various aliases for those modes. If no -std option
is specified, clang defaults to gnu17 mode. Many C99 and C11 features are supported in earlier modes as a
conforming extension, with a warning. Use -pedantic-errors to request an error if a feature from a later standard
revision is used in an earlier mode.

Differences between all c* and gnu* modes:

• c* modes define “__STRICT_ANSI__”.

• Target-specific defines not prefixed by underscores, like linux, are defined in gnu* modes.

• Trigraphs default to being off in gnu* modes; they can be enabled by the -trigraphs option.

• The parser recognizes asm and typeof as keywords in gnu* modes; the variants __asm__ and __typeof__
are recognized in all modes.

• The parser recognizes inline as a keyword in gnu* mode, in addition to recognizing it in the *99 and later
modes for which it is part of the ISO C standard. The variant __inline__ is recognized in all modes.

• The Apple “blocks” extension is recognized by default in gnu* modes on some platforms; it can be enabled in
any mode with the -fblocks option.

Differences between *89 and *94 modes:

• Digraphs are not recognized in c89 mode.

Differences between *94 and *99 modes:

• The *99 modes default to implementing inline / __inline__ as specified in C99, while the *89 modes
implement the GNU version. This can be overridden for individual functions with the __gnu_inline__
attribute.

Using Clang as a Compiler

42



• The scope of names defined inside a for, if, switch, while, or do statement is different. (example:
if ((struct x {int x;}*)0) {}.)

• __STDC_VERSION__ is not defined in *89 modes.

• inline is not recognized as a keyword in c89 mode.

• restrict is not recognized as a keyword in *89 modes.

• Commas are allowed in integer constant expressions in *99 modes.

• Arrays which are not lvalues are not implicitly promoted to pointers in *89 modes.

• Some warnings are different.

Differences between *99 and *11 modes:

• Warnings for use of C11 features are disabled.

• __STDC_VERSION__ is defined to 201112L rather than 199901L.

Differences between *11 and *17 modes:

• __STDC_VERSION__ is defined to 201710L rather than 201112L.

GCC extensions not implemented yet

clang tries to be compatible with gcc as much as possible, but some gcc extensions are not implemented yet:

• clang does not support decimal floating point types (_Decimal32 and friends) yet.

• clang does not support nested functions; this is a complex feature which is infrequently used, so it is unlikely to
be implemented anytime soon. In C++11 it can be emulated by assigning lambda functions to local variables,
e.g:

auto const local_function = [&](int parameter) {
  // Do something
};
...
local_function(1);

• clang only supports global register variables when the register specified is non-allocatable (e.g. the stack
pointer). Support for general global register variables is unlikely to be implemented soon because it requires
additional LLVM backend support.

• clang does not support static initialization of flexible array members. This appears to be a rarely used extension,
but could be implemented pending user demand.

• clang does not support __builtin_va_arg_pack/__builtin_va_arg_pack_len. This is used rarely, but
in some potentially interesting places, like the glibc headers, so it may be implemented pending user demand.
Note that because clang pretends to be like GCC 4.2, and this extension was introduced in 4.3, the glibc
headers will not try to use this extension with clang at the moment.

• clang does not support the gcc extension for forward-declaring function parameters; this has not shown up in
any real-world code yet, though, so it might never be implemented.

This is not a complete list; if you find an unsupported extension missing from this list, please send an e-mail to
cfe-dev. This list currently excludes C++; see C++ Language Features. Also, this list does not include bugs in
mostly-implemented features; please see the bug tracker for known existing bugs (FIXME: Is there a section for
bug-reporting guidelines somewhere?).

Intentionally unsupported GCC extensions

• clang does not support the gcc extension that allows variable-length arrays in structures. This is for a few
reasons: one, it is tricky to implement, two, the extension is completely undocumented, and three, the extension
appears to be rarely used. Note that clang does support flexible array members (arrays with a zero or
unspecified size at the end of a structure).

Using Clang as a Compiler

43

https://bugs.llvm.org/buglist.cgi?quicksearch=product%3Aclang+component%3A-New%2BBugs%2CAST%2CBasic%2CDriver%2CHeaders%2CLLVM%2BCodeGen%2Cparser%2Cpreprocessor%2CSemantic%2BAnalyzer


• GCC accepts many expression forms that are not valid integer constant expressions in bit-field widths,
enumerator constants, case labels, and in array bounds at global scope. Clang also accepts additional
expression forms in these contexts, but constructs that GCC accepts due to simplifications GCC performs while
parsing, such as x - x (where x is a variable) will likely never be accepted by Clang.

• clang does not support __builtin_apply and friends; this extension is extremely obscure and difficult to
implement reliably.

Microsoft extensions

clang has support for many extensions from Microsoft Visual C++. To enable these extensions, use the
-fms-extensions command-line option. This is the default for Windows targets. Clang does not implement every
pragma or declspec provided by MSVC, but the popular ones, such as __declspec(dllexport) and #pragma
comment(lib) are well supported.

clang has a -fms-compatibility flag that makes clang accept enough invalid C++ to be able to parse most
Microsoft headers. For example, it allows unqualified lookup of dependent base class members, which is a common
compatibility issue with clang. This flag is enabled by default for Windows targets.

-fdelayed-template-parsing lets clang delay parsing of function template definitions until the end of a
translation unit. This flag is enabled by default for Windows targets.

For compatibility with existing code that compiles with MSVC, clang defines the _MSC_VER and _MSC_FULL_VER
macros. These default to the values of 1800 and 180000000 respectively, making clang look like an early release of
Visual C++ 2013. The -fms-compatibility-version= flag overrides these values. It accepts a dotted version
tuple, such as 19.00.23506. Changing the MSVC compatibility version makes clang behave more like that version of
MSVC. For example, -fms-compatibility-version=19 will enable C++14 features and define char16_t and
char32_t as builtin types.

C++ Language Features
clang fully implements all of standard C++98 except for exported templates (which were removed in C++11), all of
standard C++11, C++14, and C++17, and most of C++20.

See the C++ support in Clang page for detailed information on C++ feature support across Clang versions.

Controlling implementation limits

-fbracket-depth=N
Sets the limit for nested parentheses, brackets, and braces to N. The default is 256.

-fconstexpr-depth=N
Sets the limit for recursive constexpr function invocations to N. The default is 512.

-fconstexpr-steps=N
Sets the limit for the number of full-expressions evaluated in a single constant expression evaluation. The default
is 1048576.

-ftemplate-depth=N
Sets the limit for recursively nested template instantiations to N. The default is 1024.

-foperator-arrow-depth=N
Sets the limit for iterative calls to ‘operator->’ functions to N. The default is 256.

Objective-C Language Features

Objective-C++ Language Features

OpenMP Features
Clang supports all OpenMP 4.5 directives and clauses. See OpenMP Support for additional details.

Use -fopenmp to enable OpenMP. Support for OpenMP can be disabled with -fno-openmp.

Using Clang as a Compiler

44

https://clang.llvm.org/compatibility.html#dep_lookup_bases
https://clang.llvm.org/cxx_status.html


Use -fopenmp-simd to enable OpenMP simd features only, without linking the runtime library; for combined
constructs (e.g. #pragma omp parallel for simd) the non-simd directives and clauses will be ignored. This
can be disabled with -fno-openmp-simd.

Controlling implementation limits

-fopenmp-use-tls
Controls code generation for OpenMP threadprivate variables. In presence of this option all threadprivate variables
are generated the same way as thread local variables, using TLS support. If -fno-openmp-use-tls is provided or
target does not support TLS, code generation for threadprivate variables relies on OpenMP runtime library.

OpenCL Features
Clang can be used to compile OpenCL kernels for execution on a device (e.g. GPU). It is possible to compile the
kernel into a binary (e.g. for AMDGPU) that can be uploaded to run directly on a device (e.g. using
clCreateProgramWithBinary) or into generic bitcode files loadable into other toolchains.

Compiling to a binary using the default target from the installation can be done as follows:

$ echo "kernel void k(){}" > test.cl
$ clang test.cl

Compiling for a specific target can be done by specifying the triple corresponding to the target, for example:

$ clang -target nvptx64-unknown-unknown test.cl
$ clang -target amdgcn-amd-amdhsa -mcpu=gfx900 test.cl

Compiling to bitcode can be done as follows:

$ clang -c -emit-llvm test.cl

This will produce a file test.bc that can be used in vendor toolchains to perform machine code generation.

Note that if compiled to bitcode for generic targets such as SPIR/SPIR-V, portable IR is produced that can be used
with various vendor tools as well as open source tools such as SPIRV-LLVM Translator to produce SPIR-V binary.
More details are provided in the offline compilation from OpenCL kernel sources into SPIR-V using open source
tools. From clang 14 onwards SPIR-V can be generated directly as detailed in the SPIR-V support section.

Clang currently supports OpenCL C language standards up to v2.0. Clang mainly supports full profile. There is only
very limited support of the embedded profile. From clang 9 a C++ mode is available for OpenCL (see C++ for
OpenCL).

OpenCL v3.0 support is complete but it remains in experimental state, see more details about the experimental
features and limitations in OpenCL Support page.

OpenCL Specific Options

Most of the OpenCL build options from the specification v2.0 section 5.8.4 are available.

Examples:

$ clang -cl-std=CL2.0 -cl-single-precision-constant test.cl

Many flags used for the compilation for C sources can also be passed while compiling for OpenCL, examples: -c,
-O<1-4|s>, -o, -emit-llvm, etc.

Some extra options are available to support special OpenCL features.

-cl-no-stdinc

Allows to disable all extra types and functions that are not native to the compiler. This might reduce the compilation
speed marginally but many declarations from the OpenCL standard will not be accessible. For example, the following
will fail to compile.

Using Clang as a Compiler

45

https://www.khronos.org/registry/OpenCL/specs/opencl-1.1.pdf#111
https://github.com/KhronosGroup/SPIRV-LLVM-Translator
https://github.com/KhronosGroup/OpenCL-Guide/blob/main/chapters/os_tooling.md
https://github.com/KhronosGroup/OpenCL-Guide/blob/main/chapters/os_tooling.md
https://www.khronos.org/registry/cl/specs/opencl-2.0.pdf#200


$ echo "bool is_wg_uniform(int i){return get_enqueued_local_size(i)==get_local_size(i);}" > test.cl
$ clang -cl-std=CL2.0 -cl-no-stdinc test.cl
error: use of undeclared identifier 'get_enqueued_local_size'
error: use of undeclared identifier 'get_local_size'

More information about the standard types and functions is provided in the section on the OpenCL Header.

-cl-ext

Enables/Disables support of OpenCL extensions and optional features. All OpenCL targets set a list of extensions
that they support. Clang allows to amend this using the -cl-ext flag with a comma-separated list of extensions
prefixed with '+' or '-'. The syntax: -cl-ext=<(['-'|'+']<extension>[,])+>, where extensions can be
either one of the OpenCL published extensions or any vendor extension. Alternatively, 'all' can be used to enable
or disable all known extensions.

Example disabling double support for the 64-bit SPIR-V target:

$ clang -c -target spirv64 -cl-ext=-cl_khr_fp64 test.cl

Enabling all extensions except double support in R600 AMD GPU can be done using:

$ clang -target r600 -cl-ext=-all,+cl_khr_fp16 test.cl

Note that some generic targets e.g. SPIR/SPIR-V enable all extensions/features in clang by default.

OpenCL Targets

OpenCL targets are derived from the regular Clang target classes. The OpenCL specific parts of the target
representation provide address space mapping as well as a set of supported extensions.

Specific Targets

There is a set of concrete HW architectures that OpenCL can be compiled for.

• For AMD target:

$ clang -target amdgcn-amd-amdhsa -mcpu=gfx900 test.cl

• For Nvidia architectures:

$ clang -target nvptx64-unknown-unknown test.cl

Generic Targets

• A SPIR-V binary can be produced for 32 or 64 bit targets.

$ clang -target spirv32 -c test.cl
$ clang -target spirv64 -c test.cl

More details can be found in the SPIR-V support section.

• SPIR is available as a generic target to allow portable bitcode to be produced that can be used across GPU
toolchains. The implementation follows the SPIR specification. There are two flavors available for 32 and 64
bits.

$ clang -target spir test.cl -emit-llvm -c
$ clang -target spir64 test.cl -emit-llvm -c

Clang will generate SPIR v1.2 compatible IR for OpenCL versions up to 2.0 and SPIR v2.0 for OpenCL v2.0 or
C++ for OpenCL.

• x86 is used by some implementations that are x86 compatible and currently remains for backwards
compatibility (with older implementations prior to SPIR target support). For “non-SPMD” targets which cannot
spawn multiple work-items on the fly using hardware, which covers practically all non-GPU devices such as

Using Clang as a Compiler

46

https://www.khronos.org/registry/OpenCL
https://www.khronos.org/spir


CPUs and DSPs, additional processing is needed for the kernels to support multiple work-item execution. For
this, a 3rd party toolchain, such as for example POCL, can be used.

This target does not support multiple memory segments and, therefore, the fake address space map can be
added using the -ffake-address-space-map flag.

All known OpenCL extensions and features are set to supported in the generic targets, however -cl-ext flag
can be used to toggle individual extensions and features.

OpenCL Header

By default Clang will include standard headers and therefore most of OpenCL builtin functions and types are
available during compilation. The default declarations of non-native compiler types and functions can be disabled by
using flag -cl-no-stdinc.

The following example demonstrates that OpenCL kernel sources with various standard builtin functions can be
compiled without the need for an explicit includes or compiler flags.

$ echo "bool is_wg_uniform(int i){return get_enqueued_local_size(i)==get_local_size(i);}" > test.cl
$ clang -cl-std=CL2.0 test.cl

More information about the default headers is provided in OpenCL Support.

OpenCL Extensions

Most of the cl_khr_* extensions to OpenCL C from the official OpenCL registry are available and configured per
target depending on the support available in the specific architecture.

It is possible to alter the default extensions setting per target using -cl-ext flag. (See flags description for more
details).

Vendor extensions can be added flexibly by declaring the list of types and functions associated with each extensions
enclosed within the following compiler pragma directives:

#pragma OPENCL EXTENSION the_new_extension_name : begin
// declare types and functions associated with the extension here
#pragma OPENCL EXTENSION the_new_extension_name : end

For example, parsing the following code adds my_t type and my_func function to the custom my_ext extension.

#pragma OPENCL EXTENSION my_ext : begin
typedef struct{
  int a;
}my_t;
void my_func(my_t);
#pragma OPENCL EXTENSION my_ext : end

There is no conflict resolution for identifier clashes among extensions. It is therefore recommended that the
identifiers are prefixed with a double underscore to avoid clashing with user space identifiers. Vendor extension
should use reserved identifier prefix e.g. amd, arm, intel.

Clang also supports language extensions documented in The OpenCL C Language Extensions Documentation.

OpenCL-Specific Attributes

OpenCL support in Clang contains a set of attribute taken directly from the specification as well as additional
attributes.

See also Attributes in Clang.

nosvm

Clang supports this attribute to comply to OpenCL v2.0 conformance, but it does not have any effect on the IR. For
more details reffer to the specification section 6.7.2

Using Clang as a Compiler

47

http://portablecl.org/
https://www.khronos.org/registry/OpenCL/
https://github.com/KhronosGroup/Khronosdotorg/blob/main/api/opencl/assets/OpenCL_LangExt.pdf
https://www.khronos.org/registry/cl/specs/opencl-2.0-openclc.pdf#49


opencl_unroll_hint

The implementation of this feature mirrors the unroll hint for C. More details on the syntax can be found in the
specification section 6.11.5

convergent

To make sure no invalid optimizations occur for single program multiple data (SPMD) / single instruction multiple
thread (SIMT) Clang provides attributes that can be used for special functions that have cross work item semantics.
An example is the subgroup operations such as intel_sub_group_shuffle

// Define custom my_sub_group_shuffle(data, c)
// that makes use of intel_sub_group_shuffle
r1 = ...
if (r0) r1 = computeA();
// Shuffle data from r1 into r3
// of threads id r2.
r3 = my_sub_group_shuffle(r1, r2);
if (r0) r3 = computeB();

with non-SPMD semantics this is optimized to the following equivalent code:

r1 = ...
if (!r0)
  // Incorrect functionality! The data in r1
  // have not been computed by all threads yet.
  r3 = my_sub_group_shuffle(r1, r2);
else {
  r1 = computeA();
  r3 = my_sub_group_shuffle(r1, r2);
  r3 = computeB();
}

Declaring the function my_sub_group_shuffle with the convergent attribute would prevent this:

my_sub_group_shuffle() __attribute__((convergent));

Using convergent guarantees correct execution by keeping CFG equivalence wrt operations marked as
convergent. CFG G´ is equivalent to G wrt node Ni : iff ∀ Nj (i≠j) domination and post-domination relations
with respect to Ni remain the same in both G and G´.

noduplicate

noduplicate is more restrictive with respect to optimizations than convergent because a convergent function
only preserves CFG equivalence. This allows some optimizations to happen as long as the control flow remains
unmodified.

for (int i=0; i<4; i++)
  my_sub_group_shuffle()

can be modified to:

my_sub_group_shuffle();
my_sub_group_shuffle();
my_sub_group_shuffle();
my_sub_group_shuffle();

while using noduplicate would disallow this. Also noduplicate doesn’t have the same safe semantics of CFG
as convergent and can cause changes in CFG that modify semantics of the original program.

noduplicate is kept for backwards compatibility only and it considered to be deprecated for future uses.

Using Clang as a Compiler

48

https://www.khronos.org/registry/cl/specs/opencl-2.0-openclc.pdf#61
https://www.khronos.org/registry/cl/extensions/intel/cl_intel_subgroups.txt


C++ for OpenCL

Starting from clang 9 kernel code can contain C++17 features: classes, templates, function overloading, type
deduction, etc. Please note that this is not an implementation of OpenCL C++ and there is no plan to support it in
clang in any new releases in the near future.

Clang currently supports C++ for OpenCL 1.0 and 2021. For detailed information about this language refer to the
C++ for OpenCL Programming Language Documentation available in the latest build or in the official release.

To enable the C++ for OpenCL mode, pass one of following command line options when compiling .clcpp file:

• C++ for OpenCL 1.0: -cl-std=clc++, -cl-std=CLC++, -cl-std=clc++1.0, -cl-std=CLC++1.0,
-std=clc++, -std=CLC++, -std=clc++1.0 or -std=CLC++1.0.

• C++ for OpenCL 2021: -cl-std=clc++2021, -cl-std=CLC++2021, -std=clc++2021,
-std=CLC++2021.

Example of use:

template<class T> T add( T x, T y )
{
  return x + y;
}

__kernel void test( __global float* a, __global float* b)
{
  auto index = get_global_id(0);
  a[index] = add(b[index], b[index+1]);
}

clang -cl-std=clc++1.0 test.clcpp
clang -cl-std=clc++ -c -target spirv64 test.cl

By default, files with .clcpp extension are compiled with the C++ for OpenCL 1.0 mode.

clang test.clcpp

For backward compatibility files with .cl extensions can also be compiled in C++ for OpenCL mode but the
desirable language mode must be activated with a flag.

clang -cl-std=clc++ test.cl

Support of C++ for OpenCL 2021 is currently in experimental phase, refer to OpenCL Support for more details.

C++ for OpenCL kernel sources can also be compiled online in drivers supporting cl_ext_cxx_for_opencl extension.

Constructing and destroying global objects

Global objects with non-trivial constructors require the constructors to be run before the first kernel using the global
objects is executed. Similarly global objects with non-trivial destructors require destructor invocation just after the last
kernel using the program objects is executed. In OpenCL versions earlier than v2.2 there is no support for invoking
global constructors. However, an easy workaround is to manually enqueue the constructor initialization kernel that
has the following name scheme _GLOBAL__sub_I_<compiled file name>. This kernel is only present if there
are global objects with non-trivial constructors present in the compiled binary. One way to check this is by passing
CL_PROGRAM_KERNEL_NAMES to clGetProgramInfo (OpenCL v2.0 s5.8.7) and then checking whether any
kernel name matches the naming scheme of global constructor initialization kernel above.

Note that if multiple files are compiled and linked into libraries, multiple kernels that initialize global objects for
multiple modules would have to be invoked.

Applications are currently required to run initialization of global objects manually before running any kernels in which
the objects are used.

Using Clang as a Compiler

49

https://www.khronos.org/registry/OpenCL/specs/2.2/pdf/OpenCL_Cxx.pdf
https://www.khronos.org/opencl/assets/CXX_for_OpenCL.html
https://github.com/KhronosGroup/OpenCL-Docs/releases/tag/cxxforopencl-docrev2021.12
https://www.khronos.org/registry/OpenCL/extensions/ext/cl_ext_cxx_for_opencl.html


clang -cl-std=clc++ test.cl

If there are any global objects to be initialized, the final binary will contain the _GLOBAL__sub_I_test.cl kernel to
be enqueued.

Note that the manual workaround only applies to objects declared at the program scope. There is no manual
workaround for the construction of static objects with non-trivial constructors inside functions.

Global destructors can not be invoked manually in the OpenCL v2.0 drivers. However, all memory used for program
scope objects should be released on clReleaseProgram.

Libraries

Limited experimental support of C++ standard libraries for OpenCL is described in OpenCL Support page.

Target-Specific Features and Limitations

CPU Architectures Features and Limitations

X86

The support for X86 (both 32-bit and 64-bit) is considered stable on Darwin (macOS), Linux, FreeBSD, and
Dragonfly BSD: it has been tested to correctly compile many large C, C++, Objective-C, and Objective-C++
codebases.

On x86_64-mingw32, passing i128(by value) is incompatible with the Microsoft x64 calling convention. You might
need to tweak WinX86_64ABIInfo::classify() in lib/CodeGen/TargetInfo.cpp.

For the X86 target, clang supports the -m16 command line argument which enables 16-bit code output. This is
broadly similar to using asm(".code16gcc") with the GNU toolchain. The generated code and the ABI remains
32-bit but the assembler emits instructions appropriate for a CPU running in 16-bit mode, with address-size and
operand-size prefixes to enable 32-bit addressing and operations.

Several micro-architecture levels as specified by the x86-64 psABI are defined. They are cumulative in the sense
that features from previous levels are implicitly included in later levels.

• -march=x86-64: CMOV, CMPXCHG8B, FPU, FXSR, MMX, FXSR, SCE, SSE, SSE2

• -march=x86-64-v2: (close to Nehalem) CMPXCHG16B, LAHF-SAHF, POPCNT, SSE3, SSE4.1, SSE4.2,
SSSE3

• -march=x86-64-v3: (close to Haswell) AVX, AVX2, BMI1, BMI2, F16C, FMA, LZCNT, MOVBE, XSAVE

• -march=x86-64-v4: AVX512F, AVX512BW, AVX512CD, AVX512DQ, AVX512VL

ARM

The support for ARM (specifically ARMv6 and ARMv7) is considered stable on Darwin (iOS): it has been tested to
correctly compile many large C, C++, Objective-C, and Objective-C++ codebases. Clang only supports a limited
number of ARM architectures. It does not yet fully support ARMv5, for example.

PowerPC

The support for PowerPC (especially PowerPC64) is considered stable on Linux and FreeBSD: it has been tested to
correctly compile many large C and C++ codebases. PowerPC (32bit) is still missing certain features (e.g. PIC code
on ELF platforms).

Other platforms

clang currently contains some support for other architectures (e.g. Sparc); however, significant pieces of code
generation are still missing, and they haven’t undergone significant testing.

clang contains limited support for the MSP430 embedded processor, but both the clang support and the LLVM
backend support are highly experimental.

Using Clang as a Compiler

50



Other platforms are completely unsupported at the moment. Adding the minimal support needed for parsing and
semantic analysis on a new platform is quite easy; see lib/Basic/Targets.cpp in the clang source tree. This
level of support is also sufficient for conversion to LLVM IR for simple programs. Proper support for conversion to
LLVM IR requires adding code to lib/CodeGen/CGCall.cpp at the moment; this is likely to change soon, though.
Generating assembly requires a suitable LLVM backend.

Operating System Features and Limitations

Windows

Clang has experimental support for targeting “Cygming” (Cygwin / MinGW) platforms.

See also Microsoft Extensions.

Cygwin

Clang works on Cygwin-1.7.

MinGW32

Clang works on some mingw32 distributions. Clang assumes directories as below;

• C:/mingw/include

• C:/mingw/lib

• C:/mingw/lib/gcc/mingw32/4.[3-5].0/include/c++

On MSYS, a few tests might fail.

MinGW-w64

For 32-bit (i686-w64-mingw32), and 64-bit (x86_64-w64-mingw32), Clang assumes as below;

• GCC versions 4.5.0 to 4.5.3, 4.6.0 to 4.6.2, or 4.7.0 (for the C++ header search path)

• some_directory/bin/gcc.exe

• some_directory/bin/clang.exe

• some_directory/bin/clang++.exe

• some_directory/bin/../include/c++/GCC_version

• some_directory/bin/../include/c++/GCC_version/x86_64-w64-mingw32

• some_directory/bin/../include/c++/GCC_version/i686-w64-mingw32

• some_directory/bin/../include/c++/GCC_version/backward

• some_directory/bin/../x86_64-w64-mingw32/include

• some_directory/bin/../i686-w64-mingw32/include

• some_directory/bin/../include

This directory layout is standard for any toolchain you will find on the official MinGW-w64 website.

Clang expects the GCC executable “gcc.exe” compiled for i686-w64-mingw32 (or x86_64-w64-mingw32) to be
present on PATH.

Some tests might fail on x86_64-w64-mingw32.

AIX

The -mdefault-visibility-export-mapping= option can be used to control mapping of default visibility to an
explicit shared object export (i.e. XCOFF exported visibility). Three values are provided for the option:

• -mdefault-visibility-export-mapping=none: no additional export information is created for entities
with default visibility.

Using Clang as a Compiler

51

http://mingw-w64.sourceforge.net
https://bugs.llvm.org/show_bug.cgi?id=9072


• -mdefault-visibility-export-mapping=explicit: mark entities for export if they have explict (e.g.
via an attribute) default visibility from the source, including RTTI.

• -mdefault-visibility-export-mapping=all: set XCOFF exported visibility for all entities with default
visibility from any source. This gives a export behavior similar to ELF platforms where all entities with default
visibility are exported.

SPIR-V support

Clang supports generation of SPIR-V conformant to the OpenCL Environment Specification.

To generate SPIR-V binaries, Clang uses the external llvm-spirv tool from the SPIRV-LLVM-Translator repo.

Prior to the generation of SPIR-V binary with Clang, llvm-spirv should be built or installed. Please refer to the
following instructions for more details. Clang will expect the llvm-spirv executable to be present in the PATH
environment variable. Clang uses llvm-spirv with the widely adopted assembly syntax package.

The versioning of llvm-spirv is aligned with Clang major releases. The same applies to the main development
branch. It is therefore important to ensure the llvm-spirv version is in alignment with the Clang version. For
troubleshooting purposes llvm-spirv can be tested in isolation.

Example usage for OpenCL kernel compilation:

$ clang -target spirv32 -c test.cl
$ clang -target spirv64 -c test.cl

Both invocations of Clang will result in the generation of a SPIR-V binary file test.o for 32 bit and 64 bit respectively.
This file can be imported by an OpenCL driver that support SPIR-V consumption or it can be compiled further by
offline SPIR-V consumer tools.

Converting to SPIR-V produced with the optimization levels other than -O0 is currently available as an experimental
feature and it is not guaranteed to work in all cases.

Clang also supports integrated generation of SPIR-V without use of llvm-spirv tool as an experimental feature
when -fintegrated-objemitter flag is passed in the command line.

$ clang -target spirv32 -fintegrated-objemitter -c test.cl

Note that only very basic functionality is supported at this point and therefore it is not suitable for arbitrary use cases.
This feature is only enabled when clang build is configured with
-DLLVM_EXPERIMENTAL_TARGETS_TO_BUILD=SPIRV option.

Linking is done using spirv-link from the SPIRV-Tools project. Similar to other external linkers, Clang will expect
spirv-link to be installed separately and to be present in the PATH environment variable. Please refer to the build
and installation instructions.

$ clang -target spirv64 test1.cl test2.cl

More information about the SPIR-V target settings and supported versions of SPIR-V format can be found in the
SPIR-V target guide.

clang-cl
clang-cl is an alternative command-line interface to Clang, designed for compatibility with the Visual C++ compiler,
cl.exe.

To enable clang-cl to find system headers, libraries, and the linker when run from the command-line, it should be
executed inside a Visual Studio Native Tools Command Prompt or a regular Command Prompt where the
environment has been set up using e.g. vcvarsall.bat.

clang-cl can also be used from inside Visual Studio by selecting the LLVM Platform Toolset. The toolset is not part of
the installer, but may be installed separately from the Visual Studio Marketplace. To use the toolset, select a project
in Solution Explorer, open its Property Page (Alt+F7), and in the “General” section of “Configuration Properties”
change “Platform Toolset” to LLVM. Doing so enables an additional Property Page for selecting the clang-cl
executable to use for builds.

Using Clang as a Compiler

52

https://www.khronos.org/registry/OpenCL/specs/3.0-unified/html/OpenCL_Env.html
https://github.com/KhronosGroup/SPIRV-LLVM-Translator
https://github.com/KhronosGroup/SPIRV-LLVM-Translator#build-instructions
https://github.com/KhronosGroup/SPIRV-LLVM-Translator#build-instructions
https://github.com/KhronosGroup/SPIRV-LLVM-Translator/#build-with-spirv-tools
https://github.com/KhronosGroup/SPIRV-LLVM-Translator/releases
https://github.com/KhronosGroup/SPIRV-LLVM-Translator#test-instructions
https://github.com/KhronosGroup/SPIRV-Tools#linker
https://github.com/KhronosGroup/SPIRV-Tools#build
https://github.com/KhronosGroup/SPIRV-Tools#build
https://llvm.org/docs/SPIRVUsage.html
https://llvm.org/docs/SPIRVUsage.html
https://msdn.microsoft.com/en-us/library/f2ccy3wt.aspx
https://marketplace.visualstudio.com/items?itemName=LLVMExtensions.llvm-toolchain


To use the toolset with MSBuild directly, invoke it with e.g. /p:PlatformToolset=LLVM. This allows trying out the
clang-cl toolchain without modifying your project files.

It’s also possible to point MSBuild at clang-cl without changing toolset by passing
/p:CLToolPath=c:\llvm\bin /p:CLToolExe=clang-cl.exe.

When using CMake and the Visual Studio generators, the toolset can be set with the -T flag:

cmake -G"Visual Studio 16 2019" -T LLVM ..

When using CMake with the Ninja generator, set the CMAKE_C_COMPILER and CMAKE_CXX_COMPILER variables to
clang-cl:

cmake -GNinja -DCMAKE_C_COMPILER="c:/Program Files (x86)/LLVM/bin/clang-cl.exe"
    -DCMAKE_CXX_COMPILER="c:/Program Files (x86)/LLVM/bin/clang-cl.exe" ..

Command-Line Options

To be compatible with cl.exe, clang-cl supports most of the same command-line options. Those options can start with
either / or -. It also supports some of Clang’s core options, such as the -W options.

Options that are known to clang-cl, but not currently supported, are ignored with a warning. For example:

clang-cl.exe: warning: argument unused during compilation: '/AI'

To suppress warnings about unused arguments, use the -Qunused-arguments option.

Options that are not known to clang-cl will be ignored by default. Use the -Werror=unknown-argument option in
order to treat them as errors. If these options are spelled with a leading /, they will be mistaken for a filename:

clang-cl.exe: error: no such file or directory: '/foobar'

Please file a bug for any valid cl.exe flags that clang-cl does not understand.

Execute clang-cl /? to see a list of supported options:

CL.EXE COMPATIBILITY OPTIONS:
  /?                      Display available options
  /arch:<value>           Set architecture for code generation
  /Brepro-                Emit an object file which cannot be reproduced over time
  /Brepro                 Emit an object file which can be reproduced over time
  /clang:<arg>            Pass <arg> to the clang driver
  /C                      Don't discard comments when preprocessing
  /c                      Compile only
  /d1PP                   Retain macro definitions in /E mode
  /d1reportAllClassLayout Dump record layout information
  /diagnostics:caret      Enable caret and column diagnostics (on by default)
  /diagnostics:classic    Disable column and caret diagnostics
  /diagnostics:column     Disable caret diagnostics but keep column info
  /D <macro[=value]>      Define macro
  /EH<value>              Exception handling model
  /EP                     Disable linemarker output and preprocess to stdout
  /execution-charset:<value>
                          Runtime encoding, supports only UTF-8
  /E                      Preprocess to stdout
  /FA                     Output assembly code file during compilation
  /Fa<file or directory>  Output assembly code to this file during compilation (with /FA)
  /Fe<file or directory>  Set output executable file or directory (ends in / or \)
  /FI <value>             Include file before parsing
  /Fi<file>               Set preprocess output file name (with /P)
  /Fo<file or directory>  Set output object file, or directory (ends in / or \) (with /c)
  /fp:except-
  /fp:except
  /fp:fast

Using Clang as a Compiler

53

https://bugs.llvm.org/enter_bug.cgi?product=clang&component=Driver


  /fp:precise
  /fp:strict
  /Fp<filename>           Set pch filename (with /Yc and /Yu)
  /GA                     Assume thread-local variables are defined in the executable
  /Gd                     Set __cdecl as a default calling convention
  /GF-                    Disable string pooling
  /GF                     Enable string pooling (default)
  /GR-                    Disable emission of RTTI data
  /Gregcall               Set __regcall as a default calling convention
  /GR                     Enable emission of RTTI data
  /Gr                     Set __fastcall as a default calling convention
  /GS-                    Disable buffer security check
  /GS                     Enable buffer security check (default)
  /Gs                     Use stack probes (default)
  /Gs<value>              Set stack probe size (default 4096)
  /guard:<value>          Enable Control Flow Guard with /guard:cf,
                          or only the table with /guard:cf,nochecks.
                          Enable EH Continuation Guard with /guard:ehcont
  /Gv                     Set __vectorcall as a default calling convention
  /Gw-                    Don't put each data item in its own section
  /Gw                     Put each data item in its own section
  /GX-                    Disable exception handling
  /GX                     Enable exception handling
  /Gy-                    Don't put each function in its own section (default)
  /Gy                     Put each function in its own section
  /Gz                     Set __stdcall as a default calling convention
  /help                   Display available options
  /imsvc <dir>            Add directory to system include search path, as if part of %INCLUDE%
  /I <dir>                Add directory to include search path
  /J                      Make char type unsigned
  /LDd                    Create debug DLL
  /LD                     Create DLL
  /link <options>         Forward options to the linker
  /MDd                    Use DLL debug run-time
  /MD                     Use DLL run-time
  /MTd                    Use static debug run-time
  /MT                     Use static run-time
  /O0                     Disable optimization
  /O1                     Optimize for size  (same as /Og     /Os /Oy /Ob2 /GF /Gy)
  /O2                     Optimize for speed (same as /Og /Oi /Ot /Oy /Ob2 /GF /Gy)
  /Ob0                    Disable function inlining
  /Ob1                    Only inline functions which are (explicitly or implicitly) marked inline
  /Ob2                    Inline functions as deemed beneficial by the compiler
  /Od                     Disable optimization
  /Og                     No effect
  /Oi-                    Disable use of builtin functions
  /Oi                     Enable use of builtin functions
  /Os                     Optimize for size
  /Ot                     Optimize for speed
  /Ox                     Deprecated (same as /Og /Oi /Ot /Oy /Ob2); use /O2 instead
  /Oy-                    Disable frame pointer omission (x86 only, default)
  /Oy                     Enable frame pointer omission (x86 only)
  /O<flags>               Set multiple /O flags at once; e.g. '/O2y-' for '/O2 /Oy-'
  /o <file or directory>  Set output file or directory (ends in / or \)
  /P                      Preprocess to file
  /Qvec-                  Disable the loop vectorization passes
  /Qvec                   Enable the loop vectorization passes
  /showFilenames-         Don't print the name of each compiled file (default)
  /showFilenames          Print the name of each compiled file

Using Clang as a Compiler

54



  /showIncludes           Print info about included files to stderr
  /source-charset:<value> Source encoding, supports only UTF-8
  /std:<value>            Language standard to compile for
  /TC                     Treat all source files as C
  /Tc <filename>          Specify a C source file
  /TP                     Treat all source files as C++
  /Tp <filename>          Specify a C++ source file
  /utf-8                  Set source and runtime encoding to UTF-8 (default)
  /U <macro>              Undefine macro
  /vd<value>              Control vtordisp placement
  /vmb                    Use a best-case representation method for member pointers
  /vmg                    Use a most-general representation for member pointers
  /vmm                    Set the default most-general representation to multiple inheritance
  /vms                    Set the default most-general representation to single inheritance
  /vmv                    Set the default most-general representation to virtual inheritance
  /volatile:iso           Volatile loads and stores have standard semantics
  /volatile:ms            Volatile loads and stores have acquire and release semantics
  /W0                     Disable all warnings
  /W1                     Enable -Wall
  /W2                     Enable -Wall
  /W3                     Enable -Wall
  /W4                     Enable -Wall and -Wextra
  /Wall                   Enable -Weverything
  /WX-                    Do not treat warnings as errors
  /WX                     Treat warnings as errors
  /w                      Disable all warnings
  /X                      Don't add %INCLUDE% to the include search path
  /Y-                     Disable precompiled headers, overrides /Yc and /Yu
  /Yc<filename>           Generate a pch file for all code up to and including <filename>
  /Yu<filename>           Load a pch file and use it instead of all code up to and including <filename>
  /Z7                     Enable CodeView debug information in object files
  /Zc:char8_t             Enable C++2a char8_t type
  /Zc:char8_t-            Disable C++2a char8_t type
  /Zc:dllexportInlines-   Don't dllexport/dllimport inline member functions of dllexport/import classes
  /Zc:dllexportInlines    dllexport/dllimport inline member functions of dllexport/import classes (default)
  /Zc:sizedDealloc-       Disable C++14 sized global deallocation functions
  /Zc:sizedDealloc        Enable C++14 sized global deallocation functions
  /Zc:strictStrings       Treat string literals as const
  /Zc:threadSafeInit-     Disable thread-safe initialization of static variables
  /Zc:threadSafeInit      Enable thread-safe initialization of static variables
  /Zc:trigraphs-          Disable trigraphs (default)
  /Zc:trigraphs           Enable trigraphs
  /Zc:twoPhase-           Disable two-phase name lookup in templates
  /Zc:twoPhase            Enable two-phase name lookup in templates
  /Zi                     Alias for /Z7. Does not produce PDBs.
  /Zl                     Don't mention any default libraries in the object file
  /Zp                     Set the default maximum struct packing alignment to 1
  /Zp<value>              Specify the default maximum struct packing alignment
  /Zs                     Syntax-check only

OPTIONS:
  -###                    Print (but do not run) the commands to run for this compilation
  --analyze               Run the static analyzer
  -faddrsig               Emit an address-significance table
  -fansi-escape-codes     Use ANSI escape codes for diagnostics
  -fblocks                Enable the 'blocks' language feature
  -fcf-protection=<value> Instrument control-flow architecture protection. Options: return, branch, full, none.
  -fcf-protection         Enable cf-protection in 'full' mode
  -fcolor-diagnostics     Use colors in diagnostics

Using Clang as a Compiler

55



  -fcomplete-member-pointers
                          Require member pointer base types to be complete if they would be significant under the Microsoft ABI
  -fcoverage-mapping      Generate coverage mapping to enable code coverage analysis
  -fcrash-diagnostics-dir=<dir>
                          Put crash-report files in <dir>
  -fdebug-macro           Emit macro debug information
  -fdelayed-template-parsing
                          Parse templated function definitions at the end of the translation unit
  -fdiagnostics-absolute-paths
                          Print absolute paths in diagnostics
  -fdiagnostics-parseable-fixits
                          Print fix-its in machine parseable form
  -flto=<value>           Set LTO mode to either 'full' or 'thin'
  -flto                   Enable LTO in 'full' mode
  -fmerge-all-constants   Allow merging of constants
  -fms-compatibility-version=<value>
                          Dot-separated value representing the Microsoft compiler version
                          number to report in _MSC_VER (0 = don't define it (default))
  -fms-compatibility      Enable full Microsoft Visual C++ compatibility
  -fms-extensions         Accept some non-standard constructs supported by the Microsoft compiler
  -fmsc-version=<value>   Microsoft compiler version number to report in _MSC_VER
                          (0 = don't define it (default))
  -fno-addrsig            Don't emit an address-significance table
  -fno-builtin-<value>    Disable implicit builtin knowledge of a specific function
  -fno-builtin            Disable implicit builtin knowledge of functions
  -fno-complete-member-pointers
                          Do not require member pointer base types to be complete if they would be significant under the Microsoft ABI
  -fno-coverage-mapping   Disable code coverage analysis
  -fno-crash-diagnostics  Disable auto-generation of preprocessed source files and a script for reproduction during a clang crash
  -fno-debug-macro        Do not emit macro debug information
  -fno-delayed-template-parsing
                          Disable delayed template parsing
  -fno-sanitize-address-poison-custom-array-cookie
                          Disable poisoning array cookies when using custom operator new[] in AddressSanitizer
  -fno-sanitize-address-use-after-scope
                          Disable use-after-scope detection in AddressSanitizer
  -fno-sanitize-address-use-odr-indicator
                           Disable ODR indicator globals
  -fno-sanitize-ignorelist Don't use ignorelist file for sanitizers
  -fno-sanitize-cfi-cross-dso
                          Disable control flow integrity (CFI) checks for cross-DSO calls.
  -fno-sanitize-coverage=<value>
                          Disable specified features of coverage instrumentation for Sanitizers
  -fno-sanitize-memory-track-origins
                          Disable origins tracking in MemorySanitizer
  -fno-sanitize-memory-use-after-dtor
                          Disable use-after-destroy detection in MemorySanitizer
  -fno-sanitize-recover=<value>
                          Disable recovery for specified sanitizers
  -fno-sanitize-stats     Disable sanitizer statistics gathering.
  -fno-sanitize-thread-atomics
                          Disable atomic operations instrumentation in ThreadSanitizer
  -fno-sanitize-thread-func-entry-exit
                          Disable function entry/exit instrumentation in ThreadSanitizer
  -fno-sanitize-thread-memory-access
                          Disable memory access instrumentation in ThreadSanitizer
  -fno-sanitize-trap=<value>
                          Disable trapping for specified sanitizers
  -fno-standalone-debug   Limit debug information produced to reduce size of debug binary

Using Clang as a Compiler

56



  -fobjc-runtime=<value>  Specify the target Objective-C runtime kind and version
  -fprofile-exclude-files=<value>
                          Instrument only functions from files where names don't match all the regexes separated by a semi-colon
  -fprofile-filter-files=<value>
                          Instrument only functions from files where names match any regex separated by a semi-colon
  -fprofile-instr-generate=<file>
                          Generate instrumented code to collect execution counts into <file>
                          (overridden by LLVM_PROFILE_FILE env var)
  -fprofile-instr-generate
                          Generate instrumented code to collect execution counts into default.profraw file
                          (overridden by '=' form of option or LLVM_PROFILE_FILE env var)
  -fprofile-instr-use=<value>
                          Use instrumentation data for profile-guided optimization
  -fprofile-remapping-file=<file>
                          Use the remappings described in <file> to match the profile data against names in the program
  -fprofile-list=<file>
                          Filename defining the list of functions/files to instrument
  -fsanitize-address-field-padding=<value>
                          Level of field padding for AddressSanitizer
  -fsanitize-address-globals-dead-stripping
                          Enable linker dead stripping of globals in AddressSanitizer
  -fsanitize-address-poison-custom-array-cookie
                          Enable poisoning array cookies when using custom operator new[] in AddressSanitizer
  -fsanitize-address-use-after-return=<mode>
                          Select the mode of detecting stack use-after-return in AddressSanitizer: never | runtime (default) | always
  -fsanitize-address-use-after-scope
                          Enable use-after-scope detection in AddressSanitizer
  -fsanitize-address-use-odr-indicator
                          Enable ODR indicator globals to avoid false ODR violation reports in partially sanitized programs at the cost of an increase in binary size
  -fsanitize-ignorelist=<value>
                          Path to ignorelist file for sanitizers
  -fsanitize-cfi-cross-dso
                          Enable control flow integrity (CFI) checks for cross-DSO calls.
  -fsanitize-cfi-icall-generalize-pointers
                          Generalize pointers in CFI indirect call type signature checks
  -fsanitize-coverage=<value>
                          Specify the type of coverage instrumentation for Sanitizers
  -fsanitize-hwaddress-abi=<value>
                          Select the HWAddressSanitizer ABI to target (interceptor or platform, default interceptor)
  -fsanitize-memory-track-origins=<value>
                          Enable origins tracking in MemorySanitizer
  -fsanitize-memory-track-origins
                          Enable origins tracking in MemorySanitizer
  -fsanitize-memory-use-after-dtor
                          Enable use-after-destroy detection in MemorySanitizer
  -fsanitize-recover=<value>
                          Enable recovery for specified sanitizers
  -fsanitize-stats        Enable sanitizer statistics gathering.
  -fsanitize-thread-atomics
                          Enable atomic operations instrumentation in ThreadSanitizer (default)
  -fsanitize-thread-func-entry-exit
                          Enable function entry/exit instrumentation in ThreadSanitizer (default)
  -fsanitize-thread-memory-access
                          Enable memory access instrumentation in ThreadSanitizer (default)
  -fsanitize-trap=<value> Enable trapping for specified sanitizers
  -fsanitize-undefined-strip-path-components=<number>
                          Strip (or keep only, if negative) a given number of path components when emitting check metadata.
  -fsanitize=<check>      Turn on runtime checks for various forms of undefined or suspicious
                          behavior. See user manual for available checks
  -fsplit-lto-unit        Enables splitting of the LTO unit.
  -fstandalone-debug      Emit full debug info for all types used by the program
  -fwhole-program-vtables Enables whole-program vtable optimization. Requires -flto
  -gcodeview-ghash        Emit type record hashes in a .debug$H section
  -gcodeview              Generate CodeView debug information
  -gline-directives-only  Emit debug line info directives only
  -gline-tables-only      Emit debug line number tables only
  -miamcu                 Use Intel MCU ABI
  -mllvm <value>          Additional arguments to forward to LLVM's option processing
  -nobuiltininc           Disable builtin #include directories
  -Qunused-arguments      Don't emit warning for unused driver arguments
  -R<remark>              Enable the specified remark
  --target=<value>        Generate code for the given target
  --version               Print version information
  -v                      Show commands to run and use verbose output
  -W<warning>             Enable the specified warning
  -Xclang <arg>           Pass <arg> to the clang compiler

The /clang: Option

When clang-cl is run with a set of /clang:<arg> options, it will gather all of the <arg> arguments and process
them as if they were passed to the clang driver. This mechanism allows you to pass flags that are not exposed in the
clang-cl options or flags that have a different meaning when passed to the clang driver. Regardless of where they
appear in the command line, the /clang: arguments are treated as if they were passed at the end of the clang-cl
command line.

The /Zc:dllexportInlines- Option

This causes the class-level dllexport and dllimport attributes to not apply to inline member functions, as they
otherwise would. For example, in the code below S::foo() would normally be defined and exported by the DLL, but
when using the /Zc:dllexportInlines- flag it is not:

struct __declspec(dllexport) S {
  void foo() {}
}

This has the benefit that the compiler doesn’t need to emit a definition of S::foo() in every translation unit where the
declaration is included, as it would otherwise do to ensure there’s a definition in the DLL even if it’s not used there. If
the declaration occurs in a header file that’s widely used, this can save significant compilation time and output size. It
also reduces the number of functions exported by the DLL similarly to what -fvisibility-inlines-hidden

Using Clang as a Compiler

57



does for shared objects on ELF and Mach-O. Since the function declaration comes with an inline definition, users of
the library can use that definition directly instead of importing it from the DLL.

Note that the Microsoft Visual C++ compiler does not support this option, and if code in a DLL is compiled with
/Zc:dllexportInlines-, the code using the DLL must be compiled in the same way so that it doesn’t attempt to
dllimport the inline member functions. The reverse scenario should generally work though: a DLL compiled without
this flag (such as a system library compiled with Visual C++) can be referenced from code compiled using the flag,
meaning that the referencing code will use the inline definitions instead of importing them from the DLL.

Also note that like when using -fvisibility-inlines-hidden, the address of S::foo() will be different inside
and outside the DLL, breaking the C/C++ standard requirement that functions have a unique address.

The flag does not apply to explicit class template instantiation definitions or declarations, as those are typically used
to explicitly provide a single definition in a DLL, (dllexported instantiation definition) or to signal that the definition is
available elsewhere (dllimport instantiation declaration). It also doesn’t apply to inline members with static local
variables, to ensure that the same instance of the variable is used inside and outside the DLL.

Using this flag can cause problems when inline functions that would otherwise be dllexported refer to internal
symbols of a DLL. For example:

void internal();

struct __declspec(dllimport) S {
  void foo() { internal(); }
}

Normally, references to S::foo() would use the definition in the DLL from which it was exported, and which
presumably also has the definition of internal(). However, when using /Zc:dllexportInlines-, the inline
definition of S::foo() is used directly, resulting in a link error since internal() is not available. Even worse, if there is an
inline definition of internal() containing a static local variable, we will now refer to a different instance of that variable
than in the DLL:

inline int internal() { static int x; return x++; }

struct __declspec(dllimport) S {
  int foo() { return internal(); }
}

This could lead to very subtle bugs. Using -fvisibility-inlines-hidden can lead to the same issue. To avoid
it in this case, make S::foo() or internal() non-inline, or mark them dllimport/dllexport explicitly.

Finding Clang runtime libraries

clang-cl supports several features that require runtime library support:

• Address Sanitizer (ASan): -fsanitize=address

• Undefined Behavior Sanitizer (UBSan): -fsanitize=undefined

• Code coverage: -fprofile-instr-generate -fcoverage-mapping

• Profile Guided Optimization (PGO): -fprofile-instr-generate

• Certain math operations (int128 division) require the builtins library

In order to use these features, the user must link the right runtime libraries into their program. These libraries are
distributed alongside Clang in the library resource directory. Clang searches for the resource directory by searching
relative to the Clang executable. For example, if LLVM is installed in C:\Program Files\LLVM, then the profile
runtime library will be located at the path
C:\Program Files\LLVM\lib\clang\11.0.0\lib\windows\clang_rt.profile-x86_64.lib.

For UBSan, PGO, and coverage, Clang will emit object files that auto-link the appropriate runtime library, but the
user generally needs to help the linker (whether it is lld-link.exe or MSVC link.exe) find the library resource
directory. Using the example installation above, this would mean passing
/LIBPATH:C:\Program Files\LLVM\lib\clang\11.0.0\lib\windows to the linker. If the user links the
program with the clang or clang-cl drivers, the driver will pass this flag for them.

If the linker cannot find the appropriate library, it will emit an error like this:

Using Clang as a Compiler

58



$ clang-cl -c -fsanitize=undefined t.cpp

$ lld-link t.obj -dll
lld-link: error: could not open 'clang_rt.ubsan_standalone-x86_64.lib': no such file or directory
lld-link: error: could not open 'clang_rt.ubsan_standalone_cxx-x86_64.lib': no such file or directory

$ link t.obj -dll -nologo
LINK : fatal error LNK1104: cannot open file 'clang_rt.ubsan_standalone-x86_64.lib'

To fix the error, add the appropriate /libpath: flag to the link line.

For ASan, as of this writing, the user is also responsible for linking against the correct ASan libraries.

If the user is using the dynamic CRT (/MD), then they should add clang_rt.asan_dynamic-x86_64.lib to the
link line as a regular input. For other architectures, replace x86_64 with the appropriate name here and below.

If the user is using the static CRT (/MT), then different runtimes are used to produce DLLs and EXEs. To link a DLL,
pass clang_rt.asan_dll_thunk-x86_64.lib. To link an EXE, pass
-wholearchive:clang_rt.asan-x86_64.lib.

Assembling a Complete Toolchain
Introduction 59

Tools 60

Clang frontend 60

Language frontends for other languages 60

Assembler 60

Linker 60

Runtime libraries 61

Compiler runtime 61

Atomics library 61

Unwind library 62

Sanitizer runtime 62

C standard library 62

C++ ABI library 62

C++ standard library 63

Introduction
Clang is only one component in a complete tool chain for C family programming languages. In order to assemble a
complete toolchain, additional tools and runtime libraries are required. Clang is designed to interoperate with existing
tools and libraries for its target platforms, and the LLVM project provides alternatives for a number of these
components.

This document describes the required and optional components in a complete toolchain, where to find them, and the
supported versions and limitations of each option.

Warning

This document currently describes Clang configurations on POSIX-like operating systems with the
GCC-compatible clang driver. When targeting Windows with the MSVC-compatible clang-cl driver, some of
the details are different.

Assembling a Complete Toolchain

59



Tools
A complete compilation of C family programming languages typically involves the following pipeline of tools, some of
which are omitted in some compilations:

• Preprocessor: This performs the actions of the C preprocessor: expanding #includes and #defines. The -E
flag instructs Clang to stop after this step.

• Parsing: This parses and semantically analyzes the source language and builds a source-level intermediate
representation (“AST”), producing a precompiled header (PCH), preamble, or precompiled module file (PCM),
depending on the input. The -precompile flag instructs Clang to stop after this step. This is the default when
the input is a header file.

• IR generation: This converts the source-level intermediate representation into an optimizer-specific
intermediate representation (IR); for Clang, this is LLVM IR. The -emit-llvm flag instructs Clang to stop after
this step. If combined with -S, Clang will produce textual LLVM IR; otherwise, it will produce LLVM IR bitcode.

• Compiler backend: This converts the intermediate representation into target-specific assembly code. The -S
flag instructs Clang to stop after this step.

• Assembler: This converts target-specific assembly code into target-specific machine code object files. The -c
flag instructs Clang to stop after this step.

• Linker: This combines multiple object files into a single image (either a shared object or an executable).

Clang provides all of these pieces other than the linker. When multiple steps are performed by the same tool, it is
common for the steps to be fused together to avoid creating intermediate files.

When given an output of one of the above steps as an input, earlier steps are skipped (for instance, a .s file input
will be assembled and linked).

The Clang driver can be invoked with the -### flag (this argument will need to be escaped under most shells) to see
which commands it would run for the above steps, without running them. The -v (verbose) flag will print the
commands in addition to running them.

Clang frontend

The Clang frontend (clang -cc1) is used to compile C family languages. The command-line interface of the
frontend is considered to be an implementation detail, intentionally has no external documentation, and is subject to
change without notice.

Language frontends for other languages

Clang can be provided with inputs written in non-C-family languages. In such cases, an external tool will be used to
compile the input. The currently-supported languages are:

• Ada (-x ada, .ad[bs])

• Fortran (-x f95, .f, .f9[05], .for, .fpp, case-insensitive)

• Java (-x java)

In each case, GCC will be invoked to compile the input.

Assembler

Clang can either use LLVM’s integrated assembler or an external system-specific tool (for instance, the GNU
Assembler on GNU OSes) to produce machine code from assembly. By default, Clang uses LLVM’s integrated
assembler on all targets where it is supported. If you wish to use the system assembler instead, use the
-fno-integrated-as option.

Linker

Clang can be configured to use one of several different linkers:

• GNU ld

• GNU gold

Assembling a Complete Toolchain

60



• LLVM’s lld

• MSVC’s link.exe

Link-time optimization is natively supported by lld, and supported via a linker plugin when using gold.

The default linker varies between targets, and can be overridden via the -fuse-ld=<linker name> flag.

Runtime libraries
A number of different runtime libraries are required to provide different layers of support for C family programs. Clang
will implicitly link an appropriate implementation of each runtime library, selected based on target defaults or explicitly
selected by the --rtlib= and --stdlib= flags.

The set of implicitly-linked libraries depend on the language mode. As a consequence, you should use clang++
when linking C++ programs in order to ensure the C++ runtimes are provided.

Note

There may exist other implementations for these components not described below. Please let us know how well
those other implementations work with Clang so they can be added to this list!

Compiler runtime

The compiler runtime library provides definitions of functions implicitly invoked by the compiler to support operations
not natively supported by the underlying hardware (for instance, 128-bit integer multiplications), and where inline
expansion of the operation is deemed unsuitable.

The default runtime library is target-specific. For targets where GCC is the dominant compiler, Clang currently
defaults to using libgcc_s. On most other targets, compiler-rt is used by default.

compiler-rt (LLVM)

LLVM’s compiler runtime library provides a complete set of runtime library functions containing all functions that
Clang will implicitly call, in libclang_rt.builtins.<arch>.a.

You can instruct Clang to use compiler-rt with the --rtlib=compiler-rt flag. This is not supported on every
platform.

If using libc++ and/or libc++abi, you may need to configure them to use compiler-rt rather than libgcc_s by passing
-DLIBCXX_USE_COMPILER_RT=YES and/or -DLIBCXXABI_USE_COMPILER_RT=YES to cmake. Otherwise, you
may end up with both runtime libraries linked into your program (this is typically harmless, but wasteful).

libgcc_s (GNU)

GCC’s runtime library can be used in place of compiler-rt. However, it lacks several functions that LLVM may emit
references to, particularly when using Clang’s __builtin_*_overflow family of intrinsics.

You can instruct Clang to use libgcc_s with the --rtlib=libgcc flag. This is not supported on every platform.

Atomics library

If your program makes use of atomic operations and the compiler is not able to lower them all directly to machine
instructions (because there either is no known suitable machine instruction or the operand is not known to be suitably
aligned), a call to a runtime library __atomic_* function will be generated. A runtime library containing these
atomics functions is necessary for such programs.

compiler-rt (LLVM)

compiler-rt contains an implementation of an atomics library.

Assembling a Complete Toolchain

61

https://lld.llvm.org
https://llvm.org/docs/GoldPlugin.html
https://compiler-rt.llvm.org/
https://gcc.gnu.org/onlinedocs/gccint/Libgcc.html


libatomic (GNU)

libgcc_s does not provide an implementation of an atomics library. Instead, GCC’s libatomic library can be used to
supply these when using libgcc_s.

Note

Clang does not currently automatically link against libatomic when using libgcc_s. You may need to manually add
-latomic to support this configuration when using non-native atomic operations (if you see link errors referring
to __atomic_* functions).

Unwind library

The unwind library provides a family of _Unwind_* functions implementing the language-neutral stack unwinding
portion of the Itanium C++ ABI (Level I). It is a dependency of the C++ ABI library, and sometimes is a dependency
of other runtimes.

libunwind (LLVM)

LLVM’s unwinder library is part of the llvm-project git repository. To build it, pass
-DLLVM_ENABLE_RUNTIMES=libunwind to the cmake invocation.

If using libc++abi, you may need to configure it to use libunwind rather than libgcc_s by passing
-DLIBCXXABI_USE_LLVM_UNWINDER=YES to cmake. If libc++abi is configured to use some version of libunwind,
that library will be implicitly linked into binaries that link to libc++abi.

libgcc_s (GNU)

libgcc_s has an integrated unwinder, and does not need an external unwind library to be provided.

libunwind (nongnu.org)

This is another implementation of the libunwind specification. See libunwind (nongnu.org).

libunwind (PathScale)

This is another implementation of the libunwind specification. See libunwind (pathscale).

Sanitizer runtime

The instrumentation added by Clang’s sanitizers (-fsanitize=...) implicitly makes calls to a runtime library, in
order to maintain side state about the execution of the program and to issue diagnostic messages when a problem is
detected.

The only supported implementation of these runtimes is provided by LLVM’s compiler-rt, and the relevant portion of
that library (libclang_rt.<sanitizer>.<arch>.a) will be implicitly linked when linking with a
-fsanitize=... flag.

C standard library

Clang supports a wide variety of C standard library implementations.

C++ ABI library

The C++ ABI library provides an implementation of the library portion of the Itanium C++ ABI, covering both the
support functionality in the main Itanium C++ ABI document and Level II of the exception handling support.
References to the functions and objects in this library are implicitly generated by Clang when compiling C++ code.

Assembling a Complete Toolchain

62

https://gcc.gnu.org/wiki/Atomic/GCCMM
https://itanium-cxx-abi.github.io/cxx-abi/abi-eh.html#base-abi
https://www.nongnu.org/libunwind
https://github.com/pathscale/libunwind
https://en.cppreference.com/w/c
https://itanium-cxx-abi.github.io/cxx-abi/abi.html
https://itanium-cxx-abi.github.io/cxx-abi/abi-eh.html#cxx-abi


While it is possible to link C++ code using libstdc++ and code using libc++ together into the same program (so long
as you do not attempt to pass C++ standard library objects across the boundary), it is not generally possible to have
more than one C++ ABI library in a program.

The version of the C++ ABI library used by Clang will be the one that the chosen C++ standard library was linked
against. Several implementations are available:

libc++abi (LLVM)

libc++abi is LLVM’s implementation of this specification.

libsupc++ (GNU)

libsupc++ is GCC’s implementation of this specification. However, this library is only used when libstdc++ is linked
statically. The dynamic library version of libstdc++ contains a copy of libsupc++.

Note

Clang does not currently automatically link against libsupc++ when statically linking libstdc++. You may need to
manually add -lsupc++ to support this configuration when using -static or -static-libstdc++.

libcxxrt (PathScale)

This is another implementation of the Itanium C++ ABI specification. See libcxxrt.

C++ standard library

Clang supports use of either LLVM’s libc++ or GCC’s libstdc++ implementation of the C++ standard library.

libc++ (LLVM)

libc++ is LLVM’s implementation of the C++ standard library, aimed at being a complete implementation of the C++
standards from C++11 onwards.

You can instruct Clang to use libc++ with the -stdlib=libc++ flag.

libstdc++ (GNU)

libstdc++ is GCC’s implementation of the C++ standard library. Clang supports libstdc++ 4.8.3 (released 2014-05-22)
and later. Historically Clang implemented workarounds for issues discovered in libstdc++, and these are removed as
fixed libstdc++ becomes sufficiently old.

You can instruct Clang to use libstdc++ with the -stdlib=libstdc++ flag.

Assembling a Complete Toolchain

63

https://libcxxabi.llvm.org/
https://github.com/pathscale/libcxxrt
https://en.cppreference.com/w/cpp
https://libcxx.llvm.org/
https://gcc.gnu.org/onlinedocs/libstdc++/


Clang Language Extensions
Introduction 124

Feature Checking Macros 124

Include File Checking Macros 127

Builtin Macros 128

Vectors and Extended Vectors 129

Matrix Types 133

Half-Precision Floating Point 134

Messages on deprecated and unavailable Attributes 135

Attributes on Enumerators 135

C++11 Attributes on using-declarations 135

‘User-Specified’ System Frameworks 135

Checks for Standard Language Features 136

Type Trait Primitives 141

Blocks 144

ASM Goto with Output Constraints 144

Objective-C Features 145

Initializer lists for complex numbers in C 149

OpenCL Features 150

Builtin Functions 152

Non-standard C++11 Attributes 169

Target-Specific Extensions 169

Extensions for Static Analysis 170

Extensions for Dynamic Analysis 170

Extensions for selectively disabling optimization 171

Extensions for loop hint optimizations 172

Extensions to specify floating-point flags 174

Specifying an attribute for multiple declarations (#pragma clang attribute) 176

Specifying section names for global objects (#pragma clang section) 178

Specifying Linker Options on ELF Targets 179

Evaluating Object Size Dynamically 179

Deprecating Macros 179

Restricted Expansion Macros 179

Final Macros 180

Line Control 180

Extended Integer Types 181

Intrinsics Support within Constant Expressions 181

Clang Language Extensions

64



Objective-C Literals

Introduction

Three new features were introduced into clang at the same time: NSNumber Literals provide a syntax for creating
NSNumber from scalar literal expressions; Collection Literals provide a short-hand for creating arrays and
dictionaries; Object Subscripting provides a way to use subscripting with Objective-C objects. Users of Apple
compiler releases can use these features starting with the Apple LLVM Compiler 4.0. Users of open-source
LLVM.org compiler releases can use these features starting with clang v3.1.

These language additions simplify common Objective-C programming patterns, make programs more concise, and
improve the safety of container creation.

This document describes how the features are implemented in clang, and how to use them in your own programs.

NSNumber Literals

The framework class NSNumber is used to wrap scalar values inside objects: signed and unsigned integers (char,
short, int, long, long long), floating point numbers (float, double), and boolean values (BOOL, C++ bool).
Scalar values wrapped in objects are also known as boxed values.

In Objective-C, any character, numeric or boolean literal prefixed with the '@' character will evaluate to a pointer to
an NSNumber object initialized with that value. C’s type suffixes may be used to control the size of numeric literals.

Examples

The following program illustrates the rules for NSNumber literals:

void main(int argc, const char *argv[]) {
  // character literals.
  NSNumber *theLetterZ = @'Z';          // equivalent to [NSNumber numberWithChar:'Z']

  // integral literals.
  NSNumber *fortyTwo = @42;             // equivalent to [NSNumber numberWithInt:42]
  NSNumber *fortyTwoUnsigned = @42U;    // equivalent to [NSNumber numberWithUnsignedInt:42U]
  NSNumber *fortyTwoLong = @42L;        // equivalent to [NSNumber numberWithLong:42L]
  NSNumber *fortyTwoLongLong = @42LL;   // equivalent to [NSNumber numberWithLongLong:42LL]

  // floating point literals.
  NSNumber *piFloat = @3.141592654F;    // equivalent to [NSNumber numberWithFloat:3.141592654F]
  NSNumber *piDouble = @3.1415926535;   // equivalent to [NSNumber numberWithDouble:3.1415926535]

  // BOOL literals.
  NSNumber *yesNumber = @YES;           // equivalent to [NSNumber numberWithBool:YES]
  NSNumber *noNumber = @NO;             // equivalent to [NSNumber numberWithBool:NO]

#ifdef __cplusplus
  NSNumber *trueNumber = @true;         // equivalent to [NSNumber numberWithBool:(BOOL)true]
  NSNumber *falseNumber = @false;       // equivalent to [NSNumber numberWithBool:(BOOL)false]
#endif
}

Discussion

NSNumber literals only support literal scalar values after the '@'. Consequently, @INT_MAX works, but @INT_MIN
does not, because they are defined like this:

#define INT_MAX   2147483647  /* max value for an int */
#define INT_MIN   (-2147483647-1) /* min value for an int */

The definition of INT_MIN is not a simple literal, but a parenthesized expression. Parenthesized expressions are
supported using the Boxed Expressions syntax, which is described in the next section.

Because NSNumber does not currently support wrapping long double values, the use of a
long double NSNumber literal (e.g. @123.23L) will be rejected by the compiler.

Clang Language Extensions

65



Previously, the BOOL type was simply a typedef for signed char, and YES and NO were macros that expand to
(BOOL)1 and (BOOL)0 respectively. To support @YES and @NO expressions, these macros are now defined using
new language keywords in <objc/objc.h>:

#if __has_feature(objc_bool)
#define YES             __objc_yes
#define NO              __objc_no
#else
#define YES             ((BOOL)1)
#define NO              ((BOOL)0)
#endif

The compiler implicitly converts __objc_yes and __objc_no to (BOOL)1 and (BOOL)0. The keywords are used
to disambiguate BOOL and integer literals.

Objective-C++ also supports @true and @false expressions, which are equivalent to @YES and @NO.

Boxed Expressions

Objective-C provides a new syntax for boxing C expressions:

@( <expression> )

Expressions of scalar (numeric, enumerated, BOOL), C string pointer and some C structures (via NSValue) are
supported:

// numbers.
NSNumber *smallestInt = @(-INT_MAX - 1);  // [NSNumber numberWithInt:(-INT_MAX - 1)]
NSNumber *piOverTwo = @(M_PI / 2);        // [NSNumber numberWithDouble:(M_PI / 2)]

// enumerated types.
typedef enum { Red, Green, Blue } Color;
NSNumber *favoriteColor = @(Green);       // [NSNumber numberWithInt:((int)Green)]

// strings.
NSString *path = @(getenv("PATH"));       // [NSString stringWithUTF8String:(getenv("PATH"))]
NSArray *pathComponents = [path componentsSeparatedByString:@":"];

// structs.
NSValue *center = @(view.center);         // Point p = view.center;
                                          // [NSValue valueWithBytes:&p objCType:@encode(Point)];
NSValue *frame = @(view.frame);           // Rect r = view.frame;
                                          // [NSValue valueWithBytes:&r objCType:@encode(Rect)];

Boxed Enums

Cocoa frameworks frequently define constant values using enums. Although enum values are integral, they may not
be used directly as boxed literals (this avoids conflicts with future '@'-prefixed Objective-C keywords). Instead, an
enum value must be placed inside a boxed expression. The following example demonstrates configuring an
AVAudioRecorder using a dictionary that contains a boxed enumeration value:

enum {
  AVAudioQualityMin = 0,
  AVAudioQualityLow = 0x20,
  AVAudioQualityMedium = 0x40,
  AVAudioQualityHigh = 0x60,
  AVAudioQualityMax = 0x7F
};

- (AVAudioRecorder *)recordToFile:(NSURL *)fileURL {
  NSDictionary *settings = @{ AVEncoderAudioQualityKey : @(AVAudioQualityMax) };
  return [[AVAudioRecorder alloc] initWithURL:fileURL settings:settings error:NULL];
}

Clang Language Extensions

66



The expression @(AVAudioQualityMax) converts AVAudioQualityMax to an integer type, and boxes the value
accordingly. If the enum has a fixed underlying type as in:

typedef enum : unsigned char { Red, Green, Blue } Color;
NSNumber *red = @(Red), *green = @(Green), *blue = @(Blue); // => [NSNumber numberWithUnsignedChar:]

then the fixed underlying type will be used to select the correct NSNumber creation method.

Boxing a value of enum type will result in a NSNumber pointer with a creation method according to the underlying
type of the enum, which can be a fixed underlying type or a compiler-defined integer type capable of representing the
values of all the members of the enumeration:

typedef enum : unsigned char { Red, Green, Blue } Color;
Color col = Red;
NSNumber *nsCol = @(col); // => [NSNumber numberWithUnsignedChar:]

Boxed C Strings

A C string literal prefixed by the '@' token denotes an NSString literal in the same way a numeric literal prefixed by
the '@' token denotes an NSNumber literal. When the type of the parenthesized expression is (char *) or
(const char *), the result of the boxed expression is a pointer to an NSString object containing equivalent
character data, which is assumed to be ‘\0’-terminated and UTF-8 encoded. The following example converts C-style
command line arguments into NSString objects.

// Partition command line arguments into positional and option arguments.
NSMutableArray *args = [NSMutableArray new];
NSMutableDictionary *options = [NSMutableDictionary new];
while (--argc) {
    const char *arg = *++argv;
    if (strncmp(arg, "--", 2) == 0) {
        options[@(arg + 2)] = @(*++argv);   // --key value
    } else {
        [args addObject:@(arg)];            // positional argument
    }
}

As with all C pointers, character pointer expressions can involve arbitrary pointer arithmetic, therefore programmers
must ensure that the character data is valid. Passing NULL as the character pointer will raise an exception at runtime.
When possible, the compiler will reject NULL character pointers used in boxed expressions.

Boxed C Structures

Boxed expressions support construction of NSValue objects. It said that C structures can be used, the only
requirement is: structure should be marked with objc_boxable attribute. To support older version of frameworks
and/or third-party libraries you may need to add the attribute via typedef.

struct __attribute__((objc_boxable)) Point {
    // ...
};

typedef struct __attribute__((objc_boxable)) _Size {
    // ...
} Size;

typedef struct _Rect {
    // ...
} Rect;

struct Point p;
NSValue *point = @(p);          // ok
Size s;
NSValue *size = @(s);           // ok

Rect r;

Clang Language Extensions

67



NSValue *bad_rect = @(r);       // error

typedef struct __attribute__((objc_boxable)) _Rect Rect;

NSValue *good_rect = @(r);      // ok

Container Literals

Objective-C now supports a new expression syntax for creating immutable array and dictionary container objects.

Examples

Immutable array expression:

NSArray *array = @[ @"Hello", NSApp, [NSNumber numberWithInt:42] ];

This creates an NSArray with 3 elements. The comma-separated sub-expressions of an array literal can be any
Objective-C object pointer typed expression.

Immutable dictionary expression:

NSDictionary *dictionary = @{
    @"name" : NSUserName(),
    @"date" : [NSDate date],
    @"processInfo" : [NSProcessInfo processInfo]
};

This creates an NSDictionary with 3 key/value pairs. Value sub-expressions of a dictionary literal must be
Objective-C object pointer typed, as in array literals. Key sub-expressions must be of an Objective-C object pointer
type that implements the <NSCopying> protocol.

Discussion

Neither keys nor values can have the value nil in containers. If the compiler can prove that a key or value is nil at
compile time, then a warning will be emitted. Otherwise, a runtime error will occur.

Using array and dictionary literals is safer than the variadic creation forms commonly in use today. Array literal
expressions expand to calls to +[NSArray arrayWithObjects:count:], which validates that all objects are
non-nil. The variadic form, +[NSArray arrayWithObjects:] uses nil as an argument list terminator, which
can lead to malformed array objects. Dictionary literals are similarly created with
+[NSDictionary dictionaryWithObjects:forKeys:count:] which validates all objects and keys, unlike
+[NSDictionary dictionaryWithObjectsAndKeys:] which also uses a nil parameter as an argument list
terminator.

Object Subscripting

Objective-C object pointer values can now be used with C’s subscripting operator.

Examples

The following code demonstrates the use of object subscripting syntax with NSMutableArray and
NSMutableDictionary objects:

NSMutableArray *array = ...;
NSUInteger idx = ...;
id newObject = ...;
id oldObject = array[idx];
array[idx] = newObject;         // replace oldObject with newObject

NSMutableDictionary *dictionary = ...;
NSString *key = ...;
oldObject = dictionary[key];
dictionary[key] = newObject;    // replace oldObject with newObject

Clang Language Extensions

68



The next section explains how subscripting expressions map to accessor methods.

Subscripting Methods

Objective-C supports two kinds of subscript expressions: array-style subscript expressions use integer typed
subscripts; dictionary-style subscript expressions use Objective-C object pointer typed subscripts. Each type of
subscript expression is mapped to a message send using a predefined selector. The advantage of this design is
flexibility: class designers are free to introduce subscripting by declaring methods or by adopting protocols.
Moreover, because the method names are selected by the type of the subscript, an object can be subscripted using
both array and dictionary styles.

Array-Style Subscripting

When the subscript operand has an integral type, the expression is rewritten to use one of two different selectors,
depending on whether the element is being read or written. When an expression reads an element using an integral
index, as in the following example:

NSUInteger idx = ...;
id value = object[idx];

it is translated into a call to objectAtIndexedSubscript:

id value = [object objectAtIndexedSubscript:idx];

When an expression writes an element using an integral index:

object[idx] = newValue;

it is translated to a call to setObject:atIndexedSubscript:

[object setObject:newValue atIndexedSubscript:idx];

These message sends are then type-checked and performed just like explicit message sends. The method used for
objectAtIndexedSubscript: must be declared with an argument of integral type and a return value of some
Objective-C object pointer type. The method used for setObject:atIndexedSubscript: must be declared with its first
argument having some Objective-C pointer type and its second argument having integral type.

The meaning of indexes is left up to the declaring class. The compiler will coerce the index to the appropriate
argument type of the method it uses for type-checking. For an instance of NSArray, reading an element using an
index outside the range [0, array.count) will raise an exception. For an instance of NSMutableArray,
assigning to an element using an index within this range will replace that element, but assigning to an element using
an index outside this range will raise an exception; no syntax is provided for inserting, appending, or removing
elements for mutable arrays.

A class need not declare both methods in order to take advantage of this language feature. For example, the class
NSArray declares only objectAtIndexedSubscript:, so that assignments to elements will fail to type-check;
moreover, its subclass NSMutableArray declares setObject:atIndexedSubscript:.

Dictionary-Style Subscripting

When the subscript operand has an Objective-C object pointer type, the expression is rewritten to use one of two
different selectors, depending on whether the element is being read from or written to. When an expression reads an
element using an Objective-C object pointer subscript operand, as in the following example:

id key = ...;
id value = object[key];

it is translated into a call to the objectForKeyedSubscript: method:

id value = [object objectForKeyedSubscript:key];

When an expression writes an element using an Objective-C object pointer subscript:

object[key] = newValue;

it is translated to a call to setObject:forKeyedSubscript:

[object setObject:newValue forKeyedSubscript:key];

Clang Language Extensions

69



The behavior of setObject:forKeyedSubscript: is class-specific; but in general it should replace an existing
value if one is already associated with a key, otherwise it should add a new value for the key. No syntax is provided
for removing elements from mutable dictionaries.

Discussion

An Objective-C subscript expression occurs when the base operand of the C subscript operator has an Objective-C
object pointer type. Since this potentially collides with pointer arithmetic on the value, these expressions are only
supported under the modern Objective-C runtime, which categorically forbids such arithmetic.

Currently, only subscripts of integral or Objective-C object pointer type are supported. In C++, a class type can be
used if it has a single conversion function to an integral or Objective-C pointer type, in which case that conversion is
applied and analysis continues as appropriate. Otherwise, the expression is ill-formed.

An Objective-C object subscript expression is always an l-value. If the expression appears on the left-hand side of a
simple assignment operator (=), the element is written as described below. If the expression appears on the left-hand
side of a compound assignment operator (e.g. +=), the program is ill-formed, because the result of reading an
element is always an Objective-C object pointer and no binary operators are legal on such pointers. If the expression
appears in any other position, the element is read as described below. It is an error to take the address of a subscript
expression, or (in C++) to bind a reference to it.

Programs can use object subscripting with Objective-C object pointers of type id. Normal dynamic message send
rules apply; the compiler must see some declaration of the subscripting methods, and will pick the declaration seen
first.

Caveats

Objects created using the literal or boxed expression syntax are not guaranteed to be uniqued by the runtime, but
nor are they guaranteed to be newly-allocated. As such, the result of performing direct comparisons against the
location of an object literal (using ==, !=, <, <=, >, or >=) is not well-defined. This is usually a simple mistake in code
that intended to call the isEqual: method (or the compare: method).

This caveat applies to compile-time string literals as well. Historically, string literals (using the @"..." syntax) have
been uniqued across translation units during linking. This is an implementation detail of the compiler and should not
be relied upon. If you are using such code, please use global string constants instead
(NSString * const MyConst = @"...") or use isEqual:.

Grammar Additions

To support the new syntax described above, the Objective-C @-expression grammar has the following new
productions:
objc-at-expression : '@' (string-literal | encode-literal | selector-literal | protocol-literal | object-literal)
                   ;

object-literal : ('+' | '-')? numeric-constant
               | character-constant
               | boolean-constant
               | array-literal
               | dictionary-literal
               ;

boolean-constant : '__objc_yes' | '__objc_no' | 'true' | 'false'  /* boolean keywords. */
                 ;

array-literal : '[' assignment-expression-list ']'
              ;

assignment-expression-list : assignment-expression (',' assignment-expression-list)?
                           | /* empty */
                           ;

dictionary-literal : '{' key-value-list '}'

                   ;

key-value-list : key-value-pair (',' key-value-list)?
               | /* empty */

Clang Language Extensions

70



               ;

key-value-pair : assignment-expression ':' assignment-expression
               ;

Note: @true and @false are only supported in Objective-C++.

Availability Checks

Programs test for the new features by using clang’s __has_feature checks. Here are examples of their use:

#if __has_feature(objc_array_literals)
    // new way.
    NSArray *elements = @[ @"H", @"He", @"O", @"C" ];
#else
    // old way (equivalent).
    id objects[] = { @"H", @"He", @"O", @"C" };
    NSArray *elements = [NSArray arrayWithObjects:objects count:4];
#endif

#if __has_feature(objc_dictionary_literals)
    // new way.
    NSDictionary *masses = @{ @"H" : @1.0078,  @"He" : @4.0026, @"O" : @15.9990, @"C" : @12.0096 };
#else
    // old way (equivalent).
    id keys[] = { @"H", @"He", @"O", @"C" };
    id values[] = { [NSNumber numberWithDouble:1.0078], [NSNumber numberWithDouble:4.0026],
                    [NSNumber numberWithDouble:15.9990], [NSNumber numberWithDouble:12.0096] };
    NSDictionary *masses = [NSDictionary dictionaryWithObjects:objects forKeys:keys count:4];
#endif

#if __has_feature(objc_subscripting)
    NSUInteger i, count = elements.count;
    for (i = 0; i < count; ++i) {
        NSString *element = elements[i];
        NSNumber *mass = masses[element];
        NSLog(@"the mass of %@ is %@", element, mass);
    }
#else
    NSUInteger i, count = [elements count];
    for (i = 0; i < count; ++i) {
        NSString *element = [elements objectAtIndex:i];
        NSNumber *mass = [masses objectForKey:element];
        NSLog(@"the mass of %@ is %@", element, mass);
    }
#endif

#if __has_attribute(objc_boxable)
    typedef struct __attribute__((objc_boxable)) _Rect Rect;
#endif

#if __has_feature(objc_boxed_nsvalue_expressions)
    CABasicAnimation animation = [CABasicAnimation animationWithKeyPath:@"position"];
    animation.fromValue = @(layer.position);
    animation.toValue = @(newPosition);
    [layer addAnimation:animation forKey:@"move"];
#else
    CABasicAnimation animation = [CABasicAnimation animationWithKeyPath:@"position"];
    animation.fromValue = [NSValue valueWithCGPoint:layer.position];
    animation.toValue = [NSValue valueWithCGPoint:newPosition];
    [layer addAnimation:animation forKey:@"move"];
#endif

Code can use also __has_feature(objc_bool) to check for the availability of numeric literals support. This
checks for the new __objc_yes / __objc_no keywords, which enable the use of @YES / @NO literals.

To check whether boxed expressions are supported, use __has_feature(objc_boxed_expressions) feature
macro.

Clang Language Extensions

71



Language Specification for Blocks
Revisions 72

Overview 72

The Block Type 72

Block Variable Declarations 72

Block Literal Expressions 73

The Invoke Operator 74

The Copy and Release Operations 74

The __block Storage Qualifier 74

Control Flow 74

Objective-C Extensions 74

C++ Extensions 75

Revisions

• 2008/2/25 — created

• 2008/7/28 — revised, __block syntax

• 2008/8/13 — revised, Block globals

• 2008/8/21 — revised, C++ elaboration

• 2008/11/1 — revised, __weak support

• 2009/1/12 — revised, explicit return types

• 2009/2/10 — revised, __block objects need retain

Overview

A new derived type is introduced to C and, by extension, Objective-C, C++, and Objective-C++

The Block Type

Like function types, the Block type is a pair consisting of a result value type and a list of parameter types very similar
to a function type. Blocks are intended to be used much like functions with the key distinction being that in addition to
executable code they also contain various variable bindings to automatic (stack) or managed (heap) memory.

The abstract declarator,

int (^)(char, float)

describes a reference to a Block that, when invoked, takes two parameters, the first of type char and the second of
type float, and returns a value of type int. The Block referenced is of opaque data that may reside in automatic
(stack) memory, global memory, or heap memory.

Block Variable Declarations

A variable with Block type is declared using function pointer style notation substituting ^ for *. The following are valid
Block variable declarations:

void (^blockReturningVoidWithVoidArgument)(void);
int (^blockReturningIntWithIntAndCharArguments)(int, char);
void (^arrayOfTenBlocksReturningVoidWithIntArgument[10])(int);

Variadic ... arguments are supported. [variadic.c] A Block that takes no arguments must specify void in the
argument list [voidarg.c]. An empty parameter list does not represent, as K&R provide, an unspecified argument list.
Note: both gcc and clang support K&R style as a convenience.

Clang Language Extensions

72



A Block reference may be cast to a pointer of arbitrary type and vice versa. [cast.c] A Block reference may not be
dereferenced via the pointer dereference operator *, and thus a Block’s size may not be computed at compile time.
[sizeof.c]

Block Literal Expressions

A Block literal expression produces a reference to a Block. It is introduced by the use of the ^ token as a unary
operator.

Block_literal_expression ::=   ^ block_decl compound_statement_body
block_decl ::=
block_decl ::= parameter_list
block_decl ::= type_expression

where type expression is extended to allow ^ as a Block reference (pointer) where * is allowed as a function
reference (pointer).

The following Block literal:

^ void (void) { printf("hello world\n"); }

produces a reference to a Block with no arguments with no return value.

The return type is optional and is inferred from the return statements. If the return statements return a value, they all
must return a value of the same type. If there is no value returned the inferred type of the Block is void; otherwise it is
the type of the return statement value.

If the return type is omitted and the argument list is ( void ), the ( void ) argument list may also be omitted.

So:

^ ( void ) { printf("hello world\n"); }

and:

^ { printf("hello world\n"); }

are exactly equivalent constructs for the same expression.

The type_expression extends C expression parsing to accommodate Block reference declarations as it
accommodates function pointer declarations.

Given:

typedef int (*pointerToFunctionThatReturnsIntWithCharArg)(char);
pointerToFunctionThatReturnsIntWithCharArg functionPointer;
^ pointerToFunctionThatReturnsIntWithCharArg (float x) { return functionPointer; }

and:

^ int ((*)(float x))(char) { return functionPointer; }

are equivalent expressions, as is:

^(float x) { return functionPointer; }

[returnfunctionptr.c]

The compound statement body establishes a new lexical scope within that of its parent. Variables used within the
scope of the compound statement are bound to the Block in the normal manner with the exception of those in
automatic (stack) storage. Thus one may access functions and global variables as one would expect, as well as
static local variables. [testme]

Local automatic (stack) variables referenced within the compound statement of a Block are imported and captured by
the Block as const copies. The capture (binding) is performed at the time of the Block literal expression evaluation.

The compiler is not required to capture a variable if it can prove that no references to the variable will actually be
evaluated. Programmers can force a variable to be captured by referencing it in a statement at the beginning of the
Block, like so:

(void) foo;

Clang Language Extensions

73



This matters when capturing the variable has side-effects, as it can in Objective-C or C++.

The lifetime of variables declared in a Block is that of a function; each activation frame contains a new copy of
variables declared within the local scope of the Block. Such variable declarations should be allowed anywhere
[testme] rather than only when C99 parsing is requested, including for statements. [testme]

Block literal expressions may occur within Block literal expressions (nest) and all variables captured by any nested
blocks are implicitly also captured in the scopes of their enclosing Blocks.

A Block literal expression may be used as the initialization value for Block variables at global or local static scope.

The Invoke Operator

Blocks are invoked using function call syntax with a list of expression parameters of types corresponding to the
declaration and returning a result type also according to the declaration. Given:

int (^x)(char);
void (^z)(void);
int (^(*y))(char) = &x;

the following are all legal Block invocations:

x('a');
(*y)('a');
(true ? x : *y)('a')

The Copy and Release Operations

The compiler and runtime provide copy and release operations for Block references that create and, in matched use,
release allocated storage for referenced Blocks.

The copy operation Block_copy() is styled as a function that takes an arbitrary Block reference and returns a
Block reference of the same type. The release operation, Block_release(), is styled as a function that takes an
arbitrary Block reference and, if dynamically matched to a Block copy operation, allows recovery of the referenced
allocated memory.

The __block Storage Qualifier

In addition to the new Block type we also introduce a new storage qualifier, __block, for local variables. [testme: a
__block declaration within a block literal] The __block storage qualifier is mutually exclusive to the existing local
storage qualifiers auto, register, and static. [testme] Variables qualified by __block act as if they were in allocated
storage and this storage is automatically recovered after last use of said variable. An implementation may choose an
optimization where the storage is initially automatic and only “moved” to allocated (heap) storage upon a Block_copy
of a referencing Block. Such variables may be mutated as normal variables are.

In the case where a __block variable is a Block one must assume that the __block variable resides in allocated
storage and as such is assumed to reference a Block that is also in allocated storage (that it is the result of a
Block_copy operation). Despite this there is no provision to do a Block_copy or a Block_release if an
implementation provides initial automatic storage for Blocks. This is due to the inherent race condition of potentially
several threads trying to update the shared variable and the need for synchronization around disposing of older
values and copying new ones. Such synchronization is beyond the scope of this language specification.

Control Flow

The compound statement of a Block is treated much like a function body with respect to control flow in that goto,
break, and continue do not escape the Block. Exceptions are treated normally in that when thrown they pop stack
frames until a catch clause is found.

Objective-C Extensions

Objective-C extends the definition of a Block reference type to be that also of id. A variable or expression of Block
type may be messaged or used as a parameter wherever an id may be. The converse is also true. Block references
may thus appear as properties and are subject to the assign, retain, and copy attribute logic that is reserved for
objects.

Clang Language Extensions

74



All Blocks are constructed to be Objective-C objects regardless of whether the Objective-C runtime is operational in
the program or not. Blocks using automatic (stack) memory are objects and may be messaged, although they may
not be assigned into __weak locations if garbage collection is enabled.

Within a Block literal expression within a method definition references to instance variables are also imported into the
lexical scope of the compound statement. These variables are implicitly qualified as references from self, and so self
is imported as a const copy. The net effect is that instance variables can be mutated.

The Block_copy operator retains all objects held in variables of automatic storage referenced within the Block
expression (or form strong references if running under garbage collection). Object variables of __block storage type
are assumed to hold normal pointers with no provision for retain and release messages.

Foundation defines (and supplies) -copy and -release methods for Blocks.

In the Objective-C and Objective-C++ languages, we allow the __weak specifier for __block variables of object
type. If garbage collection is not enabled, this qualifier causes these variables to be kept without retain messages
being sent. This knowingly leads to dangling pointers if the Block (or a copy) outlives the lifetime of this object.

In garbage collected environments, the __weak variable is set to nil when the object it references is collected, as
long as the __block variable resides in the heap (either by default or via Block_copy()). The initial Apple
implementation does in fact start __block variables on the stack and migrate them to the heap only as a result of a
Block_copy() operation.

It is a runtime error to attempt to assign a reference to a stack-based Block into any storage marked __weak,
including __weak __block variables.

C++ Extensions

Block literal expressions within functions are extended to allow const use of C++ objects, pointers, or references held
in automatic storage.

As usual, within the block, references to captured variables become const-qualified, as if they were references to
members of a const object. Note that this does not change the type of a variable of reference type.

For example, given a class Foo:

Foo foo;
Foo &fooRef = foo;
Foo *fooPtr = &foo;

A Block that referenced these variables would import the variables as const variations:

const Foo block_foo = foo;
Foo &block_fooRef = fooRef;
Foo *const block_fooPtr = fooPtr;

Captured variables are copied into the Block at the instant of evaluating the Block literal expression. They are also
copied when calling Block_copy() on a Block allocated on the stack. In both cases, they are copied as if the
variable were const-qualified, and it’s an error if there’s no such constructor.

Captured variables in Blocks on the stack are destroyed when control leaves the compound statement that contains
the Block literal expression. Captured variables in Blocks on the heap are destroyed when the reference count of the
Block drops to zero.

Variables declared as residing in __block storage may be initially allocated in the heap or may first appear on the
stack and be copied to the heap as a result of a Block_copy() operation. When copied from the stack, __block
variables are copied using their normal qualification (i.e. without adding const). In C++11, __block variables are
copied as x-values if that is possible, then as l-values if not; if both fail, it’s an error. The destructor for any initial
stack-based version is called at the variable’s normal end of scope.

References to this, as well as references to non-static members of any enclosing class, are evaluated by capturing
this just like a normal variable of C pointer type.

Member variables that are Blocks may not be overloaded by the types of their arguments.

Clang Language Extensions

75



Block Implementation Specification
History 76

High Level 77

Imported Variables 78

Imported const copy variables 79

Imported const copy of Block reference 79

Importing __attribute__((NSObject)) variables 80

Imported __block marked variables 81

Layout of __block marked variables 81

Access to __block variables from within its lexical scope 81

Importing __block variables into Blocks 82

Importing __attribute__((NSObject)) __block variables 83

__block escapes 83

Nesting 83

Objective C Extensions to Blocks 83

Importing Objects 83

Blocks as Objects 83

__weak __block Support 84

C++ Support 85

Runtime Helper Functions 86

Copyright 87

History

• 2008/7/14 - created.

• 2008/8/21 - revised, C++.

• 2008/9/24 - add NULL isa field to __block storage.

• 2008/10/1 - revise block layout to use a static descriptor structure.

• 2008/10/6 - revise block layout to use an unsigned long int flags.

• 2008/10/28 - specify use of _Block_object_assign and _Block_object_dispose for all “Object” types in
helper functions.

• 2008/10/30 - revise new layout to have invoke function in same place.

• 2008/10/30 - add __weak support.

• 2010/3/16 - rev for stret return, signature field.

• 2010/4/6 - improved wording.

• 2013/1/6 - improved wording and converted to rst.

This document describes the Apple ABI implementation specification of Blocks.

The first shipping version of this ABI is found in Mac OS X 10.6, and shall be referred to as 10.6.ABI. As of
2010/3/16, the following describes the ABI contract with the runtime and the compiler, and, as necessary, will be
referred to as ABI.2010.3.16.

Since the Apple ABI references symbols from other elements of the system, any attempt to use this ABI on systems
prior to SnowLeopard is undefined.

Clang Language Extensions

76



High Level

The ABI of Blocks consist of their layout and the runtime functions required by the compiler. A Block of type
R (^)(P...) consists of a structure of the following form:

struct Block_literal_1 {
    void *isa; // initialized to &_NSConcreteStackBlock or &_NSConcreteGlobalBlock
    int flags;
    int reserved;
    R (*invoke)(struct Block_literal_1 *, P...);
    struct Block_descriptor_1 {
        unsigned long int reserved;     // NULL
        unsigned long int size;         // sizeof(struct Block_literal_1)
        // optional helper functions
        void (*copy_helper)(void *dst, void *src);     // IFF (1<<25)
        void (*dispose_helper)(void *src);             // IFF (1<<25)
        // required ABI.2010.3.16
        const char *signature;                         // IFF (1<<30)
    } *descriptor;
    // imported variables
};

The following flags bits are in use thusly for a possible ABI.2010.3.16:

enum {
    // Set to true on blocks that have captures (and thus are not true
    // global blocks) but are known not to escape for various other
    // reasons. For backward compatibility with old runtimes, whenever
    // BLOCK_IS_NOESCAPE is set, BLOCK_IS_GLOBAL is set too. Copying a
    // non-escaping block returns the original block and releasing such a
    // block is a no-op, which is exactly how global blocks are handled.
    BLOCK_IS_NOESCAPE      =  (1 << 23),

    BLOCK_HAS_COPY_DISPOSE =  (1 << 25),
    BLOCK_HAS_CTOR =          (1 << 26), // helpers have C++ code
    BLOCK_IS_GLOBAL =         (1 << 28),
    BLOCK_HAS_STRET =         (1 << 29), // IFF BLOCK_HAS_SIGNATURE
    BLOCK_HAS_SIGNATURE =     (1 << 30),
};

In 10.6.ABI the (1<<29) was usually set and was always ignored by the runtime - it had been a transitional marker
that did not get deleted after the transition. This bit is now paired with (1<<30), and represented as the pair (3<<30),
for the following combinations of valid bit settings, and their meanings:

switch (flags & (3<<29)) {
  case (0<<29):      10.6.ABI, no signature field available
  case (1<<29):      10.6.ABI, no signature field available
  case (2<<29): ABI.2010.3.16, regular calling convention, presence of signature field
  case (3<<29): ABI.2010.3.16, stret calling convention, presence of signature field,
}

The signature field is not always populated.

The following discussions are presented as 10.6.ABI otherwise.

Block literals may occur within functions where the structure is created in stack local memory. They may also
appear as initialization expressions for Block variables of global or static local variables.

When a Block literal expression is evaluated the stack based structure is initialized as follows:

1. A static descriptor structure is declared and initialized as follows:

a. The invoke function pointer is set to a function that takes the Block structure as its first argument and the
rest of the arguments (if any) to the Block and executes the Block compound statement.

b. The size field is set to the size of the following Block literal structure.

Clang Language Extensions

77



c. The copy_helper and dispose_helper function pointers are set to respective helper functions if they are
required by the Block literal.

2. A stack (or global) Block literal data structure is created and initialized as follows:

a. The isa field is set to the address of the external _NSConcreteStackBlock, which is a block of
uninitialized memory supplied in libSystem, or _NSConcreteGlobalBlock if this is a static or file level
Block literal.

b. The flags field is set to zero unless there are variables imported into the Block that need helper functions
for program level Block_copy() and Block_release() operations, in which case the (1<<25) flags bit is
set.

As an example, the Block literal expression:

^ { printf("hello world\n"); }

would cause the following to be created on a 32-bit system:

struct __block_literal_1 {
    void *isa;
    int flags;
    int reserved;
    void (*invoke)(struct __block_literal_1 *);
    struct __block_descriptor_1 *descriptor;
};

void __block_invoke_1(struct __block_literal_1 *_block) {
    printf("hello world\n");
}

static struct __block_descriptor_1 {
    unsigned long int reserved;
    unsigned long int Block_size;
} __block_descriptor_1 = { 0, sizeof(struct __block_literal_1) };

and where the Block literal itself appears:

struct __block_literal_1 _block_literal = {
     &_NSConcreteStackBlock,
     (1<<29), <uninitialized>,
     __block_invoke_1,
     &__block_descriptor_1
};

A Block imports other Block references, const copies of other variables, and variables marked __block. In
Objective-C, variables may additionally be objects.

When a Block literal expression is used as the initial value of a global or static local variable, it is initialized as
follows:

struct __block_literal_1 __block_literal_1 = {
      &_NSConcreteGlobalBlock,
      (1<<28)|(1<<29), <uninitialized>,
      __block_invoke_1,
      &__block_descriptor_1
};

that is, a different address is provided as the first value and a particular (1<<28) bit is set in the flags field, and
otherwise it is the same as for stack based Block literals. This is an optimization that can be used for any Block
literal that imports no const or __block storage variables.

Imported Variables

Variables of auto storage class are imported as const copies. Variables of __block storage class are imported as
a pointer to an enclosing data structure. Global variables are simply referenced and not considered as imported.

Clang Language Extensions

78



Imported const copy variables

Automatic storage variables not marked with __block are imported as const copies.

The simplest example is that of importing a variable of type int:

int x = 10;
void (^vv)(void) = ^{ printf("x is %d\n", x); }
x = 11;
vv();

which would be compiled to:

struct __block_literal_2 {
    void *isa;
    int flags;
    int reserved;
    void (*invoke)(struct __block_literal_2 *);
    struct __block_descriptor_2 *descriptor;
    const int x;
};

void __block_invoke_2(struct __block_literal_2 *_block) {
    printf("x is %d\n", _block->x);
}

static struct __block_descriptor_2 {
    unsigned long int reserved;
    unsigned long int Block_size;
} __block_descriptor_2 = { 0, sizeof(struct __block_literal_2) };

and:

struct __block_literal_2 __block_literal_2 = {
      &_NSConcreteStackBlock,
      (1<<29), <uninitialized>,
      __block_invoke_2,
      &__block_descriptor_2,
      x
 };

In summary, scalars, structures, unions, and function pointers are generally imported as const copies with no need
for helper functions.

Imported const copy of Block reference

The first case where copy and dispose helper functions are required is for the case of when a Block itself is
imported. In this case both a copy_helper function and a dispose_helper function are needed. The
copy_helper function is passed both the existing stack based pointer and the pointer to the new heap version and
should call back into the runtime to actually do the copy operation on the imported fields within the Block. The
runtime functions are all described in Runtime Helper Functions.

A quick example:

void (^existingBlock)(void) = ...;
void (^vv)(void) = ^{ existingBlock(); }
vv();

struct __block_literal_3 {
   ...; // existing block
};

struct __block_literal_4 {
    void *isa;
    int flags;

Clang Language Extensions

79



    int reserved;
    void (*invoke)(struct __block_literal_4 *);
    struct __block_literal_3 *const existingBlock;
};

void __block_invoke_4(struct __block_literal_2 *_block) {
   __block->existingBlock->invoke(__block->existingBlock);
}

void __block_copy_4(struct __block_literal_4 *dst, struct __block_literal_4 *src) {
     //_Block_copy_assign(&dst->existingBlock, src->existingBlock, 0);
     _Block_object_assign(&dst->existingBlock, src->existingBlock, BLOCK_FIELD_IS_BLOCK);
}

void __block_dispose_4(struct __block_literal_4 *src) {
     // was _Block_destroy
     _Block_object_dispose(src->existingBlock, BLOCK_FIELD_IS_BLOCK);
}

static struct __block_descriptor_4 {
    unsigned long int reserved;
    unsigned long int Block_size;
    void (*copy_helper)(struct __block_literal_4 *dst, struct __block_literal_4 *src);
    void (*dispose_helper)(struct __block_literal_4 *);
} __block_descriptor_4 = {
    0,
    sizeof(struct __block_literal_4),
    __block_copy_4,
    __block_dispose_4,
};

and where said Block is used:

struct __block_literal_4 _block_literal = {
      &_NSConcreteStackBlock,
      (1<<25)|(1<<29), <uninitialized>
      __block_invoke_4,
      & __block_descriptor_4
      existingBlock,
};

Importing __attribute__((NSObject)) variables

GCC introduces __attribute__((NSObject)) on structure pointers to mean “this is an object”. This is useful
because many low level data structures are declared as opaque structure pointers, e.g. CFStringRef,
CFArrayRef, etc. When used from C, however, these are still really objects and are the second case where that
requires copy and dispose helper functions to be generated. The copy helper functions generated by the compiler
should use the _Block_object_assign runtime helper function and in the dispose helper the
_Block_object_dispose runtime helper function should be called.

For example, Block foo in the following:

struct Opaque *__attribute__((NSObject)) objectPointer = ...;
...
void (^foo)(void) = ^{  CFPrint(objectPointer); };

would have the following helper functions generated:

void __block_copy_foo(struct __block_literal_5 *dst, struct __block_literal_5 *src) {
     _Block_object_assign(&dst->objectPointer, src-> objectPointer, BLOCK_FIELD_IS_OBJECT);
}

void __block_dispose_foo(struct __block_literal_5 *src) {

Clang Language Extensions

80



     _Block_object_dispose(src->objectPointer, BLOCK_FIELD_IS_OBJECT);
}

Imported __block marked variables

Layout of __block marked variables

The compiler must embed variables that are marked __block in a specialized structure of the form:

struct _block_byref_foo {
    void *isa;
    struct Block_byref *forwarding;
    int flags;   //refcount;
    int size;
    typeof(marked_variable) marked_variable;
};

Variables of certain types require helper functions for when Block_copy() and Block_release() are performed
upon a referencing Block. At the “C” level only variables that are of type Block or ones that have
__attribute__((NSObject)) marked require helper functions. In Objective-C objects require helper functions
and in C++ stack based objects require helper functions. Variables that require helper functions use the form:

struct _block_byref_foo {
    void *isa;
    struct _block_byref_foo *forwarding;
    int flags;   //refcount;
    int size;
    // helper functions called via Block_copy() and Block_release()
    void (*byref_keep)(void  *dst, void *src);
    void (*byref_dispose)(void *);
    typeof(marked_variable) marked_variable;
};

The structure is initialized such that:

a. The forwarding pointer is set to the beginning of its enclosing structure.

b. The size field is initialized to the total size of the enclosing structure.

c. The flags field is set to either 0 if no helper functions are needed or (1<<25) if they are.

d. The helper functions are initialized (if present).

e. The variable itself is set to its initial value.

f. The isa field is set to NULL.

Access to __block variables from within its lexical scope

In order to “move” the variable to the heap upon a copy_helper operation the compiler must rewrite access to such
a variable to be indirect through the structures forwarding pointer. For example:

int __block i = 10;
i = 11;

would be rewritten to be:

struct _block_byref_i {
  void *isa;
  struct _block_byref_i *forwarding;
  int flags;   //refcount;
  int size;
  int captured_i;
} i = { NULL, &i, 0, sizeof(struct _block_byref_i), 10 };

i.forwarding->captured_i = 11;

Clang Language Extensions

81



In the case of a Block reference variable being marked __block the helper code generated must use the
_Block_object_assign and _Block_object_dispose routines supplied by the runtime to make the copies.
For example:

__block void (voidBlock)(void) = blockA;
voidBlock = blockB;

would translate into:
struct _block_byref_voidBlock {
    void *isa;
    struct _block_byref_voidBlock *forwarding;
    int flags;   //refcount;
    int size;
    void (*byref_keep)(struct _block_byref_voidBlock *dst, struct _block_byref_voidBlock *src);
    void (*byref_dispose)(struct _block_byref_voidBlock *);
    void (^captured_voidBlock)(void);
};

void _block_byref_keep_helper(struct _block_byref_voidBlock *dst, struct _block_byref_voidBlock *src) {
    //_Block_copy_assign(&dst->captured_voidBlock, src->captured_voidBlock, 0);
    _Block_object_assign(&dst->captured_voidBlock, src->captured_voidBlock, BLOCK_FIELD_IS_BLOCK | BLOCK_BYREF_CALLER);
}

void _block_byref_dispose_helper(struct _block_byref_voidBlock *param) {
    //_Block_destroy(param->captured_voidBlock, 0);
    _Block_object_dispose(param->captured_voidBlock, BLOCK_FIELD_IS_BLOCK | BLOCK_BYREF_CALLER)}

and:
struct _block_byref_voidBlock voidBlock = {( .forwarding=&voidBlock, .flags=(1<<25), .size=sizeof(struct _block_byref_voidBlock *),
    .byref_keep=_block_byref_keep_helper, .byref_dispose=_block_byref_dispose_helper,
    .captured_voidBlock=blockA )};

voidBlock.forwarding->captured_voidBlock = blockB;

Importing __block variables into Blocks

A Block that uses a __block variable in its compound statement body must import the variable and emit
copy_helper and dispose_helper helper functions that, in turn, call back into the runtime to actually copy or
release the byref data block using the functions _Block_object_assign and _Block_object_dispose.

For example:

int __block i = 2;
functioncall(^{ i = 10; });

would translate to:

struct _block_byref_i {
    void *isa;  // set to NULL
    struct _block_byref_voidBlock *forwarding;
    int flags;   //refcount;
    int size;
    void (*byref_keep)(struct _block_byref_i *dst, struct _block_byref_i *src);
    void (*byref_dispose)(struct _block_byref_i *);
    int captured_i;
};

struct __block_literal_5 {
    void *isa;
    int flags;
    int reserved;
    void (*invoke)(struct __block_literal_5 *);
    struct __block_descriptor_5 *descriptor;
    struct _block_byref_i *i_holder;
};

void __block_invoke_5(struct __block_literal_5 *_block) {
   _block->forwarding->captured_i = 10;
}

Clang Language Extensions

82



void __block_copy_5(struct __block_literal_5 *dst, struct __block_literal_5 *src) {
     //_Block_byref_assign_copy(&dst->captured_i, src->captured_i);
     _Block_object_assign(&dst->captured_i, src->captured_i, BLOCK_FIELD_IS_BYREF | BLOCK_BYREF_CALLER);
}

void __block_dispose_5(struct __block_literal_5 *src) {
     //_Block_byref_release(src->captured_i);
     _Block_object_dispose(src->captured_i, BLOCK_FIELD_IS_BYREF | BLOCK_BYREF_CALLER);
}

static struct __block_descriptor_5 {
    unsigned long int reserved;
    unsigned long int Block_size;
    void (*copy_helper)(struct __block_literal_5 *dst, struct __block_literal_5 *src);
    void (*dispose_helper)(struct __block_literal_5 *);
} __block_descriptor_5 = { 0, sizeof(struct __block_literal_5) __block_copy_5, __block_dispose_5 };

and:
struct _block_byref_i i = {( .isa=NULL, .forwarding=&i, .flags=0, .size=sizeof(struct _block_byref_i), .captured_i=2 )};
struct __block_literal_5 _block_literal = {
      &_NSConcreteStackBlock,
      (1<<25)|(1<<29), <uninitialized>,
      __block_invoke_5,
      &__block_descriptor_5,
      &i,
};

Importing __attribute__((NSObject)) __block variables

A __block variable that is also marked __attribute__((NSObject)) should have byref_keep and
byref_dispose helper functions that use _Block_object_assign and _Block_object_dispose.

__block escapes

Because Blocks referencing __block variables may have Block_copy() performed upon them the underlying
storage for the variables may move to the heap. In Objective-C Garbage Collection Only compilation environments
the heap used is the garbage collected one and no further action is required. Otherwise the compiler must issue a
call to potentially release any heap storage for __block variables at all escapes or terminations of their scope. The
call should be:

_Block_object_dispose(&_block_byref_foo, BLOCK_FIELD_IS_BYREF);

Nesting

Blocks may contain Block literal expressions. Any variables used within inner blocks are imported into all
enclosing Block scopes even if the variables are not used. This includes const imports as well as __block
variables.

Objective C Extensions to Blocks

Importing Objects

Objects should be treated as __attribute__((NSObject)) variables; all copy_helper, dispose_helper,
byref_keep, and byref_dispose helper functions should use _Block_object_assign and
_Block_object_dispose. There should be no code generated that uses *-retain or *-release methods.

Blocks as Objects

The compiler will treat Blocks as objects when synthesizing property setters and getters, will characterize them as
objects when generating garbage collection strong and weak layout information in the same manner as objects, and
will issue strong and weak write-barrier assignments in the same manner as objects.

Clang Language Extensions

83



__weak __block Support

Objective-C (and Objective-C++) support the __weak attribute on __block variables. Under normal circumstances
the compiler uses the Objective-C runtime helper support functions objc_assign_weak and objc_read_weak.
Both should continue to be used for all reads and writes of __weak __block variables:

objc_read_weak(&block->byref_i->forwarding->i)

The __weak variable is stored in a _block_byref_foo structure and the Block has copy and dispose helpers for
this structure that call:

_Block_object_assign(&dest->_block_byref_i, src-> _block_byref_i, BLOCK_FIELD_IS_WEAK | BLOCK_FIELD_IS_BYREF);

and:

_Block_object_dispose(src->_block_byref_i, BLOCK_FIELD_IS_WEAK | BLOCK_FIELD_IS_BYREF);

In turn, the block_byref copy support helpers distinguish between whether the __block variable is a Block or
not and should either call:
_Block_object_assign(&dest->_block_byref_i, src->_block_byref_i, BLOCK_FIELD_IS_WEAK | BLOCK_FIELD_IS_OBJECT | BLOCK_BYREF_CALLER);

for something declared as an object or:
_Block_object_assign(&dest->_block_byref_i, src->_block_byref_i, BLOCK_FIELD_IS_WEAK | BLOCK_FIELD_IS_BLOCK | BLOCK_BYREF_CALLER);

for something declared as a Block.

A full example follows:

__block __weak id obj = <initialization expression>;
functioncall(^{ [obj somemessage]; });

would translate to:
struct _block_byref_obj {
    void *isa;  // uninitialized
    struct _block_byref_obj *forwarding;
    int flags;   //refcount;
    int size;
    void (*byref_keep)(struct _block_byref_i *dst, struct _block_byref_i *src);
    void (*byref_dispose)(struct _block_byref_i *);
    id captured_obj;
};

void _block_byref_obj_keep(struct _block_byref_voidBlock *dst, struct _block_byref_voidBlock *src) {
    //_Block_copy_assign(&dst->captured_obj, src->captured_obj, 0);
    _Block_object_assign(&dst->captured_obj, src->captured_obj, BLOCK_FIELD_IS_OBJECT | BLOCK_FIELD_IS_WEAK | BLOCK_BYREF_CALLER);
}

void _block_byref_obj_dispose(struct _block_byref_voidBlock *param) {
    //_Block_destroy(param->captured_obj, 0);
    _Block_object_dispose(param->captured_obj, BLOCK_FIELD_IS_OBJECT | BLOCK_FIELD_IS_WEAK | BLOCK_BYREF_CALLER);
};

for the block byref part and:

struct __block_literal_5 {
    void *isa;
    int flags;
    int reserved;
    void (*invoke)(struct __block_literal_5 *);
    struct __block_descriptor_5 *descriptor;
    struct _block_byref_obj *byref_obj;
};

void __block_invoke_5(struct __block_literal_5 *_block) {
   [objc_read_weak(&_block->byref_obj->forwarding->captured_obj) somemessage];
}

void __block_copy_5(struct __block_literal_5 *dst, struct __block_literal_5 *src) {
     //_Block_byref_assign_copy(&dst->byref_obj, src->byref_obj);
     _Block_object_assign(&dst->byref_obj, src->byref_obj, BLOCK_FIELD_IS_BYREF | BLOCK_FIELD_IS_WEAK);
}

void __block_dispose_5(struct __block_literal_5 *src) {
     //_Block_byref_release(src->byref_obj);

Clang Language Extensions

84



     _Block_object_dispose(src->byref_obj, BLOCK_FIELD_IS_BYREF | BLOCK_FIELD_IS_WEAK);
}

static struct __block_descriptor_5 {
    unsigned long int reserved;
    unsigned long int Block_size;
    void (*copy_helper)(struct __block_literal_5 *dst, struct __block_literal_5 *src);
    void (*dispose_helper)(struct __block_literal_5 *);
} __block_descriptor_5 = { 0, sizeof(struct __block_literal_5), __block_copy_5, __block_dispose_5 };

and within the compound statement:

truct _block_byref_obj obj = {( .forwarding=&obj, .flags=(1<<25), .size=sizeof(struct _block_byref_obj),
                 .byref_keep=_block_byref_obj_keep, .byref_dispose=_block_byref_obj_dispose,
                 .captured_obj = <initialization expression> )};

truct __block_literal_5 _block_literal = {
     &_NSConcreteStackBlock,
     (1<<25)|(1<<29), <uninitialized>,
     __block_invoke_5,
     &__block_descriptor_5,
     &obj,        // a reference to the on-stack structure containing "captured_obj"
};

functioncall(_block_literal->invoke(&_block_literal));

C++ Support

Within a block stack based C++ objects are copied into const copies using the copy constructor. It is an error if a
stack based C++ object is used within a block if it does not have a copy constructor. In addition both copy and
destroy helper routines must be synthesized for the block to support the Block_copy() operation, and the flags
work marked with the (1<<26) bit in addition to the (1<<25) bit. The copy helper should call the constructor using
appropriate offsets of the variable within the supplied stack based block source and heap based destination for all
const constructed copies, and similarly should call the destructor in the destroy routine.

As an example, suppose a C++ class FOO existed with a copy constructor. Within a code block a stack version of a
FOO object is declared and used within a Block literal expression:

{
    FOO foo;
    void (^block)(void) = ^{ printf("%d\n", foo.value()); };
}

The compiler would synthesize:

struct __block_literal_10 {
    void *isa;
    int flags;
    int reserved;
    void (*invoke)(struct __block_literal_10 *);
    struct __block_descriptor_10 *descriptor;
    const FOO foo;
};

void __block_invoke_10(struct __block_literal_10 *_block) {
   printf("%d\n", _block->foo.value());
}

void __block_copy_10(struct __block_literal_10 *dst, struct __block_literal_10 *src) {
     FOO_ctor(&dst->foo, &src->foo);
}

void __block_dispose_10(struct __block_literal_10 *src) {
     FOO_dtor(&src->foo);
}

static struct __block_descriptor_10 {
    unsigned long int reserved;

Clang Language Extensions

85



    unsigned long int Block_size;
    void (*copy_helper)(struct __block_literal_10 *dst, struct __block_literal_10 *src);
    void (*dispose_helper)(struct __block_literal_10 *);
} __block_descriptor_10 = { 0, sizeof(struct __block_literal_10), __block_copy_10, __block_dispose_10 };

and the code would be:

{
  FOO foo;
  comp_ctor(&foo); // default constructor
  struct __block_literal_10 _block_literal = {
    &_NSConcreteStackBlock,
    (1<<25)|(1<<26)|(1<<29), <uninitialized>,
    __block_invoke_10,
    &__block_descriptor_10,
   };
   comp_ctor(&_block_literal->foo, &foo);  // const copy into stack version
   struct __block_literal_10 &block = &_block_literal;  // assign literal to block variable
   block->invoke(block);    // invoke block
   comp_dtor(&_block_literal->foo); // destroy stack version of const block copy
   comp_dtor(&foo); // destroy original version
}

C++ objects stored in __block storage start out on the stack in a block_byref data structure as do other
variables. Such objects (if not const objects) must support a regular copy constructor. The block_byref data
structure will have copy and destroy helper routines synthesized by the compiler. The copy helper will have code
created to perform the copy constructor based on the initial stack block_byref data structure, and will also set the
(1<<26) bit in addition to the (1<<25) bit. The destroy helper will have code to do the destructor on the object stored
within the supplied block_byref heap data structure. For example,

__block FOO blockStorageFoo;

requires the normal constructor for the embedded blockStorageFoo object:

FOO_ctor(& _block_byref_blockStorageFoo->blockStorageFoo);

and at scope termination the destructor:

FOO_dtor(& _block_byref_blockStorageFoo->blockStorageFoo);

Note that the forwarding indirection is NOT used.

The compiler would need to generate (if used from a block literal) the following copy/dispose helpers:
void _block_byref_obj_keep(struct _block_byref_blockStorageFoo *dst, struct _block_byref_blockStorageFoo *src) {
     FOO_ctor(&dst->blockStorageFoo, &src->blockStorageFoo);
}

void _block_byref_obj_dispose(struct _block_byref_blockStorageFoo *src) {
     FOO_dtor(&src->blockStorageFoo);
}

for the appropriately named constructor and destructor for the class/struct FOO.

To support member variable and function access the compiler will synthesize a const pointer to a block version of
the this pointer.

Runtime Helper Functions

The runtime helper functions are described in /usr/local/include/Block_private.h. To summarize their
use, a Block requires copy/dispose helpers if it imports any block variables, __block storage variables,
__attribute__((NSObject)) variables, or C++ const copied objects with constructor/destructors. The (1<<26)
bit is set and functions are generated.

The block copy helper function should, for each of the variables of the type mentioned above, call:

_Block_object_assign(&dst->target, src->target, BLOCK_FIELD_<apropos>);

in the copy helper and:

Clang Language Extensions

86



_Block_object_dispose(->target, BLOCK_FIELD_<apropos>);

in the dispose helper where <apropos> is:

enum {
    BLOCK_FIELD_IS_OBJECT   =  3,  // id, NSObject, __attribute__((NSObject)), block, ...
    BLOCK_FIELD_IS_BLOCK    =  7,  // a block variable
    BLOCK_FIELD_IS_BYREF    =  8,  // the on stack structure holding the __block variable

    BLOCK_FIELD_IS_WEAK     = 16,  // declared __weak

    BLOCK_BYREF_CALLER      = 128, // called from byref copy/dispose helpers
};

and of course the constructors/destructors for const copied C++ objects.

The block_byref data structure similarly requires copy/dispose helpers for block variables,
__attribute__((NSObject)) variables, or C++ const copied objects with constructor/destructors, and again
the (1<<26) bit is set and functions are generated in the same manner.

Under ObjC we allow __weak as an attribute on __block variables, and this causes the addition of
BLOCK_FIELD_IS_WEAK orred onto the BLOCK_FIELD_IS_BYREF flag when copying the block_byref structure
in the Block copy helper, and onto the BLOCK_FIELD_<apropos> field within the block_byref copy/dispose
helper calls.

The prototypes, and summary, of the helper functions are:

/* Certain field types require runtime assistance when being copied to the
   heap.  The following function is used to copy fields of types: blocks,
   pointers to byref structures, and objects (including
   __attribute__((NSObject)) pointers.  BLOCK_FIELD_IS_WEAK is orthogonal to
   the other choices which are mutually exclusive.  Only in a Block copy
   helper will one see BLOCK_FIELD_IS_BYREF.
*/
void _Block_object_assign(void *destAddr, const void *object, const int flags);

/* Similarly a compiler generated dispose helper needs to call back for each
   field of the byref data structure.  (Currently the implementation only
   packs one field into the byref structure but in principle there could be
   more).  The same flags used in the copy helper should be used for each
   call generated to this function:
*/
void _Block_object_dispose(const void *object, const int flags);

Copyright

Copyright 2008-2010 Apple, Inc. Permission is hereby granted, free of charge, to any person obtaining a copy of this
software and associated documentation files (the “Software”), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the
Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the
Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT
OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
OTHER DEALINGS IN THE SOFTWARE.

Clang Language Extensions

87



Objective-C Automatic Reference Counting (ARC)
About this document 89

Purpose 89

Background 89

Evolution 90

General 91

Retainable object pointers 91

Retain count semantics 92

Retainable object pointers as operands and arguments 92

Consumed parameters 93

Retained return values 93

Unretained return values 94

Bridged casts 95

Restrictions 95

Conversion of retainable object pointers 95

Conversion to retainable object pointer type of expressions with known semantics 95

Conversion from retainable object pointer type in certain contexts 96

Ownership qualification 96

Spelling 97

Property declarations 98

Semantics 98

Restrictions 99

Weak-unavailable types 99

Storage duration of __autoreleasing objects 99

Conversion of pointers to ownership-qualified types 100

Passing to an out parameter by writeback 101

Ownership-qualified fields of structs and unions 102

Formal rules for non-trivial types in C 102

Application of the formal C rules to nontrivial ownership qualifiers 104

C/C++ compatibility for structs and unions with non-trivial members 104

Ownership inference 105

Objects 105

Indirect parameters 105

Template arguments 106

Method families 106

Explicit method family control 107

Semantics of method families 107

Semantics of init 107

Related result types 108

Optimization 108

Object liveness 109

No object lifetime extension 110

Precise lifetime semantics 110

Miscellaneous 111

Clang Language Extensions

88



Special methods 111

Memory management methods 111

dealloc 111

@autoreleasepool 112

Externally-Retained Variables 113

self 113

Fast enumeration iteration variables 114

Blocks 114

Exceptions 114

Interior pointers 115

C retainable pointer types 115

Auditing of C retainable pointer interfaces 116

Runtime support 116

id objc_autorelease(id value); 117

void objc_autoreleasePoolPop(void *pool); 117

void *objc_autoreleasePoolPush(void); 117

id objc_autoreleaseReturnValue(id value); 117

void objc_copyWeak(id *dest, id *src); 118

void objc_destroyWeak(id *object); 118

id objc_initWeak(id *object, id value); 118

id objc_loadWeak(id *object); 118

id objc_loadWeakRetained(id *object); 119

void objc_moveWeak(id *dest, id *src); 119

void objc_release(id value); 119

id objc_retain(id value); 119

id objc_retainAutorelease(id value); 119

id objc_retainAutoreleaseReturnValue(id value); 119

id objc_retainAutoreleasedReturnValue(id value); 119

id objc_retainBlock(id value); 120

void objc_storeStrong(id *object, id value); 120

id objc_storeWeak(id *object, id value); 120

id objc_unsafeClaimAutoreleasedReturnValue(id value); 120

About this document

Purpose

The first and primary purpose of this document is to serve as a complete technical specification of Automatic
Reference Counting. Given a core Objective-C compiler and runtime, it should be possible to write a compiler and
runtime which implements these new semantics.

The secondary purpose is to act as a rationale for why ARC was designed in this way. This should remain tightly
focused on the technical design and should not stray into marketing speculation.

Background

This document assumes a basic familiarity with C.

Blocks are a C language extension for creating anonymous functions. Users interact with and transfer block objects
using block pointers, which are represented like a normal pointer. A block may capture values from local variables;

Clang Language Extensions

89



when this occurs, memory must be dynamically allocated. The initial allocation is done on the stack, but the runtime
provides a Block_copy function which, given a block pointer, either copies the underlying block object to the heap,
setting its reference count to 1 and returning the new block pointer, or (if the block object is already on the heap)
increases its reference count by 1. The paired function is Block_release, which decreases the reference count by
1 and destroys the object if the count reaches zero and is on the heap.

Objective-C is a set of language extensions, significant enough to be considered a different language. It is a strict
superset of C. The extensions can also be imposed on C++, producing a language called Objective-C++. The
primary feature is a single-inheritance object system; we briefly describe the modern dialect.

Objective-C defines a new type kind, collectively called the object pointer types. This kind has two notable builtin
members, id and Class; id is the final supertype of all object pointers. The validity of conversions between object
pointer types is not checked at runtime. Users may define classes; each class is a type, and the pointer to that type is
an object pointer type. A class may have a superclass; its pointer type is a subtype of its superclass’s pointer type. A
class has a set of ivars, fields which appear on all instances of that class. For every class T there’s an associated
metaclass; it has no fields, its superclass is the metaclass of T’s superclass, and its metaclass is a global class.
Every class has a global object whose class is the class’s metaclass; metaclasses have no associated type, so
pointers to this object have type Class.

A class declaration (@interface) declares a set of methods. A method has a return type, a list of argument types,
and a selector: a name like foo:bar:baz:, where the number of colons corresponds to the number of formal
arguments. A method may be an instance method, in which case it can be invoked on objects of the class, or a class
method, in which case it can be invoked on objects of the metaclass. A method may be invoked by providing an
object (called the receiver) and a list of formal arguments interspersed with the selector, like so:

[receiver foo: fooArg bar: barArg baz: bazArg]

This looks in the dynamic class of the receiver for a method with this name, then in that class’s superclass, etc., until
it finds something it can execute. The receiver “expression” may also be the name of a class, in which case the
actual receiver is the class object for that class, or (within method definitions) it may be super, in which case the
lookup algorithm starts with the static superclass instead of the dynamic class. The actual methods dynamically
found in a class are not those declared in the @interface, but those defined in a separate @implementation
declaration; however, when compiling a call, typechecking is done based on the methods declared in the
@interface.

Method declarations may also be grouped into protocols, which are not inherently associated with any class, but
which classes may claim to follow. Object pointer types may be qualified with additional protocols that the object is
known to support.

Class extensions are collections of ivars and methods, designed to allow a class’s @interface to be split across
multiple files; however, there is still a primary implementation file which must see the @interfaces of all class
extensions. Categories allow methods (but not ivars) to be declared post hoc on an arbitrary class; the methods in
the category’s @implementation will be dynamically added to that class’s method tables which the category is
loaded at runtime, replacing those methods in case of a collision.

In the standard environment, objects are allocated on the heap, and their lifetime is manually managed using a
reference count. This is done using two instance methods which all classes are expected to implement: retain
increases the object’s reference count by 1, whereas release decreases it by 1 and calls the instance method
dealloc if the count reaches 0. To simplify certain operations, there is also an autorelease pool, a thread-local list
of objects to call release on later; an object can be added to this pool by calling autorelease on it.

Block pointers may be converted to type id; block objects are laid out in a way that makes them compatible with
Objective-C objects. There is a builtin class that all block objects are considered to be objects of; this class
implements retain by adjusting the reference count, not by calling Block_copy.

Evolution

ARC is under continual evolution, and this document must be updated as the language progresses.

If a change increases the expressiveness of the language, for example by lifting a restriction or by adding new
syntax, the change will be annotated with a revision marker, like so:

ARC applies to Objective-C pointer types, block pointer types, and [beginning Apple 8.0, LLVM 3.8] BPTRs
declared within extern "BCPL" blocks.

Clang Language Extensions

90



For now, it is sensible to version this document by the releases of its sole implementation (and its host project),
clang. “LLVM X.Y” refers to an open-source release of clang from the LLVM project. “Apple X.Y” refers to an
Apple-provided release of the Apple LLVM Compiler. Other organizations that prepare their own,
separately-versioned clang releases and wish to maintain similar information in this document should send requests
to cfe-dev.

If a change decreases the expressiveness of the language, for example by imposing a new restriction, this should be
taken as an oversight in the original specification and something to be avoided in all versions. Such changes are
generally to be avoided.

General

Automatic Reference Counting implements automatic memory management for Objective-C objects and blocks,
freeing the programmer from the need to explicitly insert retains and releases. It does not provide a cycle collector;
users must explicitly manage the lifetime of their objects, breaking cycles manually or with weak or unsafe
references.

ARC may be explicitly enabled with the compiler flag -fobjc-arc. It may also be explicitly disabled with the
compiler flag -fno-objc-arc. The last of these two flags appearing on the compile line “wins”.

If ARC is enabled, __has_feature(objc_arc) will expand to 1 in the preprocessor. For more information about
__has_feature, see the language extensions document.

Retainable object pointers

This section describes retainable object pointers, their basic operations, and the restrictions imposed on their use
under ARC. Note in particular that it covers the rules for pointer values (patterns of bits indicating the location of a
pointed-to object), not pointer objects (locations in memory which store pointer values). The rules for objects are
covered in the next section.

A retainable object pointer (or “retainable pointer”) is a value of a retainable object pointer type (“retainable type”).
There are three kinds of retainable object pointer types:

• block pointers (formed by applying the caret (^) declarator sigil to a function type)

• Objective-C object pointers (id, Class, NSFoo*, etc.)

• typedefs marked with __attribute__((NSObject))

Other pointer types, such as int* and CFStringRef, are not subject to ARC’s semantics and restrictions.

Rationale

We are not at liberty to require all code to be recompiled with ARC; therefore, ARC must interoperate with
Objective-C code which manages retains and releases manually. In general, there are three requirements in
order for a compiler-supported reference-count system to provide reliable interoperation:

• The type system must reliably identify which objects are to be managed. An int* might be a pointer to a
malloc’ed array, or it might be an interior pointer to such an array, or it might point to some field or local
variable. In contrast, values of the retainable object pointer types are never interior.

• The type system must reliably indicate how to manage objects of a type. This usually means that the type
must imply a procedure for incrementing and decrementing retain counts. Supporting single-ownership
objects requires a lot more explicit mediation in the language.

• There must be reliable conventions for whether and when “ownership” is passed between caller and callee,
for both arguments and return values. Objective-C methods follow such a convention very reliably, at least
for system libraries on macOS, and functions always pass objects at +0. The C-based APIs for Core
Foundation objects, on the other hand, have much more varied transfer semantics.

The use of __attribute__((NSObject)) typedefs is not recommended. If it’s absolutely necessary to use this
attribute, be very explicit about using the typedef, and do not assume that it will be preserved by language features
like __typeof and C++ template argument substitution.

Clang Language Extensions

91



Rationale

Any compiler operation which incidentally strips type “sugar” from a type will yield a type without the attribute,
which may result in unexpected behavior.

Retain count semantics

A retainable object pointer is either a null pointer or a pointer to a valid object. Furthermore, if it has block pointer
type and is not null then it must actually be a pointer to a block object, and if it has Class type (possibly
protocol-qualified) then it must actually be a pointer to a class object. Otherwise ARC does not enforce the
Objective-C type system as long as the implementing methods follow the signature of the static type. It is undefined
behavior if ARC is exposed to an invalid pointer.

For ARC’s purposes, a valid object is one with “well-behaved” retaining operations. Specifically, the object must be
laid out such that the Objective-C message send machinery can successfully send it the following messages:

• retain, taking no arguments and returning a pointer to the object.

• release, taking no arguments and returning void.

• autorelease, taking no arguments and returning a pointer to the object.

The behavior of these methods is constrained in the following ways. The term high-level semantics is an intentionally
vague term; the intent is that programmers must implement these methods in a way such that the compiler,
modifying code in ways it deems safe according to these constraints, will not violate their requirements. For example,
if the user puts logging statements in retain, they should not be surprised if those statements are executed more or
less often depending on optimization settings. These constraints are not exhaustive of the optimization opportunities:
values held in local variables are subject to additional restrictions, described later in this document.

It is undefined behavior if a computation history featuring a send of retain followed by a send of release to the
same object, with no intervening release on that object, is not equivalent under the high-level semantics to a
computation history in which these sends are removed. Note that this implies that these methods may not raise
exceptions.

It is undefined behavior if a computation history features any use whatsoever of an object following the completion of
a send of release that is not preceded by a send of retain to the same object.

The behavior of autorelease must be equivalent to sending release when one of the autorelease pools currently
in scope is popped. It may not throw an exception.

When the semantics call for performing one of these operations on a retainable object pointer, if that pointer is null
then the effect is a no-op.

All of the semantics described in this document are subject to additional optimization rules which permit the removal
or optimization of operations based on local knowledge of data flow. The semantics describe the high-level behaviors
that the compiler implements, not an exact sequence of operations that a program will be compiled into.

Retainable object pointers as operands and arguments

In general, ARC does not perform retain or release operations when simply using a retainable object pointer as an
operand within an expression. This includes:

• loading a retainable pointer from an object with non-weak ownership,

• passing a retainable pointer as an argument to a function or method, and

• receiving a retainable pointer as the result of a function or method call.

Clang Language Extensions

92



Rationale

While this might seem uncontroversial, it is actually unsafe when multiple expressions are evaluated in “parallel”,
as with binary operators and calls, because (for example) one expression might load from an object while another
writes to it. However, C and C++ already call this undefined behavior because the evaluations are unsequenced,
and ARC simply exploits that here to avoid needing to retain arguments across a large number of calls.

The remainder of this section describes exceptions to these rules, how those exceptions are detected, and what
those exceptions imply semantically.

Consumed parameters

A function or method parameter of retainable object pointer type may be marked as consumed, signifying that the
callee expects to take ownership of a +1 retain count. This is done by adding the ns_consumed attribute to the
parameter declaration, like so:

void foo(__attribute((ns_consumed)) id x);
- (void) foo: (id) __attribute((ns_consumed)) x;

This attribute is part of the type of the function or method, not the type of the parameter. It controls only how the
argument is passed and received.

When passing such an argument, ARC retains the argument prior to making the call.

When receiving such an argument, ARC releases the argument at the end of the function, subject to the usual
optimizations for local values.

Rationale

This formalizes direct transfers of ownership from a caller to a callee. The most common scenario here is passing
the self parameter to init, but it is useful to generalize. Typically, local optimization will remove any extra
retains and releases: on the caller side the retain will be merged with a +1 source, and on the callee side the
release will be rolled into the initialization of the parameter.

The implicit self parameter of a method may be marked as consumed by adding
__attribute__((ns_consumes_self)) to the method declaration. Methods in the init family are treated as if
they were implicitly marked with this attribute.

It is undefined behavior if an Objective-C message send to a method with ns_consumed parameters (other than
self) is made with a null receiver. It is undefined behavior if the method to which an Objective-C message send
statically resolves to has a different set of ns_consumed parameters than the method it dynamically resolves to. It is
undefined behavior if a block or function call is made through a static type with a different set of ns_consumed
parameters than the implementation of the called block or function.

Rationale

Consumed parameters with null receiver are a guaranteed leak. Mismatches with consumed parameters will
cause over-retains or over-releases, depending on the direction. The rule about function calls is really just an
application of the existing C/C++ rule about calling functions through an incompatible function type, but it’s useful
to state it explicitly.

Retained return values

A function or method which returns a retainable object pointer type may be marked as returning a retained value,
signifying that the caller expects to take ownership of a +1 retain count. This is done by adding the
ns_returns_retained attribute to the function or method declaration, like so:

Clang Language Extensions

93



id foo(void) __attribute((ns_returns_retained));
- (id) foo __attribute((ns_returns_retained));

This attribute is part of the type of the function or method.

When returning from such a function or method, ARC retains the value at the point of evaluation of the return
statement, before leaving all local scopes.

When receiving a return result from such a function or method, ARC releases the value at the end of the
full-expression it is contained within, subject to the usual optimizations for local values.

Rationale

This formalizes direct transfers of ownership from a callee to a caller. The most common scenario this models is
the retained return from init, alloc, new, and copy methods, but there are other cases in the frameworks.
After optimization there are typically no extra retains and releases required.

Methods in the alloc, copy, init, mutableCopy, and new families are implicitly marked
__attribute__((ns_returns_retained)). This may be suppressed by explicitly marking the method
__attribute__((ns_returns_not_retained)).

It is undefined behavior if the method to which an Objective-C message send statically resolves has different retain
semantics on its result from the method it dynamically resolves to. It is undefined behavior if a block or function call is
made through a static type with different retain semantics on its result from the implementation of the called block or
function.

Rationale

Mismatches with returned results will cause over-retains or over-releases, depending on the direction. Again, the
rule about function calls is really just an application of the existing C/C++ rule about calling functions through an
incompatible function type.

Unretained return values

A method or function which returns a retainable object type but does not return a retained value must ensure that the
object is still valid across the return boundary.

When returning from such a function or method, ARC retains the value at the point of evaluation of the return
statement, then leaves all local scopes, and then balances out the retain while ensuring that the value lives across
the call boundary. In the worst case, this may involve an autorelease, but callers must not assume that the value
is actually in the autorelease pool.

ARC performs no extra mandatory work on the caller side, although it may elect to do something to shorten the
lifetime of the returned value.

Rationale

It is common in non-ARC code to not return an autoreleased value; therefore the convention does not force either
path. It is convenient to not be required to do unnecessary retains and autoreleases; this permits optimizations
such as eliding retain/autoreleases when it can be shown that the original pointer will still be valid at the point of
return.

A method or function may be marked with __attribute__((ns_returns_autoreleased)) to indicate that it
returns a pointer which is guaranteed to be valid at least as long as the innermost autorelease pool. There are no
additional semantics enforced in the definition of such a method; it merely enables optimizations in callers.

Clang Language Extensions

94



Bridged casts

A bridged cast is a C-style cast annotated with one of three keywords:

• (__bridge T) op casts the operand to the destination type T. If T is a retainable object pointer type, then op
must have a non-retainable pointer type. If T is a non-retainable pointer type, then op must have a retainable
object pointer type. Otherwise the cast is ill-formed. There is no transfer of ownership, and ARC inserts no
retain operations.

• (__bridge_retained T) op casts the operand, which must have retainable object pointer type, to the
destination type, which must be a non-retainable pointer type. ARC retains the value, subject to the usual
optimizations on local values, and the recipient is responsible for balancing that +1.

• (__bridge_transfer T) op casts the operand, which must have non-retainable pointer type, to the
destination type, which must be a retainable object pointer type. ARC will release the value at the end of the
enclosing full-expression, subject to the usual optimizations on local values.

These casts are required in order to transfer objects in and out of ARC control; see the rationale in the section on
conversion of retainable object pointers.

Using a __bridge_retained or __bridge_transfer cast purely to convince ARC to emit an unbalanced retain
or release, respectively, is poor form.

Restrictions

Conversion of retainable object pointers

In general, a program which attempts to implicitly or explicitly convert a value of retainable object pointer type to any
non-retainable type, or vice-versa, is ill-formed. For example, an Objective-C object pointer shall not be converted to
void*. As an exception, cast to intptr_t is allowed because such casts are not transferring ownership. The
bridged casts may be used to perform these conversions where necessary.

Rationale

We cannot ensure the correct management of the lifetime of objects if they may be freely passed around as
unmanaged types. The bridged casts are provided so that the programmer may explicitly describe whether the
cast transfers control into or out of ARC.

However, the following exceptions apply.

Conversion to retainable object pointer type of expressions with known semantics

[beginning Apple 4.0, LLVM 3.1] These exceptions have been greatly expanded; they previously applied only to a
much-reduced subset which is difficult to categorize but which included null pointers, message sends (under the
given rules), and the various global constants.

An unbridged conversion to a retainable object pointer type from a type other than a retainable object pointer type is
ill-formed, as discussed above, unless the operand of the cast has a syntactic form which is known retained, known
unretained, or known retain-agnostic.

An expression is known retain-agnostic if it is:

• an Objective-C string literal,

• a load from a const system global variable of C retainable pointer type, or

• a null pointer constant.

An expression is known unretained if it is an rvalue of C retainable pointer type and it is:

• a direct call to a function, and either that function has the cf_returns_not_retained attribute or it is an
audited function that does not have the cf_returns_retained attribute and does not follow the create/copy
naming convention,

• a message send, and the declared method either has the cf_returns_not_retained attribute or it has
neither the cf_returns_retained attribute nor a selector family that implies a retained result, or

Clang Language Extensions

95



• [beginning LLVM 3.6] a load from a const non-system global variable.

An expression is known retained if it is an rvalue of C retainable pointer type and it is:

• a message send, and the declared method either has the cf_returns_retained attribute, or it does not
have the cf_returns_not_retained attribute but it does have a selector family that implies a retained
result.

Furthermore:

• a comma expression is classified according to its right-hand side,

• a statement expression is classified according to its result expression, if it has one,

• an lvalue-to-rvalue conversion applied to an Objective-C property lvalue is classified according to the underlying
message send, and

• a conditional operator is classified according to its second and third operands, if they agree in classification, or
else the other if one is known retain-agnostic.

If the cast operand is known retained, the conversion is treated as a __bridge_transfer cast. If the cast operand
is known unretained or known retain-agnostic, the conversion is treated as a __bridge cast.

Rationale

Bridging casts are annoying. Absent the ability to completely automate the management of CF objects, however,
we are left with relatively poor attempts to reduce the need for a glut of explicit bridges. Hence these rules.

We’ve so far consciously refrained from implicitly turning retained CF results from function calls into
__bridge_transfer casts. The worry is that some code patterns — for example, creating a CF value,
assigning it to an ObjC-typed local, and then calling CFRelease when done — are a bit too likely to be
accidentally accepted, leading to mysterious behavior.

For loads from const global variables of C retainable pointer type, it is reasonable to assume that global system
constants were initialitzed with true constants (e.g. string literals), but user constants might have been initialized
with something dynamically allocated, using a global initializer.

Conversion from retainable object pointer type in certain contexts

[beginning Apple 4.0, LLVM 3.1]

If an expression of retainable object pointer type is explicitly cast to a C retainable pointer type, the program is
ill-formed as discussed above unless the result is immediately used:

• to initialize a parameter in an Objective-C message send where the parameter is not marked with the
cf_consumed attribute, or

• to initialize a parameter in a direct call to an audited function where the parameter is not marked with the
cf_consumed attribute.

Rationale

Consumed parameters are left out because ARC would naturally balance them with a retain, which was judged
too treacherous. This is in part because several of the most common consuming functions are in the Release
family, and it would be quite unfortunate for explicit releases to be silently balanced out in this way.

Ownership qualification

This section describes the behavior of objects of retainable object pointer type; that is, locations in memory which
store retainable object pointers.

A type is a retainable object owner type if it is a retainable object pointer type or an array type whose element type is
a retainable object owner type.

Clang Language Extensions

96



An ownership qualifier is a type qualifier which applies only to retainable object owner types. An array type is
ownership-qualified according to its element type, and adding an ownership qualifier to an array type so qualifies its
element type.

A program is ill-formed if it attempts to apply an ownership qualifier to a type which is already ownership-qualified,
even if it is the same qualifier. There is a single exception to this rule: an ownership qualifier may be applied to a
substituted template type parameter, which overrides the ownership qualifier provided by the template argument.

When forming a function type, the result type is adjusted so that any top-level ownership qualifier is deleted.

Except as described under the inference rules, a program is ill-formed if it attempts to form a pointer or reference
type to a retainable object owner type which lacks an ownership qualifier.

Rationale

These rules, together with the inference rules, ensure that all objects and lvalues of retainable object pointer type
have an ownership qualifier. The ability to override an ownership qualifier during template substitution is required
to counteract the inference of __strong for template type arguments. Ownership qualifiers on return types are
dropped because they serve no purpose there except to cause spurious problems with overloading and
templates.

There are four ownership qualifiers:

• __autoreleasing

• __strong

• __unsafe_unretained

• __weak

A type is nontrivially ownership-qualified if it is qualified with __autoreleasing, __strong, or __weak.

Spelling

The names of the ownership qualifiers are reserved for the implementation. A program may not assume that they are
or are not implemented with macros, or what those macros expand to.

An ownership qualifier may be written anywhere that any other type qualifier may be written.

If an ownership qualifier appears in the declaration-specifiers, the following rules apply:

• if the type specifier is a retainable object owner type, the qualifier initially applies to that type;

• otherwise, if the outermost non-array declarator is a pointer or block pointer declarator, the qualifier initially
applies to that type;

• otherwise the program is ill-formed.

• If the qualifier is so applied at a position in the declaration where the next-innermost declarator is a function
declarator, and there is an block declarator within that function declarator, then the qualifier applies instead to
that block declarator and this rule is considered afresh beginning from the new position.

If an ownership qualifier appears on the declarator name, or on the declared object, it is applied to the innermost
pointer or block-pointer type.

If an ownership qualifier appears anywhere else in a declarator, it applies to the type there.

Rationale

Ownership qualifiers are like const and volatile in the sense that they may sensibly apply at multiple distinct
positions within a declarator. However, unlike those qualifiers, there are many situations where they are not
meaningful, and so we make an effort to “move” the qualifier to a place where it will be meaningful. The general
goal is to allow the programmer to write, say, __strong before the entire declaration and have it apply in the
leftmost sensible place.

Clang Language Extensions

97



Property declarations

A property of retainable object pointer type may have ownership. If the property’s type is ownership-qualified, then
the property has that ownership. If the property has one of the following modifiers, then the property has the
corresponding ownership. A property is ill-formed if it has conflicting sources of ownership, or if it has redundant
ownership modifiers, or if it has __autoreleasing ownership.

• assign implies __unsafe_unretained ownership.

• copy implies __strong ownership, as well as the usual behavior of copy semantics on the setter.

• retain implies __strong ownership.

• strong implies __strong ownership.

• unsafe_unretained implies __unsafe_unretained ownership.

• weak implies __weak ownership.

With the exception of weak, these modifiers are available in non-ARC modes.

A property’s specified ownership is preserved in its metadata, but otherwise the meaning is purely conventional
unless the property is synthesized. If a property is synthesized, then the associated instance variable is the instance
variable which is named, possibly implicitly, by the @synthesize declaration. If the associated instance variable
already exists, then its ownership qualification must equal the ownership of the property; otherwise, the instance
variable is created with that ownership qualification.

A property of retainable object pointer type which is synthesized without a source of ownership has the ownership of
its associated instance variable, if it already exists; otherwise, [beginning Apple 3.1, LLVM 3.1] its ownership is
implicitly strong. Prior to this revision, it was ill-formed to synthesize such a property.

Rationale

Using strong by default is safe and consistent with the generic ARC rule about inferring ownership. It is,
unfortunately, inconsistent with the non-ARC rule which states that such properties are implicitly assign.
However, that rule is clearly untenable in ARC, since it leads to default-unsafe code. The main merit to banning
the properties is to avoid confusion with non-ARC practice, which did not ultimately strike us as sufficient to justify
requiring extra syntax and (more importantly) forcing novices to understand ownership rules just to declare a
property when the default is so reasonable. Changing the rule away from non-ARC practice was acceptable
because we had conservatively banned the synthesis in order to give ourselves exactly this leeway.

Applying __attribute__((NSObject)) to a property not of retainable object pointer type has the same behavior
it does outside of ARC: it requires the property type to be some sort of pointer and permits the use of modifiers other
than assign. These modifiers only affect the synthesized getter and setter; direct accesses to the ivar (even if
synthesized) still have primitive semantics, and the value in the ivar will not be automatically released during
deallocation.

Semantics

There are five managed operations which may be performed on an object of retainable object pointer type. Each
qualifier specifies different semantics for each of these operations. It is still undefined behavior to access an object
outside of its lifetime.

A load or store with “primitive semantics” has the same semantics as the respective operation would have on an
void* lvalue with the same alignment and non-ownership qualification.

Reading occurs when performing a lvalue-to-rvalue conversion on an object lvalue.

• For __weak objects, the current pointee is retained and then released at the end of the current full-expression.
This must execute atomically with respect to assignments and to the final release of the pointee.

• For all other objects, the lvalue is loaded with primitive semantics.

Assignment occurs when evaluating an assignment operator. The semantics vary based on the qualification:

Clang Language Extensions

98



• For __strong objects, the new pointee is first retained; second, the lvalue is loaded with primitive semantics;
third, the new pointee is stored into the lvalue with primitive semantics; and finally, the old pointee is released.
This is not performed atomically; external synchronization must be used to make this safe in the face of
concurrent loads and stores.

• For __weak objects, the lvalue is updated to point to the new pointee, unless the new pointee is an object
currently undergoing deallocation, in which case the lvalue is updated to a null pointer. This must execute
atomically with respect to other assignments to the object, to reads from the object, and to the final release of
the new pointee.

• For __unsafe_unretained objects, the new pointee is stored into the lvalue using primitive semantics.

• For __autoreleasing objects, the new pointee is retained, autoreleased, and stored into the lvalue using
primitive semantics.

Initialization occurs when an object’s lifetime begins, which depends on its storage duration. Initialization proceeds in
two stages:

1. First, a null pointer is stored into the lvalue using primitive semantics. This step is skipped if the object is
__unsafe_unretained.

2. Second, if the object has an initializer, that expression is evaluated and then assigned into the object using the
usual assignment semantics.

Destruction occurs when an object’s lifetime ends. In all cases it is semantically equivalent to assigning a null pointer
to the object, with the proviso that of course the object cannot be legally read after the object’s lifetime ends.

Moving occurs in specific situations where an lvalue is “moved from”, meaning that its current pointee will be used
but the object may be left in a different (but still valid) state. This arises with __block variables and rvalue
references in C++. For __strong lvalues, moving is equivalent to loading the lvalue with primitive semantics, writing
a null pointer to it with primitive semantics, and then releasing the result of the load at the end of the current
full-expression. For all other lvalues, moving is equivalent to reading the object.

Restrictions

Weak-unavailable types

It is explicitly permitted for Objective-C classes to not support __weak references. It is undefined behavior to perform
an operation with weak assignment semantics with a pointer to an Objective-C object whose class does not support
__weak references.

Rationale

Historically, it has been possible for a class to provide its own reference-count implementation by overriding
retain, release, etc. However, weak references to an object require coordination with its class’s
reference-count implementation because, among other things, weak loads and stores must be atomic with
respect to the final release. Therefore, existing custom reference-count implementations will generally not
support weak references without additional effort. This is unavoidable without breaking binary compatibility.

A class may indicate that it does not support weak references by providing the
objc_arc_weak_reference_unavailable attribute on the class’s interface declaration. A retainable object
pointer type is weak-unavailable if is a pointer to an (optionally protocol-qualified) Objective-C class T where T or
one of its superclasses has the objc_arc_weak_reference_unavailable attribute. A program is ill-formed if it
applies the __weak ownership qualifier to a weak-unavailable type or if the value operand of a weak assignment
operation has a weak-unavailable type.

Storage duration of __autoreleasing objects

A program is ill-formed if it declares an __autoreleasing object of non-automatic storage duration. A program is
ill-formed if it captures an __autoreleasing object in a block or, unless by reference, in a C++11 lambda.

Clang Language Extensions

99



Rationale

Autorelease pools are tied to the current thread and scope by their nature. While it is possible to have temporary
objects whose instance variables are filled with autoreleased objects, there is no way that ARC can provide any
sort of safety guarantee there.

It is undefined behavior if a non-null pointer is assigned to an __autoreleasing object while an autorelease pool is
in scope and then that object is read after the autorelease pool’s scope is left.

Conversion of pointers to ownership-qualified types

A program is ill-formed if an expression of type T* is converted, explicitly or implicitly, to the type U*, where T and U
have different ownership qualification, unless:

• T is qualified with __strong, __autoreleasing, or __unsafe_unretained, and U is qualified with both
const and __unsafe_unretained; or

• either T or U is cv void, where cv is an optional sequence of non-ownership qualifiers; or

• the conversion is requested with a reinterpret_cast in Objective-C++; or

• the conversion is a well-formed pass-by-writeback.

The analogous rule applies to T& and U& in Objective-C++.

Rationale

These rules provide a reasonable level of type-safety for indirect pointers, as long as the underlying memory is
not deallocated. The conversion to const __unsafe_unretained is permitted because the semantics of
reads are equivalent across all these ownership semantics, and that’s a very useful and common pattern. The
interconversion with void* is useful for allocating memory or otherwise escaping the type system, but use it
carefully. reinterpret_cast is considered to be an obvious enough sign of taking responsibility for any
problems.

It is undefined behavior to access an ownership-qualified object through an lvalue of a differently-qualified type,
except that any non-__weak object may be read through an __unsafe_unretained lvalue.

It is undefined behavior if the storage of a __strong or __weak object is not properly initialized before the first
managed operation is performed on the object, or if the storage of such an object is freed or reused before the object
has been properly deinitialized. Storage for a __strong or __weak object may be properly initialized by filling it with
the representation of a null pointer, e.g. by acquiring the memory with calloc or using bzero to zero it out. A
__strong or __weak object may be properly deinitialized by assigning a null pointer into it. A __strong object may
also be properly initialized by copying into it (e.g. with memcpy) the representation of a different __strong object
whose storage has been properly initialized; doing this properly deinitializes the source object and causes its storage
to no longer be properly initialized. A __weak object may not be representation-copied in this way.

These requirements are followed automatically for objects whose initialization and deinitialization are under the
control of ARC:

• objects of static, automatic, and temporary storage duration

• instance variables of Objective-C objects

• elements of arrays where the array object’s initialization and deinitialization are under the control of ARC

• fields of Objective-C struct types where the struct object’s initialization and deinitialization are under the control
of ARC

• non-static data members of Objective-C++ non-union class types

• Objective-C++ objects and arrays of dynamic storage duration created with the new or new[] operators and
destroyed with the corresponding delete or delete[] operator

They are not followed automatically for these objects:

Clang Language Extensions

100



• objects of dynamic storage duration created in other memory, such as that returned by malloc

• union members

Rationale

ARC must perform special operations when initializing an object and when destroying it. In many common
situations, ARC knows when an object is created and when it is destroyed and can ensure that these operations
are performed correctly. Otherwise, however, ARC requires programmer cooperation to establish its initialization
invariants because it is infeasible for ARC to dynamically infer whether they are intact. For example, there is no
syntactic difference in C between an assignment that is intended by the programmer to initialize a variable and
one that is intended to replace the existing value stored there, but ARC must perform one operation or the other.
ARC chooses to always assume that objects are initialized (except when it is in charge of initializing them)
because the only workable alternative would be to ban all code patterns that could potentially be used to access
uninitialized memory, and that would be too limiting. In practice, this is rarely a problem because programmers do
not generally need to work with objects for which the requirements are not handled automatically.

Note that dynamically-allocated Objective-C++ arrays of nontrivially-ownership-qualified type are not ABI-compatible
with non-ARC code because the non-ARC code will consider the element type to be POD. Such arrays that are
new[]’d in ARC translation units cannot be delete[]’d in non-ARC translation units and vice-versa.

Passing to an out parameter by writeback

If the argument passed to a parameter of type T __autoreleasing * has type U oq *, where oq is an
ownership qualifier, then the argument is a candidate for pass-by-writeback` if:

• oq is __strong or __weak, and

• it would be legal to initialize a T __strong * with a U __strong *.

For purposes of overload resolution, an implicit conversion sequence requiring a pass-by-writeback is always worse
than an implicit conversion sequence not requiring a pass-by-writeback.

The pass-by-writeback is ill-formed if the argument expression does not have a legal form:

• &var, where var is a scalar variable of automatic storage duration with retainable object pointer type

• a conditional expression where the second and third operands are both legal forms

• a cast whose operand is a legal form

• a null pointer constant

Rationale

The restriction in the form of the argument serves two purposes. First, it makes it impossible to pass the address
of an array to the argument, which serves to protect against an otherwise serious risk of mis-inferring an “array”
argument as an out-parameter. Second, it makes it much less likely that the user will see confusing aliasing
problems due to the implementation, below, where their store to the writeback temporary is not immediately seen
in the original argument variable.

A pass-by-writeback is evaluated as follows:

1. The argument is evaluated to yield a pointer p of type U oq *.

2. If p is a null pointer, then a null pointer is passed as the argument, and no further work is required for the
pass-by-writeback.

3. Otherwise, a temporary of type T __autoreleasing is created and initialized to a null pointer.

4. If the parameter is not an Objective-C method parameter marked out, then *p is read, and the result is written
into the temporary with primitive semantics.

5. The address of the temporary is passed as the argument to the actual call.

Clang Language Extensions

101



6. After the call completes, the temporary is loaded with primitive semantics, and that value is assigned into *p.

Rationale

This is all admittedly convoluted. In an ideal world, we would see that a local variable is being passed to an
out-parameter and retroactively modify its type to be __autoreleasing rather than __strong. This would be
remarkably difficult and not always well-founded under the C type system. However, it was judged unacceptably
invasive to require programmers to write __autoreleasing on all the variables they intend to use for
out-parameters. This was the least bad solution.

Ownership-qualified fields of structs and unions

A member of a struct or union may be declared to have ownership-qualified type. If the type is qualified with
__unsafe_unretained, the semantics of the containing aggregate are unchanged from the semantics of an
unqualified type in a non-ARC mode. If the type is qualified with __autoreleasing, the program is ill-formed.
Otherwise, if the type is nontrivially ownership-qualified, additional rules apply.

Both Objective-C and Objective-C++ support nontrivially ownership-qualified fields. Due to formal differences
between the standards, the formal treatment is different; however, the basic language model is intended to be the
same for identical code.

Rationale

Permitting __strong and __weak references in aggregate types allows programmers to take advantage of the
normal language tools of C and C++ while still automatically managing memory. While it is usually simpler and
more idiomatic to use Objective-C objects for secondary data structures, doing so can introduce extra allocation
and message-send overhead, which can cause to unacceptable performance. Using structs can resolve some of
this tension.

__autoreleasing is forbidden because it is treacherous to rely on autoreleases as an ownership tool outside
of a function-local contexts.

Earlier releases of Clang permitted __strong and __weak only references in Objective-C++ classes, not in
Objective-C. This restriction was an undesirable short-term constraint arising from the complexity of adding
support for non-trivial struct types to C.

In Objective-C++, nontrivially ownership-qualified types are treated for nearly all purposes as if they were class types
with non-trivial default constructors, copy constructors, move constructors, copy assignment operators, move
assignment operators, and destructors. This includes the determination of the triviality of special members of classes
with a non-static data member of such a type.

In Objective-C, the definition cannot be so succinct: because the C standard lacks rules for non-trivial types, those
rules must first be developed. They are given in the next section. The intent is that these rules are largely consistent
with the rules of C++ for code expressible in both languages.

Formal rules for non-trivial types in C

The following are base rules which can be added to C to support implementation-defined non-trivial types.

A type in C is said to be non-trivial to copy, non-trivial to destroy, or non-trivial to default-initialize if:

• it is a struct or union containing a member whose type is non-trivial to (respectively) copy, destroy, or
default-initialize;

• it is a qualified type whose unqualified type is non-trivial to (respectively) copy, destroy, or default-initialize (for
at least the standard C qualifiers); or

• it is an array type whose element type is non-trivial to (respectively) copy, destroy, or default-initialize.

A type in C is said to be illegal to copy, illegal to destroy, or illegal to default-initialize if:

Clang Language Extensions

102



• it is a union which contains a member whose type is either illegal or non-trivial to (respectively) copy, destroy, or
initialize;

• it is a qualified type whose unqualified type is illegal to (respectively) copy, destroy, or default-initialize (for at
least the standard C qualifiers); or

• it is an array type whose element type is illegal to (respectively) copy, destroy, or default-initialize.

No type describable under the rules of the C standard shall be either non-trivial or illegal to copy, destroy, or
default-initialize. An implementation may provide additional types which have one or more of these properties.

An expression calls for a type to be copied if it:

• passes an argument of that type to a function call,

• defines a function which declares a parameter of that type,

• calls or defines a function which returns a value of that type,

• assigns to an l-value of that type, or

• converts an l-value of that type to an r-value.

A program calls for a type to be destroyed if it:

• passes an argument of that type to a function call,

• defines a function which declares a parameter of that type,

• calls or defines a function which returns a value of that type,

• creates an object of automatic storage duration of that type,

• assigns to an l-value of that type, or

• converts an l-value of that type to an r-value.

A program calls for a type to be default-initialized if it:

• declares a variable of that type without an initializer.

An expression is ill-formed if calls for a type to be copied, destroyed, or default-initialized and that type is illegal to
(respectively) copy, destroy, or default-initialize.

A program is ill-formed if it contains a function type specifier with a parameter or return type that is illegal to copy or
destroy. If a function type specifier would be ill-formed for this reason except that the parameter or return type was
incomplete at that point in the translation unit, the program is ill-formed but no diagnostic is required.

A goto or switch is ill-formed if it jumps into the scope of an object of automatic storage duration whose type is
non-trivial to destroy.

C specifies that it is generally undefined behavior to access an l-value if there is no object of that type at that location.
Implementations are often lenient about this, but non-trivial types generally require it to be enforced more strictly. The
following rules apply:

The static subobjects of a type T at a location L are:

• an object of type T spanning from L to L + sizeof(T);

• if T is a struct type, then for each field f of that struct, the static subobjects of T at location
L + offsetof(T, .f); and

• if T is the array type E[N], then for each i satisfying 0 <= i < N, the static subobjects of E at location
L + i * sizeof(E).

If an l-value is converted to an r-value, then all static subobjects whose types are non-trivial to copy are accessed. If
an l-value is assigned to, or if an object of automatic storage duration goes out of scope, then all static subobjects of
types that are non-trivial to destroy are accessed.

A dynamic object is created at a location if an initialization initializes an object of that type there. A dynamic object
ceases to exist at a location if the memory is repurposed. Memory is repurposed if it is freed or if a different dynamic
object is created there, for example by assigning into a different union member. An implementation may provide
additional rules for what constitutes creating or destroying a dynamic object.

Clang Language Extensions

103



If an object is accessed under these rules at a location where no such dynamic object exists, the program has
undefined behavior. If memory for a location is repurposed while a dynamic object that is non-trivial to destroy exists
at that location, the program has undefined behavior.

Rationale

While these rules are far less fine-grained than C++, they are nonetheless sufficient to express a wide spectrum
of types. Types that express some sort of ownership will generally be non-trivial to both copy and destroy and
either non-trivial or illegal to default-initialize. Types that don’t express ownership may still be non-trivial to copy
because of some sort of address sensitivity; for example, a relative reference. Distinguishing default initialization
allows types to impose policies about how they are created.

These rules assume that assignment into an l-value is always a modification of an existing object rather than an
initialization. Assignment is then a compound operation where the old value is read and destroyed, if necessary,
and the new value is put into place. These are the natural semantics of value propagation, where all basic
operations on the type come down to copies and destroys, and everything else is just an optimization on top of
those.

The most glaring weakness of programming with non-trivial types in C is that there are no language mechanisms
(akin to C++’s placement new and explicit destructor calls) for explicitly creating and destroying objects. Clang
should consider adding builtins for this purpose, as well as for common optimizations like destructive relocation.

Application of the formal C rules to nontrivial ownership qualifiers

Nontrivially ownership-qualified types are considered non-trivial to copy, destroy, and default-initialize.

A dynamic object of nontrivially ownership-qualified type contingently exists at a location if the memory is filled with a
zero pattern, e.g. by calloc or bzero. Such an object can be safely accessed in all of the cases above, but its
memory can also be safely repurposed. Assigning a null pointer into an l-value of __weak or __strong-qualified
type accesses the dynamic object there (and thus may have undefined behavior if no such object exists), but
afterwards the object’s memory is guaranteed to be filled with a zero pattern and thus may be either further accessed
or repurposed as needed. The upshot is that programs may safely initialize dynamically-allocated memory for
nontrivially ownership-qualified types by ensuring it is zero-initialized, and they may safely deinitialize memory before
freeing it by storing nil into any __strong or __weak references previously created in that memory.

C/C++ compatibility for structs and unions with non-trivial members

Structs and unions with non-trivial members are compatible in different language modes (e.g. between Objective-C
and Objective-C++, or between ARC and non-ARC modes) under the following conditions:

• The types must be compatible ignoring ownership qualifiers according to the baseline, non-ARC rules (e.g. C
struct compatibility or C++’s ODR). This condition implies a pairwise correspondance between fields.

Note that an Objective-C++ class with base classes, a user-provided copy or move constructor, or a
user-provided destructor is never compatible with an Objective-C type.

• If two fields correspond as above, and at least one of the fields is ownership-qualified, then:

• the fields must be identically qualified, or else

• one type must be unqualified (and thus declared in a non-ARC mode), and the other type must be
qualified with __unsafe_unretained or __strong.

Note that __weak fields must always be declared __weak because of the need to pin those fields in memory
and keep them properly registered with the Objective-C runtime. Non-ARC modes may still declare fields
__weak by enabling -fobjc-weak.

These compatibility rules permit a function that takes a parameter of non-trivial struct type to be written in ARC and
called from non-ARC or vice-versa. The convention for this always transfers ownership of objects stored in
__strong fields from the caller to the callee, just as for an ns_consumed argument. Therefore, non-ARC callers
must ensure that such fields are initialized to a +1 reference, and non-ARC callees must balance that +1 by releasing
the reference or transferring it as appropriate.

Clang Language Extensions

104



Likewise, a function returning a non-trivial struct may be written in ARC and called from non-ARC or vice-versa. The
convention for this always transfers ownership of objects stored in __strong fields from the callee to the caller, and
so callees must initialize such fields with +1 references, and callers must balance that +1 by releasing or transferring
them.

Similar transfers of responsibility occur for __weak fields, but since both sides must use native __weak support to
ensure calling convention compatibility, this transfer is always handled automatically by the compiler.

Rationale

In earlier releases, when non-trivial ownership was only permitted on fields in Objective-C++, the ABI used for
such classees was the ordinary ABI for non-trivial C++ classes, which passes arguments and returns indirectly
and does not transfer responsibility for arguments. When support for Objective-C structs was added, it was
decided to change to the current ABI for three reasons:

• It permits ARC / non-ARC compatibility for structs containing only __strong references, as long as the
non-ARC side is careful about transferring ownership.

• It avoids unnecessary indirection for sufficiently small types that the C ABI would prefer to pass in registers.

• Given that struct arguments must be produced at +1 to satisfy C’s semantics of initializing the local
parameter variable, transferring ownership of that copy to the callee is generally better for ARC optimization,
since otherwise there will be releases in the caller that are much harder to pair with transfers in the callee.

Breaking compatibility with existing Objective-C++ structures was considered an acceptable cost, as most
Objective-C++ code does not have binary-compatibility requirements. Any existing code which cannot accept this
compatibility break, which is necessarily Objective-C++, should force the use of the standard C++ ABI by
declaring an empty (but non-defaulted) destructor.

Ownership inference

Objects

If an object is declared with retainable object owner type, but without an explicit ownership qualifier, its type is
implicitly adjusted to have __strong qualification.

As a special case, if the object’s base type is Class (possibly protocol-qualified), the type is adjusted to have
__unsafe_unretained qualification instead.

Indirect parameters

If a function or method parameter has type T*, where T is an ownership-unqualified retainable object pointer type,
then:

• if T is const-qualified or Class, then it is implicitly qualified with __unsafe_unretained;

• otherwise, it is implicitly qualified with __autoreleasing.

Rationale

__autoreleasing exists mostly for this case, the Cocoa convention for out-parameters. Since a pointer to
const is obviously not an out-parameter, we instead use a type more useful for passing arrays. If the user
instead intends to pass in a mutable array, inferring __autoreleasing is the wrong thing to do; this directs
some of the caution in the following rules about writeback.

Such a type written anywhere else would be ill-formed by the general rule requiring ownership qualifiers.

This rule does not apply in Objective-C++ if a parameter’s type is dependent in a template pattern and is only
instantiated to a type which would be a pointer to an unqualified retainable object pointer type. Such code is still
ill-formed.

Clang Language Extensions

105



Rationale

The convention is very unlikely to be intentional in template code.

Template arguments

If a template argument for a template type parameter is an retainable object owner type that does not have an
explicit ownership qualifier, it is adjusted to have __strong qualification. This adjustment occurs regardless of
whether the template argument was deduced or explicitly specified.

Rationale

__strong is a useful default for containers (e.g., std::vector<id>), which would otherwise require explicit
qualification. Moreover, unqualified retainable object pointer types are unlikely to be useful within templates,
since they generally need to have a qualifier applied to the before being used.

Method families

An Objective-C method may fall into a method family, which is a conventional set of behaviors ascribed to it by the
Cocoa conventions.

A method is in a certain method family if:

• it has a objc_method_family attribute placing it in that family; or if not that,

• it does not have an objc_method_family attribute placing it in a different or no family, and

• its selector falls into the corresponding selector family, and

• its signature obeys the added restrictions of the method family.

A selector is in a certain selector family if, ignoring any leading underscores, the first component of the selector either
consists entirely of the name of the method family or it begins with that name followed by a character other than a
lowercase letter. For example, _perform:with: and performWith: would fall into the perform family (if we
recognized one), but performing:with would not.

The families and their added restrictions are:

• alloc methods must return a retainable object pointer type.

• copy methods must return a retainable object pointer type.

• mutableCopy methods must return a retainable object pointer type.

• new methods must return a retainable object pointer type.

• init methods must be instance methods and must return an Objective-C pointer type. Additionally, a program
is ill-formed if it declares or contains a call to an init method whose return type is neither id nor a pointer to a
super-class or sub-class of the declaring class (if the method was declared on a class) or the static receiver
type of the call (if it was declared on a protocol).

Rationale

There are a fair number of existing methods with init-like selectors which nonetheless don’t follow the
init conventions. Typically these are either accidental naming collisions or helper methods called during
initialization. Because of the peculiar retain/release behavior of init methods, it’s very important not to
treat these methods as init methods if they aren’t meant to be. It was felt that implicitly defining these
methods out of the family based on the exact relationship between the return type and the declaring class
would be much too subtle and fragile. Therefore we identify a small number of legitimate-seeming return
types and call everything else an error. This serves the secondary purpose of encouraging programmers not
to accidentally give methods names in the init family.

Clang Language Extensions

106



Note that a method with an init-family selector which returns a non-Objective-C type (e.g. void) is
perfectly well-formed; it simply isn’t in the init family.

A program is ill-formed if a method’s declarations, implementations, and overrides do not all have the same method
family.

Explicit method family control

A method may be annotated with the objc_method_family attribute to precisely control which method family it
belongs to. If a method in an @implementation does not have this attribute, but there is a method declared in the
corresponding @interface that does, then the attribute is copied to the declaration in the @implementation. The
attribute is available outside of ARC, and may be tested for with the preprocessor query
__has_attribute(objc_method_family).

The attribute is spelled __attribute__((objc_method_family( family ))). If family is none, the method has
no family, even if it would otherwise be considered to have one based on its selector and type. Otherwise, family
must be one of alloc, copy, init, mutableCopy, or new, in which case the method is considered to belong to the
corresponding family regardless of its selector. It is an error if a method that is explicitly added to a family in this way
does not meet the requirements of the family other than the selector naming convention.

Rationale

The rules codified in this document describe the standard conventions of Objective-C. However, as these
conventions have not heretofore been enforced by an unforgiving mechanical system, they are only imperfectly
kept, especially as they haven’t always even been precisely defined. While it is possible to define low-level
ownership semantics with attributes like ns_returns_retained, this attribute allows the user to communicate
semantic intent, which is of use both to ARC (which, e.g., treats calls to init specially) and the static analyzer.

Semantics of method families

A method’s membership in a method family may imply non-standard semantics for its parameters and return type.

Methods in the alloc, copy, mutableCopy, and new families — that is, methods in all the currently-defined
families except init — implicitly return a retained object as if they were annotated with the
ns_returns_retained attribute. This can be overridden by annotating the method with either of the
ns_returns_autoreleased or ns_returns_not_retained attributes.

Properties also follow same naming rules as methods. This means that those in the alloc, copy, mutableCopy,
and new families provide access to retained objects. This can be overridden by annotating the property with
ns_returns_not_retained attribute.

Semantics of init

Methods in the init family implicitly consume their self parameter and return a retained object. Neither of these
properties can be altered through attributes.

A call to an init method with a receiver that is either self (possibly parenthesized or casted) or super is called a
delegate init call. It is an error for a delegate init call to be made except from an init method, and excluding blocks
within such methods.

As an exception to the usual rule, the variable self is mutable in an init method and has the usual semantics for a
__strong variable. However, it is undefined behavior and the program is ill-formed, no diagnostic required, if an
init method attempts to use the previous value of self after the completion of a delegate init call. It is
conventional, but not required, for an init method to return self.

It is undefined behavior for a program to cause two or more calls to init methods on the same object, except that
each init method invocation may perform at most one delegate init call.

Clang Language Extensions

107



Related result types

Certain methods are candidates to have related result types:

• class methods in the alloc and new method families

• instance methods in the init family

• the instance method self

• outside of ARC, the instance methods retain and autorelease

If the formal result type of such a method is id or protocol-qualified id, or a type equal to the declaring class or a
superclass, then it is said to have a related result type. In this case, when invoked in an explicit message send, it is
assumed to return a type related to the type of the receiver:

• if it is a class method, and the receiver is a class name T, the message send expression has type T*; otherwise

• if it is an instance method, and the receiver has type T, the message send expression has type T; otherwise

• the message send expression has the normal result type of the method.

This is a new rule of the Objective-C language and applies outside of ARC.

Rationale

ARC’s automatic code emission is more prone than most code to signature errors, i.e. errors where a call was
emitted against one method signature, but the implementing method has an incompatible signature. Having more
precise type information helps drastically lower this risk, as well as catching a number of latent bugs.

Optimization

Within this section, the word function will be used to refer to any structured unit of code, be it a C function, an
Objective-C method, or a block.

This specification describes ARC as performing specific retain and release operations on retainable object
pointers at specific points during the execution of a program. These operations make up a non-contiguous
subsequence of the computation history of the program. The portion of this sequence for a particular retainable
object pointer for which a specific function execution is directly responsible is the formal local retain history of the
object pointer. The corresponding actual sequence executed is the dynamic local retain history.

However, under certain circumstances, ARC is permitted to re-order and eliminate operations in a manner which
may alter the overall computation history beyond what is permitted by the general “as if” rule of C/C++ and the
restrictions on the implementation of retain and release.

Rationale

Specifically, ARC is sometimes permitted to optimize release operations in ways which might cause an object
to be deallocated before it would otherwise be. Without this, it would be almost impossible to eliminate any
retain/release pairs. For example, consider the following code:

id x = _ivar;
[x foo];

If we were not permitted in any event to shorten the lifetime of the object in x, then we would not be able to
eliminate this retain and release unless we could prove that the message send could not modify _ivar (or
deallocate self). Since message sends are opaque to the optimizer, this is not possible, and so ARC’s hands
would be almost completely tied.

ARC makes no guarantees about the execution of a computation history which contains undefined behavior. In
particular, ARC makes no guarantees in the presence of race conditions.

Clang Language Extensions

108



ARC may assume that any retainable object pointers it receives or generates are instantaneously valid from that
point until a point which, by the concurrency model of the host language, happens-after the generation of the pointer
and happens-before a release of that object (possibly via an aliasing pointer or indirectly due to destruction of a
different object).

Rationale

There is very little point in trying to guarantee correctness in the presence of race conditions. ARC does not have
a stack-scanning garbage collector, and guaranteeing the atomicity of every load and store operation would be
prohibitive and preclude a vast amount of optimization.

ARC may assume that non-ARC code engages in sensible balancing behavior and does not rely on exact or
minimum retain count values except as guaranteed by __strong object invariants or +1 transfer conventions. For
example, if an object is provably double-retained and double-released, ARC may eliminate the inner retain and
release; it does not need to guard against code which performs an unbalanced release followed by a “balancing”
retain.

Object liveness

ARC may not allow a retainable object X to be deallocated at a time T in a computation history if:

• X is the value stored in a __strong object S with precise lifetime semantics, or

• X is the value stored in a __strong object S with imprecise lifetime semantics and, at some point after T but
before the next store to S, the computation history features a load from S and in some way depends on the
value loaded, or

• X is a value described as being released at the end of the current full-expression and, at some point after T but
before the end of the full-expression, the computation history depends on that value.

Rationale

The intent of the second rule is to say that objects held in normal __strong local variables may be released as
soon as the value in the variable is no longer being used: either the variable stops being used completely or a
new value is stored in the variable.

The intent of the third rule is to say that return values may be released after they’ve been used.

A computation history depends on a pointer value P if it:

• performs a pointer comparison with P,

• loads from P,

• stores to P,

• depends on a pointer value Q derived via pointer arithmetic from P (including an instance-variable or field
access), or

• depends on a pointer value Q loaded from P.

Dependency applies only to values derived directly or indirectly from a particular expression result and does not
occur merely because a separate pointer value dynamically aliases P. Furthermore, this dependency is not carried
by values that are stored to objects.

Rationale

The restrictions on dependency are intended to make this analysis feasible by an optimizer with only incomplete
information about a program. Essentially, dependence is carried to “obvious” uses of a pointer. Merely passing a
pointer argument to a function does not itself cause dependence, but since generally the optimizer will not be

Clang Language Extensions

109



able to prove that the function doesn’t depend on that parameter, it will be forced to conservatively assume it
does.

Dependency propagates to values loaded from a pointer because those values might be invalidated by
deallocating the object. For example, given the code __strong id x = p->ivar;, ARC must not move the
release of p to between the load of p->ivar and the retain of that value for storing into x.

Dependency does not propagate through stores of dependent pointer values because doing so would allow
dependency to outlive the full-expression which produced the original value. For example, the address of an
instance variable could be written to some global location and then freely accessed during the lifetime of the
local, or a function could return an inner pointer of an object and store it to a local. These cases would be
potentially impossible to reason about and so would basically prevent any optimizations based on imprecise
lifetime. There are also uncommon enough to make it reasonable to require the precise-lifetime annotation if
someone really wants to rely on them.

Dependency does propagate through return values of pointer type. The compelling source of need for this rule is
a property accessor which returns an un-autoreleased result; the calling function must have the chance to
operate on the value, e.g. to retain it, before ARC releases the original pointer. Note again, however, that
dependence does not survive a store, so ARC does not guarantee the continued validity of the return value past
the end of the full-expression.

No object lifetime extension

If, in the formal computation history of the program, an object X has been deallocated by the time of an observable
side-effect, then ARC must cause X to be deallocated by no later than the occurrence of that side-effect, except as
influenced by the re-ordering of the destruction of objects.

Rationale

This rule is intended to prohibit ARC from observably extending the lifetime of a retainable object, other than as
specified in this document. Together with the rule limiting the transformation of releases, this rule requires ARC to
eliminate retains and release only in pairs.

ARC’s power to reorder the destruction of objects is critical to its ability to do any optimization, for essentially the
same reason that it must retain the power to decrease the lifetime of an object. Unfortunately, while it’s generally
poor style for the destruction of objects to have arbitrary side-effects, it’s certainly possible. Hence the caveat.

Precise lifetime semantics

In general, ARC maintains an invariant that a retainable object pointer held in a __strong object will be retained for
the full formal lifetime of the object. Objects subject to this invariant have precise lifetime semantics.

By default, local variables of automatic storage duration do not have precise lifetime semantics. Such objects are
simply strong references which hold values of retainable object pointer type, and these values are still fully subject to
the optimizations on values under local control.

Rationale

Applying these precise-lifetime semantics strictly would be prohibitive. Many useful optimizations that might
theoretically decrease the lifetime of an object would be rendered impossible. Essentially, it promises too much.

A local variable of retainable object owner type and automatic storage duration may be annotated with the
objc_precise_lifetime attribute to indicate that it should be considered to be an object with precise lifetime
semantics.

Clang Language Extensions

110



Rationale

Nonetheless, it is sometimes useful to be able to force an object to be released at a precise time, even if that
object does not appear to be used. This is likely to be uncommon enough that the syntactic weight of explicitly
requesting these semantics will not be burdensome, and may even make the code clearer.

Miscellaneous

Special methods

Memory management methods

A program is ill-formed if it contains a method definition, message send, or @selector expression for any of the
following selectors:

• autorelease

• release

• retain

• retainCount

Rationale

retainCount is banned because ARC robs it of consistent semantics. The others were banned after weighing
three options for how to deal with message sends:

Honoring them would work out very poorly if a programmer naively or accidentally tried to incorporate code
written for manual retain/release code into an ARC program. At best, such code would do twice as much work as
necessary; quite frequently, however, ARC and the explicit code would both try to balance the same retain,
leading to crashes. The cost is losing the ability to perform “unrooted” retains, i.e. retains not logically
corresponding to a strong reference in the object graph.

Ignoring them would badly violate user expectations about their code. While it would make it easier to develop
code simultaneously for ARC and non-ARC, there is very little reason to do so except for certain library
developers. ARC and non-ARC translation units share an execution model and can seamlessly interoperate.
Within a translation unit, a developer who faithfully maintains their code in non-ARC mode is suffering all the
restrictions of ARC for zero benefit, while a developer who isn’t testing the non-ARC mode is likely to be
unpleasantly surprised if they try to go back to it.

Banning them has the disadvantage of making it very awkward to migrate existing code to ARC. The best
answer to that, given a number of other changes and restrictions in ARC, is to provide a specialized tool to assist
users in that migration.

Implementing these methods was banned because they are too integral to the semantics of ARC; many tricks
which worked tolerably under manual reference counting will misbehave if ARC performs an ephemeral extra
retain or two. If absolutely required, it is still possible to implement them in non-ARC code, for example in a
category; the implementations must obey the semantics laid out elsewhere in this document.

dealloc

A program is ill-formed if it contains a message send or @selector expression for the selector dealloc.

Rationale

There are no legitimate reasons to call dealloc directly.

Clang Language Extensions

111



A class may provide a method definition for an instance method named dealloc. This method will be called after
the final release of the object but before it is deallocated or any of its instance variables are destroyed. The
superclass’s implementation of dealloc will be called automatically when the method returns.

Rationale

Even though ARC destroys instance variables automatically, there are still legitimate reasons to write a dealloc
method, such as freeing non-retainable resources. Failing to call [super dealloc] in such a method is nearly
always a bug. Sometimes, the object is simply trying to prevent itself from being destroyed, but dealloc is really
far too late for the object to be raising such objections. Somewhat more legitimately, an object may have been
pool-allocated and should not be deallocated with free; for now, this can only be supported with a dealloc
implementation outside of ARC. Such an implementation must be very careful to do all the other work that
NSObject’s dealloc would, which is outside the scope of this document to describe.

The instance variables for an ARC-compiled class will be destroyed at some point after control enters the dealloc
method for the root class of the class. The ordering of the destruction of instance variables is unspecified, both within
a single class and between subclasses and superclasses.

Rationale

The traditional, non-ARC pattern for destroying instance variables is to destroy them immediately before calling
[super dealloc]. Unfortunately, message sends from the superclass are quite capable of reaching methods
in the subclass, and those methods may well read or write to those instance variables. Making such message
sends from dealloc is generally discouraged, since the subclass may well rely on other invariants that were
broken during dealloc, but it’s not so inescapably dangerous that we felt comfortable calling it undefined
behavior. Therefore we chose to delay destroying the instance variables to a point at which message sends are
clearly disallowed: the point at which the root class’s deallocation routines take over.

In most code, the difference is not observable. It can, however, be observed if an instance variable holds a strong
reference to an object whose deallocation will trigger a side-effect which must be carefully ordered with respect to
the destruction of the super class. Such code violates the design principle that semantically important behavior
should be explicit. A simple fix is to clear the instance variable manually during dealloc; a more holistic solution
is to move semantically important side-effects out of dealloc and into a separate teardown phase which can
rely on working with well-formed objects.

@autoreleasepool

To simplify the use of autorelease pools, and to bring them under the control of the compiler, a new kind of statement
is available in Objective-C. It is written @autoreleasepool followed by a compound-statement, i.e. by a new scope
delimited by curly braces. Upon entry to this block, the current state of the autorelease pool is captured. When the
block is exited normally, whether by fallthrough or directed control flow (such as return or break), the autorelease
pool is restored to the saved state, releasing all the objects in it. When the block is exited with an exception, the pool
is not drained.

@autoreleasepool may be used in non-ARC translation units, with equivalent semantics.

A program is ill-formed if it refers to the NSAutoreleasePool class.

Rationale

Autorelease pools are clearly important for the compiler to reason about, but it is far too much to expect the
compiler to accurately reason about control dependencies between two calls. It is also very easy to accidentally
forget to drain an autorelease pool when using the manual API, and this can significantly inflate the process’s
high-water-mark. The introduction of a new scope is unfortunate but basically required for sane interaction with
the rest of the language. Not draining the pool during an unwind is apparently required by the Objective-C
exceptions implementation.

Clang Language Extensions

112



Externally-Retained Variables

In some situations, variables with strong ownership are considered externally-retained by the implementation. This
means that the variable is retained elsewhere, and therefore the implementation can elide retaining and releasing its
value. Such a variable is implicitly const for safety. In contrast with __unsafe_unretained, an externally-retained
variable still behaves as a strong variable outside of initialization and destruction. For instance, when an
externally-retained variable is captured in a block the value of the variable is retained and released on block capture
and destruction. It also affects C++ features such as lambda capture, decltype, and template argument deduction.

Implicitly, the implementation assumes that the self parameter in a non-init method and the variable in a for-in loop
are externally-retained.

Externally-retained semantics can also be opted into with the objc_externally_retained attribute. This
attribute can apply to strong local variables, functions, methods, or blocks:

@class WobbleAmount;

@interface Widget : NSObject
-(void)wobble:(WobbleAmount *)amount;
@end

@implementation Widget

-(void)wobble:(WobbleAmount *)amount
         __attribute__((objc_externally_retained)) {
  // 'amount' and 'alias' aren't retained on entry, nor released on exit.
  __attribute__((objc_externally_retained)) WobbleAmount *alias = amount;
}
@end

Annotating a function with this attribute makes every parameter with strong retainable object pointer type
externally-retained, unless the variable was explicitly qualified with __strong. For instance, first_param is
externally-retained (and therefore const) below, but not second_param:

__attribute__((objc_externally_retained))
void f(NSArray *first_param, __strong NSArray *second_param) {
  // ...
}

You can test if your compiler has support for objc_externally_retained with __has_attribute:

#if __has_attribute(objc_externally_retained)
// Use externally retained...
#endif

self

The self parameter variable of an non-init Objective-C method is considered externally-retained by the
implementation. It is undefined behavior, or at least dangerous, to cause an object to be deallocated during a
message send to that object. In an init method, self follows the
:ref:init family rules <arc.family.semantics.init>.

Rationale

The cost of retaining self in all methods was found to be prohibitive, as it tends to be live across calls,
preventing the optimizer from proving that the retain and release are unnecessary — for good reason, as it’s
quite possible in theory to cause an object to be deallocated during its execution without this retain and release.
Since it’s extremely uncommon to actually do so, even unintentionally, and since there’s no natural way for the
programmer to remove this retain/release pair otherwise (as there is for other parameters by, say, making the
variable objc_externally_retained or qualifying it with __unsafe_unretained), we chose to make this
optimizing assumption and shift some amount of risk to the user.

Clang Language Extensions

113



Fast enumeration iteration variables

If a variable is declared in the condition of an Objective-C fast enumeration loop, and the variable has no explicit
ownership qualifier, then it is implicitly externally-retained so that objects encountered during the enumeration are not
actually retained and released.

Rationale

This is an optimization made possible because fast enumeration loops promise to keep the objects retained
during enumeration, and the collection itself cannot be synchronously modified. It can be overridden by explicitly
qualifying the variable with __strong, which will make the variable mutable again and cause the loop to retain
the objects it encounters.

Blocks

The implicit const capture variables created when evaluating a block literal expression have the same ownership
semantics as the local variables they capture. The capture is performed by reading from the captured variable and
initializing the capture variable with that value; the capture variable is destroyed when the block literal is, i.e. at the
end of the enclosing scope.

The inference rules apply equally to __block variables, which is a shift in semantics from non-ARC, where
__block variables did not implicitly retain during capture.

__block variables of retainable object owner type are moved off the stack by initializing the heap copy with the
result of moving from the stack copy.

With the exception of retains done as part of initializing a __strong parameter variable or reading a __weak
variable, whenever these semantics call for retaining a value of block-pointer type, it has the effect of a
Block_copy. The optimizer may remove such copies when it sees that the result is used only as an argument to a
call.

When a block pointer type is converted to a non-block pointer type (such as id), Block_copy is called. This is
necessary because a block allocated on the stack won’t get copied to the heap when the non-block pointer escapes.
A block pointer is implicitly converted to id when it is passed to a function as a variadic argument.

Exceptions

By default in Objective C, ARC is not exception-safe for normal releases:

• It does not end the lifetime of __strong variables when their scopes are abnormally terminated by an
exception.

• It does not perform releases which would occur at the end of a full-expression if that full-expression throws an
exception.

A program may be compiled with the option -fobjc-arc-exceptions in order to enable these, or with the option
-fno-objc-arc-exceptions to explicitly disable them, with the last such argument “winning”.

Rationale

The standard Cocoa convention is that exceptions signal programmer error and are not intended to be recovered
from. Making code exceptions-safe by default would impose severe runtime and code size penalties on code that
typically does not actually care about exceptions safety. Therefore, ARC-generated code leaks by default on
exceptions, which is just fine if the process is going to be immediately terminated anyway. Programs which do
care about recovering from exceptions should enable the option.

In Objective-C++, -fobjc-arc-exceptions is enabled by default.

Clang Language Extensions

114



Rationale

C++ already introduces pervasive exceptions-cleanup code of the sort that ARC introduces. C++ programmers
who have not already disabled exceptions are much more likely to actual require exception-safety.

ARC does end the lifetimes of __weak objects when an exception terminates their scope unless exceptions are
disabled in the compiler.

Rationale

The consequence of a local __weak object not being destroyed is very likely to be corruption of the Objective-C
runtime, so we want to be safer here. Of course, potentially massive leaks are about as likely to take down the
process as this corruption is if the program does try to recover from exceptions.

Interior pointers

An Objective-C method returning a non-retainable pointer may be annotated with the
objc_returns_inner_pointer attribute to indicate that it returns a handle to the internal data of an object, and
that this reference will be invalidated if the object is destroyed. When such a message is sent to an object, the
object’s lifetime will be extended until at least the earliest of:

• the last use of the returned pointer, or any pointer derived from it, in the calling function or

• the autorelease pool is restored to a previous state.

Rationale

Rationale: not all memory and resources are managed with reference counts; it is common for objects to manage
private resources in their own, private way. Typically these resources are completely encapsulated within the
object, but some classes offer their users direct access for efficiency. If ARC is not aware of methods that return
such “interior” pointers, its optimizations can cause the owning object to be reclaimed too soon. This attribute
informs ARC that it must tread lightly.

The extension rules are somewhat intentionally vague. The autorelease pool limit is there to permit a simple
implementation to simply retain and autorelease the receiver. The other limit permits some amount of
optimization. The phrase “derived from” is intended to encompass the results both of pointer transformations,
such as casts and arithmetic, and of loading from such derived pointers; furthermore, it applies whether or not
such derivations are applied directly in the calling code or by other utility code (for example, the C library routine
strchr). However, the implementation never need account for uses after a return from the code which calls the
method returning an interior pointer.

As an exception, no extension is required if the receiver is loaded directly from a __strong object with precise
lifetime semantics.

Rationale

Implicit autoreleases carry the risk of significantly inflating memory use, so it’s important to provide users a way of
avoiding these autoreleases. Tying this to precise lifetime semantics is ideal, as for local variables this requires a
very explicit annotation, which allows ARC to trust the user with good cheer.

C retainable pointer types

A type is a C retainable pointer type if it is a pointer to (possibly qualified) void or a pointer to a (possibly qualifier)
struct or class type.

Clang Language Extensions

115



Rationale

ARC does not manage pointers of CoreFoundation type (or any of the related families of retainable C pointers
which interoperate with Objective-C for retain/release operation). In fact, ARC does not even know how to
distinguish these types from arbitrary C pointer types. The intent of this concept is to filter out some obviously
non-object types while leaving a hook for later tightening if a means of exhaustively marking CF types is made
available.

Auditing of C retainable pointer interfaces

[beginning Apple 4.0, LLVM 3.1]

A C function may be marked with the cf_audited_transfer attribute to express that, except as otherwise
marked with attributes, it obeys the parameter (consuming vs. non-consuming) and return (retained vs. non-retained)
conventions for a C function of its name, namely:

• A parameter of C retainable pointer type is assumed to not be consumed unless it is marked with the
cf_consumed attribute, and

• A result of C retainable pointer type is assumed to not be returned retained unless the function is either marked
cf_returns_retained or it follows the create/copy naming convention and is not marked
cf_returns_not_retained.

A function obeys the create/copy naming convention if its name contains as a substring:

• either “Create” or “Copy” not followed by a lowercase letter, or

• either “create” or “copy” not followed by a lowercase letter and not preceded by any letter, whether uppercase
or lowercase.

A second attribute, cf_unknown_transfer, signifies that a function’s transfer semantics cannot be accurately
captured using any of these annotations. A program is ill-formed if it annotates the same function with both
cf_audited_transfer and cf_unknown_transfer.

A pragma is provided to facilitate the mass annotation of interfaces:

#pragma clang arc_cf_code_audited begin
...
#pragma clang arc_cf_code_audited end

All C functions declared within the extent of this pragma are treated as if annotated with the
cf_audited_transfer attribute unless they otherwise have the cf_unknown_transfer attribute. The pragma
is accepted in all language modes. A program is ill-formed if it attempts to change files, whether by including a file or
ending the current file, within the extent of this pragma.

It is possible to test for all the features in this section with __has_feature(arc_cf_code_audited).

Rationale

A significant inconvenience in ARC programming is the necessity of interacting with APIs based around C
retainable pointers. These features are designed to make it relatively easy for API authors to quickly review and
annotate their interfaces, in turn improving the fidelity of tools such as the static analyzer and ARC. The single-file
restriction on the pragma is designed to eliminate the risk of accidentally annotating some other header’s
interfaces.

Runtime support

This section describes the interaction between the ARC runtime and the code generated by the ARC compiler. This
is not part of the ARC language specification; instead, it is effectively a language-specific ABI supplement, akin to the
“Itanium” generic ABI for C++.

Clang Language Extensions

116



Ownership qualification does not alter the storage requirements for objects, except that it is undefined behavior if a
__weak object is inadequately aligned for an object of type id. The other qualifiers may be used on explicitly
under-aligned memory.

The runtime tracks __weak objects which holds non-null values. It is undefined behavior to direct modify a __weak
object which is being tracked by the runtime except through an objc_storeWeak, objc_destroyWeak, or
objc_moveWeak call.

The runtime must provide a number of new entrypoints which the compiler may emit, which are described in the
remainder of this section.

Rationale

Several of these functions are semantically equivalent to a message send; we emit calls to C functions instead
because:

• the machine code to do so is significantly smaller,

• it is much easier to recognize the C functions in the ARC optimizer, and

• a sufficient sophisticated runtime may be able to avoid the message send in common cases.

Several other of these functions are “fused” operations which can be described entirely in terms of other
operations. We use the fused operations primarily as a code-size optimization, although in some cases there is
also a real potential for avoiding redundant operations in the runtime.

id objc_autorelease(id value);

Precondition: value is null or a pointer to a valid object.

If value is null, this call has no effect. Otherwise, it adds the object to the innermost autorelease pool exactly as if
the object had been sent the autorelease message.

Always returns value.

void objc_autoreleasePoolPop(void *pool);

Precondition: pool is the result of a previous call to objc_autoreleasePoolPush on the current thread, where neither
pool nor any enclosing pool have previously been popped.

Releases all the objects added to the given autorelease pool and any autorelease pools it encloses, then sets the
current autorelease pool to the pool directly enclosing pool.

void *objc_autoreleasePoolPush(void);

Creates a new autorelease pool that is enclosed by the current pool, makes that the current pool, and returns an
opaque “handle” to it.

Rationale

While the interface is described as an explicit hierarchy of pools, the rules allow the implementation to just keep a
stack of objects, using the stack depth as the opaque pool handle.

id objc_autoreleaseReturnValue(id value);

Precondition: value is null or a pointer to a valid object.

If value is null, this call has no effect. Otherwise, it makes a best effort to hand off ownership of a retain count on the
object to a call to objc_retainAutoreleasedReturnValue (or objc_unsafeClaimAutoreleasedReturnValue) for the same
object in an enclosing call frame. If this is not possible, the object is autoreleased as above.

Always returns value.

Clang Language Extensions

117



void objc_copyWeak(id *dest, id *src);

Precondition: src is a valid pointer which either contains a null pointer or has been registered as a __weak object.
dest is a valid pointer which has not been registered as a __weak object.

dest is initialized to be equivalent to src, potentially registering it with the runtime. Equivalent to the following code:

void objc_copyWeak(id *dest, id *src) {
  objc_release(objc_initWeak(dest, objc_loadWeakRetained(src)));
}

Must be atomic with respect to calls to objc_storeWeak on src.

void objc_destroyWeak(id *object);

Precondition: object is a valid pointer which either contains a null pointer or has been registered as a __weak
object.

object is unregistered as a weak object, if it ever was. The current value of object is left unspecified; otherwise,
equivalent to the following code:

void objc_destroyWeak(id *object) {
  objc_storeWeak(object, nil);
}

Does not need to be atomic with respect to calls to objc_storeWeak on object.

id objc_initWeak(id *object, id value);

Precondition: object is a valid pointer which has not been registered as a __weak object. value is null or a pointer
to a valid object.

If value is a null pointer or the object to which it points has begun deallocation, object is zero-initialized.
Otherwise, object is registered as a __weak object pointing to value. Equivalent to the following code:

id objc_initWeak(id *object, id value) {
  *object = nil;
  return objc_storeWeak(object, value);
}

Returns the value of object after the call.

Does not need to be atomic with respect to calls to objc_storeWeak on object.

id objc_loadWeak(id *object);

Precondition: object is a valid pointer which either contains a null pointer or has been registered as a __weak
object.

If object is registered as a __weak object, and the last value stored into object has not yet been deallocated or
begun deallocation, retains and autoreleases that value and returns it. Otherwise returns null. Equivalent to the
following code:

id objc_loadWeak(id *object) {
  return objc_autorelease(objc_loadWeakRetained(object));
}

Must be atomic with respect to calls to objc_storeWeak on object.

Rationale

Loading weak references would be inherently prone to race conditions without the retain.

Clang Language Extensions

118



id objc_loadWeakRetained(id *object);

Precondition: object is a valid pointer which either contains a null pointer or has been registered as a __weak
object.

If object is registered as a __weak object, and the last value stored into object has not yet been deallocated or
begun deallocation, retains that value and returns it. Otherwise returns null.

Must be atomic with respect to calls to objc_storeWeak on object.

void objc_moveWeak(id *dest, id *src);

Precondition: src is a valid pointer which either contains a null pointer or has been registered as a __weak object.
dest is a valid pointer which has not been registered as a __weak object.

dest is initialized to be equivalent to src, potentially registering it with the runtime. src may then be left in its
original state, in which case this call is equivalent to objc_copyWeak, or it may be left as null.

Must be atomic with respect to calls to objc_storeWeak on src.

void objc_release(id value);

Precondition: value is null or a pointer to a valid object.

If value is null, this call has no effect. Otherwise, it performs a release operation exactly as if the object had been
sent the release message.

id objc_retain(id value);

Precondition: value is null or a pointer to a valid object.

If value is null, this call has no effect. Otherwise, it performs a retain operation exactly as if the object had been sent
the retain message.

Always returns value.

id objc_retainAutorelease(id value);

Precondition: value is null or a pointer to a valid object.

If value is null, this call has no effect. Otherwise, it performs a retain operation followed by an autorelease
operation. Equivalent to the following code:

id objc_retainAutorelease(id value) {
  return objc_autorelease(objc_retain(value));
}

Always returns value.

id objc_retainAutoreleaseReturnValue(id value);

Precondition: value is null or a pointer to a valid object.

If value is null, this call has no effect. Otherwise, it performs a retain operation followed by the operation described
in objc_autoreleaseReturnValue. Equivalent to the following code:

id objc_retainAutoreleaseReturnValue(id value) {
  return objc_autoreleaseReturnValue(objc_retain(value));
}

Always returns value.

id objc_retainAutoreleasedReturnValue(id value);

Precondition: value is null or a pointer to a valid object.

Clang Language Extensions

119



If value is null, this call has no effect. Otherwise, it attempts to accept a hand off of a retain count from a call to
objc_autoreleaseReturnValue on value in a recently-called function or something it tail-calls. If that fails, it performs
a retain operation exactly like objc_retain.

Always returns value.

id objc_retainBlock(id value);

Precondition: value is null or a pointer to a valid block object.

If value is null, this call has no effect. Otherwise, if the block pointed to by value is still on the stack, it is copied to
the heap and the address of the copy is returned. Otherwise a retain operation is performed on the block exactly as if
it had been sent the retain message.

void objc_storeStrong(id *object, id value);

Precondition: object is a valid pointer to a __strong object which is adequately aligned for a pointer. value is null
or a pointer to a valid object.

Performs the complete sequence for assigning to a __strong object of non-block type 1. Equivalent to the following
code:

void objc_storeStrong(id *object, id value) {
  id oldValue = *object;
  value = [value retain];
  *object = value;
  [oldValue release];
}

1 This does not imply that a __strong object of block type is an invalid argument to this function.
Rather it implies that an objc_retain and not an objc_retainBlock operation will be
emitted if the argument is a block.

id objc_storeWeak(id *object, id value);

Precondition: object is a valid pointer which either contains a null pointer or has been registered as a __weak
object. value is null or a pointer to a valid object.

If value is a null pointer or the object to which it points has begun deallocation, object is assigned null and
unregistered as a __weak object. Otherwise, object is registered as a __weak object or has its registration
updated to point to value.

Returns the value of object after the call.

id objc_unsafeClaimAutoreleasedReturnValue(id value);

Precondition: value is null or a pointer to a valid object.

If value is null, this call has no effect. Otherwise, it attempts to accept a hand off of a retain count from a call to
objc_autoreleaseReturnValue on value in a recently-called function or something it tail-calls (in a manner similar to
objc_retainAutoreleasedReturnValue). If that succeeds, it performs a release operation exactly like objc_release. If
the handoff fails, this call has no effect.

Always returns value.

Clang Language Extensions

120



Matrix Types
Draft Specification 121

Matrix Type 121

Matrix Type Attribute 121

Standard Conversions 121

Arithmetic Conversions 122

Matrix Type Element Access Operator 122

Matrix Type Binary Operators 122

Matrix Type Builtin Operations 123

TODOs 124

Decisions for the Implementation in Clang 124

Clang provides a C/C++ language extension that allows users to directly express fixed-size 2-dimensional matrices
as language values and perform arithmetic on them.

This feature is currently experimental, and both its design and its implementation are in flux.

Draft Specification

Matrix Type

A matrix type is a scalar type with an underlying element type, a constant number of rows, and a constant number of
columns. Matrix types with the same element type, rows, and columns are the same type. A value of a matrix type
includes storage for rows * columns values of the element type. The internal layout, overall size and alignment
are implementation-defined.

The maximum of the product of the number of rows and columns is implementation-defined. If that
implementation-defined limit is exceeded, the program is ill-formed.

Currently, the element type of a matrix is only permitted to be one of the following types:

• an integer type (as in C2x 6.2.5p19), but excluding enumerated types and _Bool

• the standard floating types float or double

• a half-precision floating point type, if one is supported on the target

Other types may be supported in the future.

Matrix Type Attribute

Matrix types can be declared by adding the matrix_type attribute to the declaration of a typedef (or a C++ alias
declaration). The underlying type of the typedef must be a valid matrix element type. The attribute takes two
arguments, both of which must be integer constant expressions that evaluate to a value greater than zero. The first
specifies the number of rows, and the second specifies the number of columns. The underlying type of the typedef
becomes a matrix type with the given dimensions and an element type of the former underlying type.

If a declaration of a typedef-name has a matrix_type attribute, then all declaration of that typedef-name shall have
a matrix_type attribute with the same element type, number of rows, and number of columns.

Standard Conversions

The standard conversions are extended as follows. Note that these conversions are intentionally not listed as
satisfying the constraints for assignment, which is to say, they are only permitted as explicit casts, not as implicit
conversions.

A value of matrix type can be converted to another matrix type if the number of rows and columns are the same and
the value’s elements can be converted to the element type of the result type. The result is a matrix where each
element is the converted corresponding element.

Clang Language Extensions

121



A value of any real type (as in C2x 6.2.5p17) can be converted to a matrix type if it can be converted to the element
type of the matrix. The result is a matrix where all elements are the converted original value.

If the number of rows or columns differ between the original and resulting type, the program is ill-formed.

Arithmetic Conversions

The usual arithmetic conversions are extended as follows.

Insert at the start:

• If both operands are of matrix type, no arithmetic conversion is performed.

• If one operand is of matrix type and the other operand is of a real type, convert the real type operand to the
matrix type according to the standard conversion rules.

Matrix Type Element Access Operator

An expression of the form E1 [E2] [E3], where E1 has matrix type cv M, is a matrix element access expression.
Let T be the element type of M, and let R and C be the number of rows and columns in M respectively. The index
expressions shall have integral or unscoped enumeration type and shall not be uses of the comma operator unless
parenthesized. The first index expression shall evaluate to a non-negative value less than R, and the second index
expression shall evaluate to a non-negative value less than C, or else the expression has undefined behavior. If E1 is
a prvalue, the result is a prvalue with type T and is the value of the element at the given row and column in the
matrix. Otherwise, the result is a glvalue with type cv T and with the same value category as E1 which refers to the
element at the given row and column in the matrix.

Programs containing a single subscript expression into a matrix are ill-formed.

Note: We considered providing an expression of the form postfix-expression [expression] to access
columns of a matrix. We think that such an expression would be problematic once both column and row major
matrixes are supported: depending on the memory layout, either accessing columns or rows can be done efficiently,
but not both. Instead, we propose to provide builtins to extract rows and columns from a matrix. This makes the
operations more explicit.

Matrix Type Binary Operators

Given two matrixes, the + and - operators perform element-wise addition and subtraction, while the * operator
performs matrix multiplication. +, -, *, and / can also be used with a matrix and a scalar value, applying the
operation to each element of the matrix.

Earlier versions of this extension did not support division by a scalar. You can test for the availability of this feature
with __has_extension(matrix_types_scalar_division).

For the expression M1 BIN_OP M2 where

• BIN_OP is one of + or -, one of M1 and M2 is of matrix type, and the other is of matrix type or real type; or

• BIN_OP is *, one of M1 and M2 is of matrix type, and the

other is of a real type; or

• BIN_OP is /, M1 is of matrix type, and M2 is of a real type:

• The usual arithmetic conversions are applied to M1 and M2. [ Note: if M1 or M2 are of a real type, they are
broadcast to matrices here. — end note ]

• M1 and M2 shall be of the same matrix type.

• The result is equivalent to Res in the following where col is the number of columns and row is the number of
rows in the matrix type:

decltype(M1) Res;
for (int C = 0; C < col; ++C)
  for (int R = 0; R < row; ++R)
    Res[R][C] = M1[R][C] BIN_OP M2[R][C];

Given the expression M1 * M2 where M1 and M2 are of matrix type:

• The usual arithmetic conversions are applied to M1 and M2.

Clang Language Extensions

122



• The type of M1 shall have the same number of columns as the type of M2 has rows. The element types of M1
and M2 shall be the same type.

• The resulting type, MTy, is a matrix type with the common element type, the number of rows of M1 and the
number of columns of M2.

• The result is equivalent to Res in the following where EltTy is the element type of MTy, col is the number of
columns, row is the number of rows in MTy and inner is the number of columns of M1:

MTy Res;
for (int C = 0; C < col; ++C) {
  for (int R = 0; R < row; ++R) {
    EltTy Elt = 0;
    for (int K = 0; K < inner; ++K) {
      Elt += M1[R][K] * M2[K][C];
  }
  Res[R][C] = Elt;
}

All operations on matrix types match the behavior of the element type with respect to signed overflows.

With respect to floating-point contraction, rounding and environment rules, operations on matrix types match the
behavior of the elementwise operations in the corresponding expansions provided above.

Operations on floating-point matrices have the same rounding and floating-point environment behavior as ordinary
floating-point operations in the expression’s context. For the purposes of floating-point contraction, all calculations
done as part of a matrix operation are considered intermediate operations, and their results need not be rounded to
the format of the element type until the final result in the containing expression. This is subject to the normal
restrictions on contraction, such as #pragma STDC FP_CONTRACT.

For the +=, -= and *= operators the semantics match their expanded variants.

Matrix Type Builtin Operations

Each matrix type supports a collection of builtin expressions that look like function calls but do not form an overload
set. Here they are described as function declarations with rules for how to construct the argument list types and
return type and the library description elements from [library.description.structure.specifications]/3 in the C++
standard.

Definitions:

• M, M1, M2, M3 - Matrix types

• T - Element type

• row, col - Row and column arguments respectively.

M2 __builtin_matrix_transpose(M1 matrix)

Remarks: The return type is a cv-unqualified matrix type that has the same element type as M1 and has the same
number of rows as M1 has columns and the same number of columns as M1 has rows.

Returns: A matrix Res equivalent to the code below, where col refers to the number of columns of M, and row to
the number of rows of M.

Effects: Equivalent to:

M Res;
for (int C = 0; C < col; ++C)
  for (int R = 0; R < row; ++R)
    Res[C][R] = matrix[R][C];

M __builtin_matrix_column_major_load(T *ptr, size_t row, size_t col, size_t columnStr
ide)

Mandates: row and col shall be integral constants greater than 0.

Preconditions: columnStride is greater than or equal to row.

Clang Language Extensions

123



Remarks: The return type is a cv-unqualified matrix type with an element type of the cv-unqualified version of T and
a number of rows and columns equal to row and col respectively. The parameter columnStride is optional and if
omitted row is used as columnStride.

Returns: A matrix Res equivalent to:

M Res;
for (size_t C = 0; C < col; ++C) {
  for (size_t R = 0; R < row; ++K)
    Res[R][C] = ptr[R];
  ptr += columnStride
}

void __builtin_matrix_column_major_store(M matrix, T *ptr, size_t columnStride)

Preconditions: columnStride is greater than or equal to the number of rows in M.

Remarks: The type T is the const-unqualified version of the matrix argument’s element type. The parameter
columnStride is optional and if omitted, the number of rows of M is used as columnStride.

Effects: Equivalent to:

for (size_t C = 0; C < columns in M; ++C) {
  for (size_t R = 0; R < rows in M; ++K)
    ptr[R] = matrix[R][C];
  ptr += columnStride
}

TODOs

TODO: Does it make sense to allow M::element_type, M::rows, and M::columns where M is a matrix type? We don’t
support this anywhere else, but it’s convenient. The alternative is using template deduction to extract this information.
Also add spelling for C.

Future Work: Initialization syntax.

Decisions for the Implementation in Clang

This section details decisions taken for the implementation in Clang and is not part of the draft specification.

The elements of a value of a matrix type are laid out in column-major order without padding.

We propose to provide a Clang option to override this behavior and allow contraction of those operations (e.g.
-ffp-contract=matrix).

TODO: Specify how matrix values are passed to functions.

Introduction
This document describes the language extensions provided by Clang. In addition to the language extensions listed
here, Clang aims to support a broad range of GCC extensions. Please see the GCC manual for more information on
these extensions.

Feature Checking Macros
Language extensions can be very useful, but only if you know you can depend on them. In order to allow fine-grain
features checks, we support three builtin function-like macros. This allows you to directly test for a feature in your
code without having to resort to something like autoconf or fragile “compiler version checks”.

__has_builtin

This function-like macro takes a single identifier argument that is the name of a builtin function, a builtin
pseudo-function (taking one or more type arguments), or a builtin template. It evaluates to 1 if the builtin is supported
or 0 if not. It can be used like this:

Clang Language Extensions

124

https://gcc.gnu.org/onlinedocs/gcc/C-Extensions.html


#ifndef __has_builtin         // Optional of course.
  #define __has_builtin(x) 0  // Compatibility with non-clang compilers.
#endif

...
#if __has_builtin(__builtin_trap)
  __builtin_trap();
#else
  abort();
#endif
...

Note

Prior to Clang 10, __has_builtin could not be used to detect most builtin pseudo-functions.

__has_builtin should not be used to detect support for a builtin macro; use #ifdef instead.

__has_feature and __has_extension

These function-like macros take a single identifier argument that is the name of a feature. __has_feature
evaluates to 1 if the feature is both supported by Clang and standardized in the current language standard or 0 if not
(but see below), while __has_extension evaluates to 1 if the feature is supported by Clang in the current language
(either as a language extension or a standard language feature) or 0 if not. They can be used like this:

#ifndef __has_feature         // Optional of course.
  #define __has_feature(x) 0  // Compatibility with non-clang compilers.
#endif
#ifndef __has_extension
  #define __has_extension __has_feature // Compatibility with pre-3.0 compilers.
#endif

...
#if __has_feature(cxx_rvalue_references)
// This code will only be compiled with the -std=c++11 and -std=gnu++11
// options, because rvalue references are only standardized in C++11.
#endif

#if __has_extension(cxx_rvalue_references)
// This code will be compiled with the -std=c++11, -std=gnu++11, -std=c++98
// and -std=gnu++98 options, because rvalue references are supported as a
// language extension in C++98.
#endif

For backward compatibility, __has_feature can also be used to test for support for non-standardized features, i.e.
features not prefixed c_, cxx_ or objc_.

Another use of __has_feature is to check for compiler features not related to the language standard, such as e.g.
AddressSanitizer.

If the -pedantic-errors option is given, __has_extension is equivalent to __has_feature.

The feature tag is described along with the language feature below.

The feature name or extension name can also be specified with a preceding and following __ (double underscore) to
avoid interference from a macro with the same name. For instance, __cxx_rvalue_references__ can be used
instead of cxx_rvalue_references.

Clang Language Extensions

125



__has_cpp_attribute

This function-like macro is available in C++20 by default, and is provided as an extension in earlier language
standards. It takes a single argument that is the name of a double-square-bracket-style attribute. The argument can
either be a single identifier or a scoped identifier. If the attribute is supported, a nonzero value is returned. If the
attribute is a standards-based attribute, this macro returns a nonzero value based on the year and month in which
the attribute was voted into the working draft. See WG21 SD-6 for the list of values returned for standards-based
attributes. If the attribute is not supported by the current compilation target, this macro evaluates to 0. It can be used
like this:

#ifndef __has_cpp_attribute         // For backwards compatibility
  #define __has_cpp_attribute(x) 0
#endif

...
#if __has_cpp_attribute(clang::fallthrough)
#define FALLTHROUGH [[clang::fallthrough]]
#else
#define FALLTHROUGH
#endif
...

The attribute scope tokens clang and _Clang are interchangeable, as are the attribute scope tokens gnu and
__gnu__. Attribute tokens in either of these namespaces can be specified with a preceding and following __ (double
underscore) to avoid interference from a macro with the same name. For instance, gnu::__const__ can be used
instead of gnu::const.

__has_c_attribute

This function-like macro takes a single argument that is the name of an attribute exposed with the double
square-bracket syntax in C mode. The argument can either be a single identifier or a scoped identifier. If the attribute
is supported, a nonzero value is returned. If the attribute is not supported by the current compilation target, this
macro evaluates to 0. It can be used like this:

#ifndef __has_c_attribute         // Optional of course.
  #define __has_c_attribute(x) 0  // Compatibility with non-clang compilers.
#endif

...
#if __has_c_attribute(fallthrough)
  #define FALLTHROUGH [[fallthrough]]
#else
  #define FALLTHROUGH
#endif
...

The attribute scope tokens clang and _Clang are interchangeable, as are the attribute scope tokens gnu and
__gnu__. Attribute tokens in either of these namespaces can be specified with a preceding and following __ (double
underscore) to avoid interference from a macro with the same name. For instance, gnu::__const__ can be used
instead of gnu::const.

__has_attribute

This function-like macro takes a single identifier argument that is the name of a GNU-style attribute. It evaluates to 1
if the attribute is supported by the current compilation target, or 0 if not. It can be used like this:

#ifndef __has_attribute         // Optional of course.
  #define __has_attribute(x) 0  // Compatibility with non-clang compilers.
#endif

...
#if __has_attribute(always_inline)
#define ALWAYS_INLINE __attribute__((always_inline))

Clang Language Extensions

126

https://isocpp.org/std/standing-documents/sd-6-sg10-feature-test-recommendations


#else
#define ALWAYS_INLINE
#endif
...

The attribute name can also be specified with a preceding and following __ (double underscore) to avoid interference
from a macro with the same name. For instance, __always_inline__ can be used instead of always_inline.

__has_declspec_attribute

This function-like macro takes a single identifier argument that is the name of an attribute implemented as a
Microsoft-style __declspec attribute. It evaluates to 1 if the attribute is supported by the current compilation target,
or 0 if not. It can be used like this:

#ifndef __has_declspec_attribute         // Optional of course.
  #define __has_declspec_attribute(x) 0  // Compatibility with non-clang compilers.
#endif

...
#if __has_declspec_attribute(dllexport)
#define DLLEXPORT __declspec(dllexport)
#else
#define DLLEXPORT
#endif
...

The attribute name can also be specified with a preceding and following __ (double underscore) to avoid interference
from a macro with the same name. For instance, __dllexport__ can be used instead of dllexport.

__is_identifier

This function-like macro takes a single identifier argument that might be either a reserved word or a regular identifier.
It evaluates to 1 if the argument is just a regular identifier and not a reserved word, in the sense that it can then be
used as the name of a user-defined function or variable. Otherwise it evaluates to 0. It can be used like this:

...
#ifdef __is_identifier          // Compatibility with non-clang compilers.
  #if __is_identifier(__wchar_t)
    typedef wchar_t __wchar_t;
  #endif
#endif

__wchar_t WideCharacter;
...

Include File Checking Macros
Not all developments systems have the same include files. The __has_include and __has_include_next macros
allow you to check for the existence of an include file before doing a possibly failing #include directive. Include file
checking macros must be used as expressions in #if or #elif preprocessing directives.

__has_include

This function-like macro takes a single file name string argument that is the name of an include file. It evaluates to 1 if
the file can be found using the include paths, or 0 otherwise:

// Note the two possible file name string formats.
#if __has_include("myinclude.h") && __has_include(<stdint.h>)
# include "myinclude.h"
#endif

To test for this feature, use #if defined(__has_include):

Clang Language Extensions

127



// To avoid problem with non-clang compilers not having this macro.
#if defined(__has_include)
#if __has_include("myinclude.h")
# include "myinclude.h"
#endif
#endif

__has_include_next

This function-like macro takes a single file name string argument that is the name of an include file. It is like
__has_include except that it looks for the second instance of the given file found in the include paths. It evaluates
to 1 if the second instance of the file can be found using the include paths, or 0 otherwise:

// Note the two possible file name string formats.
#if __has_include_next("myinclude.h") && __has_include_next(<stdint.h>)
# include_next "myinclude.h"
#endif

// To avoid problem with non-clang compilers not having this macro.
#if defined(__has_include_next)
#if __has_include_next("myinclude.h")
# include_next "myinclude.h"
#endif
#endif

Note that __has_include_next, like the GNU extension #include_next directive, is intended for use in headers
only, and will issue a warning if used in the top-level compilation file. A warning will also be issued if an absolute path
is used in the file argument.

__has_warning

This function-like macro takes a string literal that represents a command line option for a warning and returns true if
that is a valid warning option.

#if __has_warning("-Wformat")
...
#endif

Builtin Macros
__BASE_FILE__

Defined to a string that contains the name of the main input file passed to Clang.

__FILE_NAME__

Clang-specific extension that functions similar to __FILE__ but only renders the last path component (the
filename) instead of an invocation dependent full path to that file.

__COUNTER__

Defined to an integer value that starts at zero and is incremented each time the __COUNTER__ macro is
expanded.

__INCLUDE_LEVEL__

Defined to an integral value that is the include depth of the file currently being translated. For the main file, this
value is zero.

__TIMESTAMP__

Defined to the date and time of the last modification of the current source file.

__clang__

Defined when compiling with Clang

__clang_major__

Clang Language Extensions

128



Defined to the major marketing version number of Clang (e.g., the 2 in 2.0.1). Note that marketing version
numbers should not be used to check for language features, as different vendors use different numbering
schemes. Instead, use the Feature Checking Macros.

__clang_minor__

Defined to the minor version number of Clang (e.g., the 0 in 2.0.1). Note that marketing version numbers should
not be used to check for language features, as different vendors use different numbering schemes. Instead, use
the Feature Checking Macros.

__clang_patchlevel__

Defined to the marketing patch level of Clang (e.g., the 1 in 2.0.1).

__clang_version__

Defined to a string that captures the Clang marketing version, including the Subversion tag or revision number,
e.g., “1.5 (trunk 102332)”.

__clang_literal_encoding__

Defined to a narrow string literal that represents the current encoding of narrow string literals, e.g., "hello".
This macro typically expands to “UTF-8” (but may change in the future if the
-fexec-charset="Encoding-Name" option is implemented.)

__clang_wide_literal_encoding__

Defined to a narrow string literal that represents the current encoding of wide string literals, e.g., L"hello".
This macro typically expands to “UTF-16” or “UTF-32” (but may change in the future if the
-fwide-exec-charset="Encoding-Name" option is implemented.)

Vectors and Extended Vectors
Supports the GCC, OpenCL, AltiVec and NEON vector extensions.

OpenCL vector types are created using the ext_vector_type attribute. It supports the V.xyzw syntax and other
tidbits as seen in OpenCL. An example is:

typedef float float4 __attribute__((ext_vector_type(4)));
typedef float float2 __attribute__((ext_vector_type(2)));

float4 foo(float2 a, float2 b) {
  float4 c;
  c.xz = a;
  c.yw = b;
  return c;
}

Query for this feature with __has_attribute(ext_vector_type).

Giving -maltivec option to clang enables support for AltiVec vector syntax and functions. For example:

vector float foo(vector int a) {
  vector int b;
  b = vec_add(a, a) + a;
  return (vector float)b;
}

NEON vector types are created using neon_vector_type and neon_polyvector_type attributes. For example:

typedef __attribute__((neon_vector_type(8))) int8_t int8x8_t;
typedef __attribute__((neon_polyvector_type(16))) poly8_t poly8x16_t;

int8x8_t foo(int8x8_t a) {
  int8x8_t v;
  v = a;
  return v;
}

Clang Language Extensions

129



GCC vector types are created using the vector_size(N) attribute. The argument N specifies the number of bytes
that will be allocated for an object of this type. The size has to be multiple of the size of the vector element type. For
example:

// OK: This declares a vector type with four 'int' elements
typedef int int4 __attribute__((vector_size(4 * sizeof(int))));

// ERROR: '11' is not a multiple of sizeof(int)
typedef int int_impossible __attribute__((vector_size(11)));

int4 foo(int4 a) {
  int4 v;
  v = a;
  return v;
}

Boolean Vectors

Clang also supports the ext_vector_type attribute with boolean element types in C and C++. For example:

// legal for Clang, error for GCC:
typedef bool bool4 __attribute__((ext_vector_type(4)));
// Objects of bool4 type hold 8 bits, sizeof(bool4) == 1

bool4 foo(bool4 a) {
  bool4 v;
  v = a;
  return v;
}

Boolean vectors are a Clang extension of the ext vector type. Boolean vectors are intended, though not guaranteed,
to map to vector mask registers. The size parameter of a boolean vector type is the number of bits in the vector. The
boolean vector is dense and each bit in the boolean vector is one vector element.

The semantics of boolean vectors borrows from C bit-fields with the following differences:

• Distinct boolean vectors are always distinct memory objects (there is no packing).

• Only the operators ?:, !, ~, |, &, ^ and comparison are allowed on boolean vectors.

• Casting a scalar bool value to a boolean vector type means broadcasting the scalar value onto all lanes (same
as general ext_vector_type).

• It is not possible to access or swizzle elements of a boolean vector (different than general ext_vector_type).

The size and alignment are both the number of bits rounded up to the next power of two, but the alignment is at most
the maximum vector alignment of the target.

Vector Literals

Vector literals can be used to create vectors from a set of scalars, or vectors. Either parentheses or braces form can
be used. In the parentheses form the number of literal values specified must be one, i.e. referring to a scalar value,
or must match the size of the vector type being created. If a single scalar literal value is specified, the scalar literal
value will be replicated to all the components of the vector type. In the brackets form any number of literals can be
specified. For example:

typedef int v4si __attribute__((__vector_size__(16)));
typedef float float4 __attribute__((ext_vector_type(4)));
typedef float float2 __attribute__((ext_vector_type(2)));

v4si vsi = (v4si){1, 2, 3, 4};
float4 vf = (float4)(1.0f, 2.0f, 3.0f, 4.0f);
vector int vi1 = (vector int)(1);    // vi1 will be (1, 1, 1, 1).
vector int vi2 = (vector int){1};    // vi2 will be (1, 0, 0, 0).
vector int vi3 = (vector int)(1, 2); // error

Clang Language Extensions

130



vector int vi4 = (vector int){1, 2}; // vi4 will be (1, 2, 0, 0).
vector int vi5 = (vector int)(1, 2, 3, 4);
float4 vf = (float4)((float2)(1.0f, 2.0f), (float2)(3.0f, 4.0f));

Vector Operations

The table below shows the support for each operation by vector extension. A dash indicates that an operation is not
accepted according to a corresponding specification.

Operator OpenCL AltiVec GCC NEON

[] yes yes yes –

unary operators +, – yes yes yes –

++, – – yes yes yes –

+,–,*,/,% yes yes yes –

bitwise operators &,|,^,~ yes yes yes –

>>,<< yes yes yes –

!, &&, || yes – yes –

==, !=, >, <, >=, <= yes yes yes –

= yes yes yes yes

?: 2 yes – yes –

sizeof yes yes yes yes

C-style cast yes yes yes no

reinterpret_cast yes no yes no

static_cast yes no yes no

const_cast no no no no

address &v[i] no no no 3 no

See also __builtin_shufflevector, __builtin_convertvector.

2 ternary operator(?:) has different behaviors depending on condition operand’s vector type. If the
condition is a GNU vector (i.e. __vector_size__), it’s only available in C++ and uses normal bool
conversions (that is, != 0). If it’s an extension (OpenCL) vector, it’s only available in C and
OpenCL C. And it selects base on signedness of the condition operands (OpenCL v1.1 s6.3.9).

3 Clang does not allow the address of an element to be taken while GCC allows this. This is
intentional for vectors with a boolean element type and not implemented otherwise.

Vector Builtins

Note: The implementation of vector builtins is work-in-progress and incomplete.

In addition to the operators mentioned above, Clang provides a set of builtins to perform additional operations on
certain scalar and vector types.

Let T be one of the following types:

• an integer type (as in C2x 6.2.5p19), but excluding enumerated types and _Bool

• the standard floating types float or double

• a half-precision floating point type, if one is supported on the target

• a vector type.

For scalar types, consider the operation applied to a vector with a single element.

Elementwise Builtins

Clang Language Extensions

131



Each builtin returns a vector equivalent to applying the specified operation elementwise to the input.

Unless specified otherwise operation(±0) = ±0 and operation(±infinity) = ±infinity

Name Operation Supported element types

T
__builtin_elementwise_abs(T
x)

return the absolute value of a number x; the
absolute value of the most negative integer
remains the most negative integer

signed integer and floating
point types

T __builtin_elementwise_ceil(T
x)

return the smallest integral value greater than
or equal to x

floating point types

T
__builtin_elementwise_floor(T
x)

return the largest integral value less than or
equal to x

floating point types

T __builtin_elementwise_roun
deven(T x)

round x to the nearest integer value in floating
point format, rounding halfway cases to even
(that is, to the nearest value that is an even
integer), regardless of the current rounding
direction.

floating point types

T__builtin_elementwise_trunc(
T x)

return the integral value nearest to but no larger
in magnitude than x

floating point types

T
__builtin_elementwise_max(T
x, T y)

return x or y, whichever is larger integer and floating point
types

T
__builtin_elementwise_min(T
x, T y)

return x or y, whichever is smaller integer and floating point
types

T __builtin_elementwise_add_
sat(T x, T y)

return the sum of x and y, clamped to the range
of representable values for the signed/unsigned
integer type.

integer types

T __builtin_elementwise_sub_
sat(T x, T y)

return the difference of x and y, clamped to the
range of representable values for the
signed/unsigned integer type.

integer types

Reduction Builtins

Each builtin returns a scalar equivalent to applying the specified operation(x, y) as recursive even-odd pairwise
reduction to all vector elements. operation(x, y) is repeatedly applied to each non-overlapping even-odd
element pair with indices i * 2 and i * 2 + 1 with i in [0, Number of elements / 2). If the numbers of
elements is not a power of 2, the vector is widened with neutral elements for the reduction at the end to the next
power of 2.

Example:

__builtin_reduce_add([e3, e2, e1, e0]) = __builtin_reduced_add([e3 + e2, e1 + e0])
                                       = (e3 + e2) + (e1 + e0)

Let VT be a vector type and ET the element type of VT.

Name Operation
Supported element

types

ET __builtin_reduce_max(VT
a)

return x or y, whichever is larger; If exactly one
argument is a NaN, return the other argument. If
both arguments are NaNs, fmax() return a NaN.

integer and floating point
types

ET __builtin_reduce_min(VT
a)

return x or y, whichever is smaller; If exactly one
argument is a NaN, return the other argument. If
both arguments are NaNs, fmax() return a NaN.

integer and floating point
types

ET __builtin_reduce_add(VT
a)

+ integer and floating point
types

Clang Language Extensions

132



Name Operation
Supported element

types

ET __builtin_reduce_mul(VT
a)

* integer and floating point
types

ET __builtin_reduce_and(VT
a)

& integer types

ET __builtin_reduce_or(VT a) | integer types

ET __builtin_reduce_xor(VT
a)

^ integer types

Matrix Types
Clang provides an extension for matrix types, which is currently being implemented. See the draft specification for
more details.

For example, the code below uses the matrix types extension to multiply two 4x4 float matrices and add the result to
a third 4x4 matrix.

typedef float m4x4_t __attribute__((matrix_type(4, 4)));

m4x4_t f(m4x4_t a, m4x4_t b, m4x4_t c) {
  return a + b * c;
}

The matrix type extension also supports operations on a matrix and a scalar.

typedef float m4x4_t __attribute__((matrix_type(4, 4)));

m4x4_t f(m4x4_t a) {
  return (a + 23) * 12;
}

The matrix type extension supports division on a matrix and a scalar but not on a matrix and a matrix.

typedef float m4x4_t __attribute__((matrix_type(4, 4)));

m4x4_t f(m4x4_t a) {
  a = a / 3.0;
  return a;
}

The matrix type extension supports compound assignments for addition, subtraction, and multiplication on matrices
and on a matrix and a scalar, provided their types are consistent.

typedef float m4x4_t __attribute__((matrix_type(4, 4)));

m4x4_t f(m4x4_t a, m4x4_t b) {
  a += b;
  a -= b;
  a *= b;
  a += 23;
  a -= 12;
  return a;
}

The matrix type extension supports explicit casts. Implicit type conversion between matrix types is not allowed.

typedef int ix5x5 __attribute__((matrix_type(5, 5)));
typedef float fx5x5 __attribute__((matrix_type(5, 5)));

fx5x5 f1(ix5x5 i, fx5x5 f) {
  return (fx5x5) i;

Clang Language Extensions

133



}

template <typename X>
using matrix_4_4 = X __attribute__((matrix_type(4, 4)));

void f2() {
  matrix_5_5<double> d;
  matrix_5_5<int> i;
  i = (matrix_5_5<int>)d;
  i = static_cast<matrix_5_5<int>>(d);
}

Half-Precision Floating Point
Clang supports three half-precision (16-bit) floating point types: __fp16, _Float16 and __bf16. These types are
supported in all language modes.

__fp16 is supported on every target, as it is purely a storage format; see below. _Float16 is currently only
supported on the following targets, with further targets pending ABI standardization:

• 32-bit ARM

• 64-bit ARM (AArch64)

• AMDGPU

• SPIR

• X86 (Only available under feature AVX512-FP16)

_Float16 will be supported on more targets as they define ABIs for it.

__bf16 is purely a storage format; it is currently only supported on the following targets: * 32-bit ARM * 64-bit ARM
(AArch64)

The __bf16 type is only available when supported in hardware.

__fp16 is a storage and interchange format only. This means that values of __fp16 are immediately promoted to
(at least) float when used in arithmetic operations, so that e.g. the result of adding two __fp16 values has type
float. The behavior of __fp16 is specified by the ARM C Language Extensions (ACLE). Clang uses the
binary16 format from IEEE 754-2008 for __fp16, not the ARM alternative format.

_Float16 is an interchange floating-point type. This means that, just like arithmetic on float or double, arithmetic
on _Float16 operands is formally performed in the _Float16 type, so that e.g. the result of adding two _Float16
values has type _Float16. The behavior of _Float16 is specified by ISO/IEC TS 18661-3:2015 (“Floating-point
extensions for C”). As with __fp16, Clang uses the binary16 format from IEEE 754-2008 for _Float16.

_Float16 arithmetic will be performed using native half-precision support when available on the target (e.g. on
ARMv8.2a); otherwise it will be performed at a higher precision (currently always float) and then truncated down to
_Float16. Note that C and C++ allow intermediate floating-point operands of an expression to be computed with
greater precision than is expressible in their type, so Clang may avoid intermediate truncations in certain cases; this
may lead to results that are inconsistent with native arithmetic.

It is recommended that portable code use _Float16 instead of __fp16, as it has been defined by the C standards
committee and has behavior that is more familiar to most programmers.

Because __fp16 operands are always immediately promoted to float, the common real type of __fp16 and
_Float16 for the purposes of the usual arithmetic conversions is float.

A literal can be given _Float16 type using the suffix f16. For example, 3.14f16.

Because default argument promotion only applies to the standard floating-point types, _Float16 values are not
promoted to double when passed as variadic or untyped arguments. As a consequence, some caution must be
taken when using certain library facilities with _Float16; for example, there is no printf format specifier for
_Float16, and (unlike float) it will not be implicitly promoted to double when passed to printf, so the
programmer must explicitly cast it to double before using it with an %f or similar specifier.

Clang Language Extensions

134

http://infocenter.arm.com/help/topic/com.arm.doc.ihi0053d/IHI0053D_acle_2_1.pdf


Messages on deprecated and unavailable Attributes
An optional string message can be added to the deprecated and unavailable attributes. For example:

void explode(void) __attribute__((deprecated("extremely unsafe, use 'combust' instead!!!")));

If the deprecated or unavailable declaration is used, the message will be incorporated into the appropriate
diagnostic:

harmless.c:4:3: warning: 'explode' is deprecated: extremely unsafe, use 'combust' instead!!!
      [-Wdeprecated-declarations]
  explode();
  ^

Query for this feature with __has_extension(attribute_deprecated_with_message) and
__has_extension(attribute_unavailable_with_message).

Attributes on Enumerators
Clang allows attributes to be written on individual enumerators. This allows enumerators to be deprecated, made
unavailable, etc. The attribute must appear after the enumerator name and before any initializer, like so:

enum OperationMode {
  OM_Invalid,
  OM_Normal,
  OM_Terrified __attribute__((deprecated)),
  OM_AbortOnError __attribute__((deprecated)) = 4
};

Attributes on the enum declaration do not apply to individual enumerators.

Query for this feature with __has_extension(enumerator_attributes).

C++11 Attributes on using-declarations
Clang allows C++-style [[]] attributes to be written on using-declarations. For instance:

[[clang::using_if_exists]] using foo::bar;
using foo::baz [[clang::using_if_exists]];

You can test for support for this extension with
__has_extension(cxx_attributes_on_using_declarations).

‘User-Specified’ System Frameworks
Clang provides a mechanism by which frameworks can be built in such a way that they will always be treated as
being “system frameworks”, even if they are not present in a system framework directory. This can be useful to
system framework developers who want to be able to test building other applications with development builds of their
framework, including the manner in which the compiler changes warning behavior for system headers.

Framework developers can opt-in to this mechanism by creating a “.system_framework” file at the top-level of
their framework. That is, the framework should have contents like:

.../TestFramework.framework

.../TestFramework.framework/.system_framework

.../TestFramework.framework/Headers

.../TestFramework.framework/Headers/TestFramework.h

...

Clang will treat the presence of this file as an indicator that the framework should be treated as a system framework,
regardless of how it was found in the framework search path. For consistency, we recommend that such files never
be included in installed versions of the framework.

Clang Language Extensions

135



Checks for Standard Language Features
The __has_feature macro can be used to query if certain standard language features are enabled. The
__has_extension macro can be used to query if language features are available as an extension when compiling
for a standard which does not provide them. The features which can be tested are listed here.

Since Clang 3.4, the C++ SD-6 feature test macros are also supported. These are macros with names of the form
__cpp_<feature_name>, and are intended to be a portable way to query the supported features of the compiler.
See the C++ status page for information on the version of SD-6 supported by each Clang release, and the macros
provided by that revision of the recommendations.

C++98

The features listed below are part of the C++98 standard. These features are enabled by default when compiling
C++ code.

C++ exceptions

Use __has_feature(cxx_exceptions) to determine if C++ exceptions have been enabled. For example,
compiling code with -fno-exceptions disables C++ exceptions.

C++ RTTI

Use __has_feature(cxx_rtti) to determine if C++ RTTI has been enabled. For example, compiling code with
-fno-rtti disables the use of RTTI.

C++11

The features listed below are part of the C++11 standard. As a result, all these features are enabled with the
-std=c++11 or -std=gnu++11 option when compiling C++ code.

C++11 SFINAE includes access control

Use __has_feature(cxx_access_control_sfinae) or
__has_extension(cxx_access_control_sfinae) to determine whether access-control errors (e.g., calling a
private constructor) are considered to be template argument deduction errors (aka SFINAE errors), per C++
DR1170.

C++11 alias templates

Use __has_feature(cxx_alias_templates) or __has_extension(cxx_alias_templates) to determine
if support for C++11’s alias declarations and alias templates is enabled.

C++11 alignment specifiers

Use __has_feature(cxx_alignas) or __has_extension(cxx_alignas) to determine if support for
alignment specifiers using alignas is enabled.

Use __has_feature(cxx_alignof) or __has_extension(cxx_alignof) to determine if support for the
alignof keyword is enabled.

C++11 attributes

Use __has_feature(cxx_attributes) or __has_extension(cxx_attributes) to determine if support for
attribute parsing with C++11’s square bracket notation is enabled.

C++11 generalized constant expressions

Use __has_feature(cxx_constexpr) to determine if support for generalized constant expressions (e.g.,
constexpr) is enabled.

Clang Language Extensions

136

https://clang.llvm.org/cxx_status.html#ts
http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_defects.html#1170
http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_defects.html#1170


C++11 decltype()

Use __has_feature(cxx_decltype) or __has_extension(cxx_decltype) to determine if support for the
decltype() specifier is enabled. C++11’s decltype does not require type-completeness of a function call
expression. Use __has_feature(cxx_decltype_incomplete_return_types) or
__has_extension(cxx_decltype_incomplete_return_types) to determine if support for this feature is
enabled.

C++11 default template arguments in function templates

Use __has_feature(cxx_default_function_template_args) or
__has_extension(cxx_default_function_template_args) to determine if support for default template
arguments in function templates is enabled.

C++11 defaulted functions

Use __has_feature(cxx_defaulted_functions) or __has_extension(cxx_defaulted_functions) to
determine if support for defaulted function definitions (with = default) is enabled.

C++11 delegating constructors

Use __has_feature(cxx_delegating_constructors) to determine if support for delegating constructors is
enabled.

C++11 deleted functions

Use __has_feature(cxx_deleted_functions) or __has_extension(cxx_deleted_functions) to
determine if support for deleted function definitions (with = delete) is enabled.

C++11 explicit conversion functions

Use __has_feature(cxx_explicit_conversions) to determine if support for explicit conversion functions
is enabled.

C++11 generalized initializers

Use __has_feature(cxx_generalized_initializers) to determine if support for generalized initializers
(using braced lists and std::initializer_list) is enabled.

C++11 implicit move constructors/assignment operators

Use __has_feature(cxx_implicit_moves) to determine if Clang will implicitly generate move constructors
and move assignment operators where needed.

C++11 inheriting constructors

Use __has_feature(cxx_inheriting_constructors) to determine if support for inheriting constructors is
enabled.

C++11 inline namespaces

Use __has_feature(cxx_inline_namespaces) or __has_extension(cxx_inline_namespaces) to
determine if support for inline namespaces is enabled.

C++11 lambdas

Use __has_feature(cxx_lambdas) or __has_extension(cxx_lambdas) to determine if support for lambdas
is enabled.

Clang Language Extensions

137



C++11 local and unnamed types as template arguments

Use __has_feature(cxx_local_type_template_args) or
__has_extension(cxx_local_type_template_args) to determine if support for local and unnamed types as
template arguments is enabled.

C++11 noexcept

Use __has_feature(cxx_noexcept) or __has_extension(cxx_noexcept) to determine if support for
noexcept exception specifications is enabled.

C++11 in-class non-static data member initialization

Use __has_feature(cxx_nonstatic_member_init) to determine whether in-class initialization of non-static
data members is enabled.

C++11 nullptr

Use __has_feature(cxx_nullptr) or __has_extension(cxx_nullptr) to determine if support for
nullptr is enabled.

C++11 override control

Use __has_feature(cxx_override_control) or __has_extension(cxx_override_control) to
determine if support for the override control keywords is enabled.

C++11 reference-qualified functions

Use __has_feature(cxx_reference_qualified_functions) or
__has_extension(cxx_reference_qualified_functions) to determine if support for reference-qualified
functions (e.g., member functions with & or && applied to *this) is enabled.

C++11 range-based for loop

Use __has_feature(cxx_range_for) or __has_extension(cxx_range_for) to determine if support for the
range-based for loop is enabled.

C++11 raw string literals

Use __has_feature(cxx_raw_string_literals) to determine if support for raw string literals (e.g.,
R"x(foo\bar)x") is enabled.

C++11 rvalue references

Use __has_feature(cxx_rvalue_references) or __has_extension(cxx_rvalue_references) to
determine if support for rvalue references is enabled.

C++11 static_assert()

Use __has_feature(cxx_static_assert) or __has_extension(cxx_static_assert) to determine if
support for compile-time assertions using static_assert is enabled.

C++11 thread_local

Use __has_feature(cxx_thread_local) to determine if support for thread_local variables is enabled.

C++11 type inference

Use __has_feature(cxx_auto_type) or __has_extension(cxx_auto_type) to determine C++11 type
inference is supported using the auto specifier. If this is disabled, auto will instead be a storage class specifier, as
in C or C++98.

Clang Language Extensions

138



C++11 strongly typed enumerations

Use __has_feature(cxx_strong_enums) or __has_extension(cxx_strong_enums) to determine if
support for strongly typed, scoped enumerations is enabled.

C++11 trailing return type

Use __has_feature(cxx_trailing_return) or __has_extension(cxx_trailing_return) to determine
if support for the alternate function declaration syntax with trailing return type is enabled.

C++11 Unicode string literals

Use __has_feature(cxx_unicode_literals) to determine if support for Unicode string literals is enabled.

C++11 unrestricted unions

Use __has_feature(cxx_unrestricted_unions) to determine if support for unrestricted unions is enabled.

C++11 user-defined literals

Use __has_feature(cxx_user_literals) to determine if support for user-defined literals is enabled.

C++11 variadic templates

Use __has_feature(cxx_variadic_templates) or __has_extension(cxx_variadic_templates) to
determine if support for variadic templates is enabled.

C++14

The features listed below are part of the C++14 standard. As a result, all these features are enabled with the
-std=C++14 or -std=gnu++14 option when compiling C++ code.

C++14 binary literals

Use __has_feature(cxx_binary_literals) or __has_extension(cxx_binary_literals) to determine
whether binary literals (for instance, 0b10010) are recognized. Clang supports this feature as an extension in all
language modes.

C++14 contextual conversions

Use __has_feature(cxx_contextual_conversions) or
__has_extension(cxx_contextual_conversions) to determine if the C++14 rules are used when
performing an implicit conversion for an array bound in a new-expression, the operand of a delete-expression, an
integral constant expression, or a condition in a switch statement.

C++14 decltype(auto)

Use __has_feature(cxx_decltype_auto) or __has_extension(cxx_decltype_auto) to determine if
support for the decltype(auto) placeholder type is enabled.

C++14 default initializers for aggregates

Use __has_feature(cxx_aggregate_nsdmi) or __has_extension(cxx_aggregate_nsdmi) to determine
if support for default initializers in aggregate members is enabled.

C++14 digit separators

Use __cpp_digit_separators to determine if support for digit separators using single quotes (for instance,
10'000) is enabled. At this time, there is no corresponding __has_feature name

Clang Language Extensions

139



C++14 generalized lambda capture

Use __has_feature(cxx_init_captures) or __has_extension(cxx_init_captures) to determine if
support for lambda captures with explicit initializers is enabled (for instance, [n(0)] { return ++n; }).

C++14 generic lambdas

Use __has_feature(cxx_generic_lambdas) or __has_extension(cxx_generic_lambdas) to determine
if support for generic (polymorphic) lambdas is enabled (for instance, [] (auto x) { return x + 1; }).

C++14 relaxed constexpr

Use __has_feature(cxx_relaxed_constexpr) or __has_extension(cxx_relaxed_constexpr) to
determine if variable declarations, local variable modification, and control flow constructs are permitted in
constexpr functions.

C++14 return type deduction

Use __has_feature(cxx_return_type_deduction) or
__has_extension(cxx_return_type_deduction) to determine if support for return type deduction for
functions (using auto as a return type) is enabled.

C++14 runtime-sized arrays

Use __has_feature(cxx_runtime_array) or __has_extension(cxx_runtime_array) to determine if
support for arrays of runtime bound (a restricted form of variable-length arrays) is enabled. Clang’s implementation of
this feature is incomplete.

C++14 variable templates

Use __has_feature(cxx_variable_templates) or __has_extension(cxx_variable_templates) to
determine if support for templated variable declarations is enabled.

C11

The features listed below are part of the C11 standard. As a result, all these features are enabled with the -std=c11
or -std=gnu11 option when compiling C code. Additionally, because these features are all backward-compatible,
they are available as extensions in all language modes.

C11 alignment specifiers

Use __has_feature(c_alignas) or __has_extension(c_alignas) to determine if support for alignment
specifiers using _Alignas is enabled.

Use __has_feature(c_alignof) or __has_extension(c_alignof) to determine if support for the
_Alignof keyword is enabled.

C11 atomic operations

Use __has_feature(c_atomic) or __has_extension(c_atomic) to determine if support for atomic types
using _Atomic is enabled. Clang also provides a set of builtins which can be used to implement the
<stdatomic.h> operations on _Atomic types. Use __has_include(<stdatomic.h>) to determine if C11’s
<stdatomic.h> header is available.

Clang will use the system’s <stdatomic.h> header when one is available, and will otherwise use its own. When
using its own, implementations of the atomic operations are provided as macros. In the cases where C11 also
requires a real function, this header provides only the declaration of that function (along with a shadowing macro
implementation), and you must link to a library which provides a definition of the function if you use it instead of the
macro.

Clang Language Extensions

140



C11 generic selections

Use __has_feature(c_generic_selections) or __has_extension(c_generic_selections) to
determine if support for generic selections is enabled.

As an extension, the C11 generic selection expression is available in all languages supported by Clang. The syntax
is the same as that given in the C11 standard.

In C, type compatibility is decided according to the rules given in the appropriate standard, but in C++, which lacks
the type compatibility rules used in C, types are considered compatible only if they are equivalent.

C11 _Static_assert()

Use __has_feature(c_static_assert) or __has_extension(c_static_assert) to determine if support
for compile-time assertions using _Static_assert is enabled.

C11 _Thread_local

Use __has_feature(c_thread_local) or __has_extension(c_thread_local) to determine if support for
_Thread_local variables is enabled.

Modules

Use __has_feature(modules) to determine if Modules have been enabled. For example, compiling code with
-fmodules enables the use of Modules.

More information could be found here.

Type Trait Primitives
Type trait primitives are special builtin constant expressions that can be used by the standard C++ library to facilitate
or simplify the implementation of user-facing type traits in the <type_traits> header.

They are not intended to be used directly by user code because they are implementation-defined and subject to
change – as such they’re tied closely to the supported set of system headers, currently:

• LLVM’s own libc++

• GNU libstdc++

• The Microsoft standard C++ library

Clang supports the GNU C++ type traits and a subset of the Microsoft Visual C++ type traits, as well as nearly all of
the Embarcadero C++ type traits.

The following type trait primitives are supported by Clang. Those traits marked (C++) provide implementations for
type traits specified by the C++ standard; __X(...) has the same semantics and constraints as the corresponding
std::X_t<...> or std::X_v<...> type trait.

• __array_rank(type) (Embarcadero): Returns the number of levels of array in the type type: 0 if type is
not an array type, and __array_rank(element) + 1 if type is an array of element.

• __array_extent(type, dim) (Embarcadero): The dim’th array bound in the type type, or 0 if
dim >= __array_rank(type).

• __has_nothrow_assign (GNU, Microsoft, Embarcadero): Deprecated, use __is_nothrow_assignable
instead.

• __has_nothrow_move_assign (GNU, Microsoft): Deprecated, use __is_nothrow_assignable instead.

• __has_nothrow_copy (GNU, Microsoft): Deprecated, use __is_nothrow_constructible instead.

• __has_nothrow_constructor (GNU, Microsoft): Deprecated, use __is_nothrow_constructible
instead.

• __has_trivial_assign (GNU, Microsoft, Embarcadero): Deprecated, use
__is_trivially_assignable instead.

Clang Language Extensions

141

https://clang.llvm.org/docs/Modules.html
https://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html
https://msdn.microsoft.com/en-us/library/ms177194(v=VS.100).aspx
http://docwiki.embarcadero.com/RADStudio/Rio/en/Type_Trait_Functions_(C%2B%2B11)_Index


• __has_trivial_move_assign (GNU, Microsoft): Deprecated, use __is_trivially_assignable
instead.

• __has_trivial_copy (GNU, Microsoft): Deprecated, use __is_trivially_constructible instead.

• __has_trivial_constructor (GNU, Microsoft): Deprecated, use __is_trivially_constructible
instead.

• __has_trivial_move_constructor (GNU, Microsoft): Deprecated, use
__is_trivially_constructible instead.

• __has_trivial_destructor (GNU, Microsoft, Embarcadero): Deprecated, use
__is_trivially_destructible instead.

• __has_unique_object_representations (C++, GNU)

• __has_virtual_destructor (C++, GNU, Microsoft, Embarcadero)

• __is_abstract (C++, GNU, Microsoft, Embarcadero)

• __is_aggregate (C++, GNU, Microsoft)

• __is_arithmetic (C++, Embarcadero)

• __is_array (C++, Embarcadero)

• __is_assignable (C++, MSVC 2015)

• __is_base_of (C++, GNU, Microsoft, Embarcadero)

• __is_class (C++, GNU, Microsoft, Embarcadero)

• __is_complete_type(type) (Embarcadero): Return true if type is a complete type. Warning: this trait is
dangerous because it can return different values at different points in the same program.

• __is_compound (C++, Embarcadero)

• __is_const (C++, Embarcadero)

• __is_constructible (C++, MSVC 2013)

• __is_convertible (C++, Embarcadero)

• __is_convertible_to (Microsoft): Synonym for __is_convertible.

• __is_destructible (C++, MSVC 2013): Only available in -fms-extensions mode.

• __is_empty (C++, GNU, Microsoft, Embarcadero)

• __is_enum (C++, GNU, Microsoft, Embarcadero)

• __is_final (C++, GNU, Microsoft)

• __is_floating_point (C++, Embarcadero)

• __is_function (C++, Embarcadero)

• __is_fundamental (C++, Embarcadero)

• __is_integral (C++, Embarcadero)

• __is_interface_class (Microsoft): Returns false, even for types defined with __interface.

• __is_literal (Clang): Synonym for __is_literal_type.

• __is_literal_type (C++, GNU, Microsoft): Note, the corresponding standard trait was deprecated in
C++17 and removed in C++20.

• __is_lvalue_reference (C++, Embarcadero)

• __is_member_object_pointer (C++, Embarcadero)

• __is_member_function_pointer (C++, Embarcadero)

• __is_member_pointer (C++, Embarcadero)

• __is_nothrow_assignable (C++, MSVC 2013)

• __is_nothrow_constructible (C++, MSVC 2013)

Clang Language Extensions

142



• __is_nothrow_destructible (C++, MSVC 2013) Only available in -fms-extensions mode.

• __is_object (C++, Embarcadero)

• __is_pod (C++, GNU, Microsoft, Embarcadero): Note, the corresponding standard trait was deprecated in
C++20.

• __is_pointer (C++, Embarcadero)

• __is_polymorphic (C++, GNU, Microsoft, Embarcadero)

• __is_reference (C++, Embarcadero)

• __is_rvalue_reference (C++, Embarcadero)
• __is_same (C++, Embarcadero)

• __is_same_as (GCC): Synonym for __is_same.

• __is_scalar (C++, Embarcadero)

• __is_sealed (Microsoft): Synonym for __is_final.

• __is_signed (C++, Embarcadero): Returns false for enumeration types, and returns true for floating-point
types. Note, before Clang 10, returned true for enumeration types if the underlying type was signed, and
returned false for floating-point types.

• __is_standard_layout (C++, GNU, Microsoft, Embarcadero)

• __is_trivial (C++, GNU, Microsoft, Embarcadero)

• __is_trivially_assignable (C++, GNU, Microsoft)

• __is_trivially_constructible (C++, GNU, Microsoft)

• __is_trivially_copyable (C++, GNU, Microsoft)

• __is_trivially_destructible (C++, MSVC 2013)

• __is_trivially_relocatable (Clang): Returns true if moving an object of the given type, and then
destroying the source object, is known to be functionally equivalent to copying the underlying bytes and then
dropping the source object on the floor. This is true of trivial types and types which were made trivially
relocatable via the clang::trivial_abi attribute.

• __is_union (C++, GNU, Microsoft, Embarcadero)

• __is_unsigned (C++, Embarcadero): Returns false for enumeration types. Note, before Clang 13, returned
true for enumeration types if the underlying type was unsigned.

• __is_void (C++, Embarcadero)

• __is_volatile (C++, Embarcadero)

• __reference_binds_to_temporary(T, U) (Clang): Determines whether a reference of type T bound to
an expression of type U would bind to a materialized temporary object. If T is not a reference type the result is
false. Note this trait will also return false when the initialization of T from U is ill-formed.

• __underlying_type (C++, GNU, Microsoft)

In addition, the following expression traits are supported:

• __is_lvalue_expr(e) (Embarcadero): Returns true if e is an lvalue expression. Deprecated, use
__is_lvalue_reference(decltype((e))) instead.

• __is_rvalue_expr(e) (Embarcadero): Returns true if e is a prvalue expression. Deprecated, use
!__is_reference(decltype((e))) instead.

There are multiple ways to detect support for a type trait __X in the compiler, depending on the oldest version of
Clang you wish to support.

• From Clang 10 onwards, __has_builtin(__X) can be used.

• From Clang 6 onwards, !__is_identifier(__X) can be used.

• From Clang 3 onwards, __has_feature(X) can be used, but only supports the following traits:

• __has_nothrow_assign

Clang Language Extensions

143



• __has_nothrow_copy

• __has_nothrow_constructor

• __has_trivial_assign

• __has_trivial_copy

• __has_trivial_constructor

• __has_trivial_destructor

• __has_virtual_destructor

• __is_abstract

• __is_base_of

• __is_class

• __is_constructible

• __is_convertible_to

• __is_empty

• __is_enum

• __is_final

• __is_literal

• __is_standard_layout

• __is_pod

• __is_polymorphic

• __is_sealed

• __is_trivial

• __is_trivially_assignable

• __is_trivially_constructible

• __is_trivially_copyable

• __is_union

• __underlying_type
A simplistic usage example as might be seen in standard C++ headers follows:

#if __has_builtin(__is_convertible_to)
template<typename From, typename To>
struct is_convertible_to {
  static const bool value = __is_convertible_to(From, To);
};
#else
// Emulate type trait for compatibility with other compilers.
#endif

Blocks
The syntax and high level language feature description is in BlockLanguageSpec. Implementation and ABI details for
the clang implementation are in Block-ABI-Apple.

Query for this feature with __has_extension(blocks).

ASM Goto with Output Constraints
In addition to the functionality provided by GCC’s extended assembly, clang supports output constraints with the goto
form.

Clang Language Extensions

144

https://gcc.gnu.org/onlinedocs/gcc/Extended-Asm.html


The goto form of GCC’s extended assembly allows the programmer to branch to a C label from within an inline
assembly block. Clang extends this behavior by allowing the programmer to use output constraints:

int foo(int x) {
    int y;
    asm goto("# %0 %1 %l2" : "=r"(y) : "r"(x) : : err);
    return y;
  err:
    return -1;
}

It’s important to note that outputs are valid only on the “fallthrough” branch. Using outputs on an indirect branch may
result in undefined behavior. For example, in the function above, use of the value assigned to y in the err block is
undefined behavior.

When using tied-outputs (i.e. outputs that are inputs and outputs, not just outputs) with the +r constraint, there is a
hidden input that’s created before the label, so numeric references to operands must account for that.

int foo(int x) {
    // %0 and %1 both refer to x
    // %l2 refers to err
    asm goto("# %0 %1 %l2" : "+r"(x) : : : err);
    return x;
  err:
    return -1;
}

This was changed to match GCC in clang-13; for better portability, symbolic references can be used instead of
numeric references.

int foo(int x) {
    asm goto("# %[x] %l[err]" : [x]"+r"(x) : : : err);
    return x;
  err:
    return -1;
}

Query for this feature with __has_extension(gnu_asm_goto_with_outputs).

Objective-C Features

Related result types

According to Cocoa conventions, Objective-C methods with certain names (”init”, “alloc”, etc.) always return
objects that are an instance of the receiving class’s type. Such methods are said to have a “related result type”,
meaning that a message send to one of these methods will have the same static type as an instance of the receiver
class. For example, given the following classes:

@interface NSObject
+ (id)alloc;
- (id)init;
@end

@interface NSArray : NSObject
@end

and this common initialization pattern

NSArray *array = [[NSArray alloc] init];

the type of the expression [NSArray alloc] is NSArray* because alloc implicitly has a related result type.
Similarly, the type of the expression [[NSArray alloc] init] is NSArray*, since init has a related result
type and its receiver is known to have the type NSArray *. If neither alloc nor init had a related result type, the
expressions would have had type id, as declared in the method signature.

Clang Language Extensions

145



A method with a related result type can be declared by using the type instancetype as its result type.
instancetype is a contextual keyword that is only permitted in the result type of an Objective-C method, e.g.

@interface A
+ (instancetype)constructAnA;
@end

The related result type can also be inferred for some methods. To determine whether a method has an inferred
related result type, the first word in the camel-case selector (e.g., “init” in “initWithObjects”) is considered,
and the method will have a related result type if its return type is compatible with the type of its class and if:

• the first word is “alloc” or “new”, and the method is a class method, or

• the first word is “autorelease”, “init”, “retain”, or “self”, and the method is an instance method.

If a method with a related result type is overridden by a subclass method, the subclass method must also return a
type that is compatible with the subclass type. For example:

@interface NSString : NSObject
- (NSUnrelated *)init; // incorrect usage: NSUnrelated is not NSString or a superclass of NSString
@end

Related result types only affect the type of a message send or property access via the given method. In all other
respects, a method with a related result type is treated the same way as method that returns id.

Use __has_feature(objc_instancetype) to determine whether the instancetype contextual keyword is
available.

Automatic reference counting

Clang provides support for automated reference counting in Objective-C, which eliminates the need for manual
retain/release/autorelease message sends. There are three feature macros associated with automatic
reference counting: __has_feature(objc_arc) indicates the availability of automated reference counting in
general, while __has_feature(objc_arc_weak) indicates that automated reference counting also includes
support for __weak pointers to Objective-C objects. __has_feature(objc_arc_fields) indicates that C structs
are allowed to have fields that are pointers to Objective-C objects managed by automatic reference counting.

Weak references

Clang supports ARC-style weak and unsafe references in Objective-C even outside of ARC mode. Weak references
must be explicitly enabled with the -fobjc-weak option; use __has_feature((objc_arc_weak)) to test
whether they are enabled. Unsafe references are enabled unconditionally. ARC-style weak and unsafe references
cannot be used when Objective-C garbage collection is enabled.

Except as noted below, the language rules for the __weak and __unsafe_unretained qualifiers (and the weak
and unsafe_unretained property attributes) are just as laid out in the ARC specification. In particular, note that
some classes do not support forming weak references to their instances, and note that special care must be taken
when storing weak references in memory where initialization and deinitialization are outside the responsibility of the
compiler (such as in malloc-ed memory).

Loading from a __weak variable always implicitly retains the loaded value. In non-ARC modes, this retain is normally
balanced by an implicit autorelease. This autorelease can be suppressed by performing the load in the receiver
position of a -retain message send (e.g. [weakReference retain]); note that this performs only a single
retain (the retain done when primitively loading from the weak reference).

For the most part, __unsafe_unretained in non-ARC modes is just the default behavior of variables and
therefore is not needed. However, it does have an effect on the semantics of block captures: normally, copying a
block which captures an Objective-C object or block pointer causes the captured pointer to be retained or copied,
respectively, but that behavior is suppressed when the captured variable is qualified with __unsafe_unretained.

Note that the __weak qualifier formerly meant the GC qualifier in all non-ARC modes and was silently ignored
outside of GC modes. It now means the ARC-style qualifier in all non-GC modes and is no longer allowed if not
enabled by either -fobjc-arc or -fobjc-weak. It is expected that -fobjc-weak will eventually be enabled by
default in all non-GC Objective-C modes.

Clang Language Extensions

146



Enumerations with a fixed underlying type

Clang provides support for C++11 enumerations with a fixed underlying type within Objective-C. For example, one
can write an enumeration type as:

typedef enum : unsigned char { Red, Green, Blue } Color;

This specifies that the underlying type, which is used to store the enumeration value, is unsigned char.

Use __has_feature(objc_fixed_enum) to determine whether support for fixed underlying types is available in
Objective-C.

Interoperability with C++11 lambdas

Clang provides interoperability between C++11 lambdas and blocks-based APIs, by permitting a lambda to be
implicitly converted to a block pointer with the corresponding signature. For example, consider an API such as
NSArray’s array-sorting method:

- (NSArray *)sortedArrayUsingComparator:(NSComparator)cmptr;

NSComparator is simply a typedef for the block pointer NSComparisonResult (^)(id, id), and parameters of
this type are generally provided with block literals as arguments. However, one can also use a C++11 lambda so
long as it provides the same signature (in this case, accepting two parameters of type id and returning an
NSComparisonResult):

NSArray *array = @[@"string 1", @"string 21", @"string 12", @"String 11",
                   @"String 02"];
const NSStringCompareOptions comparisonOptions
  = NSCaseInsensitiveSearch | NSNumericSearch |
    NSWidthInsensitiveSearch | NSForcedOrderingSearch;
NSLocale *currentLocale = [NSLocale currentLocale];
NSArray *sorted
  = [array sortedArrayUsingComparator:[=](id s1, id s2) -> NSComparisonResult {
             NSRange string1Range = NSMakeRange(0, [s1 length]);
             return [s1 compare:s2 options:comparisonOptions
             range:string1Range locale:currentLocale];
     }];
NSLog(@"sorted: %@", sorted);

This code relies on an implicit conversion from the type of the lambda expression (an unnamed, local class type
called the closure type) to the corresponding block pointer type. The conversion itself is expressed by a conversion
operator in that closure type that produces a block pointer with the same signature as the lambda itself, e.g.,

operator NSComparisonResult (^)(id, id)() const;

This conversion function returns a new block that simply forwards the two parameters to the lambda object (which it
captures by copy), then returns the result. The returned block is first copied (with Block_copy) and then
autoreleased. As an optimization, if a lambda expression is immediately converted to a block pointer (as in the first
example, above), then the block is not copied and autoreleased: rather, it is given the same lifetime as a block literal
written at that point in the program, which avoids the overhead of copying a block to the heap in the common case.

The conversion from a lambda to a block pointer is only available in Objective-C++, and not in C++ with blocks, due
to its use of Objective-C memory management (autorelease).

Object Literals and Subscripting

Clang provides support for Object Literals and Subscripting in Objective-C, which simplifies common Objective-C
programming patterns, makes programs more concise, and improves the safety of container creation. There are
several feature macros associated with object literals and subscripting:
__has_feature(objc_array_literals) tests the availability of array literals;
__has_feature(objc_dictionary_literals) tests the availability of dictionary literals;
__has_feature(objc_subscripting) tests the availability of object subscripting.

Clang Language Extensions

147



Objective-C Autosynthesis of Properties

Clang provides support for autosynthesis of declared properties. Using this feature, clang provides default synthesis
of those properties not declared @dynamic and not having user provided backing getter and setter methods.
__has_feature(objc_default_synthesize_properties) checks for availability of this feature in version of
clang being used.

Objective-C retaining behavior attributes

In Objective-C, functions and methods are generally assumed to follow the Cocoa Memory Management
conventions for ownership of object arguments and return values. However, there are exceptions, and so Clang
provides attributes to allow these exceptions to be documented. This are used by ARC and the static analyzer Some
exceptions may be better described using the objc_method_family attribute instead.

Usage: The ns_returns_retained, ns_returns_not_retained, ns_returns_autoreleased,
cf_returns_retained, and cf_returns_not_retained attributes can be placed on methods and functions
that return Objective-C or CoreFoundation objects. They are commonly placed at the end of a function prototype or
method declaration:

id foo() __attribute__((ns_returns_retained));

- (NSString *)bar:(int)x __attribute__((ns_returns_retained));

The *_returns_retained attributes specify that the returned object has a +1 retain count. The
*_returns_not_retained attributes specify that the return object has a +0 retain count, even if the normal
convention for its selector would be +1. ns_returns_autoreleased specifies that the returned object is +0, but is
guaranteed to live at least as long as the next flush of an autorelease pool.

Usage: The ns_consumed and cf_consumed attributes can be placed on an parameter declaration; they specify
that the argument is expected to have a +1 retain count, which will be balanced in some way by the function or
method. The ns_consumes_self attribute can only be placed on an Objective-C method; it specifies that the
method expects its self parameter to have a +1 retain count, which it will balance in some way.

void foo(__attribute__((ns_consumed)) NSString *string);

- (void) bar __attribute__((ns_consumes_self));
- (void) baz:(id) __attribute__((ns_consumed)) x;

Further examples of these attributes are available in the static analyzer’s list of annotations for analysis.

Query for these features with __has_attribute(ns_consumed),
__has_attribute(ns_returns_retained), etc.

Objective-C @available

It is possible to use the newest SDK but still build a program that can run on older versions of macOS and iOS by
passing -mmacosx-version-min= / -miphoneos-version-min=.

Before LLVM 5.0, when calling a function that exists only in the OS that’s newer than the target OS (as determined
by the minimum deployment version), programmers had to carefully check if the function exists at runtime, using null
checks for weakly-linked C functions, +class for Objective-C classes, and -respondsToSelector: or
+instancesRespondToSelector: for Objective-C methods. If such a check was missed, the program would
compile fine, run fine on newer systems, but crash on older systems.

As of LLVM 5.0, -Wunguarded-availability uses the availability attributes together with the new
@available() keyword to assist with this issue. When a method that’s introduced in the OS newer than the target
OS is called, a -Wunguarded-availability warning is emitted if that call is not guarded:

void my_fun(NSSomeClass* var) {
  // If fancyNewMethod was added in e.g. macOS 10.12, but the code is
  // built with -mmacosx-version-min=10.11, then this unconditional call
  // will emit a -Wunguarded-availability warning:
  [var fancyNewMethod];
}

To fix the warning and to avoid the crash on macOS 10.11, wrap it in if(@available()):

Clang Language Extensions

148

https://developer.apple.com/library/mac/#documentation/Cocoa/Conceptual/MemoryMgmt/Articles/mmRules.html
https://clang-analyzer.llvm.org
https://clang-analyzer.llvm.org/annotations.html#cocoa_mem
https://clang.llvm.org/docs/AttributeReference.html#availability


void my_fun(NSSomeClass* var) {
  if (@available(macOS 10.12, *)) {
    [var fancyNewMethod];
  } else {
    // Put fallback behavior for old macOS versions (and for non-mac
    // platforms) here.
  }
}

The * is required and means that platforms not explicitly listed will take the true branch, and the compiler will emit
-Wunguarded-availability warnings for unlisted platforms based on those platform’s deployment target. More
than one platform can be listed in @available():

void my_fun(NSSomeClass* var) {
  if (@available(macOS 10.12, iOS 10, *)) {
    [var fancyNewMethod];
  }
}

If the caller of my_fun() already checks that my_fun() is only called on 10.12, then add an availability attribute to
it, which will also suppress the warning and require that calls to my_fun() are checked:

API_AVAILABLE(macos(10.12)) void my_fun(NSSomeClass* var) {
  [var fancyNewMethod];  // Now ok.
}

@available() is only available in Objective-C code. To use the feature in C and C++ code, use the
__builtin_available() spelling instead.

If existing code uses null checks or -respondsToSelector:, it should be changed to use @available() (or
__builtin_available) instead.

-Wunguarded-availability is disabled by default, but -Wunguarded-availability-new, which only emits
this warning for APIs that have been introduced in macOS >= 10.13, iOS >= 11, watchOS >= 4 and tvOS >= 11, is
enabled by default.

Objective-C++ ABI: protocol-qualifier mangling of parameters

Starting with LLVM 3.4, Clang produces a new mangling for parameters whose type is a qualified-id (e.g.,
id<Foo>). This mangling allows such parameters to be differentiated from those with the regular unqualified id
type.

This was a non-backward compatible mangling change to the ABI. This change allows proper overloading, and also
prevents mangling conflicts with template parameters of protocol-qualified type.

Query the presence of this new mangling with __has_feature(objc_protocol_qualifier_mangling).

Initializer lists for complex numbers in C
clang supports an extension which allows the following in C:

#include <math.h>
#include <complex.h>
complex float x = { 1.0f, INFINITY }; // Init to (1, Inf)

This construct is useful because there is no way to separately initialize the real and imaginary parts of a complex
variable in standard C, given that clang does not support _Imaginary. (Clang also supports the __real__ and
__imag__ extensions from gcc, which help in some cases, but are not usable in static initializers.)

Note that this extension does not allow eliding the braces; the meaning of the following two lines is different:

complex float x[] = { { 1.0f, 1.0f } }; // [0] = (1, 1)
complex float x[] = { 1.0f, 1.0f }; // [0] = (1, 0), [1] = (1, 0)

This extension also works in C++ mode, as far as that goes, but does not apply to the C++ std::complex. (In
C++11, list initialization allows the same syntax to be used with std::complex with the same meaning.)

Clang Language Extensions

149

https://clang.llvm.org/docs/AttributeReference.html#availability


For GCC compatibility, __builtin_complex(re, im) can also be used to construct a complex number from the
given real and imaginary components.

OpenCL Features
Clang supports internal OpenCL extensions documented below.

__cl_clang_bitfields

With this extension it is possible to enable bitfields in structs or unions using the OpenCL extension pragma
mechanism detailed in the OpenCL Extension Specification, section 1.2.

Use of bitfields in OpenCL kernels can result in reduced portability as struct layout is not guaranteed to be consistent
when compiled by different compilers. If structs with bitfields are used as kernel function parameters, it can result in
incorrect functionality when the layout is different between the host and device code.

Example of Use:

#pragma OPENCL EXTENSION __cl_clang_bitfields : enable
struct with_bitfield {
  unsigned int i : 5; // compiled - no diagnostic generated
};

#pragma OPENCL EXTENSION __cl_clang_bitfields : disable
struct without_bitfield {
  unsigned int i : 5; // error - bitfields are not supported
};

__cl_clang_function_pointers

With this extension it is possible to enable various language features that are relying on function pointers using
regular OpenCL extension pragma mechanism detailed in the OpenCL Extension Specification, section 1.2.

In C++ for OpenCL this also enables:

• Use of member function pointers;

• Unrestricted use of references to functions;

• Virtual member functions.

Such functionality is not conformant and does not guarantee to compile correctly in any circumstances. It can be
used if:

• the kernel source does not contain call expressions to (member-) function pointers, or virtual functions. For
example this extension can be used in metaprogramming algorithms to be able to specify/detect types
generically.

• the generated kernel binary does not contain indirect calls because they are eliminated using compiler
optimizations e.g. devirtualization.

• the selected target supports the function pointer like functionality e.g. most CPU targets.

Example of Use:

#pragma OPENCL EXTENSION __cl_clang_function_pointers : enable
void foo()
{
  void (*fp)(); // compiled - no diagnostic generated
}

#pragma OPENCL EXTENSION __cl_clang_function_pointers : disable
void bar()
{
  void (*fp)(); // error - pointers to function are not allowed
}

Clang Language Extensions

150

https://www.khronos.org/registry/OpenCL/specs/3.0-unified/html/OpenCL_Ext.html#extensions-overview
https://www.khronos.org/registry/OpenCL/specs/3.0-unified/html/OpenCL_Ext.html#extensions-overview


__cl_clang_variadic_functions

With this extension it is possible to enable variadic arguments in functions using regular OpenCL extension pragma
mechanism detailed in the OpenCL Extension Specification, section 1.2.

This is not conformant behavior and it can only be used portably when the functions with variadic prototypes do not
get generated in binary e.g. the variadic prototype is used to specify a function type with any number of arguments in
metaprogramming algorithms in C++ for OpenCL.

This extensions can also be used when the kernel code is intended for targets supporting the variadic arguments e.g.
majority of CPU targets.

Example of Use:

#pragma OPENCL EXTENSION __cl_clang_variadic_functions : enable
void foo(int a, ...); // compiled - no diagnostic generated

#pragma OPENCL EXTENSION __cl_clang_variadic_functions : disable
void bar(int a, ...); // error - variadic prototype is not allowed

__cl_clang_non_portable_kernel_param_types

With this extension it is possible to enable the use of some restricted types in kernel parameters specified in C++ for
OpenCL v1.0 s2.4. The restrictions can be relaxed using regular OpenCL extension pragma mechanism detailed in
the OpenCL Extension Specification, section 1.2.

This is not a conformant behavior and it can only be used when the kernel arguments are not accessed on the host
side or the data layout/size between the host and device is known to be compatible.

Example of Use:

// Plain Old Data type.
struct Pod {
  int a;
  int b;
};

// Not POD type because of the constructor.
// Standard layout type because there is only one access control.
struct OnlySL {
  int a;
  int b;
  NotPod() : a(0), b(0) {}
};

// Not standard layout type because of two different access controls.
struct NotSL {
  int a;
private:
  int b;
}

kernel void kernel_main(
  Pod a,
#pragma OPENCL EXTENSION __cl_clang_non_portable_kernel_param_types : enable
  OnlySL b,
  global NotSL *c,
#pragma OPENCL EXTENSION __cl_clang_non_portable_kernel_param_types : disable
  global OnlySL *d,
);

Clang Language Extensions

151

https://www.khronos.org/registry/OpenCL/specs/3.0-unified/html/OpenCL_Ext.html#extensions-overview
https://www.khronos.org/opencl/assets/CXX_for_OpenCL.html#kernel_function
https://www.khronos.org/opencl/assets/CXX_for_OpenCL.html#kernel_function
https://www.khronos.org/registry/OpenCL/specs/3.0-unified/html/OpenCL_Ext.html#extensions-overview


Remove address space builtin function

__remove_address_space allows to derive types in C++ for OpenCL that have address space qualifiers removed.
This utility only affects address space qualifiers, therefore, other type qualifiers such as const or volatile remain
unchanged.

Example of Use:

template<typename T>
void foo(T *par){
  T var1; // error - local function variable with global address space
  __private T var2; // error - conflicting address space qualifiers
  __private __remove_address_space<T>::type var3; // var3 is __private int
}

void bar(){
  __global int* ptr;
  foo(ptr);
}

Legacy 1.x atomics with generic address space

Clang allows use of atomic functions from the OpenCL 1.x standards with the generic address space pointer in C++
for OpenCL mode.

This is a non-portable feature and might not be supported by all targets.

Example of Use:

void foo(__generic volatile unsigned int* a) {
  atomic_add(a, 1);
}

Builtin Functions
Clang supports a number of builtin library functions with the same syntax as GCC, including things like
__builtin_nan, __builtin_constant_p, __builtin_choose_expr, __builtin_types_compatible_p,
__builtin_assume_aligned, __sync_fetch_and_add, etc. In addition to the GCC builtins, Clang supports a
number of builtins that GCC does not, which are listed here.

Please note that Clang does not and will not support all of the GCC builtins for vector operations. Instead of using
builtins, you should use the functions defined in target-specific header files like <xmmintrin.h>, which define
portable wrappers for these. Many of the Clang versions of these functions are implemented directly in terms of
extended vector support instead of builtins, in order to reduce the number of builtins that we need to implement.

__builtin_alloca

__builtin_alloca is used to dynamically allocate memory on the stack. Memory is automatically freed upon
function termination.

Syntax:

__builtin_alloca(size_t n)

Example of Use:

void init(float* data, size_t nbelems);
void process(float* data, size_t nbelems);
int foo(size_t n) {
  auto mem = (float*)__builtin_alloca(n * sizeof(float));
  init(mem, n);
  process(mem, n);
  /* mem is automatically freed at this point */
}

Clang Language Extensions

152



Description:

__builtin_alloca is meant to be used to allocate a dynamic amount of memory on the stack. This amount is
subject to stack allocation limits.

Query for this feature with __has_builtin(__builtin_alloca).

__builtin_alloca_with_align

__builtin_alloca_with_align is used to dynamically allocate memory on the stack while controlling its
alignment. Memory is automatically freed upon function termination.

Syntax:

__builtin_alloca_with_align(size_t n, size_t align)

Example of Use:

void init(float* data, size_t nbelems);
void process(float* data, size_t nbelems);
int foo(size_t n) {
  auto mem = (float*)__builtin_alloca_with_align(
                      n * sizeof(float),
                      CHAR_BIT * alignof(float));
  init(mem, n);
  process(mem, n);
  /* mem is automatically freed at this point */
}

Description:

__builtin_alloca_with_align is meant to be used to allocate a dynamic amount of memory on the stack. It is
similar to __builtin_alloca but accepts a second argument whose value is the alignment constraint, as a power
of 2 in bits.

Query for this feature with __has_builtin(__builtin_alloca_with_align).

__builtin_assume

__builtin_assume is used to provide the optimizer with a boolean invariant that is defined to be true.

Syntax:

__builtin_assume(bool)

Example of Use:

int foo(int x) {
    __builtin_assume(x != 0);
    // The optimizer may short-circuit this check using the invariant.
    if (x == 0)
          return do_something();
    return do_something_else();
}

Description:

The boolean argument to this function is defined to be true. The optimizer may analyze the form of the expression
provided as the argument and deduce from that information used to optimize the program. If the condition is violated
during execution, the behavior is undefined. The argument itself is never evaluated, so any side effects of the
expression will be discarded.

Query for this feature with __has_builtin(__builtin_assume).

Clang Language Extensions

153



__builtin_call_with_static_chain

__builtin_call_with_static_chain is used to perform a static call while setting updating the static chain
register.

Syntax:

T __builtin_call_with_static_chain(T expr, void* ptr)

Example of Use:

auto v = __builtin_call_with_static_chain(foo(3), foo);

Description:

This builtin returns expr after checking that expr is a non-member static call expression. The call to that expression
is made while using ptr as a function pointer stored in a dedicated register to implement static chain calling
convention, as used by some language to implement closures or nested functions.

Query for this feature with __has_builtin(__builtin_call_with_static_chain).

__builtin_readcyclecounter

__builtin_readcyclecounter is used to access the cycle counter register (or a similar low-latency,
high-accuracy clock) on those targets that support it.

Syntax:

__builtin_readcyclecounter()

Example of Use:

unsigned long long t0 = __builtin_readcyclecounter();
do_something();
unsigned long long t1 = __builtin_readcyclecounter();
unsigned long long cycles_to_do_something = t1 - t0; // assuming no overflow

Description:

The __builtin_readcyclecounter() builtin returns the cycle counter value, which may be either global or
process/thread-specific depending on the target. As the backing counters often overflow quickly (on the order of
seconds) this should only be used for timing small intervals. When not supported by the target, the return value is
always zero. This builtin takes no arguments and produces an unsigned long long result.

Query for this feature with __has_builtin(__builtin_readcyclecounter). Note that even if present, its use
may depend on run-time privilege or other OS controlled state.

__builtin_dump_struct

Syntax:

__builtin_dump_struct(&some_struct, some_printf_func, args...);

Examples:

struct S {
  int x, y;
  float f;
  struct T {
    int i;
  } t;
};

void func(struct S *s) {
  __builtin_dump_struct(s, printf);
}

Example output:

Clang Language Extensions

154



struct S {
  int x = 100
  int y = 42
  float f = 3.141593
  struct T t = {
    int i = 1997
  }
}

#include <string>
struct T { int a, b; };
constexpr void constexpr_sprintf(std::string &out, const char *format,
                                 auto ...args) {
  // ...
}
constexpr std::string dump_struct(auto &x) {
  std::string s;
  __builtin_dump_struct(&x, constexpr_sprintf, s);
  return s;
}
static_assert(dump_struct(T{1, 2}) == R"(struct T {
  int a = 1
  int b = 2
}
)");

Description:

The __builtin_dump_struct function is used to print the fields of a simple structure and their values for
debugging purposes. The first argument of the builtin should be a pointer to the struct to dump. The second
argument f should be some callable expression, and can be a function object or an overload set. The builtin calls f,
passing any further arguments args... followed by a printf-compatible format string and the corresponding
arguments. f may be called more than once, and f and args will be evaluated once per call. In C++, f may be a
template or overload set and resolve to different functions for each call.

In the format string, a suitable format specifier will be used for builtin types that Clang knows how to format. This
includes standard builtin types, as well as aggregate structures, void* (printed with %p), and const char* (printed
with %s). A *%p specifier will be used for a field that Clang doesn’t know how to format, and the corresopnding
argument will be a pointer to the field. This allows a C++ templated formatting function to detect this case and
implement custom formatting. A * will otherwise not precede a format specifier.

This builtin does not return a value.

This builtin can be used in constant expressions.

Query for this feature with __has_builtin(__builtin_dump_struct)

__builtin_shufflevector

__builtin_shufflevector is used to express generic vector permutation/shuffle/swizzle operations. This builtin
is also very important for the implementation of various target-specific header files like <xmmintrin.h>.

Syntax:

__builtin_shufflevector(vec1, vec2, index1, index2, ...)

Examples:

// identity operation - return 4-element vector v1.
__builtin_shufflevector(v1, v1, 0, 1, 2, 3)

// "Splat" element 0 of V1 into a 4-element result.
__builtin_shufflevector(V1, V1, 0, 0, 0, 0)

Clang Language Extensions

155



// Reverse 4-element vector V1.
__builtin_shufflevector(V1, V1, 3, 2, 1, 0)

// Concatenate every other element of 4-element vectors V1 and V2.
__builtin_shufflevector(V1, V2, 0, 2, 4, 6)

// Concatenate every other element of 8-element vectors V1 and V2.
__builtin_shufflevector(V1, V2, 0, 2, 4, 6, 8, 10, 12, 14)

// Shuffle v1 with some elements being undefined
__builtin_shufflevector(v1, v1, 3, -1, 1, -1)

Description:

The first two arguments to __builtin_shufflevector are vectors that have the same element type. The
remaining arguments are a list of integers that specify the elements indices of the first two vectors that should be
extracted and returned in a new vector. These element indices are numbered sequentially starting with the first
vector, continuing into the second vector. Thus, if vec1 is a 4-element vector, index 5 would refer to the second
element of vec2. An index of -1 can be used to indicate that the corresponding element in the returned vector is a
don’t care and can be optimized by the backend.

The result of __builtin_shufflevector is a vector with the same element type as vec1/vec2 but that has an
element count equal to the number of indices specified.

Query for this feature with __has_builtin(__builtin_shufflevector).

__builtin_convertvector

__builtin_convertvector is used to express generic vector type-conversion operations. The input vector and
the output vector type must have the same number of elements.

Syntax:

__builtin_convertvector(src_vec, dst_vec_type)

Examples:

typedef double vector4double __attribute__((__vector_size__(32)));
typedef float  vector4float  __attribute__((__vector_size__(16)));
typedef short  vector4short  __attribute__((__vector_size__(8)));
vector4float vf; vector4short vs;

// convert from a vector of 4 floats to a vector of 4 doubles.
__builtin_convertvector(vf, vector4double)
// equivalent to:
(vector4double) { (double) vf[0], (double) vf[1], (double) vf[2], (double) vf[3] }

// convert from a vector of 4 shorts to a vector of 4 floats.
__builtin_convertvector(vs, vector4float)
// equivalent to:
(vector4float) { (float) vs[0], (float) vs[1], (float) vs[2], (float) vs[3] }

Description:

The first argument to __builtin_convertvector is a vector, and the second argument is a vector type with the
same number of elements as the first argument.

The result of __builtin_convertvector is a vector with the same element type as the second argument, with a
value defined in terms of the action of a C-style cast applied to each element of the first argument.

Query for this feature with __has_builtin(__builtin_convertvector).

__builtin_bitreverse

• __builtin_bitreverse8

Clang Language Extensions

156



• __builtin_bitreverse16

• __builtin_bitreverse32

• __builtin_bitreverse64

Syntax:

__builtin_bitreverse32(x)

Examples:

uint8_t rev_x = __builtin_bitreverse8(x);
uint16_t rev_x = __builtin_bitreverse16(x);
uint32_t rev_y = __builtin_bitreverse32(y);
uint64_t rev_z = __builtin_bitreverse64(z);

Description:

The ‘__builtin_bitreverse’ family of builtins is used to reverse the bitpattern of an integer value; for example
0b10110110 becomes 0b01101101. These builtins can be used within constant expressions.

__builtin_rotateleft

• __builtin_rotateleft8

• __builtin_rotateleft16

• __builtin_rotateleft32

• __builtin_rotateleft64

Syntax:

__builtin_rotateleft32(x, y)

Examples:

uint8_t rot_x = __builtin_rotateleft8(x, y);
uint16_t rot_x = __builtin_rotateleft16(x, y);
uint32_t rot_x = __builtin_rotateleft32(x, y);
uint64_t rot_x = __builtin_rotateleft64(x, y);

Description:

The ‘__builtin_rotateleft’ family of builtins is used to rotate the bits in the first argument by the amount in the
second argument. For example, 0b10000110 rotated left by 11 becomes 0b00110100. The shift value is treated as
an unsigned amount modulo the size of the arguments. Both arguments and the result have the bitwidth specified by
the name of the builtin. These builtins can be used within constant expressions.

__builtin_rotateright

• __builtin_rotateright8

• __builtin_rotateright16

• __builtin_rotateright32

• __builtin_rotateright64

Syntax:

__builtin_rotateright32(x, y)

Examples:

uint8_t rot_x = __builtin_rotateright8(x, y);
uint16_t rot_x = __builtin_rotateright16(x, y);
uint32_t rot_x = __builtin_rotateright32(x, y);
uint64_t rot_x = __builtin_rotateright64(x, y);

Clang Language Extensions

157



Description:

The ‘__builtin_rotateright’ family of builtins is used to rotate the bits in the first argument by the amount in the
second argument. For example, 0b10000110 rotated right by 3 becomes 0b11010000. The shift value is treated as
an unsigned amount modulo the size of the arguments. Both arguments and the result have the bitwidth specified by
the name of the builtin. These builtins can be used within constant expressions.

__builtin_unreachable

__builtin_unreachable is used to indicate that a specific point in the program cannot be reached, even if the
compiler might otherwise think it can. This is useful to improve optimization and eliminates certain warnings. For
example, without the __builtin_unreachable in the example below, the compiler assumes that the inline asm
can fall through and prints a “function declared ‘noreturn’ should not return” warning.

Syntax:

__builtin_unreachable()

Example of use:

void myabort(void) __attribute__((noreturn));
void myabort(void) {
  asm("int3");
  __builtin_unreachable();
}

Description:

The __builtin_unreachable() builtin has completely undefined behavior. Since it has undefined behavior, it is
a statement that it is never reached and the optimizer can take advantage of this to produce better code. This builtin
takes no arguments and produces a void result.

Query for this feature with __has_builtin(__builtin_unreachable).

__builtin_unpredictable

__builtin_unpredictable is used to indicate that a branch condition is unpredictable by hardware mechanisms
such as branch prediction logic.

Syntax:

__builtin_unpredictable(long long)

Example of use:

if (__builtin_unpredictable(x > 0)) {
   foo();
}

Description:

The __builtin_unpredictable() builtin is expected to be used with control flow conditions such as in if and
switch statements.

Query for this feature with __has_builtin(__builtin_unpredictable).

__builtin_expect

__builtin_expect is used to indicate that the value of an expression is anticipated to be the same as a statically
known result.

Syntax:

long __builtin_expect(long expr, long val)

Example of use:

Clang Language Extensions

158



if (__builtin_expect(x, 0)) {
   bar();
}

Description:

The __builtin_expect() builtin is typically used with control flow conditions such as in if and switch
statements to help branch prediction. It means that its first argument expr is expected to take the value of its second
argument val. It always returns expr.

Query for this feature with __has_builtin(__builtin_expect).

__builtin_expect_with_probability

__builtin_expect_with_probability is similar to __builtin_expect but it takes a probability as third
argument.

Syntax:

long __builtin_expect_with_probability(long expr, long val, double p)

Example of use:

if (__builtin_expect_with_probability(x, 0, .3)) {
   bar();
}

Description:

The __builtin_expect_with_probability() builtin is typically used with control flow conditions such as in if
and switch statements to help branch prediction. It means that its first argument expr is expected to take the value
of its second argument val with probability p. p must be within [0.0 ; 1.0] bounds. This builtin always returns
the value of expr.

Query for this feature with __has_builtin(__builtin_expect_with_probability).

__builtin_prefetch

__builtin_prefetch is used to communicate with the cache handler to bring data into the cache before it gets
used.

Syntax:

void __builtin_prefetch(const void *addr, int rw=0, int locality=3)

Example of use:

__builtin_prefetch(a + i);

Description:

The __builtin_prefetch(addr, rw, locality) builtin is expected to be used to avoid cache misses when
the developper has a good understanding of which data are going to be used next. addr is the address that needs to
be brought into the cache. rw indicates the expected access mode: 0 for read and 1 for write. In case of read write
access, 1 is to be used. locality indicates the expected persistance of data in cache, from 0 which means that
data can be discarded from cache after its next use to 3 which means that data is going to be reused a lot once in
cache. 1 and 2 provide intermediate behavior between these two extremes.

Query for this feature with __has_builtin(__builtin_prefetch).

__sync_swap

__sync_swap is used to atomically swap integers or pointers in memory.

Syntax:

type __sync_swap(type *ptr, type value, ...)

Example of Use:

Clang Language Extensions

159



int old_value = __sync_swap(&value, new_value);

Description:

The __sync_swap() builtin extends the existing __sync_*() family of atomic intrinsics to allow code to atomically
swap the current value with the new value. More importantly, it helps developers write more efficient and correct
code by avoiding expensive loops around __sync_bool_compare_and_swap() or relying on the platform specific
implementation details of __sync_lock_test_and_set(). The __sync_swap() builtin is a full barrier.

__builtin_addressof

__builtin_addressof performs the functionality of the built-in & operator, ignoring any operator& overload.
This is useful in constant expressions in C++11, where there is no other way to take the address of an object that
overloads operator&.

Example of use:

template<typename T> constexpr T *addressof(T &value) {
  return __builtin_addressof(value);
}

__builtin_function_start

__builtin_function_start returns the address of a function body.

Syntax:

void *__builtin_function_start(function)

Example of use:

void a() {}
void *p = __builtin_function_start(a);

class A {
public:
  void a(int n);
  void a();
};

void A::a(int n) {}
void A::a() {}

void *pa1 = __builtin_function_start((void(A::*)(int)) &A::a);
void *pa2 = __builtin_function_start((void(A::*)()) &A::a);

Description:

The __builtin_function_start builtin accepts an argument that can be constant-evaluated to a function, and
returns the address of the function body. This builtin is not supported on all targets.

The returned pointer may differ from the normally taken function address and is not safe to call. For example, with
-fsanitize=cfi, taking a function address produces a callable pointer to a CFI jump table, while
__builtin_function_start returns an address that fails cfi-icall checks.

__builtin_operator_new and __builtin_operator_delete

A call to __builtin_operator_new(args) is exactly the same as a call to ::operator new(args), except
that it allows certain optimizations that the C++ standard does not permit for a direct function call to
::operator new (in particular, removing new / delete pairs and merging allocations), and that the call is required
to resolve to a replaceable global allocation function.

Likewise, __builtin_operator_delete is exactly the same as a call to ::operator delete(args), except
that it permits optimizations and that the call is required to resolve to a replaceable global deallocation function.

Clang Language Extensions

160

https://en.cppreference.com/w/cpp/memory/new/operator_new
https://en.cppreference.com/w/cpp/memory/new/operator_delete


These builtins are intended for use in the implementation of std::allocator and other similar allocation libraries,
and are only available in C++.

Query for this feature with __has_builtin(__builtin_operator_new) or
__has_builtin(__builtin_operator_delete):

• If the value is at least 201802L, the builtins behave as described above.

• If the value is non-zero, the builtins may not support calling arbitrary replaceable global (de)allocation
functions, but do support calling at least ::operator new(size_t) and
::operator delete(void*).

__builtin_preserve_access_index

__builtin_preserve_access_index specifies a code section where array subscript access and structure/union
member access are relocatable under bpf compile-once run-everywhere framework. Debuginfo (typically with -g) is
needed, otherwise, the compiler will exit with an error. The return type for the intrinsic is the same as the type of the
argument.

Syntax:

type __builtin_preserve_access_index(type arg)

Example of Use:

struct t {
  int i;
  int j;
  union {
    int a;
    int b;
  } c[4];
};
struct t *v = ...;
int *pb =__builtin_preserve_access_index(&v->c[3].b);
__builtin_preserve_access_index(v->j);

__builtin_debugtrap

__builtin_debugtrap causes the program to stop its execution in such a way that a debugger can catch it.

Syntax:

__builtin_debugtrap()

Description

__builtin_debugtrap is lowered to the ` llvm.debugtrap
<https://llvm.org/docs/LangRef.html#llvm-debugtrap-intrinsic>`_ builtin. It should have the same effect as setting a
breakpoint on the line where the builtin is called.

Query for this feature with __has_builtin(__builtin_debugtrap).

__builtin_trap

__builtin_trap causes the program to stop its execution abnormally.

Syntax:

__builtin_trap()

Description

__builtin_trap is lowered to the ` llvm.trap <https://llvm.org/docs/LangRef.html#llvm-trap-intrinsic>`_ builtin.

Query for this feature with __has_builtin(__builtin_trap).

Clang Language Extensions

161

https://llvm.org/docs/LangRef.html#llvm-debugtrap-intrinsic
https://llvm.org/docs/LangRef.html#llvm-trap-intrinsic


__builtin_sycl_unique_stable_name

__builtin_sycl_unique_stable_name() is a builtin that takes a type and produces a string literal containing a
unique name for the type that is stable across split compilations, mainly to support SYCL/Data Parallel C++
language.

In cases where the split compilation needs to share a unique token for a type across the boundary (such as in an
offloading situation), this name can be used for lookup purposes, such as in the SYCL Integration Header.

The value of this builtin is computed entirely at compile time, so it can be used in constant expressions. This value
encodes lambda functions based on a stable numbering order in which they appear in their local declaration
contexts. Once this builtin is evaluated in a constexpr context, it is erroneous to use it in an instantiation which
changes its value.

In order to produce the unique name, the current implementation of the bultin uses Itanium mangling even if the host
compilation uses a different name mangling scheme at runtime. The mangler marks all the lambdas required to
name the SYCL kernel and emits a stable local ordering of the respective lambdas. The resulting pattern is
demanglable. When non-lambda types are passed to the builtin, the mangler emits their usual pattern without any
special treatment.

Syntax:

// Computes a unique stable name for the given type.
constexpr const char * __builtin_sycl_unique_stable_name( type-id );

Multiprecision Arithmetic Builtins

Clang provides a set of builtins which expose multiprecision arithmetic in a manner amenable to C. They all have the
following form:

unsigned x = ..., y = ..., carryin = ..., carryout;
unsigned sum = __builtin_addc(x, y, carryin, &carryout);

Thus one can form a multiprecision addition chain in the following manner:

unsigned *x, *y, *z, carryin=0, carryout;
z[0] = __builtin_addc(x[0], y[0], carryin, &carryout);
carryin = carryout;
z[1] = __builtin_addc(x[1], y[1], carryin, &carryout);
carryin = carryout;
z[2] = __builtin_addc(x[2], y[2], carryin, &carryout);
carryin = carryout;
z[3] = __builtin_addc(x[3], y[3], carryin, &carryout);

The complete list of builtins are:
unsigned char      __builtin_addcb (unsigned char x, unsigned char y, unsigned char carryin, unsigned char *carryout);
unsigned short     __builtin_addcs (unsigned short x, unsigned short y, unsigned short carryin, unsigned short *carryout);
unsigned           __builtin_addc  (unsigned x, unsigned y, unsigned carryin, unsigned *carryout);
unsigned long      __builtin_addcl (unsigned long x, unsigned long y, unsigned long carryin, unsigned long *carryout);
unsigned long long __builtin_addcll(unsigned long long x, unsigned long long y, unsigned long long carryin, unsigned long long *carryout);
unsigned char      __builtin_subcb (unsigned char x, unsigned char y, unsigned char carryin, unsigned char *carryout);
unsigned short     __builtin_subcs (unsigned short x, unsigned short y, unsigned short carryin, unsigned short *carryout);
unsigned           __builtin_subc  (unsigned x, unsigned y, unsigned carryin, unsigned *carryout);
unsigned long      __builtin_subcl (unsigned long x, unsigned long y, unsigned long carryin, unsigned long *carryout);
unsigned long long __builtin_subcll(unsigned long long x, unsigned long long y, unsigned long long carryin, unsigned long long *carryout);

Checked Arithmetic Builtins

Clang provides a set of builtins that implement checked arithmetic for security critical applications in a manner that is
fast and easily expressible in C. As an example of their usage:

errorcode_t security_critical_application(...) {
  unsigned x, y, result;
  ...
  if (__builtin_mul_overflow(x, y, &result))
    return kErrorCodeHackers;
  ...
  use_multiply(result);

Clang Language Extensions

162



  ...
}

Clang provides the following checked arithmetic builtins:

bool __builtin_add_overflow   (type1 x, type2 y, type3 *sum);
bool __builtin_sub_overflow   (type1 x, type2 y, type3 *diff);
bool __builtin_mul_overflow   (type1 x, type2 y, type3 *prod);
bool __builtin_uadd_overflow  (unsigned x, unsigned y, unsigned *sum);
bool __builtin_uaddl_overflow (unsigned long x, unsigned long y, unsigned long *sum);
bool __builtin_uaddll_overflow(unsigned long long x, unsigned long long y, unsigned long long *sum);
bool __builtin_usub_overflow  (unsigned x, unsigned y, unsigned *diff);
bool __builtin_usubl_overflow (unsigned long x, unsigned long y, unsigned long *diff);
bool __builtin_usubll_overflow(unsigned long long x, unsigned long long y, unsigned long long *diff);
bool __builtin_umul_overflow  (unsigned x, unsigned y, unsigned *prod);
bool __builtin_umull_overflow (unsigned long x, unsigned long y, unsigned long *prod);
bool __builtin_umulll_overflow(unsigned long long x, unsigned long long y, unsigned long long *prod);
bool __builtin_sadd_overflow  (int x, int y, int *sum);
bool __builtin_saddl_overflow (long x, long y, long *sum);
bool __builtin_saddll_overflow(long long x, long long y, long long *sum);
bool __builtin_ssub_overflow  (int x, int y, int *diff);
bool __builtin_ssubl_overflow (long x, long y, long *diff);
bool __builtin_ssubll_overflow(long long x, long long y, long long *diff);
bool __builtin_smul_overflow  (int x, int y, int *prod);
bool __builtin_smull_overflow (long x, long y, long *prod);
bool __builtin_smulll_overflow(long long x, long long y, long long *prod);

Each builtin performs the specified mathematical operation on the first two arguments and stores the result in the
third argument. If possible, the result will be equal to mathematically-correct result and the builtin will return 0.
Otherwise, the builtin will return 1 and the result will be equal to the unique value that is equivalent to the
mathematically-correct result modulo two raised to the k power, where k is the number of bits in the result type. The
behavior of these builtins is well-defined for all argument values.

The first three builtins work generically for operands of any integer type, including boolean types. The operands need
not have the same type as each other, or as the result. The other builtins may implicitly promote or convert their
operands before performing the operation.

Query for this feature with __has_builtin(__builtin_add_overflow), etc.

Floating point builtins

__builtin_canonicalize

double __builtin_canonicalize(double);
float __builtin_canonicalizef(float);
long double__builtin_canonicalizel(long double);

Returns the platform specific canonical encoding of a floating point number. This canonicalization is useful for
implementing certain numeric primitives such as frexp. See LLVM canonicalize intrinsic for more information on the
semantics.

String builtins

Clang provides constant expression evaluation support for builtins forms of the following functions from the C
standard library headers <string.h> and <wchar.h>:

• memchr

• memcmp (and its deprecated BSD / POSIX alias bcmp)

• strchr

• strcmp

• strlen

• strncmp

Clang Language Extensions

163

https://llvm.org/docs/LangRef.html#llvm-canonicalize-intrinsic


• wcschr

• wcscmp

• wcslen

• wcsncmp

• wmemchr

• wmemcmp

In each case, the builtin form has the name of the C library function prefixed by __builtin_. Example:

void *p = __builtin_memchr("foobar", 'b', 5);

In addition to the above, one further builtin is provided:

char *__builtin_char_memchr(const char *haystack, int needle, size_t size);

__builtin_char_memchr(a, b, c) is identical to (char*)__builtin_memchr(a, b, c) except that its
use is permitted within constant expressions in C++11 onwards (where a cast from void* to char* is disallowed in
general).

Constant evaluation support for the __builtin_mem* functions is provided only for arrays of char, signed char,
unsigned char, or char8_t, despite these functions accepting an argument of type const void*.

Support for constant expression evaluation for the above builtins can be detected with
__has_feature(cxx_constexpr_string_builtins).

Memory builtins

Clang provides constant expression evaluation support for builtin forms of the following functions from the C standard
library headers <string.h> and <wchar.h>:

• memcpy

• memmove

• wmemcpy

• wmemmove

In each case, the builtin form has the name of the C library function prefixed by __builtin_.

Constant evaluation support is only provided when the source and destination are pointers to arrays with the same
trivially copyable element type, and the given size is an exact multiple of the element size that is no greater than the
number of elements accessible through the source and destination operands.

Guaranteed inlined copy

void __builtin_memcpy_inline(void *dst, const void *src, size_t size);

__builtin_memcpy_inline has been designed as a building block for efficient memcpy implementations. It is
identical to __builtin_memcpy but also guarantees not to call any external functions. See LLVM IR
llvm.memcpy.inline intrinsic for more information.

This is useful to implement a custom version of memcpy, implement a libc memcpy or work around the absence of
a libc.

Note that the size argument must be a compile time constant.

Note that this intrinsic cannot yet be called in a constexpr context.

Atomic Min/Max builtins with memory ordering

There are two atomic builtins with min/max in-memory comparison and swap. The syntax and semantics are similar
to GCC-compatible __atomic_* builtins.

• __atomic_fetch_min

Clang Language Extensions

164

https://llvm.org/docs/LangRef.html#llvm-memcpy-inline-intrinsic


• __atomic_fetch_max

The builtins work with signed and unsigned integers and require to specify memory ordering. The return value is the
original value that was stored in memory before comparison.

Example:

unsigned int val = __atomic_fetch_min(unsigned int *pi, unsigned int ui, __ATOMIC_RELAXED);

The third argument is one of the memory ordering specifiers __ATOMIC_RELAXED, __ATOMIC_CONSUME,
__ATOMIC_ACQUIRE, __ATOMIC_RELEASE, __ATOMIC_ACQ_REL, or __ATOMIC_SEQ_CST following C++11
memory model semantics.

In terms or aquire-release ordering barriers these two operations are always considered as operations with
load-store semantics, even when the original value is not actually modified after comparison.

__c11_atomic builtins

Clang provides a set of builtins which are intended to be used to implement C11’s <stdatomic.h> header. These
builtins provide the semantics of the _explicit form of the corresponding C11 operation, and are named with a
__c11_ prefix. The supported operations, and the differences from the corresponding C11 operations, are:

• __c11_atomic_init

• __c11_atomic_thread_fence

• __c11_atomic_signal_fence

• __c11_atomic_is_lock_free (The argument is the size of the _Atomic(...) object, instead of its
address)

• __c11_atomic_store

• __c11_atomic_load

• __c11_atomic_exchange

• __c11_atomic_compare_exchange_strong

• __c11_atomic_compare_exchange_weak

• __c11_atomic_fetch_add

• __c11_atomic_fetch_sub

• __c11_atomic_fetch_and

• __c11_atomic_fetch_or

• __c11_atomic_fetch_xor

• __c11_atomic_fetch_nand (Nand is not presented in <stdatomic.h>)

• __c11_atomic_fetch_max

• __c11_atomic_fetch_min

The macros __ATOMIC_RELAXED, __ATOMIC_CONSUME, __ATOMIC_ACQUIRE, __ATOMIC_RELEASE,
__ATOMIC_ACQ_REL, and __ATOMIC_SEQ_CST are provided, with values corresponding to the enumerators of
C11’s memory_order enumeration.

(Note that Clang additionally provides GCC-compatible __atomic_* builtins and OpenCL 2.0
__opencl_atomic_* builtins. The OpenCL 2.0 atomic builtins are an explicit form of the corresponding OpenCL
2.0 builtin function, and are named with a __opencl_ prefix. The macros __OPENCL_MEMORY_SCOPE_WORK_ITEM,
__OPENCL_MEMORY_SCOPE_WORK_GROUP, __OPENCL_MEMORY_SCOPE_DEVICE,
__OPENCL_MEMORY_SCOPE_ALL_SVM_DEVICES, and __OPENCL_MEMORY_SCOPE_SUB_GROUP are provided, with
values corresponding to the enumerators of OpenCL’s memory_scope enumeration.)

Low-level ARM exclusive memory builtins

Clang provides overloaded builtins giving direct access to the three key ARM instructions for implementing atomic
operations.

Clang Language Extensions

165



T __builtin_arm_ldrex(const volatile T *addr);
T __builtin_arm_ldaex(const volatile T *addr);
int __builtin_arm_strex(T val, volatile T *addr);
int __builtin_arm_stlex(T val, volatile T *addr);
void __builtin_arm_clrex(void);

The types T currently supported are:

• Integer types with width at most 64 bits (or 128 bits on AArch64).

• Floating-point types

• Pointer types.

Note that the compiler does not guarantee it will not insert stores which clear the exclusive monitor in between an
ldrex type operation and its paired strex. In practice this is only usually a risk when the extra store is on the same
cache line as the variable being modified and Clang will only insert stack stores on its own, so it is best not to use
these operations on variables with automatic storage duration.

Also, loads and stores may be implicit in code written between the ldrex and strex. Clang will not necessarily
mitigate the effects of these either, so care should be exercised.

For these reasons the higher level atomic primitives should be preferred where possible.

Non-temporal load/store builtins

Clang provides overloaded builtins allowing generation of non-temporal memory accesses.

T __builtin_nontemporal_load(T *addr);
void __builtin_nontemporal_store(T value, T *addr);

The types T currently supported are:

• Integer types.

• Floating-point types.

• Vector types.

Note that the compiler does not guarantee that non-temporal loads or stores will be used.

C++ Coroutines support builtins

Warning

This is a work in progress. Compatibility across Clang/LLVM releases is not guaranteed.

Clang provides experimental builtins to support C++ Coroutines as defined by https://wg21.link/P0057. The following
four are intended to be used by the standard library to implement the std::coroutine_handle type.

Syntax:

void  __builtin_coro_resume(void *addr);
void  __builtin_coro_destroy(void *addr);
bool  __builtin_coro_done(void *addr);
void *__builtin_coro_promise(void *addr, int alignment, bool from_promise)

Example of use:

template <> struct coroutine_handle<void> {
  void resume() const { __builtin_coro_resume(ptr); }
  void destroy() const { __builtin_coro_destroy(ptr); }
  bool done() const { return __builtin_coro_done(ptr); }
  // ...
protected:

Clang Language Extensions

166

https://wg21.link/P0057


  void *ptr;
};

template <typename Promise> struct coroutine_handle : coroutine_handle<> {
  // ...
  Promise &promise() const {
    return *reinterpret_cast<Promise *>(
      __builtin_coro_promise(ptr, alignof(Promise), /*from-promise=*/false));
  }
  static coroutine_handle from_promise(Promise &promise) {
    coroutine_handle p;
    p.ptr = __builtin_coro_promise(&promise, alignof(Promise),
                                                    /*from-promise=*/true);
    return p;
  }
};

Other coroutine builtins are either for internal clang use or for use during development of the coroutine feature. See
Coroutines in LLVM for more information on their semantics. Note that builtins matching the intrinsics that take token
as the first parameter (llvm.coro.begin, llvm.coro.alloc, llvm.coro.free and llvm.coro.suspend) omit the token
parameter and fill it to an appropriate value during the emission.

Syntax:

size_t __builtin_coro_size()
void  *__builtin_coro_frame()
void  *__builtin_coro_free(void *coro_frame)

void  *__builtin_coro_id(int align, void *promise, void *fnaddr, void *parts)
bool   __builtin_coro_alloc()
void  *__builtin_coro_begin(void *memory)
void   __builtin_coro_end(void *coro_frame, bool unwind)
char   __builtin_coro_suspend(bool final)

Note that there is no builtin matching the llvm.coro.save intrinsic. LLVM automatically will insert one if the first
argument to llvm.coro.suspend is token none. If a user calls __builin_suspend, clang will insert token none as the
first argument to the intrinsic.

Source location builtins

Clang provides builtins to support C++ standard library implementation of std::source_location as specified in
C++20. With the exception of __builtin_COLUMN, these builtins are also implemented by GCC.

Syntax:

const char *__builtin_FILE();
const char *__builtin_FUNCTION();
unsigned    __builtin_LINE();
unsigned    __builtin_COLUMN(); // Clang only
const std::source_location::__impl *__builtin_source_location();

Example of use:

void my_assert(bool pred, int line = __builtin_LINE(), // Captures line of caller
               const char* file = __builtin_FILE(),
               const char* function = __builtin_FUNCTION()) {
  if (pred) return;
  printf("%s:%d assertion failed in function %s\n", file, line, function);
  std::abort();
}

struct MyAggregateType {
  int x;

Clang Language Extensions

167

https://llvm.org/docs/Coroutines.html#intrinsics


  int line = __builtin_LINE(); // captures line where aggregate initialization occurs
};
static_assert(MyAggregateType{42}.line == __LINE__);

struct MyClassType {
  int line = __builtin_LINE(); // captures line of the constructor used during initialization
  constexpr MyClassType(int) { assert(line == __LINE__); }
};

Description:

The builtins __builtin_LINE, __builtin_FUNCTION, and __builtin_FILE return the values, at the
“invocation point”, for __LINE__, __FUNCTION__, and __FILE__ respectively. __builtin_COLUMN similarly
returns the column, though there is no corresponding macro. These builtins are constant expressions.

When the builtins appear as part of a default function argument the invocation point is the location of the caller.
When the builtins appear as part of a default member initializer, the invocation point is the location of the constructor
or aggregate initialization used to create the object. Otherwise the invocation point is the same as the location of the
builtin.

When the invocation point of __builtin_FUNCTION is not a function scope the empty string is returned.

The builtin __builtin_source_location returns a pointer to constant static data of type
std::source_location::__impl. This type must have already been defined, and must contain exactly four
fields: const char *_M_file_name, const char *_M_function_name,
<any-integral-type> _M_line, and <any-integral-type> _M_column. The fields will be populated in the
same manner as the above four builtins, except that _M_function_name is populated with
__PRETTY_FUNCTION__ rather than __FUNCTION__.

Alignment builtins

Clang provides builtins to support checking and adjusting alignment of pointers and integers. These builtins can be
used to avoid relying on implementation-defined behavior of arithmetic on integers derived from pointers.
Additionally, these builtins retain type information and, unlike bitwise arithmetic, they can perform semantic checking
on the alignment value.

Syntax:

Type __builtin_align_up(Type value, size_t alignment);
Type __builtin_align_down(Type value, size_t alignment);
bool __builtin_is_aligned(Type value, size_t alignment);

Example of use:

char* global_alloc_buffer;
void* my_aligned_allocator(size_t alloc_size, size_t alignment) {
  char* result = __builtin_align_up(global_alloc_buffer, alignment);
  // result now contains the value of global_alloc_buffer rounded up to the
  // next multiple of alignment.
  global_alloc_buffer = result + alloc_size;
  return result;
}

void* get_start_of_page(void* ptr) {
  return __builtin_align_down(ptr, PAGE_SIZE);
}

void example(char* buffer) {
   if (__builtin_is_aligned(buffer, 64)) {
     do_fast_aligned_copy(buffer);
   } else {
     do_unaligned_copy(buffer);
   }
}

Clang Language Extensions

168



// In addition to pointers, the builtins can also be used on integer types
// and are evaluatable inside constant expressions.
static_assert(__builtin_align_up(123, 64) == 128, "");
static_assert(__builtin_align_down(123u, 64) == 64u, "");
static_assert(!__builtin_is_aligned(123, 64), "");

Description:

The builtins __builtin_align_up, __builtin_align_down, return their first argument aligned up/down to the
next multiple of the second argument. If the value is already sufficiently aligned, it is returned unchanged. The builtin
__builtin_is_aligned returns whether the first argument is aligned to a multiple of the second argument. All of
these builtins expect the alignment to be expressed as a number of bytes.

These builtins can be used for all integer types as well as (non-function) pointer types. For pointer types, these
builtins operate in terms of the integer address of the pointer and return a new pointer of the same type (including
qualifiers such as const) with an adjusted address. When aligning pointers up or down, the resulting value must be
within the same underlying allocation or one past the end (see C17 6.5.6p8, C++ [expr.add]). This means that
arbitrary integer values stored in pointer-type variables must not be passed to these builtins. For those use cases,
the builtins can still be used, but the operation must be performed on the pointer cast to uintptr_t.

If Clang can determine that the alignment is not a power of two at compile time, it will result in a compilation failure. If
the alignment argument is not a power of two at run time, the behavior of these builtins is undefined.

Non-standard C++11 Attributes
Clang’s non-standard C++11 attributes live in the clang attribute namespace.

Clang supports GCC’s gnu attribute namespace. All GCC attributes which are accepted with the
__attribute__((foo)) syntax are also accepted as [[gnu::foo]]. This only extends to attributes which are
specified by GCC (see the list of GCC function attributes, GCC variable attributes, and GCC type attributes). As with
the GCC implementation, these attributes must appertain to the declarator-id in a declaration, which means they
must go either at the start of the declaration or immediately after the name being declared.

For example, this applies the GNU unused attribute to a and f, and also applies the GNU noreturn attribute to f.

[[gnu::unused]] int a, f [[gnu::noreturn]] ();

Target-Specific Extensions
Clang supports some language features conditionally on some targets.

ARM/AArch64 Language Extensions

Memory Barrier Intrinsics

Clang implements the __dmb, __dsb and __isb intrinsics as defined in the ARM C Language Extensions Release
2.0. Note that these intrinsics are implemented as motion barriers that block reordering of memory accesses and
side effect instructions. Other instructions like simple arithmetic may be reordered around the intrinsic. If you expect
to have no reordering at all, use inline assembly instead.

X86/X86-64 Language Extensions

The X86 backend has these language extensions:

Memory references to specified segments

Annotating a pointer with address space #256 causes it to be code generated relative to the X86 GS segment
register, address space #257 causes it to be relative to the X86 FS segment, and address space #258 causes it to
be relative to the X86 SS segment. Note that this is a very very low-level feature that should only be used if you know
what you’re doing (for example in an OS kernel).

Here is an example:

Clang Language Extensions

169

https://gcc.gnu.org/onlinedocs/gcc/Function-Attributes.html
https://gcc.gnu.org/onlinedocs/gcc/Variable-Attributes.html
https://gcc.gnu.org/onlinedocs/gcc/Type-Attributes.html
http://infocenter.arm.com/help/topic/com.arm.doc.ihi0053c/IHI0053C_acle_2_0.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.ihi0053c/IHI0053C_acle_2_0.pdf


#define GS_RELATIVE __attribute__((address_space(256)))
int foo(int GS_RELATIVE *P) {
  return *P;
}

Which compiles to (on X86-32):

_foo:
        movl    4(%esp), %eax
        movl    %gs:(%eax), %eax
        ret

You can also use the GCC compatibility macros __seg_fs and __seg_gs for the same purpose. The preprocessor
symbols __SEG_FS and __SEG_GS indicate their support.

PowerPC Language Extensions

Set the Floating Point Rounding Mode

PowerPC64/PowerPC64le supports the builtin function __builtin_setrnd to set the floating point rounding mode.
This function will use the least significant two bits of integer argument to set the floating point rounding mode.

double __builtin_setrnd(int mode);

The effective values for mode are:

• 0 - round to nearest

• 1 - round to zero

• 2 - round to +infinity

• 3 - round to -infinity

Note that the mode argument will modulo 4, so if the integer argument is greater than 3, it will only use the least
significant two bits of the mode. Namely, __builtin_setrnd(102)) is equal to __builtin_setrnd(2).

PowerPC cache builtins

The PowerPC architecture specifies instructions implementing cache operations. Clang provides builtins that give
direct programmer access to these cache instructions.

Currently the following builtins are implemented in clang:

__builtin_dcbf copies the contents of a modified block from the data cache to main memory and flushes the
copy from the data cache.

Syntax:

void __dcbf(const void* addr); /* Data Cache Block Flush */

Example of Use:

int a = 1;
__builtin_dcbf (&a);

Extensions for Static Analysis
Clang supports additional attributes that are useful for documenting program invariants and rules for static analysis
tools, such as the Clang Static Analyzer. These attributes are documented in the analyzer’s list of source-level
annotations.

Extensions for Dynamic Analysis
Use __has_feature(address_sanitizer) to check if the code is being built with AddressSanitizer.

Clang Language Extensions

170

https://clang-analyzer.llvm.org/
https://clang-analyzer.llvm.org/annotations.html
https://clang-analyzer.llvm.org/annotations.html


Use __has_feature(thread_sanitizer) to check if the code is being built with ThreadSanitizer.

Use __has_feature(memory_sanitizer) to check if the code is being built with MemorySanitizer.

Use __has_feature(dataflow_sanitizer) to check if the code is being built with DataFlowSanitizer.

Use __has_feature(safe_stack) to check if the code is being built with SafeStack.

Extensions for selectively disabling optimization
Clang provides a mechanism for selectively disabling optimizations in functions and methods.

To disable optimizations in a single function definition, the GNU-style or C++11 non-standard attribute optnone can
be used.

// The following functions will not be optimized.
// GNU-style attribute
__attribute__((optnone)) int foo() {
  // ... code
}
// C++11 attribute
[[clang::optnone]] int bar() {
  // ... code
}

To facilitate disabling optimization for a range of function definitions, a range-based pragma is provided. Its syntax is
#pragma clang optimize followed by off or on.

All function definitions in the region between an off and the following on will be decorated with the optnone
attribute unless doing so would conflict with explicit attributes already present on the function (e.g. the ones that
control inlining).

#pragma clang optimize off
// This function will be decorated with optnone.
int foo() {
  // ... code
}

// optnone conflicts with always_inline, so bar() will not be decorated.
__attribute__((always_inline)) int bar() {
  // ... code
}
#pragma clang optimize on

If no on is found to close an off region, the end of the region is the end of the compilation unit.

Note that a stray #pragma clang optimize on does not selectively enable additional optimizations when
compiling at low optimization levels. This feature can only be used to selectively disable optimizations.

The pragma has an effect on functions only at the point of their definition; for function templates, this means that the
state of the pragma at the point of an instantiation is not necessarily relevant. Consider the following example:

template<typename T> T twice(T t) {
  return 2 * t;
}

#pragma clang optimize off
template<typename T> T thrice(T t) {
  return 3 * t;
}

int container(int a, int b) {
  return twice(a) + thrice(b);
}
#pragma clang optimize on

Clang Language Extensions

171



In this example, the definition of the template function twice is outside the pragma region, whereas the definition of
thrice is inside the region. The container function is also in the region and will not be optimized, but it causes
the instantiation of twice and thrice with an int type; of these two instantiations, twice will be optimized
(because its definition was outside the region) and thrice will not be optimized.

Extensions for loop hint optimizations
The #pragma clang loop directive is used to specify hints for optimizing the subsequent for, while, do-while, or
c++11 range-based for loop. The directive provides options for vectorization, interleaving, predication, unrolling and
distribution. Loop hints can be specified before any loop and will be ignored if the optimization is not safe to apply.

There are loop hints that control transformations (e.g. vectorization, loop unrolling) and there are loop hints that set
transformation options (e.g. vectorize_width, unroll_count). Pragmas setting transformation options imply
the transformation is enabled, as if it was enabled via the corresponding transformation pragma (e.g.
vectorize(enable)). If the transformation is disabled (e.g. vectorize(disable)), that takes precedence over
transformations option pragmas implying that transformation.

Vectorization, Interleaving, and Predication

A vectorized loop performs multiple iterations of the original loop in parallel using vector instructions. The instruction
set of the target processor determines which vector instructions are available and their vector widths. This restricts
the types of loops that can be vectorized. The vectorizer automatically determines if the loop is safe and profitable to
vectorize. A vector instruction cost model is used to select the vector width.

Interleaving multiple loop iterations allows modern processors to further improve instruction-level parallelism (ILP)
using advanced hardware features, such as multiple execution units and out-of-order execution. The vectorizer uses
a cost model that depends on the register pressure and generated code size to select the interleaving count.

Vectorization is enabled by vectorize(enable) and interleaving is enabled by interleave(enable). This is
useful when compiling with -Os to manually enable vectorization or interleaving.

#pragma clang loop vectorize(enable)
#pragma clang loop interleave(enable)
for(...) {
  ...
}

The vector width is specified by vectorize_width(_value_[, fixed|scalable]), where _value_ is a
positive integer and the type of vectorization can be specified with an optional second parameter. The default for the
second parameter is ‘fixed’ and refers to fixed width vectorization, whereas ‘scalable’ indicates the compiler should
use scalable vectors instead. Another use of vectorize_width is vectorize_width(fixed|scalable) where the
user can hint at the type of vectorization to use without specifying the exact width. In both variants of the pragma the
vectorizer may decide to fall back on fixed width vectorization if the target does not support scalable vectors.

The interleave count is specified by interleave_count(_value_), where _value_ is a positive integer. This is
useful for specifying the optimal width/count of the set of target architectures supported by your application.

#pragma clang loop vectorize_width(2)
#pragma clang loop interleave_count(2)
for(...) {
  ...
}

Specifying a width/count of 1 disables the optimization, and is equivalent to vectorize(disable) or
interleave(disable).

Vector predication is enabled by vectorize_predicate(enable), for example:

#pragma clang loop vectorize(enable)
#pragma clang loop vectorize_predicate(enable)
for(...) {
  ...
}

Clang Language Extensions

172



This predicates (masks) all instructions in the loop, which allows the scalar remainder loop (the tail) to be folded into
the main vectorized loop. This might be more efficient when vector predication is efficiently supported by the target
platform.

Loop Unrolling

Unrolling a loop reduces the loop control overhead and exposes more opportunities for ILP. Loops can be fully or
partially unrolled. Full unrolling eliminates the loop and replaces it with an enumerated sequence of loop iterations.
Full unrolling is only possible if the loop trip count is known at compile time. Partial unrolling replicates the loop body
within the loop and reduces the trip count.

If unroll(enable) is specified the unroller will attempt to fully unroll the loop if the trip count is known at compile
time. If the fully unrolled code size is greater than an internal limit the loop will be partially unrolled up to this limit. If
the trip count is not known at compile time the loop will be partially unrolled with a heuristically chosen unroll factor.

#pragma clang loop unroll(enable)
for(...) {
  ...
}

If unroll(full) is specified the unroller will attempt to fully unroll the loop if the trip count is known at compile time
identically to unroll(enable). However, with unroll(full) the loop will not be unrolled if the loop count is not
known at compile time.

#pragma clang loop unroll(full)
for(...) {
  ...
}

The unroll count can be specified explicitly with unroll_count(_value_) where _value_ is a positive integer. If
this value is greater than the trip count the loop will be fully unrolled. Otherwise the loop is partially unrolled subject to
the same code size limit as with unroll(enable).

#pragma clang loop unroll_count(8)
for(...) {
  ...
}

Unrolling of a loop can be prevented by specifying unroll(disable).

Loop unroll parameters can be controlled by options -mllvm -unroll-count=n and -mllvm -pragma-unroll-threshold=n.

Loop Distribution

Loop Distribution allows splitting a loop into multiple loops. This is beneficial for example when the entire loop cannot
be vectorized but some of the resulting loops can.

If distribute(enable)) is specified and the loop has memory dependencies that inhibit vectorization, the
compiler will attempt to isolate the offending operations into a new loop. This optimization is not enabled by default,
only loops marked with the pragma are considered.

#pragma clang loop distribute(enable)
for (i = 0; i < N; ++i) {
  S1: A[i + 1] = A[i] + B[i];
  S2: C[i] = D[i] * E[i];
}

This loop will be split into two loops between statements S1 and S2. The second loop containing S2 will be
vectorized.

Loop Distribution is currently not enabled by default in the optimizer because it can hurt performance in some cases.
For example, instruction-level parallelism could be reduced by sequentializing the execution of the statements S1
and S2 above.

If Loop Distribution is turned on globally with -mllvm -enable-loop-distribution, specifying
distribute(disable) can be used the disable it on a per-loop basis.

Clang Language Extensions

173



Additional Information

For convenience multiple loop hints can be specified on a single line.

#pragma clang loop vectorize_width(4) interleave_count(8)
for(...) {
  ...
}

If an optimization cannot be applied any hints that apply to it will be ignored. For example, the hint
vectorize_width(4) is ignored if the loop is not proven safe to vectorize. To identify and diagnose optimization
issues use -Rpass, -Rpass-missed, and -Rpass-analysis command line options. See the user guide for details.

Extensions to specify floating-point flags
The #pragma clang fp pragma allows floating-point options to be specified for a section of the source code. This
pragma can only appear at file scope or at the start of a compound statement (excluding comments). When using
within a compound statement, the pragma is active within the scope of the compound statement.

Currently, the following settings can be controlled with this pragma:

#pragma clang fp reassociate allows control over the reassociation of floating point expressions. When
enabled, this pragma allows the expression x + (y + z) to be reassociated as (x + y) + z. Reassociation can
also occur across multiple statements. This pragma can be used to disable reassociation when it is otherwise
enabled for the translation unit with the -fassociative-math flag. The pragma can take two values: on and off.

float f(float x, float y, float z)
{
  // Enable floating point reassociation across statements
  #pragma clang fp reassociate(on)
  float t = x + y;
  float v = t + z;
}

#pragma clang fp contract specifies whether the compiler should contract a multiply and an addition (or
subtraction) into a fused FMA operation when supported by the target.

The pragma can take three values: on, fast and off. The on option is identical to using
#pragma STDC FP_CONTRACT(ON) and it allows fusion as specified the language standard. The fast option
allows fusion in cases when the language standard does not make this possible (e.g. across statements in C).

for(...) {
  #pragma clang fp contract(fast)
  a = b[i] * c[i];
  d[i] += a;
}

The pragma can also be used with off which turns FP contraction off for a section of the code. This can be useful
when fast contraction is otherwise enabled for the translation unit with the
-ffp-contract=fast-honor-pragmas flag. Note that -ffp-contract=fast will override pragmas to fuse
multiply and addition across statements regardless of any controlling pragmas.

#pragma clang fp exceptions specifies floating point exception behavior. It may take one of the values:
ignore, maytrap or strict. Meaning of these values is same as for constrained floating point intrinsics.

{
  // Preserve floating point exceptions
  #pragma clang fp exceptions(strict)
  z = x + y;
  if (fetestexcept(FE_OVERFLOW))
        ...
}

A #pragma clang fp pragma may contain any number of options:

Clang Language Extensions

174

http://llvm.org/docs/LangRef.html#constrained-floating-point-intrinsics


void func(float *dest, float a, float b) {
  #pragma clang fp exceptions(maytrap) contract(fast) reassociate(on)
  ...
}

#pragma clang fp eval_method allows floating-point behavior to be specified for a section of the source code.
This pragma can appear at file or namespace scope, or at the start of a compound statement (excluding comments).
The pragma is active within the scope of the compound statement.

When pragma clang fp eval_method(source) is enabled, the section of code governed by the pragma
behaves as though the command-line option -ffp-eval-method=source is enabled. Rounds intermediate results
to source-defined precision.

When pragma clang fp eval_method(double) is enabled, the section of code governed by the pragma
behaves as though the command-line option -ffp-eval-method=double is enabled. Rounds intermediate results
to double precision.

When pragma clang fp eval_method(extended) is enabled, the section of code governed by the pragma
behaves as though the command-line option -ffp-eval-method=extended is enabled. Rounds intermediate
results to target-dependent long double precision. In Win32 programming, for instance, the long double data type
maps to the double, 64-bit precision data type.

The full syntax this pragma supports is #pragma clang fp eval_method(source|double|extended).

for(...) {
  // The compiler will use long double as the floating-point evaluation
  // method.
  #pragma clang fp eval_method(extended)
  a = b[i] * c[i] + e;
}

The #pragma float_control pragma allows precise floating-point semantics and floating-point exception
behavior to be specified for a section of the source code. This pragma can only appear at file or namespace scope,
within a language linkage specification or at the start of a compound statement (excluding comments). When used
within a compound statement, the pragma is active within the scope of the compound statement. This pragma is
modeled after a Microsoft pragma with the same spelling and syntax. For pragmas specified at file or namespace
scope, or within a language linkage specification, a stack is supported so that the pragma float_control
settings can be pushed or popped.

When pragma float_control(precise, on) is enabled, the section of code governed by the pragma uses
precise floating point semantics, effectively -ffast-math is disabled and -ffp-contract=on (fused multiply add)
is enabled.

When pragma float_control(except, on) is enabled, the section of code governed by the pragma behaves
as though the command-line option -ffp-exception-behavior=strict is enabled, when
pragma float_control(except, off) is enabled, the section of code governed by the pragma behaves as
though the command-line option -ffp-exception-behavior=ignore is enabled.

The full syntax this pragma supports is float_control(except|precise, on|off [, push]) and
float_control(push|pop). The push and pop forms, including using push as the optional third argument, can
only occur at file scope.

for(...) {
  // This block will be compiled with -fno-fast-math and -ffp-contract=on
  #pragma float_control(precise, on)
  a = b[i] * c[i] + e;
}

Clang Language Extensions

175



Specifying an attribute for multiple declarations (#pragma clang attribute)
The #pragma clang attribute directive can be used to apply an attribute to multiple declarations. The
#pragma clang attribute push variation of the directive pushes a new “scope” of
#pragma clang attribute that attributes can be added to. The #pragma clang attribute (...) variation
adds an attribute to that scope, and the #pragma clang attribute pop variation pops the scope. You can also
use #pragma clang attribute push (...), which is a shorthand for when you want to add one attribute to a
new scope. Multiple push directives can be nested inside each other.

The attributes that are used in the #pragma clang attribute directives can be written using the GNU-style
syntax:

#pragma clang attribute push (__attribute__((annotate("custom"))), apply_to = function)

void function(); // The function now has the annotate("custom") attribute

#pragma clang attribute pop

The attributes can also be written using the C++11 style syntax:

#pragma clang attribute push ([[noreturn]], apply_to = function)

void function(); // The function now has the [[noreturn]] attribute

#pragma clang attribute pop

The __declspec style syntax is also supported:

#pragma clang attribute push (__declspec(dllexport), apply_to = function)

void function(); // The function now has the __declspec(dllexport) attribute

#pragma clang attribute pop

A single push directive can contain multiple attributes, however, only one syntax style can be used within a single
directive:

#pragma clang attribute push ([[noreturn, noinline]], apply_to = function)

void function1(); // The function now has the [[noreturn]] and [[noinline]] attributes

#pragma clang attribute pop

#pragma clang attribute push (__attribute((noreturn, noinline)), apply_to = function)

void function2(); // The function now has the __attribute((noreturn)) and __attribute((noinline)) attributes

#pragma clang attribute pop

Because multiple push directives can be nested, if you’re writing a macro that expands to
_Pragma("clang attribute") it’s good hygiene (though not required) to add a namespace to your push/pop
directives. A pop directive with a namespace will pop the innermost push that has that same namespace. This will
ensure that another macro’s pop won’t inadvertently pop your attribute. Note that an pop without a namespace will
pop the innermost push without a namespace.
push``es with a namespace can only be popped by ``pop with the same namespace. For instance:
#define ASSUME_NORETURN_BEGIN _Pragma("clang attribute AssumeNoreturn.push ([[noreturn]], apply_to = function)")
#define ASSUME_NORETURN_END   _Pragma("clang attribute AssumeNoreturn.pop")

#define ASSUME_UNAVAILABLE_BEGIN _Pragma("clang attribute Unavailable.push (__attribute__((unavailable)), apply_to=function)")
#define ASSUME_UNAVAILABLE_END   _Pragma("clang attribute Unavailable.pop")

ASSUME_NORETURN_BEGIN
ASSUME_UNAVAILABLE_BEGIN
void function(); // function has [[noreturn]] and __attribute__((unavailable))
ASSUME_NORETURN_END
void other_function(); // function has __attribute__((unavailable))
ASSUME_UNAVAILABLE_END

Without the namespaces on the macros, other_function will be annotated with [[noreturn]] instead of
__attribute__((unavailable)). This may seem like a contrived example, but its very possible for this kind of

Clang Language Extensions

176



situation to appear in real code if the pragmas are spread out across a large file. You can test if your version of clang
supports namespaces on #pragma clang attribute with
__has_extension(pragma_clang_attribute_namespaces).

Subject Match Rules

The set of declarations that receive a single attribute from the attribute stack depends on the subject match rules that
were specified in the pragma. Subject match rules are specified after the attribute. The compiler expects an identifier
that corresponds to the subject set specifier. The apply_to specifier is currently the only supported subject set
specifier. It allows you to specify match rules that form a subset of the attribute’s allowed subject set, i.e. the compiler
doesn’t require all of the attribute’s subjects. For example, an attribute like [[nodiscard]] whose subject set
includes enum, record and hasType(functionType), requires the presence of at least one of these rules after
apply_to:

#pragma clang attribute push([[nodiscard]], apply_to = enum)

enum Enum1 { A1, B1 }; // The enum will receive [[nodiscard]]

struct Record1 { }; // The struct will *not* receive [[nodiscard]]

#pragma clang attribute pop

#pragma clang attribute push([[nodiscard]], apply_to = any(record, enum))

enum Enum2 { A2, B2 }; // The enum will receive [[nodiscard]]

struct Record2 { }; // The struct *will* receive [[nodiscard]]

#pragma clang attribute pop

// This is an error, since [[nodiscard]] can't be applied to namespaces:
#pragma clang attribute push([[nodiscard]], apply_to = any(record, namespace))

#pragma clang attribute pop

Multiple match rules can be specified using the any match rule, as shown in the example above. The any rule
applies attributes to all declarations that are matched by at least one of the rules in the any. It doesn’t nest and can’t
be used inside the other match rules. Redundant match rules or rules that conflict with one another should not be
used inside of any. Failing to specify a rule within the any rule results in an error.

Clang supports the following match rules:

• function: Can be used to apply attributes to functions. This includes C++ member functions, static functions,
operators, and constructors/destructors.

• function(is_member): Can be used to apply attributes to C++ member functions. This includes members
like static functions, operators, and constructors/destructors.

• hasType(functionType): Can be used to apply attributes to functions, C++ member functions, and
variables/fields whose type is a function pointer. It does not apply attributes to Objective-C methods or blocks.

• type_alias: Can be used to apply attributes to typedef declarations and C++11 type aliases.

• record: Can be used to apply attributes to struct, class, and union declarations.

• record(unless(is_union)): Can be used to apply attributes only to struct and class declarations.

• enum: Can be be used to apply attributes to enumeration declarations.

• enum_constant: Can be used to apply attributes to enumerators.

• variable: Can be used to apply attributes to variables, including local variables, parameters, global variables,
and static member variables. It does not apply attributes to instance member variables or Objective-C ivars.

• variable(is_thread_local): Can be used to apply attributes to thread-local variables only.

• variable(is_global): Can be used to apply attributes to global variables only.

Clang Language Extensions

177



• variable(is_local): Can be used to apply attributes to local variables only.

• variable(is_parameter): Can be used to apply attributes to parameters only.

• variable(unless(is_parameter)): Can be used to apply attributes to all the variables that are not
parameters.

• field: Can be used to apply attributes to non-static member variables in a record. This includes Objective-C
ivars.

• namespace: Can be used to apply attributes to namespace declarations.

• objc_interface: Can be used to apply attributes to @interface declarations.

• objc_protocol: Can be used to apply attributes to @protocol declarations.

• objc_category: Can be used to apply attributes to category declarations, including class extensions.

• objc_method: Can be used to apply attributes to Objective-C methods, including instance and class methods.
Implicit methods like implicit property getters and setters do not receive the attribute.

• objc_method(is_instance): Can be used to apply attributes to Objective-C instance methods.

• objc_property: Can be used to apply attributes to @property declarations.

• block: Can be used to apply attributes to block declarations. This does not include variables/fields of block
pointer type.

The use of unless in match rules is currently restricted to a strict set of sub-rules that are used by the supported
attributes. That means that even though variable(unless(is_parameter)) is a valid match rule,
variable(unless(is_thread_local)) is not.

Supported Attributes

Not all attributes can be used with the #pragma clang attribute directive. Notably, statement attributes like
[[fallthrough]] or type attributes like address_space aren’t supported by this directive. You can determine
whether or not an attribute is supported by the pragma by referring to the individual documentation for that attribute.

The attributes are applied to all matching declarations individually, even when the attribute is semantically incorrect.
The attributes that aren’t applied to any declaration are not verified semantically.

Specifying section names for global objects (#pragma clang section)
The #pragma clang section directive provides a means to assign section-names to global variables, functions
and static variables.

The section names can be specified as:

#pragma clang section bss="myBSS" data="myData" rodata="myRodata" relro="myRelro" text="myText"

The section names can be reverted back to default name by supplying an empty string to the section kind, for
example:

#pragma clang section bss="" data="" text="" rodata="" relro=""

The #pragma clang section directive obeys the following rules:

• The pragma applies to all global variable, statics and function declarations from the pragma to the end of the
translation unit.

• The pragma clang section is enabled automatically, without need of any flags.

• This feature is only defined to work sensibly for ELF targets.

• If section name is specified through _attribute_((section(“myname”))), then the attribute name gains
precedence.

• Global variables that are initialized to zero will be placed in the named bss section, if one is present.

Clang Language Extensions

178



• The #pragma clang section directive does not does try to infer section-kind from the name. For example,
naming a section “.bss.mySec” does NOT mean it will be a bss section name.

• The decision about which section-kind applies to each global is taken in the back-end. Once the section-kind is
known, appropriate section name, as specified by the user using #pragma clang section directive, is
applied to that global.

Specifying Linker Options on ELF Targets
The #pragma comment(lib, ...) directive is supported on all ELF targets. The second parameter is the library
name (without the traditional Unix prefix of lib). This allows you to provide an implicit link of dependent libraries.

Evaluating Object Size Dynamically
Clang supports the builtin __builtin_dynamic_object_size, the semantics are the same as GCC’s
__builtin_object_size (which Clang also supports), but __builtin_dynamic_object_size can evaluate
the object’s size at runtime. __builtin_dynamic_object_size is meant to be used as a drop-in replacement for
__builtin_object_size in libraries that support it.

For instance, here is a program that __builtin_dynamic_object_size will make safer:

void copy_into_buffer(size_t size) {
  char* buffer = malloc(size);
  strlcpy(buffer, "some string", strlen("some string"));
  // Previous line preprocesses to:
  // __builtin___strlcpy_chk(buffer, "some string", strlen("some string"), __builtin_object_size(buffer, 0))
}

Since the size of buffer can’t be known at compile time, Clang will fold __builtin_object_size(buffer, 0)
into -1. However, if this was written as __builtin_dynamic_object_size(buffer, 0), Clang will fold it into
size, providing some extra runtime safety.

Deprecating Macros
Clang supports the pragma #pragma clang deprecated, which can be used to provide deprecation warnings for
macro uses. For example:

#define MIN(x, y) x < y ? x : y
#pragma clang deprecated(MIN, "use std::min instead")

void min(int a, int b) {
  return MIN(a, b); // warning: MIN is deprecated: use std::min instead
}

#pragma clang deprecated should be preferred for this purpose over #pragma GCC warning because the
warning can be controlled with -Wdeprecated.

Restricted Expansion Macros
Clang supports the pragma #pragma clang restrict_expansion, which can be used restrict macro expansion
in headers. This can be valuable when providing headers with ABI stability requirements. Any expansion of the
annotated macro processed by the preprocessor after the #pragma annotation will log a warning. Redefining the
macro or undefining the macro will not be diagnosed, nor will expansion of the macro within the main source file. For
example:

#define TARGET_ARM 1
#pragma clang restrict_expansion(TARGET_ARM, "<reason>")

/// Foo.h
struct Foo {
#if TARGET_ARM // warning: TARGET_ARM is marked unsafe in headers: <reason>
  uint32_t X;
#else
  uint64_t X;

Clang Language Extensions

179



#endif
};

/// main.c
#include "foo.h"
#if TARGET_ARM // No warning in main source file
X_TYPE uint32_t
#else
X_TYPE uint64_t
#endif

This warning is controlled by -Wpedantic-macros.

Final Macros
Clang supports the pragma #pragma clang final, which can be used to mark macros as final, meaning they
cannot be undef’d or re-defined. For example:

#define FINAL_MACRO 1
#pragma clang final(FINAL_MACRO)

#define FINAL_MACRO // warning: FINAL_MACRO is marked final and should not be redefined
#undef FINAL_MACRO  // warning: FINAL_MACRO is marked final and should not be undefined

This is useful for enforcing system-provided macros that should not be altered in user headers or code. This is
controlled by -Wpedantic-macros. Final macros will always warn on redefinition, including situations with identical
bodies and in system headers.

Line Control
Clang supports an extension for source line control, which takes the form of a preprocessor directive starting with an
unsigned integral constant. In addition to the standard #line directive, this form allows control of an include stack
and header file type, which is used in issuing diagnostics. These lines are emitted in preprocessed output.

# <line:number> <filename:string> <header-type:numbers>

The filename is optional, and if unspecified indicates no change in source filename. The header-type is an optional,
whitespace-delimited, sequence of magic numbers as follows.

• 1: Push the current source file name onto the include stack and enter a new file.

• 2: Pop the include stack and return to the specified file. If the filename is "", the name popped from the include
stack is used. Otherwise there is no requirement that the specified filename matches the current source when
originally pushed.

• 3: Enter a system-header region. System headers often contain implementation-specific source that would
normally emit a diagnostic.

• 4: Enter an implicit extern "C" region. This is not required on modern systems where system headers are
C++-aware.

At most a single 1 or 2 can be present, and values must be in ascending order.

Examples are:

# 57 // Advance (or return) to line 57 of the current source file
# 57 "frob" // Set to line 57 of "frob"
# 1 "foo.h" 1 // Enter "foo.h" at line 1
# 59 "main.c" 2 // Leave current include and return to "main.c"
# 1 "/usr/include/stdio.h" 1 3 // Enter a system header
# 60 "" 2 // return to "main.c"
# 1 "/usr/ancient/header.h" 1 4 // Enter an implicit extern "C" header

Clang Language Extensions

180



Extended Integer Types
Clang supports the C23 _BitInt(N) feature as an extension in older C modes and in C++. This type was
previously implemented in Clang with the same semantics, but spelled _ExtInt(N). This spelling has been
deprecated in favor of the standard type.

Note: the ABI for _BitInt(N) is still in the process of being stabilized, so this type should not yet be used in
interfaces that require ABI stability.

Intrinsics Support within Constant Expressions
The following builtin intrinsics can be used in constant expressions:

• __builtin_bitreverse8

• __builtin_bitreverse16

• __builtin_bitreverse32

• __builtin_bitreverse64

• __builtin_bswap16

• __builtin_bswap32

• __builtin_bswap64

• __builtin_clrsb

• __builtin_clrsbl

• __builtin_clrsbll

• __builtin_clz

• __builtin_clzl

• __builtin_clzll

• __builtin_clzs

• __builtin_ctz

• __builtin_ctzl

• __builtin_ctzll

• __builtin_ctzs

• __builtin_ffs

• __builtin_ffsl

• __builtin_ffsll

• __builtin_fpclassify

• __builtin_inf

• __builtin_isinf

• __builtin_isinf_sign

• __builtin_isfinite

• __builtin_isnan

• __builtin_isnormal

• __builtin_nan

• __builtin_nans

• __builtin_parity

• __builtin_parityl

Clang Language Extensions

181



• __builtin_parityll

• __builtin_popcount

• __builtin_popcountl

• __builtin_popcountll

• __builtin_rotateleft8

• __builtin_rotateleft16

• __builtin_rotateleft32

• __builtin_rotateleft64

• __builtin_rotateright8

• __builtin_rotateright16

• __builtin_rotateright32

• __builtin_rotateright64

The following x86-specific intrinsics can be used in constant expressions:

• _bit_scan_forward

• _bit_scan_reverse

• __bsfd

• __bsfq

• __bsrd
• __bsrq

• __bswap

• __bswapd

• __bswap64

• __bswapq

• _castf32_u32

• _castf64_u64

• _castu32_f32

• _castu64_f64

• _mm_popcnt_u32

• _mm_popcnt_u64

• _popcnt32

• _popcnt64

• __popcntd

• __popcntq

• __rolb

• __rolw

• __rold

• __rolq

• __rorb

• __rorw

• __rord

• __rorq

Clang Language Extensions

182



• _rotl

• _rotr

• _rotwl

• _rotwr

• _lrotl

• _lrotr

Clang command line argument reference
Introduction 184

Actions 193

Compilation flags 194

Preprocessor flags 197

Include path management 198

Dependency file generation 200

Dumping preprocessor state 200

Diagnostic flags 201

Target-independent compilation options 201

OpenCL flags 219

SYCL flags 220

Target-dependent compilation options 220

AARCH64 226

AMDGPU 227

ARM 227

Hexagon 228

Hexagon 228

M68k 228

MIPS 229

PowerPC 230

WebAssembly 231

WebAssembly Driver 231

X86 231

RISCV 233

Long double flags 234

Optimization level 234

Debug information generation 234

Kind and level of debug information 234

Debug level 234

Debugger to tune debug information for 235

Debug information flags 235

Static analyzer flags 235

Fortran compilation flags 235

Linker flags 237

<clang-dxc options> 238

Clang command line argument reference

183



Introduction
This page lists the command line arguments currently supported by the GCC-compatible clang and clang++
drivers.

-B<prefix>, --prefix <arg>, --prefix=<arg>

Search $prefix$file for executables, libraries, and data files. If $prefix is a directory, search $prefix/$file

-F<arg>

Add directory to framework include search path

-ObjC

Treat source input files as Objective-C inputs

-ObjC++

Treat source input files as Objective-C++ inputs

-Qn, -fno-ident

Do not emit metadata containing compiler name and version

-Qunused-arguments

Don’t emit warning for unused driver arguments

-Qy, -fident

Emit metadata containing compiler name and version

-Wa,<arg>,<arg2>...

Pass the comma separated arguments in <arg> to the assembler

-Wlarge-by-value-copy=<arg>

-Xarch\_<arg1> <arg2>

-Xarch\_device <arg>

Pass <arg> to the CUDA/HIP device compilation

-Xarch\_host <arg>

Pass <arg> to the CUDA/HIP host compilation

-Xcuda-fatbinary <arg>

Pass <arg> to fatbinary invocation

-Xcuda-ptxas <arg>

Pass <arg> to the ptxas assembler

-Z<arg>

-a<arg>, --profile-blocks

-all\_load

-allowable\_client <arg>

--analyze

Run the static analyzer

--analyzer-no-default-checks

--analyzer-output<arg>

Static analyzer report output format (html|plist|plist-multi-file|plist-html|sarif|sarif-html|text).

-arch <arg>

-arch\_errors\_fatal

-arch\_only <arg>

Clang command line argument reference

184



-arcmt-migrate-emit-errors

Emit ARC errors even if the migrator can fix them

-arcmt-migrate-report-output <arg>

Output path for the plist report

--autocomplete=<arg>

-bind\_at\_load

-bundle

-bundle\_loader <arg>
-client\_name<arg>

-compatibility\_version<arg>

--config <arg>

Specifies configuration file

--constant-cfstrings

--cuda-feature=<arg>

Manually specify the CUDA feature to use

--cuda-include-ptx=<arg>, --no-cuda-include-ptx=<arg>

Include PTX for the following GPU architecture (e.g. sm_35) or ‘all’. May be specified more than once.

--cuda-noopt-device-debug, --no-cuda-noopt-device-debug

Enable device-side debug info generation. Disables ptxas optimizations.

-cuid=<arg>

An ID for compilation unit, which should be the same for the same compilation unit but different for different
compilation units. It is used to externalize device-side static variables for single source offloading languages CUDA
and HIP so that they can be accessed by the host code of the same compilation unit.

-current\_version<arg>

-darwin-target-variant <arg>

Generate code for an additional runtime variant of the deployment target

-darwin-target-variant-triple <arg>

Specify the darwin target variant triple

-dead\_strip

-dependency-dot <arg>

Filename to write DOT-formatted header dependencies to

-dependency-file <arg>

Filename (or -) to write dependency output to

-dsym-dir<dir>

Directory to output dSYM’s (if any) to

-dumpmachine

-dumpversion

--dyld-prefix=<arg>, --dyld-prefix <arg>

-dylib\_file <arg>

-dylinker

-dylinker\_install\_name<arg>

-dynamic

Clang command line argument reference

185



-dynamiclib

-emit-ast

Emit Clang AST files for source inputs

--emit-static-lib

Enable linker job to emit a static library.

-enable-trivial-auto-var-init-zero-knowing-it-will-be-removed-from-clang

Trivial automatic variable initialization to zero is only here for benchmarks, it’ll eventually be removed, and I’m OK
with that because I’m only using it to benchmark
--end-no-unused-arguments

Start emitting warnings for unused driver arguments

-exported\_symbols\_list <arg>

-faligned-new=<arg>

-fautomatic

-ffat-lto-objects, -fno-fat-lto-objects

Embed the bitcode into the module and generate object code from an -flto compile.

-ffixed-r19

Reserve register r19 (Hexagon only)

-fgpu-default-stream=<arg>

Specify default stream. The default value is ‘legacy’. (HIP only). <arg> must be ‘legacy’ or ‘per-thread’.

-fgpu-flush-denormals-to-zero, -fcuda-flush-denormals-to-zero,
-fno-gpu-flush-denormals-to-zero

Flush denormal floating point values to zero in CUDA/HIP device mode.

-fheinous-gnu-extensions

-flat\_namespace

-fopenmp-targets=<arg1>,<arg2>...

Specify comma-separated list of triples OpenMP offloading targets to be supported

-force\_cpusubtype\_ALL

-force\_flat\_namespace

-force\_load <arg>

-fplugin-arg-<name>-<arg>

Pass <arg> to plugin <name>

-framework <arg>

-frtlib-add-rpath, -fno-rtlib-add-rpath

Add -rpath with architecture-specific resource directory to the linker flags

-fsanitize-system-ignorelist=<arg>, -fsanitize-system-blacklist=<arg>

Path to system ignorelist file for sanitizers

-fshow-skipped-includes

#include files may be “skipped” due to include guard optimization

or #pragma once. This flag makes -H show also such includes.

-fsystem-module

Build this module as a system module. Only used with -emit-module

-fuse-cuid=<arg>

Clang command line argument reference

186



Method to generate ID’s for compilation units for single source offloading languages CUDA and HIP: ‘hash’ (ID’s
generated by hashing file path and command line options) | ‘random’ (ID’s generated as random numbers) | ‘none’
(disabled). Default is ‘hash’. This option will be overridden by option ‘-cuid=[ID]’ if it is specified.

--gcc-toolchain=<arg>

Search for GCC installation in the specified directory on targets which commonly use GCC. The directory usually
contains ‘lib{,32,64}/gcc{,-cross}/$triple’ and ‘include’. If specified, sysroot is skipped for GCC detection. Note:
executables (e.g. ld) used by the compiler are not overridden by the selected GCC installation

-gcodeview

Generate CodeView debug information

-gcodeview-ghash, -gno-codeview-ghash

Emit type record hashes in a .debug$H section

-gen-reproducer=<arg>, -fno-crash-diagnostics (equivalent to -gen-reproducer=off)

Emit reproducer on (option: off, crash (default), error, always)

--gpu-instrument-lib=<arg>

Instrument device library for HIP, which is a LLVM bitcode containing __cyg_profile_func_enter and
__cyg_profile_func_exit

--gpu-max-threads-per-block=<arg>

Default max threads per block for kernel launch bounds for HIP

-headerpad\_max\_install\_names<arg>

-help, --help, /help<arg>, -help<arg>, --help<arg>

Display available options

--help-hidden

Display help for hidden options

--hip-link

Link clang-offload-bundler bundles for HIP

--hip-version=<arg>

HIP version in the format of major.minor.patch

-ibuiltininc

Enable builtin #include directories even when -nostdinc is used before or after -ibuiltininc. Using -nobuiltininc after the
option disables it

-image\_base <arg>

-index-header-map

Make the next included directory (-I or -F) an indexer header map

-init <arg>

-install\_name <arg>

-interface-stub-version=<arg>

-keep\_private\_externs

-lazy\_framework <arg>

-lazy\_library <arg>

-mbig-endian, -EB

-mdataimported

All variables can be treated as imported

-mdataimported=<arg1>,<arg2>...

Clang command line argument reference

187



Specifies which variables can be treated as imported

-mdatalocal

All variables can be treated as local

-mdatalocal=<arg1>,<arg2>...

Specifies which variables can be treated as local

-menable-unsafe-fp-math

Allow unsafe floating-point math optimizations which may decrease precision

-mharden-sls=<arg>

Select straight-line speculation hardening scope (ARM/AArch64/X86 only). <arg> must be: all, none,
retbr(ARM/AArch64), blr(ARM/AArch64), comdat(ARM/AArch64), nocomdat(ARM/AArch64), return(X86),
indirect-jmp(X86)

--migrate

Run the migrator

-mios-simulator-version-min=<arg>, -miphonesimulator-version-min=<arg>

-mlinker-version=<arg>

-mlittle-endian, -EL

-mllvm <arg>

Additional arguments to forward to LLVM’s option processing

-mmlir <arg>

Additional arguments to forward to MLIR’s option processing

-module-dependency-dir <arg>

Directory to dump module dependencies to

-mtvos-simulator-version-min=<arg>, -mappletvsimulator-version-min=<arg>

-multi\_module

-multiply\_defined <arg>

-multiply\_defined\_unused <arg>

-mwatchos-simulator-version-min=<arg>, -mwatchsimulator-version-min=<arg>

--no-cuda-version-check

Don’t error out if the detected version of the CUDA install is too low for the requested CUDA gpu architecture.

-no-hip-rt

Do not link against HIP runtime libraries

-no-integrated-cpp, --no-integrated-cpp

-no\_dead\_strip\_inits\_and\_terms

-nobuiltininc

Disable builtin #include directories

-nodefaultlibs

-nodriverkitlib

-nofixprebinding

-nogpuinc, -nocudainc

Do not add include paths for CUDA/HIP and do not include the default CUDA/HIP wrapper headers

-nogpulib, -nocudalib

Clang command line argument reference

188



Do not link device library for CUDA/HIP device compilation

-nohipwrapperinc

Do not include the default HIP wrapper headers and include paths

-nolibc

-nomultidefs

-nopie, -no-pie

-noprebind

-noprofilelib

-noseglinkedit

-nostdinc, --no-standard-includes

-nostdinc++

Disable standard #include directories for the C++ standard library

-nostdlib++

-nostdlibinc

-o<file>, /Fo<arg>, -Fo<arg>, --output <arg>, --output=<arg>

Write output to <file>

-objcmt-allowlist-dir-path=<arg>, -objcmt-white-list-dir-path=<arg>,
-objcmt-whitelist-dir-path=<arg>

Only modify files with a filename contained in the provided directory path

-objcmt-atomic-property

Make migration to ‘atomic’ properties

-objcmt-migrate-all

Enable migration to modern ObjC

-objcmt-migrate-annotation

Enable migration to property and method annotations

-objcmt-migrate-designated-init

Enable migration to infer NS_DESIGNATED_INITIALIZER for initializer methods

-objcmt-migrate-instancetype

Enable migration to infer instancetype for method result type

-objcmt-migrate-literals

Enable migration to modern ObjC literals

-objcmt-migrate-ns-macros

Enable migration to NS_ENUM/NS_OPTIONS macros

-objcmt-migrate-property

Enable migration to modern ObjC property

-objcmt-migrate-property-dot-syntax

Enable migration of setter/getter messages to property-dot syntax

-objcmt-migrate-protocol-conformance

Enable migration to add protocol conformance on classes

-objcmt-migrate-readonly-property

Enable migration to modern ObjC readonly property

Clang command line argument reference

189



-objcmt-migrate-readwrite-property

Enable migration to modern ObjC readwrite property

-objcmt-migrate-subscripting

Enable migration to modern ObjC subscripting

-objcmt-ns-nonatomic-iosonly

Enable migration to use NS_NONATOMIC_IOSONLY macro for setting property’s ‘atomic’ attribute

-objcmt-returns-innerpointer-property

Enable migration to annotate property with NS_RETURNS_INNER_POINTER

-object

-object-file-name=<file>, -object-file-name <arg>

Set the output <file> for debug infos

--offload-arch=<arg>, --cuda-gpu-arch=<arg>, --no-offload-arch=<arg>

CUDA offloading device architecture (e.g. sm_35), or HIP offloading target ID in the form of a device architecture
followed by target ID features delimited by a colon. Each target ID feature is a pre-defined string followed by a plus or
minus sign (e.g. gfx908:xnack+:sramecc-). May be specified more than once.

--offload-device-only, --cuda-device-only

Only compile for the offloading device.

--offload-host-device, --cuda-compile-host-device

Only compile for the offloading host.

--offload-host-only, --cuda-host-only

Only compile for the offloading host.

--offload=<arg1>,<arg2>...

Specify comma-separated list of offloading target triples (CUDA and HIP only)

-p, --profile

-pagezero\_size<arg>

-pg

Enable mcount instrumentation

-pipe, --pipe

Use pipes between commands, when possible

-prebind

-prebind\_all\_twolevel\_modules

-preload

--print-diagnostic-categories

-print-effective-triple, --print-effective-triple

Print the effective target triple

-print-file-name=<file>, --print-file-name=<file>, --print-file-name <arg>

Print the full library path of <file>

-print-ivar-layout

Enable Objective-C Ivar layout bitmap print trace

-print-libgcc-file-name, --print-libgcc-file-name

Print the library path for the currently used compiler runtime library (“libgcc.a” or “libclang_rt.builtins.*.a”)

Clang command line argument reference

190



-print-multi-directory, --print-multi-directory

-print-multi-lib, --print-multi-lib

-print-multiarch, --print-multiarch

Print the multiarch target triple

-print-prog-name=<name>, --print-prog-name=<name>, --print-prog-name <arg>

Print the full program path of <name>

-print-resource-dir, --print-resource-dir

Print the resource directory pathname

-print-rocm-search-dirs, --print-rocm-search-dirs

Print the paths used for finding ROCm installation

-print-runtime-dir, --print-runtime-dir

Print the directory pathname containing clangs runtime libraries

-print-search-dirs, --print-search-dirs

Print the paths used for finding libraries and programs

-print-target-triple, --print-target-triple

Print the normalized target triple

-print-targets, --print-targets

Print the registered targets

-private\_bundle

--product-name=<arg>

-pthread, -no-pthread

Support POSIX threads in generated code

-pthreads

-read\_only\_relocs <arg>

-relocatable-pch, --relocatable-pch

Whether to build a relocatable precompiled header

-remap

-rewrite-legacy-objc

Rewrite Legacy Objective-C source to C++

-rtlib=<arg>, --rtlib=<arg>, --rtlib <arg>

Compiler runtime library to use

-save-stats=<arg>, --save-stats=<arg>, -save-stats (equivalent to -save-stats=cwd),
--save-stats (equivalent to -save-stats=cwd)

Save llvm statistics.

-save-temps=<arg>, --save-temps=<arg>, -save-temps (equivalent to -save-temps=cwd),
--save-temps (equivalent to -save-temps=cwd)

Save intermediate compilation results.

-sectalign <arg1> <arg2> <arg3>

-sectcreate <arg1> <arg2> <arg3>

-sectobjectsymbols <arg1> <arg2>

-sectorder <arg1> <arg2> <arg3>

Clang command line argument reference

191



-seg1addr<arg>

-seg\_addr\_table <arg>

-seg\_addr\_table\_filename <arg>

-segaddr <arg1> <arg2>

-segcreate <arg1> <arg2> <arg3>

-seglinkedit

-segprot <arg1> <arg2> <arg3>

-segs\_read\_<arg>

-segs\_read\_only\_addr <arg>

-segs\_read\_write\_addr <arg>

-serialize-diagnostics <arg>, --serialize-diagnostics <arg>

Serialize compiler diagnostics to a file

-shared-libgcc

-shared-libsan, -shared-libasan

Dynamically link the sanitizer runtime

-single\_module

-slm-auth=<file>, --slm-auth=<file>

The path of the authorization file

-slm-dir=<dir>, --slm-dir=<dir>

The directory of the SLM tag file

-slm-limit=<limit>, --slm-limit=<limit>

The maximum number of bytes that each tag file is allowed to occupy

-slm-period=<period>, --slm-period=<period>

The number of seconds that each metric covers

-slm-timeout=<timeout>, --slm-timeout=<timeout>

The minimum number of seconds that the daemon must wait before terminating

--start-no-unused-arguments

Don’t emit warnings about unused arguments for the following arguments

-static-libgcc

-static-libsan

Statically link the sanitizer runtime

-static-libstdc++

-static-openmp

Use the static host OpenMP runtime while linking.

-std-default=<arg>

-stdlib=<arg>, --stdlib=<arg>, --stdlib <arg>

C++ standard library to use. <arg> must be ‘libc++’, ‘libstdc++’ or ‘platform’.

-sub\_library<arg>

-sub\_umbrella<arg>

--sysroot=<arg>, --sysroot <arg>

--target-help

Clang command line argument reference

192



--target=<arg>, -target <arg>

Generate code for the given target

-time

Time individual commands

-traditional, --traditional

-traditional-cpp, --traditional-cpp

Enable some traditional CPP emulation

-twolevel\_namespace

-twolevel\_namespace\_hints

-umbrella <arg>

-unexported\_symbols\_list <arg>

-unwindlib=<arg>, --unwindlib=<arg>

Unwind library to use. <arg> must be ‘libgcc’, ‘unwindlib’ or ‘platform’.

-v, --verbose

Show commands to run and use verbose output

--verify-debug-info

Verify the binary representation of debug output

--version

Print version information

-w, --no-warnings

Suppress all warnings

-weak-l<arg>

-weak\_framework <arg>

-weak\_library <arg>

-weak\_reference\_mismatches <arg>

-whatsloaded

-why\_load, -whyload

-working-directory<arg>, -working-directory=<arg>

Resolve file paths relative to the specified directory

-x<language>, --language <arg>, --language=<arg>

Treat subsequent input files as having type <language>

-y<arg>

Actions
The action to perform on the input.

-E, --preprocess

Only run the preprocessor

-S, --assemble

Only run preprocess and compilation steps

-c, --compile

Only run preprocess, compile, and assemble steps

Clang command line argument reference

193



-emit-interface-stubs

Generate Interface Stub Files.

-emit-llvm

Use the LLVM representation for assembler and object files

-emit-merged-ifs

Generate Interface Stub Files, emit merged text not binary.

-extract-api

Extract API information

-fsyntax-only

-module-file-info

Provide information about a particular module file

--precompile

Only precompile the input

-rewrite-objc

Rewrite Objective-C source to C++

-verify-pch

Load and verify that a pre-compiled header file is not stale

Compilation flags
Flags controlling the behavior of Clang during compilation. These flags have no effect during actions that do not
perform compilation.

-Xassembler <arg>

Pass <arg> to the assembler

-Xclang <arg>

Pass <arg> to the clang compiler

-Xopenmp-target <arg>

Pass <arg> to the target offloading toolchain.

-Xopenmp-target=<triple> <arg>

Pass <arg> to the target offloading toolchain identified by <triple>.

-ansi, --ansi

-fc++-abi=<arg>

C++ ABI to use. This will override the target C++ ABI.

-fclang-abi-compat=<version>

Attempt to match the ABI of Clang <version>. <version> must be ‘<major>.<minor>’ or ‘latest’.

-fcomment-block-commands=<arg>,<arg2>...

Treat each comma separated argument in <arg> as a documentation comment block command

-fcomplete-member-pointers, -fno-complete-member-pointers

Require member pointer base types to be complete if they would be significant under the Microsoft ABI

-fcrash-diagnostics-dir=<dir>

Put crash-report files in <dir>

-fdeclspec, -fno-declspec

Clang command line argument reference

194



Allow __declspec as a keyword

-fdepfile-entry=<arg>

-fdiagnostics-fixit-info, -fno-diagnostics-fixit-info

-fdiagnostics-format=<arg>

-fdiagnostics-parseable-fixits

Print fix-its in machine parseable form

-fdiagnostics-print-source-range-info

Print source range spans in numeric form

-fdiagnostics-show-category=<arg>

-fdiscard-value-names, -fno-discard-value-names

Discard value names in LLVM IR

-fexperimental-relative-c++-abi-vtables, -fno-experimental-relative-c++-abi-vtables

Use the experimental C++ class ABI for classes with virtual tables

-fexperimental-strict-floating-point

Enables experimental strict floating point in LLVM.

-ffine-grained-bitfield-accesses, -fno-fine-grained-bitfield-accesses

Use separate accesses for consecutive bitfield runs with legal widths and alignments.

-fglobal-isel, -fexperimental-isel, -fno-global-isel

Enables the global instruction selector

-finline-functions, -fno-inline-functions

Inline suitable functions

-finline-hint-functions

Inline functions which are (explicitly or implicitly) marked inline

-fno-legacy-pass-manager, -fexperimental-new-pass-manager

-fno-sanitize-ignorelist, -fno-sanitize-blacklist

Don’t use ignorelist file for sanitizers

-fparse-all-comments

-frandomize-layout-seed-file=<file>

File holding the seed used by the randomize structure layout feature

-frandomize-layout-seed=<seed>

The seed used by the randomize structure layout feature

-frecord-command-line, -fno-record-command-line, -frecord-gcc-switches

-fsanitize-address-destructor=<arg>

Set destructor type used in ASan instrumentation. <arg> must be ‘none’ or ‘global’.

-fsanitize-address-field-padding=<arg>

Level of field padding for AddressSanitizer

-fsanitize-address-globals-dead-stripping,
-fno-sanitize-address-globals-dead-stripping

Enable linker dead stripping of globals in AddressSanitizer

-fsanitize-address-outline-instrumentation,
-fno-sanitize-address-outline-instrumentation

Clang command line argument reference

195



Always generate function calls for address sanitizer instrumentation

-fsanitize-address-poison-custom-array-cookie,
-fno-sanitize-address-poison-custom-array-cookie

Enable poisoning array cookies when using custom operator new[] in AddressSanitizer

-fsanitize-address-use-after-return=<mode>

Select the mode of detecting stack use-after-return in AddressSanitizer. <mode> must be ‘never’, ‘runtime’ or
‘always’.

-fsanitize-address-use-after-scope, -fno-sanitize-address-use-after-scope

Enable use-after-scope detection in AddressSanitizer

-fsanitize-address-use-odr-indicator, -fno-sanitize-address-use-odr-indicator

Enable ODR indicator globals to avoid false ODR violation reports in partially sanitized programs at the cost of an
increase in binary size

-fsanitize-cfi-canonical-jump-tables, -fno-sanitize-cfi-canonical-jump-tables

Make the jump table addresses canonical in the symbol table

-fsanitize-cfi-cross-dso, -fno-sanitize-cfi-cross-dso

Enable control flow integrity (CFI) checks for cross-DSO calls.

-fsanitize-cfi-icall-generalize-pointers

Generalize pointers in CFI indirect call type signature checks

-fsanitize-coverage-allowlist=<arg>, -fsanitize-coverage-whitelist=<arg>

Restrict sanitizer coverage instrumentation exclusively to modules and functions that match the provided special
case list, except the blocked ones

-fsanitize-coverage-ignorelist=<arg>, -fsanitize-coverage-blacklist=<arg>

Disable sanitizer coverage instrumentation for modules and functions that match the provided special case list, even
the allowed ones

-fsanitize-coverage=<arg1>,<arg2>..., -fno-sanitize-coverage=<arg1>,<arg2>...

Specify the type of coverage instrumentation for Sanitizers

-fsanitize-hwaddress-abi=<arg>

Select the HWAddressSanitizer ABI to target (interceptor or platform, default interceptor). This option is currently
unused.

-fsanitize-hwaddress-experimental-aliasing,
-fno-sanitize-hwaddress-experimental-aliasing

Enable aliasing mode in HWAddressSanitizer

-fsanitize-ignorelist=<arg>, -fsanitize-blacklist=<arg>

Path to ignorelist file for sanitizers

-fsanitize-link-c++-runtime, -fno-sanitize-link-c++-runtime

-fsanitize-link-runtime, -fno-sanitize-link-runtime

-fsanitize-memory-track-origins, -fno-sanitize-memory-track-origins

Enable origins tracking in MemorySanitizer

-fsanitize-memory-track-origins=<arg>

Enable origins tracking in MemorySanitizer

-fsanitize-memory-use-after-dtor, -fno-sanitize-memory-use-after-dtor

Enable use-after-destroy detection in MemorySanitizer

-fsanitize-memtag-mode=<arg>

Clang command line argument reference

196



Set default MTE mode to ‘sync’ (default) or ‘async’

-fsanitize-minimal-runtime, -fno-sanitize-minimal-runtime

-fsanitize-recover=<arg1>,<arg2>..., -fno-sanitize-recover=<arg1>,<arg2>...,
-fsanitize-recover (equivalent to -fsanitize-recover=all)

Enable recovery for specified sanitizers

-fsanitize-stats, -fno-sanitize-stats

Enable sanitizer statistics gathering.
-fsanitize-thread-atomics, -fno-sanitize-thread-atomics

Enable atomic operations instrumentation in ThreadSanitizer (default)

-fsanitize-thread-func-entry-exit, -fno-sanitize-thread-func-entry-exit

Enable function entry/exit instrumentation in ThreadSanitizer (default)

-fsanitize-thread-memory-access, -fno-sanitize-thread-memory-access

Enable memory access instrumentation in ThreadSanitizer (default)

-fsanitize-trap=<arg1>,<arg2>..., -fno-sanitize-trap=<arg1>,<arg2>...,
-fsanitize-trap (equivalent to -fsanitize-trap=all),
-fsanitize-undefined-trap-on-error (equivalent to -fsanitize-trap=undefined)

Enable trapping for specified sanitizers

-fsanitize-undefined-strip-path-components=<number>

Strip (or keep only, if negative) a given number of path components when emitting check metadata.

-fsanitize=<check>,<arg2>..., -fno-sanitize=<arg1>,<arg2>...

Turn on runtime checks for various forms of undefined or suspicious behavior. See user manual for available checks

-moutline, -mno-outline

Enable function outlining (AArch64 only)

-moutline-atomics, -mno-outline-atomics

Generate local calls to out-of-line atomic operations

--param <arg>, --param=<arg>

-print-supported-cpus, --print-supported-cpus, -mcpu=?, -mtune=?

Print supported cpu models for the given target (if target is not specified, it will print the supported cpus for the default
target)

-std=<arg>, --std=<arg>, --std <arg>

Language standard to compile for

Preprocessor flags

Flags controlling the behavior of the Clang preprocessor.

-C, --comments

Include comments in preprocessed output

-CC, --comments-in-macros

Include comments from within macros in preprocessed output

-D<macro>=<value>, --D<arg>, /D<arg>, -D<arg>, --define-macro <arg>,
--define-macro=<arg>

Define <macro> to <value> (or 1 if <value> omitted)

-H, --trace-includes

Show header includes and nesting depth

Clang command line argument reference

197



-P, --no-line-commands

Disable linemarker output in -E mode

-U<macro>, --undefine-macro <arg>, --undefine-macro=<arg>

Undefine macro <macro>

-Wp,<arg>,<arg2>...

Pass the comma separated arguments in <arg> to the preprocessor

-Xpreprocessor <arg>

Pass <arg> to the preprocessor

Include path management

Flags controlling how #includes are resolved to files.

-I<dir>, --include-directory <arg>, --include-directory=<arg>

Add directory to include search path. For C++ inputs, if there are multiple -I options, these directories are searched in
the order they are given before the standard system directories are searched. If the same directory is in the SYSTEM
include search paths, for example if also specified with -isystem, the -I option will be ignored

-I-, --include-barrier

Restrict all prior -I flags to double-quoted inclusion and remove current directory from include path

--amdgpu-arch-tool=<arg>

Tool used for detecting AMD GPU arch in the system.

--cuda-path-ignore-env

Ignore environment variables to detect CUDA installation

--cuda-path=<arg>

CUDA installation path

-cxx-isystem<directory>

Add directory to the C++ SYSTEM include search path

-fbuild-session-file=<file>

Use the last modification time of <file> as the build session timestamp

-fbuild-session-timestamp=<time since Epoch in seconds>

Time when the current build session started

-fmodule-file=\[<name>=\]<file>

Specify the mapping of module name to precompiled module file, or load a module file if name is omitted.

-fmodules-cache-path=<directory>

Specify the module cache path

-fmodules-disable-diagnostic-validation

Disable validation of the diagnostic options when loading the module

-fmodules-prune-after=<seconds>

Specify the interval (in seconds) after which a module file will be considered unused

-fmodules-prune-interval=<seconds>

Specify the interval (in seconds) between attempts to prune the module cache

-fmodules-user-build-path <directory>

Specify the module user build path

-fmodules-validate-once-per-build-session

Clang command line argument reference

198



Don’t verify input files for the modules if the module has been successfully validated or loaded during this build
session

-fmodules-validate-system-headers, -fno-modules-validate-system-headers

Validate the system headers that a module depends on when loading the module

-fprebuilt-module-path=<directory>

Specify the prebuilt module path

--hip-path=<arg>

HIP runtime installation path, used for finding HIP version and adding HIP include path.

-idirafter<arg>, --include-directory-after <arg>, --include-directory-after=<arg>

Add directory to AFTER include search path

-iframework<arg>

Add directory to SYSTEM framework search path

-iframeworkwithsysroot<directory>

Add directory to SYSTEM framework search path, absolute paths are relative to -isysroot

-imacros<file>, --imacros<file>, --imacros=<arg>

Include macros from file before parsing

-include<file>, --include<file>, --include=<arg>

Include file before parsing

-include-pch <file>

Include precompiled header file

-iprefix<dir>, --include-prefix <arg>, --include-prefix=<arg>

Set the -iwithprefix/-iwithprefixbefore prefix

-iquote<directory>

Add directory to QUOTE include search path

-isysroot<dir>

Set the system root directory (usually /)

-isystem<directory>

Add directory to SYSTEM include search path

-isystem-after<directory>

Add directory to end of the SYSTEM include search path

-ivfsoverlay<arg>

Overlay the virtual filesystem described by file over the real file system

-iwithprefix<dir>, --include-with-prefix <arg>, --include-with-prefix-after <arg>,
--include-with-prefix-after=<arg>, --include-with-prefix=<arg>

Set directory to SYSTEM include search path with prefix

-iwithprefixbefore<dir>, --include-with-prefix-before <arg>,
--include-with-prefix-before=<arg>

Set directory to include search path with prefix

-iwithsysroot<directory>

Add directory to SYSTEM include search path, absolute paths are relative to -isysroot

--libomptarget-amdgpu-bc-path=<arg>, --libomptarget-amdgcn-bc-path=<arg>

Path to libomptarget-amdgcn bitcode library

Clang command line argument reference

199



--libomptarget-nvptx-bc-path=<arg>

Path to libomptarget-nvptx bitcode library

--ptxas-path=<arg>

Path to ptxas (used for compiling CUDA code)

--rocm-path=<arg>

ROCm installation path, used for finding and automatically linking required bitcode libraries.

-stdlib++-isystem<directory>

Use directory as the C++ standard library include path

--system-header-prefix=<prefix>, --no-system-header-prefix=<prefix>,
--system-header-prefix <arg>

Treat all #include paths starting with <prefix> as including a system header.

Dependency file generation

Flags controlling generation of a dependency file for make-like build systems.

-M, --dependencies

Like -MD, but also implies -E and writes to stdout by default

-MD, --write-dependencies

Write a depfile containing user and system headers

-MF<file>

Write depfile output from -MMD, -MD, -MM, or -M to <file>

-MG, --print-missing-file-dependencies

Add missing headers to depfile

-MJ<arg>

Write a compilation database entry per input

-MM, --user-dependencies

Like -MMD, but also implies -E and writes to stdout by default

-MMD, --write-user-dependencies

Write a depfile containing user headers

-MP

Create phony target for each dependency (other than main file)

-MQ<arg>

Specify name of main file output to quote in depfile

-MT<arg>

Specify name of main file output in depfile

-MV

Use NMake/Jom format for the depfile

Dumping preprocessor state

Flags allowing the state of the preprocessor to be dumped in various ways.

-d

-d<arg>

-dD

Clang command line argument reference

200



Print macro definitions in -E mode in addition to normal output

-dI

Print include directives in -E mode in addition to normal output

-dM

Print macro definitions in -E mode instead of normal output

Diagnostic flags

Flags controlling which warnings, errors, and remarks Clang will generate. See the full list of warning and remark
flags.

-R<remark>

Enable the specified remark

-Rpass-analysis=<arg>

Report transformation analysis from optimization passes whose name matches the given POSIX regular expression

-Rpass-missed=<arg>

Report missed transformations by optimization passes whose name matches the given POSIX regular expression

-Rpass=<arg>

Report transformations performed by optimization passes whose name matches the given POSIX regular expression

-W<warning>, --extra-warnings, --warn-<arg>, --warn-=<arg>

Enable the specified warning

-Wdeprecated, -Wno-deprecated

Enable warnings for deprecated constructs and define __DEPRECATED

-Wframe-larger-than=<arg>, -Wframe-larger-than

-Wnonportable-cfstrings<arg>, -Wno-nonportable-cfstrings<arg>

Target-independent compilation options

-fPIC, -fno-PIC

-fPIE, -fno-PIE

-faccess-control, -fno-access-control

-faddrsig, -fno-addrsig

Emit an address-significance table

-falign-functions, -fno-align-functions

-falign-functions=<arg>

-falign-loops=<N>

N must be a power of two. Align loops to the boundary

-faligned-allocation, -faligned-new, -fno-aligned-allocation

Enable C++17 aligned allocation functions

-fallow-editor-placeholders, -fno-allow-editor-placeholders

Treat editor placeholders as valid source code

-fallow-unsupported

-faltivec, -fno-altivec

-faltivec-src-compat=<arg>

Clang command line argument reference

201



Source-level compatibility for Altivec vectors (for PowerPC targets). This includes results of vector comparison
(scalar for ‘xl’, vector for ‘gcc’) as well as behavior when initializing with a scalar (splatting for ‘xl’, element zero only
for ‘gcc’). For ‘mixed’, the compatibility is as ‘gcc’ for ‘vector bool/vector pixel’ and as ‘xl’ for other types. Current
default is ‘mixed’. <arg> must be ‘mixed’, ‘gcc’ or ‘xl’.

-fansi-escape-codes

Use ANSI escape codes for diagnostics

-fapple-kext, -findirect-virtual-calls, -fterminated-vtables

Use Apple’s kernel extensions ABI

-fapple-link-rtlib

Force linking the clang builtins runtime library

-fapple-pragma-pack, -fno-apple-pragma-pack

Enable Apple gcc-compatible #pragma pack handling

-fapplication-extension, -fno-application-extension

Restrict code to those available for App Extensions

-fapprox-func, -fno-approx-func

Allow certain math function calls to be replaced with an approximately equivalent calculation

-fasm, -fno-asm

-fasm-blocks, -fno-asm-blocks

-fassociative-math, -fno-associative-math

-fassume-sane-operator-new, -fno-assume-sane-operator-new

-fast

-fastcp

-fastf

-fasync-exceptions, -fno-async-exceptions

Enable EH Asynchronous exceptions

-fasynchronous-unwind-tables, -fno-asynchronous-unwind-tables

-fautolink, -fno-autolink

-fbasic-block-sections=<arg>

Generate labels for each basic block or place each basic block or a subset of basic blocks in its own section. <arg>
must be ‘all’, ‘labels’, ‘none’ or ‘list=’.

-fbinutils-version=<major.minor>

Produced object files can use all ELF features supported by this binutils version and newer. If -fno-integrated-as is
specified, the generated assembly will consider GNU as support. ‘none’ means that all ELF features can be used,
regardless of binutils support. Defaults to 2.26.

-fblocks, -fno-blocks

Enable the ‘blocks’ language feature

-fbootclasspath=<arg>, --bootclasspath <arg>, --bootclasspath=<arg>

-fborland-extensions, -fno-borland-extensions

Accept non-standard constructs supported by the Borland compiler

-fbracket-depth=<arg>

-fbuiltin, -fno-builtin

-fbuiltin-module-map

Load the clang builtins module map file.

Clang command line argument reference

202



-fc++-static-destructors, -fno-c++-static-destructors

-fcaret-diagnostics, -fno-caret-diagnostics

-fcf-protection=<arg>, -fcf-protection (equivalent to -fcf-protection=full)

Instrument control-flow architecture protection. <arg> must be ‘return’, ‘branch’, ‘full’ or ‘none’.

-fcf-runtime-abi=<arg>
<arg> must be ‘unspecified’, ‘standalone’, ‘objc’, ‘swift’, ‘swift-5.0’, ‘swift-4.2’ or ‘swift-4.1’.

-fchar8\_t, -fno-char8\_t

Enable C++ builtin type char8_t

-fclasspath=<arg>, --CLASSPATH <arg>, --CLASSPATH=<arg>, --classpath <arg>,
--classpath=<arg>

-fcolor-diagnostics, -fdiagnostics-color, -fno-color-diagnostics

Enable colors in diagnostics

-fcommon, -fno-common

Place uninitialized global variables in a common block

-fcompile-resource=<arg>, --resource <arg>, --resource=<arg>

-fconstant-cfstrings, -fno-constant-cfstrings

-fconstant-string-class=<arg>

-fconstexpr-backtrace-limit=<arg>

-fconstexpr-depth=<arg>

-fconstexpr-steps=<arg>

-fconvergent-functions

Assume functions may be convergent

-fcoroutines-ts, -fno-coroutines-ts

Enable support for the C++ Coroutines TS

-fcoverage-compilation-dir=<arg>

The compilation directory to embed in the coverage mapping.

-fcoverage-mapping, -fno-coverage-mapping

Generate coverage mapping to enable code coverage analysis

-fcoverage-prefix-map=<arg>

remap file source paths in coverage mapping

-fcreate-profile

-fcs-profile-generate

Generate instrumented code to collect context sensitive execution counts into default.profraw (overridden by
LLVM_PROFILE_FILE env var)

-fcs-profile-generate=<directory>

Generate instrumented code to collect context sensitive execution counts into <directory>/default.profraw
(overridden by LLVM_PROFILE_FILE env var)

-fcuda-approx-transcendentals, -fno-cuda-approx-transcendentals

Use approximate transcendental functions

-fcuda-short-ptr, -fno-cuda-short-ptr

Use 32-bit pointers for accessing const/local/shared address spaces

-fcxx-exceptions, -fno-cxx-exceptions

Clang command line argument reference

203



Enable C++ exceptions

-fcxx-modules, -fno-cxx-modules

Enable modules for C++

-fdata-sections, -fno-data-sections

Place each data in its own section

-fdebug-compilation-dir=<arg>, -fdebug-compilation-dir <arg>

The compilation directory to embed in the debug info

-fdebug-default-version=<arg>

Default DWARF version to use, if a -g option caused DWARF debug info to be produced

-fdebug-info-for-profiling, -fno-debug-info-for-profiling

Emit extra debug info to make sample profile more accurate

-fdebug-macro, -fno-debug-macro

Emit macro debug information

-fdebug-pass-arguments

-fdebug-pass-structure

-fdebug-prefix-map=<arg>

remap file source paths in debug info

-fdebug-ranges-base-address, -fno-debug-ranges-base-address

Use DWARF base address selection entries in .debug_ranges

-fdebug-types-section, -fno-debug-types-section

Place debug types in their own section (ELF Only)

-fdelayed-template-parsing, -fno-delayed-template-parsing

Parse templated function definitions at the end of the translation unit

-fdelete-null-pointer-checks, -fno-delete-null-pointer-checks

Treat usage of null pointers as undefined behavior (default)

-fdenormal-fp-math=<arg>

-fdiagnostics-absolute-paths

Print absolute paths in diagnostics

-fdiagnostics-color=<arg>

-fdiagnostics-hotness-threshold=<value>

Prevent optimization remarks from being output if they do not have at least this profile count. Use ‘auto’ to apply the
threshold from profile summary

-fdiagnostics-misexpect-tolerance=<value>

Prevent misexpect diagnostics from being output if the profile counts are within N% of the expected.

-fdiagnostics-show-hotness, -fno-diagnostics-show-hotness

Enable profile hotness information in diagnostic line

-fdiagnostics-show-note-include-stack, -fno-diagnostics-show-note-include-stack

Display include stacks for diagnostic notes

-fdiagnostics-show-option, -fno-diagnostics-show-option

Print option name with mappable diagnostics

-fdiagnostics-show-template-tree

Clang command line argument reference

204



Print a template comparison tree for differing templates

-fdigraphs, -fno-digraphs

Enable alternative token representations ‘<:’, ‘:>’, ‘<%’, ‘%>’, ‘%:’, ‘%:%:’ (default)

-fdirect-access-external-data, -fno-direct-access-external-data

Don’t use GOT indirection to reference external data symbols

-fdirectives-only, -fno-directives-only

-fdollars-in-identifiers, -fno-dollars-in-identifiers

Allow ‘$’ in identifiers

-fdouble-square-bracket-attributes, -fno-double-square-bracket-attributes

Enable ‘[[]]’ attributes in all C and C++ language modes

-fdump-margin-seq-filetag

Print out margin sequence and file tag information

-fdwarf-directory-asm, -fno-dwarf-directory-asm

-fdwarf-exceptions

Use DWARF style exceptions

-felide-constructors, -fno-elide-constructors

-feliminate-unused-debug-symbols, -fno-eliminate-unused-debug-symbols

-feliminate-unused-debug-types, -fno-eliminate-unused-debug-types

Do not emit debug info for defined but unused types

-fembed-bitcode=<option>, -fembed-bitcode (equivalent to -fembed-bitcode=all),
-fembed-bitcode-marker (equivalent to -fembed-bitcode=marker)

Embed LLVM bitcode. <option> must be ‘off’, ‘all’, ‘bitcode’ or ‘marker’.

-fembed-offload-object=<arg>

Embed Offloading device-side binary into host object file as a section.

-femit-all-decls

Emit all declarations, even if unused

-femulated-tls, -fno-emulated-tls

Use emutls functions to access thread_local variables

-fenable-matrix

Enable matrix data type and related builtin functions

-fencoding=<arg>, --encoding <arg>, --encoding=<arg>

-ferror-limit=<arg>

-fescaping-block-tail-calls, -fno-escaping-block-tail-calls

-fexceptions, -fno-exceptions

Enable support for exception handling

-fexec-charset=<arg>

-fexperimental-new-constant-interpreter

Enable the experimental new constant interpreter

-fextdirs=<arg>, --extdirs <arg>, --extdirs=<arg>

-fextend-arguments=<arg>

Clang command line argument reference

205



Controls how scalar integer arguments are extended in calls to unprototyped and varargs functions. <arg> must be
‘32’ or ‘64’.

-ffast-math, -fno-fast-math

Allow aggressive, lossy floating-point optimizations

-ffile-compilation-dir=<arg>

The compilation directory to embed in the debug info and coverage mapping.

-ffile-prefix-map=<arg>

remap file source paths in debug info, predefined preprocessor macros and __builtin_FILE(). Implies
-ffile-reproducible.

-ffile-reproducible, -fno-file-reproducible

Use the target’s platform-specific path separator character when expanding the __FILE__ macro

-ffinite-loops, -fno-finite-loops

Assume all loops are finite.

-ffinite-math-only, -fno-finite-math-only

-ffixed-point, -fno-fixed-point

Enable fixed point types

-ffor-scope, -fno-for-scope

-fforce-dwarf-frame, -fno-force-dwarf-frame

Always emit a debug frame section

-fforce-emit-vtables, -fno-force-emit-vtables

Emits more virtual tables to improve devirtualization

-fforce-enable-int128, -fno-force-enable-int128

Enable support for int128_t type

-ffp-contract=<arg>

Form fused FP ops (e.g. FMAs): fast (fuses across statements disregarding pragmas) | on (only fuses in the same
statement unless dictated by pragmas) | off (never fuses) | fast-honor-pragmas (fuses across statements unless
diectated by pragmas). Default is ‘fast’ for CUDA, ‘fast-honor-pragmas’ for HIP, and ‘on’ otherwise. <arg> must be
‘fast’, ‘on’, ‘off’ or ‘fast-honor-pragmas’.

-ffp-eval-method=<arg>

Specifies the evaluation method to use for floating-point arithmetic. <arg> must be ‘source’, ‘double’ or ‘extended’.

-ffp-exception-behavior=<arg>

Specifies the exception behavior of floating-point operations. <arg> must be ‘ignore’, ‘maytrap’ or ‘strict’.

-ffp-model=<arg>

Controls the semantics of floating-point calculations.

-ffreestanding

Assert that the compilation takes place in a freestanding environment

-ffunction-sections, -fno-function-sections

Place each function in its own section

-fgnu-inline-asm, -fno-gnu-inline-asm

-fgnu-keywords, -fno-gnu-keywords

Allow GNU-extension keywords regardless of language standard

-fgnu-runtime

Clang command line argument reference

206



Generate output compatible with the standard GNU Objective-C runtime

-fgnu89-inline, -fno-gnu89-inline

Use the gnu89 inline semantics

-fgnuc-version=<arg>

Sets various macros to claim compatibility with the given GCC version (default is 4.2.1)

-fgpu-allow-device-init, -fno-gpu-allow-device-init

Allow device side init function in HIP (experimental)

-fgpu-defer-diag, -fno-gpu-defer-diag

Defer host/device related diagnostic messages for CUDA/HIP

-fgpu-rdc, -fcuda-rdc, -fno-gpu-rdc

Generate relocatable device code, also known as separate compilation mode

-fgpu-sanitize, -fno-gpu-sanitize

Enable sanitizer for AMDGPU target

-fhip-fp32-correctly-rounded-divide-sqrt, -fno-hip-fp32-correctly-rounded-divide-sqrt

Specify that single precision floating-point divide and sqrt used in the program source are correctly rounded (HIP
device compilation only)

-fhip-new-launch-api, -fno-hip-new-launch-api

Use new kernel launching API for HIP

-fhonor-infinities, -fhonor-infinites, -fno-honor-infinities

-fhonor-nans, -fno-honor-nans

-fhosted

-fignore-exceptions

Enable support for ignoring exception handling constructs

-fimplicit-module-maps, -fmodule-maps, -fno-implicit-module-maps

Implicitly search the file system for module map files.

-fimplicit-modules, -fno-implicit-modules

-finput-charset=<arg>

Specify the default character set for source files

-finstrument-function-entry-bare

Instrument function entry only, after inlining, without arguments to the instrumentation call

-finstrument-functions

Generate calls to instrument function entry and exit

-finstrument-functions-after-inlining

Like -finstrument-functions, but insert the calls after inlining

-fintegrated-as, -fno-integrated-as, -integrated-as

Enable the integrated assembler

-fintegrated-cc1, -fno-integrated-cc1

Run cc1 in-process

-fintegrated-objemitter, -fno-integrated-objemitter

Use internal machine object code emitter.

-fjmc, -fno-jmc

Clang command line argument reference

207



Enable just-my-code debugging

-fjump-tables, -fno-jump-tables

Use jump tables for lowering switches

-fkeep-static-consts, -fno-keep-static-consts

Keep static const variables if unused

-flax-vector-conversions=<arg>, -flax-vector-conversions (equivalent to
-flax-vector-conversions=integer), -fno-lax-vector-conversions (equivalent to
-flax-vector-conversions=none)

Enable implicit vector bit-casts. <arg> must be ‘none’, ‘integer’ or ‘all’.

-flimited-precision=<arg>

-flto-jobs=<arg>

Controls the backend parallelism of -flto=thin (default of 0 means the number of threads will be derived from the
number of CPUs detected)

-flto=<arg>, -flto (equivalent to -flto=full), -flto=auto (equivalent to -flto=full),
-flto=jobserver (equivalent to -flto=full)

Set LTO mode. <arg> must be ‘thin’ or ‘full’.

-fmacro-backtrace-limit=<arg>

-fmacro-prefix-map=<arg>

remap file source paths in predefined preprocessor macros and __builtin_FILE(). Implies -ffile-reproducible.

-fmargins=<arg1>,<arg2>...

Specifies, inclusively, the range of source column numbers that will be compiled

-fmath-errno, -fno-math-errno

Require math functions to indicate errors by setting errno

-fmax-tokens=<arg>

Max total number of preprocessed tokens for -Wmax-tokens.

-fmax-type-align=<arg>

Specify the maximum alignment to enforce on pointers lacking an explicit alignment

-fmemory-profile, -fno-memory-profile

Enable heap memory profiling

-fmemory-profile=<directory>

Enable heap memory profiling and dump results into <directory>

-fmerge-all-constants, -fno-merge-all-constants

Allow merging of constants

-fmessage-length=<arg>

Format message diagnostics so that they fit within N columns

-fminimize-whitespace, -fno-minimize-whitespace

Minimize whitespace when emitting preprocessor output

-fmodule-file-deps, -fno-module-file-deps

-fmodule-header

Build a C++20 Header Unit from a header.

-fmodule-header=<kind>

Clang command line argument reference

208



Build a C++20 Header Unit from a header that should be found in the user (fmodule-header=user) or system
(fmodule-header=system) search path.

-fmodule-map-file=<file>

Load this module map file

-fmodule-name=<name>, -fmodule-implementation-of <arg>

Specify the name of the module to build

-fmodules, -fno-modules

Enable the ‘modules’ language feature

-fmodules-decluse, -fno-modules-decluse

Require declaration of modules used within a module

-fmodules-ignore-macro=<arg>

Ignore the definition of the given macro when building and loading modules

-fmodules-search-all, -fno-modules-search-all

Search even non-imported modules to resolve references

-fmodules-strict-decluse

Like -fmodules-decluse but requires all headers to be in modules

-fmodules-ts

Enable support for the C++ Modules TS

-fmodules-validate-input-files-content

Validate PCM input files based on content if mtime differs

-fms-compatibility, -fno-ms-compatibility

Enable full Microsoft Visual C++ compatibility

-fms-compatibility-version=<arg>

Dot-separated value representing the Microsoft compiler version number to report in _MSC_VER (0 = don’t define it
(default))

-fms-extensions, -fno-ms-extensions

Accept some non-standard constructs supported by the Microsoft compiler

-fms-hotpatch

Ensure that all functions can be hotpatched at runtime

-fms-memptr-rep=<arg>
<arg> must be ‘single’, ‘multiple’ or ‘virtual’.

-fms-volatile

-fmsc-version=<arg>

Microsoft compiler version number to report in _MSC_VER (0 = don’t define it (default))

-fmudflap

-fmudflapth

-fnested-functions

-fnew-alignment=<align>, -fnew-alignment <arg>

Specifies the largest alignment guaranteed by ‘::operator new(size_t)’

-fnew-infallible, -fno-new-infallible

Enable treating throwing global C++ operator new as always returning valid memory (annotates with
__attribute__((returns_nonnull)) and throw()). This is detectable in source.

Clang command line argument reference

209



-fnext-runtime

-fno-builtin-<arg>

Disable implicit builtin knowledge of a specific function

-fno-elide-type

Do not elide types when printing diagnostics

-fno-knr-functions

Disable support for K&R C function declarations

-fno-margins

Specifies all range of source column numbers will be compiled
-fno-max-type-align

-fno-sequence

Specifies no columns are used for sequence numbers

-fno-strict-modules-decluse

-fno-temp-file

Directly create compilation output files. This may lead to incorrect incremental builds if the compiler crashes

-fno-working-directory

-fno\_modules-validate-input-files-content

-fno\_pch-validate-input-files-content

-fnoxray-link-deps

-fobjc-abi-version=<arg>

-fobjc-arc, -fno-objc-arc

Synthesize retain and release calls for Objective-C pointers

-fobjc-arc-exceptions, -fno-objc-arc-exceptions

Use EH-safe code when synthesizing retains and releases in -fobjc-arc

-fobjc-convert-messages-to-runtime-calls, -fno-objc-convert-messages-to-runtime-calls

-fobjc-disable-direct-methods-for-testing

Ignore attribute objc_direct so that direct methods can be tested

-fobjc-encode-cxx-class-template-spec, -fno-objc-encode-cxx-class-template-spec

Fully encode c++ class template specialization

-fobjc-exceptions, -fno-objc-exceptions

Enable Objective-C exceptions

-fobjc-infer-related-result-type, -fno-objc-infer-related-result-type

-fobjc-legacy-dispatch, -fno-objc-legacy-dispatch

-fobjc-link-runtime

-fobjc-nonfragile-abi, -fno-objc-nonfragile-abi

-fobjc-nonfragile-abi-version=<arg>

-fobjc-runtime=<arg>

Specify the target Objective-C runtime kind and version

-fobjc-sender-dependent-dispatch

-fobjc-weak, -fno-objc-weak

Enable ARC-style weak references in Objective-C

Clang command line argument reference

210



-foffload-lto=<arg>, -foffload-lto (equivalent to -foffload-lto=full)

Set LTO mode for offload compilation. <arg> must be ‘thin’ or ‘full’.

-fomit-frame-pointer, -fno-omit-frame-pointer

-fopenmp, -fno-openmp

Parse OpenMP pragmas and generate parallel code.

-fopenmp-extensions, -fno-openmp-extensions

Enable all Clang extensions for OpenMP directives and clauses

-fopenmp-implicit-rpath, -fno-openmp-implicit-rpath

Set rpath on OpenMP executables
-fopenmp-new-driver

Use the new driver for OpenMP offloading.

-fopenmp-offload-mandatory

Do not create a host fallback if offloading to the device fails.

-fopenmp-simd, -fno-openmp-simd

Emit OpenMP code only for SIMD-based constructs.

-fopenmp-target-debug, -fno-openmp-target-debug

Enable debugging in the OpenMP offloading device RTL

-fopenmp-version=<arg>

Set OpenMP version (e.g. 45 for OpenMP 4.5, 50 for OpenMP 5.0). Default value is 50.

-fopenmp=<arg>

-foperator-arrow-depth=<arg>

-foperator-names, -fno-operator-names

-foptimization-record-file=<file>

Specify the output name of the file containing the optimization remarks. Implies -fsave-optimization-record. On
Darwin platforms, this cannot be used with multiple -arch <arch> options.

-foptimization-record-passes=<regex>

Only include passes which match a specified regular expression in the generated optimization record (by default,
include all passes)

-foptimize-sibling-calls, -fno-optimize-sibling-calls

-forder-file-instrumentation

Generate instrumented code to collect order file into default.profraw file (overridden by ‘=’ form of option or
LLVM_PROFILE_FILE env var)

-foutput-class-dir=<arg>, --output-class-directory <arg>,
--output-class-directory=<arg>

-fpack-struct, -fno-pack-struct

-fpack-struct=<arg>

Specify the default maximum struct packing alignment

-fpascal-strings, -fno-pascal-strings, -mpascal-strings

Recognize and construct Pascal-style string literals

-fpass-plugin=<dsopath>

Load pass plugin from a dynamic shared object file (only with new pass manager).

-fpatchable-function-entry=<N,M>

Clang command line argument reference

211



Generate M NOPs before function entry and N-M NOPs after function entry

-fpcc-struct-return

Override the default ABI to return all structs on the stack

-fpch-codegen, -fno-pch-codegen

Generate code for uses of this PCH that assumes an explicit object file will be built for the PCH

-fpch-debuginfo, -fno-pch-debuginfo

Generate debug info for types in an object file built from this PCH and do not generate them elsewhere

-fpch-instantiate-templates, -fno-pch-instantiate-templates

Instantiate templates already while building a PCH

-fpch-preprocess

-fpch-validate-input-files-content

Validate PCH input files based on content if mtime differs

-fpic, -fno-pic

-fpie, -fno-pie

-fplt, -fno-plt

-fplugin=<dsopath>

Load the named plugin (dynamic shared object)

-fprebuilt-implicit-modules, -fno-prebuilt-implicit-modules

Look up implicit modules in the prebuilt module path

-fpreserve-as-comments, -fno-preserve-as-comments

-fproc-stat-report<arg>

Print subprocess statistics

-fproc-stat-report=<arg>

Save subprocess statistics to the given file

-fprofile-arcs, -fno-profile-arcs

-fprofile-dir=<arg>

-fprofile-exclude-files=<arg>

Instrument only functions from files where names don’t match all the regexes separated by a semi-colon

-fprofile-filter-files=<arg>

Instrument only functions from files where names match any regex separated by a semi-colon

-fprofile-generate, -fno-profile-generate

Generate instrumented code to collect execution counts into default.profraw (overridden by LLVM_PROFILE_FILE
env var)

-fprofile-generate=<directory>

Generate instrumented code to collect execution counts into <directory>/default.profraw (overridden by
LLVM_PROFILE_FILE env var)

-fprofile-instr-generate, -fno-profile-instr-generate

Generate instrumented code to collect execution counts into default.profraw file (overridden by ‘=’ form of option or
LLVM_PROFILE_FILE env var)

-fprofile-instr-generate=<file>

Generate instrumented code to collect execution counts into <file> (overridden by LLVM_PROFILE_FILE env var)

-fprofile-instr-use, -fno-profile-instr-use, -fprofile-use

Clang command line argument reference

212



-fprofile-instr-use=<arg>

Use instrumentation data for profile-guided optimization

-fprofile-list=<arg>

Filename defining the list of functions/files to instrument

-fprofile-remapping-file=<file>

Use the remappings described in <file> to match the profile data against names in the program

-fprofile-sample-accurate, -fauto-profile-accurate, -fno-profile-sample-accurate

Specifies that the sample profile is accurate. If the sample

profile is accurate, callsites without profile samples are marked as cold. Otherwise, treat callsites without profile
samples as if we have no profile

-fprofile-sample-use, -fauto-profile, -fno-profile-sample-use

-fprofile-sample-use=<arg>, -fauto-profile=<arg>

Enable sample-based profile guided optimizations

-fprofile-update=<method>

Set update method of profile counters. <method> must be ‘atomic’, ‘prefer-atomic’ or ‘single’.

-fprofile-use=<pathname>

Use instrumentation data for profile-guided optimization. If pathname is a directory, it reads from
<pathname>/default.profdata. Otherwise, it reads from file <pathname>.

-fprotect-parens, -fno-protect-parens

Determines whether the optimizer honors parentheses when floating-point expressions are evaluated

-fpseudo-probe-for-profiling, -fno-pseudo-probe-for-profiling

Emit pseudo probes for sample profiling

-freciprocal-math, -fno-reciprocal-math

Allow division operations to be reassociated

-freg-struct-return

Override the default ABI to return small structs in registers

-fregister-global-dtors-with-atexit, -fno-register-global-dtors-with-atexit

Use atexit or __cxa_atexit to register global destructors

-frelaxed-template-template-args, -fno-relaxed-template-template-args

Enable C++17 relaxed template template argument matching

-freroll-loops, -fno-reroll-loops

Turn on loop reroller

-frestrict-args, -fno-restrict-args

Assume all function parameters are restrict

-fretain-comments-from-system-headers

-frewrite-imports, -fno-rewrite-imports

-frewrite-includes, -fno-rewrite-includes

-frewrite-map-file=<arg>

-fropi, -fno-ropi

Generate read-only position independent code (ARM only)

-frounding-math, -fno-rounding-math

Clang command line argument reference

213



-frtti, -fno-rtti

-frtti-data, -fno-rtti-data

-frwpi, -fno-rwpi

Generate read-write position independent code (ARM only)

-fsanitize-memory-param-retval, -fno-sanitize-memory-param-retval

Enable detection of uninitialized parameters and return values

-fsave-optimization-record, -fno-save-optimization-record

Generate a YAML optimization record file

-fsave-optimization-record=<format>

Generate an optimization record file in a specific format

-fseh-exceptions

Use SEH style exceptions

-fsemantic-interposition, -fno-semantic-interposition

-fsequence=<arg1>,<arg2>...

Specifies the columns used for sequence numbers

-fshort-enums, -fno-short-enums

Allocate to an enum type only as many bytes as it needs for the declared range of possible values

-fshort-wchar, -fno-short-wchar

Force wchar_t to be a short unsigned int

-fshow-column, -fno-show-column

-fshow-overloads=<arg>

Which overload candidates to show when overload resolution fails. Defaults to ‘all’. <arg> must be ‘best’ or ‘all’.

-fshow-source-location, -fno-show-source-location

-fsignaling-math, -fno-signaling-math

-fsigned-bitfields

-fsigned-char, -fno-signed-char, --signed-char

char is signed

-fsigned-zeros, -fno-signed-zeros

-fsized-deallocation, -fno-sized-deallocation

Enable C++14 sized global deallocation functions

-fsjlj-exceptions

Use SjLj style exceptions

-fslmtags, -fno-slmtags

Enable IBM SLM tags logging

-fslp-vectorize, -fno-slp-vectorize, -ftree-slp-vectorize

Enable the superword-level parallelism vectorization passes

-fspell-checking, -fno-spell-checking

-fspell-checking-limit=<arg>

-fsplit-dwarf-inlining, -fno-split-dwarf-inlining

Provide minimal debug info in the object/executable to facilitate online symbolication/stack traces in the absence of
.dwo/.dwp files when using Split DWARF

Clang command line argument reference

214



-fsplit-lto-unit, -fno-split-lto-unit

Enables splitting of the LTO unit

-fsplit-machine-functions, -fno-split-machine-functions

Enable late function splitting using profile information (x86 ELF)

-fsplit-stack, -fno-split-stack

Use segmented stack

-fstack-clash-protection, -fno-stack-clash-protection

Enable stack clash protection

-fstack-protector, -fno-stack-protector

Enable stack protectors for some functions vulnerable to stack smashing. This uses a loose heuristic which
considers functions vulnerable if they contain a char (or 8bit integer) array or constant sized calls to alloca , which are
of greater size than ssp-buffer-size (default: 8 bytes). All variable sized calls to alloca are considered vulnerable. A
function with a stack protector has a guard value added to the stack frame that is checked on function exit. The guard
value must be positioned in the stack frame such that a buffer overflow from a vulnerable variable will overwrite the
guard value before overwriting the function’s return address. The reference stack guard value is stored in a global
variable.

-fstack-protector-all

Enable stack protectors for all functions

-fstack-protector-strong

Enable stack protectors for some functions vulnerable to stack smashing. Compared to -fstack-protector, this uses a
stronger heuristic that includes functions containing arrays of any size (and any type), as well as any calls to alloca or
the taking of an address from a local variable

-fstack-size-section, -fno-stack-size-section

Emit section containing metadata on function stack sizes

-fstack-usage

Emit .su file containing information on function stack sizes

-fstandalone-debug, -fno-limit-debug-info, -fno-standalone-debug

Emit full debug info for all types used by the program

-fstrict-aliasing, -fno-strict-aliasing

-fstrict-enums, -fno-strict-enums

Enable optimizations based on the strict definition of an enum’s value range

-fstrict-float-cast-overflow, -fno-strict-float-cast-overflow

Assume that overflowing float-to-int casts are undefined (default)

-fstrict-overflow, -fno-strict-overflow

-fstrict-return, -fno-strict-return

-fstrict-vtable-pointers, -fno-strict-vtable-pointers

Enable optimizations based on the strict rules for overwriting polymorphic C++ objects

-fstruct-path-tbaa, -fno-struct-path-tbaa

-fswift-async-fp=<option>

Control emission of Swift async extended frame info. <option> must be ‘auto’, ‘always’ or ‘never’.

-fsymbol-partition=<arg>

-ftabstop=<arg>

-ftemplate-backtrace-limit=<arg>

Clang command line argument reference

215



-ftemplate-depth-<arg>

-ftemplate-depth=<arg>

-ftest-coverage, -fno-test-coverage

-fthin-link-bitcode=<arg>

Write minimized bitcode to <file> for the ThinLTO thin link only

-fthinlto-index=<arg>

Perform ThinLTO importing using provided function summary index

-fthreadsafe-statics, -fno-threadsafe-statics

-ftime-report

-ftime-report=<arg>

(For new pass manager) ‘per-pass’: one report for each pass; ‘per-pass-run’: one report for each pass invocation.
<arg> must be ‘per-pass’ or ‘per-pass-run’.

-ftime-trace

Turn on time profiler. Generates JSON file based on output filename. Results can be analyzed with chrome://tracing
or Speedscope App for flamegraph visualization.

-ftime-trace-granularity=<arg>

Minimum time granularity (in microseconds) traced by time profiler

-ftls-model=<arg>
<arg> must be ‘global-dynamic’, ‘local-dynamic’, ‘initial-exec’ or ‘local-exec’.

-ftrap-function=<arg>

Issue call to specified function rather than a trap instruction

-ftrapping-math, -fno-trapping-math

-ftrapv

Trap on integer overflow

-ftrapv-handler <arg>

-ftrapv-handler=<function name>

Specify the function to be called on overflow

-ftrigraphs, -fno-trigraphs, -trigraphs, --trigraphs

Process trigraph sequences

-ftrivial-auto-var-init-stop-after=<arg>

Stop initializing trivial automatic stack variables after the specified number of instances

-ftrivial-auto-var-init=<arg>

Initialize trivial automatic stack variables. Defaults to ‘uninitialized’. <arg> must be ‘uninitialized’, ‘zero’ or ‘pattern’.

-funique-basic-block-section-names, -fno-unique-basic-block-section-names

Use unique names for basic block sections (ELF Only)

-funique-internal-linkage-names, -fno-unique-internal-linkage-names

Uniqueify Internal Linkage Symbol Names by appending the MD5 hash of the module path

-funique-section-names, -fno-unique-section-names

-funroll-loops, -fno-unroll-loops

Turn on loop unroller

-funsafe-math-optimizations, -fno-unsafe-math-optimizations

-funsigned-bitfields

Clang command line argument reference

216

https://www.speedscope.app


-funsigned-char, -fno-unsigned-char, --unsigned-char

-funstable, -fno-unstable

Enable unstable and experimental features

-funwind-tables, -fno-unwind-tables

-fuse-cxa-atexit, -fno-use-cxa-atexit

-fuse-init-array, -fno-use-init-array

-fuse-ld=<arg>

-fuse-line-directives, -fno-use-line-directives

Use #line in preprocessed output

-fvalidate-ast-input-files-content

Compute and store the hash of input files used to build an AST. Files with mismatching mtime’s are considered valid
if both contents is identical

-fveclib=<arg>

Use the given vector functions library. <arg> must be ‘Accelerate’, ‘libmvec’, ‘MASSV’, ‘SVML’, ‘Darwin_libsystem_m’
or ‘none’.

-fvectorize, -fno-vectorize, -ftree-vectorize

Enable the loop vectorization passes

-fverbose-asm, -dA, -fno-verbose-asm

Generate verbose assembly output

-fvirtual-function-elimination, -fno-virtual-function-elimination

Enables dead virtual function elimination optimization. Requires -flto=full

-fvisibility-dllexport=<arg>

The visibility for dllexport definitions [-fvisibility-from-dllstorageclass]. <arg> must be ‘default’, ‘hidden’, ‘internal’ or
‘protected’.

-fvisibility-externs-dllimport=<arg>

The visibility for dllimport external declarations [-fvisibility-from-dllstorageclass]. <arg> must be ‘default’, ‘hidden’,
‘internal’ or ‘protected’.

-fvisibility-externs-nodllstorageclass=<arg>

The visibility for external declarations without an explicit DLL dllstorageclass [-fvisibility-from-dllstorageclass]. <arg>
must be ‘default’, ‘hidden’, ‘internal’ or ‘protected’.

-fvisibility-from-dllstorageclass, -fno-visibility-from-dllstorageclass

Set the visibility of symbols in the generated code from their DLL storage class

-fvisibility-global-new-delete-hidden

Give global C++ operator new and delete declarations hidden visibility

-fvisibility-inlines-hidden, -fno-visibility-inlines-hidden

Give inline C++ member functions hidden visibility by default

-fvisibility-inlines-hidden-static-local-var,
-fno-visibility-inlines-hidden-static-local-var

When -fvisibility-inlines-hidden is enabled, static variables in inline C++ member functions will also be given hidden
visibility by default

-fvisibility-ms-compat

Give global types ‘default’ visibility and global functions and variables ‘hidden’ visibility by default

-fvisibility-nodllstorageclass=<arg>

Clang command line argument reference

217



The visibility for definitions without an explicit DLL export class [-fvisibility-from-dllstorageclass]. <arg> must be
‘default’, ‘hidden’, ‘internal’ or ‘protected’.

-fvisibility=<arg>

Set the default symbol visibility for all global declarations. <arg> must be ‘hidden’ or ‘default’.

-fwasm-exceptions

Use WebAssembly style exceptions

-fwhole-program-vtables, -fno-whole-program-vtables

Enables whole-program vtable optimization. Requires -flto

-fwrapv, -fno-wrapv

Treat signed integer overflow as two’s complement

-fwritable-strings

Store string literals as writable data

-fxl-pragma-pack, -fno-xl-pragma-pack

Enable IBM XL #pragma pack handling

-fxray-always-emit-customevents, -fno-xray-always-emit-customevents

Always emit __xray_customevent(…) calls even if the containing function is not always instrumented

-fxray-always-emit-typedevents, -fno-xray-always-emit-typedevents

Always emit __xray_typedevent(…) calls even if the containing function is not always instrumented

-fxray-always-instrument=<arg>

DEPRECATED: Filename defining the whitelist for imbuing the ‘always instrument’ XRay attribute.

-fxray-attr-list=<arg>

Filename defining the list of functions/types for imbuing XRay attributes.

-fxray-function-groups=<arg>

Only instrument 1 of N groups

-fxray-function-index, -fno-xray-function-index

-fxray-ignore-loops, -fno-xray-ignore-loops

Don’t instrument functions with loops unless they also meet the minimum function size

-fxray-instruction-threshold<arg>

-fxray-instruction-threshold=<arg>

Sets the minimum function size to instrument with XRay

-fxray-instrument, -fno-xray-instrument

Generate XRay instrumentation sleds on function entry and exit

-fxray-instrumentation-bundle=<arg>

Select which XRay instrumentation points to emit. Options: all, none, function-entry, function-exit, function, custom.
Default is ‘all’. ‘function’ includes both ‘function-entry’ and ‘function-exit’.

-fxray-link-deps

Tells clang to add the link dependencies for XRay.

-fxray-modes=<arg>

List of modes to link in by default into XRay instrumented binaries.

-fxray-never-instrument=<arg>

DEPRECATED: Filename defining the whitelist for imbuing the ‘never instrument’ XRay attribute.

Clang command line argument reference

218



-fxray-selected-function-group=<arg>

When using -fxray-function-groups, select which group of functions to instrument. Valid range is 0 to
fxray-function-groups - 1

-fzero-call-used-regs=<arg>

Clear call-used registers upon function return (AArch64/x86 only). <arg> must be ‘skip’, ‘used-gpr-arg’, ‘used-gpr’,
‘used-arg’, ‘used’, ‘all-gpr-arg’, ‘all-gpr’, ‘all-arg’ or ‘all’.

-fzero-initialized-in-bss, -fno-zero-initialized-in-bss

-fzos-extensions, -fno-zos-extensions

Accept some non-standard constructs supported by the z/OS compiler
-fzos-le-char-mode=<mode>

Allow to select Language Environment character mode on z/OS to be <mode>

-fzvector, -fno-zvector, -mzvector

Enable System z vector language extension

--gpu-bundle-output, --no-gpu-bundle-output

Bundle output files of HIP device compilation

--offload-new-driver, --no-offload-new-driver

Use the new driver for offloading compilation.

-pedantic, --pedantic, -no-pedantic, --no-pedantic

Warn on language extensions

-pedantic-errors, --pedantic-errors

OpenCL flags

-cl-denorms-are-zero

OpenCL only. Allow denormals to be flushed to zero.

-cl-ext=<arg1>,<arg2>...

OpenCL only. Enable or disable OpenCL extensions/optional features. The argument is a comma-separated
sequence of one or more extension names, each prefixed by ‘+’ or ‘-‘.

-cl-fast-relaxed-math

OpenCL only. Sets -cl-finite-math-only and -cl-unsafe-math-optimizations, and defines
__FAST_RELAXED_MATH__.

-cl-finite-math-only

OpenCL only. Allow floating-point optimizations that assume arguments and results are not NaNs or +-Inf.

-cl-fp32-correctly-rounded-divide-sqrt

OpenCL only. Specify that single precision floating-point divide and sqrt used in the program source are correctly
rounded.

-cl-kernel-arg-info

OpenCL only. Generate kernel argument metadata.

-cl-mad-enable

OpenCL only. Allow use of less precise MAD computations in the generated binary.

-cl-no-signed-zeros

OpenCL only. Allow use of less precise no signed zeros computations in the generated binary.

-cl-no-stdinc

OpenCL only. Disables all standard includes containing non-native compiler types and functions.

Clang command line argument reference

219



-cl-opt-disable

OpenCL only. This option disables all optimizations. By default optimizations are enabled.

-cl-single-precision-constant

OpenCL only. Treat double precision floating-point constant as single precision constant.

-cl-std=<arg>

OpenCL language standard to compile for. <arg> must be ‘cl’, ‘CL’, ‘cl1.0’, ‘CL1.0’, ‘cl1.1’, ‘CL1.1’, ‘cl1.2’, ‘CL1.2’,
‘cl2.0’, ‘CL2.0’, ‘cl3.0’, ‘CL3.0’, ‘clc++’, ‘CLC++’, ‘clc++1.0’, ‘CLC++1.0’, ‘clc++2021’ or ‘CLC++2021’.

-cl-strict-aliasing

OpenCL only. This option is added for compatibility with OpenCL 1.0.

-cl-uniform-work-group-size

OpenCL only. Defines that the global work-size be a multiple of the work-group size specified to
clEnqueueNDRangeKernel

-cl-unsafe-math-optimizations

OpenCL only. Allow unsafe floating-point optimizations. Also implies -cl-no-signed-zeros and -cl-mad-enable.

SYCL flags

-fsycl, -fno-sycl

Enables SYCL kernels compilation for device

-sycl-std=<arg>

SYCL language standard to compile for. <arg> must be ‘2020’, ‘2017’, ‘121’, ‘1.2.1’ or ‘sycl-1.2.1’.

Target-dependent compilation options

-G<size>, -G=<arg>, -msmall-data-limit=<arg>, -msmall-data-threshold=<arg>

Put objects of at most <size> bytes into small data section (MIPS / Hexagon)

-ffixed-x1

Reserve the x1 register (AArch64/RISC-V only)

-ffixed-x10

Reserve the x10 register (AArch64/RISC-V only)

-ffixed-x11

Reserve the x11 register (AArch64/RISC-V only)

-ffixed-x12

Reserve the x12 register (AArch64/RISC-V only)

-ffixed-x13

Reserve the x13 register (AArch64/RISC-V only)

-ffixed-x14

Reserve the x14 register (AArch64/RISC-V only)

-ffixed-x15

Reserve the x15 register (AArch64/RISC-V only)

-ffixed-x16

Reserve the x16 register (AArch64/RISC-V only)

-ffixed-x17

Clang command line argument reference

220



Reserve the x17 register (AArch64/RISC-V only)

-ffixed-x18

Reserve the x18 register (AArch64/RISC-V only)

-ffixed-x19

Reserve the x19 register (AArch64/RISC-V only)

-ffixed-x2

Reserve the x2 register (AArch64/RISC-V only)

-ffixed-x20

Reserve the x20 register (AArch64/RISC-V only)

-ffixed-x21

Reserve the x21 register (AArch64/RISC-V only)

-ffixed-x22

Reserve the x22 register (AArch64/RISC-V only)

-ffixed-x23

Reserve the x23 register (AArch64/RISC-V only)

-ffixed-x24

Reserve the x24 register (AArch64/RISC-V only)

-ffixed-x25

Reserve the x25 register (AArch64/RISC-V only)

-ffixed-x26

Reserve the x26 register (AArch64/RISC-V only)

-ffixed-x27

Reserve the x27 register (AArch64/RISC-V only)

-ffixed-x28

Reserve the x28 register (AArch64/RISC-V only)

-ffixed-x29

Reserve the x29 register (AArch64/RISC-V only)

-ffixed-x3

Reserve the x3 register (AArch64/RISC-V only)

-ffixed-x30

Reserve the x30 register (AArch64/RISC-V only)

-ffixed-x31

Reserve the x31 register (AArch64/RISC-V only)

-ffixed-x4

Reserve the x4 register (AArch64/RISC-V only)

-ffixed-x5

Reserve the x5 register (AArch64/RISC-V only)

-ffixed-x6

Reserve the x6 register (AArch64/RISC-V only)

-ffixed-x7

Reserve the x7 register (AArch64/RISC-V only)

Clang command line argument reference

221



-ffixed-x8

Reserve the x8 register (AArch64/RISC-V only)

-ffixed-x9

Reserve the x9 register (AArch64/RISC-V only)

-ffuchsia-api-level=<arg>

Set Fuchsia API level

-inline-asm=<arg>
<arg> must be ‘att’ or ‘intel’.

-m16

-m32

-m64

-mabi=<arg>

-mabi=quadword-atomics

Enable quadword atomics ABI on AIX (AIX PPC64 only). Uses lqarx/stqcx. instructions.

-mabi=vec-default

Enable the default Altivec ABI on AIX (AIX only). Uses only volatile vector registers.

-mabi=vec-extabi

Enable the extended Altivec ABI on AIX (AIX only). Uses volatile and nonvolatile vector registers

-maix-struct-return

Return all structs in memory (PPC32 only)

-malign-branch-boundary=<arg>

Specify the boundary’s size to align branches

-malign-branch=<arg1>,<arg2>...

Specify types of branches to align

-malign-double

Align doubles to two words in structs (x86 only)

-mamdgpu-ieee, -mno-amdgpu-ieee

Sets the IEEE bit in the expected default floating point mode register. Floating point opcodes that support exception
flag gathering quiet and propagate signaling NaN inputs per IEEE 754-2008. This option changes the ABI.
(AMDGPU only)

-march=<arg>

-masm=<arg>

-mbackchain, -mno-backchain

Link stack frames through backchain on System Z

-mbranch-protection=<arg>

Enforce targets of indirect branches and function returns

-mbranches-within-32B-boundaries

Align selected branches (fused, jcc, jmp) within 32-byte boundary

-mcmodel=<arg>, -mcmodel=medany (equivalent to -mcmodel=medium), -mcmodel=medlow
(equivalent to -mcmodel=small)

-mcode-object-v3, -mno-code-object-v3

Legacy option to specify code object ABI V3 (AMDGPU only)

Clang command line argument reference

222



-mcode-object-version=<arg>

Specify code object ABI version. Defaults to 4. (AMDGPU only). <arg> must be ‘none’, ‘2’, ‘3’, ‘4’ or ‘5’.

-mconsole<arg>

-mcpu=<arg>, -mv5 (equivalent to -mcpu=hexagonv5), -mv55 (equivalent to
-mcpu=hexagonv55), -mv60 (equivalent to -mcpu=hexagonv60), -mv62 (equivalent to
-mcpu=hexagonv62), -mv65 (equivalent to -mcpu=hexagonv65), -mv66 (equivalent to
-mcpu=hexagonv66), -mv67 (equivalent to -mcpu=hexagonv67), -mv67t (equivalent to
-mcpu=hexagonv67t), -mv68 (equivalent to -mcpu=hexagonv68), -mv69 (equivalent to
-mcpu=hexagonv69)

-mcrc, -mno-crc

Allow use of CRC instructions (ARM/Mips only)

-mcsect=<arg>, -mcsect<arg>

Set CSECT names in the output object module

-mdefault-build-attributes<arg>, -mno-default-build-attributes<arg>

-mdefault-visibility-export-mapping=<arg>

Mapping between default visibility and export. <arg> must be ‘none’, ‘explicit’ or ‘all’.

-mdll<arg>

-mdouble=<n

Force double to be <n> bits. <n must be ‘32’ or ‘64’.

-mdynamic-no-pic<arg>

-meabi <arg>

Set EABI type. Default depends on triple). <arg> must be ‘default’, ‘4’, ‘5’ or ‘gnu’.

-menable-experimental-extensions

Enable use of experimental RISC-V extensions.

-mfentry

Insert calls to fentry at function entry (x86/SystemZ only)

-mfloat-abi=<arg>
<arg> must be ‘soft’, ‘softfp’ or ‘hard’.

-mfpmath=<arg>

-mfpu=<arg>

-mgeneral-regs-only

Generate code which only uses the general purpose registers (AArch64/x86 only)

-mglobal-merge, -mno-global-merge

Enable merging of globals

-mhard-float

-mhwdiv=<arg>, --mhwdiv <arg>, --mhwdiv=<arg>

-mhwmult=<arg>

-miamcu, -mno-iamcu

Use Intel MCU ABI

-mibt-seal

Optimize fcf-protection=branch/full (requires LTO).

-mignore-xcoff-visibility

Not emit the visibility attribute for asm in AIX OS or give all symbols ‘unspecified’ visibility in XCOFF object file

Clang command line argument reference

223



-mimplicit-float, -mno-implicit-float

-mimplicit-it=<arg>

-mincremental-linker-compatible, -mno-incremental-linker-compatible

(integrated-as) Emit an object file which can be used with an incremental linker

-miphoneos-version-min=<arg>, -mios-version-min=<arg>

-mkernel

-mlong-calls, -mno-long-calls

Generate branches with extended addressability, usually via indirect jumps.

-mlvi-cfi, -mno-lvi-cfi

Enable only control-flow mitigations for Load Value Injection (LVI)

-mlvi-hardening, -mno-lvi-hardening

Enable all mitigations for Load Value Injection (LVI)

-mmacosx-version-min=<arg>, -mmacos-version-min=<arg>

Set Mac OS X deployment target

-mmcu=<arg>

-mms-bitfields, -mno-ms-bitfields

Set the default structure layout to be compatible with the Microsoft compiler standard

-mnocsect<arg>

Do not set CSECT names in the output object module

-mnop-mcount

Generate mcount/__fentry__ calls as nops. To activate they need to be patched in.

-momit-leaf-frame-pointer, -mno-omit-leaf-frame-pointer

Omit frame pointer setup for leaf functions

-moslib=<arg>

-mpacked-stack, -mno-packed-stack

Use packed stack layout (SystemZ only).

-mpad-max-prefix-size=<arg>

Specify maximum number of prefixes to use for padding

-mprefer-vector-width=<arg>

Specifies preferred vector width for auto-vectorization. Defaults to ‘none’ which allows target specific decisions.

-mqdsp6-compat

Enable hexagon-qdsp6 backward compatibility

-mrecip

-mrecip=<arg1>,<arg2>...

-mrecord-mcount

Generate a __mcount_loc section entry for each __fentry__ call.

-mred-zone, -mno-red-zone

-mregparm=<arg>

-mrelax, -mno-relax

Enable linker relaxation

-mrelax-all, -mno-relax-all

Clang command line argument reference

224



(integrated-as) Relax all machine instructions

-mretpoline, -mno-retpoline

-mrtd, -mno-rtd

Make StdCall calling convention the default

-mseses, -mno-seses

Enable speculative execution side effect suppression (SESES). Includes LVI control flow integrity mitigations

-msign-return-address=<arg>

Select return address signing scope. <arg> must be ‘none’, ‘all’ or ‘non-leaf’.

-msim

-mskip-rax-setup, -mno-skip-rax-setup

Skip setting up RAX register when passing variable arguments (x86 only)

-msoft-float, -mno-soft-float

Use software floating point

-mspeculative-load-hardening, -mno-speculative-load-hardening

-mstack-alignment=<arg>

Set the stack alignment

-mstack-arg-probe, -mno-stack-arg-probe

Enable stack probes

-mstack-probe-size=<arg>

Set the stack probe size

-mstack-protector-guard-offset=<arg>

Use the given offset for addressing the stack-protector guard

-mstack-protector-guard-reg=<arg>

Use the given reg for addressing the stack-protector guard

-mstack-protector-guard=<arg>

Use the given guard (global, tls) for addressing the stack-protector guard

-mstackrealign, -mno-stackrealign

Force realign the stack at entry to every function

-msvr4-struct-return

Return small structs in registers (PPC32 only)

-mtargetos=<arg>

Set the deployment target to be the specified OS and OS version

-mthread-model <arg>

The thread model to use. Defaults to ‘posix’). <arg> must be ‘posix’ or ‘single’.

-mthreads<arg>

-mthumb, -mno-thumb

-mtls-direct-seg-refs, -mno-tls-direct-seg-refs

Enable direct TLS access through segment registers (default)

-mtls-size=<arg>

Specify bit size of immediate TLS offsets (AArch64 ELF only): 12 (for 4KB) | 24 (for 16MB, default) | 32 (for 4GB) | 48
(for 256TB, needs -mcmodel=large)

Clang command line argument reference

225



-mtune=<arg>

Only supported on X86 and RISC-V. Otherwise accepted for compatibility with GCC.

-mtvos-version-min=<arg>, -mappletvos-version-min=<arg>

-municode<arg>

-munsafe-fp-atomics, -mno-unsafe-fp-atomics

Enable unsafe floating point atomic instructions (AMDGPU only)

-mvx, -mno-vx

-mwarn-nonportable-cfstrings, -mno-warn-nonportable-cfstrings

-mwatchos-version-min=<arg>

-mwavefrontsize64, -mno-wavefrontsize64

Specify wavefront size 64 mode (AMDGPU only)

-mwindows<arg>

-mx32

-mzos-target=<arg>

Set the z/OS release of the runtime environment

AARCH64

-fcall-saved-x10

Make the x10 register call-saved (AArch64 only)

-fcall-saved-x11

Make the x11 register call-saved (AArch64 only)

-fcall-saved-x12

Make the x12 register call-saved (AArch64 only)

-fcall-saved-x13

Make the x13 register call-saved (AArch64 only)

-fcall-saved-x14

Make the x14 register call-saved (AArch64 only)

-fcall-saved-x15

Make the x15 register call-saved (AArch64 only)

-fcall-saved-x18

Make the x18 register call-saved (AArch64 only)

-fcall-saved-x8

Make the x8 register call-saved (AArch64 only)

-fcall-saved-x9

Make the x9 register call-saved (AArch64 only)

-mfix-cortex-a53-835769, -mno-fix-cortex-a53-835769

Workaround Cortex-A53 erratum 835769 (AArch64 only)

-mmark-bti-property

Add .note.gnu.property with BTI to assembly files (AArch64 only)

-msve-vector-bits=<arg>

Clang command line argument reference

226



Specify the size in bits of an SVE vector register. Defaults to the vector length agnostic value of “scalable”. (AArch64
only)

-mvscale-max=<arg>

Specify the vscale maximum. Defaults to the vector length agnostic value of “0”. (AArch64 only)

-mvscale-min=<arg>

Specify the vscale minimum. Defaults to “1”. (AArch64 only)

AMDGPU

-mcumode, -mno-cumode

Specify CU wavefront execution mode (AMDGPU only)

-mtgsplit, -mno-tgsplit

Enable threadgroup split execution mode (AMDGPU only)

ARM

-faapcs-bitfield-load

Follows the AAPCS standard that all volatile bit-field write generates at least one load. (ARM only).

-faapcs-bitfield-width, -fno-aapcs-bitfield-width

Follow the AAPCS standard requirement stating that volatile bit-field width is dictated by the field container type.
(ARM only).

-ffixed-r9

Reserve the r9 register (ARM only)

-mcmse

Allow use of CMSE (Armv8-M Security Extensions)

-mexecute-only, -mno-execute-only, -mpure-code

Disallow generation of data access to code sections (ARM only)

-mfix-cmse-cve-2021-35465, -mno-fix-cmse-cve-2021-35465

Work around VLLDM erratum CVE-2021-35465 (ARM only)

-mfix-cortex-a57-aes-1742098, -mfix-cortex-a72-aes-1655431,
-mno-fix-cortex-a57-aes-1742098

Work around Cortex-A57 Erratum 1742098 (ARM only)

-mno-bti-at-return-twice

Do not add a BTI instruction after a setjmp or other return-twice construct (Arm/AArch64 only)

-mno-movt

Disallow use of movt/movw pairs (ARM only)

-mno-neg-immediates

Disallow converting instructions with negative immediates to their negation or inversion.

-mnocrc

Disallow use of CRC instructions (ARM only)

-mrestrict-it, -mno-restrict-it

Disallow generation of complex IT blocks.

-mtp=<arg>

Thread pointer access method (AArch32/AArch64 only). <arg> must be ‘soft’, ‘cp15’, ‘el0’, ‘el1’, ‘el2’ or ‘el3’.

Clang command line argument reference

227



-munaligned-access, -mno-unaligned-access

Allow memory accesses to be unaligned (AArch32/AArch64 only)

Hexagon

-mhvx-ieee-fp, -mno-hvx-ieee-fp

Enable Hexagon HVX IEEE floating-point

-mieee-rnd-near

-mmemops, -mno-memops

Enable generation of memop instructions

-mnvj, -mno-nvj

Enable generation of new-value jumps

-mnvs, -mno-nvs

Enable generation of new-value stores

-mpackets, -mno-packets

Enable generation of instruction packets

Hexagon

-mhvx, -mno-hvx

Enable Hexagon Vector eXtensions

-mhvx-length=<arg>

Set Hexagon Vector Length. <arg> must be ‘64B’ or ‘128B’.

-mhvx-qfloat, -mno-hvx-qfloat

Enable Hexagon HVX QFloat instructions

-mhvx=<arg>

Enable Hexagon Vector eXtensions

M68k

-ffixed-a0

Reserve the a0 register (M68k only)

-ffixed-a1

Reserve the a1 register (M68k only)

-ffixed-a2

Reserve the a2 register (M68k only)

-ffixed-a3

Reserve the a3 register (M68k only)

-ffixed-a4

Reserve the a4 register (M68k only)

-ffixed-a5

Reserve the a5 register (M68k only)

-ffixed-a6

Reserve the a6 register (M68k only)

Clang command line argument reference

228



-ffixed-d0

Reserve the d0 register (M68k only)

-ffixed-d1

Reserve the d1 register (M68k only)

-ffixed-d2

Reserve the d2 register (M68k only)

-ffixed-d3

Reserve the d3 register (M68k only)

-ffixed-d4

Reserve the d4 register (M68k only)

-ffixed-d5

Reserve the d5 register (M68k only)

-ffixed-d6

Reserve the d6 register (M68k only)

-ffixed-d7

Reserve the d7 register (M68k only)

-m68000

-m68010

-m68020

-m68030

-m68040

-m68060

MIPS

-mabicalls, -mno-abicalls

Enable SVR4-style position-independent code (Mips only)

-mabs=<arg>

-mcheck-zero-division, -mno-check-zero-division

-mcompact-branches=<arg>

-mdouble-float

-mdsp, -mno-dsp

-mdspr2, -mno-dspr2

-membedded-data, -mno-embedded-data

Place constants in the .rodata section instead of the .sdata section even if they meet the -G <size> threshold (MIPS)

-mextern-sdata, -mno-extern-sdata

Assume that externally defined data is in the small data if it meets the -G <size> threshold (MIPS)

-mfix4300

-mfp32

Use 32-bit floating point registers (MIPS only)

-mfp64

Use 64-bit floating point registers (MIPS only)

Clang command line argument reference

229



-mginv, -mno-ginv

-mgpopt, -mno-gpopt

Use GP relative accesses for symbols known to be in a small data section (MIPS)

-mindirect-jump=<arg>

Change indirect jump instructions to inhibit speculation

-mips16

-mldc1-sdc1, -mno-ldc1-sdc1
-mlocal-sdata, -mno-local-sdata

Extend the -G behaviour to object local data (MIPS)

-mmadd4, -mno-madd4

Enable the generation of 4-operand madd.s, madd.d and related instructions.

-mmicromips, -mno-micromips

-mmsa, -mno-msa

Enable MSA ASE (MIPS only)

-mmt, -mno-mt

Enable MT ASE (MIPS only)

-mnan=<arg>

-mno-mips16

-msingle-float

-mvirt, -mno-virt

-mxgot, -mno-xgot

PowerPC

-maltivec, -mno-altivec

-mcmpb, -mno-cmpb

-mcrbits, -mno-crbits

-mcrypto, -mno-crypto

-mdirect-move, -mno-direct-move

-mefpu2

-mfloat128, -mno-float128

-mfprnd, -mno-fprnd

-mhtm, -mno-htm

-minvariant-function-descriptors, -mno-invariant-function-descriptors

-misel, -mno-isel

-mlongcall, -mno-longcall

-mmfocrf, -mmfcrf, -mno-mfocrf

-mmma, -mno-mma

-mpaired-vector-memops, -mno-paired-vector-memops

-mpcrel, -mno-pcrel

-mpopcntd, -mno-popcntd

-mpower10-vector, -mno-power10-vector

Clang command line argument reference

230



-mpower8-vector, -mno-power8-vector

-mpower9-vector, -mno-power9-vector

-mprefixed, -mno-prefixed

-mprivileged

-mrop-protect

-msecure-plt

-mspe, -mno-spe
-mvsx, -mno-vsx

WebAssembly

-matomics, -mno-atomics

-mbulk-memory, -mno-bulk-memory

-mexception-handling, -mno-exception-handling

-mextended-const, -mno-extended-const

-mmultivalue, -mno-multivalue

-mmutable-globals, -mno-mutable-globals

-mnontrapping-fptoint, -mno-nontrapping-fptoint

-mreference-types, -mno-reference-types

-mrelaxed-simd, -mno-relaxed-simd

-msign-ext, -mno-sign-ext

-msimd128, -mno-simd128

-mtail-call, -mno-tail-call

WebAssembly Driver

-mexec-model=<arg>

Execution model (WebAssembly only). <arg> must be ‘command’ or ‘reactor’.

X86

-m3dnow, -mno-3dnow

-m3dnowa, -mno-3dnowa

-madx, -mno-adx

-maes, -mno-aes

-mamx-bf16, -mno-amx-bf16

-mamx-int8, -mno-amx-int8

-mamx-tile, -mno-amx-tile

-mavx, -mno-avx

-mavx2, -mno-avx2

-mavx512bf16, -mno-avx512bf16

-mavx512bitalg, -mno-avx512bitalg

-mavx512bw, -mno-avx512bw

-mavx512cd, -mno-avx512cd

Clang command line argument reference

231



-mavx512dq, -mno-avx512dq

-mavx512er, -mno-avx512er

-mavx512f, -mno-avx512f

-mavx512fp16, -mno-avx512fp16

-mavx512ifma, -mno-avx512ifma

-mavx512pf, -mno-avx512pf

-mavx512vbmi, -mno-avx512vbmi

-mavx512vbmi2, -mno-avx512vbmi2

-mavx512vl, -mno-avx512vl

-mavx512vnni, -mno-avx512vnni

-mavx512vp2intersect, -mno-avx512vp2intersect

-mavx512vpopcntdq, -mno-avx512vpopcntdq

-mavxvnni, -mno-avxvnni

-mbmi, -mno-bmi

-mbmi2, -mno-bmi2

-mcldemote, -mno-cldemote

-mclflushopt, -mno-clflushopt

-mclwb, -mno-clwb

-mclzero, -mno-clzero

-mcrc32, -mno-crc32

-mcx16, -mno-cx16

-menqcmd, -mno-enqcmd

-mf16c, -mno-f16c

-mfma, -mno-fma

-mfma4, -mno-fma4

-mfsgsbase, -mno-fsgsbase

-mfxsr, -mno-fxsr

-mgfni, -mno-gfni

-mhreset, -mno-hreset

-minvpcid, -mno-invpcid

-mkl, -mno-kl

-mlwp, -mno-lwp

-mlzcnt, -mno-lzcnt

-mmmx, -mno-mmx

-mmovbe, -mno-movbe

-mmovdir64b, -mno-movdir64b

-mmovdiri, -mno-movdiri

-mmwaitx, -mno-mwaitx

-mpclmul, -mno-pclmul

-mpconfig, -mno-pconfig

-mpku, -mno-pku

Clang command line argument reference

232



-mpopcnt, -mno-popcnt

-mprefetchwt1, -mno-prefetchwt1

-mprfchw, -mno-prfchw

-mptwrite, -mno-ptwrite

-mrdpid, -mno-rdpid

-mrdrnd, -mno-rdrnd

-mrdseed, -mno-rdseed
-mretpoline-external-thunk, -mno-retpoline-external-thunk

-mrtm, -mno-rtm

-msahf, -mno-sahf

-mserialize, -mno-serialize

-msgx, -mno-sgx

-msha, -mno-sha

-mshstk, -mno-shstk

-msse, -mno-sse

-msse2, -mno-sse2

-msse3, -mno-sse3

-msse4.1, -mno-sse4.1

-msse4.2, -mno-sse4.2, -msse4

-msse4a, -mno-sse4a

-mssse3, -mno-ssse3

-mtbm, -mno-tbm

-mtsxldtrk, -mno-tsxldtrk

-muintr, -mno-uintr

-mvaes, -mno-vaes

-mvpclmulqdq, -mno-vpclmulqdq

-mvzeroupper, -mno-vzeroupper

-mwaitpkg, -mno-waitpkg

-mwbnoinvd, -mno-wbnoinvd

-mwidekl, -mno-widekl

-mx87, -m80387, -mno-x87

-mxop, -mno-xop

-mxsave, -mno-xsave

-mxsavec, -mno-xsavec

-mxsaveopt, -mno-xsaveopt

-mxsaves, -mno-xsaves

RISCV

-msave-restore, -mno-save-restore

Enable using library calls for save and restore

Clang command line argument reference

233



Long double flags

Selects the long double implementation

-mlong-double-128

Force long double to be 128 bits

-mlong-double-64

Force long double to be 64 bits

-mlong-double-80

Force long double to be 80 bits, padded to 128 bits for storage

Optimization level

Flags controlling how much optimization should be performed.

-O<arg>, -O (equivalent to -O1), --optimize, --optimize=<arg>

-Ofast<arg>

Debug information generation

Flags controlling how much and what kind of debug information should be generated.

Kind and level of debug information

-g, --debug, --debug=<arg>

Generate source-level debug information

-gdwarf

Generate source-level debug information with the default dwarf version

-gdwarf-2

Generate source-level debug information with dwarf version 2

-gdwarf-3

Generate source-level debug information with dwarf version 3

-gdwarf-4

Generate source-level debug information with dwarf version 4

-gdwarf-5

Generate source-level debug information with dwarf version 5

-gdwarf32

Enables DWARF32 format for ELF binaries, if debug information emission is enabled.

-gdwarf64

Enables DWARF64 format for ELF binaries, if debug information emission is enabled.

-gfull

-ginline-line-tables, -gno-inline-line-tables

-gused

Debug level

-g0

-g2

Clang command line argument reference

234



-g3

-ggdb0

-ggdb1

-ggdb2

-ggdb3

-gline-directives-only

Emit debug line info directives only

-gline-tables-only, -g1, -gmlt

Emit debug line number tables only

-gmodules

Generate debug info with external references to clang modules or precompiled headers

Debugger to tune debug information for

-gdbx

-ggdb

-glldb

-gsce

Debug information flags

-gcolumn-info, -gno-column-info

-gdwarf-aranges

-gembed-source, -gno-embed-source

Embed source text in DWARF debug sections

-ggnu-pubnames, -gno-gnu-pubnames

-gpubnames, -gno-pubnames

-grecord-command-line, -gno-record-command-line, -grecord-gcc-switches

-gsimple-template-names, -gno-simple-template-names

-gsplit-dwarf, -gno-split-dwarf

-gsplit-dwarf=<arg>

Set DWARF fission mode. <arg> must be ‘split’ or ‘single’.

-gstrict-dwarf, -gno-strict-dwarf

-gz=<arg>, -gz (equivalent to -gz=zlib)

DWARF debug sections compression type

Static analyzer flags
Flags controlling the behavior of the Clang Static Analyzer.

-Xanalyzer <arg>

Pass <arg> to the static analyzer

Fortran compilation flags
Flags that will be passed onto the gfortran compiler when Clang is given a Fortran input.

Clang command line argument reference

235



-A<arg>, --assert <arg>, --assert=<arg>

-A-<arg>

-faggressive-function-elimination, -fno-aggressive-function-elimination

-falign-commons, -fno-align-commons

-fall-intrinsics, -fno-all-intrinsics

-fbacktrace, -fno-backtrace

-fblas-matmul-limit=<arg>

-fbounds-check, -fno-bounds-check

-fcheck-array-temporaries, -fno-check-array-temporaries

-fcheck=<arg>

-fcoarray=<arg>

-fconvert=<arg>

-fcray-pointer, -fno-cray-pointer

-fd-lines-as-code, -fno-d-lines-as-code

-fd-lines-as-comments, -fno-d-lines-as-comments

-fdollar-ok, -fno-dollar-ok

-fdump-fortran-optimized, -fno-dump-fortran-optimized

-fdump-fortran-original, -fno-dump-fortran-original

-fdump-parse-tree, -fno-dump-parse-tree

-fexternal-blas, -fno-external-blas

-ff2c, -fno-f2c

-ffpe-trap=<arg>

-ffree-line-length-<arg>

-ffrontend-optimize, -fno-frontend-optimize

-finit-character=<arg>

-finit-integer=<arg>

-finit-local-zero, -fno-init-local-zero

-finit-logical=<arg>

-finit-real=<arg>

-finteger-4-integer-8, -fno-integer-4-integer-8

-fmax-array-constructor=<arg>

-fmax-errors=<arg>

-fmax-identifier-length, -fno-max-identifier-length

-fmax-stack-var-size=<arg>

-fmax-subrecord-length=<arg>

-fmodule-private, -fno-module-private

-fpack-derived, -fno-pack-derived

-frange-check, -fno-range-check

-freal-4-real-10, -fno-real-4-real-10

-freal-4-real-16, -fno-real-4-real-16

-freal-4-real-8, -fno-real-4-real-8

Clang command line argument reference

236



-freal-8-real-10, -fno-real-8-real-10

-freal-8-real-16, -fno-real-8-real-16

-freal-8-real-4, -fno-real-8-real-4

-frealloc-lhs, -fno-realloc-lhs

-frecord-marker=<arg>

-frecursive, -fno-recursive

-frepack-arrays, -fno-repack-arrays
-fsecond-underscore, -fno-second-underscore

-fsign-zero, -fno-sign-zero

-fstack-arrays, -fno-stack-arrays

-funderscoring, -fno-underscoring

-fwhole-file, -fno-whole-file

-imultilib <arg>

-static-libgfortran

Linker flags
Flags that are passed on to the linker

-L<dir>, --library-directory <arg>, --library-directory=<arg>

Add directory to library search path

-Mach

-T<script>

Specify <script> as linker script

-Tbss<addr>

Set starting address of BSS to <addr>

-Tdata<addr>

Set starting address of DATA to <addr>

-Ttext<addr>

Set starting address of TEXT to <addr>

-Wl,<arg>,<arg2>...

Pass the comma separated arguments in <arg> to the linker

-X

-Xlinker <arg>, --for-linker <arg>, --for-linker=<arg>

Pass <arg> to the linker

-Xoffload-linker<triple> <arg>

Pass <arg> to the offload linkers or the ones idenfied by -<triple>

-Z

-b<arg>

Pass -b <arg> to the linker on AIX (only).

-coverage, --coverage

-e<arg>, --entry

-filelist <arg>

Clang command line argument reference

237



--hip-device-lib=<arg>

HIP device library

--hipspv-pass-plugin=<dsopath>

path to a pass plugin for HIP to SPIR-V passes.

-l<arg>

--ld-path=<arg>

-nostartfiles

-nostdlib, --no-standard-libraries

--offload-link

Use the new offloading linker to perform the link job.

-pie

-r

-rdynamic

--rocm-device-lib-path=<arg>, --hip-device-lib-path=<arg>

ROCm device library path. Alternative to rocm-path.

-rpath <arg>

-s

-shared, --shared

-specs=<arg>, --specs=<arg>

-static, --static

-static-pie

-t

-u<arg>, --force-link <arg>, --force-link=<arg>

-undef

undef all system defines

-undefined<arg>, --no-undefined

-z <arg>

Pass -z <arg> to the linker

<clang-dxc options>
dxc compatibility options

/T<profile>, -T<profile>

Set target profile. <profile> must be ‘ps_6_0’, ‘ ps_6_1’, ‘ ps_6_2’, ‘ ps_6_3’, ‘ ps_6_4’, ‘ ps_6_5’, ‘ ps_6_6’, ‘
ps_6_7’, ‘vs_6_0’, ‘ vs_6_1’, ‘ vs_6_2’, ‘ vs_6_3’, ‘ vs_6_4’, ‘ vs_6_5’, ‘ vs_6_6’, ‘ vs_6_7’, ‘gs_6_0’, ‘ gs_6_1’, ‘
gs_6_2’, ‘ gs_6_3’, ‘ gs_6_4’, ‘ gs_6_5’, ‘ gs_6_6’, ‘ gs_6_7’, ‘hs_6_0’, ‘ hs_6_1’, ‘ hs_6_2’, ‘ hs_6_3’, ‘ hs_6_4’, ‘
hs_6_5’, ‘ hs_6_6’, ‘ hs_6_7’, ‘ds_6_0’, ‘ ds_6_1’, ‘ ds_6_2’, ‘ ds_6_3’, ‘ ds_6_4’, ‘ ds_6_5’, ‘ ds_6_6’, ‘ ds_6_7’,
‘cs_6_0’, ‘ cs_6_1’, ‘ cs_6_2’, ‘ cs_6_3’, ‘ cs_6_4’, ‘ cs_6_5’, ‘ cs_6_6’, ‘ cs_6_7’, ‘lib_6_3’, ‘ lib_6_4’, ‘ lib_6_5’, ‘
lib_6_6’, ‘ lib_6_7’, ‘ lib_6_x’, ‘ms_6_5’, ‘ ms_6_6’, ‘ ms_6_7’, ‘as_6_5’, ‘ as_6_6’ or ‘ as_6_7’.

/emit-pristine-llvm, -emit-pristine-llvm, /fcgl, -fcgl

Emit pristine LLVM IR from the frontend by not running any LLVM passes at all.Same as -S + -emit-llvm +
-disable-llvm-passes.

/hlsl-no-stdinc, -hlsl-no-stdinc

HLSL only. Disables all standard includes containing non-native compiler types and functions.

Clang command line argument reference

238



Attributes in Clang
Introduction 244

AMD GPU Attributes 245

amdgpu_flat_work_group_size 245

amdgpu_num_sgpr 245

amdgpu_num_vgpr 246

amdgpu_waves_per_eu 246

Calling Conventions 247

aarch64_sve_pcs 247

aarch64_vector_pcs 247

fastcall 248

ms_abi 248

pcs 248

preserve_all 249

preserve_most 249

regcall 250

regparm 250

stdcall 250

thiscall 250

vectorcall 251

Consumed Annotation Checking 251

callable_when 251

consumable 252

param_typestate 252

return_typestate 252

set_typestate 252

test_typestate 253

Customizing Swift Import 253

swift_async 253

swift_async_error 254

swift_async_name 254

swift_attr 255

swift_bridge 255

swift_bridged 255

swift_error 256

swift_name 256

swift_newtype 257

swift_objc_members 257

swift_private 257

Declaration Attributes 258

Owner 258

Pointer 258

_Packed 259

__single_inhertiance, __multiple_inheritance, __virtual_inheritance 260

Attributes in Clang

239



asm 260

deprecated 261

empty_bases 261

enum_extensibility 262

external_source_symbol 263

flag_enum 263

layout_version 264

lto_visibility_public 264

managed 264

novtable 264

ns_error_domain 265

objc_boxable 265

objc_direct 266

objc_direct_members 267

objc_non_runtime_protocol 267

objc_nonlazy_class 268

objc_runtime_name 268

objc_runtime_visible 268

objc_subclassing_restricted 269

preferred_name 269

randomize_layout, no_randomize_layout 269

randomize_layout, no_randomize_layout 270

selectany 270

transparent_union 270

trivial_abi 271

using_if_exists 272

Field Attributes 272

no_unique_address 272

Function Attributes 273

#pragma omp declare simd 273

#pragma omp declare target 273

#pragma omp declare variant 274

SV_GroupIndex 275

_Export 275

_Noreturn 275

abi_tag 275

acquire_capability, acquire_shared_capability 276

alloc_align 276

alloc_size 277

allocator 277

always_inline, __force_inline 278

artificial 278

assert_capability, assert_shared_capability 279

assume 279

assume_aligned 279

Attributes in Clang

240



availability 280

btf_decl_tag 282

callback 282

carries_dependency 283

cf_consumed 283

cf_returns_not_retained 284

cf_returns_retained 285

cfi_canonical_jump_table 286

clang::builtin_alias, clang_builtin_alias 286

clang_arm_builtin_alias 287

cmse_nonsecure_entry 287

code_seg 287

convergent 288

cpu_dispatch 288

cpu_specific 289

diagnose_as_builtin 290

diagnose_if 291

disable_sanitizer_instrumentation 292

disable_tail_calls 292

enable_if 293

enforce_tcb 295

enforce_tcb_leaf 295

error, warning 295

exclude_from_explicit_instantiation 296

export_name 297

flatten 297

force_align_arg_pointer 297

format 298

gnu_inline 299

guard 299

ifunc 300

import_module 300

import_name 300

internal_linkage 301

interrupt (ARM) 301

interrupt (AVR) 302

interrupt (MIPS) 302

interrupt (RISCV) 302

kernel 303

lifetimebound 303

long_call, far 304

malloc 304

micromips 305

mig_server_routine 305

min_vector_width 305

Attributes in Clang

241



no_builtin 306

no_caller_saved_registers 306

no_profile_instrument_function 307

no_sanitize 307

no_sanitize_address, no_address_safety_analysis 308

no_sanitize_memory 308

no_sanitize_thread 308

no_speculative_load_hardening 309

no_split_stack 310

no_stack_protector 310

noalias 310

nocf_check 310

nodiscard, warn_unused_result 311

noduplicate 311

noinline 312

nomicromips 312

noreturn, _Noreturn 313

not_tail_called 313

nothrow 314

ns_consumed 314

ns_consumes_self 315

ns_returns_autoreleased 316

ns_returns_not_retained 317

ns_returns_retained 317

numthreads 318

objc_method_family 319

objc_requires_super 319

optnone 320

os_consumed 320

os_consumes_this 321

os_returns_not_retained 322

os_returns_retained 322

os_returns_retained_on_non_zero 323

os_returns_retained_on_zero 324

overloadable 325

patchable_function_entry 326

preserve_access_index 327

reinitializes 327

release_capability, release_shared_capability 328

retain 328

shader 328

short_call, near 329

signal 329

speculative_load_hardening 329

sycl_kernel 330

Attributes in Clang

242



target 331

target_clones 332

try_acquire_capability, try_acquire_shared_capability 332

used 333

xray_always_instrument, xray_never_instrument, xray_log_args 333

xray_always_instrument, xray_never_instrument, xray_log_args 334

zero_call_used_regs 334

Handle Attributes 335

acquire_handle 335

release_handle 335

use_handle 335

Nullability Attributes 336

_Nonnull 336

_Null_unspecified 337

_Nullable 337

_Nullable_result 337

nonnull 338

returns_nonnull 338

OpenCL Address Spaces 339

[[clang::opencl_global_device]], [[clang::opencl_global_host]] 339

[[clang::opencl_global_device]], [[clang::opencl_global_host]] 339

__constant, constant, [[clang::opencl_constant]] 340

__generic, generic, [[clang::opencl_generic]] 340

__global, global, [[clang::opencl_global]] 340

__local, local, [[clang::opencl_local]] 341

__private, private, [[clang::opencl_private]] 341

Statement Attributes 341

#pragma clang loop 341

#pragma unroll, #pragma nounroll 342

__read_only, __write_only, __read_write (read_only, write_only, read_write) 343

fallthrough 344

intel_reqd_sub_group_size 345

likely and unlikely 345

likely and unlikely 347

musttail 350

nomerge 350

opencl_unroll_hint 351

suppress 351

sycl_special_class 351

Type Attributes 352

__ptr32 352

__ptr64 353

__sptr 353

__uptr 353

align_value 353

Attributes in Clang

243



arm_sve_vector_bits 354

btf_type_tag 354

clang_arm_mve_strict_polymorphism 354

cmse_nonsecure_call 355

device_builtin_surface_type 355

device_builtin_texture_type 356

noderef 356

objc_class_stub 357

Type Safety Checking 357

argument_with_type_tag 358

pointer_with_type_tag 358

type_tag_for_datatype 359

Variable Attributes 361

always_destroy 361

called_once 361

dllexport 362

dllimport 362

init_priority 363

init_seg 363

leaf 363

loader_uninitialized 364

maybe_unused, unused 364

no_destroy 364

nodebug 365

noescape 365

nosvm 366

objc_externally_retained 366

pass_object_size, pass_dynamic_object_size 367

require_constant_initialization, constinit (C++20) 369

section, __declspec(allocate) 369

standalone_debug 370

swift_async_context 370

swift_context 370

swift_error_result 370

swift_indirect_result 371

swiftasynccall 372

swiftcall 372

thread 373

tls_model 373

uninitialized 373

Introduction
This page lists the attributes currently supported by Clang.

Attributes in Clang

244



AMD GPU Attributes

amdgpu_flat_work_group_size

Supported Syntaxes

GNU C++11 C2x
__declsp

ec Keyword #pragma

#pragma 
clang at
tribute

HLSL
Semantic

amdgpu_f
lat_work
_group_s
ize

clang::a
mdgpu_fl
at_work_
group_si
ze

Yes

The flat work-group size is the number of work-items in the work-group size specified when the kernel is dispatched.
It is the product of the sizes of the x, y, and z dimension of the work-group.

Clang supports the __attribute__((amdgpu_flat_work_group_size(<min>, <max>))) attribute for the
AMDGPU target. This attribute may be attached to a kernel function definition and is an optimization hint.

<min> parameter specifies the minimum flat work-group size, and <max> parameter specifies the maximum flat
work-group size (must be greater than <min>) to which all dispatches of the kernel will conform. Passing 0, 0 as
<min>, <max> implies the default behavior (128, 256).

If specified, the AMDGPU target backend might be able to produce better machine code for barriers and perform
scratch promotion by estimating available group segment size.

An error will be given if:

• Specified values violate subtarget specifications;

• Specified values are not compatible with values provided through other attributes.

amdgpu_num_sgpr

Supported Syntaxes

GNU C++11 C2x
__declsp

ec Keyword #pragma

#pragma 
clang at
tribute

HLSL
Semantic

amdgpu_n
um_sgpr

clang::a
mdgpu_nu
m_sgpr

Yes

Clang supports the __attribute__((amdgpu_num_sgpr(<num_sgpr>))) and
__attribute__((amdgpu_num_vgpr(<num_vgpr>))) attributes for the AMDGPU target. These attributes may
be attached to a kernel function definition and are an optimization hint.

If these attributes are specified, then the AMDGPU target backend will attempt to limit the number of SGPRs and/or
VGPRs used to the specified value(s). The number of used SGPRs and/or VGPRs may further be rounded up to
satisfy the allocation requirements or constraints of the subtarget. Passing 0 as num_sgpr and/or num_vgpr implies
the default behavior (no limits).

These attributes can be used to test the AMDGPU target backend. It is recommended that the
amdgpu_waves_per_eu attribute be used to control resources such as SGPRs and VGPRs since it is aware of the
limits for different subtargets.

An error will be given if:

• Specified values violate subtarget specifications;

Attributes in Clang

245



• Specified values are not compatible with values provided through other attributes;

• The AMDGPU target backend is unable to create machine code that can meet the request.

amdgpu_num_vgpr

Supported Syntaxes

GNU C++11 C2x
__declsp

ec Keyword #pragma

#pragma 
clang at
tribute

HLSL
Semantic

amdgpu_n
um_vgpr

clang::a
mdgpu_nu
m_vgpr

Yes

Clang supports the __attribute__((amdgpu_num_sgpr(<num_sgpr>))) and
__attribute__((amdgpu_num_vgpr(<num_vgpr>))) attributes for the AMDGPU target. These attributes may
be attached to a kernel function definition and are an optimization hint.

If these attributes are specified, then the AMDGPU target backend will attempt to limit the number of SGPRs and/or
VGPRs used to the specified value(s). The number of used SGPRs and/or VGPRs may further be rounded up to
satisfy the allocation requirements or constraints of the subtarget. Passing 0 as num_sgpr and/or num_vgpr implies
the default behavior (no limits).

These attributes can be used to test the AMDGPU target backend. It is recommended that the
amdgpu_waves_per_eu attribute be used to control resources such as SGPRs and VGPRs since it is aware of the
limits for different subtargets.

An error will be given if:

• Specified values violate subtarget specifications;

• Specified values are not compatible with values provided through other attributes;

• The AMDGPU target backend is unable to create machine code that can meet the request.

amdgpu_waves_per_eu

Supported Syntaxes

GNU C++11 C2x
__declsp

ec Keyword #pragma

#pragma 
clang at
tribute

HLSL
Semantic

amdgpu_w
aves_per
_eu

clang::a
mdgpu_wa
ves_per_
eu

Yes

A compute unit (CU) is responsible for executing the wavefronts of a work-group. It is composed of one or more
execution units (EU), which are responsible for executing the wavefronts. An EU can have enough resources to
maintain the state of more than one executing wavefront. This allows an EU to hide latency by switching between
wavefronts in a similar way to symmetric multithreading on a CPU. In order to allow the state for multiple wavefronts
to fit on an EU, the resources used by a single wavefront have to be limited. For example, the number of SGPRs and
VGPRs. Limiting such resources can allow greater latency hiding, but can result in having to spill some register state
to memory.

Clang supports the __attribute__((amdgpu_waves_per_eu(<min>[, <max>]))) attribute for the AMDGPU
target. This attribute may be attached to a kernel function definition and is an optimization hint.

<min> parameter specifies the requested minimum number of waves per EU, and optional <max> parameter
specifies the requested maximum number of waves per EU (must be greater than <min> if specified). If <max> is

Attributes in Clang

246



omitted, then there is no restriction on the maximum number of waves per EU other than the one dictated by the
hardware for which the kernel is compiled. Passing 0, 0 as <min>, <max> implies the default behavior (no limits).

If specified, this attribute allows an advanced developer to tune the number of wavefronts that are capable of fitting
within the resources of an EU. The AMDGPU target backend can use this information to limit resources, such as
number of SGPRs, number of VGPRs, size of available group and private memory segments, in such a way that
guarantees that at least <min> wavefronts and at most <max> wavefronts are able to fit within the resources of an
EU. Requesting more wavefronts can hide memory latency but limits available registers which can result in spilling.
Requesting fewer wavefronts can help reduce cache thrashing, but can reduce memory latency hiding.

This attribute controls the machine code generated by the AMDGPU target backend to ensure it is capable of
meeting the requested values. However, when the kernel is executed, there may be other reasons that prevent
meeting the request, for example, there may be wavefronts from other kernels executing on the EU.

An error will be given if:

• Specified values violate subtarget specifications;

• Specified values are not compatible with values provided through other attributes;

• The AMDGPU target backend is unable to create machine code that can meet the request.

Calling Conventions
Clang supports several different calling conventions, depending on the target platform and architecture. The calling
convention used for a function determines how parameters are passed, how results are returned to the caller, and
other low-level details of calling a function.

aarch64_sve_pcs

Supported Syntaxes

GNU C++11 C2x
__declsp

ec Keyword #pragma

#pragma 
clang at
tribute

HLSL
Semantic

aarch64_
sve_pcs

clang::a
arch64_s
ve_pcs

clang::a
arch64_s
ve_pcs

On AArch64 targets, this attribute changes the calling convention of a function to preserve additional Scalable Vector
registers and Scalable Predicate registers relative to the default calling convention used for AArch64.

This means it is more efficient to call such functions from code that performs extensive scalable vector and scalable
predicate calculations, because fewer live SVE registers need to be saved. This property makes it well-suited for
SVE math library functions, which are typically leaf functions that require a small number of registers.

However, using this attribute also means that it is more expensive to call a function that adheres to the default calling
convention from within such a function. Therefore, it is recommended that this attribute is only used for leaf functions.

For more information, see the documentation for aarch64_sve_pcs in the ARM C Language Extension (ACLE)
documentation.

aarch64_vector_pcs

Supported Syntaxes

Attributes in Clang

247



GNU C++11 C2x
__declsp

ec Keyword #pragma

#pragma 
clang at
tribute

HLSL
Semantic

aarch64_
vector_p
cs

clang::a
arch64_v
ector_pc
s

clang::a
arch64_v
ector_pc
s

On AArch64 targets, this attribute changes the calling convention of a function to preserve additional floating-point
and Advanced SIMD registers relative to the default calling convention used for AArch64.

This means it is more efficient to call such functions from code that performs extensive floating-point and vector
calculations, because fewer live SIMD and FP registers need to be saved. This property makes it well-suited for e.g.
floating-point or vector math library functions, which are typically leaf functions that require a small number of
registers.

However, using this attribute also means that it is more expensive to call a function that adheres to the default calling
convention from within such a function. Therefore, it is recommended that this attribute is only used for leaf functions.

For more information, see the documentation for aarch64_vector_pcs on the Arm Developer website.

fastcall

Supported Syntaxes

GNU C++11 C2x
__declsp

ec Keyword #pragma

#pragma 
clang at
tribute

HLSL
Semantic

fastcall gnu::fas
tcall

gnu::fas
tcall

__fastca
ll <br/> _
fastcall

On 32-bit x86 targets, this attribute changes the calling convention of a function to use ECX and EDX as register
parameters and clear parameters off of the stack on return. This convention does not support variadic calls or
unprototyped functions in C, and has no effect on x86_64 targets. This calling convention is supported primarily for
compatibility with existing code. Users seeking register parameters should use the regparm attribute, which does
not require callee-cleanup. See the documentation for __fastcall on MSDN.

ms_abi

Supported Syntaxes

GNU C++11 C2x
__declsp

ec Keyword #pragma

#pragma 
clang at
tribute

HLSL
Semantic

ms_abi gnu::ms_
abi

gnu::ms_
abi

On non-Windows x86_64 targets, this attribute changes the calling convention of a function to match the default
convention used on Windows x86_64. This attribute has no effect on Windows targets or non-x86_64 targets.

pcs

Supported Syntaxes

Attributes in Clang

248

https://developer.arm.com/products/software-development-tools/hpc/arm-compiler-for-hpc/vector-function-abi
http://msdn.microsoft.com/en-us/library/6xa169sk.aspx


GNU C++11 C2x
__declsp

ec Keyword #pragma

#pragma 
clang at
tribute

HLSL
Semantic

pcs gnu::pcs gnu::pcs

On ARM targets, this attribute can be used to select calling conventions similar to stdcall on x86. Valid parameter
values are “aapcs” and “aapcs-vfp”.

preserve_all

Supported Syntaxes

GNU C++11 C2x
__declsp

ec Keyword #pragma

#pragma 
clang at
tribute

HLSL
Semantic

preserve
_all

clang::p
reserve_
all

clang::p
reserve_
all

On X86-64 and AArch64 targets, this attribute changes the calling convention of a function. The preserve_all
calling convention attempts to make the code in the caller even less intrusive than the preserve_most calling
convention. This calling convention also behaves identical to the C calling convention on how arguments and return
values are passed, but it uses a different set of caller/callee-saved registers. This removes the burden of saving and
recovering a large register set before and after the call in the caller. If the arguments are passed in callee-saved
registers, then they will be preserved by the callee across the call. This doesn’t apply for values returned in
callee-saved registers.

• On X86-64 the callee preserves all general purpose registers, except for R11. R11 can be used as a scratch
register. Furthermore it also preserves all floating-point registers (XMMs/YMMs).

The idea behind this convention is to support calls to runtime functions that don’t need to call out to any other
functions.

This calling convention, like the preserve_most calling convention, will be used by a future version of the
Objective-C runtime and should be considered experimental at this time.

preserve_most

Supported Syntaxes

GNU C++11 C2x
__declsp

ec Keyword #pragma

#pragma 
clang at
tribute

HLSL
Semantic

preserve
_most

clang::p
reserve_
most

clang::p
reserve_
most

On X86-64 and AArch64 targets, this attribute changes the calling convention of a function. The preserve_most
calling convention attempts to make the code in the caller as unintrusive as possible. This convention behaves
identically to the C calling convention on how arguments and return values are passed, but it uses a different set of
caller/callee-saved registers. This alleviates the burden of saving and recovering a large register set before and after
the call in the caller. If the arguments are passed in callee-saved registers, then they will be preserved by the callee
across the call. This doesn’t apply for values returned in callee-saved registers.

• On X86-64 the callee preserves all general purpose registers, except for R11. R11 can be used as a scratch
register. Floating-point registers (XMMs/YMMs) are not preserved and need to be saved by the caller.

The idea behind this convention is to support calls to runtime functions that have a hot path and a cold path. The hot
path is usually a small piece of code that doesn’t use many registers. The cold path might need to call out to another
function and therefore only needs to preserve the caller-saved registers, which haven’t already been saved by the

Attributes in Clang

249



caller. The preserve_most calling convention is very similar to the cold calling convention in terms of
caller/callee-saved registers, but they are used for different types of function calls. coldcc is for function calls that
are rarely executed, whereas preserve_most function calls are intended to be on the hot path and definitely
executed a lot. Furthermore preserve_most doesn’t prevent the inliner from inlining the function call.

This calling convention will be used by a future version of the Objective-C runtime and should therefore still be
considered experimental at this time. Although this convention was created to optimize certain runtime calls to the
Objective-C runtime, it is not limited to this runtime and might be used by other runtimes in the future too. The current
implementation only supports X86-64 and AArch64, but the intention is to support more architectures in the future.

regcall

Supported Syntaxes

GNU C++11 C2x
__declsp

ec Keyword #pragma

#pragma 
clang at
tribute

HLSL
Semantic

regcall gnu::reg
call

gnu::reg
call

__regcal
l

On x86 targets, this attribute changes the calling convention to __regcall convention. This convention aims to pass
as many arguments as possible in registers. It also tries to utilize registers for the return value whenever it is
possible.

regparm

Supported Syntaxes

GNU C++11 C2x
__declsp

ec Keyword #pragma

#pragma 
clang at
tribute

HLSL
Semantic

regparm gnu::reg
parm

gnu::reg
parm

On 32-bit x86 targets, the regparm attribute causes the compiler to pass the first three integer parameters in EAX,
EDX, and ECX instead of on the stack. This attribute has no effect on variadic functions, and all parameters are
passed via the stack as normal.

stdcall

Supported Syntaxes

GNU C++11 C2x
__declsp

ec Keyword #pragma

#pragma 
clang at
tribute

HLSL
Semantic

stdcall gnu::std
call

gnu::std
call

__stdcal
l <br/>
_stdcall

On 32-bit x86 targets, this attribute changes the calling convention of a function to clear parameters off of the stack
on return. This convention does not support variadic calls or unprototyped functions in C, and has no effect on
x86_64 targets. This calling convention is used widely by the Windows API and COM applications. See the
documentation for __stdcall on MSDN.

thiscall

Attributes in Clang

250

https://software.intel.com/en-us/node/693069
http://msdn.microsoft.com/en-us/library/zxk0tw93.aspx


Supported Syntaxes

GNU C++11 C2x
__declsp

ec Keyword #pragma

#pragma 
clang at
tribute

HLSL
Semantic

thiscall gnu::thi
scall

gnu::thi
scall

__thisca
ll <br/> _
thiscall

On 32-bit x86 targets, this attribute changes the calling convention of a function to use ECX for the first parameter
(typically the implicit this parameter of C++ methods) and clear parameters off of the stack on return. This
convention does not support variadic calls or unprototyped functions in C, and has no effect on x86_64 targets. See
the documentation for __thiscall on MSDN.

vectorcall

Supported Syntaxes

GNU C++11 C2x
__declsp

ec Keyword #pragma

#pragma 
clang at
tribute

HLSL
Semantic

vectorca
ll

clang::v
ectorcal
l

clang::v
ectorcal
l

__vector
call <br/> 
_vectorc
all

On 32-bit x86 and x86_64 targets, this attribute changes the calling convention of a function to pass vector
parameters in SSE registers.

On 32-bit x86 targets, this calling convention is similar to __fastcall. The first two integer parameters are passed
in ECX and EDX. Subsequent integer parameters are passed in memory, and callee clears the stack. On x86_64
targets, the callee does not clear the stack, and integer parameters are passed in RCX, RDX, R8, and R9 as is done
for the default Windows x64 calling convention.

On both 32-bit x86 and x86_64 targets, vector and floating point arguments are passed in XMM0-XMM5.
Homogeneous vector aggregates of up to four elements are passed in sequential SSE registers if enough are
available. If AVX is enabled, 256 bit vectors are passed in YMM0-YMM5. Any vector or aggregate type that cannot
be passed in registers for any reason is passed by reference, which allows the caller to align the parameter memory.

See the documentation for __vectorcall on MSDN for more details.

Consumed Annotation Checking
Clang supports additional attributes for checking basic resource management properties, specifically for unique
objects that have a single owning reference. The following attributes are currently supported, although the
implementation for these annotations is currently in development and are subject to change.

callable_when

Supported Syntaxes

GNU C++11 C2x
__declsp

ec Keyword #pragma

#pragma 
clang at
tribute

HLSL
Semantic

callable
_when

clang::c
allable_
when

Yes

Attributes in Clang

251

http://msdn.microsoft.com/en-us/library/ek8tkfbw.aspx
http://msdn.microsoft.com/en-us/library/dn375768.aspx


Use __attribute__((callable_when(...))) to indicate what states a method may be called in. Valid states
are unconsumed, consumed, or unknown. Each argument to this attribute must be a quoted string. E.g.:

__attribute__((callable_when("unconsumed", "unknown")))

consumable

Supported Syntaxes

GNU C++11 C2x
__declsp

ec Keyword #pragma

#pragma 
clang at
tribute

HLSL
Semantic

consumab
le

clang::c
onsumabl
e

Yes

Each class that uses any of the typestate annotations must first be marked using the consumable attribute.
Failure to do so will result in a warning.

This attribute accepts a single parameter that must be one of the following: unknown, consumed, or unconsumed.

param_typestate

Supported Syntaxes

GNU C++11 C2x
__declsp

ec Keyword #pragma

#pragma 
clang at
tribute

HLSL
Semantic

param_ty
pestate

clang::p
aram_typ
estate

Yes

This attribute specifies expectations about function parameters. Calls to an function with annotated parameters will
issue a warning if the corresponding argument isn’t in the expected state. The attribute is also used to set the initial
state of the parameter when analyzing the function’s body.

return_typestate

Supported Syntaxes

GNU C++11 C2x
__declsp

ec Keyword #pragma

#pragma 
clang at
tribute

HLSL
Semantic

return_t
ypestate

clang::r
eturn_ty
pestate

Yes

The return_typestate attribute can be applied to functions or parameters. When applied to a function the
attribute specifies the state of the returned value. The function’s body is checked to ensure that it always returns a
value in the specified state. On the caller side, values returned by the annotated function are initialized to the given
state.

When applied to a function parameter it modifies the state of an argument after a call to the function returns. The
function’s body is checked to ensure that the parameter is in the expected state before returning.

set_typestate

Attributes in Clang

252



Supported Syntaxes

GNU C++11 C2x
__declsp

ec Keyword #pragma

#pragma 
clang at
tribute

HLSL
Semantic

set_type
state

clang::s
et_types
tate

Yes

Annotate methods that transition an object into a new state with
__attribute__((set_typestate(new_state))). The new state must be unconsumed, consumed, or
unknown.

test_typestate

Supported Syntaxes

GNU C++11 C2x
__declsp

ec Keyword #pragma

#pragma 
clang at
tribute

HLSL
Semantic

test_typ
estate

clang::t
est_type
state

Yes

Use __attribute__((test_typestate(tested_state))) to indicate that a method returns true if the object
is in the specified state..

Customizing Swift Import
Clang supports additional attributes for customizing how APIs are imported into Swift.

swift_async

Supported Syntaxes

GNU C++11 C2x
__declsp

ec Keyword #pragma

#pragma 
clang at
tribute

HLSL
Semantic

swift_as
ync

clang::s
wift_asy
nc

clang::s
wift_asy
nc

Yes

The swift_async attribute specifies if and how a particular function or Objective-C method is imported into a swift
async method. For instance:

@interface MyClass : NSObject
-(void)notActuallyAsync:(int)p1 withCompletionHandler:(void (^)())handler
    __attribute__((swift_async(none)));

-(void)actuallyAsync:(int)p1 callThisAsync:(void (^)())fun
    __attribute__((swift_async(swift_private, 1)));
@end

Here, notActuallyAsync:withCompletionHandler would have been imported as async (because it’s last
parameter’s selector piece is withCompletionHandler) if not for the swift_async(none) attribute.
Conversely, actuallyAsync:callThisAsync wouldn’t have been imported as async if not for the
swift_async attribute because it doesn’t match the naming convention.

Attributes in Clang

253



When using swift_async to enable importing, the first argument to the attribute is either swift_private or
not_swift_private to indicate whether the function/method is private to the current framework, and the second
argument is the index of the completion handler parameter.

swift_async_error

Supported Syntaxes

GNU C++11 C2x
__declsp

ec Keyword #pragma

#pragma 
clang at
tribute

HLSL
Semantic

swift_as
ync_erro
r

clang::s
wift_asy
nc_error

clang::s
wift_asy
nc_error

Yes

The swift_async_error attribute specifies how an error state will be represented in a swift async method. It’s a
bit analogous to the swift_error attribute for the generated async method. The swift_async_error attribute
can indicate a variety of different ways of representing an error.

• __attribute__((swift_async_error(zero_argument, N))), specifies that the async method is
considered to have failed if the Nth argument to the completion handler is zero.

• __attribute__((swift_async_error(nonzero_argument, N))), specifies that the async method is
considered to have failed if the Nth argument to the completion handler is non-zero.

• __attribute__((swift_async_error(nonnull_error))), specifies that the async method is
considered to have failed if the NSError * argument to the completion handler is non-null.

• __attribute__((swift_async_error(none))), specifies that the async method cannot fail.

For instance:

@interface MyClass : NSObject
-(void)asyncMethod:(void (^)(char, int, float))handler
    __attribute__((swift_async(swift_private, 1)))
    __attribute__((swift_async_error(zero_argument, 2)));
@end

Here, the swift_async attribute specifies that handler is the completion handler for this method, and the
swift_async_error attribute specifies that the int parameter is the one that represents the error.

swift_async_name

Supported Syntaxes

GNU C++11 C2x
__declsp

ec Keyword #pragma

#pragma 
clang at
tribute

HLSL
Semantic

swift_as
ync_name

Yes

The swift_async_name attribute provides the name of the async overload for the given declaration in Swift. If this
attribute is absent, the name is transformed according to the algorithm built into the Swift compiler.

The argument is a string literal that contains the Swift name of the function or method. The name may be a
compound Swift name. The function or method with such an attribute must have more than zero parameters, as its
last parameter is assumed to be a callback that’s eliminated in the Swift async name.

@interface URL
+ (void) loadContentsFrom:(URL *)url callback:(void (^)(NSData *))data __attribute__((__swift_async_name__("URL.loadContentsFrom(_:)")))
@end

Attributes in Clang

254



swift_attr

Supported Syntaxes

GNU C++11 C2x
__declsp

ec Keyword #pragma

#pragma 
clang at
tribute

HLSL
Semantic

swift_at
tr

Yes

The swift_attr provides a Swift-specific annotation for the declaration to which the attribute appertains to. It can
be used on any declaration in Clang. This kind of annotation is ignored by Clang as it doesn’t have any semantic
meaning in languages supported by Clang. The Swift compiler can interpret these annotations according to its own
rules when importing C or Objective-C declarations.

swift_bridge

Supported Syntaxes

GNU C++11 C2x
__declsp

ec Keyword #pragma

#pragma 
clang at
tribute

HLSL
Semantic

swift_br
idge

The swift_bridge attribute indicates that the declaration to which the attribute appertains is bridged to the named
Swift type.

__attribute__((__objc_root__))
@interface Base
- (instancetype)init;
@end

__attribute__((__swift_bridge__("BridgedI")))
@interface I : Base
@end

In this example, the Objective-C interface I will be made available to Swift with the name BridgedI. It would be
possible for the compiler to refer to I still in order to bridge the type back to Objective-C.

swift_bridged

Supported Syntaxes

GNU C++11 C2x
__declsp

ec Keyword #pragma

#pragma 
clang at
tribute

HLSL
Semantic

swift_br
idged_ty
pedef

Yes

The swift_bridged_typedef attribute indicates that when the typedef to which the attribute appertains is
imported into Swift, it should refer to the bridged Swift type (e.g. Swift’s String) rather than the Objective-C type as
written (e.g. NSString).

Attributes in Clang

255



@interface NSString;
typedef NSString *AliasedString __attribute__((__swift_bridged_typedef__));

extern void acceptsAliasedString(AliasedString _Nonnull parameter);

In this case, the function acceptsAliasedString will be imported into Swift as a function which accepts a
String type parameter.

swift_error

Supported Syntaxes

GNU C++11 C2x
__declsp

ec Keyword #pragma

#pragma 
clang at
tribute

HLSL
Semantic

swift_er
ror

Yes

The swift_error attribute controls whether a particular function (or Objective-C method) is imported into Swift as a
throwing function, and if so, which dynamic convention it uses.

All of these conventions except none require the function to have an error parameter. Currently, the error parameter
is always the last parameter of type NSError** or CFErrorRef*. Swift will remove the error parameter from the
imported API. When calling the API, Swift will always pass a valid address initialized to a null pointer.

• swift_error(none) means that the function should not be imported as throwing. The error parameter and
result type will be imported normally.

• swift_error(null_result) means that calls to the function should be considered to have thrown if they
return a null value. The return type must be a pointer type, and it will be imported into Swift with a non-optional
type. This is the default error convention for Objective-C methods that return pointers.

• swift_error(zero_result) means that calls to the function should be considered to have thrown if they
return a zero result. The return type must be an integral type. If the return type would have been imported as
Bool, it is instead imported as Void. This is the default error convention for Objective-C methods that return a
type that would be imported as Bool.

• swift_error(nonzero_result) means that calls to the function should be considered to have thrown if
they return a non-zero result. The return type must be an integral type. If the return type would have been
imported as Bool, it is instead imported as Void.

• swift_error(nonnull_error) means that calls to the function should be considered to have thrown if they
leave a non-null error in the error parameter. The return type is left unmodified.

swift_name

Supported Syntaxes

GNU C++11 C2x
__declsp

ec Keyword #pragma

#pragma 
clang at
tribute

HLSL
Semantic

swift_na
me

The swift_name attribute provides the name of the declaration in Swift. If this attribute is absent, the name is
transformed according to the algorithm built into the Swift compiler.

The argument is a string literal that contains the Swift name of the function, variable, or type. When renaming a
function, the name may be a compound Swift name. For a type, enum constant, property, or variable declaration, the
name must be a simple or qualified identifier.

Attributes in Clang

256



@interface URL
- (void) initWithString:(NSString *)s __attribute__((__swift_name__("URL.init(_:)")))
@end

void __attribute__((__swift_name__("squareRoot()"))) sqrt(double v) {
}

swift_newtype

Supported Syntaxes

GNU C++11 C2x
__declsp

ec Keyword #pragma

#pragma 
clang at
tribute

HLSL
Semantic

swift_ne
wtype
<br/> swif
t_wrappe
r

Yes

The swift_newtype attribute indicates that the typedef to which the attribute appertains is imported as a new Swift
type of the typedef’s name. Previously, the attribute was spelt swift_wrapper. While the behaviour of the attribute
is identical with either spelling, swift_wrapper is deprecated, only exists for compatibility purposes, and should
not be used in new code.

• swift_newtype(struct) means that a Swift struct will be created for this typedef.

• swift_newtype(enum) means that a Swift enum will be created for this typedef.

// Import UIFontTextStyle as an enum type, with enumerated values being
// constants.
typedef NSString * UIFontTextStyle __attribute__((__swift_newtype__(enum)));

// Import UIFontDescriptorFeatureKey as a structure type, with enumerated
// values being members of the type structure.
typedef NSString * UIFontDescriptorFeatureKey __attribute__((__swift_newtype__(struct)));

swift_objc_members

Supported Syntaxes

GNU C++11 C2x
__declsp

ec Keyword #pragma

#pragma 
clang at
tribute

HLSL
Semantic

swift_ob
jc_membe
rs

Yes

This attribute indicates that Swift subclasses and members of Swift extensions of this class will be implicitly marked
with the @objcMembers Swift attribute, exposing them back to Objective-C.

swift_private

Supported Syntaxes

Attributes in Clang

257



GNU C++11 C2x
__declsp

ec Keyword #pragma

#pragma 
clang at
tribute

HLSL
Semantic

swift_pr
ivate

Declarations marked with the swift_private attribute are hidden from the framework client but are still made
available for use within the framework or Swift SDK overlay.

The purpose of this attribute is to permit a more idomatic implementation of declarations in Swift while hiding the
non-idiomatic one.

Declaration Attributes

Owner

Supported Syntaxes

GNU C++11 C2x
__declsp

ec Keyword #pragma

#pragma 
clang at
tribute

HLSL
Semantic

gsl::Own
er

Yes

Note

This attribute is experimental and its effect on analysis is subject to change in a future version of clang.

The attribute [[gsl::Owner(T)]] applies to structs and classes that own an object of type T:

class [[gsl::Owner(int)]] IntOwner {
private:
  int value;
public:
  int *getInt() { return &value; }
};

The argument T is optional and is ignored. This attribute may be used by analysis tools and has no effect on code
generation. A void argument means that the class can own any type.

See Pointer for an example.

Pointer

Supported Syntaxes

GNU C++11 C2x
__declsp

ec Keyword #pragma

#pragma 
clang at
tribute

HLSL
Semantic

gsl::Poi
nter

Yes

Attributes in Clang

258



Note

This attribute is experimental and its effect on analysis is subject to change in a future version of clang.

The attribute [[gsl::Pointer(T)]] applies to structs and classes that behave like pointers to an object of type T:

class [[gsl::Pointer(int)]] IntPointer {
private:
  int *valuePointer;
public:
  int *getInt() { return &valuePointer; }
};

The argument T is optional and is ignored. This attribute may be used by analysis tools and has no effect on code
generation. A void argument means that the pointer can point to any type.

Example: When constructing an instance of a class annotated like this (a Pointer) from an instance of a class
annotated with [[gsl::Owner]] (an Owner), then the analysis will consider the Pointer to point inside the Owner.
When the Owner’s lifetime ends, it will consider the Pointer to be dangling.

int f() {
  IntPointer P;
  if (true) {
    IntOwner O(7);
    P = IntPointer(O); // P "points into" O
  } // P is dangling
  return P.get(); // error: Using a dangling Pointer.
}

_Packed

Supported Syntaxes

GNU C++11 C2x
__declsp

ec Keyword #pragma

#pragma 
clang at
tribute

HLSL
Semantic

_Packed

The z/OS compiler aligns structure and union members according to their natural byte boundaries and ends the
structure or union on its natural boundary. However, since the alignment of a structure or union is that of the member
with the largest alignment requirement, the compiler may add padding to elements whose byte boundaries are
smaller than this requirement. You can use the _Packed qualifier to remove padding between members of structures
or unions. Packed and nonpacked structures and unions have different storage layouts.

Consider the following example:

struct unpacked {
  int i;
  char c;
  short s;
};

_Packed union packed {
  int i;
  char c;
  short s;
};

Attributes in Clang

259



In struct unpacked, since the largest alignment requirement among the members is that of int i, namely, 4 bytes, 3
bytes of padding are added at the end of char c (1 byte) and 2 bytes of padding are added at the end of short s (2
bytes).

In struct packed, there is no padding and each member takes exactly as many bytes as needed to represent the
type.

__single_inhertiance, __multiple_inheritance, __virtual_inheritance

Supported Syntaxes

GNU C++11 C2x
__declsp

ec Keyword #pragma

#pragma 
clang at
tribute

HLSL
Semantic

__single
_inherit
ance <br/> 
__multip
le_inher
itance
<br/> __vi
rtual_in
heritanc
e <br/> __
unspecif
ied_inhe
ritance

This collection of keywords is enabled under -fms-extensions and controls the pointer-to-member representation
used on *-*-win32 targets.

The *-*-win32 targets utilize a pointer-to-member representation which varies in size and alignment depending on
the definition of the underlying class.

However, this is problematic when a forward declaration is only available and no definition has been made yet. In
such cases, Clang is forced to utilize the most general representation that is available to it.

These keywords make it possible to use a pointer-to-member representation other than the most general one
regardless of whether or not the definition will ever be present in the current translation unit.

This family of keywords belong between the class-key and class-name:

struct __single_inheritance S;
int S::*i;
struct S {};

This keyword can be applied to class templates but only has an effect when used on full specializations:
template <typename T, typename U> struct __single_inheritance A; // warning: inheritance model ignored on primary template
template <typename T> struct __multiple_inheritance A<T, T>; // warning: inheritance model ignored on partial specialization
template <> struct __single_inheritance A<int, float>;

Note that choosing an inheritance model less general than strictly necessary is an error:

struct __multiple_inheritance S; // error: inheritance model does not match definition
int S::*i;
struct S {};

asm

Supported Syntaxes

Attributes in Clang

260



GNU C++11 C2x
__declsp

ec Keyword #pragma

#pragma 
clang at
tribute

HLSL
Semantic

asm <br/>
__asm__

This attribute can be used on a function or variable to specify its symbol name.

On some targets, all C symbols are prefixed by default with a single character, typically _. This was done historically
to distinguish them from symbols used by other languages. (This prefix is also added to the standard Itanium C++
ABI prefix on “mangled” symbol names, so that e.g. on such targets the true symbol name for a C++ variable
declared as int cppvar; would be __Z6cppvar; note the two underscores.) This prefix is not added to the
symbol names specified by the asm attribute; programmers wishing to match a C symbol name must compensate for
this.

For example, consider the following C code:

int var1 asm("altvar") = 1;  // "altvar" in symbol table.
int var2 = 1; // "_var2" in symbol table.

void func1(void) asm("altfunc");
void func1(void) {} // "altfunc" in symbol table.
void func2(void) {} // "_func2" in symbol table.

Clang’s implementation of this attribute is compatible with GCC’s, documented here.

While it is possible to use this attribute to name a special symbol used internally by the compiler, such as an LLVM
intrinsic, this is neither recommended nor supported and may cause the compiler to crash or miscompile. Users who
wish to gain access to intrinsic behavior are strongly encouraged to request new builtin functions.

deprecated

Supported Syntaxes

GNU C++11 C2x
__declsp

ec Keyword #pragma

#pragma 
clang at
tribute

HLSL
Semantic

deprecat
ed

gnu::dep
recated
<br/> depr
ecated

gnu::dep
recated
<br/> depr
ecated

deprecat
ed

The deprecated attribute can be applied to a function, a variable, or a type. This is useful when identifying
functions, variables, or types that are expected to be removed in a future version of a program.

Consider the function declaration for a hypothetical function f:

void f(void) __attribute__((deprecated("message", "replacement")));

When spelled as __attribute__((deprecated)), the deprecated attribute can have two optional string
arguments. The first one is the message to display when emitting the warning; the second one enables the compiler
to provide a Fix-It to replace the deprecated name with a new name. Otherwise, when spelled as
[[gnu::deprecated]] or [[deprecated]], the attribute can have one optional string argument which is the
message to display when emitting the warning.

empty_bases

Supported Syntaxes

Attributes in Clang

261

https://gcc.gnu.org/onlinedocs/gcc/Asm-Labels.html


GNU C++11 C2x
__declsp

ec Keyword #pragma

#pragma 
clang at
tribute

HLSL
Semantic

empty_ba
ses

The empty_bases attribute permits the compiler to utilize the empty-base-optimization more frequently. This attribute
only applies to struct, class, and union types. It is only supported when using the Microsoft C++ ABI.

enum_extensibility

Supported Syntaxes

GNU C++11 C2x
__declsp

ec Keyword #pragma

#pragma 
clang at
tribute

HLSL
Semantic

enum_ext
ensibili
ty

clang::e
num_exte
nsibilit
y

clang::e
num_exte
nsibilit
y

Yes

Attribute enum_extensibility is used to distinguish between enum definitions that are extensible and those that
are not. The attribute can take either closed or open as an argument. closed indicates a variable of the enum type
takes a value that corresponds to one of the enumerators listed in the enum definition or, when the enum is
annotated with flag_enum, a value that can be constructed using values corresponding to the enumerators. open
indicates a variable of the enum type can take any values allowed by the standard and instructs clang to be more
lenient when issuing warnings.

enum __attribute__((enum_extensibility(closed))) ClosedEnum {
  A0, A1
};

enum __attribute__((enum_extensibility(open))) OpenEnum {
  B0, B1
};

enum __attribute__((enum_extensibility(closed),flag_enum)) ClosedFlagEnum {
  C0 = 1 << 0, C1 = 1 << 1
};

enum __attribute__((enum_extensibility(open),flag_enum)) OpenFlagEnum {
  D0 = 1 << 0, D1 = 1 << 1
};

void foo1() {
  enum ClosedEnum ce;
  enum OpenEnum oe;
  enum ClosedFlagEnum cfe;
  enum OpenFlagEnum ofe;

  ce = A1;           // no warnings
  ce = 100;          // warning issued
  oe = B1;           // no warnings
  oe = 100;          // no warnings
  cfe = C0 | C1;     // no warnings
  cfe = C0 | C1 | 4; // warning issued
  ofe = D0 | D1;     // no warnings
  ofe = D0 | D1 | 4; // no warnings
}

Attributes in Clang

262



external_source_symbol

Supported Syntaxes

GNU C++11 C2x
__declsp

ec Keyword #pragma

#pragma 
clang at
tribute

HLSL
Semantic

external
_source_
symbol

clang::e
xternal_
source_s
ymbol

clang::e
xternal_
source_s
ymbol

Yes

The external_source_symbol attribute specifies that a declaration originates from an external source and
describes the nature of that source.

The fact that Clang is capable of recognizing declarations that were defined externally can be used to provide better
tooling support for mixed-language projects or projects that rely on auto-generated code. For instance, an IDE that
uses Clang and that supports mixed-language projects can use this attribute to provide a correct ‘jump-to-definition’
feature. For a concrete example, consider a protocol that’s defined in a Swift file:

@objc public protocol SwiftProtocol {
  func method()
}

This protocol can be used from Objective-C code by including a header file that was generated by the Swift compiler.
The declarations in that header can use the external_source_symbol attribute to make Clang aware of the fact
that SwiftProtocol actually originates from a Swift module:

__attribute__((external_source_symbol(language="Swift",defined_in="module")))
@protocol SwiftProtocol
@required
- (void) method;
@end

Consequently, when ‘jump-to-definition’ is performed at a location that references SwiftProtocol, the IDE can
jump to the original definition in the Swift source file rather than jumping to the Objective-C declaration in the
auto-generated header file.

The external_source_symbol attribute is a comma-separated list that includes clauses that describe the origin
and the nature of the particular declaration. Those clauses can be:

language=string-literal

The name of the source language in which this declaration was defined.

defined_in=string-literal

The name of the source container in which the declaration was defined. The exact definition of source container
is language-specific, e.g. Swift’s source containers are modules, so defined_in should specify the Swift
module name.

generated_declaration

This declaration was automatically generated by some tool.

The clauses can be specified in any order. The clauses that are listed above are all optional, but the attribute has to
have at least one clause.

flag_enum

Supported Syntaxes

Attributes in Clang

263



GNU C++11 C2x
__declsp

ec Keyword #pragma

#pragma 
clang at
tribute

HLSL
Semantic

flag_enu
m

clang::f
lag_enum

clang::f
lag_enum

Yes

This attribute can be added to an enumerator to signal to the compiler that it is intended to be used as a flag type.
This will cause the compiler to assume that the range of the type includes all of the values that you can get by
manipulating bits of the enumerator when issuing warnings.

layout_version

Supported Syntaxes

GNU C++11 C2x
__declsp

ec Keyword #pragma

#pragma 
clang at
tribute

HLSL
Semantic

layout_v
ersion

The layout_version attribute requests that the compiler utilize the class layout rules of a particular compiler version.
This attribute only applies to struct, class, and union types. It is only supported when using the Microsoft C++ ABI.

lto_visibility_public

Supported Syntaxes

GNU C++11 C2x
__declsp

ec Keyword #pragma

#pragma 
clang at
tribute

HLSL
Semantic

lto_visi
bility_p
ublic

clang::l
to_visib
ility_pu
blic

clang::l
to_visib
ility_pu
blic

Yes

See LTO Visibility.

managed

Supported Syntaxes

GNU C++11 C2x
__declsp

ec Keyword #pragma

#pragma 
clang at
tribute

HLSL
Semantic

managed __manage
d__

Yes

The __managed__ attribute can be applied to a global variable declaration in HIP. A managed variable is emitted as
an undefined global symbol in the device binary and is registered by __hipRegisterManagedVariable in init
functions. The HIP runtime allocates managed memory and uses it to define the symbol when loading the device
binary. A managed variable can be accessed in both device and host code.

novtable

Attributes in Clang

264



Supported Syntaxes

GNU C++11 C2x
__declsp

ec Keyword #pragma

#pragma 
clang at
tribute

HLSL
Semantic

novtable

This attribute can be added to a class declaration or definition to signal to the compiler that constructors and
destructors will not reference the virtual function table. It is only supported when using the Microsoft C++ ABI.

ns_error_domain

Supported Syntaxes

GNU C++11 C2x
__declsp

ec Keyword #pragma

#pragma 
clang at
tribute

HLSL
Semantic

ns_error
_domain

Yes

In Cocoa frameworks in Objective-C, one can group related error codes in enums and categorize these enums with
error domains.

The ns_error_domain attribute indicates a global NSString or CFString constant representing the error
domain that an error code belongs to. For pointer uniqueness and code size this is a constant symbol, not a literal.

The domain and error code need to be used together. The ns_error_domain attribute links error codes to their
domain at the source level.

This metadata is useful for documentation purposes, for static analysis, and for improving interoperability between
Objective-C and Swift. It is not used for code generation in Objective-C.

For example:

#define NS_ERROR_ENUM(_type, _name, _domain)  \
  enum _name : _type _name; enum __attribute__((ns_error_domain(_domain))) _name : _type

extern NSString *const MyErrorDomain;
typedef NS_ERROR_ENUM(unsigned char, MyErrorEnum, MyErrorDomain) {
  MyErrFirst,
  MyErrSecond,
};

objc_boxable

Supported Syntaxes

GNU C++11 C2x
__declsp

ec Keyword #pragma

#pragma 
clang at
tribute

HLSL
Semantic

objc_box
able

clang::o
bjc_boxa
ble

clang::o
bjc_boxa
ble

Yes

Structs and unions marked with the objc_boxable attribute can be used with the Objective-C boxed expression
syntax, @(...).

Usage: __attribute__((objc_boxable)). This attribute can only be placed on a declaration of a
trivially-copyable struct or union:

Attributes in Clang

265



struct __attribute__((objc_boxable)) some_struct {
  int i;
};
union __attribute__((objc_boxable)) some_union {
  int i;
  float f;
};
typedef struct __attribute__((objc_boxable)) _some_struct some_struct;

// ...

some_struct ss;
NSValue *boxed = @(ss);

objc_direct

Supported Syntaxes

GNU C++11 C2x
__declsp

ec Keyword #pragma

#pragma 
clang at
tribute

HLSL
Semantic

objc_dir
ect

clang::o
bjc_dire
ct

clang::o
bjc_dire
ct

Yes

The objc_direct attribute can be used to mark an Objective-C method as being direct. A direct method is treated
statically like an ordinary method, but dynamically it behaves more like a C function. This lowers some of the costs
associated with the method but also sacrifices some of the ordinary capabilities of Objective-C methods.

A message send of a direct method calls the implementation directly, as if it were a C function, rather than using
ordinary Objective-C method dispatch. This is substantially faster and potentially allows the implementation to be
inlined, but it also means the method cannot be overridden in subclasses or replaced dynamically, as ordinary
Objective-C methods can.

Furthermore, a direct method is not listed in the class’s method lists. This substantially reduces the code-size
overhead of the method but also means it cannot be called dynamically using ordinary Objective-C method dispatch
at all; in particular, this means that it cannot override a superclass method or satisfy a protocol requirement.

Because a direct method cannot be overridden, it is an error to perform a super message send of one.

Although a message send of a direct method causes the method to be called directly as if it were a C function, it still
obeys Objective-C semantics in other ways:

• If the receiver is nil, the message send does nothing and returns the zero value for the return type.

• A message send of a direct class method will cause the class to be initialized, including calling the
+initialize method if present.

• The implicit _cmd parameter containing the method’s selector is still defined. In order to minimize code-size
costs, the implementation will not emit a reference to the selector if the parameter is unused within the method.

Symbols for direct method implementations are implicitly given hidden visibility, meaning that they can only be called
within the same linkage unit.

It is an error to do any of the following:

• declare a direct method in a protocol,

• declare an override of a direct method with a method in a subclass,

• declare an override of a non-direct method with a direct method in a subclass,

• declare a method with different directness in different class interfaces, or

• implement a non-direct method (as declared in any class interface) with a direct method.

Attributes in Clang

266



If any of these rules would be violated if every method defined in an @implementation within a single linkage unit
were declared in an appropriate class interface, the program is ill-formed with no diagnostic required. If a violation of
this rule is not diagnosed, behavior remains well-defined; this paragraph is simply reserving the right to diagnose
such conflicts in the future, not to treat them as undefined behavior.

Additionally, Clang will warn about any @selector expression that names a selector that is only known to be used
for direct methods.

For the purpose of these rules, a “class interface” includes a class’s primary @interface block, its class
extensions, its categories, its declared protocols, and all the class interfaces of its superclasses.

An Objective-C property can be declared with the direct property attribute. If a direct property declaration causes
an implicit declaration of a getter or setter method (that is, if the given method is not explicitly declared elsewhere),
the method is declared to be direct.

Some programmers may wish to make many methods direct at once. In order to simplify this, the
objc_direct_members attribute is provided; see its documentation for more information.

objc_direct_members

Supported Syntaxes

GNU C++11 C2x
__declsp

ec Keyword #pragma

#pragma 
clang at
tribute

HLSL
Semantic

objc_dir
ect_memb
ers

clang::o
bjc_dire
ct_membe
rs

clang::o
bjc_dire
ct_membe
rs

Yes

The objc_direct_members attribute can be placed on an Objective-C @interface or @implementation to
mark that methods declared therein should be considered direct by default. See the documentation for
objc_direct for more information about direct methods.

When objc_direct_members is placed on an @interface block, every method in the block is considered to be
declared as direct. This includes any implicit method declarations introduced by property declarations. If the method
redeclares a non-direct method, the declaration is ill-formed, exactly as if the method was annotated with the
objc_direct attribute.

When objc_direct_members is placed on an @implementation block, methods defined in the block are
considered to be declared as direct unless they have been previously declared as non-direct in any interface of the
class. This includes the implicit method definitions introduced by synthesized properties, including auto-synthesized
properties.

objc_non_runtime_protocol

Supported Syntaxes

GNU C++11 C2x
__declsp

ec Keyword #pragma

#pragma 
clang at
tribute

HLSL
Semantic

objc_non
_runtime
_protoco
l

clang::o
bjc_non_
runtime_
protocol

clang::o
bjc_non_
runtime_
protocol

Yes

The objc_non_runtime_protocol attribute can be used to mark that an Objective-C protocol is only used during
static type-checking and doesn’t need to be represented dynamically. This avoids several small code-size and
run-time overheads associated with handling the protocol’s metadata. A non-runtime protocol cannot be used as the
operand of a @protocol expression, and dynamic attempts to find it with objc_getProtocol will fail.

Attributes in Clang

267



If a non-runtime protocol inherits from any ordinary protocols, classes and derived protocols that declare
conformance to the non-runtime protocol will dynamically list their conformance to those bare protocols.

objc_nonlazy_class

Supported Syntaxes

GNU C++11 C2x
__declsp

ec Keyword #pragma

#pragma 
clang at
tribute

HLSL
Semantic

objc_non
lazy_cla
ss

clang::o
bjc_nonl
azy_clas
s

clang::o
bjc_nonl
azy_clas
s

Yes

This attribute can be added to an Objective-C @interface or @implementation declaration to add the class to
the list of non-lazily initialized classes. A non-lazy class will be initialized eagerly when the Objective-C runtime is
loaded. This is required for certain system classes which have instances allocated in non-standard ways, such as the
classes for blocks and constant strings. Adding this attribute is essentially equivalent to providing a trivial +load
method but avoids the (fairly small) load-time overheads associated with defining and calling such a method.

objc_runtime_name

Supported Syntaxes

GNU C++11 C2x
__declsp

ec Keyword #pragma

#pragma 
clang at
tribute

HLSL
Semantic

objc_run
time_nam
e

clang::o
bjc_runt
ime_name

clang::o
bjc_runt
ime_name

Yes

By default, the Objective-C interface or protocol identifier is used in the metadata name for that object. The
objc_runtime_name attribute allows annotated interfaces or protocols to use the specified string argument in the
object’s metadata name instead of the default name.

Usage: __attribute__((objc_runtime_name("MyLocalName"))). This attribute can only be placed before
an @protocol or @interface declaration:

__attribute__((objc_runtime_name("MyLocalName")))
@interface Message
@end

objc_runtime_visible

Supported Syntaxes

GNU C++11 C2x
__declsp

ec Keyword #pragma

#pragma 
clang at
tribute

HLSL
Semantic

objc_run
time_vis
ible

clang::o
bjc_runt
ime_visi
ble

clang::o
bjc_runt
ime_visi
ble

Yes

This attribute specifies that the Objective-C class to which it applies is visible to the Objective-C runtime but not to
the linker. Classes annotated with this attribute cannot be subclassed and cannot have categories defined for them.

Attributes in Clang

268



objc_subclassing_restricted

Supported Syntaxes

GNU C++11 C2x
__declsp

ec Keyword #pragma

#pragma 
clang at
tribute

HLSL
Semantic

objc_sub
classing
_restric
ted

clang::o
bjc_subc
lassing_
restrict
ed

clang::o
bjc_subc
lassing_
restrict
ed

Yes

This attribute can be added to an Objective-C @interface declaration to ensure that this class cannot be
subclassed.

preferred_name

Supported Syntaxes

GNU C++11 C2x
__declsp

ec Keyword #pragma

#pragma 
clang at
tribute

HLSL
Semantic

preferre
d_name

clang::p
referred
_name

The preferred_name attribute can be applied to a class template, and specifies a preferred way of naming a
specialization of the template. The preferred name will be used whenever the corresponding template specialization
would otherwise be printed in a diagnostic or similar context.

The preferred name must be a typedef or type alias declaration that refers to a specialization of the class template
(not including any type qualifiers). In general this requires the template to be declared at least twice. For example:

template<typename T> struct basic_string;
using string = basic_string<char>;
using wstring = basic_string<wchar_t>;
template<typename T> struct [[clang::preferred_name(string),
                              clang::preferred_name(wstring)]] basic_string {
  // ...
};

randomize_layout, no_randomize_layout

Supported Syntaxes

GNU C++11 C2x
__declsp

ec Keyword #pragma

#pragma 
clang at
tribute

HLSL
Semantic

no_rando
mize_lay
out

gnu::no_
randomiz
e_layout

gnu::no_
randomiz
e_layout

Yes

The attribute randomize_layout, when attached to a C structure, selects it for structure layout field randomization;
a compile-time hardening technique. A “seed” value, is specified via the -frandomize-layout-seed= command
line flag. For example:

Attributes in Clang

269



SEED=`od -A n -t x8 -N 32 /dev/urandom | tr -d ' \n'`
make ... CFLAGS="-frandomize-layout-seed=$SEED" ...

You can also supply the seed in a file with -frandomize-layout-seed-file=. For example:

od -A n -t x8 -N 32 /dev/urandom | tr -d ' \n' > /tmp/seed_file.txt
make ... CFLAGS="-frandomize-layout-seed-file=/tmp/seed_file.txt" ...

The randomization is deterministic based for a given seed, so the entire program should be compiled with the same
seed, but keep the seed safe otherwise.

The attribute no_randomize_layout, when attached to a C structure, instructs the compiler that this structure
should not have its field layout randomized.

randomize_layout, no_randomize_layout

Supported Syntaxes

GNU C++11 C2x
__declsp

ec Keyword #pragma

#pragma 
clang at
tribute

HLSL
Semantic

randomiz
e_layout

gnu::ran
domize_l
ayout

gnu::ran
domize_l
ayout

Yes

The attribute randomize_layout, when attached to a C structure, selects it for structure layout field randomization;
a compile-time hardening technique. A “seed” value, is specified via the -frandomize-layout-seed= command
line flag. For example:

SEED=`od -A n -t x8 -N 32 /dev/urandom | tr -d ' \n'`
make ... CFLAGS="-frandomize-layout-seed=$SEED" ...

You can also supply the seed in a file with -frandomize-layout-seed-file=. For example:

od -A n -t x8 -N 32 /dev/urandom | tr -d ' \n' > /tmp/seed_file.txt
make ... CFLAGS="-frandomize-layout-seed-file=/tmp/seed_file.txt" ...

The randomization is deterministic based for a given seed, so the entire program should be compiled with the same
seed, but keep the seed safe otherwise.

The attribute no_randomize_layout, when attached to a C structure, instructs the compiler that this structure
should not have its field layout randomized.

selectany

Supported Syntaxes

GNU C++11 C2x
__declsp

ec Keyword #pragma

#pragma 
clang at
tribute

HLSL
Semantic

selectan
y

gnu::sel
ectany

gnu::sel
ectany

selectan
y

This attribute appertains to a global symbol, causing it to have a weak definition ( linkonce ), allowing the linker to
select any definition.

For more information see gcc documentation or msvc documentation.

transparent_union

Attributes in Clang

270

https://llvm.org/docs/LangRef.html#linkage-types
https://gcc.gnu.org/onlinedocs/gcc-7.2.0/gcc/Microsoft-Windows-Variable-Attributes.html
https://docs.microsoft.com/pl-pl/cpp/cpp/selectany


Supported Syntaxes

GNU C++11 C2x
__declsp

ec Keyword #pragma

#pragma 
clang at
tribute

HLSL
Semantic

transpar
ent_unio
n

gnu::tra
nsparent
_union

gnu::tra
nsparent
_union

This attribute can be applied to a union to change the behavior of calls to functions that have an argument with a
transparent union type. The compiler behavior is changed in the following manner:

• A value whose type is any member of the transparent union can be passed as an argument without the need to
cast that value.

• The argument is passed to the function using the calling convention of the first member of the transparent
union. Consequently, all the members of the transparent union should have the same calling convention as its
first member.

Transparent unions are not supported in C++.

trivial_abi

Supported Syntaxes

GNU C++11 C2x
__declsp

ec Keyword #pragma

#pragma 
clang at
tribute

HLSL
Semantic

trivial_
abi

clang::t
rivial_a
bi

Yes

The trivial_abi attribute can be applied to a C++ class, struct, or union. It instructs the compiler to pass and
return the type using the C ABI for the underlying type when the type would otherwise be considered non-trivial for
the purpose of calls. A class annotated with trivial_abi can have non-trivial destructors or copy/move
constructors without automatically becoming non-trivial for the purposes of calls. For example:

// A is trivial for the purposes of calls because ``trivial_abi`` makes the
// user-provided special functions trivial.
struct __attribute__((trivial_abi)) A {
  ~A();
  A(const A &);
  A(A &&);
  int x;
};

// B's destructor and copy/move constructor are considered trivial for the
// purpose of calls because A is trivial.
struct B {
  A a;
};

If a type is trivial for the purposes of calls, has a non-trivial destructor, and is passed as an argument by value, the
convention is that the callee will destroy the object before returning.

If a type is trivial for the purpose of calls, it is assumed to be trivially relocatable for the purpose of
__is_trivially_relocatable.

Attribute trivial_abi has no effect in the following cases:

• The class directly declares a virtual base or virtual methods.

• Copy constructors and move constructors of the class are all deleted.

Attributes in Clang

271



• The class has a base class that is non-trivial for the purposes of calls.

• The class has a non-static data member whose type is non-trivial for the purposes of calls, which includes:

• classes that are non-trivial for the purposes of calls

• __weak-qualified types in Objective-C++

• arrays of any of the above

using_if_exists

Supported Syntaxes

GNU C++11 C2x
__declsp

ec Keyword #pragma

#pragma 
clang at
tribute

HLSL
Semantic

using_if
_exists

clang::u
sing_if_
exists

The using_if_exists attribute applies to a using-declaration. It allows programmers to import a declaration that
potentially does not exist, instead deferring any errors to the point of use. For instance:

namespace empty_namespace {};
__attribute__((using_if_exists))
using empty_namespace::does_not_exist; // no error!

does_not_exist x; // error: use of unresolved 'using_if_exists'

The C++ spelling of the attribte ([[clang::using_if_exists]]) is also supported as a clang extension, since ISO C++
doesn’t support attributes in this position. If the entity referred to by the using-declaration is found by name lookup,
the attribute has no effect. This attribute is useful for libraries (primarily, libc++) that wish to redeclare a set of
declarations in another namespace, when the availability of those declarations is difficult or impossible to detect at
compile time with the preprocessor.

Field Attributes

no_unique_address

Supported Syntaxes

GNU C++11 C2x
__declsp

ec Keyword #pragma

#pragma 
clang at
tribute

HLSL
Semantic

no_uniqu
e_addres
s

The no_unique_address attribute allows tail padding in a non-static data member to overlap other members of the
enclosing class (and in the special case when the type is empty, permits it to fully overlap other members). The field
is laid out as if a base class were encountered at the corresponding point within the class (except that it does not
share a vptr with the enclosing object).

Example usage:

template<typename T, typename Alloc> struct my_vector {
  T *p;
  [[no_unique_address]] Alloc alloc;
  // ...

Attributes in Clang

272



};
static_assert(sizeof(my_vector<int, std::allocator<int>>) == sizeof(int*));

[[no_unique_address]] is a standard C++20 attribute. Clang supports its use in C++11 onwards.

Function Attributes

#pragma omp declare simd

Supported Syntaxes

GNU C++11 C2x
__declsp

ec Keyword #pragma

#pragma 
clang at
tribute

HLSL
Semantic

omp decl
are simd

The declare simd construct can be applied to a function to enable the creation of one or more versions that can
process multiple arguments using SIMD instructions from a single invocation in a SIMD loop. The declare simd
directive is a declarative directive. There may be multiple declare simd directives for a function. The use of a
declare simd construct on a function enables the creation of SIMD versions of the associated function that can be
used to process multiple arguments from a single invocation from a SIMD loop concurrently. The syntax of the
declare simd construct is as follows:

#pragma omp declare simd [clause[[,] clause] ...] new-line
[#pragma omp declare simd [clause[[,] clause] ...] new-line]
[...]
function definition or declaration

where clause is one of the following:

simdlen(length)
linear(argument-list[:constant-linear-step])
aligned(argument-list[:alignment])
uniform(argument-list)
inbranch
notinbranch

#pragma omp declare target

Supported Syntaxes

GNU C++11 C2x
__declsp

ec Keyword #pragma

#pragma 
clang at
tribute

HLSL
Semantic

omp decl
are targ
et

The declare target directive specifies that variables and functions are mapped to a device for OpenMP offload
mechanism.

The syntax of the declare target directive is as follows:

#pragma omp declare target new-line
declarations-definition-seq
#pragma omp end declare target new-line

Attributes in Clang

273



or

#pragma omp declare target (extended-list) new-line

or

#pragma omp declare target clause[ [,] clause ... ] new-line

where clause is one of the following:

to(extended-list)
link(list)
device_type(host | nohost | any)

#pragma omp declare variant

Supported Syntaxes

GNU C++11 C2x
__declsp

ec Keyword #pragma

#pragma 
clang at
tribute

HLSL
Semantic

omp decl
are vari
ant

The declare variant directive declares a specialized variant of a base function and specifies the context in which
that specialized variant is used. The declare variant directive is a declarative directive. The syntax of the
declare variant construct is as follows:

#pragma omp declare variant(variant-func-id) clause new-line
[#pragma omp declare variant(variant-func-id) clause new-line]
[...]
function definition or declaration

where clause is one of the following:

match(context-selector-specification)

and where variant-func-id is the name of a function variant that is either a base language identifier or, for C++,
a template-id.

Clang provides the following context selector extensions, used via
implementation={extension(EXTENSION)}:

match_all
match_any
match_none
disable_implicit_base
allow_templates

The match extensions change when the entire context selector is considered a match for an OpenMP context. The
default is all, with none no trait in the selector is allowed to be in the OpenMP context, with any a single trait in
both the selector and OpenMP context is sufficient. Only a single match extension trait is allowed per context
selector. The disable extensions remove default effects of the begin declare variant applied to a definition. If
disable_implicit_base is given, we will not introduce an implicit base function for a variant if no base function
was found. The variant is still generated but will never be called, due to the absence of a base function and
consequently calls to a base function. The allow extensions change when the begin declare variant effect is
applied to a definition. If allow_templates is given, template function definitions are considered as specializations
of existing or assumed template declarations with the same name. The template parameters for the base functions
are used to instantiate the specialization.

Attributes in Clang

274



SV_GroupIndex

Supported Syntaxes

GNU C++11 C2x
__declsp

ec Keyword #pragma

#pragma 
clang at
tribute

HLSL
Semantic

SV_Group
Index

The SV_GroupIndex semantic, when applied to an input parameter, specifies a data binding to map the group
index to the specified parameter. This attribute is only supported in compute shaders.

The full documentation is available here: https://docs.microsoft.com/en-us/windows/win32/direct3dhlsl/sv-groupindex

_Export

Supported Syntaxes

GNU C++11 C2x
__declsp

ec Keyword #pragma

#pragma 
clang at
tribute

HLSL
Semantic

_Export

Use the _Export keyword with a function name or external variable to declare that it is to be exported (made available
to other modules). You must define the object name in the same translation unit in which you use the _Export
keyword. For example:

int _Export anthony(float);

This statement exports the function anthony, if you define the function in the translation unit. The _Export keyword
must immediately precede the object name. If you apply the _Export keyword to a class, the compiler automatically
exports all static data members and member functions of the class. However, if you want it to apply to individual
class members, then you must apply it to each member that can be referenced.

_Noreturn

Supported Syntaxes

GNU C++11 C2x
__declsp

ec Keyword #pragma

#pragma 
clang at
tribute

HLSL
Semantic

_Noretur
n

A function declared as _Noreturn shall not return to its caller. The compiler will generate a diagnostic for a function
declared as _Noreturn that appears to be capable of returning to its caller. Despite being a type specifier, the
_Noreturn attribute cannot be specified on a function pointer type.

abi_tag

Supported Syntaxes

Attributes in Clang

275

https://docs.microsoft.com/en-us/windows/win32/direct3dhlsl/sv-groupindex


GNU C++11 C2x
__declsp

ec Keyword #pragma

#pragma 
clang at
tribute

HLSL
Semantic

abi_tag gnu::abi
_tag

Yes

The abi_tag attribute can be applied to a function, variable, class or inline namespace declaration to modify the
mangled name of the entity. It gives the ability to distinguish between different versions of the same entity but with
different ABI versions supported. For example, a newer version of a class could have a different set of data members
and thus have a different size. Using the abi_tag attribute, it is possible to have different mangled names for a
global variable of the class type. Therefore, the old code could keep using the old mangled name and the new code
will use the new mangled name with tags.

acquire_capability, acquire_shared_capability

Supported Syntaxes

GNU C++11 C2x
__declsp

ec Keyword #pragma

#pragma 
clang at
tribute

HLSL
Semantic

acquire_
capabili
ty <br/> a
cquire_s
hared_ca
pability
<br/> excl
usive_lo
ck_funct
ion <br/> 
shared_l
ock_func
tion

clang::a
cquire_c
apabilit
y <br/> cl
ang::acq
uire_sha
red_capa
bility

Marks a function as acquiring a capability.

alloc_align

Supported Syntaxes

GNU C++11 C2x
__declsp

ec Keyword #pragma

#pragma 
clang at
tribute

HLSL
Semantic

alloc_al
ign

gnu::all
oc_align

gnu::all
oc_align

Use __attribute__((alloc_align(<alignment>)) on a function declaration to specify that the return value
of the function (which must be a pointer type) is at least as aligned as the value of the indicated parameter. The
parameter is given by its index in the list of formal parameters; the first parameter has index 1 unless the function is a
C++ non-static member function, in which case the first parameter has index 2 to account for the implicit this
parameter.

// The returned pointer has the alignment specified by the first parameter.
void *a(size_t align) __attribute__((alloc_align(1)));

// The returned pointer has the alignment specified by the second parameter.
void *b(void *v, size_t align) __attribute__((alloc_align(2)));

Attributes in Clang

276



// The returned pointer has the alignment specified by the second visible
// parameter, however it must be adjusted for the implicit 'this' parameter.
void *Foo::b(void *v, size_t align) __attribute__((alloc_align(3)));

Note that this attribute merely informs the compiler that a function always returns a sufficiently aligned pointer. It
does not cause the compiler to emit code to enforce that alignment. The behavior is undefined if the returned pointer
is not sufficiently aligned.

alloc_size

Supported Syntaxes

GNU C++11 C2x
__declsp

ec Keyword #pragma

#pragma 
clang at
tribute

HLSL
Semantic

alloc_si
ze

gnu::all
oc_size

gnu::all
oc_size

The alloc_size attribute can be placed on functions that return pointers in order to hint to the compiler how many
bytes of memory will be available at the returned pointer. alloc_size takes one or two arguments.

• alloc_size(N) implies that argument number N equals the number of available bytes at the returned pointer.

• alloc_size(N, M) implies that the product of argument number N and argument number M equals the
number of available bytes at the returned pointer.

Argument numbers are 1-based.

An example of how to use alloc_size

void *my_malloc(int a) __attribute__((alloc_size(1)));
void *my_calloc(int a, int b) __attribute__((alloc_size(1, 2)));

int main() {
  void *const p = my_malloc(100);
  assert(__builtin_object_size(p, 0) == 100);
  void *const a = my_calloc(20, 5);
  assert(__builtin_object_size(a, 0) == 100);
}

Note

This attribute works differently in clang than it does in GCC. Specifically, clang will only trace const pointers (as
above); we give up on pointers that are not marked as const. In the vast majority of cases, this is unimportant,
because LLVM has support for the alloc_size attribute. However, this may cause mildly unintuitive behavior
when used with other attributes, such as enable_if.

allocator

Supported Syntaxes

GNU C++11 C2x
__declsp

ec Keyword #pragma

#pragma 
clang at
tribute

HLSL
Semantic

allocato
r

Attributes in Clang

277



The __declspec(allocator) attribute is applied to functions that allocate memory, such as operator new in C++.
When CodeView debug information is emitted (enabled by clang -gcodeview or clang-cl /Z7), Clang will
attempt to record the code offset of heap allocation call sites in the debug info. It will also record the type being
allocated using some local heuristics. The Visual Studio debugger uses this information to profile memory usage.

This attribute does not affect optimizations in any way, unlike GCC’s __attribute__((malloc)).

always_inline, __force_inline

Supported Syntaxes

GNU C++11 C2x
__declsp

ec Keyword #pragma

#pragma 
clang at
tribute

HLSL
Semantic

always_i
nline

gnu::alw
ays_inli
ne <br/> c
lang::al
ways_inl
ine

gnu::alw
ays_inli
ne <br/> c
lang::al
ways_inl
ine

__forcei
nline

Yes

Inlining heuristics are disabled and inlining is always attempted regardless of optimization level.

[[clang::always_inline]] spelling can be used as a statement attribute; other spellings of the attribute are not
supported on statements. If a statement is marked [[clang::always_inline]] and contains calls, the compiler
attempts to inline those calls.

int example(void) {
  int i;
  [[clang::always_inline]] foo(); // attempts to inline foo
  [[clang::always_inline]] i = bar(); // attempts to inline bar
  [[clang::always_inline]] return f(42, baz(bar())); // attempts to inline everything
}

A declaration statement, which is a statement, is not a statement that can have an attribute associated with it (the
attribute applies to the declaration, not the statement in that case). So this use case will not work:

int example(void) {
  [[clang::always_inline]] int i = bar();
  return i;
}

This attribute does not guarantee that inline substitution actually occurs.

<ins>Note: applying this attribute to a coroutine at the -O0 optimization level has no effect; other optimization levels
may only partially inline and result in a diagnostic.</ins>

See also the Microsoft Docs on Inline Functions, the GCC Common Function Attribute docs, and the GCC Inline
docs.

artificial

Supported Syntaxes

GNU C++11 C2x
__declsp

ec Keyword #pragma

#pragma 
clang at
tribute

HLSL
Semantic

artifici
al

gnu::art
ificial

gnu::art
ificial

Attributes in Clang

278

https://docs.microsoft.com/en-us/visualstudio/profiling/memory-usage
https://docs.microsoft.com/en-us/cpp/cpp/inline-functions-cpp
https://gcc.gnu.org/onlinedocs/gcc/Common-Function-Attributes.html
https://gcc.gnu.org/onlinedocs/gcc/Inline.html
https://gcc.gnu.org/onlinedocs/gcc/Inline.html


The artificial attribute can be applied to an inline function. If such a function is inlined, the attribute indicates
that debuggers should associate the resulting instructions with the call site, rather than with the corresponding line
within the inlined callee.

assert_capability, assert_shared_capability

Supported Syntaxes

GNU C++11 C2x
__declsp

ec Keyword #pragma

#pragma 
clang at
tribute

HLSL
Semantic

assert_c
apabilit
y <br/> as
sert_sha
red_capa
bility

clang::a
ssert_ca
pability
<br/> clan
g::asser
t_shared
_capabil
ity

Marks a function that dynamically tests whether a capability is held, and halts the program if it is not held.

assume

Supported Syntaxes

GNU C++11 C2x
__declsp

ec Keyword #pragma

#pragma 
clang at
tribute

HLSL
Semantic

assume clang::a
ssume

clang::a
ssume

Yes

Clang supports the __attribute__((assume("assumption"))) attribute to provide additional information to
the optimizer. The string-literal, here “assumption”, will be attached to the function declaration such that later analysis
and optimization passes can assume the “assumption” to hold. This is similar to __builtin_assume but instead of an
expression that can be assumed to be non-zero, the assumption is expressed as a string and it holds for the entire
function.

A function can have multiple assume attributes and they propagate from prior declarations to later definitions.
Multiple assumptions are aggregated into a single comma separated string. Thus, one can provide multiple
assumptions via a comma separated string, i.a.,
__attribute__((assume("assumption1,assumption2"))).

While LLVM plugins might provide more assumption strings, the default LLVM optimization passes are aware of the
following assumptions:

"omp_no_openmp"
"omp_no_openmp_routines"
"omp_no_parallelism"

The OpenMP standard defines the meaning of OpenMP assumptions (“omp_XYZ” is spelled “XYZ” in the OpenMP
5.1 Standard).

assume_aligned

Supported Syntaxes

Attributes in Clang

279

https://www.openmp.org/spec-html/5.1/openmpsu37.html#x56-560002.5.2
https://www.openmp.org/spec-html/5.1/openmpsu37.html#x56-560002.5.2


GNU C++11 C2x
__declsp

ec Keyword #pragma

#pragma 
clang at
tribute

HLSL
Semantic

assume_a
ligned

gnu::ass
ume_alig
ned

gnu::ass
ume_alig
ned

Yes

Use __attribute__((assume_aligned(<alignment>[,<offset>])) on a function declaration to specify
that the return value of the function (which must be a pointer type) has the specified offset, in bytes, from an address
with the specified alignment. The offset is taken to be zero if omitted.

// The returned pointer value has 32-byte alignment.
void *a() __attribute__((assume_aligned (32)));

// The returned pointer value is 4 bytes greater than an address having
// 32-byte alignment.
void *b() __attribute__((assume_aligned (32, 4)));

Note that this attribute provides information to the compiler regarding a condition that the code already ensures is
true. It does not cause the compiler to enforce the provided alignment assumption.

availability

Supported Syntaxes

GNU C++11 C2x
__declsp

ec Keyword #pragma

#pragma 
clang at
tribute

HLSL
Semantic

availabi
lity

clang::a
vailabil
ity

clang::a
vailabil
ity

Yes

The availability attribute can be placed on declarations to describe the lifecycle of that declaration relative to
operating system versions. Consider the function declaration for a hypothetical function f:

void f(void) __attribute__((availability(macos,introduced=10.4,deprecated=10.6,obsoleted=10.7)));

The availability attribute states that f was introduced in macOS 10.4, deprecated in macOS 10.6, and obsoleted in
macOS 10.7. This information is used by Clang to determine when it is safe to use f: for example, if Clang is
instructed to compile code for macOS 10.5, a call to f() succeeds. If Clang is instructed to compile code for macOS
10.6, the call succeeds but Clang emits a warning specifying that the function is deprecated. Finally, if Clang is
instructed to compile code for macOS 10.7, the call fails because f() is no longer available.

The availability attribute is a comma-separated list starting with the platform name and then including clauses
specifying important milestones in the declaration’s lifetime (in any order) along with additional information. Those
clauses can be:

introduced=version

The first version in which this declaration was introduced.

deprecated=version

The first version in which this declaration was deprecated, meaning that users should migrate away from this
API.

obsoleted=version

The first version in which this declaration was obsoleted, meaning that it was removed completely and can no
longer be used.

unavailable

This declaration is never available on this platform.

message=string-literal

Attributes in Clang

280



Additional message text that Clang will provide when emitting a warning or error about use of a deprecated or
obsoleted declaration. Useful to direct users to replacement APIs.

replacement=string-literal

Additional message text that Clang will use to provide Fix-It when emitting a warning about use of a deprecated
declaration. The Fix-It will replace the deprecated declaration with the new declaration specified.

Multiple availability attributes can be placed on a declaration, which may correspond to different platforms. For most
platforms, the availability attribute with the platform corresponding to the target platform will be used; any others will
be ignored. However, the availability for watchOS and tvOS can be implicitly inferred from an iOS availability
attribute. Any explicit availability attributes for those platforms are still preferred over the implicitly inferred availability
attributes. If no availability attribute specifies availability for the current target platform, the availability attributes are
ignored. Supported platforms are:

ios

Apple’s iOS operating system. The minimum deployment target is specified by the
-mios-version-min=*version* or -miphoneos-version-min=*version* command-line arguments.

macos

Apple’s macOS operating system. The minimum deployment target is specified by the
-mmacosx-version-min=*version* command-line argument. macosx is supported for
backward-compatibility reasons, but it is deprecated.

tvos

Apple’s tvOS operating system. The minimum deployment target is specified by the
-mtvos-version-min=*version* command-line argument.

watchos

Apple’s watchOS operating system. The minimum deployment target is specified by the
-mwatchos-version-min=*version* command-line argument.

driverkit

Apple’s DriverKit userspace kernel extensions. The minimum deployment target is specified as part of the triple.

A declaration can typically be used even when deploying back to a platform version prior to when the declaration was
introduced. When this happens, the declaration is weakly linked, as if the weak_import attribute were added to the
declaration. A weakly-linked declaration may or may not be present a run-time, and a program can determine
whether the declaration is present by checking whether the address of that declaration is non-NULL.

The flag strict disallows using API when deploying back to a platform version prior to when the declaration was
introduced. An attempt to use such API before its introduction causes a hard error. Weakly-linking is almost always a
better API choice, since it allows users to query availability at runtime.

If there are multiple declarations of the same entity, the availability attributes must either match on a per-platform
basis or later declarations must not have availability attributes for that platform. For example:

void g(void) __attribute__((availability(macos,introduced=10.4)));
void g(void) __attribute__((availability(macos,introduced=10.4))); // okay, matches
void g(void) __attribute__((availability(ios,introduced=4.0))); // okay, adds a new platform
void g(void); // okay, inherits both macos and ios availability from above.
void g(void) __attribute__((availability(macos,introduced=10.5))); // error: mismatch

When one method overrides another, the overriding method can be more widely available than the overridden
method, e.g.,:
@interface A
- (id)method __attribute__((availability(macos,introduced=10.4)));
- (id)method2 __attribute__((availability(macos,introduced=10.4)));
@end

@interface B : A
- (id)method __attribute__((availability(macos,introduced=10.3))); // okay: method moved into base class later
- (id)method __attribute__((availability(macos,introduced=10.5))); // error: this method was available via the base class in 10.4
@end

Starting with the macOS 10.12 SDK, the API_AVAILABLE macro from <os/availability.h> can simplify the
spelling:

@interface A
- (id)method API_AVAILABLE(macos(10.11)));

Attributes in Clang

281

https://developer.apple.com/library/mac/#documentation/MacOSX/Conceptual/BPFrameworks/Concepts/WeakLinking.html


- (id)otherMethod API_AVAILABLE(macos(10.11), ios(11.0));
@end

Availability attributes can also be applied using a #pragma clang attribute. Any explicit availability attribute
whose platform corresponds to the target platform is applied to a declaration regardless of the availability attributes
specified in the pragma. For example, in the code below, hasExplicitAvailabilityAttribute will use the
macOS availability attribute that is specified with the declaration, whereas
getsThePragmaAvailabilityAttribute will use the macOS availability attribute that is applied by the pragma.

#pragma clang attribute push (__attribute__((availability(macOS, introduced=10.12))), apply_to=function)
void getsThePragmaAvailabilityAttribute(void);
void hasExplicitAvailabilityAttribute(void) __attribute__((availability(macos,introduced=10.4)));
#pragma clang attribute pop

For platforms like watchOS and tvOS, whose availability attributes can be implicitly inferred from an iOS availability
attribute, the logic is slightly more complex. The explicit and the pragma-applied availability attributes whose platform
corresponds to the target platform are applied as described in the previous paragraph. However, the implicitly
inferred attributes are applied to a declaration only when there is no explicit or pragma-applied availability attribute
whose platform corresponds to the target platform. For example, the function below will receive the tvOS availability
from the pragma rather than using the inferred iOS availability from the declaration:

#pragma clang attribute push (__attribute__((availability(tvOS, introduced=12.0))), apply_to=function)
void getsThePragmaTVOSAvailabilityAttribute(void) __attribute__((availability(iOS,introduced=11.0)));
#pragma clang attribute pop

The compiler is also able to apply implicitly inferred attributes from a pragma as well. For example, when targeting
tvOS, the function below will receive a tvOS availability attribute that is implicitly inferred from the iOS availability
attribute applied by the pragma:

#pragma clang attribute push (__attribute__((availability(iOS, introduced=12.0))), apply_to=function)
void infersTVOSAvailabilityFromPragma(void);
#pragma clang attribute pop

The implicit attributes that are inferred from explicitly specified attributes whose platform corresponds to the target
platform are applied to the declaration even if there is an availability attribute that can be inferred from a pragma. For
example, the function below will receive the tvOS, introduced=11.0 availability that is inferred from the attribute
on the declaration rather than inferring availability from the pragma:

#pragma clang attribute push (__attribute__((availability(iOS, unavailable))), apply_to=function)
void infersTVOSAvailabilityFromAttributeNextToDeclaration(void)
  __attribute__((availability(iOS,introduced=11.0)));
#pragma clang attribute pop

Also see the documentation for @available

btf_decl_tag

Supported Syntaxes

GNU C++11 C2x
__declsp

ec Keyword #pragma

#pragma 
clang at
tribute

HLSL
Semantic

btf_decl
_tag

clang::b
tf_decl_
tag

clang::b
tf_decl_
tag

Yes

Clang supports the __attribute__((btf_decl_tag("ARGUMENT"))) attribute for all targets. This attribute
may be attached to a struct/union, struct/union field, function, function parameter, variable or typedef declaration. If
-g is specified, the ARGUMENT info will be preserved in IR and be emitted to dwarf. For BPF targets, the ARGUMENT
info will be emitted to .BTF ELF section too.

callback

Attributes in Clang

282

http://clang.llvm.org/docs/LanguageExtensions.html#objective-c-available


Supported Syntaxes

GNU C++11 C2x
__declsp

ec Keyword #pragma

#pragma 
clang at
tribute

HLSL
Semantic

callback clang::c
allback

clang::c
allback

Yes

The callback attribute specifies that the annotated function may invoke the specified callback zero or more times.
The callback, as well as the passed arguments, are identified by their parameter name or position (starting with 1!) in
the annotated function. The first position in the attribute identifies the callback callee, the following positions declare
describe its arguments. The callback callee is required to be callable with the number, and order, of the specified
arguments. The index 0, or the identifier this, is used to represent an implicit “this” pointer in class methods. If there
is no implicit “this” pointer it shall not be referenced. The index ‘-1’, or the name “__”, represents an unknown
callback callee argument. This can be a value which is not present in the declared parameter list, or one that is, but is
potentially inspected, captured, or modified. Parameter names and indices can be mixed in the callback attribute.

The callback attribute, which is directly translated to callback metadata
<http://llvm.org/docs/LangRef.html#callback-metadata>, make the connection between the call to the annotated
function and the callback callee. This can enable interprocedural optimizations which were otherwise impossible. If a
function parameter is mentioned in the callback attribute, through its position, it is undefined if that parameter is
used for anything other than the actual callback. Inspected, captured, or modified parameters shall not be listed in
the callback metadata.

Example encodings for the callback performed by pthread_create are shown below. The explicit attribute
annotation indicates that the third parameter (start_routine) is called zero or more times by the
pthread_create function, and that the fourth parameter (arg) is passed along. Note that the callback behavior of
pthread_create is automatically recognized by Clang. In addition, the declarations of __kmpc_fork_teams and
__kmpc_fork_call, generated for #pragma omp target teams and #pragma omp parallel, respectively,
are also automatically recognized as broker functions. Further functions might be added in the future.

__attribute__((callback (start_routine, arg)))
int pthread_create(pthread_t *thread, const pthread_attr_t *attr,
                   void *(*start_routine) (void *), void *arg);

__attribute__((callback (3, 4)))
int pthread_create(pthread_t *thread, const pthread_attr_t *attr,
                   void *(*start_routine) (void *), void *arg);

carries_dependency

Supported Syntaxes

GNU C++11 C2x
__declsp

ec Keyword #pragma

#pragma 
clang at
tribute

HLSL
Semantic

carries_
dependen
cy

carries_
dependen
cy

Yes

The carries_dependency attribute specifies dependency propagation into and out of functions.

When specified on a function or Objective-C method, the carries_dependency attribute means that the return
value carries a dependency out of the function, so that the implementation need not constrain ordering upon return
from that function. Implementations of the function and its caller may choose to preserve dependencies instead of
emitting memory ordering instructions such as fences.

Note, this attribute does not change the meaning of the program, but may result in generation of more efficient code.

cf_consumed

Attributes in Clang

283

http://llvm.org/docs/LangRef.html#callback-metadata


Supported Syntaxes

GNU C++11 C2x
__declsp

ec Keyword #pragma

#pragma 
clang at
tribute

HLSL
Semantic

cf_consu
med

clang::c
f_consum
ed

clang::c
f_consum
ed

Yes

The behavior of a function with respect to reference counting for Foundation (Objective-C), CoreFoundation (C) and
OSObject (C++) is determined by a naming convention (e.g. functions starting with “get” are assumed to return at
+0).

It can be overridden using a family of the following attributes. In Objective-C, the annotation
__attribute__((ns_returns_retained)) applied to a function communicates that the object is returned at
+1, and the caller is responsible for freeing it. Similarly, the annotation
__attribute__((ns_returns_not_retained)) specifies that the object is returned at +0 and the ownership
remains with the callee. The annotation __attribute__((ns_consumes_self)) specifies that the Objective-C
method call consumes the reference to self, e.g. by attaching it to a supplied parameter. Additionally, parameters
can have an annotation __attribute__((ns_consumed)), which specifies that passing an owned object as that
parameter effectively transfers the ownership, and the caller is no longer responsible for it. These attributes affect
code generation when interacting with ARC code, and they are used by the Clang Static Analyzer.

In C programs using CoreFoundation, a similar set of attributes:
__attribute__((cf_returns_not_retained)), __attribute__((cf_returns_retained)) and
__attribute__((cf_consumed)) have the same respective semantics when applied to CoreFoundation
objects. These attributes affect code generation when interacting with ARC code, and they are used by the Clang
Static Analyzer.

Finally, in C++ interacting with XNU kernel (objects inheriting from OSObject), the same attribute family is present:
__attribute__((os_returns_not_retained)), __attribute__((os_returns_retained)) and
__attribute__((os_consumed)), with the same respective semantics. Similar to
__attribute__((ns_consumes_self)), __attribute__((os_consumes_this)) specifies that the method
call consumes the reference to “this” (e.g., when attaching it to a different object supplied as a parameter). Out
parameters (parameters the function is meant to write into, either via pointers-to-pointers or references-to-pointers)
may be annotated with __attribute__((os_returns_retained)) or
__attribute__((os_returns_not_retained)) which specifies that the object written into the out parameter
should (or respectively should not) be released after use. Since often out parameters may or may not be written
depending on the exit code of the function, annotations __attribute__((os_returns_retained_on_zero))
and __attribute__((os_returns_retained_on_non_zero)) specify that an out parameter at +1 is written if
and only if the function returns a zero (respectively non-zero) error code. Observe that return-code-dependent out
parameter annotations are only available for retained out parameters, as non-retained object do not have to be
released by the callee. These attributes are only used by the Clang Static Analyzer.

The family of attributes X_returns_X_retained can be added to functions, C++ methods, and Objective-C
methods and properties. Attributes X_consumed can be added to parameters of methods, functions, and
Objective-C methods.

cf_returns_not_retained

Supported Syntaxes

GNU C++11 C2x
__declsp

ec Keyword #pragma

#pragma 
clang at
tribute

HLSL
Semantic

cf_retur
ns_not_r
etained

clang::c
f_return
s_not_re
tained

clang::c
f_return
s_not_re
tained

Attributes in Clang

284



The behavior of a function with respect to reference counting for Foundation (Objective-C), CoreFoundation (C) and
OSObject (C++) is determined by a naming convention (e.g. functions starting with “get” are assumed to return at
+0).

It can be overridden using a family of the following attributes. In Objective-C, the annotation
__attribute__((ns_returns_retained)) applied to a function communicates that the object is returned at
+1, and the caller is responsible for freeing it. Similarly, the annotation
__attribute__((ns_returns_not_retained)) specifies that the object is returned at +0 and the ownership
remains with the callee. The annotation __attribute__((ns_consumes_self)) specifies that the Objective-C
method call consumes the reference to self, e.g. by attaching it to a supplied parameter. Additionally, parameters
can have an annotation __attribute__((ns_consumed)), which specifies that passing an owned object as that
parameter effectively transfers the ownership, and the caller is no longer responsible for it. These attributes affect
code generation when interacting with ARC code, and they are used by the Clang Static Analyzer.

In C programs using CoreFoundation, a similar set of attributes:
__attribute__((cf_returns_not_retained)), __attribute__((cf_returns_retained)) and
__attribute__((cf_consumed)) have the same respective semantics when applied to CoreFoundation
objects. These attributes affect code generation when interacting with ARC code, and they are used by the Clang
Static Analyzer.

Finally, in C++ interacting with XNU kernel (objects inheriting from OSObject), the same attribute family is present:
__attribute__((os_returns_not_retained)), __attribute__((os_returns_retained)) and
__attribute__((os_consumed)), with the same respective semantics. Similar to
__attribute__((ns_consumes_self)), __attribute__((os_consumes_this)) specifies that the method
call consumes the reference to “this” (e.g., when attaching it to a different object supplied as a parameter). Out
parameters (parameters the function is meant to write into, either via pointers-to-pointers or references-to-pointers)
may be annotated with __attribute__((os_returns_retained)) or
__attribute__((os_returns_not_retained)) which specifies that the object written into the out parameter
should (or respectively should not) be released after use. Since often out parameters may or may not be written
depending on the exit code of the function, annotations __attribute__((os_returns_retained_on_zero))
and __attribute__((os_returns_retained_on_non_zero)) specify that an out parameter at +1 is written if
and only if the function returns a zero (respectively non-zero) error code. Observe that return-code-dependent out
parameter annotations are only available for retained out parameters, as non-retained object do not have to be
released by the callee. These attributes are only used by the Clang Static Analyzer.

The family of attributes X_returns_X_retained can be added to functions, C++ methods, and Objective-C
methods and properties. Attributes X_consumed can be added to parameters of methods, functions, and
Objective-C methods.

cf_returns_retained

Supported Syntaxes

GNU C++11 C2x
__declsp

ec Keyword #pragma

#pragma 
clang at
tribute

HLSL
Semantic

cf_retur
ns_retai
ned

clang::c
f_return
s_retain
ed

clang::c
f_return
s_retain
ed

The behavior of a function with respect to reference counting for Foundation (Objective-C), CoreFoundation (C) and
OSObject (C++) is determined by a naming convention (e.g. functions starting with “get” are assumed to return at
+0).

It can be overridden using a family of the following attributes. In Objective-C, the annotation
__attribute__((ns_returns_retained)) applied to a function communicates that the object is returned at
+1, and the caller is responsible for freeing it. Similarly, the annotation
__attribute__((ns_returns_not_retained)) specifies that the object is returned at +0 and the ownership
remains with the callee. The annotation __attribute__((ns_consumes_self)) specifies that the Objective-C
method call consumes the reference to self, e.g. by attaching it to a supplied parameter. Additionally, parameters

Attributes in Clang

285



can have an annotation __attribute__((ns_consumed)), which specifies that passing an owned object as that
parameter effectively transfers the ownership, and the caller is no longer responsible for it. These attributes affect
code generation when interacting with ARC code, and they are used by the Clang Static Analyzer.

In C programs using CoreFoundation, a similar set of attributes:
__attribute__((cf_returns_not_retained)), __attribute__((cf_returns_retained)) and
__attribute__((cf_consumed)) have the same respective semantics when applied to CoreFoundation
objects. These attributes affect code generation when interacting with ARC code, and they are used by the Clang
Static Analyzer.

Finally, in C++ interacting with XNU kernel (objects inheriting from OSObject), the same attribute family is present:
__attribute__((os_returns_not_retained)), __attribute__((os_returns_retained)) and
__attribute__((os_consumed)), with the same respective semantics. Similar to
__attribute__((ns_consumes_self)), __attribute__((os_consumes_this)) specifies that the method
call consumes the reference to “this” (e.g., when attaching it to a different object supplied as a parameter). Out
parameters (parameters the function is meant to write into, either via pointers-to-pointers or references-to-pointers)
may be annotated with __attribute__((os_returns_retained)) or
__attribute__((os_returns_not_retained)) which specifies that the object written into the out parameter
should (or respectively should not) be released after use. Since often out parameters may or may not be written
depending on the exit code of the function, annotations __attribute__((os_returns_retained_on_zero))
and __attribute__((os_returns_retained_on_non_zero)) specify that an out parameter at +1 is written if
and only if the function returns a zero (respectively non-zero) error code. Observe that return-code-dependent out
parameter annotations are only available for retained out parameters, as non-retained object do not have to be
released by the callee. These attributes are only used by the Clang Static Analyzer.

The family of attributes X_returns_X_retained can be added to functions, C++ methods, and Objective-C
methods and properties. Attributes X_consumed can be added to parameters of methods, functions, and
Objective-C methods.

cfi_canonical_jump_table

Supported Syntaxes

GNU C++11 C2x
__declsp

ec Keyword #pragma

#pragma 
clang at
tribute

HLSL
Semantic

cfi_cano
nical_ju
mp_table

clang::c
fi_canon
ical_jum
p_table

clang::c
fi_canon
ical_jum
p_table

Yes

Use __attribute__((cfi_canonical_jump_table)) on a function declaration to make the function’s CFI
jump table canonical. See the CFI documentation for more details.

clang::builtin_alias, clang_builtin_alias

Supported Syntaxes

GNU C++11 C2x
__declsp

ec Keyword #pragma

#pragma 
clang at
tribute

HLSL
Semantic

clang_bu
iltin_al
ias

clang::b
uiltin_a
lias

clang::b
uiltin_a
lias

Yes

This attribute is used in the implementation of the C intrinsics. It allows the C intrinsic functions to be declared using
the names defined in target builtins, and still be recognized as clang builtins equivalent to the underlying name. For
example, riscv_vector.h declares the function vadd with
__attribute__((clang_builtin_alias(__builtin_rvv_vadd_vv_i8m1))). This ensures that both

Attributes in Clang

286



functions are recognized as that clang builtin, and in the latter case, the choice of which builtin to identify the function
as can be deferred until after overload resolution.

This attribute can only be used to set up the aliases for certain ARM/RISC-V C intrinsic functions; it is intended for
use only inside arm_*.h and riscv_*.h and is not a general mechanism for declaring arbitrary aliases for clang
builtin functions.

clang_arm_builtin_alias

Supported Syntaxes

GNU C++11 C2x
__declsp

ec Keyword #pragma

#pragma 
clang at
tribute

HLSL
Semantic

__clang_
arm_buil
tin_alia
s

clang::_
_clang_a
rm_built
in_alias

clang::_
_clang_a
rm_built
in_alias

Yes

This attribute is used in the implementation of the ACLE intrinsics. It allows the intrinsic functions to be declared
using the names defined in ACLE, and still be recognized as clang builtins equivalent to the underlying name. For
example, arm_mve.h declares the function vaddq_u32 with
__attribute__((__clang_arm_mve_alias(__builtin_arm_mve_vaddq_u32))), and similarly, one of the
type-overloaded declarations of vaddq will have the same attribute. This ensures that both functions are recognized
as that clang builtin, and in the latter case, the choice of which builtin to identify the function as can be deferred until
after overload resolution.

This attribute can only be used to set up the aliases for certain Arm intrinsic functions; it is intended for use only
inside arm_*.h and is not a general mechanism for declaring arbitrary aliases for clang builtin functions.

In order to avoid duplicating the attribute definitions for similar purpose for other architecture, there is a general form
for the attribute clang_builtin_alias.

cmse_nonsecure_entry

Supported Syntaxes

GNU C++11 C2x
__declsp

ec Keyword #pragma

#pragma 
clang at
tribute

HLSL
Semantic

cmse_non
secure_e
ntry

Yes

This attribute declares a function that can be called from non-secure state, or from secure state. Entering from and
returning to non-secure state would switch to and from secure state, respectively, and prevent flow of information to
non-secure state, except via return values. See ARMv8-M Security Extensions: Requirements on Development
Tools - Engineering Specification Documentation for more information.

code_seg

Supported Syntaxes

GNU C++11 C2x
__declsp

ec Keyword #pragma

#pragma 
clang at
tribute

HLSL
Semantic

code_seg

Attributes in Clang

287

https://developer.arm.com/docs/ecm0359818/latest/
https://developer.arm.com/docs/ecm0359818/latest/


The __declspec(code_seg) attribute enables the placement of code into separate named segments that can be
paged or locked in memory individually. This attribute is used to control the placement of instantiated templates and
compiler-generated code. See the documentation for __declspec(code_seg) on MSDN.

convergent

Supported Syntaxes

GNU C++11 C2x
__declsp

ec Keyword #pragma

#pragma 
clang at
tribute

HLSL
Semantic

converge
nt

clang::c
onvergen
t

clang::c
onvergen
t

Yes

The convergent attribute can be placed on a function declaration. It is translated into the LLVM convergent
attribute, which indicates that the call instructions of a function with this attribute cannot be made control-dependent
on any additional values.

In languages designed for SPMD/SIMT programming model, e.g. OpenCL or CUDA, the call instructions of a
function with this attribute must be executed by all work items or threads in a work group or sub group.

This attribute is different from noduplicate because it allows duplicating function calls if it can be proved that the
duplicated function calls are not made control-dependent on any additional values, e.g., unrolling a loop executed by
all work items.

Sample usage:

void convfunc(void) __attribute__((convergent));
// Setting it as a C++11 attribute is also valid in a C++ program.
// void convfunc(void) [[clang::convergent]];

cpu_dispatch

Supported Syntaxes

GNU C++11 C2x
__declsp

ec Keyword #pragma

#pragma 
clang at
tribute

HLSL
Semantic

cpu_disp
atch

clang::c
pu_dispa
tch

clang::c
pu_dispa
tch

cpu_disp
atch

Yes

The cpu_specific and cpu_dispatch attributes are used to define and resolve multiversioned functions. This
form of multiversioning provides a mechanism for declaring versions across translation units and manually specifying
the resolved function list. A specified CPU defines a set of minimum features that are required for the function to be
called. The result of this is that future processors execute the most restrictive version of the function the new
processor can execute.

In addition, unlike the ICC implementation of this feature, the selection of the version does not consider the
manufacturer or microarchitecture of the processor. It tests solely the list of features that are both supported by the
specified processor and present in the compiler-rt library. This can be surprising at times, as the runtime processor
may be from a completely different manufacturer, as long as it supports the same feature set.

This can additionally be surprising, as some processors are indistringuishable from others based on the list of
testable features. When this happens, the variant is selected in an unspecified manner.

Function versions are defined with cpu_specific, which takes one or more CPU names as a parameter. For
example:

Attributes in Clang

288

http://msdn.microsoft.com/en-us/library/dn636922.aspx


// Declares and defines the ivybridge version of single_cpu.
__attribute__((cpu_specific(ivybridge)))
void single_cpu(void){}

// Declares and defines the atom version of single_cpu.
__attribute__((cpu_specific(atom)))
void single_cpu(void){}

// Declares and defines both the ivybridge and atom version of multi_cpu.
__attribute__((cpu_specific(ivybridge, atom)))
void multi_cpu(void){}

A dispatching (or resolving) function can be declared anywhere in a project’s source code with cpu_dispatch. This
attribute takes one or more CPU names as a parameter (like cpu_specific). Functions marked with
cpu_dispatch are not expected to be defined, only declared. If such a marked function has a definition, any side
effects of the function are ignored; trivial function bodies are permissible for ICC compatibility.

// Creates a resolver for single_cpu above.
__attribute__((cpu_dispatch(ivybridge, atom)))
void single_cpu(void){}

// Creates a resolver for multi_cpu, but adds a 3rd version defined in another
// translation unit.
__attribute__((cpu_dispatch(ivybridge, atom, sandybridge)))
void multi_cpu(void){}

Note that it is possible to have a resolving function that dispatches based on more or fewer options than are present
in the program. Specifying fewer will result in the omitted options not being considered during resolution. Specifying a
version for resolution that isn’t defined in the program will result in a linking failure.

It is also possible to specify a CPU name of generic which will be resolved if the executing processor doesn’t
satisfy the features required in the CPU name. The behavior of a program executing on a processor that doesn’t
satisfy any option of a multiversioned function is undefined.

cpu_specific

Supported Syntaxes

GNU C++11 C2x
__declsp

ec Keyword #pragma

#pragma 
clang at
tribute

HLSL
Semantic

cpu_spec
ific

clang::c
pu_speci
fic

clang::c
pu_speci
fic

cpu_spec
ific

Yes

The cpu_specific and cpu_dispatch attributes are used to define and resolve multiversioned functions. This
form of multiversioning provides a mechanism for declaring versions across translation units and manually specifying
the resolved function list. A specified CPU defines a set of minimum features that are required for the function to be
called. The result of this is that future processors execute the most restrictive version of the function the new
processor can execute.

In addition, unlike the ICC implementation of this feature, the selection of the version does not consider the
manufacturer or microarchitecture of the processor. It tests solely the list of features that are both supported by the
specified processor and present in the compiler-rt library. This can be surprising at times, as the runtime processor
may be from a completely different manufacturer, as long as it supports the same feature set.

This can additionally be surprising, as some processors are indistringuishable from others based on the list of
testable features. When this happens, the variant is selected in an unspecified manner.

Function versions are defined with cpu_specific, which takes one or more CPU names as a parameter. For
example:

Attributes in Clang

289



// Declares and defines the ivybridge version of single_cpu.
__attribute__((cpu_specific(ivybridge)))
void single_cpu(void){}

// Declares and defines the atom version of single_cpu.
__attribute__((cpu_specific(atom)))
void single_cpu(void){}

// Declares and defines both the ivybridge and atom version of multi_cpu.
__attribute__((cpu_specific(ivybridge, atom)))
void multi_cpu(void){}

A dispatching (or resolving) function can be declared anywhere in a project’s source code with cpu_dispatch. This
attribute takes one or more CPU names as a parameter (like cpu_specific). Functions marked with
cpu_dispatch are not expected to be defined, only declared. If such a marked function has a definition, any side
effects of the function are ignored; trivial function bodies are permissible for ICC compatibility.

// Creates a resolver for single_cpu above.
__attribute__((cpu_dispatch(ivybridge, atom)))
void single_cpu(void){}

// Creates a resolver for multi_cpu, but adds a 3rd version defined in another
// translation unit.
__attribute__((cpu_dispatch(ivybridge, atom, sandybridge)))
void multi_cpu(void){}

Note that it is possible to have a resolving function that dispatches based on more or fewer options than are present
in the program. Specifying fewer will result in the omitted options not being considered during resolution. Specifying a
version for resolution that isn’t defined in the program will result in a linking failure.

It is also possible to specify a CPU name of generic which will be resolved if the executing processor doesn’t
satisfy the features required in the CPU name. The behavior of a program executing on a processor that doesn’t
satisfy any option of a multiversioned function is undefined.

diagnose_as_builtin

Supported Syntaxes

GNU C++11 C2x
__declsp

ec Keyword #pragma

#pragma 
clang at
tribute

HLSL
Semantic

diagnose
_as_buil
tin

clang::d
iagnose_
as_built
in

clang::d
iagnose_
as_built
in

Yes

The diagnose_as_builtin attribute indicates that Fortify diagnostics are to be applied to the declared function as
if it were the function specified by the attribute. The builtin function whose diagnostics are to be mimicked should be
given. In addition, the order in which arguments should be applied must also be given.

For example, the attribute can be used as follows.

__attribute__((diagnose_as_builtin(__builtin_memset, 3, 2, 1)))
void *mymemset(int n, int c, void *s) {
  // ...
}

This indicates that calls to mymemset should be diagnosed as if they were calls to __builtin_memset. The
arguments 3, 2, 1 indicate by index the order in which arguments of mymemset should be applied to
__builtin_memset. The third argument should be applied first, then the second, and then the first. Thus (when

Attributes in Clang

290



Fortify warnings are enabled) the call mymemset(n, c, s) will diagnose overflows as if it were the call
__builtin_memset(s, c, n).

For variadic functions, the variadic arguments must come in the same order as they would to the builtin function,
after all normal arguments. For instance, to diagnose a new function as if it were sscanf, we can use the attribute as
follows.

__attribute__((diagnose_as_builtin(sscanf, 1, 2)))
int mysscanf(const char *str, const char *format, ...)  {
  // ...
}

Then the call mysscanf(“abc def”, “%4s %4s”, buf1, buf2) will be diagnosed as if it were the call sscanf(“abc def”,
“%4s %4s”, buf1, buf2).

This attribute cannot be applied to non-static member functions.

diagnose_if

Supported Syntaxes

GNU C++11 C2x
__declsp

ec Keyword #pragma

#pragma 
clang at
tribute

HLSL
Semantic

diagnose
_if

The diagnose_if attribute can be placed on function declarations to emit warnings or errors at compile-time if calls
to the attributed function meet certain user-defined criteria. For example:

int abs(int a)
  __attribute__((diagnose_if(a >= 0, "Redundant abs call", "warning")));
int must_abs(int a)
  __attribute__((diagnose_if(a >= 0, "Redundant abs call", "error")));

int val = abs(1); // warning: Redundant abs call
int val2 = must_abs(1); // error: Redundant abs call
int val3 = abs(val);
int val4 = must_abs(val); // Because run-time checks are not emitted for
                          // diagnose_if attributes, this executes without
                          // issue.

diagnose_if is closely related to enable_if, with a few key differences:

• Overload resolution is not aware of diagnose_if attributes: they’re considered only after we select the best
candidate from a given candidate set.

• Function declarations that differ only in their diagnose_if attributes are considered to be redeclarations of the
same function (not overloads).

• If the condition provided to diagnose_if cannot be evaluated, no diagnostic will be emitted.

Otherwise, diagnose_if is essentially the logical negation of enable_if.

As a result of bullet number two, diagnose_if attributes will stack on the same function. For example:

int foo() __attribute__((diagnose_if(1, "diag1", "warning")));
int foo() __attribute__((diagnose_if(1, "diag2", "warning")));

int bar = foo(); // warning: diag1
                 // warning: diag2
int (*fooptr)(void) = foo; // warning: diag1
                           // warning: diag2

Attributes in Clang

291



constexpr int supportsAPILevel(int N) { return N < 5; }
int baz(int a)
  __attribute__((diagnose_if(!supportsAPILevel(10),
                             "Upgrade to API level 10 to use baz", "error")));
int baz(int a)
  __attribute__((diagnose_if(!a, "0 is not recommended.", "warning")));

int (*bazptr)(int) = baz; // error: Upgrade to API level 10 to use baz
int v = baz(0); // error: Upgrade to API level 10 to use baz

Query for this feature with __has_attribute(diagnose_if).

disable_sanitizer_instrumentation

Supported Syntaxes

GNU C++11 C2x
__declsp

ec Keyword #pragma

#pragma 
clang at
tribute

HLSL
Semantic

disable_
sanitize
r_instru
mentatio
n

clang::d
isable_s
anitizer
_instrum
entation

clang::d
isable_s
anitizer
_instrum
entation

Yes

Use the disable_sanitizer_instrumentation attribute on a function, Objective-C method, or global variable,
to specify that no sanitizer instrumentation should be applied.

This is not the same as __attribute__((no_sanitize(...))), which depending on the tool may still insert
instrumentation to prevent false positive reports.

disable_tail_calls

Supported Syntaxes

GNU C++11 C2x
__declsp

ec Keyword #pragma

#pragma 
clang at
tribute

HLSL
Semantic

disable_
tail_cal
ls

clang::d
isable_t
ail_call
s

clang::d
isable_t
ail_call
s

Yes

The disable_tail_calls attribute instructs the backend to not perform tail call optimization inside the marked
function.

For example:

int callee(int);

int foo(int a) __attribute__((disable_tail_calls)) {
  return callee(a); // This call is not tail-call optimized.
}

Marking virtual functions as disable_tail_calls is legal.

int callee(int);

Attributes in Clang

292



class Base {
public:
  [[clang::disable_tail_calls]] virtual int foo1() {
    return callee(); // This call is not tail-call optimized.
  }
};

class Derived1 : public Base {
public:
  int foo1() override {
    return callee(); // This call is tail-call optimized.
  }
};

enable_if

Supported Syntaxes

GNU C++11 C2x
__declsp

ec Keyword #pragma

#pragma 
clang at
tribute

HLSL
Semantic

enable_i
f

Yes

Note

Some features of this attribute are experimental. The meaning of multiple enable_if attributes on a single
declaration is subject to change in a future version of clang. Also, the ABI is not standardized and the name
mangling may change in future versions. To avoid that, use asm labels.

The enable_if attribute can be placed on function declarations to control which overload is selected based on the
values of the function’s arguments. When combined with the overloadable attribute, this feature is also available
in C.
int isdigit(int c);
int isdigit(int c) __attribute__((enable_if(c <= -1 || c > 255, "chosen when 'c' is out of range"))) __attribute__((unavailable("'c' must have the value of an unsigned char or EOF")));

void foo(char c) {
  isdigit(c);
  isdigit(10);
  isdigit(-10);  // results in a compile-time error.
}

The enable_if attribute takes two arguments, the first is an expression written in terms of the function parameters, the
second is a string explaining why this overload candidate could not be selected to be displayed in diagnostics. The
expression is part of the function signature for the purposes of determining whether it is a redeclaration (following the
rules used when determining whether a C++ template specialization is ODR-equivalent), but is not part of the type.

The enable_if expression is evaluated as if it were the body of a bool-returning constexpr function declared with the
arguments of the function it is being applied to, then called with the parameters at the call site. If the result is false or
could not be determined through constant expression evaluation, then this overload will not be chosen and the
provided string may be used in a diagnostic if the compile fails as a result.

Because the enable_if expression is an unevaluated context, there are no global state changes, nor the ability to
pass information from the enable_if expression to the function body. For example, suppose we want calls to
strnlen(strbuf, maxlen) to resolve to strnlen_chk(strbuf, maxlen, size of strbuf) only if the size of strbuf can be
determined:

__attribute__((always_inline))
static inline size_t strnlen(const char *s, size_t maxlen)
  __attribute__((overloadable))
  __attribute__((enable_if(__builtin_object_size(s, 0) != -1))),
                           "chosen when the buffer size is known but 'maxlen' is not")))

Attributes in Clang

293



{
  return strnlen_chk(s, maxlen, __builtin_object_size(s, 0));
}

Multiple enable_if attributes may be applied to a single declaration. In this case, the enable_if expressions are
evaluated from left to right in the following manner. First, the candidates whose enable_if expressions evaluate to
false or cannot be evaluated are discarded. If the remaining candidates do not share ODR-equivalent enable_if
expressions, the overload resolution is ambiguous. Otherwise, enable_if overload resolution continues with the next
enable_if attribute on the candidates that have not been discarded and have remaining enable_if attributes. In this
way, we pick the most specific overload out of a number of viable overloads using enable_if.

void f() __attribute__((enable_if(true, "")));  // #1
void f() __attribute__((enable_if(true, ""))) __attribute__((enable_if(true, "")));  // #2

void g(int i, int j) __attribute__((enable_if(i, "")));  // #1
void g(int i, int j) __attribute__((enable_if(j, ""))) __attribute__((enable_if(true)));  // #2

In this example, a call to f() is always resolved to #2, as the first enable_if expression is ODR-equivalent for both
declarations, but #1 does not have another enable_if expression to continue evaluating, so the next round of
evaluation has only a single candidate. In a call to g(1, 1), the call is ambiguous even though #2 has more enable_if
attributes, because the first enable_if expressions are not ODR-equivalent.

Query for this feature with __has_attribute(enable_if).

Note that functions with one or more enable_if attributes may not have their address taken, unless all of the
conditions specified by said enable_if are constants that evaluate to true. For example:

const int TrueConstant = 1;
const int FalseConstant = 0;
int f(int a) __attribute__((enable_if(a > 0, "")));
int g(int a) __attribute__((enable_if(a == 0 || a != 0, "")));
int h(int a) __attribute__((enable_if(1, "")));
int i(int a) __attribute__((enable_if(TrueConstant, "")));
int j(int a) __attribute__((enable_if(FalseConstant, "")));

void fn() {
  int (*ptr)(int);
  ptr = &f; // error: 'a > 0' is not always true
  ptr = &g; // error: 'a == 0 || a != 0' is not a truthy constant
  ptr = &h; // OK: 1 is a truthy constant
  ptr = &i; // OK: 'TrueConstant' is a truthy constant
  ptr = &j; // error: 'FalseConstant' is a constant, but not truthy
}

Because enable_if evaluation happens during overload resolution, enable_if may give unintuitive results when
used with templates, depending on when overloads are resolved. In the example below, clang will emit a diagnostic
about no viable overloads for foo in bar, but not in baz:

double foo(int i) __attribute__((enable_if(i > 0, "")));
void *foo(int i) __attribute__((enable_if(i <= 0, "")));
template <int I>
auto bar() { return foo(I); }

template <typename T>
auto baz() { return foo(T::number); }

struct WithNumber { constexpr static int number = 1; };
void callThem() {
  bar<sizeof(WithNumber)>();
  baz<WithNumber>();
}

Attributes in Clang

294



This is because, in bar, foo is resolved prior to template instantiation, so the value for I isn’t known (thus, both
enable_if conditions for foo fail). However, in baz, foo is resolved during template instantiation, so the value for
T::number is known.

enforce_tcb

Supported Syntaxes

GNU C++11 C2x
__declsp

ec Keyword #pragma

#pragma 
clang at
tribute

HLSL
Semantic

enforce_
tcb

clang::e
nforce_t
cb

clang::e
nforce_t
cb

Yes

The enforce_tcb attribute can be placed on functions to enforce that a

trusted compute base (TCB) does not call out of the TCB. This generates a warning every time a function not
marked with an enforce_tcb attribute is called from a function with the enforce_tcb attribute. A function
may be a part of multiple TCBs. Invocations through function pointers are currently not checked. Builtins are
considered to a part of every TCB.

• enforce_tcb(Name) indicates that this function is a part of the TCB named Name

enforce_tcb_leaf

Supported Syntaxes

GNU C++11 C2x
__declsp

ec Keyword #pragma

#pragma 
clang at
tribute

HLSL
Semantic

enforce_
tcb_leaf

clang::e
nforce_t
cb_leaf

clang::e
nforce_t
cb_leaf

Yes

The enforce_tcb_leaf attribute satisfies the requirement enforced by

enforce_tcb for the marked function to be in the named TCB but does not continue to check the functions
called from within the leaf function.

• enforce_tcb_leaf(Name) indicates that this function is a part of the TCB named Name

error, warning

Supported Syntaxes

GNU C++11 C2x
__declsp

ec Keyword #pragma

#pragma 
clang at
tribute

HLSL
Semantic

error
<br/>
warning

gnu::err
or <br/> g
nu::warn
ing

gnu::err
or <br/> g
nu::warn
ing

Yes

The error and warning function attributes can be used to specify a custom diagnostic to be emitted when a call to
such a function is not eliminated via optimizations. This can be used to create compile time assertions that depend
on optimizations, while providing diagnostics pointing to precise locations of the call site in the source.

Attributes in Clang

295



__attribute__((warning("oh no"))) void dontcall();
void foo() {
  if (someCompileTimeAssertionThatsTrue)
    dontcall(); // Warning

  dontcall(); // Warning

  if (someCompileTimeAssertionThatsFalse)
    dontcall(); // No Warning
  sizeof(dontcall()); // No Warning
}

exclude_from_explicit_instantiation

Supported Syntaxes

GNU C++11 C2x
__declsp

ec Keyword #pragma

#pragma 
clang at
tribute

HLSL
Semantic

exclude_
from_exp
licit_in
stantiat
ion

clang::e
xclude_f
rom_expl
icit_ins
tantiati
on

clang::e
xclude_f
rom_expl
icit_ins
tantiati
on

Yes

The exclude_from_explicit_instantiation attribute opts-out a member of a class template from being part
of explicit template instantiations of that class template. This means that an explicit instantiation will not instantiate
members of the class template marked with the attribute, but also that code where an extern template declaration of
the enclosing class template is visible will not take for granted that an external instantiation of the class template
would provide those members (which would otherwise be a link error, since the explicit instantiation won’t provide
those members). For example, let’s say we don’t want the data() method to be part of libc++’s ABI. To make sure it
is not exported from the dylib, we give it hidden visibility:

// in <string>
template <class CharT>
class basic_string {
public:
  __attribute__((__visibility__("hidden")))
  const value_type* data() const noexcept { ... }
};

template class basic_string<char>;

Since an explicit template instantiation declaration for basic_string<char> is provided, the compiler is free to
assume that basic_string<char>::data() will be provided by another translation unit, and it is free to produce
an external call to this function. However, since data() has hidden visibility and the explicit template instantiation is
provided in a shared library (as opposed to simply another translation unit), basic_string<char>::data() won’t
be found and a link error will ensue. This happens because the compiler assumes that
basic_string<char>::data() is part of the explicit template instantiation declaration, when it really isn’t. To tell
the compiler that data() is not part of the explicit template instantiation declaration, the
exclude_from_explicit_instantiation attribute can be used:

// in <string>
template <class CharT>
class basic_string {
public:
  __attribute__((__visibility__("hidden")))

Attributes in Clang

296



  __attribute__((exclude_from_explicit_instantiation))
  const value_type* data() const noexcept { ... }
};

template class basic_string<char>;

Now, the compiler won’t assume that basic_string<char>::data() is provided externally despite there being
an explicit template instantiation declaration: the compiler will implicitly instantiate
basic_string<char>::data() in the TUs where it is used.

This attribute can be used on static and non-static member functions of class templates, static data members of
class templates and member classes of class templates.

export_name

Supported Syntaxes

GNU C++11 C2x
__declsp

ec Keyword #pragma

#pragma 
clang at
tribute

HLSL
Semantic

export_n
ame

clang::e
xport_na
me

clang::e
xport_na
me

Yes

Clang supports the __attribute__((export_name(<name>))) attribute for the WebAssembly target. This
attribute may be attached to a function declaration, where it modifies how the symbol is to be exported from the
linked WebAssembly.

WebAssembly functions are exported via string name. By default when a symbol is exported, the export name for
C/C++ symbols are the same as their C/C++ symbol names. This attribute can be used to override the default
behavior, and request a specific string name be used instead.

flatten

Supported Syntaxes

GNU C++11 C2x
__declsp

ec Keyword #pragma

#pragma 
clang at
tribute

HLSL
Semantic

flatten gnu::fla
tten

gnu::fla
tten

Yes

The flatten attribute causes calls within the attributed function to be inlined unless it is impossible to do so, for
example if the body of the callee is unavailable or if the callee has the noinline attribute.

force_align_arg_pointer

Supported Syntaxes

GNU C++11 C2x
__declsp

ec Keyword #pragma

#pragma 
clang at
tribute

HLSL
Semantic

force_al
ign_arg_
pointer

gnu::for
ce_align
_arg_poi
nter

gnu::for
ce_align
_arg_poi
nter

Attributes in Clang

297



Use this attribute to force stack alignment.

Legacy x86 code uses 4-byte stack alignment. Newer aligned SSE instructions (like ‘movaps’) that work with the
stack require operands to be 16-byte aligned. This attribute realigns the stack in the function prologue to make sure
the stack can be used with SSE instructions.

Note that the x86_64 ABI forces 16-byte stack alignment at the call site. Because of this, ‘force_align_arg_pointer’ is
not needed on x86_64, except in rare cases where the caller does not align the stack properly (e.g. flow jumps from
i386 arch code).

__attribute__ ((force_align_arg_pointer))
void f () {
  ...
}

format

Supported Syntaxes

GNU C++11 C2x
__declsp

ec Keyword #pragma

#pragma 
clang at
tribute

HLSL
Semantic

format gnu::for
mat

gnu::for
mat

Clang supports the format attribute, which indicates that the function accepts a printf or scanf-like format string
and corresponding arguments or a va_list that contains these arguments.

Please see GCC documentation about format attribute to find details about attribute syntax.

Clang implements two kinds of checks with this attribute.

1. Clang checks that the function with the format attribute is called with a format string that uses format specifiers
that are allowed, and that arguments match the format string. This is the -Wformat warning, it is on by default.

2. Clang checks that the format string argument is a literal string. This is the -Wformat-nonliteral warning, it
is off by default.

Clang implements this mostly the same way as GCC, but there is a difference for functions that accept a
va_list argument (for example, vprintf). GCC does not emit -Wformat-nonliteral warning for calls to
such functions. Clang does not warn if the format string comes from a function parameter, where the function is
annotated with a compatible attribute, otherwise it warns. For example:

__attribute__((__format__ (__scanf__, 1, 3)))
void foo(const char* s, char *buf, ...) {
  va_list ap;
  va_start(ap, buf);

  vprintf(s, ap); // warning: format string is not a string literal
}

In this case we warn because s contains a format string for a scanf-like function, but it is passed to a
printf-like function.

If the attribute is removed, clang still warns, because the format string is not a string literal.

Another example:

__attribute__((__format__ (__printf__, 1, 3)))
void foo(const char* s, char *buf, ...) {
  va_list ap;
  va_start(ap, buf);

Attributes in Clang

298

http://gcc.gnu.org/onlinedocs/gcc/Function-Attributes.html


  vprintf(s, ap); // warning
}

In this case Clang does not warn because the format string s and the corresponding arguments are annotated.
If the arguments are incorrect, the caller of foo will receive a warning.

gnu_inline

Supported Syntaxes

GNU C++11 C2x
__declsp

ec Keyword #pragma

#pragma 
clang at
tribute

HLSL
Semantic

gnu_inli
ne

gnu::gnu
_inline

gnu::gnu
_inline

Yes

The gnu_inline changes the meaning of extern inline to use GNU inline semantics, meaning:

• If any declaration that is declared inline is not declared extern, then the inline keyword is just a hint. In
particular, an out-of-line definition is still emitted for a function with external linkage, even if all call sites are
inlined, unlike in C99 and C++ inline semantics.

• If all declarations that are declared inline are also declared extern, then the function body is present only
for inlining and no out-of-line version is emitted.

Some important consequences: static inline emits an out-of-line version if needed, a plain inline definition
emits an out-of-line version always, and an extern inline definition (in a header) followed by a (non-extern)
inline declaration in a source file emits an out-of-line version of the function in that source file but provides the
function body for inlining to all includers of the header.

Either __GNUC_GNU_INLINE__ (GNU inline semantics) or __GNUC_STDC_INLINE__ (C99 semantics) will be
defined (they are mutually exclusive). If __GNUC_STDC_INLINE__ is defined, then the gnu_inline function
attribute can be used to get GNU inline semantics on a per function basis. If __GNUC_GNU_INLINE__ is defined,
then the translation unit is already being compiled with GNU inline semantics as the implied default. It is unspecified
which macro is defined in a C++ compilation.

GNU inline semantics are the default behavior with -std=gnu89, -std=c89, -std=c94, or -fgnu89-inline.

guard

Supported Syntaxes

GNU C++11 C2x
__declsp

ec Keyword #pragma

#pragma 
clang at
tribute

HLSL
Semantic

guard

Code can indicate CFG checks are not wanted with the __declspec(guard(nocf)) attribute. This directs the
compiler to not insert any CFG checks for the entire function. This approach is typically used only sparingly in
specific situations where the programmer has manually inserted “CFG-equivalent” protection. The programmer
knows that they are calling through some read-only function table whose address is obtained through read-only
memory references and for which the index is masked to the function table limit. This approach may also be applied
to small wrapper functions that are not inlined and that do nothing more than make a call through a function pointer.
Since incorrect usage of this directive can compromise the security of CFG, the programmer must be very careful
using the directive. Typically, this usage is limited to very small functions that only call one function.

Control Flow Guard documentation <https://docs.microsoft.com/en-us/windows/win32/secbp/pe-metadata>

Attributes in Clang

299



ifunc

Supported Syntaxes

GNU C++11 C2x
__declsp

ec Keyword #pragma

#pragma 
clang at
tribute

HLSL
Semantic

ifunc gnu::ifu
nc

gnu::ifu
nc

Yes

__attribute__((ifunc("resolver"))) is used to mark that the address of a declaration should be resolved
at runtime by calling a resolver function.

The symbol name of the resolver function is given in quotes. A function with this name (after mangling) must be
defined in the current translation unit; it may be static. The resolver function should return a pointer.

The ifunc attribute may only be used on a function declaration. A function declaration with an ifunc attribute is
considered to be a definition of the declared entity. The entity must not have weak linkage; for example, in C++, it
cannot be applied to a declaration if a definition at that location would be considered inline.

Not all targets support this attribute. ELF target support depends on both the linker and runtime linker, and is
available in at least lld 4.0 and later, binutils 2.20.1 and later, glibc v2.11.1 and later, and FreeBSD 9.1 and later.
Non-ELF targets currently do not support this attribute.

import_module

Supported Syntaxes

GNU C++11 C2x
__declsp

ec Keyword #pragma

#pragma 
clang at
tribute

HLSL
Semantic

import_m
odule

clang::i
mport_mo
dule

clang::i
mport_mo
dule

Yes

Clang supports the __attribute__((import_module(<module_name>))) attribute for the WebAssembly
target. This attribute may be attached to a function declaration, where it modifies how the symbol is to be imported
within the WebAssembly linking environment.

WebAssembly imports use a two-level namespace scheme, consisting of a module name, which typically identifies a
module from which to import, and a field name, which typically identifies a field from that module to import. By
default, module names for C/C++ symbols are assigned automatically by the linker. This attribute can be used to
override the default behavior, and request a specific module name be used instead.

import_name

Supported Syntaxes

GNU C++11 C2x
__declsp

ec Keyword #pragma

#pragma 
clang at
tribute

HLSL
Semantic

import_n
ame

clang::i
mport_na
me

clang::i
mport_na
me

Yes

Clang supports the __attribute__((import_name(<name>))) attribute for the WebAssembly target. This
attribute may be attached to a function declaration, where it modifies how the symbol is to be imported within the
WebAssembly linking environment.

Attributes in Clang

300



WebAssembly imports use a two-level namespace scheme, consisting of a module name, which typically identifies a
module from which to import, and a field name, which typically identifies a field from that module to import. By
default, field names for C/C++ symbols are the same as their C/C++ symbol names. This attribute can be used to
override the default behavior, and request a specific field name be used instead.

internal_linkage

Supported Syntaxes

GNU C++11 C2x
__declsp

ec Keyword #pragma

#pragma 
clang at
tribute

HLSL
Semantic

internal
_linkage

clang::i
nternal_
linkage

clang::i
nternal_
linkage

Yes

The internal_linkage attribute changes the linkage type of the declaration to internal. This is similar to C-style
static, but can be used on classes and class methods. When applied to a class definition, this attribute affects all
methods and static data members of that class. This can be used to contain the ABI of a C++ library by excluding
unwanted class methods from the export tables.

interrupt (ARM)

Supported Syntaxes

GNU C++11 C2x
__declsp

ec Keyword #pragma

#pragma 
clang at
tribute

HLSL
Semantic

interrup
t

gnu::int
errupt

gnu::int
errupt

Clang supports the GNU style __attribute__((interrupt("TYPE"))) attribute on ARM targets. This attribute
may be attached to a function definition and instructs the backend to generate appropriate function entry/exit code so
that it can be used directly as an interrupt service routine.

The parameter passed to the interrupt attribute is optional, but if provided it must be a string literal with one of the
following values: “IRQ”, “FIQ”, “SWI”, “ABORT”, “UNDEF”.

The semantics are as follows:

• If the function is AAPCS, Clang instructs the backend to realign the stack to 8 bytes on entry. This is a general
requirement of the AAPCS at public interfaces, but may not hold when an exception is taken. Doing this allows
other AAPCS functions to be called.

• If the CPU is M-class this is all that needs to be done since the architecture itself is designed in such a way that
functions obeying the normal AAPCS ABI constraints are valid exception handlers.

• If the CPU is not M-class, the prologue and epilogue are modified to save all non-banked registers that are
used, so that upon return the user-mode state will not be corrupted. Note that to avoid unnecessary overhead,
only general-purpose (integer) registers are saved in this way. If VFP operations are needed, that state must be
saved manually.

Specifically, interrupt kinds other than “FIQ” will save all core registers except “lr” and “sp”. “FIQ” interrupts will
save r0-r7.

• If the CPU is not M-class, the return instruction is changed to one of the canonical sequences permitted by the
architecture for exception return. Where possible the function itself will make the necessary “lr” adjustments so
that the “preferred return address” is selected.
Unfortunately the compiler is unable to make this guarantee for an “UNDEF” handler, where the offset from “lr”
to the preferred return address depends on the execution state of the code which generated the exception. In
this case a sequence equivalent to “movs pc, lr” will be used.

Attributes in Clang

301



interrupt (AVR)

Supported Syntaxes

GNU C++11 C2x
__declsp

ec Keyword #pragma

#pragma 
clang at
tribute

HLSL
Semantic

interrup
t

gnu::int
errupt

gnu::int
errupt

Yes

Clang supports the GNU style __attribute__((interrupt)) attribute on AVR targets. This attribute may be
attached to a function definition and instructs the backend to generate appropriate function entry/exit code so that it
can be used directly as an interrupt service routine.

On the AVR, the hardware globally disables interrupts when an interrupt is executed. The first instruction of an
interrupt handler declared with this attribute is a SEI instruction to re-enable interrupts. See also the signal attribute
that does not insert a SEI instruction.

interrupt (MIPS)

Supported Syntaxes

GNU C++11 C2x
__declsp

ec Keyword #pragma

#pragma 
clang at
tribute

HLSL
Semantic

interrup
t

gnu::int
errupt

gnu::int
errupt

Yes

Clang supports the GNU style __attribute__((interrupt("ARGUMENT"))) attribute on MIPS targets. This
attribute may be attached to a function definition and instructs the backend to generate appropriate function
entry/exit code so that it can be used directly as an interrupt service routine.

By default, the compiler will produce a function prologue and epilogue suitable for an interrupt service routine that
handles an External Interrupt Controller (eic) generated interrupt. This behavior can be explicitly requested with the
“eic” argument.

Otherwise, for use with vectored interrupt mode, the argument passed should be of the form “vector=LEVEL” where
LEVEL is one of the following values: “sw0”, “sw1”, “hw0”, “hw1”, “hw2”, “hw3”, “hw4”, “hw5”. The compiler will then
set the interrupt mask to the corresponding level which will mask all interrupts up to and including the argument.

The semantics are as follows:

• The prologue is modified so that the Exception Program Counter (EPC) and Status coprocessor registers are
saved to the stack. The interrupt mask is set so that the function can only be interrupted by a higher priority
interrupt. The epilogue will restore the previous values of EPC and Status.

• The prologue and epilogue are modified to save and restore all non-kernel registers as necessary.

• The FPU is disabled in the prologue, as the floating pointer registers are not spilled to the stack.

• The function return sequence is changed to use an exception return instruction.

• The parameter sets the interrupt mask for the function corresponding to the interrupt level specified. If no mask
is specified the interrupt mask defaults to “eic”.

interrupt (RISCV)

Supported Syntaxes

Attributes in Clang

302



GNU C++11 C2x
__declsp

ec Keyword #pragma

#pragma 
clang at
tribute

HLSL
Semantic

interrup
t

gnu::int
errupt

gnu::int
errupt

Yes

Clang supports the GNU style __attribute__((interrupt)) attribute on RISCV targets. This attribute may be
attached to a function definition and instructs the backend to generate appropriate function entry/exit code so that it
can be used directly as an interrupt service routine.

Permissible values for this parameter are user, supervisor, and machine. If there is no parameter, then it
defaults to machine.

Repeated interrupt attribute on the same declaration will cause a warning to be emitted. In case of repeated
declarations, the last one prevails.

Refer to: https://gcc.gnu.org/onlinedocs/gcc/RISC-V-Function-Attributes.html
https://riscv.org/specifications/privileged-isa/ The RISC-V Instruction Set Manual Volume II: Privileged Architecture
Version 1.10.

kernel

Supported Syntaxes

GNU C++11 C2x
__declsp

ec Keyword #pragma

#pragma 
clang at
tribute

HLSL
Semantic

kernel Yes

__attribute__((kernel)) is used to mark a kernel function in RenderScript.

In RenderScript, kernel functions are used to express data-parallel computations. The RenderScript runtime
efficiently parallelizes kernel functions to run on computational resources such as multi-core CPUs and GPUs. See
the RenderScript documentation for more information.

lifetimebound

Supported Syntaxes

GNU C++11 C2x
__declsp

ec Keyword #pragma

#pragma 
clang at
tribute

HLSL
Semantic

lifetime
bound

clang::l
ifetimeb
ound

The lifetimebound attribute on a function parameter or implicit object parameter indicates that objects that are
referred to by that parameter may also be referred to by the return value of the annotated function (or, for a
parameter of a constructor, by the value of the constructed object). It is only supported in C++.

By default, a reference is considered to refer to its referenced object, a pointer is considered to refer to its pointee, a
std::initializer_list<T> is considered to refer to its underlying array, and aggregates (arrays and simple
structs) are considered to refer to all objects that their transitive subobjects refer to.

Clang warns if it is able to detect that an object or reference refers to another object with a shorter lifetime. For
example, Clang will warn if a function returns a reference to a local variable, or if a reference is bound to a temporary
object whose lifetime is not extended. By using the lifetimebound attribute, this determination can be extended to
look through user-declared functions. For example:

// Returns m[key] if key is present, or default_value if not.
template<typename T, typename U>

Attributes in Clang

303

https://gcc.gnu.org/onlinedocs/gcc/RISC-V-Function-Attributes.html
https://riscv.org/specifications/privileged-isa/
https://developer.android.com/guide/topics/renderscript/compute.html


const U &get_or_default(const std::map<T, U> &m [[clang::lifetimebound]],
                        const T &key, /* note, not lifetimebound */
                        const U &default_value [[clang::lifetimebound]]);

std::map<std::string, std::string> m;
// warning: temporary "bar"s that might be bound to local reference 'val'
// will be destroyed at the end of the full-expression
const std::string &val = get_or_default(m, "foo"s, "bar"s);

// No warning in this case.
std::string def_val = "bar"s;
const std::string &val = get_or_default(m, "foo"s, def_val);

The attribute can be applied to the implicit this parameter of a member function by writing the attribute after the
function type:

struct string {
  // The returned pointer should not outlive ``*this``.
  const char *data() const [[clang::lifetimebound]];
};

This attribute is inspired by the C++ committee paper P0936R0, but does not affect whether temporary objects have
their lifetimes extended.

long_call, far

Supported Syntaxes

GNU C++11 C2x
__declsp

ec Keyword #pragma

#pragma 
clang at
tribute

HLSL
Semantic

long_cal
l <br/>
far

gnu::lon
g_call
<br/>
gnu::far

gnu::lon
g_call
<br/>
gnu::far

Yes

Clang supports the __attribute__((long_call)), __attribute__((far)), and
__attribute__((near)) attributes on MIPS targets. These attributes may only be added to function declarations
and change the code generated by the compiler when directly calling the function. The near attribute allows calls to
the function to be made using the jal instruction, which requires the function to be located in the same naturally
aligned 256MB segment as the caller. The long_call and far attributes are synonyms and require the use of a
different call sequence that works regardless of the distance between the functions.

These attributes have no effect for position-independent code.

These attributes take priority over command line switches such as -mlong-calls and -mno-long-calls.

malloc

Supported Syntaxes

GNU C++11 C2x
__declsp

ec Keyword #pragma

#pragma 
clang at
tribute

HLSL
Semantic

malloc gnu::mal
loc

gnu::mal
loc

restrict Yes

The malloc attribute indicates that the function acts like a system memory allocation function, returning a pointer to
allocated storage disjoint from the storage for any other object accessible to the caller.

Attributes in Clang

304

http://wg21.link/p0936r0


micromips

Supported Syntaxes

GNU C++11 C2x
__declsp

ec Keyword #pragma

#pragma 
clang at
tribute

HLSL
Semantic

micromip
s

gnu::mic
romips

gnu::mic
romips

Yes

Clang supports the GNU style __attribute__((micromips)) and __attribute__((nomicromips))
attributes on MIPS targets. These attributes may be attached to a function definition and instructs the backend to
generate or not to generate microMIPS code for that function.

These attributes override the -mmicromips and -mno-micromips options on the command line.

mig_server_routine

Supported Syntaxes

GNU C++11 C2x
__declsp

ec Keyword #pragma

#pragma 
clang at
tribute

HLSL
Semantic

mig_serv
er_routi
ne

clang::m
ig_serve
r_routin
e

clang::m
ig_serve
r_routin
e

Yes

The Mach Interface Generator release-on-success convention dictates functions that follow it to only release
arguments passed to them when they return “success” (a kern_return_t error code that indicates that no errors
have occurred). Otherwise the release is performed by the MIG client that called the function. The annotation
__attribute__((mig_server_routine)) is applied in order to specify which functions are expected to follow
the convention. This allows the Static Analyzer to find bugs caused by violations of that convention. The attribute
would normally appear on the forward declaration of the actual server routine in the MIG server header, but it may
also be added to arbitrary functions that need to follow the same convention - for example, a user can add them to
auxiliary functions called by the server routine that have their return value of type kern_return_t unconditionally
returned from the routine. The attribute can be applied to C++ methods, and in this case it will be automatically
applied to overrides if the method is virtual. The attribute can also be written using C++11 syntax:
[[mig::server_routine]].

min_vector_width

Supported Syntaxes

GNU C++11 C2x
__declsp

ec Keyword #pragma

#pragma 
clang at
tribute

HLSL
Semantic

min_vect
or_width

clang::m
in_vecto
r_width

clang::m
in_vecto
r_width

Yes

Clang supports the __attribute__((min_vector_width(width))) attribute. This attribute may be attached
to a function and informs the backend that this function desires vectors of at least this width to be generated.
Target-specific maximum vector widths still apply. This means even if you ask for something larger than the target
supports, you will only get what the target supports. This attribute is meant to be a hint to control target heuristics that
may generate narrower vectors than what the target hardware supports.

Attributes in Clang

305



This is currently used by the X86 target to allow some CPUs that support 512-bit vectors to be limited to using 256-bit
vectors to avoid frequency penalties. This is currently enabled with the -prefer-vector-width=256 command
line option. The min_vector_width attribute can be used to prevent the backend from trying to split vector
operations to match the prefer-vector-width. All X86 vector intrinsics from x86intrin.h already set this attribute.
Additionally, use of any of the X86-specific vector builtins will implicitly set this attribute on the calling function. The
intent is that explicitly writing vector code using the X86 intrinsics will prevent prefer-vector-width from
affecting the code.

no_builtin

Supported Syntaxes

GNU C++11 C2x
__declsp

ec Keyword #pragma

#pragma 
clang at
tribute

HLSL
Semantic

no_built
in

clang::n
o_builti
n

clang::n
o_builti
n

Yes

The __attribute__((no_builtin)) is similar to the -fno-builtin flag except it is specific to the body of a
function. The attribute may also be applied to a virtual function but has no effect on the behavior of overriding
functions in a derived class.

It accepts one or more strings corresponding to the specific names of the builtins to disable (e.g. “memcpy”,
“memset”). If the attribute is used without parameters it will disable all buitins at once.

// The compiler is not allowed to add any builtin to foo's body.
void foo(char* data, size_t count) __attribute__((no_builtin)) {
  // The compiler is not allowed to convert the loop into
  // `__builtin_memset(data, 0xFE, count);`.
  for (size_t i = 0; i < count; ++i)
    data[i] = 0xFE;
}

// The compiler is not allowed to add the `memcpy` builtin to bar's body.
void bar(char* data, size_t count) __attribute__((no_builtin("memcpy"))) {
  // The compiler is allowed to convert the loop into
  // `__builtin_memset(data, 0xFE, count);` but cannot generate any
  // `__builtin_memcpy`
  for (size_t i = 0; i < count; ++i)
    data[i] = 0xFE;
}

no_caller_saved_registers

Supported Syntaxes

GNU C++11 C2x
__declsp

ec Keyword #pragma

#pragma 
clang at
tribute

HLSL
Semantic

no_calle
r_saved_
register
s

gnu::no_
caller_s
aved_reg
isters

gnu::no_
caller_s
aved_reg
isters

Use this attribute to indicate that the specified function has no caller-saved registers. That is, all registers are
callee-saved except for registers used for passing parameters to the function or returning parameters from the

Attributes in Clang

306



function. The compiler saves and restores any modified registers that were not used for passing or returning
arguments to the function.

The user can call functions specified with the ‘no_caller_saved_registers’ attribute from an interrupt handler without
saving and restoring all call-clobbered registers.

Note that ‘no_caller_saved_registers’ attribute is not a calling convention. In fact, it only overrides the decision of
which registers should be saved by the caller, but not how the parameters are passed from the caller to the callee.

For example:

__attribute__ ((no_caller_saved_registers, fastcall))
void f (int arg1, int arg2) {
  ...
}

In this case parameters ‘arg1’ and ‘arg2’ will be passed in registers. In this case, on 32-bit x86 targets, the
function ‘f’ will use ECX and EDX as register parameters. However, it will not assume any scratch registers and
should save and restore any modified registers except for ECX and EDX.

no_profile_instrument_function

Supported Syntaxes

GNU C++11 C2x
__declsp

ec Keyword #pragma

#pragma 
clang at
tribute

HLSL
Semantic

no_profi
le_instr
ument_fu
nction

gnu::no_
profile_
instrume
nt_funct
ion

gnu::no_
profile_
instrume
nt_funct
ion

Yes

Use the no_profile_instrument_function attribute on a function declaration to denote that the compiler
should not instrument the function with profile-related instrumentation, such as via the -fprofile-generate /
-fprofile-instr-generate / -fcs-profile-generate / -fprofile-arcs flags.

no_sanitize

Supported Syntaxes

GNU C++11 C2x
__declsp

ec Keyword #pragma

#pragma 
clang at
tribute

HLSL
Semantic

no_sanit
ize

clang::n
o_saniti
ze

clang::n
o_saniti
ze

Yes

Use the no_sanitize attribute on a function or a global variable declaration to specify that a particular
instrumentation or set of instrumentations should not be applied.

The attribute takes a list of string literals with the following accepted values: * all values accepted by
-fno-sanitize=; * coverage, to disable SanitizerCoverage instrumentation.

For example, __attribute__((no_sanitize("address", "thread"))) specifies that AddressSanitizer and
ThreadSanitizer should not be applied to the function or variable. Using
__attribute__((no_sanitize("coverage"))) specifies that SanitizerCoverage should not be applied to the
function.

See Controlling Code Generation for a full list of supported sanitizer flags.

Attributes in Clang

307



no_sanitize_address, no_address_safety_analysis

Supported Syntaxes

GNU C++11 C2x
__declsp

ec Keyword #pragma

#pragma 
clang at
tribute

HLSL
Semantic

no_addre
ss_safet
y_analys
is <br/> n
o_saniti
ze_addre
ss <br/> n
o_saniti
ze_threa
d <br/> no
_sanitiz
e_memory

gnu::no_
address_
safety_a
nalysis
<br/> gnu:
:no_sani
tize_add
ress <br/> 
gnu::no_
sanitize
_thread
<br/> clan
g::no_sa
nitize_m
emory

gnu::no_
address_
safety_a
nalysis
<br/> gnu:
:no_sani
tize_add
ress <br/> 
gnu::no_
sanitize
_thread
<br/> clan
g::no_sa
nitize_m
emory

Yes

Use __attribute__((no_sanitize_address)) on a function or a global variable declaration to specify that
address safety instrumentation (e.g. AddressSanitizer) should not be applied.

no_sanitize_memory

Supported Syntaxes

GNU C++11 C2x
__declsp

ec Keyword #pragma

#pragma 
clang at
tribute

HLSL
Semantic

no_addre
ss_safet
y_analys
is <br/> n
o_saniti
ze_addre
ss <br/> n
o_saniti
ze_threa
d <br/> no
_sanitiz
e_memory

gnu::no_
address_
safety_a
nalysis
<br/> gnu:
:no_sani
tize_add
ress <br/> 
gnu::no_
sanitize
_thread
<br/> clan
g::no_sa
nitize_m
emory

gnu::no_
address_
safety_a
nalysis
<br/> gnu:
:no_sani
tize_add
ress <br/> 
gnu::no_
sanitize
_thread
<br/> clan
g::no_sa
nitize_m
emory

Yes

Use __attribute__((no_sanitize_memory)) on a function declaration to specify that checks for uninitialized
memory should not be inserted (e.g. by MemorySanitizer). The function may still be instrumented by the tool to avoid
false positives in other places.

no_sanitize_thread

Supported Syntaxes

Attributes in Clang

308



GNU C++11 C2x
__declsp

ec Keyword #pragma

#pragma 
clang at
tribute

HLSL
Semantic

no_addre
ss_safet
y_analys
is <br/> n
o_saniti
ze_addre
ss <br/> n
o_saniti
ze_threa
d <br/> no
_sanitiz
e_memory

gnu::no_
address_
safety_a
nalysis
<br/> gnu:
:no_sani
tize_add
ress <br/> 
gnu::no_
sanitize
_thread
<br/> clan
g::no_sa
nitize_m
emory

gnu::no_
address_
safety_a
nalysis
<br/> gnu:
:no_sani
tize_add
ress <br/> 
gnu::no_
sanitize
_thread
<br/> clan
g::no_sa
nitize_m
emory

Yes

Use __attribute__((no_sanitize_thread)) on a function declaration to specify that checks for data races
on plain (non-atomic) memory accesses should not be inserted by ThreadSanitizer. The function is still instrumented
by the tool to avoid false positives and provide meaningful stack traces.

no_speculative_load_hardening

Supported Syntaxes

GNU C++11 C2x
__declsp

ec Keyword #pragma

#pragma 
clang at
tribute

HLSL
Semantic

no_specu
lative_l
oad_hard
ening

clang::n
o_specul
ative_lo
ad_harde
ning

clang::n
o_specul
ative_lo
ad_harde
ning

Yes

This attribute can be applied to a function declaration in order to indicate

that Speculative Load Hardening is not needed for the function body. This can also be applied to a method in
Objective C. This attribute will take precedence over the command line flag in the case where
-mspeculative-load-hardening is specified.

Warning: This attribute may not prevent Speculative Load Hardening from being enabled for a function which
inlines a function that has the ‘speculative_load_hardening’ attribute. This is intended to provide a maximally
conservative model where the code that is marked with the ‘speculative_load_hardening’ attribute will always
(even when inlined) be hardened. A user of this attribute may want to mark functions called by a function they do
not want to be hardened with the ‘noinline’ attribute.

For example:

__attribute__((speculative_load_hardening))
int foo(int i) {
  return i;
}

// Note: bar() may still have speculative load hardening enabled if
// foo() is inlined into bar(). Mark foo() with __attribute__((noinline))
// to avoid this situation.
__attribute__((no_speculative_load_hardening))
int bar(int i) {

Attributes in Clang

309

https://llvm.org/docs/SpeculativeLoadHardening.html
https://clang.llvm.org/docs/ClangCommandLineReference.html#cmdoption-clang-mspeculative-load-hardening


  return foo(i);
}

no_split_stack

Supported Syntaxes

GNU C++11 C2x
__declsp

ec Keyword #pragma

#pragma 
clang at
tribute

HLSL
Semantic

no_split
_stack

gnu::no_
split_st
ack

gnu::no_
split_st
ack

Yes

The no_split_stack attribute disables the emission of the split stack preamble for a particular function. It has no
effect if -fsplit-stack is not specified.

no_stack_protector

Supported Syntaxes

GNU C++11 C2x
__declsp

ec Keyword #pragma

#pragma 
clang at
tribute

HLSL
Semantic

no_stack
_protect
or

clang::n
o_stack_
protecto
r

clang::n
o_stack_
protecto
r

Yes

Clang supports the __attribute__((no_stack_protector)) attribute which disables the stack protector on
the specified function. This attribute is useful for selectively disabling the stack protector on some functions when
building with -fstack-protector compiler option.

For example, it disables the stack protector for the function foo but function bar will still be built with the stack
protector with the -fstack-protector option.

int __attribute__((no_stack_protector))
foo (int x); // stack protection will be disabled for foo.

int bar(int y); // bar can be built with the stack protector.

noalias

Supported Syntaxes

GNU C++11 C2x
__declsp

ec Keyword #pragma

#pragma 
clang at
tribute

HLSL
Semantic

noalias

The noalias attribute indicates that the only memory accesses inside function are loads and stores from objects
pointed to by its pointer-typed arguments, with arbitrary offsets.

nocf_check

Attributes in Clang

310



Supported Syntaxes

GNU C++11 C2x
__declsp

ec Keyword #pragma

#pragma 
clang at
tribute

HLSL
Semantic

nocf_che
ck

gnu::noc
f_check

gnu::noc
f_check

Yes

Jump Oriented Programming attacks rely on tampering with addresses used by indirect call / jmp, e.g. redirect
control-flow to non-programmer intended bytes in the binary. X86 Supports Indirect Branch Tracking (IBT) as part of
Control-Flow Enforcement Technology (CET). IBT instruments ENDBR instructions used to specify valid targets of
indirect call / jmp. The nocf_check attribute has two roles: 1. Appertains to a function - do not add ENDBR
instruction at the beginning of the function. 2. Appertains to a function pointer - do not track the target function of this
pointer (by adding nocf_check prefix to the indirect-call instruction).

nodiscard, warn_unused_result

Supported Syntaxes

GNU C++11 C2x
__declsp

ec Keyword #pragma

#pragma 
clang at
tribute

HLSL
Semantic

warn_unu
sed_resu
lt

nodiscar
d <br/> cl
ang::war
n_unused
_result
<br/> gnu:
:warn_un
used_res
ult

nodiscar
d <br/> gn
u::warn_
unused_r
esult

Yes

Clang supports the ability to diagnose when the results of a function call expression are discarded under suspicious
circumstances. A diagnostic is generated when a function or its return type is marked with [[nodiscard]] (or
__attribute__((warn_unused_result))) and the function call appears as a potentially-evaluated
discarded-value expression that is not explicitly cast to void.

A string literal may optionally be provided to the attribute, which will be reproduced in any resulting diagnostics.
Redeclarations using different forms of the attribute (with or without the string literal or with different string literal
contents) are allowed. If there are redeclarations of the entity with differing string literals, it is unspecified which one
will be used by Clang in any resulting diagnostics.

Additionally, discarded temporaries resulting from a call to a constructor marked with [[nodiscard]] or a
constructor of a type marked [[nodiscard]] will also diagnose. This also applies to type conversions that use the
annotated [[nodiscard]] constructor or result in an annotated type.

noduplicate

Supported Syntaxes

GNU C++11 C2x
__declsp

ec Keyword #pragma

#pragma 
clang at
tribute

HLSL
Semantic

noduplic
ate

clang::n
oduplica
te

clang::n
oduplica
te

Yes

The noduplicate attribute can be placed on function declarations to control whether function calls to this function
can be duplicated or not as a result of optimizations. This is required for the implementation of functions with certain

Attributes in Clang

311



special requirements, like the OpenCL “barrier” function, that might need to be run concurrently by all the threads
that are executing in lockstep on the hardware. For example this attribute applied on the function “nodupfunc” in the
code below avoids that:

void nodupfunc() __attribute__((noduplicate));
// Setting it as a C++11 attribute is also valid
// void nodupfunc() [[clang::noduplicate]];
void foo();
void bar();

nodupfunc();
if (a > n) {
  foo();
} else {
  bar();
}

gets possibly modified by some optimizations into code similar to this:

if (a > n) {
  nodupfunc();
  foo();
} else {
  nodupfunc();
  bar();
}

where the call to “nodupfunc” is duplicated and sunk into the two branches of the condition.

noinline

Supported Syntaxes

GNU C++11 C2x
__declsp

ec Keyword #pragma

#pragma 
clang at
tribute

HLSL
Semantic

noinline gnu::noi
nline
<br/> clan
g::noinl
ine

gnu::noi
nline
<br/> clan
g::noinl
ine

noinline __noinli
ne__

Yes

This function attribute suppresses the inlining of a function at the call sites of the function.

[[clang::noinline]] spelling can be used as a statement attribute; other spellings of the attribute are not
supported on statements. If a statement is marked [[clang::noinline]] and contains calls, those calls inside
the statement will not be inlined by the compiler.

__noinline__ can be used as a keyword in CUDA/HIP languages. This is to avoid diagnostics due to usage of
__attribute__((__noinline__)) with __noinline__ defined as a macro as
__attribute__((noinline)).

int example(void) {
  int r;
  [[clang::noinline]] foo();
  [[clang::noinline]] r = bar();
  return r;
}

nomicromips

Attributes in Clang

312



Supported Syntaxes

GNU C++11 C2x
__declsp

ec Keyword #pragma

#pragma 
clang at
tribute

HLSL
Semantic

nomicrom
ips

gnu::nom
icromips

gnu::nom
icromips

Yes

Clang supports the GNU style __attribute__((micromips)) and __attribute__((nomicromips))
attributes on MIPS targets. These attributes may be attached to a function definition and instructs the backend to
generate or not to generate microMIPS code for that function.

These attributes override the -mmicromips and -mno-micromips options on the command line.

noreturn, _Noreturn

Supported Syntaxes

GNU C++11 C2x
__declsp

ec Keyword #pragma

#pragma 
clang at
tribute

HLSL
Semantic

noreturn noreturn
<br/> _Nor
eturn

Yes

A function declared as [[noreturn]] shall not return to its caller. The compiler will generate a diagnostic for a
function declared as [[noreturn]] that appears to be capable of returning to its caller.

The [[_Noreturn]] spelling is deprecated and only exists to ease code migration for code using [[noreturn]]
after including <stdnoreturn.h>.

not_tail_called

Supported Syntaxes

GNU C++11 C2x
__declsp

ec Keyword #pragma

#pragma 
clang at
tribute

HLSL
Semantic

not_tail
_called

clang::n
ot_tail_
called

clang::n
ot_tail_
called

Yes

The not_tail_called attribute prevents tail-call optimization on statically bound calls. Objective-c methods, and
functions marked as always_inline cannot be marked as not_tail_called.

For example, it prevents tail-call optimization in the following case:

int __attribute__((not_tail_called)) foo1(int);

int foo2(int a) {
  return foo1(a); // No tail-call optimization on direct calls.
}

However, it doesn’t prevent tail-call optimization in this case:

int __attribute__((not_tail_called)) foo1(int);

int foo2(int a) {
  int (*fn)(int) = &foo1;

Attributes in Clang

313



  // not_tail_called has no effect on an indirect call even if the call can
  // be resolved at compile time.
  return (*fn)(a);
}

Generally, marking an overriding virtual function as not_tail_called is not useful, because this attribute is a
property of the static type. Calls made through a pointer or reference to the base class type will respect the
not_tail_called attribute of the base class’s member function, regardless of the runtime destination of the call:

struct Foo { virtual void f(); };
struct Bar : Foo {
  [[clang::not_tail_called]] void f() override;
};
void callera(Bar& bar) {
  Foo& foo = bar;
  // not_tail_called has no effect on here, even though the
  // underlying method is f from Bar.
  foo.f();
  bar.f(); // No tail-call optimization on here.
}

nothrow

Supported Syntaxes

GNU C++11 C2x
__declsp

ec Keyword #pragma

#pragma 
clang at
tribute

HLSL
Semantic

nothrow gnu::not
hrow

gnu::not
hrow

nothrow Yes

Clang supports the GNU style __attribute__((nothrow)) and Microsoft style __declspec(nothrow)
attribute as an equivalent of noexcept on function declarations. This attribute informs the compiler that the
annotated function does not throw an exception. This prevents exception-unwinding. This attribute is particularly
useful on functions in the C Standard Library that are guaranteed to not throw an exception.

ns_consumed

Supported Syntaxes

GNU C++11 C2x
__declsp

ec Keyword #pragma

#pragma 
clang at
tribute

HLSL
Semantic

ns_consu
med

clang::n
s_consum
ed

clang::n
s_consum
ed

Yes

The behavior of a function with respect to reference counting for Foundation (Objective-C), CoreFoundation (C) and
OSObject (C++) is determined by a naming convention (e.g. functions starting with “get” are assumed to return at
+0).

It can be overridden using a family of the following attributes. In Objective-C, the annotation
__attribute__((ns_returns_retained)) applied to a function communicates that the object is returned at
+1, and the caller is responsible for freeing it. Similarly, the annotation
__attribute__((ns_returns_not_retained)) specifies that the object is returned at +0 and the ownership
remains with the callee. The annotation __attribute__((ns_consumes_self)) specifies that the Objective-C
method call consumes the reference to self, e.g. by attaching it to a supplied parameter. Additionally, parameters

Attributes in Clang

314



can have an annotation __attribute__((ns_consumed)), which specifies that passing an owned object as that
parameter effectively transfers the ownership, and the caller is no longer responsible for it. These attributes affect
code generation when interacting with ARC code, and they are used by the Clang Static Analyzer.

In C programs using CoreFoundation, a similar set of attributes:
__attribute__((cf_returns_not_retained)), __attribute__((cf_returns_retained)) and
__attribute__((cf_consumed)) have the same respective semantics when applied to CoreFoundation
objects. These attributes affect code generation when interacting with ARC code, and they are used by the Clang
Static Analyzer.

Finally, in C++ interacting with XNU kernel (objects inheriting from OSObject), the same attribute family is present:
__attribute__((os_returns_not_retained)), __attribute__((os_returns_retained)) and
__attribute__((os_consumed)), with the same respective semantics. Similar to
__attribute__((ns_consumes_self)), __attribute__((os_consumes_this)) specifies that the method
call consumes the reference to “this” (e.g., when attaching it to a different object supplied as a parameter). Out
parameters (parameters the function is meant to write into, either via pointers-to-pointers or references-to-pointers)
may be annotated with __attribute__((os_returns_retained)) or
__attribute__((os_returns_not_retained)) which specifies that the object written into the out parameter
should (or respectively should not) be released after use. Since often out parameters may or may not be written
depending on the exit code of the function, annotations __attribute__((os_returns_retained_on_zero))
and __attribute__((os_returns_retained_on_non_zero)) specify that an out parameter at +1 is written if
and only if the function returns a zero (respectively non-zero) error code. Observe that return-code-dependent out
parameter annotations are only available for retained out parameters, as non-retained object do not have to be
released by the callee. These attributes are only used by the Clang Static Analyzer.

The family of attributes X_returns_X_retained can be added to functions, C++ methods, and Objective-C
methods and properties. Attributes X_consumed can be added to parameters of methods, functions, and
Objective-C methods.

ns_consumes_self

Supported Syntaxes

GNU C++11 C2x
__declsp

ec Keyword #pragma

#pragma 
clang at
tribute

HLSL
Semantic

ns_consu
mes_self

clang::n
s_consum
es_self

clang::n
s_consum
es_self

Yes

The behavior of a function with respect to reference counting for Foundation (Objective-C), CoreFoundation (C) and
OSObject (C++) is determined by a naming convention (e.g. functions starting with “get” are assumed to return at
+0).

It can be overridden using a family of the following attributes. In Objective-C, the annotation
__attribute__((ns_returns_retained)) applied to a function communicates that the object is returned at
+1, and the caller is responsible for freeing it. Similarly, the annotation
__attribute__((ns_returns_not_retained)) specifies that the object is returned at +0 and the ownership
remains with the callee. The annotation __attribute__((ns_consumes_self)) specifies that the Objective-C
method call consumes the reference to self, e.g. by attaching it to a supplied parameter. Additionally, parameters
can have an annotation __attribute__((ns_consumed)), which specifies that passing an owned object as that
parameter effectively transfers the ownership, and the caller is no longer responsible for it. These attributes affect
code generation when interacting with ARC code, and they are used by the Clang Static Analyzer.

In C programs using CoreFoundation, a similar set of attributes:
__attribute__((cf_returns_not_retained)), __attribute__((cf_returns_retained)) and
__attribute__((cf_consumed)) have the same respective semantics when applied to CoreFoundation
objects. These attributes affect code generation when interacting with ARC code, and they are used by the Clang
Static Analyzer.

Finally, in C++ interacting with XNU kernel (objects inheriting from OSObject), the same attribute family is present:
__attribute__((os_returns_not_retained)), __attribute__((os_returns_retained)) and

Attributes in Clang

315



__attribute__((os_consumed)), with the same respective semantics. Similar to
__attribute__((ns_consumes_self)), __attribute__((os_consumes_this)) specifies that the method
call consumes the reference to “this” (e.g., when attaching it to a different object supplied as a parameter). Out
parameters (parameters the function is meant to write into, either via pointers-to-pointers or references-to-pointers)
may be annotated with __attribute__((os_returns_retained)) or
__attribute__((os_returns_not_retained)) which specifies that the object written into the out parameter
should (or respectively should not) be released after use. Since often out parameters may or may not be written
depending on the exit code of the function, annotations __attribute__((os_returns_retained_on_zero))
and __attribute__((os_returns_retained_on_non_zero)) specify that an out parameter at +1 is written if
and only if the function returns a zero (respectively non-zero) error code. Observe that return-code-dependent out
parameter annotations are only available for retained out parameters, as non-retained object do not have to be
released by the callee. These attributes are only used by the Clang Static Analyzer.

The family of attributes X_returns_X_retained can be added to functions, C++ methods, and Objective-C
methods and properties. Attributes X_consumed can be added to parameters of methods, functions, and
Objective-C methods.

ns_returns_autoreleased

Supported Syntaxes

GNU C++11 C2x
__declsp

ec Keyword #pragma

#pragma 
clang at
tribute

HLSL
Semantic

ns_retur
ns_autor
eleased

clang::n
s_return
s_autore
leased

clang::n
s_return
s_autore
leased

The behavior of a function with respect to reference counting for Foundation (Objective-C), CoreFoundation (C) and
OSObject (C++) is determined by a naming convention (e.g. functions starting with “get” are assumed to return at
+0).

It can be overridden using a family of the following attributes. In Objective-C, the annotation
__attribute__((ns_returns_retained)) applied to a function communicates that the object is returned at
+1, and the caller is responsible for freeing it. Similarly, the annotation
__attribute__((ns_returns_not_retained)) specifies that the object is returned at +0 and the ownership
remains with the callee. The annotation __attribute__((ns_consumes_self)) specifies that the Objective-C
method call consumes the reference to self, e.g. by attaching it to a supplied parameter. Additionally, parameters
can have an annotation __attribute__((ns_consumed)), which specifies that passing an owned object as that
parameter effectively transfers the ownership, and the caller is no longer responsible for it. These attributes affect
code generation when interacting with ARC code, and they are used by the Clang Static Analyzer.

In C programs using CoreFoundation, a similar set of attributes:
__attribute__((cf_returns_not_retained)), __attribute__((cf_returns_retained)) and
__attribute__((cf_consumed)) have the same respective semantics when applied to CoreFoundation
objects. These attributes affect code generation when interacting with ARC code, and they are used by the Clang
Static Analyzer.

Finally, in C++ interacting with XNU kernel (objects inheriting from OSObject), the same attribute family is present:
__attribute__((os_returns_not_retained)), __attribute__((os_returns_retained)) and
__attribute__((os_consumed)), with the same respective semantics. Similar to
__attribute__((ns_consumes_self)), __attribute__((os_consumes_this)) specifies that the method
call consumes the reference to “this” (e.g., when attaching it to a different object supplied as a parameter). Out
parameters (parameters the function is meant to write into, either via pointers-to-pointers or references-to-pointers)
may be annotated with __attribute__((os_returns_retained)) or
__attribute__((os_returns_not_retained)) which specifies that the object written into the out parameter
should (or respectively should not) be released after use. Since often out parameters may or may not be written
depending on the exit code of the function, annotations __attribute__((os_returns_retained_on_zero))
and __attribute__((os_returns_retained_on_non_zero)) specify that an out parameter at +1 is written if
and only if the function returns a zero (respectively non-zero) error code. Observe that return-code-dependent out

Attributes in Clang

316



parameter annotations are only available for retained out parameters, as non-retained object do not have to be
released by the callee. These attributes are only used by the Clang Static Analyzer.

The family of attributes X_returns_X_retained can be added to functions, C++ methods, and Objective-C
methods and properties. Attributes X_consumed can be added to parameters of methods, functions, and
Objective-C methods.

ns_returns_not_retained

Supported Syntaxes

GNU C++11 C2x
__declsp

ec Keyword #pragma

#pragma 
clang at
tribute

HLSL
Semantic

ns_retur
ns_not_r
etained

clang::n
s_return
s_not_re
tained

clang::n
s_return
s_not_re
tained

The behavior of a function with respect to reference counting for Foundation (Objective-C), CoreFoundation (C) and
OSObject (C++) is determined by a naming convention (e.g. functions starting with “get” are assumed to return at
+0).

It can be overridden using a family of the following attributes. In Objective-C, the annotation
__attribute__((ns_returns_retained)) applied to a function communicates that the object is returned at
+1, and the caller is responsible for freeing it. Similarly, the annotation
__attribute__((ns_returns_not_retained)) specifies that the object is returned at +0 and the ownership
remains with the callee. The annotation __attribute__((ns_consumes_self)) specifies that the Objective-C
method call consumes the reference to self, e.g. by attaching it to a supplied parameter. Additionally, parameters
can have an annotation __attribute__((ns_consumed)), which specifies that passing an owned object as that
parameter effectively transfers the ownership, and the caller is no longer responsible for it. These attributes affect
code generation when interacting with ARC code, and they are used by the Clang Static Analyzer.

In C programs using CoreFoundation, a similar set of attributes:
__attribute__((cf_returns_not_retained)), __attribute__((cf_returns_retained)) and
__attribute__((cf_consumed)) have the same respective semantics when applied to CoreFoundation
objects. These attributes affect code generation when interacting with ARC code, and they are used by the Clang
Static Analyzer.

Finally, in C++ interacting with XNU kernel (objects inheriting from OSObject), the same attribute family is present:
__attribute__((os_returns_not_retained)), __attribute__((os_returns_retained)) and
__attribute__((os_consumed)), with the same respective semantics. Similar to
__attribute__((ns_consumes_self)), __attribute__((os_consumes_this)) specifies that the method
call consumes the reference to “this” (e.g., when attaching it to a different object supplied as a parameter). Out
parameters (parameters the function is meant to write into, either via pointers-to-pointers or references-to-pointers)
may be annotated with __attribute__((os_returns_retained)) or
__attribute__((os_returns_not_retained)) which specifies that the object written into the out parameter
should (or respectively should not) be released after use. Since often out parameters may or may not be written
depending on the exit code of the function, annotations __attribute__((os_returns_retained_on_zero))
and __attribute__((os_returns_retained_on_non_zero)) specify that an out parameter at +1 is written if
and only if the function returns a zero (respectively non-zero) error code. Observe that return-code-dependent out
parameter annotations are only available for retained out parameters, as non-retained object do not have to be
released by the callee. These attributes are only used by the Clang Static Analyzer.

The family of attributes X_returns_X_retained can be added to functions, C++ methods, and Objective-C
methods and properties. Attributes X_consumed can be added to parameters of methods, functions, and
Objective-C methods.

ns_returns_retained

Attributes in Clang

317



Supported Syntaxes

GNU C++11 C2x
__declsp

ec Keyword #pragma

#pragma 
clang at
tribute

HLSL
Semantic

ns_retur
ns_retai
ned

clang::n
s_return
s_retain
ed

clang::n
s_return
s_retain
ed

The behavior of a function with respect to reference counting for Foundation (Objective-C), CoreFoundation (C) and
OSObject (C++) is determined by a naming convention (e.g. functions starting with “get” are assumed to return at
+0).

It can be overridden using a family of the following attributes. In Objective-C, the annotation
__attribute__((ns_returns_retained)) applied to a function communicates that the object is returned at
+1, and the caller is responsible for freeing it. Similarly, the annotation
__attribute__((ns_returns_not_retained)) specifies that the object is returned at +0 and the ownership
remains with the callee. The annotation __attribute__((ns_consumes_self)) specifies that the Objective-C
method call consumes the reference to self, e.g. by attaching it to a supplied parameter. Additionally, parameters
can have an annotation __attribute__((ns_consumed)), which specifies that passing an owned object as that
parameter effectively transfers the ownership, and the caller is no longer responsible for it. These attributes affect
code generation when interacting with ARC code, and they are used by the Clang Static Analyzer.

In C programs using CoreFoundation, a similar set of attributes:
__attribute__((cf_returns_not_retained)), __attribute__((cf_returns_retained)) and
__attribute__((cf_consumed)) have the same respective semantics when applied to CoreFoundation
objects. These attributes affect code generation when interacting with ARC code, and they are used by the Clang
Static Analyzer.

Finally, in C++ interacting with XNU kernel (objects inheriting from OSObject), the same attribute family is present:
__attribute__((os_returns_not_retained)), __attribute__((os_returns_retained)) and
__attribute__((os_consumed)), with the same respective semantics. Similar to
__attribute__((ns_consumes_self)), __attribute__((os_consumes_this)) specifies that the method
call consumes the reference to “this” (e.g., when attaching it to a different object supplied as a parameter). Out
parameters (parameters the function is meant to write into, either via pointers-to-pointers or references-to-pointers)
may be annotated with __attribute__((os_returns_retained)) or
__attribute__((os_returns_not_retained)) which specifies that the object written into the out parameter
should (or respectively should not) be released after use. Since often out parameters may or may not be written
depending on the exit code of the function, annotations __attribute__((os_returns_retained_on_zero))
and __attribute__((os_returns_retained_on_non_zero)) specify that an out parameter at +1 is written if
and only if the function returns a zero (respectively non-zero) error code. Observe that return-code-dependent out
parameter annotations are only available for retained out parameters, as non-retained object do not have to be
released by the callee. These attributes are only used by the Clang Static Analyzer.

The family of attributes X_returns_X_retained can be added to functions, C++ methods, and Objective-C
methods and properties. Attributes X_consumed can be added to parameters of methods, functions, and
Objective-C methods.

numthreads

Supported Syntaxes

GNU C++11 C2x
__declsp

ec Keyword #pragma

#pragma 
clang at
tribute

HLSL
Semantic

The numthreads attribute applies to HLSL shaders where explcit thread counts are required. The X, Y, and Z values
provided to the attribute dictate the thread id. Total number of threads executed is X * Y * Z.

The full documentation is available here:
https://docs.microsoft.com/en-us/windows/win32/direct3dhlsl/sm5-attributes-numthreads

Attributes in Clang

318

https://docs.microsoft.com/en-us/windows/win32/direct3dhlsl/sm5-attributes-numthreads


objc_method_family

Supported Syntaxes

GNU C++11 C2x
__declsp

ec Keyword #pragma

#pragma 
clang at
tribute

HLSL
Semantic

objc_met
hod_fami
ly

clang::o
bjc_meth
od_famil
y

clang::o
bjc_meth
od_famil
y

Yes

Many methods in Objective-C have conventional meanings determined by their selectors. It is sometimes useful to
be able to mark a method as having a particular conventional meaning despite not having the right selector, or as not
having the conventional meaning that its selector would suggest. For these use cases, we provide an attribute to
specifically describe the “method family” that a method belongs to.

Usage: __attribute__((objc_method_family(X))), where X is one of none, alloc, copy, init,
mutableCopy, or new. This attribute can only be placed at the end of a method declaration:

- (NSString *)initMyStringValue __attribute__((objc_method_family(none)));

Users who do not wish to change the conventional meaning of a method, and who merely want to document its
non-standard retain and release semantics, should use the retaining behavior attributes (ns_returns_retained,
ns_returns_not_retained, etc).

Query for this feature with __has_attribute(objc_method_family).

objc_requires_super

Supported Syntaxes

GNU C++11 C2x
__declsp

ec Keyword #pragma

#pragma 
clang at
tribute

HLSL
Semantic

objc_req
uires_su
per

clang::o
bjc_requ
ires_sup
er

clang::o
bjc_requ
ires_sup
er

Yes

Some Objective-C classes allow a subclass to override a particular method in a parent class but expect that the
overriding method also calls the overridden method in the parent class. For these cases, we provide an attribute to
designate that a method requires a “call to super” in the overriding method in the subclass.

Usage: __attribute__((objc_requires_super)). This attribute can only be placed at the end of a method
declaration:

- (void)foo __attribute__((objc_requires_super));

This attribute can only be applied the method declarations within a class, and not a protocol. Currently this attribute
does not enforce any placement of where the call occurs in the overriding method (such as in the case of -dealloc
where the call must appear at the end). It checks only that it exists.

Note that on both OS X and iOS that the Foundation framework provides a convenience macro
NS_REQUIRES_SUPER that provides syntactic sugar for this attribute:

- (void)foo NS_REQUIRES_SUPER;

This macro is conditionally defined depending on the compiler’s support for this attribute. If the compiler does not
support the attribute the macro expands to nothing.

Operationally, when a method has this annotation the compiler will warn if the implementation of an override in a
subclass does not call super. For example:

Attributes in Clang

319



warning: method possibly missing a [super AnnotMeth] call
- (void) AnnotMeth{};
                   ^

optnone

Supported Syntaxes

GNU C++11 C2x
__declsp

ec Keyword #pragma

#pragma 
clang at
tribute

HLSL
Semantic

optnone clang::o
ptnone

clang::o
ptnone

Yes

The optnone attribute suppresses essentially all optimizations on a function or method, regardless of the
optimization level applied to the compilation unit as a whole. This is particularly useful when you need to debug a
particular function, but it is infeasible to build the entire application without optimization. Avoiding optimization on the
specified function can improve the quality of the debugging information for that function.

This attribute is incompatible with the always_inline and minsize attributes.

os_consumed

Supported Syntaxes

GNU C++11 C2x
__declsp

ec Keyword #pragma

#pragma 
clang at
tribute

HLSL
Semantic

os_consu
med

clang::o
s_consum
ed

clang::o
s_consum
ed

Yes

The behavior of a function with respect to reference counting for Foundation (Objective-C), CoreFoundation (C) and
OSObject (C++) is determined by a naming convention (e.g. functions starting with “get” are assumed to return at
+0).

It can be overridden using a family of the following attributes. In Objective-C, the annotation
__attribute__((ns_returns_retained)) applied to a function communicates that the object is returned at
+1, and the caller is responsible for freeing it. Similarly, the annotation
__attribute__((ns_returns_not_retained)) specifies that the object is returned at +0 and the ownership
remains with the callee. The annotation __attribute__((ns_consumes_self)) specifies that the Objective-C
method call consumes the reference to self, e.g. by attaching it to a supplied parameter. Additionally, parameters
can have an annotation __attribute__((ns_consumed)), which specifies that passing an owned object as that
parameter effectively transfers the ownership, and the caller is no longer responsible for it. These attributes affect
code generation when interacting with ARC code, and they are used by the Clang Static Analyzer.

In C programs using CoreFoundation, a similar set of attributes:
__attribute__((cf_returns_not_retained)), __attribute__((cf_returns_retained)) and
__attribute__((cf_consumed)) have the same respective semantics when applied to CoreFoundation
objects. These attributes affect code generation when interacting with ARC code, and they are used by the Clang
Static Analyzer.

Finally, in C++ interacting with XNU kernel (objects inheriting from OSObject), the same attribute family is present:
__attribute__((os_returns_not_retained)), __attribute__((os_returns_retained)) and
__attribute__((os_consumed)), with the same respective semantics. Similar to
__attribute__((ns_consumes_self)), __attribute__((os_consumes_this)) specifies that the method
call consumes the reference to “this” (e.g., when attaching it to a different object supplied as a parameter). Out
parameters (parameters the function is meant to write into, either via pointers-to-pointers or references-to-pointers)
may be annotated with __attribute__((os_returns_retained)) or

Attributes in Clang

320



__attribute__((os_returns_not_retained)) which specifies that the object written into the out parameter
should (or respectively should not) be released after use. Since often out parameters may or may not be written
depending on the exit code of the function, annotations __attribute__((os_returns_retained_on_zero))
and __attribute__((os_returns_retained_on_non_zero)) specify that an out parameter at +1 is written if
and only if the function returns a zero (respectively non-zero) error code. Observe that return-code-dependent out
parameter annotations are only available for retained out parameters, as non-retained object do not have to be
released by the callee. These attributes are only used by the Clang Static Analyzer.

The family of attributes X_returns_X_retained can be added to functions, C++ methods, and Objective-C
methods and properties. Attributes X_consumed can be added to parameters of methods, functions, and
Objective-C methods.

os_consumes_this

Supported Syntaxes

GNU C++11 C2x
__declsp

ec Keyword #pragma

#pragma 
clang at
tribute

HLSL
Semantic

os_consu
mes_this

clang::o
s_consum
es_this

clang::o
s_consum
es_this

The behavior of a function with respect to reference counting for Foundation (Objective-C), CoreFoundation (C) and
OSObject (C++) is determined by a naming convention (e.g. functions starting with “get” are assumed to return at
+0).

It can be overridden using a family of the following attributes. In Objective-C, the annotation
__attribute__((ns_returns_retained)) applied to a function communicates that the object is returned at
+1, and the caller is responsible for freeing it. Similarly, the annotation
__attribute__((ns_returns_not_retained)) specifies that the object is returned at +0 and the ownership
remains with the callee. The annotation __attribute__((ns_consumes_self)) specifies that the Objective-C
method call consumes the reference to self, e.g. by attaching it to a supplied parameter. Additionally, parameters
can have an annotation __attribute__((ns_consumed)), which specifies that passing an owned object as that
parameter effectively transfers the ownership, and the caller is no longer responsible for it. These attributes affect
code generation when interacting with ARC code, and they are used by the Clang Static Analyzer.

In C programs using CoreFoundation, a similar set of attributes:
__attribute__((cf_returns_not_retained)), __attribute__((cf_returns_retained)) and
__attribute__((cf_consumed)) have the same respective semantics when applied to CoreFoundation
objects. These attributes affect code generation when interacting with ARC code, and they are used by the Clang
Static Analyzer.

Finally, in C++ interacting with XNU kernel (objects inheriting from OSObject), the same attribute family is present:
__attribute__((os_returns_not_retained)), __attribute__((os_returns_retained)) and
__attribute__((os_consumed)), with the same respective semantics. Similar to
__attribute__((ns_consumes_self)), __attribute__((os_consumes_this)) specifies that the method
call consumes the reference to “this” (e.g., when attaching it to a different object supplied as a parameter). Out
parameters (parameters the function is meant to write into, either via pointers-to-pointers or references-to-pointers)
may be annotated with __attribute__((os_returns_retained)) or
__attribute__((os_returns_not_retained)) which specifies that the object written into the out parameter
should (or respectively should not) be released after use. Since often out parameters may or may not be written
depending on the exit code of the function, annotations __attribute__((os_returns_retained_on_zero))
and __attribute__((os_returns_retained_on_non_zero)) specify that an out parameter at +1 is written if
and only if the function returns a zero (respectively non-zero) error code. Observe that return-code-dependent out
parameter annotations are only available for retained out parameters, as non-retained object do not have to be
released by the callee. These attributes are only used by the Clang Static Analyzer.

The family of attributes X_returns_X_retained can be added to functions, C++ methods, and Objective-C
methods and properties. Attributes X_consumed can be added to parameters of methods, functions, and
Objective-C methods.

Attributes in Clang

321



os_returns_not_retained

Supported Syntaxes

GNU C++11 C2x
__declsp

ec Keyword #pragma

#pragma 
clang at
tribute

HLSL
Semantic

os_retur
ns_not_r
etained

clang::o
s_return
s_not_re
tained

clang::o
s_return
s_not_re
tained

Yes

The behavior of a function with respect to reference counting for Foundation (Objective-C), CoreFoundation (C) and
OSObject (C++) is determined by a naming convention (e.g. functions starting with “get” are assumed to return at
+0).

It can be overridden using a family of the following attributes. In Objective-C, the annotation
__attribute__((ns_returns_retained)) applied to a function communicates that the object is returned at
+1, and the caller is responsible for freeing it. Similarly, the annotation
__attribute__((ns_returns_not_retained)) specifies that the object is returned at +0 and the ownership
remains with the callee. The annotation __attribute__((ns_consumes_self)) specifies that the Objective-C
method call consumes the reference to self, e.g. by attaching it to a supplied parameter. Additionally, parameters
can have an annotation __attribute__((ns_consumed)), which specifies that passing an owned object as that
parameter effectively transfers the ownership, and the caller is no longer responsible for it. These attributes affect
code generation when interacting with ARC code, and they are used by the Clang Static Analyzer.

In C programs using CoreFoundation, a similar set of attributes:
__attribute__((cf_returns_not_retained)), __attribute__((cf_returns_retained)) and
__attribute__((cf_consumed)) have the same respective semantics when applied to CoreFoundation
objects. These attributes affect code generation when interacting with ARC code, and they are used by the Clang
Static Analyzer.

Finally, in C++ interacting with XNU kernel (objects inheriting from OSObject), the same attribute family is present:
__attribute__((os_returns_not_retained)), __attribute__((os_returns_retained)) and
__attribute__((os_consumed)), with the same respective semantics. Similar to
__attribute__((ns_consumes_self)), __attribute__((os_consumes_this)) specifies that the method
call consumes the reference to “this” (e.g., when attaching it to a different object supplied as a parameter). Out
parameters (parameters the function is meant to write into, either via pointers-to-pointers or references-to-pointers)
may be annotated with __attribute__((os_returns_retained)) or
__attribute__((os_returns_not_retained)) which specifies that the object written into the out parameter
should (or respectively should not) be released after use. Since often out parameters may or may not be written
depending on the exit code of the function, annotations __attribute__((os_returns_retained_on_zero))
and __attribute__((os_returns_retained_on_non_zero)) specify that an out parameter at +1 is written if
and only if the function returns a zero (respectively non-zero) error code. Observe that return-code-dependent out
parameter annotations are only available for retained out parameters, as non-retained object do not have to be
released by the callee. These attributes are only used by the Clang Static Analyzer.

The family of attributes X_returns_X_retained can be added to functions, C++ methods, and Objective-C
methods and properties. Attributes X_consumed can be added to parameters of methods, functions, and
Objective-C methods.

os_returns_retained

Supported Syntaxes

Attributes in Clang

322



GNU C++11 C2x
__declsp

ec Keyword #pragma

#pragma 
clang at
tribute

HLSL
Semantic

os_retur
ns_retai
ned

clang::o
s_return
s_retain
ed

clang::o
s_return
s_retain
ed

Yes

The behavior of a function with respect to reference counting for Foundation (Objective-C), CoreFoundation (C) and
OSObject (C++) is determined by a naming convention (e.g. functions starting with “get” are assumed to return at
+0).

It can be overridden using a family of the following attributes. In Objective-C, the annotation
__attribute__((ns_returns_retained)) applied to a function communicates that the object is returned at
+1, and the caller is responsible for freeing it. Similarly, the annotation
__attribute__((ns_returns_not_retained)) specifies that the object is returned at +0 and the ownership
remains with the callee. The annotation __attribute__((ns_consumes_self)) specifies that the Objective-C
method call consumes the reference to self, e.g. by attaching it to a supplied parameter. Additionally, parameters
can have an annotation __attribute__((ns_consumed)), which specifies that passing an owned object as that
parameter effectively transfers the ownership, and the caller is no longer responsible for it. These attributes affect
code generation when interacting with ARC code, and they are used by the Clang Static Analyzer.

In C programs using CoreFoundation, a similar set of attributes:
__attribute__((cf_returns_not_retained)), __attribute__((cf_returns_retained)) and
__attribute__((cf_consumed)) have the same respective semantics when applied to CoreFoundation
objects. These attributes affect code generation when interacting with ARC code, and they are used by the Clang
Static Analyzer.

Finally, in C++ interacting with XNU kernel (objects inheriting from OSObject), the same attribute family is present:
__attribute__((os_returns_not_retained)), __attribute__((os_returns_retained)) and
__attribute__((os_consumed)), with the same respective semantics. Similar to
__attribute__((ns_consumes_self)), __attribute__((os_consumes_this)) specifies that the method
call consumes the reference to “this” (e.g., when attaching it to a different object supplied as a parameter). Out
parameters (parameters the function is meant to write into, either via pointers-to-pointers or references-to-pointers)
may be annotated with __attribute__((os_returns_retained)) or
__attribute__((os_returns_not_retained)) which specifies that the object written into the out parameter
should (or respectively should not) be released after use. Since often out parameters may or may not be written
depending on the exit code of the function, annotations __attribute__((os_returns_retained_on_zero))
and __attribute__((os_returns_retained_on_non_zero)) specify that an out parameter at +1 is written if
and only if the function returns a zero (respectively non-zero) error code. Observe that return-code-dependent out
parameter annotations are only available for retained out parameters, as non-retained object do not have to be
released by the callee. These attributes are only used by the Clang Static Analyzer.

The family of attributes X_returns_X_retained can be added to functions, C++ methods, and Objective-C
methods and properties. Attributes X_consumed can be added to parameters of methods, functions, and
Objective-C methods.

os_returns_retained_on_non_zero

Supported Syntaxes

GNU C++11 C2x
__declsp

ec Keyword #pragma

#pragma 
clang at
tribute

HLSL
Semantic

os_retur
ns_retai
ned_on_n
on_zero

clang::o
s_return
s_retain
ed_on_no
n_zero

clang::o
s_return
s_retain
ed_on_no
n_zero

Yes

Attributes in Clang

323



The behavior of a function with respect to reference counting for Foundation (Objective-C), CoreFoundation (C) and
OSObject (C++) is determined by a naming convention (e.g. functions starting with “get” are assumed to return at
+0).

It can be overridden using a family of the following attributes. In Objective-C, the annotation
__attribute__((ns_returns_retained)) applied to a function communicates that the object is returned at
+1, and the caller is responsible for freeing it. Similarly, the annotation
__attribute__((ns_returns_not_retained)) specifies that the object is returned at +0 and the ownership
remains with the callee. The annotation __attribute__((ns_consumes_self)) specifies that the Objective-C
method call consumes the reference to self, e.g. by attaching it to a supplied parameter. Additionally, parameters
can have an annotation __attribute__((ns_consumed)), which specifies that passing an owned object as that
parameter effectively transfers the ownership, and the caller is no longer responsible for it. These attributes affect
code generation when interacting with ARC code, and they are used by the Clang Static Analyzer.

In C programs using CoreFoundation, a similar set of attributes:
__attribute__((cf_returns_not_retained)), __attribute__((cf_returns_retained)) and
__attribute__((cf_consumed)) have the same respective semantics when applied to CoreFoundation
objects. These attributes affect code generation when interacting with ARC code, and they are used by the Clang
Static Analyzer.

Finally, in C++ interacting with XNU kernel (objects inheriting from OSObject), the same attribute family is present:
__attribute__((os_returns_not_retained)), __attribute__((os_returns_retained)) and
__attribute__((os_consumed)), with the same respective semantics. Similar to
__attribute__((ns_consumes_self)), __attribute__((os_consumes_this)) specifies that the method
call consumes the reference to “this” (e.g., when attaching it to a different object supplied as a parameter). Out
parameters (parameters the function is meant to write into, either via pointers-to-pointers or references-to-pointers)
may be annotated with __attribute__((os_returns_retained)) or
__attribute__((os_returns_not_retained)) which specifies that the object written into the out parameter
should (or respectively should not) be released after use. Since often out parameters may or may not be written
depending on the exit code of the function, annotations __attribute__((os_returns_retained_on_zero))
and __attribute__((os_returns_retained_on_non_zero)) specify that an out parameter at +1 is written if
and only if the function returns a zero (respectively non-zero) error code. Observe that return-code-dependent out
parameter annotations are only available for retained out parameters, as non-retained object do not have to be
released by the callee. These attributes are only used by the Clang Static Analyzer.

The family of attributes X_returns_X_retained can be added to functions, C++ methods, and Objective-C
methods and properties. Attributes X_consumed can be added to parameters of methods, functions, and
Objective-C methods.

os_returns_retained_on_zero

Supported Syntaxes

GNU C++11 C2x
__declsp

ec Keyword #pragma

#pragma 
clang at
tribute

HLSL
Semantic

os_retur
ns_retai
ned_on_z
ero

clang::o
s_return
s_retain
ed_on_ze
ro

clang::o
s_return
s_retain
ed_on_ze
ro

Yes

The behavior of a function with respect to reference counting for Foundation (Objective-C), CoreFoundation (C) and
OSObject (C++) is determined by a naming convention (e.g. functions starting with “get” are assumed to return at
+0).

It can be overridden using a family of the following attributes. In Objective-C, the annotation
__attribute__((ns_returns_retained)) applied to a function communicates that the object is returned at
+1, and the caller is responsible for freeing it. Similarly, the annotation
__attribute__((ns_returns_not_retained)) specifies that the object is returned at +0 and the ownership
remains with the callee. The annotation __attribute__((ns_consumes_self)) specifies that the Objective-C

Attributes in Clang

324



method call consumes the reference to self, e.g. by attaching it to a supplied parameter. Additionally, parameters
can have an annotation __attribute__((ns_consumed)), which specifies that passing an owned object as that
parameter effectively transfers the ownership, and the caller is no longer responsible for it. These attributes affect
code generation when interacting with ARC code, and they are used by the Clang Static Analyzer.

In C programs using CoreFoundation, a similar set of attributes:
__attribute__((cf_returns_not_retained)), __attribute__((cf_returns_retained)) and
__attribute__((cf_consumed)) have the same respective semantics when applied to CoreFoundation
objects. These attributes affect code generation when interacting with ARC code, and they are used by the Clang
Static Analyzer.

Finally, in C++ interacting with XNU kernel (objects inheriting from OSObject), the same attribute family is present:
__attribute__((os_returns_not_retained)), __attribute__((os_returns_retained)) and
__attribute__((os_consumed)), with the same respective semantics. Similar to
__attribute__((ns_consumes_self)), __attribute__((os_consumes_this)) specifies that the method
call consumes the reference to “this” (e.g., when attaching it to a different object supplied as a parameter). Out
parameters (parameters the function is meant to write into, either via pointers-to-pointers or references-to-pointers)
may be annotated with __attribute__((os_returns_retained)) or
__attribute__((os_returns_not_retained)) which specifies that the object written into the out parameter
should (or respectively should not) be released after use. Since often out parameters may or may not be written
depending on the exit code of the function, annotations __attribute__((os_returns_retained_on_zero))
and __attribute__((os_returns_retained_on_non_zero)) specify that an out parameter at +1 is written if
and only if the function returns a zero (respectively non-zero) error code. Observe that return-code-dependent out
parameter annotations are only available for retained out parameters, as non-retained object do not have to be
released by the callee. These attributes are only used by the Clang Static Analyzer.

The family of attributes X_returns_X_retained can be added to functions, C++ methods, and Objective-C
methods and properties. Attributes X_consumed can be added to parameters of methods, functions, and
Objective-C methods.

overloadable

Supported Syntaxes

GNU C++11 C2x
__declsp

ec Keyword #pragma

#pragma 
clang at
tribute

HLSL
Semantic

overload
able

clang::o
verloada
ble

clang::o
verloada
ble

Yes

Clang provides support for C++ function overloading in C. Function overloading in C is introduced using the
overloadable attribute. For example, one might provide several overloaded versions of a tgsin function that
invokes the appropriate standard function computing the sine of a value with float, double, or long double
precision:

#include <math.h>
float __attribute__((overloadable)) tgsin(float x) { return sinf(x); }
double __attribute__((overloadable)) tgsin(double x) { return sin(x); }
long double __attribute__((overloadable)) tgsin(long double x) { return sinl(x); }

Given these declarations, one can call tgsin with a float value to receive a float result, with a double to
receive a double result, etc. Function overloading in C follows the rules of C++ function overloading to pick the best
overload given the call arguments, with a few C-specific semantics:

• Conversion from float or double to long double is ranked as a floating-point promotion (per C99) rather
than as a floating-point conversion (as in C++).

• A conversion from a pointer of type T* to a pointer of type U* is considered a pointer conversion (with
conversion rank) if T and U are compatible types.

• A conversion from type T to a value of type U is permitted if T and U are compatible types. This conversion is
given “conversion” rank.

Attributes in Clang

325



• If no viable candidates are otherwise available, we allow a conversion from a pointer of type T* to a pointer of
type U*, where T and U are incompatible. This conversion is ranked below all other types of conversions.
Please note: U lacking qualifiers that are present on T is sufficient for T and U to be incompatible.

The declaration of overloadable functions is restricted to function declarations and definitions. If a function is
marked with the overloadable attribute, then all declarations and definitions of functions with that name, except for
at most one (see the note below about unmarked overloads), must have the overloadable attribute. In addition,
redeclarations of a function with the overloadable attribute must have the overloadable attribute, and
redeclarations of a function without the overloadable attribute must not have the overloadable attribute. e.g.,

int f(int) __attribute__((overloadable));
float f(float); // error: declaration of "f" must have the "overloadable" attribute
int f(int); // error: redeclaration of "f" must have the "overloadable" attribute

int g(int) __attribute__((overloadable));
int g(int) { } // error: redeclaration of "g" must also have the "overloadable" attribute

int h(int);
int h(int) __attribute__((overloadable)); // error: declaration of "h" must not
                                          // have the "overloadable" attribute

Functions marked overloadable must have prototypes. Therefore, the following code is ill-formed:

int h() __attribute__((overloadable)); // error: h does not have a prototype

However, overloadable functions are allowed to use a ellipsis even if there are no named parameters (as is
permitted in C++). This feature is particularly useful when combined with the unavailable attribute:

void honeypot(...) __attribute__((overloadable, unavailable)); // calling me is an error

Functions declared with the overloadable attribute have their names mangled according to the same rules as C++
function names. For example, the three tgsin functions in our motivating example get the mangled names
_Z5tgsinf, _Z5tgsind, and _Z5tgsine, respectively. There are two caveats to this use of name mangling:

• Future versions of Clang may change the name mangling of functions overloaded in C, so you should not
depend on an specific mangling. To be completely safe, we strongly urge the use of static inline with
overloadable functions.

• The overloadable attribute has almost no meaning when used in C++, because names will already be
mangled and functions are already overloadable. However, when an overloadable function occurs within an
extern "C" linkage specification, it’s name will be mangled in the same way as it would in C.

For the purpose of backwards compatibility, at most one function with the same name as other overloadable
functions may omit the overloadable attribute. In this case, the function without the overloadable attribute will
not have its name mangled.

For example:

// Notes with mangled names assume Itanium mangling.
int f(int);
int f(double) __attribute__((overloadable));
void foo() {
  f(5); // Emits a call to f (not _Z1fi, as it would with an overload that
        // was marked with overloadable).
  f(1.0); // Emits a call to _Z1fd.
}

Support for unmarked overloads is not present in some versions of clang. You may query for it using
__has_extension(overloadable_unmarked).

Query for this attribute with __has_attribute(overloadable).

patchable_function_entry

Supported Syntaxes

Attributes in Clang

326



GNU C++11 C2x
__declsp

ec Keyword #pragma

#pragma 
clang at
tribute

HLSL
Semantic

patchabl
e_functi
on_entry

gnu::pat
chable_f
unction_
entry

gnu::pat
chable_f
unction_
entry

Yes

__attribute__((patchable_function_entry(N,M))) is used to generate M NOPs before the function entry
and N-M NOPs after the function entry. This attribute takes precedence over the command line option
-fpatchable-function-entry=N,M. M defaults to 0 if omitted.

This attribute is only supported on aarch64/aarch64-be/riscv32/riscv64/i386/x86-64 targets.

preserve_access_index

Supported Syntaxes

GNU C++11 C2x
__declsp

ec Keyword #pragma

#pragma 
clang at
tribute

HLSL
Semantic

preserve
_access_
index

clang::p
reserve_
access_i
ndex

clang::p
reserve_
access_i
ndex

Yes

Clang supports the __attribute__((preserve_access_index)) attribute for the BPF target. This attribute
may be attached to a struct or union declaration, where if -g is specified, it enables preserving struct or union
member access debuginfo indices of this struct or union, similar to clang
__builtin_preserve_access_index().

reinitializes

Supported Syntaxes

GNU C++11 C2x
__declsp

ec Keyword #pragma

#pragma 
clang at
tribute

HLSL
Semantic

reinitia
lizes

clang::r
einitial
izes

The reinitializes attribute can be applied to a non-static, non-const C++ member function to indicate that this
member function reinitializes the entire object to a known state, independent of the previous state of the object.

This attribute can be interpreted by static analyzers that warn about uses of an object that has been left in an
indeterminate state by a move operation. If a member function marked with the reinitializes attribute is called
on a moved-from object, the analyzer can conclude that the object is no longer in an indeterminate state.

A typical example where this attribute would be used is on functions that clear a container class:

template <class T>
class Container {
public:
  ...
  [[clang::reinitializes]] void Clear();
  ...
};

Attributes in Clang

327



release_capability, release_shared_capability

Supported Syntaxes

GNU C++11 C2x
__declsp

ec Keyword #pragma

#pragma 
clang at
tribute

HLSL
Semantic

release_
capabili
ty <br/> r
elease_s
hared_ca
pability
<br/> rele
ase_gene
ric_capa
bility
<br/> unlo
ck_funct
ion

clang::r
elease_c
apabilit
y <br/> cl
ang::rel
ease_sha
red_capa
bility
<br/> clan
g::relea
se_gener
ic_capab
ility
<br/> clan
g::unloc
k_functi
on

Marks a function as releasing a capability.

retain

Supported Syntaxes

GNU C++11 C2x
__declsp

ec Keyword #pragma

#pragma 
clang at
tribute

HLSL
Semantic

retain gnu::ret
ain

gnu::ret
ain

This attribute, when attached to a function or variable definition, prevents section garbage collection in the linker. It
does not prevent other discard mechanisms, such as archive member selection, and COMDAT group resolution.

If the compiler does not emit the definition, e.g. because it was not used in the translation unit or the compiler was
able to eliminate all of the uses, this attribute has no effect. This attribute is typically combined with the used
attribute to force the definition to be emitted and preserved into the final linked image.

This attribute is only necessary on ELF targets; other targets prevent section garbage collection by the linker when
using the used attribute alone. Using the attributes together should result in consistent behavior across targets.

This attribute requires the linker to support the SHF_GNU_RETAIN extension. This support is available in GNU ld
and gold as of binutils 2.36, as well as in ld.lld 13.

shader

Supported Syntaxes

GNU C++11 C2x
__declsp

ec Keyword #pragma

#pragma 
clang at
tribute

HLSL
Semantic

Attributes in Clang

328



The shader type attribute applies to HLSL shader entry functions to identify the shader type for the entry function.
The syntax is:

``[shader(string-literal)]``

where the string literal is one of: “pixel”, “vertex”, “geometry”, “hull”, “domain”, “compute”, “raygeneration”,
“intersection”, “anyhit”, “closesthit”, “miss”, “callable”, “mesh”, “amplification”. Normally the shader type is set by
shader target with the -T option like -Tps_6_1. When compiling to a library target like lib_6_3, the shader type
attribute can help the compiler to identify the shader type. It is mostly used by Raytracing shaders where shaders
must be compiled into a library and linked at runtime.

short_call, near

Supported Syntaxes

GNU C++11 C2x
__declsp

ec Keyword #pragma

#pragma 
clang at
tribute

HLSL
Semantic

short_ca
ll <br/>
near

gnu::sho
rt_call
<br/> gnu:
:near

gnu::sho
rt_call
<br/> gnu:
:near

Yes

Clang supports the __attribute__((long_call)), __attribute__((far)),
__attribute__((short__call)), and __attribute__((near)) attributes on MIPS targets. These attributes
may only be added to function declarations and change the code generated by the compiler when directly calling the
function. The short_call and near attributes are synonyms and allow calls to the function to be made using the
jal instruction, which requires the function to be located in the same naturally aligned 256MB segment as the caller.
The long_call and far attributes are synonyms and require the use of a different call sequence that works
regardless of the distance between the functions.

These attributes have no effect for position-independent code.

These attributes take priority over command line switches such as -mlong-calls and -mno-long-calls.

signal

Supported Syntaxes

GNU C++11 C2x
__declsp

ec Keyword #pragma

#pragma 
clang at
tribute

HLSL
Semantic

signal gnu::sig
nal

gnu::sig
nal

Yes

Clang supports the GNU style __attribute__((signal)) attribute on AVR targets. This attribute may be
attached to a function definition and instructs the backend to generate appropriate function entry/exit code so that it
can be used directly as an interrupt service routine.

Interrupt handler functions defined with the signal attribute do not re-enable interrupts.

speculative_load_hardening

Supported Syntaxes

Attributes in Clang

329



GNU C++11 C2x
__declsp

ec Keyword #pragma

#pragma 
clang at
tribute

HLSL
Semantic

speculat
ive_load
_hardeni
ng

clang::s
peculati
ve_load_
hardenin
g

clang::s
peculati
ve_load_
hardenin
g

Yes

This attribute can be applied to a function declaration in order to indicate

that Speculative Load Hardening should be enabled for the function body. This can also be applied to a method
in Objective C. This attribute will take precedence over the command line flag in the case where
-mno-speculative-load-hardening is specified.

Speculative Load Hardening is a best-effort mitigation against information leak attacks that make use of control
flow miss-speculation - specifically miss-speculation of whether a branch is taken or not. Typically vulnerabilities
enabling such attacks are classified as “Spectre variant #1”. Notably, this does not attempt to mitigate against
miss-speculation of branch target, classified as “Spectre variant #2” vulnerabilities.

When inlining, the attribute is sticky. Inlining a function that carries this attribute will cause the caller to gain the
attribute. This is intended to provide a maximally conservative model where the code in a function annotated
with this attribute will always (even after inlining) end up hardened.

sycl_kernel

Supported Syntaxes

GNU C++11 C2x
__declsp

ec Keyword #pragma

#pragma 
clang at
tribute

HLSL
Semantic

sycl_ker
nel

clang::s
ycl_kern
el

clang::s
ycl_kern
el

The sycl_kernel attribute specifies that a function template will be used to outline device code and to generate an
OpenCL kernel. Here is a code example of the SYCL program, which demonstrates the compiler’s outlining job:

int foo(int x) { return ++x; }

using namespace cl::sycl;
queue Q;
buffer<int, 1> a(range<1>{1024});
Q.submit([&](handler& cgh) {
  auto A = a.get_access<access::mode::write>(cgh);
  cgh.parallel_for<init_a>(range<1>{1024}, [=](id<1> index) {
    A[index] = index[0] + foo(42);
  });
}

A C++ function object passed to the parallel_for is called a “SYCL kernel”. A SYCL kernel defines the entry
point to the “device part” of the code. The compiler will emit all symbols accessible from a “kernel”. In this code
example, the compiler will emit “foo” function. More details about the compilation of functions for the device part can
be found in the SYCL 1.2.1 specification Section 6.4. To show to the compiler entry point to the “device part” of the
code, the SYCL runtime can use the sycl_kernel attribute in the following way:

namespace cl {
namespace sycl {
class handler {
  template <typename KernelName, typename KernelType/*, ...*/>
  __attribute__((sycl_kernel)) void sycl_kernel_function(KernelType KernelFuncObj) {
    // ...

Attributes in Clang

330

https://llvm.org/docs/SpeculativeLoadHardening.html
https://clang.llvm.org/docs/ClangCommandLineReference.html#cmdoption-clang-mspeculative-load-hardening


    KernelFuncObj();
  }

  template <typename KernelName, typename KernelType, int Dims>
  void parallel_for(range<Dims> NumWorkItems, KernelType KernelFunc) {
#ifdef __SYCL_DEVICE_ONLY__
    sycl_kernel_function<KernelName, KernelType, Dims>(KernelFunc);
#else
    // Host implementation
#endif
  }
};
} // namespace sycl
} // namespace cl

The compiler will also generate an OpenCL kernel using the function marked with the sycl_kernel attribute. Here
is the list of SYCL device compiler expectations with regard to the function marked with the sycl_kernel attribute:

• The function must be a template with at least two type template parameters. The compiler generates an
OpenCL kernel and uses the first template parameter as a unique name for the generated OpenCL kernel. The
host application uses this unique name to invoke the OpenCL kernel generated for the SYCL kernel specialized
by this name and second template parameter KernelType (which might be an unnamed function object type).

• The function must have at least one parameter. The first parameter is required to be a function object type
(named or unnamed i.e. lambda). The compiler uses function object type fields to generate OpenCL kernel
parameters.

• The function must return void. The compiler reuses the body of marked functions to generate the OpenCL
kernel body, and the OpenCL kernel must return void.

The SYCL kernel in the previous code sample meets these expectations.

target

Supported Syntaxes

GNU C++11 C2x
__declsp

ec Keyword #pragma

#pragma 
clang at
tribute

HLSL
Semantic

target gnu::tar
get

gnu::tar
get

Yes

Clang supports the GNU style __attribute__((target("OPTIONS"))) attribute. This attribute may be
attached to a function definition and instructs the backend to use different code generation options than were passed
on the command line.

The current set of options correspond to the existing “subtarget features” for the target with or without a “-mno-” in
front corresponding to the absence of the feature, as well as arch="CPU" which will change the default “CPU” for
the function.

For X86, the attribute also allows tune="CPU" to optimize the generated code for the given CPU without changing
the available instructions.

For AArch64, the attribute also allows the “branch-protection=<args>” option, where the permissible arguments and
their effect on code generation are the same as for the command-line option -mbranch-protection.

Example “subtarget features” from the x86 backend include: “mmx”, “sse”, “sse4.2”, “avx”, “xop” and largely
correspond to the machine specific options handled by the front end.

Additionally, this attribute supports function multiversioning for ELF based x86/x86-64 targets, which can be used to
create multiple implementations of the same function that will be resolved at runtime based on the priority of their
target attribute strings. A function is considered a multiversioned function if either two declarations of the function
have different target attribute strings, or if it has a target attribute string of default. For example:

Attributes in Clang

331



__attribute__((target("arch=atom")))
void foo() {} // will be called on 'atom' processors.
__attribute__((target("default")))
void foo() {} // will be called on any other processors.

All multiversioned functions must contain a default (fallback) implementation, otherwise usages of the function are
considered invalid. Additionally, a function may not become multiversioned after its first use.

target_clones

Supported Syntaxes

GNU C++11 C2x
__declsp

ec Keyword #pragma

#pragma 
clang at
tribute

HLSL
Semantic

target_c
lones

gnu::tar
get_clon
es

gnu::tar
get_clon
es

Yes

Clang supports the target_clones("OPTIONS") attribute. This attribute may be attached to a function
declaration and causes function multiversioning, where multiple versions of the function will be emitted with different
code generation options. Additionally, these versions will be resolved at runtime based on the priority of their attribute
options. All target_clone functions are considered multiversioned functions.

All multiversioned functions must contain a default (fallback) implementation, otherwise usages of the function are
considered invalid. Additionally, a function may not become multiversioned after its first use.

The options to target_clones can either be a target-specific architecture (specified as arch=CPU), or one of a list
of subtarget features.

Example “subtarget features” from the x86 backend include: “mmx”, “sse”, “sse4.2”, “avx”, “xop” and largely
correspond to the machine specific options handled by the front end.

The versions can either be listed as a comma-separated sequence of string literals or as a single string literal
containing a comma-separated list of versions. For compatibility with GCC, the two formats can be mixed. For
example, the following will emit 4 versions of the function:

__attribute__((target_clones("arch=atom,avx2","arch=ivybridge","default")))
void foo() {}

try_acquire_capability, try_acquire_shared_capability

Supported Syntaxes

GNU C++11 C2x
__declsp

ec Keyword #pragma

#pragma 
clang at
tribute

HLSL
Semantic

try_acqu
ire_capa
bility
<br/> try_
acquire_
shared_c
apabilit
y

clang::t
ry_acqui
re_capab
ility
<br/> clan
g::try_a
cquire_s
hared_ca
pability

Attributes in Clang

332



Marks a function that attempts to acquire a capability. This function may fail to actually acquire the capability; they
accept a Boolean value determining whether acquiring the capability means success (true), or failing to acquire the
capability means success (false).

used

Supported Syntaxes

GNU C++11 C2x
__declsp

ec Keyword #pragma

#pragma 
clang at
tribute

HLSL
Semantic

used gnu::use
d

gnu::use
d

This attribute, when attached to a function or variable definition, indicates that there may be references to the entity
which are not apparent in the source code. For example, it may be referenced from inline asm, or it may be found
through a dynamic symbol or section lookup.

The compiler must emit the definition even if it appears to be unused, and it must not apply optimizations which
depend on fully understanding how the entity is used.

Whether this attribute has any effect on the linker depends on the target and the linker. Most linkers support the
feature of section garbage collection (--gc-sections), also known as “dead stripping” (ld64 -dead_strip) or
discarding unreferenced sections (link.exe /OPT:REF). On COFF and Mach-O targets (Windows and Apple
platforms), the used attribute prevents symbols from being removed by linker section GC. On ELF targets, it has no
effect on its own, and the linker may remove the definition if it is not otherwise referenced. This linker GC can be
avoided by also adding the retain attribute. Note that retain requires special support from the linker; see that
attribute’s documentation for further information.

xray_always_instrument, xray_never_instrument, xray_log_args

Supported Syntaxes

GNU C++11 C2x
__declsp

ec Keyword #pragma

#pragma 
clang at
tribute

HLSL
Semantic

xray_alw
ays_inst
rument
<br/> xray
_never_i
nstrumen
t

clang::x
ray_alwa
ys_instr
ument
<br/> clan
g::xray_
never_in
strument

clang::x
ray_alwa
ys_instr
ument
<br/> clan
g::xray_
never_in
strument

Yes

__attribute__((xray_always_instrument)) or [[clang::xray_always_instrument]] is used to
mark member functions (in C++), methods (in Objective C), and free functions (in C, C++, and Objective C) to be
instrumented with XRay. This will cause the function to always have space at the beginning and exit points to allow
for runtime patching.

Conversely, __attribute__((xray_never_instrument)) or [[clang::xray_never_instrument]] will
inhibit the insertion of these instrumentation points.

If a function has neither of these attributes, they become subject to the XRay heuristics used to determine whether a
function should be instrumented or otherwise.

__attribute__((xray_log_args(N))) or [[clang::xray_log_args(N)]] is used to preserve N function
arguments for the logging function. Currently, only N==1 is supported.

Attributes in Clang

333



xray_always_instrument, xray_never_instrument, xray_log_args

Supported Syntaxes

GNU C++11 C2x
__declsp

ec Keyword #pragma

#pragma 
clang at
tribute

HLSL
Semantic

xray_log
_args

clang::x
ray_log_
args

clang::x
ray_log_
args

Yes

__attribute__((xray_always_instrument)) or [[clang::xray_always_instrument]] is used to
mark member functions (in C++), methods (in Objective C), and free functions (in C, C++, and Objective C) to be
instrumented with XRay. This will cause the function to always have space at the beginning and exit points to allow
for runtime patching.

Conversely, __attribute__((xray_never_instrument)) or [[clang::xray_never_instrument]] will
inhibit the insertion of these instrumentation points.

If a function has neither of these attributes, they become subject to the XRay heuristics used to determine whether a
function should be instrumented or otherwise.

__attribute__((xray_log_args(N))) or [[clang::xray_log_args(N)]] is used to preserve N function
arguments for the logging function. Currently, only N==1 is supported.

zero_call_used_regs

Supported Syntaxes

GNU C++11 C2x
__declsp

ec Keyword #pragma

#pragma 
clang at
tribute

HLSL
Semantic

zero_cal
l_used_r
egs

gnu::zer
o_call_u
sed_regs

gnu::zer
o_call_u
sed_regs

Yes

This attribute, when attached to a function, causes the compiler to zero a subset of all call-used registers before the
function returns. It’s used to increase program security by either mitigating Return-Oriented Programming (ROP)
attacks or preventing information leakage through registers.

The term “call-used” means registers which are not guaranteed to be preserved unchanged for the caller by the
current calling convention. This could also be described as “caller-saved” or “not callee-saved”.

The choice parameters gives the programmer flexibility to choose the subset of the call-used registers to be zeroed:

• skip doesn’t zero any call-used registers. This choice overrides any command-line arguments.

• used only zeros call-used registers used in the function. By used, we mean a register whose contents have
been set or referenced in the function.

• used-gpr only zeros call-used GPR registers used in the funciton.

• used-arg only zeros call-used registers used to pass arguments to the function.

• used-gpr-arg only zeros call-used GPR registers used to pass arguments to the function.

• all zeros all call-used registers.

• all-gpr zeros all call-used GPR registers.

• all-arg zeros all call-used registers used to pass arguments to the function.

• all-gpr-arg zeros all call-used GPR registers used to pass arguments to the function.

The default for the attribute is contolled by the -fzero-call-used-regs flag.

Attributes in Clang

334

https://en.wikipedia.org/wiki/Return-oriented_programming


Handle Attributes
Handles are a way to identify resources like files, sockets, and processes. They are more opaque than pointers and
widely used in system programming. They have similar risks such as never releasing a resource associated with a
handle, attempting to use a handle that was already released, or trying to release a handle twice. Using the
annotations below it is possible to make the ownership of the handles clear: whose responsibility is to release them.
They can also aid static analysis tools to find bugs.

acquire_handle

Supported Syntaxes

GNU C++11 C2x
__declsp

ec Keyword #pragma

#pragma 
clang at
tribute

HLSL
Semantic

acquire_
handle

clang::a
cquire_h
andle

clang::a
cquire_h
andle

Yes

If this annotation is on a function or a function type it is assumed to return a new handle. In case this annotation is on
an output parameter, the function is assumed to fill the corresponding argument with a new handle. The attribute
requires a string literal argument which used to identify the handle with later uses of use_handle or
release_handle.

// Output arguments from Zircon.
zx_status_t zx_socket_create(uint32_t options,
                             zx_handle_t __attribute__((acquire_handle("zircon"))) * out0,
                             zx_handle_t* out1 [[clang::acquire_handle("zircon")]]);

// Returned handle.
[[clang::acquire_handle("tag")]] int open(const char *path, int oflag, ... );
int open(const char *path, int oflag, ... ) __attribute__((acquire_handle("tag")));

release_handle

Supported Syntaxes

GNU C++11 C2x
__declsp

ec Keyword #pragma

#pragma 
clang at
tribute

HLSL
Semantic

release_
handle

clang::r
elease_h
andle

clang::r
elease_h
andle

Yes

If a function parameter is annotated with release_handle(tag) it is assumed to close the handle. It is also
assumed to require an open handle to work with. The attribute requires a string literal argument to identify the handle
being released.

zx_status_t zx_handle_close(zx_handle_t handle [[clang::release_handle("tag")]]);

use_handle

Supported Syntaxes

Attributes in Clang

335



GNU C++11 C2x
__declsp

ec Keyword #pragma

#pragma 
clang at
tribute

HLSL
Semantic

use_hand
le

clang::u
se_handl
e

clang::u
se_handl
e

Yes

A function taking a handle by value might close the handle. If a function parameter is annotated with
use_handle(tag) it is assumed to not to change the state of the handle. It is also assumed to require an open
handle to work with. The attribute requires a string literal argument to identify the handle being used.

zx_status_t zx_port_wait(zx_handle_t handle [[clang::use_handle("zircon")]],
                         zx_time_t deadline,
                         zx_port_packet_t* packet);

Nullability Attributes
Whether a particular pointer may be “null” is an important concern when working with pointers in the C family of
languages. The various nullability attributes indicate whether a particular pointer can be null or not, which makes
APIs more expressive and can help static analysis tools identify bugs involving null pointers. Clang supports several
kinds of nullability attributes: the nonnull and returns_nonnull attributes indicate which function or method
parameters and result types can never be null, while nullability type qualifiers indicate which pointer types can be null
(_Nullable) or cannot be null (_Nonnull).

The nullability (type) qualifiers express whether a value of a given pointer type can be null (the _Nullable qualifier),
doesn’t have a defined meaning for null (the _Nonnull qualifier), or for which the purpose of null is unclear (the
_Null_unspecified qualifier). Because nullability qualifiers are expressed within the type system, they are more
general than the nonnull and returns_nonnull attributes, allowing one to express (for example) a nullable
pointer to an array of nonnull pointers. Nullability qualifiers are written to the right of the pointer to which they apply.
For example:

// No meaningful result when 'ptr' is null (here, it happens to be undefined behavior).
int fetch(int * _Nonnull ptr) { return *ptr; }

// 'ptr' may be null.
int fetch_or_zero(int * _Nullable ptr) {
  return ptr ? *ptr : 0;
}

// A nullable pointer to non-null pointers to const characters.
const char *join_strings(const char * _Nonnull * _Nullable strings, unsigned n);

In Objective-C, there is an alternate spelling for the nullability qualifiers that can be used in Objective-C methods and
properties using context-sensitive, non-underscored keywords. For example:

@interface NSView : NSResponder
  - (nullable NSView *)ancestorSharedWithView:(nonnull NSView *)aView;
  @property (assign, nullable) NSView *superview;
  @property (readonly, nonnull) NSArray *subviews;
@end

_Nonnull

Supported Syntaxes

GNU C++11 C2x
__declsp

ec Keyword #pragma

#pragma 
clang at
tribute

HLSL
Semantic

_Nonnull

Attributes in Clang

336



The _Nonnull nullability qualifier indicates that null is not a meaningful value for a value of the _Nonnull pointer
type. For example, given a declaration such as:

int fetch(int * _Nonnull ptr);

a caller of fetch should not provide a null value, and the compiler will produce a warning if it sees a literal null value
passed to fetch. Note that, unlike the declaration attribute nonnull, the presence of _Nonnull does not imply
that passing null is undefined behavior: fetch is free to consider null undefined behavior or (perhaps for
backward-compatibility reasons) defensively handle null.

_Null_unspecified

Supported Syntaxes

GNU C++11 C2x
__declsp

ec Keyword #pragma

#pragma 
clang at
tribute

HLSL
Semantic

_Null_un
specifie
d

The _Null_unspecified nullability qualifier indicates that neither the _Nonnull nor _Nullable qualifiers make
sense for a particular pointer type. It is used primarily to indicate that the role of null with specific pointers in a
nullability-annotated header is unclear, e.g., due to overly-complex implementations or historical factors with a
long-lived API.

_Nullable

Supported Syntaxes

GNU C++11 C2x
__declsp

ec Keyword #pragma

#pragma 
clang at
tribute

HLSL
Semantic

_Nullabl
e

The _Nullable nullability qualifier indicates that a value of the _Nullable pointer type can be null. For example,
given:

int fetch_or_zero(int * _Nullable ptr);

a caller of fetch_or_zero can provide null.

_Nullable_result

Supported Syntaxes

GNU C++11 C2x
__declsp

ec Keyword #pragma

#pragma 
clang at
tribute

HLSL
Semantic

_Nullabl
e_result

The _Nullable_result nullability qualifier means that a value of the _Nullable_result pointer can be nil,
just like _Nullable. Where this attribute differs from _Nullable is when it’s used on a parameter to a completion
handler in a Swift async method. For instance, here:

Attributes in Clang

337



-(void)fetchSomeDataWithID:(int)identifier
         completionHandler:(void (^)(Data *_Nullable_result result, NSError *error))completionHandler;

This method asynchronously calls completionHandler when the data is available, or calls it with an error.
_Nullable_result indicates to the Swift importer that this is the uncommon case where result can get nil
even if no error has occurred, and will therefore import it as a Swift optional type. Otherwise, if result was
annotated with _Nullable, the Swift importer will assume that result will always be non-nil unless an error
occurred.

nonnull

Supported Syntaxes

GNU C++11 C2x
__declsp

ec Keyword #pragma

#pragma 
clang at
tribute

HLSL
Semantic

nonnull gnu::non
null

gnu::non
null

The nonnull attribute indicates that some function parameters must not be null, and can be used in several
different ways. It’s original usage (from GCC) is as a function (or Objective-C method) attribute that specifies which
parameters of the function are nonnull in a comma-separated list. For example:

extern void * my_memcpy (void *dest, const void *src, size_t len)
                __attribute__((nonnull (1, 2)));

Here, the nonnull attribute indicates that parameters 1 and 2 cannot have a null value. Omitting the parenthesized
list of parameter indices means that all parameters of pointer type cannot be null:

extern void * my_memcpy (void *dest, const void *src, size_t len)
                __attribute__((nonnull));

Clang also allows the nonnull attribute to be placed directly on a function (or Objective-C method) parameter,
eliminating the need to specify the parameter index ahead of type. For example:

extern void * my_memcpy (void *dest __attribute__((nonnull)),
                         const void *src __attribute__((nonnull)), size_t len);

Note that the nonnull attribute indicates that passing null to a non-null parameter is undefined behavior, which the
optimizer may take advantage of to, e.g., remove null checks. The _Nonnull type qualifier indicates that a pointer
cannot be null in a more general manner (because it is part of the type system) and does not imply undefined
behavior, making it more widely applicable.

returns_nonnull

Supported Syntaxes

GNU C++11 C2x
__declsp

ec Keyword #pragma

#pragma 
clang at
tribute

HLSL
Semantic

returns_
nonnull

gnu::ret
urns_non
null

gnu::ret
urns_non
null

Yes

The returns_nonnull attribute indicates that a particular function (or Objective-C method) always returns a
non-null pointer. For example, a particular system malloc might be defined to terminate a process when memory is
not available rather than returning a null pointer:

extern void * malloc (size_t size) __attribute__((returns_nonnull));

Attributes in Clang

338

https://gcc.gnu.org/onlinedocs/gcc/Common-Function-Attributes.html#Common-Function-Attributes


The returns_nonnull attribute implies that returning a null pointer is undefined behavior, which the optimizer may
take advantage of. The _Nonnull type qualifier indicates that a pointer cannot be null in a more general manner
(because it is part of the type system) and does not imply undefined behavior, making it more widely applicable

OpenCL Address Spaces
The address space qualifier may be used to specify the region of memory that is used to allocate the object. OpenCL
supports the following address spaces: __generic(generic), __global(global), __local(local), __private(private),
__constant(constant).

__constant int c = ...;

__generic int* foo(global int* g) {
  __local int* l;
  private int p;
  ...
  return l;
}

More details can be found in the OpenCL C language Spec v2.0, Section 6.5.

[[clang::opencl_global_device]], [[clang::opencl_global_host]]

Supported Syntaxes

GNU C++11 C2x
__declsp

ec Keyword #pragma

#pragma 
clang at
tribute

HLSL
Semantic

opencl_g
lobal_de
vice

clang::o
pencl_gl
obal_dev
ice

clang::o
pencl_gl
obal_dev
ice

The global_device and global_host address space attributes specify that an object is allocated in global
memory on the device/host. It helps to distinguish USM (Unified Shared Memory) pointers that access global device
memory from those that access global host memory. These new address spaces are a subset of the
__global/opencl_global address space, the full address space set model for OpenCL 2.0 with the extension
looks as follows:

generic->global->host
->device
->private
->local
constant

As global_device and global_host are a subset of __global/opencl_global address spaces it is allowed
to convert global_device and global_host address spaces to __global/opencl_global address spaces
(following ISO/IEC TR 18037 5.1.3 “Address space nesting and rules for pointers”).

[[clang::opencl_global_device]], [[clang::opencl_global_host]]

Supported Syntaxes

Attributes in Clang

339



GNU C++11 C2x
__declsp

ec Keyword #pragma

#pragma 
clang at
tribute

HLSL
Semantic

opencl_g
lobal_ho
st

clang::o
pencl_gl
obal_hos
t

clang::o
pencl_gl
obal_hos
t

The global_device and global_host address space attributes specify that an object is allocated in global
memory on the device/host. It helps to distinguish USM (Unified Shared Memory) pointers that access global device
memory from those that access global host memory. These new address spaces are a subset of the
__global/opencl_global address space, the full address space set model for OpenCL 2.0 with the extension
looks as follows:

generic->global->host
->device
->private
->local
constant

As global_device and global_host are a subset of __global/opencl_global address spaces it is allowed
to convert global_device and global_host address spaces to __global/opencl_global address spaces
(following ISO/IEC TR 18037 5.1.3 “Address space nesting and rules for pointers”).

__constant, constant, [[clang::opencl_constant]]

Supported Syntaxes

GNU C++11 C2x
__declsp

ec Keyword #pragma

#pragma 
clang at
tribute

HLSL
Semantic

opencl_c
onstant

clang::o
pencl_co
nstant

clang::o
pencl_co
nstant

__consta
nt <br/>
constant

The constant address space attribute signals that an object is located in a constant (non-modifiable) memory region.
It is available to all work items. Any type can be annotated with the constant address space attribute. Objects with
the constant address space qualifier can be declared in any scope and must have an initializer.

__generic, generic, [[clang::opencl_generic]]

Supported Syntaxes

GNU C++11 C2x
__declsp

ec Keyword #pragma

#pragma 
clang at
tribute

HLSL
Semantic

opencl_g
eneric

clang::o
pencl_ge
neric

clang::o
pencl_ge
neric

__generi
c <br/>
generic

The generic address space attribute is only available with OpenCL v2.0 and later. It can be used with pointer types.
Variables in global and local scope and function parameters in non-kernel functions can have the generic address
space type attribute. It is intended to be a placeholder for any other address space except for ‘__constant’ in OpenCL
code which can be used with multiple address spaces.

__global, global, [[clang::opencl_global]]

Attributes in Clang

340



Supported Syntaxes

GNU C++11 C2x
__declsp

ec Keyword #pragma

#pragma 
clang at
tribute

HLSL
Semantic

opencl_g
lobal

clang::o
pencl_gl
obal

clang::o
pencl_gl
obal

__global
<br/>
global

The global address space attribute specifies that an object is allocated in global memory, which is accessible by all
work items. The content stored in this memory area persists between kernel executions. Pointer types to the global
address space are allowed as function parameters or local variables. Starting with OpenCL v2.0, the global address
space can be used with global (program scope) variables and static local variable as well.

__local, local, [[clang::opencl_local]]

Supported Syntaxes

GNU C++11 C2x
__declsp

ec Keyword #pragma

#pragma 
clang at
tribute

HLSL
Semantic

opencl_l
ocal

clang::o
pencl_lo
cal

clang::o
pencl_lo
cal

__local
<br/>
local

The local address space specifies that an object is allocated in the local (work group) memory area, which is
accessible to all work items in the same work group. The content stored in this memory region is not accessible after
the kernel execution ends. In a kernel function scope, any variable can be in the local address space. In other
scopes, only pointer types to the local address space are allowed. Local address space variables cannot have an
initializer.

__private, private, [[clang::opencl_private]]

Supported Syntaxes

GNU C++11 C2x
__declsp

ec Keyword #pragma

#pragma 
clang at
tribute

HLSL
Semantic

opencl_p
rivate

clang::o
pencl_pr
ivate

clang::o
pencl_pr
ivate

__privat
e <br/>
private

The private address space specifies that an object is allocated in the private (work item) memory. Other work items
cannot access the same memory area and its content is destroyed after work item execution ends. Local variables
can be declared in the private address space. Function arguments are always in the private address space. Kernel
function arguments of a pointer or an array type cannot point to the private address space.

Statement Attributes

#pragma clang loop

Supported Syntaxes

Attributes in Clang

341



GNU C++11 C2x
__declsp

ec Keyword #pragma

#pragma 
clang at
tribute

HLSL
Semantic

clang lo
op <br/>
unroll
<br/>
nounroll
<br/> unro
ll_and_j
am <br/> u
nrolland
fuse <br/> 
nounroll
andfuse
<br/>
nosimd
<br/> noun
roll_and
_jam

The #pragma clang loop directive allows loop optimization hints to be specified for the subsequent loop. The
directive allows pipelining to be disabled, or vectorization, vector predication, interleaving, and unrolling to be
enabled or disabled. Vector width, vector predication, interleave count, unrolling count, and the initiation interval for
pipelining can be explicitly specified. See language extensions for details.

#pragma unroll, #pragma nounroll

Supported Syntaxes

GNU C++11 C2x
__declsp

ec Keyword #pragma

#pragma 
clang at
tribute

HLSL
Semantic

clang lo
op <br/>
unroll
<br/>
nounroll
<br/> unro
ll_and_j
am <br/> u
nrolland
fuse <br/> 
nounroll
andfuse
<br/>
nosimd
<br/> noun
roll_and
_jam

Loop unrolling optimization hints can be specified with #pragma unroll and #pragma nounroll. The pragma is
placed immediately before a for, while, do-while, or c++11 range-based for loop. GCC’s loop unrolling hints
#pragma GCC unroll and #pragma GCC nounroll are also supported and have identical semantics to
#pragma unroll and #pragma nounroll.

Specifying #pragma unroll without a parameter directs the loop unroller to attempt to fully unroll the loop if the trip
count is known at compile time and attempt to partially unroll the loop if the trip count is not known at compile time:

Attributes in Clang

342

http://clang.llvm.org/docs/LanguageExtensions.html#extensions-for-loop-hint-optimizations


#pragma unroll
for (...) {
  ...
}

Specifying the optional parameter, #pragma unroll _value_, directs the unroller to unroll the loop _value_
times. The parameter may optionally be enclosed in parentheses:

#pragma unroll 16
for (...) {
  ...
}

#pragma unroll(16)
for (...) {
  ...
}

Specifying #pragma nounroll indicates that the loop should not be unrolled:

#pragma nounroll
for (...) {
  ...
}

#pragma unroll and #pragma unroll _value_ have identical semantics to
#pragma clang loop unroll(full) and #pragma clang loop unroll_count(_value_) respectively.
#pragma nounroll is equivalent to #pragma clang loop unroll(disable). See language extensions for
further details including limitations of the unroll hints.

__read_only, __write_only, __read_write (read_only, write_only, read_write)

Supported Syntaxes

GNU C++11 C2x
__declsp

ec Keyword #pragma

#pragma 
clang at
tribute

HLSL
Semantic

__read_o
nly <br/> 
read_onl
y <br/> __
write_on
ly <br/> w
rite_onl
y <br/> __
read_wri
te <br/> r
ead_writ
e

The access qualifiers must be used with image object arguments or pipe arguments to declare if they are being read
or written by a kernel or function.

The read_only/__read_only, write_only/__write_only and read_write/__read_write names are reserved for use as
access qualifiers and shall not be used otherwise.

kernel void
foo (read_only image2d_t imageA,
     write_only image2d_t imageB) {
  ...
}

Attributes in Clang

343

http://clang.llvm.org/docs/LanguageExtensions.html#extensions-for-loop-hint-optimizations


In the above example imageA is a read-only 2D image object, and imageB is a write-only 2D image object.

The read_write (or __read_write) qualifier can not be used with pipe.

More details can be found in the OpenCL C language Spec v2.0, Section 6.6.

fallthrough

Supported Syntaxes

GNU C++11 C2x
__declsp

ec Keyword #pragma

#pragma 
clang at
tribute

HLSL
Semantic

fallthro
ugh

fallthro
ugh <br/> 
clang::f
allthrou
gh <br/> g
nu::fall
through

fallthro
ugh <br/> 
gnu::fal
lthrough

The fallthrough (or clang::fallthrough) attribute is used to annotate intentional fall-through between switch
labels. It can only be applied to a null statement placed at a point of execution between any statement and the next
switch label. It is common to mark these places with a specific comment, but this attribute is meant to replace
comments with a more strict annotation, which can be checked by the compiler. This attribute doesn’t change
semantics of the code and can be used wherever an intended fall-through occurs. It is designed to mimic control-flow
statements like break;, so it can be placed in most places where break; can, but only if there are no statements
on the execution path between it and the next switch label.

By default, Clang does not warn on unannotated fallthrough from one switch case to another. Diagnostics on
fallthrough without a corresponding annotation can be enabled with the -Wimplicit-fallthrough argument.

Here is an example:

// compile with -Wimplicit-fallthrough
switch (n) {
case 22:
case 33:  // no warning: no statements between case labels
  f();
case 44:  // warning: unannotated fall-through
  g();
  [[clang::fallthrough]];
case 55:  // no warning
  if (x) {
    h();
    break;
  }
  else {
    i();
    [[clang::fallthrough]];
  }
case 66:  // no warning
  p();
  [[clang::fallthrough]]; // warning: fallthrough annotation does not
                          //          directly precede case label
  q();
case 77:  // warning: unannotated fall-through
  r();
}

Attributes in Clang

344



intel_reqd_sub_group_size

Supported Syntaxes

GNU C++11 C2x
__declsp

ec Keyword #pragma

#pragma 
clang at
tribute

HLSL
Semantic

intel_re
qd_sub_g
roup_siz
e

Yes

The optional attribute intel_reqd_sub_group_size can be used to indicate that the kernel must be compiled and
executed with the specified subgroup size. When this attribute is present, get_max_sub_group_size() is guaranteed
to return the specified integer value. This is important for the correctness of many subgroup algorithms, and in some
cases may be used by the compiler to generate more optimal code. See cl_intel_required_subgroup_size
<https://www.khronos.org/registry/OpenCL/extensions/intel/cl_intel_required_subgroup_size.txt> for details.

likely and unlikely

Supported Syntaxes

GNU C++11 C2x
__declsp

ec Keyword #pragma

#pragma 
clang at
tribute

HLSL
Semantic

likely clang::l
ikely

The likely and unlikely attributes are used as compiler hints. The attributes are used to aid the compiler to
determine which branch is likely or unlikely to be taken. This is done by marking the branch substatement with one of
the two attributes.

It isn’t allowed to annotate a single statement with both likely and unlikely. Annotating the true and false
branch of an if statement with the same likelihood attribute will result in a diagnostic and the attributes are ignored
on both branches.

In a switch statement it’s allowed to annotate multiple case labels or the default label with the same likelihood
attribute. This makes * all labels without an attribute have a neutral likelihood, * all labels marked [[likely]] have
an equally positive likelihood, and * all labels marked [[unlikely]] have an equally negative likelihood. The
neutral likelihood is the more likely of path execution than the negative likelihood. The positive likelihood is the more
likely of path of execution than the neutral likelihood.

These attributes have no effect on the generated code when using PGO (Profile-Guided Optimization) or at
optimization level 0.

In Clang, the attributes will be ignored if they’re not placed on * the case or default label of a switch statement, *
or on the substatement of an if or else statement, * or on the substatement of an for or while statement. The
C++ Standard recommends to honor them on every statement in the path of execution, but that can be confusing:

if (b) {
  [[unlikely]] --b; // In the path of execution,
                    // this branch is considered unlikely.
}

if (b) {
  --b;
  if(b)
    return;
  [[unlikely]] --b; // Not in the path of execution,
}                   // the branch has no likelihood information.

Attributes in Clang

345



if (b) {
  --b;
  foo(b);
  // Whether or not the next statement is in the path of execution depends
  // on the declaration of foo():
  // In the path of execution: void foo(int);
  // Not in the path of execution: [[noreturn]] void foo(int);
  // This means the likelihood of the branch depends on the declaration
  // of foo().
  [[unlikely]] --b;
}

Below are some example usages of the likelihood attributes and their effects:

if (b) [[likely]] { // Placement on the first statement in the branch.
  // The compiler will optimize to execute the code here.
} else {
}

if (b)
  [[unlikely]] b++; // Placement on the first statement in the branch.
else {
  // The compiler will optimize to execute the code here.
}

if (b) {
  [[unlikely]] b++; // Placement on the second statement in the branch.
}                   // The attribute will be ignored.

if (b) [[likely]] {
  [[unlikely]] b++; // No contradiction since the second attribute
}                   // is ignored.

if (b)
  ;
else [[likely]] {
  // The compiler will optimize to execute the code here.
}

if (b)
  ;
else
  // The compiler will optimize to execute the next statement.
  [[likely]] b = f();

if (b) [[likely]]; // Both branches are likely. A diagnostic is issued
else [[likely]];   // and the attributes are ignored.

if (b)
  [[likely]] int i = 5; // Issues a diagnostic since the attribute
                        // isn't allowed on a declaration.

switch (i) {
  [[likely]] case 1:    // This value is likely
    ...
    break;

  [[unlikely]] case 2:  // This value is unlikely
    ...
    [[fallthrough]];

Attributes in Clang

346



  case 3:               // No likelihood attribute
    ...
    [[likely]] break;   // No effect

  case 4: [[likely]] {  // attribute on substatement has no effect
    ...
    break;
    }

  [[unlikely]] default: // All other values are unlikely
    ...
    break;
}

switch (i) {
  [[likely]] case 0:    // This value and code path is likely
    ...
    [[fallthrough]];

  case 1:               // No likelihood attribute, code path is neutral
    break;              // falling through has no effect on the likelihood

  case 2:               // No likelihood attribute, code path is neutral
    [[fallthrough]];

  [[unlikely]] default: // This value and code path are both unlikely
    break;
}

for(int i = 0; i != size; ++i) [[likely]] {
  ...               // The loop is the likely path of execution
}

for(const auto &E : Elements) [[likely]] {
  ...               // The loop is the likely path of execution
}

while(i != size) [[unlikely]] {
  ...               // The loop is the unlikely path of execution
}                   // The generated code will optimize to skip the loop body

while(true) [[unlikely]] {
  ...               // The attribute has no effect
}                   // Clang elides the comparison and generates an infinite
                    // loop

likely and unlikely

Supported Syntaxes

GNU C++11 C2x
__declsp

ec Keyword #pragma

#pragma 
clang at
tribute

HLSL
Semantic

unlikely clang::u
nlikely

Attributes in Clang

347



The likely and unlikely attributes are used as compiler hints. The attributes are used to aid the compiler to
determine which branch is likely or unlikely to be taken. This is done by marking the branch substatement with one of
the two attributes.

It isn’t allowed to annotate a single statement with both likely and unlikely. Annotating the true and false
branch of an if statement with the same likelihood attribute will result in a diagnostic and the attributes are ignored
on both branches.

In a switch statement it’s allowed to annotate multiple case labels or the default label with the same likelihood
attribute. This makes * all labels without an attribute have a neutral likelihood, * all labels marked [[likely]] have
an equally positive likelihood, and * all labels marked [[unlikely]] have an equally negative likelihood. The
neutral likelihood is the more likely of path execution than the negative likelihood. The positive likelihood is the more
likely of path of execution than the neutral likelihood.

These attributes have no effect on the generated code when using PGO (Profile-Guided Optimization) or at
optimization level 0.

In Clang, the attributes will be ignored if they’re not placed on * the case or default label of a switch statement, *
or on the substatement of an if or else statement, * or on the substatement of an for or while statement. The
C++ Standard recommends to honor them on every statement in the path of execution, but that can be confusing:

if (b) {
  [[unlikely]] --b; // In the path of execution,
                    // this branch is considered unlikely.
}

if (b) {
  --b;
  if(b)
    return;
  [[unlikely]] --b; // Not in the path of execution,
}                   // the branch has no likelihood information.

if (b) {
  --b;
  foo(b);
  // Whether or not the next statement is in the path of execution depends
  // on the declaration of foo():
  // In the path of execution: void foo(int);
  // Not in the path of execution: [[noreturn]] void foo(int);
  // This means the likelihood of the branch depends on the declaration
  // of foo().
  [[unlikely]] --b;
}

Below are some example usages of the likelihood attributes and their effects:

if (b) [[likely]] { // Placement on the first statement in the branch.
  // The compiler will optimize to execute the code here.
} else {
}

if (b)
  [[unlikely]] b++; // Placement on the first statement in the branch.
else {
  // The compiler will optimize to execute the code here.
}

if (b) {
  [[unlikely]] b++; // Placement on the second statement in the branch.
}                   // The attribute will be ignored.

if (b) [[likely]] {
  [[unlikely]] b++; // No contradiction since the second attribute

Attributes in Clang

348



}                   // is ignored.

if (b)
  ;
else [[likely]] {
  // The compiler will optimize to execute the code here.
}

if (b)
  ;
else
  // The compiler will optimize to execute the next statement.
  [[likely]] b = f();

if (b) [[likely]]; // Both branches are likely. A diagnostic is issued
else [[likely]];   // and the attributes are ignored.

if (b)
  [[likely]] int i = 5; // Issues a diagnostic since the attribute
                        // isn't allowed on a declaration.

switch (i) {
  [[likely]] case 1:    // This value is likely
    ...
    break;

  [[unlikely]] case 2:  // This value is unlikely
    ...
    [[fallthrough]];

  case 3:               // No likelihood attribute
    ...
    [[likely]] break;   // No effect

  case 4: [[likely]] {  // attribute on substatement has no effect
    ...
    break;
    }

  [[unlikely]] default: // All other values are unlikely
    ...
    break;
}

switch (i) {
  [[likely]] case 0:    // This value and code path is likely
    ...
    [[fallthrough]];

  case 1:               // No likelihood attribute, code path is neutral
    break;              // falling through has no effect on the likelihood

  case 2:               // No likelihood attribute, code path is neutral
    [[fallthrough]];

  [[unlikely]] default: // This value and code path are both unlikely
    break;
}

for(int i = 0; i != size; ++i) [[likely]] {

Attributes in Clang

349



  ...               // The loop is the likely path of execution
}

for(const auto &E : Elements) [[likely]] {
  ...               // The loop is the likely path of execution
}

while(i != size) [[unlikely]] {
  ...               // The loop is the unlikely path of execution
}                   // The generated code will optimize to skip the loop body

while(true) [[unlikely]] {
  ...               // The attribute has no effect
}                   // Clang elides the comparison and generates an infinite
                    // loop

musttail

Supported Syntaxes

GNU C++11 C2x
__declsp

ec Keyword #pragma

#pragma 
clang at
tribute

HLSL
Semantic

musttail clang::m
usttail

clang::m
usttail

If a return statement is marked musttail, this indicates that the compiler must generate a tail call for the program
to be correct, even when optimizations are disabled. This guarantees that the call will not cause unbounded stack
growth if it is part of a recursive cycle in the call graph.

If the callee is a virtual function that is implemented by a thunk, there is no guarantee in general that the thunk
tail-calls the implementation of the virtual function, so such a call in a recursive cycle can still result in unbounded
stack growth.

clang::musttail can only be applied to a return statement whose value is the result of a function call (even
functions returning void must use return, although no value is returned). The target function must have the same
number of arguments as the caller. The types of the return value and all arguments must be similar according to C++
rules (differing only in cv qualifiers or array size), including the implicit “this” argument, if any. Any variables in scope,
including all arguments to the function and the return value must be trivially destructible. The calling convention of
the caller and callee must match, and they must not be variadic functions or have old style K&R C function
declarations.

nomerge

Supported Syntaxes

GNU C++11 C2x
__declsp

ec Keyword #pragma

#pragma 
clang at
tribute

HLSL
Semantic

nomerge clang::n
omerge

clang::n
omerge

Yes

If a statement is marked nomerge and contains call expressions, those call expressions inside the statement will not
be merged during optimization. This attribute can be used to prevent the optimizer from obscuring the source
location of certain calls. For example, it will prevent tail merging otherwise identical code sequences that raise an
exception or terminate the program. Tail merging normally reduces the precision of source location information,
making stack traces less useful for debugging. This attribute gives the user control over the tradeoff between code
size and debug information precision.

Attributes in Clang

350



nomerge attribute can also be used as function attribute to prevent all calls to the specified function from merging. It
has no effect on indirect calls.

opencl_unroll_hint

Supported Syntaxes

GNU C++11 C2x
__declsp

ec Keyword #pragma

#pragma 
clang at
tribute

HLSL
Semantic

opencl_u
nroll_hi
nt

The opencl_unroll_hint attribute qualifier can be used to specify that a loop (for, while and do loops) can be unrolled.
This attribute qualifier can be used to specify full unrolling or partial unrolling by a specified amount. This is a
compiler hint and the compiler may ignore this directive. See OpenCL v2.0 s6.11.5 for details.

suppress

Supported Syntaxes

GNU C++11 C2x
__declsp

ec Keyword #pragma

#pragma 
clang at
tribute

HLSL
Semantic

gsl::sup
press

The [[gsl::suppress]] attribute suppresses specific clang-tidy diagnostics for rules of the C++ Core Guidelines
in a portable way. The attribute can be attached to declarations, statements, and at namespace scope.

[[gsl::suppress("Rh-public")]]
void f_() {
  int *p;
  [[gsl::suppress("type")]] {
    p = reinterpret_cast<int*>(7);
  }
}
namespace N {
  [[clang::suppress("type", "bounds")]];
  ...
}

sycl_special_class

Supported Syntaxes

GNU C++11 C2x
__declsp

ec Keyword #pragma

#pragma 
clang at
tribute

HLSL
Semantic

sycl_spe
cial_cla
ss

clang::s
ycl_spec
ial_clas
s

clang::s
ycl_spec
ial_clas
s

Yes

Attributes in Clang

351

https://www.khronos.org/registry/cl/specs/opencl-2.0.pdf
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#inforce-enforcement


SYCL defines some special classes (accessor, sampler, and stream) which require specific handling during the
generation of the SPIR entry point. The __attribute__((sycl_special_class)) attribute is used in SYCL
headers to indicate that a class or a struct needs a specific handling when it is passed from host to device. Special
classes will have a mandatory __init method and an optional __finalize method (the __finalize method is
used only with the stream type). Kernel parameters types are extract from the __init method parameters. The
kernel function arguments list is derived from the arguments of the __init method. The arguments of the __init
method are copied into the kernel function argument list and the __init and __finalize methods are called at
the beginning and the end of the kernel, respectively. The __init and __finalize methods must be defined
inside the special class. Please note that this is an attribute that is used as an internal implementation detail and not
intended to be used by external users.

The syntax of the attribute is as follows:

class __attribute__((sycl_special_class)) accessor {};
class [[clang::sycl_special_class]] accessor {};

This is a code example that illustrates the use of the attribute:

class __attribute__((sycl_special_class)) SpecialType {
  int F1;
  int F2;
  void __init(int f1) {
    F1 = f1;
    F2 = f1;
  }
  void __finalize() {}
public:
  SpecialType() = default;
  int getF2() const { return F2; }
};

int main () {
  SpecialType T;
  cgh.single_task([=] {
    T.getF2();
  });
}

This would trigger the following kernel entry point in the AST:

void __sycl_kernel(int f1) {
  SpecialType T;
  T.__init(f1);
  ...
  T.__finalize()
}

Type Attributes

__ptr32

Supported Syntaxes

GNU C++11 C2x
__declsp

ec Keyword #pragma

#pragma 
clang at
tribute

HLSL
Semantic

__ptr32

The __ptr32 qualifier represents a native pointer on a 32-bit system. On a 64-bit system, a pointer with __ptr32 is
extended to a 64-bit pointer. The __sptr and __uptr qualifiers can be used to specify whether the pointer is sign
extended or zero extended. This qualifier is enabled under -fms-extensions.

Attributes in Clang

352



__ptr64

Supported Syntaxes

GNU C++11 C2x
__declsp

ec Keyword #pragma

#pragma 
clang at
tribute

HLSL
Semantic

__ptr64

The __ptr64 qualifier represents a native pointer on a 64-bit system. On a 32-bit system, a __ptr64 pointer is
truncated to a 32-bit pointer. This qualifier is enabled under -fms-extensions.

__sptr

Supported Syntaxes

GNU C++11 C2x
__declsp

ec Keyword #pragma

#pragma 
clang at
tribute

HLSL
Semantic

__sptr

The __sptr qualifier specifies that a 32-bit pointer should be sign extended when converted to a 64-bit pointer.

__uptr

Supported Syntaxes

GNU C++11 C2x
__declsp

ec Keyword #pragma

#pragma 
clang at
tribute

HLSL
Semantic

__uptr

The __uptr qualifier specifies that a 32-bit pointer should be zero extended when converted to a 64-bit pointer.

align_value

Supported Syntaxes

GNU C++11 C2x
__declsp

ec Keyword #pragma

#pragma 
clang at
tribute

HLSL
Semantic

align_va
lue

Yes

The align_value attribute can be added to the typedef of a pointer type or the declaration of a variable of pointer or
reference type. It specifies that the pointer will point to, or the reference will bind to, only objects with at least the
provided alignment. This alignment value must be some positive power of 2.

typedef double * aligned_double_ptr __attribute__((align_value(64)));
void foo(double & x  __attribute__((align_value(128)),
         aligned_double_ptr y) { ... }

If the pointer value does not have the specified alignment at runtime, the behavior of the program is undefined.

Attributes in Clang

353



arm_sve_vector_bits

Supported Syntaxes

GNU C++11 C2x
__declsp

ec Keyword #pragma

#pragma 
clang at
tribute

HLSL
Semantic

arm_sve_
vector_b
its

The arm_sve_vector_bits(N) attribute is defined by the Arm C Language Extensions (ACLE) for SVE. It is used
to define fixed-length (VLST) variants of sizeless types (VLAT).

For example:

#include <arm_sve.h>

#if __ARM_FEATURE_SVE_BITS==512
typedef svint32_t fixed_svint32_t __attribute__((arm_sve_vector_bits(512)));
#endif

Creates a type fixed_svint32_t that is a fixed-length variant of svint32_t that contains exactly 512-bits. Unlike
svint32_t, this type can be used in globals, structs, unions, and arrays, all of which are unsupported for sizeless
types.

The attribute can be attached to a single SVE vector (such as svint32_t) or to the SVE predicate type svbool_t,
this excludes tuple types such as svint32x4_t. The behavior of the attribute is undefined unless
N==__ARM_FEATURE_SVE_BITS, the implementation defined feature macro that is enabled under the
-msve-vector-bits flag.

For more information See Arm C Language Extensions for SVE for more information.

btf_type_tag

Supported Syntaxes

GNU C++11 C2x
__declsp

ec Keyword #pragma

#pragma 
clang at
tribute

HLSL
Semantic

btf_type
_tag

clang::b
tf_type_
tag

clang::b
tf_type_
tag

Clang supports the __attribute__((btf_type_tag("ARGUMENT"))) attribute for all targets. It only has effect
when -g is specified on the command line and is currently silently ignored when not applied to a pointer type (note:
this scenario may be diagnosed in the future).

The ARGUMENT string will be preserved in IR and emitted to DWARF for the types used in variable declarations,
function declarations, or typedef declarations.

For BPF targets, the ARGUMENT string will also be emitted to .BTF ELF section.

clang_arm_mve_strict_polymorphism

Supported Syntaxes

Attributes in Clang

354

https://developer.arm.com/documentation/100987/latest


GNU C++11 C2x
__declsp

ec Keyword #pragma

#pragma 
clang at
tribute

HLSL
Semantic

__clang_
arm_mve_
strict_p
olymorph
ism

clang::_
_clang_a
rm_mve_s
trict_po
lymorphi
sm

clang::_
_clang_a
rm_mve_s
trict_po
lymorphi
sm

This attribute is used in the implementation of the ACLE intrinsics for the Arm MVE instruction set. It is used to define
the vector types used by the MVE intrinsics.

Its effect is to modify the behavior of a vector type with respect to function overloading. If a candidate function for
overload resolution has a parameter type with this attribute, then the selection of that candidate function will be
disallowed if the actual argument can only be converted via a lax vector conversion. The aim is to prevent spurious
ambiguity in ARM MVE polymorphic intrinsics.

void overloaded(uint16x8_t vector, uint16_t scalar);
void overloaded(int32x4_t vector, int32_t scalar);
uint16x8_t myVector;
uint16_t myScalar;

// myScalar is promoted to int32_t as a side effect of the addition,
// so if lax vector conversions are considered for myVector, then
// the two overloads are equally good (one argument conversion
// each). But if the vector has the __clang_arm_mve_strict_polymorphism
// attribute, only the uint16x8_t,uint16_t overload will match.
overloaded(myVector, myScalar + 1);

However, this attribute does not prohibit lax vector conversions in contexts other than overloading.

uint16x8_t function();

// This is still permitted with lax vector conversion enabled, even
// if the vector types have __clang_arm_mve_strict_polymorphism
int32x4_t result = function();

cmse_nonsecure_call

Supported Syntaxes

GNU C++11 C2x
__declsp

ec Keyword #pragma

#pragma 
clang at
tribute

HLSL
Semantic

cmse_non
secure_c
all

This attribute declares a non-secure function type. When compiling for secure state, a call to such a function would
switch from secure to non-secure state. All non-secure function calls must happen only through a function pointer,
and a non-secure function type should only be used as a base type of a pointer. See ARMv8-M Security Extensions:
Requirements on Development Tools - Engineering Specification Documentation for more information.

device_builtin_surface_type

Supported Syntaxes

Attributes in Clang

355

https://developer.arm.com/docs/ecm0359818/latest/
https://developer.arm.com/docs/ecm0359818/latest/


GNU C++11 C2x
__declsp

ec Keyword #pragma

#pragma 
clang at
tribute

HLSL
Semantic

device_b
uiltin_s
urface_t
ype

__device
_builtin
_surface
_type__

Yes

The device_builtin_surface_type attribute can be applied to a class template when declaring the surface
reference. A surface reference variable could be accessed on the host side and, on the device side, might be
translated into an internal surface object, which is established through surface bind and unbind runtime APIs.

device_builtin_texture_type

Supported Syntaxes

GNU C++11 C2x
__declsp

ec Keyword #pragma

#pragma 
clang at
tribute

HLSL
Semantic

device_b
uiltin_t
exture_t
ype

__device
_builtin
_texture
_type__

Yes

The device_builtin_texture_type attribute can be applied to a class template when declaring the texture
reference. A texture reference variable could be accessed on the host side and, on the device side, might be
translated into an internal texture object, which is established through texture bind and unbind runtime APIs.

noderef

Supported Syntaxes

GNU C++11 C2x
__declsp

ec Keyword #pragma

#pragma 
clang at
tribute

HLSL
Semantic

noderef clang::n
oderef

clang::n
oderef

The noderef attribute causes clang to diagnose dereferences of annotated pointer types. This is ideally used with
pointers that point to special memory which cannot be read from or written to, but allowing for the pointer to be used
in pointer arithmetic. The following are examples of valid expressions where dereferences are diagnosed:

int __attribute__((noderef)) *p;
int x = *p;  // warning

int __attribute__((noderef)) **p2;
x = **p2;  // warning

int * __attribute__((noderef)) *p3;
p = *p3;  // warning

struct S {
  int a;
};
struct S __attribute__((noderef)) *s;
x = s->a;    // warning
x = (*s).a;  // warning

Attributes in Clang

356



Not all dereferences may diagnose a warning if the value directed by the pointer may not be accessed. The following
are examples of valid expressions where may not be diagnosed:

int *q;
int __attribute__((noderef)) *p;
q = &*p;
q = *&p;

struct S {
  int a;
};
struct S __attribute__((noderef)) *s;
p = &s->a;
p = &(*s).a;

noderef is currently only supported for pointers and arrays and not usable for references or Objective-C object
pointers.

objc_class_stub

Supported Syntaxes

GNU C++11 C2x
__declsp

ec Keyword #pragma

#pragma 
clang at
tribute

HLSL
Semantic

objc_cla
ss_stub

clang::o
bjc_clas
s_stub

clang::o
bjc_clas
s_stub

Yes

This attribute specifies that the Objective-C class to which it applies is instantiated at runtime.

Unlike __attribute__((objc_runtime_visible)), a class having this attribute still has a “class stub” that is
visible to the linker. This allows categories to be defined. Static message sends with the class as a receiver use a
special access pattern to ensure the class is lazily instantiated from the class stub.

Classes annotated with this attribute cannot be subclassed and cannot have implementations defined for them. This
attribute is intended for use in Swift-generated headers for classes defined in Swift.

Adding or removing this attribute to a class is an ABI-breaking change.

Type Safety Checking
Clang supports additional attributes to enable checking type safety properties that can’t be enforced by the C type
system. To see warnings produced by these checks, ensure that -Wtype-safety is enabled. Use cases include:

• MPI library implementations, where these attributes enable checking that the buffer type matches the passed
MPI_Datatype;

• for HDF5 library there is a similar use case to MPI;

• checking types of variadic functions’ arguments for functions like fcntl() and ioctl().

You can detect support for these attributes with __has_attribute(). For example:

#if defined(__has_attribute)
#  if __has_attribute(argument_with_type_tag) && \
      __has_attribute(pointer_with_type_tag) && \
      __has_attribute(type_tag_for_datatype)
#    define ATTR_MPI_PWT(buffer_idx, type_idx) __attribute__((pointer_with_type_tag(mpi,buffer_idx,type_idx)))
/* ... other macros ... */
#  endif
#endif

Attributes in Clang

357



#if !defined(ATTR_MPI_PWT)
# define ATTR_MPI_PWT(buffer_idx, type_idx)
#endif

int MPI_Send(void *buf, int count, MPI_Datatype datatype /*, other args omitted */)
    ATTR_MPI_PWT(1,3);

argument_with_type_tag

Supported Syntaxes

GNU C++11 C2x
__declsp

ec Keyword #pragma

#pragma 
clang at
tribute

HLSL
Semantic

argument
_with_ty
pe_tag
<br/> poin
ter_with
_type_ta
g

clang::a
rgument_
with_typ
e_tag
<br/> clan
g::point
er_with_
type_tag

clang::a
rgument_
with_typ
e_tag
<br/> clan
g::point
er_with_
type_tag

Use __attribute__((argument_with_type_tag(arg_kind, arg_idx, type_tag_idx))) on a function
declaration to specify that the function accepts a type tag that determines the type of some other argument.

This attribute is primarily useful for checking arguments of variadic functions (pointer_with_type_tag can be
used in most non-variadic cases).

In the attribute prototype above:

• arg_kind is an identifier that should be used when annotating all applicable type tags.

• arg_idx provides the position of a function argument. The expected type of this function argument will be
determined by the function argument specified by type_tag_idx. In the code example below, “3” means
that the type of the function’s third argument will be determined by type_tag_idx.

• type_tag_idx provides the position of a function argument. This function argument will be a type tag.
The type tag will determine the expected type of the argument specified by arg_idx. In the code example
below, “2” means that the type tag associated with the function’s second argument should agree with the
type of the argument specified by arg_idx.

For example:

int fcntl(int fd, int cmd, ...)
    __attribute__(( argument_with_type_tag(fcntl,3,2) ));
// The function's second argument will be a type tag; this type tag will
// determine the expected type of the function's third argument.

pointer_with_type_tag

Supported Syntaxes

Attributes in Clang

358



GNU C++11 C2x
__declsp

ec Keyword #pragma

#pragma 
clang at
tribute

HLSL
Semantic

argument
_with_ty
pe_tag
<br/> poin
ter_with
_type_ta
g

clang::a
rgument_
with_typ
e_tag
<br/> clan
g::point
er_with_
type_tag

clang::a
rgument_
with_typ
e_tag
<br/> clan
g::point
er_with_
type_tag

Use __attribute__((pointer_with_type_tag(ptr_kind, ptr_idx, type_tag_idx))) on a function
declaration to specify that the function accepts a type tag that determines the pointee type of some other pointer
argument.

In the attribute prototype above:

• ptr_kind is an identifier that should be used when annotating all applicable type tags.

• ptr_idx provides the position of a function argument; this function argument will have a pointer type. The
expected pointee type of this pointer type will be determined by the function argument specified by
type_tag_idx. In the code example below, “1” means that the pointee type of the function’s first
argument will be determined by type_tag_idx.

• type_tag_idx provides the position of a function argument; this function argument will be a type tag. The
type tag will determine the expected pointee type of the pointer argument specified by ptr_idx. In the
code example below, “3” means that the type tag associated with the function’s third argument should
agree with the pointee type of the pointer argument specified by ptr_idx.

For example:

typedef int MPI_Datatype;
int MPI_Send(void *buf, int count, MPI_Datatype datatype /*, other args omitted */)
    __attribute__(( pointer_with_type_tag(mpi,1,3) ));
// The function's 3rd argument will be a type tag; this type tag will
// determine the expected pointee type of the function's 1st argument.

type_tag_for_datatype

Supported Syntaxes

GNU C++11 C2x
__declsp

ec Keyword #pragma

#pragma 
clang at
tribute

HLSL
Semantic

type_tag
_for_dat
atype

clang::t
ype_tag_
for_data
type

clang::t
ype_tag_
for_data
type

When declaring a variable, use __attribute__((type_tag_for_datatype(kind, type))) to create a type
tag that is tied to the type argument given to the attribute.

In the attribute prototype above:

• kind is an identifier that should be used when annotating all applicable type tags.

• type indicates the name of the type.

Clang supports annotating type tags of two forms.

• Type tag that is a reference to a declared identifier. Use
__attribute__((type_tag_for_datatype(kind, type))) when declaring that identifier:

Attributes in Clang

359



typedef int MPI_Datatype;
extern struct mpi_datatype mpi_datatype_int
    __attribute__(( type_tag_for_datatype(mpi,int) ));
#define MPI_INT ((MPI_Datatype) &mpi_datatype_int)
// &mpi_datatype_int is a type tag. It is tied to type "int".

• Type tag that is an integral literal. Declare a static const variable with an initializer value and attach
__attribute__((type_tag_for_datatype(kind, type))) on that declaration:

typedef int MPI_Datatype;
static const MPI_Datatype mpi_datatype_int
    __attribute__(( type_tag_for_datatype(mpi,int) )) = 42;
#define MPI_INT ((MPI_Datatype) 42)
// The number 42 is a type tag. It is tied to type "int".

The type_tag_for_datatype attribute also accepts an optional third argument that determines how the type of
the function argument specified by either arg_idx or ptr_idx is compared against the type associated with the
type tag. (Recall that for the argument_with_type_tag attribute, the type of the function argument specified by
arg_idx is compared against the type associated with the type tag. Also recall that for the
pointer_with_type_tag attribute, the pointee type of the function argument specified by ptr_idx is compared
against the type associated with the type tag.) There are two supported values for this optional third argument:

• layout_compatible will cause types to be compared according to layout-compatibility rules (In C++11
[class.mem] p 17, 18, see the layout-compatibility rules for two standard-layout struct types and for two
standard-layout union types). This is useful when creating a type tag associated with a struct or union type.
For example:

/* In mpi.h */
typedef int MPI_Datatype;
struct internal_mpi_double_int { double d; int i; };
extern struct mpi_datatype mpi_datatype_double_int
    __attribute__(( type_tag_for_datatype(mpi,
                    struct internal_mpi_double_int, layout_compatible) ));

#define MPI_DOUBLE_INT ((MPI_Datatype) &mpi_datatype_double_int)

int MPI_Send(void *buf, int count, MPI_Datatype datatype, ...)
    __attribute__(( pointer_with_type_tag(mpi,1,3) ));

/* In user code */
struct my_pair { double a; int b; };
struct my_pair *buffer;
MPI_Send(buffer, 1, MPI_DOUBLE_INT /*, ... */); // no warning because the
                                                 // layout of my_pair is
                                                 // compatible with that of
                                                 // internal_mpi_double_int

struct my_int_pair { int a; int b; }
struct my_int_pair *buffer2;
MPI_Send(buffer2, 1, MPI_DOUBLE_INT /*, ... */); // warning because the
                                                  // layout of my_int_pair
                                                  // does not match that of
                                                  // internal_mpi_double_int

• must_be_null specifies that the function argument specified by either arg_idx (for the
argument_with_type_tag attribute) or ptr_idx (for the pointer_with_type_tag attribute) should
be a null pointer constant. The second argument to the type_tag_for_datatype attribute is ignored.
For example:

/* In mpi.h */
typedef int MPI_Datatype;
extern struct mpi_datatype mpi_datatype_null

Attributes in Clang

360



    __attribute__(( type_tag_for_datatype(mpi, void, must_be_null) ));

#define MPI_DATATYPE_NULL ((MPI_Datatype) &mpi_datatype_null)
int MPI_Send(void *buf, int count, MPI_Datatype datatype, ...)
    __attribute__(( pointer_with_type_tag(mpi,1,3) ));

/* In user code */
struct my_pair { double a; int b; };
struct my_pair *buffer;
MPI_Send(buffer, 1, MPI_DATATYPE_NULL /*, ... */); // warning: MPI_DATATYPE_NULL
                                                    // was specified but buffer
                                                    // is not a null pointer

Variable Attributes

always_destroy

Supported Syntaxes

GNU C++11 C2x
__declsp

ec Keyword #pragma

#pragma 
clang at
tribute

HLSL
Semantic

always_d
estroy

clang::a
lways_de
stroy

Yes

The always_destroy attribute specifies that a variable with static or thread storage duration should have its
exit-time destructor run. This attribute is the default unless clang was invoked with -fno-c++-static-destructors.

called_once

Supported Syntaxes

GNU C++11 C2x
__declsp

ec Keyword #pragma

#pragma 
clang at
tribute

HLSL
Semantic

called_o
nce

clang::c
alled_on
ce

clang::c
alled_on
ce

Yes

The called_once attribute specifies that the annotated function or method parameter is invoked exactly once on all
execution paths. It only applies to parameters with function-like types, i.e. function pointers or blocks. This concept is
particularly useful for asynchronous programs.

Clang implements a check for called_once parameters, -Wcalled-once-parameter. It is on by default and
finds the following violations:

• Parameter is not called at all.

• Parameter is called more than once.

• Parameter is not called on one of the execution paths.

In the latter case, Clang pinpoints the path where parameter is not invoked by showing the control-flow statement
where the path diverges.

void fooWithCallback(void (^callback)(void) __attribute__((called_once))) {
  if (somePredicate()) {
    ...

Attributes in Clang

361



    callback();
  } esle {
    callback(); // OK: callback is called on every path
  }
}

void barWithCallback(void (^callback)(void) __attribute__((called_once))) {
  if (somePredicate()) {
    ...
    callback(); // note: previous call is here
  }
  callback(); // warning: callback is called twice
}

void foobarWithCallback(void (^callback)(void) __attribute__((called_once))) {
  if (somePredicate()) {  // warning: callback is not called when condition is false
    ...
    callback();
  }
}

This attribute is useful for API developers who want to double-check if they implemented their method correctly.

dllexport

Supported Syntaxes

GNU C++11 C2x
__declsp

ec Keyword #pragma

#pragma 
clang at
tribute

HLSL
Semantic

dllexpor
t

gnu::dll
export

gnu::dll
export

dllexpor
t

Yes

The __declspec(dllexport) attribute declares a variable, function, or Objective-C interface to be exported from
the module. It is available under the -fdeclspec flag for compatibility with various compilers. The primary use is for
COFF object files which explicitly specify what interfaces are available for external use. See the dllexport
documentation on MSDN for more information.

dllimport

Supported Syntaxes

GNU C++11 C2x
__declsp

ec Keyword #pragma

#pragma 
clang at
tribute

HLSL
Semantic

dllimpor
t

gnu::dll
import

gnu::dll
import

dllimpor
t

Yes

The __declspec(dllimport) attribute declares a variable, function, or Objective-C interface to be imported from
an external module. It is available under the -fdeclspec flag for compatibility with various compilers. The primary
use is for COFF object files which explicitly specify what interfaces are imported from external modules. See the
dllimport documentation on MSDN for more information.

Note that a dllimport function may still be inlined, if its definition is available and it doesn’t reference any non-dllimport
functions or global variables.

Attributes in Clang

362

https://msdn.microsoft.com/en-us/library/3y1sfaz2.aspx
https://msdn.microsoft.com/en-us/library/3y1sfaz2.aspx


init_priority

Supported Syntaxes

GNU C++11 C2x
__declsp

ec Keyword #pragma

#pragma 
clang at
tribute

HLSL
Semantic

init_pri
ority

gnu::ini
t_priori
ty

Yes

In C++, the order in which global variables are initialized across translation units is unspecified, unlike the ordering
within a single translation unit. The init_priority attribute allows you to specify a relative ordering for the
initialization of objects declared at namespace scope in C++. The priority is given as an integer constant expression
between 101 and 65535 (inclusive). Priorities outside of that range are reserved for use by the implementation. A
lower value indicates a higher priority of initialization. Note that only the relative ordering of values is important. For
example:

struct SomeType { SomeType(); };
__attribute__((init_priority(200))) SomeType Obj1;
__attribute__((init_priority(101))) SomeType Obj2;

Obj2 will be initialized before Obj1 despite the usual order of initialization being the opposite.

This attribute is only supported for C++ and Objective-C++ and is ignored in other language modes. Currently, this
attribute is not implemented on z/OS.

init_seg

Supported Syntaxes

GNU C++11 C2x
__declsp

ec Keyword #pragma

#pragma 
clang at
tribute

HLSL
Semantic

init_seg

The attribute applied by pragma init_seg() controls the section into which global initialization function pointers
are emitted. It is only available with -fms-extensions. Typically, this function pointer is emitted into .CRT$XCU on
Windows. The user can change the order of initialization by using a different section name with the same .CRT$XC
prefix and a suffix that sorts lexicographically before or after the standard .CRT$XCU sections. See the init_seg
documentation on MSDN for more information.

leaf

Supported Syntaxes

GNU C++11 C2x
__declsp

ec Keyword #pragma

#pragma 
clang at
tribute

HLSL
Semantic

leaf gnu::lea
f

gnu::lea
f

Yes

The leaf attribute is used as a compiler hint to improve dataflow analysis in library functions. Functions marked with
the leaf attribute are not allowed to jump back into the caller’s translation unit, whether through invoking a callback
function, an external function call, use of longjmp, or other means. Therefore, they cannot use or modify any data
that does not escape the caller function’s compilation unit.

Attributes in Clang

363

http://msdn.microsoft.com/en-us/library/7977wcck(v=vs.110).aspx


For more information see gcc documentation
<https://gcc.gnu.org/onlinedocs/gcc/Common-Function-Attributes.html>

loader_uninitialized

Supported Syntaxes

GNU C++11 C2x
__declsp

ec Keyword #pragma

#pragma 
clang at
tribute

HLSL
Semantic

loader_u
ninitial
ized

clang::l
oader_un
initiali
zed

clang::l
oader_un
initiali
zed

Yes

The loader_uninitialized attribute can be placed on global variables to indicate that the variable does not
need to be zero initialized by the loader. On most targets, zero-initialization does not incur any additional cost. For
example, most general purpose operating systems deliberately ensure that all memory is properly initialized in order
to avoid leaking privileged information from the kernel or other programs. However, some targets do not make this
guarantee, and on these targets, avoiding an unnecessary zero-initialization can have a significant impact on load
times and/or code size.

A declaration with this attribute is a non-tentative definition just as if it provided an initializer. Variables with this
attribute are considered to be uninitialized in the same sense as a local variable, and the programs must write to
them before reading from them. If the variable’s type is a C++ class type with a non-trivial default constructor, or an
array thereof, this attribute only suppresses the static zero-initialization of the variable, not the dynamic initialization
provided by executing the default constructor.

maybe_unused, unused

Supported Syntaxes

GNU C++11 C2x
__declsp

ec Keyword #pragma

#pragma 
clang at
tribute

HLSL
Semantic

unused maybe_un
used <br/> 
gnu::unu
sed

gnu::unu
sed <br/> 
maybe_un
used

When passing the -Wunused flag to Clang, entities that are unused by the program may be diagnosed. The
[[maybe_unused]] (or __attribute__((unused))) attribute can be used to silence such diagnostics when the
entity cannot be removed. For instance, a local variable may exist solely for use in an assert() statement, which
makes the local variable unused when NDEBUG is defined.

The attribute may be applied to the declaration of a class, a typedef, a variable, a function or method, a function
parameter, an enumeration, an enumerator, a non-static data member, or a label.

no_destroy

Supported Syntaxes

Attributes in Clang

364



GNU C++11 C2x
__declsp

ec Keyword #pragma

#pragma 
clang at
tribute

HLSL
Semantic

no_destr
oy

clang::n
o_destro
y

Yes

The no_destroy attribute specifies that a variable with static or thread storage duration shouldn’t have its exit-time
destructor run. Annotating every static and thread duration variable with this attribute is equivalent to invoking clang
with -fno-c++-static-destructors.

If a variable is declared with this attribute, clang doesn’t access check or generate the type’s destructor. If you have a
type that you only want to be annotated with no_destroy, you can therefore declare the destructor private:

struct only_no_destroy {
  only_no_destroy();
private:
  ~only_no_destroy();
};

[[clang::no_destroy]] only_no_destroy global; // fine!

Note that destructors are still required for subobjects of aggregates annotated with this attribute. This is because
previously constructed subobjects need to be destroyed if an exception gets thrown before the initialization of the
complete object is complete. For instance:

void f() {
  try {
    [[clang::no_destroy]]
    static only_no_destroy array[10]; // error, only_no_destroy has a private destructor.
  } catch (...) {
    // Handle the error
  }
}

Here, if the construction of array[9] fails with an exception, array[0..8] will be destroyed, so the element’s
destructor needs to be accessible.

nodebug

Supported Syntaxes

GNU C++11 C2x
__declsp

ec Keyword #pragma

#pragma 
clang at
tribute

HLSL
Semantic

nodebug gnu::nod
ebug

gnu::nod
ebug

Yes

The nodebug attribute allows you to suppress debugging information for a function or method, for a variable that is
not a parameter or a non-static data member, or for a typedef or using declaration.

noescape

Supported Syntaxes

Attributes in Clang

365



GNU C++11 C2x
__declsp

ec Keyword #pragma

#pragma 
clang at
tribute

HLSL
Semantic

noescape clang::n
oescape

clang::n
oescape

Yes

noescape placed on a function parameter of a pointer type is used to inform the compiler that the pointer cannot
escape: that is, no reference to the object the pointer points to that is derived from the parameter value will survive
after the function returns. Users are responsible for making sure parameters annotated with noescape do not
actually escape. Calling free() on such a parameter does not constitute an escape.

For example:

int *gp;

void nonescapingFunc(__attribute__((noescape)) int *p) {
  *p += 100; // OK.
}

void escapingFunc(__attribute__((noescape)) int *p) {
  gp = p; // Not OK.
}

Additionally, when the parameter is a block pointer <https://clang.llvm.org/docs/BlockLanguageSpec.html>, the same
restriction applies to copies of the block. For example:

typedef void (^BlockTy)();
BlockTy g0, g1;

void nonescapingFunc(__attribute__((noescape)) BlockTy block) {
  block(); // OK.
}

void escapingFunc(__attribute__((noescape)) BlockTy block) {
  g0 = block; // Not OK.
  g1 = Block_copy(block); // Not OK either.
}

nosvm

Supported Syntaxes

GNU C++11 C2x
__declsp

ec Keyword #pragma

#pragma 
clang at
tribute

HLSL
Semantic

nosvm Yes

OpenCL 2.0 supports the optional __attribute__((nosvm)) qualifier for pointer variable. It informs the compiler
that the pointer does not refer to a shared virtual memory region. See OpenCL v2.0 s6.7.2 for details.

Since it is not widely used and has been removed from OpenCL 2.1, it is ignored by Clang.

objc_externally_retained

Supported Syntaxes

Attributes in Clang

366



GNU C++11 C2x
__declsp

ec Keyword #pragma

#pragma 
clang at
tribute

HLSL
Semantic

objc_ext
ernally_
retained

clang::o
bjc_exte
rnally_r
etained

clang::o
bjc_exte
rnally_r
etained

Yes

The objc_externally_retained attribute can be applied to strong local variables, functions, methods, or blocks
to opt into externally-retained semantics.

When applied to the definition of a function, method, or block, every parameter of the function with implicit strong
retainable object pointer type is considered externally-retained, and becomes const. By explicitly annotating a
parameter with __strong, you can opt back into the default non-externally-retained behavior for that parameter. For
instance, first_param is externally-retained below, but not second_param:

__attribute__((objc_externally_retained))
void f(NSArray *first_param, __strong NSArray *second_param) {
  // ...
}

Likewise, when applied to a strong local variable, that variable becomes const and is considered
externally-retained.

When compiled without -fobjc-arc, this attribute is ignored.

pass_object_size, pass_dynamic_object_size

Supported Syntaxes

GNU C++11 C2x
__declsp

ec Keyword #pragma

#pragma 
clang at
tribute

HLSL
Semantic

pass_obj
ect_size
<br/> pass
_dynamic
_object_
size

clang::p
ass_obje
ct_size
<br/> clan
g::pass_
dynamic_
object_s
ize

clang::p
ass_obje
ct_size
<br/> clan
g::pass_
dynamic_
object_s
ize

Yes

Note

The mangling of functions with parameters that are annotated with pass_object_size is subject to change.
You can get around this by using __asm__("foo") to explicitly name your functions, thus preserving your ABI;
also, non-overloadable C functions with pass_object_size are not mangled.

The pass_object_size(Type) attribute can be placed on function parameters to instruct clang to call
__builtin_object_size(param, Type) at each callsite of said function, and implicitly pass the result of this
call in as an invisible argument of type size_t directly after the parameter annotated with pass_object_size.
Clang will also replace any calls to __builtin_object_size(param, Type) in the function by said implicit
parameter.

Example usage:

int bzero1(char *const p __attribute__((pass_object_size(0))))
    __attribute__((noinline)) {
  int i = 0;

Attributes in Clang

367

https://clang.llvm.org/docs/AutomaticReferenceCounting.html#externally-retained-variables


  for (/**/; i < (int)__builtin_object_size(p, 0); ++i) {
    p[i] = 0;
  }
  return i;
}

int main() {
  char chars[100];
  int n = bzero1(&chars[0]);
  assert(n == sizeof(chars));
  return 0;
}

If successfully evaluating __builtin_object_size(param, Type) at the callsite is not possible, then the
“failed” value is passed in. So, using the definition of bzero1 from above, the following code would exit cleanly:

int main2(int argc, char *argv[]) {
  int n = bzero1(argv);
  assert(n == -1);
  return 0;
}

pass_object_size plays a part in overload resolution. If two overload candidates are otherwise equally good, then
the overload with one or more parameters with pass_object_size is preferred. This implies that the choice
between two identical overloads both with pass_object_size on one or more parameters will always be
ambiguous; for this reason, having two such overloads is illegal. For example:

#define PS(N) __attribute__((pass_object_size(N)))
// OK
void Foo(char *a, char *b); // Overload A
// OK -- overload A has no parameters with pass_object_size.
void Foo(char *a PS(0), char *b PS(0)); // Overload B
// Error -- Same signature (sans pass_object_size) as overload B, and both
// overloads have one or more parameters with the pass_object_size attribute.
void Foo(void *a PS(0), void *b);

// OK
void Bar(void *a PS(0)); // Overload C
// OK
void Bar(char *c PS(1)); // Overload D

void main() {
  char known[10], *unknown;
  Foo(unknown, unknown); // Calls overload B
  Foo(known, unknown); // Calls overload B
  Foo(unknown, known); // Calls overload B
  Foo(known, known); // Calls overload B

  Bar(known); // Calls overload D
  Bar(unknown); // Calls overload D
}

Currently, pass_object_size is a bit restricted in terms of its usage:

• Only one use of pass_object_size is allowed per parameter.

• It is an error to take the address of a function with pass_object_size on any of its parameters. If you wish to
do this, you can create an overload without pass_object_size on any parameters.

• It is an error to apply the pass_object_size attribute to parameters that are not pointers. Additionally, any
parameter that pass_object_size is applied to must be marked const at its function’s definition.

Clang also supports the pass_dynamic_object_size attribute, which behaves identically to
pass_object_size, but evaluates a call to __builtin_dynamic_object_size at the callee instead of

Attributes in Clang

368



__builtin_object_size. __builtin_dynamic_object_size provides some extra runtime checks when the
object size can’t be determined at compile-time. You can read more about __builtin_dynamic_object_size
here.

require_constant_initialization, constinit (C++20)

Supported Syntaxes

GNU C++11 C2x
__declsp

ec Keyword #pragma

#pragma 
clang at
tribute

HLSL
Semantic

require_
constant
_initial
ization

clang::r
equire_c
onstant_
initiali
zation

constini
t

Yes

This attribute specifies that the variable to which it is attached is intended to have a constant initializer according to
the rules of [basic.start.static]. The variable is required to have static or thread storage duration. If the initialization of
the variable is not a constant initializer an error will be produced. This attribute may only be used in C++; the
constinit spelling is only accepted in C++20 onwards.

Note that in C++03 strict constant expression checking is not done. Instead the attribute reports if Clang can emit the
variable as a constant, even if it’s not technically a ‘constant initializer’. This behavior is non-portable.

Static storage duration variables with constant initializers avoid hard-to-find bugs caused by the indeterminate order
of dynamic initialization. They can also be safely used during dynamic initialization across translation units.

This attribute acts as a compile time assertion that the requirements for constant initialization have been met. Since
these requirements change between dialects and have subtle pitfalls it’s important to fail fast instead of silently falling
back on dynamic initialization.

The first use of the attribute on a variable must be part of, or precede, the initializing declaration of the variable.
C++20 requires the constinit spelling of the attribute to be present on the initializing declaration if it is used
anywhere. The other spellings can be specified on a forward declaration and omitted on a later initializing
declaration.

// -std=c++14
#define SAFE_STATIC [[clang::require_constant_initialization]]
struct T {
  constexpr T(int) {}
  ~T(); // non-trivial
};
SAFE_STATIC T x = {42}; // Initialization OK. Doesn't check destructor.
SAFE_STATIC T y = 42; // error: variable does not have a constant initializer
// copy initialization is not a constant expression on a non-literal type.

section, __declspec(allocate)

Supported Syntaxes

GNU C++11 C2x
__declsp

ec Keyword #pragma

#pragma 
clang at
tribute

HLSL
Semantic

section gnu::sec
tion

gnu::sec
tion

allocate Yes

The section attribute allows you to specify a specific section a global variable or function should be in after
translation.

Attributes in Clang

369

https://clang.llvm.org/docs/LanguageExtensions.html#evaluating-object-size-dynamically
http://en.cppreference.com/w/cpp/language/constant_initialization


standalone_debug

Supported Syntaxes

GNU C++11 C2x
__declsp

ec Keyword #pragma

#pragma 
clang at
tribute

HLSL
Semantic

standalo
ne_debug

clang::s
tandalon
e_debug

Yes

The standalone_debug attribute causes debug info to be emitted for a record type regardless of the debug info
optimizations that are enabled with -fno-standalone-debug. This attribute only has an effect when debug info
optimizations are enabled (e.g. with -fno-standalone-debug), and is C++-only.

swift_async_context

Supported Syntaxes

GNU C++11 C2x
__declsp

ec Keyword #pragma

#pragma 
clang at
tribute

HLSL
Semantic

swift_as
ync_cont
ext

clang::s
wift_asy
nc_conte
xt

clang::s
wift_asy
nc_conte
xt

Yes

The swift_async_context attribute marks a parameter of a swiftasynccall function as having the special
asynchronous context-parameter ABI treatment.

If the function is not swiftasynccall, this attribute only generates extended frame information.

A context parameter must have pointer or reference type.

swift_context

Supported Syntaxes

GNU C++11 C2x
__declsp

ec Keyword #pragma

#pragma 
clang at
tribute

HLSL
Semantic

swift_co
ntext

clang::s
wift_con
text

clang::s
wift_con
text

Yes

The swift_context attribute marks a parameter of a swiftcall or swiftasynccall function as having the
special context-parameter ABI treatment.

This treatment generally passes the context value in a special register which is normally callee-preserved.

A swift_context parameter must either be the last parameter or must be followed by a swift_error_result
parameter (which itself must always be the last parameter).

A context parameter must have pointer or reference type.

swift_error_result

Attributes in Clang

370



Supported Syntaxes

GNU C++11 C2x
__declsp

ec Keyword #pragma

#pragma 
clang at
tribute

HLSL
Semantic

swift_er
ror_resu
lt

clang::s
wift_err
or_resul
t

clang::s
wift_err
or_resul
t

Yes

The swift_error_result attribute marks a parameter of a swiftcall function as having the special error-result
ABI treatment.

This treatment generally passes the underlying error value in and out of the function through a special register which
is normally callee-preserved. This is modeled in C by pretending that the register is addressable memory:

• The caller appears to pass the address of a variable of pointer type. The current value of this variable is copied
into the register before the call; if the call returns normally, the value is copied back into the variable.

• The callee appears to receive the address of a variable. This address is actually a hidden location in its own
stack, initialized with the value of the register upon entry. When the function returns normally, the value in that
hidden location is written back to the register.

A swift_error_result parameter must be the last parameter, and it must be preceded by a swift_context
parameter.

A swift_error_result parameter must have type T** or T*& for some type T. Note that no qualifiers are
permitted on the intermediate level.

It is undefined behavior if the caller does not pass a pointer or reference to a valid object.

The standard convention is that the error value itself (that is, the value stored in the apparent argument) will be null
upon function entry, but this is not enforced by the ABI.

swift_indirect_result

Supported Syntaxes

GNU C++11 C2x
__declsp

ec Keyword #pragma

#pragma 
clang at
tribute

HLSL
Semantic

swift_in
direct_r
esult

clang::s
wift_ind
irect_re
sult

clang::s
wift_ind
irect_re
sult

Yes

The swift_indirect_result attribute marks a parameter of a swiftcall or swiftasynccall function as
having the special indirect-result ABI treatment.

This treatment gives the parameter the target’s normal indirect-result ABI treatment, which may involve passing it
differently from an ordinary parameter. However, only the first indirect result will receive this treatment. Furthermore,
low-level lowering may decide that a direct result must be returned indirectly; if so, this will take priority over the
swift_indirect_result parameters.

A swift_indirect_result parameter must either be the first parameter or follow another
swift_indirect_result parameter.

A swift_indirect_result parameter must have type T* or T& for some object type T. If T is a complete type at
the point of definition of a function, it is undefined behavior if the argument value does not point to storage of
adequate size and alignment for a value of type T.

Making indirect results explicit in the signature allows C functions to directly construct objects into them without
relying on language optimizations like C++’s named return value optimization (NRVO).

Attributes in Clang

371



swiftasynccall

Supported Syntaxes

GNU C++11 C2x
__declsp

ec Keyword #pragma

#pragma 
clang at
tribute

HLSL
Semantic

swiftasy
nccall

clang::s
wiftasyn
ccall

clang::s
wiftasyn
ccall

The swiftasynccall attribute indicates that a function is compatible with the low-level conventions of Swift async
functions, provided it declares the right formal arguments.

In most respects, this is similar to the swiftcall attribute, except for the following:

• A parameter may be marked swift_async_context, swift_context or swift_indirect_result (with
the same restrictions on parameter ordering as swiftcall) but the parameter attribute
swift_error_result is not permitted.

• A swiftasynccall function must have return type void.

• Within a swiftasynccall function, a call to a swiftasynccall function that is the immediate operand of a
return statement is guaranteed to be performed as a tail call. This syntax is allowed even in C as an
extension (a call to a void-returning function cannot be a return operand in standard C). If something in the
calling function would semantically be performed after a guaranteed tail call, such as the non-trivial destruction
of a local variable or temporary, then the program is ill-formed.

swiftcall

Supported Syntaxes

GNU C++11 C2x
__declsp

ec Keyword #pragma

#pragma 
clang at
tribute

HLSL
Semantic

swiftcal
l

clang::s
wiftcall

clang::s
wiftcall

The swiftcall attribute indicates that a function should be called using the Swift calling convention for a function
or function pointer.

The lowering for the Swift calling convention, as described by the Swift ABI documentation, occurs in multiple
phases. The first, “high-level” phase breaks down the formal parameters and results into innately direct and indirect
components, adds implicit parameters for the generic signature, and assigns the context and error ABI treatments to
parameters where applicable. The second phase breaks down the direct parameters and results from the first phase
and assigns them to registers or the stack. The swiftcall convention only handles this second phase of lowering;
the C function type must accurately reflect the results of the first phase, as follows:

• Results classified as indirect by high-level lowering should be represented as parameters with the
swift_indirect_result attribute.

• Results classified as direct by high-level lowering should be represented as follows:

• First, remove any empty direct results.

• If there are no direct results, the C result type should be void.

• If there is one direct result, the C result type should be a type with the exact layout of that result type.

• If there are a multiple direct results, the C result type should be a struct type with the exact layout of a
tuple of those results.

• Parameters classified as indirect by high-level lowering should be represented as parameters of pointer type.

Attributes in Clang

372



• Parameters classified as direct by high-level lowering should be omitted if they are empty types; otherwise, they
should be represented as a parameter type with a layout exactly matching the layout of the Swift parameter
type.

• The context parameter, if present, should be represented as a trailing parameter with the swift_context
attribute.

• The error result parameter, if present, should be represented as a trailing parameter (always following a context
parameter) with the swift_error_result attribute.

swiftcall does not support variadic arguments or unprototyped functions.

The parameter ABI treatment attributes are aspects of the function type. A function type which applies an ABI
treatment attribute to a parameter is a different type from an otherwise-identical function type that does not. A single
parameter may not have multiple ABI treatment attributes.

Support for this feature is target-dependent, although it should be supported on every target that Swift supports.
Query for this support with __has_attribute(swiftcall). This implies support for the swift_context,
swift_error_result, and swift_indirect_result attributes.

thread

Supported Syntaxes

GNU C++11 C2x
__declsp

ec Keyword #pragma

#pragma 
clang at
tribute

HLSL
Semantic

thread

The __declspec(thread) attribute declares a variable with thread local storage. It is available under the
-fms-extensions flag for MSVC compatibility. See the documentation for __declspec(thread) on MSDN.

In Clang, __declspec(thread) is generally equivalent in functionality to the GNU __thread keyword. The
variable must not have a destructor and must have a constant initializer, if any. The attribute only applies to variables
declared with static storage duration, such as globals, class static data members, and static locals.

tls_model

Supported Syntaxes

GNU C++11 C2x
__declsp

ec Keyword #pragma

#pragma 
clang at
tribute

HLSL
Semantic

tls_mode
l

gnu::tls
_model

gnu::tls
_model

Yes

The tls_model attribute allows you to specify which thread-local storage model to use. It accepts the following
strings:

• global-dynamic

• local-dynamic

• initial-exec

• local-exec

TLS models are mutually exclusive.

uninitialized

Attributes in Clang

373

http://msdn.microsoft.com/en-us/library/9w1sdazb.aspx


Supported Syntaxes

GNU C++11 C2x
__declsp

ec Keyword #pragma

#pragma 
clang at
tribute

HLSL
Semantic

uninitia
lized

clang::u
ninitial
ized

Yes

The command-line parameter -ftrivial-auto-var-init=* can be used to initialize trivial automatic stack
variables. By default, trivial automatic stack variables are uninitialized. This attribute is used to override the
command-line parameter, forcing variables to remain uninitialized. It has no semantic meaning in that using
uninitialized values is undefined behavior, it rather documents the programmer’s intent.

Attributes in Clang

374



Diagnostic flags in Clang
Introduction 396

Diagnostic flags 396

-W 396

-W#pragma-messages 396

-W#warnings 396

-WCFString-literal 396

-WCL4 396

-WIndependentClass-attribute 396

-WNSObject-attribute 396

-Wabi 397

-Wabsolute-value 397

-Wabstract-final-class 397

-Wabstract-vbase-init 397

-Waddress 397

-Waddress-of-packed-member 397

-Waddress-of-temporary 397

-Waggregate-return 397

-Waggressive-restrict 397

-Waix-compat 398

-Walign-mismatch 398

-Wall 398

-Walloca 398

-Walloca-with-align-alignof 398

-Walways-inline-coroutine 398

-Wambiguous-delete 398

-Wambiguous-ellipsis 398

-Wambiguous-macro 399

-Wambiguous-member-template 399

-Wambiguous-reversed-operator 399

-Wanalyzer-incompatible-plugin 399

-Wanon-enum-enum-conversion 399

-Wanonymous-pack-parens 399

-Warc 399

-Warc-bridge-casts-disallowed-in-nonarc 399

-Warc-maybe-repeated-use-of-weak 400

-Warc-non-pod-memaccess 400

-Warc-performSelector-leaks 400

-Warc-repeated-use-of-weak 400

-Warc-retain-cycles 400

-Warc-unsafe-retained-assign 400

-Wargument-outside-range 400

-Wargument-undefined-behaviour 400

-Warray-bounds 401

Diagnostic flags in Clang

375



-Warray-bounds-pointer-arithmetic 401

-Wasm 401

-Wasm-operand-widths 401

-Wassign-enum 401

-Wassume 401

-Wat-protocol 401

-Watimport-in-framework-header 401

-Watomic-access 402

-Watomic-alignment 402

-Watomic-implicit-seq-cst 402

-Watomic-memory-ordering 402

-Watomic-properties 402

-Watomic-property-with-user-defined-accessor 402

-Wattribute-packed-for-bitfield 402

-Wattribute-warning 402

-Wattributes 403

-Wauto-disable-vptr-sanitizer 403

-Wauto-import 403

-Wauto-storage-class 403

-Wauto-var-id 403

-Wavailability 403

-Wavr-rtlib-linking-quirks 404

-Wbackend-plugin 404

-Wbackslash-newline-escape 404

-Wbad-function-cast 404

-Wbinary-literal 404

-Wbind-to-temporary-copy 404

-Wbinding-in-condition 404

-Wbit-int-extension 405

-Wbitfield-constant-conversion 405

-Wbitfield-enum-conversion 405

-Wbitfield-width 405

-Wbitwise-conditional-parentheses 405

-Wbitwise-instead-of-logical 405

-Wbitwise-op-parentheses 405

-Wblock-capture-autoreleasing 405

-Wbool-conversion 405

-Wbool-conversions 406

-Wbool-operation 406

-Wbraced-scalar-init 406

-Wbranch-protection 406

-Wbridge-cast 406

-Wbuiltin-assume-aligned-alignment 406

-Wbuiltin-macro-redefined 406

-Wbuiltin-memcpy-chk-size 407

Diagnostic flags in Clang

376



-Wbuiltin-requires-header 407

-Wc++-compat 407

-Wc++0x-compat 407

-Wc++0x-extensions 407

-Wc++0x-narrowing 407

-Wc++11-compat 407

-Wc++11-compat-deprecated-writable-strings 408

-Wc++11-compat-pedantic 408

-Wc++11-compat-reserved-user-defined-literal 408

-Wc++11-extensions 408

-Wc++11-extra-semi 409

-Wc++11-inline-namespace 409

-Wc++11-long-long 409

-Wc++11-narrowing 409

-Wc++14-attribute-extensions 410

-Wc++14-binary-literal 410

-Wc++14-compat 410

-Wc++14-compat-pedantic 410

-Wc++14-extensions 410

-Wc++17-attribute-extensions 410

-Wc++17-compat 410

-Wc++17-compat-mangling 410

-Wc++17-compat-pedantic 411

-Wc++17-extensions 411

-Wc++1y-extensions 411

-Wc++1z-compat 411

-Wc++1z-compat-mangling 411

-Wc++1z-extensions 412

-Wc++20-attribute-extensions 412

-Wc++20-compat 412

-Wc++20-compat-pedantic 412

-Wc++20-designator 412

-Wc++20-extensions 412

-Wc++2a-compat 413

-Wc++2a-compat-pedantic 413

-Wc++2a-extensions 413

-Wc++2b-extensions 413

-Wc++98-c++11-c++14-c++17-compat 414

-Wc++98-c++11-c++14-c++17-compat-pedantic 414

-Wc++98-c++11-c++14-compat 414

-Wc++98-c++11-c++14-compat-pedantic 414

-Wc++98-c++11-compat 414

-Wc++98-c++11-compat-binary-literal 414

-Wc++98-c++11-compat-pedantic 414

-Wc++98-compat 414

Diagnostic flags in Clang

377



-Wc++98-compat-bind-to-temporary-copy 416

-Wc++98-compat-extra-semi 416

-Wc++98-compat-local-type-template-args 416

-Wc++98-compat-pedantic 416

-Wc++98-compat-unnamed-type-template-args 417

-Wc11-extensions 417

-Wc2x-extensions 417

-Wc99-compat 417

-Wc99-designator 418

-Wc99-extensions 418

-Wcall-to-pure-virtual-from-ctor-dtor 418

-Wcalled-once-parameter 418

-Wcast-align 419

-Wcast-calling-convention 419

-Wcast-function-type 419

-Wcast-of-sel-type 419

-Wcast-qual 419

-Wcast-qual-unrelated 419

-Wchar-align 419

-Wchar-subscripts 419

-Wclang-cl-pch 420

-Wclass-conversion 420

-Wclass-varargs 420

-Wcmse-union-leak 420

-Wcomma 420

-Wcomment 420

-Wcomments 421

-Wcompare-distinct-pointer-types 421

-Wcompletion-handler 421

-Wcomplex-component-init 421

-Wcompound-token-split 421

-Wcompound-token-split-by-macro 421

-Wcompound-token-split-by-space 421

-Wconcepts-ts-compat 421

-Wconditional-type-mismatch 421

-Wconditional-uninitialized 422

-Wconfig-macros 422

-Wconstant-conversion 422

-Wconstant-evaluated 422

-Wconstant-logical-operand 422

-Wconstexpr-not-const 422

-Wconsumed 422

-Wconversion 423

-Wconversion-null 423

-Wcoroutine 423

Diagnostic flags in Clang

378



-Wcoroutine-missing-unhandled-exception 423

-Wcovered-switch-default 423

-Wcpp 423

-Wcstring-format-directive 423

-Wctad-maybe-unsupported 424

-Wctor-dtor-privacy 424

-Wctu 424

-Wcuda-compat 424

-Wcustom-atomic-properties 424

-Wcxx-attribute-extension 424

-Wdangling 424

-Wdangling-else 424

-Wdangling-field 425

-Wdangling-gsl 425

-Wdangling-initializer-list 425

-Wdarwin-sdk-settings 425

-Wdate-time 425

-Wdealloc-in-category 425

-Wdebug-compression-unavailable 425

-Wdeclaration-after-statement 426

-Wdefaulted-function-deleted 426

-Wdelegating-ctor-cycles 426

-Wdelete-abstract-non-virtual-dtor 426

-Wdelete-incomplete 426

-Wdelete-non-abstract-non-virtual-dtor 426

-Wdelete-non-virtual-dtor 426

-Wdelimited-escape-sequence-extension 426

-Wdeprecate-lax-vec-conv-all 427

-Wdeprecated 427

-Wdeprecated-altivec-src-compat 427

-Wdeprecated-anon-enum-enum-conversion 427

-Wdeprecated-array-compare 427

-Wdeprecated-attributes 428

-Wdeprecated-comma-subscript 428

-Wdeprecated-copy 428

-Wdeprecated-copy-dtor 428

-Wdeprecated-copy-with-dtor 428

-Wdeprecated-copy-with-user-provided-copy 428

-Wdeprecated-copy-with-user-provided-dtor 428

-Wdeprecated-coroutine 428

-Wdeprecated-declarations 428

-Wdeprecated-dynamic-exception-spec 429

-Wdeprecated-enum-compare 429

-Wdeprecated-enum-compare-conditional 429

-Wdeprecated-enum-enum-conversion 429

Diagnostic flags in Clang

379



-Wdeprecated-enum-float-conversion 429

-Wdeprecated-experimental-coroutine 429

-Wdeprecated-implementations 429

-Wdeprecated-increment-bool 430

-Wdeprecated-non-prototype 430

-Wdeprecated-objc-isa-usage 430

-Wdeprecated-objc-pointer-introspection 430

-Wdeprecated-objc-pointer-introspection-performSelector 430

-Wdeprecated-pragma 430

-Wdeprecated-register 430

-Wdeprecated-this-capture 431

-Wdeprecated-type 431

-Wdeprecated-volatile 431

-Wdeprecated-writable-strings 431

-Wdeprecated-xl-loop-pragmas 431

-Wdirect-ivar-access 431

-Wdisabled-macro-expansion 431

-Wdisabled-optimization 431

-Wdiscard-qual 432

-Wdistributed-object-modifiers 432

-Wdiv-by-zero 432

-Wdivision-by-zero 432

-Wdll-attribute-on-redeclaration 432

-Wdllexport-explicit-instantiation-decl 432

-Wdllimport-static-field-def 432

-Wdocumentation 432

-Wdocumentation-deprecated-sync 433

-Wdocumentation-html 433

-Wdocumentation-pedantic 433

-Wdocumentation-unknown-command 433

-Wdollar-in-identifier-extension 434

-Wdouble-promotion 434

-Wdtor-name 434

-Wdtor-typedef 434

-Wduplicate-decl-specifier 434

-Wduplicate-enum 434

-Wduplicate-method-arg 434

-Wduplicate-method-match 435

-Wduplicate-protocol 435

-Wdynamic-class-memaccess 435

-Wdynamic-exception-spec 435

-Weffc++ 435

-Welaborated-enum-base 435

-Welaborated-enum-class 435

-Wembedded-directive 435

Diagnostic flags in Clang

380



-Wempty-body 435

-Wempty-decomposition 436

-Wempty-init-stmt 436

-Wempty-margins 436

-Wempty-translation-unit 436

-Wencode-type 436

-Wendif-labels 436

-Wenum-compare 436

-Wenum-compare-conditional 437

-Wenum-compare-switch 437

-Wenum-conversion 437

-Wenum-enum-conversion 437

-Wenum-float-conversion 437

-Wenum-too-large 437

-Wexceptions 437

-Wexcess-initializers 438

-Wexit-time-destructors 438

-Wexpansion-to-defined 438

-Wexplicit-initialize-call 438

-Wexplicit-ownership-type 438

-Wexport-unnamed 438

-Wexport-using-directive 438

-Wextern-c-compat 439

-Wextern-initializer 439

-Wextra 439

-Wextra-qualification 439

-Wextra-semi 439

-Wextra-semi-stmt 439

-Wextra-tokens 439

-Wfinal-dtor-non-final-class 440

-Wfinal-macro 440

-Wfixed-enum-extension 440

-Wfixed-point-overflow 440

-Wflag-enum 440

-Wflexible-array-extensions 440

-Wfloat-conversion 440

-Wfloat-equal 440

-Wfloat-overflow-conversion 441

-Wfloat-zero-conversion 441

-Wfor-loop-analysis 441

-Wformat 441

-Wformat-extra-args 442

-Wformat-insufficient-args 442

-Wformat-invalid-specifier 442

-Wformat-non-iso 442

Diagnostic flags in Clang

381



-Wformat-nonliteral 442

-Wformat-pedantic 443

-Wformat-security 443

-Wformat-type-confusion 443

-Wformat-y2k 443

-Wformat-zero-length 443

-Wformat=2 443

-Wfortify-source 443

-Wfour-char-constants 443

-Wframe-address 444

-Wframe-larger-than 444

-Wframe-larger-than= 444

-Wframework-include-private-from-public 444

-Wfree-nonheap-object 444

-Wfunction-def-in-objc-container 444

-Wfunction-multiversion 444

-Wfuse-ld-path 444

-Wfuture-attribute-extensions 445

-Wfuture-compat 445

-Wgcc-compat 445

-Wglobal-constructors 445

-Wglobal-isel 445

-Wgnu 445

-Wgnu-alignof-expression 446

-Wgnu-anonymous-struct 446

-Wgnu-array-member-paren-init 446

-Wgnu-auto-type 446

-Wgnu-binary-literal 446

-Wgnu-case-range 446

-Wgnu-complex-integer 446

-Wgnu-compound-literal-initializer 446

-Wgnu-conditional-omitted-operand 447

-Wgnu-designator 447

-Wgnu-empty-initializer 447

-Wgnu-empty-struct 447

-Wgnu-flexible-array-initializer 447

-Wgnu-flexible-array-union-member 447

-Wgnu-folding-constant 447

-Wgnu-imaginary-constant 447

-Wgnu-include-next 448

-Wgnu-inline-cpp-without-extern 448

-Wgnu-label-as-value 448

-Wgnu-line-marker 448

-Wgnu-null-pointer-arithmetic 448

-Wgnu-pointer-arith 448

Diagnostic flags in Clang

382



-Wgnu-redeclared-enum 448

-Wgnu-statement-expression 448

-Wgnu-statement-expression-from-macro-expansion 449

-Wgnu-static-float-init 449

-Wgnu-string-literal-operator-template 449

-Wgnu-union-cast 449

-Wgnu-variable-sized-type-not-at-end 449

-Wgnu-zero-line-directive 449

-Wgnu-zero-variadic-macro-arguments 449

-Wgpu-maybe-wrong-side 449

-Wheader-guard 449

-Wheader-hygiene 450

-Whip-only 450

-Whlsl-extensions 450

-Widiomatic-parentheses 450

-Wignored-attributes 450

-Wignored-availability-without-sdk-settings 453

-Wignored-optimization-argument 453

-Wignored-pragma-intrinsic 453

-Wignored-pragma-optimize 453

-Wignored-pragmas 453

-Wignored-qualifiers 455

-Wignored-reference-qualifiers 456

-Wimplicit 456

-Wimplicit-atomic-properties 456

-Wimplicit-const-int-float-conversion 456

-Wimplicit-conversion-floating-point-to-bool 456

-Wimplicit-exception-spec-mismatch 456

-Wimplicit-fallthrough 456

-Wimplicit-fallthrough-per-function 456

-Wimplicit-fixed-point-conversion 456

-Wimplicit-float-conversion 457

-Wimplicit-function-declaration 457

-Wimplicit-int 457

-Wimplicit-int-conversion 457

-Wimplicit-int-float-conversion 457

-Wimplicit-retain-self 458

-Wimplicitly-unsigned-literal 458

-Wimport 458

-Wimport-preprocessor-directive-pedantic 458

-Winaccessible-base 458

-Winclude-next-absolute-path 458

-Winclude-next-outside-header 458

-Wincompatible-exception-spec 458

-Wincompatible-function-pointer-types 458

Diagnostic flags in Clang

383



-Wincompatible-library-redeclaration 459

-Wincompatible-ms-struct 459

-Wincompatible-pointer-types 459

-Wincompatible-pointer-types-discards-qualifiers 459

-Wincompatible-property-type 459

-Wincompatible-sysroot 459

-Wincomplete-framework-module-declaration 459

-Wincomplete-implementation 460

-Wincomplete-module 460

-Wincomplete-setjmp-declaration 460

-Wincomplete-umbrella 460

-Winconsistent-dllimport 460

-Winconsistent-missing-destructor-override 460

-Winconsistent-missing-override 460

-Wincrement-bool 460

-Winfinite-recursion 461

-Winit-self 461

-Winitializer-overrides 461

-Winjected-class-name 461

-Winline 461

-Winline-asm 461

-Winline-namespace-reopened-noninline 461

-Winline-new-delete 461

-Winstantiation-after-specialization 462

-Wint-conversion 462

-Wint-conversions 462

-Wint-in-bool-context 462

-Wint-to-pointer-cast 462

-Wint-to-void-pointer-cast 462

-Winteger-overflow 462

-Winterrupt-service-routine 462

-Winvalid-command-line-argument 463

-Winvalid-constexpr 463

-Winvalid-iboutlet 463

-Winvalid-initializer-from-system-header 463

-Winvalid-ios-deployment-target 463

-Winvalid-no-builtin-names 463

-Winvalid-noreturn 464

-Winvalid-offsetof 464

-Winvalid-or-nonexistent-directory 464

-Winvalid-partial-specialization 464

-Winvalid-pch 464

-Winvalid-pp-token 464

-Winvalid-source-encoding 464

-Winvalid-token-paste 465

Diagnostic flags in Clang

384



-Wjump-seh-finally 465

-Wkeyword-compat 465

-Wkeyword-macro 465

-Wknr-promoted-parameter 465

-Wlanguage-extension-token 465

-Wlarge-by-value-copy 465

-Wliblto 465

-Wlinker-warnings 466

-Wliteral-conversion 466

-Wliteral-range 466

-Wlocal-type-template-args 466

-Wlogical-not-parentheses 466

-Wlogical-op-parentheses 466

-Wlong-long 466

-Wloop-analysis 467

-Wmacro-redefined 467

-Wmain 467

-Wmain-return-type 467

-Wmalformed-warning-check 467

-Wmany-braces-around-scalar-init 467

-Wmax-tokens 467

-Wmax-unsigned-zero 468

-Wmemset-transposed-args 468

-Wmemsize-comparison 468

-Wmethod-signatures 468

-Wmicrosoft 468

-Wmicrosoft-abstract 468

-Wmicrosoft-anon-tag 469

-Wmicrosoft-cast 469

-Wmicrosoft-charize 469

-Wmicrosoft-comment-paste 469

-Wmicrosoft-const-init 469

-Wmicrosoft-cpp-macro 469

-Wmicrosoft-default-arg-redefinition 469

-Wmicrosoft-drectve-section 469

-Wmicrosoft-end-of-file 470

-Wmicrosoft-enum-forward-reference 470

-Wmicrosoft-enum-value 470

-Wmicrosoft-exception-spec 470

-Wmicrosoft-exists 470

-Wmicrosoft-explicit-constructor-call 470

-Wmicrosoft-extra-qualification 470

-Wmicrosoft-fixed-enum 471

-Wmicrosoft-flexible-array 471

-Wmicrosoft-goto 471

Diagnostic flags in Clang

385



-Wmicrosoft-inaccessible-base 471

-Wmicrosoft-include 471

-Wmicrosoft-mutable-reference 471

-Wmicrosoft-pure-definition 471

-Wmicrosoft-redeclare-static 471

-Wmicrosoft-sealed 471

-Wmicrosoft-static-assert 472

-Wmicrosoft-template 472

-Wmicrosoft-template-shadow 472

-Wmicrosoft-union-member-reference 472

-Wmicrosoft-unqualified-friend 472

-Wmicrosoft-using-decl 473

-Wmicrosoft-void-pseudo-dtor 473

-Wmisexpect 473

-Wmisleading-indentation 473

-Wmismatched-new-delete 473

-Wmismatched-parameter-types 473

-Wmismatched-return-types 473

-Wmismatched-tags 473

-Wmissing-braces 474

-Wmissing-constinit 474

-Wmissing-declarations 474

-Wmissing-exception-spec 474

-Wmissing-field-initializers 474

-Wmissing-format-attribute 474

-Wmissing-include-dirs 474

-Wmissing-method-return-type 474

-Wmissing-noescape 474

-Wmissing-noreturn 475

-Wmissing-prototype-for-cc 475

-Wmissing-prototypes 475

-Wmissing-selector-name 475

-Wmissing-sysroot 475

-Wmissing-variable-declarations 475

-Wmisspelled-assumption 475

-Rmodule-build 475

-Wmodule-conflict 476

-Wmodule-file-config-mismatch 476

-Wmodule-file-extension 476

-Rmodule-import 476

-Wmodule-import-in-extern-c 476

-Rmodule-lock 476

-Wmodules-ambiguous-internal-linkage 476

-Wmodules-import-nested-redundant 476

-Wmost 477

Diagnostic flags in Clang

386



-Wmove 477

-Wmsvc-include 477

-Wmsvc-not-found 477

-Wmultichar 477

-Wmultiple-move-vbase 477

-Wnarrowing 477

-Wnested-anon-types 477

-Wnested-externs 477

-Wnew-returns-null 477

-Wnewline-eof 478

-Wnoderef 478

-Wnoexcept-type 478

-Wnon-c-typedef-for-linkage 478

-Wnon-gcc 478

-Wnon-literal-null-conversion 478

-Wnon-modular-include-in-framework-module 478

-Wnon-modular-include-in-module 478

-Wnon-pod-varargs 479

-Wnon-power-of-two-alignment 479

-Wnon-virtual-dtor 479

-Wnonnull 479

-Wnonportable-cfstrings 479

-Wnonportable-include-path 479

-Wnonportable-system-include-path 479

-Wnonportable-vector-initialization 479

-Wnontrivial-memaccess 480

-Wnsconsumed-mismatch 480

-Wnsreturns-mismatch 480

-Wnull-arithmetic 480

-Wnull-character 480

-Wnull-conversion 480

-Wnull-dereference 480

-Wnull-pointer-arithmetic 481

-Wnull-pointer-subtraction 481

-Wnullability 481

-Wnullability-completeness 481

-Wnullability-completeness-on-arrays 481

-Wnullability-declspec 481

-Wnullability-extension 481

-Wnullability-inferred-on-nested-type 482

-Wnullable-to-nonnull-conversion 482

-Wobjc-autosynthesis-property-ivar-name-match 482

-Wobjc-bool-constant-conversion 482

-Wobjc-boxing 482

-Wobjc-circular-container 482

Diagnostic flags in Clang

387



-Wobjc-cocoa-api 482

-Wobjc-designated-initializers 482

-Wobjc-dictionary-duplicate-keys 483

-Wobjc-flexible-array 483

-Wobjc-forward-class-redefinition 483

-Wobjc-interface-ivars 483

-Wobjc-literal-compare 483

-Wobjc-literal-conversion 483

-Wobjc-macro-redefinition 483

-Wobjc-messaging-id 484

-Wobjc-method-access 484

-Wobjc-missing-property-synthesis 484

-Wobjc-missing-super-calls 484

-Wobjc-multiple-method-names 484

-Wobjc-noncopy-retain-block-property 484

-Wobjc-nonunified-exceptions 484

-Wobjc-property-assign-on-object-type 485

-Wobjc-property-implementation 485

-Wobjc-property-implicit-mismatch 485

-Wobjc-property-matches-cocoa-ownership-rule 485

-Wobjc-property-no-attribute 485

-Wobjc-property-synthesis 485

-Wobjc-protocol-method-implementation 485

-Wobjc-protocol-property-synthesis 486

-Wobjc-protocol-qualifiers 486

-Wobjc-readonly-with-setter-property 486

-Wobjc-redundant-api-use 486

-Wobjc-redundant-literal-use 486

-Wobjc-root-class 486

-Wobjc-signed-char-bool 486

-Wobjc-signed-char-bool-implicit-float-conversion 486

-Wobjc-signed-char-bool-implicit-int-conversion 487

-Wobjc-string-compare 487

-Wobjc-string-concatenation 487

-Wobjc-unsafe-perform-selector 487

-Wodr 487

-Wold-style-cast 488

-Wold-style-definition 488

-Wopencl-unsupported-rgba 488

-Wopenmp 488

-Wopenmp-51-extensions 488

-Wopenmp-clauses 488

-Wopenmp-loop-form 489

-Wopenmp-mapping 489

-Wopenmp-target 489

Diagnostic flags in Clang

388



-Woption-ignored 489

-Wordered-compare-function-pointers 490

-Wout-of-line-declaration 490

-Wout-of-scope-function 490

-Wover-aligned 490

-Woverflow 491

-Woverlength-strings 491

-Woverloaded-shift-op-parentheses 491

-Woverloaded-virtual 491

-Woverride-init 491

-Woverride-module 491

-Woverriding-method-mismatch 491

-Woverriding-t-option 491

-Wpacked 492

-Wpadded 492

-Wparentheses 492

-Wparentheses-equality 492

-Wpartial-availability 492

-Rpass 492

-Rpass-analysis 492

-Wpass-failed 492

-Rpass-missed 493

-Wpch-date-time 493

-Wpedantic 493

-Wpedantic-core-features 496

-Wpedantic-macros 496

-Wpessimizing-move 496

-Wpointer-arith 496

-Wpointer-bool-conversion 496

-Wpointer-compare 496

-Wpointer-integer-compare 496

-Wpointer-sign 497

-Wpointer-to-enum-cast 497

-Wpointer-to-int-cast 497

-Wpointer-type-mismatch 497

-Wpoison-system-directories 497

-Wpotentially-direct-selector 497

-Wpotentially-evaluated-expression 497

-Wpragma-clang-attribute 497

-Wpragma-once-outside-header 498

-Wpragma-pack 498

-Wpragma-pack-suspicious-include 498

-Wpragma-system-header-outside-header 498

-Wpragmas 498

-Wpre-c++14-compat 498

Diagnostic flags in Clang

389



-Wpre-c++14-compat-pedantic 499

-Wpre-c++17-compat 499

-Wpre-c++17-compat-pedantic 499

-Wpre-c++20-compat 500

-Wpre-c++20-compat-pedantic 500

-Wpre-c++2b-compat 501

-Wpre-c++2b-compat-pedantic 501

-Wpre-c2x-compat 501

-Wpre-c2x-compat-pedantic 501

-Wpre-openmp-51-compat 501

-Wpredefined-identifier-outside-function 501

-Wprivate-extern 502

-Wprivate-header 502

-Wprivate-module 502

-Wprofile-instr-missing 502

-Wprofile-instr-out-of-date 502

-Wprofile-instr-unprofiled 502

-Wproperty-access-dot-syntax 502

-Wproperty-attribute-mismatch 503

-Wprotocol 503

-Wprotocol-property-synthesis-ambiguity 503

-Wpsabi 503

-Wquoted-include-in-framework-header 503

-Wrange-loop-analysis 503

-Wrange-loop-bind-reference 503

-Wrange-loop-construct 503

-Wreadonly-iboutlet-property 504

-Wreceiver-expr 504

-Wreceiver-forward-class 504

-Wredeclared-class-member 504

-Wredundant-consteval-if 504

-Wredundant-decls 504

-Wredundant-move 504

-Wredundant-parens 504

-Wregister 504

-Wreinterpret-base-class 505

-Rremark-backend-plugin 505

-Wreorder 505

-Wreorder-ctor 505

-Wreorder-init-list 505

-Wrequires-super-attribute 505

-Wreserved-id-macro 505

-Wreserved-identifier 505

-Wreserved-macro-identifier 505

-Wreserved-user-defined-literal 506

Diagnostic flags in Clang

390



-Wrestrict-expansion 506

-Wretained-language-linkage 506

-Wreturn-stack-address 506

-Wreturn-std-move 506

-Wreturn-type 506

-Wreturn-type-c-linkage 507

-Wrewrite-not-bool 507

-Rround-trip-cc1-args 507

-Wrtti 507

-Rsanitize-address 507

-Rsearch-path-usage 507

-Wsection 507

-Wselector 508

-Wselector-type-mismatch 508

-Wself-assign 508

-Wself-assign-field 508

-Wself-assign-overloaded 508

-Wself-move 508

-Wsemicolon-before-method-body 508

-Wsentinel 508

-Wsequence-point 509

-Wserialized-diagnostics 509

-Wshadow 509

-Wshadow-all 509

-Wshadow-field 509

-Wshadow-field-in-constructor 509

-Wshadow-field-in-constructor-modified 509

-Wshadow-ivar 509

-Wshadow-uncaptured-local 510

-Wshift-count-negative 510

-Wshift-count-overflow 510

-Wshift-negative-value 510

-Wshift-op-parentheses 510

-Wshift-overflow 510

-Wshift-sign-overflow 510

-Wshorten-64-to-32 510

-Wsign-compare 510

-Wsign-conversion 511

-Wsign-promo 511

-Wsigned-enum-bitfield 511

-Wsigned-unsigned-wchar 511

-Wsizeof-array-argument 511

-Wsizeof-array-decay 511

-Wsizeof-array-div 511

-Wsizeof-pointer-div 511

Diagnostic flags in Clang

391



-Wsizeof-pointer-memaccess 512

-Wslash-u-filename 512

-Wslh-asm-goto 512

-Wsometimes-uninitialized 512

-Wsource-mgr 512

-Wsource-uses-openmp 512

-Wspir-compat 513

-Wspirv-compat 513

-Wstack-exhausted 513

-Wstack-protector 513

-Wstatic-float-init 513

-Wstatic-in-inline 513

-Wstatic-inline-explicit-instantiation 513

-Wstatic-local-in-inline 513

-Wstatic-self-init 514

-Wstdlibcxx-not-found 514

-Wstrict-aliasing 514

-Wstrict-aliasing=0 514

-Wstrict-aliasing=1 514

-Wstrict-aliasing=2 514

-Wstrict-overflow 514

-Wstrict-overflow=0 514

-Wstrict-overflow=1 514

-Wstrict-overflow=2 514

-Wstrict-overflow=3 514

-Wstrict-overflow=4 514

-Wstrict-overflow=5 514

-Wstrict-potentially-direct-selector 515

-Wstrict-prototypes 515

-Wstrict-selector-match 515

-Wstring-compare 515

-Wstring-concatenation 515

-Wstring-conversion 515

-Wstring-plus-char 515

-Wstring-plus-int 515

-Wstrlcpy-strlcat-size 516

-Wstrncat-size 516

-Wsuggest-destructor-override 516

-Wsuggest-override 516

-Wsuper-class-method-mismatch 516

-Wsuspicious-bzero 516

-Wsuspicious-memaccess 516

-Wswift-name-attribute 516

-Wswitch 517

-Wswitch-bool 517

Diagnostic flags in Clang

392



-Wswitch-default 517

-Wswitch-enum 517

-Wsync-fetch-and-nand-semantics-changed 517

-Wsynth 518

-Wtarget-clones-mixed-specifiers 518

-Wtautological-bitwise-compare 518

-Wtautological-compare 518

-Wtautological-constant-compare 518

-Wtautological-constant-in-range-compare 518

-Wtautological-constant-out-of-range-compare 518

-Wtautological-objc-bool-compare 518

-Wtautological-overlap-compare 519

-Wtautological-pointer-compare 519

-Wtautological-type-limit-compare 519

-Wtautological-undefined-compare 519

-Wtautological-unsigned-char-zero-compare 519

-Wtautological-unsigned-enum-zero-compare 519

-Wtautological-unsigned-zero-compare 519

-Wtautological-value-range-compare 519

-Wtcb-enforcement 519

-Wtentative-definition-incomplete-type 520

-Wthread-safety 520

-Wthread-safety-analysis 520

-Wthread-safety-attributes 520

-Wthread-safety-beta 521

-Wthread-safety-negative 521

-Wthread-safety-precise 521

-Wthread-safety-reference 521

-Wthread-safety-verbose 521

-Wtrigraphs 521

-Wtype-limits 522

-Wtype-safety 522

-Wtypedef-redefinition 522

-Wtypename-missing 522

-Wunable-to-open-stats-file 522

-Wunaligned-access 522

-Wunaligned-qualifier-implicit-cast 522

-Wunavailable-declarations 522

-Wundeclared-selector 523

-Wundef 523

-Wundef-prefix 523

-Wundefined-bool-conversion 523

-Wundefined-func-template 523

-Wundefined-inline 523

-Wundefined-internal 523

Diagnostic flags in Clang

393



-Wundefined-internal-type 523

-Wundefined-reinterpret-cast 523

-Wundefined-var-template 524

-Wunderaligned-exception-object 524

-Wunevaluated-expression 524

-Wunguarded-availability 524

-Wunguarded-availability-new 524

-Wunicode 524

-Wunicode-homoglyph 525

-Wunicode-whitespace 525

-Wunicode-zero-width 525

-Wuninitialized 525

-Wuninitialized-const-reference 525

-Wunknown-argument 525

-Wunknown-assumption 526

-Wunknown-attributes 526

-Wunknown-cuda-version 526

-Wunknown-directives 526

-Wunknown-escape-sequence 526

-Wunknown-pragmas 526

-Wunknown-sanitizers 527

-Wunknown-warning-option 527

-Wunnamed-type-template-args 527

-Wunneeded-internal-declaration 527

-Wunneeded-member-function 528

-Wunqualified-std-cast-call 528

-Wunreachable-code 528

-Wunreachable-code-aggressive 528

-Wunreachable-code-break 528

-Wunreachable-code-fallthrough 528

-Wunreachable-code-generic-assoc 528

-Wunreachable-code-loop-increment 528

-Wunreachable-code-return 528

-Wunsequenced 529

-Wunsupported-abi 529

-Wunsupported-abs 529

-Wunsupported-availability-guard 529

-Wunsupported-cb 529

-Wunsupported-dll-base-class-template 529

-Wunsupported-floating-point-opt 529

-Wunsupported-friend 530

-Wunsupported-gpopt 530

-Wunsupported-nan 530

-Wunsupported-target-opt 530

-Wunsupported-visibility 530

Diagnostic flags in Clang

394



-Wunusable-partial-specialization 530

-Wunused 530

-Wunused-argument 531

-Wunused-but-set-parameter 531

-Wunused-but-set-variable 531

-Wunused-command-line-argument 531

-Wunused-comparison 531

-Wunused-const-variable 531

-Wunused-exception-parameter 532

-Wunused-function 532

-Wunused-getter-return-value 532

-Wunused-label 532

-Wunused-lambda-capture 532

-Wunused-local-typedef 532

-Wunused-local-typedefs 532

-Wunused-macros 532

-Wunused-member-function 532

-Wunused-parameter 532

-Wunused-private-field 533

-Wunused-property-ivar 533

-Wunused-result 533

-Wunused-template 533

-Wunused-value 533

-Wunused-variable 533

-Wunused-volatile-lvalue 534

-Wused-but-marked-unused 534

-Wuser-defined-literals 534

-Wuser-defined-warnings 534

-Wvarargs 534

-Wvariadic-macros 534

-Wvec-elem-size 534

-Wvector-conversion 535

-Wvector-conversions 535

-Wvexing-parse 535

-Wvisibility 535

-Wvla 535

-Wvla-extension 535

-Wvoid-pointer-to-enum-cast 535

-Wvoid-pointer-to-int-cast 535

-Wvoid-ptr-dereference 536

-Wvolatile-register-var 536

-Wwasm-exception-spec 536

-Wweak-template-vtables 536

-Wweak-vtables 536

-Wwritable-strings 536

Diagnostic flags in Clang

395



-Wwrite-strings 536

-Wxor-used-as-pow 536

-Wzero-as-null-pointer-constant 536

-Wzero-length-array 537

Introduction
This page lists the diagnostic flags currently supported by Clang.

Diagnostic flags

-W

Synonym for -Wextra.

-W#pragma-messages

This diagnostic is enabled by default.

Diagnostic text:

The text of this diagnostic is not controlled by Clang.

-W#warnings

This diagnostic is enabled by default.

Diagnostic text:

The text of this diagnostic is not controlled by Clang.

-WCFString-literal

This diagnostic is enabled by default.

Diagnostic text:

Removed table

-WCL4

Some of the diagnostics controlled by this flag are enabled by default.

Controls -Wall, -Wextra.

-WIndependentClass-attribute

This diagnostic is enabled by default.

Diagnostic text:

Removed table

Removed table

-WNSObject-attribute

This diagnostic is enabled by default.

Diagnostic text:

Removed table

Diagnostic flags in Clang

396



-Wabi

This diagnostic flag exists for GCC compatibility, and has no effect in Clang.

-Wabsolute-value

This diagnostic is enabled by default.

Diagnostic text:

Removed table

Removed table

Removed table

Removed table

-Wabstract-final-class

This diagnostic is enabled by default.

Diagnostic text:

Removed table

-Wabstract-vbase-init

Diagnostic text:

Removed table

-Waddress

This diagnostic is enabled by default.

Controls -Wpointer-bool-conversion, -Wstring-compare, -Wtautological-pointer-compare.

-Waddress-of-packed-member

This diagnostic is enabled by default.

Diagnostic text:

Removed table

-Waddress-of-temporary

This diagnostic is an error by default, but the flag -Wno-address-of-temporary can be used to disable the error.

Diagnostic text:

Removed table

-Waggregate-return

This diagnostic flag exists for GCC compatibility, and has no effect in Clang.

-Waggressive-restrict

This diagnostic is enabled by default.

Diagnostic text:

Diagnostic flags in Clang

397



Removed table

-Waix-compat

This diagnostic is enabled by default.

Diagnostic text:

Removed table

Removed table

-Walign-mismatch

This diagnostic is enabled by default.

Diagnostic text:

Removed table

-Wall

Some of the diagnostics controlled by this flag are enabled by default.

Controls -Wmisleading-indentation, -Wmost, -Wparentheses, -Wswitch, -Wswitch-bool.

-Walloca

Diagnostic text:

Removed table

-Walloca-with-align-alignof

This diagnostic is enabled by default.

Diagnostic text:

Removed table

-Walways-inline-coroutine

This diagnostic is enabled by default.

Diagnostic text:

Removed table

-Wambiguous-delete

This diagnostic is enabled by default.

Diagnostic text:

Removed table

-Wambiguous-ellipsis

This diagnostic is enabled by default.

Diagnostic text:

Removed table

Diagnostic flags in Clang

398



-Wambiguous-macro

This diagnostic is enabled by default.

Diagnostic text:

Removed table

-Wambiguous-member-template

This diagnostic is enabled by default.

Diagnostic text:

Removed table

-Wambiguous-reversed-operator

This diagnostic is enabled by default.

Diagnostic text:

Removed table

-Wanalyzer-incompatible-plugin

This diagnostic is enabled by default.

Diagnostic text:

Removed table

-Wanon-enum-enum-conversion

Some of the diagnostics controlled by this flag are enabled by default.

Also controls -Wdeprecated-anon-enum-enum-conversion.

Diagnostic text:

Removed table

-Wanonymous-pack-parens

This diagnostic is enabled by default.

Diagnostic text:

Removed table

-Warc

This diagnostic is enabled by default.

Controls -Warc-non-pod-memaccess, -Warc-retain-cycles, -Warc-unsafe-retained-assign.

-Warc-bridge-casts-disallowed-in-nonarc

This diagnostic is enabled by default.

Diagnostic text:

Removed table

Diagnostic flags in Clang

399



-Warc-maybe-repeated-use-of-weak

Diagnostic text:

Removed table

-Warc-non-pod-memaccess

This diagnostic is enabled by default.

Diagnostic text:

Removed table

-Warc-performSelector-leaks

This diagnostic is enabled by default.

Diagnostic text:

Removed table

-Warc-repeated-use-of-weak

Also controls -Warc-maybe-repeated-use-of-weak.

Diagnostic text:

Removed table

-Warc-retain-cycles

This diagnostic is enabled by default.

Diagnostic text:

Removed table

-Warc-unsafe-retained-assign

This diagnostic is enabled by default.

Diagnostic text:

Removed table

Removed table

Removed table

-Wargument-outside-range

This diagnostic is an error by default, but the flag -Wno-argument-outside-range can be used to disable the
error.

Diagnostic text:

Removed table

-Wargument-undefined-behaviour

This diagnostic is enabled by default.

Diagnostic text:

Diagnostic flags in Clang

400



Removed table

-Warray-bounds

This diagnostic is enabled by default.

Diagnostic text:

Removed table

Removed table

Removed table

Removed table

Removed table

-Warray-bounds-pointer-arithmetic

Diagnostic text:

Removed table

Removed table

-Wasm

Synonym for -Wasm-operand-widths.

-Wasm-operand-widths

This diagnostic is enabled by default.

Diagnostic text:

Removed table

-Wassign-enum

Diagnostic text:

Removed table

-Wassume

This diagnostic is enabled by default.

Diagnostic text:

Removed table

-Wat-protocol

This diagnostic flag exists for GCC compatibility, and has no effect in Clang.

-Watimport-in-framework-header

This diagnostic is enabled by default.

Diagnostic text:

Diagnostic flags in Clang

401



Removed table

-Watomic-access

This diagnostic is an error by default, but the flag -Wno-atomic-access can be used to disable the error.

Diagnostic text:

Removed table

-Watomic-alignment

This diagnostic is enabled by default.

Diagnostic text:

Removed table

Removed table

-Watomic-implicit-seq-cst

Diagnostic text:

Removed table

-Watomic-memory-ordering

This diagnostic is enabled by default.

Diagnostic text:

Removed table

-Watomic-properties

Controls -Wcustom-atomic-properties, -Wimplicit-atomic-properties.

-Watomic-property-with-user-defined-accessor

This diagnostic is enabled by default.

Diagnostic text:

Removed table

-Wattribute-packed-for-bitfield

This diagnostic is enabled by default.

Diagnostic text:

Removed table

-Wattribute-warning

This diagnostic is enabled by default.

Diagnostic text:

Removed table

Diagnostic flags in Clang

402



-Wattributes

This diagnostic is enabled by default.

Controls -Wignored-attributes, -Wunknown-attributes.

-Wauto-disable-vptr-sanitizer

This diagnostic is enabled by default.

Diagnostic text:

Removed table

-Wauto-import

Diagnostic text:

Removed table

-Wauto-storage-class

This diagnostic is enabled by default.

Diagnostic text:

Removed table

-Wauto-var-id

This diagnostic is enabled by default.

Diagnostic text:

Removed table

-Wavailability

This diagnostic is enabled by default.

Diagnostic text:

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Diagnostic flags in Clang

403



-Wavr-rtlib-linking-quirks

This diagnostic is enabled by default.

Diagnostic text:

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

-Wbackend-plugin

This diagnostic is enabled by default.

Diagnostic text:

The text of this diagnostic is not controlled by Clang.

-Wbackslash-newline-escape

This diagnostic is enabled by default.

Diagnostic text:

Removed table

-Wbad-function-cast

Diagnostic text:

Removed table

-Wbinary-literal

Controls -Wc++14-binary-literal, -Wc++98-c++11-compat-binary-literal, -Wgnu-binary-literal.

-Wbind-to-temporary-copy

Also controls -Wc++98-compat-bind-to-temporary-copy.

Diagnostic text:

Removed table

Removed table

-Wbinding-in-condition

This diagnostic is enabled by default.

Diagnostic text:

Removed table

Diagnostic flags in Clang

404



-Wbit-int-extension

Diagnostic text:

Removed table

-Wbitfield-constant-conversion

This diagnostic is enabled by default.

Diagnostic text:

Removed table

-Wbitfield-enum-conversion

Diagnostic text:

Removed table

Removed table

Removed table

-Wbitfield-width

This diagnostic is enabled by default.

Diagnostic text:

Removed table

-Wbitwise-conditional-parentheses

This diagnostic is enabled by default.

Diagnostic text:

Removed table

-Wbitwise-instead-of-logical

Diagnostic text:

Removed table

-Wbitwise-op-parentheses

Diagnostic text:

Removed table

-Wblock-capture-autoreleasing

This diagnostic is enabled by default.

Diagnostic text:

Removed table

-Wbool-conversion

This diagnostic is enabled by default.

Diagnostic flags in Clang

405



Also controls -Wpointer-bool-conversion, -Wundefined-bool-conversion.

Diagnostic text:

Removed table

-Wbool-conversions

Synonym for -Wbool-conversion.

-Wbool-operation

Also controls -Wbitwise-instead-of-logical.

Diagnostic text:

Removed table

-Wbraced-scalar-init

This diagnostic is enabled by default.

Diagnostic text:

Removed table

-Wbranch-protection

This diagnostic is enabled by default.

Diagnostic text:

Removed table

Removed table

Removed table

Removed table

-Wbridge-cast

This diagnostic is enabled by default.

Diagnostic text:

Removed table

Removed table

-Wbuiltin-assume-aligned-alignment

This diagnostic is enabled by default.

Diagnostic text:

Removed table

-Wbuiltin-macro-redefined

This diagnostic is enabled by default.

Diagnostic text:

Diagnostic flags in Clang

406



Removed table

Removed table

-Wbuiltin-memcpy-chk-size

This diagnostic is enabled by default.

Diagnostic text:

Removed table

-Wbuiltin-requires-header

This diagnostic is enabled by default.

Diagnostic text:

Removed table

-Wc++-compat

Diagnostic text:

Removed table

-Wc++0x-compat

Synonym for -Wc++11-compat.

-Wc++0x-extensions

Synonym for -Wc++11-extensions.

-Wc++0x-narrowing

Synonym for -Wc++11-narrowing.

-Wc++11-compat

Some of the diagnostics controlled by this flag are enabled by default.

Also controls -Wc++11-compat-deprecated-writable-strings, -Wc++11-compat-reserved-user-defined-literal,
-Wc++11-narrowing, -Wpre-c++14-compat, -Wpre-c++17-compat, -Wpre-c++20-compat, -Wpre-c++2b-compat.

Diagnostic text:

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Diagnostic flags in Clang

407



Removed table

Removed table

-Wc++11-compat-deprecated-writable-strings

This diagnostic is enabled by default.

Diagnostic text:

Removed table

-Wc++11-compat-pedantic

Some of the diagnostics controlled by this flag are enabled by default.

Controls -Wc++11-compat, -Wpre-c++14-compat-pedantic, -Wpre-c++17-compat-pedantic,
-Wpre-c++20-compat-pedantic, -Wpre-c++2b-compat-pedantic.

-Wc++11-compat-reserved-user-defined-literal

Diagnostic text:

Removed table

-Wc++11-extensions

Some of the diagnostics controlled by this flag are enabled by default.

Also controls -Wc++11-extra-semi, -Wc++11-inline-namespace, -Wc++11-long-long.

Diagnostic text:

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Diagnostic flags in Clang

408



Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

-Wc++11-extra-semi

Diagnostic text:

Removed table

-Wc++11-inline-namespace

This diagnostic is enabled by default.

Diagnostic text:

Removed table

-Wc++11-long-long

Diagnostic text:

Removed table

-Wc++11-narrowing

Some of the diagnostics controlled by this flag are enabled by default.

Diagnostic text:

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Diagnostic flags in Clang

409



-Wc++14-attribute-extensions

Diagnostic text:

Removed table

-Wc++14-binary-literal

Diagnostic text:

Removed table

-Wc++14-compat

Controls -Wpre-c++17-compat, -Wpre-c++20-compat, -Wpre-c++2b-compat.

-Wc++14-compat-pedantic

Controls -Wc++14-compat, -Wpre-c++17-compat-pedantic, -Wpre-c++20-compat-pedantic,
-Wpre-c++2b-compat-pedantic.

-Wc++14-extensions

Some of the diagnostics controlled by this flag are enabled by default.

Also controls -Wc++14-attribute-extensions, -Wc++14-binary-literal.

Diagnostic text:

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

-Wc++17-attribute-extensions

Diagnostic text:

Removed table

-Wc++17-compat

Some of the diagnostics controlled by this flag are enabled by default.

Controls -Wc++17-compat-mangling, -Wdeprecated-increment-bool, -Wdeprecated-register, -Wpre-c++20-compat,
-Wpre-c++2b-compat.

-Wc++17-compat-mangling

This diagnostic is enabled by default.

Diagnostic text:

Removed table

Diagnostic flags in Clang

410



-Wc++17-compat-pedantic

Some of the diagnostics controlled by this flag are enabled by default.

Controls -Wc++17-compat, -Wpre-c++20-compat-pedantic, -Wpre-c++2b-compat-pedantic.

-Wc++17-extensions

Some of the diagnostics controlled by this flag are enabled by default.

Also controls -Wc++17-attribute-extensions.

Diagnostic text:

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

-Wc++1y-extensions

Synonym for -Wc++14-extensions.

-Wc++1z-compat

Synonym for -Wc++17-compat.

-Wc++1z-compat-mangling

Synonym for -Wc++17-compat-mangling.

Diagnostic flags in Clang

411



-Wc++1z-extensions

Synonym for -Wc++17-extensions.

-Wc++20-attribute-extensions

Diagnostic text:

Removed table

-Wc++20-compat

Some of the diagnostics controlled by this flag are enabled by default.

Also controls -Wpre-c++2b-compat.

Diagnostic text:

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

-Wc++20-compat-pedantic

Some of the diagnostics controlled by this flag are enabled by default.

Controls -Wc++20-compat, -Wpre-c++2b-compat-pedantic.

-Wc++20-designator

Diagnostic text:

Removed table

-Wc++20-extensions

Some of the diagnostics controlled by this flag are enabled by default.

Also controls -Wc++20-attribute-extensions, -Wc++20-designator.

Diagnostic text:

Removed table

Removed table

Removed table

Removed table

Removed table

Diagnostic flags in Clang

412



Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

-Wc++2a-compat

Synonym for -Wc++20-compat.

-Wc++2a-compat-pedantic

Synonym for -Wc++20-compat-pedantic.

-Wc++2a-extensions

Synonym for -Wc++20-extensions.

-Wc++2b-extensions

This diagnostic is enabled by default.

Diagnostic text:

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Diagnostic flags in Clang

413



-Wc++98-c++11-c++14-c++17-compat

Synonym for -Wpre-c++20-compat.

-Wc++98-c++11-c++14-c++17-compat-pedantic

Synonym for -Wpre-c++20-compat-pedantic.

-Wc++98-c++11-c++14-compat

Synonym for -Wpre-c++17-compat.

-Wc++98-c++11-c++14-compat-pedantic

Synonym for -Wpre-c++17-compat-pedantic.

-Wc++98-c++11-compat

Synonym for -Wpre-c++14-compat.

-Wc++98-c++11-compat-binary-literal

Diagnostic text:

Removed table

-Wc++98-c++11-compat-pedantic

Synonym for -Wpre-c++14-compat-pedantic.

-Wc++98-compat

Also controls -Wc++98-compat-local-type-template-args, -Wc++98-compat-unnamed-type-template-args,
-Wpre-c++14-compat, -Wpre-c++17-compat, -Wpre-c++20-compat, -Wpre-c++2b-compat.

Diagnostic text:

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Diagnostic flags in Clang

414



Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Diagnostic flags in Clang

415



Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

-Wc++98-compat-bind-to-temporary-copy

Diagnostic text:

Removed table

-Wc++98-compat-extra-semi

Diagnostic text:

Removed table

-Wc++98-compat-local-type-template-args

Diagnostic text:

Removed table

-Wc++98-compat-pedantic

Also controls -Wc++98-compat, -Wc++98-compat-bind-to-temporary-copy, -Wc++98-compat-extra-semi,
-Wpre-c++14-compat-pedantic, -Wpre-c++17-compat-pedantic, -Wpre-c++20-compat-pedantic,
-Wpre-c++2b-compat-pedantic.

Diagnostic text:

Diagnostic flags in Clang

416



Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

-Wc++98-compat-unnamed-type-template-args

Diagnostic text:

Removed table

-Wc11-extensions

Diagnostic text:

Removed table

Removed table

Removed table

Removed table

-Wc2x-extensions

This diagnostic is enabled by default.

Diagnostic text:

Removed table

Removed table

Removed table

Removed table

-Wc99-compat

Some of the diagnostics controlled by this flag are enabled by default.

Diagnostic text:

Removed table

Removed table

Removed table

Diagnostic flags in Clang

417



-Wc99-designator

Some of the diagnostics controlled by this flag are enabled by default.

Also controls -Wc++20-designator.

Diagnostic text:

Removed table

Removed table

Removed table

Removed table

Removed table

-Wc99-extensions

Some of the diagnostics controlled by this flag are enabled by default.

Also controls -Wc99-designator.

Diagnostic text:

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

-Wcall-to-pure-virtual-from-ctor-dtor

This diagnostic is enabled by default.

Diagnostic text:

Removed table

-Wcalled-once-parameter

Some of the diagnostics controlled by this flag are enabled by default.

Also controls -Wcompletion-handler.

Diagnostic text:

Removed table

Diagnostic flags in Clang

418



Removed table

Removed table

-Wcast-align

Diagnostic text:

Removed table

-Wcast-calling-convention

This diagnostic is enabled by default.

Diagnostic text:

Removed table

-Wcast-function-type

Diagnostic text:

Removed table

-Wcast-of-sel-type

This diagnostic is enabled by default.

Diagnostic text:

Removed table

-Wcast-qual

Diagnostic text:

Removed table

Removed table

-Wcast-qual-unrelated

This diagnostic is enabled by default.

Diagnostic text:

Removed table

-Wchar-align

This diagnostic flag exists for GCC compatibility, and has no effect in Clang.

-Wchar-subscripts

Diagnostic text:

Removed table

Removed table

Diagnostic flags in Clang

419



-Wclang-cl-pch

This diagnostic is enabled by default.

Diagnostic text:

Removed table

Removed table

Removed table

Removed table

-Wclass-conversion

This diagnostic is enabled by default.

Diagnostic text:

Removed table

Removed table

Removed table

-Wclass-varargs

Some of the diagnostics controlled by this flag are enabled by default.

Also controls -Wnon-pod-varargs.

Diagnostic text:

Removed table

-Wcmse-union-leak

This diagnostic is enabled by default.

Diagnostic text:

Removed table

-Wcomma

Diagnostic text:

Removed table

-Wcomment

Some of the diagnostics controlled by this flag are enabled by default.

Diagnostic text:

Removed table

Removed table

Removed table

Removed table

Diagnostic flags in Clang

420



-Wcomments

Synonym for -Wcomment.

-Wcompare-distinct-pointer-types

This diagnostic is enabled by default.

Diagnostic text:

Removed table

-Wcompletion-handler

Diagnostic text:

Removed table

Removed table

Removed table

-Wcomplex-component-init

Diagnostic text:

Removed table

-Wcompound-token-split

Some of the diagnostics controlled by this flag are enabled by default.

Controls -Wcompound-token-split-by-macro, -Wcompound-token-split-by-space.

-Wcompound-token-split-by-macro

This diagnostic is enabled by default.

Diagnostic text:

Removed table

-Wcompound-token-split-by-space

Diagnostic text:

Removed table

-Wconcepts-ts-compat

This diagnostic is enabled by default.

Diagnostic text:

Removed table

-Wconditional-type-mismatch

This diagnostic is enabled by default.

Diagnostic text:

Removed table

Diagnostic flags in Clang

421



-Wconditional-uninitialized

Diagnostic text:

Removed table

-Wconfig-macros

This diagnostic is enabled by default.

Diagnostic text:

Removed table

-Wconstant-conversion

This diagnostic is enabled by default.

Also controls -Wbitfield-constant-conversion, -Wobjc-bool-constant-conversion.

Diagnostic text:

Removed table

-Wconstant-evaluated

This diagnostic is enabled by default.

Diagnostic text:

Removed table

-Wconstant-logical-operand

This diagnostic is enabled by default.

Diagnostic text:

Removed table

-Wconstexpr-not-const

This diagnostic is enabled by default.

Diagnostic text:

Removed table

-Wconsumed

Diagnostic text:

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Diagnostic flags in Clang

422



Removed table

Removed table

-Wconversion

Some of the diagnostics controlled by this flag are enabled by default.

Also controls -Wbitfield-enum-conversion, -Wbool-conversion, -Wconstant-conversion, -Wenum-conversion,
-Wfloat-conversion, -Wimplicit-float-conversion, -Wimplicit-int-conversion, -Wint-conversion, -Wliteral-conversion,
-Wnon-literal-null-conversion, -Wnull-conversion, -Wobjc-literal-conversion, -Wshorten-64-to-32, -Wsign-conversion,
-Wstring-conversion.

Diagnostic text:

Removed table

Removed table

Removed table

Removed table

Removed table

-Wconversion-null

Synonym for -Wnull-conversion.

-Wcoroutine

This diagnostic is enabled by default.

Also controls -Walways-inline-coroutine, -Wcoroutine-missing-unhandled-exception, -Wdeprecated-coroutine.

Diagnostic text:

Removed table

-Wcoroutine-missing-unhandled-exception

This diagnostic is enabled by default.

Diagnostic text:

Removed table

-Wcovered-switch-default

Diagnostic text:

Removed table

-Wcpp

Synonym for -W#warnings.

-Wcstring-format-directive

Diagnostic text:

Removed table

Diagnostic flags in Clang

423



-Wctad-maybe-unsupported

Diagnostic text:

Removed table

-Wctor-dtor-privacy

This diagnostic flag exists for GCC compatibility, and has no effect in Clang.

-Wctu

This diagnostic is enabled by default.

Diagnostic text:

Removed table

-Wcuda-compat

Some of the diagnostics controlled by this flag are enabled by default.

Diagnostic text:

Removed table

Removed table

Removed table

Removed table

Removed table

-Wcustom-atomic-properties

Diagnostic text:

Removed table

-Wcxx-attribute-extension

This diagnostic is enabled by default.

Diagnostic text:

Removed table

-Wdangling

This diagnostic is enabled by default.

Also controls -Wdangling-field, -Wdangling-gsl, -Wdangling-initializer-list, -Wreturn-stack-address.

Diagnostic text:

Removed table

Removed table

-Wdangling-else

This diagnostic is enabled by default.

Diagnostic flags in Clang

424



Diagnostic text:

Removed table

-Wdangling-field

This diagnostic is enabled by default.

Diagnostic text:

Removed table

Removed table

Removed table

Removed table

-Wdangling-gsl

This diagnostic is enabled by default.

Diagnostic text:

Removed table

Removed table

-Wdangling-initializer-list

This diagnostic is enabled by default.

Diagnostic text:

Removed table

-Wdarwin-sdk-settings

This diagnostic is enabled by default.

Diagnostic text:

Removed table

-Wdate-time

Diagnostic text:

Removed table

-Wdealloc-in-category

This diagnostic is enabled by default.

Diagnostic text:

Removed table

-Wdebug-compression-unavailable

This diagnostic is enabled by default.

Diagnostic text:

Diagnostic flags in Clang

425



Removed table

-Wdeclaration-after-statement

Diagnostic text:

Removed table

Removed table

-Wdefaulted-function-deleted

This diagnostic is enabled by default.

Diagnostic text:

Removed table

Removed table

-Wdelegating-ctor-cycles

This diagnostic is an error by default, but the flag -Wno-delegating-ctor-cycles can be used to disable the
error.

Diagnostic text:

Removed table

-Wdelete-abstract-non-virtual-dtor

This diagnostic is enabled by default.

Diagnostic text:

Removed table

-Wdelete-incomplete

This diagnostic is enabled by default.

Diagnostic text:

Removed table

Removed table

-Wdelete-non-abstract-non-virtual-dtor

Diagnostic text:

Removed table

-Wdelete-non-virtual-dtor

Some of the diagnostics controlled by this flag are enabled by default.

Controls -Wdelete-abstract-non-virtual-dtor, -Wdelete-non-abstract-non-virtual-dtor.

-Wdelimited-escape-sequence-extension

Diagnostic text:

Diagnostic flags in Clang

426



Removed table

-Wdeprecate-lax-vec-conv-all

This diagnostic is enabled by default.

Diagnostic text:

Removed table

-Wdeprecated

Some of the diagnostics controlled by this flag are enabled by default.

Also controls -Wdeprecated-anon-enum-enum-conversion, -Wdeprecated-array-compare, -Wdeprecated-attributes,
-Wdeprecated-comma-subscript, -Wdeprecated-copy, -Wdeprecated-copy-with-dtor, -Wdeprecated-declarations,
-Wdeprecated-dynamic-exception-spec, -Wdeprecated-enum-compare, -Wdeprecated-enum-compare-conditional,
-Wdeprecated-enum-enum-conversion, -Wdeprecated-enum-float-conversion, -Wdeprecated-increment-bool,
-Wdeprecated-pragma, -Wdeprecated-register, -Wdeprecated-this-capture, -Wdeprecated-type,
-Wdeprecated-volatile, -Wdeprecated-writable-strings.

Diagnostic text:

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

-Wdeprecated-altivec-src-compat

This diagnostic is enabled by default.

Diagnostic text:

Removed table

-Wdeprecated-anon-enum-enum-conversion

This diagnostic is enabled by default.

Diagnostic text:

Removed table

-Wdeprecated-array-compare

This diagnostic is enabled by default.

Diagnostic text:

Removed table

Diagnostic flags in Clang

427



-Wdeprecated-attributes

This diagnostic is enabled by default.

Diagnostic text:

Removed table

Removed table

-Wdeprecated-comma-subscript

This diagnostic is enabled by default.

Diagnostic text:

Removed table

-Wdeprecated-copy

Also controls -Wdeprecated-copy-with-user-provided-copy.

Diagnostic text:

Removed table

-Wdeprecated-copy-dtor

Synonym for -Wdeprecated-copy-with-dtor.

-Wdeprecated-copy-with-dtor

Also controls -Wdeprecated-copy-with-user-provided-dtor.

Diagnostic text:

Removed table

-Wdeprecated-copy-with-user-provided-copy

Diagnostic text:

Removed table

-Wdeprecated-copy-with-user-provided-dtor

Diagnostic text:

Removed table

-Wdeprecated-coroutine

This diagnostic is enabled by default.

Also controls -Wdeprecated-experimental-coroutine.

Diagnostic text:

Removed table

-Wdeprecated-declarations

This diagnostic is enabled by default.

Diagnostic flags in Clang

428



Diagnostic text:

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

-Wdeprecated-dynamic-exception-spec

Diagnostic text:

Removed table

-Wdeprecated-enum-compare

This diagnostic is enabled by default.

Diagnostic text:

Removed table

-Wdeprecated-enum-compare-conditional

This diagnostic is enabled by default.

Diagnostic text:

Removed table

-Wdeprecated-enum-enum-conversion

This diagnostic is enabled by default.

Diagnostic text:

Removed table

-Wdeprecated-enum-float-conversion

This diagnostic is enabled by default.

Diagnostic text:

Removed table

-Wdeprecated-experimental-coroutine

This diagnostic is enabled by default.

Diagnostic text:

Removed table

-Wdeprecated-implementations

Diagnostic text:

Diagnostic flags in Clang

429



Removed table

Removed table

-Wdeprecated-increment-bool

This diagnostic is enabled by default.

Diagnostic text:

Removed table

-Wdeprecated-non-prototype

This diagnostic is enabled by default.

Diagnostic text:

Removed table

Removed table

-Wdeprecated-objc-isa-usage

This diagnostic is enabled by default.

Diagnostic text:

Removed table

Removed table

-Wdeprecated-objc-pointer-introspection

This diagnostic is enabled by default.

Also controls -Wdeprecated-objc-pointer-introspection-performSelector.

Diagnostic text:

Removed table

-Wdeprecated-objc-pointer-introspection-performSelector

This diagnostic is enabled by default.

Diagnostic text:

Removed table

-Wdeprecated-pragma

This diagnostic is enabled by default.

Diagnostic text:

Removed table

-Wdeprecated-register

This diagnostic is enabled by default.

Diagnostic text:

Diagnostic flags in Clang

430



Removed table

-Wdeprecated-this-capture

Diagnostic text:

Removed table

-Wdeprecated-type

This diagnostic is enabled by default.

Diagnostic text:

Removed table

-Wdeprecated-volatile

This diagnostic is enabled by default.

Diagnostic text:

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

-Wdeprecated-writable-strings

Synonym for -Wc++11-compat-deprecated-writable-strings.

-Wdeprecated-xl-loop-pragmas

This diagnostic is enabled by default.

Diagnostic text:

Removed table

-Wdirect-ivar-access

Diagnostic text:

Removed table

-Wdisabled-macro-expansion

Diagnostic text:

Removed table

-Wdisabled-optimization

This diagnostic flag exists for GCC compatibility, and has no effect in Clang.

Diagnostic flags in Clang

431



-Wdiscard-qual

This diagnostic flag exists for GCC compatibility, and has no effect in Clang.

-Wdistributed-object-modifiers

This diagnostic is enabled by default.

Diagnostic text:

Removed table

Removed table

-Wdiv-by-zero

Synonym for -Wdivision-by-zero.

-Wdivision-by-zero

This diagnostic is enabled by default.

Diagnostic text:

Removed table

-Wdll-attribute-on-redeclaration

This diagnostic is enabled by default.

Diagnostic text:

Removed table

-Wdllexport-explicit-instantiation-decl

This diagnostic is enabled by default.

Diagnostic text:

Removed table

-Wdllimport-static-field-def

This diagnostic is enabled by default.

Diagnostic text:

Removed table

-Wdocumentation

Also controls -Wdocumentation-deprecated-sync, -Wdocumentation-html.

Diagnostic text:

Removed table

Removed table

Removed table

Removed table

Diagnostic flags in Clang

432



Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

-Wdocumentation-deprecated-sync

Diagnostic text:

Removed table

-Wdocumentation-html

Diagnostic text:

Removed table

Removed table

Removed table

Removed table

-Wdocumentation-pedantic

Also controls -Wdocumentation-unknown-command.

Diagnostic text:

Removed table

-Wdocumentation-unknown-command

Diagnostic text:

Diagnostic flags in Clang

433



Removed table

Removed table

-Wdollar-in-identifier-extension

Diagnostic text:

Removed table

-Wdouble-promotion

Diagnostic text:

Removed table

-Wdtor-name

Some of the diagnostics controlled by this flag are enabled by default.

Diagnostic text:

Removed table

Removed table

Removed table

-Wdtor-typedef

This diagnostic is an error by default, but the flag -Wno-dtor-typedef can be used to disable the error.

Diagnostic text:

Removed table

-Wduplicate-decl-specifier

Some of the diagnostics controlled by this flag are enabled by default.

Diagnostic text:

Removed table

Removed table

Removed table

Removed table

-Wduplicate-enum

Diagnostic text:

Removed table

-Wduplicate-method-arg

Diagnostic text:

Removed table

Diagnostic flags in Clang

434



-Wduplicate-method-match

Diagnostic text:

Removed table

-Wduplicate-protocol

This diagnostic is enabled by default.

Diagnostic text:

Removed table

-Wdynamic-class-memaccess

This diagnostic is enabled by default.

Diagnostic text:

Removed table

-Wdynamic-exception-spec

Some of the diagnostics controlled by this flag are enabled by default.

Also controls -Wdeprecated-dynamic-exception-spec.

Diagnostic text:

Removed table

-Weffc++

Synonym for -Wnon-virtual-dtor.

-Welaborated-enum-base

This diagnostic is an error by default, but the flag -Wno-elaborated-enum-base can be used to disable the error.

Diagnostic text:

Removed table

-Welaborated-enum-class

This diagnostic is an error by default, but the flag -Wno-elaborated-enum-class can be used to disable the
error.

Diagnostic text:

Removed table

-Wembedded-directive

Diagnostic text:

Removed table

-Wempty-body

This diagnostic is enabled by default.

Diagnostic text:

Diagnostic flags in Clang

435



Removed table

Removed table

Removed table

Removed table

Removed table

-Wempty-decomposition

This diagnostic is enabled by default.

Diagnostic text:

Removed table

-Wempty-init-stmt

Diagnostic text:

Removed table

-Wempty-margins

This diagnostic is enabled by default.

Diagnostic text:

Removed table

-Wempty-translation-unit

Diagnostic text:

Removed table

-Wencode-type

This diagnostic is enabled by default.

Diagnostic text:

Removed table

-Wendif-labels

Synonym for -Wextra-tokens.

-Wenum-compare

This diagnostic is enabled by default.

Also controls -Wdeprecated-enum-compare, -Wenum-compare-switch.

Diagnostic text:

Removed table

Diagnostic flags in Clang

436



-Wenum-compare-conditional

Some of the diagnostics controlled by this flag are enabled by default.

Also controls -Wdeprecated-enum-compare-conditional.

Diagnostic text:

Removed table

-Wenum-compare-switch

This diagnostic is enabled by default.

Diagnostic text:

Removed table

-Wenum-conversion

Some of the diagnostics controlled by this flag are enabled by default.

Also controls -Wenum-compare-conditional, -Wenum-enum-conversion, -Wenum-float-conversion.

Diagnostic text:

Removed table

-Wenum-enum-conversion

Some of the diagnostics controlled by this flag are enabled by default.

Also controls -Wdeprecated-enum-enum-conversion.

Diagnostic text:

Removed table

-Wenum-float-conversion

Some of the diagnostics controlled by this flag are enabled by default.

Also controls -Wdeprecated-enum-float-conversion.

Diagnostic text:

Removed table

-Wenum-too-large

This diagnostic is enabled by default.

Diagnostic text:

Removed table

Removed table

-Wexceptions

This diagnostic is enabled by default.

Diagnostic text:

Removed table

Removed table

Diagnostic flags in Clang

437



Removed table

-Wexcess-initializers

This diagnostic is enabled by default.

Diagnostic text:

Removed table

Removed table

Removed table

Removed table

-Wexit-time-destructors

Diagnostic text:

Removed table

-Wexpansion-to-defined

Some of the diagnostics controlled by this flag are enabled by default.

Diagnostic text:

Removed table

Removed table

-Wexplicit-initialize-call

This diagnostic is enabled by default.

Diagnostic text:

Removed table

Removed table

-Wexplicit-ownership-type

Diagnostic text:

Removed table

-Wexport-unnamed

This diagnostic is enabled by default.

Diagnostic text:

Removed table

Removed table

-Wexport-using-directive

This diagnostic is enabled by default.

Diagnostic flags in Clang

438



Diagnostic text:

Removed table

-Wextern-c-compat

This diagnostic is enabled by default.

Diagnostic text:

Removed table

-Wextern-initializer

This diagnostic is enabled by default.

Diagnostic text:

Removed table

-Wextra

Some of the diagnostics controlled by this flag are enabled by default.

Also controls -Wdeprecated-copy, -Wempty-init-stmt, -Wfuse-ld-path, -Wignored-qualifiers, -Winitializer-overrides,
-Wmissing-field-initializers, -Wmissing-method-return-type, -Wnull-pointer-arithmetic, -Wnull-pointer-subtraction,
-Wsemicolon-before-method-body, -Wsign-compare, -Wstring-concatenation, -Wunused-but-set-parameter,
-Wunused-parameter.

Diagnostic text:

Removed table

-Wextra-qualification

This diagnostic is enabled by default.

Diagnostic text:

Removed table

-Wextra-semi

Also controls -Wc++11-extra-semi, -Wc++98-compat-extra-semi.

Diagnostic text:

Removed table

Removed table

-Wextra-semi-stmt

Also controls -Wempty-init-stmt.

Diagnostic text:

Removed table

-Wextra-tokens

This diagnostic is enabled by default.

Diagnostic text:

Diagnostic flags in Clang

439



Removed table

Removed table

-Wfinal-dtor-non-final-class

This diagnostic is enabled by default.

Diagnostic text:

Removed table

-Wfinal-macro

This diagnostic is enabled by default.

Diagnostic text:

Removed table

-Wfixed-enum-extension

Diagnostic text:

Removed table

-Wfixed-point-overflow

This diagnostic is enabled by default.

Diagnostic text:

Removed table

-Wflag-enum

This diagnostic is enabled by default.

Diagnostic text:

Removed table

-Wflexible-array-extensions

Diagnostic text:

Removed table

Removed table

-Wfloat-conversion

Also controls -Wfloat-overflow-conversion, -Wfloat-zero-conversion.

Diagnostic text:

Removed table

-Wfloat-equal

Diagnostic text:

Diagnostic flags in Clang

440



Removed table

-Wfloat-overflow-conversion

Diagnostic text:

Removed table

Removed table

-Wfloat-zero-conversion

Diagnostic text:

Removed table

-Wfor-loop-analysis

Diagnostic text:

Removed table

Removed table

-Wformat

This diagnostic is enabled by default.

Also controls -Wformat-extra-args, -Wformat-insufficient-args, -Wformat-invalid-specifier, -Wformat-security,
-Wformat-y2k, -Wformat-zero-length, -Wnonnull.

Diagnostic text:

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Diagnostic flags in Clang

441



Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

-Wformat-extra-args

This diagnostic is enabled by default.

Diagnostic text:

Removed table

-Wformat-insufficient-args

This diagnostic is enabled by default.

Diagnostic text:

Removed table

-Wformat-invalid-specifier

This diagnostic is enabled by default.

Diagnostic text:

Removed table

-Wformat-non-iso

Diagnostic text:

Removed table

Removed table

Removed table

-Wformat-nonliteral

Diagnostic text:

Diagnostic flags in Clang

442



Removed table

-Wformat-pedantic

Diagnostic text:

Removed table

Removed table

-Wformat-security

This diagnostic is enabled by default.

Diagnostic text:

Removed table

-Wformat-type-confusion

Diagnostic text:

Removed table

-Wformat-y2k

This diagnostic flag exists for GCC compatibility, and has no effect in Clang.

-Wformat-zero-length

This diagnostic is enabled by default.

Diagnostic text:

Removed table

-Wformat=2

Some of the diagnostics controlled by this flag are enabled by default.

Controls -Wformat-nonliteral, -Wformat-security, -Wformat-y2k.

-Wfortify-source

This diagnostic is enabled by default.

Diagnostic text:

Removed table

Removed table

Removed table

Removed table

Removed table

-Wfour-char-constants

Diagnostic text:

Diagnostic flags in Clang

443



Removed table

-Wframe-address

Diagnostic text:

Removed table

-Wframe-larger-than

This diagnostic is enabled by default.

Diagnostic text:

The text of this diagnostic is not controlled by Clang.

Removed table

-Wframe-larger-than=

Synonym for -Wframe-larger-than.

-Wframework-include-private-from-public

This diagnostic is enabled by default.

Diagnostic text:

Removed table

-Wfree-nonheap-object

This diagnostic is enabled by default.

Diagnostic text:

Removed table

-Wfunction-def-in-objc-container

This diagnostic is enabled by default.

Diagnostic text:

Removed table

-Wfunction-multiversion

This diagnostic is enabled by default.

Also controls -Wtarget-clones-mixed-specifiers.

Diagnostic text:

Removed table

Removed table

Removed table

-Wfuse-ld-path

Diagnostic text:

Diagnostic flags in Clang

444



Removed table

-Wfuture-attribute-extensions

Controls -Wc++14-attribute-extensions, -Wc++17-attribute-extensions, -Wc++20-attribute-extensions.

-Wfuture-compat

This diagnostic flag exists for GCC compatibility, and has no effect in Clang.

-Wgcc-compat

Some of the diagnostics controlled by this flag are enabled by default.

Diagnostic text:

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

-Wglobal-constructors

Diagnostic text:

Removed table

Removed table

-Wglobal-isel

This diagnostic is enabled by default.

Diagnostic text:

Removed table

Removed table

-Wgnu

Some of the diagnostics controlled by this flag are enabled by default.

Controls -Wgnu-alignof-expression, -Wgnu-anonymous-struct, -Wgnu-auto-type, -Wgnu-binary-literal,
-Wgnu-case-range, -Wgnu-complex-integer, -Wgnu-compound-literal-initializer, -Wgnu-conditional-omitted-operand,
-Wgnu-designator, -Wgnu-empty-initializer, -Wgnu-empty-struct, -Wgnu-flexible-array-initializer,

Diagnostic flags in Clang

445



-Wgnu-flexible-array-union-member, -Wgnu-folding-constant, -Wgnu-imaginary-constant, -Wgnu-include-next,
-Wgnu-label-as-value, -Wgnu-line-marker, -Wgnu-null-pointer-arithmetic, -Wgnu-pointer-arith,
-Wgnu-redeclared-enum, -Wgnu-statement-expression, -Wgnu-static-float-init,
-Wgnu-string-literal-operator-template, -Wgnu-union-cast, -Wgnu-variable-sized-type-not-at-end,
-Wgnu-zero-line-directive, -Wgnu-zero-variadic-macro-arguments, -Wredeclared-class-member, -Wvla-extension,
-Wzero-length-array.

-Wgnu-alignof-expression

This diagnostic is enabled by default.

Diagnostic text:

Removed table

-Wgnu-anonymous-struct

Diagnostic text:

Removed table

-Wgnu-array-member-paren-init

This diagnostic is an error by default, but the flag -Wno-gnu-array-member-paren-init can be used to disable
the error.

Diagnostic text:

Removed table

-Wgnu-auto-type

Diagnostic text:

Removed table

-Wgnu-binary-literal

Diagnostic text:

Removed table

-Wgnu-case-range

Diagnostic text:

Removed table

-Wgnu-complex-integer

Diagnostic text:

Removed table

-Wgnu-compound-literal-initializer

Diagnostic text:

Removed table

Diagnostic flags in Clang

446



-Wgnu-conditional-omitted-operand

Diagnostic text:

Removed table

-Wgnu-designator

Some of the diagnostics controlled by this flag are enabled by default.

Diagnostic text:

Removed table

Removed table

Removed table

-Wgnu-empty-initializer

Diagnostic text:

Removed table

-Wgnu-empty-struct

Diagnostic text:

Removed table

Removed table

Removed table

-Wgnu-flexible-array-initializer

Diagnostic text:

Removed table

-Wgnu-flexible-array-union-member

Diagnostic text:

Removed table

-Wgnu-folding-constant

Some of the diagnostics controlled by this flag are enabled by default.

Diagnostic text:

Removed table

Removed table

Removed table

-Wgnu-imaginary-constant

Diagnostic text:

Diagnostic flags in Clang

447



Removed table

-Wgnu-include-next

Diagnostic text:

Removed table

-Wgnu-inline-cpp-without-extern

This diagnostic is enabled by default.

Diagnostic text:

Removed table

-Wgnu-label-as-value

Diagnostic text:

Removed table

Removed table

-Wgnu-line-marker

Diagnostic text:

Removed table

-Wgnu-null-pointer-arithmetic

Diagnostic text:

Removed table

-Wgnu-pointer-arith

Diagnostic text:

Removed table

Removed table

Removed table

-Wgnu-redeclared-enum

Diagnostic text:

Removed table

-Wgnu-statement-expression

Also controls -Wgnu-statement-expression-from-macro-expansion.

Diagnostic text:

Removed table

Diagnostic flags in Clang

448



-Wgnu-statement-expression-from-macro-expansion

Diagnostic text:

Removed table

-Wgnu-static-float-init

This diagnostic is enabled by default.

Diagnostic text:

Removed table

-Wgnu-string-literal-operator-template

This diagnostic is enabled by default.

Diagnostic text:

Removed table

-Wgnu-union-cast

Diagnostic text:

Removed table

-Wgnu-variable-sized-type-not-at-end

This diagnostic is enabled by default.

Diagnostic text:

Removed table

-Wgnu-zero-line-directive

Diagnostic text:

Removed table

-Wgnu-zero-variadic-macro-arguments

Diagnostic text:

Removed table

Removed table

-Wgpu-maybe-wrong-side

This diagnostic is enabled by default.

Diagnostic text:

Removed table

-Wheader-guard

This diagnostic is enabled by default.

Diagnostic text:

Diagnostic flags in Clang

449



Removed table

-Wheader-hygiene

Diagnostic text:

Removed table

-Whip-only

This diagnostic is enabled by default.

Diagnostic text:

Removed table

-Whlsl-extensions

This diagnostic is enabled by default.

Diagnostic text:

Removed table

-Widiomatic-parentheses

Diagnostic text:

Removed table

-Wignored-attributes

This diagnostic is enabled by default.

Diagnostic text:

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Diagnostic flags in Clang

450



Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Diagnostic flags in Clang

451



Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Diagnostic flags in Clang

452



Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

-Wignored-availability-without-sdk-settings

This diagnostic is enabled by default.

Diagnostic text:

Removed table

-Wignored-optimization-argument

This diagnostic is enabled by default.

Diagnostic text:

Removed table

Removed table

-Wignored-pragma-intrinsic

This diagnostic is enabled by default.

Diagnostic text:

Removed table

-Wignored-pragma-optimize

This diagnostic is enabled by default.

Diagnostic text:

Removed table

-Wignored-pragmas

This diagnostic is enabled by default.

Also controls -Wignored-pragma-intrinsic, -Wignored-pragma-optimize.

Diagnostic text:

Removed table

Removed table

Removed table

Diagnostic flags in Clang

453



Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Diagnostic flags in Clang

454



Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

-Wignored-qualifiers

Some of the diagnostics controlled by this flag are enabled by default.

Also controls -Wignored-reference-qualifiers.

Diagnostic text:

Removed table

Removed table

Removed table

Removed table

Diagnostic flags in Clang

455



-Wignored-reference-qualifiers

This diagnostic is enabled by default.

Diagnostic text:

Removed table

-Wimplicit

Some of the diagnostics controlled by this flag are enabled by default.

Controls -Wimplicit-function-declaration, -Wimplicit-int.

-Wimplicit-atomic-properties

Diagnostic text:

Removed table

Removed table

-Wimplicit-const-int-float-conversion

This diagnostic is enabled by default.

Diagnostic text:

Removed table

-Wimplicit-conversion-floating-point-to-bool

This diagnostic is enabled by default.

Diagnostic text:

Removed table

-Wimplicit-exception-spec-mismatch

This diagnostic is enabled by default.

Diagnostic text:

Removed table

-Wimplicit-fallthrough

Also controls -Wimplicit-fallthrough-per-function.

Diagnostic text:

Removed table

-Wimplicit-fallthrough-per-function

Diagnostic text:

Removed table

-Wimplicit-fixed-point-conversion

This diagnostic is enabled by default.

Diagnostic flags in Clang

456



Diagnostic text:

Removed table

-Wimplicit-float-conversion

Some of the diagnostics controlled by this flag are enabled by default.

Also controls -Wimplicit-int-float-conversion, -Wobjc-signed-char-bool-implicit-float-conversion.

Diagnostic text:

Removed table

Removed table

-Wimplicit-function-declaration

Some of the diagnostics controlled by this flag are enabled by default.

Diagnostic text:

Removed table

Removed table

Removed table

Removed table

Removed table

-Wimplicit-int

Some of the diagnostics controlled by this flag are enabled by default.

Diagnostic text:

Removed table

Removed table

Removed table

-Wimplicit-int-conversion

Also controls -Wobjc-signed-char-bool-implicit-int-conversion.

Diagnostic text:

Removed table

Removed table

-Wimplicit-int-float-conversion

Some of the diagnostics controlled by this flag are enabled by default.

Also controls -Wimplicit-const-int-float-conversion.

Diagnostic text:

Removed table

Diagnostic flags in Clang

457



-Wimplicit-retain-self

Diagnostic text:

Removed table

-Wimplicitly-unsigned-literal

This diagnostic is enabled by default.

Diagnostic text:

Removed table

-Wimport

This diagnostic flag exists for GCC compatibility, and has no effect in Clang.

-Wimport-preprocessor-directive-pedantic

Diagnostic text:

Removed table

-Winaccessible-base

This diagnostic is enabled by default.

Diagnostic text:

Removed table

-Winclude-next-absolute-path

This diagnostic is enabled by default.

Diagnostic text:

Removed table

-Winclude-next-outside-header

This diagnostic is enabled by default.

Diagnostic text:

Removed table

-Wincompatible-exception-spec

This diagnostic is enabled by default.

Diagnostic text:

Removed table

Removed table

-Wincompatible-function-pointer-types

This diagnostic is enabled by default.

Diagnostic text:

Diagnostic flags in Clang

458



Removed table

-Wincompatible-library-redeclaration

This diagnostic is enabled by default.

Diagnostic text:

Removed table

-Wincompatible-ms-struct

This diagnostic is an error by default, but the flag -Wno-incompatible-ms-struct can be used to disable the
error.

Diagnostic text:

Removed table

Removed table

-Wincompatible-pointer-types

This diagnostic is enabled by default.

Also controls -Wincompatible-function-pointer-types, -Wincompatible-pointer-types-discards-qualifiers.

Diagnostic text:

Removed table

-Wincompatible-pointer-types-discards-qualifiers

This diagnostic is enabled by default.

Diagnostic text:

Removed table

Removed table

Removed table

-Wincompatible-property-type

This diagnostic is enabled by default.

Diagnostic text:

Removed table

-Wincompatible-sysroot

This diagnostic is enabled by default.

Diagnostic text:

Removed table

-Wincomplete-framework-module-declaration

This diagnostic is enabled by default.

Diagnostic text:

Diagnostic flags in Clang

459



Removed table

-Wincomplete-implementation

This diagnostic is enabled by default.

Diagnostic text:

Removed table

-Wincomplete-module

Some of the diagnostics controlled by this flag are enabled by default.

Controls -Wincomplete-umbrella, -Wnon-modular-include-in-module.

-Wincomplete-setjmp-declaration

This diagnostic is enabled by default.

Diagnostic text:

Removed table

-Wincomplete-umbrella

This diagnostic is enabled by default.

Diagnostic text:

Removed table

Removed table

Removed table

-Winconsistent-dllimport

This diagnostic is enabled by default.

Diagnostic text:

Removed table

Removed table

-Winconsistent-missing-destructor-override

Diagnostic text:

Removed table

-Winconsistent-missing-override

This diagnostic is enabled by default.

Diagnostic text:

Removed table

-Wincrement-bool

This diagnostic is enabled by default.

Diagnostic flags in Clang

460



Also controls -Wdeprecated-increment-bool.

Diagnostic text:

Removed table

-Winfinite-recursion

Diagnostic text:

Removed table

-Winit-self

This diagnostic flag exists for GCC compatibility, and has no effect in Clang.

-Winitializer-overrides

This diagnostic is enabled by default.

Diagnostic text:

Removed table

Removed table

-Winjected-class-name

This diagnostic is enabled by default.

Diagnostic text:

Removed table

-Winline

This diagnostic flag exists for GCC compatibility, and has no effect in Clang.

-Winline-asm

This diagnostic is enabled by default.

Diagnostic text:

The text of this diagnostic is not controlled by Clang.

-Winline-namespace-reopened-noninline

This diagnostic is enabled by default.

Diagnostic text:

Removed table

-Winline-new-delete

This diagnostic is enabled by default.

Diagnostic text:

Removed table

Diagnostic flags in Clang

461



-Winstantiation-after-specialization

This diagnostic is enabled by default.

Diagnostic text:

Removed table

-Wint-conversion

This diagnostic is enabled by default.

Diagnostic text:

Removed table

Removed table

-Wint-conversions

Synonym for -Wint-conversion.

-Wint-in-bool-context

Diagnostic text:

Removed table

Removed table

-Wint-to-pointer-cast

This diagnostic is enabled by default.

Also controls -Wint-to-void-pointer-cast.

Diagnostic text:

Removed table

-Wint-to-void-pointer-cast

This diagnostic is enabled by default.

Diagnostic text:

Removed table

-Winteger-overflow

This diagnostic is enabled by default.

Diagnostic text:

Removed table

-Winterrupt-service-routine

This diagnostic is enabled by default.

Diagnostic text:

Removed table

Diagnostic flags in Clang

462



-Winvalid-command-line-argument

This diagnostic is enabled by default.

Also controls -Wignored-optimization-argument.

Diagnostic text:

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

-Winvalid-constexpr

This diagnostic is an error by default, but the flag -Wno-invalid-constexpr can be used to disable the error.

Diagnostic text:

Removed table

-Winvalid-iboutlet

This diagnostic is enabled by default.

Diagnostic text:

Removed table

Removed table

-Winvalid-initializer-from-system-header

This diagnostic is enabled by default.

Diagnostic text:

Removed table

-Winvalid-ios-deployment-target

This diagnostic is an error by default, but the flag -Wno-invalid-ios-deployment-target can be used to
disable the error.

Diagnostic text:

Removed table

-Winvalid-no-builtin-names

This diagnostic is enabled by default.

Diagnostic text:

Diagnostic flags in Clang

463



Removed table

-Winvalid-noreturn

This diagnostic is enabled by default.

Diagnostic text:

Removed table

Removed table

-Winvalid-offsetof

This diagnostic is enabled by default.

Diagnostic text:

Removed table

Removed table

-Winvalid-or-nonexistent-directory

Some of the diagnostics controlled by this flag are enabled by default.

Diagnostic text:

Removed table

Removed table

-Winvalid-partial-specialization

This diagnostic is an error by default, but the flag -Wno-invalid-partial-specialization can be used to
disable the error.

Diagnostic text:

Removed table

-Winvalid-pch

This diagnostic flag exists for GCC compatibility, and has no effect in Clang.

-Winvalid-pp-token

This diagnostic is enabled by default.

Diagnostic text:

Removed table

Removed table

-Winvalid-source-encoding

This diagnostic is enabled by default.

Diagnostic text:

Removed table

Diagnostic flags in Clang

464



Removed table

-Winvalid-token-paste

This diagnostic is an error by default, but the flag -Wno-invalid-token-paste can be used to disable the error.

Diagnostic text:

Removed table

-Wjump-seh-finally

This diagnostic is enabled by default.

Diagnostic text:

Removed table

-Wkeyword-compat

This diagnostic is enabled by default.

Diagnostic text:

Removed table

-Wkeyword-macro

Diagnostic text:

Removed table

-Wknr-promoted-parameter

This diagnostic is enabled by default.

Diagnostic text:

Removed table

-Wlanguage-extension-token

Diagnostic text:

Removed table

-Wlarge-by-value-copy

This diagnostic is enabled by default.

Diagnostic text:

Removed table

Removed table

-Wliblto

This diagnostic flag exists for GCC compatibility, and has no effect in Clang.

Diagnostic flags in Clang

465



-Wlinker-warnings

This diagnostic is enabled by default.

Diagnostic text:

Removed table

-Wliteral-conversion

This diagnostic is enabled by default.

Diagnostic text:

Removed table

Removed table

-Wliteral-range

This diagnostic is enabled by default.

Diagnostic text:

Removed table

Removed table

Removed table

-Wlocal-type-template-args

Some of the diagnostics controlled by this flag are enabled by default.

Also controls -Wc++98-compat-local-type-template-args.

Diagnostic text:

Removed table

-Wlogical-not-parentheses

This diagnostic is enabled by default.

Diagnostic text:

Removed table

-Wlogical-op-parentheses

Diagnostic text:

Removed table

-Wlong-long

Also controls -Wc++11-long-long.

Diagnostic text:

Removed table

Diagnostic flags in Clang

466



-Wloop-analysis

Controls -Wfor-loop-analysis, -Wrange-loop-analysis.

-Wmacro-redefined

This diagnostic is enabled by default.

Diagnostic text:

Removed table

-Wmain

Some of the diagnostics controlled by this flag are enabled by default.

Diagnostic text:

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

-Wmain-return-type

This diagnostic is enabled by default.

Diagnostic text:

Removed table

-Wmalformed-warning-check

This diagnostic is enabled by default.

Diagnostic text:

Removed table

-Wmany-braces-around-scalar-init

This diagnostic is enabled by default.

Diagnostic text:

Removed table

-Wmax-tokens

Diagnostic text:

Removed table

Removed table

Diagnostic flags in Clang

467



The warning is issued if the number of pre-processor tokens exceeds the token limit, which can be set in three ways:

1. As a limit at a specific point in a file, using the clang max_tokens_here pragma:

2. As a per-translation unit limit, using the -fmax-tokens= command-line flag:

3. As a per-translation unit limit using the clang max_tokens_total pragma, which works like and overrides
the -fmax-tokens= flag:

These limits can be helpful in limiting code growth through included files.

Setting a token limit of zero means no limit.

Note that the warning is disabled by default, so -Wmax-tokens must be used in addition with the pragmas or
-fmax-tokens flag to get any warnings.

-Wmax-unsigned-zero

This diagnostic is enabled by default.

Diagnostic text:

Removed table

-Wmemset-transposed-args

This diagnostic is enabled by default.

Diagnostic text:

Removed table

-Wmemsize-comparison

This diagnostic is enabled by default.

Diagnostic text:

Removed table

-Wmethod-signatures

Diagnostic text:

Removed table

Removed table

-Wmicrosoft

Some of the diagnostics controlled by this flag are enabled by default.

Controls -Winconsistent-dllimport, -Wmicrosoft-abstract, -Wmicrosoft-anon-tag, -Wmicrosoft-cast,
-Wmicrosoft-charize, -Wmicrosoft-comment-paste, -Wmicrosoft-const-init, -Wmicrosoft-cpp-macro,
-Wmicrosoft-default-arg-redefinition, -Wmicrosoft-drectve-section, -Wmicrosoft-end-of-file,
-Wmicrosoft-enum-forward-reference, -Wmicrosoft-enum-value, -Wmicrosoft-exception-spec,
-Wmicrosoft-explicit-constructor-call, -Wmicrosoft-extra-qualification, -Wmicrosoft-fixed-enum,
-Wmicrosoft-flexible-array, -Wmicrosoft-goto, -Wmicrosoft-include, -Wmicrosoft-mutable-reference,
-Wmicrosoft-pure-definition, -Wmicrosoft-redeclare-static, -Wmicrosoft-sealed, -Wmicrosoft-static-assert,
-Wmicrosoft-template, -Wmicrosoft-union-member-reference, -Wmicrosoft-unqualified-friend,
-Wmicrosoft-using-decl, -Wmicrosoft-void-pseudo-dtor.

-Wmicrosoft-abstract

This diagnostic is enabled by default.

Diagnostic flags in Clang

468



Diagnostic text:

Removed table

-Wmicrosoft-anon-tag

Some of the diagnostics controlled by this flag are enabled by default.

Diagnostic text:

Removed table

Removed table

-Wmicrosoft-cast

This diagnostic is enabled by default.

Diagnostic text:

Removed table

Removed table

-Wmicrosoft-charize

Diagnostic text:

Removed table

-Wmicrosoft-comment-paste

Diagnostic text:

Removed table

-Wmicrosoft-const-init

This diagnostic is enabled by default.

Diagnostic text:

Removed table

-Wmicrosoft-cpp-macro

Diagnostic text:

Removed table

-Wmicrosoft-default-arg-redefinition

This diagnostic is enabled by default.

Diagnostic text:

Removed table

-Wmicrosoft-drectve-section

This diagnostic is enabled by default.

Diagnostic text:

Diagnostic flags in Clang

469



Removed table

-Wmicrosoft-end-of-file

Diagnostic text:

Removed table

-Wmicrosoft-enum-forward-reference

This diagnostic is enabled by default.

Diagnostic text:

Removed table

-Wmicrosoft-enum-value

Diagnostic text:

Removed table

-Wmicrosoft-exception-spec

Some of the diagnostics controlled by this flag are enabled by default.

Diagnostic text:

Removed table

Removed table

Removed table

Removed table

Removed table

-Wmicrosoft-exists

This diagnostic is enabled by default.

Diagnostic text:

Removed table

-Wmicrosoft-explicit-constructor-call

This diagnostic is enabled by default.

Diagnostic text:

Removed table

-Wmicrosoft-extra-qualification

This diagnostic is enabled by default.

Diagnostic text:

Removed table

Diagnostic flags in Clang

470



-Wmicrosoft-fixed-enum

Diagnostic text:

Removed table

-Wmicrosoft-flexible-array

Diagnostic text:

Removed table

Removed table

-Wmicrosoft-goto

This diagnostic is enabled by default.

Diagnostic text:

Removed table

-Wmicrosoft-inaccessible-base

This diagnostic is enabled by default.

Diagnostic text:

Removed table

-Wmicrosoft-include

This diagnostic is enabled by default.

Diagnostic text:

Removed table

-Wmicrosoft-mutable-reference

This diagnostic is enabled by default.

Diagnostic text:

Removed table

-Wmicrosoft-pure-definition

This diagnostic is enabled by default.

Diagnostic text:

Removed table

-Wmicrosoft-redeclare-static

Diagnostic text:

Removed table

-Wmicrosoft-sealed

This diagnostic is enabled by default.

Diagnostic flags in Clang

471



Diagnostic text:

Removed table

-Wmicrosoft-static-assert

This diagnostic is enabled by default.

Diagnostic text:

Removed table

-Wmicrosoft-template

This diagnostic is enabled by default.

Also controls -Wmicrosoft-template-shadow.

Diagnostic text:

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

-Wmicrosoft-template-shadow

This diagnostic is enabled by default.

Diagnostic text:

Removed table

-Wmicrosoft-union-member-reference

This diagnostic is enabled by default.

Diagnostic text:

Removed table

-Wmicrosoft-unqualified-friend

This diagnostic is enabled by default.

Diagnostic text:

Removed table

Diagnostic flags in Clang

472



-Wmicrosoft-using-decl

This diagnostic is enabled by default.

Diagnostic text:

Removed table

-Wmicrosoft-void-pseudo-dtor

This diagnostic is enabled by default.

Diagnostic text:

Removed table

-Wmisexpect

This diagnostic is enabled by default.

Diagnostic text:

Removed table

-Wmisleading-indentation

Diagnostic text:

Removed table

-Wmismatched-new-delete

This diagnostic is enabled by default.

Diagnostic text:

Removed table

-Wmismatched-parameter-types

This diagnostic is enabled by default.

Diagnostic text:

Removed table

-Wmismatched-return-types

This diagnostic is enabled by default.

Diagnostic text:

Removed table

-Wmismatched-tags

Diagnostic text:

Removed table

Removed table

Diagnostic flags in Clang

473



-Wmissing-braces

Diagnostic text:

Removed table

-Wmissing-constinit

This diagnostic is enabled by default.

Diagnostic text:

Removed table

-Wmissing-declarations

This diagnostic is enabled by default.

Diagnostic text:

Removed table

Removed table

Removed table

Removed table

-Wmissing-exception-spec

This diagnostic is enabled by default.

Diagnostic text:

Removed table

-Wmissing-field-initializers

Diagnostic text:

Removed table

-Wmissing-format-attribute

This diagnostic flag exists for GCC compatibility, and has no effect in Clang.

-Wmissing-include-dirs

This diagnostic flag exists for GCC compatibility, and has no effect in Clang.

-Wmissing-method-return-type

Diagnostic text:

Removed table

-Wmissing-noescape

This diagnostic is enabled by default.

Diagnostic text:

Removed table

Diagnostic flags in Clang

474



-Wmissing-noreturn

Diagnostic text:

Removed table

Removed table

-Wmissing-prototype-for-cc

This diagnostic is enabled by default.

Diagnostic text:

Removed table

-Wmissing-prototypes

Diagnostic text:

Removed table

-Wmissing-selector-name

This diagnostic is enabled by default.

Diagnostic text:

Removed table

-Wmissing-sysroot

This diagnostic is enabled by default.

Diagnostic text:

Removed table

-Wmissing-variable-declarations

Diagnostic text:

Removed table

-Wmisspelled-assumption

This diagnostic is enabled by default.

Diagnostic text:

Removed table

-Rmodule-build

Diagnostic text:

Removed table

Removed table

Removed table

Removed table

Diagnostic flags in Clang

475



-Wmodule-conflict

This diagnostic is enabled by default.

Diagnostic text:

Removed table

Removed table

-Wmodule-file-config-mismatch

This diagnostic is an error by default, but the flag -Wno-module-file-config-mismatch can be used to disable
the error.

Diagnostic text:

Removed table

-Wmodule-file-extension

This diagnostic is enabled by default.

Diagnostic text:

Removed table

-Rmodule-import

Diagnostic text:

Removed table

-Wmodule-import-in-extern-c

This diagnostic is an error by default, but the flag -Wno-module-import-in-extern-c can be used to disable
the error.

Diagnostic text:

Removed table

-Rmodule-lock

Diagnostic text:

Removed table

-Wmodules-ambiguous-internal-linkage

This diagnostic is enabled by default.

Diagnostic text:

Removed table

-Wmodules-import-nested-redundant

This diagnostic is an error by default, but the flag -Wno-modules-import-nested-redundant can be used to
disable the error.

Diagnostic text:

Removed table

Diagnostic flags in Clang

476



-Wmost

Some of the diagnostics controlled by this flag are enabled by default.

Controls -Wbool-operation, -Wcast-of-sel-type, -Wchar-subscripts, -Wcomment, -Wdelete-non-virtual-dtor,
-Wextern-c-compat, -Wfor-loop-analysis, -Wformat, -Wframe-address, -Wimplicit, -Winfinite-recursion,
-Wint-in-bool-context, -Wmismatched-tags, -Wmissing-braces, -Wmove, -Wmultichar, -Wobjc-designated-initializers,
-Wobjc-flexible-array, -Wobjc-missing-super-calls, -Woverloaded-virtual, -Wprivate-extern, -Wrange-loop-construct,
-Wreorder, -Wreturn-type, -Wself-assign, -Wself-move, -Wsizeof-array-argument, -Wsizeof-array-decay,
-Wstring-plus-int, -Wtautological-compare, -Wtrigraphs, -Wuninitialized, -Wunknown-pragmas, -Wunused,
-Wuser-defined-warnings, -Wvolatile-register-var.

-Wmove

Controls -Wpessimizing-move, -Wredundant-move, -Wreturn-std-move, -Wself-move.

-Wmsvc-include

Synonym for -Wmicrosoft-include.

-Wmsvc-not-found

This diagnostic is enabled by default.

Diagnostic text:

Removed table

-Wmultichar

This diagnostic is enabled by default.

Diagnostic text:

Removed table

-Wmultiple-move-vbase

This diagnostic is enabled by default.

Diagnostic text:

Removed table

-Wnarrowing

Synonym for -Wc++11-narrowing.

-Wnested-anon-types

Diagnostic text:

Removed table

-Wnested-externs

This diagnostic flag exists for GCC compatibility, and has no effect in Clang.

-Wnew-returns-null

This diagnostic is enabled by default.

Diagnostic text:

Diagnostic flags in Clang

477



Removed table

-Wnewline-eof

Diagnostic text:

Removed table

Removed table

-Wnoderef

This diagnostic is enabled by default.

Diagnostic text:

Removed table

Removed table

Removed table

-Wnoexcept-type

Synonym for -Wc++17-compat-mangling.

-Wnon-c-typedef-for-linkage

This diagnostic is enabled by default.

Diagnostic text:

Removed table

-Wnon-gcc

Some of the diagnostics controlled by this flag are enabled by default.

Controls -Wconversion, -Wliteral-range, -Wsign-compare.

-Wnon-literal-null-conversion

This diagnostic is enabled by default.

Diagnostic text:

Removed table

-Wnon-modular-include-in-framework-module

Diagnostic text:

Removed table

-Wnon-modular-include-in-module

Also controls -Wnon-modular-include-in-framework-module.

Diagnostic text:

Removed table

Diagnostic flags in Clang

478



-Wnon-pod-varargs

This diagnostic is an error by default, but the flag -Wno-non-pod-varargs can be used to disable the error.

Diagnostic text:

Removed table

Removed table

Removed table

Removed table

-Wnon-power-of-two-alignment

This diagnostic is enabled by default.

Diagnostic text:

Removed table

-Wnon-virtual-dtor

Diagnostic text:

Removed table

-Wnonnull

This diagnostic is enabled by default.

Diagnostic text:

Removed table

Removed table

-Wnonportable-cfstrings

This diagnostic flag exists for GCC compatibility, and has no effect in Clang.

-Wnonportable-include-path

This diagnostic is enabled by default.

Diagnostic text:

Removed table

-Wnonportable-system-include-path

Diagnostic text:

Removed table

-Wnonportable-vector-initialization

This diagnostic is enabled by default.

Diagnostic text:

Removed table

Diagnostic flags in Clang

479



-Wnontrivial-memaccess

This diagnostic is enabled by default.

Diagnostic text:

Removed table

-Wnsconsumed-mismatch

This diagnostic is enabled by default.

Diagnostic text:

Removed table

-Wnsreturns-mismatch

This diagnostic is enabled by default.

Diagnostic text:

Removed table

-Wnull-arithmetic

This diagnostic is enabled by default.

Diagnostic text:

Removed table

Removed table

-Wnull-character

This diagnostic is enabled by default.

Diagnostic text:

Removed table

Removed table

-Wnull-conversion

This diagnostic is enabled by default.

Diagnostic text:

Removed table

-Wnull-dereference

This diagnostic is enabled by default.

Diagnostic text:

Removed table

Removed table

Diagnostic flags in Clang

480



-Wnull-pointer-arithmetic

Also controls -Wgnu-null-pointer-arithmetic.

Diagnostic text:

Removed table

-Wnull-pointer-subtraction

Diagnostic text:

Removed table

-Wnullability

This diagnostic is enabled by default.

Diagnostic text:

Removed table

Removed table

Removed table

Removed table

Removed table

-Wnullability-completeness

This diagnostic is enabled by default.

Also controls -Wnullability-completeness-on-arrays.

Diagnostic text:

Removed table

-Wnullability-completeness-on-arrays

This diagnostic is enabled by default.

Diagnostic text:

Removed table

-Wnullability-declspec

This diagnostic is an error by default, but the flag -Wno-nullability-declspec can be used to disable the error.

Diagnostic text:

Removed table

-Wnullability-extension

Diagnostic text:

Removed table

Diagnostic flags in Clang

481



-Wnullability-inferred-on-nested-type

This diagnostic is enabled by default.

Diagnostic text:

Removed table

-Wnullable-to-nonnull-conversion

Diagnostic text:

Removed table

-Wobjc-autosynthesis-property-ivar-name-match

This diagnostic is enabled by default.

Diagnostic text:

Removed table

-Wobjc-bool-constant-conversion

This diagnostic is enabled by default.

Diagnostic text:

Removed table

-Wobjc-boxing

This diagnostic is enabled by default.

Diagnostic text:

Removed table

-Wobjc-circular-container

This diagnostic is enabled by default.

Diagnostic text:

Removed table

-Wobjc-cocoa-api

Synonym for -Wobjc-redundant-api-use.

-Wobjc-designated-initializers

This diagnostic is enabled by default.

Diagnostic text:

Removed table

Removed table

Removed table

Removed table

Diagnostic flags in Clang

482



Removed table

Removed table

-Wobjc-dictionary-duplicate-keys

This diagnostic is enabled by default.

Diagnostic text:

Removed table

-Wobjc-flexible-array

This diagnostic is enabled by default.

Diagnostic text:

Removed table

Removed table

-Wobjc-forward-class-redefinition

This diagnostic is enabled by default.

Diagnostic text:

Removed table

-Wobjc-interface-ivars

Diagnostic text:

Removed table

-Wobjc-literal-compare

This diagnostic is enabled by default.

Also controls -Wobjc-string-compare.

Diagnostic text:

Removed table

-Wobjc-literal-conversion

This diagnostic is enabled by default.

Diagnostic text:

Removed table

Removed table

-Wobjc-macro-redefinition

This diagnostic is enabled by default.

Diagnostic text:

Removed table

Diagnostic flags in Clang

483



-Wobjc-messaging-id

Diagnostic text:

Removed table

-Wobjc-method-access

This diagnostic is enabled by default.

Diagnostic text:

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

-Wobjc-missing-property-synthesis

Diagnostic text:

Removed table

-Wobjc-missing-super-calls

This diagnostic is enabled by default.

Diagnostic text:

Removed table

-Wobjc-multiple-method-names

This diagnostic is enabled by default.

Diagnostic text:

Removed table

-Wobjc-noncopy-retain-block-property

This diagnostic is enabled by default.

Diagnostic text:

Removed table

-Wobjc-nonunified-exceptions

This diagnostic is enabled by default.

Diagnostic text:

Removed table

Diagnostic flags in Clang

484



-Wobjc-property-assign-on-object-type

Diagnostic text:

Removed table

-Wobjc-property-implementation

This diagnostic is enabled by default.

Diagnostic text:

Removed table

Removed table

Removed table

Removed table

-Wobjc-property-implicit-mismatch

This diagnostic is enabled by default.

Diagnostic text:

Removed table

-Wobjc-property-matches-cocoa-ownership-rule

This diagnostic is enabled by default.

Diagnostic text:

Removed table

-Wobjc-property-no-attribute

This diagnostic is enabled by default.

Diagnostic text:

Removed table

Removed table

-Wobjc-property-synthesis

This diagnostic is enabled by default.

Diagnostic text:

Removed table

Removed table

Removed table

-Wobjc-protocol-method-implementation

This diagnostic is enabled by default.

Diagnostic text:

Diagnostic flags in Clang

485



Removed table

-Wobjc-protocol-property-synthesis

This diagnostic is enabled by default.

Diagnostic text:

Removed table

-Wobjc-protocol-qualifiers

This diagnostic is enabled by default.

Diagnostic text:

Removed table

-Wobjc-readonly-with-setter-property

This diagnostic is enabled by default.

Diagnostic text:

Removed table

-Wobjc-redundant-api-use

Synonym for -Wobjc-redundant-literal-use.

-Wobjc-redundant-literal-use

This diagnostic is enabled by default.

Diagnostic text:

Removed table

-Wobjc-root-class

This diagnostic is enabled by default.

Diagnostic text:

Removed table

-Wobjc-signed-char-bool

Some of the diagnostics controlled by this flag are enabled by default.

Controls -Wobjc-bool-constant-conversion, -Wobjc-signed-char-bool-implicit-float-conversion,
-Wobjc-signed-char-bool-implicit-int-conversion, -Wtautological-objc-bool-compare.

-Wobjc-signed-char-bool-implicit-float-conversion

This diagnostic is enabled by default.

Diagnostic text:

Removed table

Diagnostic flags in Clang

486



-Wobjc-signed-char-bool-implicit-int-conversion

Diagnostic text:

Removed table

-Wobjc-string-compare

This diagnostic is enabled by default.

Diagnostic text:

Removed table

-Wobjc-string-concatenation

This diagnostic is enabled by default.

Diagnostic text:

Removed table

-Wobjc-unsafe-perform-selector

This diagnostic is enabled by default.

Diagnostic text:

Removed table

-Wodr

This diagnostic is enabled by default.

Diagnostic text:

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Diagnostic flags in Clang

487



Removed table

Removed table

Removed table

Removed table

-Wold-style-cast

Diagnostic text:

Removed table

-Wold-style-definition

This diagnostic flag exists for GCC compatibility, and has no effect in Clang.

-Wopencl-unsupported-rgba

This diagnostic is enabled by default.

Diagnostic text:

Removed table

-Wopenmp

Some of the diagnostics controlled by this flag are enabled by default.

Controls -Wopenmp-51-extensions, -Wopenmp-clauses, -Wopenmp-loop-form, -Wopenmp-mapping,
-Wopenmp-target, -Wsource-uses-openmp.

-Wopenmp-51-extensions

This diagnostic is enabled by default.

Diagnostic text:

Removed table

-Wopenmp-clauses

This diagnostic is enabled by default.

Diagnostic text:

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Diagnostic flags in Clang

488



Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

-Wopenmp-loop-form

This diagnostic is enabled by default.

Diagnostic text:

Removed table

Removed table

-Wopenmp-mapping

This diagnostic is enabled by default.

Diagnostic text:

Removed table

-Wopenmp-target

This diagnostic is enabled by default.

Also controls -Wopenmp-mapping.

Diagnostic text:

Removed table

Removed table

Removed table

-Woption-ignored

This diagnostic is enabled by default.

Diagnostic text:

Removed table

Diagnostic flags in Clang

489



Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

-Wordered-compare-function-pointers

This diagnostic is enabled by default.

Diagnostic text:

Removed table

Removed table

-Wout-of-line-declaration

This diagnostic is an error by default, but the flag -Wno-out-of-line-declaration can be used to disable the
error.

Diagnostic text:

Removed table

-Wout-of-scope-function

This diagnostic is enabled by default.

Diagnostic text:

Removed table

-Wover-aligned

Diagnostic text:

Removed table

Diagnostic flags in Clang

490



-Woverflow

This diagnostic flag exists for GCC compatibility, and has no effect in Clang.

-Woverlength-strings

Diagnostic text:

Removed table

-Woverloaded-shift-op-parentheses

This diagnostic is enabled by default.

Diagnostic text:

Removed table

-Woverloaded-virtual

Diagnostic text:

Removed table

-Woverride-init

Synonym for -Winitializer-overrides.

-Woverride-module

This diagnostic is enabled by default.

Diagnostic text:

Removed table

-Woverriding-method-mismatch

Diagnostic text:

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

-Woverriding-t-option

This diagnostic is enabled by default.

Diagnostic text:

Removed table

Diagnostic flags in Clang

491



-Wpacked

Diagnostic text:

Removed table

-Wpadded

Diagnostic text:

Removed table

Removed table

Removed table

-Wparentheses

Some of the diagnostics controlled by this flag are enabled by default.

Also controls -Wbitwise-conditional-parentheses, -Wbitwise-op-parentheses, -Wdangling-else,
-Wlogical-not-parentheses, -Wlogical-op-parentheses, -Woverloaded-shift-op-parentheses, -Wparentheses-equality,
-Wshift-op-parentheses.

Diagnostic text:

Removed table

Removed table

Removed table

-Wparentheses-equality

This diagnostic is enabled by default.

Diagnostic text:

Removed table

-Wpartial-availability

Synonym for -Wunguarded-availability.

-Rpass

Diagnostic text:

The text of this diagnostic is not controlled by Clang.

-Rpass-analysis

Diagnostic text:

The text of this diagnostic is not controlled by Clang.

Removed table

Removed table

-Wpass-failed

This diagnostic is enabled by default.

Diagnostic flags in Clang

492



Diagnostic text:

The text of this diagnostic is not controlled by Clang.

-Rpass-missed

Diagnostic text:

The text of this diagnostic is not controlled by Clang.

-Wpch-date-time

This diagnostic is enabled by default.

Diagnostic text:

Removed table

-Wpedantic

Also controls -Wbit-int-extension, -Wc++11-extra-semi, -Wc++11-long-long, -Wc++14-attribute-extensions,
-Wc++14-binary-literal, -Wc++17-attribute-extensions, -Wc++20-attribute-extensions, -Wc++20-designator,
-Wc11-extensions, -Wcomplex-component-init, -Wdelimited-escape-sequence-extension,
-Wdollar-in-identifier-extension, -Wembedded-directive, -Wempty-translation-unit, -Wfixed-enum-extension,
-Wflexible-array-extensions, -Wfuture-attribute-extensions, -Wgnu-anonymous-struct, -Wgnu-auto-type,
-Wgnu-binary-literal, -Wgnu-case-range, -Wgnu-complex-integer, -Wgnu-compound-literal-initializer,
-Wgnu-conditional-omitted-operand, -Wgnu-empty-initializer, -Wgnu-empty-struct, -Wgnu-flexible-array-initializer,
-Wgnu-flexible-array-union-member, -Wgnu-imaginary-constant, -Wgnu-include-next, -Wgnu-label-as-value,
-Wgnu-line-marker, -Wgnu-null-pointer-arithmetic, -Wgnu-pointer-arith, -Wgnu-redeclared-enum,
-Wgnu-statement-expression, -Wgnu-union-cast, -Wgnu-zero-line-directive, -Wgnu-zero-variadic-macro-arguments,
-Wimport-preprocessor-directive-pedantic, -Wkeyword-macro, -Wlanguage-extension-token, -Wlong-long,
-Wmicrosoft-charize, -Wmicrosoft-comment-paste, -Wmicrosoft-cpp-macro, -Wmicrosoft-end-of-file,
-Wmicrosoft-enum-value, -Wmicrosoft-fixed-enum, -Wmicrosoft-flexible-array, -Wmicrosoft-redeclare-static,
-Wnested-anon-types, -Wnullability-extension, -Woverlength-strings, -Wretained-language-linkage,
-Wundefined-internal-type, -Wvla-extension, -Wzero-length-array.

Diagnostic text:

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Diagnostic flags in Clang

493



Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Diagnostic flags in Clang

494



Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Diagnostic flags in Clang

495



-Wpedantic-core-features

Diagnostic text:

Removed table

Removed table

-Wpedantic-macros

This diagnostic is enabled by default.

Controls -Wbuiltin-macro-redefined, -Wdeprecated-pragma, -Wfinal-macro, -Wmacro-redefined,
-Wrestrict-expansion.

-Wpessimizing-move

Diagnostic text:

Removed table

Removed table

-Wpointer-arith

Some of the diagnostics controlled by this flag are enabled by default.

Also controls -Wgnu-pointer-arith.

Diagnostic text:

Removed table

Removed table

Removed table

-Wpointer-bool-conversion

This diagnostic is enabled by default.

Diagnostic text:

Removed table

Removed table

-Wpointer-compare

This diagnostic is enabled by default.

Diagnostic text:

Removed table

-Wpointer-integer-compare

This diagnostic is enabled by default.

Diagnostic text:

Removed table

Diagnostic flags in Clang

496



-Wpointer-sign

This diagnostic is enabled by default.

Diagnostic text:

Removed table

-Wpointer-to-enum-cast

This diagnostic is enabled by default.

Also controls -Wvoid-pointer-to-enum-cast.

Diagnostic text:

Removed table

-Wpointer-to-int-cast

This diagnostic is enabled by default.

Also controls -Wpointer-to-enum-cast, -Wvoid-pointer-to-int-cast.

Diagnostic text:

Removed table

-Wpointer-type-mismatch

This diagnostic is enabled by default.

Diagnostic text:

Removed table

-Wpoison-system-directories

Diagnostic text:

Removed table

-Wpotentially-direct-selector

This diagnostic is enabled by default.

Diagnostic text:

Removed table

-Wpotentially-evaluated-expression

This diagnostic is enabled by default.

Diagnostic text:

Removed table

-Wpragma-clang-attribute

This diagnostic is enabled by default.

Diagnostic text:

Removed table

Diagnostic flags in Clang

497



-Wpragma-once-outside-header

This diagnostic is enabled by default.

Diagnostic text:

Removed table

-Wpragma-pack

Some of the diagnostics controlled by this flag are enabled by default.

Also controls -Wpragma-pack-suspicious-include.

Diagnostic text:

Removed table

Removed table

-Wpragma-pack-suspicious-include

Diagnostic text:

Removed table

-Wpragma-system-header-outside-header

This diagnostic is enabled by default.

Diagnostic text:

Removed table

-Wpragmas

Some of the diagnostics controlled by this flag are enabled by default.

Also controls -Wignored-pragmas, -Wpragma-clang-attribute, -Wpragma-pack, -Wunknown-pragmas.

Diagnostic text:

Removed table

Removed table

-Wpre-c++14-compat

Diagnostic text:

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Diagnostic flags in Clang

498



Removed table

Removed table

Removed table

Removed table

-Wpre-c++14-compat-pedantic

Controls -Wc++98-c++11-compat-binary-literal, -Wpre-c++14-compat.

-Wpre-c++17-compat

Diagnostic text:

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

-Wpre-c++17-compat-pedantic

Also controls -Wpre-c++17-compat.

Diagnostic text:

Removed table

Removed table

Diagnostic flags in Clang

499



-Wpre-c++20-compat

Diagnostic text:

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

-Wpre-c++20-compat-pedantic

Also controls -Wpre-c++20-compat.

Diagnostic text:

Diagnostic flags in Clang

500



Removed table

Removed table

-Wpre-c++2b-compat

Diagnostic text:

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

-Wpre-c++2b-compat-pedantic

Synonym for -Wpre-c++2b-compat.

-Wpre-c2x-compat

Diagnostic text:

Removed table

Removed table

Removed table

Removed table

Removed table

-Wpre-c2x-compat-pedantic

Synonym for -Wpre-c2x-compat.

-Wpre-openmp-51-compat

Diagnostic text:

Removed table

-Wpredefined-identifier-outside-function

This diagnostic is enabled by default.

Diagnostic text:

Diagnostic flags in Clang

501



Removed table

-Wprivate-extern

This diagnostic is enabled by default.

Diagnostic text:

Removed table

-Wprivate-header

This diagnostic is an error by default, but the flag -Wno-private-header can be used to disable the error.

Diagnostic text:

Removed table

-Wprivate-module

This diagnostic is enabled by default.

Diagnostic text:

Removed table

Removed table

Removed table

Removed table

-Wprofile-instr-missing

Diagnostic text:

Removed table

-Wprofile-instr-out-of-date

This diagnostic is enabled by default.

Diagnostic text:

Removed table

-Wprofile-instr-unprofiled

This diagnostic is enabled by default.

Diagnostic text:

Removed table

-Wproperty-access-dot-syntax

This diagnostic is enabled by default.

Diagnostic text:

Removed table

Diagnostic flags in Clang

502



-Wproperty-attribute-mismatch

This diagnostic is enabled by default.

Diagnostic text:

Removed table

Removed table

Removed table

Removed table

-Wprotocol

This diagnostic is enabled by default.

Diagnostic text:

Removed table

-Wprotocol-property-synthesis-ambiguity

This diagnostic is enabled by default.

Diagnostic text:

Removed table

-Wpsabi

This diagnostic is enabled by default.

Diagnostic text:

Removed table

-Wquoted-include-in-framework-header

Diagnostic text:

Removed table

-Wrange-loop-analysis

Controls -Wrange-loop-bind-reference, -Wrange-loop-construct.

-Wrange-loop-bind-reference

Diagnostic text:

Removed table

-Wrange-loop-construct

Diagnostic text:

Removed table

Removed table

Diagnostic flags in Clang

503



-Wreadonly-iboutlet-property

This diagnostic is enabled by default.

Diagnostic text:

Removed table

-Wreceiver-expr

This diagnostic is enabled by default.

Diagnostic text:

Removed table

-Wreceiver-forward-class

Some of the diagnostics controlled by this flag are enabled by default.

Diagnostic text:

Removed table

Removed table

-Wredeclared-class-member

This diagnostic is enabled by default.

Diagnostic text:

Removed table

-Wredundant-consteval-if

This diagnostic is enabled by default.

Diagnostic text:

Removed table

-Wredundant-decls

This diagnostic flag exists for GCC compatibility, and has no effect in Clang.

-Wredundant-move

Diagnostic text:

Removed table

-Wredundant-parens

Diagnostic text:

Removed table

-Wregister

This diagnostic is enabled by default.

Also controls -Wdeprecated-register.

Diagnostic flags in Clang

504



Diagnostic text:

Removed table

-Wreinterpret-base-class

This diagnostic is enabled by default.

Diagnostic text:

Removed table

-Rremark-backend-plugin

Diagnostic text:

The text of this diagnostic is not controlled by Clang.

-Wreorder

Some of the diagnostics controlled by this flag are enabled by default.

Controls -Wreorder-ctor, -Wreorder-init-list.

-Wreorder-ctor

Diagnostic text:

Removed table

Removed table

-Wreorder-init-list

This diagnostic is enabled by default.

Diagnostic text:

Removed table

-Wrequires-super-attribute

This diagnostic is enabled by default.

Diagnostic text:

Removed table

-Wreserved-id-macro

Synonym for -Wreserved-macro-identifier.

-Wreserved-identifier

Also controls -Wreserved-macro-identifier.

Diagnostic text:

Removed table

-Wreserved-macro-identifier

Diagnostic text:

Diagnostic flags in Clang

505



Removed table

-Wreserved-user-defined-literal

Some of the diagnostics controlled by this flag are enabled by default.

Also controls -Wc++11-compat-reserved-user-defined-literal.

Diagnostic text:

Removed table

Removed table

-Wrestrict-expansion

This diagnostic is enabled by default.

Diagnostic text:

Removed table

-Wretained-language-linkage

Diagnostic text:

Removed table

-Wreturn-stack-address

This diagnostic is enabled by default.

Diagnostic text:

Removed table

Removed table

Removed table

-Wreturn-std-move

This diagnostic flag exists for GCC compatibility, and has no effect in Clang.

-Wreturn-type

This diagnostic is enabled by default.

Also controls -Wreturn-type-c-linkage.

Diagnostic text:

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Diagnostic flags in Clang

506



Removed table

Removed table

Removed table

-Wreturn-type-c-linkage

This diagnostic is enabled by default.

Diagnostic text:

Removed table

Removed table

-Wrewrite-not-bool

This diagnostic is enabled by default.

Diagnostic text:

Removed table

-Rround-trip-cc1-args

Diagnostic text:

Removed table

-Wrtti

This diagnostic is enabled by default.

Diagnostic text:

Removed table

Removed table

-Rsanitize-address

Diagnostic text:

Removed table

Removed table

-Rsearch-path-usage

Diagnostic text:

Removed table

-Wsection

This diagnostic is enabled by default.

Diagnostic text:

Removed table

Diagnostic flags in Clang

507



Removed table

Removed table

-Wselector

Also controls -Wselector-type-mismatch.

Diagnostic text:

Removed table

-Wselector-type-mismatch

Diagnostic text:

Removed table

-Wself-assign

Some of the diagnostics controlled by this flag are enabled by default.

Also controls -Wself-assign-field, -Wself-assign-overloaded.

Diagnostic text:

Removed table

-Wself-assign-field

This diagnostic is enabled by default.

Diagnostic text:

Removed table

-Wself-assign-overloaded

Diagnostic text:

Removed table

-Wself-move

Diagnostic text:

Removed table

-Wsemicolon-before-method-body

Diagnostic text:

Removed table

-Wsentinel

This diagnostic is enabled by default.

Diagnostic text:

Removed table

Diagnostic flags in Clang

508



Removed table

-Wsequence-point

Synonym for -Wunsequenced.

-Wserialized-diagnostics

This diagnostic is enabled by default.

Diagnostic text:

Removed table

Removed table

Removed table

-Wshadow

Some of the diagnostics controlled by this flag are enabled by default.

Also controls -Wshadow-field-in-constructor-modified, -Wshadow-ivar.

Diagnostic text:

Removed table

-Wshadow-all

Some of the diagnostics controlled by this flag are enabled by default.

Controls -Wshadow, -Wshadow-field, -Wshadow-field-in-constructor, -Wshadow-uncaptured-local.

-Wshadow-field

Diagnostic text:

Removed table

-Wshadow-field-in-constructor

Also controls -Wshadow-field-in-constructor-modified.

Diagnostic text:

Removed table

-Wshadow-field-in-constructor-modified

Diagnostic text:

Removed table

-Wshadow-ivar

This diagnostic is enabled by default.

Diagnostic text:

Removed table

Diagnostic flags in Clang

509



-Wshadow-uncaptured-local

Diagnostic text:

Removed table

-Wshift-count-negative

This diagnostic is enabled by default.

Diagnostic text:

Removed table

-Wshift-count-overflow

This diagnostic is enabled by default.

Diagnostic text:

Removed table

-Wshift-negative-value

This diagnostic is enabled by default.

Diagnostic text:

Removed table

-Wshift-op-parentheses

This diagnostic is enabled by default.

Diagnostic text:

Removed table

-Wshift-overflow

This diagnostic is enabled by default.

Diagnostic text:

Removed table

-Wshift-sign-overflow

Diagnostic text:

Removed table

-Wshorten-64-to-32

Diagnostic text:

Removed table

-Wsign-compare

Diagnostic text:

Removed table

Diagnostic flags in Clang

510



-Wsign-conversion

Diagnostic text:

Removed table

Removed table

Removed table

-Wsign-promo

This diagnostic flag exists for GCC compatibility, and has no effect in Clang.

-Wsigned-enum-bitfield

Diagnostic text:

Removed table

-Wsigned-unsigned-wchar

This diagnostic is an error by default, but the flag -Wno-signed-unsigned-wchar can be used to disable the
error.

Diagnostic text:

Removed table

-Wsizeof-array-argument

This diagnostic is enabled by default.

Diagnostic text:

Removed table

-Wsizeof-array-decay

This diagnostic is enabled by default.

Diagnostic text:

Removed table

-Wsizeof-array-div

This diagnostic is enabled by default.

Diagnostic text:

Removed table

-Wsizeof-pointer-div

This diagnostic is enabled by default.

Diagnostic text:

Removed table

Diagnostic flags in Clang

511



-Wsizeof-pointer-memaccess

This diagnostic is enabled by default.

Diagnostic text:

Removed table

Removed table

-Wslash-u-filename

This diagnostic is enabled by default.

Diagnostic text:

Removed table

-Wslh-asm-goto

This diagnostic is enabled by default.

Diagnostic text:

Removed table

-Wsometimes-uninitialized

Diagnostic text:

Removed table

-Wsource-mgr

This diagnostic is enabled by default.

Diagnostic text:

The text of this diagnostic is not controlled by Clang.

-Wsource-uses-openmp

Some of the diagnostics controlled by this flag are enabled by default.

Diagnostic text:

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Diagnostic flags in Clang

512



-Wspir-compat

Diagnostic text:

Removed table

-Wspirv-compat

Synonym for -Wspir-compat.

-Wstack-exhausted

This diagnostic is enabled by default.

Diagnostic text:

Removed table

-Wstack-protector

This diagnostic is enabled by default.

Diagnostic text:

Removed table

-Wstatic-float-init

This diagnostic is enabled by default.

Also controls -Wgnu-static-float-init.

Diagnostic text:

Removed table

-Wstatic-in-inline

Some of the diagnostics controlled by this flag are enabled by default.

Diagnostic text:

Removed table

Removed table

-Wstatic-inline-explicit-instantiation

This diagnostic is enabled by default.

Diagnostic text:

Removed table

-Wstatic-local-in-inline

This diagnostic is enabled by default.

Diagnostic text:

Removed table

Diagnostic flags in Clang

513



-Wstatic-self-init

This diagnostic is enabled by default.

Diagnostic text:

Removed table

-Wstdlibcxx-not-found

This diagnostic is enabled by default.

Diagnostic text:

Removed table

-Wstrict-aliasing

This diagnostic flag exists for GCC compatibility, and has no effect in Clang.

-Wstrict-aliasing=0

This diagnostic flag exists for GCC compatibility, and has no effect in Clang.

-Wstrict-aliasing=1

This diagnostic flag exists for GCC compatibility, and has no effect in Clang.

-Wstrict-aliasing=2

This diagnostic flag exists for GCC compatibility, and has no effect in Clang.

-Wstrict-overflow

This diagnostic flag exists for GCC compatibility, and has no effect in Clang.

-Wstrict-overflow=0

This diagnostic flag exists for GCC compatibility, and has no effect in Clang.

-Wstrict-overflow=1

This diagnostic flag exists for GCC compatibility, and has no effect in Clang.

-Wstrict-overflow=2

This diagnostic flag exists for GCC compatibility, and has no effect in Clang.

-Wstrict-overflow=3

This diagnostic flag exists for GCC compatibility, and has no effect in Clang.

-Wstrict-overflow=4

This diagnostic flag exists for GCC compatibility, and has no effect in Clang.

-Wstrict-overflow=5

This diagnostic flag exists for GCC compatibility, and has no effect in Clang.

Diagnostic flags in Clang

514



-Wstrict-potentially-direct-selector

Some of the diagnostics controlled by this flag are enabled by default.

Also controls -Wpotentially-direct-selector.

Diagnostic text:

Removed table

-Wstrict-prototypes

Some of the diagnostics controlled by this flag are enabled by default.

Also controls -Wdeprecated-non-prototype.

Diagnostic text:

Removed table

-Wstrict-selector-match

Diagnostic text:

Removed table

-Wstring-compare

This diagnostic is enabled by default.

Diagnostic text:

Removed table

-Wstring-concatenation

Diagnostic text:

Removed table

-Wstring-conversion

Diagnostic text:

Removed table

-Wstring-plus-char

This diagnostic is enabled by default.

Diagnostic text:

Removed table

-Wstring-plus-int

This diagnostic is enabled by default.

Diagnostic text:

Removed table

Diagnostic flags in Clang

515



-Wstrlcpy-strlcat-size

This diagnostic is enabled by default.

Diagnostic text:

Removed table

-Wstrncat-size

This diagnostic is enabled by default.

Diagnostic text:

Removed table

Removed table

Removed table

-Wsuggest-destructor-override

Diagnostic text:

Removed table

-Wsuggest-override

Diagnostic text:

Removed table

-Wsuper-class-method-mismatch

Diagnostic text:

Removed table

-Wsuspicious-bzero

This diagnostic is enabled by default.

Diagnostic text:

Removed table

-Wsuspicious-memaccess

This diagnostic is enabled by default.

Controls -Wdynamic-class-memaccess, -Wmemset-transposed-args, -Wnontrivial-memaccess,
-Wsizeof-pointer-memaccess, -Wsuspicious-bzero.

-Wswift-name-attribute

This diagnostic is enabled by default.

Diagnostic text:

Removed table

Removed table

Diagnostic flags in Clang

516



Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

-Wswitch

This diagnostic is enabled by default.

Diagnostic text:

Removed table

Removed table

Removed table

-Wswitch-bool

This diagnostic is enabled by default.

Diagnostic text:

Removed table

-Wswitch-default

This diagnostic flag exists for GCC compatibility, and has no effect in Clang.

-Wswitch-enum

Diagnostic text:

Removed table

-Wsync-fetch-and-nand-semantics-changed

This diagnostic is enabled by default.

Diagnostic text:

Removed table

Diagnostic flags in Clang

517



-Wsynth

This diagnostic flag exists for GCC compatibility, and has no effect in Clang.

-Wtarget-clones-mixed-specifiers

This diagnostic is enabled by default.

Diagnostic text:

Removed table

-Wtautological-bitwise-compare

Diagnostic text:

Removed table

Removed table

-Wtautological-compare

Some of the diagnostics controlled by this flag are enabled by default.

Also controls -Wtautological-bitwise-compare, -Wtautological-constant-compare, -Wtautological-objc-bool-compare,
-Wtautological-overlap-compare, -Wtautological-pointer-compare, -Wtautological-undefined-compare.

Diagnostic text:

Removed table

Removed table

-Wtautological-constant-compare

This diagnostic is enabled by default.

Also controls -Wtautological-constant-out-of-range-compare.

Diagnostic text:

Removed table

Removed table

Removed table

-Wtautological-constant-in-range-compare

Controls -Wtautological-value-range-compare, -Wtype-limits.

-Wtautological-constant-out-of-range-compare

This diagnostic is enabled by default.

Diagnostic text:

Removed table

-Wtautological-objc-bool-compare

This diagnostic is enabled by default.

Diagnostic text:

Diagnostic flags in Clang

518



Removed table

-Wtautological-overlap-compare

Diagnostic text:

Removed table

-Wtautological-pointer-compare

This diagnostic is enabled by default.

Diagnostic text:

Removed table

Removed table

-Wtautological-type-limit-compare

Diagnostic text:

Removed table

-Wtautological-undefined-compare

This diagnostic is enabled by default.

Diagnostic text:

Removed table

Removed table

-Wtautological-unsigned-char-zero-compare

Diagnostic text:

Removed table

-Wtautological-unsigned-enum-zero-compare

Diagnostic text:

Removed table

-Wtautological-unsigned-zero-compare

Diagnostic text:

Removed table

-Wtautological-value-range-compare

Diagnostic text:

Removed table

-Wtcb-enforcement

This diagnostic is enabled by default.

Diagnostic flags in Clang

519



Diagnostic text:

Removed table

-Wtentative-definition-incomplete-type

This diagnostic is enabled by default.

Diagnostic text:

Removed table

-Wthread-safety

Controls -Wthread-safety-analysis, -Wthread-safety-attributes, -Wthread-safety-precise, -Wthread-safety-reference.

-Wthread-safety-analysis

Diagnostic text:

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

-Wthread-safety-attributes

Diagnostic text:

Removed table

Diagnostic flags in Clang

520



Removed table

Removed table

Removed table

Removed table

Removed table

-Wthread-safety-beta

Diagnostic text:

Removed table

-Wthread-safety-negative

Diagnostic text:

Removed table

-Wthread-safety-precise

Diagnostic text:

Removed table

Removed table

Removed table

-Wthread-safety-reference

Diagnostic text:

Removed table

Removed table

-Wthread-safety-verbose

Diagnostic text:

Removed table

-Wtrigraphs

This diagnostic is enabled by default.

Diagnostic text:

Removed table

Removed table

Removed table

Removed table

Diagnostic flags in Clang

521



-Wtype-limits

Controls -Wtautological-type-limit-compare, -Wtautological-unsigned-char-zero-compare,
-Wtautological-unsigned-enum-zero-compare, -Wtautological-unsigned-zero-compare.

-Wtype-safety

This diagnostic is enabled by default.

Diagnostic text:

Removed table

Removed table

Removed table

-Wtypedef-redefinition

This diagnostic is enabled by default.

Diagnostic text:

Removed table

-Wtypename-missing

This diagnostic is enabled by default.

Diagnostic text:

Removed table

-Wunable-to-open-stats-file

This diagnostic is enabled by default.

Diagnostic text:

Removed table

-Wunaligned-access

Diagnostic text:

Removed table

-Wunaligned-qualifier-implicit-cast

This diagnostic is enabled by default.

Diagnostic text:

Removed table

-Wunavailable-declarations

This diagnostic is enabled by default.

Diagnostic text:

Removed table

Diagnostic flags in Clang

522



-Wundeclared-selector

Diagnostic text:

Removed table

Removed table

-Wundef

Diagnostic text:

Removed table

-Wundef-prefix

Diagnostic text:

Removed table

-Wundefined-bool-conversion

This diagnostic is enabled by default.

Diagnostic text:

Removed table

Removed table

-Wundefined-func-template

Diagnostic text:

Removed table

-Wundefined-inline

This diagnostic is enabled by default.

Diagnostic text:

Removed table

-Wundefined-internal

This diagnostic is enabled by default.

Diagnostic text:

Removed table

-Wundefined-internal-type

Diagnostic text:

Removed table

-Wundefined-reinterpret-cast

Diagnostic text:

Diagnostic flags in Clang

523



Removed table

Removed table

-Wundefined-var-template

This diagnostic is enabled by default.

Diagnostic text:

Removed table

-Wunderaligned-exception-object

This diagnostic is enabled by default.

Diagnostic text:

Removed table

-Wunevaluated-expression

This diagnostic is enabled by default.

Also controls -Wpotentially-evaluated-expression.

Diagnostic text:

Removed table

-Wunguarded-availability

Some of the diagnostics controlled by this flag are enabled by default.

Also controls -Wunguarded-availability-new.

Diagnostic text:

Removed table

-Wunguarded-availability-new

This diagnostic is enabled by default.

Diagnostic text:

Removed table

-Wunicode

This diagnostic is enabled by default.

Diagnostic text:

Removed table

Removed table

Removed table

Removed table

Removed table

Diagnostic flags in Clang

524



Removed table

Removed table

-Wunicode-homoglyph

This diagnostic is enabled by default.

Diagnostic text:

Removed table

-Wunicode-whitespace

This diagnostic is enabled by default.

Diagnostic text:

Removed table

-Wunicode-zero-width

This diagnostic is enabled by default.

Diagnostic text:

Removed table

-Wuninitialized

Some of the diagnostics controlled by this flag are enabled by default.

Also controls -Wsometimes-uninitialized, -Wstatic-self-init, -Wuninitialized-const-reference.

Diagnostic text:

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

-Wuninitialized-const-reference

Diagnostic text:

Removed table

-Wunknown-argument

This diagnostic is enabled by default.

Diagnostic text:

Removed table

Diagnostic flags in Clang

525



Removed table

-Wunknown-assumption

This diagnostic is enabled by default.

Diagnostic text:

Removed table

-Wunknown-attributes

This diagnostic is enabled by default.

Diagnostic text:

Removed table

-Wunknown-cuda-version

This diagnostic is enabled by default.

Diagnostic text:

Removed table

Removed table

-Wunknown-directives

This diagnostic is enabled by default.

Diagnostic text:

Removed table

-Wunknown-escape-sequence

This diagnostic is enabled by default.

Diagnostic text:

Removed table

-Wunknown-pragmas

Some of the diagnostics controlled by this flag are enabled by default.

Diagnostic text:

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Diagnostic flags in Clang

526



Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

-Wunknown-sanitizers

This diagnostic is enabled by default.

Diagnostic text:

Removed table

-Wunknown-warning-option

This diagnostic is enabled by default.

Diagnostic text:

Removed table

Removed table

Removed table

-Wunnamed-type-template-args

Some of the diagnostics controlled by this flag are enabled by default.

Also controls -Wc++98-compat-unnamed-type-template-args.

Diagnostic text:

Removed table

-Wunneeded-internal-declaration

Diagnostic text:

Removed table

Diagnostic flags in Clang

527



Removed table

-Wunneeded-member-function

Diagnostic text:

Removed table

-Wunqualified-std-cast-call

This diagnostic is enabled by default.

Diagnostic text:

Removed table

-Wunreachable-code

Some of the diagnostics controlled by this flag are enabled by default.

Also controls -Wunreachable-code-fallthrough, -Wunreachable-code-generic-assoc,
-Wunreachable-code-loop-increment.

Diagnostic text:

Removed table

-Wunreachable-code-aggressive

Some of the diagnostics controlled by this flag are enabled by default.

Controls -Wunreachable-code, -Wunreachable-code-break, -Wunreachable-code-return.

-Wunreachable-code-break

Diagnostic text:

Removed table

-Wunreachable-code-fallthrough

Diagnostic text:

Removed table

-Wunreachable-code-generic-assoc

This diagnostic is enabled by default.

Diagnostic text:

Removed table

-Wunreachable-code-loop-increment

Diagnostic text:

Removed table

-Wunreachable-code-return

Diagnostic text:

Diagnostic flags in Clang

528



Removed table

-Wunsequenced

This diagnostic is enabled by default.

Diagnostic text:

Removed table

Removed table

-Wunsupported-abi

This diagnostic is enabled by default.

Diagnostic text:

Removed table

-Wunsupported-abs

This diagnostic is enabled by default.

Diagnostic text:

Removed table

Removed table

-Wunsupported-availability-guard

This diagnostic is enabled by default.

Diagnostic text:

Removed table

-Wunsupported-cb

This diagnostic is enabled by default.

Diagnostic text:

Removed table

-Wunsupported-dll-base-class-template

Diagnostic text:

Removed table

-Wunsupported-floating-point-opt

This diagnostic is enabled by default.

Diagnostic text:

Removed table

Removed table

Diagnostic flags in Clang

529



-Wunsupported-friend

This diagnostic is enabled by default.

Diagnostic text:

Removed table

Removed table

-Wunsupported-gpopt

This diagnostic is enabled by default.

Diagnostic text:

Removed table

-Wunsupported-nan

This diagnostic is enabled by default.

Diagnostic text:

Removed table

Removed table

-Wunsupported-target-opt

This diagnostic is enabled by default.

Diagnostic text:

Removed table

Removed table

-Wunsupported-visibility

This diagnostic is enabled by default.

Diagnostic text:

Removed table

-Wunusable-partial-specialization

This diagnostic is an error by default, but the flag -Wno-unusable-partial-specialization can be used to
disable the error.

Diagnostic text:

Removed table

-Wunused

Some of the diagnostics controlled by this flag are enabled by default.

Controls -Wunused-argument, -Wunused-but-set-variable, -Wunused-function, -Wunused-label,
-Wunused-lambda-capture, -Wunused-local-typedef, -Wunused-private-field, -Wunused-property-ivar,
-Wunused-value, -Wunused-variable.

Diagnostic flags in Clang

530



-Wunused-argument

This diagnostic flag exists for GCC compatibility, and has no effect in Clang.

-Wunused-but-set-parameter

Diagnostic text:

Removed table

-Wunused-but-set-variable

Diagnostic text:

Removed table

-Wunused-command-line-argument

This diagnostic is enabled by default.

Diagnostic text:

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

-Wunused-comparison

This diagnostic is enabled by default.

Diagnostic text:

Removed table

-Wunused-const-variable

Diagnostic text:

Removed table

Diagnostic flags in Clang

531



-Wunused-exception-parameter

Diagnostic text:

Removed table

-Wunused-function

Also controls -Wunneeded-internal-declaration.

Diagnostic text:

Removed table

-Wunused-getter-return-value

This diagnostic is enabled by default.

Diagnostic text:

Removed table

-Wunused-label

Diagnostic text:

Removed table

-Wunused-lambda-capture

Diagnostic text:

Removed table

-Wunused-local-typedef

Diagnostic text:

Removed table

-Wunused-local-typedefs

Synonym for -Wunused-local-typedef.

-Wunused-macros

Diagnostic text:

Removed table

-Wunused-member-function

Also controls -Wunneeded-member-function.

Diagnostic text:

Removed table

-Wunused-parameter

Diagnostic text:

Diagnostic flags in Clang

532



Removed table

-Wunused-private-field

Diagnostic text:

Removed table

-Wunused-property-ivar

Diagnostic text:

Removed table

-Wunused-result

This diagnostic is enabled by default.

Diagnostic text:

Removed table

Removed table

-Wunused-template

Also controls -Wunneeded-internal-declaration.

Diagnostic text:

Removed table

-Wunused-value

This diagnostic is enabled by default.

Also controls -Wunevaluated-expression, -Wunused-comparison, -Wunused-result.

Diagnostic text:

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

Removed table

-Wunused-variable

Also controls -Wunused-const-variable.

Diagnostic text:

Removed table

Diagnostic flags in Clang

533



-Wunused-volatile-lvalue

This diagnostic is enabled by default.

Diagnostic text:

Removed table

-Wused-but-marked-unused

Diagnostic text:

Removed table

-Wuser-defined-literals

This diagnostic is enabled by default.

Diagnostic text:

Removed table

-Wuser-defined-warnings

This diagnostic is enabled by default.

Diagnostic text:

The text of this diagnostic is not controlled by Clang.

-Wvarargs

This diagnostic is enabled by default.

Diagnostic text:

Removed table

Removed table

Removed table

-Wvariadic-macros

Some of the diagnostics controlled by this flag are enabled by default.

Diagnostic text:

Removed table

Removed table

Removed table

-Wvec-elem-size

This diagnostic is an error by default, but the flag -Wno-vec-elem-size can be used to disable the error.

Diagnostic text:

Removed table

Diagnostic flags in Clang

534



-Wvector-conversion

Diagnostic text:

Removed table

-Wvector-conversions

Synonym for -Wvector-conversion.

-Wvexing-parse

This diagnostic is enabled by default.

Diagnostic text:

Removed table

Removed table

Removed table

-Wvisibility

This diagnostic is enabled by default.

Diagnostic text:

Removed table

Removed table

-Wvla

Also controls -Wvla-extension.

Diagnostic text:

Removed table

-Wvla-extension

Diagnostic text:

Removed table

-Wvoid-pointer-to-enum-cast

This diagnostic is enabled by default.

Diagnostic text:

Removed table

-Wvoid-pointer-to-int-cast

This diagnostic is enabled by default.

Also controls -Wvoid-pointer-to-enum-cast.

Diagnostic text:

Removed table

Diagnostic flags in Clang

535



-Wvoid-ptr-dereference

This diagnostic is enabled by default.

Diagnostic text:

Removed table

-Wvolatile-register-var

This diagnostic flag exists for GCC compatibility, and has no effect in Clang.

-Wwasm-exception-spec

This diagnostic is enabled by default.

Diagnostic text:

Removed table

-Wweak-template-vtables

Diagnostic text:

Removed table

-Wweak-vtables

Diagnostic text:

Removed table

-Wwritable-strings

This diagnostic is enabled by default.

Also controls -Wdeprecated-writable-strings.

Diagnostic text:

Removed table

-Wwrite-strings

Synonym for -Wwritable-strings.

-Wxor-used-as-pow

This diagnostic is enabled by default.

Diagnostic text:

Removed table

Removed table

Removed table

-Wzero-as-null-pointer-constant

Diagnostic text:

Removed table

Diagnostic flags in Clang

536



-Wzero-length-array

Diagnostic text:

Removed table

Cross-compilation using Clang

Introduction
This document will guide you in choosing the right Clang options for cross-compiling your code to a different
architecture. It assumes you already know how to compile the code in question for the host architecture, and that you
know how to choose additional include and library paths.

However, this document is not a “how to” and won’t help you setting your build system or Makefiles, nor choosing the
right CMake options, etc. Also, it does not cover all the possible options, nor does it contain specific examples for
specific architectures. For a concrete example, the instructions for cross-compiling LLVM itself may be of interest.

After reading this document, you should be familiar with the main issues related to cross-compilation, and what main
compiler options Clang provides for performing cross-compilation.

Cross compilation issues
In GCC world, every host/target combination has its own set of binaries, headers, libraries, etc. So, it’s usually simple
to download a package with all files in, unzip to a directory and point the build system to that compiler, that will know
about its location and find all it needs to when compiling your code.

On the other hand, Clang/LLVM is natively a cross-compiler, meaning that one set of programs can compile to all
targets by setting the -target option. That makes it a lot easier for programmers wishing to compile to different
platforms and architectures, and for compiler developers that only have to maintain one build system, and for OS
distributions, that need only one set of main packages.

But, as is true to any cross-compiler, and given the complexity of different architectures, OS’s and options, it’s not
always easy finding the headers, libraries or binutils to generate target specific code. So you’ll need special options
to help Clang understand what target you’re compiling to, where your tools are, etc.

Another problem is that compilers come with standard libraries only (like compiler-rt, libcxx, libgcc, libm,
etc), so you’ll have to find and make available to the build system, every other library required to build your software,
that is specific to your target. It’s not enough to have your host’s libraries installed.

Finally, not all toolchains are the same, and consequently, not every Clang option will work magically. Some options,
like --sysroot (which effectively changes the logical root for headers and libraries), assume all your binaries and
libraries are in the same directory, which may not true when your cross-compiler was installed by the distribution’s
package management. So, for each specific case, you may use more than one option, and in most cases, you’ll end
up setting include paths (-I) and library paths (-L) manually.

To sum up, different toolchains can:

• be host/target specific or more flexible

• be in a single directory, or spread out across your system

• have different sets of libraries and headers by default

• need special options, which your build system won’t be able to figure out by itself

General Cross-Compilation Options in Clang

Target Triple

The basic option is to define the target architecture. For that, use -target <triple>. If you don’t specify the
target, CPU names won’t match (since Clang assumes the host triple), and the compilation will go ahead, creating
code for the host platform, which will break later on when assembling or linking.

The triple has the general format <arch><sub>-<vendor>-<sys>-<abi>, where:

Cross-compilation using Clang

537

https://llvm.org/docs/HowToCrossCompileLLVM.html


• arch = x86_64, i386, arm, thumb, mips, etc.

• sub = for ex. on ARM: v5, v6m, v7a, v7m, etc.

• vendor = pc, apple, nvidia, ibm, etc.

• sys = none, linux, win32, darwin, cuda, etc.

• abi = eabi, gnu, android, macho, elf, etc.

The sub-architecture options are available for their own architectures, of course, so “x86v7a” doesn’t make sense.
The vendor needs to be specified only if there’s a relevant change, for instance between PC and Apple. Most of the
time it can be omitted (and Unknown) will be assumed, which sets the defaults for the specified architecture. The
system name is generally the OS (linux, darwin), but could be special like the bare-metal “none”.

When a parameter is not important, it can be omitted, or you can choose unknown and the defaults will be used. If
you choose a parameter that Clang doesn’t know, like blerg, it’ll ignore and assume unknown, which is not always
desired, so be careful.

Finally, the ABI option is something that will pick default CPU/FPU, define the specific behaviour of your code (PCS,
extensions), and also choose the correct library calls, etc.

CPU, FPU, ABI

Once your target is specified, it’s time to pick the hardware you’ll be compiling to. For every architecture, a default set
of CPU/FPU/ABI will be chosen, so you’ll almost always have to change it via flags.

Typical flags include:

• -mcpu=<cpu-name>, like x86-64, swift, cortex-a15

• -mfpu=<fpu-name>, like SSE3, NEON, controlling the FP unit available

• -mfloat-abi=<fabi>, like soft, hard, controlling which registers to use for floating-point

The default is normally the common denominator, so that Clang doesn’t generate code that breaks. But that also
means you won’t get the best code for your specific hardware, which may mean orders of magnitude slower than you
expect.

For example, if your target is arm-none-eabi, the default CPU will be arm7tdmi using soft float, which is
extremely slow on modern cores, whereas if your triple is armv7a-none-eabi, it’ll be Cortex-A8 with NEON, but
still using soft-float, which is much better, but still not great.

Toolchain Options

There are three main options to control access to your cross-compiler: --sysroot, -I, and -L. The two last ones
are well known, but they’re particularly important for additional libraries and headers that are specific to your target.

There are two main ways to have a cross-compiler:

1. When you have extracted your cross-compiler from a zip file into a directory, you have to use
--sysroot=<path>. The path is the root directory where you have unpacked your file, and Clang will look for
the directories bin, lib, include in there.

In this case, your setup should be pretty much done (if no additional headers or libraries are needed), as Clang
will find all binaries it needs (assembler, linker, etc) in there.

2. When you have installed via a package manager (modern Linux distributions have cross-compiler packages
available), make sure the target triple you set is also the prefix of your cross-compiler toolchain.

In this case, Clang will find the other binaries (assembler, linker), but not always where the target headers and
libraries are. People add system-specific clues to Clang often, but as things change, it’s more likely that it won’t
find than the other way around.

So, here, you’ll be a lot safer if you specify the include/library directories manually (via -I and -L).

Cross-compilation using Clang

538



Target-Specific Libraries
All libraries that you compile as part of your build will be cross-compiled to your target, and your build system will
probably find them in the right place. But all dependencies that are normally checked against (like libxml or libz
etc) will match against the host platform, not the target.

So, if the build system is not aware that you want to cross-compile your code, it will get every dependency wrong,
and your compilation will fail during build time, not configure time.

Also, finding the libraries for your target are not as easy as for your host machine. There aren’t many cross-libraries
available as packages to most OS’s, so you’ll have to either cross-compile them from source, or download the
package for your target platform, extract the libraries and headers, put them in specific directories and add -I and
-L pointing to them.

Also, some libraries have different dependencies on different targets, so configuration tools to find dependencies in
the host can get the list wrong for the target platform. This means that the configuration of your build can get things
wrong when setting their own library paths, and you’ll have to augment it via additional flags (configure, Make,
CMake, etc).

Multilibs

When you want to cross-compile to more than one configuration, for example hard-float-ARM and soft-float-ARM,
you’ll have to have multiple copies of your libraries and (possibly) headers.

Some Linux distributions have support for Multilib, which handle that for you in an easier way, but if you’re not careful
and, for instance, forget to specify -ccc-gcc-name armv7l-linux-gnueabihf-gcc (which uses hard-float),
Clang will pick the armv7l-linux-gnueabi-ld (which uses soft-float) and linker errors will happen.

The same is true if you’re compiling for different ABIs, like gnueabi and androideabi, and might even link and
run, but produce run-time errors, which are much harder to track down and fix.

Clang Static Analyzer
The Clang Static Analyzer is a source code analysis tool that finds bugs in C, C++, and Objective-C programs. It
implements path-sensitive, inter-procedural analysis based on symbolic execution technique.

This is the Static Analyzer documentation page.

See the Official Tool Page.

Available Checkers
The analyzer performs checks that are categorized into families or “checkers”.

The default set of checkers covers a variety of checks targeted at finding security and API usage bugs, dead code,
and other logic errors. See the Default Checkers checkers list below.

In addition to these, the analyzer contains a number of Experimental Checkers (aka alpha checkers). These
checkers are under development and are switched off by default. They may crash or emit a higher number of false
positives.

The debug package contains checkers for analyzer developers for debugging purposes.

Clang Static Analyzer

539

https://clang-analyzer.llvm.org/


Table of Contents
Available Checkers 539

Default Checkers 544

core 544

core.CallAndMessage (C, C++, ObjC) 544

core.DivideZero (C, C++, ObjC) 545

core.NonNullParamChecker (C, C++, ObjC) 545

core.NullDereference (C, C++, ObjC) 545

core.StackAddressEscape (C) 546

core.UndefinedBinaryOperatorResult (C) 546

core.VLASize (C) 547

core.uninitialized.ArraySubscript (C) 547

core.uninitialized.Assign (C) 547

core.uninitialized.Branch (C) 547

core.uninitialized.CapturedBlockVariable (C) 547

core.uninitialized.UndefReturn (C) 547

cplusplus 548

cplusplus.InnerPointer (C++) 548

cplusplus.NewDelete (C++) 548

cplusplus.NewDeleteLeaks (C++) 549

cplusplus.PlacementNewChecker (C++) 549

cplusplus.SelfAssignment (C++) 549

cplusplus.StringChecker (C++) 549

deadcode 549

deadcode.DeadStores (C) 549

nullability 550

nullability.NullPassedToNonnull (ObjC) 550

nullability.NullReturnedFromNonnull (ObjC) 550

nullability.NullableDereferenced (ObjC) 550

nullability.NullablePassedToNonnull (ObjC) 550

nullability.NullableReturnedFromNonnull (ObjC) 551

optin 551

optin.cplusplus.UninitializedObject (C++) 551

optin.cplusplus.VirtualCall (C++) 552

optin.mpi.MPI-Checker (C) 553

optin.osx.cocoa.localizability.EmptyLocalizationContextChecker (ObjC) 553

optin.osx.cocoa.localizability.NonLocalizedStringChecker (ObjC) 553

optin.performance.GCDAntipattern 553

optin.performance.Padding 554

optin.portability.UnixAPI 554

security 554

security.FloatLoopCounter (C) 554

security.insecureAPI.UncheckedReturn (C) 554

security.insecureAPI.bcmp (C) 554

Clang Static Analyzer

540



security.insecureAPI.bcopy (C) 554

security.insecureAPI.bzero (C) 554

security.insecureAPI.getpw (C) 554

security.insecureAPI.gets (C) 554

security.insecureAPI.mkstemp (C) 555

security.insecureAPI.mktemp (C) 555

security.insecureAPI.rand (C) 555

security.insecureAPI.strcpy (C) 555

security.insecureAPI.vfork (C) 555

security.insecureAPI.DeprecatedOrUnsafeBufferHandling (C) 555

unix 555

unix.API (C) 556

unix.Malloc (C) 556

unix.MallocSizeof (C) 557

unix.MismatchedDeallocator (C, C++) 557

unix.Vfork (C) 558

unix.cstring.BadSizeArg (C) 558

unix.cstring.NullArg (C) 559

osx 559

osx.API (C) 559

osx.NumberObjectConversion (C, C++, ObjC) 559

osx.ObjCProperty (ObjC) 559

osx.SecKeychainAPI (C) 559

osx.cocoa.AtSync (ObjC) 560

osx.cocoa.AutoreleaseWrite 561

osx.cocoa.ClassRelease (ObjC) 561

osx.cocoa.Dealloc (ObjC) 561

osx.cocoa.IncompatibleMethodTypes (ObjC) 562

osx.cocoa.Loops 562

osx.cocoa.MissingSuperCall (ObjC) 562

osx.cocoa.NSAutoreleasePool (ObjC) 562

osx.cocoa.NSError (ObjC) 562

osx.cocoa.NilArg (ObjC) 563

osx.cocoa.NonNilReturnValue 563

osx.cocoa.ObjCGenerics (ObjC) 563

osx.cocoa.RetainCount (ObjC) 563

osx.cocoa.RunLoopAutoreleaseLeak 564

osx.cocoa.SelfInit (ObjC) 564

osx.cocoa.SuperDealloc (ObjC) 564

osx.cocoa.UnusedIvars (ObjC) 564

osx.cocoa.VariadicMethodTypes (ObjC) 565

osx.coreFoundation.CFError (C) 565

osx.coreFoundation.CFNumber (C) 565

osx.coreFoundation.CFRetainRelease (C) 565

osx.coreFoundation.containers.OutOfBounds (C) 565

Clang Static Analyzer

541



osx.coreFoundation.containers.PointerSizedValues (C) 565

Fuchsia 566

fuchsia.HandleChecker 566

WebKit 566

webkit.RefCntblBaseVirtualDtor 566

webkit.NoUncountedMemberChecker 566

webkit.UncountedLambdaCapturesChecker 567

Experimental Checkers 567

alpha.clone 567

alpha.clone.CloneChecker (C, C++, ObjC) 567

alpha.core 567

alpha.core.BoolAssignment (ObjC) 567

alpha.core.C11Lock 568

alpha.core.CallAndMessageUnInitRefArg (C,C++, ObjC) 568

alpha.core.CastSize (C) 568

alpha.core.CastToStruct (C, C++) 568

alpha.core.Conversion (C, C++, ObjC) 568

alpha.core.DynamicTypeChecker (ObjC) 569

alpha.core.FixedAddr (C) 569

alpha.core.IdenticalExpr (C, C++) 569

alpha.core.PointerArithm (C) 569

alpha.core.PointerSub (C) 570

alpha.core.SizeofPtr (C) 570

alpha.core.StackAddressAsyncEscape (C) 570

alpha.core.TestAfterDivZero (C) 570

alpha.cplusplus 570

alpha.cplusplus.DeleteWithNonVirtualDtor (C++) 570

alpha.cplusplus.EnumCastOutOfRange (C++) 571

alpha.cplusplus.InvalidatedIterator (C++) 571

alpha.cplusplus.IteratorRange (C++) 571

alpha.cplusplus.MismatchedIterator (C++) 571

alpha.cplusplus.MisusedMovedObject (C++) 572

alpha.cplusplus.SmartPtr (C++) 572

alpha.deadcode 572

alpha.deadcode.UnreachableCode (C, C++) 572

alpha.fuchsia 572

alpha.fuchsia.Lock 572

alpha.llvm 573

alpha.llvm.Conventions 573

alpha.osx 573

alpha.osx.cocoa.DirectIvarAssignment (ObjC) 573

alpha.osx.cocoa.DirectIvarAssignmentForAnnotatedFunctions (ObjC) 573

alpha.osx.cocoa.InstanceVariableInvalidation (ObjC) 573

alpha.osx.cocoa.MissingInvalidationMethod (ObjC) 574

alpha.osx.cocoa.localizability.PluralMisuseChecker (ObjC) 574

Clang Static Analyzer

542



alpha.security 575

alpha.security.ArrayBound (C) 575

alpha.security.ArrayBoundV2 (C) 575

alpha.security.MallocOverflow (C) 576

alpha.security.MmapWriteExec (C) 576

alpha.security.ReturnPtrRange (C) 576

alpha.security.cert 577

alpha.security.cert.pos 577

alpha.security.cert.pos.34c 577

alpha.security.cert.env 577

alpha.security.cert.env.InvalidPtr 577

alpha.security.taint 578

alpha.security.taint.TaintPropagation (C, C++) 578

alpha.unix 579

alpha.unix.StdCLibraryFunctionArgs (C) 579

alpha.unix.BlockInCriticalSection (C) 580

alpha.unix.Chroot (C) 580

alpha.unix.PthreadLock (C) 580

alpha.unix.SimpleStream (C) 581

alpha.unix.Stream (C) 581

alpha.unix.cstring.BufferOverlap (C) 582

alpha.unix.cstring.NotNullTerminated (C) 582

alpha.unix.cstring.OutOfBounds (C) 582

alpha.unix.cstring.UninitializedRead (C) 582

alpha.nondeterminism.PointerIteration (C++) 583

alpha.nondeterminism.PointerSorting (C++) 583

alpha.WebKit 583

alpha.webkit.UncountedCallArgsChecker 583

alpha.webkit.UncountedLocalVarsChecker 584

Debug Checkers 585

debug 585

debug.AnalysisOrder 585

debug.ConfigDumper 585

debug.DumpCFG Display 585

debug.DumpCallGraph 585

debug.DumpCalls 586

debug.DumpDominators 586

debug.DumpLiveVars 586

debug.DumpTraversal 586

debug.ExprInspection 586

debug.Stats 586

debug.TaintTest 586

debug.ViewCFG 586

debug.ViewCallGraph 586

debug.ViewExplodedGraph 586

Clang Static Analyzer

543



Security 691

Security 694

Default Checkers

core

Models core language features and contains general-purpose checkers such as division by zero, null pointer
dereference, usage of uninitialized values, etc. These checkers must be always switched on as other checker rely on
them.

core.CallAndMessage (C, C++, ObjC)

Check for logical errors for function calls and Objective-C message expressions (e.g., uninitialized arguments,
null function pointers).

//C
void test() {
   void (*foo)(void);
   foo = 0;
   foo(); // warn: function pointer is null
 }

 // C++
 class C {
 public:
   void f();
 };

 void test() {
   C *pc;
   pc->f(); // warn: object pointer is uninitialized
 }

 // C++
 class C {
 public:
   void f();
 };

 void test() {
   C *pc = 0;
   pc->f(); // warn: object pointer is null
 }

 // Objective-C
 @interface MyClass : NSObject
 @property (readwrite,assign) id x;
 - (long double)longDoubleM;
 @end

 void test() {
   MyClass *obj1;
   long double ld1 = [obj1 longDoubleM];
     // warn: receiver is uninitialized
 }

 // Objective-C
 @interface MyClass : NSObject

Clang Static Analyzer

544



 @property (readwrite,assign) id x;
 - (long double)longDoubleM;
 @end

 void test() {
   MyClass *obj1;
   id i = obj1.x; // warn: uninitialized object pointer
 }

 // Objective-C
 @interface Subscriptable : NSObject
 - (id)objectAtIndexedSubscript:(unsigned int)index;
 @end

 @interface MyClass : Subscriptable
 @property (readwrite,assign) id x;
 - (long double)longDoubleM;
 @end

 void test() {
   MyClass *obj1;
   id i = obj1[0]; // warn: uninitialized object pointer
 }

core.DivideZero (C, C++, ObjC)

Check for division by zero.

void test(int z) {
  if (z == 0)
    int x = 1 / z; // warn
}

void test() {
  int x = 1;
  int y = x % 0; // warn
}

core.NonNullParamChecker (C, C++, ObjC)

Check for null pointers passed as arguments to a function whose arguments are references or marked with the
‘nonnull’ attribute.

int f(int *p) __attribute__((nonnull));

void test(int *p) {
  if (!p)
    f(p); // warn
}

core.NullDereference (C, C++, ObjC)

Check for dereferences of null pointers.

This checker specifically does not report null pointer dereferences for x86 and x86-64 targets when the address
space is 256 (x86 GS Segment), 257 (x86 FS Segment), or 258 (x86 SS segment). See X86/X86-64 Language
Extensions for reference.

The SuppressAddressSpaces option suppresses warnings for null dereferences of all pointers with address
spaces. You can disable this behavior with the option
-analyzer-config core.NullDereference:SuppressAddressSpaces=false. Defaults to true.

Clang Static Analyzer

545

https://clang.llvm.org/docs/LanguageExtensions.html#memory-references-to-specified-segments
https://clang.llvm.org/docs/LanguageExtensions.html#memory-references-to-specified-segments


// C
void test(int *p) {
  if (p)
    return;

  int x = p[0]; // warn
}

// C
void test(int *p) {
  if (!p)
    *p = 0; // warn
}

// C++
class C {
public:
  int x;
};

void test() {
  C *pc = 0;
  int k = pc->x; // warn
}

// Objective-C
@interface MyClass {
@public
  int x;
}
@end

void test() {
  MyClass *obj = 0;
  obj->x = 1; // warn
}

core.StackAddressEscape (C)

Check that addresses to stack memory do not escape the function.

char const *p;

void test() {
  char const str[] = "string";
  p = str; // warn
}

void* test() {
   return __builtin_alloca(12); // warn
}

void test() {
  static int *x;
  int y;
  x = &y; // warn
}

core.UndefinedBinaryOperatorResult (C)

Check for undefined results of binary operators.

Clang Static Analyzer

546



void test() {
  int x;
  int y = x + 1; // warn: left operand is garbage
}

core.VLASize (C)

Check for declarations of Variable Length Arrays of undefined or zero size.

Check for declarations of VLA of undefined or zero size.

void test() {
  int x;
  int vla1[x]; // warn: garbage as size
}

void test() {
  int x = 0;
  int vla2[x]; // warn: zero size
}

core.uninitialized.ArraySubscript (C)

Check for uninitialized values used as array subscripts.

void test() {
  int i, a[10];
  int x = a[i]; // warn: array subscript is undefined
}

core.uninitialized.Assign (C)

Check for assigning uninitialized values.

void test() {
  int x;
  x |= 1; // warn: left expression is uninitialized
}

core.uninitialized.Branch (C)

Check for uninitialized values used as branch conditions.

void test() {
  int x;
  if (x) // warn
    return;
}

core.uninitialized.CapturedBlockVariable (C)

Check for blocks that capture uninitialized values.

void test() {
  int x;
  ^{ int y = x; }(); // warn
}

core.uninitialized.UndefReturn (C)

Check for uninitialized values being returned to the caller.

int test() {
  int x;

Clang Static Analyzer

547



  return x; // warn
}

cplusplus

C++ Checkers.

cplusplus.InnerPointer (C++)

Check for inner pointers of C++ containers used after re/deallocation.

Many container methods in the C++ standard library are known to invalidate “references” (including actual
references, iterators and raw pointers) to elements of the container. Using such references after they are invalidated
causes undefined behavior, which is a common source of memory errors in C++ that this checker is capable of
finding.

The checker is currently limited to std::string objects and doesn’t recognize some of the more sophisticated
approaches to passing unowned pointers around, such as std::string_view.

void deref_after_assignment() {
  std::string s = "llvm";
  const char *c = s.data(); // note: pointer to inner buffer of 'std::string' obtained here
  s = "clang"; // note: inner buffer of 'std::string' reallocated by call to 'operator='
  consume(c); // warn: inner pointer of container used after re/deallocation
}

const char *return_temp(int x) {
  return std::to_string(x).c_str(); // warn: inner pointer of container used after re/deallocation
  // note: pointer to inner buffer of 'std::string' obtained here
  // note: inner buffer of 'std::string' deallocated by call to destructor
}

cplusplus.NewDelete (C++)

Check for double-free and use-after-free problems. Traces memory managed by new/delete.

void f(int *p);

void testUseMiddleArgAfterDelete(int *p) {
  delete p;
  f(p); // warn: use after free
}

class SomeClass {
public:
  void f();
};

void test() {
  SomeClass *c = new SomeClass;
  delete c;
  c->f(); // warn: use after free
}

void test() {
  int *p = (int *)__builtin_alloca(sizeof(int));
  delete p; // warn: deleting memory allocated by alloca
}

void test() {
  int *p = new int;
  delete p;
  delete p; // warn: attempt to free released
}

Clang Static Analyzer

548



void test() {
  int i;
  delete &i; // warn: delete address of local
}

void test() {
  int *p = new int[1];
  delete[] (++p);
    // warn: argument to 'delete[]' is offset by 4 bytes
    // from the start of memory allocated by 'new[]'
}

cplusplus.NewDeleteLeaks (C++)

Check for memory leaks. Traces memory managed by new/delete.

void test() {
  int *p = new int;
} // warn

cplusplus.PlacementNewChecker (C++)

Check if default placement new is provided with pointers to sufficient storage capacity.

#include <new>

void f() {
  short s;
  long *lp = ::new (&s) long; // warn
}

cplusplus.SelfAssignment (C++)

Checks C++ copy and move assignment operators for self assignment.

cplusplus.StringChecker (C++)

Checks std::string operations.

Checks if the cstring pointer from which the std::string object is constructed is NULL or not. If the checker cannot
reason about the nullness of the pointer it will assume that it was non-null to satisfy the precondition of the
constructor.

This checker is capable of checking the SEI CERT C++ coding rule STR51-CPP. Do not attempt to create a
std::string from a null pointer.

#include <string>

void f(const char *p) {
  if (!p) {
    std::string msg(p); // warn: The parameter must not be null
  }
}

deadcode

Dead Code Checkers.

deadcode.DeadStores (C)

Check for values stored to variables that are never read afterwards.

Clang Static Analyzer

549

https://wiki.sei.cmu.edu/confluence/x/E3s-BQ
https://wiki.sei.cmu.edu/confluence/x/E3s-BQ


void test() {
  int x;
  x = 1; // warn
}

The WarnForDeadNestedAssignments option enables the checker to emit warnings for nested dead
assignments. You can disable with the
-analyzer-config deadcode.DeadStores:WarnForDeadNestedAssignments=false. Defaults to true.

Would warn for this e.g.: if ((y = make_int())) { }

nullability

Objective C checkers that warn for null pointer passing and dereferencing errors.

nullability.NullPassedToNonnull (ObjC)

Warns when a null pointer is passed to a pointer which has a _Nonnull type.

if (name != nil)
  return;
// Warning: nil passed to a callee that requires a non-null 1st parameter
NSString *greeting = [@"Hello " stringByAppendingString:name];

nullability.NullReturnedFromNonnull (ObjC)

Warns when a null pointer is returned from a function that has _Nonnull return type.

- (nonnull id)firstChild {
  id result = nil;
  if ([_children count] > 0)
    result = _children[0];

  // Warning: nil returned from a method that is expected
  // to return a non-null value
  return result;
}

nullability.NullableDereferenced (ObjC)

Warns when a nullable pointer is dereferenced.

struct LinkedList {
  int data;
  struct LinkedList *next;
};

struct LinkedList * _Nullable getNext(struct LinkedList *l);

void updateNextData(struct LinkedList *list, int newData) {
  struct LinkedList *next = getNext(list);
  // Warning: Nullable pointer is dereferenced
  next->data = 7;
}

nullability.NullablePassedToNonnull (ObjC)

Warns when a nullable pointer is passed to a pointer which has a _Nonnull type.

typedef struct Dummy { int val; } Dummy;
Dummy *_Nullable returnsNullable();
void takesNonnull(Dummy *_Nonnull);

Clang Static Analyzer

550



void test() {
  Dummy *p = returnsNullable();
  takesNonnull(p); // warn
}

nullability.NullableReturnedFromNonnull (ObjC)

Warns when a nullable pointer is returned from a function that has _Nonnull return type.

optin

Checkers for portability, performance or coding style specific rules.

optin.cplusplus.UninitializedObject (C++)

This checker reports uninitialized fields in objects created after a constructor call. It doesn’t only find direct
uninitialized fields, but rather makes a deep inspection of the object, analyzing all of its fields’ subfields. The checker
regards inherited fields as direct fields, so one will receive warnings for uninitialized inherited data members as well.

// With Pedantic and CheckPointeeInitialization set to true

struct A {
  struct B {
    int x; // note: uninitialized field 'this->b.x'
    // note: uninitialized field 'this->bptr->x'
    int y; // note: uninitialized field 'this->b.y'
    // note: uninitialized field 'this->bptr->y'
  };
  int *iptr; // note: uninitialized pointer 'this->iptr'
  B b;
  B *bptr;
  char *cptr; // note: uninitialized pointee 'this->cptr'

  A (B *bptr, char *cptr) : bptr(bptr), cptr(cptr) {}
};

void f() {
  A::B b;
  char c;
  A a(&b, &c); // warning: 6 uninitialized fields
 //          after the constructor call
}

// With Pedantic set to false and
// CheckPointeeInitialization set to true
// (every field is uninitialized)

struct A {
  struct B {
    int x;
    int y;
  };
  int *iptr;
  B b;
  B *bptr;
  char *cptr;

  A (B *bptr, char *cptr) : bptr(bptr), cptr(cptr) {}
};

void f() {

Clang Static Analyzer

551



  A::B b;
  char c;
  A a(&b, &c); // no warning
}

// With Pedantic set to true and
// CheckPointeeInitialization set to false
// (pointees are regarded as initialized)

struct A {
  struct B {
    int x; // note: uninitialized field 'this->b.x'
    int y; // note: uninitialized field 'this->b.y'
  };
  int *iptr; // note: uninitialized pointer 'this->iptr'
  B b;
  B *bptr;
  char *cptr;

  A (B *bptr, char *cptr) : bptr(bptr), cptr(cptr) {}
};

void f() {
  A::B b;
  char c;
  A a(&b, &c); // warning: 3 uninitialized fields
 //          after the constructor call
}

Options

This checker has several options which can be set from command line (e.g.
-analyzer-config optin.cplusplus.UninitializedObject:Pedantic=true):

• Pedantic (boolean). If to false, the checker won’t emit warnings for objects that don’t have at least one
initialized field. Defaults to false.

• NotesAsWarnings (boolean). If set to true, the checker will emit a warning for each uninitialized field, as
opposed to emitting one warning per constructor call, and listing the uninitialized fields that belongs to it in
notes. Defaults to false.

• CheckPointeeInitialization (boolean). If set to false, the checker will not analyze the pointee of
pointer/reference fields, and will only check whether the object itself is initialized. Defaults to false.

• IgnoreRecordsWithField (string). If supplied, the checker will not analyze structures that have a field with a
name or type name that matches the given pattern. Defaults to “”.

optin.cplusplus.VirtualCall (C++)

Check virtual function calls during construction or destruction.

class A {
public:
  A() {
    f(); // warn
  }
  virtual void f();
};

class A {
public:
  ~A() {
    this->f(); // warn

Clang Static Analyzer

552



  }
  virtual void f();
};

optin.mpi.MPI-Checker (C)

Checks MPI code.

void test() {
  double buf = 0;
  MPI_Request sendReq1;
  MPI_Ireduce(MPI_IN_PLACE, &buf, 1, MPI_DOUBLE, MPI_SUM,
      0, MPI_COMM_WORLD, &sendReq1);
} // warn: request 'sendReq1' has no matching wait.

void test() {
  double buf = 0;
  MPI_Request sendReq;
  MPI_Isend(&buf, 1, MPI_DOUBLE, 0, 0, MPI_COMM_WORLD, &sendReq);
  MPI_Irecv(&buf, 1, MPI_DOUBLE, 0, 0, MPI_COMM_WORLD, &sendReq); // warn
  MPI_Isend(&buf, 1, MPI_DOUBLE, 0, 0, MPI_COMM_WORLD, &sendReq); // warn
  MPI_Wait(&sendReq, MPI_STATUS_IGNORE);
}

void missingNonBlocking() {
  int rank = 0;
  MPI_Comm_rank(MPI_COMM_WORLD, &rank);
  MPI_Request sendReq1[10][10][10];
  MPI_Wait(&sendReq1[1][7][9], MPI_STATUS_IGNORE); // warn
}

optin.osx.cocoa.localizability.EmptyLocalizationContextChecker (ObjC)

Check that NSLocalizedString macros include a comment for context.

- (void)test {
  NSString *string = NSLocalizedString(@"LocalizedString", nil); // warn
  NSString *string2 = NSLocalizedString(@"LocalizedString", @" "); // warn
  NSString *string3 = NSLocalizedStringWithDefaultValue(
    @"LocalizedString", nil, [[NSBundle alloc] init], nil,@""); // warn
}

optin.osx.cocoa.localizability.NonLocalizedStringChecker (ObjC)

Warns about uses of non-localized NSStrings passed to UI methods expecting localized NSStrings.

NSString *alarmText =
  NSLocalizedString(@"Enabled", @"Indicates alarm is turned on");
if (!isEnabled) {
  alarmText = @"Disabled";
}
UILabel *alarmStateLabel = [[UILabel alloc] init];

// Warning: User-facing text should use localized string macro
[alarmStateLabel setText:alarmText];

optin.performance.GCDAntipattern

Check for performance anti-patterns when using Grand Central Dispatch.

Clang Static Analyzer

553



optin.performance.Padding

Check for excessively padded structs.

optin.portability.UnixAPI

Finds implementation-defined behavior in UNIX/Posix functions.

security

Security related checkers.

security.FloatLoopCounter (C)

Warn on using a floating point value as a loop counter (CERT: FLP30-C, FLP30-CPP).

void test() {
  for (float x = 0.1f; x <= 1.0f; x += 0.1f) {} // warn
}

security.insecureAPI.UncheckedReturn (C)

Warn on uses of functions whose return values must be always checked.

void test() {
  setuid(1); // warn
}

security.insecureAPI.bcmp (C)

Warn on uses of the ‘bcmp’ function.

void test() {
  bcmp(ptr0, ptr1, n); // warn
}

security.insecureAPI.bcopy (C)

Warn on uses of the ‘bcopy’ function.

void test() {
  bcopy(src, dst, n); // warn
}

security.insecureAPI.bzero (C)

Warn on uses of the ‘bzero’ function.

void test() {
  bzero(ptr, n); // warn
}

security.insecureAPI.getpw (C)

Warn on uses of the ‘getpw’ function.

void test() {
  char buff[1024];
  getpw(2, buff); // warn
}

security.insecureAPI.gets (C)

Warn on uses of the ‘gets’ function.

Clang Static Analyzer

554



void test() {
  char buff[1024];
  gets(buff); // warn
}

security.insecureAPI.mkstemp (C)

Warn when ‘mkstemp’ is passed fewer than 6 X’s in the format string.

void test() {
  mkstemp("XX"); // warn
}

security.insecureAPI.mktemp (C)

Warn on uses of the mktemp function.

void test() {
  char *x = mktemp("/tmp/zxcv"); // warn: insecure, use mkstemp
}

security.insecureAPI.rand (C)

Warn on uses of inferior random number generating functions (only if arc4random function is available):
drand48, erand48, jrand48, lcong48, lrand48, mrand48, nrand48, random, rand_r.

void test() {
  random(); // warn
}

security.insecureAPI.strcpy (C)

Warn on uses of the strcpy and strcat functions.

void test() {
  char x[4];
  char *y = "abcd";

  strcpy(x, y); // warn
}

security.insecureAPI.vfork (C)

Warn on uses of the ‘vfork’ function.

void test() {
  vfork(); // warn
}

security.insecureAPI.DeprecatedOrUnsafeBufferHandling (C)

Warn on occurrences of unsafe or deprecated buffer handling functions, which now have a secure variant:
sprintf, vsprintf, scanf, wscanf, fscanf, fwscanf, vscanf, vwscanf, vfscanf, vfwscanf, sscanf, swscanf, vsscanf, vswscanf, swprintf, snprintf, vswprintf, vsnprintf, memcpy, memmove, strncpy, strncat, memset

void test() {
  char buf [5];
  strncpy(buf, "a", 1); // warn
}

unix

POSIX/Unix checkers.

Clang Static Analyzer

555



unix.API (C)

Check calls to various UNIX/Posix functions: open, pthread_once, calloc, malloc, realloc, alloca.

// Currently the check is performed for apple targets only.
void test(const char *path) {
  int fd = open(path, O_CREAT);
    // warn: call to 'open' requires a third argument when the
    // 'O_CREAT' flag is set
}

void f();

void test() {
  pthread_once_t pred = {0x30B1BCBA, {0}};
  pthread_once(&pred, f);
    // warn: call to 'pthread_once' uses the local variable
}

void test() {
  void *p = malloc(0); // warn: allocation size of 0 bytes
}

void test() {
  void *p = calloc(0, 42); // warn: allocation size of 0 bytes
}

void test() {
  void *p = malloc(1);
  p = realloc(p, 0); // warn: allocation size of 0 bytes
}

void test() {
  void *p = alloca(0); // warn: allocation size of 0 bytes
}

void test() {
  void *p = valloc(0); // warn: allocation size of 0 bytes
}

unix.Malloc (C)

Check for memory leaks, double free, and use-after-free problems. Traces memory managed by malloc()/free().

void test() {
  int *p = malloc(1);
  free(p);
  free(p); // warn: attempt to free released memory
}

void test() {
  int *p = malloc(sizeof(int));
  free(p);
  *p = 1; // warn: use after free
}

void test() {
  int *p = malloc(1);
  if (p)
    return; // warn: memory is never released
}

Clang Static Analyzer

556



void test() {
  int a[] = { 1 };
  free(a); // warn: argument is not allocated by malloc
}

void test() {
  int *p = malloc(sizeof(char));
  p = p - 1;
  free(p); // warn: argument to free() is offset by -4 bytes
}

unix.MallocSizeof (C)

Check for dubious malloc arguments involving sizeof.

void test() {
  long *p = malloc(sizeof(short));
    // warn: result is converted to 'long *', which is
    // incompatible with operand type 'short'
  free(p);
}

unix.MismatchedDeallocator (C, C++)

Check for mismatched deallocators.

// C, C++
void test() {
  int *p = (int *)malloc(sizeof(int));
  delete p; // warn
}

// C, C++
void __attribute((ownership_returns(malloc))) *user_malloc(size_t);

void test() {
  int *p = (int *)user_malloc(sizeof(int));
  delete p; // warn
}

// C, C++
void test() {
  int *p = new int;
  free(p); // warn
}

// C, C++
void test() {
  int *p = new int[1];
  realloc(p, sizeof(long)); // warn
}

// C, C++
template <typename T>
struct SimpleSmartPointer {
  T *ptr;

  explicit SimpleSmartPointer(T *p = 0) : ptr(p) {}
  ~SimpleSmartPointer() {
    delete ptr; // warn
  }

Clang Static Analyzer

557



};

void test() {
  SimpleSmartPointer<int> a((int *)malloc(4));
}

// C++
void test() {
  int *p = (int *)operator new(0);
  delete[] p; // warn
}

// Objective-C, C++
void test(NSUInteger dataLength) {
  int *p = new int;
  NSData *d = [NSData dataWithBytesNoCopy:p
               length:sizeof(int) freeWhenDone:1];
    // warn +dataWithBytesNoCopy:length:freeWhenDone: cannot take
    // ownership of memory allocated by 'new'
}

unix.Vfork (C)

Check for proper usage of vfork.

int test(int x) {
  pid_t pid = vfork(); // warn
  if (pid != 0)
    return 0;

  switch (x) {
  case 0:
    pid = 1;
    execl("", "", 0);
    _exit(1);
    break;
  case 1:
    x = 0; // warn: this assignment is prohibited
    break;
  case 2:
    foo(); // warn: this function call is prohibited
    break;
  default:
    return 0; // warn: return is prohibited
  }

  while(1);
}

unix.cstring.BadSizeArg (C)

Check the size argument passed into C string functions for common erroneous patterns. Use -Wno-strncat-size
compiler option to mute other strncat-related compiler warnings.

void test() {
  char dest[3];
  strncat(dest, """""""""""""""""""""""""*", sizeof(dest));
    // warn: potential buffer overflow
}

Clang Static Analyzer

558



unix.cstring.NullArg (C)

Check for null pointers being passed as arguments to C string functions: strlen, strnlen, strcpy, strncpy
, strcat, strncat, strcmp, strncmp, strcasecmp, strncasecmp.

int test() {
  return strlen(0); // warn
}

osx

macOS checkers.

osx.API (C)

Check for proper uses of various Apple APIs.

void test() {
  dispatch_once_t pred = 0;
  dispatch_once(&pred, ^(){}); // warn: dispatch_once uses local
}

osx.NumberObjectConversion (C, C++, ObjC)

Check for erroneous conversions of objects representing numbers into numbers.

NSNumber *photoCount = [albumDescriptor objectForKey:@"PhotoCount"];
// Warning: Comparing a pointer value of type 'NSNumber *'
// to a scalar integer value
if (photoCount > 0) {
  [self displayPhotos];
}

osx.ObjCProperty (ObjC)

Check for proper uses of Objective-C properties.

NSNumber *photoCount = [albumDescriptor objectForKey:@"PhotoCount"];
// Warning: Comparing a pointer value of type 'NSNumber *'
// to a scalar integer value
if (photoCount > 0) {
  [self displayPhotos];
}

osx.SecKeychainAPI (C)

Check for proper uses of Secure Keychain APIs.

void test() {
  unsigned int *ptr = 0;
  UInt32 length;

  SecKeychainItemFreeContent(ptr, &length);
    // warn: trying to free data which has not been allocated
}

void test() {
  unsigned int *ptr = 0;
  UInt32 *length = 0;
  void *outData;

  OSStatus st =
    SecKeychainItemCopyContent(2, ptr, ptr, length, outData);
    // warn: data is not released

Clang Static Analyzer

559



}

void test() {
  unsigned int *ptr = 0;
  UInt32 *length = 0;
  void *outData;

  OSStatus st =
    SecKeychainItemCopyContent(2, ptr, ptr, length, &outData);

  SecKeychainItemFreeContent(ptr, outData);
    // warn: only call free if a non-NULL buffer was returned
}

void test() {
  unsigned int *ptr = 0;
  UInt32 *length = 0;
  void *outData;

  OSStatus st =
    SecKeychainItemCopyContent(2, ptr, ptr, length, &outData);

  st = SecKeychainItemCopyContent(2, ptr, ptr, length, &outData);
    // warn: release data before another call to the allocator

  if (st == noErr)
    SecKeychainItemFreeContent(ptr, outData);
}

void test() {
  SecKeychainItemRef itemRef = 0;
  SecKeychainAttributeInfo *info = 0;
  SecItemClass *itemClass = 0;
  SecKeychainAttributeList *attrList = 0;
  UInt32 *length = 0;
  void *outData = 0;

  OSStatus st =
    SecKeychainItemCopyAttributesAndData(itemRef, info,
                                         itemClass, &attrList,
                                         length, &outData);

  SecKeychainItemFreeContent(attrList, outData);
    // warn: deallocator doesn't match the allocator
}

osx.cocoa.AtSync (ObjC)

Check for nil pointers used as mutexes for @synchronized.

void test(id x) {
  if (!x)
    @synchronized(x) {} // warn: nil value used as mutex
}

void test() {
  id y;
  @synchronized(y) {} // warn: uninitialized value used as mutex
}

Clang Static Analyzer

560



osx.cocoa.AutoreleaseWrite

Warn about potentially crashing writes to autoreleasing objects from different autoreleasing pools in Objective-C.

osx.cocoa.ClassRelease (ObjC)

Check for sending ‘retain’, ‘release’, or ‘autorelease’ directly to a Class.

@interface MyClass : NSObject
@end

void test(void) {
  [MyClass release]; // warn
}

osx.cocoa.Dealloc (ObjC)

Warn about Objective-C classes that lack a correct implementation of -dealloc

@interface MyObject : NSObject {
  id _myproperty;
}
@end

@implementation MyObject // warn: lacks 'dealloc'
@end

@interface MyObject : NSObject {}
@property(assign) id myproperty;
@end

@implementation MyObject // warn: does not send 'dealloc' to super
- (void)dealloc {
  self.myproperty = 0;
}
@end

@interface MyObject : NSObject {
  id _myproperty;
}
@property(retain) id myproperty;
@end

@implementation MyObject
@synthesize myproperty = _myproperty;
  // warn: var was retained but wasn't released
- (void)dealloc {
  [super dealloc];
}
@end

@interface MyObject : NSObject {
  id _myproperty;
}
@property(assign) id myproperty;
@end

@implementation MyObject
@synthesize myproperty = _myproperty;
  // warn: var wasn't retained but was released
- (void)dealloc {
  [_myproperty release];

Clang Static Analyzer

561



  [super dealloc];
}
@end

osx.cocoa.IncompatibleMethodTypes (ObjC)

Warn about Objective-C method signatures with type incompatibilities.

@interface MyClass1 : NSObject
- (int)foo;
@end

@implementation MyClass1
- (int)foo { return 1; }
@end

@interface MyClass2 : MyClass1
- (float)foo;
@end

@implementation MyClass2
- (float)foo { return 1.0; } // warn
@end

osx.cocoa.Loops

Improved modeling of loops using Cocoa collection types.

osx.cocoa.MissingSuperCall (ObjC)

Warn about Objective-C methods that lack a necessary call to super.

@interface Test : UIViewController
@end
@implementation test
- (void)viewDidLoad {} // warn
@end

osx.cocoa.NSAutoreleasePool (ObjC)

Warn for suboptimal uses of NSAutoreleasePool in Objective-C GC mode.

void test() {
  NSAutoreleasePool *pool = [[NSAutoreleasePool alloc] init];
  [pool release]; // warn
}

osx.cocoa.NSError (ObjC)

Check usage of NSError parameters.

@interface A : NSObject
- (void)foo:(NSError """""""""""""""""""""""")error;
@end

@implementation A
- (void)foo:(NSError """""""""""""""""""""""")error {
  // warn: method accepting NSError"""""""""""""""""""""""" should have a non-void
  // return value
}
@end

@interface A : NSObject

Clang Static Analyzer

562



- (BOOL)foo:(NSError """""""""""""""""""""""")error;
@end

@implementation A
- (BOOL)foo:(NSError """""""""""""""""""""""")error {
  *error = 0; // warn: potential null dereference
  return 0;
}
@end

osx.cocoa.NilArg (ObjC)

Check for prohibited nil arguments to ObjC method calls.

• caseInsensitiveCompare:

• compare:

• compare:options:

• compare:options:range:

• compare:options:range:locale:

• componentsSeparatedByCharactersInSet:

• initWithFormat:

NSComparisonResult test(NSString *s) {
  NSString *aString = nil;
  return [s caseInsensitiveCompare:aString];
    // warn: argument to 'NSString' method
    // 'caseInsensitiveCompare:' cannot be nil
}

osx.cocoa.NonNilReturnValue

Models the APIs that are guaranteed to return a non-nil value.

osx.cocoa.ObjCGenerics (ObjC)

Check for type errors when using Objective-C generics.

NSMutableArray *names = [NSMutableArray array];
NSMutableArray *birthDates = names;

// Warning: Conversion from value of type 'NSDate *'
// to incompatible type 'NSString *'
[birthDates addObject: [NSDate date]];

osx.cocoa.RetainCount (ObjC)

Check for leaks and improper reference count management

void test() {
  NSString *s = [[NSString alloc] init]; // warn
}

CFStringRef test(char *bytes) {
  return CFStringCreateWithCStringNoCopy(
           0, bytes, NSNEXTSTEPStringEncoding, 0); // warn
}

Clang Static Analyzer

563



osx.cocoa.RunLoopAutoreleaseLeak

Check for leaked memory in autorelease pools that will never be drained.

osx.cocoa.SelfInit (ObjC)

Check that ‘self’ is properly initialized inside an initializer method.

@interface MyObj : NSObject {
  id x;
}
- (id)init;
@end

@implementation MyObj
- (id)init {
  [super init];
  x = 0; // warn: instance variable used while 'self' is not
         // initialized
  return 0;
}
@end

@interface MyObj : NSObject
- (id)init;
@end

@implementation MyObj
- (id)init {
  [super init];
  return self; // warn: returning uninitialized 'self'
}
@end

osx.cocoa.SuperDealloc (ObjC)

Warn about improper use of ‘[super dealloc]’ in Objective-C.

@interface SuperDeallocThenReleaseIvarClass : NSObject {
  NSObject *_ivar;
}
@end

@implementation SuperDeallocThenReleaseIvarClass
- (void)dealloc {
  [super dealloc];
  [_ivar release]; // warn
}
@end

osx.cocoa.UnusedIvars (ObjC)

Warn about private ivars that are never used.

@interface MyObj : NSObject {
@private
  id x; // warn
}
@end

@implementation MyObj
@end

Clang Static Analyzer

564



osx.cocoa.VariadicMethodTypes (ObjC)

Check for passing non-Objective-C types to variadic collection initialization methods that expect only Objective-C
types.

void test() {
  [NSSet setWithObjects:@"Foo", "Bar", nil];
    // warn: argument should be an ObjC pointer type, not 'char *'
}

osx.coreFoundation.CFError (C)

Check usage of CFErrorRef* parameters

void test(CFErrorRef *error) {
  // warn: function accepting CFErrorRef* should have a
  // non-void return
}

int foo(CFErrorRef *error) {
  *error = 0; // warn: potential null dereference
  return 0;
}

osx.coreFoundation.CFNumber (C)

Check for proper uses of CFNumber APIs.

CFNumberRef test(unsigned char x) {
  return CFNumberCreate(0, kCFNumberSInt16Type, &x);
   // warn: 8 bit integer is used to initialize a 16 bit integer
}

osx.coreFoundation.CFRetainRelease (C)

Check for null arguments to CFRetain/CFRelease/CFMakeCollectable.

void test(CFTypeRef p) {
  if (!p)
    CFRetain(p); // warn
}

void test(int x, CFTypeRef p) {
  if (p)
    return;

  CFRelease(p); // warn
}

osx.coreFoundation.containers.OutOfBounds (C)

Checks for index out-of-bounds when using ‘CFArray’ API.

void test() {
  CFArrayRef A = CFArrayCreate(0, 0, 0, &kCFTypeArrayCallBacks);
  CFArrayGetValueAtIndex(A, 0); // warn
}

osx.coreFoundation.containers.PointerSizedValues (C)

Warns if ‘CFArray’, ‘CFDictionary’, ‘CFSet’ are created with non-pointer-size values.

void test() {
  int x[] = { 1 };

Clang Static Analyzer

565



  CFArrayRef A = CFArrayCreate(0, (const void """""""""""""""""""""""")x, 1,
                               &kCFTypeArrayCallBacks); // warn
}

Fuchsia

Fuchsia is an open source capability-based operating system currently being developed by Google. This section
describes checkers that can find various misuses of Fuchsia APIs.

fuchsia.HandleChecker

Handles identify resources. Similar to pointers they can be leaked, double freed, or use after freed. This check
attempts to find such problems.

void checkLeak08(int tag) {
  zx_handle_t sa, sb;
  zx_channel_create(0, &sa, &sb);
  if (tag)
    zx_handle_close(sa);
  use(sb); // Warn: Potential leak of handle
  zx_handle_close(sb);
}

WebKit

WebKit is an open-source web browser engine available for macOS, iOS and Linux. This section describes checkers
that can find issues in WebKit codebase.

Most of the checkers focus on memory management for which WebKit uses custom implementation of reference
counted smartpointers.

Checkers are formulated in terms related to ref-counting:

• Ref-counted type is either Ref<T> or RefPtr<T>.

• Ref-countable type is any type that implements ref() and deref() methods as RefPtr<> is a template
(i. e. relies on duck typing).

• Uncounted type is ref-countable but not ref-counted type.

webkit.RefCntblBaseVirtualDtor

All uncounted types used as base classes must have a virtual destructor.

Ref-counted types hold their ref-countable data by a raw pointer and allow implicit upcasting from ref-counted pointer
to derived type to ref-counted pointer to base type. This might lead to an object of (dynamic) derived type being
deleted via pointer to the base class type which C++ standard defines as UB in case the base class doesn’t have
virtual destructor [expr.delete].

struct RefCntblBase {
  void ref() {}
  void deref() {}
};

struct Derived : RefCntblBase { }; // warn

webkit.NoUncountedMemberChecker

Raw pointers and references to uncounted types can’t be used as class members. Only ref-counted types are
allowed.

struct RefCntbl {
  void ref() {}
  void deref() {}
};

Clang Static Analyzer

566



struct Foo {
  RefCntbl * ptr; // warn
  RefCntbl & ptr; // warn
  // ...
};

webkit.UncountedLambdaCapturesChecker

Raw pointers and references to uncounted types can’t be captured in lambdas. Only ref-counted types are allowed.

struct RefCntbl {
  void ref() {}
  void deref() {}
};

void foo(RefCntbl* a, RefCntbl& b) {
  [&, a](){ // warn about 'a'
    do_something(b); // warn about 'b'
  };
};

Experimental Checkers

These are checkers with known issues or limitations that keep them from being on by default. They are likely to have
false positives. Bug reports and especially patches are welcome.

alpha.clone

alpha.clone.CloneChecker (C, C++, ObjC)

Reports similar pieces of code.

void log();

int max(int a, int b) { // warn
  log();
  if (a > b)
    return a;
  return b;
}

int maxClone(int x, int y) { // similar code here
  log();
  if (x > y)
    return x;
  return y;
}

alpha.core

alpha.core.BoolAssignment (ObjC)

Warn about assigning non-{0,1} values to boolean variables.

void test() {
  BOOL b = -1; // warn
}

Clang Static Analyzer

567



alpha.core.C11Lock

Similarly to alpha.unix.PthreadLock, checks for the locking/unlocking of mtx_t mutexes.

mtx_t mtx1;

void bad1(void)
{
  mtx_lock(&mtx1);
  mtx_lock(&mtx1); // warn: This lock has already been acquired
}

alpha.core.CallAndMessageUnInitRefArg (C,C++, ObjC)

Check for logical errors for function calls and Objective-C message expressions (e.g., uninitialized arguments, null
function pointers, and pointer to undefined variables).

void test(void) {
  int t;
  int &p = t;
  int &s = p;
  int &q = s;
  foo(q); // warn
}

void test(void) {
  int x;
  foo(&x); // warn
}

alpha.core.CastSize (C)

Check when casting a malloc’ed type T, whether the size is a multiple of the size of T.

void test() {
  int *x = (int *) malloc(11); // warn
}

alpha.core.CastToStruct (C, C++)

Check for cast from non-struct pointer to struct pointer.

// C
struct s {};

void test(int *p) {
  struct s *ps = (struct s *) p; // warn
}

// C++
class c {};

void test(int *p) {
  c *pc = (c *) p; // warn
}

alpha.core.Conversion (C, C++, ObjC)

Loss of sign/precision in implicit conversions.

void test(unsigned U, signed S) {
  if (S > 10) {
    if (U < S) {
    }

Clang Static Analyzer

568



  }
  if (S < -10) {
    if (U < S) { // warn (loss of sign)
    }
  }
}

void test() {
  long long A = 1LL << 60;
  short X = A; // warn (loss of precision)
}

alpha.core.DynamicTypeChecker (ObjC)

Check for cases where the dynamic and the static type of an object are unrelated.

id date = [NSDate date];

// Warning: Object has a dynamic type 'NSDate *' which is
// incompatible with static type 'NSNumber *'"
NSNumber *number = date;
[number doubleValue];

alpha.core.FixedAddr (C)

Check for assignment of a fixed address to a pointer.

void test() {
  int *p;
  p = (int *) 0x10000; // warn
}

alpha.core.IdenticalExpr (C, C++)

Warn about unintended use of identical expressions in operators.

// C
void test() {
  int a = 5;
  int b = a | 4 | a; // warn: identical expr on both sides
}

// C++
bool f(void);

void test(bool b) {
  int i = 10;
  if (f()) { // warn: true and false branches are identical
    do {
      i--;
    } while (f());
  } else {
    do {
      i--;
    } while (f());
  }
}

alpha.core.PointerArithm (C)

Check for pointer arithmetic on locations other than array elements.

Clang Static Analyzer

569



void test() {
  int x;
  int *p;
  p = &x + 1; // warn
}

alpha.core.PointerSub (C)

Check for pointer subtractions on two pointers pointing to different memory chunks.

void test() {
  int x, y;
  int d = &y - &x; // warn
}

alpha.core.SizeofPtr (C)

Warn about unintended use of sizeof() on pointer expressions.

struct s {};

int test(struct s *p) {
  return sizeof(p);
    // warn: sizeof(ptr) can produce an unexpected result
}

alpha.core.StackAddressAsyncEscape (C)

Check that addresses to stack memory do not escape the function that involves dispatch_after or dispatch_async.
This checker is a part of core.StackAddressEscape, but is temporarily disabled until some false positives are
fixed.

dispatch_block_t test_block_inside_block_async_leak() {
  int x = 123;
  void (^inner)(void) = ^void(void) {
    int y = x;
    ++y;
  };
  void (^outer)(void) = ^void(void) {
    int z = x;
    ++z;
    inner();
  };
  return outer; // warn: address of stack-allocated block is captured by a
                //       returned block
}

alpha.core.TestAfterDivZero (C)

Check for division by variable that is later compared against 0. Either the comparison is useless or there is division
by zero.

void test(int x) {
  var = 77 / x;
  if (x == 0) { } // warn
}

alpha.cplusplus

alpha.cplusplus.DeleteWithNonVirtualDtor (C++)

Reports destructions of polymorphic objects with a non-virtual destructor in their base class.

Clang Static Analyzer

570



NonVirtual *create() {
  NonVirtual *x = new NVDerived(); // note: conversion from derived to base
                                   //       happened here
  return x;
}

void sink(NonVirtual *x) {
  delete x; // warn: destruction of a polymorphic object with no virtual
            //       destructor
}

alpha.cplusplus.EnumCastOutOfRange (C++)

Check for integer to enumeration casts that could result in undefined values.

enum TestEnum {
  A = 0
};

void foo() {
  TestEnum t = static_cast(-1);
      // warn: the value provided to the cast expression is not in
      //       the valid range of values for the enum

alpha.cplusplus.InvalidatedIterator (C++)

Check for use of invalidated iterators.

void bad_copy_assign_operator_list1(std::list &L1,
                                    const std::list &L2) {
  auto i0 = L1.cbegin();
  L1 = L2;
  *i0; // warn: invalidated iterator accessed
}

alpha.cplusplus.IteratorRange (C++)

Check for iterators used outside their valid ranges.

void simple_bad_end(const std::vector &v) {
  auto i = v.end();
  *i; // warn: iterator accessed outside of its range
}

alpha.cplusplus.MismatchedIterator (C++)

Check for use of iterators of different containers where iterators of the same container are expected.

void bad_insert3(std::vector &v1, std::vector &v2) {
  v2.insert(v1.cbegin(), v2.cbegin(), v2.cend()); // warn: container accessed
                                                  //       using foreign
                                                  //       iterator argument
  v1.insert(v1.cbegin(), v1.cbegin(), v2.cend()); // warn: iterators of
                                                  //       different containers
                                                  //       used where the same
                                                  //       container is
                                                  //       expected
  v1.insert(v1.cbegin(), v2.cbegin(), v1.cend()); // warn: iterators of
                                                  //       different containers
                                                  //       used where the same
                                                  //       container is

Clang Static Analyzer

571



                                                  //       expected
}

alpha.cplusplus.MisusedMovedObject (C++)

Method calls on a moved-from object and copying a moved-from object will be reported.

 struct A {
  void foo() {}
};

void f() {
  A a;
  A b = std::move(a); // note: 'a' became 'moved-from' here
  a.foo();            // warn: method call on a 'moved-from' object 'a'
}

alpha.cplusplus.SmartPtr (C++)

Check for dereference of null smart pointers.

void deref_smart_ptr() {
  std::unique_ptr<int> P;
  *P; // warn: dereference of a default constructed smart unique_ptr
}

alpha.deadcode

alpha.deadcode.UnreachableCode (C, C++)

Check unreachable code.

// C
int test() {
  int x = 1;
  while(x);
  return x; // warn
}

// C++
void test() {
  int a = 2;

  while (a > 1)
    a--;

  if (a > 1)
    a++; // warn
}

// Objective-C
void test(id x) {
  return;
  [x retain]; // warn
}

alpha.fuchsia

alpha.fuchsia.Lock

Similarly to alpha.unix.PthreadLock, checks for the locking/unlocking of fuchsia mutexes.

Clang Static Analyzer

572



spin_lock_t mtx1;

void bad1(void)
{
  spin_lock(&mtx1);
  spin_lock(&mtx1);    // warn: This lock has already been acquired
}

alpha.llvm

alpha.llvm.Conventions

Check code for LLVM codebase conventions:

• A StringRef should not be bound to a temporary std::string whose lifetime is shorter than the StringRef’s.

• Clang AST nodes should not have fields that can allocate memory.

alpha.osx

alpha.osx.cocoa.DirectIvarAssignment (ObjC)

Check for direct assignments to instance variables.

@interface MyClass : NSObject {}
@property (readonly) id A;
- (void) foo;
@end

@implementation MyClass
- (void) foo {
  _A = 0; // warn
}
@end

alpha.osx.cocoa.DirectIvarAssignmentForAnnotatedFunctions (ObjC)

Check for direct assignments to instance variables in the methods annotated with
objc_no_direct_instance_variable_assignment.

@interface MyClass : NSObject {}
@property (readonly) id A;
- (void) fAnnotated __attribute__((
    annotate("objc_no_direct_instance_variable_assignment")));
- (void) fNotAnnotated;
@end

@implementation MyClass
- (void) fAnnotated {
  _A = 0; // warn
}
- (void) fNotAnnotated {
  _A = 0; // no warn
}
@end

alpha.osx.cocoa.InstanceVariableInvalidation (ObjC)

Check that the invalidatable instance variables are invalidated in the methods annotated with
objc_instance_variable_invalidator.

Clang Static Analyzer

573



@protocol Invalidation <NSObject>
- (void) invalidate
  __attribute__((annotate("objc_instance_variable_invalidator")));
@end

@interface InvalidationImpObj : NSObject <Invalidation>
@end

@interface SubclassInvalidationImpObj : InvalidationImpObj {
  InvalidationImpObj *var;
}
- (void)invalidate;
@end

@implementation SubclassInvalidationImpObj
- (void) invalidate {}
@end
// warn: var needs to be invalidated or set to nil

alpha.osx.cocoa.MissingInvalidationMethod (ObjC)

Check that the invalidation methods are present in classes that contain invalidatable instance variables.

@protocol Invalidation <NSObject>
- (void)invalidate
  __attribute__((annotate("objc_instance_variable_invalidator")));
@end

@interface NeedInvalidation : NSObject <Invalidation>
@end

@interface MissingInvalidationMethodDecl : NSObject {
  NeedInvalidation *Var; // warn
}
@end

@implementation MissingInvalidationMethodDecl
@end

alpha.osx.cocoa.localizability.PluralMisuseChecker (ObjC)

Warns against using one vs. many plural pattern in code when generating localized strings.

NSString *reminderText =
  NSLocalizedString(@"None", @"Indicates no reminders");
if (reminderCount == 1) {
  // Warning: Plural cases are not supported across all languages.
  // Use a .stringsdict file instead
  reminderText =
    NSLocalizedString(@"1 Reminder", @"Indicates single reminder");
} else if (reminderCount >= 2) {
  // Warning: Plural cases are not supported across all languages.
  // Use a .stringsdict file instead
  reminderText =
    [NSString stringWithFormat:
      NSLocalizedString(@"%@ Reminders", @"Indicates multiple reminders"),
        reminderCount];
}

Clang Static Analyzer

574



alpha.security

alpha.security.ArrayBound (C)

Warn about buffer overflows (older checker).

void test() {
  char *s = "";
  char c = s[1]; // warn
}

struct seven_words {
  int c[7];
};

void test() {
  struct seven_words a, *p;
  p = &a;
  p[0] = a;
  p[1] = a;
  p[2] = a; // warn
}

// note: requires unix.Malloc or
// alpha.unix.MallocWithAnnotations checks enabled.
void test() {
  int *p = malloc(12);
  p[3] = 4; // warn
}

void test() {
  char a[2];
  int *b = (int*)a;
  b[1] = 3; // warn
}

alpha.security.ArrayBoundV2 (C)

Warn about buffer overflows (newer checker).

void test() {
  char *s = "";
  char c = s[1]; // warn
}

void test() {
  int buf[100];
  int *p = buf;
  p = p + 99;
  p[1] = 1; // warn
}

// note: compiler has internal check for this.
// Use -Wno-array-bounds to suppress compiler warning.
void test() {
  int buf[100][100];
  buf[0][-1] = 1; // warn
}

// note: requires alpha.security.taint check turned on.
void test() {
  char s[] = "abc";

Clang Static Analyzer

575



  int x = getchar();
  char c = s[x]; // warn: index is tainted
}

alpha.security.MallocOverflow (C)

Check for overflows in the arguments to malloc(). It tries to catch malloc(n * c) patterns, where:

• n: a variable or member access of an object

• c: a constant foldable integral

This checker was designed for code audits, so expect false-positive reports. One is supposed to silence this checker
by ensuring proper bounds checking on the variable in question using e.g. an assert() or a branch.

void test(int n) {
  void *p = malloc(n * sizeof(int)); // warn
}

void test2(int n) {
  if (n > 100) // gives an upper-bound
    return;
  void *p = malloc(n * sizeof(int)); // no warning
}

void test3(int n) {
  assert(n <= 100 && "Contract violated.");
  void *p = malloc(n * sizeof(int)); // no warning
}

Limitations:

• The checker won’t warn for variables involved in explicit casts, since that might limit the variable’s domain.
E.g.: (unsigned char)int x would limit the domain to [0,255]. The checker will miss the
true-positive cases when the explicit cast would not tighten the domain to prevent the overflow in the
subsequent multiplication operation.

• It is an AST-based checker, thus it does not make use of the path-sensitive taint-analysis.

alpha.security.MmapWriteExec (C)

Warn on mmap() calls that are both writable and executable.

void test(int n) {
  void *c = mmap(NULL, 32, PROT_READ | PROT_WRITE | PROT_EXEC,
                 MAP_PRIVATE | MAP_ANON, -1, 0);
  // warn: Both PROT_WRITE and PROT_EXEC flags are set. This can lead to
  //       exploitable memory regions, which could be overwritten with malicious
  //       code
}

alpha.security.ReturnPtrRange (C)

Check for an out-of-bound pointer being returned to callers.

static int A[10];

int *test() {
  int *p = A + 10;
  return p; // warn
}

int test(void) {
  int x;

Clang Static Analyzer

576



  return x; // warn: undefined or garbage returned
}

alpha.security.cert

SEI CERT checkers which tries to find errors based on their C coding rules.

alpha.security.cert.pos

SEI CERT checkers of POSIX C coding rules.

alpha.security.cert.pos.34c

Finds calls to the putenv function which pass a pointer to an automatic variable as the argument.

int func(const char *var) {
  char env[1024];
  int retval = snprintf(env, sizeof(env),"TEST=%s", var);
  if (retval < 0 || (size_t)retval >= sizeof(env)) {
      /* Handle error */
  }

  return putenv(env); // putenv function should not be called with auto variables
}

Limitations:

• Technically, one can pass automatic variables to putenv, but one needs to ensure that the given
environment key stays alive until it’s removed or overwritten. Since the analyzer cannot keep track of which
envvars get overwritten and when, it needs to be slightly more aggressive and warn for such cases too,
leading in some cases to false-positive reports like this:

void baz() {
  char env[] = "NAME=value";
  putenv(env); // false-positive warning: putenv function should not be called...
  // More code...
  putenv((char *)"NAME=anothervalue");
  // This putenv call overwrites the previous entry, thus that can no longer dangle.
} // 'env' array becomes dead only here.

alpha.security.cert.env

SEI CERT checkers of Environment C coding rules.

alpha.security.cert.env.InvalidPtr

Corresponds to SEI CERT Rules ENV31-C and ENV34-C.

ENV31-C: Rule is about the possible problem with main function’s third argument, environment pointer, “envp”.
When enviornment array is modified using some modification function such as putenv, setenv or others, It may
happen that memory is reallocated, however “envp” is not updated to reflect the changes and points to old memory
region.

ENV34-C: Some functions return a pointer to a statically allocated buffer. Consequently, subsequent call of these
functions will invalidate previous pointer. These functions include: getenv, localeconv, asctime, setlocale, strerror

int main(int argc, const char *argv[], const char *envp[]) {
  if (setenv("MY_NEW_VAR", "new_value", 1) != 0) {
    // setenv call may invalidate 'envp'
    /* Handle error */
  }
  if (envp != NULL) {
    for (size_t i = 0; envp[i] != NULL; ++i) {
      puts(envp[i]);

Clang Static Analyzer

577

https://wiki.sei.cmu.edu/confluence/display/c/2+Rules
https://wiki.sei.cmu.edu/confluence/pages/viewpage.action?pageId=87152405
https://wiki.sei.cmu.edu/confluence/x/JdcxBQ


      // envp may no longer point to the current environment
      // this program has unanticipated behavior, since envp
      // does not reflect changes made by setenv function.
    }
  }
  return 0;
}

void previous_call_invalidation() {
  char *p, *pp;

  p = getenv("VAR");
  pp = getenv("VAR2");
  // subsequent call to 'getenv' invalidated previous one

  *p;
  // dereferencing invalid pointer
}

alpha.security.taint

Checkers implementing taint analysis.

alpha.security.taint.TaintPropagation (C, C++)

Taint analysis identifies untrusted sources of information (taint sources), rules as to how the untrusted data flows
along the execution path (propagation rules), and points of execution where the use of tainted data is risky (taints
sinks). The most notable examples of taint sources are:

• network originating data

• environment variables

• database originating data

GenericTaintChecker is the main implementation checker for this rule, and it generates taint information used by
other checkers.

void test() {
  char x = getchar(); // 'x' marked as tainted
  system(&x); // warn: untrusted data is passed to a system call
}

// note: compiler internally checks if the second param to
// sprintf is a string literal or not.
// Use -Wno-format-security to suppress compiler warning.
void test() {
  char s[10], buf[10];
  fscanf(stdin, "%s", s); // 's' marked as tainted

  sprintf(buf, s); // warn: untrusted data as a format string
}

void test() {
  size_t ts;
  scanf("%zd", &ts); // 'ts' marked as tainted
  int *p = (int *)malloc(ts * sizeof(int));
    // warn: untrusted data as buffer size
}

There are built-in sources, propagations and sinks defined in code inside GenericTaintChecker. These
operations are handled even if no external taint configuration is provided.

Clang Static Analyzer

578

https://en.wikipedia.org/wiki/Taint_checking


Default sources defined by GenericTaintChecker:

_IO_getc, fdopen, fopen, freopen, get_current_dir_name, getch, getchar, getchar_unlocked,
getwd, getcwd, getgroups, gethostname, getlogin, getlogin_r, getnameinfo, gets, gets_s,
getseuserbyname, readlink, readlinkat, scanf, scanf_s, socket, wgetch

Default propagations defined by GenericTaintChecker: atoi, atol, atoll, basename, dirname, fgetc,
fgetln, fgets, fnmatch, fread, fscanf, fscanf_s, index, inflate, isalnum, isalpha, isascii,
isblank, iscntrl, isdigit, isgraph, islower, isprint, ispunct, isspace, isupper, isxdigit,
memchr, memrchr, sscanf, getc, getc_unlocked, getdelim, getline, getw, memcmp, memcpy, memmem,
memmove, mbtowc, pread, qsort, qsort_r, rawmemchr, read, recv, recvfrom, rindex, strcasestr,
strchr, strchrnul, strcasecmp, strcmp, strcspn, strlen, strncasecmp, strncmp, strndup, strndupa,
strnlen, strpbrk, strrchr, strsep, strspn, strstr, strtol, strtoll, strtoul, strtoull, tolower,
toupper, ttyname, ttyname_r, wctomb, wcwidth

Default sinks defined in GenericTaintChecker: printf, setproctitle, system, popen, execl, execle,
execlp, execv, execvp, execvP, execve, dlopen, memcpy, memmove, strncpy, strndup, malloc, calloc,
alloca, memccpy, realloc, bcopy

The user can configure taint sources, sinks, and propagation rules by providing a configuration file via checker option
alpha.security.taint.TaintPropagation:Config.

External taint configuration is in YAML format. The taint-related options defined in the config file extend but do not
override the built-in sources, rules, sinks. The format of the external taint configuration file is not stable, and could
change without any notice even in a non-backward compatible way.

For a more detailed description of configuration options, please see the Taint Analysis Configuration. For an example
see Example configuration file.

alpha.unix

alpha.unix.StdCLibraryFunctionArgs (C)

Check for calls of standard library functions that violate predefined argument constraints. For example, it is stated in
the C standard that for the int isalnum(int ch) function the behavior is undefined if the value of ch is not
representable as unsigned char and is not equal to EOF.

void test_alnum_concrete(int v) {
  int ret = isalnum(256); // \
  // warning: Function argument constraint is not satisfied
  (void)ret;
}

If the argument’s value is unknown then the value is assumed to hold the proper value range.

#define EOF -1
int test_alnum_symbolic(int x) {
  int ret = isalnum(x);
  // after the call, ret is assumed to be in the range [-1, 255]

  if (ret > 255)      // impossible (infeasible branch)
    if (x == 0)
      return ret / x; // division by zero is not reported
  return ret;
}

If the user disables the checker then the argument violation warning is suppressed. However, the assumption about
the argument is still modeled. This is because exploring an execution path that already contains undefined behavior
is not valuable.

There are different kind of constraints modeled: range constraint, not null constraint, buffer size constraint. A range
constraint requires the argument’s value to be in a specific range, see isalnum as an example above. A not null
constraint requires the pointer argument to be non-null.

A buffer size constraint specifies the minimum size of the buffer argument. The size might be a known constant. For
example, asctime_r requires that the buffer argument’s size must be greater than or equal to 26 bytes. In other

Clang Static Analyzer

579

http://llvm.org/docs/YamlIO.html#introduction-to-yaml


cases, the size is denoted by another argument or as a multiplication of two arguments. For instance,
size_t fread(void *ptr, size_t size, size_t nmemb, FILE *stream). Here, ptr is the buffer, and
its minimum size is size * nmemb

void buffer_size_constraint_violation(FILE *file) {
  enum { BUFFER_SIZE = 1024 };
  wchar_t wbuf[BUFFER_SIZE];

  const size_t size = sizeof(*wbuf);   // 4
  const size_t nitems = sizeof(wbuf);  // 4096

  // Below we receive a warning because the 3rd parameter should be the
  // number of elements to read, not the size in bytes. This case is a known
  // vulnerability described by the ARR38-C SEI-CERT rule.
  fread(wbuf, size, nitems, file);
}

Limitations

The checker is in alpha because the reports cannot provide notes about the values of the arguments. Without this
information it is hard to confirm if the constraint is indeed violated. For example, consider the above case for fread.
We display in the warning message that the size of the 1st arg should be equal to or less than the value of the 2nd
arg times the 3rd arg. However, we fail to display the concrete values (4 and 4096) for those arguments.

Parameters

The checker models functions (and emits diagnostics) from the C standard by default. The ModelPOSIX option
enables the checker to model (and emit diagnostics) for functions that are defined in the POSIX standard. This option
is disabled by default.

alpha.unix.BlockInCriticalSection (C)

Check for calls to blocking functions inside a critical section. Applies to:
lock, unlock, sleep, getc, fgets, read, recv, pthread_mutex_lock, `` pthread_mutex_unlock,
mtx_lock, mtx_timedlock, mtx_trylock, mtx_unlock, lock_guard, unique_lock``

void test() {
  std::mutex m;
  m.lock();
  sleep(3); // warn: a blocking function sleep is called inside a critical
            //       section
  m.unlock();
}

alpha.unix.Chroot (C)

Check improper use of chroot.

void f();

void test() {
  chroot("/usr/local");
  f(); // warn: no call of chdir("/") immediately after chroot
}

alpha.unix.PthreadLock (C)

Simple lock -> unlock checker. Applies to: pthread_mutex_lock, pthread_rwlock_rdlock, pthread_rwl
ock_wrlock, lck_mtx_lock, lck_rw_lock_exclusive lck_rw_lock_shared, pthread_mutex_tryl
ock, pthread_rwlock_tryrdlock, pthread_rwlock_tryrwlock, lck_mtx_try_lock, lck_rw_try
_lock_exclusive, lck_rw_try_lock_shared, pthread_mutex_unlock, pthread_rwlock_unlock,
 lck_mtx_unlock, lck_rw_done.

pthread_mutex_t mtx;

Clang Static Analyzer

580



void test() {
  pthread_mutex_lock(&mtx);
  pthread_mutex_lock(&mtx);
    // warn: this lock has already been acquired
}

lck_mtx_t lck1, lck2;

void test() {
  lck_mtx_lock(&lck1);
  lck_mtx_lock(&lck2);
  lck_mtx_unlock(&lck1);
    // warn: this was not the most recently acquired lock
}

lck_mtx_t lck1, lck2;

void test() {
  if (lck_mtx_try_lock(&lck1) == 0)
    return;

  lck_mtx_lock(&lck2);
  lck_mtx_unlock(&lck1);
    // warn: this was not the most recently acquired lock
}

alpha.unix.SimpleStream (C)

Check for misuses of stream APIs. Check for misuses of stream APIs: fopen, fclose (demo checker, the subject
of the demo (Slides , Video) by Anna Zaks and Jordan Rose presented at the 2012 LLVM Developers’ Meeting).

void test() {
  FILE *F = fopen("myfile.txt", "w");
} // warn: opened file is never closed

void test() {
  FILE *F = fopen("myfile.txt", "w");

  if (F)
    fclose(F);

  fclose(F); // warn: closing a previously closed file stream
}

alpha.unix.Stream (C)

Check stream handling functions:
fopen, tmpfile, fclose, fread, fwrite, fseek, ftell, rewind, fgetpos,
fsetpos, clearerr, feof, ferror, fileno.

void test() {
  FILE *p = fopen("foo", "r");
} // warn: opened file is never closed

void test() {
  FILE *p = fopen("foo", "r");
  fseek(p, 1, SEEK_SET); // warn: stream pointer might be NULL
  fclose(p);
}

void test() {

Clang Static Analyzer

581

https://llvm.org/devmtg/2012-11/Zaks-Rose-Checker24Hours.pdf
https://youtu.be/kdxlsP5QVPw
https://llvm.org/devmtg/2012-11/


  FILE *p = fopen("foo", "r");

  if (p)
    fseek(p, 1, 3);
     // warn: third arg should be SEEK_SET, SEEK_END, or SEEK_CUR

  fclose(p);
}

void test() {
  FILE *p = fopen("foo", "r");
  fclose(p);
  fclose(p); // warn: already closed
}

void test() {
  FILE *p = tmpfile();
  ftell(p); // warn: stream pointer might be NULL
  fclose(p);
}

alpha.unix.cstring.BufferOverlap (C)

Checks for overlap in two buffer arguments. Applies to: memcpy, mempcpy.

void test() {
  int a[4] = {0};
  memcpy(a + 2, a + 1, 8); // warn
}

alpha.unix.cstring.NotNullTerminated (C)

Check for arguments which are not null-terminated strings; applies to:
strlen, strnlen, strcpy, strncpy, strcat, strncat.

void test() {
  int y = strlen((char *)&test); // warn
}

alpha.unix.cstring.OutOfBounds (C)

Check for out-of-bounds access in string functions; applies to:`` strncopy, strncat``.

void test() {
  int y = strlen((char *)&test); // warn
}

alpha.unix.cstring.UninitializedRead (C)

Check for uninitialized reads from common memory copy/manipulation functions such as:

memcpy, mempcpy, memmove, memcmp, strcmp, strncmp, strcpy, strlen, strsep and many
more.

void test() {
 char src[10];
 char dst[5];
 memcpy(dst,src,sizeof(dst)); // warn: Bytes string function accesses uninitialized/garbage values
}

Limitations:

Clang Static Analyzer

582



• Due to limitations of the memory modeling in the analyzer, one can likely observe a lot of false-positive
reports like this:

void false_positive() {
  int src[] = {1, 2, 3, 4};
  int dst[5] = {0};
  memcpy(dst, src, 4 * sizeof(int)); // false-positive:
  // The 'src' buffer was correctly initialized, yet we cannot conclude
  // that since the analyzer could not see a direct initialization of the
  // very last byte of the source buffer.
}

More details at the corresponding GitHub issue.

alpha.nondeterminism.PointerIteration (C++)

Check for non-determinism caused by iterating unordered containers of pointers.

void test() {
 int a = 1, b = 2;
 std::unordered_set<int *> UnorderedPtrSet = {&a, &b};

 for (auto i : UnorderedPtrSet) // warn
   f(i);
}

alpha.nondeterminism.PointerSorting (C++)

Check for non-determinism caused by sorting of pointers.

void test() {
 int a = 1, b = 2;
 std::vector<int *> V = {&a, &b};
 std::sort(V.begin(), V.end()); // warn
}

alpha.WebKit

alpha.webkit.UncountedCallArgsChecker

The goal of this rule is to make sure that lifetime of any dynamically allocated ref-countable object passed as a call
argument spans past the end of the call. This applies to call to any function, method, lambda, function pointer or
functor. Ref-countable types aren’t supposed to be allocated on stack so we check arguments for parameters of raw
pointers and references to uncounted types.

Here are some examples of situations that we warn about as they might be potentially unsafe. The logic is that either
we’re able to guarantee that an argument is safe or it’s considered if not a bug then bug-prone.

RefCountable* provide_uncounted();
void consume(RefCountable*);

// In these cases we can't make sure callee won't directly or indirectly call `deref()` on the argument which could make it unsafe from such point until the end of the call.

void foo1() {
  consume(provide_uncounted()); // warn
}

void foo2() {
  RefCountable* uncounted = provide_uncounted();
  consume(uncounted); // warn
}

Although we are enforcing member variables to be ref-counted by webkit.NoUncountedMemberChecker any method
of the same class still has unrestricted access to these. Since from a caller’s perspective we can’t guarantee a
particular member won’t get modified by callee (directly or indirectly) we don’t consider values obtained from
members safe.

Note: It’s likely this heuristic could be made more precise with fewer false positives - for example calls to free
functions that don’t have any parameter other than the pointer should be safe as the callee won’t be able to tamper
with the member unless it’s a global variable.

Clang Static Analyzer

583

https://github.com/llvm/llvm-project/issues/43459


struct Foo {
  RefPtr<RefCountable> member;
  void consume(RefCountable*) { /* ... */ }
  void bugprone() {
    consume(member.get()); // warn
  }
};

The implementation of this rule is a heuristic - we define a whitelist of kinds of values that are considered safe to be
passed as arguments. If we can’t prove an argument is safe it’s considered an error.

Allowed kinds of arguments:

• values obtained from ref-counted objects (including temporaries as those survive the call too)

RefCountable* provide_uncounted();
void consume(RefCountable*);

void foo() {
  RefPtr<RefCountable> rc = makeRef(provide_uncounted());
  consume(rc.get()); // ok
  consume(makeRef(provide_uncounted()).get()); // ok
}

• forwarding uncounted arguments from caller to callee

void foo(RefCountable& a) {
  bar(a); // ok
}

Caller of foo() is responsible for a’s lifetime.

• this pointer

void Foo::foo() {
  baz(this);  // ok
}

Caller of foo() is responsible for keeping the memory pointed to by this pointer safe.

• constants

foo(nullptr, NULL, 0); // ok

We also define a set of safe transformations which if passed a safe value as an input provide (usually it’s the return
value) a safe value (or an object that provides safe values). This is also a heuristic.

• constructors of ref-counted types (including factory methods)

• getters of ref-counted types

• member overloaded operators

• casts

• unary operators like & or *

alpha.webkit.UncountedLocalVarsChecker

The goal of this rule is to make sure that any uncounted local variable is backed by a ref-counted object with lifetime
that is strictly larger than the scope of the uncounted local variable. To be on the safe side we require the scope of an
uncounted variable to be embedded in the scope of ref-counted object that backs it.

These are examples of cases that we consider safe:

void foo1() {
  RefPtr<RefCountable> counted;

Clang Static Analyzer

584



  // The scope of uncounted is EMBEDDED in the scope of counted.
  {
    RefCountable* uncounted = counted.get(); // ok
  }
}

void foo2(RefPtr<RefCountable> counted_param) {
  RefCountable* uncounted = counted_param.get(); // ok
}

void FooClass::foo_method() {
  RefCountable* uncounted = this; // ok
}

Here are some examples of situations that we warn about as they might be potentially unsafe. The logic is that either
we’re able to guarantee that an argument is safe or it’s considered if not a bug then bug-prone.

void foo1() {
  RefCountable* uncounted = new RefCountable; // warn
}

RefCountable* global_uncounted;
void foo2() {
  RefCountable* uncounted = global_uncounted; // warn
}

void foo3() {
  RefPtr<RefCountable> counted;
  // The scope of uncounted is not EMBEDDED in the scope of counted.
  RefCountable* uncounted = counted.get(); // warn
}

We don’t warn about these cases - we don’t consider them necessarily safe but since they are very common and
usually safe we’d introduce a lot of false positives otherwise: - variable defined in condition part of an `if`
statement - variable defined in init statement condition of a `for` statement

For the time being we also don’t warn about uninitialized uncounted local variables.

Debug Checkers

debug

Checkers used for debugging the analyzer. Debug Checks page contains a detailed description.

debug.AnalysisOrder

Print callbacks that are called during analysis in order.

debug.ConfigDumper

Dump config table.

debug.DumpCFG Display

Control-Flow Graphs.

debug.DumpCallGraph

Display Call Graph.

Clang Static Analyzer

585



debug.DumpCalls

Print calls as they are traversed by the engine.

debug.DumpDominators

Print the dominance tree for a given CFG.

debug.DumpLiveVars

Print results of live variable analysis.

debug.DumpTraversal

Print branch conditions as they are traversed by the engine.

debug.ExprInspection

Check the analyzer’s understanding of expressions.

debug.Stats

Emit warnings with analyzer statistics.

debug.TaintTest

Mark tainted symbols as such.

debug.ViewCFG

View Control-Flow Graphs using GraphViz.

debug.ViewCallGraph

View Call Graph using GraphViz.

debug.ViewExplodedGraph

View Exploded Graphs using GraphViz.

User Docs
Contents:

Cross Translation Unit (CTU) Analysis

Normally, static analysis works in the boundary of one translation unit (TU). However, with additional steps and
configuration we can enable the analysis to inline the definition of a function from another TU.
Overview 587

PCH-based analysis 587

Manual CTU Analysis 587

Automated CTU Analysis with CodeChecker 588

Automated CTU Analysis with scan-build-py (don’t do it) 589

On-demand analysis 589

Manual CTU Analysis 589

Automated CTU Analysis with CodeChecker 591

Automated CTU Analysis with scan-build-py (don’t do it) 591

Clang Static Analyzer

586



Overview

CTU analysis can be used in a variety of ways. The importing of external TU definitions can work with pre-dumped
PCH files or generating the necessary AST structure on-demand, during the analysis of the main TU. Driving the
static analysis can also be implemented in multiple ways. The most direct way is to specify the necessary
commandline options of the Clang frontend manually (and generate the prerequisite dependencies of the specific
import method by hand). This process can be automated by other tools, like CodeChecker and scan-build-py
(preference for the former).

PCH-based analysis

The analysis needs the PCH dumps of all the translations units used in the project. These can be generated by the
Clang Frontend itself, and must be arranged in a specific way in the filesystem. The index, which maps symbols’
USR names to PCH dumps containing them must also be generated by the clang-extdef-mapping. Entries in the
index must have an .ast suffix if the goal is to use PCH-based analysis, as the lack of that extension signals that the
entry is to be used as a source-file, and parsed on-demand. This tool uses a compilation database to determine the
compilation flags used. The analysis invocation must be provided with the directory which contains the dumps and
the mapping files.

Manual CTU Analysis

Let’s consider these source files in our minimal example:

// main.cpp
int foo();

int main() {
  return 3 / foo();
}

// foo.cpp
int foo() {
  return 0;
}

And a compilation database:

[
  {
    "directory": "/path/to/your/project",
    "command": "clang++ -c foo.cpp -o foo.o",
    "file": "foo.cpp"
  },
  {
    "directory": "/path/to/your/project",
    "command": "clang++ -c main.cpp -o main.o",
    "file": "main.cpp"
  }
]

We’d like to analyze main.cpp and discover the division by zero bug. In order to be able to inline the definition of foo
from foo.cpp first we have to generate the AST (or PCH) file of foo.cpp:

$ pwd $ /path/to/your/project
$ clang++ -emit-ast -o foo.cpp.ast foo.cpp
$ # Check that the .ast file is generated:
$ ls
compile_commands.json  foo.cpp.ast  foo.cpp  main.cpp
$

The next step is to create a CTU index file which holds the USR name and location of external definitions in the
source files in format <USR-Length>:<USR> <File-Path>:

Clang Static Analyzer

587

https://github.com/Ericsson/codechecker


$ clang-extdef-mapping -p . foo.cpp
9:c:@F@foo# /path/to/your/project/foo.cpp
$ clang-extdef-mapping -p . foo.cpp > externalDefMap.txt

We have to modify externalDefMap.txt to contain the name of the .ast files instead of the source files:

$ sed -i -e "s/.cpp/.cpp.ast/g" externalDefMap.txt

We still have to further modify the externalDefMap.txt file to contain relative paths:

$ sed -i -e "s|$(pwd)/||g" externalDefMap.txt

Now everything is available for the CTU analysis. We have to feed Clang with CTU specific extra arguments:

$ pwd
/path/to/your/project
$ clang++ --analyze \
    -Xclang -analyzer-config -Xclang experimental-enable-naive-ctu-analysis=true \
    -Xclang -analyzer-config -Xclang ctu-dir=. \
    -Xclang -analyzer-output=plist-multi-file \
    main.cpp
main.cpp:5:12: warning: Division by zero
  return 3 / foo();
         ~~^~~~~~~
1 warning generated.
$ # The plist file with the result is generated.
$ ls -F
compile_commands.json  externalDefMap.txt  foo.ast  foo.cpp  foo.cpp.ast  main.cpp  main.plist
$

This manual procedure is error-prone and not scalable, therefore to analyze real projects it is recommended to use
CodeChecker or scan-build-py.

Automated CTU Analysis with CodeChecker

The CodeChecker project fully supports automated CTU analysis with Clang. Once we have set up the PATH
environment variable and we activated the python venv then it is all it takes:

$ CodeChecker analyze --ctu compile_commands.json -o reports
$ ls -F
compile_commands.json  foo.cpp  foo.cpp.ast  main.cpp  reports/
$ tree reports
reports
■■■ compile_cmd.json
■■■ compiler_info.json
■■■ foo.cpp_53f6fbf7ab7ec9931301524b551959e2.plist
■■■ main.cpp_23db3d8df52ff0812e6e5a03071c8337.plist
■■■ metadata.json
■■■ unique_compile_commands.json

0 directories, 6 files
$

The plist files contain the results of the analysis, which may be viewed with the regular analysis tools. E.g. one may
use CodeChecker parse to view the results in command line:

$ CodeChecker parse reports
[HIGH] /home/egbomrt/ctu_mini_raw_project/main.cpp:5:12: Division by zero [core.DivideZero]
  return 3 / foo();
           ^

Found 1 defect(s) in main.cpp

----==== Summary ====----

Clang Static Analyzer

588

https://github.com/Ericsson/codechecker


-----------------------
Filename | Report count
-----------------------
main.cpp |            1
-----------------------
-----------------------
Severity | Report count
-----------------------
HIGH     |            1
-----------------------
----=================----
Total number of reports: 1
----=================----

Or we can use CodeChecker parse -e html to export the results into HTML format:

$ CodeChecker parse -e html -o html_out reports
$ firefox html_out/index.html

Automated CTU Analysis with scan-build-py (don’t do it)

We actively develop CTU with CodeChecker as the driver for this feature, scan-build-py is not actively developed for
CTU. scan-build-py has various errors and issues, expect it to work only with the very basic projects only.

Example usage of scan-build-py:
$ /your/path/to/llvm-project/clang/tools/scan-build-py/bin/analyze-build --ctu
analyze-build: Run 'scan-view /tmp/scan-build-2019-07-17-17-53-33-810365-7fqgWk' to examine bug reports.
$ /your/path/to/llvm-project/clang/tools/scan-view/bin/scan-view /tmp/scan-build-2019-07-17-17-53-33-810365-7fqgWk
Starting scan-view at: http://127.0.0.1:8181
  Use Ctrl-C to exit.
[6336:6431:0717/175357.633914:ERROR:browser_process_sub_thread.cc(209)] Waited 5 ms for network service
Opening in existing browser session.
^C
$

On-demand analysis

The analysis produces the necessary AST structure of external TUs during analysis. This requires the exact compiler
invocations for each TU, which can be generated by hand, or by tools driving the analyzer. The compiler invocation is
a shell command that could be used to compile the TU-s main source file. The mapping from absolute source file
paths of a TU to lists of compilation command segments used to compile said TU are given in YAML format referred
to as invocation list, and must be passed as an analyer-config argument. The index, which maps function USR
names to source files containing them must also be generated by the clang-extdef-mapping. Entries in the index
must not have an .ast suffix if the goal is to use On-demand analysis, as that extension signals that the entry is to be
used as an PCH-dump. The mapping of external definitions implicitly uses a compilation database to determine the
compilation flags used. The analysis invocation must be provided with the directory which contains the mapping files,
and the invocation list which is used to determine compiler flags.

Manual CTU Analysis

Let’s consider these source files in our minimal example:

// main.cpp
int foo();

int main() {
  return 3 / foo();
}

// foo.cpp
int foo() {
  return 0;
}

Clang Static Analyzer

589



The compilation database:

[
  {
    "directory": "/path/to/your/project",
    "command": "clang++ -c foo.cpp -o foo.o",
    "file": "foo.cpp"
  },
  {
    "directory": "/path/to/your/project",
    "command": "clang++ -c main.cpp -o main.o",
    "file": "main.cpp"
  }
]

The invocation list:

"/path/to/your/project/foo.cpp":
  - "clang++"
  - "-c"
  - "/path/to/your/project/foo.cpp"
  - "-o"
  - "/path/to/your/project/foo.o"

"/path/to/your/project/main.cpp":
  - "clang++"
  - "-c"
  - "/path/to/your/project/main.cpp"
  - "-o"
  - "/path/to/your/project/main.o"

We’d like to analyze main.cpp and discover the division by zero bug. As we are using On-demand mode, we only
need to create a CTU index file which holds the USR name and location of external definitions in the source files in
format <USR-Length>:<USR> <File-Path>:

$ clang-extdef-mapping -p . foo.cpp
9:c:@F@foo# /path/to/your/project/foo.cpp
$ clang-extdef-mapping -p . foo.cpp > externalDefMap.txt

Now everything is available for the CTU analysis. We have to feed Clang with CTU specific extra arguments:

$ pwd
/path/to/your/project
$ clang++ --analyze \
    -Xclang -analyzer-config -Xclang experimental-enable-naive-ctu-analysis=true \
    -Xclang -analyzer-config -Xclang ctu-dir=. \
    -Xclang -analyzer-config -Xclang ctu-invocation-list=invocations.yaml \
    -Xclang -analyzer-output=plist-multi-file \
    main.cpp
main.cpp:5:12: warning: Division by zero
  return 3 / foo();
         ~~^~~~~~~
1 warning generated.
$ # The plist file with the result is generated.
$ ls -F
compile_commands.json  externalDefMap.txt  foo.cpp  main.cpp  main.plist
$

This manual procedure is error-prone and not scalable, therefore to analyze real projects it is recommended to use
CodeChecker or scan-build-py.

Clang Static Analyzer

590



Automated CTU Analysis with CodeChecker

The CodeChecker project fully supports automated CTU analysis with Clang. Once we have set up the PATH
environment variable and we activated the python venv then it is all it takes:

$ CodeChecker analyze --ctu --ctu-ast-loading-mode on-demand compile_commands.json -o reports
$ ls -F
compile_commands.json  foo.cpp main.cpp  reports/
$ tree reports
reports
■■■ compile_cmd.json
■■■ compiler_info.json
■■■ foo.cpp_53f6fbf7ab7ec9931301524b551959e2.plist
■■■ main.cpp_23db3d8df52ff0812e6e5a03071c8337.plist
■■■ metadata.json
■■■ unique_compile_commands.json

0 directories, 6 files
$

The plist files contain the results of the analysis, which may be viewed with the regular analysis tools. E.g. one may
use CodeChecker parse to view the results in command line:

$ CodeChecker parse reports
[HIGH] /home/egbomrt/ctu_mini_raw_project/main.cpp:5:12: Division by zero [core.DivideZero]
  return 3 / foo();
           ^

Found 1 defect(s) in main.cpp

----==== Summary ====----
-----------------------
Filename | Report count
-----------------------
main.cpp |            1
-----------------------
-----------------------
Severity | Report count
-----------------------
HIGH     |            1
-----------------------
----=================----
Total number of reports: 1
----=================----

Or we can use CodeChecker parse -e html to export the results into HTML format:

$ CodeChecker parse -e html -o html_out reports
$ firefox html_out/index.html

Automated CTU Analysis with scan-build-py (don’t do it)

We actively develop CTU with CodeChecker as the driver for feature, scan-build-py is not actively developed for
CTU. scan-build-py has various errors and issues, expect it to work only with the very basic projects only.

Currently On-demand analysis is not supported with scan-build-py.

Clang Static Analyzer

591

https://github.com/Ericsson/codechecker


Taint Analysis Configuration

The Clang Static Analyzer uses taint analysis to detect security-related issues in code. The backbone of taint
analysis in the Clang SA is the GenericTaintChecker, which the user can access via the
alpha.security.taint.TaintPropagation (C, C++) checker alias and this checker has a default taint-related
configuration. The built-in default settings are defined in code, and they are always in effect once the checker is
enabled, either directly or via the alias. The checker also provides a configuration interface for extending the default
settings by providing a configuration file in YAML format. This documentation describes the syntax of the
configuration file and gives the informal semantics of the configuration options.
Overview 592

Example configuration file 593

Configuration file syntax and semantics 594

Filter syntax and semantics 594

Propagation syntax and semantics 594

Sink syntax and semantics 595

Overview

Taint analysis works by checking for the occurrence of special operations during the symbolic execution of the
program. Taint analysis defines sources, sinks, and propagation rules. It identifies errors by detecting a flow of
information that originates from a taint source, reaches a taint sink, and propagates through the program paths via
propagation rules. A source, sink, or an operation that propagates taint is mainly domain-specific knowledge, but
there are some built-in defaults provided by alpha.security.taint.TaintPropagation (C, C++). It is possible to express
that a statement sanitizes tainted values by providing a Filters section in the external configuration (see Example
configuration file and Filter syntax and semantics). There are no default filters defined in the built-in settings. The
checker’s documentation also specifies how to provide a custom taint configuration with command-line options.

Clang Static Analyzer

592

http://llvm.org/docs/YamlIO.html#introduction-to-yaml


Example configuration file

# The entries that specify arguments use 0-based indexing when specifying
# input arguments, and -1 is used to denote the return value.

Filters:
  # Filter functions
  # Taint is sanitized when tainted variables are pass arguments to filters.

  # Filter function
  #   void cleanse_first_arg(int* arg)
  #
  # Result example:
  #   int x; // x is tainted
  #   cleanse_first_arg(&x); // x is not tainted after the call
  - Name: cleanse_first_arg
    Args: [0]

Propagations:
  # Source functions
  # The omission of SrcArgs key indicates unconditional taint propagation,
  # which is conceptually what a source does.

  # Source function
  #   size_t fread(void *ptr, size_t size, size_t nmemb, FILE * stream)
  #
  # Result example:
  #   FILE* f = fopen("file.txt");
  #   char buf[1024];
  #   size_t read = fread(buf, sizeof(buf[0]), sizeof(buf)/sizeof(buf[0]), f);
  #   // both read and buf are tainted
  - Name: fread
    DstArgs: [0, -1]

  # Propagation functions
  # The presence of SrcArgs key indicates conditional taint propagation,
  # which is conceptually what a propagator does.

  # Propagation function
  #   char *dirname(char *path)
  #
  # Result example:
  #   char* path = read_path();
  #   char* dir = dirname(path);
  #   // dir is tainted if path was tainted
  - Name: dirname
    SrcArgs: [0]
    DstArgs: [-1]

Sinks:
  # Sink functions
  # If taint reaches any of the arguments specified, a warning is emitted.

  # Sink function
  #   int system(const char* command)
  #
  # Result example:
  #   const char* command = read_command();
  #   system(command); // emit diagnostic if command is tainted

Clang Static Analyzer

593



  - Name: system
    Args: [0]

In the example file above, the entries under the Propagation key implement the conceptual sources and
propagations, and sinks have their dedicated Sinks key. The user can define operations (function calls) where the
tainted values should be cleansed by listing entries under the Filters key. Filters model the sanitization of values
done by the programmer, and providing these is key to avoiding false-positive findings.

Configuration file syntax and semantics

The configuration file should have valid YAML syntax.

The configuration file can have the following top-level keys:

• Filters

• Propagations

• Sinks

Under the Filters key, the user can specify a list of operations that remove taint (see Filter syntax and semantics for
details).

Under the Propagations key, the user can specify a list of operations that introduce and propagate taint (see
Propagation syntax and semantics for details). The user can mark taint sources with a SrcArgs key in the
Propagation key, while propagations have none. The lack of the SrcArgs key means unconditional propagation,
which is how sources are modeled. The semantics of propagations are such, that if any of the source arguments are
tainted (specified by indexes in SrcArgs) then all of the destination arguments (specified by indexes in DstArgs) also
become tainted.

Under the Sinks key, the user can specify a list of operations where the checker should emit a bug report if tainted
data reaches it (see Sink syntax and semantics for details).

Filter syntax and semantics

An entry under Filters is a YAML object with the following mandatory keys:

• Name is a string that specifies the name of a function. Encountering this function during symbolic execution
the checker will sanitize taint from the memory region referred to by the given arguments or return a
sanitized value.

• Args is a list of numbers in the range of [-1..int_max]. It indicates the indexes of arguments in the
function call. The number -1 signifies the return value; other numbers identify call arguments. The values
of these arguments are considered clean after the function call.

The following keys are optional:

• Scope is a string that specifies the prefix of the function’s name in its fully qualified name. This option
restricts the set of matching function calls. It can encode not only namespaces but struct/class names as
well to match member functions.

Propagation syntax and semantics

An entry under Propagation is a YAML object with the following mandatory keys:

• Name is a string that specifies the name of a function. Encountering this function during symbolic execution
propagate taint from one or more arguments to other arguments and possibly the return value. It helps
model the taint-related behavior of functions that are not analyzable otherwise.

The following keys are optional:

• Scope is a string that specifies the prefix of the function’s name in its fully qualified name. This option
restricts the set of matching function calls.

• SrcArgs is a list of numbers in the range of [0..int_max] that indicates the indexes of arguments in the
function call. Taint-propagation considers the values of these arguments during the evaluation of the

Clang Static Analyzer

594

http://llvm.org/docs/YamlIO.html#introduction-to-yaml
http://llvm.org/docs/YamlIO.html#introduction-to-yaml
http://llvm.org/docs/YamlIO.html#introduction-to-yaml


function call. If any SrcArgs arguments are tainted, the checker will consider all DstArgs arguments tainted
after the call.

• DstArgs is a list of numbers in the range of [-1..int_max] that indicates the indexes of arguments in the
function call. The number -1 specifies the return value of the function. If any SrcArgs arguments are
tainted, the checker will consider all DstArgs arguments tainted after the call.

• VariadicType is a string that can be one of None, Dst, Src. It is used in conjunction with VariadicIndex to
specify arguments inside a variadic argument. The value of Src will treat every call site argument that is
part of a variadic argument list as a source concerning propagation rules (as if specified by SrcArg). The
value of Dst will treat every call site argument that is part of a variadic argument list a destination
concerning propagation rules. The value of None will not consider the arguments that are part of a variadic
argument list (this option is redundant but can be used to temporarily switch off handling of a particular
variadic argument option without removing the VariadicIndex key).

• VariadicIndex is a number in the range of [0..int_max]. It indicates the starting index of the variadic
argument in the signature of the function.

Sink syntax and semantics

An entry under Sinks is a YAML object with the following mandatory keys:

• Name is a string that specifies the name of a function. Encountering this function during symbolic execution
will emit a taint-related diagnostic if any of the arguments specified with Args are tainted at the call site.

• Args is a list of numbers in the range of [0..int_max] that indicates the indexes of arguments in the
function call. The checker reports an error if any of the specified arguments are tainted.

The following keys are optional:

• Scope is a string that specifies the prefix of the function’s name in its fully qualified name. This option
restricts the set of matching function calls.

Developer Docs
Contents:

Debug Checks

General Analysis Dumpers 595

Path Tracking 596

State Checking 596

ExprInspection checks 596

Statistics 599

Output testing checkers 599

The analyzer contains a number of checkers which can aid in debugging. Enable them by using the
“-analyzer-checker=” flag, followed by the name of the checker.

General Analysis Dumpers

These checkers are used to dump the results of various infrastructural analyses to stderr. Some checkers also have
“view” variants, which will display a graph using a ‘dot’ format viewer (such as Graphviz on macOS) instead.

• debug.DumpCallGraph, debug.ViewCallGraph: Show the call graph generated for the current translation unit.
This is used to determine the order in which to analyze functions when inlining is enabled.

• debug.DumpCFG, debug.ViewCFG: Show the CFG generated for each top-level function being analyzed.

• debug.DumpDominators: Shows the dominance tree for the CFG of each top-level function.

• debug.DumpLiveVars: Show the results of live variable analysis for each top-level function being analyzed.

• debug.DumpLiveExprs: Show the results of live expression analysis for each top-level function being analyzed.

Clang Static Analyzer

595

http://llvm.org/docs/YamlIO.html#introduction-to-yaml


• debug.ViewExplodedGraph: Show the Exploded Graphs generated for the analysis of different functions in the
input translation unit. When there are several functions analyzed, display one graph per function. Beware that
these graphs may grow very large, even for small functions.

Path Tracking

These checkers print information about the path taken by the analyzer engine.

• debug.DumpCalls: Prints out every function or method call encountered during a path traversal. This is indented
to show the call stack, but does NOT do any special handling of branches, meaning different paths could end
up interleaved.

• debug.DumpTraversal: Prints the name of each branch statement encountered during a path traversal (“IfStmt”,
“WhileStmt”, etc). Currently used to check whether the analysis engine is doing BFS or DFS.

State Checking

These checkers will print out information about the analyzer state in the form of analysis warnings. They are intended
for use with the -verify functionality in regression tests.

• debug.TaintTest: Prints out the word “tainted” for every expression that carries taint. At the time of this writing,
taint was only introduced by the checks under experimental.security.taint.TaintPropagation; this checker may
eventually move to the security.taint package.

• debug.ExprInspection: Responds to certain function calls, which are modeled after builtins. These function calls
should affect the program state other than the evaluation of their arguments; to use them, you will need to
declare them within your test file. The available functions are described below.

(FIXME: debug.ExprInspection should probably be renamed, since it no longer only inspects expressions.)

ExprInspection checks

• void clang_analyzer_eval(bool);

Prints TRUE if the argument is known to have a non-zero value, FALSE if the argument is known to have a zero
or null value, and UNKNOWN if the argument isn’t sufficiently constrained on this path. You can use this to test
other values by using expressions like “x == 5”. Note that this functionality is currently DISABLED in inlined
functions, since different calls to the same inlined function could provide different information, making it difficult
to write proper -verify directives.

In C, the argument can be typed as ‘int’ or as ‘_Bool’.

Example usage:

clang_analyzer_eval(x); // expected-warning{{UNKNOWN}}
if (!x) return;
clang_analyzer_eval(x); // expected-warning{{TRUE}}

• void clang_analyzer_checkInlined(bool);

If a call occurs within an inlined function, prints TRUE or FALSE according to the value of its argument. If a call
occurs outside an inlined function, nothing is printed.

The intended use of this checker is to assert that a function is inlined at least once (by passing ‘true’ and
expecting a warning), or to assert that a function is never inlined (by passing ‘false’ and expecting no warning).
The argument is technically unnecessary but is intended to clarify intent.

You might wonder why we can’t print TRUE if a function is ever inlined and FALSE if it is not. The problem is
that any inlined function could conceivably also be analyzed as a top-level function (in which case both TRUE
and FALSE would be printed), depending on the value of the -analyzer-inlining option.

In C, the argument can be typed as ‘int’ or as ‘_Bool’.

Example usage:

int inlined() {
  clang_analyzer_checkInlined(true); // expected-warning{{TRUE}}
  return 42;

Clang Static Analyzer

596



}

void topLevel() {
  clang_analyzer_checkInlined(false); // no-warning (not inlined)
  int value = inlined();
  // This assertion will not be valid if the previous call was not inlined.
  clang_analyzer_eval(value == 42); // expected-warning{{TRUE}}
}

• void clang_analyzer_warnIfReached();

Generate a warning if this line of code gets reached by the analyzer.

Example usage:

if (true) {
  clang_analyzer_warnIfReached();  // expected-warning{{REACHABLE}}
}
else {
  clang_analyzer_warnIfReached();  // no-warning
}

• void clang_analyzer_numTimesReached();

Same as above, but include the number of times this call expression gets reached by the analyzer during the
current analysis.

Example usage:

for (int x = 0; x < 3; ++x) {
  clang_analyzer_numTimesReached(); // expected-warning{{3}}
}

• void clang_analyzer_warnOnDeadSymbol(int);

Subscribe for a delayed warning when the symbol that represents the value of the argument is
garbage-collected by the analyzer.

When calling ‘clang_analyzer_warnOnDeadSymbol(x)’, if value of ‘x’ is a symbol, then this symbol is marked by
the ExprInspection checker. Then, during each garbage collection run, the checker sees if the marked symbol is
being collected and issues the ‘SYMBOL DEAD’ warning if it does. This way you know where exactly, up to the
line of code, the symbol dies.

It is unlikely that you call this function after the symbol is already dead, because the very reference to it as the
function argument prevents it from dying. However, if the argument is not a symbol but a concrete value, no
warning would be issued.

Example usage:

do {
  int x = generate_some_integer();
  clang_analyzer_warnOnDeadSymbol(x);
} while(0);  // expected-warning{{SYMBOL DEAD}}

• void clang_analyzer_explain(a single argument of any type);

This function explains the value of its argument in a human-readable manner in the warning message. You can
make as many overrides of its prototype in the test code as necessary to explain various integral, pointer, or
even record-type values. To simplify usage in C code (where overloading the function declaration is not
allowed), you may append an arbitrary suffix to the function name, without affecting functionality.

Example usage:

void clang_analyzer_explain(int);
void clang_analyzer_explain(void *);

// Useful in C code
void clang_analyzer_explain_int(int);

Clang Static Analyzer

597



void foo(int param, void *ptr) {
  clang_analyzer_explain(param); // expected-warning{{argument 'param'}}
  clang_analyzer_explain_int(param); // expected-warning{{argument 'param'}}
  if (!ptr)
    clang_analyzer_explain(ptr); // expected-warning{{memory address '0'}}
}

• void clang_analyzer_dump( /* a single argument of any type */);

Similar to clang_analyzer_explain, but produces a raw dump of the value, same as SVal::dump().

Example usage:

void clang_analyzer_dump(int);
void foo(int x) {
  clang_analyzer_dump(x); // expected-warning{{reg_$0<x>}}
}

• size_t clang_analyzer_getExtent(void *);

This function returns the value that represents the extent of a memory region pointed to by the argument. This
value is often difficult to obtain otherwise, because no valid code that produces this value. However, it may be
useful for testing purposes, to see how well does the analyzer model region extents.

Example usage:

void foo() {
  int x, *y;
  size_t xs = clang_analyzer_getExtent(&x);
  clang_analyzer_explain(xs); // expected-warning{{'4'}}
  size_t ys = clang_analyzer_getExtent(&y);
  clang_analyzer_explain(ys); // expected-warning{{'8'}}
}

• void clang_analyzer_printState();

Dumps the current ProgramState to the stderr. Quickly lookup the program state at any execution point without
ViewExplodedGraph or re-compiling the program. This is not very useful for writing tests (apart from testing how
ProgramState gets printed), but useful for debugging tests. Also, this method doesn’t produce a warning, so it
gets printed on the console before all other ExprInspection warnings.

Example usage:

void foo() {
  int x = 1;
  clang_analyzer_printState(); // Read the stderr!
}

• void clang_analyzer_hashDump(int);

The analyzer can generate a hash to identify reports. To debug what information is used to calculate this hash it
is possible to dump the hashed string as a warning of an arbitrary expression using the function above.

Example usage:

void foo() {
  int x = 1;
  clang_analyzer_hashDump(x); // expected-warning{{hashed string for x}}
}

• void clang_analyzer_denote(int, const char *);

Denotes symbols with strings. A subsequent call to clang_analyzer_express() will expresses another symbol in
terms of these string. Useful for testing relationships between different symbols.

Example usage:

void foo(int x) {
  clang_analyzer_denote(x, "$x");

Clang Static Analyzer

598



  clang_analyzer_express(x + 1); // expected-warning{{$x + 1}}
}

• void clang_analyzer_express(int);

See clang_analyzer_denote().

• void clang_analyzer_isTainted(a single argument of any type);

Queries the analyzer whether the expression used as argument is tainted or not. This is useful in tests, where
we don’t want to issue warning for all tainted expressions but only check for certain expressions. This would
help to reduce the noise that the TaintTest debug checker would introduce and let you focus on the
expected-warning’s that you really care about.

Example usage:

int read_integer() {
  int n;
  clang_analyzer_isTainted(n);     // expected-warning{{NO}}
  scanf("%d", &n);
  clang_analyzer_isTainted(n);     // expected-warning{{YES}}
  clang_analyzer_isTainted(n + 2); // expected-warning{{YES}}
  clang_analyzer_isTainted(n > 0); // expected-warning{{YES}}
  int next_tainted_value = n; // no-warning
  return n;
}

• clang_analyzer_dumpExtent(a single argument of any type)

• clang_analyzer_dumpElementCount(a single argument of any type)

Dumps out the extent and the element count of the argument.

Example usage:

void array() {
  int a[] = {1, 3};
  clang_analyzer_dumpExtent(a);       // expected-warning {{8 S64b}}
  clang_analyzer_dumpElementCount(a); // expected-warning {{2 S64b}}
}

Statistics

The debug.Stats checker collects various information about the analysis of each function, such as how many blocks
were reached and if the analyzer timed out.

There is also an additional -analyzer-stats flag, which enables various statistics within the analyzer engine. Note the
Stats checker (which produces at least one bug report per function) may actually change the values reported by
-analyzer-stats.

Output testing checkers

• debug.ReportStmts reports a warning at every statement, making it a very useful tool for testing thoroughly bug
report construction and output emission.

Inlining

There are several options that control which calls the analyzer will consider for inlining. The major one is
-analyzer-config ipa:

• analyzer-config ipa=none - All inlining is disabled. This is the only mode available in LLVM 3.1 and
earlier and in Xcode 4.3 and earlier.

• analyzer-config ipa=basic-inlining - Turns on inlining for C functions, C++

static member functions, and blocks – essentially, the calls that behave like simple C function calls. This is
essentially the mode used in Xcode 4.4.

Clang Static Analyzer

599



• analyzer-config ipa=inlining - Turns on inlining when we can confidently find

the function/method body corresponding to the call. (C functions, static functions, devirtualized C++
methods, Objective-C class methods, Objective-C instance methods when ExprEngine is confident about
the dynamic type of the instance).

• analyzer-config ipa=dynamic - Inline instance methods for which the type is

determined at runtime and we are not 100% sure that our type info is correct. For virtual calls, inline the
most plausible definition.

• analyzer-config ipa=dynamic-bifurcate - Same as -analyzer-config ipa=dynamic,

but the path is split. We inline on one branch and do not inline on the other. This mode does not drop the
coverage in cases when the parent class has code that is only exercised when some of its methods are
overridden.

Currently, -analyzer-config ipa=dynamic-bifurcate is the default mode.

While -analyzer-config ipa determines in general how aggressively the analyzer will try to inline functions,
several additional options control which types of functions can inlined, in an all-or-nothing way. These options use
the analyzer’s configuration table, so they are all specified as follows:

-analyzer-config OPTION=VALUE

c++-inlining

This option controls which C++ member functions may be inlined.

-analyzer-config c++-inlining=[none | methods | constructors | destructors]

Each of these modes implies that all the previous member function kinds will be inlined as well; it doesn’t make
sense to inline destructors without inlining constructors, for example.

The default c++-inlining mode is ‘destructors’, meaning that all member functions with visible definitions will be
considered for inlining. In some cases the analyzer may still choose not to inline the function.

Note that under ‘constructors’, constructors for types with non-trivial destructors will not be inlined. Additionally, no
C++ member functions will be inlined under -analyzer-config ipa=none or -analyzer-config ipa=basic-inlining,
regardless of the setting of the c++-inlining mode.

c++-template-inlining

This option controls whether C++ templated functions may be inlined.

-analyzer-config c++-template-inlining=[true | false]

Currently, template functions are considered for inlining by default.

The motivation behind this option is that very generic code can be a source of false positives, either by considering
paths that the caller considers impossible (by some unstated precondition), or by inlining some but not all of a deep
implementation of a function.

c++-stdlib-inlining

This option controls whether functions from the C++ standard library, including methods of the container classes in
the Standard Template Library, should be considered for inlining.

-analyzer-config c++-stdlib-inlining=[true | false]

Currently, C++ standard library functions are considered for inlining by default.

The standard library functions and the STL in particular are used ubiquitously enough that our tolerance for false
positives is even lower here. A false positive due to poor modeling of the STL leads to a poor user experience, since
most users would not be comfortable adding assertions to system headers in order to silence analyzer warnings.

c++-container-inlining

This option controls whether constructors and destructors of “container” types should be considered for inlining.

-analyzer-config c++-container-inlining=[true | false]

Clang Static Analyzer

600



Currently, these constructors and destructors are NOT considered for inlining by default.

The current implementation of this setting checks whether a type has a member named ‘iterator’ or a member named
‘begin’; these names are idiomatic in C++, with the latter specified in the C++11 standard. The analyzer currently
does a fairly poor job of modeling certain data structure invariants of container-like objects. For example, these three
expressions should be equivalent:

std::distance(c.begin(), c.end()) == 0
c.begin() == c.end()
c.empty()

Many of these issues are avoided if containers always have unknown, symbolic state, which is what happens when
their constructors are treated as opaque. In the future, we may decide specific containers are “safe” to model through
inlining, or choose to model them directly using checkers instead.

Basics of Implementation

The low-level mechanism of inlining a function is handled in ExprEngine::inlineCall and ExprEngine::processCallExit.

If the conditions are right for inlining, a CallEnter node is created and added to the analysis work list. The CallEnter
node marks the change to a new LocationContext representing the called function, and its state includes the
contents of the new stack frame. When the CallEnter node is actually processed, its single successor will be an edge
to the first CFG block in the function.

Exiting an inlined function is a bit more work, fortunately broken up into reasonable steps:

1. The CoreEngine realizes we’re at the end of an inlined call and generates a CallExitBegin node.

2. ExprEngine takes over (in processCallExit) and finds the return value of the function, if it has one. This is bound
to the expression that triggered the call. (In the case of calls without origin expressions, such as destructors,
this step is skipped.)

3. Dead symbols and bindings are cleaned out from the state, including any local bindings.

4. A CallExitEnd node is generated, which marks the transition back to the caller’s LocationContext.

5. Custom post-call checks are processed and the final nodes are pushed back onto the work list, so that
evaluation of the caller can continue.

Retry Without Inlining

In some cases, we would like to retry analysis without inlining a particular call.

Currently, we use this technique to recover coverage in case we stop analyzing a path due to exceeding the
maximum block count inside an inlined function.

When this situation is detected, we walk up the path to find the first node before inlining was started and enqueue it
on the WorkList with a special ReplayWithoutInlining bit added to it (ExprEngine::replayWithoutInlining). The path is
then re-analyzed from that point without inlining that particular call.

Deciding When to Inline

In general, the analyzer attempts to inline as much as possible, since it provides a better summary of what actually
happens in the program. There are some cases, however, where the analyzer chooses not to inline:

• If there is no definition available for the called function or method. In this case, there is no opportunity to inline.

• If the CFG cannot be constructed for a called function, or the liveness cannot be computed. These are
prerequisites for analyzing a function body, with or without inlining.

• If the LocationContext chain for a given ExplodedNode reaches a maximum cutoff depth. This prevents
unbounded analysis due to infinite recursion, but also serves as a useful cutoff for performance reasons.

• If the function is variadic. This is not a hard limitation, but an engineering limitation.

Tracked by: <rdar://problem/12147064> Support inlining of variadic functions

• In C++, constructors are not inlined unless the destructor call will be processed by the ExprEngine. Thus, if the
CFG was built without nodes for implicit destructors, or if the destructors for the given object are not

Clang Static Analyzer

601

rdar://problem/12147064


represented in the CFG, the constructor will not be inlined. (As an exception, constructors for objects with trivial
constructors can still be inlined.) See “C++ Caveats” below.

• In C++, ExprEngine does not inline custom implementations of operator ‘new’ or operator ‘delete’, nor does it
inline the constructors and destructors associated with these. See “C++ Caveats” below.

• Calls resulting in “dynamic dispatch” are specially handled. See more below.

• The FunctionSummaries map stores additional information about declarations, some of which is collected at
runtime based on previous analyses. We do not inline functions which were not profitable to inline in a different
context (for example, if the maximum block count was exceeded; see “Retry Without Inlining”).

Dynamic Calls and Devirtualization

“Dynamic” calls are those that are resolved at runtime, such as C++ virtual method calls and Objective-C message
sends. Due to the path-sensitive nature of the analysis, the analyzer may be able to reason about the dynamic type
of the object whose method is being called and thus “devirtualize” the call.

This path-sensitive devirtualization occurs when the analyzer can determine what method would actually be called at
runtime. This is possible when the type information is constrained enough for a simulated C++/Objective-C object
that the analyzer can make such a decision.

DynamicTypeInfo

As the analyzer analyzes a path, it may accrue information to refine the knowledge about the type of an object. This
can then be used to make better decisions about the target method of a call.

Such type information is tracked as DynamicTypeInfo. This is path-sensitive data that is stored in ProgramState,
which defines a mapping from MemRegions to an (optional) DynamicTypeInfo.

If no DynamicTypeInfo has been explicitly set for a MemRegion, it will be lazily inferred from the region’s type or
associated symbol. Information from symbolic regions is weaker than from true typed regions.

EXAMPLE: A C++ object declared “A obj” is known to have the class ‘A’, but a

reference “A &ref” may dynamically be a subclass of ‘A’.

The DynamicTypePropagation checker gathers and propagates DynamicTypeInfo, updating it as information is
observed along a path that can refine that type information for a region.

WARNING: Not all of the existing analyzer code has been retrofitted to use

DynamicTypeInfo, nor is it universally appropriate. In particular, DynamicTypeInfo always applies to a
region with all casts stripped off, but sometimes the information provided by casts can be useful.

RuntimeDefinition

The basis of devirtualization is CallEvent’s getRuntimeDefinition() method, which returns a RuntimeDefinition object.
When asked to provide a definition, the CallEvents for dynamic calls will use the DynamicTypeInfo in their
ProgramState to attempt to devirtualize the call. In the case of no dynamic dispatch, or perfectly constrained
devirtualization, the resulting RuntimeDefinition contains a Decl corresponding to the definition of the called function,
and RuntimeDefinition::mayHaveOtherDefinitions will return FALSE.

In the case of dynamic dispatch where our information is not perfect, CallEvent can make a guess, but
RuntimeDefinition::mayHaveOtherDefinitions will return TRUE. The RuntimeDefinition object will then also include a
MemRegion corresponding to the object being called (i.e., the “receiver” in Objective-C parlance), which ExprEngine
uses to decide whether or not the call should be inlined.

Inlining Dynamic Calls

The -analyzer-config ipa option has five different modes: none, basic-inlining, inlining, dynamic, and
dynamic-bifurcate. Under -analyzer-config ipa=dynamic, all dynamic calls are inlined, whether we are certain or not
that this will actually be the definition used at runtime. Under -analyzer-config ipa=inlining, only “near-perfect”
devirtualized calls are inlined*, and other dynamic calls are evaluated conservatively (as if no definition were
available).

Clang Static Analyzer

602



• Currently, no Objective-C messages are not inlined under -analyzer-config ipa=inlining, even if we are
reasonably confident of the type of the receiver. We plan to enable this once we have tested our heuristics more
thoroughly.

The last option, -analyzer-config ipa=dynamic-bifurcate, behaves similarly to “dynamic”, but performs a conservative
invalidation in the general virtual case in addition to inlining. The details of this are discussed below.

As stated above, -analyzer-config ipa=basic-inlining does not inline any C++ member functions or Objective-C
method calls, even if they are non-virtual or can be safely devirtualized.

Bifurcation

ExprEngine::BifurcateCall implements the -analyzer-config ipa=dynamic-bifurcate mode.

When a call is made on an object with imprecise dynamic type information
(RuntimeDefinition::mayHaveOtherDefinitions() evaluates to TRUE), ExprEngine bifurcates the path and marks the
object’s region (retrieved from the RuntimeDefinition object) with a path-sensitive “mode” in the ProgramState.

Currently, there are 2 modes:

• DynamicDispatchModeInlined - Models the case where the dynamic type information

of the receiver (MemoryRegion) is assumed to be perfectly constrained so that a given definition of a
method is expected to be the code actually called. When this mode is set, ExprEngine uses the Decl from
RuntimeDefinition to inline any dynamically dispatched call sent to this receiver because the function
definition is considered to be fully resolved.

• DynamicDispatchModeConservative - Models the case where the dynamic type

information is assumed to be incorrect, for example, implies that the method definition is overridden in a
subclass. In such cases, ExprEngine does not inline the methods sent to the receiver (MemoryRegion),
even if a candidate definition is available. This mode is conservative about simulating the effects of a call.

Going forward along the symbolic execution path, ExprEngine consults the mode of the receiver’s MemRegion to
make decisions on whether the calls should be inlined or not, which ensures that there is at most one split per region.

At a high level, “bifurcation mode” allows for increased semantic coverage in cases where the parent method
contains code which is only executed when the class is subclassed. The disadvantages of this mode are a
(considerable?) performance hit and the possibility of false positives on the path where the conservative mode is
used.

Objective-C Message Heuristics

ExprEngine relies on a set of heuristics to partition the set of Objective-C method calls into those that require
bifurcation and those that do not. Below are the cases when the DynamicTypeInfo of the object is considered precise
(cannot be a subclass):

• If the object was created with +alloc or +new and initialized with an -init method.

• If the calls are property accesses using dot syntax. This is based on the assumption that children rarely
override properties, or do so in an essentially compatible way.

• If the class interface is declared inside the main source file. In this case it is unlikely that it will be
subclassed.

• If the method is not declared outside of main source file, either by the receiver’s class or by any
superclasses.

C++ Caveats

C++11 [class.cdtor]p4 describes how the vtable of an object is modified as it is being constructed or destructed; that
is, the type of the object depends on which base constructors have been completed. This is tracked using
DynamicTypeInfo in the DynamicTypePropagation checker.

There are several limitations in the current implementation:

• Temporaries are poorly modeled right now because we’re not confident in the placement of their destructors in
the CFG. We currently won’t inline their constructors unless the destructor is trivial, and don’t process their
destructors at all, not even to invalidate the region.

Clang Static Analyzer

603



• ‘new’ is poorly modeled due to some nasty CFG/design issues. This is tracked in PR12014. ‘delete’ is not
modeled at all.

• Arrays of objects are modeled very poorly right now. ExprEngine currently only simulates the first constructor
and first destructor. Because of this, ExprEngine does not inline any constructors or destructors for arrays.

CallEvent

A CallEvent represents a specific call to a function, method, or other body of code. It is path-sensitive, containing
both the current state (ProgramStateRef) and stack space (LocationContext), and provides uniform access to the
argument values and return type of a call, no matter how the call is written in the source or what sort of code body is
being invoked.

NOTE: For those familiar with Cocoa, CallEvent is roughly equivalent to

NSInvocation.

CallEvent should be used whenever there is logic dealing with function calls that does not care how the call occurred.

Examples include checking that arguments satisfy preconditions (such as __attribute__((nonnull))), and attempting to
inline a call.

CallEvents are reference-counted objects managed by a CallEventManager. While there is no inherent issue with
persisting them (say, in a ProgramState’s GDM), they are intended for short-lived use, and can be recreated from
CFGElements or non-top-level StackFrameContexts fairly easily.

Initializer List

This discussion took place in https://reviews.llvm.org/D35216 “Escape symbols when creating std::initializer_list”.

It touches problems of modelling C++ standard library constructs in general, including modelling
implementation-defined fields within C++ standard library objects, in particular constructing objects into pointers held
by such fields, and separation of responsibilities between analyzer’s core and checkers.

Artem:

I’ve seen a few false positives that appear because we construct C++11 std::initializer_list objects with brace
initializers, and such construction is not properly modeled. For instance, if a new object is constructed on the heap
only to be put into a brace-initialized STL container, the object is reported to be leaked.

Approach (0): This can be trivially fixed by this patch, which causes pointers passed into initializer list expressions to
immediately escape.

This fix is overly conservative though. So i did a bit of investigation as to how model std::initializer_list better.

According to the standard, std::initializer_list<T> is an object that has methods
begin(), end(), and size(), where begin() returns a pointer to continuous array of size() objects of type
T, and end() is equal to begin() plus size(). The standard does hint that it should be possible to implement
std::initializer_list<T> as a pair of pointers, or as a pointer and a size integer, however specific fields that
the object would contain are an implementation detail.

Ideally, we should be able to model the initializer list’s methods precisely. Or, at least, it should be possible to explain
to the analyzer that the list somehow “takes hold” of the values put into it. Initializer lists can also be copied, which is
a separate story that i’m not trying to address here.

The obvious approach to modeling std::initializer_list in a checker would be to construct a
SymbolMetadata for the memory region of the initializer list object, which would be of type T* and represent
begin(), so we’d trivially model begin() as a function that returns this symbol. The array pointed to by that symbol
would be bindLoc()``ed to contain the list's contents (probably as a ``CompoundVal to
produce less bindings in the store). Extent of this array would represent size() and would be equal to the length of
the list as written.

So this sounds good, however apparently it does nothing to address our false positives: when the list escapes, our
RegionStoreManager is not magically guessing that the metadata symbol attached to it, together with its contents,
should also escape. In fact, it’s impossible to trigger a pointer escape from within the checker.

Approach (1): If only we enabled ProgramState::bindLoc(..., notifyChanges=true) to cause pointer
escapes (not only region changes) (which sounds like the right thing to do anyway) such checker would be able to
solve the false positives by triggering escapes when binding list elements to the list. However, it’d be as conservative

Clang Static Analyzer

604

https://reviews.llvm.org/D35216


as the current patch’s solution. Ideally, we do not want escapes to happen so early. Instead, we’d prefer them to be
delayed until the list itself escapes.

So i believe that escaping metadata symbols whenever their base regions escape would be the right thing to do.
Currently we didn’t think about that because we had neither pointer-type metadatas nor non-pointer escapes.

Approach (2): We could teach the Store to scan itself for bindings to metadata-symbolic-based regions during
scanReachableSymbols() whenever a region turns out to be reachable. This requires no work on checker side, but it
sounds performance-heavy.

Approach (3): We could let checkers maintain the set of active metadata symbols in the program state (ideally
somewhere in the Store, which sounds weird but causes the smallest amount of layering violations), so that the core
knew what to escape. This puts a stress on the checkers, but with a smart data map it wouldn’t be a problem.

Approach (4): We could allow checkers to trigger pointer escapes in arbitrary moments. If we allow doing this within
checkPointerEscape callback itself, we would be able to express facts like “when this region escapes, that
metadata symbol attached to it should also escape”. This sounds like an ultimate freedom, with maximum stress on
the checkers - still not too much stress when we have smart data maps.

I’m personally liking the approach (2) - it should be possible to avoid performance overhead, and clarity seems nice.

Gabor:

At this point, I am a bit wondering about two questions.

• When should something belong to a checker and when should something belong to the engine? Sometimes we
model library aspects in the engine and model language constructs in checkers.

• What is the checker programming model that we are aiming for? Maximum freedom or more easy checker
development?

I think if we aim for maximum freedom, we do not need to worry about the potential stress on checkers, and we can
introduce abstractions to mitigate that later on. If we want to simplify the API, then maybe it makes more sense to
move language construct modeling to the engine when the checker API is not sufficient instead of complicating the
API.

Right now I have no preference or objections between the alternatives but there are some random thoughts:

• Maybe it would be great to have a guideline how to evolve the analyzer and follow it, so it can help us to decide
in similar situations

• I do care about performance in this case. The reason is that we have a limited performance budget. And I think
we should not expect most of the checker writers to add modeling of language constructs. So, in my opinion, it
is ok to have less nice/more verbose API for language modeling if we can have better performance this way,
since it only needs to be done once, and is done by the framework developers.

Artem: These are some great questions, i guess it’d be better to discuss them more openly. As a quick dump of my
current mood:

• To me it seems obvious that we need to aim for a checker API that is both simple and powerful. This can
probably by keeping the API as powerful as necessary while providing a layer of simple ready-made solutions
on top of it. Probably a few reusable components for assembling checkers. And this layer should ideally be
pleasant enough to work with, so that people would prefer to extend it when something is lacking, instead of
falling back to the complex omnipotent API. I’m thinking of AST matchers vs. AST visitors as a roughly similar
situation: matchers are not omnipotent, but they’re so nice.

• Separation between core and checkers is usually quite strange. Once we have shared state traits, i generally
wouldn’t mind having region store or range constraint manager as checkers (though it’s probably not worth it to
transform them - just a mood). The main thing to avoid here would be the situation when the checker overwrites
stuff written by the core because it thinks it has a better idea what’s going on, so the core should provide a good
default behavior.

• Yeah, i totally care about performance as well, and if i try to implement approach, i’d make sure it’s good.

Artem:

> Approach (2): We could teach the Store to scan itself for bindings to > metadata-symbolic-based regions during
scanReachableSymbols() whenever > a region turns out to be reachable. This requires no work on checker side, >
but it sounds performance-heavy.

Clang Static Analyzer

605



Nope, this approach is wrong. Metadata symbols may become out-of-date: when the object changes, metadata
symbols attached to it aren’t changing (because symbols simply don’t change). The same metadata may have
different symbols to denote its value in different moments of time, but at most one of them represents the actual
metadata value. So we’d be escaping more stuff than necessary.

If only we had “ghost fields” (https://lists.llvm.org/pipermail/cfe-dev/2016-May/049000.html), it would have been much
easier, because the ghost field would only contain the actual metadata, and the Store would always know about it.
This example adds to my belief that ghost fields are exactly what we need for most C++ checkers.

Devin:

In this case, I would be fine with some sort of AbstractStorageMemoryRegion that meant “here is a memory region
and somewhere reachable from here exists another region of type T”. Or even multiple regions with different
identifiers. This wouldn’t specify how the memory is reachable, but it would allow for transfer functions to get at those
regions and it would allow for invalidation.

For std::initializer_list this reachable region would the region for the backing array and the transfer
functions for begin() and end() yield the beginning and end element regions for it.

In my view this differs from ghost variables in that (1) this storage does actually exist (it is just a library
implementation detail where that storage lives) and (2) it is perfectly valid for a pointer into that storage to be returned
and for another part of the program to read or write from that storage. (Well, in this case just read since it is allowed
to be read-only memory).

What I’m not OK with is modeling abstract analysis state (for example, the count of a NSMutableArray or the
typestate of a file handle) as a value stored in some ginned up region in the store. This takes an easy problem that
the analyzer does well at (modeling typestate) and turns it into a hard one that the analyzer is bad at (reasoning
about the contents of the heap).

I think the key criterion here is: “is the region accessible from outside the library”. That is, does the library expose the
region as a pointer that can be read to or written from in the client program? If so, then it makes sense for this to be
in the store: we are modeling reachable storage as storage. But if we’re just modeling arbitrary analysis facts that
need to be invalidated when a pointer escapes then we shouldn’t try to gin up storage for them just to get invalidation
for free.

Artem:

> In this case, I would be fine with some sort of AbstractStorageMemoryRegion > that meant “here is a memory
region and somewhere reachable from here exists > another region of type T”. Or even multiple regions with different
> identifiers. This wouldn’t specify how the memory is reachable, but it would > allow for transfer functions to get at
those regions and it would allow for > invalidation.

Yeah, this is what we can easily implement now as a symbolic-region-based-on-a-metadata-symbol (though we can
make a new region class for that if we eg. want it typed). The problem is that the relation between such storage
region and its parent object region is essentially immaterial, similarly to the relation between SymbolRegionValue
and its parent region. Region contents are mutable: today the abstract storage is reachable from its parent object,
tomorrow it’s not, and maybe something else becomes reachable, something that isn’t even abstract. So the parent
region for the abstract storage is most of the time at best a “nice to know” thing - we cannot rely on it to do any actual
work. We’d anyway need to rely on the checker to do the job.

> For std::initializer_list this reachable region would the region for the > backing array and the transfer functions for
begin() and end() yield the > beginning and end element regions for it.

So maybe in fact for std::initializer_list it may work fine because you cannot change the data after the object is
constructed - so this region’s contents are essentially immutable. For the future, i feel as if it is a dead end.

I’d like to consider another funny example. Suppose we’re trying to model

std::unique_ptr. Consider::

  void bar(const std::unique_ptr<int> &x);

  void foo(std::unique_ptr<int> &x) {
    int *a = x.get();   // (a, 0, direct): &AbstractStorageRegion
    *a = 1;             // (AbstractStorageRegion, 0, direct): 1 S32b
    int *b = new int;
    *b = 2;             // (SymRegion{conj_$0<int *>}, 0 ,direct): 2 S32b

Clang Static Analyzer

606

https://lists.llvm.org/pipermail/cfe-dev/2016-May/049000.html


    x.reset(b);         // Checker map: x -> SymRegion{conj_$0<int *>}
    bar(x);             // 'a' doesn't escape (the pointer was unique), 'b' does.
    clang_analyzer_eval(*a == 1); // Making this true is up to the checker.
    clang_analyzer_eval(*b == 2); // Making this unknown is up to the checker.
  }

The checker doesn’t totally need to ensure that *a == 1 passes - even though the pointer was unique, it could
theoretically have .get()-ed above and the code could of course break the uniqueness invariant (though we’d
probably want it). The checker can say that “even if *a did escape, it was not because it was stuffed directly into
bar()”.

The checker’s direct responsibility, however, is to solve the *b == 2 thing (which is in fact the problem we’re dealing
with in this patch - escaping the storage region of the object).

So we’re talking about one more operation over the program state (scanning reachable symbols and regions) that
cannot work without checker support.

We can probably add a new callback “checkReachableSymbols” to solve this. This is in fact also related to the dead
symbols problem (we’re scanning for live symbols in the store and in the checkers separately, but we need to do so
simultaneously with a single worklist). Hmm, in fact this sounds like a good idea; we can replace checkLiveSymbols
with checkReachableSymbols.

Or we could just have ghost member variables, and no checker support required at all. For ghost member variables,
the relation with their parent region (which would be their superregion) is actually useful, the mutability of their
contents is expressed naturally, and the store automagically sees reachable symbols, live symbols, escapes,
invalidations, whatever.

> In my view this differs from ghost variables in that (1) this storage does > actually exist (it is just a library
implementation detail where that storage > lives) and (2) it is perfectly valid for a pointer into that storage to be >
returned and for another part of the program to read or write from that > storage. (Well, in this case just read since it
is allowed to be read-only > memory).

> What I’m not OK with is modeling abstract analysis state (for example, the > count of a NSMutableArray or the
typestate of a file handle) as a value stored > in some ginned up region in the store.This takes an easy problem that
the > analyzer does well at (modeling typestate) and turns it into a hard one that > the analyzer is bad at (reasoning
about the contents of the heap).

Yeah, i tend to agree on that. For simple typestates, this is probably an overkill, so let’s definitely put aside the idea
of “ghost symbolic regions” that i had earlier.

But, to summarize a bit, in our current case, however, the typestate we’re looking for is the contents of the heap. And
when we try to model such typestates (complex in this specific manner, i.e. heap-like) in any checker, we have a
choice between re-doing this modeling in every such checker (which is something analyzer is indeed good at, but at
a price of making checkers heavy) or instead relying on the Store to do exactly what it’s designed to do.

> I think the key criterion here is: “is the region accessible from outside > the library”. That is, does the library expose
the region as a pointer that > can be read to or written from in the client program? If so, then it makes > sense for this
to be in the store: we are modeling reachable storage as > storage. But if we’re just modeling arbitrary analysis facts
that need to be > invalidated when a pointer escapes then we shouldn’t try to gin up storage > for them just to get
invalidation for free.

As a metaphor, i’d probably compare it to body farms - the difference between ghost member variables and
metadata symbols seems to me like the difference between body farms and evalCall. Both are nice to have, and
body farms are very pleasant to work with, even if not omnipotent. I think it’s fine for a FunctionDecl’s body in a body
farm to have a local variable, even if such variable doesn’t actually exist, even if it cannot be seen from outside the
function call. I’m not seeing immediate practical difference between “it does actually exist” and “it doesn’t actually
exist, just a handy abstraction”. Similarly, i think it’s fine if we have a CXXRecordDecl with implementation-defined
contents, and try to farm up a member variable as a handy abstraction (we don’t even need to know its name or
offset, only that it’s there somewhere).

Artem:

We’ve discussed it in person with Devin, and he provided more points to think about:

• If the initializer list consists of non-POD data, constructors of list’s objects need to take the sub-region of the
list’s region as this-region In the current (v2) version of this patch, these objects are constructed elsewhere and

Clang Static Analyzer

607



then trivial-copied into the list’s metadata pointer region, which may be incorrect. This is our overall problem
with C++ constructors, which manifests in this case as well. Additionally, objects would need to be constructed
in the analyzer’s core, which would not be able to predict that it needs to take a checker-specific region as
this-region, which makes it harder, though it might be mitigated by sharing the checker state traits.

• Because “ghost variables” are not material to the user, we need to somehow make super sure that they don’t
make it into the diagnostic messages.

So, because this needs further digging into overall C++ support and rises too many questions, i’m delaying a better
approach to this problem and will fall back to the original trivial patch.

Nullability Checks

This document is a high level description of the nullablility checks. These checks intended to use the annotations that
is described in this RFC: http://lists.cs.uiuc.edu/pipermail/cfe-dev/2015-March/041798.html.

Let’s consider the following 2 categories:

1) nullable

If a pointer p has a nullable annotation and no explicit null check or assert, we should warn in the following cases:

• p gets implicitly converted into nonnull pointer, for example, we are passing it to a function that takes a nonnull
parameter.

• p gets dereferenced

Taking a branch on nullable pointers are the same like taking branch on null unspecified pointers.

Explicit cast from nullable to nonnul:

__nullable id foo;
id bar = foo;
takesNonNull((_nonnull) bar); // should not warn here (backward compatibility hack)
anotherTakesNonNull(bar); // would be great to warn here, but not necessary(*)

Because bar corresponds to the same symbol all the time it is not easy to implement the checker that way the cast
only suppress the first call but not the second. For this reason in the first implementation after a contradictory cast
happens, I will treat bar as nullable unspecified, this way all of the warnings will be suppressed. Treating the symbol
as nullable unspecified also has an advantage that in case the takesNonNull function body is being inlined, the will
be no warning, when the symbol is dereferenced. In case I have time after the initial version I might spend additional
time to try to find a more sophisticated solution, in which we would produce the second warning (*).

2) nonnull

• Dereferencing a nonnull, or sending message to it is ok.

• Converting nonnull to nullable is Ok.

• When there is an explicit cast from nonnull to nullable I will trust the cast (it is probable there for a reason,
because this cast does not suppress any warnings or errors).

• But what should we do about null checks?:
__nonnull id takesNonnull(__nonnull id x) {
    if (x == nil) {
        // Defensive backward compatible code:
        ....
        return nil; // Should the analyzer cover this piece of code? Should we require the cast (__nonnull)nil?
    }
    ....
}

There are these directions:

• We can either take the branch; this way the branch is analyzed

• Should we not warn about any nullability issues in that branch? Probably not, it is ok to break the nullability
postconditions when the nullability preconditions are violated.

• We can assume that these pointers are not null and we lose coverage with the analyzer. (This can be
implemented either in constraint solver or in the checker itself.)

Clang Static Analyzer

608

http://lists.cs.uiuc.edu/pipermail/cfe-dev/2015-March/041798.html


Other Issues to keep in mind/take care of:

• Messaging:

• Sending a message to a nullable pointer

• Even though the method might return a nonnull pointer, when it was sent to a nullable pointer
the return type will be nullable.

• The result is nullable unless the receiver is known to be non null.
• Sending a message to a unspecified or nonnull pointer

• If the pointer is not assumed to be nil, we should be optimistic and use the nullability implied by the
method.

• This will not happen automatically, since the AST will have null unspecified in this case.

Inlining

A symbol may need to be treated differently inside an inlined body. For example, consider these conversions from
nonnull to nullable in presence of inlining:

id obj = getNonnull();
takesNullable(obj);
takesNonnull(obj);

void takesNullable(nullable id obj) {
   obj->ivar // we should assume obj is nullable and warn here
}

With no special treatment, when the takesNullable is inlined the analyzer will not warn when the obj symbol is
dereferenced. One solution for this is to reanalyze takesNullable as a top level function to get possible violations. The
alternative method, deducing nullability information from the arguments after inlining is not robust enough (for
example there might be more parameters with different nullability, but in the given path the two parameters might end
up being the same symbol or there can be nested functions that take different view of the nullability of the same
symbol). So the symbol will remain nonnull to avoid false positives but the functions that takes nullable parameters
will be analyzed separately as well without inlining.

Annotations on multi level pointers

Tracking multiple levels of annotations for pointers pointing to pointers would make the checker more complicated,
because this way a vector of nullability qualifiers would be needed to be tracked for each symbol. This is not a big
caveat, since once the top level pointer is dereferenced, the symvol for the inner pointer will have the nullability
information. The lack of multi level annotation tracking only observable, when multiple levels of pointers are passed
to a function which has a parameter with multiple levels of annotations. So for now the checker support the top level
nullability qualifiers only.:

int * __nonnull * __nullable p;
int ** q = p;
takesStarNullableStarNullable(q);

Implementation notes

What to track?

• The checker would track memory regions, and to each relevant region a qualifier information would be attached
which is either nullable, nonnull or null unspecified (or contradicted to suppress warnings for a specific region).

• On a branch, where a nullable pointer is known to be non null, the checker treat it as a same way as a pointer
annotated as nonnull.

• When there is an explicit cast from a null unspecified to either nonnull or nullable I will trust the cast.

• Unannotated pointers are treated the same way as pointers annotated with nullability unspecified qualifier,
unless the region is wrapped in ASSUME_NONNULL macros.

Clang Static Analyzer

609



• We might want to implement a callback for entry points to top level functions, where the pointer nullability
assumptions would be made.

Region Store

The analyzer “Store” represents the contents of memory regions. It is an opaque functional data structure stored in
each ProgramState; the only class that can modify the store is its associated StoreManager.

Currently (Feb. 2013), the only StoreManager implementation being used is RegionStoreManager. This store
records bindings to memory regions using a “base region + offset” key. (This allows *p and p[0] to map to the same
location, among other benefits.)

Regions are grouped into “clusters”, which roughly correspond to “regions with the same base region”. This allows
certain operations to be more efficient, such as invalidation.

Regions that do not have a known offset use a special “symbolic” offset. These keys store both the original region,
and the “concrete offset region” – the last region whose offset is entirely concrete. (For example, in the expression
foo.bar[1][i].baz, the concrete offset region is the array foo.bar[1], since that has a known offset from the
start of the top-level foo struct.)

Binding Invalidation

Supporting both concrete and symbolic offsets makes things a bit tricky. Here’s an example:

foo[0] = 0;
foo[1] = 1;
foo[i] = i;

After the third assignment, nothing can be said about the value of foo[0], because foo[i] may have overwritten
it! Thus, binding to a region with a symbolic offset invalidates the entire concrete offset region. We know foo[i] is
somewhere within foo, so we don’t have to invalidate anything else, but we do have to be conservative about all
other bindings within foo.

Continuing the example:

foo[i] = i;
foo[0] = 0;

After this latest assignment, nothing can be said about the value of foo[i], because foo[0] may have overwritten
it! Binding to a region R with a concrete offset invalidates any symbolic offset bindings whose concrete offset region
is a super-region **or* sub-region of R.* All we know about foo[i] is that it is somewhere within foo, so changing
anything within foo might change foo[i], and changing all of foo (or its base region) will definitely change
foo[i].

This logic could be improved by using the current constraints on i, at the cost of speed. The latter case could also be
improved by matching region kinds, i.e. changing foo[0].a is unlikely to affect foo[i].b, no matter what i is.

For more detail, read through RegionStoreManager::removeSubRegionBindings in RegionStore.cpp.

ObjCIvarRegions

Objective-C instance variables require a bit of special handling. Like struct fields, they are not base regions, and
when their parent object region is invalidated, all the instance variables must be invalidated as well. However, they
have no concrete compile-time offsets (in the modern, “non-fragile” runtime), and so cannot easily be represented as
an offset from the start of the object in the analyzer. Moreover, this means that invalidating a single instance variable
should not invalidate the rest of the object, since unlike struct fields or array elements there is no way to perform
pointer arithmetic to access another instance variable.

Consequently, although the base region of an ObjCIvarRegion is the entire object, RegionStore offsets are computed
from the start of the instance variable. Thus it is not valid to assume that all bindings with non-symbolic offsets start
from the base region!

Clang Static Analyzer

610



Region Invalidation

Unlike binding invalidation, region invalidation occurs when the entire contents of a region may have changed—say,
because it has been passed to a function the analyzer can model, like memcpy, or because its address has escaped,
usually as an argument to an opaque function call. In these cases we need to throw away not just all bindings within
the region itself, but within its entire cluster, since neighboring regions may be accessed via pointer arithmetic.

Region invalidation typically does even more than this, however. Because it usually represents the complete escape
of a region from the analyzer’s model, its contents must also be transitively invalidated. (For example, if a region p of
type int ** is invalidated, the contents of *p and **p may have changed as well.) The algorithm that traverses this
transitive closure of accessible regions is known as ClusterAnalysis, and is also used for finding all live bindings in
the store (in order to throw away the dead ones). The name “ClusterAnalysis” predates the cluster-based
organization of bindings, but refers to the same concept: during invalidation and liveness analysis, all bindings within
a cluster must be treated in the same way for a conservative model of program behavior.

Default Bindings

Most bindings in RegionStore are simple scalar values – integers and pointers. These are known as “Direct”
bindings. However, RegionStore supports a second type of binding called a “Default” binding. These are used to
provide values to all the elements of an aggregate type (struct or array) without having to explicitly specify a binding
for each individual element.

When there is no Direct binding for a particular region, the store manager looks at each super-region in turn to see if
there is a Default binding. If so, this value is used as the value of the original region. The search ends when the base
region is reached, at which point the RegionStore will pick an appropriate default value for the region (usually a
symbolic value, but sometimes zero, for static data, or “uninitialized”, for stack variables).

int manyInts[10];
manyInts[1] = 42;   // Creates a Direct binding for manyInts[1].
print(manyInts[1]); // Retrieves the Direct binding for manyInts[1];
print(manyInts[0]); // There is no Direct binding for manyInts[0].
                    // Is there a Default binding for the entire array?
                    // There is not, but it is a stack variable, so we use
                    // "uninitialized" as the default value (and emit a
                    // diagnostic!).

NOTE: The fact that bindings are stored as a base region plus an offset limits the Default Binding strategy, because
in C aggregates can contain other aggregates. In the current implementation of RegionStore, there is no way to
distinguish a Default binding for an entire aggregate from a Default binding for the sub-aggregate at offset 0.

Lazy Bindings (LazyCompoundVal)

RegionStore implements an optimization for copying aggregates (structs and arrays) called “lazy bindings”,
implemented using a special SVal called LazyCompoundVal. When the store is asked for the “binding” for an entire
aggregate (i.e. for an lvalue-to-rvalue conversion), it returns a LazyCompoundVal instead. When this value is then
stored into a variable, it is bound as a Default value. This makes copying arrays and structs much cheaper than if
they had required memberwise access.

Under the hood, a LazyCompoundVal is implemented as a uniqued pair of (region, store), representing “the value of
the region during this ‘snapshot’ of the store”. This has important implications for any sort of liveness or reachability
analysis, which must take the bindings in the old store into account.

Retrieving a value from a lazy binding happens in the same way as any other Default binding: since there is no direct
binding, the store manager falls back to super-regions to look for an appropriate default binding. LazyCompoundVal
differs from a normal default binding, however, in that it contains several different values, instead of one value that
will appear several times. Because of this, the store manager has to reconstruct the subregion chain on top of the
LazyCompoundVal region, and look up that region in the previous store.

Here’s a concrete example:

CGPoint p;
p.x = 42;       // A Direct binding is made to the FieldRegion 'p.x'.
CGPoint p2 = p; // A LazyCompoundVal is created for 'p', along with a
                // snapshot of the current store state. This value is then
                // used as a Default binding for the VarRegion 'p2'.

Clang Static Analyzer

611



return p2.x;    // The binding for FieldRegion 'p2.x' is requested.
                // There is no Direct binding, so we look for a Default
                // binding to 'p2' and find the LCV.
                // Because it's a LCV, we look at our requested region
                // and see that it's the '.x' field. We ask for the value
                // of 'p.x' within the snapshot, and get back 42.

Thread Safety Analysis

Introduction
Clang Thread Safety Analysis is a C++ language extension which warns about potential race conditions in code. The
analysis is completely static (i.e. compile-time); there is no run-time overhead. The analysis is still under active
development, but it is mature enough to be deployed in an industrial setting. It is being developed by Google, in
collaboration with CERT/SEI, and is used extensively in Google’s internal code base.

Thread safety analysis works very much like a type system for multi-threaded programs. In addition to declaring the
type of data (e.g. int, float, etc.), the programmer can (optionally) declare how access to that data is controlled in
a multi-threaded environment. For example, if foo is guarded by the mutex mu, then the analysis will issue a warning
whenever a piece of code reads or writes to foo without first locking mu. Similarly, if there are particular routines that
should only be called by the GUI thread, then the analysis will warn if other threads call those routines.

Getting Started

#include "mutex.h"

class BankAccount {
private:
  Mutex mu;
  int   balance GUARDED_BY(mu);

  void depositImpl(int amount) {
    balance += amount;       // WARNING! Cannot write balance without locking mu.
  }

  void withdrawImpl(int amount) REQUIRES(mu) {
    balance -= amount;       // OK. Caller must have locked mu.
  }

public:
  void withdraw(int amount) {
    mu.Lock();
    withdrawImpl(amount);    // OK.  We've locked mu.
  }                          // WARNING!  Failed to unlock mu.

  void transferFrom(BankAccount& b, int amount) {
    mu.Lock();
    b.withdrawImpl(amount);  // WARNING!  Calling withdrawImpl() requires locking b.mu.
    depositImpl(amount);     // OK.  depositImpl() has no requirements.
    mu.Unlock();
  }
};

This example demonstrates the basic concepts behind the analysis. The GUARDED_BY attribute declares that a
thread must lock mu before it can read or write to balance, thus ensuring that the increment and decrement
operations are atomic. Similarly, REQUIRES declares that the calling thread must lock mu before calling
withdrawImpl. Because the caller is assumed to have locked mu, it is safe to modify balance within the body of
the method.

Thread Safety Analysis

612



The depositImpl() method does not have REQUIRES, so the analysis issues a warning. Thread safety analysis is
not inter-procedural, so caller requirements must be explicitly declared. There is also a warning in
transferFrom(), because although the method locks this->mu, it does not lock b.mu. The analysis understands
that these are two separate mutexes, in two different objects.

Finally, there is a warning in the withdraw() method, because it fails to unlock mu. Every lock must have a
corresponding unlock, and the analysis will detect both double locks, and double unlocks. A function is allowed to
acquire a lock without releasing it, (or vice versa), but it must be annotated as such (using ACQUIRE/RELEASE).

Running The Analysis

To run the analysis, simply compile with the -Wthread-safety flag, e.g.

clang -c -Wthread-safety example.cpp

Note that this example assumes the presence of a suitably annotated mutex.h that declares which methods perform
locking, unlocking, and so on.

Basic Concepts: Capabilities
Thread safety analysis provides a way of protecting resources with capabilities. A resource is either a data member,
or a function/method that provides access to some underlying resource. The analysis ensures that the calling thread
cannot access the resource (i.e. call the function, or read/write the data) unless it has the capability to do so.

Capabilities are associated with named C++ objects which declare specific methods to acquire and release the
capability. The name of the object serves to identify the capability. The most common example is a mutex. For
example, if mu is a mutex, then calling mu.Lock() causes the calling thread to acquire the capability to access data
that is protected by mu. Similarly, calling mu.Unlock() releases that capability.

A thread may hold a capability either exclusively or shared. An exclusive capability can be held by only one thread at
a time, while a shared capability can be held by many threads at the same time. This mechanism enforces a
multiple-reader, single-writer pattern. Write operations to protected data require exclusive access, while read
operations require only shared access.

At any given moment during program execution, a thread holds a specific set of capabilities (e.g. the set of mutexes
that it has locked.) These act like keys or tokens that allow the thread to access a given resource. Just like physical
security keys, a thread cannot make copy of a capability, nor can it destroy one. A thread can only release a
capability to another thread, or acquire one from another thread. The annotations are deliberately agnostic about the
exact mechanism used to acquire and release capabilities; it assumes that the underlying implementation (e.g. the
Mutex implementation) does the handoff in an appropriate manner.

The set of capabilities that are actually held by a given thread at a given point in program execution is a run-time
concept. The static analysis works by calculating an approximation of that set, called the capability environment. The
capability environment is calculated for every program point, and describes the set of capabilities that are statically
known to be held, or not held, at that particular point. This environment is a conservative approximation of the full set
of capabilities that will actually held by a thread at run-time.

Reference Guide
The thread safety analysis uses attributes to declare threading constraints. Attributes must be attached to named
declarations, such as classes, methods, and data members. Users are strongly advised to define macros for the
various attributes; example definitions can be found in mutex.h, below. The following documentation assumes the
use of macros.

The attributes only control assumptions made by thread safety analysis and the warnings it issues. They don’t affect
generated code or behavior at run-time.

For historical reasons, prior versions of thread safety used macro names that were very lock-centric. These macros
have since been renamed to fit a more general capability model. The prior names are still in use, and will be
mentioned under the tag previously where appropriate.

Thread Safety Analysis

613



GUARDED_BY(c) and PT_GUARDED_BY(c)

GUARDED_BY is an attribute on data members, which declares that the data member is protected by the given
capability. Read operations on the data require shared access, while write operations require exclusive access.

PT_GUARDED_BY is similar, but is intended for use on pointers and smart pointers. There is no constraint on the data
member itself, but the data that it points to is protected by the given capability.

Mutex mu;
int *p1             GUARDED_BY(mu);
int *p2             PT_GUARDED_BY(mu);
unique_ptr<int> p3  PT_GUARDED_BY(mu);

void test() {
  p1 = 0;             // Warning!

  *p2 = 42;           // Warning!
  p2 = new int;       // OK.

  *p3 = 42;           // Warning!
  p3.reset(new int);  // OK.
}

REQUIRES(…), REQUIRES_SHARED(…)

Previously: EXCLUSIVE_LOCKS_REQUIRED, SHARED_LOCKS_REQUIRED

REQUIRES is an attribute on functions or methods, which declares that the calling thread must have exclusive access
to the given capabilities. More than one capability may be specified. The capabilities must be held on entry to the
function, and must still be held on exit.

REQUIRES_SHARED is similar, but requires only shared access.

Mutex mu1, mu2;
int a GUARDED_BY(mu1);
int b GUARDED_BY(mu2);

void foo() REQUIRES(mu1, mu2) {
  a = 0;
  b = 0;
}

void test() {
  mu1.Lock();
  foo();         // Warning!  Requires mu2.
  mu1.Unlock();
}

ACQUIRE(…), ACQUIRE_SHARED(…), RELEASE(…), RELEASE_SHARED(…),
RELEASE_GENERIC(…)

Previously: EXCLUSIVE_LOCK_FUNCTION, SHARED_LOCK_FUNCTION, UNLOCK_FUNCTION

ACQUIRE and ACQUIRE_SHARED are attributes on functions or methods declaring that the function acquires a
capability, but does not release it. The given capability must not be held on entry, and will be held on exit (exclusively
for ACQUIRE, shared for ACQUIRE_SHARED).

RELEASE, RELEASE_SHARED, and RELEASE_GENERIC declare that the function releases the given capability. The
capability must be held on entry (exclusively for RELEASE, shared for RELEASE_SHARED, exclusively or shared for
RELEASE_GENERIC), and will no longer be held on exit.

Mutex mu;
MyClass myObject GUARDED_BY(mu);

Thread Safety Analysis

614



void lockAndInit() ACQUIRE(mu) {
  mu.Lock();
  myObject.init();
}

void cleanupAndUnlock() RELEASE(mu) {
  myObject.cleanup();
}                          // Warning!  Need to unlock mu.

void test() {
  lockAndInit();
  myObject.doSomething();
  cleanupAndUnlock();
  myObject.doSomething();  // Warning, mu is not locked.
}

If no argument is passed to ACQUIRE or RELEASE, then the argument is assumed to be this, and the analysis will
not check the body of the function. This pattern is intended for use by classes which hide locking details behind an
abstract interface. For example:

template <class T>
class CAPABILITY("mutex") Container {
private:
  Mutex mu;
  T* data;

public:
  // Hide mu from public interface.
  void Lock()   ACQUIRE() { mu.Lock(); }
  void Unlock() RELEASE() { mu.Unlock(); }

  T& getElem(int i) { return data[i]; }
};

void test() {
  Container<int> c;
  c.Lock();
  int i = c.getElem(0);
  c.Unlock();
}

EXCLUDES(…)

Previously: LOCKS_EXCLUDED

EXCLUDES is an attribute on functions or methods, which declares that the caller must not hold the given capabilities.
This annotation is used to prevent deadlock. Many mutex implementations are not re-entrant, so deadlock can occur
if the function acquires the mutex a second time.

Mutex mu;
int a GUARDED_BY(mu);

void clear() EXCLUDES(mu) {
  mu.Lock();
  a = 0;
  mu.Unlock();
}

void reset() {
  mu.Lock();
  clear();     // Warning!  Caller cannot hold 'mu'.

Thread Safety Analysis

615



  mu.Unlock();
}

Unlike REQUIRES, EXCLUDES is optional. The analysis will not issue a warning if the attribute is missing, which can
lead to false negatives in some cases. This issue is discussed further in Negative Capabilities.

NO_THREAD_SAFETY_ANALYSIS

NO_THREAD_SAFETY_ANALYSIS is an attribute on functions or methods, which turns off thread safety checking for
that method. It provides an escape hatch for functions which are either (1) deliberately thread-unsafe, or (2) are
thread-safe, but too complicated for the analysis to understand. Reasons for (2) will be described in the Known
Limitations, below.

class Counter {
  Mutex mu;
  int a GUARDED_BY(mu);

  void unsafeIncrement() NO_THREAD_SAFETY_ANALYSIS { a++; }
};

Unlike the other attributes, NO_THREAD_SAFETY_ANALYSIS is not part of the interface of a function, and should
thus be placed on the function definition (in the .cc or .cpp file) rather than on the function declaration (in the
header).

RETURN_CAPABILITY(c)

Previously: LOCK_RETURNED

RETURN_CAPABILITY is an attribute on functions or methods, which declares that the function returns a reference
to the given capability. It is used to annotate getter methods that return mutexes.

class MyClass {
private:
  Mutex mu;
  int a GUARDED_BY(mu);

public:
  Mutex* getMu() RETURN_CAPABILITY(mu) { return &mu; }

  // analysis knows that getMu() == mu
  void clear() REQUIRES(getMu()) { a = 0; }
};

ACQUIRED_BEFORE(…), ACQUIRED_AFTER(…)

ACQUIRED_BEFORE and ACQUIRED_AFTER are attributes on member declarations, specifically declarations of
mutexes or other capabilities. These declarations enforce a particular order in which the mutexes must be acquired,
in order to prevent deadlock.

Mutex m1;
Mutex m2 ACQUIRED_AFTER(m1);

// Alternative declaration
// Mutex m2;
// Mutex m1 ACQUIRED_BEFORE(m2);

void foo() {
  m2.Lock();
  m1.Lock();  // Warning!  m2 must be acquired after m1.
  m1.Unlock();
  m2.Unlock();
}

Thread Safety Analysis

616



CAPABILITY(<string>)

Previously: LOCKABLE

CAPABILITY is an attribute on classes, which specifies that objects of the class can be used as a capability. The
string argument specifies the kind of capability in error messages, e.g. "mutex". See the Container example
given above, or the Mutex class in mutex.h.

SCOPED_CAPABILITY

Previously: SCOPED_LOCKABLE

SCOPED_CAPABILITY is an attribute on classes that implement RAII-style locking, in which a capability is acquired
in the constructor, and released in the destructor. Such classes require special handling because the constructor and
destructor refer to the capability via different names; see the MutexLocker class in mutex.h, below.

Scoped capabilities are treated as capabilities that are implicitly acquired on construction and released on
destruction. They are associated with the set of (regular) capabilities named in thread safety attributes on the
constructor. Acquire-type attributes on other member functions are treated as applying to that set of associated
capabilities, while RELEASE implies that a function releases all associated capabilities in whatever mode they’re held.

TRY_ACQUIRE(<bool>, …), TRY_ACQUIRE_SHARED(<bool>, …)

Previously: EXCLUSIVE_TRYLOCK_FUNCTION, SHARED_TRYLOCK_FUNCTION

These are attributes on a function or method that tries to acquire the given capability, and returns a boolean value
indicating success or failure. The first argument must be true or false, to specify which return value indicates
success, and the remaining arguments are interpreted in the same way as ACQUIRE. See mutex.h, below, for
example uses.

Because the analysis doesn’t support conditional locking, a capability is treated as acquired after the first branch on
the return value of a try-acquire function.

Mutex mu;
int a GUARDED_BY(mu);

void foo() {
  bool success = mu.TryLock();
  a = 0;         // Warning, mu is not locked.
  if (success) {
    a = 0;       // Ok.
    mu.Unlock();
  } else {
    a = 0;       // Warning, mu is not locked.
  }
}

ASSERT_CAPABILITY(…) and ASSERT_SHARED_CAPABILITY(…)

Previously: ASSERT_EXCLUSIVE_LOCK, ASSERT_SHARED_LOCK

These are attributes on a function or method which asserts the calling thread already holds the given capability, for
example by performing a run-time test and terminating if the capability is not held. Presence of this annotation
causes the analysis to assume the capability is held after calls to the annotated function. See mutex.h, below, for
example uses.

GUARDED_VAR and PT_GUARDED_VAR

Use of these attributes has been deprecated.

Warning flags

• -Wthread-safety: Umbrella flag which turns on the following:

Thread Safety Analysis

617



• -Wthread-safety-attributes: Semantic checks for thread safety attributes.

• -Wthread-safety-analysis: The core analysis.

• -Wthread-safety-precise: Requires that mutex expressions match precisely.

This warning can be disabled for code which has a lot of aliases.

• -Wthread-safety-reference: Checks when guarded members are passed by reference.
Negative Capabilities are an experimental feature, which are enabled with:

• -Wthread-safety-negative: Negative capabilities. Off by default.

When new features and checks are added to the analysis, they can often introduce additional warnings. Those
warnings are initially released as beta warnings for a period of time, after which they are migrated into the standard
analysis.

• -Wthread-safety-beta: New features. Off by default.

Negative Capabilities
Thread Safety Analysis is designed to prevent both race conditions and deadlock. The GUARDED_BY and
REQUIRES attributes prevent race conditions, by ensuring that a capability is held before reading or writing to
guarded data, and the EXCLUDES attribute prevents deadlock, by making sure that a mutex is not held.

However, EXCLUDES is an optional attribute, and does not provide the same safety guarantee as REQUIRES. In
particular:

• A function which acquires a capability does not have to exclude it.

• A function which calls a function that excludes a capability does not have transitively exclude that
capability.

As a result, EXCLUDES can easily produce false negatives:

class Foo {
  Mutex mu;

  void foo() {
    mu.Lock();
    bar();           // No warning.
    baz();           // No warning.
    mu.Unlock();
  }

  void bar() {       // No warning.  (Should have EXCLUDES(mu)).
    mu.Lock();
    // ...
    mu.Unlock();
  }

  void baz() {
    bif();           // No warning.  (Should have EXCLUDES(mu)).
  }

  void bif() EXCLUDES(mu);
};

Negative requirements are an alternative EXCLUDES that provide a stronger safety guarantee. A negative
requirement uses the REQUIRES attribute, in conjunction with the ! operator, to indicate that a capability should not
be held.

For example, using REQUIRES(!mu) instead of EXCLUDES(mu) will produce the appropriate warnings:

class FooNeg {
  Mutex mu;

Thread Safety Analysis

618



  void foo() REQUIRES(!mu) {   // foo() now requires !mu.
    mu.Lock();
    bar();
    baz();
    mu.Unlock();
  }

  void bar() {
    mu.Lock();       // WARNING!  Missing REQUIRES(!mu).
    // ...
    mu.Unlock();
  }

  void baz() {
    bif();           // WARNING!  Missing REQUIRES(!mu).
  }

  void bif() REQUIRES(!mu);
};

Negative requirements are an experimental feature which is off by default, because it will produce many warnings in
existing code. It can be enabled by passing -Wthread-safety-negative.

Frequently Asked Questions

Q. Should I put attributes in the header file, or in the .cc/.cpp/.cxx file?

(A) Attributes are part of the formal interface of a function, and should always go in the header, where they are visible
to anything that includes the header. Attributes in the .cpp file are not visible outside of the immediate translation unit,
which leads to false negatives and false positives.

Q. “Mutex is not locked on every path through here?” What does that mean?

A. See No conditionally held locks., below.

Known Limitations

Lexical scope

Thread safety attributes contain ordinary C++ expressions, and thus follow ordinary C++ scoping rules. In particular,
this means that mutexes and other capabilities must be declared before they can be used in an attribute.
Use-before-declaration is okay within a single class, because attributes are parsed at the same time as method
bodies. (C++ delays parsing of method bodies until the end of the class.) However, use-before-declaration is not
allowed between classes, as illustrated below.

class Foo;

class Bar {
  void bar(Foo* f) REQUIRES(f->mu);  // Error: mu undeclared.
};

class Foo {
  Mutex mu;
};

Private Mutexes

Good software engineering practice dictates that mutexes should be private members, because the locking
mechanism used by a thread-safe class is part of its internal implementation. However, private mutexes can
sometimes leak into the public interface of a class. Thread safety attributes follow normal C++ access restrictions, so
if mu is a private member of c, then it is an error to write c.mu in an attribute.

Thread Safety Analysis

619



One workaround is to (ab)use the RETURN_CAPABILITY attribute to provide a public name for a private mutex,
without actually exposing the underlying mutex. For example:

class MyClass {
private:
  Mutex mu;

public:
  // For thread safety analysis only.  Does not need to be defined.
  Mutex* getMu() RETURN_CAPABILITY(mu);

  void doSomething() REQUIRES(mu);
};

void doSomethingTwice(MyClass& c) REQUIRES(c.getMu()) {
  // The analysis thinks that c.getMu() == c.mu
  c.doSomething();
  c.doSomething();
}

In the above example, doSomethingTwice() is an external routine that requires c.mu to be locked, which cannot
be declared directly because mu is private. This pattern is discouraged because it violates encapsulation, but it is
sometimes necessary, especially when adding annotations to an existing code base. The workaround is to define
getMu() as a fake getter method, which is provided only for the benefit of thread safety analysis.

No conditionally held locks.

The analysis must be able to determine whether a lock is held, or not held, at every program point. Thus, sections of
code where a lock might be held will generate spurious warnings (false positives). For example:

void foo() {
  bool b = needsToLock();
  if (b) mu.Lock();
  ...  // Warning!  Mutex 'mu' is not held on every path through here.
  if (b) mu.Unlock();
}

No checking inside constructors and destructors.

The analysis currently does not do any checking inside constructors or destructors. In other words, every constructor
and destructor is treated as if it was annotated with NO_THREAD_SAFETY_ANALYSIS. The reason for this is that
during initialization, only one thread typically has access to the object which is being initialized, and it is thus safe
(and common practice) to initialize guarded members without acquiring any locks. The same is true of destructors.

Ideally, the analysis would allow initialization of guarded members inside the object being initialized or destroyed,
while still enforcing the usual access restrictions on everything else. However, this is difficult to enforce in practice,
because in complex pointer-based data structures, it is hard to determine what data is owned by the enclosing
object.

No inlining.

Thread safety analysis is strictly intra-procedural, just like ordinary type checking. It relies only on the declared
attributes of a function, and will not attempt to inline any method calls. As a result, code such as the following will not
work:

template<class T>
class AutoCleanup {
  T* object;
  void (T::*mp)();

public:
  AutoCleanup(T* obj, void (T::*imp)()) : object(obj), mp(imp) { }
  ~AutoCleanup() { (object->*mp)(); }

Thread Safety Analysis

620



};

Mutex mu;
void foo() {
  mu.Lock();
  AutoCleanup<Mutex>(&mu, &Mutex::Unlock);
  // ...
}  // Warning, mu is not unlocked.

In this case, the destructor of Autocleanup calls mu.Unlock(), so the warning is bogus. However, thread safety
analysis cannot see the unlock, because it does not attempt to inline the destructor. Moreover, there is no way to
annotate the destructor, because the destructor is calling a function that is not statically known. This pattern is simply
not supported.

No alias analysis.

The analysis currently does not track pointer aliases. Thus, there can be false positives if two pointers both point to
the same mutex.

class MutexUnlocker {
  Mutex* mu;

public:
  MutexUnlocker(Mutex* m) RELEASE(m) : mu(m)  { mu->Unlock(); }
  ~MutexUnlocker() ACQUIRE(mu) { mu->Lock(); }
};

Mutex mutex;
void test() REQUIRES(mutex) {
  {
    MutexUnlocker munl(&mutex);  // unlocks mutex
    doSomeIO();
  }                              // Warning: locks munl.mu
}

The MutexUnlocker class is intended to be the dual of the MutexLocker class, defined in mutex.h. However, it
doesn’t work because the analysis doesn’t know that munl.mu == mutex. The SCOPED_CAPABILITY attribute
handles aliasing for MutexLocker, but does so only for that particular pattern.

ACQUIRED_BEFORE(…) and ACQUIRED_AFTER(…) are currently unimplemented.

To be fixed in a future update.

mutex.h
Thread safety analysis can be used with any threading library, but it does require that the threading API be wrapped
in classes and methods which have the appropriate annotations. The following code provides mutex.h as an
example; these methods should be filled in to call the appropriate underlying implementation.

#ifndef THREAD_SAFETY_ANALYSIS_MUTEX_H
#define THREAD_SAFETY_ANALYSIS_MUTEX_H

// Enable thread safety attributes only with clang.
// The attributes can be safely erased when compiling with other compilers.
#if defined(__clang__) && (!defined(SWIG))
#define THREAD_ANNOTATION_ATTRIBUTE__(x)   __attribute__((x))
#else
#define THREAD_ANNOTATION_ATTRIBUTE__(x)   // no-op
#endif

#define CAPABILITY(x) \

Thread Safety Analysis

621



  THREAD_ANNOTATION_ATTRIBUTE__(capability(x))

#define SCOPED_CAPABILITY \
  THREAD_ANNOTATION_ATTRIBUTE__(scoped_lockable)

#define GUARDED_BY(x) \
  THREAD_ANNOTATION_ATTRIBUTE__(guarded_by(x))

#define PT_GUARDED_BY(x) \
  THREAD_ANNOTATION_ATTRIBUTE__(pt_guarded_by(x))

#define ACQUIRED_BEFORE(...) \
  THREAD_ANNOTATION_ATTRIBUTE__(acquired_before(__VA_ARGS__))

#define ACQUIRED_AFTER(...) \
  THREAD_ANNOTATION_ATTRIBUTE__(acquired_after(__VA_ARGS__))

#define REQUIRES(...) \
  THREAD_ANNOTATION_ATTRIBUTE__(requires_capability(__VA_ARGS__))

#define REQUIRES_SHARED(...) \
  THREAD_ANNOTATION_ATTRIBUTE__(requires_shared_capability(__VA_ARGS__))

#define ACQUIRE(...) \
  THREAD_ANNOTATION_ATTRIBUTE__(acquire_capability(__VA_ARGS__))

#define ACQUIRE_SHARED(...) \
  THREAD_ANNOTATION_ATTRIBUTE__(acquire_shared_capability(__VA_ARGS__))

#define RELEASE(...) \
  THREAD_ANNOTATION_ATTRIBUTE__(release_capability(__VA_ARGS__))

#define RELEASE_SHARED(...) \
  THREAD_ANNOTATION_ATTRIBUTE__(release_shared_capability(__VA_ARGS__))

#define RELEASE_GENERIC(...) \
  THREAD_ANNOTATION_ATTRIBUTE__(release_generic_capability(__VA_ARGS__))

#define TRY_ACQUIRE(...) \
  THREAD_ANNOTATION_ATTRIBUTE__(try_acquire_capability(__VA_ARGS__))

#define TRY_ACQUIRE_SHARED(...) \
  THREAD_ANNOTATION_ATTRIBUTE__(try_acquire_shared_capability(__VA_ARGS__))

#define EXCLUDES(...) \
  THREAD_ANNOTATION_ATTRIBUTE__(locks_excluded(__VA_ARGS__))

#define ASSERT_CAPABILITY(x) \
  THREAD_ANNOTATION_ATTRIBUTE__(assert_capability(x))

#define ASSERT_SHARED_CAPABILITY(x) \
  THREAD_ANNOTATION_ATTRIBUTE__(assert_shared_capability(x))

#define RETURN_CAPABILITY(x) \
  THREAD_ANNOTATION_ATTRIBUTE__(lock_returned(x))

#define NO_THREAD_SAFETY_ANALYSIS \
  THREAD_ANNOTATION_ATTRIBUTE__(no_thread_safety_analysis)

Thread Safety Analysis

622



// Defines an annotated interface for mutexes.
// These methods can be implemented to use any internal mutex implementation.
class CAPABILITY("mutex") Mutex {
public:
  // Acquire/lock this mutex exclusively.  Only one thread can have exclusive
  // access at any one time.  Write operations to guarded data require an
  // exclusive lock.
  void Lock() ACQUIRE();

  // Acquire/lock this mutex for read operations, which require only a shared
  // lock.  This assumes a multiple-reader, single writer semantics.  Multiple
  // threads may acquire the mutex simultaneously as readers, but a writer
  // must wait for all of them to release the mutex before it can acquire it
  // exclusively.
  void ReaderLock() ACQUIRE_SHARED();

  // Release/unlock an exclusive mutex.
  void Unlock() RELEASE();

  // Release/unlock a shared mutex.
  void ReaderUnlock() RELEASE_SHARED();

  // Generic unlock, can unlock exclusive and shared mutexes.
  void GenericUnlock() RELEASE_GENERIC();

  // Try to acquire the mutex.  Returns true on success, and false on failure.
  bool TryLock() TRY_ACQUIRE(true);

  // Try to acquire the mutex for read operations.
  bool ReaderTryLock() TRY_ACQUIRE_SHARED(true);

  // Assert that this mutex is currently held by the calling thread.
  void AssertHeld() ASSERT_CAPABILITY(this);

  // Assert that is mutex is currently held for read operations.
  void AssertReaderHeld() ASSERT_SHARED_CAPABILITY(this);

  // For negative capabilities.
  const Mutex& operator!() const { return *this; }
};

// Tag types for selecting a constructor.
struct adopt_lock_t {} inline constexpr adopt_lock = {};
struct defer_lock_t {} inline constexpr defer_lock = {};
struct shared_lock_t {} inline constexpr shared_lock = {};

// MutexLocker is an RAII class that acquires a mutex in its constructor, and
// releases it in its destructor.
class SCOPED_CAPABILITY MutexLocker {
private:
  Mutex* mut;
  bool locked;

public:
  // Acquire mu, implicitly acquire *this and associate it with mu.
  MutexLocker(Mutex *mu) ACQUIRE(mu) : mut(mu), locked(true) {
    mu->Lock();
  }

  // Assume mu is held, implicitly acquire *this and associate it with mu.

Thread Safety Analysis

623



  MutexLocker(Mutex *mu, adopt_lock_t) REQUIRES(mu) : mut(mu), locked(true) {}

  // Acquire mu in shared mode, implicitly acquire *this and associate it with mu.
  MutexLocker(Mutex *mu, shared_lock_t) ACQUIRE_SHARED(mu) : mut(mu), locked(true) {
    mu->ReaderLock();
  }

  // Assume mu is held in shared mode, implicitly acquire *this and associate it with mu.
  MutexLocker(Mutex *mu, adopt_lock_t, shared_lock_t) REQUIRES_SHARED(mu)
    : mut(mu), locked(true) {}

  // Assume mu is not held, implicitly acquire *this and associate it with mu.
  MutexLocker(Mutex *mu, defer_lock_t) EXCLUDES(mu) : mut(mu), locked(false) {}

  // Release *this and all associated mutexes, if they are still held.
  // There is no warning if the scope was already unlocked before.
  ~MutexLocker() RELEASE() {
    if (locked)
      mut->GenericUnlock();
  }

  // Acquire all associated mutexes exclusively.
  void Lock() ACQUIRE() {
    mut->Lock();
    locked = true;
  }

  // Try to acquire all associated mutexes exclusively.
  bool TryLock() TRY_ACQUIRE(true) {
    return locked = mut->TryLock();
  }

  // Acquire all associated mutexes in shared mode.
  void ReaderLock() ACQUIRE_SHARED() {
    mut->ReaderLock();
    locked = true;
  }

  // Try to acquire all associated mutexes in shared mode.
  bool ReaderTryLock() TRY_ACQUIRE_SHARED(true) {
    return locked = mut->ReaderTryLock();
  }

  // Release all associated mutexes. Warn on double unlock.
  void Unlock() RELEASE() {
    mut->Unlock();
    locked = false;
  }

  // Release all associated mutexes. Warn on double unlock.
  void ReaderUnlock() RELEASE() {
    mut->ReaderUnlock();
    locked = false;
  }
};

#ifdef USE_LOCK_STYLE_THREAD_SAFETY_ATTRIBUTES
// The original version of thread safety analysis the following attribute
// definitions.  These use a lock-based terminology.  They are still in use

Thread Safety Analysis

624



// by existing thread safety code, and will continue to be supported.

// Deprecated.
#define PT_GUARDED_VAR \
  THREAD_ANNOTATION_ATTRIBUTE__(pt_guarded_var)

// Deprecated.
#define GUARDED_VAR \
  THREAD_ANNOTATION_ATTRIBUTE__(guarded_var)

// Replaced by REQUIRES
#define EXCLUSIVE_LOCKS_REQUIRED(...) \
  THREAD_ANNOTATION_ATTRIBUTE__(exclusive_locks_required(__VA_ARGS__))

// Replaced by REQUIRES_SHARED
#define SHARED_LOCKS_REQUIRED(...) \
  THREAD_ANNOTATION_ATTRIBUTE__(shared_locks_required(__VA_ARGS__))

// Replaced by CAPABILITY
#define LOCKABLE \
  THREAD_ANNOTATION_ATTRIBUTE__(lockable)

// Replaced by SCOPED_CAPABILITY
#define SCOPED_LOCKABLE \
  THREAD_ANNOTATION_ATTRIBUTE__(scoped_lockable)

// Replaced by ACQUIRE
#define EXCLUSIVE_LOCK_FUNCTION(...) \
  THREAD_ANNOTATION_ATTRIBUTE__(exclusive_lock_function(__VA_ARGS__))

// Replaced by ACQUIRE_SHARED
#define SHARED_LOCK_FUNCTION(...) \
  THREAD_ANNOTATION_ATTRIBUTE__(shared_lock_function(__VA_ARGS__))

// Replaced by RELEASE and RELEASE_SHARED
#define UNLOCK_FUNCTION(...) \
  THREAD_ANNOTATION_ATTRIBUTE__(unlock_function(__VA_ARGS__))

// Replaced by TRY_ACQUIRE
#define EXCLUSIVE_TRYLOCK_FUNCTION(...) \
  THREAD_ANNOTATION_ATTRIBUTE__(exclusive_trylock_function(__VA_ARGS__))

// Replaced by TRY_ACQUIRE_SHARED
#define SHARED_TRYLOCK_FUNCTION(...) \
  THREAD_ANNOTATION_ATTRIBUTE__(shared_trylock_function(__VA_ARGS__))

// Replaced by ASSERT_CAPABILITY
#define ASSERT_EXCLUSIVE_LOCK(...) \
  THREAD_ANNOTATION_ATTRIBUTE__(assert_exclusive_lock(__VA_ARGS__))

// Replaced by ASSERT_SHARED_CAPABILITY
#define ASSERT_SHARED_LOCK(...) \
  THREAD_ANNOTATION_ATTRIBUTE__(assert_shared_lock(__VA_ARGS__))

// Replaced by EXCLUDE_CAPABILITY.
#define LOCKS_EXCLUDED(...) \
  THREAD_ANNOTATION_ATTRIBUTE__(locks_excluded(__VA_ARGS__))

// Replaced by RETURN_CAPABILITY
#define LOCK_RETURNED(x) \

Thread Safety Analysis

625



  THREAD_ANNOTATION_ATTRIBUTE__(lock_returned(x))

#endif  // USE_LOCK_STYLE_THREAD_SAFETY_ATTRIBUTES

#endif  // THREAD_SAFETY_ANALYSIS_MUTEX_H

Data flow analysis: an informal introduction

Abstract
This document introduces data flow analysis in an informal way. The goal is to give the reader an intuitive
understanding of how it works, and show how it applies to a range of refactoring and bug finding problems.

Data flow analysis is a well-established technique; it is described in many papers, books, and videos. If you would
like a more formal, or a more thorough explanation of the concepts mentioned in this document, please refer to the
following resources:

• The Lattice article in Wikipedia.

• Videos on the PacketPrep YouTube channel that introduce lattices and the necessary background information:
#20, #21, #22, #23, #24, #25.

• Introduction to Dataflow Analysis

• Introduction to abstract interpretation.

• Introduction to symbolic execution.

• Static Program Analysis by Anders Møller and Michael I. Schwartzbach.

• EXE: automatically generating inputs of death (a paper that successfully applies symbolic execution to
real-world software).

Data flow analysis

The purpose of data flow analysis

Data flow analysis is a static analysis technique that proves facts about a program or its fragment. It can make
conclusions about all paths through the program, while taking control flow into account and scaling to large
programs. The basic idea is propagating facts about the program through the edges of the control flow graph (CFG)
until a fixpoint is reached.

Sample problem and an ad-hoc solution

We would like to explain data flow analysis while discussing an example. Let’s imagine that we want to track possible
values of an integer variable in our program. Here is how a human could annotate the code:

void Example(int n) {
  int x = 0;
  // x is {0}
  if (n > 0) {
    x = 5;
    // x is {5}
  } else {
    x = 42;
    // x is {42}
  }
  // x is {5; 42}
  print(x);
}

We use sets of integers to represent possible values of x. Local variables have unambiguous values between
statements, so we annotate program points between statements with sets of possible values.

Data flow analysis: an informal introduction

626

https://en.wikipedia.org/wiki/Lattice_(order)
https://www.youtube.com/watch?v=73j_FXBXGm8
https://www.youtube.com/watch?v=b5sDjo9tfE8
https://www.youtube.com/watch?v=saOG7Uooeho
https://www.youtube.com/watch?v=3EAYX-wZH0g
https://www.youtube.com/watch?v=KRkHwQtW6Cc
https://www.youtube.com/watch?v=7Gwzsc4rAgw
https://www.youtube.com/watch?v=OROXJ9-wUQE
http://www.cs.tau.ac.il/~msagiv/courses/asv/absint-1.pdf
https://www.cs.umd.edu/~mwh/se-tutorial/symbolic-exec.pdf
https://cs.au.dk/~amoeller/spa/
https://css.csail.mit.edu/6.858/2020/readings/exe.pdf


Here is how we arrived at these annotations. Assigning a constant to x allows us to make a conclusion that x can
only have one value. When control flow from the “then” and “else” branches joins, x can have either value.

Abstract algebra provides a nice formalism that models this kind of structure, namely, a lattice. A join-semilattice is a
partially ordered set, in which every two elements have a least upper bound (called a join).

join(a, b) ■ a   and   join(a, b) ■ b   and   join(x, x) = x

For this problem we will use the lattice of subsets of integers, with set inclusion relation as ordering and set union as
a join.

Lattices are often represented visually as Hasse diagrams. Here is a Hasse diagram for our lattice that tracks
subsets of integers:

Computing the join in the lattice corresponds to finding the lowest common ancestor (LCA) between two nodes in its
Hasse diagram. There is a vast amount of literature on efficiently implementing LCA queries for a DAG, however
Efficient Implementation of Lattice Operations (1989) (CiteSeerX, doi) describes a scheme that particularly
well-suited for programmatic implementation.

Too much information and “top” values

Let’s try to find the possible sets of values of x in a function that modifies x in a loop:

void ExampleOfInfiniteSets() {
  int x = 0; // x is {0}
  while (condition()) {
    x += 1;  // x is {0; 1; 2; …}
  }
  print(x);  // x is {0; 1; 2; …}
}

We have an issue: x can have any value greater than zero; that’s an infinite set of values, if the program operated on
mathematical integers. In C++ int is limited by INT_MAX so technically we have a set {0; 1; …; INT_MAX}
which is still really big.

To make our analysis practical to compute, we have to limit the amount of information that we track. In this case, we
can, for example, arbitrarily limit the size of sets to 3 elements. If at a certain program point x has more than 3
possible values, we stop tracking specific values at that program point. Instead, we denote possible values of x with
the symbol ■ (pronounced “top” according to a convention in abstract algebra).

void ExampleOfTopWithALoop() {
  int x = 0;  // x is {0}
  while (condition()) {
    x += 1;   // x is ■
  }
  print(x);   // x is ■
}

The statement “at this program point, x’s possible values are ■” is understood as “at this program point x can have
any value because we have too much information, or the information is conflicting”.

Note that we can get more than 3 possible values even without a loop:

void ExampleOfTopWithoutLoops(int n) {
  int x = 0;  // x is {0}
  switch(n) {
    case 0:  x = 1; break; // x is {1}
    case 1:  x = 9; break; // x is {9}
    case 2:  x = 7; break; // x is {7}
    default: x = 3; break; // x is {3}
  }
  // x is ■
}

Data flow analysis: an informal introduction

627

https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.106.4911
https://doi.org/10.1145%2F59287.59293


Uninitialized variables and “bottom” values

When x is declared but not initialized, it has no possible values. We represent this fact symbolically as ⊥
(pronounced “bottom”).

void ExampleOfBottom() {
  int x;    // x is ⊥
  x = 42;   // x is {42}
  print(x);
}

Note that using values read from uninitialized variables is undefined behaviour in C++. Generally, compilers and
static analysis tools can assume undefined behavior does not happen. We must model uninitialized variables only
when we are implementing a checker that specifically is trying to find uninitialized reads. In this example we show
how to model uninitialized variables only to demonstrate the concept of “bottom”, and how it applies to possible value
analysis. We describe an analysis that finds uninitialized reads in a section below.

A practical lattice that tracks sets of concrete values

Taking into account all corner cases covered above, we can put together a lattice that we can use in practice to track
possible values of integer variables. This lattice represents sets of integers with 1, 2, or 3 elements, as well as top
and bottom. Here is a Hasse diagram for it:

Formalization

Let’s consider a slightly more complex example, and think about how we can compute the sets of possible values
algorithmically.

void Example(int n) {
  int x;          // x is ⊥
  if (n > 0) {
    if (n == 42) {
       x = 44;    // x is {44}
    } else {
       x = 5;     // x is {5}
    }
    print(x);     // x is {44; 5}
  } else {
    x = n;        // x is ■
  }
  print(x);       // x is ■
}

As humans, we understand the control flow from the program text. We used our understanding of control flow to find
program points where two flows join. Formally, control flow is represented by a CFG (control flow graph):

We can compute sets of possible values by propagating them through the CFG of the function:

• When x is declared but not initialized, its possible values are {}. The empty set plays the role of ⊥ in this lattice.

• When x is assigned a concrete value, its possible set of values contains just that specific value.

• When x is assigned some unknown value, it can have any value. We represent this fact as ■.

• When two control flow paths join, we compute the set union of incoming values (limiting the number of elements
to 3, representig larger sets as ■).

The sets of possible values are influenced by:

• Statements, for example, assignments.

• Joins in control flow, for example, ones that appear at the end of “if” statements.

Effects of statements are modeled by what is formally known as a transfer function. A transfer function takes two
arguments: the statement, and the state of x at the previous program point. It produces the state of x at the next
program point. For example, the transfer function for assignment ignores the state at the previous program point:

Data flow analysis: an informal introduction

628



// GIVEN: x is {42; 44}
x = 0;
// CONCLUSION: x is {0}

The transfer function for + performs arithmetic on every set member:

// GIVEN: x is {42, 44}
x = x + 100;
// CONCLUSION: x is {142, 144}

Effects of control flow are modeled by joining the knowledge from all possible previous program points.

if (...) {
  ...
  // GIVEN: x is {42}
} else {
  ...
  // GIVEN: x is {44}
}
// CONCLUSION: x is {42; 44}

// GIVEN: x is {42}
while (...) {
  ...
  // GIVEN: x is {44}
}
// CONCLUSION: {42; 44}

The predicate that we marked “given” is usually called a precondition, and the conclusion is called a postcondition.

In terms of the CFG, we join the information from all predecessor basic blocks.

Putting it all together, to model the effects of a basic block we compute:

out = transfer(basic_block, join(in_1, in_2, ..., in_n))

(Note that there are other ways to write this equation that produce higher precision analysis results. The trick is to
keep exploring the execution paths separately and delay joining until later. However, we won’t discuss those
variations here.)

To make a conclusion about all paths through the program, we repeat this computation on all basic blocks until we
reach a fixpoint. In other words, we keep propagating information through the CFG until the computed sets of values
stop changing.

If the lattice has a finite height and transfer functions are monotonic the algorithm is guaranteed to terminate. Each
iteration of the algorithm can change computed values only to larger values from the lattice. In the worst case, all
computed values become ■, which is not very useful, but at least the analysis terminates at that point, because it
can’t change any of the values.

Fixpoint iteration can be optimised by only reprocessing basic blocks which had one of their inputs changed on the
previous iteration. This is typically implemented using a worklist queue. With this optimisation the time complexity
becomes O(m * |L|), where m is the number of basic blocks in the CFG and |L| is the size of lattice used by the
analysis.

Symbolic execution: a very short informal introduction

Symbolic values

In the previous example where we tried to figure out what values a variable can have, the analysis had to be seeded
with a concrete value. What if there are no assignments of concrete values in the program? We can still deduce
some interesting information by representing unknown input values symbolically, and computing results as symbolic
expressions:

void PrintAbs(int x) {
  int result;

Data flow analysis: an informal introduction

629



  if (x >= 0) {
    result = x;   // result is {x}
  } else {
    result = -x;  // result is {-x}
  }
  print(result);  // result is {x; -x}
}

We can’t say what specific value gets printed, but we know that it is either x or -x.

Dataflow analysis is an istance of abstract interpretation, and does not dictate how exactly the lattice and transfer
functions should be designed, beyond the necessary conditions for the analysis to converge. Nevertheless, we can
use symbolic execution ideas to guide our design of the lattice and transfer functions: lattice values can be symbolic
expressions, and transfer functions can construct more complex symbolic expressions from symbolic expressions
that represent arguments. See this StackOverflow discussion for a further comparison of abstract interpretation and
symbolic execution.

Flow condition

A human can say about the previous example that the function returns x when x >= 0, and -x when x < 0. We
can make this conclusion programmatically by tracking a flow condition. A flow condition is a predicate written in
terms of the program state that is true at a specific program point regardless of the execution path that led to this
statement. For example, the flow condition for the program point right before evaluating result = x is x >= 0.

If we enhance the lattice to be a set of pairs of values and predicates, the dataflow analysis computes the following
values:

void PrintAbs(int x) {
  int result;
  if (x >= 0) {
    // Flow condition: x >= 0.
    result = x;   // result is {x if x >= 0}
  } else {
    // Flow condition: x < 0.
    result = -x;  // result is {-x if x < 0}
  }
  print(result);  // result is {x if x >= 0; -x if x < 0}
}

Of course, in a program with loops, symbolic expressions for flow conditions can grow unbounded. A practical static
analysis system must control this growth to keep the symbolic representations manageable and ensure that the data
flow analysis terminates. For example, it can use a constraint solver to prune impossible flow conditions, and/or it
can abstract them, losing precision, after their symbolic representations grow beyond some threshold. This is similar
to how we had to limit the sizes of computed sets of possible values to 3 elements.

Symbolic pointers

This approach proves to be particularly useful for modeling pointer values, since we don’t care about specific
addresses but just want to give a unique identifier to a memory location.

void ExampleOfSymbolicPointers(bool b) {
  int x = 0;     // x is {0}
  int* ptr = &x; // x is {0}      ptr is {&x}
  if (b) {
    *ptr = 42;   // x is {42}     ptr is {&x}
  }
  print(x);      // x is {0; 42}  ptr is {&x}
}

Example: finding output parameters
Let’s explore how data flow analysis can help with a problem that is hard to solve with other tools in Clang.

Data flow analysis: an informal introduction

630

https://cstheory.stackexchange.com/questions/19708/symbolic-execution-is-a-case-of-abstract-interpretation


Problem description

Output parameters are function parameters of pointer or reference type whose pointee is completely overwritten by
the function, and not read before it is overwritten. They are common in pre-C++11 code due to the absence of move
semantics. In modern C++ output parameters are non-idiomatic, and return values are used instead.

Imagine that we would like to refactor output parameters to return values to modernize old code. The first step is to
identify refactoring candidates through static analysis.

For example, in the following code snippet the pointer c is an output parameter:

struct Customer {
  int account_id;
  std::string name;
}

void GetCustomer(Customer *c) {
  c->account_id = ...;
  if (...) {
    c->name = ...;
  } else {
    c->name = ...;
  }
}

We would like to refactor this code into:

Customer GetCustomer() {
  Customer c;
  c.account_id = ...;
  if (...) {
    c.name = ...;
  } else {
    c.name = ...;
  }
  return c;
}

However, in the function below the parameter c is not an output parameter because its field name is not overwritten
on every path through the function.

void GetCustomer(Customer *c) {
  c->account_id = ...;
  if (...) {
    c->name = ...;
  }
}

The code also cannot read the value of the parameter before overwriting it:

void GetCustomer(Customer *c) {
  use(c->account_id);
  c->name = ...;
  c->account_id = ...;
}

Functions that escape the pointer also block the refactoring:

Customer* kGlobalCustomer;

void GetCustomer(Customer *c) {
  c->name = ...;
  c->account_id = ...;
  kGlobalCustomer = c;
}

Data flow analysis: an informal introduction

631



To identify a candidate function for refactoring, we need to do the following:

• Find a function with a non-const pointer or reference parameter.

• Find the definition of that function.

• Prove that the function completely overwrites the pointee on all paths before returning.

• Prove that the function reads the pointee only after overwriting it.

• Prove that the function does not persist the pointer in a data structure that is live after the function returns.

There are also requirements that all usage sites of the candidate function must satisfy, for example, that function
arguments do not alias, that users are not taking the address of the function, and so on. Let’s consider verifying
usage site conditions to be a separate static analysis problem.

Lattice design

To analyze the function body we can use a lattice which consists of normal states and failure states. A normal state
describes program points where we are sure that no behaviors that block the refactoring have occurred. Normal
states keep track of all parameter’s member fields that are known to be overwritten on every path from function entry
to the corresponding program point. Failure states accumulate observed violations (unsafe reads and pointer
escapes) that block the refactoring.

In the partial order of the lattice failure states compare greater than normal states, which guarantees that they “win”
when joined with normal states. Order between failure states is determined by inclusion relation on the set of
accumulated violations (lattice’s ■ is ⊆ on the set of violations). Order between normal states is determined by
reversed inclusion relation on the set of overwritten parameter’s member fields (lattice’s ■ is ⊇ on the set of
overwritten fields).

To determine whether a statement reads or writes a field we can implement symbolic evaluation of DeclRefExprs,
LValueToRValue casts, pointer dereference operator and MemberExprs.

Using data flow results to identify output parameters

Let’s take a look at how we use data flow analysis to identify an output parameter. The refactoring can be safely
done when the data flow algorithm computes a normal state with all of the fields proven to be overwritten in the exit
basic block of the function.

struct Customer {
  int account_id;
  std::string name;
};

void GetCustomer(Customer* c) {
  // Overwritten: {}
  c->account_id = ...; // Overwritten: {c->account_id}
  if (...) {
    c->name = ...;     // Overwritten: {c->account_id, c->name}
  } else {
    c->name = ...;     // Overwritten: {c->account_id, c->name}
  }
  // Overwritten: {c->account_id, c->name}
}

When the data flow algorithm computes a normal state, but not all fields are proven to be overwritten we can’t
perform the refactoring.

void target(bool b, Customer* c) {
  // Overwritten: {}
  if (b) {
    c->account_id = 42;     // Overwritten: {c->account_id}
  } else {
    c->name = "Konrad";  // Overwritten: {c->name}
  }

Data flow analysis: an informal introduction

632



  // Overwritten: {}
}

Similarly, when the data flow algorithm computes a failure state, we also can’t perform the refactoring.

Customer* kGlobalCustomer;

void GetCustomer(Customer* c) {
  // Overwritten: {}
  c->account_id = ...;    // Overwritten: {c->account_id}
  if (...) {
    print(c->name);       // Unsafe read
  } else {
    kGlobalCustomer = c;  // Pointer escape
  }
  // Unsafe read, Pointer escape
}

Example: finding dead stores
Let’s say we want to find redundant stores, because they indicate potential bugs.

x = GetX();
x = GetY();

The first store to x is never read, probably there is a bug.

The implementation of dead store analysis is very similar to output parameter analysis: we need to track stores and
loads, and find stores that were never read.

Liveness analysis is a generalization of this idea, which is often used to answer many related questions, for example:

• finding dead stores,

• finding uninitialized variables,

• finding a good point to deallocate memory,

• finding out if it would be safe to move an object.

Example: definitive initialization
Definitive initialization proves that variables are known to be initialized when read. If we find a variable which is read
when not initialized then we generate a warning.

void Init() {
  int x;    // x is uninitialized
  if (cond()) {
    x = 10; // x is initialized
  } else {
    x = 20; // x is initialized
  }
  print(x); // x is initialized
}

void Uninit() {
  int x;    // x is uninitialized
  if (cond()) {
    x = 10; // x is initialized
  }
  print(x); // x is maybe uninitialized, x is being read, report a bug.
}

For this purpose we can use lattice in a form of a mapping from variable declarations to initialization states; each
initialization state is represented by the followingn lattice:

Data flow analysis: an informal introduction

633

https://en.wikipedia.org/wiki/Live_variable_analysis


A lattice element could also capture the source locations of the branches that lead us to the corresponding program
point. Diagnostics would use this information to show a sample buggy code path to the user.

Example: refactoring raw pointers to unique_ptr
Modern idiomatic C++ uses smart pointers to express memory ownership, however in pre-C++11 code one can often
find raw pointers that own heap memory blocks.

Imagine that we would like to refactor raw pointers that own memory to unique_ptr. There are multiple ways to
design a data flow analysis for this problem; let’s look at one way to do it.

For example, we would like to refactor the following code that uses raw pointers:

void UniqueOwnership1() {
  int *pi = new int;
  if (...) {
    Borrow(pi);
    delete pi;
  } else {
    TakeOwnership(pi);
  }
}

into code that uses unique_ptr:

void UniqueOwnership1() {
  auto pi = std::make_unique<int>();
  if (...) {
    Borrow(pi.get());
  } else {
    TakeOwnership(pi.release());
  }
}

This problem can be solved with a lattice in form of map from value declarations to pointer states:

We can perform the refactoring if at the exit of a function pi is Compatible.

void UniqueOwnership1() {
  int *pi;             // pi is Compatible
  pi = new int;        // pi is Defined
  if (...) {
    Borrow(pi);        // pi is Defined
    delete pi;         // pi is Compatible
  } else {
    TakeOwnership(pi); // pi is Compatible
  }
  // pi is Compatible
}

Let’s look at an example where the raw pointer owns two different memory blocks:

void UniqueOwnership2() {
  int *pi = new int;  // pi is Defined
  Borrow(pi);
  delete pi;          // pi is Compatible
  if (smth) {
    pi = new int;     // pi is Defined
    Borrow(pi);
    delete pi;        // pi is Compatible
  }
  // pi is Compatible
}

It can be refactored to use unique_ptr like this:

Data flow analysis: an informal introduction

634



void UniqueOwnership2() {
  auto pi = make_unique<int>();
  Borrow(pi);
  if (smth) {
    pi = make_unique<int>();
    Borrow(pi);
  }
}

In the following example, the raw pointer is used to access the heap object after the ownership has been transferred.

void UniqueOwnership3() {
  int *pi = new int; // pi is Defined
  if (...) {
    Borrow(pi);
    delete pi;       // pi is Compatible
  } else {
    vector<unique_ptr<int>> v = {std::unique_ptr(pi)}; // pi is Compatible
    print(*pi);
    use(v);
  }
  // pi is Compatible
}

We can refactor this code to use unique_ptr, however we would have to introduce a non-owning pointer variable,
since we can’t use the moved-from unique_ptr to access the object:

void UniqueOwnership3() {
  std::unique_ptr<int> pi = std::make_unique<int>();
  if (...) {
    Borrow(pi);
  } else {
    int *pi_non_owning = pi.get();
    vector<unique_ptr<int>> v = {std::move(pi)};
    print(*pi_non_owning);
    use(v);
  }
}

If the original code didn’t call delete at the very end of the function, then our refactoring may change the point at
which we run the destructor and release memory. Specifically, if there is some user code after delete, then
extending the lifetime of the object until the end of the function may hold locks for longer than necessary, introduce
memory overhead etc.

One solution is to always replace delete with a call to reset(), and then perform another analysis that removes
unnecessary reset() calls.

void AddedMemoryOverhead() {
  HugeObject *ho = new HugeObject();
  use(ho);
  delete ho; // Release the large amount of memory quickly.
  LongRunningFunction();
}

This analysis will refuse to refactor code that mixes borrowed pointer values and unique ownership. In the following
code, GetPtr() returns a borrowed pointer, which is assigned to pi. Then, pi is used to hold a uniquely-owned
pointer. We don’t distinguish between these two assignments, and we want each assignment to be paired with a
corresponding sink; otherwise, we transition the pointer to a Conflicting state, like in this example.

void ConflictingOwnership() {
  int *pi;           // pi is Compatible
  pi = GetPtr();     // pi is Defined
  Borrow(pi);        // pi is Defined

Data flow analysis: an informal introduction

635



  pi = new int;      // pi is Conflicting
  Borrow(pi);
  delete pi;
  // pi is Conflicting
}

We could still handle this case by finding a maximal range in the code where pi could be in the Compatible state,
and only refactoring that part.

void ConflictingOwnership() {
  int *pi;
  pi = GetPtr();
  Borrow(pi);

  std::unique_ptr<int> pi_unique = std::make_unique<int>();
  Borrow(pi_unique.get());
}

Example: finding redundant branch conditions
In the code below b1 should not be checked in both the outer and inner “if” statements. It is likely there is a bug in
this code.

int F(bool b1, bool b2) {
  if (b1) {
    f();
    if (b1 && b2) {  // Check `b1` again -- unnecessary!
      g();
    }
  }
}

A checker that finds this pattern syntactically is already implemented in ClangTidy using AST matchers
(bugprone-redundant-branch-condition).

To implement it using the data flow analysis framework, we can produce a warning if any part of the branch condition
is implied by the flow condition.

int F(bool b1, bool b2) {
  // Flow condition: true.
  if (b1) {
    // Flow condition: b1.
    f();
    if (b1 && b2) { // `b1` is implied by the flow condition.
      g();
    }
  }
}

One way to check this implication is to use a SAT solver. Without a SAT solver, we could keep the flow condition in
the CNF form and then it would be easy to check the implication.

Example: finding unchecked std::optional unwraps
Calling optional::value() is only valid if optional::has_value() is true. We want to show that when
x.value() is executed, the flow condition implies x.has_value().

In the example below x.value() is accessed safely because it is guarded by the x.has_value() check.

void Example(std::optional<int> &x) {
  if (x.has_value()) {
    use(x.value());

Data flow analysis: an informal introduction

636



  }
}

While entering the if branch we deduce that x.has_value() is implied by the flow condition.

void Example(std::optional<int> x) {
  // Flow condition: true.
  if (x.has_value()) {
    // Flow condition: x.has_value() == true.
    use(x.value());
  }
  // Flow condition: true.
}

We also need to prove that x is not modified between check and value access. The modification of x may be very
subtle:

void F(std::optional<int> &x);

void Example(std::optional<int> &x) {
  if (x.has_value()) {
    // Flow condition: x.has_value() == true.
    unknown_function(x); // may change x.
    // Flow condition: true.
    use(x.value());
  }
}

Example: finding dead code behind A/B experiment flags
Finding dead code is a classic application of data flow analysis.

Unused flags for A/B experiment hide dead code. However, this flavor of dead code is invisible to the compiler
because the flag can be turned on at any moment.

We could make a tool that deletes experiment flags. The user tells us which flag they want to delete, and we assume
that the it’s value is a given constant.

For example, the user could use the tool to remove example_flag from this code:

DEFINE_FLAG(std::string, example_flag, "", "A sample flag.");

void Example() {
  bool x = GetFlag(FLAGS_example_flag).empty();
  f();
  if (x) {
    g();
  } else {
    h();
  }
}

The tool would simplify the code to:

void Example() {
  f();
  g();
}

We can solve this problem with a classic constant propagation lattice combined with symbolic evaluation.

Example: finding inefficient usages of associative containers
Real-world code often accidentally performs repeated lookups in associative containers:

Data flow analysis: an informal introduction

637



map<int, Employee> xs;
xs[42]->name = "...";
xs[42]->title = "...";

To find the above inefficiency we can use the available expressions analysis to understand that m[42] is evaluated
twice.

map<int, Employee> xs;
Employee &e = xs[42];
e->name = "...";
e->title = "...";

We can also track the m.contains() check in the flow condition to find redundant checks, like in the example
below.

std::map<int, Employee> xs;
if (!xs.contains(42)) {
  xs.insert({42, someEmployee});
}

Example: refactoring types that implicitly convert to each other
Refactoring one strong type to another is difficult, but the compiler can help: once you refactor one reference to the
type, the compiler will flag other places where this information flows with type mismatch errors. Unfortunately this
strategy does not work when you are refactoring types that implicitly convert to each other, for example, replacing
int32_t with int64_t.

Imagine that we want to change user IDs from 32 to 64-bit integers. In other words, we need to find all integers
tainted with user IDs. We can use data flow analysis to implement taint analysis.

void UseUser(int32_t user_id) {
  int32_t id = user_id;
  // Variable `id` is tainted with a user ID.
  ...
}

Taint analysis is very well suited to this problem because the program rarely branches on user IDs, and almost
certainly does not perform any computation (like arithmetic).

Data flow analysis: an informal introduction

638



AddressSanitizer
Introduction 639

How to build 639

Usage 640

Symbolizing the Reports 640

Additional Checks 641

Initialization order checking 641

Stack Use After Return (UAR) 641

Memory leak detection 641

Issue Suppression 641

Suppressing Reports in External Libraries 641

Conditional Compilation with __has_feature(address_sanitizer) 642

Disabling Instrumentation with __attribute__((no_sanitize("address"))) 642

Suppressing Errors in Recompiled Code (Ignorelist) 642

Suppressing memory leaks 642

Code generation control 643

Instrumentation code outlining 643

Limitations 643

Supported Platforms 643

Current Status 643

More Information 643

Introduction
AddressSanitizer is a fast memory error detector. It consists of a compiler instrumentation module and a run-time
library. The tool can detect the following types of bugs:

• Out-of-bounds accesses to heap, stack and globals

• Use-after-free

• Use-after-return (clang flag -fsanitize-address-use-after-return=(never|runtime|always)
default: runtime)

• Enable with: ASAN_OPTIONS=detect_stack_use_after_return=1 (already enabled on Linux).

• Disable with: ASAN_OPTIONS=detect_stack_use_after_return=0.

• Use-after-scope (clang flag -fsanitize-address-use-after-scope)

• Double-free, invalid free

• Memory leaks (experimental)

Typical slowdown introduced by AddressSanitizer is 2x.

How to build
Build LLVM/Clang with CMake.

AddressSanitizer

639

https://llvm.org/docs/CMake.html


Usage
Simply compile and link your program with -fsanitize=address flag. The AddressSanitizer run-time library
should be linked to the final executable, so make sure to use clang (not ld) for the final link step. When linking
shared libraries, the AddressSanitizer run-time is not linked, so -Wl,-z,defs may cause link errors (don’t use it
with AddressSanitizer). To get a reasonable performance add -O1 or higher. To get nicer stack traces in error
messages add -fno-omit-frame-pointer. To get perfect stack traces you may need to disable inlining (just use
-O1) and tail call elimination (-fno-optimize-sibling-calls).

% cat example_UseAfterFree.cc
int main(int argc, char **argv) {
  int *array = new int[100];
  delete [] array;
  return array[argc];  // BOOM
}

# Compile and link
% clang++ -O1 -g -fsanitize=address -fno-omit-frame-pointer example_UseAfterFree.cc

or:

# Compile
% clang++ -O1 -g -fsanitize=address -fno-omit-frame-pointer -c example_UseAfterFree.cc
# Link
% clang++ -g -fsanitize=address example_UseAfterFree.o

If a bug is detected, the program will print an error message to stderr and exit with a non-zero exit code.
AddressSanitizer exits on the first detected error. This is by design:

• This approach allows AddressSanitizer to produce faster and smaller generated code (both by ~5%).

• Fixing bugs becomes unavoidable. AddressSanitizer does not produce false alarms. Once a memory corruption
occurs, the program is in an inconsistent state, which could lead to confusing results and potentially misleading
subsequent reports.

If your process is sandboxed and you are running on OS X 10.10 or earlier, you will need to set
DYLD_INSERT_LIBRARIES environment variable and point it to the ASan library that is packaged with the compiler
used to build the executable. (You can find the library by searching for dynamic libraries with asan in their name.) If
the environment variable is not set, the process will try to re-exec. Also keep in mind that when moving the
executable to another machine, the ASan library will also need to be copied over.

Symbolizing the Reports
To make AddressSanitizer symbolize its output you need to set the ASAN_SYMBOLIZER_PATH environment variable
to point to the llvm-symbolizer binary (or make sure llvm-symbolizer is in your $PATH):
% ASAN_SYMBOLIZER_PATH=/usr/local/bin/llvm-symbolizer ./a.out
==9442== ERROR: AddressSanitizer heap-use-after-free on address 0x7f7ddab8c084 at pc 0x403c8c bp 0x7fff87fb82d0 sp 0x7fff87fb82c8
READ of size 4 at 0x7f7ddab8c084 thread T0
    #0 0x403c8c in main example_UseAfterFree.cc:4
    #1 0x7f7ddabcac4d in __libc_start_main ??:0
0x7f7ddab8c084 is located 4 bytes inside of 400-byte region [0x7f7ddab8c080,0x7f7ddab8c210)
freed by thread T0 here:
    #0 0x404704 in operator delete[](void*) ??:0
    #1 0x403c53 in main example_UseAfterFree.cc:4
    #2 0x7f7ddabcac4d in __libc_start_main ??:0
previously allocated by thread T0 here:
    #0 0x404544 in operator new[](unsigned long) ??:0
    #1 0x403c43 in main example_UseAfterFree.cc:2
    #2 0x7f7ddabcac4d in __libc_start_main ??:0
==9442== ABORTING

If that does not work for you (e.g. your process is sandboxed), you can use a separate script to symbolize the result
offline (online symbolization can be force disabled by setting ASAN_OPTIONS=symbolize=0):
% ASAN_OPTIONS=symbolize=0 ./a.out 2> log
% projects/compiler-rt/lib/asan/scripts/asan_symbolize.py / < log | c++filt
==9442== ERROR: AddressSanitizer heap-use-after-free on address 0x7f7ddab8c084 at pc 0x403c8c bp 0x7fff87fb82d0 sp 0x7fff87fb82c8
READ of size 4 at 0x7f7ddab8c084 thread T0
    #0 0x403c8c in main example_UseAfterFree.cc:4
    #1 0x7f7ddabcac4d in __libc_start_main ??:0
...

AddressSanitizer

640



Note that on macOS you may need to run dsymutil on your binary to have the file:line info in the AddressSanitizer
reports.

Additional Checks

Initialization order checking

AddressSanitizer can optionally detect dynamic initialization order problems, when initialization of globals defined in
one translation unit uses globals defined in another translation unit. To enable this check at runtime, you should set
environment variable ASAN_OPTIONS=check_initialization_order=1.

Note that this option is not supported on macOS.

Stack Use After Return (UAR)

AddressSanitizer can optionally detect stack use after return problems. This is available by default, or explicitly
(-fsanitize-address-use-after-return=runtime). To disable this check at runtime, set the environment
variable ASAN_OPTIONS=detect_stack_use_after_return=0.

Enabling this check (-fsanitize-address-use-after-return=always) will reduce code size. The code size
may be reduced further by completely eliminating this check
(-fsanitize-address-use-after-return=never).

To summarize: -fsanitize-address-use-after-return=<mode>

• never: Completely disables detection of UAR errors (reduces code size).

• runtime: Adds the code for detection, but it can be disable via the runtime environment
(ASAN_OPTIONS=detect_stack_use_after_return=0).

• always: Enables detection of UAR errors in all cases. (reduces code size, but not as much as never).

Memory leak detection

For more information on leak detector in AddressSanitizer, see LeakSanitizer. The leak detection is turned on by
default on Linux, and can be enabled using ASAN_OPTIONS=detect_leaks=1 on macOS; however, it is not yet
supported on other platforms.

Issue Suppression
AddressSanitizer is not expected to produce false positives. If you see one, look again; most likely it is a true
positive!

Suppressing Reports in External Libraries

Runtime interposition allows AddressSanitizer to find bugs in code that is not being recompiled. If you run into an
issue in external libraries, we recommend immediately reporting it to the library maintainer so that it gets addressed.
However, you can use the following suppression mechanism to unblock yourself and continue on with the testing.
This suppression mechanism should only be used for suppressing issues in external code; it does not work on code
recompiled with AddressSanitizer. To suppress errors in external libraries, set the ASAN_OPTIONS environment
variable to point to a suppression file. You can either specify the full path to the file or the path of the file relative to
the location of your executable.

ASAN_OPTIONS=suppressions=MyASan.supp

Use the following format to specify the names of the functions or libraries you want to suppress. You can see these in
the error report. Remember that the narrower the scope of the suppression, the more bugs you will be able to catch.

interceptor_via_fun:NameOfCFunctionToSuppress
interceptor_via_fun:-[ClassName objCMethodToSuppress:]
interceptor_via_lib:NameOfTheLibraryToSuppress

AddressSanitizer

641



Conditional Compilation with __has_feature(address_sanitizer)

In some cases one may need to execute different code depending on whether AddressSanitizer is enabled.
__has_feature can be used for this purpose.

#if defined(__has_feature)
#  if __has_feature(address_sanitizer)
// code that builds only under AddressSanitizer
#  endif
#endif

Disabling Instrumentation with __attribute__((no_sanitize("address")))

Some code should not be instrumented by AddressSanitizer. One may use the attribute
__attribute__((no_sanitize("address"))) (which has deprecated synonyms no_sanitize_address and
no_address_safety_analysis) to disable instrumentation of a particular function. This attribute may not be supported
by other compilers, so we suggest to use it together with __has_feature(address_sanitizer).

The same attribute used on a global variable prevents AddressSanitizer from adding redzones around it and
detecting out of bounds accesses.

AddressSanitizer also supports __attribute__((disable_sanitizer_instrumentation)). This attribute
works similar to __attribute__((no_sanitize("address"))), but it also prevents instrumentation performed
by other sanitizers.

Suppressing Errors in Recompiled Code (Ignorelist)

AddressSanitizer supports src and fun entity types in Sanitizer special case list, that can be used to suppress error
reports in the specified source files or functions. Additionally, AddressSanitizer introduces global and type entity
types that can be used to suppress error reports for out-of-bound access to globals with certain names and types
(you may only specify class or struct types).

You may use an init category to suppress reports about initialization-order problems happening in certain source
files or with certain global variables.

# Suppress error reports for code in a file or in a function:
src:bad_file.cpp
# Ignore all functions with names containing MyFooBar:
fun:*MyFooBar*
# Disable out-of-bound checks for global:
global:bad_array
# Disable out-of-bound checks for global instances of a given class ...
type:Namespace::BadClassName
# ... or a given struct. Use wildcard to deal with anonymous namespace.
type:Namespace2::*::BadStructName
# Disable initialization-order checks for globals:
global:bad_init_global=init
type:*BadInitClassSubstring*=init
src:bad/init/files/*=init

Suppressing memory leaks

Memory leak reports produced by LeakSanitizer (if it is run as a part of AddressSanitizer) can be suppressed by a
separate file passed as

LSAN_OPTIONS=suppressions=MyLSan.supp

which contains lines of the form leak:<pattern>. Memory leak will be suppressed if pattern matches any function
name, source file name, or library name in the symbolized stack trace of the leak report. See full documentation for
more details.

AddressSanitizer

642

https://github.com/google/sanitizers/wiki/AddressSanitizerLeakSanitizer#suppressions


Code generation control

Instrumentation code outlining

By default AddressSanitizer inlines the instrumentation code to improve the run-time performance, which leads to
increased binary size. Using the (clang flag
-fsanitize-address-outline-instrumentation` default: ``false) flag forces all code
instrumentation to be outlined, which reduces the size of the generated code, but also reduces the run-time
performance.

Limitations

• AddressSanitizer uses more real memory than a native run. Exact overhead depends on the allocations sizes.
The smaller the allocations you make the bigger the overhead is.

• AddressSanitizer uses more stack memory. We have seen up to 3x increase.

• On 64-bit platforms AddressSanitizer maps (but not reserves) 16+ Terabytes of virtual address space. This
means that tools like ulimit may not work as usually expected.

• Static linking of executables is not supported.

Supported Platforms
AddressSanitizer is supported on:

• Linux i386/x86_64 (tested on Ubuntu 12.04)

• macOS 10.7 - 10.11 (i386/x86_64)

• iOS Simulator

• Android ARM

• NetBSD i386/x86_64

• FreeBSD i386/x86_64 (tested on FreeBSD 11-current)

• Windows 8.1+ (i386/x86_64)

Ports to various other platforms are in progress.

Current Status
AddressSanitizer is fully functional on supported platforms starting from LLVM 3.1. The test suite is integrated into
CMake build and can be run with make check-asan command.

The Windows port is functional and is used by Chrome and Firefox, but it is not as well supported as the other ports.

More Information
https://github.com/google/sanitizers/wiki/AddressSanitizer

ThreadSanitizer

Introduction
ThreadSanitizer is a tool that detects data races. It consists of a compiler instrumentation module and a run-time
library. Typical slowdown introduced by ThreadSanitizer is about 5x-15x. Typical memory overhead introduced by
ThreadSanitizer is about 5x-10x.

ThreadSanitizer

643

https://github.com/google/sanitizers/wiki/AddressSanitizer


How to build
Build LLVM/Clang with CMake.

Supported Platforms
ThreadSanitizer is supported on the following OS:

• Android aarch64, x86_64

• Darwin arm64, x86_64

• FreeBSD

• Linux aarch64, x86_64, powerpc64, powerpc64le

• NetBSD

Support for other 64-bit architectures is possible, contributions are welcome. Support for 32-bit platforms is
problematic and is not planned.

Usage
Simply compile and link your program with -fsanitize=thread. To get a reasonable performance add -O1 or
higher. Use -g to get file names and line numbers in the warning messages.

Example:

% cat projects/compiler-rt/lib/tsan/lit_tests/tiny_race.c
#include <pthread.h>
int Global;
void *Thread1(void *x) {
  Global = 42;
  return x;
}
int main() {
  pthread_t t;
  pthread_create(&t, NULL, Thread1, NULL);
  Global = 43;
  pthread_join(t, NULL);
  return Global;
}

$ clang -fsanitize=thread -g -O1 tiny_race.c

If a bug is detected, the program will print an error message to stderr. Currently, ThreadSanitizer symbolizes its
output using an external addr2line process (this will be fixed in future).

% ./a.out
WARNING: ThreadSanitizer: data race (pid=19219)
  Write of size 4 at 0x7fcf47b21bc0 by thread T1:
    #0 Thread1 tiny_race.c:4 (exe+0x00000000a360)

  Previous write of size 4 at 0x7fcf47b21bc0 by main thread:
    #0 main tiny_race.c:10 (exe+0x00000000a3b4)

  Thread T1 (running) created at:
    #0 pthread_create tsan_interceptors.cc:705 (exe+0x00000000c790)
    #1 main tiny_race.c:9 (exe+0x00000000a3a4)

__has_feature(thread_sanitizer)

In some cases one may need to execute different code depending on whether ThreadSanitizer is enabled.
__has_feature can be used for this purpose.

ThreadSanitizer

644

https://llvm.org/docs/CMake.html


#if defined(__has_feature)
#  if __has_feature(thread_sanitizer)
// code that builds only under ThreadSanitizer
#  endif
#endif

__attribute__((no_sanitize("thread")))

Some code should not be instrumented by ThreadSanitizer. One may use the function attribute
no_sanitize("thread") to disable instrumentation of plain (non-atomic) loads/stores in a particular function.
ThreadSanitizer still instruments such functions to avoid false positives and provide meaningful stack traces. This
attribute may not be supported by other compilers, so we suggest to use it together with
__has_feature(thread_sanitizer).

__attribute__((disable_sanitizer_instrumentation))

The disable_sanitizer_instrumentation attribute can be applied to functions to prevent all kinds of
instrumentation. As a result, it may introduce false positives and incorrect stack traces. Therefore, it should be used
with care, and only if absolutely required; for example for certain code that cannot tolerate any instrumentation and
resulting side-effects. This attribute overrides no_sanitize("thread").

Ignorelist
ThreadSanitizer supports src and fun entity types in Sanitizer special case list, that can be used to suppress data
race reports in the specified source files or functions. Unlike functions marked with no_sanitize("thread")
attribute, ignored functions are not instrumented at all. This can lead to false positives due to missed synchronization
via atomic operations and missed stack frames in reports.

Limitations

• ThreadSanitizer uses more real memory than a native run. At the default settings the memory overhead is 5x
plus 1Mb per each thread. Settings with 3x (less accurate analysis) and 9x (more accurate analysis) overhead
are also available.

• ThreadSanitizer maps (but does not reserve) a lot of virtual address space. This means that tools like ulimit
may not work as usually expected.

• Libc/libstdc++ static linking is not supported.

• Non-position-independent executables are not supported. Therefore, the fsanitize=thread flag will cause
Clang to act as though the -fPIE flag had been supplied if compiling without -fPIC, and as though the -pie
flag had been supplied if linking an executable.

Current Status
ThreadSanitizer is in beta stage. It is known to work on large C++ programs using pthreads, but we do not promise
anything (yet). C++11 threading is supported with llvm libc++. The test suite is integrated into CMake build and can
be run with make check-tsan command.

We are actively working on enhancing the tool — stay tuned. Any help, especially in the form of minimized
standalone tests is more than welcome.

More Information
https://github.com/google/sanitizers/wiki/ThreadSanitizerCppManual

ThreadSanitizer

645

https://github.com/google/sanitizers/wiki/ThreadSanitizerCppManual


MemorySanitizer
Introduction 646

How to build 646

Usage 646

__has_feature(memory_sanitizer) 647

__attribute__((no_sanitize("memory"))) 647

__attribute__((disable_sanitizer_instrumentation)) 647

Ignorelist 647

Report symbolization 647

Origin Tracking 647

Use-after-destruction detection 648

Handling external code 648

Supported Platforms 648

Limitations 648

Current Status 649

More Information 649

Introduction
MemorySanitizer is a detector of uninitialized reads. It consists of a compiler instrumentation module and a run-time
library.

Typical slowdown introduced by MemorySanitizer is 3x.

How to build
Build LLVM/Clang with CMake.

Usage
Simply compile and link your program with -fsanitize=memory flag. The MemorySanitizer run-time library should
be linked to the final executable, so make sure to use clang (not ld) for the final link step. When linking shared
libraries, the MemorySanitizer run-time is not linked, so -Wl,-z,defs may cause link errors (don’t use it with
MemorySanitizer). To get a reasonable performance add -O1 or higher. To get meaningful stack traces in error
messages add -fno-omit-frame-pointer. To get perfect stack traces you may need to disable inlining (just use
-O1) and tail call elimination (-fno-optimize-sibling-calls).

% cat umr.cc
#include <stdio.h>

int main(int argc, char** argv) {
  int* a = new int[10];
  a[5] = 0;
  if (a[argc])
    printf("xx\n");
  return 0;
}

% clang -fsanitize=memory -fno-omit-frame-pointer -g -O2 umr.cc

If a bug is detected, the program will print an error message to stderr and exit with a non-zero exit code.

% ./a.out
WARNING: MemorySanitizer: use-of-uninitialized-value

MemorySanitizer

646

https://llvm.org/docs/CMake.html


    #0 0x7f45944b418a in main umr.cc:6
    #1 0x7f45938b676c in __libc_start_main libc-start.c:226

By default, MemorySanitizer exits on the first detected error. If you find the error report hard to understand, try
enabling origin tracking.

__has_feature(memory_sanitizer)

In some cases one may need to execute different code depending on whether MemorySanitizer is enabled.
__has_feature can be used for this purpose.

#if defined(__has_feature)
#  if __has_feature(memory_sanitizer)
// code that builds only under MemorySanitizer
#  endif
#endif

__attribute__((no_sanitize("memory")))

Some code should not be checked by MemorySanitizer. One may use the function attribute
no_sanitize("memory") to disable uninitialized checks in a particular function. MemorySanitizer may still
instrument such functions to avoid false positives. This attribute may not be supported by other compilers, so we
suggest to use it together with __has_feature(memory_sanitizer).

__attribute__((disable_sanitizer_instrumentation))

The disable_sanitizer_instrumentation attribute can be applied to functions to prevent all kinds of
instrumentation. As a result, it may introduce false positives and therefore should be used with care, and only if
absolutely required; for example for certain code that cannot tolerate any instrumentation and resulting side-effects.
This attribute overrides no_sanitize("memory").

Ignorelist

MemorySanitizer supports src and fun entity types in Sanitizer special case list, that can be used to relax
MemorySanitizer checks for certain source files and functions. All “Use of uninitialized value” warnings will be
suppressed and all values loaded from memory will be considered fully initialized.

Report symbolization
MemorySanitizer uses an external symbolizer to print files and line numbers in reports. Make sure that
llvm-symbolizer binary is in PATH, or set environment variable MSAN_SYMBOLIZER_PATH to point to it.

Origin Tracking
MemorySanitizer can track origins of uninitialized values, similar to Valgrind’s –track-origins option. This feature is
enabled by -fsanitize-memory-track-origins=2 (or simply -fsanitize-memory-track-origins)
Clang option. With the code from the example above,

% cat umr2.cc
#include <stdio.h>

int main(int argc, char** argv) {
  int* a = new int[10];
  a[5] = 0;
  volatile int b = a[argc];
  if (b)
    printf("xx\n");
  return 0;
}

% clang -fsanitize=memory -fsanitize-memory-track-origins=2 -fno-omit-frame-pointer -g -O2 umr2.cc

MemorySanitizer

647



% ./a.out
WARNING: MemorySanitizer: use-of-uninitialized-value
    #0 0x7f7893912f0b in main umr2.cc:7
    #1 0x7f789249b76c in __libc_start_main libc-start.c:226

  Uninitialized value was stored to memory at
    #0 0x7f78938b5c25 in __msan_chain_origin msan.cc:484
    #1 0x7f7893912ecd in main umr2.cc:6

  Uninitialized value was created by a heap allocation
    #0 0x7f7893901cbd in operator new[](unsigned long) msan_new_delete.cc:44
    #1 0x7f7893912e06 in main umr2.cc:4

By default, MemorySanitizer collects both allocation points and all intermediate stores the uninitialized value went
through. Origin tracking has proved to be very useful for debugging MemorySanitizer reports. It slows down program
execution by a factor of 1.5x-2x on top of the usual MemorySanitizer slowdown and increases memory overhead.

Clang option -fsanitize-memory-track-origins=1 enables a slightly faster mode when MemorySanitizer
collects only allocation points but not intermediate stores.

Use-after-destruction detection
MemorySanitizer includes use-after-destruction detection. After invocation of the destructor, the object will be
considered no longer readable, and using underlying memory will lead to error reports in runtime. Refer to the
standard for lifetime definition.

This feature can be disabled with either:

1. Pass addition Clang option -fno-sanitize-memory-use-after-dtor during compilation.

2. Set environment variable MSAN_OPTIONS=poison_in_dtor=0 before running the program.

Handling external code
MemorySanitizer requires that all program code is instrumented. This also includes any libraries that the program
depends on, even libc. Failing to achieve this may result in false reports. For the same reason you may need to
replace all inline assembly code that writes to memory with a pure C/C++ code.

Full MemorySanitizer instrumentation is very difficult to achieve. To make it easier, MemorySanitizer runtime library
includes 70+ interceptors for the most common libc functions. They make it possible to run
MemorySanitizer-instrumented programs linked with uninstrumented libc. For example, the authors were able to
bootstrap MemorySanitizer-instrumented Clang compiler by linking it with self-built instrumented libc++ (as a
replacement for libstdc++).

Supported Platforms
MemorySanitizer is supported on the following OS:

• Linux

• NetBSD

• FreeBSD

Limitations

• MemorySanitizer uses 2x more real memory than a native run, 3x with origin tracking.

• MemorySanitizer maps (but not reserves) 64 Terabytes of virtual address space. This means that tools like
ulimit may not work as usually expected.

• Static linking is not supported.

MemorySanitizer

648

https://eel.is/c++draft/basic.life#1


• Older versions of MSan (LLVM 3.7 and older) didn’t work with non-position-independent executables, and could
fail on some Linux kernel versions with disabled ASLR. Refer to documentation for older versions for more
details.

• MemorySanitizer might be incompatible with position-independent executables from FreeBSD 13 but there is a
check done at runtime and throws a warning in this case.

Current Status
MemorySanitizer is known to work on large real-world programs (like Clang/LLVM itself) that can be recompiled from
source, including all dependent libraries.

More Information
https://github.com/google/sanitizers/wiki/MemorySanitizer

UndefinedBehaviorSanitizer
Introduction 649

How to build 650

Usage 650

Available checks 650

Volatile 652

Minimal Runtime 652

Stack traces and report symbolization 652

Logging 652

Silencing Unsigned Integer Overflow 653

Issue Suppression 653

Disabling Instrumentation with __attribute__((no_sanitize("undefined"))) 653

Suppressing Errors in Recompiled Code (Ignorelist) 653

Runtime suppressions 653

Supported Platforms 653

Current Status 654

Additional Configuration 654

Example 654

More Information 654

Introduction
UndefinedBehaviorSanitizer (UBSan) is a fast undefined behavior detector. UBSan modifies the program at
compile-time to catch various kinds of undefined behavior during program execution, for example:

• Array subscript out of bounds, where the bounds can be statically determined

• Bitwise shifts that are out of bounds for their data type

• Dereferencing misaligned or null pointers

• Signed integer overflow

• Conversion to, from, or between floating-point types which would overflow the destination

See the full list of available checks below.

UBSan has an optional run-time library which provides better error reporting. The checks have small runtime cost
and no impact on address space layout or ABI.

UndefinedBehaviorSanitizer

649

https://github.com/google/sanitizers/wiki/MemorySanitizer


How to build
Build LLVM/Clang with CMake.

Usage
Use clang++ to compile and link your program with -fsanitize=undefined flag. Make sure to use clang++
(not ld) as a linker, so that your executable is linked with proper UBSan runtime libraries. You can use clang
instead of clang++ if you’re compiling/linking C code.

% cat test.cc
int main(int argc, char **argv) {
  int k = 0x7fffffff;
  k += argc;
  return 0;
}
% clang++ -fsanitize=undefined test.cc
% ./a.out
test.cc:3:5: runtime error: signed integer overflow: 2147483647 + 1 cannot be represented in type 'int'

You can enable only a subset of checks offered by UBSan, and define the desired behavior for each kind of check:

• -fsanitize=...: print a verbose error report and continue execution (default);

• -fno-sanitize-recover=...: print a verbose error report and exit the program;

• -fsanitize-trap=...: execute a trap instruction (doesn’t require UBSan run-time support).

• -fno-sanitize=...: disable any check, e.g., -fno-sanitize=alignment.

Note that the trap / recover options do not enable the corresponding sanitizer, and in general need to be
accompanied by a suitable -fsanitize= flag.

For example if you compile/link your program as:
% clang++ -fsanitize=signed-integer-overflow,null,alignment -fno-sanitize-recover=null -fsanitize-trap=alignment

the program will continue execution after signed integer overflows, exit after the first invalid use of a null pointer, and
trap after the first use of misaligned pointer.

Available checks
Available checks are:

• -fsanitize=alignment: Use of a misaligned pointer or creation of a misaligned reference. Also
sanitizes assume_aligned-like attributes.

• -fsanitize=bool: Load of a bool value which is neither true nor false.

• -fsanitize=builtin: Passing invalid values to compiler builtins.

• -fsanitize=bounds: Out of bounds array indexing, in cases where the array bound can be statically
determined. The check includes -fsanitize=array-bounds and -fsanitize=local-bounds. Note
that -fsanitize=local-bounds is not included in -fsanitize=undefined.

• -fsanitize=enum: Load of a value of an enumerated type which is not in the range of representable
values for that enumerated type.

• -fsanitize=float-cast-overflow: Conversion to, from, or between floating-point types which would
overflow the destination. Because the range of representable values for all floating-point types supported
by Clang is [-inf, +inf], the only cases detected are conversions from floating point to integer types.

• -fsanitize=float-divide-by-zero: Floating point division by zero. This is undefined per the C and
C++ standards, but is defined by Clang (and by ISO/IEC/IEEE 60559 / IEEE 754) as producing either an
infinity or NaN value, so is not included in -fsanitize=undefined.

• -fsanitize=function: Indirect call of a function through a function pointer of the wrong type
(Darwin/Linux, C++ and x86/x86_64 only).

UndefinedBehaviorSanitizer

650

https://llvm.org/docs/CMake.html


• -fsanitize=implicit-unsigned-integer-truncation,
-fsanitize=implicit-signed-integer-truncation: Implicit conversion from integer of larger bit
width to smaller bit width, if that results in data loss. That is, if the demoted value, after casting back to the
original width, is not equal to the original value before the downcast. The
-fsanitize=implicit-unsigned-integer-truncation handles conversions between two
unsigned types, while -fsanitize=implicit-signed-integer-truncation handles the rest of
the conversions - when either one, or both of the types are signed. Issues caught by these sanitizers are
not undefined behavior, but are often unintentional.

• -fsanitize=implicit-integer-sign-change: Implicit conversion between integer types, if that
changes the sign of the value. That is, if the original value was negative and the new value is positive (or
zero), or the original value was positive, and the new value is negative. Issues caught by this sanitizer are
not undefined behavior, but are often unintentional.

• -fsanitize=integer-divide-by-zero: Integer division by zero.

• -fsanitize=nonnull-attribute: Passing null pointer as a function parameter which is declared to
never be null.

• -fsanitize=null: Use of a null pointer or creation of a null reference.

• -fsanitize=nullability-arg: Passing null as a function parameter which is annotated with
_Nonnull.

• -fsanitize=nullability-assign: Assigning null to an lvalue which is annotated with _Nonnull.

• -fsanitize=nullability-return: Returning null from a function with a return type annotated with
_Nonnull.

• -fsanitize=objc-cast: Invalid implicit cast of an ObjC object pointer to an incompatible type. This is
often unintentional, but is not undefined behavior, therefore the check is not a part of the undefined
group. Currently only supported on Darwin.

• -fsanitize=object-size: An attempt to potentially use bytes which the optimizer can determine are
not part of the object being accessed. This will also detect some types of undefined behavior that may not
directly access memory, but are provably incorrect given the size of the objects involved, such as invalid
downcasts and calling methods on invalid pointers. These checks are made in terms of
__builtin_object_size, and consequently may be able to detect more problems at higher
optimization levels.

• -fsanitize=pointer-overflow: Performing pointer arithmetic which overflows, or where either the
old or new pointer value is a null pointer (or in C, when they both are).

• -fsanitize=return: In C++, reaching the end of a value-returning function without returning a value.

• -fsanitize=returns-nonnull-attribute: Returning null pointer from a function which is declared
to never return null.

• -fsanitize=shift: Shift operators where the amount shifted is greater or equal to the promoted
bit-width of the left hand side or less than zero, or where the left hand side is negative. For a signed left
shift, also checks for signed overflow in C, and for unsigned overflow in C++. You can use
-fsanitize=shift-base or -fsanitize=shift-exponent to check only left-hand side or
right-hand side of shift operation, respectively.

• -fsanitize=unsigned-shift-base: check that an unsigned left-hand side of a left shift operation
doesn’t overflow.

• -fsanitize=signed-integer-overflow: Signed integer overflow, where the result of a signed
integer computation cannot be represented in its type. This includes all the checks covered by -ftrapv,
as well as checks for signed division overflow (INT_MIN/-1), but not checks for lossy implicit conversions
performed before the computation (see -fsanitize=implicit-conversion). Both of these two issues
are handled by -fsanitize=implicit-conversion group of checks.

• -fsanitize=unreachable: If control flow reaches an unreachable program point.

• -fsanitize=unsigned-integer-overflow: Unsigned integer overflow, where the result of an
unsigned integer computation cannot be represented in its type. Unlike signed integer overflow, this is not
undefined behavior, but it is often unintentional. This sanitizer does not check for lossy implicit conversions
performed before such a computation (see -fsanitize=implicit-conversion).

UndefinedBehaviorSanitizer

651



• -fsanitize=vla-bound: A variable-length array whose bound does not evaluate to a positive value.

• -fsanitize=vptr: Use of an object whose vptr indicates that it is of the wrong dynamic type, or that its
lifetime has not begun or has ended. Incompatible with -fno-rtti. Link must be performed by clang++,
not clang, to make sure C++-specific parts of the runtime library and C++ standard libraries are present.

You can also use the following check groups:

• -fsanitize=undefined: All of the checks listed above other than float-divide-by-zero,
unsigned-integer-overflow, implicit-conversion, local-bounds and the nullability-*
group of checks.

• -fsanitize=undefined-trap: Deprecated alias of -fsanitize=undefined.

• -fsanitize=implicit-integer-truncation: Catches lossy integral conversions. Enables
implicit-signed-integer-truncation and implicit-unsigned-integer-truncation.

• -fsanitize=implicit-integer-arithmetic-value-change: Catches implicit conversions that
change the arithmetic value of the integer. Enables implicit-signed-integer-truncation and
implicit-integer-sign-change.

• -fsanitize=implicit-conversion: Checks for suspicious behavior of implicit conversions. Enables
implicit-unsigned-integer-truncation, implicit-signed-integer-truncation, and
implicit-integer-sign-change.

• -fsanitize=integer: Checks for undefined or suspicious integer behavior (e.g. unsigned integer
overflow). Enables signed-integer-overflow, unsigned-integer-overflow, shift,
integer-divide-by-zero, implicit-unsigned-integer-truncation,
implicit-signed-integer-truncation, and implicit-integer-sign-change.

• -fsanitize=nullability: Enables nullability-arg, nullability-assign, and
nullability-return. While violating nullability does not have undefined behavior, it is often
unintentional, so UBSan offers to catch it.

Volatile

The null, alignment, object-size, local-bounds, and vptr checks do not apply to pointers to types with the
volatile qualifier.

Minimal Runtime
There is a minimal UBSan runtime available suitable for use in production environments. This runtime has a small
attack surface. It only provides very basic issue logging and deduplication, and does not support
-fsanitize=function and -fsanitize=vptr checking.

To use the minimal runtime, add -fsanitize-minimal-runtime to the clang command line options. For
example, if you’re used to compiling with -fsanitize=undefined, you could enable the minimal runtime with
-fsanitize=undefined -fsanitize-minimal-runtime.

Stack traces and report symbolization
If you want UBSan to print symbolized stack trace for each error report, you will need to:

1. Compile with -g and -fno-omit-frame-pointer to get proper debug information in your binary.

2. Run your program with environment variable UBSAN_OPTIONS=print_stacktrace=1.

3. Make sure llvm-symbolizer binary is in PATH.

Logging
The default log file for diagnostics is “stderr”. To log diagnostics to another file, you can set
UBSAN_OPTIONS=log_path=....

UndefinedBehaviorSanitizer

652



Silencing Unsigned Integer Overflow
To silence reports from unsigned integer overflow, you can set
UBSAN_OPTIONS=silence_unsigned_overflow=1. This feature, combined with
-fsanitize-recover=unsigned-integer-overflow, is particularly useful for providing fuzzing signal without
blowing up logs.

Issue Suppression
UndefinedBehaviorSanitizer is not expected to produce false positives. If you see one, look again; most likely it is a
true positive!

Disabling Instrumentation with __attribute__((no_sanitize("undefined")))

You disable UBSan checks for particular functions with __attribute__((no_sanitize("undefined"))). You
can use all values of -fsanitize= flag in this attribute, e.g. if your function deliberately contains possible signed
integer overflow, you can use __attribute__((no_sanitize("signed-integer-overflow"))).

This attribute may not be supported by other compilers, so consider using it together with
#if defined(__clang__).

Suppressing Errors in Recompiled Code (Ignorelist)

UndefinedBehaviorSanitizer supports src and fun entity types in Sanitizer special case list, that can be used to
suppress error reports in the specified source files or functions.

Runtime suppressions

Sometimes you can suppress UBSan error reports for specific files, functions, or libraries without recompiling the
code. You need to pass a path to suppression file in a UBSAN_OPTIONS environment variable.

UBSAN_OPTIONS=suppressions=MyUBSan.supp

You need to specify a check you are suppressing and the bug location. For example:

signed-integer-overflow:file-with-known-overflow.cpp
alignment:function_doing_unaligned_access
vptr:shared_object_with_vptr_failures.so

There are several limitations:

• Sometimes your binary must have enough debug info and/or symbol table, so that the runtime could figure out
source file or function name to match against the suppression.

• It is only possible to suppress recoverable checks. For the example above, you can additionally pass
-fsanitize-recover=signed-integer-overflow,alignment,vptr, although most of UBSan checks
are recoverable by default.

• Check groups (like undefined) can’t be used in suppressions file, only fine-grained checks are supported.

Supported Platforms
UndefinedBehaviorSanitizer is supported on the following operating systems:

• Android

• Linux

• NetBSD

• FreeBSD

• OpenBSD

• macOS

• Windows

UndefinedBehaviorSanitizer

653



The runtime library is relatively portable and platform independent. If the OS you need is not listed above,
UndefinedBehaviorSanitizer may already work for it, or could be made to work with a minor porting effort.

Current Status
UndefinedBehaviorSanitizer is available on selected platforms starting from LLVM 3.3. The test suite is integrated
into the CMake build and can be run with check-ubsan command.

Additional Configuration
UndefinedBehaviorSanitizer adds static check data for each check unless it is in trap mode. This check data includes
the full file name. The option -fsanitize-undefined-strip-path-components=N can be used to trim this
information. If N is positive, file information emitted by UndefinedBehaviorSanitizer will drop the first N components
from the file path. If N is negative, the last N components will be kept.

Example

For a file called /code/library/file.cpp, here is what would be emitted:

• Default (No flag, or -fsanitize-undefined-strip-path-components=0): /code/library/file.cpp

• -fsanitize-undefined-strip-path-components=1: code/library/file.cpp

• -fsanitize-undefined-strip-path-components=2: library/file.cpp

• -fsanitize-undefined-strip-path-components=-1: file.cpp

• -fsanitize-undefined-strip-path-components=-2: library/file.cpp

More Information

• From Oracle blog, including a discussion of error messages: Improving Application Security with
UndefinedBehaviorSanitizer (UBSan) and GCC

• From LLVM project blog: What Every C Programmer Should Know About Undefined Behavior

• From John Regehr’s Embedded in Academia blog: A Guide to Undefined Behavior in C and C++

DataFlowSanitizer

DataFlowSanitizer Design Document
This document sets out the design for DataFlowSanitizer, a general dynamic data flow analysis. Unlike other
Sanitizer tools, this tool is not designed to detect a specific class of bugs on its own. Instead, it provides a generic
dynamic data flow analysis framework to be used by clients to help detect application-specific issues within their own
code.

DataFlowSanitizer is a program instrumentation which can associate a number of taint labels with any data stored in
any memory region accessible by the program. The analysis is dynamic, which means that it operates on a running
program, and tracks how the labels propagate through that program.

Use Cases

This instrumentation can be used as a tool to help monitor how data flows from a program’s inputs (sources) to its
outputs (sinks). This has applications from a privacy/security perspective in that one can audit how a sensitive data
item is used within a program and ensure it isn’t exiting the program anywhere it shouldn’t be.

Interface

A number of functions are provided which will attach taint labels to memory regions and extract the set of labels
associated with a specific memory region. These functions are declared in the header file
sanitizer/dfsan_interface.h.

DataFlowSanitizer

654

https://blogs.oracle.com/linux/improving-application-security-with-undefinedbehaviorsanitizer-ubsan-and-gcc
https://blogs.oracle.com/linux/improving-application-security-with-undefinedbehaviorsanitizer-ubsan-and-gcc
http://blog.llvm.org/2011/05/what-every-c-programmer-should-know.html
https://blog.regehr.org/archives/213


/// Sets the label for each address in [addr,addr+size) to \c label.
void dfsan_set_label(dfsan_label label, void *addr, size_t size);

/// Sets the label for each address in [addr,addr+size) to the union of the
/// current label for that address and \c label.
void dfsan_add_label(dfsan_label label, void *addr, size_t size);

/// Retrieves the label associated with the given data.
///
/// The type of 'data' is arbitrary.  The function accepts a value of any type,
/// which can be truncated or extended (implicitly or explicitly) as necessary.
/// The truncation/extension operations will preserve the label of the original
/// value.
dfsan_label dfsan_get_label(long data);

/// Retrieves the label associated with the data at the given address.
dfsan_label dfsan_read_label(const void *addr, size_t size);

/// Returns whether the given label label contains the label elem.
int dfsan_has_label(dfsan_label label, dfsan_label elem);

/// Computes the union of \c l1 and \c l2, resulting in a union label.
dfsan_label dfsan_union(dfsan_label l1, dfsan_label l2);

/// Flushes the DFSan shadow, i.e. forgets about all labels currently associated
/// with the application memory.  Use this call to start over the taint tracking
/// within the same process.
///
/// Note: If another thread is working with tainted data during the flush, that
/// taint could still be written to shadow after the flush.
void dfsan_flush(void);

The following functions are provided to check origin tracking status and results.

/// Retrieves the immediate origin associated with the given data. The returned
/// origin may point to another origin.
///
/// The type of 'data' is arbitrary. The function accepts a value of any type,
/// which can be truncated or extended (implicitly or explicitly) as necessary.
/// The truncation/extension operations will preserve the label of the original
/// value.
dfsan_origin dfsan_get_origin(long data);

/// Retrieves the very first origin associated with the data at the given
/// address.
dfsan_origin dfsan_get_init_origin(const void *addr);

/// Prints the origin trace of the label at the address `addr` to stderr. It also
/// prints description at the beginning of the trace. If origin tracking is not
/// on, or the address is not labeled, it prints nothing.
void dfsan_print_origin_trace(const void *addr, const char *description);

/// Prints the origin trace of the label at the address `addr` to a pre-allocated
/// output buffer. If origin tracking is not on, or the address is`
/// not labeled, it prints nothing.
///
/// `addr` is the tainted memory address whose origin we are printing.
/// `description` is a description printed at the beginning of the trace.
/// `out_buf` is the output buffer to write the results to. `out_buf_size` is
/// the size of `out_buf`. The function returns the number of symbols that
/// should have been written to `out_buf` (not including trailing null byte '\0').

DataFlowSanitizer

655



/// Thus, the string is truncated iff return value is not less than `out_buf_size`.
size_t dfsan_sprint_origin_trace(const void *addr, const char *description,
                                 char *out_buf, size_t out_buf_size);

/// Returns the value of `-dfsan-track-origins`.
int dfsan_get_track_origins(void);

The following functions are provided to register hooks called by custom wrappers.

/// Sets a callback to be invoked on calls to `write`.  The callback is invoked
/// before the write is done. The write is not guaranteed to succeed when the
/// callback executes. Pass in NULL to remove any callback.
typedef void (*dfsan_write_callback_t)(int fd, const void *buf, size_t count);
void dfsan_set_write_callback(dfsan_write_callback_t labeled_write_callback);

/// Callbacks to be invoked on calls to `memcmp` or `strncmp`.
void dfsan_weak_hook_memcmp(void *caller_pc, const void *s1, const void *s2,
                            size_t n, dfsan_label s1_label,
                            dfsan_label s2_label, dfsan_label n_label);
void dfsan_weak_hook_strncmp(void *caller_pc, const char *s1, const char *s2,
                            size_t n, dfsan_label s1_label,
                            dfsan_label s2_label, dfsan_label n_label);

Taint label representation

We use an 8-bit unsigned integer for the representation of a label. The label identifier 0 is special, and means that
the data item is unlabelled. This is optimizing for low CPU and code size overhead of the instrumentation. When a
label union operation is requested at a join point (any arithmetic or logical operation with two or more operands, such
as addition), we can simply OR the two labels in O(1).

Users are responsible for managing the 8 integer labels (i.e., keeping track of what labels they have used so far,
picking one that is yet unused, etc).

Origin tracking trace representation

An origin tracking trace is a list of chains. Each chain has a stack trace where the DFSan runtime records a label
propagation, and a pointer to its previous chain. The very first chain does not point to any chain.

Every four 4-bytes aligned application bytes share a 4-byte origin trace ID. A 4-byte origin trace ID contains a 4-bit
depth and a 28-bit hash ID of a chain.

A chain ID is calculated as a hash from a chain structure. A chain structure contains a stack ID and the previous
chain ID. The chain head has a zero previous chain ID. A stack ID is a hash from a stack trace. The 4-bit depth limits
the maximal length of a path. The environment variable origin_history_size can set the depth limit.
Non-positive values mean unlimited. Its default value is 16. When reaching the limit, origin tracking ignores following
propagation chains.

The first chain of a trace starts by dfsan_set_label with non-zero labels. A new chain is appended at the end of a
trace at stores or memory transfers when -dfsan-track-origins is 1. Memory transfers include LLVM memory
transfer instructions, glibc memcpy and memmove. When -dfsan-track-origins is 2, a new chain is also
appended at loads.

Other instructions do not create new chains, but simply propagate origin trace IDs. If an instruction has more than
one operands with non-zero labels, the origin treace ID of the last operand with non-zero label is propagated to the
result of the instruction.

Memory layout and label management

The following is the memory layout for Linux/x86_64:

Start End Use

0x700000000000 0x800000000000 application 3

DataFlowSanitizer

656



Start End Use

0x610000000000 0x700000000000 unused

0x600000000000 0x610000000000 origin 1

0x510000000000 0x600000000000 application 2

0x500000000000 0x510000000000 shadow 1

0x400000000000 0x500000000000 unused

0x300000000000 0x400000000000 origin 3

0x200000000000 0x300000000000 shadow 3

0x110000000000 0x200000000000 origin 2

0x100000000000 0x110000000000 unused

0x010000000000 0x100000000000 shadow 2

0x000000000000 0x010000000000 application 1

Each byte of application memory corresponds to a single byte of shadow memory, which is used to store its taint
label. We map memory, shadow, and origin regions to each other with these masks and offsets:

• shadow_addr = memory_addr ^ 0x500000000000

• origin_addr = shadow_addr + 0x100000000000

As for LLVM SSA registers, we have not found it necessary to associate a label with each byte or bit of data, as
some other tools do. Instead, labels are associated directly with registers. Loads will result in a union of all shadow
labels corresponding to bytes loaded, and stores will result in a copy of the label of the stored value to the shadow of
all bytes stored to.

Propagating labels through arguments

In order to propagate labels through function arguments and return values, DataFlowSanitizer changes the ABI of
each function in the translation unit. There are currently two supported ABIs:

• Args – Argument and return value labels are passed through additional arguments and by modifying the return
type.

• TLS – Argument and return value labels are passed through TLS variables __dfsan_arg_tls and
__dfsan_retval_tls.

The main advantage of the TLS ABI is that it is more tolerant of ABI mismatches (TLS storage is not shared with any
other form of storage, whereas extra arguments may be stored in registers which under the native ABI are not used
for parameter passing and thus could contain arbitrary values). On the other hand the args ABI is more efficient and
allows ABI mismatches to be more easily identified by checking for nonzero labels in nominally unlabelled programs.

Implementing the ABI list

The ABI list provides a list of functions which conform to the native ABI, each of which is callable from an
instrumented program. This is implemented by replacing each reference to a native ABI function with a reference to a
function which uses the instrumented ABI. Such functions are automatically-generated wrappers for the native
functions. For example, given the ABI list example provided in the user manual, the following wrappers will be
generated under the args ABI:

define linkonce_odr { i8*, i16 } @"dfsw$malloc"(i64 %0, i16 %1) {
entry:
  %2 = call i8* @malloc(i64 %0)
  %3 = insertvalue { i8*, i16 } undef, i8* %2, 0
  %4 = insertvalue { i8*, i16 } %3, i16 0, 1
  ret { i8*, i16 } %4
}

define linkonce_odr { i32, i16 } @"dfsw$tolower"(i32 %0, i16 %1) {
entry:

DataFlowSanitizer

657

file:///home/cbowler/llvm/v1711p/llvm-project/compiler-doc/tools/clang/docs/DataFlowSanitizer.html#abi-list


  %2 = call i32 @tolower(i32 %0)
  %3 = insertvalue { i32, i16 } undef, i32 %2, 0
  %4 = insertvalue { i32, i16 } %3, i16 %1, 1
  ret { i32, i16 } %4
}

define linkonce_odr { i8*, i16 } @"dfsw$memcpy"(i8* %0, i8* %1, i64 %2, i16 %3, i16 %4, i16 %5) {
entry:
  %labelreturn = alloca i16
  %6 = call i8* @__dfsw_memcpy(i8* %0, i8* %1, i64 %2, i16 %3, i16 %4, i16 %5, i16* %labelreturn)
  %7 = load i16* %labelreturn
  %8 = insertvalue { i8*, i16 } undef, i8* %6, 0
  %9 = insertvalue { i8*, i16 } %8, i16 %7, 1
  ret { i8*, i16 } %9
}

As an optimization, direct calls to native ABI functions will call the native ABI function directly and the pass will
compute the appropriate label internally. This has the advantage of reducing the number of union operations
required when the return value label is known to be zero (i.e. discard functions, or functional functions with
known unlabelled arguments).

Checking ABI Consistency

DFSan changes the ABI of each function in the module. This makes it possible for a function with the native ABI to
be called with the instrumented ABI, or vice versa, thus possibly invoking undefined behavior. A simple way of
statically detecting instances of this problem is to append the suffix “.dfsan” to the name of each instrumented-ABI
function.

This will not catch every such problem; in particular function pointers passed across the instrumented-native barrier
cannot be used on the other side. These problems could potentially be caught dynamically.
Introduction 658

How to build libc++ with DFSan 658

Usage 659

ABI List 659

Compilation Flags 660

Environment Variables 661

Example 661

Origin Tracking 662

Current status 663

Design 663

Introduction
DataFlowSanitizer is a generalised dynamic data flow analysis.

Unlike other Sanitizer tools, this tool is not designed to detect a specific class of bugs on its own. Instead, it provides
a generic dynamic data flow analysis framework to be used by clients to help detect application-specific issues within
their own code.

How to build libc++ with DFSan
DFSan requires either all of your code to be instrumented or for uninstrumented functions to be listed as
uninstrumented in the ABI list.

If you’d like to have instrumented libc++ functions, then you need to build it with DFSan instrumentation from source.
Here is an example of how to build libc++ and the libc++ ABI with data flow sanitizer instrumentation.

mkdir libcxx-build
cd libcxx-build

DataFlowSanitizer

658



# An example using ninja
cmake -GNinja -S <monorepo-root>/runtimes \
  -DCMAKE_C_COMPILER=clang \
  -DCMAKE_CXX_COMPILER=clang++ \
  -DLLVM_USE_SANITIZER="DataFlow" \
  -DLLVM_ENABLE_RUNTIMES="libcxx;libcxxabi"

ninja cxx cxxabi

Note: Ensure you are building with a sufficiently new version of Clang.

Usage
With no program changes, applying DataFlowSanitizer to a program will not alter its behavior. To use
DataFlowSanitizer, the program uses API functions to apply tags to data to cause it to be tracked, and to check the
tag of a specific data item. DataFlowSanitizer manages the propagation of tags through the program according to its
data flow.

The APIs are defined in the header file sanitizer/dfsan_interface.h. For further information about each
function, please refer to the header file.

ABI List

DataFlowSanitizer uses a list of functions known as an ABI list to decide whether a call to a specific function should
use the operating system’s native ABI or whether it should use a variant of this ABI that also propagates labels
through function parameters and return values. The ABI list file also controls how labels are propagated in the former
case. DataFlowSanitizer comes with a default ABI list which is intended to eventually cover the glibc library on Linux
but it may become necessary for users to extend the ABI list in cases where a particular library or function cannot be
instrumented (e.g. because it is implemented in assembly or another language which DataFlowSanitizer does not
support) or a function is called from a library or function which cannot be instrumented.

DataFlowSanitizer’s ABI list file is a Sanitizer special case list. The pass treats every function in the
uninstrumented category in the ABI list file as conforming to the native ABI. Unless the ABI list contains additional
categories for those functions, a call to one of those functions will produce a warning message, as the labelling
behavior of the function is unknown. The other supported categories are discard, functional and custom.

• discard – To the extent that this function writes to (user-accessible) memory, it also updates labels in shadow
memory (this condition is trivially satisfied for functions which do not write to user-accessible memory). Its return
value is unlabelled.

• functional – Like discard, except that the label of its return value is the union of the label of its arguments.

• custom – Instead of calling the function, a custom wrapper __dfsw_F is called, where F is the name of the
function. This function may wrap the original function or provide its own implementation. This category is
generally used for uninstrumentable functions which write to user-accessible memory or which have more
complex label propagation behavior. The signature of __dfsw_F is based on that of F with each argument
having a label of type dfsan_label appended to the argument list. If F is of non-void return type a final
argument of type dfsan_label * is appended to which the custom function can store the label for the return
value. For example:

void f(int x);
void __dfsw_f(int x, dfsan_label x_label);

void *memcpy(void *dest, const void *src, size_t n);
void *__dfsw_memcpy(void *dest, const void *src, size_t n,
                    dfsan_label dest_label, dfsan_label src_label,
                    dfsan_label n_label, dfsan_label *ret_label);

If a function defined in the translation unit being compiled belongs to the uninstrumented category, it will be
compiled so as to conform to the native ABI. Its arguments will be assumed to be unlabelled, but it will propagate
labels in shadow memory.

For example:

DataFlowSanitizer

659



# main is called by the C runtime using the native ABI.
fun:main=uninstrumented
fun:main=discard

# malloc only writes to its internal data structures, not user-accessible memory.
fun:malloc=uninstrumented
fun:malloc=discard

# tolower is a pure function.
fun:tolower=uninstrumented
fun:tolower=functional

# memcpy needs to copy the shadow from the source to the destination region.
# This is done in a custom function.
fun:memcpy=uninstrumented
fun:memcpy=custom

For instrumented functions, the ABI list supports a force_zero_labels category, which will make all stores and
return values set zero labels. Functions should never be labelled with both force_zero_labels and
uninstrumented or any of the unistrumented wrapper kinds.

For example:

# e.g. void writes_data(char* out_buf, int out_buf_len) {...}
# Applying force_zero_labels will force out_buf shadow to zero.
fun:writes_data=force_zero_labels

Compilation Flags

• -dfsan-abilist – The additional ABI list files that control how shadow parameters are passed. File names
are separated by comma.

• -dfsan-combine-pointer-labels-on-load – Controls whether to include or ignore the labels of pointers
in load instructions. Its default value is true. For example:

v = *p;

If the flag is true, the label of v is the union of the label of p and the label of *p. If the flag is false, the label of v is the
label of just *p.

• -dfsan-combine-pointer-labels-on-store – Controls whether to include or ignore the labels of
pointers in store instructions. Its default value is false. For example:

*p = v;

If the flag is true, the label of *p is the union of the label of p and the label of v. If the flag is false, the label of *p is
the label of just v.

• -dfsan-combine-offset-labels-on-gep – Controls whether to propagate labels of offsets in GEP
instructions. Its default value is true. For example:

p += i;

If the flag is true, the label of p is the union of the label of p and the label of i. If the flag is false, the label of p is
unchanged.

• -dfsan-track-select-control-flow – Controls whether to track the control flow of select instructions. Its
default value is true. For example:

v = b? v1: v2;

If the flag is true, the label of v is the union of the labels of b, v1 and v2. If the flag is false, the label of v is the union
of the labels of just v1 and v2.

• -dfsan-event-callbacks – An experimental feature that inserts callbacks for certain data events. Currently
callbacks are only inserted for loads, stores, memory transfers (i.e. memcpy and memmove), and

DataFlowSanitizer

660



comparisons. Its default value is false. If this flag is set to true, a user must provide definitions for the following
callback functions:

void __dfsan_load_callback(dfsan_label Label, void* Addr);
void __dfsan_store_callback(dfsan_label Label, void* Addr);
void __dfsan_mem_transfer_callback(dfsan_label *Start, size_t Len);
void __dfsan_cmp_callback(dfsan_label CombinedLabel);

• -dfsan-conditional-callbacks – An experimental feature that inserts callbacks for control flow
conditional expressions. This can be used to find where tainted values can control execution.

In addition to this compilation flag, a callback handler must be registered using
dfsan_set_conditional_callback(my_callback);, where my_callback is a function with a signature
matching void my_callback(dfsan_label l, dfsan_origin o);. This signature is the same when
origin tracking is disabled - in this case the dfsan_origin passed in it will always be 0.

The callback will only be called when a tainted value reaches a conditional expression for control flow (such as
an if’s condition). The callback will be skipped for conditional expressions inside signal handlers, as this is
prone to deadlock. Tainted values used in conditional expressions inside signal handlers will instead be
aggregated via bitwise or, and can be accessed using
dfsan_label dfsan_get_labels_in_signal_conditional();.

• -dfsan-track-origins – Controls how to track origins. When its value is 0, the runtime does not track
origins. When its value is 1, the runtime tracks origins at memory store operations. When its value is 2, the
runtime tracks origins at memory load and store operations. Its default value is 0.

• -dfsan-instrument-with-call-threshold – If a function being instrumented requires more than this
number of origin stores, use callbacks instead of inline checks (-1 means never use callbacks). Its default value
is 3500.

Environment Variables

• warn_unimplemented – Whether to warn on unimplemented functions. Its default value is false.

• strict_data_dependencies – Whether to propagate labels only when there is explicit obvious data
dependency (e.g., when comparing strings, ignore the fact that the output of the comparison might be implicit
data-dependent on the content of the strings). This applies only to functions with custom category in ABI list. Its
default value is true.

• origin_history_size – The limit of origin chain length. Non-positive values mean unlimited. Its default
value is 16.

• origin_history_per_stack_limit – The limit of origin node’s references count. Non-positive values
mean unlimited. Its default value is 20000.

• store_context_size – The depth limit of origin tracking stack traces. Its default value is 20.

• zero_in_malloc – Whether to zero shadow space of new allocated memory. Its default value is true.

• zero_in_free — Whether to zero shadow space of deallocated memory. Its default value is true.

Example
DataFlowSanitizer supports up to 8 labels, to achieve low CPU and code size overhead. Base labels are simply 8-bit
unsigned integers that are powers of 2 (i.e. 1, 2, 4, 8, …, 128), and union labels are created by ORing base labels.

The following program demonstrates label propagation by checking that the correct labels are propagated.

#include <sanitizer/dfsan_interface.h>
#include <assert.h>

int main(void) {
  int i = 100;
  int j = 200;
  int k = 300;
  dfsan_label i_label = 1;

DataFlowSanitizer

661



  dfsan_label j_label = 2;
  dfsan_label k_label = 4;
  dfsan_set_label(i_label, &i, sizeof(i));
  dfsan_set_label(j_label, &j, sizeof(j));
  dfsan_set_label(k_label, &k, sizeof(k));

  dfsan_label ij_label = dfsan_get_label(i + j);

  assert(ij_label & i_label);  // ij_label has i_label
  assert(ij_label & j_label);  // ij_label has j_label
  assert(!(ij_label & k_label));  // ij_label doesn't have k_label
  assert(ij_label == 3);  // Verifies all of the above

  // Or, equivalently:
  assert(dfsan_has_label(ij_label, i_label));
  assert(dfsan_has_label(ij_label, j_label));
  assert(!dfsan_has_label(ij_label, k_label));

  dfsan_label ijk_label = dfsan_get_label(i + j + k);

  assert(ijk_label & i_label);  // ijk_label has i_label
  assert(ijk_label & j_label);  // ijk_label has j_label
  assert(ijk_label & k_label);  // ijk_label has k_label
  assert(ijk_label == 7);  // Verifies all of the above

  // Or, equivalently:
  assert(dfsan_has_label(ijk_label, i_label));
  assert(dfsan_has_label(ijk_label, j_label));
  assert(dfsan_has_label(ijk_label, k_label));

  return 0;
}

Origin Tracking
DataFlowSanitizer can track origins of labeled values. This feature is enabled by
-mllvm -dfsan-track-origins=1. For example,

% cat test.cc
#include <sanitizer/dfsan_interface.h>
#include <stdio.h>

int main(int argc, char** argv) {
  int i = 0;
  dfsan_set_label(i_label, &i, sizeof(i));
  int j = i + 1;
  dfsan_print_origin_trace(&j, "A flow from i to j");
  return 0;
}

% clang++ -fsanitize=dataflow -mllvm -dfsan-track-origins=1 -fno-omit-frame-pointer -g -O2 test.cc
% ./a.out
Taint value 0x1 (at 0x7ffd42bf415c) origin tracking (A flow from i to j)
Origin value: 0x13900001, Taint value was stored to memory at
  #0 0x55676db85a62 in main test.cc:7:7
  #1 0x7f0083611bbc in __libc_start_main libc-start.c:285

Origin value: 0x9e00001, Taint value was created at
  #0 0x55676db85a08 in main test.cc:6:3
  #1 0x7f0083611bbc in __libc_start_main libc-start.c:285

By -mllvm -dfsan-track-origins=1 DataFlowSanitizer collects only intermediate stores a labeled value went
through. Origin tracking slows down program execution by a factor of 2x on top of the usual DataFlowSanitizer

DataFlowSanitizer

662



slowdown and increases memory overhead by 1x. By -mllvm -dfsan-track-origins=2 DataFlowSanitizer
also collects intermediate loads a labeled value went through. This mode slows down program execution by a factor
of 4x.

Current status
DataFlowSanitizer is a work in progress, currently under development for x86_64 Linux.

Design
Please refer to the design document.

LeakSanitizer
Introduction 663

Usage 663

Supported Platforms 663

More Information 664

Introduction
LeakSanitizer is a run-time memory leak detector. It can be combined with AddressSanitizer to get both memory
error and leak detection, or used in a stand-alone mode. LSan adds almost no performance overhead until the very
end of the process, at which point there is an extra leak detection phase.

Usage
AddressSanitizer: integrates LeakSanitizer and enables it by default on supported platforms.

$ cat memory-leak.c
#include <stdlib.h>
void *p;
int main() {
  p = malloc(7);
  p = 0; // The memory is leaked here.
  return 0;
}
% clang -fsanitize=address -g memory-leak.c ; ASAN_OPTIONS=detect_leaks=1 ./a.out
==23646==ERROR: LeakSanitizer: detected memory leaks
Direct leak of 7 byte(s) in 1 object(s) allocated from:
    #0 0x4af01b in __interceptor_malloc /projects/compiler-rt/lib/asan/asan_malloc_linux.cc:52:3
    #1 0x4da26a in main memory-leak.c:4:7
    #2 0x7f076fd9cec4 in __libc_start_main libc-start.c:287
SUMMARY: AddressSanitizer: 7 byte(s) leaked in 1 allocation(s).

To use LeakSanitizer in stand-alone mode, link your program with -fsanitize=leak flag. Make sure to use clang
(not ld) for the link step, so that it would link in proper LeakSanitizer run-time library into the final executable.

Supported Platforms

• Android aarch64/i386/x86_64

• Fuchsia aarch64/x86_64

• Linux arm/aarch64/mips64/ppc64/ppc64le/riscv64/s390x/i386/x86_64

• macOS aarch64/i386/x86_64

• NetBSD i386/x86_64

LeakSanitizer

663



More Information
https://github.com/google/sanitizers/wiki/AddressSanitizerLeakSanitizer

SanitizerCoverage
Introduction 664

Tracing PCs with guards 664

Inline 8bit-counters 666

Inline bool-flag 666

PC-Table 666

Tracing PCs 667

Instrumentation points 667

Edge coverage 667

Tracing data flow 667

Disabling instrumentation with __attribute__((no_sanitize("coverage"))) 668

Disabling instrumentation without source modification 669

Default implementation 669

Sancov data format 670

Sancov Tool 670

Coverage Reports 670

Output directory 670

Introduction
LLVM has a simple code coverage instrumentation built in (SanitizerCoverage). It inserts calls to user-defined
functions on function-, basic-block-, and edge- levels. Default implementations of those callbacks are provided and
implement simple coverage reporting and visualization, however if you need just coverage visualization you may
want to use SourceBasedCodeCoverage instead.

Tracing PCs with guards
With -fsanitize-coverage=trace-pc-guard the compiler will insert the following code on every edge:

__sanitizer_cov_trace_pc_guard(&guard_variable)

Every edge will have its own guard_variable (uint32_t).

The compiler will also insert calls to a module constructor:

// The guards are [start, stop).
// This function will be called at least once per DSO and may be called
// more than once with the same values of start/stop.
__sanitizer_cov_trace_pc_guard_init(uint32_t *start, uint32_t *stop);

With an additional ...=trace-pc,indirect-calls flag
__sanitizer_cov_trace_pc_indirect(void *callee) will be inserted on every indirect call.

The functions __sanitizer_cov_trace_pc_* should be defined by the user.

Example:

// trace-pc-guard-cb.cc
#include <stdint.h>
#include <stdio.h>
#include <sanitizer/coverage_interface.h>

// This callback is inserted by the compiler as a module constructor

SanitizerCoverage

664

https://github.com/google/sanitizers/wiki/AddressSanitizerLeakSanitizer


// into every DSO. 'start' and 'stop' correspond to the
// beginning and end of the section with the guards for the entire
// binary (executable or DSO). The callback will be called at least
// once per DSO and may be called multiple times with the same parameters.
extern "C" void __sanitizer_cov_trace_pc_guard_init(uint32_t *start,
                                                    uint32_t *stop) {
  static uint64_t N;  // Counter for the guards.
  if (start == stop || *start) return;  // Initialize only once.
  printf("INIT: %p %p\n", start, stop);
  for (uint32_t *x = start; x < stop; x++)
    *x = ++N;  // Guards should start from 1.
}

// This callback is inserted by the compiler on every edge in the
// control flow (some optimizations apply).
// Typically, the compiler will emit the code like this:
//    if(*guard)
//      __sanitizer_cov_trace_pc_guard(guard);
// But for large functions it will emit a simple call:
//    __sanitizer_cov_trace_pc_guard(guard);
extern "C" void __sanitizer_cov_trace_pc_guard(uint32_t *guard) {
  if (!*guard) return;  // Duplicate the guard check.
  // If you set *guard to 0 this code will not be called again for this edge.
  // Now you can get the PC and do whatever you want:
  //   store it somewhere or symbolize it and print right away.
  // The values of `*guard` are as you set them in
  // __sanitizer_cov_trace_pc_guard_init and so you can make them consecutive
  // and use them to dereference an array or a bit vector.
  void *PC = __builtin_return_address(0);
  char PcDescr[1024];
  // This function is a part of the sanitizer run-time.
  // To use it, link with AddressSanitizer or other sanitizer.
  __sanitizer_symbolize_pc(PC, "%p %F %L", PcDescr, sizeof(PcDescr));
  printf("guard: %p %x PC %s\n", guard, *guard, PcDescr);
}

// trace-pc-guard-example.cc
void foo() { }
int main(int argc, char **argv) {
  if (argc > 1) foo();
}

clang++ -g  -fsanitize-coverage=trace-pc-guard trace-pc-guard-example.cc -c
clang++ trace-pc-guard-cb.cc trace-pc-guard-example.o -fsanitize=address
ASAN_OPTIONS=strip_path_prefix=`pwd`/ ./a.out

INIT: 0x71bcd0 0x71bce0
guard: 0x71bcd4 2 PC 0x4ecd5b in main trace-pc-guard-example.cc:2
guard: 0x71bcd8 3 PC 0x4ecd9e in main trace-pc-guard-example.cc:3:7

ASAN_OPTIONS=strip_path_prefix=`pwd`/ ./a.out with-foo

INIT: 0x71bcd0 0x71bce0
guard: 0x71bcd4 2 PC 0x4ecd5b in main trace-pc-guard-example.cc:3
guard: 0x71bcdc 4 PC 0x4ecdc7 in main trace-pc-guard-example.cc:4:17

SanitizerCoverage

665



guard: 0x71bcd0 1 PC 0x4ecd20 in foo() trace-pc-guard-example.cc:2:14

Inline 8bit-counters
Experimental, may change or disappear in future

With -fsanitize-coverage=inline-8bit-counters the compiler will insert inline counter increments on
every edge. This is similar to -fsanitize-coverage=trace-pc-guard but instead of a callback the
instrumentation simply increments a counter.

Users need to implement a single function to capture the counters at startup.

extern "C"
void __sanitizer_cov_8bit_counters_init(char *start, char *end) {
  // [start,end) is the array of 8-bit counters created for the current DSO.
  // Capture this array in order to read/modify the counters.
}

Inline bool-flag
Experimental, may change or disappear in future

With -fsanitize-coverage=inline-bool-flag the compiler will insert setting an inline boolean to true on
every edge. This is similar to -fsanitize-coverage=inline-8bit-counter but instead of an increment of a
counter, it just sets a boolean to true.

Users need to implement a single function to capture the flags at startup.

extern "C"
void __sanitizer_cov_bool_flag_init(bool *start, bool *end) {
  // [start,end) is the array of boolean flags created for the current DSO.
  // Capture this array in order to read/modify the flags.
}

PC-Table
Experimental, may change or disappear in future

Note: this instrumentation might be incompatible with dead code stripping (-Wl,-gc-sections) for linkers other
than LLD, thus resulting in a significant binary size overhead. For more information, see Bug 34636.

With -fsanitize-coverage=pc-table the compiler will create a table of instrumented PCs. Requires either
-fsanitize-coverage=inline-8bit-counters, or -fsanitize-coverage=inline-bool-flag, or
-fsanitize-coverage=trace-pc-guard.

Users need to implement a single function to capture the PC table at startup:

extern "C"
void __sanitizer_cov_pcs_init(const uintptr_t *pcs_beg,
                              const uintptr_t *pcs_end) {
  // [pcs_beg,pcs_end) is the array of ptr-sized integers representing
  // pairs [PC,PCFlags] for every instrumented block in the current DSO.
  // Capture this array in order to read the PCs and their Flags.
  // The number of PCs and PCFlags for a given DSO is the same as the number
  // of 8-bit counters (-fsanitize-coverage=inline-8bit-counters), or
  // boolean flags (-fsanitize-coverage=inline=bool-flags), or trace_pc_guard
  // callbacks (-fsanitize-coverage=trace-pc-guard).
  // A PCFlags describes the basic block:
  //  * bit0: 1 if the block is the function entry block, 0 otherwise.
}

SanitizerCoverage

666

https://bugs.llvm.org/show_bug.cgi?id=34636


Tracing PCs
With -fsanitize-coverage=trace-pc the compiler will insert __sanitizer_cov_trace_pc() on every
edge. With an additional ...=trace-pc,indirect-calls flag
__sanitizer_cov_trace_pc_indirect(void *callee) will be inserted on every indirect call. These
callbacks are not implemented in the Sanitizer run-time and should be defined by the user. This mechanism is used
for fuzzing the Linux kernel (https://github.com/google/syzkaller).

Instrumentation points
Sanitizer Coverage offers different levels of instrumentation.

• edge (default): edges are instrumented (see below).

• bb: basic blocks are instrumented.

• func: only the entry block of every function will be instrumented.

Use these flags together with trace-pc-guard or trace-pc, like this:
-fsanitize-coverage=func,trace-pc-guard.

When edge or bb is used, some of the edges/blocks may still be left uninstrumented (pruned) if such instrumentation
is considered redundant. Use no-prune (e.g. -fsanitize-coverage=bb,no-prune,trace-pc-guard) to
disable pruning. This could be useful for better coverage visualization.

Edge coverage

Consider this code:

void foo(int *a) {
  if (a)
    *a = 0;
}

It contains 3 basic blocks, let’s name them A, B, C:

A
|\
| \
|  B
| /
|/
C

If blocks A, B, and C are all covered we know for certain that the edges A=>B and B=>C were executed, but we still
don’t know if the edge A=>C was executed. Such edges of control flow graph are called critical. The edge-level
coverage simply splits all critical edges by introducing new dummy blocks and then instruments those blocks:

A
|\
| \
D  B
| /
|/
C

Tracing data flow
Support for data-flow-guided fuzzing. With -fsanitize-coverage=trace-cmp the compiler will insert extra
instrumentation around comparison instructions and switch statements. Similarly, with
-fsanitize-coverage=trace-div the compiler will instrument integer division instructions (to capture the right
argument of division) and with -fsanitize-coverage=trace-gep – the LLVM GEP instructions (to capture array
indices). Similarly, with -fsanitize-coverage=trace-loads and -fsanitize-coverage=trace-stores
the compiler will instrument loads and stores, respectively.

SanitizerCoverage

667

https://github.com/google/syzkaller
https://en.wikipedia.org/wiki/Control_flow_graph#Special_edges
https://llvm.org/docs/GetElementPtr.html


Currently, these flags do not work by themselves - they require one of
-fsanitize-coverage={trace-pc,inline-8bit-counters,inline-bool} flags to work.

Unless no-prune option is provided, some of the comparison instructions will not be instrumented.

// Called before a comparison instruction.
// Arg1 and Arg2 are arguments of the comparison.
void __sanitizer_cov_trace_cmp1(uint8_t Arg1, uint8_t Arg2);
void __sanitizer_cov_trace_cmp2(uint16_t Arg1, uint16_t Arg2);
void __sanitizer_cov_trace_cmp4(uint32_t Arg1, uint32_t Arg2);
void __sanitizer_cov_trace_cmp8(uint64_t Arg1, uint64_t Arg2);

// Called before a comparison instruction if exactly one of the arguments is constant.
// Arg1 and Arg2 are arguments of the comparison, Arg1 is a compile-time constant.
// These callbacks are emitted by -fsanitize-coverage=trace-cmp since 2017-08-11
void __sanitizer_cov_trace_const_cmp1(uint8_t Arg1, uint8_t Arg2);
void __sanitizer_cov_trace_const_cmp2(uint16_t Arg1, uint16_t Arg2);
void __sanitizer_cov_trace_const_cmp4(uint32_t Arg1, uint32_t Arg2);
void __sanitizer_cov_trace_const_cmp8(uint64_t Arg1, uint64_t Arg2);

// Called before a switch statement.
// Val is the switch operand.
// Cases[0] is the number of case constants.
// Cases[1] is the size of Val in bits.
// Cases[2:] are the case constants.
void __sanitizer_cov_trace_switch(uint64_t Val, uint64_t *Cases);

// Called before a division statement.
// Val is the second argument of division.
void __sanitizer_cov_trace_div4(uint32_t Val);
void __sanitizer_cov_trace_div8(uint64_t Val);

// Called before a GetElemementPtr (GEP) instruction
// for every non-constant array index.
void __sanitizer_cov_trace_gep(uintptr_t Idx);

// Called before a load of appropriate size. Addr is the address of the load.
void __sanitizer_cov_load1(uint8_t *addr);
void __sanitizer_cov_load2(uint16_t *addr);
void __sanitizer_cov_load4(uint32_t *addr);
void __sanitizer_cov_load8(uint64_t *addr);
void __sanitizer_cov_load16(__int128 *addr);
// Called before a store of appropriate size. Addr is the address of the store.
void __sanitizer_cov_store1(uint8_t *addr);
void __sanitizer_cov_store2(uint16_t *addr);
void __sanitizer_cov_store4(uint32_t *addr);
void __sanitizer_cov_store8(uint64_t *addr);
void __sanitizer_cov_store16(__int128 *addr);

Disabling instrumentation with
__attribute__((no_sanitize("coverage")))

It is possible to disable coverage instrumentation for select functions via the function attribute
__attribute__((no_sanitize("coverage"))). Because this attribute may not be supported by other
compilers, it is recommended to use it together with __has_feature(coverage_sanitizer).

SanitizerCoverage

668



Disabling instrumentation without source modification
It is sometimes useful to tell SanitizerCoverage to instrument only a subset of the functions in your target without
modifying source files. With -fsanitize-coverage-allowlist=allowlist.txt and
-fsanitize-coverage-ignorelist=blocklist.txt, you can specify such a subset through the combination
of an allowlist and a blocklist.

SanitizerCoverage will only instrument functions that satisfy two conditions. First, the function should belong to a
source file with a path that is both allowlisted and not blocklisted. Second, the function should have a mangled name
that is both allowlisted and not blocklisted.

The allowlist and blocklist format is similar to that of the sanitizer blocklist format. The default allowlist will match
every source file and every function. The default blocklist will match no source file and no function.

A common use case is to have the allowlist list folders or source files for which you want instrumentation and allow all
function names, while the blocklist will opt out some specific files or functions that the allowlist loosely allowed.

Here is an example allowlist:

# Enable instrumentation for a whole folder
src:bar/*
# Enable instrumentation for a specific source file
src:foo/a.cpp
# Enable instrumentation for all functions in those files
fun:*

And an example blocklist:

# Disable instrumentation for a specific source file that the allowlist allowed
src:bar/b.cpp
# Disable instrumentation for a specific function that the allowlist allowed
fun:*myFunc*

The use of * wildcards above is required because function names are matched after mangling. Without the
wildcards, one would have to write the whole mangled name.

Be careful that the paths of source files are matched exactly as they are provided on the clang command line. For
example, the allowlist above would include file bar/b.cpp if the path was provided exactly like this, but would it
would fail to include it with other ways to refer to the same file such as ./bar/b.cpp, or bar\b.cpp on Windows.
So, please make sure to always double check that your lists are correctly applied.

Default implementation
The sanitizer run-time (AddressSanitizer, MemorySanitizer, etc) provide a default implementations of some of the
coverage callbacks. You may use this implementation to dump the coverage on disk at the process exit.

Example:

% cat -n cov.cc
     1  #include <stdio.h>
     2  __attribute__((noinline))
     3  void foo() { printf("foo\n"); }
     4
     5  int main(int argc, char **argv) {
     6    if (argc == 2)
     7      foo();
     8    printf("main\n");
     9  }
% clang++ -g cov.cc -fsanitize=address -fsanitize-coverage=trace-pc-guard
% ASAN_OPTIONS=coverage=1 ./a.out; wc -c *.sancov
main
SanitizerCoverage: ./a.out.7312.sancov 2 PCs written
24 a.out.7312.sancov
% ASAN_OPTIONS=coverage=1 ./a.out foo ; wc -c *.sancov
foo

SanitizerCoverage

669



main
SanitizerCoverage: ./a.out.7316.sancov 3 PCs written
24 a.out.7312.sancov
32 a.out.7316.sancov

Every time you run an executable instrumented with SanitizerCoverage one *.sancov file is created during the
process shutdown. If the executable is dynamically linked against instrumented DSOs, one *.sancov file will be
also created for every DSO.

Sancov data format

The format of *.sancov files is very simple: the first 8 bytes is the magic, one of 0xC0BFFFFFFFFFFF64 and
0xC0BFFFFFFFFFFF32. The last byte of the magic defines the size of the following offsets. The rest of the data is
the offsets in the corresponding binary/DSO that were executed during the run.

Sancov Tool

An simple sancov tool is provided to process coverage files. The tool is part of LLVM project and is currently
supported only on Linux. It can handle symbolization tasks autonomously without any extra support from the
environment. You need to pass .sancov files (named <module_name>.<pid>.sancov and paths to all
corresponding binary elf files. Sancov matches these files using module names and binaries file names.

USAGE: sancov [options] <action> (<binary file>|<.sancov file>)...

Action (required)
  -print                    - Print coverage addresses
  -covered-functions        - Print all covered functions.
  -not-covered-functions    - Print all not covered functions.
  -symbolize                - Symbolizes the report.

Options
  -blocklist=<string>         - Blocklist file (sanitizer blocklist format).
  -demangle                   - Print demangled function name.
  -strip_path_prefix=<string> - Strip this prefix from file paths in reports

Coverage Reports

Experimental

.sancov files do not contain enough information to generate a source-level coverage report. The missing
information is contained in debug info of the binary. Thus the .sancov has to be symbolized to produce a .symcov
file first:

sancov -symbolize my_program.123.sancov my_program > my_program.123.symcov

The .symcov file can be browsed overlaid over the source code by running
tools/sancov/coverage-report-server.py script that will start an HTTP server.

Output directory

By default, .sancov files are created in the current working directory. This can be changed with
ASAN_OPTIONS=coverage_dir=/path:

% ASAN_OPTIONS="coverage=1:coverage_dir=/tmp/cov" ./a.out foo
% ls -l /tmp/cov/*sancov
-rw-r----- 1 kcc eng 4 Nov 27 12:21 a.out.22673.sancov
-rw-r----- 1 kcc eng 8 Nov 27 12:21 a.out.22679.sancov

SanitizerCoverage

670



SanitizerStats
Introduction 671

How to build and run 671

Introduction
The sanitizers support a simple mechanism for gathering profiling statistics to help understand the overhead
associated with sanitizers.

How to build and run
SanitizerStats can currently only be used with Control Flow Integrity. In addition to -fsanitize=cfi*, pass the
-fsanitize-stats flag. This will cause the program to count the number of times that each control flow integrity
check in the program fires.

At run time, set the SANITIZER_STATS_PATH environment variable to direct statistics output to a file. The file will be
written on process exit. The following substitutions will be applied to the environment variable:

• %b – The executable basename.

• %p – The process ID.

You can also send the SIGUSR2 signal to a process to make it write sanitizer statistics immediately.

The sanstats program can be used to dump statistics. It takes as a command line argument the path to a statistics
file produced by a program compiled with -fsanitize-stats.

The output of sanstats is in four columns, separated by spaces. The first column is the file and line number of the
call site. The second column is the function name. The third column is the type of statistic gathered (in this case, the
type of control flow integrity check). The fourth column is the call count.

Example:

$ cat -n vcall.cc
     1 struct A {
     2   virtual void f() {}
     3 };
     4
     5 __attribute__((noinline)) void g(A *a) {
     6   a->f();
     7 }
     8
     9 int main() {
    10   A a;
    11   g(&a);
    12 }
$ clang++ -fsanitize=cfi -fvisibility=hidden -flto -fuse-ld=gold vcall.cc -fsanitize-stats -g
$ SANITIZER_STATS_PATH=a.stats ./a.out
$ sanstats a.stats
vcall.cc:6 _Z1gP1A cfi-vcall 1

Sanitizer special case list
Introduction 672

Goal and usage 672

Example 672

Format 672

SanitizerStats

671



Introduction
This document describes the way to disable or alter the behavior of sanitizer tools for certain source-level entities by
providing a special file at compile-time.

Goal and usage
User of sanitizer tools, such as AddressSanitizer, ThreadSanitizer or MemorySanitizer may want to disable or alter
some checks for certain source-level entities to:

• speedup hot function, which is known to be correct;

• ignore a function that does some low-level magic (e.g. walks through the thread stack, bypassing the frame
boundaries);

• ignore a known problem.

To achieve this, user may create a file listing the entities they want to ignore, and pass it to clang at compile-time
using -fsanitize-ignorelist flag. See Clang Compiler User’s Manual for details.

Example

$ cat foo.c
#include <stdlib.h>
void bad_foo() {
  int *a = (int*)malloc(40);
  a[10] = 1;
}
int main() { bad_foo(); }
$ cat ignorelist.txt
# Ignore reports from bad_foo function.
fun:bad_foo
$ clang -fsanitize=address foo.c ; ./a.out
# AddressSanitizer prints an error report.
$ clang -fsanitize=address -fsanitize-ignorelist=ignorelist.txt foo.c ; ./a.out
# No error report here.

Format
Ignorelists consist of entries, optionally grouped into sections. Empty lines and lines starting with “#” are ignored.

Section names are regular expressions written in square brackets that denote which sanitizer the following entries
apply to. For example, [address] specifies AddressSanitizer while [cfi-vcall|cfi-icall] specifies Control
Flow Integrity virtual and indirect call checking. Entries without a section will be placed under the [*] section
applying to all enabled sanitizers.

Entries contain an entity type, followed by a colon and a regular expression, specifying the names of the entities,
optionally followed by an equals sign and a tool-specific category, e.g. fun:*ExampleFunc=example_category.
The meaning of * in regular expression for entity names is different - it is treated as in shell wildcarding. Two generic
entity types are src and fun, which allow users to specify source files and functions, respectively. Some sanitizer
tools may introduce custom entity types and categories - refer to tool-specific docs.

# Lines starting with # are ignored.
# Turn off checks for the source file (use absolute path or path relative
# to the current working directory):
src:/path/to/source/file.c
# Turn off checks for a particular functions (use mangled names):
fun:MyFooBar
fun:_Z8MyFooBarv
# Extended regular expressions are supported:
fun:bad_(foo|bar)
src:bad_source[1-9].c
# Shell like usage of * is supported (* is treated as .*):

SanitizerStats

672



src:bad/sources/*
fun:*BadFunction*
# Specific sanitizer tools may introduce categories.
src:/special/path/*=special_sources
# Sections can be used to limit ignorelist entries to specific sanitizers
[address]
fun:*BadASanFunc*
# Section names are regular expressions
[cfi-vcall|cfi-icall]
fun:*BadCfiCall
# Entries without sections are placed into [*] and apply to all sanitizers

Control Flow Integrity

Control Flow Integrity Design Documentation
This page documents the design of the Control Flow Integrity schemes supported by Clang.

Forward-Edge CFI for Virtual Calls

This scheme works by allocating, for each static type used to make a virtual call, a region of read-only storage in the
object file holding a bit vector that maps onto to the region of storage used for those virtual tables. Each set bit in the
bit vector corresponds to the address point for a virtual table compatible with the static type for which the bit vector is
being built.

For example, consider the following three C++ classes:

struct A {
  virtual void f1();
  virtual void f2();
  virtual void f3();
};

struct B : A {
  virtual void f1();
  virtual void f2();
  virtual void f3();
};

struct C : A {
  virtual void f1();
  virtual void f2();
  virtual void f3();
};

The scheme will cause the virtual tables for A, B and C to be laid out consecutively:

Virtual Table Layout for A, B, C

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

A::of
fset-t
o-to
p

&A::r
tti

&A::f
1

&A::f
2

&A::f
3

B::of
fset-t
o-to
p

&B::r
tti

&B::f
1

&B::f
2

&B::f
3

C::of
fset-t
o-to
p

&C::
rtti

&C::f
1

&C::f
2

&C::f
3

The bit vector for static types A, B and C will look like this:

Bit Vectors for A, B, C

Control Flow Integrity

673

https://itanium-cxx-abi.github.io/cxx-abi/abi.html#vtable-general


Cla
ss 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

A 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0

B 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

C 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

Bit vectors are represented in the object file as byte arrays. By loading from indexed offsets into the byte array and
applying a mask, a program can test bits from the bit set with a relatively short instruction sequence. Bit vectors may
overlap so long as they use different bits. For the full details, see the ByteArrayBuilder class.

In this case, assuming A is laid out at offset 0 in bit 0, B at offset 0 in bit 1 and C at offset 0 in bit 2, the byte array
would look like this:

char bits[] = { 0, 0, 1, 0, 0, 0, 3, 0, 0, 0, 0, 5, 0, 0 };

To emit a virtual call, the compiler will assemble code that checks that the object’s virtual table pointer is in-bounds
and aligned and that the relevant bit is set in the bit vector.

For example on x86 a typical virtual call may look like this:

ca7fbb:       48 8b 0f                mov    (%rdi),%rcx
ca7fbe:       48 8d 15 c3 42 fb 07    lea    0x7fb42c3(%rip),%rdx
ca7fc5:       48 89 c8                mov    %rcx,%rax
ca7fc8:       48 29 d0                sub    %rdx,%rax
ca7fcb:       48 c1 c0 3d             rol    $0x3d,%rax
ca7fcf:       48 3d 7f 01 00 00       cmp    $0x17f,%rax
ca7fd5:       0f 87 36 05 00 00       ja     ca8511
ca7fdb:       48 8d 15 c0 0b f7 06    lea    0x6f70bc0(%rip),%rdx
ca7fe2:       f6 04 10 10             testb  $0x10,(%rax,%rdx,1)
ca7fe6:       0f 84 25 05 00 00       je     ca8511
ca7fec:       ff 91 98 00 00 00       callq  *0x98(%rcx)
  [...]
ca8511:       0f 0b                   ud2

The compiler relies on co-operation from the linker in order to assemble the bit vectors for the whole program. It
currently does this using LLVM’s type metadata mechanism together with link-time optimization.

Optimizations

The scheme as described above is the fully general variant of the scheme. Most of the time we are able to apply one
or more of the following optimizations to improve binary size or performance.

In fact, if you try the above example with the current version of the compiler, you will probably find that it will not use
the described virtual table layout or machine instructions. Some of the optimizations we are about to introduce cause
the compiler to use a different layout or a different sequence of machine instructions.

Stripping Leading/Trailing Zeros in Bit Vectors

If a bit vector contains leading or trailing zeros, we can strip them from the vector. The compiler will emit code to
check if the pointer is in range of the region covered by ones, and perform the bit vector check using a truncated
version of the bit vector. For example, the bit vectors for our example class hierarchy will be emitted like this:

Bit Vectors for A, B, C

Cla
ss 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

A 1 0 0 0 0 1 0 0 0 0 1

B 1

C 1

Control Flow Integrity

674

https://llvm.org/docs/doxygen/html/structllvm_1_1ByteArrayBuilder.html
https://llvm.org/docs/TypeMetadata.html


Short Inline Bit Vectors

If the vector is sufficiently short, we can represent it as an inline constant on x86. This saves us a few instructions
when reading the correct element of the bit vector.

If the bit vector fits in 32 bits, the code looks like this:

 dc2:       48 8b 03                mov    (%rbx),%rax
 dc5:       48 8d 15 14 1e 00 00    lea    0x1e14(%rip),%rdx
 dcc:       48 89 c1                mov    %rax,%rcx
 dcf:       48 29 d1                sub    %rdx,%rcx
 dd2:       48 c1 c1 3d             rol    $0x3d,%rcx
 dd6:       48 83 f9 03             cmp    $0x3,%rcx
 dda:       77 2f                   ja     e0b <main+0x9b>
 ddc:       ba 09 00 00 00          mov    $0x9,%edx
 de1:       0f a3 ca                bt     %ecx,%edx
 de4:       73 25                   jae    e0b <main+0x9b>
 de6:       48 89 df                mov    %rbx,%rdi
 de9:       ff 10                   callq  *(%rax)
[...]
 e0b:       0f 0b                   ud2

Or if the bit vector fits in 64 bits:

11a6:       48 8b 03                mov    (%rbx),%rax
11a9:       48 8d 15 d0 28 00 00    lea    0x28d0(%rip),%rdx
11b0:       48 89 c1                mov    %rax,%rcx
11b3:       48 29 d1                sub    %rdx,%rcx
11b6:       48 c1 c1 3d             rol    $0x3d,%rcx
11ba:       48 83 f9 2a             cmp    $0x2a,%rcx
11be:       77 35                   ja     11f5 <main+0xb5>
11c0:       48 ba 09 00 00 00 00    movabs $0x40000000009,%rdx
11c7:       04 00 00
11ca:       48 0f a3 ca             bt     %rcx,%rdx
11ce:       73 25                   jae    11f5 <main+0xb5>
11d0:       48 89 df                mov    %rbx,%rdi
11d3:       ff 10                   callq  *(%rax)
[...]
11f5:       0f 0b                   ud2

If the bit vector consists of a single bit, there is only one possible virtual table, and the check can consist of a single
equality comparison:

9a2:   48 8b 03                mov    (%rbx),%rax
9a5:   48 8d 0d a4 13 00 00    lea    0x13a4(%rip),%rcx
9ac:   48 39 c8                cmp    %rcx,%rax
9af:   75 25                   jne    9d6 <main+0x86>
9b1:   48 89 df                mov    %rbx,%rdi
9b4:   ff 10                   callq  *(%rax)
[...]
9d6:   0f 0b                   ud2

Virtual Table Layout

The compiler lays out classes of disjoint hierarchies in separate regions of the object file. At worst, bit vectors in
disjoint hierarchies only need to cover their disjoint hierarchy. But the closer that classes in sub-hierarchies are laid
out to each other, the smaller the bit vectors for those sub-hierarchies need to be (see “Stripping Leading/Trailing
Zeros in Bit Vectors” above). The GlobalLayoutBuilder class is responsible for laying out the globals efficiently to
minimize the sizes of the underlying bitsets.

Control Flow Integrity

675

https://github.com/llvm/llvm-project/blob/main/llvm/include/llvm/Transforms/IPO/LowerTypeTests.h


Alignment

If all gaps between address points in a particular bit vector are multiples of powers of 2, the compiler can compress
the bit vector by strengthening the alignment requirements of the virtual table pointer. For example, given this class
hierarchy:

struct A {
  virtual void f1();
  virtual void f2();
};

struct B : A {
  virtual void f1();
  virtual void f2();
  virtual void f3();
  virtual void f4();
  virtual void f5();
  virtual void f6();
};

struct C : A {
  virtual void f1();
  virtual void f2();
};

The virtual tables will be laid out like this:

Virtual Table Layout for A, B, C

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

A::o
ffset
-to-t
op

&A::
rtti

&A::
f1

&A::
f2

B::o
ffset
-to-t
op

&B::
rtti

&B::
f1

&B::
f2

&B::
f3

&B::
f4

&B::
f5

&B::
f6

C::o
ffset
-to-t
op

&C::
rtti

&C::
f1

&C::
f2

Notice that each address point for A is separated by 4 words. This lets us emit a compressed bit vector for A that
looks like this:

2 6 10 14

1 1 0 1

At call sites, the compiler will strengthen the alignment requirements by using a different rotate count. For example,
on a 64-bit machine where the address points are 4-word aligned (as in A from our example), the rol instruction
may look like this:

dd2:       48 c1 c1 3b             rol    $0x3b,%rcx

Padding to Powers of 2

Of course, this alignment scheme works best if the address points are in fact aligned correctly. To make this more
likely to happen, we insert padding between virtual tables that in many cases aligns address points to a power of 2.
Specifically, our padding aligns virtual tables to the next highest power of 2 bytes; because address points for
specific base classes normally appear at fixed offsets within the virtual table, this normally has the effect of aligning
the address points as well.

This scheme introduces tradeoffs between decreased space overhead for instructions and bit vectors and increased
overhead in the form of padding. We therefore limit the amount of padding so that we align to no more than 128
bytes. This number was found experimentally to provide a good tradeoff.

Control Flow Integrity

676



Eliminating Bit Vector Checks for All-Ones Bit Vectors

If the bit vector is all ones, the bit vector check is redundant; we simply need to check that the address is in range
and well aligned. This is more likely to occur if the virtual tables are padded.

Forward-Edge CFI for Virtual Calls by Interleaving Virtual Tables

Dimitar et. al. proposed a novel approach that interleaves virtual tables in 4. This approach is more efficient in terms
of space because padding and bit vectors are no longer needed. At the same time, it is also more efficient in terms of
performance because in the interleaved layout address points of the virtual tables are consecutive, thus the validity
check of a virtual vtable pointer is always a range check.

At a high level, the interleaving scheme consists of three steps: 1) split virtual table groups into separate virtual
tables, 2) order virtual tables by a pre-order traversal of the class hierarchy and 3) interleave virtual tables.

The interleaving scheme implemented in LLVM is inspired by 4 but has its own enhancements (more in Interleave
virtual tables).

4(1, 2, 3) Protecting C++ Dynamic Dispatch Through VTable Interleaving. Dimitar Bounov, Rami Gökhan
K■c■, Sorin Lerner.

Split virtual table groups into separate virtual tables

The Itanium C++ ABI glues multiple individual virtual tables for a class into a combined virtual table (virtual table
group). The interleaving scheme, however, can only work with individual virtual tables so it must split the combined
virtual tables first. In comparison, the old scheme does not require the splitting but it is more efficient when the
combined virtual tables have been split. The GlobalSplit pass is responsible for splitting combined virtual tables into
individual ones.

Order virtual tables by a pre-order traversal of the class hierarchy

This step is common to both the old scheme described above and the interleaving scheme. For the interleaving
scheme, since the combined virtual tables have been split in the previous step, this step ensures that for any class all
the compatible virtual tables will appear consecutively. For the old scheme, the same property may not hold since it
may work on combined virtual tables.

For example, consider the following four C++ classes:

struct A {
  virtual void f1();
};

struct B : A {
  virtual void f1();
  virtual void f2();
};

struct C : A {
  virtual void f1();
  virtual void f3();
};

struct D : B {
  virtual void f1();
  virtual void f2();
};

This step will arrange the virtual tables for A, B, C, and D in the order of vtable-of-A, vtable-of-B, vtable-of-D,
vtable-of-C.

Control Flow Integrity

677

https://cseweb.ucsd.edu/~lerner/papers/ivtbl-ndss16.pdf
https://github.com/llvm/llvm-project/blob/main/llvm/lib/Transforms/IPO/GlobalSplit.cpp


Interleave virtual tables

This step is where the interleaving scheme deviates from the old scheme. Instead of laying out whole virtual tables in
the previously computed order, the interleaving scheme lays out table entries of the virtual tables strategically to
ensure the following properties:

1. offset-to-top and RTTI fields layout property

The Itanium C++ ABI specifies that offset-to-top and RTTI fields appear at the offsets behind the address point. Note
that libraries like libcxxabi do assume this property.

2. virtual function entry layout property

For each virtual function the distance between an virtual table entry for this function and the corresponding address
point is always the same. This property ensures that dynamic dispatch still works with the interleaving layout.

Note that the interleaving scheme in the CFI implementation guarantees both properties above whereas the original
scheme proposed in 4 only guarantees the second property.

To illustrate how the interleaving algorithm works, let us continue with the running example. The algorithm first
separates all the virtual table entries into two work lists. To do so, it starts by allocating two work lists, one initialized
with all the offset-to-top entries of virtual tables in the order computed in the last step, one initialized with all the RTTI
entries in the same order.

Work list 1 Layout

0 1 2 3

A::offset-to-top B::offset-to-top D::offset-to-top C::offset-to-top

Work list 2 layout

0 1 2 3

&A::rtti &B::rtti &D::rtti &C::rtti

Then for each virtual function the algorithm goes through all the virtual tables in the previously computed order to
collect all the related entries into a virtual function list. After this step, there are the following virtual function lists:

f1 list

0 1 2 3

&A::f1 &B::f1 &D::f1 &C::f1

f2 list

0 1

&B::f2 &D::f2

f3 list

0

&C::f3

Next, the algorithm picks the longest remaining virtual function list and appends the whole list to the shortest work list
until no function lists are left, and pads the shorter work list so that they are of the same length. In the example, f1 list
will be first added to work list 1, then f2 list will be added to work list 2, and finally f3 list will be added to the work list
2. Since work list 1 now has one more entry than work list 2, a padding entry is added to the latter. After this step, the
two work lists look like:

Control Flow Integrity

678



Work list 1 Layout

0 1 2 3 4 5 6 7

A::offset-to-
top

B::offset-to-
top

D::offset-to-
top

C::offset-to-
top

&A::f1 &B::f1 &D::f1 &C::f1

Work list 2 layout

0 1 2 3 4 5 6 7

&A::rtti &B::rtti &D::rtti &C::rtti &B::f2 &D::f2 &C::f3 padding

Finally, the algorithm merges the two work lists into the interleaved layout by alternatingly moving the head of each
list to the final layout. After this step, the final interleaved layout looks like:

Interleaved layout

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

A::o
ffset
-to-t
op

&A::
rtti

B::o
ffset
-to-t
op

&B::
rtti

D::o
ffset
-to-t
op

&D::
rtti

C::o
ffset
-to-t
op

&C::
rtti

&A::
f1

&B::
f2

&B::
f1

&D::
f2

&D::
f1

&C::
f3

&C::
f1

pad
ding

In the above interleaved layout, each virtual table’s offset-to-top and RTTI are always adjacent, which shows that the
layout has the first property. For the second property, let us look at f2 as an example. In the interleaved layout, there
are two entries for f2: B::f2 and D::f2. The distance between &B::f2 and its address point D::offset-to-top (the entry
immediately after &B::rtti) is 5 entry-length, so is the distance between &D::f2 and C::offset-to-top (the entry
immediately after &D::rtti).

Forward-Edge CFI for Indirect Function Calls

Under forward-edge CFI for indirect function calls, each unique function type has its own bit vector, and at each call
site we need to check that the function pointer is a member of the function type’s bit vector. This scheme works in a
similar way to forward-edge CFI for virtual calls, the distinction being that we need to build bit vectors of function
entry points rather than of virtual tables.

Unlike when re-arranging global variables, we cannot re-arrange functions in a particular order and base our
calculations on the layout of the functions’ entry points, as we have no idea how large a particular function will end up
being (the function sizes could even depend on how we arrange the functions). Instead, we build a jump table, which
is a block of code consisting of one branch instruction for each of the functions in the bit set that branches to the
target function, and redirect any taken function addresses to the corresponding jump table entry. In this way, the
distance between function entry points is predictable and controllable. In the object file’s symbol table, the symbols
for the target functions also refer to the jump table entries, so that addresses taken outside the module will pass any
verification done inside the module.

In more concrete terms, suppose we have three functions f, g, h which are all of the same type, and a function foo
that returns their addresses:

f:
mov 0, %eax
ret

g:
mov 1, %eax
ret

h:
mov 2, %eax
ret

foo:

Control Flow Integrity

679



mov f, %eax
mov g, %edx
mov h, %ecx
ret

Our jump table will (conceptually) look like this:

f:
jmp .Ltmp0 ; 5 bytes
int3       ; 1 byte
int3       ; 1 byte
int3       ; 1 byte

g:
jmp .Ltmp1 ; 5 bytes
int3       ; 1 byte
int3       ; 1 byte
int3       ; 1 byte

h:
jmp .Ltmp2 ; 5 bytes
int3       ; 1 byte
int3       ; 1 byte
int3       ; 1 byte

.Ltmp0:
mov 0, %eax
ret

.Ltmp1:
mov 1, %eax
ret

.Ltmp2:
mov 2, %eax
ret

foo:
mov f, %eax
mov g, %edx
mov h, %ecx
ret

Because the addresses of f, g, h are evenly spaced at a power of 2, and function types do not overlap (unlike class
types with base classes), we can normally apply the Alignment and Eliminating Bit Vector Checks for All-Ones Bit
Vectors optimizations thus simplifying the check at each call site to a range and alignment check.

Shared library support

EXPERIMENTAL

The basic CFI mode described above assumes that the application is a monolithic binary; at least that all possible
virtual/indirect call targets and the entire class hierarchy are known at link time. The cross-DSO mode, enabled with
-f[no-]sanitize-cfi-cross-dso relaxes this requirement by allowing virtual and indirect calls to cross the DSO
boundary.

Assuming the following setup: the binary consists of several instrumented and several uninstrumented DSOs. Some
of them may be dlopen-ed/dlclose-d periodically, even frequently.

• Calls made from uninstrumented DSOs are not checked and just work.

• Calls inside any instrumented DSO are fully protected.

Control Flow Integrity

680



• Calls between different instrumented DSOs are also protected, with

a performance penalty (in addition to the monolithic CFI overhead).

• Calls from an instrumented DSO to an uninstrumented one are

unchecked and just work, with performance penalty.

• Calls from an instrumented DSO outside of any known DSO are

detected as CFI violations.

In the monolithic scheme a call site is instrumented as

if (!InlinedFastCheck(f))
  abort();
call *f

In the cross-DSO scheme it becomes

if (!InlinedFastCheck(f))
  __cfi_slowpath(CallSiteTypeId, f);
call *f

CallSiteTypeId

CallSiteTypeId is a stable process-wide identifier of the call-site type. For a virtual call site, the type in question is
the class type; for an indirect function call it is the function signature. The mapping from a type to an identifier is an
ABI detail. In the current, experimental, implementation the identifier of type T is calculated as follows:

• Obtain the mangled name for “typeinfo name for T”.

• Calculate MD5 hash of the name as a string.

• Reinterpret the first 8 bytes of the hash as a little-endian 64-bit integer.

It is possible, but unlikely, that collisions in the CallSiteTypeId hashing will result in weaker CFI checks that
would still be conservatively correct.

CFI_Check

In the general case, only the target DSO knows whether the call to function f with type CallSiteTypeId is valid or
not. To export this information, every DSO implements

void __cfi_check(uint64 CallSiteTypeId, void *TargetAddr, void *DiagData)

This function provides external modules with access to CFI checks for the targets inside this DSO. For each known
CallSiteTypeId, this function performs an llvm.type.test with the corresponding type identifier. It reports an
error if the type is unknown, or if the check fails. Depending on the values of compiler flags -fsanitize-trap and
-fsanitize-recover, this function may print an error, abort and/or return to the caller. DiagData is an opaque
pointer to the diagnostic information about the error, or null if the caller does not provide this information.

The basic implementation is a large switch statement over all values of CallSiteTypeId supported by this DSO, and
each case is similar to the InlinedFastCheck() in the basic CFI mode.

CFI Shadow

To route CFI checks to the target DSO’s __cfi_check function, a mapping from possible virtual / indirect call targets
to the corresponding __cfi_check functions is maintained. This mapping is implemented as a sparse array of 2 bytes
for every possible page (4096 bytes) of memory. The table is kept readonly most of the time.

There are 3 types of shadow values:

• Address in a CFI-instrumented DSO.

• Unchecked address (a “trusted” non-instrumented DSO). Encoded as value 0xFFFF.

• Invalid address (everything else). Encoded as value 0.

Control Flow Integrity

681



For a CFI-instrumented DSO, a shadow value encodes the address of the __cfi_check function for all call targets in
the corresponding memory page. If Addr is the target address, and V is the shadow value, then the address of
__cfi_check is calculated as

__cfi_check = AlignUpTo(Addr, 4096) - (V + 1) * 4096

This works as long as __cfi_check is aligned by 4096 bytes and located below any call targets in its DSO, but not
more than 256MB apart from them.

CFI_SlowPath

The slow path check is implemented in a runtime support library as

void __cfi_slowpath(uint64 CallSiteTypeId, void *TargetAddr)
void __cfi_slowpath_diag(uint64 CallSiteTypeId, void *TargetAddr, void *DiagData)

These functions loads a shadow value for TargetAddr, finds the address of __cfi_check as described above and
calls that. DiagData is an opaque pointer to diagnostic data which is passed verbatim to __cfi_check, and
__cfi_slowpath passes nullptr instead.

Compiler-RT library contains reference implementations of slowpath functions, but they have unresolvable issues
with correctness and performance in the handling of dlopen(). It is recommended that platforms provide their own
implementations, usually as part of libc or libdl.

Position-independent executable requirement

Cross-DSO CFI mode requires that the main executable is built as PIE. In non-PIE executables the address of an
external function (taken from the main executable) is the address of that function’s PLT record in the main
executable. This would break the CFI checks.

Backward-edge CFI for return statements (RCFI)

This section is a proposal. As of March 2017 it is not implemented.

Backward-edge control flow (RET instructions) can be hijacked via overwriting the return address (RA) on stack.
Various mitigation techniques (e.g. SafeStack, RFG, Intel CET) try to detect or prevent RA corruption on stack.

RCFI enforces the expected control flow in several different ways described below. RCFI heavily relies on LTO.

Leaf Functions

If f() is a leaf function (i.e. it has no calls except maybe no-return calls) it can be called using a special calling
convention that stores RA in a dedicated register R before the CALL instruction. f() does not spill R and does not use
the RET instruction, instead it uses the value in R to JMP to RA.

This flavour of CFI is precise, i.e. the function is guaranteed to return to the point exactly following the call.

An alternative approach is to copy RA from stack to R in the first instruction of f(), then JMP to R. This approach is
simpler to implement (does not require changing the caller) but weaker (there is a small window when RA is actually
stored on stack).

Functions called once

Suppose f() is called in just one place in the program (assuming we can verify this in LTO mode). In this case we can
replace the RET instruction with a JMP instruction with the immediate constant for RA. This will precisely enforce the
return control flow no matter what is stored on stack.

Another variant is to compare RA on stack with the known constant and abort if they don’t match; then JMP to the
known constant address.

Functions called in a small number of call sites

We may extend the above approach to cases where f() is called more than once (but still a small number of times).
With LTO we know all possible values of RA and we check them one-by-one (or using binary search) against the
value on stack. If the match is found, we JMP to the known constant address, otherwise abort.

Control Flow Integrity

682

https://clang.llvm.org/docs/SafeStack.html
https://xlab.tencent.com/en/2016/11/02/return-flow-guard
https://software.intel.com/en-us/blogs/2016/06/09/intel-release-new-technology-specifications-protect-rop-attacks


This protection is near-precise, i.e. it guarantees that the control flow will be transferred to one of the valid return
addresses for this function, but not necessary to the point of the most recent CALL.

General case

For functions called multiple times a return jump table is constructed in the same manner as jump tables for indirect
function calls (see above). The correct jump table entry (or its index) is passed by CALL to f() (as an extra argument)
and then spilled to stack. The RET instruction is replaced with a load of the jump table entry, jump table range check,
and JMP to the jump table entry.

This protection is also near-precise.

Returns from functions called indirectly

If a function is called indirectly, the return jump table is constructed for the equivalence class of functions instead of a
single function.

Cross-DSO calls

Consider two instrumented DSOs, A and B. A defines f() and B calls it.

This case will be handled similarly to the cross-DSO scheme using the slow path callback.

Non-goals

RCFI does not protect RET instructions:

• in non-instrumented DSOs,

• in instrumented DSOs for functions that are called from non-instrumented DSOs,

• embedded into other instructions (e.g. 0f4fc3 cmovg %ebx,%eax).

Hardware support

We believe that the above design can be efficiently implemented in hardware. A single new instruction added to an
ISA would allow to perform the forward-edge CFI check with fewer bytes per check (smaller code size overhead) and
potentially more efficiently. The current software-only instrumentation requires at least 32-bytes per check (on
x86_64). A hardware instruction may probably be less than ~ 12 bytes. Such instruction would check that the
argument pointer is in-bounds, and is properly aligned, and if the checks fail it will either trap (in monolithic scheme)
or call the slow path function (cross-DSO scheme). The bit vector lookup is probably too complex for a hardware
implementation.

//  This instruction checks that 'Ptr'
//   * is aligned by (1 << kAlignment) and
//   * is inside [kRangeBeg, kRangeBeg+(kRangeSize<<kAlignment))
//  and if the check fails it jumps to the given target (slow path).
//
// 'Ptr' is a register, pointing to the virtual function table
//    or to the function which we need to check. We may require an explicit
//    fixed register to be used.
// 'kAlignment' is a 4-bit constant.
// 'kRangeSize' is a ~20-bit constant.
// 'kRangeBeg' is a PC-relative constant (~28 bits)
//    pointing to the beginning of the allowed range for 'Ptr'.
// 'kFailedCheckTarget': is a PC-relative constant (~28 bits)
//    representing the target to branch to when the check fails.
//    If kFailedCheckTarget==0, the process will trap
//    (monolithic binary scheme).
//    Otherwise it will jump to a handler that implements `CFI_SlowPath`
//    (cross-DSO scheme).
CFI_Check(Ptr, kAlignment, kRangeSize, kRangeBeg, kFailedCheckTarget) {
   if (Ptr < kRangeBeg ||

Control Flow Integrity

683



       Ptr >= kRangeBeg + (kRangeSize << kAlignment) ||
       Ptr & ((1 << kAlignment) - 1))
         Jump(kFailedCheckTarget);
}

An alternative and more compact encoding would not use kFailedCheckTarget, and will trap on check failure instead.
This will allow us to fit the instruction into 8-9 bytes. The cross-DSO checks will be performed by a trap handler and
performance-critical ones will have to be black-listed and checked using the software-only scheme.

Note that such hardware extension would be complementary to checks at the callee side, such as e.g. Intel
ENDBRANCH. Moreover, CFI would have two benefits over ENDBRANCH: a) precision and b) ability to protect
against invalid casts between polymorphic types.
Introduction 684

Available schemes 685

Trapping and Diagnostics 685

Forward-Edge CFI for Virtual Calls 685

Performance 685

Bad Cast Checking 685

Non-Virtual Member Function Call Checking 686

Strictness 686

Indirect Function Call Checking 686

-fsanitize-cfi-icall-generalize-pointers 686

-fsanitize-cfi-canonical-jump-tables 687

-fsanitize=cfi-icall and -fsanitize=function 687

Member Function Pointer Call Checking 688

Ignorelist 688

Shared library support 688

Design 688

Publications 688

Introduction
Clang includes an implementation of a number of control flow integrity (CFI) schemes, which are designed to abort
the program upon detecting certain forms of undefined behavior that can potentially allow attackers to subvert the
program’s control flow. These schemes have been optimized for performance, allowing developers to enable them in
release builds.

To enable Clang’s available CFI schemes, use the flag -fsanitize=cfi. You can also enable a subset of
available schemes. As currently implemented, all schemes rely on link-time optimization (LTO); so it is required to
specify -flto, and the linker used must support LTO, for example via the gold plugin.

To allow the checks to be implemented efficiently, the program must be structured such that certain object files are
compiled with CFI enabled, and are statically linked into the program. This may preclude the use of shared libraries
in some cases.

The compiler will only produce CFI checks for a class if it can infer hidden LTO visibility for that class. LTO visibility is
a property of a class that is inferred from flags and attributes. For more details, see the documentation for LTO
visibility.

The -fsanitize=cfi-{vcall,nvcall,derived-cast,unrelated-cast} flags require that a
-fvisibility= flag also be specified. This is because the default visibility setting is -fvisibility=default,
which would disable CFI checks for classes without visibility attributes. Most users will want to specify
-fvisibility=hidden, which enables CFI checks for such classes.

Experimental support for cross-DSO control flow integrity exists that does not require classes to have hidden LTO
visibility. This cross-DSO support has unstable ABI at this time.

Control Flow Integrity

684

https://llvm.org/docs/GoldPlugin.html


Available schemes
Available schemes are:

• -fsanitize=cfi-cast-strict: Enables strict cast checks.

• -fsanitize=cfi-derived-cast: Base-to-derived cast to the wrong dynamic type.

• -fsanitize=cfi-unrelated-cast: Cast from void* or another unrelated type to the wrong dynamic
type.

• -fsanitize=cfi-nvcall: Non-virtual call via an object whose vptr is of the wrong dynamic type.

• -fsanitize=cfi-vcall: Virtual call via an object whose vptr is of the wrong dynamic type.

• -fsanitize=cfi-icall: Indirect call of a function with wrong dynamic type.

• -fsanitize=cfi-mfcall: Indirect call via a member function pointer with wrong dynamic type.

You can use -fsanitize=cfi to enable all the schemes and use -fno-sanitize flag to narrow down the set of
schemes as desired. For example, you can build your program with
-fsanitize=cfi -fno-sanitize=cfi-nvcall,cfi-icall to use all schemes except for non-virtual member
function call and indirect call checking.

Remember that you have to provide -flto or -flto=thin if at least one CFI scheme is enabled.

Trapping and Diagnostics
By default, CFI will abort the program immediately upon detecting a control flow integrity violation. You can use the
-fno-sanitize-trap= flag to cause CFI to print a diagnostic similar to the one below before the program aborts.
bad-cast.cpp:109:7: runtime error: control flow integrity check for type 'B' failed during base-to-derived cast (vtable address 0x000000425a50)
0x000000425a50: note: vtable is of type 'A'
 00 00 00 00  f0 f1 41 00 00 00 00 00  00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00  20 5a 42 00
              ^

If diagnostics are enabled, you can also configure CFI to continue program execution instead of aborting by using the
-fsanitize-recover= flag.

Forward-Edge CFI for Virtual Calls
This scheme checks that virtual calls take place using a vptr of the correct dynamic type; that is, the dynamic type of
the called object must be a derived class of the static type of the object used to make the call. This CFI scheme can
be enabled on its own using -fsanitize=cfi-vcall.

For this scheme to work, all translation units containing the definition of a virtual member function (whether inline or
not), other than members of ignored types or types with public LTO visibility, must be compiled with -flto or
-flto=thin enabled and be statically linked into the program.

Performance

A performance overhead of less than 1% has been measured by running the Dromaeo benchmark suite against an
instrumented version of the Chromium web browser. Another good performance benchmark for this mechanism is
the virtual-call-heavy SPEC 2006 xalancbmk.

Note that this scheme has not yet been optimized for binary size; an increase of up to 15% has been observed for
Chromium.

Bad Cast Checking
This scheme checks that pointer casts are made to an object of the correct dynamic type; that is, the dynamic type of
the object must be a derived class of the pointee type of the cast. The checks are currently only introduced where the
class being casted to is a polymorphic class.

Bad casts are not in themselves control flow integrity violations, but they can also create security vulnerabilities, and
the implementation uses many of the same mechanisms.

Control Flow Integrity

685



There are two types of bad cast that may be forbidden: bad casts from a base class to a derived class (which can be
checked with -fsanitize=cfi-derived-cast), and bad casts from a pointer of type void* or another unrelated
type (which can be checked with -fsanitize=cfi-unrelated-cast).

The difference between these two types of casts is that the first is defined by the C++ standard to produce an
undefined value, while the second is not in itself undefined behavior (it is well defined to cast the pointer back to its
original type) unless the object is uninitialized and the cast is a static_cast (see C++14 [basic.life]p5).

If a program as a matter of policy forbids the second type of cast, that restriction can normally be enforced. However
it may in some cases be necessary for a function to perform a forbidden cast to conform with an external API (e.g.
the allocate member function of a standard library allocator). Such functions may be ignored.

For this scheme to work, all translation units containing the definition of a virtual member function (whether inline or
not), other than members of ignored types or types with public LTO visibility, must be compiled with -flto or
-flto=thin enabled and be statically linked into the program.

Non-Virtual Member Function Call Checking
This scheme checks that non-virtual calls take place using an object of the correct dynamic type; that is, the dynamic
type of the called object must be a derived class of the static type of the object used to make the call. The checks are
currently only introduced where the object is of a polymorphic class type. This CFI scheme can be enabled on its
own using -fsanitize=cfi-nvcall.

For this scheme to work, all translation units containing the definition of a virtual member function (whether inline or
not), other than members of ignored types or types with public LTO visibility, must be compiled with -flto or
-flto=thin enabled and be statically linked into the program.

Strictness

If a class has a single non-virtual base and does not introduce or override virtual member functions or fields other
than an implicitly defined virtual destructor, it will have the same layout and virtual function semantics as its base. By
default, casts to such classes are checked as if they were made to the least derived such class.

Casting an instance of a base class to such a derived class is technically undefined behavior, but it is a relatively
common hack for introducing member functions on class instances with specific properties that works under most
compilers and should not have security implications, so we allow it by default. It can be disabled with
-fsanitize=cfi-cast-strict.

Indirect Function Call Checking
This scheme checks that function calls take place using a function of the correct dynamic type; that is, the dynamic
type of the function must match the static type used at the call. This CFI scheme can be enabled on its own using
-fsanitize=cfi-icall.

For this scheme to work, each indirect function call in the program, other than calls in ignored functions, must call a
function which was either compiled with -fsanitize=cfi-icall enabled, or whose address was taken by a
function in a translation unit compiled with -fsanitize=cfi-icall.

If a function in a translation unit compiled with -fsanitize=cfi-icall takes the address of a function not
compiled with -fsanitize=cfi-icall, that address may differ from the address taken by a function in a
translation unit not compiled with -fsanitize=cfi-icall. This is technically a violation of the C and C++
standards, but it should not affect most programs.

Each translation unit compiled with -fsanitize=cfi-icall must be statically linked into the program or shared
library, and calls across shared library boundaries are handled as if the callee was not compiled with
-fsanitize=cfi-icall.

This scheme is currently supported on a limited set of targets: x86, x86_64, arm, arch64 and wasm.

-fsanitize-cfi-icall-generalize-pointers

Mismatched pointer types are a common cause of cfi-icall check failures. Translation units compiled with the
-fsanitize-cfi-icall-generalize-pointers flag relax pointer type checking for call sites in that translation
unit, applied across all functions compiled with -fsanitize=cfi-icall.

Control Flow Integrity

686



Specifically, pointers in return and argument types are treated as equivalent as long as the qualifiers for the type they
point to match. For example, char*, char**, and int* are considered equivalent types. However, char* and
const char* are considered separate types.

-fsanitize-cfi-icall-generalize-pointers is not compatible with -fsanitize-cfi-cross-dso.

-fsanitize-cfi-canonical-jump-tables

The default behavior of Clang’s indirect function call checker will replace the address of each CFI-checked function in
the output file’s symbol table with the address of a jump table entry which will pass CFI checks. We refer to this as
making the jump table canonical. This property allows code that was not compiled with -fsanitize=cfi-icall to
take a CFI-valid address of a function, but it comes with a couple of caveats that are especially relevant for users of
cross-DSO CFI:

• There is a performance and code size overhead associated with each exported function, because each such
function must have an associated jump table entry, which must be emitted even in the common case where the
function is never address-taken anywhere in the program, and must be used even for direct calls between
DSOs, in addition to the PLT overhead.

• There is no good way to take a CFI-valid address of a function written in assembly or a language not supported
by Clang. The reason is that the code generator would need to insert a jump table in order to form a CFI-valid
address for assembly functions, but there is no way in general for the code generator to determine the language
of the function. This may be possible with LTO in the intra-DSO case, but in the cross-DSO case the only
information available is the function declaration. One possible solution is to add a C wrapper for each assembly
function, but these wrappers can present a significant maintenance burden for heavy users of assembly in
addition to adding runtime overhead.

For these reasons, we provide the option of making the jump table non-canonical with the flag
-fno-sanitize-cfi-canonical-jump-tables. When the jump table is made non-canonical, symbol table
entries point directly to the function body. Any instances of a function’s address being taken in C will be replaced with
a jump table address.

This scheme does have its own caveats, however. It does end up breaking function address equality more
aggressively than the default behavior, especially in cross-DSO mode which normally preserves function address
equality entirely.

Furthermore, it is occasionally necessary for code not compiled with -fsanitize=cfi-icall to take a function
address that is valid for CFI. For example, this is necessary when a function’s address is taken by assembly code
and then called by CFI-checking C code. The __attribute__((cfi_canonical_jump_table)) attribute may
be used to make the jump table entry of a specific function canonical so that the external code will end up taking an
address for the function that will pass CFI checks.

-fsanitize=cfi-icall and -fsanitize=function

This tool is similar to -fsanitize=function in that both tools check the types of function calls. However, the two
tools occupy different points on the design space; -fsanitize=function is a developer tool designed to find
bugs in local development builds, whereas -fsanitize=cfi-icall is a security hardening mechanism designed
to be deployed in release builds.

-fsanitize=function has a higher space and time overhead due to a more complex type check at indirect call
sites, as well as a need for run-time type information (RTTI), which may make it unsuitable for deployment. Because
of the need for RTTI, -fsanitize=function can only be used with C++ programs, whereas
-fsanitize=cfi-icall can protect both C and C++ programs.

On the other hand, -fsanitize=function conforms more closely with the C++ standard and user expectations
around interaction with shared libraries; the identity of function pointers is maintained, and calls across shared library
boundaries are no different from calls within a single program or shared library.

Control Flow Integrity

687



Member Function Pointer Call Checking
This scheme checks that indirect calls via a member function pointer take place using an object of the correct
dynamic type. Specifically, we check that the dynamic type of the member function referenced by the member
function pointer matches the “function pointer” part of the member function pointer, and that the member function’s
class type is related to the base type of the member function. This CFI scheme can be enabled on its own using
-fsanitize=cfi-mfcall.

The compiler will only emit a full CFI check if the member function pointer’s base type is complete. This is because
the complete definition of the base type contains information that is necessary to correctly compile the CFI check. To
ensure that the compiler always emits a full CFI check, it is recommended to also pass the flag
-fcomplete-member-pointers, which enables a non-conforming language extension that requires member
pointer base types to be complete if they may be used for a call.

For this scheme to work, all translation units containing the definition of a virtual member function (whether inline or
not), other than members of ignored types or types with public LTO visibility, must be compiled with -flto or
-flto=thin enabled and be statically linked into the program.

This scheme is currently not compatible with cross-DSO CFI or the Microsoft ABI.

Ignorelist
A Sanitizer special case list can be used to relax CFI checks for certain source files, functions and types using the
src, fun and type entity types. Specific CFI modes can be be specified using [section] headers.

# Suppress all CFI checking for code in a file.
src:bad_file.cpp
src:bad_header.h
# Ignore all functions with names containing MyFooBar.
fun:*MyFooBar*
# Ignore all types in the standard library.
type:std::*
# Disable only unrelated cast checks for this function
[cfi-unrelated-cast]
fun:*UnrelatedCast*
# Disable CFI call checks for this function without affecting cast checks
[cfi-vcall|cfi-nvcall|cfi-icall]
fun:*BadCall*

Shared library support
Use -f[no-]sanitize-cfi-cross-dso to enable the cross-DSO control flow integrity mode, which allows all CFI
schemes listed above to apply across DSO boundaries. As in the regular CFI, each DSO must be built with -flto or
-flto=thin.

Normally, CFI checks will only be performed for classes that have hidden LTO visibility. With this flag enabled, the
compiler will emit cross-DSO CFI checks for all classes, except for those which appear in the CFI ignorelist or which
use a no_sanitize attribute.

Design
Please refer to the design document.

Publications
Control-Flow Integrity: Principles, Implementations, and Applications. Martin Abadi, Mihai Budiu, Úlfar Erlingsson,
Jay Ligatti.

Enforcing Forward-Edge Control-Flow Integrity in GCC & LLVM. Caroline Tice, Tom Roeder, Peter Collingbourne,
Stephen Checkoway, Úlfar Erlingsson, Luis Lozano, Geoff Pike.

Control Flow Integrity

688

https://research.microsoft.com/pubs/64250/ccs05.pdf
http://www.pcc.me.uk/~peter/acad/usenix14.pdf


LTO Visibility
LTO visibility is a property of an entity that specifies whether it can be referenced from outside the current LTO unit.
A linkage unit is a set of translation units linked together into an executable or DSO, and a linkage unit’s LTO unit is
the subset of the linkage unit that is linked together using link-time optimization; in the case where LTO is not being
used, the linkage unit’s LTO unit is empty. Each linkage unit has only a single LTO unit.

The LTO visibility of a class is used by the compiler to determine which classes the whole-program devirtualization
(-fwhole-program-vtables) and control flow integrity (-fsanitize=cfi-vcall and
-fsanitize=cfi-mfcall) features apply to. These features use whole-program information, so they require the
entire class hierarchy to be visible in order to work correctly.

If any translation unit in the program uses either of the whole-program devirtualization or control flow integrity
features, it is effectively an ODR violation to define a class with hidden LTO visibility in multiple linkage units. A class
with public LTO visibility may be defined in multiple linkage units, but the tradeoff is that the whole-program
devirtualization and control flow integrity features can only be applied to classes with hidden LTO visibility. A class’s
LTO visibility is treated as an ODR-relevant property of its definition, so it must be consistent between translation
units.

In translation units built with LTO, LTO visibility is based on the class’s symbol visibility as expressed at the source
level (i.e. the __attribute__((visibility("..."))) attribute, or the -fvisibility= flag) or, on the
Windows platform, the dllimport and dllexport attributes. When targeting non-Windows platforms, classes with a
visibility other than hidden visibility receive public LTO visibility. When targeting Windows, classes with dllimport or
dllexport attributes receive public LTO visibility. All other classes receive hidden LTO visibility. Classes with internal
linkage (e.g. classes declared in unnamed namespaces) also receive hidden LTO visibility.

During the LTO link, all classes with public LTO visibility will be refined to hidden LTO visibility when the
--lto-whole-program-visibility lld linker option is applied
(-plugin-opt=whole-program-visibility for gold). This flag can be used to defer specifying whether
classes have hidden LTO visibility until link time, to allow bitcode objects to be shared by different LTO links. Due to
an implementation limitation, symbols associated with classes with hidden LTO visibility may still be exported from
the binary when using this flag. It is unsafe to refer to these symbols, and their visibility may be relaxed to hidden in a
future compiler release.

A class defined in a translation unit built without LTO receives public LTO visibility regardless of its object file
visibility, linkage or other attributes.

This mechanism will produce the correct result in most cases, but there are two cases where it may wrongly infer
hidden LTO visibility.

1. As a corollary of the above rules, if a linkage unit is produced from a combination of LTO object files and
non-LTO object files, any hidden visibility class defined in both a translation unit built with LTO and a translation
unit built without LTO must be defined with public LTO visibility in order to avoid an ODR violation.

2. Some ABIs provide the ability to define an abstract base class without visibility attributes in multiple linkage
units and have virtual calls to derived classes in other linkage units work correctly. One example of this is COM
on Windows platforms. If the ABI allows this, any base class used in this way must be defined with public LTO
visibility.

Classes that fall into either of these categories can be marked up with the
[[clang::lto_visibility_public]] attribute. To specifically handle the COM case, classes with the
__declspec(uuid()) attribute receive public LTO visibility. On Windows platforms, clang-cl’s /MT and /MTd flags
statically link the program against a prebuilt standard library; these flags imply public LTO visibility for every class
declared in the std and stdext namespaces.

Example
The following example shows how LTO visibility works in practice in several cases involving two linkage units, main
and dso.so.
+-----------------------------------------------------------+  +----------------------------------------------------+
| main (clang++ -fvisibility=hidden):                       |  | dso.so (clang++ -fvisibility=hidden):              |
|                                                           |  |                                                    |
|  +-----------------------------------------------------+  |  |  struct __attribute__((visibility("default"))) C { |
|  | LTO unit (clang++ -fvisibility=hidden -flto):       |  |  |    virtual void f();                               |

LTO Visibility

689



|  |                                                     |  |  |  }                                                 |
|  |  struct A { ... };                                  |  |  |  void C::f() {}                                    |
|  |  struct [[clang::lto_visibility_public]] B { ... }; |  |  |  struct D {                                        |
|  |  struct __attribute__((visibility("default"))) C {  |  |  |    virtual void g() = 0;                           |
|  |    virtual void f();                                |  |  |  };                                                |
|  |  };                                                 |  |  |  struct E : D {                                    |
|  |  struct [[clang::lto_visibility_public]] D {        |  |  |    virtual void g() { ... }                        |
|  |    virtual void g() = 0;                            |  |  |  };                                                |
|  |  };                                                 |  |  |  __attribute__((visibility("default"))) D *mkE() { |
|  |                                                     |  |  |    return new E;                                   |
|  +-----------------------------------------------------+  |  |  }                                                 |
|                                                           |  |                                                    |
|  struct B { ... };                                        |  +----------------------------------------------------+
|                                                           |
+-----------------------------------------------------------+

We will now describe the LTO visibility of each of the classes defined in these linkage units.

Class A is not defined outside of main’s LTO unit, so it can have hidden LTO visibility. This is inferred from the object
file visibility specified on the command line.

Class B is defined in main, both inside and outside its LTO unit. The definition outside the LTO unit has public LTO
visibility, so the definition inside the LTO unit must also have public LTO visibility in order to avoid an ODR violation.

Class C is defined in both main and dso.so and therefore must have public LTO visibility. This is correctly inferred
from the visibility attribute.

Class D is an abstract base class with a derived class E defined in dso.so. This is an example of the COM scenario;
the definition of D in main’s LTO unit must have public LTO visibility in order to be compatible with the definition of D
in dso.so, which is observable by calling the function mkE.

SafeStack
Introduction 690

Performance 691

Compatibility 691

Known compatibility limitations 691

Security 691

Known security limitations 691

Usage 692

Supported Platforms 692

Low-level API 692

__has_feature(safe_stack) 692

__attribute__((no_sanitize("safe-stack"))) 692

__builtin___get_unsafe_stack_ptr() 692

__builtin___get_unsafe_stack_bottom() 692

__builtin___get_unsafe_stack_top() 692

__builtin___get_unsafe_stack_start() 692

Design 692

setjmp and exception handling 693

Publications 693

Introduction
SafeStack is an instrumentation pass that protects programs against attacks based on stack buffer overflows,
without introducing any measurable performance overhead. It works by separating the program stack into two
distinct regions: the safe stack and the unsafe stack. The safe stack stores return addresses, register spills, and local
variables that are always accessed in a safe way, while the unsafe stack stores everything else. This separation
ensures that buffer overflows on the unsafe stack cannot be used to overwrite anything on the safe stack.

SafeStack

690



SafeStack is a part of the Code-Pointer Integrity (CPI) Project.

Performance

The performance overhead of the SafeStack instrumentation is less than 0.1% on average across a variety of
benchmarks (see the Code-Pointer Integrity paper for details). This is mainly because most small functions do not
have any variables that require the unsafe stack and, hence, do not need unsafe stack frames to be created. The
cost of creating unsafe stack frames for large functions is amortized by the cost of executing the function.

In some cases, SafeStack actually improves the performance. Objects that end up being moved to the unsafe stack
are usually large arrays or variables that are used through multiple stack frames. Moving such objects away from the
safe stack increases the locality of frequently accessed values on the stack, such as register spills, return addresses,
and small local variables.

Compatibility

Most programs, static libraries, or individual files can be compiled with SafeStack as is. SafeStack requires basic
runtime support, which, on most platforms, is implemented as a compiler-rt library that is automatically linked in when
the program is compiled with SafeStack.

Linking a DSO with SafeStack is not currently supported.

Known compatibility limitations

Certain code that relies on low-level stack manipulations requires adaption to work with SafeStack. One example is
mark-and-sweep garbage collection implementations for C/C++ (e.g., Oilpan in chromium/blink), which must be
changed to look for the live pointers on both safe and unsafe stacks.

SafeStack supports linking statically modules that are compiled with and without SafeStack. An executable compiled
with SafeStack can load dynamic libraries that are not compiled with SafeStack. At the moment, compiling dynamic
libraries with SafeStack is not supported.

Signal handlers that use sigaltstack() must not use the unsafe stack (see
__attribute__((no_sanitize("safe-stack"))) below).

Programs that use APIs from ucontext.h are not supported yet.

Security

SafeStack protects return addresses, spilled registers and local variables that are always accessed in a safe way by
separating them in a dedicated safe stack region. The safe stack is automatically protected against stack-based
buffer overflows, since it is disjoint from the unsafe stack in memory, and it itself is always accessed in a safe way. In
the current implementation, the safe stack is protected against arbitrary memory write vulnerabilities though
randomization and information hiding: the safe stack is allocated at a random address and the instrumentation
ensures that no pointers to the safe stack are ever stored outside of the safe stack itself (see limitations below).

Known security limitations

A complete protection against control-flow hijack attacks requires combining SafeStack with another mechanism that
enforces the integrity of code pointers that are stored on the heap or the unsafe stack, such as CPI, or a
forward-edge control flow integrity mechanism that enforces correct calling conventions at indirect call sites, such as
IFCC with arity checks. Clang has control-flow integrity protection scheme for C++ virtual calls, but not non-virtual
indirect calls. With SafeStack alone, an attacker can overwrite a function pointer on the heap or the unsafe stack and
cause a program to call arbitrary location, which in turn might enable stack pivoting and return-oriented
programming.

In its current implementation, SafeStack provides precise protection against stack-based buffer overflows, but
protection against arbitrary memory write vulnerabilities is probabilistic and relies on randomization and information
hiding. The randomization is currently based on system-enforced ASLR and shares its known security limitations.
The safe stack pointer hiding is not perfect yet either: system library functions such as swapcontext, exception
handling mechanisms, intrinsics such as __builtin_frame_address, or low-level bugs in runtime support could
leak the safe stack pointer. In the future, such leaks could be detected by static or dynamic analysis tools and
prevented by adjusting such functions to either encrypt the stack pointer when storing it in the heap (as already done
e.g., by setjmp/longjmp implementation in glibc), or store it in a safe region instead.

SafeStack

691

https://dslab.epfl.ch/proj/cpi/
https://dslab.epfl.ch/pubs/cpi.pdf
https://dslab.epfl.ch/proj/cpi/
https://research.google.com/pubs/archive/42808.pdf


The CPI paper describes two alternative, stronger safe stack protection mechanisms, that rely on software fault
isolation, or hardware segmentation (as available on x86-32 and some x86-64 CPUs).

At the moment, SafeStack assumes that the compiler’s implementation is correct. This has not been verified except
through manual code inspection, and could always regress in the future. It’s therefore desirable to have a separate
static or dynamic binary verification tool that would check the correctness of the SafeStack instrumentation in final
binaries.

Usage
To enable SafeStack, just pass -fsanitize=safe-stack flag to both compile and link command lines.

Supported Platforms

SafeStack was tested on Linux, NetBSD, FreeBSD and macOS.

Low-level API

__has_feature(safe_stack)

In some rare cases one may need to execute different code depending on whether SafeStack is enabled. The macro
__has_feature(safe_stack) can be used for this purpose.

#if __has_feature(safe_stack)
// code that builds only under SafeStack
#endif

__attribute__((no_sanitize("safe-stack")))

Use __attribute__((no_sanitize("safe-stack"))) on a function declaration to specify that the safe stack
instrumentation should not be applied to that function, even if enabled globally (see -fsanitize=safe-stack
flag). This attribute may be required for functions that make assumptions about the exact layout of their stack frames.

All local variables in functions with this attribute will be stored on the safe stack. The safe stack remains unprotected
against memory errors when accessing these variables, so extra care must be taken to manually ensure that all such
accesses are safe. Furthermore, the addresses of such local variables should never be stored on the heap, as it
would leak the location of the SafeStack.

__builtin___get_unsafe_stack_ptr()

This builtin function returns current unsafe stack pointer of the current thread.

__builtin___get_unsafe_stack_bottom()

This builtin function returns a pointer to the bottom of the unsafe stack of the current thread.

__builtin___get_unsafe_stack_top()

This builtin function returns a pointer to the top of the unsafe stack of the current thread.

__builtin___get_unsafe_stack_start()

Deprecated: This builtin function is an alias for __builtin___get_unsafe_stack_bottom().

Design
Please refer to the Code-Pointer Integrity project page for more information about the design of the SafeStack and its
related technologies.

SafeStack

692

https://dslab.epfl.ch/pubs/cpi.pdf
https://dslab.epfl.ch/proj/cpi/


setjmp and exception handling

The OSDI’14 paper mentions that on Linux the instrumentation pass finds calls to setjmp or functions that may throw
an exception, and inserts required instrumentation at their call sites. Specifically, the instrumentation pass saves the
shadow stack pointer on the safe stack before the call site, and restores it either after the call to setjmp or after an
exception has been caught. This is implemented in the function SafeStack::createStackRestorePoints.

Publications

Code-Pointer Integrity. Volodymyr Kuznetsov, Laszlo Szekeres, Mathias Payer, George Candea, R. Sekar, Dawn
Song. USENIX Symposium on Operating Systems Design and Implementation (OSDI), Broomfield, CO, October
2014

ShadowCallStack
Introduction 693

Comparison 693

Compatibility 693

Security 694

Usage 694

Low-level API 695

__has_feature(shadow_call_stack) 695

__attribute__((no_sanitize("shadow-call-stack"))) 695

Example 695

Introduction
ShadowCallStack is an instrumentation pass, currently only implemented for aarch64, that protects programs against
return address overwrites (e.g. stack buffer overflows.) It works by saving a function’s return address to a separately
allocated ‘shadow call stack’ in the function prolog in non-leaf functions and loading the return address from the
shadow call stack in the function epilog. The return address is also stored on the regular stack for compatibility with
unwinders, but is otherwise unused.

The aarch64 implementation is considered production ready, and an implementation of the runtime has been added
to Android’s libc (bionic). An x86_64 implementation was evaluated using Chromium and was found to have critical
performance and security deficiencies–it was removed in LLVM 9.0. Details on the x86_64 implementation can be
found in the Clang 7.0.1 documentation.

Comparison

To optimize for memory consumption and cache locality, the shadow call stack stores only an array of return
addresses. This is in contrast to other schemes, like SafeStack, that mirror the entire stack and trade-off consuming
more memory for shorter function prologs and epilogs with fewer memory accesses.

Return Flow Guard is a pure software implementation of shadow call stacks on x86_64. Like the previous
implementation of ShadowCallStack on x86_64, it is inherently racy due to the architecture’s use of the stack for calls
and returns.

Intel Control-flow Enforcement Technology (CET) is a proposed hardware extension that would add native support to
use a shadow stack to store/check return addresses at call/return time. Being a hardware implementation, it would
not suffer from race conditions and would not incur the overhead of function instrumentation, but it does require
operating system support.

Compatibility

A runtime is not provided in compiler-rt so one must be provided by the compiled application or the operating system.
Integrating the runtime into the operating system should be preferred since otherwise all thread creation and
destruction would need to be intercepted by the application.

ShadowCallStack

693

https://dslab.epfl.ch/pubs/cpi.pdf
https://dslab.epfl.ch/pubs/cpi.pdf
https://www.usenix.org/conference/osdi14
https://android.googlesource.com/platform/bionic/+/808d176e7e0dd727c7f929622ec017f6e065c582/libc/bionic/pthread_create.cpp#128
https://releases.llvm.org/7.0.1/tools/clang/docs/ShadowCallStack.html
https://xlab.tencent.com/en/2016/11/02/return-flow-guard/
https://software.intel.com/sites/default/files/managed/4d/2a/control-flow-enforcement-technology-preview.pdf


The instrumentation makes use of the platform register x18. On some platforms, x18 is reserved, and on others, it is
designated as a scratch register. This generally means that any code that may run on the same thread as code
compiled with ShadowCallStack must either target one of the platforms whose ABI reserves x18 (currently Android,
Darwin, Fuchsia and Windows) or be compiled with the flag -ffixed-x18. If absolutely necessary, code compiled
without -ffixed-x18 may be run on the same thread as code that uses ShadowCallStack by saving the register
value temporarily on the stack (example in Android) but this should be done with care since it risks leaking the
shadow call stack address.

Because of the use of register x18, the ShadowCallStack feature is incompatible with any other feature that may use
x18. However, there is no inherent reason why ShadowCallStack needs to use register x18 specifically; in principle,
a platform could choose to reserve and use another register for ShadowCallStack, but this would be incompatible
with the AAPCS64.

Special unwind information is required on functions that are compiled with ShadowCallStack and that may be
unwound, i.e. functions compiled with -fexceptions (which is the default in C++). Some unwinders (such as the
libgcc 4.9 unwinder) do not understand this unwind info and will segfault when encountering it. LLVM libunwind
processes this unwind info correctly, however. This means that if exceptions are used together with
ShadowCallStack, the program must use a compatible unwinder.

Security
ShadowCallStack is intended to be a stronger alternative to -fstack-protector. It protects from non-linear
overflows and arbitrary memory writes to the return address slot.

The instrumentation makes use of the x18 register to reference the shadow call stack, meaning that references to
the shadow call stack do not have to be stored in memory. This makes it possible to implement a runtime that avoids
exposing the address of the shadow call stack to attackers that can read arbitrary memory. However, attackers could
still try to exploit side channels exposed by the operating system [1] [2] or processor [3] to discover the address of
the shadow call stack.

Unless care is taken when allocating the shadow call stack, it may be possible for an attacker to guess its address
using the addresses of other allocations. Therefore, the address should be chosen to make this difficult. One way to
do this is to allocate a large guard region without read/write permissions, randomly select a small region within it to
be used as the address of the shadow call stack and mark only that region as read/write. This also mitigates
somewhat against processor side channels. The intent is that the Android runtime will do this, but the platform will
first need to be changed to avoid using setrlimit(RLIMIT_AS) to limit memory allocations in certain processes,
as this also limits the number of guard regions that can be allocated.

The runtime will need the address of the shadow call stack in order to deallocate it when destroying the thread. If the
entire program is compiled with -ffixed-x18, this is trivial: the address can be derived from the value stored in
x18 (e.g. by masking out the lower bits). If a guard region is used, the address of the start of the guard region could
then be stored at the start of the shadow call stack itself. But if it is possible for code compiled without -ffixed-x18
to run on a thread managed by the runtime, which is the case on Android for example, the address must be stored
somewhere else instead. On Android we store the address of the start of the guard region in TLS and deallocate the
entire guard region including the shadow call stack at thread exit. This is considered acceptable given that the
address of the start of the guard region is already somewhat guessable.

One way in which the address of the shadow call stack could leak is in the jmp_buf data structure used by setjmp
and longjmp. The Android runtime avoids this by only storing the low bits of x18 in the jmp_buf, which requires
the address of the shadow call stack to be aligned to its size.

The architecture’s call and return instructions (bl and ret) operate on a register rather than the stack, which means
that leaf functions are generally protected from return address overwrites even without ShadowCallStack.

Usage
To enable ShadowCallStack, just pass the -fsanitize=shadow-call-stack flag to both compile and link
command lines. On aarch64, you also need to pass -ffixed-x18 unless your target already reserves x18.

ShadowCallStack

694

https://android-review.googlesource.com/c/platform/frameworks/base/+/803717
https://eyalitkin.wordpress.com/2017/09/01/cartography-lighting-up-the-shadows/
https://www.blackhat.com/docs/eu-16/materials/eu-16-Goktas-Bypassing-Clangs-SafeStack.pdf
https://www.vusec.net/projects/anc/
https://android-review.googlesource.com/c/platform/bionic/+/891622
https://android-review.googlesource.com/c/platform/frameworks/av/+/837745
https://android.googlesource.com/platform/bionic/+/808d176e7e0dd727c7f929622ec017f6e065c582/libc/arch-arm64/bionic/setjmp.S#49


Low-level API

__has_feature(shadow_call_stack)

In some cases one may need to execute different code depending on whether ShadowCallStack is enabled. The
macro __has_feature(shadow_call_stack) can be used for this purpose.

#if defined(__has_feature)
#  if __has_feature(shadow_call_stack)
// code that builds only under ShadowCallStack
#  endif
#endif

__attribute__((no_sanitize("shadow-call-stack")))

Use __attribute__((no_sanitize("shadow-call-stack"))) on a function declaration to specify that the
shadow call stack instrumentation should not be applied to that function, even if enabled globally.

Example
The following example code:

int foo() {
  return bar() + 1;
}

Generates the following aarch64 assembly when compiled with -O2:

stp     x29, x30, [sp, #-16]!
mov     x29, sp
bl      bar
add     w0, w0, #1
ldp     x29, x30, [sp], #16
ret

Adding -fsanitize=shadow-call-stack would output the following assembly:

str     x30, [x18], #8
stp     x29, x30, [sp, #-16]!
mov     x29, sp
bl      bar
add     w0, w0, #1
ldp     x29, x30, [sp], #16
ldr     x30, [x18, #-8]!
ret

ShadowCallStack

695



Source-based Code Coverage
Introduction 696

The code coverage workflow 696

Compiling with coverage enabled 697

Running the instrumented program 697

Creating coverage reports 697

Exporting coverage data 699

Interpreting reports 699

Format compatibility guarantees 699

Impact of llvm optimizations on coverage reports 700

Using the profiling runtime without static initializers 700

Using the profiling runtime without a filesystem 700

Collecting coverage reports for the llvm project 700

Drawbacks and limitations 700

Clang implementation details 701

Gap regions 701

Branch regions 701

Switch statements 701

Introduction
This document explains how to use clang’s source-based code coverage feature. It’s called “source-based” because
it operates on AST and preprocessor information directly. This allows it to generate very precise coverage data.

Clang ships two other code coverage implementations:

• SanitizerCoverage - A low-overhead tool meant for use alongside the various sanitizers. It can provide up to
edge-level coverage.

• gcov - A GCC-compatible coverage implementation which operates on DebugInfo. This is enabled by
-ftest-coverage or --coverage.

From this point onwards “code coverage” will refer to the source-based kind.

The code coverage workflow
The code coverage workflow consists of three main steps:

• Compiling with coverage enabled.

• Running the instrumented program.

• Creating coverage reports.

The next few sections work through a complete, copy-‘n-paste friendly example based on this program:

% cat <<EOF > foo.cc
#define BAR(x) ((x) || (x))
template <typename T> void foo(T x) {
  for (unsigned I = 0; I < 10; ++I) { BAR(I); }
}
int main() {
  foo<int>(0);
  foo<float>(0);
  return 0;
}
EOF

Source-based Code Coverage

696



Compiling with coverage enabled
To compile code with coverage enabled, pass -fprofile-instr-generate -fcoverage-mapping to the
compiler:

# Step 1: Compile with coverage enabled.
% clang++ -fprofile-instr-generate -fcoverage-mapping foo.cc -o foo

Note that linking together code with and without coverage instrumentation is supported. Uninstrumented code simply
won’t be accounted for in reports.

Running the instrumented program
The next step is to run the instrumented program. When the program exits it will write a raw profile to the path
specified by the LLVM_PROFILE_FILE environment variable. If that variable does not exist, the profile is written to
default.profraw in the current directory of the program. If LLVM_PROFILE_FILE contains a path to a
non-existent directory, the missing directory structure will be created. Additionally, the following special pattern
strings are rewritten:

• “%p” expands out to the process ID.

• “%h” expands out to the hostname of the machine running the program.

• “%t” expands out to the value of the TMPDIR environment variable. On Darwin, this is typically set to a
temporary scratch directory.

• “%Nm” expands out to the instrumented binary’s signature. When this pattern is specified, the runtime creates a
pool of N raw profiles which are used for on-line profile merging. The runtime takes care of selecting a raw
profile from the pool, locking it, and updating it before the program exits. If N is not specified (i.e the pattern is
“%m”), it’s assumed that N = 1. N must be between 1 and 9. The merge pool specifier can only occur once per
filename pattern.

• “%c” expands out to nothing, but enables a mode in which profile counter updates are continuously synced to a
file. This means that if the instrumented program crashes, or is killed by a signal, perfect coverage information
can still be recovered. Continuous mode does not support value profiling for PGO, and is only supported on
Darwin at the moment. Support for Linux may be mostly complete but requires testing, and support for Windows
may require more extensive changes: please get involved if you are interested in porting this feature.

# Step 2: Run the program.
% LLVM_PROFILE_FILE="foo.profraw" ./foo

Note that continuous mode is also used on Fuchsia where it’s the only supported mode, but the implementation is
different. The Darwin and Linux implementation relies on padding and the ability to map a file over the existing
memory mapping which is generally only available on POSIX systems and isn’t suitable for other platforms.

On Fuchsia, we rely on the ability to relocate counters at runtime using a level of indirection. On every counter
access, we add a bias to the counter address. This bias is stored in __llvm_profile_counter_bias symbol
that’s provided by the profile runtime and is initially set to zero, meaning no relocation. The runtime can map the
profile into memory at arbitrary locations, and set bias to the offset between the original and the new counter
location, at which point every subsequent counter access will be to the new location, which allows updating profile
directly akin to the continuous mode.

The advantage of this approach is that doesn’t require any special OS support. The disadvantage is the extra
overhead due to additional instructions required for each counter access (overhead both in terms of binary size and
performance) plus duplication of counters (i.e. one copy in the binary itself and another copy that’s mapped into
memory). This implementation can be also enabled for other platforms by passing the
-runtime-counter-relocation option to the backend during compilation.

% clang++ -fprofile-instr-generate -fcoverage-mapping -mllvm -runtime-counter-relocation foo.cc -o foo

Creating coverage reports
Raw profiles have to be indexed before they can be used to generate coverage reports. This is done using the
“merge” tool in llvm-profdata (which can combine multiple raw profiles and index them at the same time):

Source-based Code Coverage

697



# Step 3(a): Index the raw profile.
% llvm-profdata merge -sparse foo.profraw -o foo.profdata

There are multiple different ways to render coverage reports. The simplest option is to generate a line-oriented
report:

# Step 3(b): Create a line-oriented coverage report.
% llvm-cov show ./foo -instr-profile=foo.profdata

This report includes a summary view as well as dedicated sub-views for templated functions and their instantiations.
For our example program, we get distinct views for foo<int>(...) and foo<float>(...). If
-show-line-counts-or-regions is enabled, llvm-cov displays sub-line region counts (even in macro
expansions):

    1|   20|#define BAR(x) ((x) || (x))
                           ^20     ^2
    2|    2|template <typename T> void foo(T x) {
    3|   22|  for (unsigned I = 0; I < 10; ++I) { BAR(I); }
                                   ^22     ^20  ^20^20
    4|    2|}
------------------
| void foo<int>(int):
|      2|    1|template <typename T> void foo(T x) {
|      3|   11|  for (unsigned I = 0; I < 10; ++I) { BAR(I); }
|                                     ^11     ^10  ^10^10
|      4|    1|}
------------------
| void foo<float>(int):
|      2|    1|template <typename T> void foo(T x) {
|      3|   11|  for (unsigned I = 0; I < 10; ++I) { BAR(I); }
|                                     ^11     ^10  ^10^10
|      4|    1|}
------------------

If --show-branches=count and --show-expansions are also enabled, the sub-views will show detailed branch
coverage information in addition to the region counts:

------------------
| void foo<float>(int):
|      2|    1|template <typename T> void foo(T x) {
|      3|   11|  for (unsigned I = 0; I < 10; ++I) { BAR(I); }
|                                     ^11     ^10  ^10^10
|  ------------------
|  |  |    1|     10|#define BAR(x) ((x) || (x))
|  |  |                             ^10     ^1
|  |  |  ------------------
|  |  |  |  Branch (1:17): [True: 9, False: 1]
|  |  |  |  Branch (1:24): [True: 0, False: 1]
|  |  |  ------------------
|  ------------------
|  |  Branch (3:23): [True: 10, False: 1]
|  ------------------
|      4|    1|}
------------------

To generate a file-level summary of coverage statistics instead of a line-oriented report, try:
# Step 3(c): Create a coverage summary.
% llvm-cov report ./foo -instr-profile=foo.profdata
Filename           Regions    Missed Regions     Cover   Functions  Missed Functions  Executed       Lines      Missed Lines     Cover     Branches    Missed Branches     Cover
--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
/tmp/foo.cc             13                 0   100.00%           3                 0   100.00%          13                 0   100.00%           12                  2    83.33%
--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
TOTAL                   13                 0   100.00%           3                 0   100.00%          13                 0   100.00%           12                  2    83.33%

The llvm-cov tool supports specifying a custom demangler, writing out reports in a directory structure, and
generating html reports. For the full list of options, please refer to the command guide.

Source-based Code Coverage

698

https://llvm.org/docs/CommandGuide/llvm-cov.html


A few final notes:

• The -sparse flag is optional but can result in dramatically smaller indexed profiles. This option should not be
used if the indexed profile will be reused for PGO.

• Raw profiles can be discarded after they are indexed. Advanced use of the profile runtime library allows an
instrumented program to merge profiling information directly into an existing raw profile on disk. The details are
out of scope.

• The llvm-profdata tool can be used to merge together multiple raw or indexed profiles. To combine profiling
data from multiple runs of a program, try e.g:

% llvm-profdata merge -sparse foo1.profraw foo2.profdata -o foo3.profdata

Exporting coverage data
Coverage data can be exported into JSON using the llvm-cov export sub-command. There is a comprehensive
reference which defines the structure of the exported data at a high level in the llvm-cov source code.

Interpreting reports
There are five statistics tracked in a coverage summary:

• Function coverage is the percentage of functions which have been executed at least once. A function is
considered to be executed if any of its instantiations are executed.

• Instantiation coverage is the percentage of function instantiations which have been executed at least once.
Template functions and static inline functions from headers are two kinds of functions which may have multiple
instantiations. This statistic is hidden by default in reports, but can be enabled via the
-show-instantiation-summary option.

• Line coverage is the percentage of code lines which have been executed at least once. Only executable lines
within function bodies are considered to be code lines.

• Region coverage is the percentage of code regions which have been executed at least once. A code region
may span multiple lines (e.g in a large function body with no control flow). However, it’s also possible for a
single line to contain multiple code regions (e.g in “return x || y && z”).

• Branch coverage is the percentage of “true” and “false” branches that have been taken at least once. Each
branch is tied to individual conditions in the source code that may each evaluate to either “true” or “false”. These
conditions may comprise larger boolean expressions linked by boolean logical operators. For example, “x = (y
== 2) || (z < 10)” is a boolean expression that is comprised of two individual conditions, each of which evaluates
to either true or false, producing four total branch outcomes.

Of these five statistics, function coverage is usually the least granular while branch coverage is the most granular.
100% branch coverage for a function implies 100% region coverage for a function. The project-wide totals for each
statistic are listed in the summary.

Format compatibility guarantees

• There are no backwards or forwards compatibility guarantees for the raw profile format. Raw profiles may be
dependent on the specific compiler revision used to generate them. It’s inadvisable to store raw profiles for long
periods of time.

• Tools must retain backwards compatibility with indexed profile formats. These formats are not
forwards-compatible: i.e, a tool which uses format version X will not be able to understand format version (X+k).

• Tools must also retain backwards compatibility with the format of the coverage mappings emitted into
instrumented binaries. These formats are not forwards-compatible.

• The JSON coverage export format has a (major, minor, patch) version triple. Only a major version increment
indicates a backwards-incompatible change. A minor version increment is for added functionality, and patch
version increments are for bugfixes.

Source-based Code Coverage

699



Impact of llvm optimizations on coverage reports
llvm optimizations (such as inlining or CFG simplification) should have no impact on coverage report quality. This is
due to the fact that the mapping from source regions to profile counters is immutable, and is generated before the
llvm optimizer kicks in. The optimizer can’t prove that profile counter instrumentation is safe to delete (because it’s
not: it affects the profile the program emits), and so leaves it alone.

Note that this coverage feature does not rely on information that can degrade during the course of optimization, such
as debug info line tables.

Using the profiling runtime without static initializers
By default the compiler runtime uses a static initializer to determine the profile output path and to register a writer
function. To collect profiles without using static initializers, do this manually:

• Export a int __llvm_profile_runtime symbol from each instrumented shared library and executable.
When the linker finds a definition of this symbol, it knows to skip loading the object which contains the profiling
runtime’s static initializer.

• Forward-declare void __llvm_profile_initialize_file(void) and call it once from each
instrumented executable. This function parses LLVM_PROFILE_FILE, sets the output path, and truncates any
existing files at that path. To get the same behavior without truncating existing files, pass a filename pattern
string to void __llvm_profile_set_filename(char *). These calls can be placed anywhere so long as
they precede all calls to __llvm_profile_write_file.

• Forward-declare int __llvm_profile_write_file(void) and call it to write out a profile. This function
returns 0 when it succeeds, and a non-zero value otherwise. Calling this function multiple times appends profile
data to an existing on-disk raw profile.

In C++ files, declare these as extern "C".

Using the profiling runtime without a filesystem

The profiling runtime also supports freestanding environments that lack a filesystem. The runtime ships as a static
archive that’s structured to make dependencies on a hosted environment optional, depending on what features the
client application uses.

The first step is to export __llvm_profile_runtime, as above, to disable the default static initializers. Instead of
calling the *_file() APIs described above, use the following to save the profile directly to a buffer under your
control:

• Forward-declare uint64_t __llvm_profile_get_size_for_buffer(void) and call it to determine the
size of the profile. You’ll need to allocate a buffer of this size.

• Forward-declare int __llvm_profile_write_buffer(char *Buffer) and call it to copy the current
counters to Buffer, which is expected to already be allocated and big enough for the profile.

• Optionally, forward-declare void __llvm_profile_reset_counters(void) and call it to reset the
counters before entering a specific section to be profiled. This is only useful if there is some setup that should
be excluded from the profile.

In C++ files, declare these as extern "C".

Collecting coverage reports for the llvm project
To prepare a coverage report for llvm (and any of its sub-projects), add
-DLLVM_BUILD_INSTRUMENTED_COVERAGE=On to the cmake configuration. Raw profiles will be written to
$BUILD_DIR/profiles/. To prepare an html report, run
llvm/utils/prepare-code-coverage-artifact.py.

To specify an alternate directory for raw profiles, use -DLLVM_PROFILE_DATA_DIR. To change the size of the
profile merge pool, use -DLLVM_PROFILE_MERGE_POOL_SIZE.

Drawbacks and limitations

Source-based Code Coverage

700



• Prior to version 2.26, the GNU binutils BFD linker is not able link programs compiled with
-fcoverage-mapping in its --gc-sections mode. Possible workarounds include disabling
--gc-sections, upgrading to a newer version of BFD, or using the Gold linker.

• Code coverage does not handle unpredictable changes in control flow or stack unwinding in the presence of
exceptions precisely. Consider the following function:

int f() {
  may_throw();
  return 0;
}

If the call to may_throw() propagates an exception into f, the code coverage tool may mark the return
statement as executed even though it is not. A call to longjmp() can have similar effects.

Clang implementation details
This section may be of interest to those wishing to understand or improve the clang code coverage implementation.

Gap regions

Gap regions are source regions with counts. A reporting tool cannot set a line execution count to the count from a
gap region unless that region is the only one on a line.

Gap regions are used to eliminate unnatural artifacts in coverage reports, such as red “unexecuted” highlights
present at the end of an otherwise covered line, or blue “executed” highlights present at the start of a line that is
otherwise not executed.

Branch regions

When viewing branch coverage details in source-based file-level sub-views using --show-branches, it is
recommended that users show all macro expansions (using option --show-expansions) since macros may
contain hidden branch conditions. The coverage summary report will always include these macro-based boolean
expressions in the overall branch coverage count for a function or source file.

Branch coverage is not tracked for constant folded branch conditions since branches are not generated for these
cases. In the source-based file-level sub-view, these branches will simply be shown as [Folded - Ignored] so
that users are informed about what happened.

Branch coverage is tied directly to branch-generating conditions in the source code. Users should not see hidden
branches that aren’t actually tied to the source code.

Switch statements

The region mapping for a switch body consists of a gap region that covers the entire body (starting from the ‘{’ in
‘switch (…) {’, and terminating where the last case ends). This gap region has a zero count: this causes “gap” areas
in between case statements, which contain no executable code, to appear uncovered.

When a switch case is visited, the parent region is extended: if the parent region has no start location, its start
location becomes the start of the case. This is used to support switch statements without a CompoundStmt body, in
which the switch body and the single case share a count.

For switches with CompoundStmt bodies, a new region is created at the start of each switch case.

Branch regions are also generated for each switch case, including the default case. If there is no explicitly defined
default case in the source code, a branch region is generated to correspond to the implicit default case that is
generated by the compiler. The implicit branch region is tied to the line and column number of the switch statement
condition since no source code for the implicit case exists.

Source-based Code Coverage

701



Modules
Introduction 702

Problems with the current model 703

Semantic import 703

Problems modules do not solve 704

Using Modules 704

Objective-C Import declaration 704

Includes as imports 704

Module maps 705

Compilation model 705

Command-line parameters 705

-cc1 Options 707

Using Prebuilt Modules 707

Module Semantics 708

Macros 709

Module Map Language 709

Lexical structure 710

Module map file 710

Module declaration 710

Requires declaration 711

Header declaration 713

Umbrella directory declaration 714

Submodule declaration 714

Export declaration 715

Re-export Declaration 716

Use declaration 716

Link declaration 717

Configuration macros declaration 717

Conflict declarations 718

Attributes 718

Private Module Map Files 718

Modularizing a Platform 719

Future Directions 720

Where To Learn More About Modules 720

Introduction
Most software is built using a number of software libraries, including libraries supplied by the platform, internal
libraries built as part of the software itself to provide structure, and third-party libraries. For each library, one needs to
access both its interface (API) and its implementation. In the C family of languages, the interface to a library is
accessed by including the appropriate header files(s):

#include <SomeLib.h>

The implementation is handled separately by linking against the appropriate library. For example, by passing
-lSomeLib to the linker.

Modules provide an alternative, simpler way to use software libraries that provides better compile-time scalability and
eliminates many of the problems inherent to using the C preprocessor to access the API of a library.

Modules

702



Problems with the current model

The #include mechanism provided by the C preprocessor is a very poor way to access the API of a library, for a
number of reasons:

• Compile-time scalability: Each time a header is included, the compiler must preprocess and parse the text in
that header and every header it includes, transitively. This process must be repeated for every translation unit in
the application, which involves a huge amount of redundant work. In a project with N translation units and M
headers included in each translation unit, the compiler is performing M x N work even though most of the M
headers are shared among multiple translation units. C++ is particularly bad, because the compilation model for
templates forces a huge amount of code into headers.

• Fragility: #include directives are treated as textual inclusion by the preprocessor, and are therefore subject
to any active macro definitions at the time of inclusion. If any of the active macro definitions happens to collide
with a name in the library, it can break the library API or cause compilation failures in the library header itself.
For an extreme example, #define std "The C++ Standard" and then include a standard library header:
the result is a horrific cascade of failures in the C++ Standard Library’s implementation. More subtle real-world
problems occur when the headers for two different libraries interact due to macro collisions, and users are
forced to reorder #include directives or introduce #undef directives to break the (unintended) dependency.

• Conventional workarounds: C programmers have adopted a number of conventions to work around the
fragility of the C preprocessor model. Include guards, for example, are required for the vast majority of headers
to ensure that multiple inclusion doesn’t break the compile. Macro names are written with
LONG_PREFIXED_UPPERCASE_IDENTIFIERS to avoid collisions, and some library/framework developers
even use __underscored names in headers to avoid collisions with “normal” names that (by convention)
shouldn’t even be macros. These conventions are a barrier to entry for developers coming from non-C
languages, are boilerplate for more experienced developers, and make our headers far uglier than they should
be.

• Tool confusion: In a C-based language, it is hard to build tools that work well with software libraries, because
the boundaries of the libraries are not clear. Which headers belong to a particular library, and in what order
should those headers be included to guarantee that they compile correctly? Are the headers C, C++,
Objective-C++, or one of the variants of these languages? What declarations in those headers are actually
meant to be part of the API, and what declarations are present only because they had to be written as part of
the header file?

Semantic import

Modules improve access to the API of software libraries by replacing the textual preprocessor inclusion model with a
more robust, more efficient semantic model. From the user’s perspective, the code looks only slightly different,
because one uses an import declaration rather than a #include preprocessor directive:

import std.io; // pseudo-code; see below for syntax discussion

However, this module import behaves quite differently from the corresponding #include <stdio.h>: when the
compiler sees the module import above, it loads a binary representation of the std.io module and makes its API
available to the application directly. Preprocessor definitions that precede the import declaration have no impact on
the API provided by std.io, because the module itself was compiled as a separate, standalone module.
Additionally, any linker flags required to use the std.io module will automatically be provided when the module is
imported 5 This semantic import model addresses many of the problems of the preprocessor inclusion model:

• Compile-time scalability: The std.io module is only compiled once, and importing the module into a
translation unit is a constant-time operation (independent of module system). Thus, the API of each software
library is only parsed once, reducing the M x N compilation problem to an M + N problem.

• Fragility: Each module is parsed as a standalone entity, so it has a consistent preprocessor environment. This
completely eliminates the need for __underscored names and similarly defensive tricks. Moreover, the
current preprocessor definitions when an import declaration is encountered are ignored, so one software library
can not affect how another software library is compiled, eliminating include-order dependencies.

• Tool confusion: Modules describe the API of software libraries, and tools can reason about and present a
module as a representation of that API. Because modules can only be built standalone, tools can rely on the
module definition to ensure that they get the complete API for the library. Moreover, modules can specify which
languages they work with, so, e.g., one can not accidentally attempt to load a C++ module into a C program.

Modules

703



Problems modules do not solve

Many programming languages have a module or package system, and because of the variety of features provided by
these languages it is important to define what modules do not do. In particular, all of the following are considered
out-of-scope for modules:

• Rewrite the world’s code: It is not realistic to require applications or software libraries to make drastic or
non-backward-compatible changes, nor is it feasible to completely eliminate headers. Modules must
interoperate with existing software libraries and allow a gradual transition.

• Versioning: Modules have no notion of version information. Programmers must still rely on the existing
versioning mechanisms of the underlying language (if any exist) to version software libraries.

• Namespaces: Unlike in some languages, modules do not imply any notion of namespaces. Thus, a struct
declared in one module will still conflict with a struct of the same name declared in a different module, just as
they would if declared in two different headers. This aspect is important for backward compatibility, because (for
example) the mangled names of entities in software libraries must not change when introducing modules.

• Binary distribution of modules: Headers (particularly C++ headers) expose the full complexity of the
language. Maintaining a stable binary module format across architectures, compiler versions, and compiler
vendors is technically infeasible.

Using Modules
To enable modules, pass the command-line flag -fmodules. This will make any modules-enabled software libraries
available as modules as well as introducing any modules-specific syntax. Additional command-line parameters are
described in a separate section later.

Objective-C Import declaration

Objective-C provides syntax for importing a module via an @import declaration, which imports the named module:

@import std;

The @import declaration above imports the entire contents of the std module (which would contain, e.g., the entire
C or C++ standard library) and make its API available within the current translation unit. To import only part of a
module, one may use dot syntax to specific a particular submodule, e.g.,

@import std.io;

Redundant import declarations are ignored, and one is free to import modules at any point within the translation unit,
so long as the import declaration is at global scope.

At present, there is no C or C++ syntax for import declarations. Clang will track the modules proposal in the C++
committee. See the section Includes as imports to see how modules get imported today.

Includes as imports

The primary user-level feature of modules is the import operation, which provides access to the API of software
libraries. However, today’s programs make extensive use of #include, and it is unrealistic to assume that all of this
code will change overnight. Instead, modules automatically translate #include directives into the corresponding
module import. For example, the include directive

#include <stdio.h>

will be automatically mapped to an import of the module std.io. Even with specific import syntax in the language,
this particular feature is important for both adoption and backward compatibility: automatic translation of #include
to import allows an application to get the benefits of modules (for all modules-enabled libraries) without any
changes to the application itself. Thus, users can easily use modules with one compiler while falling back to the
preprocessor-inclusion mechanism with other compilers.

Note

The automatic mapping of #include to import also solves an implementation problem: importing a module
with a definition of some entity (say, a struct Point) and then parsing a header containing another definition

Modules

704



of struct Point would cause a redefinition error, even if it is the same struct Point. By mapping
#include to import, the compiler can guarantee that it always sees just the already-parsed definition from the
module.

While building a module, #include_next is also supported, with one caveat. The usual behavior of
#include_next is to search for the specified filename in the list of include paths, starting from the path after the
one in which the current file was found. Because files listed in module maps are not found through include paths, a
different strategy is used for #include_next directives in such files: the list of include paths is searched for the
specified header name, to find the first include path that would refer to the current file. #include_next is
interpreted as if the current file had been found in that path. If this search finds a file named by a module map, the
#include_next directive is translated into an import, just like for a #include directive.``

Module maps

The crucial link between modules and headers is described by a module map, which describes how a collection of
existing headers maps on to the (logical) structure of a module. For example, one could imagine a module std
covering the C standard library. Each of the C standard library headers (<stdio.h>, <stdlib.h>, <math.h>, etc.)
would contribute to the std module, by placing their respective APIs into the corresponding submodule (std.io,
std.lib, std.math, etc.). Having a list of the headers that are part of the std module allows the compiler to build
the std module as a standalone entity, and having the mapping from header names to (sub)modules allows the
automatic translation of #include directives to module imports.

Module maps are specified as separate files (each named module.modulemap) alongside the headers they
describe, which allows them to be added to existing software libraries without having to change the library headers
themselves (in most cases 6). The actual Module map language is described in a later section.

Note

To actually see any benefits from modules, one first has to introduce module maps for the underlying C standard
library and the libraries and headers on which it depends. The section Modularizing a Platform describes the
steps one must take to write these module maps.

One can use module maps without modules to check the integrity of the use of header files. To do this, use the
-fimplicit-module-maps option instead of the -fmodules option, or use -fmodule-map-file= option to
explicitly specify the module map files to load.

Compilation model

The binary representation of modules is automatically generated by the compiler on an as-needed basis. When a
module is imported (e.g., by an #include of one of the module’s headers), the compiler will spawn a second
instance of itself 7, with a fresh preprocessing context 8, to parse just the headers in that module. The resulting
Abstract Syntax Tree (AST) is then persisted into the binary representation of the module that is then loaded into
translation unit where the module import was encountered.

The binary representation of modules is persisted in the module cache. Imports of a module will first query the
module cache and, if a binary representation of the required module is already available, will load that representation
directly. Thus, a module’s headers will only be parsed once per language configuration, rather than once per
translation unit that uses the module.

Modules maintain references to each of the headers that were part of the module build. If any of those headers
changes, or if any of the modules on which a module depends change, then the module will be (automatically)
recompiled. The process should never require any user intervention.

Command-line parameters

-fmodules

Enable the modules feature.

-fbuiltin-module-map

Modules

705



Load the Clang builtins module map file. (Equivalent to
-fmodule-map-file=<resource dir>/include/module.modulemap)

-fimplicit-module-maps

Enable implicit search for module map files named module.modulemap and similar. This option is implied by
-fmodules. If this is disabled with -fno-implicit-module-maps, module map files will only be loaded if
they are explicitly specified via -fmodule-map-file or transitively used by another module map file.

-fmodules-cache-path=<directory>

Specify the path to the modules cache. If not provided, Clang will select a system-appropriate default.

-fno-autolink

Disable automatic linking against the libraries associated with imported modules.

-fmodules-ignore-macro=macroname

Instruct modules to ignore the named macro when selecting an appropriate module variant. Use this for macros
defined on the command line that don’t affect how modules are built, to improve sharing of compiled module
files.

-fmodules-prune-interval=seconds

Specify the minimum delay (in seconds) between attempts to prune the module cache. Module cache pruning
attempts to clear out old, unused module files so that the module cache itself does not grow without bound. The
default delay is large (604,800 seconds, or 7 days) because this is an expensive operation. Set this value to 0 to
turn off pruning.

-fmodules-prune-after=seconds

Specify the minimum time (in seconds) for which a file in the module cache must be unused (according to
access time) before module pruning will remove it. The default delay is large (2,678,400 seconds, or 31 days) to
avoid excessive module rebuilding.

-module-file-info <module file name>

Debugging aid that prints information about a given module file (with a .pcm extension), including the language
and preprocessor options that particular module variant was built with.

-fmodules-decluse

Enable checking of module use declarations.

-fmodule-name=module-id

Consider a source file as a part of the given module.

-fmodule-map-file=<file>

Load the given module map file if a header from its directory or one of its subdirectories is loaded.

-fmodules-search-all

If a symbol is not found, search modules referenced in the current module maps but not imported for symbols,
so the error message can reference the module by name. Note that if the global module index has not been built
before, this might take some time as it needs to build all the modules. Note that this option doesn’t apply in
module builds, to avoid the recursion.

-fno-implicit-modules

All modules used by the build must be specified with -fmodule-file.

-fmodule-file=[<name>=]<file>

Specify the mapping of module names to precompiled module files. If the name is omitted, then the module file
is loaded whether actually required or not. If the name is specified, then the mapping is treated as another
prebuilt module search mechanism (in addition to -fprebuilt-module-path) and the module is only loaded
if required. Note that in this case the specified file also overrides this module’s paths that might be embedded in
other precompiled module files.

-fprebuilt-module-path=<directory>

Specify the path to the prebuilt modules. If specified, we will look for modules in this directory for a given
top-level module name. We don’t need a module map for loading prebuilt modules in this directory and the
compiler will not try to rebuild these modules. This can be specified multiple times.

-fprebuilt-implicit-modules

Enable prebuilt implicit modules. If a prebuilt module is not found in the prebuilt modules paths (specified via
-fprebuilt-module-path), we will look for a matching implicit module in the prebuilt modules paths.

Modules

706



-cc1 Options

-fmodules-strict-context-hash

Enables hashing of all compiler options that could impact the semantics of a module in an implicit build. This
includes things such as header search paths and diagnostics. Using this option may lead to an excessive
number of modules being built if the command line arguments are not homogeneous across your build.

Using Prebuilt Modules

Below are a few examples illustrating uses of prebuilt modules via the different options.

First, let’s set up files for our examples.

/* A.h */
#ifdef ENABLE_A
void a() {}
#endif

/* B.h */
#include "A.h"

/* use.c */
#include "B.h"
void use() {
#ifdef ENABLE_A
  a();
#endif
}

/* module.modulemap */
module A {
  header "A.h"
}
module B {
  header "B.h"
  export *
}

In the examples below, the compilation of use.c can be done without -cc1, but the commands used to prebuild the
modules would need to be updated to take into account the default options passed to clang -cc1. (See
clang use.c -v) Note also that, since we use -cc1, we specify the -fmodule-map-file= or
-fimplicit-module-maps options explicitly. When using the clang driver, -fimplicit-module-maps is
implied by -fmodules.

First let us use an explicit mapping from modules to files.
rm -rf prebuilt ; mkdir prebuilt
clang -cc1 -emit-module -o prebuilt/A.pcm -fmodules module.modulemap -fmodule-name=A
clang -cc1 -emit-module -o prebuilt/B.pcm -fmodules module.modulemap -fmodule-name=B -fmodule-file=A=prebuilt/A.pcm
clang -cc1 -emit-obj use.c -fmodules -fmodule-map-file=module.modulemap -fmodule-file=A=prebuilt/A.pcm -fmodule-file=B=prebuilt/B.pcm

Instead of of specifying the mappings manually, it can be convenient to use the -fprebuilt-module-path option.
Let’s also use -fimplicit-module-maps instead of manually pointing to our module map.
rm -rf prebuilt; mkdir prebuilt
clang -cc1 -emit-module -o prebuilt/A.pcm -fmodules module.modulemap -fmodule-name=A
clang -cc1 -emit-module -o prebuilt/B.pcm -fmodules module.modulemap -fmodule-name=B -fprebuilt-module-path=prebuilt
clang -cc1 -emit-obj use.c -fmodules -fimplicit-module-maps -fprebuilt-module-path=prebuilt

A trick to prebuild all modules required for our source file in one command is to generate implicit modules while using
the -fdisable-module-hash option.

rm -rf prebuilt ; mkdir prebuilt
clang -cc1 -emit-obj use.c -fmodules -fimplicit-module-maps -fmodules-cache-path=prebuilt -fdisable-module-hash
ls prebuilt/*.pcm
# prebuilt/A.pcm  prebuilt/B.pcm

Modules

707



Note that with explicit or prebuilt modules, we are responsible for, and should be particularly careful about the
compatibility of our modules. Using mismatching compilation options and modules may lead to issues.

clang -cc1 -emit-obj use.c -fmodules -fimplicit-module-maps -fprebuilt-module-path=prebuilt -DENABLE_A
# use.c:4:10: warning: implicit declaration of function 'a' is invalid in C99 [-Wimplicit-function-declaration]
#   return a(x);
#          ^
# 1 warning generated.

So we need to maintain multiple versions of prebuilt modules. We can do so using a manual module mapping, or
pointing to a different prebuilt module cache path. For example:
rm -rf prebuilt ; mkdir prebuilt ; rm -rf prebuilt_a ; mkdir prebuilt_a
clang -cc1 -emit-obj use.c -fmodules -fimplicit-module-maps -fmodules-cache-path=prebuilt -fdisable-module-hash
clang -cc1 -emit-obj use.c -fmodules -fimplicit-module-maps -fmodules-cache-path=prebuilt_a -fdisable-module-hash -DENABLE_A
clang -cc1 -emit-obj use.c -fmodules -fimplicit-module-maps -fprebuilt-module-path=prebuilt
clang -cc1 -emit-obj use.c -fmodules -fimplicit-module-maps -fprebuilt-module-path=prebuilt_a -DENABLE_A

Instead of managing the different module versions manually, we can build implicit modules in a given cache path
(using -fmodules-cache-path), and reuse them as prebuilt implicit modules by passing
-fprebuilt-module-path and -fprebuilt-implicit-modules.
rm -rf prebuilt; mkdir prebuilt
clang -cc1 -emit-obj -o use.o use.c -fmodules -fimplicit-module-maps -fmodules-cache-path=prebuilt
clang -cc1 -emit-obj -o use.o use.c -fmodules -fimplicit-module-maps -fmodules-cache-path=prebuilt -DENABLE_A
find prebuilt -name "*.pcm"
# prebuilt/1AYBIGPM8R2GA/A-3L1K4LUA6O31.pcm
# prebuilt/1AYBIGPM8R2GA/B-3L1K4LUA6O31.pcm
# prebuilt/VH0YZMF1OIRK/A-3L1K4LUA6O31.pcm
# prebuilt/VH0YZMF1OIRK/B-3L1K4LUA6O31.pcm
clang -cc1 -emit-obj -o use.o use.c -fmodules -fimplicit-module-maps -fprebuilt-module-path=prebuilt -fprebuilt-implicit-modules
clang -cc1 -emit-obj -o use.o use.c -fmodules -fimplicit-module-maps -fprebuilt-module-path=prebuilt -fprebuilt-implicit-modules -DENABLE_A

Finally we want to allow implicit modules for configurations that were not prebuilt. When using the clang driver a
module cache path is implicitly selected. Using -cc1, we simply add use the -fmodules-cache-path option.
clang -cc1 -emit-obj -o use.o use.c -fmodules -fimplicit-module-maps -fprebuilt-module-path=prebuilt -fprebuilt-implicit-modules -fmodules-cache-path=cache
clang -cc1 -emit-obj -o use.o use.c -fmodules -fimplicit-module-maps -fprebuilt-module-path=prebuilt -fprebuilt-implicit-modules -fmodules-cache-path=cache -DENABLE_A
clang -cc1 -emit-obj -o use.o use.c -fmodules -fimplicit-module-maps -fprebuilt-module-path=prebuilt -fprebuilt-implicit-modules -fmodules-cache-path=cache -DENABLE_A -DOTHER_OPTIONS

This way, a single directory containing multiple variants of modules can be prepared and reused. The options
configuring the module cache are independent of other options.

Module Semantics
Modules are modeled as if each submodule were a separate translation unit, and a module import makes names
from the other translation unit visible. Each submodule starts with a new preprocessor state and an empty translation
unit.

Note

This behavior is currently only approximated when building a module with submodules. Entities within a
submodule that has already been built are visible when building later submodules in that module. This can lead to
fragile modules that depend on the build order used for the submodules of the module, and should not be relied
upon. This behavior is subject to change.

As an example, in C, this implies that if two structs are defined in different submodules with the same name, those
two types are distinct types (but may be compatible types if their definitions match). In C++, two structs defined with
the same name in different submodules are the same type, and must be equivalent under C++’s One Definition Rule.

Note

Clang currently only performs minimal checking for violations of the One Definition Rule.

If any submodule of a module is imported into any part of a program, the entire top-level module is considered to be
part of the program. As a consequence of this, Clang may diagnose conflicts between an entity declared in an
unimported submodule and an entity declared in the current translation unit, and Clang may inline or devirtualize
based on knowledge from unimported submodules.

Modules

708



Macros

The C and C++ preprocessor assumes that the input text is a single linear buffer, but with modules this is not the
case. It is possible to import two modules that have conflicting definitions for a macro (or where one #defines a
macro and the other #undefines it). The rules for handling macro definitions in the presence of modules are as
follows:

• Each definition and undefinition of a macro is considered to be a distinct entity.

• Such entities are visible if they are from the current submodule or translation unit, or if they were exported from
a submodule that has been imported.

• A #define X or #undef X directive overrides all definitions of X that are visible at the point of the directive.

• A #define or #undef directive is active if it is visible and no visible directive overrides it.

• A set of macro directives is consistent if it consists of only #undef directives, or if all #define directives in the
set define the macro name to the same sequence of tokens (following the usual rules for macro redefinitions).

• If a macro name is used and the set of active directives is not consistent, the program is ill-formed. Otherwise,
the (unique) meaning of the macro name is used.

For example, suppose:

• <stdio.h> defines a macro getc (and exports its #define)

• <cstdio> imports the <stdio.h> module and undefines the macro (and exports its #undef)

The #undef overrides the #define, and a source file that imports both modules in any order will not see getc
defined as a macro.

Module Map Language

Warning

The module map language is not currently guaranteed to be stable between major revisions of Clang.

The module map language describes the mapping from header files to the logical structure of modules. To enable
support for using a library as a module, one must write a module.modulemap file for that library. The
module.modulemap file is placed alongside the header files themselves, and is written in the module map language
described below.

Note

For compatibility with previous releases, if a module map file named module.modulemap is not found, Clang
will also search for a file named module.map. This behavior is deprecated and we plan to eventually remove it.

As an example, the module map file for the C standard library might look a bit like this:

module std [system] [extern_c] {
  module assert {
    textual header "assert.h"
    header "bits/assert-decls.h"
    export *
  }

  module complex {
    header "complex.h"
    export *
  }

  module ctype {

Modules

709



    header "ctype.h"
    export *
  }

  module errno {
    header "errno.h"
    header "sys/errno.h"
    export *
  }

  module fenv {
    header "fenv.h"
    export *
  }

  // ...more headers follow...
}

Here, the top-level module std encompasses the whole C standard library. It has a number of submodules
containing different parts of the standard library: complex for complex numbers, ctype for character types, etc.
Each submodule lists one of more headers that provide the contents for that submodule. Finally, the export *
command specifies that anything included by that submodule will be automatically re-exported.

Lexical structure

Module map files use a simplified form of the C99 lexer, with the same rules for identifiers, tokens, string literals,
/* */ and // comments. The module map language has the following reserved words; all other C identifiers are
valid identifiers.

config_macros export_as  private
conflict      framework  requires
exclude       header     textual
explicit      link       umbrella
extern        module     use
export

Module map file

A module map file consists of a series of module declarations:

module-map-file:
  module-declaration*

Within a module map file, modules are referred to by a module-id, which uses periods to separate each part of a
module’s name:

module-id:
  identifier ('.' identifier)*

Module declaration

A module declaration describes a module, including the headers that contribute to that module, its submodules, and
other aspects of the module.

module-declaration:
  explicitopt frameworkopt module module-id attributesopt '{' module-member* '}'
  extern module module-id string-literal

The module-id should consist of only a single identifier, which provides the name of the module being defined. Each
module shall have a single definition.

Modules

710



The explicit qualifier can only be applied to a submodule, i.e., a module that is nested within another module. The
contents of explicit submodules are only made available when the submodule itself was explicitly named in an import
declaration or was re-exported from an imported module.

The framework qualifier specifies that this module corresponds to a Darwin-style framework. A Darwin-style
framework (used primarily on macOS and iOS) is contained entirely in directory Name.framework, where Name is
the name of the framework (and, therefore, the name of the module). That directory has the following layout:

Name.framework/
  Modules/module.modulemap  Module map for the framework
  Headers/                  Subdirectory containing framework headers
  PrivateHeaders/           Subdirectory containing framework private headers
  Frameworks/               Subdirectory containing embedded frameworks
  Resources/                Subdirectory containing additional resources
  Name                      Symbolic link to the shared library for the framework

The system attribute specifies that the module is a system module. When a system module is rebuilt, all of the
module’s headers will be considered system headers, which suppresses warnings. This is equivalent to placing
#pragma GCC system_header in each of the module’s headers. The form of attributes is described in the section
Attributes, below.

The extern_c attribute specifies that the module contains C code that can be used from within C++. When such a
module is built for use in C++ code, all of the module’s headers will be treated as if they were contained within an
implicit extern "C" block. An import for a module with this attribute can appear within an extern "C" block. No
other restrictions are lifted, however: the module currently cannot be imported within an extern "C" block in a
namespace.

The no_undeclared_includes attribute specifies that the module can only reach non-modular headers and
headers from used modules. Since some headers could be present in more than one search path and map to
different modules in each path, this mechanism helps clang to find the right header, i.e., prefer the one for the current
module or in a submodule instead of the first usual match in the search paths.

Modules can have a number of different kinds of members, each of which is described below:

module-member:
  requires-declaration
  header-declaration
  umbrella-dir-declaration
  submodule-declaration
  export-declaration
  export-as-declaration
  use-declaration
  link-declaration
  config-macros-declaration
  conflict-declaration

An extern module references a module defined by the module-id in a file given by the string-literal. The file can be
referenced either by an absolute path or by a path relative to the current map file.

Requires declaration

A requires-declaration specifies the requirements that an importing translation unit must satisfy to use the module.

requires-declaration:
  requires feature-list

feature-list:
  feature (',' feature)*

feature:
  !opt identifier

The requirements clause allows specific modules or submodules to specify that they are only accessible with certain
language dialects, platforms, environments and target specific features. The feature list is a set of identifiers, defined
below. If any of the features is not available in a given translation unit, that translation unit shall not import the

Modules

711



module. When building a module for use by a compilation, submodules requiring unavailable features are ignored.
The optional ! indicates that a feature is incompatible with the module.

The following features are defined:

altivec

The target supports AltiVec.

blocks

The “blocks” language feature is available.

coroutines

Support for the coroutines TS is available.

cplusplus

C++ support is available.

cplusplus11

C++11 support is available.

cplusplus14

C++14 support is available.

cplusplus17

C++17 support is available.

c99

C99 support is available.

c11

C11 support is available.

c17

C17 support is available.

freestanding

A freestanding environment is available.

gnuinlineasm

GNU inline ASM is available.

objc

Objective-C support is available.

objc_arc

Objective-C Automatic Reference Counting (ARC) is available

opencl

OpenCL is available

tls

Thread local storage is available.

target feature

A specific target feature (e.g., sse4, avx, neon) is available.

platform/os

A os/platform variant (e.g. freebsd, win32, windows, linux, ios, macos, iossimulator) is available.

environment

A environment variant (e.g. gnu, gnueabi, android, msvc) is available.

Example: The std module can be extended to also include C++ and C++11 headers using a requires-declaration:

module std {
   // C standard library...

   module vector {
     requires cplusplus
     header "vector"

Modules

712



   }

   module type_traits {
     requires cplusplus11
     header "type_traits"
   }
 }

Header declaration

A header declaration specifies that a particular header is associated with the enclosing module.

header-declaration:
  privateopt textualopt header string-literal header-attrsopt
  umbrella header string-literal header-attrsopt
  exclude header string-literal header-attrsopt

header-attrs:
  '{' header-attr* '}'

header-attr:
  size integer-literal
  mtime integer-literal

A header declaration that does not contain exclude nor textual specifies a header that contributes to the
enclosing module. Specifically, when the module is built, the named header will be parsed and its declarations will be
(logically) placed into the enclosing submodule.

A header with the umbrella specifier is called an umbrella header. An umbrella header includes all of the headers
within its directory (and any subdirectories), and is typically used (in the #include world) to easily access the full
API provided by a particular library. With modules, an umbrella header is a convenient shortcut that eliminates the
need to write out header declarations for every library header. A given directory can only contain a single umbrella
header.

Note

Any headers not included by the umbrella header should have explicit header declarations. Use the
-Wincomplete-umbrella warning option to ask Clang to complain about headers not covered by the umbrella
header or the module map.

A header with the private specifier may not be included from outside the module itself.

A header with the textual specifier will not be compiled when the module is built, and will be textually included if it
is named by a #include directive. However, it is considered to be part of the module for the purpose of checking
use-declarations, and must still be a lexically-valid header file. In the future, we intend to pre-tokenize such headers
and include the token sequence within the prebuilt module representation.

A header with the exclude specifier is excluded from the module. It will not be included when the module is built,
nor will it be considered to be part of the module, even if an umbrella header or directory would otherwise make it
part of the module.

Example: The C header assert.h is an excellent candidate for a textual header, because it is meant to be included
multiple times (possibly with different NDEBUG settings). However, declarations within it should typically be split into a
separate modular header.

module std [system] {
  textual header "assert.h"
}

A given header shall not be referenced by more than one header-declaration.

Modules

713



Two header-declarations, or a header-declaration and a #include, are considered to refer to the same file if the
paths resolve to the same file and the specified header-attrs (if any) match the attributes of that file, even if the file is
named differently (for instance, by a relative path or via symlinks).

Note

The use of header-attrs avoids the need for Clang to speculatively stat every header referenced by a module
map. It is recommended that header-attrs only be used in machine-generated module maps, to avoid
mismatches between attribute values and the corresponding files.

Umbrella directory declaration

An umbrella directory declaration specifies that all of the headers in the specified directory should be included within
the module.

umbrella-dir-declaration:
  umbrella string-literal

The string-literal refers to a directory. When the module is built, all of the header files in that directory (and its
subdirectories) are included in the module.

An umbrella-dir-declaration shall not refer to the same directory as the location of an umbrella header-declaration. In
other words, only a single kind of umbrella can be specified for a given directory.

Note

Umbrella directories are useful for libraries that have a large number of headers but do not have an umbrella
header.

Submodule declaration

Submodule declarations describe modules that are nested within their enclosing module.

submodule-declaration:
  module-declaration
  inferred-submodule-declaration

A submodule-declaration that is a module-declaration is a nested module. If the module-declaration has a
framework specifier, the enclosing module shall have a framework specifier; the submodule’s contents shall be
contained within the subdirectory Frameworks/SubName.framework, where SubName is the name of the
submodule.

A submodule-declaration that is an inferred-submodule-declaration describes a set of submodules that correspond to
any headers that are part of the module but are not explicitly described by a header-declaration.

inferred-submodule-declaration:
  explicitopt frameworkopt module '*' attributesopt '{' inferred-submodule-member* '}'

inferred-submodule-member:
  export '*'

A module containing an inferred-submodule-declaration shall have either an umbrella header or an umbrella
directory. The headers to which the inferred-submodule-declaration applies are exactly those headers included by
the umbrella header (transitively) or included in the module because they reside within the umbrella directory (or its
subdirectories).

For each header included by the umbrella header or in the umbrella directory that is not named by a
header-declaration, a module declaration is implicitly generated from the inferred-submodule-declaration. The
module will:

• Have the same name as the header (without the file extension)

Modules

714



• Have the explicit specifier, if the inferred-submodule-declaration has the explicit specifier

• Have the framework specifier, if the inferred-submodule-declaration has the framework specifier

• Have the attributes specified by the inferred-submodule-declaration

• Contain a single header-declaration naming that header

• Contain a single export-declaration export *, if the inferred-submodule-declaration contains the
inferred-submodule-member export *

Example: If the subdirectory “MyLib” contains the headers A.h and B.h, then the following module map:

module MyLib {
  umbrella "MyLib"
  explicit module * {
    export *
  }
}

is equivalent to the (more verbose) module map:

module MyLib {
  explicit module A {
    header "A.h"
    export *
  }

  explicit module B {
    header "B.h"
    export *
  }
}

Export declaration

An export-declaration specifies which imported modules will automatically be re-exported as part of a given module’s
API.

export-declaration:
  export wildcard-module-id

wildcard-module-id:
  identifier
  '*'
  identifier '.' wildcard-module-id

The export-declaration names a module or a set of modules that will be re-exported to any translation unit that
imports the enclosing module. Each imported module that matches the wildcard-module-id up to, but not including,
the first * will be re-exported.

Example: In the following example, importing MyLib.Derived also provides the API for MyLib.Base:

module MyLib {
  module Base {
    header "Base.h"
  }

  module Derived {
    header "Derived.h"
    export Base
  }
}

Note that, if Derived.h includes Base.h, one can simply use a wildcard export to re-export everything Derived.h
includes:

Modules

715



module MyLib {
  module Base {
    header "Base.h"
  }

  module Derived {
    header "Derived.h"
    export *
  }
}

Note

The wildcard export syntax export * re-exports all of the modules that were imported in the actual header file.
Because #include directives are automatically mapped to module imports, export * provides the same
transitive-inclusion behavior provided by the C preprocessor, e.g., importing a given module implicitly imports all
of the modules on which it depends. Therefore, liberal use of export * provides excellent backward
compatibility for programs that rely on transitive inclusion (i.e., all of them).

Re-export Declaration

An export-as-declaration specifies that the current module will have its interface re-exported by the named module.

export-as-declaration:
  export_as identifier

The export-as-declaration names the module that the current module will be re-exported through. Only top-level
modules can be re-exported, and any given module may only be re-exported through a single module.

Example: In the following example, the module MyFrameworkCore will be re-exported via the module
MyFramework:

module MyFrameworkCore {
  export_as MyFramework
}

Use declaration

A use-declaration specifies another module that the current top-level module intends to use. When the option
-fmodules-decluse is specified, a module can only use other modules that are explicitly specified in this way.

use-declaration:
  use module-id

Example: In the following example, use of A from C is not declared, so will trigger a warning.

module A {
  header "a.h"
}

module B {
  header "b.h"
}

module C {
  header "c.h"
  use B
}

Modules

716



When compiling a source file that implements a module, use the option -fmodule-name=module-id to indicate
that the source file is logically part of that module.

The compiler at present only applies restrictions to the module directly being built.

Link declaration

A link-declaration specifies a library or framework against which a program should be linked if the enclosing module
is imported in any translation unit in that program.

link-declaration:
  link frameworkopt string-literal

The string-literal specifies the name of the library or framework against which the program should be linked. For
example, specifying “clangBasic” would instruct the linker to link with -lclangBasic for a Unix-style linker.

A link-declaration with the framework specifies that the linker should link against the named framework, e.g., with
-framework MyFramework.

Note

Automatic linking with the link directive is not yet widely implemented, because it requires support from both the
object file format and the linker. The notion is similar to Microsoft Visual Studio’s #pragma comment(lib...).

Configuration macros declaration

The config-macros-declaration specifies the set of configuration macros that have an effect on the API of the
enclosing module.

config-macros-declaration:
  config_macros attributesopt config-macro-listopt

config-macro-list:
  identifier (',' identifier)*

Each identifier in the config-macro-list specifies the name of a macro. The compiler is required to maintain different
variants of the given module for differing definitions of any of the named macros.

A config-macros-declaration shall only be present on a top-level module, i.e., a module that is not nested within an
enclosing module.

The exhaustive attribute specifies that the list of macros in the config-macros-declaration is exhaustive, meaning
that no other macro definition is intended to have an effect on the API of that module.

Note

The exhaustive attribute implies that any macro definitions for macros not listed as configuration macros
should be ignored completely when building the module. As an optimization, the compiler could reduce the
number of unique module variants by not considering these non-configuration macros. This optimization is not
yet implemented in Clang.

A translation unit shall not import the same module under different definitions of the configuration macros.

Note

Clang implements a weak form of this requirement: the definitions used for configuration macros are fixed based
on the definitions provided by the command line. If an import occurs and the definition of any configuration macro
has changed, the compiler will produce a warning (under the control of -Wconfig-macros).

Modules

717



Example: A logging library might provide different API (e.g., in the form of different definitions for a logging macro)
based on the NDEBUG macro setting:

module MyLogger {
  umbrella header "MyLogger.h"
  config_macros [exhaustive] NDEBUG
}

Conflict declarations

A conflict-declaration describes a case where the presence of two different modules in the same translation unit is
likely to cause a problem. For example, two modules may provide similar-but-incompatible functionality.

conflict-declaration:
  conflict module-id ',' string-literal

The module-id of the conflict-declaration specifies the module with which the enclosing module conflicts. The
specified module shall not have been imported in the translation unit when the enclosing module is imported.

The string-literal provides a message to be provided as part of the compiler diagnostic when two modules conflict.

Note

Clang emits a warning (under the control of -Wmodule-conflict) when a module conflict is discovered.

Example:

module Conflicts {
  explicit module A {
    header "conflict_a.h"
    conflict B, "we just don't like B"
  }

  module B {
    header "conflict_b.h"
  }
}

Attributes

Attributes are used in a number of places in the grammar to describe specific behavior of other declarations. The
format of attributes is fairly simple.

attributes:
  attribute attributesopt

attribute:
  '[' identifier ']'

Any identifier can be used as an attribute, and each declaration specifies what attributes can be applied to it.

Private Module Map Files

Module map files are typically named module.modulemap and live either alongside the headers they describe or in
a parent directory of the headers they describe. These module maps typically describe all of the API for the library.

However, in some cases, the presence or absence of particular headers is used to distinguish between the “public”
and “private” APIs of a particular library. For example, a library may contain the headers Foo.h and
Foo_Private.h, providing public and private APIs, respectively. Additionally, Foo_Private.h may only be
available on some versions of library, and absent in others. One cannot easily express this with a single module map
file in the library:

Modules

718



module Foo {
  header "Foo.h"
  ...
}

module Foo_Private {
  header "Foo_Private.h"
  ...
}

because the header Foo_Private.h won’t always be available. The module map file could be customized based
on whether Foo_Private.h is available or not, but doing so requires custom build machinery.

Private module map files, which are named module.private.modulemap (or, for backward compatibility,
module_private.map), allow one to augment the primary module map file with an additional modules. For
example, we would split the module map file above into two module map files:

/* module.modulemap */
module Foo {
  header "Foo.h"
}

/* module.private.modulemap */
module Foo_Private {
  header "Foo_Private.h"
}

When a module.private.modulemap file is found alongside a module.modulemap file, it is loaded after the
module.modulemap file. In our example library, the module.private.modulemap file would be available when
Foo_Private.h is available, making it easier to split a library’s public and private APIs along header boundaries.

When writing a private module as part of a framework, it’s recommended that:

• Headers for this module are present in the PrivateHeaders framework subdirectory.

• The private module is defined as a top level module with the name of the public framework prefixed, like
Foo_Private above. Clang has extra logic to work with this naming, using FooPrivate or Foo.Private
(submodule) trigger warnings and might not work as expected.

Modularizing a Platform
To get any benefit out of modules, one needs to introduce module maps for software libraries starting at the bottom
of the stack. This typically means introducing a module map covering the operating system’s headers and the C
standard library headers (in /usr/include, for a Unix system).

The module maps will be written using the module map language, which provides the tools necessary to describe the
mapping between headers and modules. Because the set of headers differs from one system to the next, the module
map will likely have to be somewhat customized for, e.g., a particular distribution and version of the operating
system. Moreover, the system headers themselves may require some modification, if they exhibit any anti-patterns
that break modules. Such common patterns are described below.

Macro-guarded copy-and-pasted definitions

System headers vend core types such as size_t for users. These types are often needed in a number of
system headers, and are almost trivial to write. Hence, it is fairly common to see a definition such as the
following copy-and-pasted throughout the headers:

#ifndef _SIZE_T
#define _SIZE_T
typedef __SIZE_TYPE__ size_t;
#endif

Unfortunately, when modules compiles all of the C library headers together into a single module, only the first
actual type definition of size_t will be visible, and then only in the submodule corresponding to the lucky first
header. Any other headers that have copy-and-pasted versions of this pattern will not have a definition of
size_t. Importing the submodule corresponding to one of those headers will therefore not yield size_t as

Modules

719



part of the API, because it wasn’t there when the header was parsed. The fix for this problem is either to pull the
copied declarations into a common header that gets included everywhere size_t is part of the API, or to
eliminate the #ifndef and redefine the size_t type. The latter works for C++ headers and C11, but will cause
an error for non-modules C90/C99, where redefinition of typedefs is not permitted.

Conflicting definitions

Different system headers may provide conflicting definitions for various macros, functions, or types. These
conflicting definitions don’t tend to cause problems in a pre-modules world unless someone happens to include
both headers in one translation unit. Since the fix is often simply “don’t do that”, such problems persist. Modules
requires that the conflicting definitions be eliminated or that they be placed in separate modules (the former is
generally the better answer).

Missing includes

Headers are often missing #include directives for headers that they actually depend on. As with the problem
of conflicting definitions, this only affects unlucky users who don’t happen to include headers in the right order.
With modules, the headers of a particular module will be parsed in isolation, so the module may fail to build if
there are missing includes.

Headers that vend multiple APIs at different times

Some systems have headers that contain a number of different kinds of API definitions, only some of which are
made available with a given include. For example, the header may vend size_t only when the macro
__need_size_t is defined before that header is included, and also vend wchar_t only when the macro
__need_wchar_t is defined. Such headers are often included many times in a single translation unit, and will
have no include guards. There is no sane way to map this header to a submodule. One can either eliminate the
header (e.g., by splitting it into separate headers, one per actual API) or simply exclude it in the module map.

To detect and help address some of these problems, the clang-tools-extra repository contains a modularize
tool that parses a set of given headers and attempts to detect these problems and produce a report. See the tool’s
in-source documentation for information on how to check your system or library headers.

Future Directions
Modules support is under active development, and there are many opportunities remaining to improve it. Here are a
few ideas:

Detect unused module imports

Unlike with #include directives, it should be fairly simple to track whether a directly-imported module has ever
been used. By doing so, Clang can emit unused import or unused #include diagnostics, including Fix-Its
to remove the useless imports/includes.

Fix-Its for missing imports

It’s fairly common for one to make use of some API while writing code, only to get a compiler error about
“unknown type” or “no function named” because the corresponding header has not been included. Clang can
detect such cases and auto-import the required module, but should provide a Fix-It to add the import.

Improve modularize

The modularize tool is both extremely important (for deployment) and extremely crude. It needs better UI, better
detection of problems (especially for C++), and perhaps an assistant mode to help write module maps for you.

Where To Learn More About Modules
The Clang source code provides additional information about modules:

clang/lib/Headers/module.modulemap

Module map for Clang’s compiler-specific header files.

clang/test/Modules/

Tests specifically related to modules functionality.

clang/include/clang/Basic/Module.h

The Module class in this header describes a module, and is used throughout the compiler to implement
modules.

clang/include/clang/Lex/ModuleMap.h

Modules

720



The ModuleMap class in this header describes the full module map, consisting of all of the module map files that
have been parsed, and providing facilities for looking up module maps and mapping between modules and
headers (in both directions).

PCHInternals

Information about the serialized AST format used for precompiled headers and modules. The actual
implementation is in the clangSerialization library.

5 Automatic linking against the libraries of modules requires specific linker support, which is not
widely available.

6 There are certain anti-patterns that occur in headers, particularly system headers, that cause
problems for modules. The section Modularizing a Platform describes some of them.

7 The second instance is actually a new thread within the current process, not a separate
process. However, the original compiler instance is blocked on the execution of this thread.

8 The preprocessing context in which the modules are parsed is actually dependent on the
command-line options provided to the compiler, including the language dialect and any -D
options. However, the compiled modules for different command-line options are kept distinct,
and any preprocessor directives that occur within the translation unit are ignored. See the
section on the Configuration macros declaration for more information.

MSVC compatibility
When Clang compiles C++ code for Windows, it attempts to be compatible with MSVC. There are multiple
dimensions to compatibility.

First, Clang attempts to be ABI-compatible, meaning that Clang-compiled code should be able to link against
MSVC-compiled code successfully. However, C++ ABIs are particularly large and complicated, and Clang’s support
for MSVC’s C++ ABI is a work in progress. If you don’t require MSVC ABI compatibility or don’t want to use
Microsoft’s C and C++ runtimes, the mingw32 toolchain might be a better fit for your project.

Second, Clang implements many MSVC language extensions, such as __declspec(dllexport) and a handful of
pragmas. These are typically controlled by -fms-extensions.

Third, MSVC accepts some C++ code that Clang will typically diagnose as invalid. When these constructs are
present in widely included system headers, Clang attempts to recover and continue compiling the user’s program.
Most parsing and semantic compatibility tweaks are controlled by -fms-compatibility and
-fdelayed-template-parsing, and they are a work in progress.

Finally, there is clang-cl, a driver program for clang that attempts to be compatible with MSVC’s cl.exe.

ABI features
The status of major ABI-impacting C++ features:

• Record layout: Complete. We’ve tested this with a fuzzer and have fixed all known bugs.

• Class inheritance: Mostly complete. This covers all of the standard OO features you would expect: virtual
method inheritance, multiple inheritance, and virtual inheritance. Every so often we uncover a bug where our
tables are incompatible, but this is pretty well in hand. This feature has also been fuzz tested.

• Name mangling: Ongoing. Every new C++ feature generally needs its own mangling. For example, member
pointer template arguments have an interesting and distinct mangling. Fortunately, incorrect manglings usually
do not result in runtime errors. Non-inline functions with incorrect manglings usually result in link errors, which
are relatively easy to diagnose. Incorrect manglings for inline functions and templates result in multiple copies in
the final image. The C++ standard requires that those addresses be equal, but few programs rely on this.

• Member pointers: Mostly complete. Standard C++ member pointers are fully implemented and should be ABI
compatible. Both #pragma pointers_to_members and the /vm flags are supported. However, MSVC supports
an extension to allow creating a pointer to a member of a virtual base class. Clang does not yet support this.

• Debug info: Mostly complete. Clang emits relatively complete CodeView debug information if /Z7 or /Zi is
passed. Microsoft’s link.exe will transform the CodeView debug information into a PDB that works in Windows
debuggers and other tools that consume PDB files like ETW. Work to teach lld about CodeView and PDBs is
ongoing.

MSVC compatibility

721

file:///home/cbowler/llvm/v1711p/llvm-project/compiler-doc/tools/clang/docs/PCHInternals.html
https://msdn.microsoft.com/en-us/library/83cch5a6.aspx
https://msdn.microsoft.com/en-us/library/yad46a6z.aspx
https://llvm.org/PR15713


• RTTI: Complete. Generation of RTTI data structures has been finished, along with support for the /GR flag.

• C++ Exceptions: Mostly complete. Support for C++ exceptions (try / catch / throw) have been implemented
for x86 and x64. Our implementation has been well tested but we still get the odd bug report now and again.
C++ exception specifications are ignored, but this is consistent with Visual C++.

• Asynchronous Exceptions (SEH): Partial. Structured exceptions (__try / __except / __finally) mostly
work on x86 and x64. LLVM does not model asynchronous exceptions, so it is currently impossible to catch an
asynchronous exception generated in the same frame as the catching __try.

• Thread-safe initialization of local statics: Complete. MSVC 2015 added support for thread-safe initialization of
such variables by taking an ABI break. We are ABI compatible with both the MSVC 2013 and 2015 ABI for
static local variables.

• Lambdas: Mostly complete. Clang is compatible with Microsoft’s implementation of lambdas except for
providing overloads for conversion to function pointer for different calling conventions. However, Microsoft’s
extension is non-conforming.

Template instantiation and name lookup
MSVC allows many invalid constructs in class templates that Clang has historically rejected. In order to parse widely
distributed headers for libraries such as the Active Template Library (ATL) and Windows Runtime Library (WRL),
some template rules have been relaxed or extended in Clang on Windows.

The first major semantic difference is that MSVC appears to defer all parsing an analysis of inline method bodies in
class templates until instantiation time. By default on Windows, Clang attempts to follow suit. This behavior is
controlled by the -fdelayed-template-parsing flag. While Clang delays parsing of method bodies, it still
parses the bodies before template argument substitution, which is not what MSVC does. The following compatibility
tweaks are necessary to parse the template in those cases.

MSVC allows some name lookup into dependent base classes. Even on other platforms, this has been a frequently
asked question for Clang users. A dependent base class is a base class that depends on the value of a template
parameter. Clang cannot see any of the names inside dependent bases while it is parsing your template, so the user
is sometimes required to use the typename keyword to assist the parser. On Windows, Clang attempts to follow the
normal lookup rules, but if lookup fails, it will assume that the user intended to find the name in a dependent base.
While parsing the following program, Clang will recover as if the user had written the commented-out code:

template <typename T>
struct Foo : T {
  void f() {
    /*typename*/ T::UnknownType x =  /*this->*/unknownMember;
  }
};

After recovery, Clang warns the user that this code is non-standard and issues a hint suggesting how to fix the
problem.

As of this writing, Clang is able to compile a simple ATL hello world application. There are still issues parsing WRL
headers for modern Windows 8 apps, but they should be addressed soon.

Misexpect

Contents
Misexpect 722

When developers use llvm.expect intrinsics, i.e., through use of __builtin_expect(...), they are trying to
communicate how their code is expected to behave at runtime to the optimizer. These annotations, however, can be
incorrect for a variety of reasons: changes to the code base invalidate them silently, the developer mis-annotated
them (e.g., using LIKELY instead of UNLIKELY), or perhaps they assumed something incorrectly when they wrote
the annotation. Regardless of why, it is useful to detect these situations so that the optimizer can make more useful
decisions about the code.

Misexpect

722

https://msdn.microsoft.com/en-us/library/wfa0edys.aspx
https://clang.llvm.org/compatibility.html#dep_lookup
https://clang.llvm.org/compatibility.html#dep_lookup


MisExpect diagnostics are intended to help developers identify and address these situations, by comparing the
branch weights added by the llvm.expect intrinsic to those collected through profiling. Whenever these values are
mismatched, a diagnostic is surfaced to the user. Details on how the checks operate in the LLVM backed can be
found in LLVM’s documentation.

By default MisExpect checking is quite strict, because the use of the llvm.expect intrinsic is designed for
specialized cases, where the outcome of a condition is severely skewed. As a result, the optimizer can be extremely
aggressive, which can result in performance degradation if the outcome is less predictable than the annotation
suggests. Even when the annotation is correct 90% of the time, it may be beneficial to either remove the annotation
or to use a different intrinsic that can communicate the probability more directly.

Because this may be too strict, MisExpect diagnostics are not enabled by default, and support an additional flag to
tolerate some deviation from the exact thresholds. The -fdiagnostic-misexpect-tolerance=N accepts
deviations when comparing branch weights within N% of the expected values. So passing
-fdiagnostic-misexpect-tolerance=5 will not report diagnostic messages if the branch weight from the
profile is within 5% of the weight added by the llvm.expect intrinsic.

MisExpect diagnostics are also available in the form of optimization remarks, which can be serialized and processed
through the opt-viewer.py scripts in LLVM.

-Rpass=misexpect
Enables optimization remarks for misexpect when profiling data conflicts with use of llvm.expect intrinsics.

-Wmisexpect
Enables misexpect warnings when profiling data conflicts with use of llvm.expect intrinsics.

-fdiagnostic-misexpect-tolerance=N
Relaxes misexpect checking to tolerate profiling values within N% of the expected branch weight. e.g., a value of
N=5 allows misexpect to check against 0.95 * Threshold

LLVM supports 4 types of profile formats: Frontend, IR, CS-IR, and Sampling. MisExpect Diagnostics are compatible
with all Profiling formats.

Profile Type Description

Frontend Profiling instrumentation added during compilation by the frontend, i.e. clang

IR Profiling instrumentation added during by the LLVM backend

CS-IR Context Sensitive IR based profiles

Sampling Profiles collected through sampling with external tools, such as perf on Linux

OpenCL Support 724

Missing features or with limited support 724

Internals Manual 724

OpenCL Metadata 724

OpenCL Specific Options 724

OpenCL builtins 725

OpenCL Extensions and Features 725

Implementation guidelines 726

Address spaces attribute 726

C++ for OpenCL Implementation Status 727

Missing features or with limited support 727

OpenCL C 3.0 Usage 727

OpenCL C 3.0 Implementation Status 727

Experimental features 728

C++ libraries for OpenCL 728

Misexpect

723



OpenCL Support
Clang has complete support of OpenCL C versions from 1.0 to 3.0. Support for OpenCL 3.0 is in experimental phase
(OpenCL 3.0).

Clang also supports the C++ for OpenCL kernel language.

There are also other new and experimental features available.

Details about usage of clang for OpenCL can be found in Clang Compiler User’s Manual.

Missing features or with limited support

• For general issues and bugs with OpenCL in clang refer to the GitHub issue list.

• Command-line flag -cl-ext (used to override extensions/ features supported by a target) is missing support of
some functionality i.e. that is implemented fully through libraries (see library-based features and extensions).

Internals Manual
This section acts as internal documentation for OpenCL features design as well as some important implementation
aspects. It is primarily targeted at the advanced users and the toolchain developers integrating frontend functionality
as a component.

OpenCL Metadata

Clang uses metadata to provide additional OpenCL semantics in IR needed for backends and OpenCL runtime.

Each kernel will have function metadata attached to it, specifying the arguments. Kernel argument metadata is used
to provide source level information for querying at runtime, for example using the clGetKernelArgInfo call.

Note that -cl-kernel-arg-info enables more information about the original kernel code to be added e.g. kernel
parameter names will appear in the OpenCL metadata along with other information.

The IDs used to encode the OpenCL’s logical address spaces in the argument info metadata follows the SPIR
address space mapping as defined in the SPIR specification section 2.2

OpenCL Specific Options

In addition to the options described in Clang Compiler User’s Manual there are the following options specific to the
OpenCL frontend.

All the options in this section are frontend-only and therefore if used with regular clang driver they require frontend
forwarding, e.g. -cc1 or -Xclang.

-finclude-default-header

Adds most of builtin types and function declarations during compilations. By default the OpenCL headers are not
loaded by the frontend and therefore certain builtin types and most of builtin functions are not declared. To load them
automatically this flag can be passed to the frontend (see also the section on the OpenCL Header):

$ clang -Xclang -finclude-default-header test.cl

Alternatively the internal header opencl-c.h containing the declarations can be included manually using -include or
-I followed by the path to the header location. The header can be found in the clang source tree or installation
directory.

$ clang -I<path to clang sources>/lib/Headers/opencl-c.h test.cl
$ clang -I<path to clang installation>/lib/clang/<llvm version>/include/opencl-c.h/opencl-c.h test.cl

In this example it is assumed that the kernel code contains #include <opencl-c.h> just as a regular C include.

Because the header is very large and long to parse, PCH (Precompiled Header and Modules Internals) and modules
(Modules) can be used internally to improve the compilation speed.

To enable modules for OpenCL:

OpenCL Support

724

https://github.com/llvm/llvm-project/issues?q=is%3Aopen+is%3Aissue+label%3Aopencl
https://www.khronos.org/registry/OpenCL/specs/opencl-1.2.pdf#167
https://www.khronos.org/registry/spir/specs/spir_spec-2.0.pdf#18


$ clang -target spir-unknown-unknown -c -emit-llvm -Xclang -finclude-default-header -fmodules -fimplicit-module-maps -fmodules-cache-path=<path to the generated module> test.cl

Another way to circumvent long parsing latency for the OpenCL builtin declarations is to use mechanism enabled by
-fdeclare-opencl-builtins flag that is available as an alternative feature.

-fdeclare-opencl-builtins

In addition to regular header includes with builtin types and functions using -finclude-default-header, clang supports a
fast mechanism to declare builtin functions with -fdeclare-opencl-builtins. This does not declare the builtin
types and therefore it has to be used in combination with -finclude-default-header if full functionality is
required.

Example of Use:

$ clang -Xclang -fdeclare-opencl-builtins test.cl

-ffake-address-space-map

Overrides the target address space map with a fake map. This allows adding explicit address space IDs to the
bitcode for non-segmented memory architectures that do not have separate IDs for each of the OpenCL logical
address spaces by default. Passing -ffake-address-space-map will add/override address spaces of the target
compiled for with the following values: 1-global, 2-constant, 3-local, 4-generic. The private address space
is represented by the absence of an address space attribute in the IR (see also the section on the address space
attribute).

$ clang -cc1 -ffake-address-space-map test.cl

OpenCL builtins

Clang builtins

There are some standard OpenCL functions that are implemented as Clang builtins:

• All pipe functions from section 6.13.16.2/6.13.16.3 of the OpenCL v2.0 kernel language specification.

• Address space qualifier conversion functions to_global/to_local/to_private from section 6.13.9.

• All the enqueue_kernel functions from section 6.13.17.1 and enqueue query functions from section
6.13.17.5.

Fast builtin function declarations

The implementation of the fast builtin function declarations (available via the -fdeclare-opencl-builtins option) consists
of the following main components:

• A TableGen definitions file OpenCLBuiltins.td. This contains a compact representation of the supported
builtin functions. When adding new builtin function declarations, this is normally the only file that needs
modifying.

• A Clang TableGen emitter defined in ClangOpenCLBuiltinEmitter.cpp. During Clang build time, the
emitter reads the TableGen definition file and generates OpenCLBuiltins.inc. This generated file contains
various tables and functions that capture the builtin function data from the TableGen definitions in a compact
manner.

• OpenCL specific code in SemaLookup.cpp. When Sema::LookupBuiltin encounters a potential builtin
function, it will check if the name corresponds to a valid OpenCL builtin function. If so, all overloads of the
function are inserted using InsertOCLBuiltinDeclarationsFromTable and overload resolution takes
place.

OpenCL Extensions and Features

Clang implements various extensions to OpenCL kernel languages.

New functionality is accepted as soon as the documentation is detailed to the level sufficient to be implemented.
There should be an evidence that the extension is designed with implementation feasibility in consideration and
assessment of complexity for C/C++ based compilers. Alternatively, the documentation can be accepted in a format
of a draft that can be further refined during the implementation.

OpenCL Support

725

https://www.khronos.org/registry/cl/specs/opencl-2.0-openclc.pdf#160
https://www.khronos.org/registry/cl/specs/opencl-2.0-openclc.pdf#101
https://www.khronos.org/registry/cl/specs/opencl-2.0-openclc.pdf#164
https://www.khronos.org/registry/cl/specs/opencl-2.0-openclc.pdf#171
https://www.khronos.org/registry/cl/specs/opencl-2.0-openclc.pdf#171


Implementation guidelines

This section explains how to extend clang with the new functionality.

Parsing functionality

If an extension modifies the standard parsing it needs to be added to the clang frontend source code. This also
means that the associated macro indicating the presence of the extension should be added to clang.

The default flow for adding a new extension into the frontend is to modify OpenCLExtensions.def, containing the list
of all extensions and optional features supported by the frontend.

This will add the macro automatically and also add a field in the target options
clang::TargetOptions::OpenCLFeaturesMap to control the exposure of the new extension during the
compilation.

Note that by default targets like SPIR-V, SPIR or X86 expose all the OpenCL extensions. For all other targets the
configuration has to be made explicitly.

Note that the target extension support performed by clang can be overridden with -cl-ext command-line flags.

Library functionality

If an extension adds functionality that does not modify standard language parsing it should not require modifying
anything other than header files and OpenCLBuiltins.td detailed in OpenCL builtins. Most commonly such
extensions add functionality via libraries (by adding non-native types or functions) parsed regularly. Similar to other
languages this is the most common way to add new functionality.

Clang has standard headers where new types and functions are being added, for more details refer to the section on
the OpenCL Header. The macros indicating the presence of such extensions can be added in the standard header
files conditioned on target specific predefined macros or/and language version predefined macros (see
feature/extension preprocessor macros defined in opencl-c-base.h).

Pragmas

Some extensions alter standard parsing dynamically via pragmas.

Clang provides a mechanism to add the standard extension pragma OPENCL EXTENSION by setting a dedicated
flag in the extension list entry of OpenCLExtensions.def. Note that there is no default behavior for the standard
extension pragmas as it is not specified (for the standards up to and including version 3.0) in a sufficient level of
detail and, therefore, there is no default functionality provided by clang.

Pragmas without detailed information of their behavior (e.g. an explanation of changes it triggers in the parsing)
should not be added to clang. Moreover, the pragmas should provide useful functionality to the user. For example,
such functionality should address a practical use case and not be redundant i.e. cannot be achieved using existing
features.

Note that some legacy extensions (published prior to OpenCL 3.0) still provide some non-conformant functionality for
pragmas e.g. add diagnostics on the use of types or functions. This functionality is not guaranteed to remain in future
releases. However, any future changes should not affect backward compatibility.

Address spaces attribute

Clang has arbitrary address space support using the address_space(N) attribute, where N is an integer number in
the range specified in the Clang source code. This addresses spaces can be used along with the OpenCL address
spaces however when such addresses spaces converted to/from OpenCL address spaces the behavior is not
governed by OpenCL specification.

An OpenCL implementation provides a list of standard address spaces using keywords: private, local, global,
and generic. In the AST and in the IR each of the address spaces will be represented by unique number provided
in the Clang source code. The specific IDs for an address space do not have to match between the AST and the IR.
Typically in the AST address space numbers represent logical segments while in the IR they represent physical
segments. Therefore, machines with flat memory segments can map all AST address space numbers to the same
physical segment ID or skip address space attribute completely while generating the IR. However, if the address
space information is needed by the IR passes e.g. to improve alias analysis, it is recommended to keep it and only
lower to reflect physical memory segments in the late machine passes. The mapping between logical and target
address spaces is specified in the Clang’s source code.

OpenCL Support

726

https://github.com/llvm/llvm-project/blob/main/clang/include/clang/Basic/OpenCLExtensions.def
https://github.com/llvm/llvm-project/blob/main/clang/lib/Headers/opencl-c-base.h


C++ for OpenCL Implementation Status
Clang implements language versions 1.0 and 2021 published in the official release of C++ for OpenCL
Documentation.

Limited support of experimental C++ libraries is described in the experimental features.

GitHub issues for this functionality are typically prefixed with ‘[C++4OpenCL]’ - click here to view the full bug list.

Missing features or with limited support

• Support of C++ for OpenCL 2021 is currently in experimental phase. Refer to OpenCL 3.0 status for details of
common missing functionality from OpenCL 3.0.

• IR generation for non-trivial global destructors is incomplete (See: PR48047).

• Support of destrutors with non-default address spaces is incomplete (See: D109609).

OpenCL C 3.0 Usage
OpenCL C 3.0 language standard makes most OpenCL C 2.0 features optional. Optional functionality in OpenCL C
3.0 is indicated with the presence of feature-test macros (list of feature-test macros is here). Command-line flag
-cl-ext can be used to override features supported by a target.

For cases when there is an associated extension for a specific feature (fp64 and 3d image writes) user should
specify both (extension and feature) in command-line flag:

$ clang -cl-std=CL3.0 -cl-ext=+cl_khr_fp64,+__opencl_c_fp64 ...
$ clang -cl-std=CL3.0 -cl-ext=-cl_khr_fp64,-__opencl_c_fp64 ...

OpenCL C 3.0 Implementation Status

The following table provides an overview of features in OpenCL C 3.0 and their implementation status.

Category Feature Status Reviews

Command
line
interface

New value for -cl-std flag done https://reviews.llvm.org/D88300

Predefined
macros

New version macro done https://reviews.llvm.org/D88300

Predefined
macros

Feature macros done https://reviews.llvm.org/D95776

Feature
optionality

Generic address space done https://reviews.llvm.org/D95778 and
https://reviews.llvm.org/D103401

Feature
optionality

Builtin function overloads
with generic address space

done https://reviews.llvm.org/D105526,
https://reviews.llvm.org/D107769

Feature
optionality

Program scope variables in
global memory

done https://reviews.llvm.org/D103191

Feature
optionality

3D image writes including
builtin functions

done https://reviews.llvm.org/D106260 (frontend)

Feature
optionality

read_write images including
builtin functions

done https://reviews.llvm.org/D104915 (frontend) and
https://reviews.llvm.org/D107539,
https://reviews.llvm.org/D117899 (functions)

Feature
optionality

C11 atomics memory
scopes, ordering and builtin
function

done https://reviews.llvm.org/D106111,
https://reviews.llvm.org/D119420

OpenCL Support

727

https://github.com/KhronosGroup/OpenCL-Docs/releases/tag/cxxforopencl-docrev2021.12
https://github.com/KhronosGroup/OpenCL-Docs/releases/tag/cxxforopencl-docrev2021.12
https://github.com/llvm/llvm-project/issues?q=is%3Aissue+is%3Aopen+%5BC%2B%2B4OpenCL%5D
https://llvm.org/PR48047
https://www.khronos.org/opencl/assets/CXX_for_OpenCL.html#_construction_initialization_and_destruction
https://reviews.llvm.org/D109609
https://www.khronos.org/registry/OpenCL/specs/3.0-unified/html/OpenCL_C.html#features
https://reviews.llvm.org/D88300
https://reviews.llvm.org/D88300
https://reviews.llvm.org/D95776
https://reviews.llvm.org/D95778
https://reviews.llvm.org/D103401
https://reviews.llvm.org/D105526
https://reviews.llvm.org/D107769
https://reviews.llvm.org/D103191
https://reviews.llvm.org/D106260
https://reviews.llvm.org/D104915
https://reviews.llvm.org/D107539
https://reviews.llvm.org/D117899
https://reviews.llvm.org/D106111
https://reviews.llvm.org/D119420


Category Feature Status Reviews

Feature
optionality

Blocks and Device-side
kernel enqueue including
builtin functions

done https://reviews.llvm.org/D115640,
https://reviews.llvm.org/D118605

Feature
optionality

Pipes including builtin
functions

done https://reviews.llvm.org/D107154 (frontend) and
https://reviews.llvm.org/D105858 (functions)

Feature
optionality

Work group collective builtin
functions

done https://reviews.llvm.org/D105858

Feature
optionality

Image types and builtin
functions

done https://reviews.llvm.org/D103911 (frontend) and
https://reviews.llvm.org/D107539 (functions)

Feature
optionality

Double precision floating
point type

done https://reviews.llvm.org/D96524

New functi
onality

RGBA vector components done https://reviews.llvm.org/D99969

New functi
onality

Subgroup functions done https://reviews.llvm.org/D105858,
https://reviews.llvm.org/D118999

New functi
onality

Atomic mem scopes:
subgroup, all devices
including functions

done https://reviews.llvm.org/D103241

Experimental features
Clang provides the following new WIP features for the developers to experiment and provide early feedback or
contribute with further improvements. Feel free to contact us on cfe-dev or file a GitHub issue.

C++ libraries for OpenCL

There is ongoing work to support C++ standard libraries from LLVM’s libcxx in OpenCL kernel code using C++ for
OpenCL mode.

It is currently possible to include type_traits from C++17 in the kernel sources when the following clang extensions
are enabled __cl_clang_function_pointers and __cl_clang_variadic_functions, see Clang
Language Extensions for more details. The use of non-conformant features enabled by the extensions does not
expose non-conformant behavior beyond the compilation i.e. does not get generated in IR or binary. The extension
only appear in metaprogramming mechanism to identify or verify the properties of types. This allows to provide the
full C++ functionality without a loss of portability. To avoid unsafe use of the extensions it is recommended that the
extensions are disabled directly after the header include.

Example of Use:

The example of kernel code with type_traits is illustrated here.

#pragma OPENCL EXTENSION __cl_clang_function_pointers : enable
#pragma OPENCL EXTENSION __cl_clang_variadic_functions : enable
#include <type_traits>
#pragma OPENCL EXTENSION __cl_clang_function_pointers : disable
#pragma OPENCL EXTENSION __cl_clang_variadic_functions : disable

using sint_type = std::make_signed<unsigned int>::type;

__kernel void foo() {
  static_assert(!std::is_same<sint_type, unsigned int>::value);
}

The possible clang invocation to compile the example is as follows:

$ clang -I<path to libcxx checkout or installation>/include test.clcpp

OpenCL Support

728

https://reviews.llvm.org/D115640
https://reviews.llvm.org/D118605
https://reviews.llvm.org/D107154
https://reviews.llvm.org/D105858
https://reviews.llvm.org/D105858
https://reviews.llvm.org/D103911
https://reviews.llvm.org/D107539
https://reviews.llvm.org/D96524
https://reviews.llvm.org/D99969
https://reviews.llvm.org/D105858
https://reviews.llvm.org/D118999
https://reviews.llvm.org/D103241
https://lists.llvm.org/mailman/listinfo/cfe-dev
https://github.com/llvm/llvm-project/issues/new
https://libcxx.llvm.org/


Note that type_traits is a header only library and therefore no extra linking step against the standard libraries is
required. See full example in Compiler Explorer.

More OpenCL specific C++ library implementations built on top of libcxx are available in libclcxx project.
OpenMP Support 729

General improvements 729

Cuda devices support 729

Directives execution modes 729

Data-sharing modes 730

Features not supported or with limited support for Cuda devices 730

OpenMP 5.0 Implementation Details 730

OpenMP 5.1 Implementation Details 733

OpenMP Extensions 735

OpenMP Support
Clang fully supports OpenMP 4.5. Clang supports offloading to X86_64, AArch64, PPC64[LE] and has basic support
for Cuda devices.

• #pragma omp declare simd: Partial. We support parsing/semantic analysis + generation of special attributes for
X86 target, but still missing the LLVM pass for vectorization.

In addition, the LLVM OpenMP runtime libomp supports the OpenMP Tools Interface (OMPT) on x86, x86_64,
AArch64, and PPC64 on Linux, Windows, and macOS.

For the list of supported features from OpenMP 5.0 see OpenMP implementation details.

General improvements

• New collapse clause scheme to avoid expensive remainder operations. Compute loop index variables after
collapsing a loop nest via the collapse clause by replacing the expensive remainder operation with
multiplications and additions.

• The default schedules for the distribute and for constructs in a parallel region and in SPMD mode have changed
to ensure coalesced accesses. For the distribute construct, a static schedule is used with a chunk size equal to
the number of threads per team (default value of threads or as specified by the thread_limit clause if present).
For the for construct, the schedule is static with chunk size of one.

• Simplified SPMD code generation for distribute parallel for when the new default schedules are applicable.

• When using the collapse clause on a loop nest the default behavior is to automatically extend the
representation of the loop counter to 64 bits for the cases where the sizes of the collapsed loops are not known
at compile time. To prevent this conservative choice and use at most 32 bits, compile your program with the
-fopenmp-optimistic-collapse.

Cuda devices support

Directives execution modes
Clang code generation for target regions supports two modes: the SPMD and non-SPMD modes. Clang chooses one
of these two modes automatically based on the way directives and clauses on those directives are used. The SPMD
mode uses a simplified set of runtime functions thus increasing performance at the cost of supporting some OpenMP
features. The non-SPMD mode is the most generic mode and supports all currently available OpenMP features. The
compiler will always attempt to use the SPMD mode wherever possible. SPMD mode will not be used if:

• The target region contains user code (other than OpenMP-specific directives) in between the target and the
parallel directives.

OpenMP Support

729

https://godbolt.org/z/5WbnTfb65
https://github.com/KhronosGroup/libclcxx


Data-sharing modes
Clang supports two data-sharing models for Cuda devices: Generic and Cuda modes. The default mode is Generic.
Cuda mode can give an additional performance and can be activated using the -fopenmp-cuda-mode flag. In
Generic mode all local variables that can be shared in the parallel regions are stored in the global memory. In Cuda
mode local variables are not shared between the threads and it is user responsibility to share the required data
between the threads in the parallel regions.

Features not supported or with limited support for Cuda devices

• Cancellation constructs are not supported.

• Doacross loop nest is not supported.

• User-defined reductions are supported only for trivial types.

• Nested parallelism: inner parallel regions are executed sequentially.

• Automatic translation of math functions in target regions to device-specific math functions is not implemented
yet.

• Debug information for OpenMP target regions is supported, but sometimes it may be required to manually
specify the address class of the inspected variables. In some cases the local variables are actually allocated in
the global memory, but the debug info may be not aware of it.

OpenMP 5.0 Implementation Details
The following table provides a quick overview over various OpenMP 5.0 features and their implementation status.
Please contact openmp-dev at lists.llvm.org for more information or if you want to help with the implementation.

Category Feature Status Reviews

loop extension support != in the canonical loop
form

done D54441

loop extension #pragma omp loop (directive) worked on

loop extension collapse imperfectly nested loop done

loop extension collapse non-rectangular nested
loop

done

loop extension C++ range-base for loop done

loop extension clause: if for SIMD directives done

loop extension inclusive scan extension (matching
C++17 PSTL)

done

memory
management

memory allocators done r341687,r357929

memory
management

allocate directive and allocate
clause

done r355614,r335952

OMPD OMPD interfaces not upstream https://github.com/OpenMPToolsInterfac
e/LLVM-openmp/tree/ompd-tests

OMPT OMPT interfaces mostly done

thread affinity
extension

thread affinity extension done

task extension taskloop reduction done

task extension task affinity not upstream https://github.com/jklinkenberg/openmp/t
ree/task-affinity

task extension clause: depend on the taskwait
construct

mostly done D113540 (regular codegen only)

OpenMP 5.0 Implementation Details

730

https://github.com/OpenMPToolsInterface/LLVM-openmp/tree/ompd-tests
https://github.com/OpenMPToolsInterface/LLVM-openmp/tree/ompd-tests
https://github.com/jklinkenberg/openmp/tree/task-affinity
https://github.com/jklinkenberg/openmp/tree/task-affinity


Category Feature Status Reviews

task extension depend objects and detachable
tasks

done

task extension mutexinoutset dependence-type for
tasks

done D53380,D57576

task extension combined taskloop constructs done

task extension master taskloop done

task extension parallel master taskloop done

task extension master taskloop simd done

task extension parallel master taskloop simd done

SIMD
extension

atomic and simd constructs inside
SIMD code

done

SIMD
extension

SIMD nontemporal done

device
extension

infer target functions from
initializers

worked on

device
extension

infer target variables from
initializers

worked on

device
extension

OMP_TARGET_OFFLOAD
environment variable

done D50522

device
extension

support full ‘defaultmap’
functionality

done D69204

device
extension

device specific functions done

device
extension

clause: device_type done

device
extension

clause: extended device done

device
extension

clause: uses_allocators clause done

device
extension

clause: in_reduction worked on r308768

device
extension

omp_get_device_num() worked on D54342

device
extension

structure mapping of references unclaimed

device
extension

nested target declare done D51378

device
extension

implicitly map ‘this’ (this[:1]) done D55982

device
extension

allow access to the reference count
(omp_target_is_present)

done

device
extension

requires directive partial

device
extension

clause: unified_shared_memory done D52625,D52359

OpenMP 5.0 Implementation Details

731



Category Feature Status Reviews

device
extension

clause: unified_address partial

device
extension

clause: reverse_offload unclaimed
parts

D52780

device
extension

clause: atomic_default_mem_order done D53513

device
extension

clause: dynamic_allocators unclaimed
parts

D53079

device
extension

user-defined mappers worked on D56326,D58638,D58523,D58074,D6097
2,D59474

device
extension

mapping lambda expression done D51107

device
extension

clause: use_device_addr for target
data

done

device
extension

support close modifier on map
clause

done D55719,D55892

device
extension

teams construct on the host device done r371553

device
extension

support non-contiguous array
sections for target update

done

device
extension

pointer attachment unclaimed

device
extension

map clause reordering based on
map types

unclaimed

atomic
extension

hints for the atomic construct done D51233

base language C11 support done

base language C++11/14/17 support done

base language lambda support done

misc extension array shaping done D74144

misc extension library shutdown
(omp_pause_resource[_all])

unclaimed
parts

D55078

misc extension metadirectives worked on D91944

misc extension conditional modifier for lastprivate
clause

done

misc extension iterator and multidependences done

misc extension depobj directive and depobj
dependency kind

done

misc extension user-defined function variants worked on D67294, D64095, D71847, D71830,
D109635

misc extension pointer/reference to pointer based
array reductions

unclaimed

misc extension prevent new type definitions in
clauses

done

memory model
extension

memory model update (seq_cst,
acq_rel, release, acquire,…)

done

OpenMP 5.0 Implementation Details

732



OpenMP 5.1 Implementation Details
The following table provides a quick overview over various OpenMP 5.1 features and their implementation status, as
defined in the technical report 8 (TR8). Please contact openmp-dev at lists.llvm.org for more information or if you
want to help with the implementation.

Category Feature Status Reviews

atomic
extension

‘compare’ clause on atomic
construct

worked on

atomic
extension

‘fail’ clause on atomic construct worked on

base language C++ attribute specifier syntax done D105648

device
extension

‘present’ map type modifier done D83061, D83062, D84422

device
extension

‘present’ motion modifier done D84711, D84712

device
extension

‘present’ in defaultmap clause done D92427

device
extension

map clause reordering reordering
based on ‘present’ modifier

unclaimed

device
extension

device-specific environment
variables

unclaimed

device
extension

omp_target_is_accessible routine unclaimed

device
extension

omp_get_mapped_ptr routine unclaimed

device
extension

new async target memory copy
routines

unclaimed

device
extension

thread_limit clause on target
construct

unclaimed

device
extension

has_device_addr clause on target
construct

unclaimed

device
extension

iterators in map clause or motion
clauses

unclaimed

device
extension

indirect clause on declare target
directive

unclaimed

device
extension

allow virtual functions calls for
mapped object on device

unclaimed

device
extension

interop construct partial parsing/sema done: D98558, D98834,
D98815

device
extension

assorted routines for querying
interoperable properties

unclaimed

loop extension Loop tiling transformation done D76342

loop extension Loop unrolling transformation done D99459

loop extension ‘reproducible’/’unconstrained’
modifiers in ‘order’ clause

unclaimed

memory
management

alignment extensions for allocate
directive and clause

worked on

OpenMP 5.1 Implementation Details

733



Category Feature Status Reviews

memory
management

new memory management routines unclaimed

memory
management

changes to omp_alloctrait_key
enum

unclaimed

memory model
extension

seq_cst clause on flush construct unclaimed

misc extension ‘omp_all_memory’ keyword and
use in ‘depend’ clause

unclaimed

misc extension error directive unclaimed

misc extension scope construct unclaimed

misc extension routines for controlling and
querying team regions

unclaimed

misc extension changes to
ompt_scope_endpoint_t enum

unclaimed

misc extension omp_display_env routine unclaimed

misc extension extended OMP_PLACES syntax unclaimed

misc extension OMP_NUM_TEAMS and
OMP_TEAMS_THREAD_LIMIT
env vars

unclaimed

misc extension ‘target_device’ selector in context
specifier

unclaimed

misc extension begin/end declare variant done D71179

misc extension dispatch construct and function
variant argument adjustment

worked on D99537, D99679

misc extension assume and assumes directives worked on

misc extension nothing directive worked on

misc extension masked construct and related
combined constructs

worked on D99995, D100514

misc extension default(firstprivate) &
default(private)

partial firstprivate done: D75591

other deprecating master construct unclaimed

OMPT new barrier types added to
ompt_sync_region_t enum

unclaimed

OMPT async data transfers added to
ompt_target_data_op_t enum

unclaimed

OMPT new barrier state values added to
ompt_state_t enum

unclaimed

OMPT new ‘emi’ callbacks for external
monitoring interfaces

unclaimed

task extension ‘strict’ modifier for taskloop
construct

unclaimed

task extension inoutset in depend clause unclaimed

task extension nowait clause on taskwait unclaimed

OpenMP 5.1 Implementation Details

734



OpenMP Extensions
The following table provides a quick overview over various OpenMP extensions and their implementation status.
These extensions are not currently defined by any standard, so links to associated LLVM documentation are
provided. As these extensions mature, they will be considered for standardization. Please contact openmp-dev at
lists.llvm.org to provide feedback.

Category Feature Status Reviews

atomic
extension

‘atomic’ strictly nested within ‘teams’ prototyped D126323

device
extension

‘ompx_hold’ map type modifier prototyped D106509, D106510

SYCL Compiler and Runtime architecture design
Introduction 735

Address space handling 735

Introduction
This document describes the architecture of the SYCL compiler and runtime library. More details are provided in
external document, which are going to be added to clang documentation in the future.

Address space handling
The SYCL specification represents pointers to disjoint memory regions using C++ wrapper classes on an accelerator
to enable compilation with a standard C++ toolchain and a SYCL compiler toolchain. Section 3.8.2 of SYCL 2020
specification defines memory model, section 4.7.7 - address space classes and section 5.9 covers address space
deduction. The SYCL specification allows two modes of address space deduction: “generic as default address
space” (see section 5.9.3) and “inferred address space” (see section 5.9.4). Current implementation supports only
“generic as default address space” mode.

SYCL borrows its memory model from OpenCL however SYCL doesn’t perform the address space qualifier inference
as detailed in OpenCL C v3.0 6.7.8.

The default address space is “generic-memory”, which is a virtual address space that overlaps the global, local, and
private address spaces. SYCL mode enables following conversions:

• explicit conversions to/from the default address space from/to the address space-attributed type

• implicit conversions from the address space-attributed type to the default address space

• explicit conversions to/from the global address space from/to the
__attribute__((opencl_global_device)) or __attribute__((opencl_global_host)) address
space-attributed type

• implicit conversions from the __attribute__((opencl_global_device)) or
__attribute__((opencl_global_host)) address space-attributed type to the global address space

All named address spaces are disjoint and sub-sets of default address space.

The SPIR target allocates SYCL namespace scope variables in the global address space.

Pointers to default address space should get lowered into a pointer to a generic address space (or flat to reuse more
general terminology). But depending on the allocation context, the default address space of a non-pointer type is
assigned to a specific address space. This is described in common address space deduction rules section.

This is also in line with the behaviour of CUDA (small example).

multi_ptr class implementation example:

// check that SYCL mode is ON and we can use non-standard decorations
#if defined(__SYCL_DEVICE_ONLY__)
// GPU/accelerator implementation

OpenMP Extensions

735

https://openmp.llvm.org/docs/openacc/OpenMPExtensions.html#atomicWithinTeams
https://openmp.llvm.org/docs/openacc/OpenMPExtensions.html#ompx-hold
https://github.com/intel/llvm/blob/sycl/sycl/doc/CompilerAndRuntimeDesign.md
https://www.khronos.org/registry/SYCL/specs/sycl-2020/html/sycl-2020.html#_sycl_device_memory_model
https://www.khronos.org/registry/SYCL/specs/sycl-2020/html/sycl-2020.html#_address_space_classes
https://www.khronos.org/registry/SYCL/specs/sycl-2020/html/sycl-2020.html#_address_space_deduction
https://www.khronos.org/registry/SYCL/specs/sycl-2020/html/sycl-2020.html#_address_space_deduction
https://www.khronos.org/registry/OpenCL/specs/3.0-unified/html/OpenCL_C.html#addr-spaces-inference
https://www.khronos.org/registry/SYCL/specs/sycl-2020/html/sycl-2020.html#subsec:commonAddressSpace
https://godbolt.org/z/veqTfo9PK


template <typename T, address_space AS> class multi_ptr {
  // DecoratedType applies corresponding address space attribute to the type T
  // DecoratedType<T, global_space>::type == "__attribute__((opencl_global)) T"
  // See sycl/include/CL/sycl/access/access.hpp for more details
  using pointer_t = typename DecoratedType<T, AS>::type *;

  pointer_t m_Pointer;
  public:
  pointer_t get() { return m_Pointer; }
  T& operator* () { return *reinterpret_cast<T*>(m_Pointer); }
}
#else
// CPU/host implementation
template <typename T, address_space AS> class multi_ptr {
  T *m_Pointer; // regular undecorated pointer
  public:
  T *get() { return m_Pointer; }
  T& operator* () { return *m_Pointer; }
}
#endif

Depending on the compiler mode, multi_ptr will either decorate its internal data with the address space attribute
or not.

To utilize clang’s existing functionality, we reuse the following OpenCL address space attributes for pointers:

Address space attribute SYCL address_space enumeration

__attribute__((opencl_global)) global_space, constant_space

__attribute__((opencl_global_device)) global_space

__attribute__((opencl_global_host)) global_space

__attribute__((opencl_local)) local_space

__attribute__((opencl_private)) private_space

//TODO: add support for __attribute__((opencl_global_host)) and __attribute__((opencl_global_device)).

OpenMP Extensions

736



HLSL Support
Introduction 737

Project Goals 737

Non-Goals 737

Guiding Principles 737

Architectural Direction 737

DXC Driver 738

Parser 738

Sema 738

CodeGen 738

HLSL Language 738

An Aside on GPU Languages 738

Pointers & References 739

HLSL this Keyword 739

Bitshifts 739

Non-short Circuiting Logical Operators 739

Precise Qualifier 739

Differences in Templates 739

Vector Extensions 739

Standard Library 739

Unsupported C & C++ Features 739

Introduction
HLSL Support is under active development in the Clang codebase. This document describes the high level goals of
the project, the guiding principles, as well as some idiosyncrasies of the HLSL language and how we intend to
support them in Clang.

Project Goals
The long term goal of this project is to enable Clang to function as a replacement for the DirectXShaderCompiler
(DXC) in all its supported use cases. Accomplishing that goal will require Clang to be able to process most existing
HLSL programs with a high degree of source compatibility.

Non-Goals

HLSL ASTs do not need to be compatible between DXC and Clang. We do not expect identical code generation or
that features will resemble DXC’s implementation or architecture. In fact, we explicitly expect to deviate from DXC’s
implementation in key ways.

Guiding Principles
This document lacks details for architectural decisions that are not yet finalized. Our top priorities are quality,
maintainability, and flexibility. In accordance with community standards we are expecting a high level of test
coverage, and we will engineer our solutions with long term maintenance in mind. We are also working to limit
modifications to the Clang C++ code paths and share as much functionality as possible.

Architectural Direction
HLSL support in Clang is expressed as C++ minus unsupported C and C++ features. This is different from how other
Clang languages are implemented. Most languages in Clang are additive on top of C.

HLSL Support

737

https://github.com/microsoft/DirectXShaderCompiler/
https://github.com/microsoft/DirectXShaderCompiler/


HLSL is not a formally or fully specified language, and while our goals require a high level of source compatibility,
implementations can vary and we have some flexibility to be more or less permissive in some cases. For modern
HLSL DXC is the reference implementation.

The HLSL effort prioritizes following similar patterns for other languages, drivers, runtimes and targets. Specifically,
We will maintain separation between HSLS-specific code and the rest of Clang as much as possible following
patterns in use in Clang code today (i.e. ParseHLSL.cpp, SemaHLSL.cpp, CGHLSL*.cpp…). We will use inline
checks on language options where the code is simple and isolated, and prefer HLSL-specific implementation files for
any code of reasonable complexity.

In places where the HLSL language is in conflict with C and C++, we will seek to make minimally invasive changes
guarded under the HLSL language options. We will seek to make HLSL language support as minimal a maintenance
burden as possible.

DXC Driver

A DXC driver mode will provide command-line compatibility with DXC, supporting DXC’s options and flags. The DXC
driver is HLSL-specific and will create an HLSLToolchain which will provide the basis to support targeting both
DirectX and Vulkan.

Parser

Following the examples of other parser extensions HLSL will add a ParseHLSL.cpp file to contain the
implementations of HLSL-specific extensions to the Clang parser. The HLSL grammar shares most of its structure
with C and C++, so we will use the existing C/C++ parsing code paths.

Sema

HLSL’s Sema implementation will also provide an ExternalSemaSource. In DXC, an ExternalSemaSource is
used to provide definitions for HLSL built-in data types and built-in templates. Clang is already designed to allow an
attached ExternalSemaSource to lazily complete data types, which is a huge performance win for HLSL.

CodeGen

Like OpenCL, HLSL relies on capturing a lot of information into IR metadata. hand wave hand wave hand wave As a
design principle here we want our IR to be idiomatic Clang IR as much as possible. We will use IR attributes
wherever we can, and use metadata as sparingly as possible. One example of a difference from DXC already
implemented in Clang is the use of target triples to communicate shader model versions and shader stages.

Our HLSL CodeGen implementation should also have an eye toward generating IR that will map directly to targets
other than DXIL. While IR itself is generally not re-targetable, we want to share the Clang CodeGen implementation
for HLSL with other GPU graphics targets like SPIR-V and possibly other GPU and even CPU targets.

HLSL Language
The HLSL language is insufficiently documented, and not formally specified. Documentation is available on
Microsoft’s website. The language syntax is similar enough to C and C++ that carefully written C and C++ code is
valid HLSL. HLSL has some key differences from C & C++ which we will need to handle in Clang.

HLSL is not a conforming or valid extension or superset of C or C++. The language has key incompatibilities with C
and C++, both syntactically and semantically.

An Aside on GPU Languages

Due to HLSL being a GPU targeted language HLSL is a Single Program Multiple Data (SPMD) language relying on
the implicit parallelism provided by GPU hardware. Some language features in HLSL enable programmers to take
advantage of the parallel nature of GPUs in a hardware abstracted language.

HLSL also prohibits some features of C and C++ which can have catastrophic performance or are not widely
supportable on GPU hardware or drivers. As an example, register spilling is often excessively expensive on GPUs,
so HLSL requires all functions to be inlined during code generation, and does not support a runtime calling
convention.

HLSL Support

738

https://docs.microsoft.com/en-us/windows/win32/direct3dhlsl/dx-graphics-hlsl


Pointers & References

HLSL does not support referring to values by address. Semantically all variables are value-types and behave as
such. HLSL disallows the pointer dereference operators (unary *, and ->), as well as the address of operator (unary
&). While HLSL disallows pointers and references in the syntax, HLSL does use reference types in the AST, and we
intend to use pointer decay in the AST in the Clang implementation.

HLSL this Keyword

HLSL does support member functions, and (in HLSL 2021) limited operator overloading. With member function
support, HLSL also has a this keyword. The this keyword is an example of one of the places where HLSL relies
on references in the AST, because this is a reference.

Bitshifts

In deviation from C, HLSL bitshifts are defined to mask the shift count by the size of the type. In DXC, the semantics
of LLVM IR were altered to accommodate this, in Clang we intend to generate the mask explicitly in the IR. In cases
where the shift value is constant, this will be constant folded appropriately, in other cases we can clean it up in the
DXIL target.

Non-short Circuiting Logical Operators

In HLSL 2018 and earlier, HLSL supported logical operators (and the ternary operator) on vector types. This
behavior required that operators not short circuit. The non-short circuiting behavior applies to all data types until
HLSL 2021. In HLSL 2021, logical and ternary operators do not support vector types instead builtin functions and, or
and select are available, and operators short circuit matching C behavior.

Precise Qualifier

HLSL has a precise qualifier that behaves unlike anything else in the C language. The support for this qualifier in
DXC is buggy, so our bar for compatibility is low.

The precise qualifier applies in the inverse direction from normal qualifiers. Rather than signifying that the
declaration containing precise qualifier be precise, it signifies that the operations contributing to the declaration’s
value be precise. Additionally, precise is a misnomer: values attributed as precise comply with IEEE-754
floating point semantics, and are prevented from optimizations which could decrease or increase precision.

Differences in Templates

HLSL uses templates to define builtin types and methods, but disallowed user-defined templates until HLSL 2021.
HLSL also allows omitting empty template parameter lists when all template parameters are defaulted. This is an
ambiguous syntax in C++, but Clang detects the case and issues a diagnostic. This makes supporting the case in
Clang minimally invasive.

Vector Extensions

HLSL uses the OpenCL vector extensions, and also provides C++-style constructors for vectors that are not
supported by Clang.

Standard Library

HLSL does not support the C or C++ standard libraries. Like OpenCL, HLSL describes its own library of built in types,
complex data types, and functions.

Unsupported C & C++ Features

HLSL does not support all features of C and C++. In implementing HLSL in Clang use of some C and C++ features
will produce diagnostics under HLSL, and others will be supported as language extensions. In general, any C or C++
feature that can be supported by the DXIL and SPIR-V code generation targets could be treated as a clang HLSL
extension. Features that cannot be lowered to DXIL or SPIR-V, must be diagnosed as errors.

HLSL does not support the following C features:

HLSL Support

739



• Pointers

• References

• goto or labels

• Variable Length Arrays

• _Complex and _Imaginary

• C Threads or Atomics (or Obj-C blocks)

• union types (in progress for HLSL 202x)

• Most features C11 and later

HLSL does not support the following C++ features:

• RTTI

• Exceptions

• Multiple inheritance

• Access specifiers

• Anonymous or inline namespaces

• new & delete operators in all of their forms (array, placement, etc)

• Constructors and destructors

• Any use of the virtual keyword

• Most features C++11 and later

ThinLTO
Introduction 740

Current Status 741

Clang/LLVM 741

Linkers 741

Usage 741

Basic 741

Controlling Backend Parallelism 741

Incremental 742

Cache Pruning 742

Clang Bootstrap 742

More Information 743

Introduction
ThinLTO compilation is a new type of LTO that is both scalable and incremental. LTO (Link Time Optimization)
achieves better runtime performance through whole-program analysis and cross-module optimization. However,
monolithic LTO implements this by merging all input into a single module, which is not scalable in time or memory,
and also prevents fast incremental compiles.

In ThinLTO mode, as with regular LTO, clang emits LLVM bitcode after the compile phase. The ThinLTO bitcode is
augmented with a compact summary of the module. During the link step, only the summaries are read and merged
into a combined summary index, which includes an index of function locations for later cross-module function
importing. Fast and efficient whole-program analysis is then performed on the combined summary index.

However, all transformations, including function importing, occur later when the modules are optimized in fully
parallel backends. By default, linkers that support ThinLTO are set up to launch the ThinLTO backends in threads.

ThinLTO

740

https://github.com/microsoft/DirectXShaderCompiler/pull/4132


So the usage model is not affected as the distinction between the fast serial thin link step and the backends is
transparent to the user.

For more information on the ThinLTO design and current performance, see the LLVM blog post ThinLTO: Scalable
and Incremental LTO. While tuning is still in progress, results in the blog post show that ThinLTO already performs
well compared to LTO, in many cases matching the performance improvement.

Current Status

Clang/LLVM

The 3.9 release of clang includes ThinLTO support. However, ThinLTO is under active development, and new
features, improvements and bugfixes are being added for the next release. For the latest ThinLTO support, build a
recent version of clang and LLVM.

Linkers

ThinLTO is currently supported for the following linkers:

• gold (via the gold-plugin): Similar to monolithic LTO, this requires using a gold linker configured with plugins
enabled.

• ld64: Starting with Xcode 8.

• lld: Starting with r284050 for ELF, r298942 for COFF.

Usage

Basic

To utilize ThinLTO, simply add the -flto=thin option to compile and link. E.g.

% clang -flto=thin -O2 file1.c file2.c -c
% clang -flto=thin -O2 file1.o file2.o -o a.out

When using lld-link, the -flto option need only be added to the compile step:

% clang-cl -flto=thin -O2 -c file1.c file2.c
% lld-link /out:a.exe file1.obj file2.obj

As mentioned earlier, by default the linkers will launch the ThinLTO backend threads in parallel, passing the resulting
native object files back to the linker for the final native link. As such, the usage model is the same as non-LTO.

With gold, if you see an error during the link of the form:
/usr/bin/ld: error: /path/to/clang/bin/../lib/LLVMgold.so: could not load plugin library: /path/to/clang/bin/../lib/LLVMgold.so: cannot open shared object file: No such file or directory

Then either gold was not configured with plugins enabled, or clang was not built with -DLLVM_BINUTILS_INCDIR
set properly. See the instructions for the LLVM gold plugin.

Controlling Backend Parallelism

By default, the ThinLTO link step will launch as many threads in parallel as there are cores. If the number of cores
can’t be computed for the architecture, then it will launch std::thread::hardware_concurrency number of
threads in parallel. For machines with hyper-threading, this is the total number of virtual cores. For some applications
and machine configurations this may be too aggressive, in which case the amount of parallelism can be reduced to N
via:

• gold: -Wl,-plugin-opt,jobs=N

• ld64: -Wl,-mllvm,-threads=N

• lld: -Wl,--thinlto-jobs=N

• lld-link: /opt:lldltojobs=N

Other possible values for N are:

ThinLTO

741

http://blog.llvm.org/2016/06/thinlto-scalable-and-incremental-lto.html
http://blog.llvm.org/2016/06/thinlto-scalable-and-incremental-lto.html
https://llvm.org/docs/CMake.html
https://llvm.org/docs/CMake.html
https://llvm.org/docs/GoldPlugin.html
https://llvm.org/docs/GoldPlugin.html
https://developer.apple.com/xcode/
https://llvm.org/docs/GoldPlugin.html#how-to-build-it


• 0: Use one thread per physical core (default)

• 1: Use a single thread only (disable multi-threading)

• all: Use one thread per logical core (uses all hyper-threads)

Incremental

ThinLTO supports fast incremental builds through the use of a cache, which currently must be enabled through a
linker option.

• gold (as of LLVM 4.0): -Wl,-plugin-opt,cache-dir=/path/to/cache

• ld64 (support in clang 3.9 and Xcode 8): -Wl,-cache_path_lto,/path/to/cache

• ELF lld (as of LLVM 5.0): -Wl,--thinlto-cache-dir=/path/to/cache

• COFF lld-link (as of LLVM 6.0): /lldltocache:/path/to/cache

Cache Pruning

To help keep the size of the cache under control, ThinLTO supports cache pruning. Cache pruning is supported with
gold, ld64 and ELF and COFF lld, but currently only gold, ELF and COFF lld allow you to control the policy with a
policy string. The cache policy must be specified with a linker option.

• gold (as of LLVM 6.0): -Wl,-plugin-opt,cache-policy=POLICY

• ELF lld (as of LLVM 5.0): -Wl,--thinlto-cache-policy,POLICY

• COFF lld-link (as of LLVM 6.0): /lldltocachepolicy:POLICY

A policy string is a series of key-value pairs separated by : characters. Possible key-value pairs are:

• cache_size=X%: The maximum size for the cache directory is X percent of the available space on the disk.
Set to 100 to indicate no limit, 50 to indicate that the cache size will not be left over half the available disk
space. A value over 100 is invalid. A value of 0 disables the percentage size-based pruning. The default is 75%.

• cache_size_bytes=X, cache_size_bytes=Xk, cache_size_bytes=Xm, cache_size_bytes=Xg: Sets
the maximum size for the cache directory to X bytes (or KB, MB, GB respectively). A value over the amount of
available space on the disk will be reduced to the amount of available space. A value of 0 disables the byte
size-based pruning. The default is no byte size-based pruning.

Note that ThinLTO will apply both size-based pruning policies simultaneously, and changing one does not affect
the other. For example, a policy of cache_size_bytes=1g on its own will cause both the 1GB and default
75% policies to be applied unless the default cache_size is overridden.

• cache_size_files=X: Set the maximum number of files in the cache directory. Set to 0 to indicate no limit.
The default is 1000000 files.

• prune_after=Xs, prune_after=Xm, prune_after=Xh: Sets the expiration time for cache files to X
seconds (or minutes, hours respectively). When a file hasn’t been accessed for prune_after seconds, it is
removed from the cache. A value of 0 disables the expiration-based pruning. The default is 1 week.

• prune_interval=Xs, prune_interval=Xm, prune_interval=Xh: Sets the pruning interval to X seconds
(or minutes, hours respectively). This is intended to be used to avoid scanning the directory too often. It does
not impact the decision of which files to prune. A value of 0 forces the scan to occur. The default is every 20
minutes.

Clang Bootstrap

To bootstrap clang/LLVM with ThinLTO, follow these steps:

1. The host compiler must be a version of clang that supports ThinLTO.

2. The host linker must support ThinLTO (and in the case of gold, must be configured with plugins enabled).

3. Use the following additional CMake variables when configuring the bootstrap compiler build:

• -DLLVM_ENABLE_LTO=Thin

ThinLTO

742

https://llvm.org/docs/AdvancedBuilds.html#bootstrap-builds
https://llvm.org/docs/GoldPlugin.html
https://llvm.org/docs/CMake.html#options-and-variables


• -DCMAKE_C_COMPILER=/path/to/host/clang

• -DCMAKE_CXX_COMPILER=/path/to/host/clang++

• -DCMAKE_RANLIB=/path/to/host/llvm-ranlib

• -DCMAKE_AR=/path/to/host/llvm-ar

Or, on Windows:

• -DLLVM_ENABLE_LTO=Thin

• -DCMAKE_C_COMPILER=/path/to/host/clang-cl.exe

• -DCMAKE_CXX_COMPILER=/path/to/host/clang-cl.exe

• -DCMAKE_LINKER=/path/to/host/lld-link.exe

• -DCMAKE_RANLIB=/path/to/host/llvm-ranlib.exe

• -DCMAKE_AR=/path/to/host/llvm-ar.exe

1. To use additional linker arguments for controlling the backend parallelism or enabling incremental builds of the
bootstrap compiler, after configuring the build, modify the resulting CMakeCache.txt file in the build directory.
Specify any additional linker options after CMAKE_EXE_LINKER_FLAGS:STRING=. Note the configure may fail
if linker plugin options are instead specified directly in the previous step.

The BOOTSTRAP_LLVM_ENABLE_LTO=Thin will enable ThinLTO for stage 2 and stage 3 in case the compiler used
for stage 1 does not support the ThinLTO option.

More Information

• From LLVM project blog: ThinLTO: Scalable and Incremental LTO

API Notes: Annotations Without Modifying Headers
The Problem: You have headers you want to use, but you also want to add extra information to the API. You don’t
want to put that information in the headers themselves — perhaps because you want to keep them clean for other
clients, or perhaps because they’re from some open source project and you don’t want to modify them at all.

Incomplete solution: Redeclare all the interesting parts of the API in your own header and add the attributes you
want. Unfortunately, this:

• doesn’t work with attributes that must be present on a definition

• doesn’t allow changing the definition in other ways

• requires your header to be included in any client code to take effect

Better solution: Provide a “sidecar” file with the information you want to add, and have that automatically get picked
up by the module-building logic in the compiler.

That’s API notes.

API notes use a YAML-based file format. YAML is a format best explained by example, so here is a small example
from the compiler test suite of API notes for a hypothetical “SomeKit” framework.

Usage
API notes files are found relative to the module map that defines a module, under the name “SomeKit.apinotes” for a
module named “SomeKit”. Additionally, a file named “SomeKit_private.apinotes” will also be picked up to go with a
private module map. For bare modules these two files will be in the same directory as the corresponding module
map; for framework modules, they should be placed in the Headers and PrivateHeaders directories, respectively.
The module map for a private top-level framework module should be placed in the PrivateHeaders directory as well,
though it does not need an additional “_private” suffix on its name.

Clang will search for API notes files next to module maps only when passed the -fapi-notes-modules option.

API Notes: Annotations Without Modifying Headers

743

http://blog.llvm.org/2016/06/thinlto-scalable-and-incremental-lto.html
file:///home/cbowler/llvm/v1711p/llvm-project/compiler-doc/tools/clang/docs/test/APINotes/Inputs/Frameworks/SomeKit.framework/Headers/SomeKit.apinotes


Limitations

• Since they’re identified by module name, API notes cannot be used to modify arbitrary textual headers.

“Versioned” API Notes
Many API notes affect how a C API is imported into Swift. In order to change that behavior while still remaining
backwards-compatible, API notes can be selectively applied based on the Swift compatibility version provided to the
compiler (e.g. -fapi-notes-swift-version=5). The rule is that an explicitly-versioned API note applies to that
version and all earlier versions, and any applicable explicitly-versioned API note takes precedence over an
unversioned API note.

Reference
An API notes file contains a YAML dictionary with the following top-level entries:

Name: The name of the module (the framework name, for frameworks). Note that this is always the
name of a top-level module, even within a private API notes file.

Name: MyFramework

Classes,
Protocols,

Tags,
Typedefs,

Globals,
Enumerators,

Functions:

Arrays of top-level declarations. Each entry in the array must have a ‘Name’ key with its
Objective-C name. “Tags” refers to structs, enums, and unions; “Enumerators” refers to enum
cases.

Classes:
- Name: MyController
  …
- Name: MyView
  …

SwiftVersions: Contains explicit information for backwards compatibility. Each entry in the array contains a
‘Version’ key, which should be set to ‘4’ for annotations that only apply to Swift 4 mode and
earlier. The other entries in this dictionary are the same declaration entries as at the top level:
Classes, Protocols, Tags, Typedefs, Globals, Enumerators, and Functions.

SwiftVersions:
- Version: 4
  Classes: …
  Protocols: …

Each entry under ‘Classes’ and ‘Protocols’ can contain “Methods” and “Properties” arrays, in addition to the attributes
described below:

Methods: Identified by ‘Selector’ and ‘MethodKind’; the MethodKind is either “Instance” or “Class”.

Classes:
- Name: UIViewController
  Methods:
  - Selector: "presentViewController:animated:"
    MethodKind: Instance
    …

Properties: Identified by ‘Name’ and ‘PropertyKind’; the PropertyKind is also either “Instance” or “Class”.

Classes:
- Name: UIView
  Properties:
  - Name: subviews
    PropertyKind: Instance
    …

Each declaration supports the following annotations (if relevant to that declaration kind), all of which are optional:

API Notes: Annotations Without Modifying Headers

744



SwiftName: Equivalent to NS_SWIFT_NAME. For a method, must include the full Swift name with all
arguments. Use “_” to omit an argument label.

- Selector: "presentViewController:animated:"
  MethodKind: Instance
  SwiftName: "present(_:animated:)"

- Class: NSBundle
  SwiftName: Bundle

Availability, Av
ailabilityMsg:

A value of “nonswift” is equivalent to NS_SWIFT_UNAVAILABLE. A value of “available” can be
used in the “SwiftVersions” section to undo the effect of “nonswift”.

- Selector: "dealloc"
  MethodKind: Instance
  Availability: nonswift
  AvailabilityMsg: "prefer 'deinit'"

SwiftPrivate: Equivalent to NS_REFINED_FOR_SWIFT.

- Name: CGColorEqualToColor
  SwiftPrivate: true

Nullability: Used for properties and globals. There are four options, identified by their initials:

• Nonnull or N (corresponding to _Nonnull)

• Optional or O (corresponding to _Nullable)

• Unspecified or U (corresponding to _Null_unspecified)

• Scalar or S (deprecated)

Note that ‘Nullability’ is overridden by ‘Type’, even in a “SwiftVersions” section.

Note

‘Nullability’ can also be used to describe the argument types of methods and functions, but
this usage is deprecated in favor of ‘Parameters’ (see below).

- Name: dataSource
  Nullability: O

NullabilityOfRe
t:

Used for methods and functions. Describes the nullability of the return type.

Note that ‘NullabilityOfRet’ is overridden by ‘ResultType’, even in a “SwiftVersions” section.

Warning

Due to a compiler bug, ‘NullabilityOfRet’ may change nullability of the parameters as well
(rdar://30544062). Avoid using it and instead use ‘ResultType’ and specify the return type
along with a nullability annotation (see documentation for ‘ResultType’).

- Selector: superclass
  MethodKind: Class
  NullabilityOfRet: O

API Notes: Annotations Without Modifying Headers

745

rdar://30544062


Type: Used for properties and globals. This completely overrides the type of the declaration; it should
ideally only be used for Swift backwards compatibility, when existing type information has been
made more precise in a header. Prefer ‘Nullability’ and other annotations when possible.

We parse the specified type as if it appeared at the location of the declaration whose type is
being modified. Macros are not available and nullability must be applied explicitly (even in an
NS_ASSUME_NONNULL_BEGIN section).

- Name: delegate
  PropertyKind: Instance
  Type: "id"

ResultType: Used for methods and functions. This completely overrides the return type; it should ideally
only be used for Swift backwards compatibility, when existing type information has been made
more precise in a header.

We parse the specified type as if it appeared at the location of the declaration whose type is
being modified. Macros are not available and nullability must be applied explicitly (even in an
NS_ASSUME_NONNULL_BEGIN section).

- Selector: "subviews"
  MethodKind: Instance
  ResultType: "NSArray * _Nonnull"

SwiftImportAs
Accessors:

Used for properties. If true, the property will be exposed in Swift as its accessor methods,
rather than as a computed property using var.

- Name: currentContext
  PropertyKind: Class
  SwiftImportAsAccessors: true

NSErrorDomai
n:

Used for NSError code enums. The value is the name of the associated domain NSString
constant; an empty string ("") means the enum is a normal enum rather than an error code.

- Name: MKErrorCode
  NSErrorDomain: MKErrorDomain

SwiftWrapper: Controls NS_STRING_ENUM and NS_EXTENSIBLE_STRING_ENUM. There are three options:

• “struct” (extensible)

• “enum”

• “none”

Note that even an “enum” wrapper is still presented as a struct in Swift; it’s just a “more
enum-like” struct.

- Name: AVMediaType
  SwiftWrapper: none

EnumKind: Has the same effect as NS_ENUM and NS_OPTIONS. There are four options:

• “NSEnum” / “CFEnum”

• “NSClosedEnum” / “CFClosedEnum”

• “NSOptions” / “CFOptions”

• “none”

- Name: GKPhotoSize
  EnumKind: none

API Notes: Annotations Without Modifying Headers

746



Parameters: Used for methods and functions. Parameters are identified by a 0-based ‘Position’ and support
the ‘Nullability’, ‘NoEscape’, and ‘Type’ keys.

Note

Using ‘Parameters’ within a parameter entry to describe the parameters of a block is not
implemented. Use ‘Type’ on the entire parameter instead.

- Selector: "isEqual:"
  MethodKind: Instance
  Parameters:
  - Position: 0
    Nullability: O

NoEscape: Used only for block parameters. Equivalent to NS_NOESCAPE.

- Name: dispatch_sync
  Parameters:
  - Position: 0
    NoEscape: true

SwiftBridge: Used for Objective-C class types bridged to Swift value types. An empty string (“”) means a
type is not bridged. Not supported outside of Apple frameworks (the Swift side of it requires
conforming to implementation-detail protocols that are subject to change).

- Name: NSIndexSet
  SwiftBridge: IndexSet

DesignatedInit: Used for init methods. Equivalent to NS_DESIGNATED_INITIALIZER.

- Selector: "initWithFrame:"
  MethodKind: Instance
  DesignatedInit: true

Clang “man” pages
The following documents are command descriptions for all of the Clang tools. These pages describe how to use the
Clang commands and what their options are. Note that these pages do not describe all of the options available for all
tools. To get a complete listing, pass the --help (general options) or --help-hidden (general and debugging
options) arguments to the tool you are interested in.

Basic Commands

clang - the Clang C, C++, and Objective-C compiler

SYNOPSIS

clang [options] filename …

DESCRIPTION

clang is a C, C++, and Objective-C compiler which encompasses preprocessing, parsing, optimization, code
generation, assembly, and linking. Depending on which high-level mode setting is passed, Clang will stop before
doing a full link. While Clang is highly integrated, it is important to understand the stages of compilation, to
understand how to invoke it. These stages are:

Driver

The clang executable is actually a small driver which controls the overall execution of other tools such as the
compiler, assembler and linker. Typically you do not need to interact with the driver, but you transparently use it
to run the other tools.

Preprocessing

Clang “man” pages

747



This stage handles tokenization of the input source file, macro expansion, #include expansion and handling of
other preprocessor directives. The output of this stage is typically called a “.i” (for C), “.ii” (for C++), “.mi” (for
Objective-C), or “.mii” (for Objective-C++) file.

Parsing and Semantic Analysis

This stage parses the input file, translating preprocessor tokens into a parse tree. Once in the form of a parse
tree, it applies semantic analysis to compute types for expressions as well and determine whether the code is
well formed. This stage is responsible for generating most of the compiler warnings as well as parse errors. The
output of this stage is an “Abstract Syntax Tree” (AST).

Code Generation and Optimization

This stage translates an AST into low-level intermediate code (known as “LLVM IR”) and ultimately to machine
code. This phase is responsible for optimizing the generated code and handling target-specific code generation.
The output of this stage is typically called a “.s” file or “assembly” file.

Clang also supports the use of an integrated assembler, in which the code generator produces object files
directly. This avoids the overhead of generating the “.s” file and of calling the target assembler.

Assembler

This stage runs the target assembler to translate the output of the compiler into a target object file. The output of
this stage is typically called a “.o” file or “object” file.

Linker

This stage runs the target linker to merge multiple object files into an executable or dynamic library. The output
of this stage is typically called an “a.out”, “.dylib” or “.so” file.

Clang Static Analyzer

The Clang Static Analyzer is a tool that scans source code to try to find bugs through code analysis. This tool uses
many parts of Clang and is built into the same driver. Please see <https://clang-analyzer.llvm.org> for more details
on how to use the static analyzer.

OPTIONS

Stage Selection Options

-E
Run the preprocessor stage.

-fsyntax-only
Run the preprocessor, parser and type checking stages.

-S
Run the previous stages as well as LLVM generation and optimization stages and target-specific code generation,
producing an assembly file.

-c
Run all of the above, plus the assembler, generating a target “.o” object file.

no stage selection option
If no stage selection option is specified, all stages above are run, and the linker is run to combine the results into
an executable or shared library.

Language Selection and Mode Options

-x <language>
Treat subsequent input files as having type language.

-std=<standard>
Specify the language standard to compile for.
Supported values for the C language are:

c89
c90

Clang “man” pages

748

https://clang-analyzer.llvm.org


iso9899:1990

ISO C 1990

iso9899:199409

ISO C 1990 with amendment 1

gnu89
gnu90

ISO C 1990 with GNU extensions

c99
iso9899:1999

ISO C 1999

gnu99

ISO C 1999 with GNU extensions

c11
iso9899:2011

ISO C 2011

gnu11

ISO C 2011 with GNU extensions

c17
iso9899:2017

ISO C 2017

gnu17

ISO C 2017 with GNU extensions
The default C language standard is gnu17, except on PS4, where it is gnu99.
Supported values for the C++ language are:

c++98
c++03

ISO C++ 1998 with amendments

gnu++98
gnu++03

ISO C++ 1998 with amendments and GNU extensions

c++11

ISO C++ 2011 with amendments

gnu++11

ISO C++ 2011 with amendments and GNU extensions

c++14

ISO C++ 2014 with amendments
gnu++14

ISO C++ 2014 with amendments and GNU extensions

c++17

ISO C++ 2017 with amendments

gnu++17

ISO C++ 2017 with amendments and GNU extensions

c++2a

Clang “man” pages

749



Working draft for ISO C++ 2020

gnu++2a

Working draft for ISO C++ 2020 with GNU extensions
The default C++ language standard is gnu++14.
Supported values for the OpenCL language are:

cl1.0

OpenCL 1.0

cl1.1

OpenCL 1.1

cl1.2

OpenCL 1.2

cl2.0

OpenCL 2.0
The default OpenCL language standard is cl1.0.
Supported values for the CUDA language are:

cuda

NVIDIA CUDA(tm)

-stdlib=<library>
Specify the C++ standard library to use; supported options are libstdc++ and libc++. If not specified, platform
default will be used.

-rtlib=<library>
Specify the compiler runtime library to use; supported options are libgcc and compiler-rt. If not specified, platform
default will be used.

-ansi
Same as -std=c89.

-ObjC, -ObjC++
Treat source input files as Objective-C and Object-C++ inputs respectively.

-trigraphs
Enable trigraphs.

-ffreestanding
Indicate that the file should be compiled for a freestanding, not a hosted, environment. Note that it is assumed that
a freestanding environment will additionally provide memcpy, memmove, memset and memcmp implementations,
as these are needed for efficient codegen for many programs.

-fno-builtin
Disable special handling and optimizations of well-known library functions, like strlen() and malloc().

-fno-builtin-<function>
Disable special handling and optimizations for the specific library function. For example, -fno-builtin-strlen
removes any special handling for the strlen() library function.

-fno-builtin-std-<function>
Disable special handling and optimizations for the specific C++ standard library function in namespace std. For
example, -fno-builtin-std-move_if_noexcept removes any special handling for the
std::move_if_noexcept() library function.
For C standard library functions that the C++ standard library also provides in namespace std, use
-fno-builtin-<function> instead.

-fmath-errno
Indicate that math functions should be treated as updating errno.

-fpascal-strings
Enable support for Pascal-style strings with “\pfoo”.

Clang “man” pages

750



-fms-extensions
Enable support for Microsoft extensions.

-fmsc-version=
Set _MSC_VER. Defaults to 1300 on Windows. Not set otherwise.

-fborland-extensions
Enable support for Borland extensions.

-fwritable-strings
Make all string literals default to writable. This disables uniquing of strings and other optimizations.

-flax-vector-conversions, -flax-vector-conversions=<kind>,
-fno-lax-vector-conversions

Allow loose type checking rules for implicit vector conversions. Possible values of <kind>:

• none: allow no implicit conversions between vectors

• integer: allow implicit bitcasts between integer vectors of the same overall bit-width

• all: allow implicit bitcasts between any vectors of the same overall bit-width
<kind> defaults to integer if unspecified.

-fblocks
Enable the “Blocks” language feature.

-fobjc-abi-version=version
Select the Objective-C ABI version to use. Available versions are 1 (legacy “fragile” ABI), 2 (non-fragile ABI 1), and
3 (non-fragile ABI 2).

-fobjc-nonfragile-abi-version=<version>
Select the Objective-C non-fragile ABI version to use by default. This will only be used as the Objective-C ABI
when the non-fragile ABI is enabled (either via -fobjc-nonfragile-abi, or because it is the platform default).

-fobjc-nonfragile-abi, -fno-objc-nonfragile-abi
Enable use of the Objective-C non-fragile ABI. On platforms for which this is the default ABI, it can be disabled with
-fno-objc-nonfragile-abi.

Target Selection Options

Clang fully supports cross compilation as an inherent part of its design. Depending on how your version of Clang is
configured, it may have support for a number of cross compilers, or may only support a native target.

-arch <architecture>
Specify the architecture to build for (Mac OS X specific).

-target <architecture>
Specify the architecture to build for (all platforms).

-mmacosx-version-min=<version>
When building for macOS, specify the minimum version supported by your application.

-miphoneos-version-min
When building for iPhone OS, specify the minimum version supported by your application.

--print-supported-cpus
Print out a list of supported processors for the given target (specified through --target=<architecture> or
-arch <architecture>). If no target is specified, the system default target will be used.

-mcpu=?, -mtune=?
Acts as an alias for --print-supported-cpus.

-march=<cpu>
Specify that Clang should generate code for a specific processor family member and later. For example, if you
specify -march=i486, the compiler is allowed to generate instructions that are valid on i486 and later processors,
but which may not exist on earlier ones.

Code Generation Options

Clang “man” pages

751



-O0, -O1, -O2, -O3, -Ofast, -Os, -Oz, -Og, -O, -O4
Specify which optimization level to use:

-O0 Means “no optimization”: this level compiles the fastest and generates the most debuggable code.

-O1 Somewhere between -O0 and -O2.

-O2 Moderate level of optimization which enables most optimizations.

-O3 Like -O2, except that it enables optimizations that take longer to perform or that may generate larger
code (in an attempt to make the program run faster).

-Ofast Enables all the optimizations from -O3 along with other aggressive optimizations that may violate
strict compliance with language standards.

-Os Like -O2 with extra optimizations to reduce code size.

-Oz Like -Os (and thus -O2), but reduces code size further.

-Og Like -O1. In future versions, this option might disable different optimizations in order to improve
debuggability.

-O Equivalent to -O1.

-O4 and higher

Currently equivalent to -O3

-g, -gline-tables-only, -gmodules
Control debug information output. Note that Clang debug information works best at -O0. When more than one
option starting with -g is specified, the last one wins:

-g Generate debug information.

-gline-tables-only Generate only line table debug information. This allows for symbolicated backtraces
with inlining information, but does not include any information about variables, their locations or types.

-gmodules Generate debug information that contains external references to types defined in Clang modules
or precompiled headers instead of emitting redundant debug type information into every object file. This option
transparently switches the Clang module format to object file containers that hold the Clang module together
with the debug information. When compiling a program that uses Clang modules or precompiled headers, this
option produces complete debug information with faster compile times and much smaller object files.

This option should not be used when building static libraries for distribution to other machines because the
debug info will contain references to the module cache on the machine the object files in the library were built
on.

-fstandalone-debug -fno-standalone-debug
Clang supports a number of optimizations to reduce the size of debug information in the binary. They work based
on the assumption that the debug type information can be spread out over multiple compilation units. For instance,
Clang will not emit type definitions for types that are not needed by a module and could be replaced with a forward
declaration. Further, Clang will only emit type info for a dynamic C++ class in the module that contains the vtable
for the class.
The -fstandalone-debug option turns off these optimizations. This is useful when working with 3rd-party
libraries that don’t come with debug information. This is the default on Darwin. Note that Clang will never emit type
information for types that are not referenced at all by the program.

-feliminate-unused-debug-types
By default, Clang does not emit type information for types that are defined but not used in a program. To retain the
debug info for these unused types, the negation -fno-eliminate-unused-debug-types can be used.

-fexceptions
Enable generation of unwind information. This allows exceptions to be thrown through Clang compiled stack
frames. This is on by default in x86-64.

-ftrapv
Generate code to catch integer overflow errors. Signed integer overflow is undefined in C. With this flag, extra
code is generated to detect this and abort when it happens.

-fvisibility
This flag sets the default visibility level.

Clang “man” pages

752



-fcommon, -fno-common
This flag specifies that variables without initializers get common linkage. It can be disabled with -fno-common.

-ftls-model=<model>
Set the default thread-local storage (TLS) model to use for thread-local variables. Valid values are:
“global-dynamic”, “local-dynamic”, “initial-exec” and “local-exec”. The default is “global-dynamic”. The default
model can be overridden with the tls_model attribute. The compiler will try to choose a more efficient model if
possible.

-flto, -flto=full, -flto=thin, -emit-llvm
Generate output files in LLVM formats, suitable for link time optimization. When used with -S this generates LLVM
intermediate language assembly files, otherwise this generates LLVM bitcode format object files (which may be
passed to the linker depending on the stage selection options).
The default for -flto is “full”, in which the LLVM bitcode is suitable for monolithic Link Time Optimization (LTO),
where the linker merges all such modules into a single combined module for optimization. With “thin”, ThinLTO
compilation is invoked instead.

Note
On Darwin, when using -flto along with -g and compiling and linking in separate steps, you also need to
pass -Wl,-object_path_lto,<lto-filename>.o at the linking step to instruct the ld64 linker not to
delete the temporary object file generated during Link Time Optimization (this flag is automatically passed to
the linker by Clang if compilation and linking are done in a single step). This allows debugging the executable
as well as generating the .dSYM bundle using dsymutil(1).

Driver Options

-###
Print (but do not run) the commands to run for this compilation.

--help
Display available options.

-Qunused-arguments
Do not emit any warnings for unused driver arguments.

-Wa,<args>
Pass the comma separated arguments in args to the assembler.

-Wl,<args>
Pass the comma separated arguments in args to the linker.

-Wp,<args>
Pass the comma separated arguments in args to the preprocessor.

-Xanalyzer <arg>
Pass arg to the static analyzer.

-Xassembler <arg>
Pass arg to the assembler.

-Xlinker <arg>
Pass arg to the linker.

-Xpreprocessor <arg>
Pass arg to the preprocessor.

-o <file>
Write output to file.

-print-file-name=<file>
Print the full library path of file.

-print-libgcc-file-name
Print the library path for the currently used compiler runtime library (“libgcc.a” or “libclang_rt.builtins.*.a”).

Clang “man” pages

753



-print-prog-name=<name>
Print the full program path of name.

-print-search-dirs
Print the paths used for finding libraries and programs.

-save-temps
Save intermediate compilation results.

-save-stats, -save-stats=cwd, -save-stats=obj
Save internal code generation (LLVM) statistics to a file in the current directory (-save-stats/”-save-stats=cwd”)
or the directory of the output file (“-save-state=obj”).

-integrated-as, -no-integrated-as
Used to enable and disable, respectively, the use of the integrated assembler. Whether the integrated assembler
is on by default is target dependent.

-time
Time individual commands.

-ftime-report
Print timing summary of each stage of compilation.

-v
Show commands to run and use verbose output.

Diagnostics Options

-fshow-column, -fshow-source-location, -fcaret-diagnostics, -fdiagnostics-fixit-info,
-fdiagnostics-parseable-fixits, -fdiagnostics-print-source-range-info,
-fprint-source-range-info, -fdiagnostics-show-option, -fmessage-length

These options control how Clang prints out information about diagnostics (errors and warnings). Please see the
Clang User’s Manual for more information.

Preprocessor Options

-D<macroname>=<value>
Adds an implicit #define into the predefines buffer which is read before the source file is preprocessed.

-U<macroname>
Adds an implicit #undef into the predefines buffer which is read before the source file is preprocessed.

-include <filename>
Adds an implicit #include into the predefines buffer which is read before the source file is preprocessed.

-I<directory>
Add the specified directory to the search path for include files.

-F<directory>
Add the specified directory to the search path for framework include files.

-nostdinc
Do not search the standard system directories or compiler builtin directories for include files.

-nostdlibinc
Do not search the standard system directories for include files, but do search compiler builtin include directories.

-nobuiltininc
Do not search clang’s builtin directory for include files.

ENVIRONMENT

TMPDIR, TEMP, TMP
These environment variables are checked, in order, for the location to write temporary files used during the
compilation process.

CPATH

Clang “man” pages

754



If this environment variable is present, it is treated as a delimited list of paths to be added to the default system
include path list. The delimiter is the platform dependent delimiter, as used in the PATH environment variable.
Empty components in the environment variable are ignored.

C_INCLUDE_PATH, OBJC_INCLUDE_PATH, CPLUS_INCLUDE_PATH, OBJCPLUS_INCLUDE_PATH
These environment variables specify additional paths, as for CPATH, which are only used when processing the
appropriate language.

MACOSX_DEPLOYMENT_TARGET
If -mmacosx-version-min is unspecified, the default deployment target is read from this environment variable.
This option only affects Darwin targets.

BUGS

To report bugs, please visit <https://github.com/llvm/llvm-project/issues/>. Most bug reports should include
preprocessed source files (use the -E option) and the full output of the compiler, along with information to reproduce.

SEE ALSO

as(1), ld(1)

diagtool - clang diagnostics tool

SYNOPSIS

diagtool command [args]

DESCRIPTION

diagtool is a combination of four tools for dealing with diagnostics in clang.

SUBCOMMANDS

diagtool is separated into several subcommands each tailored to a different purpose. A brief summary of each
command follows, with more detail in the sections that follow.

• find-diagnostic-id - Print the id of the given diagnostic.

• list-warnings - List warnings and their corresponding flags.

• show-enabled - Show which warnings are enabled for a given command line.

• tree - Show warning flags in a tree view.

find-diagnostic-id

diagtool find-diagnostic-id diagnostic-name

list-warnings

diagtool list-warnings

show-enabled

diagtool show-enabled [options] filename …

tree

diagtool tree [diagnostic-group]

Clang “man” pages

755

https://github.com/llvm/llvm-project/issues/


Frequently Asked Questions (FAQ)
Driver 756

I run clang -cc1 ... and get weird errors about missing headers 756

I get errors about some headers being missing (stddef.h, stdarg.h) 756

Driver

I run clang -cc1 ... and get weird errors about missing headers

Given this source file:

#include <stdio.h>

int main() {
  printf("Hello world\n");
}

If you run:

$ clang -cc1 hello.c
hello.c:1:10: fatal error: 'stdio.h' file not found
#include <stdio.h>
         ^
1 error generated.

clang -cc1 is the frontend, clang is the driver. The driver invokes the frontend with options appropriate for your
system. To see these options, run:

$ clang -### -c hello.c

Some clang command line options are driver-only options, some are frontend-only options. Frontend-only options
are intended to be used only by clang developers. Users should not run clang -cc1 directly, because -cc1
options are not guaranteed to be stable.

If you want to use a frontend-only option (“a -cc1 option”), for example -ast-dump, then you need to take the
clang -cc1 line generated by the driver and add the option you need. Alternatively, you can run
clang -Xclang <option> ... to force the driver pass <option> to clang -cc1.

I get errors about some headers being missing (stddef.h, stdarg.h)

Some header files (stddef.h, stdarg.h, and others) are shipped with Clang — these are called builtin includes.
Clang searches for them in a directory relative to the location of the clang binary. If you moved the clang binary,
you need to move the builtin headers, too.

More information can be found in the Builtin includes section.

Using Clang as a Library

Choosing the Right Interface for Your Application
Clang provides infrastructure to write tools that need syntactic and semantic information about a program. This
document will give a short introduction of the different ways to write clang tools, and their pros and cons.

LibClang
LibClang is a stable high level C interface to clang. When in doubt LibClang is probably the interface you want to use.
Consider the other interfaces only when you have a good reason not to use LibClang.

Canonical examples of when to use LibClang:

Frequently Asked Questions (FAQ)

756

https://clang.llvm.org/doxygen/group__CINDEX.html


• Xcode

• Clang Python Bindings

Use LibClang when you…:

• want to interface with clang from other languages than C++

• need a stable interface that takes care to be backwards compatible

• want powerful high-level abstractions, like iterating through an AST with a cursor, and don’t want to learn all the
nitty gritty details of Clang’s AST.

Do not use LibClang when you…:

• want full control over the Clang AST

Clang Plugins
Clang Plugins allow you to run additional actions on the AST as part of a compilation. Plugins are dynamic libraries
that are loaded at runtime by the compiler, and they’re easy to integrate into your build environment.

Canonical examples of when to use Clang Plugins:

• special lint-style warnings or errors for your project

• creating additional build artifacts from a single compile step

Use Clang Plugins when you…:

• need your tool to rerun if any of the dependencies change

• want your tool to make or break a build

• need full control over the Clang AST

Do not use Clang Plugins when you…:

• want to run tools outside of your build environment

• want full control on how Clang is set up, including mapping of in-memory virtual files

• need to run over a specific subset of files in your project which is not necessarily related to any changes which
would trigger rebuilds

LibTooling
LibTooling is a C++ interface aimed at writing standalone tools, as well as integrating into services that run clang
tools. Canonical examples of when to use LibTooling:

• a simple syntax checker

• refactoring tools

Use LibTooling when you…:

• want to run tools over a single file, or a specific subset of files, independently of the build system

• want full control over the Clang AST

• want to share code with Clang Plugins

Do not use LibTooling when you…:

• want to run as part of the build triggered by dependency changes

• want a stable interface so you don’t need to change your code when the AST API changes

• want high level abstractions like cursors and code completion out of the box

• do not want to write your tools in C++

Clang tools are a collection of specific developer tools built on top of the LibTooling infrastructure as part of the Clang
project. They are targeted at automating and improving core development activities of C/C++ developers.

Examples of tools we are building or planning as part of the Clang project:

Frequently Asked Questions (FAQ)

757



• Syntax checking (clang-check)

• Automatic fixing of compile errors (clang-fixit)

• Automatic code formatting (clang-format)

• Migration tools for new features in new language standards

• Core refactoring tools

External Clang Examples

Introduction
This page provides some examples of the kinds of things that people have done with Clang that might serve as
useful guides (or starting points) from which to develop your own tools. They may be helpful even for something as
banal (but necessary) as how to set up your build to integrate Clang.

Clang’s library-based design is deliberately aimed at facilitating use by external projects, and we are always
interested in improving Clang to better serve our external users. Some typical categories of applications where Clang
is used are:

• Static analysis.

• Documentation/cross-reference generation.

If you know of (or wrote!) a tool or project using Clang, please send an email to Clang’s development discussion
mailing list to have it added. (or if you are already a Clang contributor, feel free to directly commit additions). Since
the primary purpose of this page is to provide examples that can help developers, generally they must have code
available.

List of projects and tools
https://github.com/Andersbakken/rtags/

“RTags is a client/server application that indexes c/c++ code and keeps a persistent in-memory database of
references, symbolnames, completions etc.”

https://rprichard.github.com/sourceweb/

“A C/C++ source code indexer and navigator”

https://github.com/etaoins/qconnectlint

“qconnectlint is a Clang tool for statically verifying the consistency of signal and slot connections made with Qt’s
QObject::connect.”

https://github.com/woboq/woboq_codebrowser

“The Woboq Code Browser is a web-based code browser for C/C++ projects. Check out https://code.woboq.org/
for an example!”

https://github.com/mozilla/dxr

“DXR is a source code cross-reference tool that uses static analysis data collected by instrumented compilers.”

https://github.com/eschulte/clang-mutate

“This tool performs a number of operations on C-language source files.”

https://github.com/gmarpons/Crisp

“A coding rule validation add-on for LLVM/clang. Crisp rules are written in Prolog. A high-level declarative DSL
to easily write new rules is under development. It will be called CRISP, an acronym for Coding Rules in Sugared
Prolog.”

https://github.com/drothlis/clang-ctags

“Generate tag file for C++ source code.”

https://github.com/exclipy/clang_indexer

“This is an indexer for C and C++ based on the libclang library.”

https://github.com/holtgrewe/linty

“Linty - C/C++ Style Checking with Python & libclang.”

External Clang Examples

758

https://lists.llvm.org/mailman/listinfo/cfe-dev
https://lists.llvm.org/mailman/listinfo/cfe-dev
https://github.com/Andersbakken/rtags/
https://rprichard.github.com/sourceweb/
https://github.com/etaoins/qconnectlint
https://github.com/woboq/woboq_codebrowser
https://code.woboq.org/
https://github.com/mozilla/dxr
https://github.com/eschulte/clang-mutate
https://github.com/gmarpons/Crisp
https://github.com/drothlis/clang-ctags
https://github.com/exclipy/clang_indexer
https://github.com/holtgrewe/linty


https://github.com/axw/cmonster

“cmonster is a Python wrapper for the Clang C++ parser.”

https://github.com/rizsotto/Constantine

“Constantine is a toy project to learn how to write clang plugin. Implements pseudo const analysis. Generates
warnings about variables, which were declared without const qualifier.”

https://github.com/jessevdk/cldoc

“cldoc is a Clang based documentation generator for C and C++. cldoc tries to solve the issue of writing C/C++
software documentation with a modern, non-intrusive and robust approach.”

https://github.com/AlexDenisov/ToyClangPlugin

“The simplest Clang plugin implementing a semantic check for Objective-C. This example shows how to use the
DiagnosticsEngine (emit warnings, errors, fixit hints). See also http://l.rw.rw/clang_plugin for step-by-step
instructions.”

https://phabricator.kde.org/source/clazy

“clazy is a compiler plugin which allows clang to understand Qt semantics. You get more than 50 Qt related
compiler warnings, ranging from unneeded memory allocations to misusage of API, including fix-its for automatic
refactoring.”

https://gerrit.libreoffice.org/gitweb?p=core.git;a=blob_plain;f=compilerplugins/README;hb=HEAD

“LibreOffice uses a Clang plugin infrastructure to check during the build various things, some more, some less
specific to the LibreOffice source code. There are currently around 50 such checkers, from flagging C-style casts
and uses of reserved identifiers to ensuring that code adheres to lifecycle protocols for certain
LibreOffice-specific classes. They may serve as examples for writing RecursiveASTVisitor-based plugins.”

Introduction to the Clang AST
This document gives a gentle introduction to the mysteries of the Clang AST. It is targeted at developers who either
want to contribute to Clang, or use tools that work based on Clang’s AST, like the AST matchers.

Slides

Introduction
Clang’s AST is different from ASTs produced by some other compilers in that it closely resembles both the written
C++ code and the C++ standard. For example, parenthesis expressions and compile time constants are available in
an unreduced form in the AST. This makes Clang’s AST a good fit for refactoring tools.

Documentation for all Clang AST nodes is available via the generated Doxygen. The doxygen online documentation
is also indexed by your favorite search engine, which will make a search for clang and the AST node’s class name
usually turn up the doxygen of the class you’re looking for (for example, search for: clang ParenExpr).

Examining the AST
A good way to familiarize yourself with the Clang AST is to actually look at it on some simple example code. Clang
has a builtin AST-dump mode, which can be enabled with the flag -ast-dump.

Let’s look at a simple example AST:

$ cat test.cc
int f(int x) {
  int result = (x / 42);
  return result;
}

# Clang by default is a frontend for many tools; -Xclang is used to pass
# options directly to the C++ frontend.
$ clang -Xclang -ast-dump -fsyntax-only test.cc
TranslationUnitDecl 0x5aea0d0 <<invalid sloc>>
... cutting out internal declarations of clang ...
`-FunctionDecl 0x5aeab50 <test.cc:1:1, line:4:1> f 'int (int)'

Introduction to the Clang AST

759

https://github.com/axw/cmonster
https://github.com/rizsotto/Constantine
https://github.com/jessevdk/cldoc
https://github.com/AlexDenisov/ToyClangPlugin
http://l.rw.rw/clang_plugin
https://phabricator.kde.org/source/clazy
https://gerrit.libreoffice.org/gitweb?p=core.git;a=blob_plain;f=compilerplugins/README;hb=HEAD
https://llvm.org/devmtg/2013-04/klimek-slides.pdf
https://clang.llvm.org/doxygen


  |-ParmVarDecl 0x5aeaa90 <line:1:7, col:11> x 'int'
  `-CompoundStmt 0x5aead88 <col:14, line:4:1>
    |-DeclStmt 0x5aead10 <line:2:3, col:24>
    | `-VarDecl 0x5aeac10 <col:3, col:23> result 'int'
    |   `-ParenExpr 0x5aeacf0 <col:16, col:23> 'int'
    |     `-BinaryOperator 0x5aeacc8 <col:17, col:21> 'int' '/'
    |       |-ImplicitCastExpr 0x5aeacb0 <col:17> 'int' <LValueToRValue>
    |       | `-DeclRefExpr 0x5aeac68 <col:17> 'int' lvalue ParmVar 0x5aeaa90 'x' 'int'
    |       `-IntegerLiteral 0x5aeac90 <col:21> 'int' 42
    `-ReturnStmt 0x5aead68 <line:3:3, col:10>
      `-ImplicitCastExpr 0x5aead50 <col:10> 'int' <LValueToRValue>
        `-DeclRefExpr 0x5aead28 <col:10> 'int' lvalue Var 0x5aeac10 'result' 'int'

The toplevel declaration in a translation unit is always the translation unit declaration. In this example, our first user
written declaration is the function declaration of “f”. The body of “f” is a compound statement, whose child nodes are
a declaration statement that declares our result variable, and the return statement.

AST Context
All information about the AST for a translation unit is bundled up in the class ASTContext. It allows traversal of the
whole translation unit starting from getTranslationUnitDecl, or to access Clang’s table of identifiers for the parsed
translation unit.

AST Nodes
Clang’s AST nodes are modeled on a class hierarchy that does not have a common ancestor. Instead, there are
multiple larger hierarchies for basic node types like Decl and Stmt. Many important AST nodes derive from Type,
Decl, DeclContext or Stmt, with some classes deriving from both Decl and DeclContext.

There are also a multitude of nodes in the AST that are not part of a larger hierarchy, and are only reachable from
specific other nodes, like CXXBaseSpecifier.

Thus, to traverse the full AST, one starts from the TranslationUnitDecl and then recursively traverses everything that
can be reached from that node - this information has to be encoded for each specific node type. This algorithm is
encoded in the RecursiveASTVisitor. See the RecursiveASTVisitor tutorial.

The two most basic nodes in the Clang AST are statements (Stmt) and declarations (Decl). Note that expressions
(Expr) are also statements in Clang’s AST.

LibTooling
LibTooling is a library to support writing standalone tools based on Clang. This document will provide a basic
walkthrough of how to write a tool using LibTooling.

For the information on how to setup Clang Tooling for LLVM see How To Setup Clang Tooling For LLVM

Introduction
Tools built with LibTooling, like Clang Plugins, run FrontendActions over code.

In this tutorial, we’ll demonstrate the different ways of running Clang’s SyntaxOnlyAction, which runs a quick
syntax check, over a bunch of code.

Parsing a code snippet in memory
If you ever wanted to run a FrontendAction over some sample code, for example to unit test parts of the Clang
AST, runToolOnCode is what you looked for. Let me give you an example:

#include "clang/Tooling/Tooling.h"

TEST(runToolOnCode, CanSyntaxCheckCode) {
  // runToolOnCode returns whether the action was correctly run over the

LibTooling

760

https://clang.llvm.org/doxygen/classclang_1_1TranslationUnitDecl.html
https://clang.llvm.org/doxygen/classclang_1_1FunctionDecl.html
https://clang.llvm.org/doxygen/classclang_1_1CompoundStmt.html
https://clang.llvm.org/doxygen/classclang_1_1DeclStmt.html
https://clang.llvm.org/doxygen/classclang_1_1ReturnStmt.html
https://clang.llvm.org/doxygen/classclang_1_1ASTContext.html
https://clang.llvm.org/doxygen/classclang_1_1ASTContext.html#abd909fb01ef10cfd0244832a67b1dd64
https://clang.llvm.org/doxygen/classclang_1_1ASTContext.html#a4f95adb9958e22fbe55212ae6482feb4
https://clang.llvm.org/doxygen/classclang_1_1Decl.html
https://clang.llvm.org/doxygen/classclang_1_1Stmt.html
https://clang.llvm.org/doxygen/classclang_1_1Type.html
https://clang.llvm.org/doxygen/classclang_1_1Decl.html
https://clang.llvm.org/doxygen/classclang_1_1DeclContext.html
https://clang.llvm.org/doxygen/classclang_1_1Stmt.html
https://clang.llvm.org/doxygen/classclang_1_1CXXBaseSpecifier.html
https://clang.llvm.org/doxygen/classclang_1_1TranslationUnitDecl.html
https://clang.llvm.org/doxygen/classclang_1_1RecursiveASTVisitor.html
https://clang.llvm.org/docs/RAVFrontendAction.html
https://clang.llvm.org/doxygen/classclang_1_1Stmt.html
https://clang.llvm.org/doxygen/classclang_1_1Decl.html
https://clang.llvm.org/doxygen/classclang_1_1Expr.html


  // given code.
  EXPECT_TRUE(runToolOnCode(std::make_unique<clang::SyntaxOnlyAction>(), "class X {};"));
}

Writing a standalone tool
Once you unit tested your FrontendAction to the point where it cannot possibly break, it’s time to create a
standalone tool. For a standalone tool to run clang, it first needs to figure out what command line arguments to use
for a specified file. To that end we create a CompilationDatabase. There are different ways to create a
compilation database, and we need to support all of them depending on command-line options. There’s the
CommonOptionsParser class that takes the responsibility to parse command-line parameters related to
compilation databases and inputs, so that all tools share the implementation.

Parsing common tools options

CompilationDatabase can be read from a build directory or the command line. Using CommonOptionsParser
allows for explicit specification of a compile command line, specification of build path using the -p command-line
option, and automatic location of the compilation database using source files paths.

#include "clang/Tooling/CommonOptionsParser.h"
#include "llvm/Support/CommandLine.h"

using namespace clang::tooling;

// Apply a custom category to all command-line options so that they are the
// only ones displayed.
static llvm::cl::OptionCategory MyToolCategory("my-tool options");

int main(int argc, const char **argv) {
  // CommonOptionsParser constructor will parse arguments and create a
  // CompilationDatabase.  In case of error it will terminate the program.
  CommonOptionsParser OptionsParser(argc, argv, MyToolCategory);

  // Use OptionsParser.getCompilations() and OptionsParser.getSourcePathList()
  // to retrieve CompilationDatabase and the list of input file paths.
}

Creating and running a ClangTool

Once we have a CompilationDatabase, we can create a ClangTool and run our FrontendAction over some
code. For example, to run the SyntaxOnlyAction over the files “a.cc” and “b.cc” one would write:

// A clang tool can run over a number of sources in the same process...
std::vector<std::string> Sources;
Sources.push_back("a.cc");
Sources.push_back("b.cc");

// We hand the CompilationDatabase we created and the sources to run over into
// the tool constructor.
ClangTool Tool(OptionsParser.getCompilations(), Sources);

// The ClangTool needs a new FrontendAction for each translation unit we run
// on.  Thus, it takes a FrontendActionFactory as parameter.  To create a
// FrontendActionFactory from a given FrontendAction type, we call
// newFrontendActionFactory<clang::SyntaxOnlyAction>().
int result = Tool.run(newFrontendActionFactory<clang::SyntaxOnlyAction>().get());

Putting it together — the first tool

Now we combine the two previous steps into our first real tool. A more advanced version of this example tool is also
checked into the clang tree at tools/clang-check/ClangCheck.cpp.

LibTooling

761



// Declares clang::SyntaxOnlyAction.
#include "clang/Frontend/FrontendActions.h"
#include "clang/Tooling/CommonOptionsParser.h"
#include "clang/Tooling/Tooling.h"
// Declares llvm::cl::extrahelp.
#include "llvm/Support/CommandLine.h"

using namespace clang::tooling;
using namespace llvm;

// Apply a custom category to all command-line options so that they are the
// only ones displayed.
static cl::OptionCategory MyToolCategory("my-tool options");

// CommonOptionsParser declares HelpMessage with a description of the common
// command-line options related to the compilation database and input files.
// It's nice to have this help message in all tools.
static cl::extrahelp CommonHelp(CommonOptionsParser::HelpMessage);

// A help message for this specific tool can be added afterwards.
static cl::extrahelp MoreHelp("\nMore help text...\n");

int main(int argc, const char **argv) {
  CommonOptionsParser OptionsParser(argc, argv, MyToolCategory);
  ClangTool Tool(OptionsParser.getCompilations(),
                 OptionsParser.getSourcePathList());
  return Tool.run(newFrontendActionFactory<clang::SyntaxOnlyAction>().get());
}

Running the tool on some code

When you check out and build clang, clang-check is already built and available to you in bin/clang-check inside your
build directory.

You can run clang-check on a file in the llvm repository by specifying all the needed parameters after a “--”
separator:

$ cd /path/to/source/llvm
$ export BD=/path/to/build/llvm
$ $BD/bin/clang-check tools/clang/tools/clang-check/ClangCheck.cpp -- \
      clang++ -D__STDC_CONSTANT_MACROS -D__STDC_LIMIT_MACROS \
      -Itools/clang/include -I$BD/include -Iinclude \
      -Itools/clang/lib/Headers -c

As an alternative, you can also configure cmake to output a compile command database into its build directory:

# Alternatively to calling cmake, use ccmake, toggle to advanced mode and
# set the parameter CMAKE_EXPORT_COMPILE_COMMANDS from the UI.
$ cmake -DCMAKE_EXPORT_COMPILE_COMMANDS=ON .

This creates a file called compile_commands.json in the build directory. Now you can run clang-check over files
in the project by specifying the build path as first argument and some source files as further positional arguments:

$ cd /path/to/source/llvm
$ export BD=/path/to/build/llvm
$ $BD/bin/clang-check -p $BD tools/clang/tools/clang-check/ClangCheck.cpp

LibTooling

762



Builtin includes

Clang tools need their builtin headers and search for them the same way Clang does. Thus, the default location to
look for builtin headers is in a path $(dirname /path/to/tool)/../lib/clang/3.3/include relative to the
tool binary. This works out-of-the-box for tools running from llvm’s toplevel binary directory after building
clang-resource-headers, or if the tool is running from the binary directory of a clang install next to the clang binary.

Tips: if your tool fails to find stddef.h or similar headers, call the tool with -v and look at the search paths it looks
through.

Linking

For a list of libraries to link, look at one of the tools’ CMake files (for example clang-check/CMakeList.txt).

LibFormat
LibFormat is a library that implements automatic source code formatting based on Clang. This documents describes
the LibFormat interface and design as well as some basic style discussions.

If you just want to use clang-format as a tool or integrated into an editor, checkout ClangFormat.

Design
FIXME: Write up design.

Interface
The core routine of LibFormat is reformat():

tooling::Replacements reformat(const FormatStyle &Style, Lexer &Lex,
                               SourceManager &SourceMgr,
                               std::vector<CharSourceRange> Ranges);

This reads a token stream out of the lexer Lex and reformats all the code ranges in Ranges. The FormatStyle
controls basic decisions made during formatting. A list of options can be found under Style Options.

The style options are described in Clang-Format Style Options.

Style Options
The style options describe specific formatting options that can be used in order to make ClangFormat comply with
different style guides. Currently, several style guides are hard-coded:

/// Returns a format style complying with the LLVM coding standards:
/// https://llvm.org/docs/CodingStandards.html.
FormatStyle getLLVMStyle();

/// Returns a format style complying with Google's C++ style guide:
/// http://google-styleguide.googlecode.com/svn/trunk/cppguide.xml.
FormatStyle getGoogleStyle();

/// Returns a format style complying with Chromium's style guide:
/// https://chromium.googlesource.com/chromium/src/+/refs/heads/main/styleguide/styleguide.md
FormatStyle getChromiumStyle();

/// Returns a format style complying with the GNU coding standards:
/// https://www.gnu.org/prep/standards/standards.html
FormatStyle getGNUStyle();

/// Returns a format style complying with Mozilla's style guide
/// https://firefox-source-docs.mozilla.org/code-quality/coding-style/index.html
FormatStyle getMozillaStyle();

LibFormat

763

https://github.com/llvm/llvm-project/blob/main/clang/tools/clang-check/CMakeLists.txt


/// Returns a format style complying with Webkit's style guide:
/// https://webkit.org/code-style-guidelines/
FormatStyle getWebkitStyle();

/// Returns a format style complying with Microsoft's style guide:
/// https://docs.microsoft.com/en-us/visualstudio/ide/editorconfig-code-style-settings-reference
FormatStyle getMicrosoftStyle();

These options are also exposed in the standalone tools through the -style option.

In the future, we plan on making this configurable.

Clang Plugins
Clang Plugins make it possible to run extra user defined actions during a compilation. This document will provide a
basic walkthrough of how to write and run a Clang Plugin.

Introduction
Clang Plugins run FrontendActions over code. See the FrontendAction tutorial on how to write a FrontendAction
using the RecursiveASTVisitor. In this tutorial, we’ll demonstrate how to write a simple clang plugin.

Writing a PluginASTAction
The main difference from writing normal FrontendActions is that you can handle plugin command line options.
The PluginASTAction base class declares a ParseArgs method which you have to implement in your plugin.

bool ParseArgs(const CompilerInstance &CI,
               const std::vector<std::string>& args) {
  for (unsigned i = 0, e = args.size(); i != e; ++i) {
    if (args[i] == "-some-arg") {
      // Handle the command line argument.
    }
  }
  return true;
}

Registering a plugin
A plugin is loaded from a dynamic library at runtime by the compiler. To register a plugin in a library, use
FrontendPluginRegistry::Add<>:

static FrontendPluginRegistry::Add<MyPlugin> X("my-plugin-name", "my plugin description");

Defining pragmas
Plugins can also define pragmas by declaring a PragmaHandler and registering it using
PragmaHandlerRegistry::Add<>:

// Define a pragma handler for #pragma example_pragma
class ExamplePragmaHandler : public PragmaHandler {
public:
  ExamplePragmaHandler() : PragmaHandler("example_pragma") { }
  void HandlePragma(Preprocessor &PP, PragmaIntroducer Introducer,
                    Token &PragmaTok) {
    // Handle the pragma
  }
};

static PragmaHandlerRegistry::Add<ExamplePragmaHandler> Y("example_pragma","example pragma description");

Clang Plugins

764



Defining attributes
Plugins can define attributes by declaring a ParsedAttrInfo and registering it using
ParsedAttrInfoRegister::Add<>:

class ExampleAttrInfo : public ParsedAttrInfo {
public:
  ExampleAttrInfo() {
    Spellings.push_back({ParsedAttr::AS_GNU,"example"});
  }
  AttrHandling handleDeclAttribute(Sema &S, Decl *D,
                                   const ParsedAttr &Attr) const override {
    // Handle the attribute
    return AttributeApplied;
  }
};

static ParsedAttrInfoRegistry::Add<ExampleAttrInfo> Z("example_attr","example attribute description");

The members of ParsedAttrInfo that a plugin attribute must define are:

• Spellings, which must be populated with every Spelling of the attribute, each of which consists of an
attribute syntax and how the attribute name is spelled for that syntax. If the syntax allows a scope then the
spelling must be “scope::attr” if a scope is present or “::attr” if not.

• handleDeclAttribute, which is the function that applies the attribute to a declaration. It is responsible
for checking that the attribute’s arguments are valid, and typically applies the attribute by adding an Attr
to the Decl. It returns either AttributeApplied, to indicate that the attribute was successfully applied,
or AttributeNotApplied if it wasn’t.

The members of ParsedAttrInfo that may need to be defined, depending on the attribute, are:

• NumArgs and OptArgs, which set the number of required and optional arguments to the attribute.

• diagAppertainsToDecl, which checks if the attribute has been used on the right kind of declaration and
issues a diagnostic if not.

• diagLangOpts, which checks if the attribute is permitted for the current language mode and issues a
diagnostic if not.

• existsInTarget, which checks if the attribute is permitted for the given target.

To see a working example of an attribute plugin, see the Attribute.cpp example.

Putting it all together
Let’s look at an example plugin that prints top-level function names. This example is checked into the clang
repository; please take a look at the latest version of PrintFunctionNames.cpp.

Running the plugin

Using the compiler driver

The Clang driver accepts the -fplugin option to load a plugin. Clang plugins can receive arguments from the compiler
driver command line via the fplugin-arg-<plugin name>-<argument> option. Using this method, the plugin name
cannot contain dashes itself, but the argument passed to the plugin can.

$ export BD=/path/to/build/directory
$ make -C $BD CallSuperAttr
$ clang++ -fplugin=$BD/lib/CallSuperAttr.so \
          -fplugin-arg-call_super_plugin-help \
          test.cpp

If your plugin name contains dashes, either rename the plugin or used the cc1 command line options listed below.

Clang Plugins

765

file:///doxygen/structclang_1_1ParsedAttrInfo_1_1Spelling.html
https://github.com/llvm/llvm-project/blob/main/clang/examples/Attribute/Attribute.cpp
https://github.com/llvm/llvm-project/blob/main/clang/examples/PrintFunctionNames/PrintFunctionNames.cpp


Using the cc1 command line

To run a plugin, the dynamic library containing the plugin registry must be loaded via the -load command line option.
This will load all plugins that are registered, and you can select the plugins to run by specifying the -plugin option.
Additional parameters for the plugins can be passed with -plugin-arg-<plugin-name>.

Note that those options must reach clang’s cc1 process. There are two ways to do so:

• Directly call the parsing process by using the -cc1 option; this has the downside of not configuring the default
header search paths, so you’ll need to specify the full system path configuration on the command line.

• Use clang as usual, but prefix all arguments to the cc1 process with -Xclang.

For example, to run the print-function-names plugin over a source file in clang, first build the plugin, and then
call clang with the plugin from the source tree:

$ export BD=/path/to/build/directory
$ (cd $BD && make PrintFunctionNames )
$ clang++ -D_GNU_SOURCE -D_DEBUG -D__STDC_CONSTANT_MACROS \
          -D__STDC_FORMAT_MACROS -D__STDC_LIMIT_MACROS -D_GNU_SOURCE \
          -I$BD/tools/clang/include -Itools/clang/include -I$BD/include -Iinclude \
          tools/clang/tools/clang-check/ClangCheck.cpp -fsyntax-only \
          -Xclang -load -Xclang $BD/lib/PrintFunctionNames.so -Xclang \
          -plugin -Xclang print-fns

Also see the print-function-name plugin example’s README

Using the clang command line

Using -fplugin=plugin on the clang command line passes the plugin through as an argument to -load on the cc1
command line. If the plugin class implements the getActionType method then the plugin is run automatically. For
example, to run the plugin automatically after the main AST action (i.e. the same as using -add-plugin):

// Automatically run the plugin after the main AST action
PluginASTAction::ActionType getActionType() override {
  return AddAfterMainAction;
}

Interaction with -clear-ast-before-backend

To reduce peak memory usage of the compiler, plugins are recommended to run before the main action, which is
usually code generation. This is because having any plugins that run after the codegen action automatically turns off
-clear-ast-before-backend. -clear-ast-before-backend reduces peak memory by clearing the Clang
AST after generating IR and before running IR optimizations. Use CmdlineBeforeMainAction or
AddBeforeMainAction as getActionType to run plugins while still benefitting from
-clear-ast-before-backend. Plugins must make sure not to modify the AST, otherwise they should run after
the main action.

How to write RecursiveASTVisitor based ASTFrontendActions.

Introduction
In this tutorial you will learn how to create a FrontendAction that uses a RecursiveASTVisitor to find CXXRecordDecl
AST nodes with a specified name.

Creating a FrontendAction
When writing a clang based tool like a Clang Plugin or a standalone tool based on LibTooling, the common entry
point is the FrontendAction. FrontendAction is an interface that allows execution of user specific actions as part of
the compilation. To run tools over the AST clang provides the convenience interface ASTFrontendAction, which
takes care of executing the action. The only part left is to implement the CreateASTConsumer method that returns an
ASTConsumer per translation unit.

How to write RecursiveASTVisitor based ASTFrontendActions.

766

https://github.com/llvm/llvm-project/blob/main/clang/examples/PrintFunctionNames/README.txt


class FindNamedClassAction : public clang::ASTFrontendAction {
public:
  virtual std::unique_ptr<clang::ASTConsumer> CreateASTConsumer(
    clang::CompilerInstance &Compiler, llvm::StringRef InFile) {
    return std::make_unique<FindNamedClassConsumer>();
  }
};

Creating an ASTConsumer
ASTConsumer is an interface used to write generic actions on an AST, regardless of how the AST was produced.
ASTConsumer provides many different entry points, but for our use case the only one needed is
HandleTranslationUnit, which is called with the ASTContext for the translation unit.

class FindNamedClassConsumer : public clang::ASTConsumer {
public:
  virtual void HandleTranslationUnit(clang::ASTContext &Context) {
    // Traversing the translation unit decl via a RecursiveASTVisitor
    // will visit all nodes in the AST.
    Visitor.TraverseDecl(Context.getTranslationUnitDecl());
  }
private:
  // A RecursiveASTVisitor implementation.
  FindNamedClassVisitor Visitor;
};

Using the RecursiveASTVisitor
Now that everything is hooked up, the next step is to implement a RecursiveASTVisitor to extract the relevant
information from the AST.

The RecursiveASTVisitor provides hooks of the form bool VisitNodeType(NodeType *) for most AST nodes; the
exception are TypeLoc nodes, which are passed by-value. We only need to implement the methods for the relevant
node types.

Let’s start by writing a RecursiveASTVisitor that visits all CXXRecordDecl’s.

class FindNamedClassVisitor
  : public RecursiveASTVisitor<FindNamedClassVisitor> {
public:
  bool VisitCXXRecordDecl(CXXRecordDecl *Declaration) {
    // For debugging, dumping the AST nodes will show which nodes are already
    // being visited.
    Declaration->dump();

    // The return value indicates whether we want the visitation to proceed.
    // Return false to stop the traversal of the AST.
    return true;
  }
};

In the methods of our RecursiveASTVisitor we can now use the full power of the Clang AST to drill through to the
parts that are interesting for us. For example, to find all class declaration with a certain name, we can check for a
specific qualified name:

bool VisitCXXRecordDecl(CXXRecordDecl *Declaration) {
  if (Declaration->getQualifiedNameAsString() == "n::m::C")
    Declaration->dump();
  return true;
}

How to write RecursiveASTVisitor based ASTFrontendActions.

767



Accessing the SourceManager and ASTContext
Some of the information about the AST, like source locations and global identifier information, are not stored in the
AST nodes themselves, but in the ASTContext and its associated source manager. To retrieve them we need to
hand the ASTContext into our RecursiveASTVisitor implementation.

The ASTContext is available from the CompilerInstance during the call to CreateASTConsumer. We can thus extract
it there and hand it into our freshly created FindNamedClassConsumer:

virtual std::unique_ptr<clang::ASTConsumer> CreateASTConsumer(
  clang::CompilerInstance &Compiler, llvm::StringRef InFile) {
  return std::make_unique<FindNamedClassConsumer>(&Compiler.getASTContext());
}

Now that the ASTContext is available in the RecursiveASTVisitor, we can do more interesting things with AST nodes,
like looking up their source locations:

bool VisitCXXRecordDecl(CXXRecordDecl *Declaration) {
  if (Declaration->getQualifiedNameAsString() == "n::m::C") {
    // getFullLoc uses the ASTContext's SourceManager to resolve the source
    // location and break it up into its line and column parts.
    FullSourceLoc FullLocation = Context->getFullLoc(Declaration->getBeginLoc());
    if (FullLocation.isValid())
      llvm::outs() << "Found declaration at "
                   << FullLocation.getSpellingLineNumber() << ":"
                   << FullLocation.getSpellingColumnNumber() << "\n";
  }
  return true;
}

Putting it all together
Now we can combine all of the above into a small example program:

#include "clang/AST/ASTConsumer.h"
#include "clang/AST/RecursiveASTVisitor.h"
#include "clang/Frontend/CompilerInstance.h"
#include "clang/Frontend/FrontendAction.h"
#include "clang/Tooling/Tooling.h"

using namespace clang;

class FindNamedClassVisitor
  : public RecursiveASTVisitor<FindNamedClassVisitor> {
public:
  explicit FindNamedClassVisitor(ASTContext *Context)
    : Context(Context) {}

  bool VisitCXXRecordDecl(CXXRecordDecl *Declaration) {
    if (Declaration->getQualifiedNameAsString() == "n::m::C") {
      FullSourceLoc FullLocation = Context->getFullLoc(Declaration->getBeginLoc());
      if (FullLocation.isValid())
        llvm::outs() << "Found declaration at "
                     << FullLocation.getSpellingLineNumber() << ":"
                     << FullLocation.getSpellingColumnNumber() << "\n";
    }
    return true;
  }

private:
  ASTContext *Context;
};

How to write RecursiveASTVisitor based ASTFrontendActions.

768



class FindNamedClassConsumer : public clang::ASTConsumer {
public:
  explicit FindNamedClassConsumer(ASTContext *Context)
    : Visitor(Context) {}

  virtual void HandleTranslationUnit(clang::ASTContext &Context) {
    Visitor.TraverseDecl(Context.getTranslationUnitDecl());
  }
private:
  FindNamedClassVisitor Visitor;
};

class FindNamedClassAction : public clang::ASTFrontendAction {
public:
  virtual std::unique_ptr<clang::ASTConsumer> CreateASTConsumer(
    clang::CompilerInstance &Compiler, llvm::StringRef InFile) {
    return std::make_unique<FindNamedClassConsumer>(&Compiler.getASTContext());
  }
};

int main(int argc, char **argv) {
  if (argc > 1) {
    clang::tooling::runToolOnCode(std::make_unique<FindNamedClassAction>(), argv[1]);
  }
}

We store this into a file called FindClassDecls.cpp and create the following CMakeLists.txt to link it:

set(LLVM_LINK_COMPONENTS
  Support
  )

add_clang_executable(find-class-decls FindClassDecls.cpp)

target_link_libraries(find-class-decls
  PRIVATE
  clangAST
  clangBasic
  clangFrontend
  clangSerialization
  clangTooling
  )

When running this tool over a small code snippet it will output all declarations of a class n::m::C it found:

$ ./bin/find-class-decls "namespace n { namespace m { class C {}; } }"
Found declaration at 1:29

Tutorial for building tools using LibTooling and LibASTMatchers
This document is intended to show how to build a useful source-to-source translation tool based on Clang’s
LibTooling. It is explicitly aimed at people who are new to Clang, so all you should need is a working knowledge of
C++ and the command line.

In order to work on the compiler, you need some basic knowledge of the abstract syntax tree (AST). To this end, the
reader is encouraged to skim the Introduction to the Clang AST

Step 0: Obtaining Clang
As Clang is part of the LLVM project, you’ll need to download LLVM’s source code first. Both Clang and LLVM are in
the same git repository, under different directories. For further information, see the getting started guide.

Tutorial for building tools using LibTooling and LibASTMatchers

769

file:///home/cbowler/llvm/v1711p/llvm-project/compiler-doc/tools/clang/docs/LibTooling.html
https://llvm.org/docs/GettingStarted.html


cd ~/clang-llvm
git clone https://github.com/llvm/llvm-project.git

Next you need to obtain the CMake build system and Ninja build tool.

cd ~/clang-llvm
git clone https://github.com/martine/ninja.git
cd ninja
git checkout release
./bootstrap.py
sudo cp ninja /usr/bin/

cd ~/clang-llvm
git clone git://cmake.org/stage/cmake.git
cd cmake
git checkout next
./bootstrap
make
sudo make install

Okay. Now we’ll build Clang!
cd ~/clang-llvm
mkdir build && cd build
cmake -G Ninja ../llvm -DLLVM_ENABLE_PROJECTS="clang;clang-tools-extra" -DLLVM_BUILD_TESTS=ON  # Enable tests; default is off.
ninja
ninja check       # Test LLVM only.
ninja clang-test  # Test Clang only.
ninja install

And we’re live.

All of the tests should pass.

Finally, we want to set Clang as its own compiler.

cd ~/clang-llvm/build
ccmake ../llvm

The second command will bring up a GUI for configuring Clang. You need to set the entry for
CMAKE_CXX_COMPILER. Press 't' to turn on advanced mode. Scroll down to CMAKE_CXX_COMPILER, and set it to
/usr/bin/clang++, or wherever you installed it. Press 'c' to configure, then 'g' to generate CMake’s files.

Finally, run ninja one last time, and you’re done.

Step 1: Create a ClangTool
Now that we have enough background knowledge, it’s time to create the simplest productive ClangTool in existence:
a syntax checker. While this already exists as clang-check, it’s important to understand what’s going on.

First, we’ll need to create a new directory for our tool and tell CMake that it exists. As this is not going to be a core
clang tool, it will live in the clang-tools-extra repository.

cd ~/clang-llvm
mkdir clang-tools-extra/loop-convert
echo 'add_subdirectory(loop-convert)' >> clang-tools-extra/CMakeLists.txt
vim clang-tools-extra/loop-convert/CMakeLists.txt

CMakeLists.txt should have the following contents:

set(LLVM_LINK_COMPONENTS support)

add_clang_executable(loop-convert
  LoopConvert.cpp
  )

Tutorial for building tools using LibTooling and LibASTMatchers

770



target_link_libraries(loop-convert
  PRIVATE
  clangAST
  clangASTMatchers
  clangBasic
  clangFrontend
  clangSerialization
  clangTooling
  )

With that done, Ninja will be able to compile our tool. Let’s give it something to compile! Put the following into
clang-tools-extra/loop-convert/LoopConvert.cpp. A detailed explanation of why the different parts are
needed can be found in the LibTooling documentation.

// Declares clang::SyntaxOnlyAction.
#include "clang/Frontend/FrontendActions.h"
#include "clang/Tooling/CommonOptionsParser.h"
#include "clang/Tooling/Tooling.h"
// Declares llvm::cl::extrahelp.
#include "llvm/Support/CommandLine.h"

using namespace clang::tooling;
using namespace llvm;

// Apply a custom category to all command-line options so that they are the
// only ones displayed.
static llvm::cl::OptionCategory MyToolCategory("my-tool options");

// CommonOptionsParser declares HelpMessage with a description of the common
// command-line options related to the compilation database and input files.
// It's nice to have this help message in all tools.
static cl::extrahelp CommonHelp(CommonOptionsParser::HelpMessage);

// A help message for this specific tool can be added afterwards.
static cl::extrahelp MoreHelp("\nMore help text...\n");

int main(int argc, const char **argv) {
  auto ExpectedParser = CommonOptionsParser::create(argc, argv, MyToolCategory);
  if (!ExpectedParser) {
    // Fail gracefully for unsupported options.
    llvm::errs() << ExpectedParser.takeError();
    return 1;
  }
  CommonOptionsParser& OptionsParser = ExpectedParser.get();
  ClangTool Tool(OptionsParser.getCompilations(),
                 OptionsParser.getSourcePathList());
  return Tool.run(newFrontendActionFactory<clang::SyntaxOnlyAction>().get());
}

And that’s it! You can compile our new tool by running ninja from the build directory.

cd ~/clang-llvm/build
ninja

You should now be able to run the syntax checker, which is located in ~/clang-llvm/build/bin, on any source
file. Try it!

echo "int main() { return 0; }" > test.cpp
bin/loop-convert test.cpp --

Note the two dashes after we specify the source file. The additional options for the compiler are passed after the
dashes rather than loading them from a compilation database - there just aren’t any options needed right now.

Tutorial for building tools using LibTooling and LibASTMatchers

771

file:///home/cbowler/llvm/v1711p/llvm-project/compiler-doc/tools/clang/docs/LibTooling.html


Intermezzo: Learn AST matcher basics
Clang recently introduced the ASTMatcher library to provide a simple, powerful, and concise way to describe specific
patterns in the AST. Implemented as a DSL powered by macros and templates (see ASTMatchers.h if you’re
curious), matchers offer the feel of algebraic data types common to functional programming languages.

For example, suppose you wanted to examine only binary operators. There is a matcher to do exactly that,
conveniently named binaryOperator. I’ll give you one guess what this matcher does:

binaryOperator(hasOperatorName("+"), hasLHS(integerLiteral(equals(0))))

Shockingly, it will match against addition expressions whose left hand side is exactly the literal 0. It will not match
against other forms of 0, such as '\0' or NULL, but it will match against macros that expand to 0. The matcher will
also not match against calls to the overloaded operator '+', as there is a separate operatorCallExpr matcher to
handle overloaded operators.

There are AST matchers to match all the different nodes of the AST, narrowing matchers to only match AST nodes
fulfilling specific criteria, and traversal matchers to get from one kind of AST node to another. For a complete list of
AST matchers, take a look at the AST Matcher References

All matcher that are nouns describe entities in the AST and can be bound, so that they can be referred to whenever a
match is found. To do so, simply call the method bind on these matchers, e.g.:

variable(hasType(isInteger())).bind("intvar")

Step 2: Using AST matchers
Okay, on to using matchers for real. Let’s start by defining a matcher which will capture all for statements that
define a new variable initialized to zero. Let’s start with matching all for loops:

forStmt()

Next, we want to specify that a single variable is declared in the first portion of the loop, so we can extend the
matcher to

forStmt(hasLoopInit(declStmt(hasSingleDecl(varDecl()))))

Finally, we can add the condition that the variable is initialized to zero.

forStmt(hasLoopInit(declStmt(hasSingleDecl(varDecl(
  hasInitializer(integerLiteral(equals(0))))))))

It is fairly easy to read and understand the matcher definition (“match loops whose init portion declares a single
variable which is initialized to the integer literal 0”), but deciding that every piece is necessary is more difficult. Note
that this matcher will not match loops whose variables are initialized to '\0', 0.0, NULL, or any form of zero besides
the integer 0.

The last step is giving the matcher a name and binding the ForStmt as we will want to do something with it:

StatementMatcher LoopMatcher =
  forStmt(hasLoopInit(declStmt(hasSingleDecl(varDecl(
    hasInitializer(integerLiteral(equals(0)))))))).bind("forLoop");

Once you have defined your matchers, you will need to add a little more scaffolding in order to run them. Matchers
are paired with a MatchCallback and registered with a MatchFinder object, then run from a ClangTool. More
code!

Add the following to LoopConvert.cpp:

#include "clang/ASTMatchers/ASTMatchers.h"
#include "clang/ASTMatchers/ASTMatchFinder.h"

using namespace clang;
using namespace clang::ast_matchers;

StatementMatcher LoopMatcher =
  forStmt(hasLoopInit(declStmt(hasSingleDecl(varDecl(
    hasInitializer(integerLiteral(equals(0)))))))).bind("forLoop");

Tutorial for building tools using LibTooling and LibASTMatchers

772

file:///home/cbowler/llvm/v1711p/llvm-project/compiler-doc/tools/clang/doxygen/ASTMatchers_8h_source.html
file:///home/cbowler/llvm/v1711p/llvm-project/compiler-doc/tools/clang/docs/LibASTMatchersReference.html


class LoopPrinter : public MatchFinder::MatchCallback {
public :
  virtual void run(const MatchFinder::MatchResult &Result) {
    if (const ForStmt *FS = Result.Nodes.getNodeAs<clang::ForStmt>("forLoop"))
      FS->dump();
  }
};

And change main() to:

int main(int argc, const char **argv) {
  auto ExpectedParser = CommonOptionsParser::create(argc, argv, MyToolCategory);
  if (!ExpectedParser) {
    // Fail gracefully for unsupported options.
    llvm::errs() << ExpectedParser.takeError();
    return 1;
  }
  CommonOptionsParser& OptionsParser = ExpectedParser.get();
  ClangTool Tool(OptionsParser.getCompilations(),
                 OptionsParser.getSourcePathList());

  LoopPrinter Printer;
  MatchFinder Finder;
  Finder.addMatcher(LoopMatcher, &Printer);

  return Tool.run(newFrontendActionFactory(&Finder).get());
}

Now, you should be able to recompile and run the code to discover for loops. Create a new file with a few examples,
and test out our new handiwork:

cd ~/clang-llvm/llvm/llvm_build/
ninja loop-convert
vim ~/test-files/simple-loops.cc
bin/loop-convert ~/test-files/simple-loops.cc

Step 3.5: More Complicated Matchers
Our simple matcher is capable of discovering for loops, but we would still need to filter out many more ourselves. We
can do a good portion of the remaining work with some cleverly chosen matchers, but first we need to decide exactly
which properties we want to allow.

How can we characterize for loops over arrays which would be eligible for translation to range-based syntax? Range
based loops over arrays of size N that:

• start at index 0

• iterate consecutively

• end at index N-1

We already check for (1), so all we need to add is a check to the loop’s condition to ensure that the loop’s index
variable is compared against N and another check to ensure that the increment step just increments this same
variable. The matcher for (2) is straightforward: require a pre- or post-increment of the same variable declared in the
init portion.

Unfortunately, such a matcher is impossible to write. Matchers contain no logic for comparing two arbitrary AST
nodes and determining whether or not they are equal, so the best we can do is matching more than we would like to
allow, and punting extra comparisons to the callback.

In any case, we can start building this sub-matcher. We can require that the increment step be a unary increment like
this:

Tutorial for building tools using LibTooling and LibASTMatchers

773



hasIncrement(unaryOperator(hasOperatorName("++")))

Specifying what is incremented introduces another quirk of Clang’s AST: Usages of variables are represented as
DeclRefExpr’s (“declaration reference expressions”) because they are expressions which refer to variable
declarations. To find a unaryOperator that refers to a specific declaration, we can simply add a second condition
to it:

hasIncrement(unaryOperator(
  hasOperatorName("++"),
  hasUnaryOperand(declRefExpr())))

Furthermore, we can restrict our matcher to only match if the incremented variable is an integer:

hasIncrement(unaryOperator(
  hasOperatorName("++"),
  hasUnaryOperand(declRefExpr(to(varDecl(hasType(isInteger())))))))

And the last step will be to attach an identifier to this variable, so that we can retrieve it in the callback:

hasIncrement(unaryOperator(
  hasOperatorName("++"),
  hasUnaryOperand(declRefExpr(to(
    varDecl(hasType(isInteger())).bind("incrementVariable"))))))

We can add this code to the definition of LoopMatcher and make sure that our program, outfitted with the new
matcher, only prints out loops that declare a single variable initialized to zero and have an increment step consisting
of a unary increment of some variable.

Now, we just need to add a matcher to check if the condition part of the for loop compares a variable against the
size of the array. There is only one problem - we don’t know which array we’re iterating over without looking at the
body of the loop! We are again restricted to approximating the result we want with matchers, filling in the details in
the callback. So we start with:

hasCondition(binaryOperator(hasOperatorName("<"))

It makes sense to ensure that the left-hand side is a reference to a variable, and that the right-hand side has integer
type.

hasCondition(binaryOperator(
  hasOperatorName("<"),
  hasLHS(declRefExpr(to(varDecl(hasType(isInteger()))))),
  hasRHS(expr(hasType(isInteger())))))

Why? Because it doesn’t work. Of the three loops provided in test-files/simple.cpp, zero of them have a
matching condition. A quick look at the AST dump of the first for loop, produced by the previous iteration of
loop-convert, shows us the answer:

(ForStmt 0x173b240
  (DeclStmt 0x173afc8
    0x173af50 "int i =
      (IntegerLiteral 0x173afa8 'int' 0)")
  <<>>
  (BinaryOperator 0x173b060 '_Bool' '<'
    (ImplicitCastExpr 0x173b030 'int'
      (DeclRefExpr 0x173afe0 'int' lvalue Var 0x173af50 'i' 'int'))
    (ImplicitCastExpr 0x173b048 'int'
      (DeclRefExpr 0x173b008 'const int' lvalue Var 0x170fa80 'N' 'const int')))
  (UnaryOperator 0x173b0b0 'int' lvalue prefix '++'
    (DeclRefExpr 0x173b088 'int' lvalue Var 0x173af50 'i' 'int'))
  (CompoundStatement ...

We already know that the declaration and increments both match, or this loop wouldn’t have been dumped. The
culprit lies in the implicit cast applied to the first operand (i.e. the LHS) of the less-than operator, an L-value to
R-value conversion applied to the expression referencing i. Thankfully, the matcher library offers a solution to this

Tutorial for building tools using LibTooling and LibASTMatchers

774



problem in the form of ignoringParenImpCasts, which instructs the matcher to ignore implicit casts and
parentheses before continuing to match. Adjusting the condition operator will restore the desired match.

hasCondition(binaryOperator(
  hasOperatorName("<"),
  hasLHS(ignoringParenImpCasts(declRefExpr(
    to(varDecl(hasType(isInteger())))))),
  hasRHS(expr(hasType(isInteger())))))

After adding binds to the expressions we wished to capture and extracting the identifier strings into variables, we
have array-step-2 completed.

Step 4: Retrieving Matched Nodes
So far, the matcher callback isn’t very interesting: it just dumps the loop’s AST. At some point, we will need to make
changes to the input source code. Next, we’ll work on using the nodes we bound in the previous step.

The MatchFinder::run() callback takes a MatchFinder::MatchResult& as its parameter. We’re most
interested in its Context and Nodes members. Clang uses the ASTContext class to represent contextual
information about the AST, as the name implies, though the most functionally important detail is that several
operations require an ASTContext* parameter. More immediately useful is the set of matched nodes, and how we
retrieve them.

Since we bind three variables (identified by ConditionVarName, InitVarName, and IncrementVarName), we can
obtain the matched nodes by using the getNodeAs() member function.

In LoopConvert.cpp add

#include "clang/AST/ASTContext.h"

Change LoopMatcher to

StatementMatcher LoopMatcher =
    forStmt(hasLoopInit(declStmt(
                hasSingleDecl(varDecl(hasInitializer(integerLiteral(equals(0))))
                                  .bind("initVarName")))),
            hasIncrement(unaryOperator(
                hasOperatorName("++"),
                hasUnaryOperand(declRefExpr(
                    to(varDecl(hasType(isInteger())).bind("incVarName")))))),
            hasCondition(binaryOperator(
                hasOperatorName("<"),
                hasLHS(ignoringParenImpCasts(declRefExpr(
                    to(varDecl(hasType(isInteger())).bind("condVarName"))))),
                hasRHS(expr(hasType(isInteger())))))).bind("forLoop");

And change LoopPrinter::run to

void LoopPrinter::run(const MatchFinder::MatchResult &Result) {
  ASTContext *Context = Result.Context;
  const ForStmt *FS = Result.Nodes.getNodeAs<ForStmt>("forLoop");
  // We do not want to convert header files!
  if (!FS || !Context->getSourceManager().isWrittenInMainFile(FS->getForLoc()))
    return;
  const VarDecl *IncVar = Result.Nodes.getNodeAs<VarDecl>("incVarName");
  const VarDecl *CondVar = Result.Nodes.getNodeAs<VarDecl>("condVarName");
  const VarDecl *InitVar = Result.Nodes.getNodeAs<VarDecl>("initVarName");

  if (!areSameVariable(IncVar, CondVar) || !areSameVariable(IncVar, InitVar))
    return;
  llvm::outs() << "Potential array-based loop discovered.\n";
}

Tutorial for building tools using LibTooling and LibASTMatchers

775



Clang associates a VarDecl with each variable to represent the variable’s declaration. Since the “canonical” form of
each declaration is unique by address, all we need to do is make sure neither ValueDecl (base class of VarDecl)
is NULL and compare the canonical Decls.

static bool areSameVariable(const ValueDecl *First, const ValueDecl *Second) {
  return First && Second &&
         First->getCanonicalDecl() == Second->getCanonicalDecl();
}

If execution reaches the end of LoopPrinter::run(), we know that the loop shell that looks like

for (int i= 0; i < expr(); ++i) { ... }

For now, we will just print a message explaining that we found a loop. The next section will deal with recursively
traversing the AST to discover all changes needed.

As a side note, it’s not as trivial to test if two expressions are the same, though Clang has already done the hard
work for us by providing a way to canonicalize expressions:

static bool areSameExpr(ASTContext *Context, const Expr *First,
                        const Expr *Second) {
  if (!First || !Second)
    return false;
  llvm::FoldingSetNodeID FirstID, SecondID;
  First->Profile(FirstID, *Context, true);
  Second->Profile(SecondID, *Context, true);
  return FirstID == SecondID;
}

This code relies on the comparison between two llvm::FoldingSetNodeIDs. As the documentation for
Stmt::Profile() indicates, the Profile() member function builds a description of a node in the AST, based on
its properties, along with those of its children. FoldingSetNodeID then serves as a hash we can use to compare
expressions. We will need areSameExpr later. Before you run the new code on the additional loops added to
test-files/simple.cpp, try to figure out which ones will be considered potentially convertible.

Matching the Clang AST
This document explains how to use Clang’s LibASTMatchers to match interesting nodes of the AST and execute
code that uses the matched nodes. Combined with LibTooling, LibASTMatchers helps to write code-to-code
transformation tools or query tools.

We assume basic knowledge about the Clang AST. See the Introduction to the Clang AST if you want to learn more
about how the AST is structured.

Introduction
LibASTMatchers provides a domain specific language to create predicates on Clang’s AST. This DSL is written in
and can be used from C++, allowing users to write a single program to both match AST nodes and access the node’s
C++ interface to extract attributes, source locations, or any other information provided on the AST level.

AST matchers are predicates on nodes in the AST. Matchers are created by calling creator functions that allow
building up a tree of matchers, where inner matchers are used to make the match more specific.

For example, to create a matcher that matches all class or union declarations in the AST of a translation unit, you
can call recordDecl(). To narrow the match down, for example to find all class or union declarations with the name
“Foo”, insert a hasName matcher: the call recordDecl(hasName("Foo")) returns a matcher that matches
classes or unions that are named “Foo”, in any namespace. By default, matchers that accept multiple inner matchers
use an implicit allOf(). This allows further narrowing down the match, for example to match all classes that are
derived from “Bar”: recordDecl(hasName("Foo"), isDerivedFrom("Bar")).

Matching the Clang AST

776

file:///home/cbowler/llvm/v1711p/llvm-project/compiler-doc/tools/clang/docs/LibASTMatchersReference.html#recordDecl0Anchor
file:///home/cbowler/llvm/v1711p/llvm-project/compiler-doc/tools/clang/docs/LibASTMatchersReference.html#hasName0Anchor
file:///home/cbowler/llvm/v1711p/llvm-project/compiler-doc/tools/clang/docs/LibASTMatchersReference.html#allOf0Anchor


How to create a matcher
With more than a thousand classes in the Clang AST, one can quickly get lost when trying to figure out how to create
a matcher for a specific pattern. This section will teach you how to use a rigorous step-by-step pattern to build the
matcher you are interested in. Note that there will always be matchers missing for some part of the AST. See the
section about how to write your own AST matchers later in this document.

The precondition to using the matchers is to understand how the AST for what you want to match looks like. The
Introduction to the Clang AST teaches you how to dump a translation unit’s AST into a human readable format.

In general, the strategy to create the right matchers is:

1. Find the outermost class in Clang’s AST you want to match.

2. Look at the AST Matcher Reference for matchers that either match the node you’re interested in or narrow
down attributes on the node.

3. Create your outer match expression. Verify that it works as expected.

4. Examine the matchers for what the next inner node you want to match is.

5. Repeat until the matcher is finished.

Binding nodes in match expressions
Matcher expressions allow you to specify which parts of the AST are interesting for a certain task. Often you will want
to then do something with the nodes that were matched, like building source code transformations.

To that end, matchers that match specific AST nodes (so called node matchers) are bindable; for example,
recordDecl(hasName("MyClass")).bind("id") will bind the matched recordDecl node to the string “id”,
to be later retrieved in the match callback.

Writing your own matchers
There are multiple different ways to define a matcher, depending on its type and flexibility.

VariadicDynCastAllOfMatcher<Base, Derived>

Those match all nodes of type Base if they can be dynamically casted to Derived. The names of those matchers are
nouns, which closely resemble Derived. VariadicDynCastAllOfMatchers are the backbone of the matcher
hierarchy. Most often, your match expression will start with one of them, and you can bind the node they represent to
ids for later processing.

VariadicDynCastAllOfMatchers are callable classes that model variadic template functions in C++03. They
take an arbitrary number of Matcher<Derived> and return a Matcher<Base>.

AST_MATCHER_P(Type, Name, ParamType, Param)

Most matcher definitions use the matcher creation macros. Those define both the matcher of type Matcher<Type>
itself, and a matcher-creation function named Name that takes a parameter of type ParamType and returns the
corresponding matcher.

There are multiple matcher definition macros that deal with polymorphic return values and different parameter
counts. See ASTMatchersMacros.h.

Matcher creation functions

Matchers are generated by nesting calls to matcher creation functions. Most of the time those functions are either
created by using VariadicDynCastAllOfMatcher or the matcher creation macros (see below). The
free-standing functions are an indication that this matcher is just a combination of other matchers, as is for example
the case with callee.

Clang Transformer Tutorial
A tutorial on how to write a source-to-source translation tool using Clang Transformer.

Clang Transformer Tutorial

777

file:///home/cbowler/llvm/v1711p/llvm-project/compiler-doc/tools/clang/docs/LibASTMatchersReference.html
https://clang.llvm.org/doxygen/classclang_1_1ast__matchers_1_1MatchFinder_1_1MatchCallback.html
https://clang.llvm.org/doxygen/ASTMatchersMacros_8h.html
file:///home/cbowler/llvm/v1711p/llvm-project/compiler-doc/tools/clang/docs/LibASTMatchersReference.html#callee1Anchor


What is Clang Transformer? 778

Who is Clang Transformer for? 778

Getting Started 778

Example: style-checking names 779

Example: renaming a function 779

Example: method to function 779

Example: rewriting method calls 780

Reference: ranges, stencils, edits, rules 780

Rewriting ASTs to… Text? 780

Range Selectors 780

Stencils 781

Edits 781

EditGenerators (Advanced) 781

Rules 782

Using a RewriteRule as a clang-tidy check 782

Related Reading 782

What is Clang Transformer?
Clang Transformer is a framework for writing C++ diagnostics and program transformations. It is built on the clang
toolchain and the LibTooling library, but aims to hide much of the complexity of clang’s native, low-level libraries.

The core abstraction of Transformer is the rewrite rule, which specifies how to change a given program pattern into a
new form. Here are some examples of tasks you can achieve with Transformer:

• warn against using the name MkX for a declared function,

• change MkX to MakeX, where MkX is the name of a declared function,

• change s.size() to Size(s), where s is a string,

• collapse e.child().m() to e.m(), for any expression e and method named m.

All of the examples have a common form: they identify a pattern that is the target of the transformation, they specify
an edit to the code identified by the pattern, and their pattern and edit refer to common variables, like s, e, and m, that
range over code fragments. Our first and second examples also specify constraints on the pattern that aren’t
apparent from the syntax alone, like “s is a string.” Even the first example (“warn …”) shares this form, even
though it doesn’t change any of the code – it’s “edit” is simply a no-op.

Transformer helps users succinctly specify rules of this sort and easily execute them locally over a collection of files,
apply them to selected portions of a codebase, or even bundle them as a clang-tidy check for ongoing application.

Who is Clang Transformer for?
Clang Transformer is for developers who want to write clang-tidy checks or write tools to modify a large number of
C++ files in (roughly) the same way. What qualifies as “large” really depends on the nature of the change and your
patience for repetitive editing. In our experience, automated solutions become worthwhile somewhere between 100
and 500 files.

Getting Started
Patterns in Transformer are expressed with clang’s AST matchers. Matchers are a language of combinators for
describing portions of a clang Abstract Syntax Tree (AST). Since clang’s AST includes complete type information
(within the limits of single Translation Unit (TU), these patterns can even encode rich constraints on the type
properties of AST nodes.

We assume a familiarity with the clang AST and the corresponding AST matchers for the purpose of this tutorial.
Users who are unfamiliar with either are encouraged to start with the recommended references in Related Reading.

Clang Transformer Tutorial

778

https://en.wikipedia.org/wiki/Translation_unit_(programming)


Example: style-checking names

Assume you have a style-guide rule which forbids functions from being named “MkX” and you want to write a check
that catches any violations of this rule. We can express this a Transformer rewrite rule:

makeRule(functionDecl(hasName("MkX").bind("fun"),
         noopEdit(node("fun")),
         cat("The name ``MkX`` is not allowed for functions; please rename"));

makeRule is our go-to function for generating rewrite rules. It takes three arguments: the pattern, the edit, and
(optionally) an explanatory note. In our example, the pattern (functionDecl(...)) identifies the declaration of the
function MkX. Since we’re just diagnosing the problem, but not suggesting a fix, our edit is an no-op. But, it contains
an anchor for the diagnostic message: node("fun") says to associate the message with the source range of the
AST node bound to “fun”; in this case, the ill-named function declaration. Finally, we use cat to build a message that
explains the change. Regarding the name cat – we’ll discuss it in more detail below, but suffice it to say that it can
also take multiple arguments and concatenate their results.

Note that the result of makeRule is a value of type clang::transformer::RewriteRule, but most users don’t
need to care about the details of this type.

Example: renaming a function

Now, let’s extend this example to a transformation; specifically, the second example above:

makeRule(declRefExpr(to(functionDecl(hasName("MkX")))),
         changeTo(cat("MakeX")),
         cat("MkX has been renamed MakeX"));

In this example, the pattern (declRefExpr(...)) identifies any reference to the function MkX, rather than the
declaration itself, as in our previous example. Our edit (changeTo(...)) says to change the code matched by the
pattern to the text “MakeX”. Finally, we use cat again to build a message that explains the change.

Here are some example changes that this rule would make:

Original Result

X x = MkX(3); X x = MakeX(3);

CallFactory(MkX, 3); CallFactory(MakeX, 3);

auto f = MkX; auto f = MakeX;

Example: method to function

Next, let’s write a rule to replace a method call with a (free) function call, applied to the original method call’s target
object. Specifically, “change s.size() to Size(s), where s is a string.” We start with a simpler change that
ignores the type of s. That is, it will modify any method call where the method is named “size”:

llvm::StringRef s = "str";
makeRule(
  cxxMemberCallExpr(
    on(expr().bind(s)),
    callee(cxxMethodDecl(hasName("size")))),
  changeTo(cat("Size(", node(s), ")")),
  cat("Method ``size`` is deprecated in favor of free function ``Size``"));

We express the pattern with the given AST matcher, which binds the method call’s target to s 9. For the edit, we
again use changeTo, but this time we construct the term from multiple parts, which we compose with cat. The
second part of our term is node(s), which selects the source code corresponding to the AST node s that was bound
when a match was found in the AST for our rule’s pattern. node(s) constructs a RangeSelector, which, when
used in cat, indicates that the selected source should be inserted in the output at that point.

Now, we probably don’t want to rewrite all invocations of “size” methods, just those on std::strings. We can
achieve this change simply by refining our matcher. The rest of the rule remains unchanged:

llvm::StringRef s = "str";
makeRule(

Clang Transformer Tutorial

779



  cxxMemberCallExpr(
    on(expr(hasType(namedDecl(hasName("std::string"))))
      .bind(s)),
    callee(cxxMethodDecl(hasName("size")))),
  changeTo(cat("Size(", node(s), ")")),
  cat("Method ``size`` is deprecated in favor of free function ``Size``"));

Example: rewriting method calls

In this example, we delete an “intermediary” method call in a string of invocations. This scenario can arise, for
example, if you want to collapse a substructure into its parent.

llvm::StringRef e = "expr", m = "member";
auto child_call = cxxMemberCallExpr(on(expr().bind(e)),
                                    callee(cxxMethodDecl(hasName("child"))));
makeRule(cxxMemberCallExpr(on(child_call), callee(memberExpr().bind(m)),
         changeTo(cat(e, ".", member(m), "()"))),
         cat("``child`` accessor is being removed; call ",
             member(m), " directly on parent"));

This rule isn’t quite what we want: it will rewrite my_object.child().foo() to my_object.foo(), but it will also
rewrite my_ptr->child().foo() to my_ptr.foo(), which is not what we intend. We could fix this by restricting
the pattern with not(isArrow()) in the definition of child_call. Yet, we want to rewrite calls through pointers.

To capture this idiom, we provide the access combinator to intelligently construct a field/method access. In our
example, the member access is expressed as:

access(e, cat(member(m)))

The first argument specifies the object being accessed and the second, a description of the field/method name. In
this case, we specify that the method name should be copied from the source – specifically, the source range of m’s
member. To construct the method call, we would use this expression in cat:

cat(access(e, cat(member(m))), "()")

Reference: ranges, stencils, edits, rules
The above examples demonstrate just the basics of rewrite rules. Every element we touched on has more available
constructors: range selectors, stencils, edits and rules. In this section, we’ll briefly review each in turn, with
references to the source headers for up-to-date information. First, though, we clarify what rewrite rules are actually
rewriting.

Rewriting ASTs to… Text?

The astute reader may have noticed that we’ve been somewhat vague in our explanation of what the rewrite rules
are actually rewriting. We’ve referred to “code”, but code can be represented both as raw source text and as an
abstract syntax tree. So, which one is it?

Ideally, we’d be rewriting the input AST to a new AST, but clang’s AST is not terribly amenable to this kind of
transformation. So, we compromise: we express our patterns and the names that they bind in terms of the AST, but
our changes in terms of source code text. We’ve designed Transformer’s language to bridge the gap between the
two representations, in an attempt to minimize the user’s need to reason about source code locations and other,
low-level syntactic details.

Range Selectors

Transformer provides a small API for describing source ranges: the RangeSelector combinators. These ranges
are most commonly used to specify the source code affected by an edit and to extract source code in constructing
new text.

Roughly, there are two kinds of range combinators: ones that select a source range based on the AST, and others
that combine existing ranges into new ranges. For example, node selects the range of source spanned by a

Clang Transformer Tutorial

780



particular AST node, as we’ve seen, while after selects the (empty) range located immediately after its argument
range. So, after(node("id")) is the empty range immediately following the AST node bound to id.

For the full collection of RangeSelectors, see the header, clang/Tooling/Transformer/RangeSelector.h

Stencils

Transformer offers a large and growing collection of combinators for constructing output. Above, we demonstrated
cat, the core function for constructing stencils. It takes a series of arguments, of three possible kinds:

1. Raw text, to be copied directly to the output.

2. Selector: specified with a RangeSelector, indicates a range of source text to copy to the output.

3. Builder: an operation that constructs a code snippet from its arguments. For example, the access function we
saw above.

Data of these different types are all represented (generically) by a Stencil. cat takes text and RangeSelectors
directly as arguments, rather than requiring that they be constructed with a builder; other builders are constructed
explicitly.

In general, Stencils produce text from a match result. So, they are not limited to generating source code, but can
also be used to generate diagnostic messages that reference (named) elements of the matched code, like we saw in
the example of rewriting method calls.

Further details of the Stencil type are documented in the header file clang/Tooling/Transformer/Stencil.h.

Edits

Transformer supports additional forms of edits. First, in a changeTo, we can specify the particular portion of code to
be replaced, using the same RangeSelector we saw earlier. For example, we could change the function name in a
function declaration with:

makeRule(functionDecl(hasName("bad")).bind(f),
         changeTo(name(f), cat("good")),
         cat("bad is now good"));

We also provide simpler editing primitives for insertion and deletion: insertBefore, insertAfter and remove.
These can all be found in the header file clang/Tooling/Transformer/RewriteRule.h.

We are not limited one edit per match found. Some situations require making multiple edits for each match. For
example, suppose we wanted to swap two arguments of a function call.

For this, we provide an overload of makeRule that takes a list of edits, rather than just a single one. Our example
might look like:

makeRule(callExpr(...),
        {changeTo(node(arg0), cat(node(arg2))),
         changeTo(node(arg2), cat(node(arg0)))},
        cat("swap the first and third arguments of the call"));

EditGenerators (Advanced)

The particular edits we’ve seen so far are all instances of the ASTEdit class, or a list of such. But, not all edits can
be expressed as ASTEdits. So, we also support a very general signature for edit generators:

using EditGenerator = MatchConsumer<llvm::SmallVector<Edit, 1>>;

That is, an EditGenerator is function that maps a MatchResult to a set of edits, or fails. This signature supports
a very general form of computation over match results. Transformer provides a number of functions for working with
EditGenerators, most notably flatten EditGenerators, like list flattening. For the full list, see the header file
clang/Tooling/Transformer/RewriteRule.h.

Clang Transformer Tutorial

781

https://github.com/llvm/llvm-project/blob/main/clang/include/clang/Tooling/Transformer/RangeSelector.h
https://github.com/llvm/llvm-project/blob/main/clang/include/clang/Tooling/Transformer/Stencil.h
https://github.com/llvm/llvm-project/blob/main/clang/include/clang/Tooling/Transformer/RewriteRule.h
https://github.com/llvm/llvm-project/blob/1fabe6e51917bcd7a1242294069c682fe6dffa45/clang/include/clang/Tooling/Transformer/RewriteRule.h#L165-L167
https://github.com/llvm/llvm-project/blob/main/clang/include/clang/Tooling/Transformer/RewriteRule.h


Rules

We can also compose multiple rules, rather than just edits within a rule, using applyFirst: it composes a list of
rules as an ordered choice, where Transformer applies the first rule whose pattern matches, ignoring others in the list
that follow. If the matchers are independent then order doesn’t matter. In that case, applyFirst is simply joining
the set of rules into one.

The benefit of applyFirst is that, for some problems, it allows the user to more concisely formulate later rules in
the list, since their patterns need not explicitly exclude the earlier patterns of the list. For example, consider a set of
rules that rewrite compound statements, where one rule handles the case of an empty compound statement and the
other handles non-empty compound statements. With applyFirst, these rules can be expressed compactly as:

applyFirst({
  makeRule(compoundStmt(statementCountIs(0)).bind("empty"), ...),
  makeRule(compoundStmt().bind("non-empty"),...)
})

The second rule does not need to explicitly specify that the compound statement is non-empty – it follows from the
rules position in applyFirst. For more complicated examples, this can lead to substantially more readable code.

Sometimes, a modification to the code might require the inclusion of a particular header file. To this end, users can
modify rules to specify include directives with addInclude.

For additional documentation on these functions, see the header file clang/Tooling/Transformer/RewriteRule.h.

Using a RewriteRule as a clang-tidy check
Transformer supports executing a rewrite rule as a clang-tidy check, with the class
clang::tidy::utils::TransformerClangTidyCheck. It is designed to require minimal code in the definition.
For example, given a rule MyCheckAsRewriteRule, one can define a tidy check as follows:

class MyCheck : public TransformerClangTidyCheck {
 public:
  MyCheck(StringRef Name, ClangTidyContext *Context)
      : TransformerClangTidyCheck(MyCheckAsRewriteRule, Name, Context) {}
};

TransformerClangTidyCheck implements the virtual registerMatchers and check methods based on your
rule specification, so you don’t need to implement them yourself. If the rule needs to be configured based on the
language options and/or the clang-tidy configuration, it can be expressed as a function taking these as parameters
and (optionally) returning a RewriteRule. This would be useful, for example, for our method-renaming rule, which
is parameterized by the original name and the target. For details, see
clang-tools-extra/clang-tidy/utils/TransformerClangTidyCheck.h

Related Reading
A good place to start understanding the clang AST and its matchers is with the introductions on clang’s site:

• Introduction to the Clang AST

• Matching the Clang AST

• AST Matcher Reference

9 Technically, it binds it to the string “str”, to which our variable s is bound. But, the choice of that
id string is irrelevant, so elide the difference.

ASTImporter: Merging Clang ASTs
The ASTImporter class is part of Clang’s core library, the AST library. It imports nodes of an ASTContext into
another ASTContext.

In this document, we assume basic knowledge about the Clang AST. See the Introduction to the Clang AST if you
want to learn more about how the AST is structured. Knowledge about matching the Clang AST and the reference for
the matchers are also useful.

ASTImporter: Merging Clang ASTs

782

https://github.com/llvm/llvm-project/blob/main/clang/include/clang/Tooling/Transformer/RewriteRule.h
https://clang.llvm.org/extra/clang-tidy/
https://github.com/llvm/llvm-project/blob/main/clang-tools-extra/clang-tidy/utils/TransformerClangTidyCheck.h
https://clang.llvm.org/docs/LibASTMatchersReference.html
https://clang.llvm.org/docs/LibASTMatchersReference.html
https://clang.llvm.org/docs/LibASTMatchersReference.html


Introduction 783

Algorithm of the import 783

API 784

Errors during the import process 787

Error propagation 788

Polluted AST 788

Using the -ast-merge Clang front-end action 790

Example for C 790

Example for C++ 791

Introduction
ASTContext holds long-lived AST nodes (such as types and decls) that can be referred to throughout the semantic
analysis of a file. In some cases it is preferable to work with more than one ASTContext. For example, we’d like to
parse multiple different files inside the same Clang tool. It may be convenient if we could view the set of the resulting
ASTs as if they were one AST resulting from the parsing of each file together. ASTImporter provides the way to
copy types or declarations from one ASTContext to another. We refer to the context from which we import as the
“from” context or source context; and the context into which we import as the “to” context or destination context.

Existing clients of the ASTImporter library are Cross Translation Unit (CTU) static analysis and the LLDB
expression parser. CTU static analysis imports a definition of a function if its definition is found in another translation
unit (TU). This way the analysis can breach out from the single TU limitation. LLDB’s expr command parses a
user-defined expression, creates an ASTContext for that and then imports the missing definitions from the AST
what we got from the debug information (DWARF, etc).

Algorithm of the import
Importing one AST node copies that node into the destination ASTContext. Why do we have to copy the node? Isn’t
enough to insert the pointer to that node into the destination context? One reason is that the “from” context may
outlive the “to” context. Also, the Clang AST consider nodes (or certain properties of nodes) equivalent if they have
the same address!

The import algorithm has to ensure that the structurally equivalent nodes in the different translation units are not
getting duplicated in the merged AST. E.g. if we include the definition of the vector template (#include <vector>)
in two translation units, then their merged AST should have only one node which represents the template. Also, we
have to discover one definition rule (ODR) violations. For instance, if there is a class definition with the same name in
both translation units, but one of the definition contains a different number of fields. So, we look up existing
definitions, and then we check the structural equivalency on those nodes. The following pseudo-code demonstrates
the basics of the import mechanism:

// Pseudo-code(!) of import:
ErrorOrDecl Import(Decl *FromD) {
  Decl *ToDecl = nullptr;
  FoundDeclsList = Look up all Decls in the "to" Ctx with the same name of FromD;
  for (auto FoundDecl : FoundDeclsList) {
    if (StructurallyEquivalentDecls(FoundDecl, FromD)) {
      ToDecl = FoundDecl;
      Mark FromD as imported;
      break;
    } else {
      Report ODR violation;
      return error;
    }
  }
  if (FoundDeclsList is empty) {
    Import dependent declarations and types of ToDecl;
    ToDecl = create a new AST node in "to" Ctx;
    Mark FromD as imported;

ASTImporter: Merging Clang ASTs

783



  }
  return ToDecl;
}

Two AST nodes are structurally equivalent if they are

• builtin types and refer to the same type, e.g. int and int are structurally equivalent,

• function types and all their parameters have structurally equivalent types,

• record types and all their fields in order of their definition have the same identifier names and structurally
equivalent types,

• variable or function declarations and they have the same identifier name and their types are structurally
equivalent.

We could extend the definition of structural equivalency to templates similarly.

If A and B are AST nodes and A depends on B, then we say that A is a dependant of B and B is a dependency of A.
The words “dependant” and “dependency” are nouns in British English. Unfortunately, in American English, the
adjective “dependent” is used for both meanings. In this document, with the “dependent” adjective we always
address the dependencies, the B node in the example.

API
Let’s create a tool which uses the ASTImporter class! First, we build two ASTs from virtual files; the content of the
virtual files are synthesized from string literals:

std::unique_ptr<ASTUnit> ToUnit = buildASTFromCode(
    "", "to.cc"); // empty file
std::unique_ptr<ASTUnit> FromUnit = buildASTFromCode(
    R"(
    class MyClass {
      int m1;
      int m2;
    };
    )",
    "from.cc");

The first AST corresponds to the destination (“to”) context - which is empty - and the second for the source (“from”)
context. Next, we define a matcher to match MyClass in the “from” context:

auto Matcher = cxxRecordDecl(hasName("MyClass"));
auto *From = getFirstDecl<CXXRecordDecl>(Matcher, FromUnit);

Now we create the Importer and do the import:

ASTImporter Importer(ToUnit->getASTContext(), ToUnit->getFileManager(),
                     FromUnit->getASTContext(), FromUnit->getFileManager(),
                     /*MinimalImport=*/true);
llvm::Expected<Decl *> ImportedOrErr = Importer.Import(From);

The Import call returns with llvm::Expected, so, we must check for any error. Please refer to the error handling
documentation for details.

if (!ImportedOrErr) {
  llvm::Error Err = ImportedOrErr.takeError();
  llvm::errs() << "ERROR: " << Err << "\n";
  consumeError(std::move(Err));
  return 1;
}

If there’s no error then we can get the underlying value. In this example we will print the AST of the “to” context.

Decl *Imported = *ImportedOrErr;
Imported->getTranslationUnitDecl()->dump();

ASTImporter: Merging Clang ASTs

784

https://llvm.org/docs/ProgrammersManual.html#recoverable-errors


Since we set minimal import in the constructor of the importer, the AST will not contain the declaration of the
members (once we run the test tool).

TranslationUnitDecl 0x68b9a8 <<invalid sloc>> <invalid sloc>
`-CXXRecordDecl 0x6c7e30 <line:2:7, col:13> col:13 class MyClass definition
  `-DefinitionData pass_in_registers standard_layout trivially_copyable trivial literal
    |-DefaultConstructor exists trivial needs_implicit
    |-CopyConstructor simple trivial has_const_param needs_implicit implicit_has_const_param
    |-MoveConstructor exists simple trivial needs_implicit
    |-CopyAssignment trivial has_const_param needs_implicit implicit_has_const_param
    |-MoveAssignment exists simple trivial needs_implicit
    `-Destructor simple irrelevant trivial needs_implicit

We’d like to get the members too, so, we use ImportDefinition to copy the whole definition of MyClass into the
“to” context. Then we dump the AST again.

if (llvm::Error Err = Importer.ImportDefinition(From)) {
  llvm::errs() << "ERROR: " << Err << "\n";
  consumeError(std::move(Err));
  return 1;
}
llvm::errs() << "Imported definition.\n";
Imported->getTranslationUnitDecl()->dump();

This time the AST is going to contain the members too.

TranslationUnitDecl 0x68b9a8 <<invalid sloc>> <invalid sloc>
`-CXXRecordDecl 0x6c7e30 <line:2:7, col:13> col:13 class MyClass definition
  |-DefinitionData pass_in_registers standard_layout trivially_copyable trivial literal
  | |-DefaultConstructor exists trivial needs_implicit
  | |-CopyConstructor simple trivial has_const_param needs_implicit implicit_has_const_param
  | |-MoveConstructor exists simple trivial needs_implicit
  | |-CopyAssignment trivial has_const_param needs_implicit implicit_has_const_param
  | |-MoveAssignment exists simple trivial needs_implicit
  | `-Destructor simple irrelevant trivial needs_implicit
  |-CXXRecordDecl 0x6c7f48 <col:7, col:13> col:13 implicit class MyClass
  |-FieldDecl 0x6c7ff0 <line:3:9, col:13> col:13 m1 'int'
  `-FieldDecl 0x6c8058 <line:4:9, col:13> col:13 m2 'int'

We can spare the call for ImportDefinition if we set up the importer to do a “normal” (not minimal) import.

ASTImporter Importer( ....  /*MinimalImport=*/false);

With normal import, all dependent declarations are imported normally. However, with minimal import, the
dependent Decls are imported without definition, and we have to import their definition for each if we later need that.

Putting this all together here is how the source of the tool looks like:

#include "clang/AST/ASTImporter.h"
#include "clang/ASTMatchers/ASTMatchFinder.h"
#include "clang/ASTMatchers/ASTMatchers.h"
#include "clang/Tooling/Tooling.h"

using namespace clang;
using namespace tooling;
using namespace ast_matchers;

template <typename Node, typename Matcher>
Node *getFirstDecl(Matcher M, const std::unique_ptr<ASTUnit> &Unit) {
  auto MB = M.bind("bindStr"); // Bind the to-be-matched node to a string key.
  auto MatchRes = match(MB, Unit->getASTContext());
  // We should have at least one match.
  assert(MatchRes.size() >= 1);
  // Get the first matched and bound node.
  Node *Result =
      const_cast<Node *>(MatchRes[0].template getNodeAs<Node>("bindStr"));

ASTImporter: Merging Clang ASTs

785



  assert(Result);
  return Result;
}

int main() {
  std::unique_ptr<ASTUnit> ToUnit = buildASTFromCode(
      "", "to.cc");
  std::unique_ptr<ASTUnit> FromUnit = buildASTFromCode(
      R"(
      class MyClass {
        int m1;
        int m2;
      };
      )",
      "from.cc");
  auto Matcher = cxxRecordDecl(hasName("MyClass"));
  auto *From = getFirstDecl<CXXRecordDecl>(Matcher, FromUnit);

  ASTImporter Importer(ToUnit->getASTContext(), ToUnit->getFileManager(),
                       FromUnit->getASTContext(), FromUnit->getFileManager(),
                       /*MinimalImport=*/true);
  llvm::Expected<Decl *> ImportedOrErr = Importer.Import(From);
  if (!ImportedOrErr) {
    llvm::Error Err = ImportedOrErr.takeError();
    llvm::errs() << "ERROR: " << Err << "\n";
    consumeError(std::move(Err));
    return 1;
  }
  Decl *Imported = *ImportedOrErr;
  Imported->getTranslationUnitDecl()->dump();

  if (llvm::Error Err = Importer.ImportDefinition(From)) {
    llvm::errs() << "ERROR: " << Err << "\n";
    consumeError(std::move(Err));
    return 1;
  }
  llvm::errs() << "Imported definition.\n";
  Imported->getTranslationUnitDecl()->dump();

  return 0;
};

We may extend the CMakeLists.txt under let’s say clang/tools with the build and link instructions:

add_clang_executable(astimporter-demo ASTImporterDemo.cpp)
clang_target_link_libraries(astimporter-demo
  PRIVATE
  LLVMSupport
  clangAST
  clangASTMatchers
  clangBasic
  clangFrontend
  clangSerialization
  clangTooling
  )

Then we can build and execute the new tool.

$ ninja astimporter-demo && ./bin/astimporter-demo

ASTImporter: Merging Clang ASTs

786



Errors during the import process

Normally, either the source or the destination context contains the definition of a declaration. However, there may be
cases when both of the contexts have a definition for a given symbol. If these definitions differ, then we have a name
conflict, in C++ it is known as ODR (one definition rule) violation. Let’s modify the previous tool we had written and try
to import a ClassTemplateSpecializationDecl with a conflicting definition:

int main() {
  std::unique_ptr<ASTUnit> ToUnit = buildASTFromCode(
      R"(
      // primary template
      template <typename T>
      struct X {};
      // explicit specialization
      template<>
      struct X<int> { int i; };
      )",
      "to.cc");
  ToUnit->enableSourceFileDiagnostics();
  std::unique_ptr<ASTUnit> FromUnit = buildASTFromCode(
      R"(
      // primary template
      template <typename T>
      struct X {};
      // explicit specialization
      template<>
      struct X<int> { int i2; };
      // field mismatch:  ^^
      )",
      "from.cc");
  FromUnit->enableSourceFileDiagnostics();
  auto Matcher = classTemplateSpecializationDecl(hasName("X"));
  auto *From = getFirstDecl<ClassTemplateSpecializationDecl>(Matcher, FromUnit);
  auto *To = getFirstDecl<ClassTemplateSpecializationDecl>(Matcher, ToUnit);

  ASTImporter Importer(ToUnit->getASTContext(), ToUnit->getFileManager(),
                       FromUnit->getASTContext(), FromUnit->getFileManager(),
                       /*MinimalImport=*/false);
  llvm::Expected<Decl *> ImportedOrErr = Importer.Import(From);
  if (!ImportedOrErr) {
    llvm::Error Err = ImportedOrErr.takeError();
    llvm::errs() << "ERROR: " << Err << "\n";
    consumeError(std::move(Err));
    To->getTranslationUnitDecl()->dump();
    return 1;
  }
  return 0;
};

When we run the tool we have the following warning:

to.cc:7:14: warning: type 'X<int>' has incompatible definitions in different translation units [-Wodr]
      struct X<int> { int i; };
             ^
to.cc:7:27: note: field has name 'i' here
      struct X<int> { int i; };
                          ^
from.cc:7:27: note: field has name 'i2' here
      struct X<int> { int i2; };
                        ^

Note, because of these diagnostics we had to call enableSourceFileDiagnostics on the ASTUnit objects.

ASTImporter: Merging Clang ASTs

787



Since we could not import the specified declaration (From), we get an error in the return value. The AST does not
contain the conflicting definition, so we are left with the original AST.
ERROR: NameConflict
TranslationUnitDecl 0xe54a48 <<invalid sloc>> <invalid sloc>
|-ClassTemplateDecl 0xe91020 <to.cc:3:7, line:4:17> col:14 X
| |-TemplateTypeParmDecl 0xe90ed0 <line:3:17, col:26> col:26 typename depth 0 index 0 T
| |-CXXRecordDecl 0xe90f90 <line:4:7, col:17> col:14 struct X definition
| | |-DefinitionData empty aggregate standard_layout trivially_copyable pod trivial literal has_constexpr_non_copy_move_ctor can_const_default_init
| | | |-DefaultConstructor exists trivial constexpr needs_implicit defaulted_is_constexpr
| | | |-CopyConstructor simple trivial has_const_param needs_implicit implicit_has_const_param
| | | |-MoveConstructor exists simple trivial needs_implicit
| | | |-CopyAssignment trivial has_const_param needs_implicit implicit_has_const_param
| | | |-MoveAssignment exists simple trivial needs_implicit
| | | `-Destructor simple irrelevant trivial needs_implicit
| | `-CXXRecordDecl 0xe91270 <col:7, col:14> col:14 implicit struct X
| `-ClassTemplateSpecialization 0xe91340 'X'
`-ClassTemplateSpecializationDecl 0xe91340 <line:6:7, line:7:30> col:14 struct X definition
  |-DefinitionData pass_in_registers aggregate standard_layout trivially_copyable pod trivial literal
  | |-DefaultConstructor exists trivial needs_implicit
  | |-CopyConstructor simple trivial has_const_param needs_implicit implicit_has_const_param
  | |-MoveConstructor exists simple trivial needs_implicit
  | |-CopyAssignment trivial has_const_param needs_implicit implicit_has_const_param
  | |-MoveAssignment exists simple trivial needs_implicit
  | `-Destructor simple irrelevant trivial needs_implicit
  |-TemplateArgument type 'int'
  |-CXXRecordDecl 0xe91558 <col:7, col:14> col:14 implicit struct X
  `-FieldDecl 0xe91600 <col:23, col:27> col:27 i 'int'

Error propagation

If there is a dependent node we have to import before we could import a given node then the import error associated
to the dependency propagates to the dependant node. Let’s modify the previous example and import a FieldDecl
instead of the ClassTemplateSpecializationDecl.

auto Matcher = fieldDecl(hasName("i2"));
auto *From = getFirstDecl<FieldDecl>(Matcher, FromUnit);

In this case we can see that an error is associated (getImportDeclErrorIfAny) to the specialization also, not
just to the field:

llvm::Expected<Decl *> ImportedOrErr = Importer.Import(From);
if (!ImportedOrErr) {
  llvm::Error Err = ImportedOrErr.takeError();
  consumeError(std::move(Err));

  // check that the ClassTemplateSpecializationDecl is also marked as
  // erroneous.
  auto *FromSpec = getFirstDecl<ClassTemplateSpecializationDecl>(
      classTemplateSpecializationDecl(hasName("X")), FromUnit);
  assert(Importer.getImportDeclErrorIfAny(FromSpec));
  // Btw, the error is also set for the FieldDecl.
  assert(Importer.getImportDeclErrorIfAny(From));
  return 1;
}

Polluted AST

We may recognize an error during the import of a dependent node. However, by that time, we had already created
the dependant. In these cases we do not remove the existing erroneous node from the “to” context, rather we
associate an error to that node. Let’s extend the previous example with another class Y. This class has a forward
definition in the “to” context, but its definition is in the “from” context. We’d like to import the definition, but it contains
a member whose type conflicts with the type in the “to” context:

std::unique_ptr<ASTUnit> ToUnit = buildASTFromCode(
    R"(
    // primary template
    template <typename T>
    struct X {};
    // explicit specialization
    template<>
    struct X<int> { int i; };

ASTImporter: Merging Clang ASTs

788



    class Y;
    )",
    "to.cc");
ToUnit->enableSourceFileDiagnostics();
std::unique_ptr<ASTUnit> FromUnit = buildASTFromCode(
    R"(
    // primary template
    template <typename T>
    struct X {};
    // explicit specialization
    template<>
    struct X<int> { int i2; };
    // field mismatch:  ^^

    class Y { void f() { X<int> xi; } };
    )",
    "from.cc");
FromUnit->enableSourceFileDiagnostics();
auto Matcher = cxxRecordDecl(hasName("Y"));
auto *From = getFirstDecl<CXXRecordDecl>(Matcher, FromUnit);
auto *To = getFirstDecl<CXXRecordDecl>(Matcher, ToUnit);

This time we create a shared_ptr for ASTImporterSharedState which owns the associated errors for the “to”
context. Note, there may be several different ASTImporter objects which import into the same “to” context but from
different “from” contexts; they should share the same ASTImporterSharedState. (Also note, we have to include
the corresponding ASTImporterSharedState.h header file.)

auto ImporterState = std::make_shared<ASTImporterSharedState>();
ASTImporter Importer(ToUnit->getASTContext(), ToUnit->getFileManager(),
                     FromUnit->getASTContext(), FromUnit->getFileManager(),
                     /*MinimalImport=*/false, ImporterState);
llvm::Expected<Decl *> ImportedOrErr = Importer.Import(From);
if (!ImportedOrErr) {
  llvm::Error Err = ImportedOrErr.takeError();
  consumeError(std::move(Err));

  // ... but the node had been created.
  auto *ToYDef = getFirstDecl<CXXRecordDecl>(
      cxxRecordDecl(hasName("Y"), isDefinition()), ToUnit);
  ToYDef->dump();
  // An error is set for "ToYDef" in the shared state.
  Optional<ImportError> OptErr =
      ImporterState->getImportDeclErrorIfAny(ToYDef);
  assert(OptErr);

  return 1;
}

If we take a look at the AST, then we can see that the Decl with the definition is created, but the field is missing.
|-CXXRecordDecl 0xf66678 <line:9:7, col:13> col:13 class Y
`-CXXRecordDecl 0xf66730 prev 0xf66678 <:10:7, col:13> col:13 class Y definition
  |-DefinitionData pass_in_registers empty aggregate standard_layout trivially_copyable pod trivial literal has_constexpr_non_copy_move_ctor can_const_default_init
  | |-DefaultConstructor exists trivial constexpr needs_implicit defaulted_is_constexpr
  | |-CopyConstructor simple trivial has_const_param needs_implicit implicit_has_const_param
  | |-MoveConstructor exists simple trivial needs_implicit
  | |-CopyAssignment trivial has_const_param needs_implicit implicit_has_const_param
  | |-MoveAssignment exists simple trivial needs_implicit
  | `-Destructor simple irrelevant trivial needs_implicit
  `-CXXRecordDecl 0xf66828 <col:7, col:13> col:13 implicit class Y

We do not remove the erroneous nodes because by the time when we recognize the error it is too late to remove the
node, there may be additional references to that already in the AST. This is aligned with the overall design principle
of the Clang AST: Clang AST nodes (types, declarations, statements, expressions, and so on) are generally
designed to be immutable once created. Thus, clients of the ASTImporter library should always check if there is
any associated error for the node which they inspect in the destination context. We recommend skipping the
processing of those nodes which have an error associated with them.

ASTImporter: Merging Clang ASTs

789

file:///home/cbowler/llvm/v1711p/llvm-project/compiler-doc/tools/clang/docs/InternalsManual.html#immutability
file:///home/cbowler/llvm/v1711p/llvm-project/compiler-doc/tools/clang/docs/InternalsManual.html#immutability


Using the -ast-merge Clang front-end action
The -ast-merge <pch-file> command-line switch can be used to merge from the given serialized AST file. This
file represents the source context. When this switch is present then each top-level AST node of the source context is
being merged into the destination context. If the merge was successful then
ASTConsumer::HandleTopLevelDecl is called for the Decl. This results that we can execute the original
front-end action on the extended AST.

Example for C

Let’s consider the following three files:

// bar.h
#ifndef BAR_H
#define BAR_H
int bar();
#endif /* BAR_H */

// bar.c
#include "bar.h"
int bar() {
  return 41;
}

// main.c
#include "bar.h"
int main() {
    return bar();
}

Let’s generate the AST files for the two source files:

$ clang -cc1 -emit-pch -o bar.ast bar.c
$ clang -cc1 -emit-pch -o main.ast main.c

Then, let’s check how the merged AST would look like if we consider only the bar() function:

$ clang -cc1 -ast-merge bar.ast -ast-merge main.ast /dev/null -ast-dump
TranslationUnitDecl 0x12b0738 <<invalid sloc>> <invalid sloc>
|-FunctionDecl 0x12b1470 </path/bar.h:4:1, col:9> col:5 used bar 'int ()'
|-FunctionDecl 0x12b1538 prev 0x12b1470 </path/bar.c:3:1, line:5:1> line:3:5 used bar 'int ()'
| `-CompoundStmt 0x12b1608 <col:11, line:5:1>
|   `-ReturnStmt 0x12b15f8 <line:4:3, col:10>
|     `-IntegerLiteral 0x12b15d8 <col:10> 'int' 41
|-FunctionDecl 0x12b1648 prev 0x12b1538 </path/bar.h:4:1, col:9> col:5 used bar 'int ()'

We can inspect that the prototype of the function and the definition of it is merged into the same redeclaration chain.
What’s more there is a third prototype declaration merged to the chain. The functions are merged in a way that
prototypes are added to the redecl chain if they refer to the same type, but we can have only one definition. The first
two declarations are from bar.ast, the third is from main.ast.

Now, let’s create an object file from the merged AST:

$ clang -cc1 -ast-merge bar.ast -ast-merge main.ast /dev/null -emit-obj -o main.o

Next, we may call the linker and execute the created binary file.

$ clang -o a.out main.o
$ ./a.out
$ echo $?
41
$

ASTImporter: Merging Clang ASTs

790



Example for C++

In the case of C++, the generation of the AST files and the way how we invoke the front-end is a bit different.
Assuming we have these three files:

// foo.h
#ifndef FOO_H
#define FOO_H
struct foo {
    virtual int fun();
};
#endif /* FOO_H */

// foo.cpp
#include "foo.h"
int foo::fun() {
  return 42;
}

// main.cpp
#include "foo.h"
int main() {
    return foo().fun();
}

We shall generate the AST files, merge them, create the executable and then run it:

$ clang++ -x c++-header -o foo.ast foo.cpp
$ clang++ -x c++-header -o main.ast main.cpp
$ clang++ -cc1 -x c++ -ast-merge foo.ast -ast-merge main.ast /dev/null -ast-dump
$ clang++ -cc1 -x c++ -ast-merge foo.ast -ast-merge main.ast /dev/null -emit-obj -o main.o
$ clang++ -o a.out main.o
$ ./a.out
$ echo $?
42
$

How To Setup Clang Tooling For LLVM
Clang Tooling provides infrastructure to write tools that need syntactic and semantic information about a program.
This term also relates to a set of specific tools using this infrastructure (e.g. clang-check). This document provides
information on how to set up and use Clang Tooling for the LLVM source code.

Introduction
Clang Tooling needs a compilation database to figure out specific build options for each file. Currently it can create a
compilation database from the compile_commands.json file, generated by CMake. When invoking clang tools,
you can either specify a path to a build directory using a command line parameter -p or let Clang Tooling find this file
in your source tree. In either case you need to configure your build using CMake to use clang tools.

Setup Clang Tooling Using CMake and Make
If you intend to use make to build LLVM, you should have CMake 2.8.6 or later installed (can be found here).

First, you need to generate Makefiles for LLVM with CMake. You need to make a build directory and run CMake from
it:

$ mkdir your/build/directory
$ cd your/build/directory
$ cmake -DCMAKE_EXPORT_COMPILE_COMMANDS=ON path/to/llvm/sources

How To Setup Clang Tooling For LLVM

791

https://cmake.org


If you want to use clang instead of GCC, you can add
-DCMAKE_C_COMPILER=/path/to/clang -DCMAKE_CXX_COMPILER=/path/to/clang++. You can also use
ccmake, which provides a curses interface to configure CMake variables.

As a result, the new compile_commands.json file should appear in the current directory. You should link it to the
LLVM source tree so that Clang Tooling is able to use it:

$ ln -s $PWD/compile_commands.json path/to/llvm/source/

Now you are ready to build and test LLVM using make:

$ make check-all

Setup Clang Tooling Using CMake on Windows
For Windows developers, the Visual Studio project generators in CMake do not support
CMAKE_EXPORT_COMPILE_COMMANDS. However, the Ninja generator does support this variable and can be
used on Windows to generate a suitable compile_commands.json that invokes the MSVC compiler.

First, you will need to install Ninja. Once installed, the Ninja executable will need to be in your search path for CMake
to locate it.

Next, assuming you already have Visual Studio installed on your machine, you need to have the appropriate
environment variables configured so that CMake will locate the MSVC compiler for the Ninja generator. The
documentation describes the necessary environment variable settings, but the simplest thing is to use a developer
command-prompt window or call a developer command file to set the environment variables appropriately.

Now you can run CMake with the Ninja generator to export a compilation database:

C:\> mkdir build-ninja
C:\> cd build-ninja
C:\build-ninja> cmake -G Ninja -DCMAKE_EXPORT_COMPILE_COMMANDS=ON path/to/llvm/sources

It is best to keep your Visual Studio IDE build folder separate from the Ninja build folder. This prevents the two build
systems from negatively interacting with each other.

Once the compile_commands.json file has been created by Ninja, you can use that compilation database with
Clang Tooling. One caveat is that because there are indirect settings obtained through the environment variables,
you may need to run any Clang Tooling executables through a command prompt window created for use with Visual
Studio as described above. An alternative, e.g. for using the Visual Studio debugger on a Clang Tooling executable,
is to ensure that the environment variables are also visible to the debugger settings. This can be done locally in
Visual Studio’s debugger configuration locally or globally by launching the Visual Studio IDE from a suitable
command-prompt window.

Using Clang Tools
After you completed the previous steps, you are ready to run clang tools. If you have a recent clang installed, you
should have clang-check in $PATH. Try to run it on any .cpp file inside the LLVM source tree:

$ clang-check tools/clang/lib/Tooling/CompilationDatabase.cpp

If you’re using vim, it’s convenient to have clang-check integrated. Put this into your .vimrc:

function! ClangCheckImpl(cmd)
  if &autowrite | wall | endif
  echo "Running " . a:cmd . " ..."
  let l:output = system(a:cmd)
  cexpr l:output
  cwindow
  let w:quickfix_title = a:cmd
  if v:shell_error != 0
    cc
  endif
  let g:clang_check_last_cmd = a:cmd
endfunction

How To Setup Clang Tooling For LLVM

792

https://cmake.org/cmake/help/latest/variable/CMAKE_EXPORT_COMPILE_COMMANDS.html
https://ninja-build.org/
https://docs.microsoft.com/en-us/cpp/build/building-on-the-command-line?view=msvc-170#path_and_environment
https://docs.microsoft.com/en-us/cpp/build/building-on-the-command-line?view=msvc-170#developer_command_prompt_shortcuts
https://docs.microsoft.com/en-us/cpp/build/building-on-the-command-line?view=msvc-170#developer_command_prompt_shortcuts
https://docs.microsoft.com/en-us/cpp/build/building-on-the-command-line?view=msvc-170#developer_command_file_locations


function! ClangCheck()
  let l:filename = expand('%')
  if l:filename =~ '\.\(cpp\|cxx\|cc\|c\)$'
    call ClangCheckImpl("clang-check " . l:filename)
  elseif exists("g:clang_check_last_cmd")
    call ClangCheckImpl(g:clang_check_last_cmd)
  else
    echo "Can't detect file's compilation arguments and no previous clang-check invocation!"
  endif
endfunction

nmap <silent> <F5> :call ClangCheck()<CR><CR>

When editing a .cpp/.cxx/.cc/.c file, hit F5 to reparse the file. In case the current file has a different extension (for
example, .h), F5 will re-run the last clang-check invocation made from this vim instance (if any). The output will go
into the error window, which is opened automatically when clang-check finds errors, and can be re-opened with
:cope.

Other clang-check options that can be useful when working with clang AST:

• -ast-print — Build ASTs and then pretty-print them.

• -ast-dump — Build ASTs and then debug dump them.

• -ast-dump-filter=<string> — Use with -ast-dump or -ast-print to dump/print only AST declaration
nodes having a certain substring in a qualified name. Use -ast-list to list all filterable declaration node
names.

• -ast-list — Build ASTs and print the list of declaration node qualified names.

Examples:
$ clang-check tools/clang/tools/clang-check/ClangCheck.cpp -ast-dump -ast-dump-filter ActionFactory::newASTConsumer
Processing: tools/clang/tools/clang-check/ClangCheck.cpp.
Dumping ::ActionFactory::newASTConsumer:
clang::ASTConsumer *newASTConsumer() (CompoundStmt 0x44da290 </home/alexfh/local/llvm/tools/clang/tools/clang-check/ClangCheck.cpp:64:40, line:72:3>
  (IfStmt 0x44d97c8 <line:65:5, line:66:45>
    <<<NULL>>>
      (ImplicitCastExpr 0x44d96d0 <line:65:9> '_Bool':'_Bool' <UserDefinedConversion>
...
$ clang-check tools/clang/tools/clang-check/ClangCheck.cpp -ast-print -ast-dump-filter ActionFactory::newASTConsumer
Processing: tools/clang/tools/clang-check/ClangCheck.cpp.
Printing <anonymous namespace>::ActionFactory::newASTConsumer:
clang::ASTConsumer *newASTConsumer() {
    if (this->ASTList.operator _Bool())
        return clang::CreateASTDeclNodeLister();
    if (this->ASTDump.operator _Bool())
        return clang::CreateASTDumper(nullptr /*Dump to stdout.*/,
                                      this->ASTDumpFilter);
    if (this->ASTPrint.operator _Bool())
        return clang::CreateASTPrinter(&llvm::outs(), this->ASTDumpFilter);
    return new clang::ASTConsumer();
}

Using Ninja Build System
Optionally you can use the Ninja build system instead of make. It is aimed at making your builds faster. Currently this
step will require building Ninja from sources.

To take advantage of using Clang Tools along with Ninja build you need at least CMake 2.8.9.

Clone the Ninja git repository and build Ninja from sources:

$ git clone git://github.com/martine/ninja.git
$ cd ninja/
$ ./bootstrap.py

This will result in a single binary ninja in the current directory. It doesn’t require installation and can just be copied
to any location inside $PATH, say /usr/local/bin/:

$ sudo cp ninja /usr/local/bin/
$ sudo chmod a+rx /usr/local/bin/ninja

After doing all of this, you’ll need to generate Ninja build files for LLVM with CMake. You need to make a build
directory and run CMake from it:

How To Setup Clang Tooling For LLVM

793

https://ninja-build.org/


$ mkdir your/build/directory
$ cd your/build/directory
$ cmake -G Ninja -DCMAKE_EXPORT_COMPILE_COMMANDS=ON path/to/llvm/sources

If you want to use clang instead of GCC, you can add
-DCMAKE_C_COMPILER=/path/to/clang -DCMAKE_CXX_COMPILER=/path/to/clang++. You can also use
ccmake, which provides a curses interface to configure CMake variables in an interactive manner.

As a result, the new compile_commands.json file should appear in the current directory. You should link it to the
LLVM source tree so that Clang Tooling is able to use it:

$ ln -s $PWD/compile_commands.json path/to/llvm/source/

Now you are ready to build and test LLVM using Ninja:

$ ninja check-all

Other target names can be used in the same way as with make.

JSON Compilation Database Format Specification
This document describes a format for specifying how to replay single compilations independently of the build system.

Background
Tools based on the C++ Abstract Syntax Tree need full information how to parse a translation unit. Usually this
information is implicitly available in the build system, but running tools as part of the build system is not necessarily
the best solution:

• Build systems are inherently change driven, so running multiple tools over the same code base without
changing the code does not fit into the architecture of many build systems.

• Figuring out whether things have changed is often an IO bound process; this makes it hard to build low latency
end user tools based on the build system.

• Build systems are inherently sequential in the build graph, for example due to generated source code. While
tools that run independently of the build still need the generated source code to exist, running tools multiple
times over unchanging source does not require serialization of the runs according to the build dependency
graph.

Supported Systems
Clang has the ablity to generate compilation database fragments via the -MJ argument. You can concatenate
those fragments together between [ and ] to create a compilation database.

Currently CMake (since 2.8.5) supports generation of compilation databases for Unix Makefile builds (Ninja builds in
the works) with the option CMAKE_EXPORT_COMPILE_COMMANDS.

For projects on Linux, there is an alternative to intercept compiler calls with a tool called Bear.

Bazel can export a compilation database via this extractor extension. Bazel is otherwise resistant to Bear and other
compiler-intercept techniques.

Clang’s tooling interface supports reading compilation databases; see the LibTooling documentation. libclang and its
python bindings also support this (since clang 3.2); see CXCompilationDatabase.h.

Format
A compilation database is a JSON file, which consist of an array of “command objects”, where each command object
specifies one way a translation unit is compiled in the project.

Each command object contains the translation unit’s main file, the working directory of the compile run and the actual
compile command.

Example:

JSON Compilation Database Format Specification

794

https://cmake.org
https://github.com/rizsotto/Bear
https://bazel.build
https://github.com/hedronvision/bazel-compile-commands-extractor
file:///doxygen/group__COMPILATIONDB.html


[
  { "directory": "/home/user/llvm/build",
    "arguments": ["/usr/bin/clang++", "-Irelative", "-DSOMEDEF=With spaces, quotes and \\-es.", "-c", "-o", "file.o", "file.cc"],
    "file": "file.cc" },

  { "directory": "/home/user/llvm/build",
    "command": "/usr/bin/clang++ -Irelative -DSOMEDEF=\"With spaces, quotes and \\-es.\" -c -o file.o file.cc",
    "file": "file2.cc" },

  ...
]

The contracts for each field in the command object are:

• directory: The working directory of the compilation. All paths specified in the command or file fields must be
either absolute or relative to this directory.

• file: The main translation unit source processed by this compilation step. This is used by tools as the key into
the compilation database. There can be multiple command objects for the same file, for example if the same
source file is compiled with different configurations.

• arguments: The compile command argv as list of strings. This should run the compilation step for the
translation unit file. arguments[0] should be the executable name, such as clang++. Arguments should
not be escaped, but ready to pass to execvp().

• command: The compile command as a single shell-escaped string. Arguments may be shell quoted and
escaped following platform conventions, with ‘"’ and ‘\’ being the only special characters. Shell expansion is
not supported.

Either arguments or command is required. arguments is preferred, as shell (un)escaping is a possible source
of errors.

• output: The name of the output created by this compilation step. This field is optional. It can be used to
distinguish different processing modes of the same input file.

Build System Integration
The convention is to name the file compile_commands.json and put it at the top of the build directory. Clang tools are
pointed to the top of the build directory to detect the file and use the compilation database to parse C++ code in the
source tree.

Alternatives
For simple projects, Clang tools also recognize a compile_flags.txt file. This should contain one argument per
line. The same flags will be used to compile any file.

Example:

-xc++
-I
libwidget/include/

Here -I libwidget/include is two arguments, and so becomes two lines. Paths are relative to the directory
containing compile_flags.txt.

Clang’s refactoring engine
This document describes the design of Clang’s refactoring engine and provides a couple of examples that show how
various primitives in the refactoring API can be used to implement different refactoring actions. The LibTooling library
provides several other APIs that are used when developing a refactoring action.

Refactoring engine can be used to implement local refactorings that are initiated using a selection in an editor or an
IDE. You can combine AST matchers and the refactoring engine to implement refactorings that don’t lend
themselves well to source selection and/or have to query ASTs for some particular nodes.

We assume basic knowledge about the Clang AST. See the Introduction to the Clang AST if you want to learn more
about how the AST is structured.

Clang’s refactoring engine

795



Introduction
Clang’s refactoring engine defines a set refactoring actions that implement a number of different source
transformations. The clang-refactor command-line tool can be used to perform these refactorings. Certain
refactorings are also available in other clients like text editors and IDEs.

A refactoring action is a class that defines a list of related refactoring operations (rules). These rules are grouped
under a common umbrella - a single clang-refactor command. In addition to rules, the refactoring action
provides the action’s command name and description to clang-refactor. Each action must implement the
RefactoringAction interface. Here’s an outline of a local-rename action:

class LocalRename final : public RefactoringAction {
public:
  StringRef getCommand() const override { return "local-rename"; }

  StringRef getDescription() const override {
    return "Finds and renames symbols in code with no indexer support";
  }

  RefactoringActionRules createActionRules() const override {
    ...
  }
};

Refactoring Action Rules
An individual refactoring action is responsible for creating the set of grouped refactoring action rules that represent
one refactoring operation. Although the rules in one action may have a number of different implementations, they
should strive to produce a similar result. It should be easy for users to identify which refactoring action produced the
result regardless of which refactoring action rule was used.

The distinction between actions and rules enables the creation of actions that define a set of different rules that
produce similar results. For example, the “add missing switch cases” refactoring operation typically adds missing
cases to one switch at a time. However, it could be useful to have a refactoring that works on all switches that
operate on a particular enum, as one could then automatically update all of them after adding a new enum constant.
To achieve that, we can create two different rules that will use one clang-refactor subcommand. The first rule
will describe a local operation that’s initiated when the user selects a single switch. The second rule will describe a
global operation that works across translation units and is initiated when the user provides the name of the enum to
clang-refactor (or the user could select the enum declaration instead). The clang-refactor tool will then analyze the
selection and other options passed to the refactoring action, and will pick the most appropriate rule for the given
selection and other options.

Rule Types

Clang’s refactoring engine supports several different refactoring rules:

• SourceChangeRefactoringRule produces source replacements that are applied to the source files.
Subclasses that choose to implement this rule have to implement the createSourceReplacements member
function. This type of rule is typically used to implement local refactorings that transform the source in one
translation unit only.

• FindSymbolOccurrencesRefactoringRule produces a “partial” refactoring result: a set of occurrences
that refer to a particular symbol. This type of rule is typically used to implement an interactive renaming action
that allows users to specify which occurrences should be renamed during the refactoring. Subclasses that
choose to implement this rule have to implement the findSymbolOccurrences member function.

The following set of quick checks might help if you are unsure about the type of rule you should use:

1. If you would like to transform the source in one translation unit and if you don’t need any cross-TU information,
then the SourceChangeRefactoringRule should work for you.

2. If you would like to implement a rename-like operation with potential interactive components, then
FindSymbolOccurrencesRefactoringRule might work for you.

Clang’s refactoring engine

796



How to Create a Rule

Once you determine which type of rule is suitable for your needs you can implement the refactoring by subclassing
the rule and implementing its interface. The subclass should have a constructor that takes the inputs that are needed
to perform the refactoring. For example, if you want to implement a rule that simply deletes a selection, you should
create a subclass of SourceChangeRefactoringRule with a constructor that accepts the selection range:

class DeleteSelectedRange final : public SourceChangeRefactoringRule {
public:
  DeleteSelection(SourceRange Selection) : Selection(Selection) {}

  Expected<AtomicChanges>
  createSourceReplacements(RefactoringRuleContext &Context) override {
    AtomicChange Replacement(Context.getSources(), Selection.getBegin());
    Replacement.replace(Context.getSource,
                        CharSourceRange::getCharRange(Selection), "");
    return { Replacement };
  }
private:
  SourceRange Selection;
};

The rule’s subclass can then be added to the list of refactoring action’s rules for a particular action using the
createRefactoringActionRule function. For example, the class that’s shown above can be added to the list of
action rules using the following code:

RefactoringActionRules Rules;
Rules.push_back(
  createRefactoringActionRule<DeleteSelectedRange>(
        SourceRangeSelectionRequirement())
);

The createRefactoringActionRule function takes in a list of refactoring action rule requirement values. These
values describe the initiation requirements that have to be satisfied by the refactoring engine before the provided
action rule can be constructed and invoked. The next section describes how these requirements are evaluated and
lists all the possible requirements that can be used to construct a refactoring action rule.

Refactoring Action Rule Requirements
A refactoring action rule requirement is a value whose type derives from the
RefactoringActionRuleRequirement class. The type must define an evaluate member function that returns
a value of type Expected<...>. When a requirement value is used as an argument to
createRefactoringActionRule, that value is evaluated during the initiation of the action rule. The evaluated
result is then passed to the rule’s constructor unless the evaluation produced an error. For example, the
DeleteSelectedRange sample rule that’s defined in the previous section will be evaluated using the following
steps:

1. SourceRangeSelectionRequirement’s evaluate member function will be called first. It will return an
Expected<SourceRange>.

2. If the return value is an error the initiation will fail and the error will be reported to the client. Note that the client
may not report the error to the user.

3. Otherwise the source range return value will be used to construct the DeleteSelectedRange rule. The rule
will then be invoked as the initiation succeeded (all requirements were evaluated successfully).

The same series of steps applies to any refactoring rule. Firstly, the engine will evaluate all of the requirements. Then
it will check if these requirements are satisfied (they should not produce an error). Then it will construct the rule and
invoke it.

The separation of requirements, their evaluation and the invocation of the refactoring action rule allows the
refactoring clients to:

• Disable refactoring action rules whose requirements are not supported.

Clang’s refactoring engine

797



• Gather the set of options and define a command-line / visual interface that allows users to input these options
without ever invoking the action.

Selection Requirements

The refactoring rule requirements that require some form of source selection are listed below:

• SourceRangeSelectionRequirement evaluates to a source range when the action is invoked with some
sort of selection. This requirement should be satisfied when a refactoring is initiated in an editor, even when the
user has not selected anything (the range will contain the cursor’s location in that case).

Other Requirements

There are several other requirements types that can be used when creating a refactoring rule:

• The RefactoringOptionsRequirement requirement is an abstract class that should be subclassed by
requirements working with options. The more concrete OptionRequirement requirement is a simple
implementation of the aforementioned class that returns the value of the specified option when it’s evaluated.
The next section talks more about refactoring options and how they can be used when creating a rule.

Refactoring Options
Refactoring options are values that affect a refactoring operation and are specified either using command-line
options or another client-specific mechanism. Options should be created using a class that derives either from the
OptionalRequiredOption or RequiredRefactoringOption. The following example shows how one can
created a required string option that corresponds to the -new-name command-line option in clang-refactor:

class NewNameOption : public RequiredRefactoringOption<std::string> {
public:
  StringRef getName() const override { return "new-name"; }
  StringRef getDescription() const override {
    return "The new name to change the symbol to";
  }
};

The option that’s shown in the example above can then be used to create a requirement for a refactoring rule using a
requirement like OptionRequirement:

createRefactoringActionRule<RenameOccurrences>(
  ...,
  OptionRequirement<NewNameOption>())
);

Using Clang Tools

Overview
Clang Tools are standalone command line (and potentially GUI) tools designed for use by C++ developers who are
already using and enjoying Clang as their compiler. These tools provide developer-oriented functionality such as fast
syntax checking, automatic formatting, refactoring, etc.

Only a couple of the most basic and fundamental tools are kept in the primary Clang tree. The rest of the tools are
kept in a separate directory tree, clang-tools-extra.

This document describes a high-level overview of the organization of Clang Tools within the project as well as giving
an introduction to some of the more important tools. However, it should be noted that this document is currently
focused on Clang and Clang Tool developers, not on end users of these tools.

Using Clang Tools

798

https://github.com/llvm/llvm-project/tree/main/clang-tools-extra


Clang Tools Organization
Clang Tools are CLI or GUI programs that are intended to be directly used by C++ developers. That is they are not
primarily for use by Clang developers, although they are hopefully useful to C++ developers who happen to work on
Clang, and we try to actively dogfood their functionality. They are developed in three components: the underlying
infrastructure for building a standalone tool based on Clang, core shared logic used by many different tools in the
form of refactoring and rewriting libraries, and the tools themselves.

The underlying infrastructure for Clang Tools is the LibTooling platform. See its documentation for much more
detailed information about how this infrastructure works. The common refactoring and rewriting toolkit-style library is
also part of LibTooling organizationally.

A few Clang Tools are developed along side the core Clang libraries as examples and test cases of fundamental
functionality. However, most of the tools are developed in a side repository to provide easy separation from the core
libraries. We intentionally do not support public libraries in the side repository, as we want to carefully review and find
good APIs for libraries as they are lifted out of a few tools and into the core Clang library set.

Regardless of which repository Clang Tools’ code resides in, the development process and practices for all Clang
Tools are exactly those of Clang itself. They are entirely within the Clang project, regardless of the version control
scheme.

Core Clang Tools
The core set of Clang tools that are within the main repository are tools that very specifically complement, and allow
use and testing of Clang specific functionality.

clang-check

ClangCheck combines the LibTooling framework for running a Clang tool with the basic Clang diagnostics by syntax
checking specific files in a fast, command line interface. It can also accept flags to re-display the diagnostics in
different formats with different flags, suitable for use driving an IDE or editor. Furthermore, it can be used in
fixit-mode to directly apply fixit-hints offered by clang. See How To Setup Clang Tooling For LLVM for instructions on
how to setup and used clang-check.

clang-format

Clang-format is both a library and a stand-alone tool with the goal of automatically reformatting C++ sources files
according to configurable style guides. To do so, clang-format uses Clang’s Lexer to transform an input file into a
token stream and then changes all the whitespace around those tokens. The goal is for clang-format to serve both as
a user tool (ideally with powerful IDE integrations) and as part of other refactoring tools, e.g. to do a reformatting of
all the lines changed during a renaming.

Extra Clang Tools
As various categories of Clang Tools are added to the extra repository, they’ll be tracked here. The focus of this
documentation is on the scope and features of the tools for other tool developers; each tool should provide its own
user-focused documentation.

clang-tidy

clang-tidy is a clang-based C++ linter tool. It provides an extensible framework for building compiler-based static
analyses detecting and fixing bug-prone patterns, performance, portability and maintainability issues.

Ideas for new Tools

• C++ cast conversion tool. Will convert C-style casts ((type) value) to appropriate C++ cast (static_cast,
const_cast or reinterpret_cast).

• Non-member begin() and end() conversion tool. Will convert foo.begin() into begin(foo) and similarly
for end(), where foo is a standard container. We could also detect similar patterns for arrays.

Using Clang Tools

799

https://clang.llvm.org/extra/clang-tidy/


• tr1 removal tool. Will migrate source code from using TR1 library features to C++11 library. For example:

#include <tr1/unordered_map>
int main()
{
    std::tr1::unordered_map <int, int> ma;
    std::cout << ma.size () << std::endl;
    return 0;
}

should be rewritten to:

#include <unordered_map>
int main()
{
    std::unordered_map <int, int> ma;
    std::cout << ma.size () << std::endl;
    return 0;
}

• A tool to remove auto. Will convert auto to an explicit type or add comments with deduced types. The
motivation is that there are developers that don’t want to use auto because they are afraid that they might lose
control over their code.

• C++14: less verbose operator function objects (N3421). For example:

sort(v.begin(), v.end(), greater<ValueType>());

should be rewritten to:

sort(v.begin(), v.end(), greater<>());

ClangCheck
ClangCheck is a small wrapper around LibTooling which can be used to do basic error checking and AST dumping.
$ cat <<EOF > snippet.cc
> void f() {
>   int a = 0
> }
> EOF
$ ~/clang/build/bin/clang-check snippet.cc -ast-dump --
Processing: /Users/danieljasper/clang/llvm/tools/clang/docs/snippet.cc.
/Users/danieljasper/clang/llvm/tools/clang/docs/snippet.cc:2:12: error: expected ';' at end of
      declaration
  int a = 0
           ^
           ;
(TranslationUnitDecl 0x7ff3a3029ed0 <<invalid sloc>>
  (TypedefDecl 0x7ff3a302a410 <<invalid sloc>> __int128_t '__int128')
  (TypedefDecl 0x7ff3a302a470 <<invalid sloc>> __uint128_t 'unsigned __int128')
  (TypedefDecl 0x7ff3a302a830 <<invalid sloc>> __builtin_va_list '__va_list_tag [1]')
  (FunctionDecl 0x7ff3a302a8d0 </Users/danieljasper/clang/llvm/tools/clang/docs/snippet.cc:1:1, line:3:1> f 'void (void)'
    (CompoundStmt 0x7ff3a302aa10 <line:1:10, line:3:1>
      (DeclStmt 0x7ff3a302a9f8 <line:2:3, line:3:1>
        (VarDecl 0x7ff3a302a980 <line:2:3, col:11> a 'int'
          (IntegerLiteral 0x7ff3a302a9d8 <col:11> 'int' 0))))))
1 error generated.
Error while processing snippet.cc.

The ‘–’ at the end is important as it prevents clang-check from searching for a compilation database. For more
information on how to setup and use clang-check in a project, see How To Setup Clang Tooling For LLVM.

ClangFormat
ClangFormat describes a set of tools that are built on top of LibFormat. It can support your workflow in a variety of
ways including a standalone tool and editor integrations.

ClangCheck

800

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2012/n3421.htm


Standalone Tool
clang-format is located in clang/tools/clang-format and can be used to format
C/C++/Java/JavaScript/JSON/Objective-C/Protobuf/C# code.

$ clang-format -help
OVERVIEW: A tool to format C/C++/Java/JavaScript/JSON/Objective-C/Protobuf/C# code.

If no arguments are specified, it formats the code from standard input
and writes the result to the standard output.
If <file>s are given, it reformats the files. If -i is specified
together with <file>s, the files are edited in-place. Otherwise, the
result is written to the standard output.

USAGE: clang-format [options] [<file> ...]

OPTIONS:

Clang-format options:

  --Werror                       - If set, changes formatting warnings to errors
  --Wno-error=<value>            - If set don't error out on the specified warning type.
    =unknown                     -   If set, unknown format options are only warned about.
                                     This can be used to enable formatting, even if the
                                     configuration contains unknown (newer) options.
                                     Use with caution, as this might lead to dramatically
                                     differing format depending on an option being
                                     supported or not.
  --assume-filename=<string>     - Override filename used to determine the language.
                                   When reading from stdin, clang-format assumes this
                                   filename to determine the language.
  --cursor=<uint>                - The position of the cursor when invoking
                                   clang-format from an editor integration
  --dry-run                      - If set, do not actually make the formatting changes
  --dump-config                  - Dump configuration options to stdout and exit.
                                   Can be used with -style option.
  --fallback-style=<string>      - The name of the predefined style used as a
                                   fallback in case clang-format is invoked with
                                   -style=file, but can not find the .clang-format
                                   file to use.
                                   Use -fallback-style=none to skip formatting.
  --ferror-limit=<uint>          - Set the maximum number of clang-format errors to emit
                                   before stopping (0 = no limit).
                                   Used only with --dry-run or -n
  --files=<string>               - Provide a list of files to run clang-format
  -i                             - Inplace edit <file>s, if specified.
  --length=<uint>                - Format a range of this length (in bytes).
                                   Multiple ranges can be formatted by specifying
                                   several -offset and -length pairs.
                                   When only a single -offset is specified without
                                   -length, clang-format will format up to the end
                                   of the file.
                                   Can only be used with one input file.
  --lines=<string>               - <start line>:<end line> - format a range of
                                   lines (both 1-based).
                                   Multiple ranges can be formatted by specifying
                                   several -lines arguments.
                                   Can't be used with -offset and -length.
                                   Can only be used with one input file.
  -n                             - Alias for --dry-run
  --offset=<uint>                - Format a range starting at this byte offset.

                                   Multiple ranges can be formatted by specifying
                                   several -offset and -length pairs.
                                   Can only be used with one input file.
  --output-replacements-xml      - Output replacements as XML.
  --qualifier-alignment=<string> - If set, overrides the qualifier alignment style
                                   determined by the QualifierAlignment style flag

ClangCheck

801



  --sort-includes                - If set, overrides the include sorting behavior
                                   determined by the SortIncludes style flag
  --style=<string>               - Coding style, currently supports:
                                     LLVM, GNU, Google, Chromium, Microsoft, Mozilla, WebKit.
                                   Use -style=file to load style configuration from
                                   .clang-format file located in one of the parent
                                   directories of the source file (or current
                                   directory for stdin).
                                   Use -style=file:<format_file_path> to explicitly specify
                                   the configuration file.
                                   Use -style="{key: value, ...}" to set specific
                                   parameters, e.g.:
                                     -style="{BasedOnStyle: llvm, IndentWidth: 8}"
  --verbose                      - If set, shows the list of processed files

Generic Options:

  --help                         - Display available options (--help-hidden for more)
  --help-list                    - Display list of available options (--help-list-hidden for more)
  --version                      - Display the version of this program

When the desired code formatting style is different from the available options, the style can be customized using the
-style="{key: value, ...}" option or by putting your style configuration in the .clang-format or
_clang-format file in your project’s directory and using clang-format -style=file.

An easy way to create the .clang-format file is:

clang-format -style=llvm -dump-config > .clang-format

Available style options are described in Clang-Format Style Options.

Vim Integration
There is an integration for vim which lets you run the clang-format standalone tool on your current buffer, optionally
selecting regions to reformat. The integration has the form of a python-file which can be found under
clang/tools/clang-format/clang-format.py.

This can be integrated by adding the following to your .vimrc:

map <C-K> :pyf <path-to-this-file>/clang-format.py<cr>
imap <C-K> <c-o>:pyf <path-to-this-file>/clang-format.py<cr>

The first line enables clang-format for NORMAL and VISUAL mode, the second line adds support for INSERT
mode. Change “C-K” to another binding if you need clang-format on a different key (C-K stands for Ctrl+k).

With this integration you can press the bound key and clang-format will format the current line in NORMAL and
INSERT mode or the selected region in VISUAL mode. The line or region is extended to the next bigger syntactic
entity.

It operates on the current, potentially unsaved buffer and does not create or save any files. To revert a formatting,
just undo.

An alternative option is to format changes when saving a file and thus to have a zero-effort integration into the coding
workflow. To do this, add this to your .vimrc:

function! Formatonsave()
  let l:formatdiff = 1
  pyf ~/llvm/tools/clang/tools/clang-format/clang-format.py
endfunction
autocmd BufWritePre *.h,*.cc,*.cpp call Formatonsave()

Emacs Integration
Similar to the integration for vim, there is an integration for emacs. It can be found at
clang/tools/clang-format/clang-format.el and used by adding this to your .emacs:

ClangCheck

802



(load "<path-to-clang>/tools/clang-format/clang-format.el")
(global-set-key [C-M-tab] 'clang-format-region)

This binds the function clang-format-region to C-M-tab, which then formats the current line or selected region.

BBEdit Integration
clang-format cannot be used as a text filter with BBEdit, but works well via a script. The AppleScript to do this
integration can be found at clang/tools/clang-format/clang-format-bbedit.applescript; place a copy in
~/Library/Application Support/BBEdit/Scripts, and edit the path within it to point to your local copy of clang-format.

With this integration you can select the script from the Script menu and clang-format will format the selection. Note
that you can rename the menu item by renaming the script, and can assign the menu item a keyboard shortcut in the
BBEdit preferences, under Menus & Shortcuts.

CLion Integration
clang-format is integrated into CLion as an alternative code formatter. CLion turns it on automatically when there is
a .clang-format file under the project root. Code style rules are applied as you type, including indentation,
auto-completion, code generation, and refactorings.

clang-format can also be enabled without a .clang-format file. In this case, CLion prompts you to create one
based on the current IDE settings or the default LLVM style.

Visual Studio Integration
Download the latest Visual Studio extension from the alpha build site. The default key-binding is Ctrl-R,Ctrl-F.

Visual Studio Code Integration
Get the latest Visual Studio Code extension from the Visual Studio Marketplace. The default key-binding is
Alt-Shift-F.

Script for patch reformatting
The python script clang/tools/clang-format/clang-format-diff.py parses the output of a unified diff and reformats all
contained lines with clang-format.

usage: clang-format-diff.py [-h] [-i] [-p NUM] [-regex PATTERN] [-style STYLE]

Reformat changed lines in diff. Without -i option just output the diff that
would be introduced.

optional arguments:
  -h, --help      show this help message and exit
  -i              apply edits to files instead of displaying a diff
  -p NUM          strip the smallest prefix containing P slashes
  -regex PATTERN  custom pattern selecting file paths to reformat
  -style STYLE    formatting style to apply (LLVM, Google, Chromium, Mozilla,
                  WebKit)

So to reformat all the lines in the latest git commit, just do:

git diff -U0 --no-color HEAD^ | clang-format-diff.py -i -p1

With Mercurial/hg:

hg diff -U0 --color=never | clang-format-diff.py -i -p1

ClangCheck

803

https://www.jetbrains.com/clion/
https://llvm.org/builds/
https://marketplace.visualstudio.com/items?itemName=xaver.clang-format


In an SVN client, you can do:

svn diff --diff-cmd=diff -x -U0 | clang-format-diff.py -i

The option -U0 will create a diff without context lines (the script would format those as well).

These commands use the file paths shown in the diff output so they will only work from the root of the repository.

Current State of Clang Format for LLVM
The following table Clang Formatted Status shows the current status of clang-formatting for the entire LLVM source
tree.

Clang-Format Style Options
Clang-Format Style Options describes configurable formatting style options supported by LibFormat and
ClangFormat.

When using clang-format command line utility or clang::format::reformat(...) functions from code, one
can either use one of the predefined styles (LLVM, Google, Chromium, Mozilla, WebKit, Microsoft) or create a
custom style by configuring specific style options.

Configuring Style with clang-format
clang-format supports two ways to provide custom style options: directly specify style configuration in the -style=
command line option or use -style=file and put style configuration in the .clang-format or _clang-format
file in the project directory.

When using -style=file, clang-format for each input file will try to find the .clang-format file located in the
closest parent directory of the input file. When the standard input is used, the search is started from the current
directory.

When using -style=file:<format_file_path>, clang-format for each input file will use the format file located
at <format_file_path>. The path may be absolute or relative to the working directory.

The .clang-format file uses YAML format:

key1: value1
key2: value2
# A comment.
...

The configuration file can consist of several sections each having different Language: parameter denoting the
programming language this section of the configuration is targeted at. See the description of the Language option
below for the list of supported languages. The first section may have no language set, it will set the default style
options for all languages. Configuration sections for specific language will override options set in the default section.

When clang-format formats a file, it auto-detects the language using the file name. When formatting standard input
or a file that doesn’t have the extension corresponding to its language, -assume-filename= option can be used to
override the file name clang-format uses to detect the language.

An example of a configuration file for multiple languages:

---
# We'll use defaults from the LLVM style, but with 4 columns indentation.
BasedOnStyle: LLVM
IndentWidth: 4
---
Language: Cpp
# Force pointers to the type for C++.
DerivePointerAlignment: false
PointerAlignment: Left
---
Language: JavaScript

Clang-Format Style Options

804



# Use 100 columns for JS.
ColumnLimit: 100
---
Language: Proto
# Don't format .proto files.
DisableFormat: true
---
Language: CSharp
# Use 100 columns for C#.
ColumnLimit: 100
...

An easy way to get a valid .clang-format file containing all configuration options of a certain predefined style is:

clang-format -style=llvm -dump-config > .clang-format

When specifying configuration in the -style= option, the same configuration is applied for all input files. The format
of the configuration is:

-style='{key1: value1, key2: value2, ...}'

Disabling Formatting on a Piece of Code
Clang-format understands also special comments that switch formatting in a delimited range. The code between a
comment // clang-format off or /* clang-format off */ up to a comment // clang-format on or
/* clang-format on */ will not be formatted. The comments themselves will be formatted (aligned) normally.

int formatted_code;
// clang-format off
    void    unformatted_code  ;
// clang-format on
void formatted_code_again;

Configuring Style in Code
When using clang::format::reformat(...) functions, the format is specified by supplying the
clang::format::FormatStyle structure.

Configurable Format Style Options
This section lists the supported style options. Value type is specified for each option. For enumeration types possible
values are specified both as a C++ enumeration member (with a prefix, e.g. LS_Auto), and as a value usable in the
configuration (without a prefix: Auto).

BasedOnStyle (String)

The style used for all options not specifically set in the configuration.

This option is supported only in the clang-format configuration (both within -style='{...}' and the
.clang-format file).

Possible values:

• LLVM A style complying with the LLVM coding standards

• Google A style complying with Google’s C++ style guide

• Chromium A style complying with Chromium’s style guide

• Mozilla A style complying with Mozilla’s style guide

• WebKit A style complying with WebKit’s style guide

• Microsoft A style complying with Microsoft’s style guide

• GNU A style complying with the GNU coding standards

Clang-Format Style Options

805

https://clang.llvm.org/doxygen/structclang_1_1format_1_1FormatStyle.html
https://llvm.org/docs/CodingStandards.html
https://google.github.io/styleguide/cppguide.html
https://chromium.googlesource.com/chromium/src/+/refs/heads/main/styleguide/styleguide.md
https://firefox-source-docs.mozilla.org/code-quality/coding-style/index.html
https://www.webkit.org/coding/coding-style.html
https://docs.microsoft.com/en-us/visualstudio/ide/editorconfig-code-style-settings-reference
https://www.gnu.org/prep/standards/standards.html


• InheritParentConfig Not a real style, but allows to use the .clang-format file from the parent
directory (or its parent if there is none). If there is no parent file found it falls back to the fallback style,
and applies the changes to that.

With this option you can overwrite some parts of your main style for your subdirectories. This is also
possible through the command line, e.g.:
--style={BasedOnStyle: InheritParentConfig, ColumnLimit: 20}

AccessModifierOffset (Integer) clang-format 3.3

The extra indent or outdent of access modifiers, e.g. public:.

AlignAfterOpenBracket (BracketAlignmentStyle) clang-format 3.8

If true, horizontally aligns arguments after an open bracket.

This applies to round brackets (parentheses), angle brackets and square brackets.

Possible values:

• BAS_Align (in configuration: Align) Align parameters on the open bracket, e.g.:

someLongFunction(argument1,
                 argument2);

• BAS_DontAlign (in configuration: DontAlign) Don’t align, instead use ContinuationIndentWidth,
e.g.:

someLongFunction(argument1,
    argument2);

• BAS_AlwaysBreak (in configuration: AlwaysBreak) Always break after an open bracket, if the
parameters don’t fit on a single line, e.g.:

someLongFunction(
    argument1, argument2);

• BAS_BlockIndent (in configuration: BlockIndent) Always break after an open bracket, if the
parameters don’t fit on a single line. Closing brackets will be placed on a new line. E.g.:

someLongFunction(
    argument1, argument2
)

Warning

Note: This currently only applies to parentheses.

AlignArrayOfStructures (ArrayInitializerAlignmentStyle) clang-format 13

if not None, when using initialization for an array of structs aligns the fields into columns.

NOTE: As of clang-format 15 this option only applied to arrays with equal number of columns per row.

Possible values:

• AIAS_Left (in configuration: Left) Align array column and left justify the columns e.g.:

struct test demo[] =
{
    {56, 23,    "hello"},
    {-1, 93463, "world"},
    {7,  5,     "!!"   }
};

• AIAS_Right (in configuration: Right) Align array column and right justify the columns e.g.:

struct test demo[] =
{

Clang-Format Style Options

806



    {56,    23, "hello"},
    {-1, 93463, "world"},
    { 7,     5,    "!!"}
};

• AIAS_None (in configuration: None) Don’t align array initializer columns.
AlignConsecutiveAssignments (AlignConsecutiveStyle) clang-format 3.8

Style of aligning consecutive assignments.

Consecutive will result in formattings like:

int a            = 1;
int somelongname = 2;
double c         = 3;

Nested configuration flags:

Alignment options.

They can also be read as a whole for compatibility. The choices are: - None - Consecutive - AcrossEmptyLines -
AcrossComments - AcrossEmptyLinesAndComments

For example, to align across empty lines and not across comments, either of these work.

AlignConsecutiveMacros: AcrossEmptyLines

AlignConsecutiveMacros:
  Enabled: true
  AcrossEmptyLines: true
  AcrossComments: false

• bool Enabled Whether aligning is enabled.

#define SHORT_NAME       42
#define LONGER_NAME      0x007f
#define EVEN_LONGER_NAME (2)
#define foo(x)           (x * x)
#define bar(y, z)        (y + z)

int a            = 1;
int somelongname = 2;
double c         = 3;

int aaaa : 1;
int b    : 12;
int ccc  : 8;

int         aaaa = 12;
float       b = 23;
std::string ccc;

• bool AcrossEmptyLines Whether to align across empty lines.

true:
int a            = 1;
int somelongname = 2;
double c         = 3;

int d            = 3;

false:
int a            = 1;
int somelongname = 2;

Clang-Format Style Options

807



double c         = 3;

int d = 3;

• bool AcrossComments Whether to align across comments.

true:
int d    = 3;
/* A comment. */
double e = 4;

false:
int d = 3;
/* A comment. */
double e = 4;

• bool AlignCompound Only for AlignConsecutiveAssignments. Whether compound assignments
like += are aligned along with =.

true:
a   &= 2;
bbb  = 2;

false:
a &= 2;
bbb = 2;

• bool PadOperators Only for AlignConsecutiveAssignments. Whether short assignment operators
are left-padded to the same length as long ones in order to put all assignment operators to the right of the
left hand side.

true:
a   >>= 2;
bbb   = 2;

a     = 2;
bbb >>= 2;

false:
a >>= 2;
bbb = 2;

a     = 2;
bbb >>= 2;

AlignConsecutiveBitFields (AlignConsecutiveStyle) clang-format 11

Style of aligning consecutive bit fields.

Consecutive will align the bitfield separators of consecutive lines. This will result in formattings like:

int aaaa : 1;
int b    : 12;
int ccc  : 8;

Nested configuration flags:

Alignment options.

They can also be read as a whole for compatibility. The choices are: - None - Consecutive - AcrossEmptyLines -
AcrossComments - AcrossEmptyLinesAndComments

For example, to align across empty lines and not across comments, either of these work.

AlignConsecutiveMacros: AcrossEmptyLines

AlignConsecutiveMacros:

Clang-Format Style Options

808



  Enabled: true
  AcrossEmptyLines: true
  AcrossComments: false

• bool Enabled Whether aligning is enabled.

#define SHORT_NAME       42
#define LONGER_NAME      0x007f
#define EVEN_LONGER_NAME (2)
#define foo(x)           (x * x)
#define bar(y, z)        (y + z)

int a            = 1;
int somelongname = 2;
double c         = 3;

int aaaa : 1;
int b    : 12;
int ccc  : 8;

int         aaaa = 12;
float       b = 23;
std::string ccc;

• bool AcrossEmptyLines Whether to align across empty lines.

true:
int a            = 1;
int somelongname = 2;
double c         = 3;

int d            = 3;

false:
int a            = 1;
int somelongname = 2;
double c         = 3;

int d = 3;

• bool AcrossComments Whether to align across comments.

true:
int d    = 3;
/* A comment. */
double e = 4;

false:
int d = 3;
/* A comment. */
double e = 4;

• bool AlignCompound Only for AlignConsecutiveAssignments. Whether compound assignments
like += are aligned along with =.

true:
a   &= 2;
bbb  = 2;

false:
a &= 2;
bbb = 2;

Clang-Format Style Options

809



• bool PadOperators Only for AlignConsecutiveAssignments. Whether short assignment operators
are left-padded to the same length as long ones in order to put all assignment operators to the right of the
left hand side.

true:
a   >>= 2;
bbb   = 2;

a     = 2;
bbb >>= 2;

false:
a >>= 2;
bbb = 2;

a     = 2;
bbb >>= 2;

AlignConsecutiveDeclarations (AlignConsecutiveStyle) clang-format 3.8

Style of aligning consecutive declarations.

Consecutive will align the declaration names of consecutive lines. This will result in formattings like:

int         aaaa = 12;
float       b = 23;
std::string ccc;

Nested configuration flags:

Alignment options.

They can also be read as a whole for compatibility. The choices are: - None - Consecutive - AcrossEmptyLines -
AcrossComments - AcrossEmptyLinesAndComments

For example, to align across empty lines and not across comments, either of these work.

AlignConsecutiveMacros: AcrossEmptyLines

AlignConsecutiveMacros:
  Enabled: true
  AcrossEmptyLines: true
  AcrossComments: false

• bool Enabled Whether aligning is enabled.

#define SHORT_NAME       42
#define LONGER_NAME      0x007f
#define EVEN_LONGER_NAME (2)
#define foo(x)           (x * x)
#define bar(y, z)        (y + z)

int a            = 1;
int somelongname = 2;
double c         = 3;

int aaaa : 1;
int b    : 12;
int ccc  : 8;

int         aaaa = 12;
float       b = 23;
std::string ccc;

• bool AcrossEmptyLines Whether to align across empty lines.

Clang-Format Style Options

810



true:
int a            = 1;
int somelongname = 2;
double c         = 3;

int d            = 3;

false:
int a            = 1;
int somelongname = 2;
double c         = 3;

int d = 3;

• bool AcrossComments Whether to align across comments.

true:
int d    = 3;
/* A comment. */
double e = 4;

false:
int d = 3;
/* A comment. */
double e = 4;

• bool AlignCompound Only for AlignConsecutiveAssignments. Whether compound assignments
like += are aligned along with =.

true:
a   &= 2;
bbb  = 2;

false:
a &= 2;
bbb = 2;

• bool PadOperators Only for AlignConsecutiveAssignments. Whether short assignment operators
are left-padded to the same length as long ones in order to put all assignment operators to the right of the
left hand side.

true:
a   >>= 2;
bbb   = 2;

a     = 2;
bbb >>= 2;

false:
a >>= 2;
bbb = 2;

a     = 2;
bbb >>= 2;

AlignConsecutiveMacros (AlignConsecutiveStyle) clang-format 9

Style of aligning consecutive macro definitions.

Consecutive will result in formattings like:

#define SHORT_NAME       42
#define LONGER_NAME      0x007f
#define EVEN_LONGER_NAME (2)
#define foo(x)           (x * x)

Clang-Format Style Options

811



#define bar(y, z)        (y + z)

Nested configuration flags:

Alignment options.

They can also be read as a whole for compatibility. The choices are: - None - Consecutive - AcrossEmptyLines -
AcrossComments - AcrossEmptyLinesAndComments

For example, to align across empty lines and not across comments, either of these work.

AlignConsecutiveMacros: AcrossEmptyLines

AlignConsecutiveMacros:
  Enabled: true
  AcrossEmptyLines: true
  AcrossComments: false

• bool Enabled Whether aligning is enabled.

#define SHORT_NAME       42
#define LONGER_NAME      0x007f
#define EVEN_LONGER_NAME (2)
#define foo(x)           (x * x)
#define bar(y, z)        (y + z)

int a            = 1;
int somelongname = 2;
double c         = 3;

int aaaa : 1;
int b    : 12;
int ccc  : 8;

int         aaaa = 12;
float       b = 23;
std::string ccc;

• bool AcrossEmptyLines Whether to align across empty lines.

true:
int a            = 1;
int somelongname = 2;
double c         = 3;

int d            = 3;

false:
int a            = 1;
int somelongname = 2;
double c         = 3;

int d = 3;

• bool AcrossComments Whether to align across comments.

true:
int d    = 3;
/* A comment. */
double e = 4;

false:

Clang-Format Style Options

812



int d = 3;
/* A comment. */
double e = 4;

• bool AlignCompound Only for AlignConsecutiveAssignments. Whether compound assignments
like += are aligned along with =.

true:
a   &= 2;
bbb  = 2;

false:
a &= 2;
bbb = 2;

• bool PadOperators Only for AlignConsecutiveAssignments. Whether short assignment operators
are left-padded to the same length as long ones in order to put all assignment operators to the right of the
left hand side.

true:
a   >>= 2;
bbb   = 2;

a     = 2;
bbb >>= 2;

false:
a >>= 2;
bbb = 2;

a     = 2;
bbb >>= 2;

AlignEscapedNewlines (EscapedNewlineAlignmentStyle) clang-format 5

Options for aligning backslashes in escaped newlines.

Possible values:

• ENAS_DontAlign (in configuration: DontAlign) Don’t align escaped newlines.

#define A \
  int aaaa; \
  int b; \
  int dddddddddd;

• ENAS_Left (in configuration: Left) Align escaped newlines as far left as possible.

true:
#define A   \
  int aaaa; \
  int b;    \
  int dddddddddd;

false:

• ENAS_Right (in configuration: Right) Align escaped newlines in the right-most column.

#define A                                                                      \
  int aaaa;                                                                    \
  int b;                                                                       \
  int dddddddddd;

AlignOperands (OperandAlignmentStyle) clang-format 3.5

If true, horizontally align operands of binary and ternary expressions.

Clang-Format Style Options

813



Possible values:

• OAS_DontAlign (in configuration: DontAlign) Do not align operands of binary and ternary expressions.
The wrapped lines are indented ContinuationIndentWidth spaces from the start of the line.

• OAS_Align (in configuration: Align) Horizontally align operands of binary and ternary expressions.

Specifically, this aligns operands of a single expression that needs to be split over multiple lines, e.g.:

int aaa = bbbbbbbbbbbbbbb +
          ccccccccccccccc;

When BreakBeforeBinaryOperators is set, the wrapped operator is aligned with the operand on the
first line.

int aaa = bbbbbbbbbbbbbbb
          + ccccccccccccccc;

• OAS_AlignAfterOperator (in configuration: AlignAfterOperator) Horizontally align operands of
binary and ternary expressions.

This is similar to AO_Align, except when BreakBeforeBinaryOperators is set, the operator is
un-indented so that the wrapped operand is aligned with the operand on the first line.

int aaa = bbbbbbbbbbbbbbb
        + ccccccccccccccc;

AlignTrailingComments (Boolean) clang-format 3.7

If true, aligns trailing comments.

true:                                   false:
int a;     // My comment a      vs.     int a; // My comment a
int b = 2; // comment  b                int b = 2; // comment about b

AllowAllArgumentsOnNextLine (Boolean) clang-format 9

If a function call or braced initializer list doesn’t fit on a line, allow putting all arguments onto the next line, even if
BinPackArguments is false.

true:
callFunction(
    a, b, c, d);

false:
callFunction(a,
             b,
             c,
             d);

AllowAllConstructorInitializersOnNextLine (Boolean) clang-format 9

This option is deprecated. See NextLine of PackConstructorInitializers.

AllowAllParametersOfDeclarationOnNextLine (Boolean) clang-format 3.3

If the function declaration doesn’t fit on a line, allow putting all parameters of a function declaration onto the next
line even if BinPackParameters is false.

true:
void myFunction(
    int a, int b, int c, int d, int e);

false:
void myFunction(int a,
                int b,
                int c,
                int d,
                int e);

AllowShortBlocksOnASingleLine (ShortBlockStyle) clang-format 3.5

Clang-Format Style Options

814



Dependent on the value, while (true) { continue; } can be put on a single line.

Possible values:

• SBS_Never (in configuration: Never) Never merge blocks into a single line.

while (true) {
}
while (true) {
  continue;
}

• SBS_Empty (in configuration: Empty) Only merge empty blocks.

while (true) {}
while (true) {
  continue;
}

• SBS_Always (in configuration: Always) Always merge short blocks into a single line.

while (true) {}
while (true) { continue; }

AllowShortCaseLabelsOnASingleLine (Boolean) clang-format 3.6

If true, short case labels will be contracted to a single line.

true:                                   false:
switch (a) {                    vs.     switch (a) {
case 1: x = 1; break;                   case 1:
case 2: return;                           x = 1;
}                                         break;
                                        case 2:
                                          return;
                                        }

AllowShortEnumsOnASingleLine (Boolean) clang-format 11

Allow short enums on a single line.

true:
enum { A, B } myEnum;

false:
enum {
  A,
  B
} myEnum;

AllowShortFunctionsOnASingleLine (ShortFunctionStyle) clang-format 3.5

Dependent on the value, int f() { return 0; } can be put on a single line.

Possible values:

• SFS_None (in configuration: None) Never merge functions into a single line.

• SFS_InlineOnly (in configuration: InlineOnly) Only merge functions defined inside a class. Same as
“inline”, except it does not implies “empty”: i.e. top level empty functions are not merged either.

class Foo {
  void f() { foo(); }
};
void f() {
  foo();
}
void f() {
}

Clang-Format Style Options

815



• SFS_Empty (in configuration: Empty) Only merge empty functions.

void f() {}
void f2() {
  bar2();
}

• SFS_Inline (in configuration: Inline) Only merge functions defined inside a class. Implies “empty”.

class Foo {
  void f() { foo(); }
};
void f() {
  foo();
}
void f() {}

• SFS_All (in configuration: All) Merge all functions fitting on a single line.

class Foo {
  void f() { foo(); }
};
void f() { bar(); }

AllowShortIfStatementsOnASingleLine (ShortIfStyle) clang-format 3.3

Dependent on the value, if (a) return; can be put on a single line.

Possible values:

• SIS_Never (in configuration: Never) Never put short ifs on the same line.

if (a)
  return;

if (b)
  return;
else
  return;

if (c)
  return;
else {
  return;
}

• SIS_WithoutElse (in configuration: WithoutElse) Put short ifs on the same line only if there is no else
statement.

if (a) return;

if (b)
  return;
else
  return;

if (c)
  return;
else {
  return;
}

• SIS_OnlyFirstIf (in configuration: OnlyFirstIf) Put short ifs, but not else ifs nor else statements, on
the same line.

if (a) return;

Clang-Format Style Options

816



if (b) return;
else if (b)
  return;
else
  return;

if (c) return;
else {
  return;
}

• SIS_AllIfsAndElse (in configuration: AllIfsAndElse) Always put short ifs, else ifs and else
statements on the same line.

if (a) return;

if (b) return;
else return;

if (c) return;
else {
  return;
}

AllowShortLambdasOnASingleLine (ShortLambdaStyle) clang-format 9

Dependent on the value, auto lambda []() { return 0; } can be put on a single line.

Possible values:

• SLS_None (in configuration: None) Never merge lambdas into a single line.

• SLS_Empty (in configuration: Empty) Only merge empty lambdas.

auto lambda = [](int a) {}
auto lambda2 = [](int a) {
    return a;
};

• SLS_Inline (in configuration: Inline) Merge lambda into a single line if argument of a function.

auto lambda = [](int a) {
    return a;
};
sort(a.begin(), a.end(), ()[] { return x < y; })

• SLS_All (in configuration: All) Merge all lambdas fitting on a single line.

auto lambda = [](int a) {}
auto lambda2 = [](int a) { return a; };

AllowShortLoopsOnASingleLine (Boolean) clang-format 3.7

If true, while (true) continue; can be put on a single line.

AlwaysBreakAfterDefinitionReturnType (DefinitionReturnTypeBreakingStyle) clang-format 3.7

The function definition return type breaking style to use. This option is deprecated and is retained for backwards
compatibility.

Possible values:

• DRTBS_None (in configuration: None) Break after return type automatically.
PenaltyReturnTypeOnItsOwnLine is taken into account.

• DRTBS_All (in configuration: All) Always break after the return type.

• DRTBS_TopLevel (in configuration: TopLevel) Always break after the return types of top-level functions.
AlwaysBreakAfterReturnType (ReturnTypeBreakingStyle) clang-format 3.8

The function declaration return type breaking style to use.

Clang-Format Style Options

817



Possible values:

• RTBS_None (in configuration: None) Break after return type automatically.
PenaltyReturnTypeOnItsOwnLine is taken into account.

class A {
  int f() { return 0; };
};
int f();
int f() { return 1; }

• RTBS_All (in configuration: All) Always break after the return type.

class A {
  int
  f() {
    return 0;
  };
};
int
f();
int
f() {
  return 1;
}

• RTBS_TopLevel (in configuration: TopLevel) Always break after the return types of top-level functions.

class A {
  int f() { return 0; };
};
int
f();
int
f() {
  return 1;
}

• RTBS_AllDefinitions (in configuration: AllDefinitions) Always break after the return type of
function definitions.

class A {
  int
  f() {
    return 0;
  };
};
int f();
int
f() {
  return 1;
}

• RTBS_TopLevelDefinitions (in configuration: TopLevelDefinitions) Always break after the return
type of top-level definitions.

class A {
  int f() { return 0; };
};
int f();
int
f() {
  return 1;
}

AlwaysBreakBeforeMultilineStrings (Boolean) clang-format 3.4

Clang-Format Style Options

818



If true, always break before multiline string literals.

This flag is mean to make cases where there are multiple multiline strings in a file look more consistent. Thus, it
will only take effect if wrapping the string at that point leads to it being indented ContinuationIndentWidth
spaces from the start of the line.

true:                                  false:
aaaa =                         vs.     aaaa = "bbbb"
    "bbbb"                                    "cccc";
    "cccc";

AlwaysBreakTemplateDeclarations (BreakTemplateDeclarationsStyle) clang-format 7

The template declaration breaking style to use.

Possible values:

• BTDS_No (in configuration: No) Do not force break before declaration.
PenaltyBreakTemplateDeclaration is taken into account.

template <typename T> T foo() {
}
template <typename T> T foo(int aaaaaaaaaaaaaaaaaaaaa,
                            int bbbbbbbbbbbbbbbbbbbbb) {
}

• BTDS_MultiLine (in configuration: MultiLine) Force break after template declaration only when the
following declaration spans multiple lines.

template <typename T> T foo() {
}
template <typename T>
T foo(int aaaaaaaaaaaaaaaaaaaaa,
      int bbbbbbbbbbbbbbbbbbbbb) {
}

• BTDS_Yes (in configuration: Yes) Always break after template declaration.

template <typename T>
T foo() {
}
template <typename T>
T foo(int aaaaaaaaaaaaaaaaaaaaa,
      int bbbbbbbbbbbbbbbbbbbbb) {
}

AttributeMacros (List of Strings) clang-format 12

A vector of strings that should be interpreted as attributes/qualifiers instead of identifiers. This can be useful for
language extensions or static analyzer annotations.

For example:

x = (char *__capability)&y;
int function(void) __ununsed;
void only_writes_to_buffer(char *__output buffer);

In the .clang-format configuration file, this can be configured like:

AttributeMacros: ['__capability', '__output', '__ununsed']

BinPackArguments (Boolean) clang-format 3.7

If false, a function call’s arguments will either be all on the same line or will have one line each.

true:
void f() {
  f(aaaaaaaaaaaaaaaaaaaa, aaaaaaaaaaaaaaaaaaaa,
    aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa);
}

Clang-Format Style Options

819



false:
void f() {
  f(aaaaaaaaaaaaaaaaaaaa,
    aaaaaaaaaaaaaaaaaaaa,
    aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa);
}

BinPackParameters (Boolean) clang-format 3.7

If false, a function declaration’s or function definition’s parameters will either all be on the same line or will
have one line each.

true:
void f(int aaaaaaaaaaaaaaaaaaaa, int aaaaaaaaaaaaaaaaaaaa,
       int aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa) {}

false:
void f(int aaaaaaaaaaaaaaaaaaaa,
       int aaaaaaaaaaaaaaaaaaaa,
       int aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa) {}

BitFieldColonSpacing (BitFieldColonSpacingStyle) clang-format 12

The BitFieldColonSpacingStyle to use for bitfields.

Possible values:

• BFCS_Both (in configuration: Both) Add one space on each side of the :

unsigned bf : 2;
• BFCS_None (in configuration: None) Add no space around the : (except when needed for
AlignConsecutiveBitFields).

unsigned bf:2;

• BFCS_Before (in configuration: Before) Add space before the : only

unsigned bf :2;

• BFCS_After (in configuration: After) Add space after the : only (space may be added before if needed
for AlignConsecutiveBitFields).

unsigned bf: 2;

BraceWrapping (BraceWrappingFlags) clang-format 3.8

Control of individual brace wrapping cases.

If BreakBeforeBraces is set to BS_Custom, use this to specify how each individual brace case should be
handled. Otherwise, this is ignored.

# Example of usage:
BreakBeforeBraces: Custom
BraceWrapping:
  AfterEnum: true
  AfterStruct: false
  SplitEmptyFunction: false

Nested configuration flags:

Precise control over the wrapping of braces.

# Should be declared this way:
BreakBeforeBraces: Custom
BraceWrapping:
    AfterClass: true

• bool AfterCaseLabel Wrap case labels.

Clang-Format Style Options

820



false:                                true:
switch (foo) {                vs.     switch (foo) {
  case 1: {                             case 1:
    bar();                              {
    break;                                bar();
  }                                       break;
  default: {                            }
    plop();                             default:
  }                                     {
}                                         plop();
                                        }
                                      }

• bool AfterClass Wrap class definitions.

true:
class foo {};

false:
class foo
{};

• BraceWrappingAfterControlStatementStyle AfterControlStatement Wrap control
statements (if/for/while/switch/..).

Possible values:

• BWACS_Never (in configuration: Never) Never wrap braces after a control statement.

if (foo()) {
} else {
}
for (int i = 0; i < 10; ++i) {
}

• BWACS_MultiLine (in configuration: MultiLine) Only wrap braces after a multi-line control
statement.

if (foo && bar &&
    baz)
{
  quux();
}
while (foo || bar) {
}

• BWACS_Always (in configuration: Always) Always wrap braces after a control statement.

if (foo())
{
} else
{}
for (int i = 0; i < 10; ++i)
{}

• bool AfterEnum Wrap enum definitions.

true:
enum X : int
{
  B
};

false:
enum X : int { B };

Clang-Format Style Options

821



• bool AfterFunction Wrap function definitions.

true:
void foo()
{
  bar();
  bar2();
}

false:
void foo() {
  bar();
  bar2();
}

• bool AfterNamespace Wrap namespace definitions.

true:
namespace
{
int foo();
int bar();
}

false:
namespace {
int foo();
int bar();
}

• bool AfterObjCDeclaration Wrap ObjC definitions (interfaces, implementations…).
@autoreleasepool and @synchronized blocks are wrapped according to AfterControlStatement flag.

• bool AfterStruct Wrap struct definitions.

true:
struct foo
{
  int x;
};

false:
struct foo {
  int x;
};

• bool AfterUnion Wrap union definitions.

true:
union foo
{
  int x;
}

false:
union foo {
  int x;
}

• bool AfterExternBlock Wrap extern blocks.

true:
extern "C"
{

Clang-Format Style Options

822



  int foo();
}

false:
extern "C" {
int foo();
}

• bool BeforeCatch Wrap before catch.

true:
try {
  foo();
}
catch () {
}

false:
try {
  foo();
} catch () {
}

• bool BeforeElse Wrap before else.

true:
if (foo()) {
}
else {
}

false:
if (foo()) {
} else {
}

• bool BeforeLambdaBody Wrap lambda block.

true:
connect(
  []()
  {
    foo();
    bar();
  });

false:
connect([]() {
  foo();
  bar();
});

• bool BeforeWhile Wrap before while.

true:
do {
  foo();
}
while (1);

false:
do {

Clang-Format Style Options

823



  foo();
} while (1);

• bool IndentBraces Indent the wrapped braces themselves.

• bool SplitEmptyFunction If false, empty function body can be put on a single line. This option is
used only if the opening brace of the function has already been wrapped, i.e. the AfterFunction brace
wrapping mode is set, and the function could/should not be put on a single line (as per
AllowShortFunctionsOnASingleLine and constructor formatting options).

false:          true:
int f()   vs.   int f()
{}              {
                }

• bool SplitEmptyRecord If false, empty record (e.g. class, struct or union) body can be put on a
single line. This option is used only if the opening brace of the record has already been wrapped, i.e. the
AfterClass (for classes) brace wrapping mode is set.

false:           true:
class Foo   vs.  class Foo
{}               {
                 }

• bool SplitEmptyNamespace If false, empty namespace body can be put on a single line. This option
is used only if the opening brace of the namespace has already been wrapped, i.e. the AfterNamespace
brace wrapping mode is set.

false:               true:
namespace Foo   vs.  namespace Foo
{}                   {
                     }

BreakAfterJavaFieldAnnotations (Boolean) clang-format 3.8

Break after each annotation on a field in Java files.

true:                                  false:
@Partial                       vs.     @Partial @Mock DataLoad loader;
@Mock
DataLoad loader;

BreakBeforeBinaryOperators (BinaryOperatorStyle) clang-format 3.6

The way to wrap binary operators.

Possible values:

• BOS_None (in configuration: None) Break after operators.

LooooooooooongType loooooooooooooooooooooongVariable =
    someLooooooooooooooooongFunction();

bool value = aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa +
                     aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa ==
                 aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa &&
             aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa >
                 ccccccccccccccccccccccccccccccccccccccccc;

• BOS_NonAssignment (in configuration: NonAssignment) Break before operators that aren’t
assignments.

LooooooooooongType loooooooooooooooooooooongVariable =
    someLooooooooooooooooongFunction();

bool value = aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
                     + aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
                 == aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

Clang-Format Style Options

824



             && aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
                    > ccccccccccccccccccccccccccccccccccccccccc;

• BOS_All (in configuration: All) Break before operators.

LooooooooooongType loooooooooooooooooooooongVariable
    = someLooooooooooooooooongFunction();

bool value = aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
                     + aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
                 == aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
             && aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
                    > ccccccccccccccccccccccccccccccccccccccccc;

BreakBeforeBraces (BraceBreakingStyle) clang-format 3.7

The brace breaking style to use.

Possible values:

• BS_Attach (in configuration: Attach) Always attach braces to surrounding context.

namespace N {
enum E {
  E1,
  E2,
};

class C {
public:
  C();
};

bool baz(int i) {
  try {
    do {
      switch (i) {
      case 1: {
        foobar();
        break;
      }
      default: {
        break;
      }
      }
    } while (--i);
    return true;
  } catch (...) {
    handleError();
    return false;
  }
}

void foo(bool b) {
  if (b) {
    baz(2);
  } else {
    baz(5);
  }
}

void bar() { foo(true); }
} // namespace N

Clang-Format Style Options

825



• BS_Linux (in configuration: Linux) Like Attach, but break before braces on function, namespace and
class definitions.

namespace N
{
enum E {
  E1,
  E2,
};

class C
{
public:
  C();
};

bool baz(int i)
{
  try {
    do {
      switch (i) {
      case 1: {
        foobar();
        break;
      }
      default: {
        break;
      }
      }
    } while (--i);
    return true;
  } catch (...) {
    handleError();
    return false;
  }
}

void foo(bool b)
{
  if (b) {
    baz(2);
  } else {
    baz(5);
  }
}

void bar() { foo(true); }
} // namespace N

• BS_Mozilla (in configuration: Mozilla) Like Attach, but break before braces on enum, function, and
record definitions.

namespace N {
enum E
{
  E1,
  E2,
};

class C
{

Clang-Format Style Options

826



public:
  C();
};

bool baz(int i)
{
  try {
    do {
      switch (i) {
      case 1: {
        foobar();
        break;
      }
      default: {
        break;
      }
      }
    } while (--i);
    return true;
  } catch (...) {
    handleError();
    return false;
  }
}

void foo(bool b)
{
  if (b) {
    baz(2);
  } else {
    baz(5);
  }
}

void bar() { foo(true); }
} // namespace N

• BS_Stroustrup (in configuration: Stroustrup) Like Attach, but break before function definitions,
catch, and else.

namespace N {
enum E {
  E1,
  E2,
};

class C {
public:
  C();
};

bool baz(int i)
{
  try {
    do {
      switch (i) {
      case 1: {
        foobar();
        break;
      }

Clang-Format Style Options

827



      default: {
        break;
      }
      }
    } while (--i);
    return true;
  }
  catch (...) {
    handleError();
    return false;
  }
}

void foo(bool b)
{
  if (b) {
    baz(2);
  }
  else {
    baz(5);
  }
}

void bar() { foo(true); }
} // namespace N

• BS_Allman (in configuration: Allman) Always break before braces.

namespace N
{
enum E
{
  E1,
  E2,
};

class C
{
public:
  C();
};

bool baz(int i)
{
  try
  {
    do
    {
      switch (i)
      {
      case 1:
      {
        foobar();
        break;
      }
      default:
      {
        break;
      }
      }

Clang-Format Style Options

828



    } while (--i);
    return true;
  }
  catch (...)
  {
    handleError();
    return false;
  }
}

void foo(bool b)
{
  if (b)
  {
    baz(2);
  }
  else
  {
    baz(5);
  }
}

void bar() { foo(true); }
} // namespace N

• BS_Whitesmiths (in configuration: Whitesmiths) Like Allman but always indent braces and line up
code with braces.

namespace N
  {
enum E
  {
  E1,
  E2,
  };

class C
  {
public:
  C();
  };

bool baz(int i)
  {
  try
    {
    do
      {
      switch (i)
        {
        case 1:
        {
        foobar();
        break;
        }
        default:
        {
        break;
        }
        }

Clang-Format Style Options

829



      } while (--i);
    return true;
    }
  catch (...)
    {
    handleError();
    return false;
    }
  }

void foo(bool b)
  {
  if (b)
    {
    baz(2);
    }
  else
    {
    baz(5);
    }
  }

void bar() { foo(true); }
  } // namespace N

• BS_GNU (in configuration: GNU) Always break before braces and add an extra level of indentation to braces
of control statements, not to those of class, function or other definitions.

namespace N
{
enum E
{
  E1,
  E2,
};

class C
{
public:
  C();
};

bool baz(int i)
{
  try
    {
      do
        {
          switch (i)
            {
            case 1:
              {
                foobar();
                break;
              }
            default:
              {
                break;
              }
            }

Clang-Format Style Options

830



        }
      while (--i);
      return true;
    }
  catch (...)
    {
      handleError();
      return false;
    }
}

void foo(bool b)
{
  if (b)
    {
      baz(2);
    }
  else
    {
      baz(5);
    }
}

void bar() { foo(true); }
} // namespace N

• BS_WebKit (in configuration: WebKit) Like Attach, but break before functions.

namespace N {
enum E {
  E1,
  E2,
};

class C {
public:
  C();
};

bool baz(int i)
{
  try {
    do {
      switch (i) {
      case 1: {
        foobar();
        break;
      }
      default: {
        break;
      }
      }
    } while (--i);
    return true;
  } catch (...) {
    handleError();
    return false;
  }
}

Clang-Format Style Options

831



void foo(bool b)
{
  if (b) {
    baz(2);
  } else {
    baz(5);
  }
}

void bar() { foo(true); }
} // namespace N

• BS_Custom (in configuration: Custom) Configure each individual brace in BraceWrapping.
BreakBeforeConceptDeclarations (BreakBeforeConceptDeclarationsStyle) clang-format 12

The concept declaration style to use.

Possible values:

• BBCDS_Never (in configuration: Never) Keep the template declaration line together with concept.

template <typename T> concept C = ...;

• BBCDS_Allowed (in configuration: Allowed) Breaking between template declaration and concept is
allowed. The actual behavior depends on the content and line breaking rules and penalities.

• BBCDS_Always (in configuration: Always) Always break before concept, putting it in the line after the
template declaration.

template <typename T>
concept C = ...;

BreakBeforeTernaryOperators (Boolean) clang-format 3.7

If true, ternary operators will be placed after line breaks.

true:
veryVeryVeryVeryVeryVeryVeryVeryVeryVeryVeryLongDescription
    ? firstValue
    : SecondValueVeryVeryVeryVeryLong;

false:
veryVeryVeryVeryVeryVeryVeryVeryVeryVeryVeryLongDescription ?
    firstValue :
    SecondValueVeryVeryVeryVeryLong;

BreakConstructorInitializers (BreakConstructorInitializersStyle) clang-format 5

The break constructor initializers style to use.

Possible values:

• BCIS_BeforeColon (in configuration: BeforeColon) Break constructor initializers before the colon and
after the commas.

Constructor()
    : initializer1(),
      initializer2()

• BCIS_BeforeComma (in configuration: BeforeComma) Break constructor initializers before the colon and
commas, and align the commas with the colon.

Constructor()
    : initializer1()
    , initializer2()

• BCIS_AfterColon (in configuration: AfterColon) Break constructor initializers after the colon and
commas.

Clang-Format Style Options

832



Constructor() :
    initializer1(),
    initializer2()

BreakInheritanceList (BreakInheritanceListStyle) clang-format 7

The inheritance list style to use.

Possible values:

• BILS_BeforeColon (in configuration: BeforeColon) Break inheritance list before the colon and after the
commas.

class Foo
    : Base1,
      Base2
{};

• BILS_BeforeComma (in configuration: BeforeComma) Break inheritance list before the colon and
commas, and align the commas with the colon.

class Foo
    : Base1
    , Base2
{};

• BILS_AfterColon (in configuration: AfterColon) Break inheritance list after the colon and commas.

class Foo :
    Base1,
    Base2
{};

• BILS_AfterComma (in configuration: AfterComma) Break inheritance list only after the commas.

class Foo : Base1,
            Base2
{};

BreakStringLiterals (Boolean) clang-format 3.9

Allow breaking string literals when formatting.

true:
const char* x = "veryVeryVeryVeryVeryVe"
                "ryVeryVeryVeryVeryVery"
                "VeryLongString";

false:
const char* x =
  "veryVeryVeryVeryVeryVeryVeryVeryVeryVeryVeryVeryLongString";

ColumnLimit (Unsigned) clang-format 3.7

The column limit.

A column limit of 0 means that there is no column limit. In this case, clang-format will respect the input’s line
breaking decisions within statements unless they contradict other rules.

CommentPragmas (String) clang-format 3.7

A regular expression that describes comments with special meaning, which should not be split into lines or
otherwise changed.

// CommentPragmas: '^ FOOBAR pragma:'
// Will leave the following line unaffected
#include <vector> // FOOBAR pragma: keep

CompactNamespaces (Boolean) clang-format 5

If true, consecutive namespace declarations will be on the same line. If false, each namespace is declared
on a new line.

Clang-Format Style Options

833



true:
namespace Foo { namespace Bar {
}}

false:
namespace Foo {
namespace Bar {
}
}

If it does not fit on a single line, the overflowing namespaces get wrapped:

namespace Foo { namespace Bar {
namespace Extra {
}}}

ConstructorInitializerAllOnOneLineOrOnePerLine (Boolean) clang-format 3.7

This option is deprecated. See CurrentLine of PackConstructorInitializers.

ConstructorInitializerIndentWidth (Unsigned) clang-format 3.7

The number of characters to use for indentation of constructor initializer lists as well as inheritance lists.

ContinuationIndentWidth (Unsigned) clang-format 3.7

Indent width for line continuations.

ContinuationIndentWidth: 2

int i =         //  VeryVeryVeryVeryVeryLongComment
  longFunction( // Again a long comment
    arg);

Cpp11BracedListStyle (Boolean) clang-format 3.4

If true, format braced lists as best suited for C++11 braced lists.

Important differences: - No spaces inside the braced list. - No line break before the closing brace. - Indentation
with the continuation indent, not with the block indent.

Fundamentally, C++11 braced lists are formatted exactly like function calls would be formatted in their place. If
the braced list follows a name (e.g. a type or variable name), clang-format formats as if the {} were the
parentheses of a function call with that name. If there is no name, a zero-length name is assumed.

true:                                  false:
vector<int> x{1, 2, 3, 4};     vs.     vector<int> x{ 1, 2, 3, 4 };
vector<T> x{{}, {}, {}, {}};           vector<T> x{ {}, {}, {}, {} };
f(MyMap[{composite, key}]);            f(MyMap[{ composite, key }]);
new int[3]{1, 2, 3};                   new int[3]{ 1, 2, 3 };

DeriveLineEnding (Boolean) clang-format 10

Analyze the formatted file for the most used line ending (\r\n or \n). UseCRLF is only used as a fallback if
none can be derived.

DerivePointerAlignment (Boolean) clang-format 3.7

If true, analyze the formatted file for the most common alignment of & and *. Pointer and reference alignment
styles are going to be updated according to the preferences found in the file. PointerAlignment is then used
only as fallback.

DisableFormat (Boolean) clang-format 3.7

Disables formatting completely.

EmptyLineAfterAccessModifier (EmptyLineAfterAccessModifierStyle) clang-format 13

Defines when to put an empty line after access modifiers. EmptyLineBeforeAccessModifier configuration
handles the number of empty lines between two access modifiers.

Possible values:

Clang-Format Style Options

834



• ELAAMS_Never (in configuration: Never) Remove all empty lines after access modifiers.

struct foo {
private:
  int i;
protected:
  int j;
  /* comment */
public:
  foo() {}
private:
protected:
};

• ELAAMS_Leave (in configuration: Leave) Keep existing empty lines after access modifiers.
MaxEmptyLinesToKeep is applied instead.

• ELAAMS_Always (in configuration: Always) Always add empty line after access modifiers if there are
none. MaxEmptyLinesToKeep is applied also.

struct foo {
private:

  int i;
protected:

  int j;
  /* comment */
public:

  foo() {}
private:

protected:

};

EmptyLineBeforeAccessModifier (EmptyLineBeforeAccessModifierStyle) clang-format 12

Defines in which cases to put empty line before access modifiers.

Possible values:

• ELBAMS_Never (in configuration: Never) Remove all empty lines before access modifiers.

struct foo {
private:
  int i;
protected:
  int j;
  /* comment */
public:
  foo() {}
private:
protected:
};

• ELBAMS_Leave (in configuration: Leave) Keep existing empty lines before access modifiers.

• ELBAMS_LogicalBlock (in configuration: LogicalBlock) Add empty line only when access modifier
starts a new logical block. Logical block is a group of one or more member fields or functions.

struct foo {
private:
  int i;

Clang-Format Style Options

835



protected:
  int j;
  /* comment */
public:
  foo() {}

private:
protected:
};

• ELBAMS_Always (in configuration: Always) Always add empty line before access modifiers unless access
modifier is at the start of struct or class definition.

struct foo {
private:
  int i;

protected:
  int j;
  /* comment */

public:
  foo() {}

private:

protected:
};

ExperimentalAutoDetectBinPacking (Boolean) clang-format 3.7

If true, clang-format detects whether function calls and definitions are formatted with one parameter per line.

Each call can be bin-packed, one-per-line or inconclusive. If it is inconclusive, e.g. completely on one line, but a
decision needs to be made, clang-format analyzes whether there are other bin-packed cases in the input file and
act accordingly.

NOTE: This is an experimental flag, that might go away or be renamed. Do not use this in config files, etc. Use
at your own risk.

FixNamespaceComments (Boolean) clang-format 5

If true, clang-format adds missing namespace end comments for short namespaces and fixes invalid existing
ones. Short ones are controlled by “ShortNamespaceLines”.

true:                                  false:
namespace a {                  vs.     namespace a {
foo();                                 foo();
bar();                                 bar();
} // namespace a                       }

ForEachMacros (List of Strings) clang-format 3.7

A vector of macros that should be interpreted as foreach loops instead of as function calls.

These are expected to be macros of the form:

FOREACH(<variable-declaration>, ...)
  <loop-body>

In the .clang-format configuration file, this can be configured like:

ForEachMacros: ['RANGES_FOR', 'FOREACH']

For example: BOOST_FOREACH.

IfMacros (List of Strings) clang-format 13

A vector of macros that should be interpreted as conditionals instead of as function calls.

Clang-Format Style Options

836



These are expected to be macros of the form:

IF(...)
  <conditional-body>
else IF(...)
  <conditional-body>

In the .clang-format configuration file, this can be configured like:

IfMacros: ['IF']

For example: KJ_IF_MAYBE

IncludeBlocks (IncludeBlocksStyle) clang-format 7

Dependent on the value, multiple #include blocks can be sorted as one and divided based on category.

Possible values:

• IBS_Preserve (in configuration: Preserve) Sort each #include block separately.

#include "b.h"               into      #include "b.h"

#include <lib/main.h>                  #include "a.h"
#include "a.h"                         #include <lib/main.h>

• IBS_Merge (in configuration: Merge) Merge multiple #include blocks together and sort as one.

#include "b.h"               into      #include "a.h"
                                       #include "b.h"
#include <lib/main.h>                  #include <lib/main.h>
#include "a.h"

• IBS_Regroup (in configuration: Regroup) Merge multiple #include blocks together and sort as one.
Then split into groups based on category priority. See IncludeCategories.

#include "b.h"               into      #include "a.h"
                                       #include "b.h"
#include <lib/main.h>
#include "a.h"                         #include <lib/main.h>

IncludeCategories (List of IncludeCategories) clang-format 7

Regular expressions denoting the different #include categories used for ordering #includes.

POSIX extended regular expressions are supported.

These regular expressions are matched against the filename of an include (including the <> or “”) in order. The
value belonging to the first matching regular expression is assigned and #includes are sorted first according
to increasing category number and then alphabetically within each category.

If none of the regular expressions match, INT_MAX is assigned as category. The main header for a source file
automatically gets category 0. so that it is generally kept at the beginning of the #includes
(https://llvm.org/docs/CodingStandards.html#include-style). However, you can also assign negative priorities if
you have certain headers that always need to be first.

There is a third and optional field SortPriority which can used while IncludeBlocks = IBS_Regroup to
define the priority in which #includes should be ordered. The value of Priority defines the order of
#include blocks and also allows the grouping of #includes of different priority. SortPriority is set to
the value of Priority as default if it is not assigned.

Each regular expression can be marked as case sensitive with the field CaseSensitive, per default it is not.

To configure this in the .clang-format file, use:

IncludeCategories:
  - Regex:           '^"(llvm|llvm-c|clang|clang-c)/'
    Priority:        2
    SortPriority:    2
    CaseSensitive:   true

Clang-Format Style Options

837

https://github.com/capnproto/capnproto/blob/master/kjdoc/tour.md#maybes
https://pubs.opengroup.org/onlinepubs/9699919799/basedefs/V1_chap09.html
https://llvm.org/docs/CodingStandards.html#include-style


  - Regex:           '^((<|")(gtest|gmock|isl|json)/)'
    Priority:        3
  - Regex:           '<[[:alnum:].]+>'
    Priority:        4
  - Regex:           '.*'
    Priority:        1
    SortPriority:    0

IncludeIsMainRegex (String) clang-format 7

Specify a regular expression of suffixes that are allowed in the file-to-main-include mapping.

When guessing whether a #include is the “main” include (to assign category 0, see above), use this regex of
allowed suffixes to the header stem. A partial match is done, so that: - “” means “arbitrary suffix” - “$” means “no
suffix”

For example, if configured to “(_test)?$”, then a header a.h would be seen as the “main” include in both a.cc and
a_test.cc.

IncludeIsMainSourceRegex (String) clang-format 7

Specify a regular expression for files being formatted that are allowed to be considered “main” in the
file-to-main-include mapping.

By default, clang-format considers files as “main” only when they end with: .c, .cc, .cpp, .c++, .cxx, .m or
.mm extensions. For these files a guessing of “main” include takes place (to assign category 0, see above). This
config option allows for additional suffixes and extensions for files to be considered as “main”.

For example, if this option is configured to (Impl.hpp)$, then a file ClassImpl.hpp is considered “main” (in
addition to Class.c, Class.cc, Class.cpp and so on) and “main include file” logic will be executed (with
IncludeIsMainRegex setting also being respected in later phase). Without this option set, ClassImpl.hpp
would not have the main include file put on top before any other include.

IndentAccessModifiers (Boolean) clang-format 13

Specify whether access modifiers should have their own indentation level.

When false, access modifiers are indented (or outdented) relative to the record members, respecting the
AccessModifierOffset. Record members are indented one level below the record. When true, access
modifiers get their own indentation level. As a consequence, record members are always indented 2 levels
below the record, regardless of the access modifier presence. Value of the AccessModifierOffset is
ignored.

false:                                 true:
class C {                      vs.     class C {
  class D {                                class D {
    void bar();                                void bar();
  protected:                                 protected:
    D();                                       D();
  };                                       };
public:                                  public:
  C();                                     C();
};                                     };
void foo() {                           void foo() {
  return 1;                              return 1;
}                                      }

IndentCaseBlocks (Boolean) clang-format 11

Indent case label blocks one level from the case label.

When false, the block following the case label uses the same indentation level as for the case label, treating
the case label the same as an if-statement. When true, the block gets indented as a scope block.

false:                                 true:
switch (fool) {                vs.     switch (fool) {
case 1: {                              case 1:
  bar();                                 {
} break;                                   bar();

Clang-Format Style Options

838



default: {                               }
  plop();                                break;
}                                      default:
}                                        {
                                           plop();
                                         }
                                       }

IndentCaseLabels (Boolean) clang-format 3.3

Indent case labels one level from the switch statement.

When false, use the same indentation level as for the switch statement. Switch statement body is always
indented one level more than case labels (except the first block following the case label, which itself indents the
code - unless IndentCaseBlocks is enabled).

false:                                 true:
switch (fool) {                vs.     switch (fool) {
case 1:                                  case 1:
  bar();                                   bar();
  break;                                   break;
default:                                 default:
  plop();                                  plop();
}                                      }

IndentExternBlock (IndentExternBlockStyle) clang-format 11

IndentExternBlockStyle is the type of indenting of extern blocks.

Possible values:

• IEBS_AfterExternBlock (in configuration: AfterExternBlock) Backwards compatible with
AfterExternBlock’s indenting.

IndentExternBlock: AfterExternBlock
BraceWrapping.AfterExternBlock: true
extern "C"
{
    void foo();
}

IndentExternBlock: AfterExternBlock
BraceWrapping.AfterExternBlock: false
extern "C" {
void foo();
}

• IEBS_NoIndent (in configuration: NoIndent) Does not indent extern blocks.

extern "C" {
void foo();
}

• IEBS_Indent (in configuration: Indent) Indents extern blocks.

extern "C" {
  void foo();
}

IndentGotoLabels (Boolean) clang-format 10

Indent goto labels.

When false, goto labels are flushed left.

true:                                  false:
int f() {                      vs.     int f() {
  if (foo()) {                           if (foo()) {
  label1:                              label1:

Clang-Format Style Options

839



    bar();                                 bar();
  }                                      }
label2:                                label2:
  return 1;                              return 1;
}                                      }

IndentPPDirectives (PPDirectiveIndentStyle) clang-format 6

The preprocessor directive indenting style to use.

Possible values:

• PPDIS_None (in configuration: None) Does not indent any directives.

#if FOO
#if BAR
#include <foo>
#endif
#endif

• PPDIS_AfterHash (in configuration: AfterHash) Indents directives after the hash.

#if FOO
#  if BAR
#    include <foo>
#  endif
#endif

• PPDIS_BeforeHash (in configuration: BeforeHash) Indents directives before the hash.

#if FOO
  #if BAR
    #include <foo>
  #endif
#endif

IndentRequiresClause (Boolean) clang-format 15

Indent the requires clause in a template. This only applies when RequiresClausePosition is OwnLine, or
WithFollowing.

In clang-format 12, 13 and 14 it was named IndentRequires.

true:
template <typename It>
  requires Iterator<It>
void sort(It begin, It end) {
  //....
}

false:
template <typename It>
requires Iterator<It>
void sort(It begin, It end) {
  //....
}

IndentWidth (Unsigned) clang-format 3.7

The number of columns to use for indentation.

IndentWidth: 3

void f() {
   someFunction();
   if (true, false) {
      f();
   }
}

Clang-Format Style Options

840



IndentWrappedFunctionNames (Boolean) clang-format 3.7

Indent if a function definition or declaration is wrapped after the type.

true:
LoooooooooooooooooooooooooooooooooooooooongReturnType
    LoooooooooooooooooooooooooooooooongFunctionDeclaration();

false:
LoooooooooooooooooooooooooooooooooooooooongReturnType
LoooooooooooooooooooooooooooooooongFunctionDeclaration();

InsertBraces (Boolean) clang-format 15

Insert braces after control statements (if, else, for, do, and while) in C++ unless the control statements are
inside macro definitions or the braces would enclose preprocessor directives.

Warning

Setting this option to true could lead to incorrect code formatting due to clang-format’s lack of complete
semantic information. As such, extra care should be taken to review code changes made by this option.

false:                                    true:

if (isa<FunctionDecl>(D))        vs.      if (isa<FunctionDecl>(D)) {
  handleFunctionDecl(D);                    handleFunctionDecl(D);
else if (isa<VarDecl>(D))                 } else if (isa<VarDecl>(D)) {
  handleVarDecl(D);                         handleVarDecl(D);
else                                      } else {
  return;                                   return;
                                          }

while (i--)                      vs.      while (i--) {
  for (auto *A : D.attrs())                 for (auto *A : D.attrs()) {
    handleAttr(A);                            handleAttr(A);
                                            }
                                          }

do                               vs.      do {
  --i;                                      --i;
while (i);                                } while (i);

InsertTrailingCommas (TrailingCommaStyle) clang-format 11

If set to TCS_Wrapped will insert trailing commas in container literals (arrays and objects) that wrap across
multiple lines. It is currently only available for JavaScript and disabled by default TCS_None.
InsertTrailingCommas cannot be used together with BinPackArguments as inserting the comma disables
bin-packing.

TSC_Wrapped:
const someArray = [
aaaaaaaaaaaaaaaaaaaaaaaaaa,
aaaaaaaaaaaaaaaaaaaaaaaaaa,
aaaaaaaaaaaaaaaaaaaaaaaaaa,
//                        ^ inserted
]

Possible values:

• TCS_None (in configuration: None) Do not insert trailing commas.

• TCS_Wrapped (in configuration: Wrapped) Insert trailing commas in container literals that were wrapped
over multiple lines. Note that this is conceptually incompatible with bin-packing, because the trailing

Clang-Format Style Options

841



comma is used as an indicator that a container should be formatted one-per-line (i.e. not bin-packed). So
inserting a trailing comma counteracts bin-packing.

JavaImportGroups (List of Strings) clang-format 8

A vector of prefixes ordered by the desired groups for Java imports.

One group’s prefix can be a subset of another - the longest prefix is always matched. Within a group, the imports
are ordered lexicographically. Static imports are grouped separately and follow the same group rules. By default,
static imports are placed before non-static imports, but this behavior is changed by another option,
SortJavaStaticImport.

In the .clang-format configuration file, this can be configured like in the following yaml example. This will result in
imports being formatted as in the Java example below.

JavaImportGroups: ['com.example', 'com', 'org']

import static com.example.function1;

import static com.test.function2;

import static org.example.function3;

import com.example.ClassA;
import com.example.Test;
import com.example.a.ClassB;

import com.test.ClassC;

import org.example.ClassD;

JavaScriptQuotes (JavaScriptQuoteStyle) clang-format 3.9

The JavaScriptQuoteStyle to use for JavaScript strings.

Possible values:

• JSQS_Leave (in configuration: Leave) Leave string quotes as they are.

string1 = "foo";
string2 = 'bar';

• JSQS_Single (in configuration: Single) Always use single quotes.

string1 = 'foo';
string2 = 'bar';

• JSQS_Double (in configuration: Double) Always use double quotes.

string1 = "foo";
string2 = "bar";

JavaScriptWrapImports (Boolean) clang-format 3.9

Whether to wrap JavaScript import/export statements.
true:
import {
    VeryLongImportsAreAnnoying,
    VeryLongImportsAreAnnoying,
    VeryLongImportsAreAnnoying,
} from 'some/module.js'

false:
import {VeryLongImportsAreAnnoying, VeryLongImportsAreAnnoying, VeryLongImportsAreAnnoying,} from "some/module.js"

KeepEmptyLinesAtTheStartOfBlocks (Boolean) clang-format 3.7

If true, the empty line at the start of blocks is kept.

true:                                  false:
if (foo) {                     vs.     if (foo) {
                                         bar();

Clang-Format Style Options

842



  bar();                               }
}

LambdaBodyIndentation (LambdaBodyIndentationKind) clang-format 13

The indentation style of lambda bodies. Signature (the default) causes the lambda body to be indented one
additional level relative to the indentation level of the signature. OuterScope forces the lambda body to be
indented one additional level relative to the parent scope containing the lambda signature. For callback-heavy
code, it may improve readability to have the signature indented two levels and to use OuterScope. The KJ style
guide requires OuterScope. KJ style guide

Possible values:

• LBI_Signature (in configuration: Signature) Align lambda body relative to the lambda signature. This
is the default.

someMethod(
    [](SomeReallyLongLambdaSignatureArgument foo) {
      return;
    });

• LBI_OuterScope (in configuration: OuterScope) Align lambda body relative to the indentation level of
the outer scope the lambda signature resides in.

someMethod(
    [](SomeReallyLongLambdaSignatureArgument foo) {
  return;
});

Language (LanguageKind) clang-format 3.5

Language, this format style is targeted at.

Possible values:

• LK_None (in configuration: None) Do not use.

• LK_Cpp (in configuration: Cpp) Should be used for C, C++.

• LK_CSharp (in configuration: CSharp) Should be used for C#.

• LK_Java (in configuration: Java) Should be used for Java.

• LK_JavaScript (in configuration: JavaScript) Should be used for JavaScript.

• LK_Json (in configuration: Json) Should be used for JSON.

• LK_ObjC (in configuration: ObjC) Should be used for Objective-C, Objective-C++.

• LK_Proto (in configuration: Proto) Should be used for Protocol Buffers
(https://developers.google.com/protocol-buffers/).

• LK_TableGen (in configuration: TableGen) Should be used for TableGen code.

• LK_TextProto (in configuration: TextProto) Should be used for Protocol Buffer messages in text format
(https://developers.google.com/protocol-buffers/).

MacroBlockBegin (String) clang-format 3.7

A regular expression matching macros that start a block.

# With:
MacroBlockBegin: "^NS_MAP_BEGIN|\
NS_TABLE_HEAD$"
MacroBlockEnd: "^\
NS_MAP_END|\
NS_TABLE_.*_END$"

NS_MAP_BEGIN
  foo();
NS_MAP_END

Clang-Format Style Options

843

https://github.com/capnproto/capnproto/blob/master/style-guide.md
https://developers.google.com/protocol-buffers/
https://developers.google.com/protocol-buffers/


NS_TABLE_HEAD
  bar();
NS_TABLE_FOO_END

# Without:
NS_MAP_BEGIN
foo();
NS_MAP_END

NS_TABLE_HEAD
bar();
NS_TABLE_FOO_END

MacroBlockEnd (String) clang-format 3.7

A regular expression matching macros that end a block.

MaxEmptyLinesToKeep (Unsigned) clang-format 3.7

The maximum number of consecutive empty lines to keep.

MaxEmptyLinesToKeep: 1         vs.     MaxEmptyLinesToKeep: 0
int f() {                              int f() {
  int = 1;                                 int i = 1;
                                           i = foo();
  i = foo();                               return i;
                                       }
  return i;
}

NamespaceIndentation (NamespaceIndentationKind) clang-format 3.7

The indentation used for namespaces.

Possible values:

• NI_None (in configuration: None) Don’t indent in namespaces.

namespace out {
int i;
namespace in {
int i;
}
}

• NI_Inner (in configuration: Inner) Indent only in inner namespaces (nested in other namespaces).

namespace out {
int i;
namespace in {
  int i;
}
}

• NI_All (in configuration: All) Indent in all namespaces.

namespace out {
  int i;
  namespace in {
    int i;
  }
}

NamespaceMacros (List of Strings) clang-format 9

A vector of macros which are used to open namespace blocks.

These are expected to be macros of the form:

Clang-Format Style Options

844



NAMESPACE(<namespace-name>, ...) {
  <namespace-content>
}

For example: TESTSUITE

ObjCBinPackProtocolList (BinPackStyle) clang-format 7

Controls bin-packing Objective-C protocol conformance list items into as few lines as possible when they go
over ColumnLimit.

If Auto (the default), delegates to the value in BinPackParameters. If that is true, bin-packs Objective-C
protocol conformance list items into as few lines as possible whenever they go over ColumnLimit.

If Always, always bin-packs Objective-C protocol conformance list items into as few lines as possible whenever
they go over ColumnLimit.

If Never, lays out Objective-C protocol conformance list items onto individual lines whenever they go over
ColumnLimit.

Always (or Auto, if BinPackParameters=true):
@interface ccccccccccccc () <
    ccccccccccccc, ccccccccccccc,
    ccccccccccccc, ccccccccccccc> {
}

Never (or Auto, if BinPackParameters=false):
@interface ddddddddddddd () <
    ddddddddddddd,
    ddddddddddddd,
    ddddddddddddd,
    ddddddddddddd> {
}

Possible values:

• BPS_Auto (in configuration: Auto) Automatically determine parameter bin-packing behavior.

• BPS_Always (in configuration: Always) Always bin-pack parameters.

• BPS_Never (in configuration: Never) Never bin-pack parameters.
ObjCBlockIndentWidth (Unsigned) clang-format 3.7

The number of characters to use for indentation of ObjC blocks.

ObjCBlockIndentWidth: 4

[operation setCompletionBlock:^{
    [self onOperationDone];
}];

ObjCBreakBeforeNestedBlockParam (Boolean) clang-format 11

Break parameters list into lines when there is nested block parameters in a function call.

false:
 - (void)_aMethod
 {
     [self.test1 t:self w:self callback:^(typeof(self) self, NSNumber
     *u, NSNumber *v) {
         u = c;
     }]
 }
 true:
 - (void)_aMethod
 {
    [self.test1 t:self

Clang-Format Style Options

845



                 w:self
        callback:^(typeof(self) self, NSNumber *u, NSNumber *v) {
             u = c;
         }]
 }

ObjCSpaceAfterProperty (Boolean) clang-format 3.7

Add a space after @property in Objective-C, i.e. use @property (readonly) instead of
@property(readonly).

ObjCSpaceBeforeProtocolList (Boolean) clang-format 3.7

Add a space in front of an Objective-C protocol list, i.e. use Foo <Protocol> instead of Foo<Protocol>.

PPIndentWidth (Integer) clang-format 13

The number of columns to use for indentation of preprocessor statements. When set to -1 (default)
IndentWidth is used also for preprocessor statements.

PPIndentWidth: 1

#ifdef __linux__
# define FOO
#else
# define BAR
#endif

PackConstructorInitializers (PackConstructorInitializersStyle) clang-format 14

The pack constructor initializers style to use.

Possible values:

• PCIS_Never (in configuration: Never) Always put each constructor initializer on its own line.

Constructor()
    : a(),
      b()

• PCIS_BinPack (in configuration: BinPack) Bin-pack constructor initializers.

Constructor()
    : aaaaaaaaaaaaaaaaaaaa(), bbbbbbbbbbbbbbbbbbbb(),
      cccccccccccccccccccc()

• PCIS_CurrentLine (in configuration: CurrentLine) Put all constructor initializers on the current line if
they fit. Otherwise, put each one on its own line.

Constructor() : a(), b()

Constructor()
    : aaaaaaaaaaaaaaaaaaaa(),
      bbbbbbbbbbbbbbbbbbbb(),
      ddddddddddddd()

• PCIS_NextLine (in configuration: NextLine) Same as PCIS_CurrentLine except that if all
constructor initializers do not fit on the current line, try to fit them on the next line.

Constructor() : a(), b()

Constructor()
    : aaaaaaaaaaaaaaaaaaaa(), bbbbbbbbbbbbbbbbbbbb(), ddddddddddddd()

Constructor()
    : aaaaaaaaaaaaaaaaaaaa(),
      bbbbbbbbbbbbbbbbbbbb(),
      cccccccccccccccccccc()

PenaltyBreakAssignment (Unsigned) clang-format 5

Clang-Format Style Options

846



The penalty for breaking around an assignment operator.

PenaltyBreakBeforeFirstCallParameter (Unsigned) clang-format 3.7

The penalty for breaking a function call after call(.

PenaltyBreakComment (Unsigned) clang-format 3.7

The penalty for each line break introduced inside a comment.

PenaltyBreakFirstLessLess (Unsigned) clang-format 3.7

The penalty for breaking before the first <<.

PenaltyBreakOpenParenthesis (Unsigned) clang-format 14

The penalty for breaking after (.

PenaltyBreakString (Unsigned) clang-format 3.7

The penalty for each line break introduced inside a string literal.

PenaltyBreakTemplateDeclaration (Unsigned) clang-format 7

The penalty for breaking after template declaration.

PenaltyExcessCharacter (Unsigned) clang-format 3.7

The penalty for each character outside of the column limit.

PenaltyIndentedWhitespace (Unsigned) clang-format 12

Penalty for each character of whitespace indentation (counted relative to leading non-whitespace column).

PenaltyReturnTypeOnItsOwnLine (Unsigned) clang-format 3.7

Penalty for putting the return type of a function onto its own line.

PointerAlignment (PointerAlignmentStyle) clang-format 3.7

Pointer and reference alignment style.

Possible values:

• PAS_Left (in configuration: Left) Align pointer to the left.

int* a;

• PAS_Right (in configuration: Right) Align pointer to the right.

int *a;

• PAS_Middle (in configuration: Middle) Align pointer in the middle.

int * a;

QualifierAlignment (QualifierAlignmentStyle) clang-format 14

Different ways to arrange specifiers and qualifiers (e.g. const/volatile).

Warning

Setting QualifierAlignment to something other than Leave, COULD lead to incorrect code formatting
due to incorrect decisions made due to clang-formats lack of complete semantic information. As such extra
care should be taken to review code changes made by the use of this option.

Possible values:

• QAS_Leave (in configuration: Leave) Don’t change specifiers/qualifiers to either Left or Right alignment
(default).

int const a;
const int *a;

• QAS_Left (in configuration: Left) Change specifiers/qualifiers to be left-aligned.

const int a;
const int *a;

Clang-Format Style Options

847



• QAS_Right (in configuration: Right) Change specifiers/qualifiers to be right-aligned.

int const a;
int const *a;

• QAS_Custom (in configuration: Custom) Change specifiers/qualifiers to be aligned based on
QualifierOrder. With:

QualifierOrder: ['inline', 'static' , 'type', 'const']

int const a;
int const *a;

QualifierOrder (List of Strings) clang-format 14

The order in which the qualifiers appear. Order is an array that can contain any of the following:

• const

• inline

• static

• constexpr

• volatile

• restrict

• type

Note: it MUST contain ‘type’. Items to the left of ‘type’ will be placed to the left of the type and aligned in the
order supplied. Items to the right of ‘type’ will be placed to the right of the type and aligned in the order supplied.

QualifierOrder: ['inline', 'static', 'type', 'const', 'volatile' ]

RawStringFormats (List of RawStringFormats) clang-format 6

Defines hints for detecting supported languages code blocks in raw strings.

A raw string with a matching delimiter or a matching enclosing function name will be reformatted assuming the
specified language based on the style for that language defined in the .clang-format file. If no style has been
defined in the .clang-format file for the specific language, a predefined style given by ‘BasedOnStyle’ is used. If
‘BasedOnStyle’ is not found, the formatting is based on llvm style. A matching delimiter takes precedence over a
matching enclosing function name for determining the language of the raw string contents.

If a canonical delimiter is specified, occurrences of other delimiters for the same language will be updated to the
canonical if possible.

There should be at most one specification per language and each delimiter and enclosing function should not
occur in multiple specifications.

To configure this in the .clang-format file, use:

RawStringFormats:
  - Language: TextProto
      Delimiters:
        - 'pb'
        - 'proto'
      EnclosingFunctions:
        - 'PARSE_TEXT_PROTO'
      BasedOnStyle: google
  - Language: Cpp
      Delimiters:
        - 'cc'
        - 'cpp'
      BasedOnStyle: llvm
      CanonicalDelimiter: 'cc'

ReferenceAlignment (ReferenceAlignmentStyle) clang-format 13

Reference alignment style (overrides PointerAlignment for references).

Clang-Format Style Options

848



Possible values:

• RAS_Pointer (in configuration: Pointer) Align reference like PointerAlignment.

• RAS_Left (in configuration: Left) Align reference to the left.

int& a;

• RAS_Right (in configuration: Right) Align reference to the right.

int &a;

• RAS_Middle (in configuration: Middle) Align reference in the middle.

int & a;

ReflowComments (Boolean) clang-format 4

If true, clang-format will attempt to re-flow comments.

false:
// veryVeryVeryVeryVeryVeryVeryVeryVeryVeryVeryLongComment with plenty of information
/* second veryVeryVeryVeryVeryVeryVeryVeryVeryVeryVeryLongComment with plenty of information */

true:
// veryVeryVeryVeryVeryVeryVeryVeryVeryVeryVeryLongComment with plenty of
// information
/* second veryVeryVeryVeryVeryVeryVeryVeryVeryVeryVeryLongComment with plenty of
 * information */

RemoveBracesLLVM (Boolean) clang-format 14

Remove optional braces of control statements (if, else, for, and while) in C++ according to the LLVM
coding style.

Warning

This option will be renamed and expanded to support other styles.

Warning

Setting this option to true could lead to incorrect code formatting due to clang-format’s lack of complete
semantic information. As such, extra care should be taken to review code changes made by this option.

false:                                     true:

if (isa<FunctionDecl>(D)) {        vs.     if (isa<FunctionDecl>(D))
  handleFunctionDecl(D);                     handleFunctionDecl(D);
} else if (isa<VarDecl>(D)) {              else if (isa<VarDecl>(D))
  handleVarDecl(D);                          handleVarDecl(D);
}

if (isa<VarDecl>(D)) {             vs.     if (isa<VarDecl>(D)) {
  for (auto *A : D.attrs()) {                for (auto *A : D.attrs())
    if (shouldProcessAttr(A)) {                if (shouldProcessAttr(A))
      handleAttr(A);                             handleAttr(A);
    }                                      }
  }
}

if (isa<FunctionDecl>(D)) {        vs.     if (isa<FunctionDecl>(D))
  for (auto *A : D.attrs()) {                for (auto *A : D.attrs())
    handleAttr(A);                             handleAttr(A);
  }

Clang-Format Style Options

849



}

if (auto *D = (T)(D)) {            vs.     if (auto *D = (T)(D)) {
  if (shouldProcess(D)) {                    if (shouldProcess(D))
    handleVarDecl(D);                          handleVarDecl(D);
  } else {                                   else
    markAsIgnored(D);                          markAsIgnored(D);
  }                                        }
}

if (a) {                           vs.     if (a)
  b();                                       b();
} else {                                   else if (c)
  if (c) {                                   d();
    d();                                   else
  } else {                                   e();
    e();
  }
}

RequiresClausePosition (RequiresClausePositionStyle) clang-format 15

The position of the requires clause.

Possible values:

• RCPS_OwnLine (in configuration: OwnLine) Always put the requires clause on its own line.

template <typename T>
requires C<T>
struct Foo {...

template <typename T>
requires C<T>
void bar(T t) {...

template <typename T>
void baz(T t)
requires C<T>
{...

• RCPS_WithPreceding (in configuration: WithPreceding) Try to put the clause together with the
preceding part of a declaration. For class templates: stick to the template declaration. For function
templates: stick to the template declaration. For function declaration followed by a requires clause: stick to
the parameter list.

template <typename T> requires C<T>
struct Foo {...

template <typename T> requires C<T>
void bar(T t) {...

template <typename T>
void baz(T t) requires C<T>
{...

• RCPS_WithFollowing (in configuration: WithFollowing) Try to put the requires clause together with
the class or function declaration.

template <typename T>
requires C<T> struct Foo {...

template <typename T>
requires C<T> void bar(T t) {...

Clang-Format Style Options

850



template <typename T>
void baz(T t)
requires C<T> {...

• RCPS_SingleLine (in configuration: SingleLine) Try to put everything in the same line if possible.
Otherwise normal line breaking rules take over.

// Fitting:
template <typename T> requires C<T> struct Foo {...

template <typename T> requires C<T> void bar(T t) {...

template <typename T> void bar(T t) requires C<T> {...

// Not fitting, one possible example:
template <typename LongName>
requires C<LongName>
struct Foo {...

template <typename LongName>
requires C<LongName>
void bar(LongName ln) {

template <typename LongName>
void bar(LongName ln)
    requires C<LongName> {

SeparateDefinitionBlocks (SeparateDefinitionStyle) clang-format 14

Specifies the use of empty lines to separate definition blocks, including classes, structs, enums, and functions.

Never                  v.s.     Always
#include <cstring>              #include <cstring>
struct Foo {
  int a, b, c;                  struct Foo {
};                                int a, b, c;
namespace Ns {                  };
class Bar {
public:                         namespace Ns {
  struct Foobar {               class Bar {
    int a;                      public:
    int b;                        struct Foobar {
  };                                int a;
private:                            int b;
  int t;                          };
  int method1() {
    // ...                      private:
  }                               int t;
  enum List {
    ITEM1,                        int method1() {
    ITEM2                           // ...
  };                              }
  template<typename T>
  int method2(T x) {              enum List {
    // ...                          ITEM1,
  }                                 ITEM2
  int i, j, k;                    };
  int method3(int par) {
    // ...                        template<typename T>
  }                               int method2(T x) {
};                                  // ...

Clang-Format Style Options

851



class C {};                       }
}
                                  int i, j, k;

                                  int method3(int par) {
                                    // ...
                                  }
                                };

                                class C {};
                                }

Possible values:

• SDS_Leave (in configuration: Leave) Leave definition blocks as they are.
• SDS_Always (in configuration: Always) Insert an empty line between definition blocks.

• SDS_Never (in configuration: Never) Remove any empty line between definition blocks.
ShortNamespaceLines (Unsigned) clang-format 13

The maximal number of unwrapped lines that a short namespace spans. Defaults to 1.

This determines the maximum length of short namespaces by counting unwrapped lines (i.e. containing neither
opening nor closing namespace brace) and makes “FixNamespaceComments” omit adding end comments for
those.

ShortNamespaceLines: 1     vs.     ShortNamespaceLines: 0
namespace a {                      namespace a {
  int foo;                           int foo;
}                                  } // namespace a

ShortNamespaceLines: 1     vs.     ShortNamespaceLines: 0
namespace b {                      namespace b {
  int foo;                           int foo;
  int bar;                           int bar;
} // namespace b                   } // namespace b

SortIncludes (SortIncludesOptions) clang-format 4

Controls if and how clang-format will sort #includes. If Never, includes are never sorted. If
CaseInsensitive, includes are sorted in an ASCIIbetical or case insensitive fashion. If CaseSensitive,
includes are sorted in an alphabetical or case sensitive fashion.

Possible values:

• SI_Never (in configuration: Never) Includes are never sorted.

#include "B/A.h"
#include "A/B.h"
#include "a/b.h"
#include "A/b.h"
#include "B/a.h"

• SI_CaseSensitive (in configuration: CaseSensitive) Includes are sorted in an ASCIIbetical or case
sensitive fashion.

#include "A/B.h"
#include "A/b.h"
#include "B/A.h"
#include "B/a.h"
#include "a/b.h"

• SI_CaseInsensitive (in configuration: CaseInsensitive) Includes are sorted in an alphabetical or
case insensitive fashion.

Clang-Format Style Options

852



#include "A/B.h"
#include "A/b.h"
#include "a/b.h"
#include "B/A.h"
#include "B/a.h"

SortJavaStaticImport (SortJavaStaticImportOptions) clang-format 12

When sorting Java imports, by default static imports are placed before non-static imports. If
JavaStaticImportAfterImport is After, static imports are placed after non-static imports.

Possible values:

• SJSIO_Before (in configuration: Before) Static imports are placed before non-static imports.

import static org.example.function1;

import org.example.ClassA;

• SJSIO_After (in configuration: After) Static imports are placed after non-static imports.

import org.example.ClassA;

import static org.example.function1;

SortUsingDeclarations (Boolean) clang-format 5

If true, clang-format will sort using declarations.

The order of using declarations is defined as follows: Split the strings by “::” and discard any initial empty strings.
The last element of each list is a non-namespace name; all others are namespace names. Sort the lists of
names lexicographically, where the sort order of individual names is that all non-namespace names come
before all namespace names, and within those groups, names are in case-insensitive lexicographic order.

false:                                 true:
using std::cout;               vs.     using std::cin;
using std::cin;                        using std::cout;

SpaceAfterCStyleCast (Boolean) clang-format 3.5

If true, a space is inserted after C style casts.

true:                                  false:
(int) i;                       vs.     (int)i;

SpaceAfterLogicalNot (Boolean) clang-format 9

If true, a space is inserted after the logical not operator (!).

true:                                  false:
! someExpression();            vs.     !someExpression();

SpaceAfterTemplateKeyword (Boolean) clang-format 4

If true, a space will be inserted after the ‘template’ keyword.

true:                                  false:
template <int> void foo();     vs.     template<int> void foo();

SpaceAroundPointerQualifiers (SpaceAroundPointerQualifiersStyle) clang-format 12

Defines in which cases to put a space before or after pointer qualifiers

Possible values:

• SAPQ_Default (in configuration: Default) Don’t ensure spaces around pointer qualifiers and use
PointerAlignment instead.

PointerAlignment: Left                 PointerAlignment: Right
void* const* x = NULL;         vs.     void *const *x = NULL;

• SAPQ_Before (in configuration: Before) Ensure that there is a space before pointer qualifiers.

PointerAlignment: Left                 PointerAlignment: Right
void* const* x = NULL;         vs.     void * const *x = NULL;

Clang-Format Style Options

853



• SAPQ_After (in configuration: After) Ensure that there is a space after pointer qualifiers.

PointerAlignment: Left                 PointerAlignment: Right
void* const * x = NULL;         vs.     void *const *x = NULL;

• SAPQ_Both (in configuration: Both) Ensure that there is a space both before and after pointer qualifiers.

PointerAlignment: Left                 PointerAlignment: Right
void* const * x = NULL;         vs.     void * const *x = NULL;

SpaceBeforeAssignmentOperators (Boolean) clang-format 3.7

If false, spaces will be removed before assignment operators.

true:                                  false:
int a = 5;                     vs.     int a= 5;
a += 42;                               a+= 42;

SpaceBeforeCaseColon (Boolean) clang-format 12

If false, spaces will be removed before case colon.

true:                                   false
switch (x) {                    vs.     switch (x) {
  case 1 : break;                         case 1: break;
}                                       }

SpaceBeforeCpp11BracedList (Boolean) clang-format 7

If true, a space will be inserted before a C++11 braced list used to initialize an object (after the preceding
identifier or type).

true:                                  false:
Foo foo { bar };               vs.     Foo foo{ bar };
Foo {};                                Foo{};
vector<int> { 1, 2, 3 };               vector<int>{ 1, 2, 3 };
new int[3] { 1, 2, 3 };                new int[3]{ 1, 2, 3 };

SpaceBeforeCtorInitializerColon (Boolean) clang-format 7

If false, spaces will be removed before constructor initializer colon.

true:                                  false:
Foo::Foo() : a(a) {}                   Foo::Foo(): a(a) {}

SpaceBeforeInheritanceColon (Boolean) clang-format 7

If false, spaces will be removed before inheritance colon.

true:                                  false:
class Foo : Bar {}             vs.     class Foo: Bar {}

SpaceBeforeParens (SpaceBeforeParensStyle) clang-format 3.5

Defines in which cases to put a space before opening parentheses.

Possible values:

• SBPO_Never (in configuration: Never) Never put a space before opening parentheses.

void f() {
  if(true) {
    f();
  }
}

• SBPO_ControlStatements (in configuration: ControlStatements) Put a space before opening
parentheses only after control statement keywords (for/if/while...).

void f() {
  if (true) {
    f();
  }
}

Clang-Format Style Options

854



• SBPO_ControlStatementsExceptControlMacros (in configuration:
ControlStatementsExceptControlMacros) Same as SBPO_ControlStatements except this
option doesn’t apply to ForEach and If macros. This is useful in projects where ForEach/If macros are
treated as function calls instead of control statements.
SBPO_ControlStatementsExceptForEachMacros remains an alias for backward compatibility.

void f() {
  Q_FOREACH(...) {
    f();
  }
}

• SBPO_NonEmptyParentheses (in configuration: NonEmptyParentheses) Put a space before opening
parentheses only if the parentheses are not empty i.e. ‘()’

void() {
  if (true) {
    f();
    g (x, y, z);
  }
}

• SBPO_Always (in configuration: Always) Always put a space before opening parentheses, except when
it’s prohibited by the syntax rules (in function-like macro definitions) or when determined by other style
rules (after unary operators, opening parentheses, etc.)

void f () {
  if (true) {
    f ();
  }
}

• SBPO_Custom (in configuration: Custom) Configure each individual space before parentheses in
SpaceBeforeParensOptions.

SpaceBeforeParensOptions (SpaceBeforeParensCustom) clang-format 14

Control of individual space before parentheses.

If SpaceBeforeParens is set to Custom, use this to specify how each individual space before parentheses
case should be handled. Otherwise, this is ignored.

# Example of usage:
SpaceBeforeParens: Custom
SpaceBeforeParensOptions:
  AfterControlStatements: true
  AfterFunctionDefinitionName: true

Nested configuration flags:

Precise control over the spacing before parentheses.

# Should be declared this way:
SpaceBeforeParens: Custom
SpaceBeforeParensOptions:
  AfterControlStatements: true
  AfterFunctionDefinitionName: true

• bool AfterControlStatements If true, put space betwee control statement keywords (for/if/while…)
and opening parentheses.

true:                                  false:
if (...) {}                     vs.    if(...) {}

• bool AfterForeachMacros If true, put space between foreach macros and opening parentheses.

Clang-Format Style Options

855



true:                                  false:
FOREACH (...)                   vs.    FOREACH(...)
  <loop-body>                            <loop-body>

• bool AfterFunctionDeclarationName If true, put a space between function declaration name and
opening parentheses.

true:                                  false:
void f ();                      vs.    void f();

• bool AfterFunctionDefinitionName If true, put a space between function definition name and
opening parentheses.

true:                                  false:
void f () {}                    vs.    void f() {}

• bool AfterIfMacros If true, put space between if macros and opening parentheses.

true:                                  false:
IF (...)                        vs.    IF(...)
  <conditional-body>                     <conditional-body>

• bool AfterOverloadedOperator If true, put a space between operator overloading and opening
parentheses.

true:                                  false:
void operator++ (int a);        vs.    void operator++(int a);
object.operator++ (10);                object.operator++(10);

• bool AfterRequiresInClause If true, put space between requires keyword in a requires clause and
opening parentheses, if there is one.

true:                                  false:
template<typename T>            vs.    template<typename T>
requires (A<T> && B<T>)                requires(A<T> && B<T>)
...                                    ...

• bool AfterRequiresInExpression If true, put space between requires keyword in a requires
expression and opening parentheses.

true:                                  false:
template<typename T>            vs.    template<typename T>
concept C = requires (T t) {           concept C = requires(T t) {
              ...                                    ...
            }                                      }

• bool BeforeNonEmptyParentheses If true, put a space before opening parentheses only if the
parentheses are not empty.

true:                                  false:
void f (int a);                 vs.    void f();
f (a);                                 f();

SpaceBeforeRangeBasedForLoopColon (Boolean) clang-format 7

If false, spaces will be removed before range-based for loop colon.

true:                                  false:
for (auto v : values) {}       vs.     for(auto v: values) {}

SpaceBeforeSquareBrackets (Boolean) clang-format 10

If true, spaces will be before [. Lambdas will not be affected. Only the first [ will get a space added.

true:                                  false:
int a [5];                    vs.      int a[5];
int a [5][5];                 vs.      int a[5][5];

SpaceInEmptyBlock (Boolean) clang-format 10

If true, spaces will be inserted into {}.

Clang-Format Style Options

856



true:                                false:
void f() { }                   vs.   void f() {}
while (true) { }                     while (true) {}

SpaceInEmptyParentheses (Boolean) clang-format 3.7

If true, spaces may be inserted into ().

true:                                false:
void f( ) {                    vs.   void f() {
  int x[] = {foo( ), bar( )};          int x[] = {foo(), bar()};
  if (true) {                          if (true) {
    f( );                                f();
  }                                    }
}                                    }

SpacesBeforeTrailingComments (Unsigned) clang-format 3.7

The number of spaces before trailing line comments (// - comments).

This does not affect trailing block comments (/* - comments) as those commonly have different usage patterns
and a number of special cases.

SpacesBeforeTrailingComments: 3
void f() {
  if (true) {   // foo1
    f();        // bar
  }             // foo
}

SpacesInAngles (SpacesInAnglesStyle) clang-format 3.4

The SpacesInAnglesStyle to use for template argument lists.

Possible values:

• SIAS_Never (in configuration: Never) Remove spaces after < and before >.

static_cast<int>(arg);
std::function<void(int)> fct;

• SIAS_Always (in configuration: Always) Add spaces after < and before >.

static_cast< int >(arg);
std::function< void(int) > fct;

• SIAS_Leave (in configuration: Leave) Keep a single space after < and before > if any spaces were
present. Option Standard: Cpp03 takes precedence.

SpacesInCStyleCastParentheses (Boolean) clang-format 3.7

If true, spaces may be inserted into C style casts.

true:                                  false:
x = ( int32 )y                 vs.     x = (int32)y

SpacesInConditionalStatement (Boolean) clang-format 10

If true, spaces will be inserted around if/for/switch/while conditions.

true:                                  false:
if ( a )  { ... }              vs.     if (a) { ... }
while ( i < 5 )  { ... }               while (i < 5) { ... }

SpacesInContainerLiterals (Boolean) clang-format 3.7

If true, spaces are inserted inside container literals (e.g. ObjC and Javascript array and dict literals).

true:                                  false:
var arr = [ 1, 2, 3 ];         vs.     var arr = [1, 2, 3];
f({a : 1, b : 2, c : 3});              f({a: 1, b: 2, c: 3});

SpacesInLineCommentPrefix (SpacesInLineComment) clang-format 13

Clang-Format Style Options

857



How many spaces are allowed at the start of a line comment. To disable the maximum set it to -1, apart from
that the maximum takes precedence over the minimum.

Minimum = 1
Maximum = -1
// One space is forced

//  but more spaces are possible

Minimum = 0
Maximum = 0
//Forces to start every comment directly after the slashes

Note that in line comment sections the relative indent of the subsequent lines is kept, that means the following:

before:                                   after:
Minimum: 1
//if (b) {                                // if (b) {
//  return true;                          //   return true;
//}                                       // }

Maximum: 0
/// List:                                 ///List:
///  - Foo                                /// - Foo
///    - Bar                              ///   - Bar

Nested configuration flags:

Control of spaces within a single line comment

• unsigned Minimum The minimum number of spaces at the start of the comment.

• unsigned Maximum The maximum number of spaces at the start of the comment.
SpacesInParentheses (Boolean) clang-format 3.7

If true, spaces will be inserted after ( and before ).

true:                                  false:
t f( Deleted & ) & = delete;   vs.     t f(Deleted &) & = delete;

SpacesInSquareBrackets (Boolean) clang-format 3.7

If true, spaces will be inserted after [ and before ]. Lambdas without arguments or unspecified size array
declarations will not be affected.

true:                                  false:
int a[ 5 ];                    vs.     int a[5];
std::unique_ptr<int[]> foo() {} // Won't be affected

Standard (LanguageStandard) clang-format 3.7

Parse and format C++ constructs compatible with this standard.

c++03:                                 latest:
vector<set<int> > x;           vs.     vector<set<int>> x;

Possible values:

• LS_Cpp03 (in configuration: c++03) Parse and format as C++03. Cpp03 is a deprecated alias for c++03

• LS_Cpp11 (in configuration: c++11) Parse and format as C++11.

• LS_Cpp14 (in configuration: c++14) Parse and format as C++14.

• LS_Cpp17 (in configuration: c++17) Parse and format as C++17.

• LS_Cpp20 (in configuration: c++20) Parse and format as C++20.

• LS_Latest (in configuration: Latest) Parse and format using the latest supported language version.
Cpp11 is a deprecated alias for Latest

Clang-Format Style Options

858



• LS_Auto (in configuration: Auto) Automatic detection based on the input.
StatementAttributeLikeMacros (List of Strings) clang-format 12

Macros which are ignored in front of a statement, as if they were an attribute. So that they are not parsed as
identifier, for example for Qts emit.

AlignConsecutiveDeclarations: true
StatementAttributeLikeMacros: []
unsigned char data = 'x';
emit          signal(data); // This is parsed as variable declaration.

AlignConsecutiveDeclarations: true
StatementAttributeLikeMacros: [emit]
unsigned char data = 'x';
emit signal(data); // Now it's fine again.

StatementMacros (List of Strings) clang-format 8

A vector of macros that should be interpreted as complete statements.

Typical macros are expressions, and require a semi-colon to be added; sometimes this is not the case, and this
allows to make clang-format aware of such cases.

For example: Q_UNUSED

TabWidth (Unsigned) clang-format 3.7

The number of columns used for tab stops.

TypenameMacros (List of Strings) clang-format 9

A vector of macros that should be interpreted as type declarations instead of as function calls.

These are expected to be macros of the form:

STACK_OF(...)

In the .clang-format configuration file, this can be configured like:

TypenameMacros: ['STACK_OF', 'LIST']

For example: OpenSSL STACK_OF, BSD LIST_ENTRY.

UseCRLF (Boolean) clang-format 10

Use \r\n instead of \n for line breaks. Also used as fallback if DeriveLineEnding is true.

UseTab (UseTabStyle) clang-format 3.7

The way to use tab characters in the resulting file.

Possible values:

• UT_Never (in configuration: Never) Never use tab.

• UT_ForIndentation (in configuration: ForIndentation) Use tabs only for indentation.

• UT_ForContinuationAndIndentation (in configuration: ForContinuationAndIndentation) Fill
all leading whitespace with tabs, and use spaces for alignment that appears within a line (e.g. consecutive
assignments and declarations).

• UT_AlignWithSpaces (in configuration: AlignWithSpaces) Use tabs for line continuation and
indentation, and spaces for alignment.

• UT_Always (in configuration: Always) Use tabs whenever we need to fill whitespace that spans at least
from one tab stop to the next one.

WhitespaceSensitiveMacros (List of Strings) clang-format 11

A vector of macros which are whitespace-sensitive and should not be touched.

These are expected to be macros of the form:

STRINGIZE(...)

In the .clang-format configuration file, this can be configured like:

Clang-Format Style Options

859



WhitespaceSensitiveMacros: ['STRINGIZE', 'PP_STRINGIZE']

For example: BOOST_PP_STRINGIZE

Adding additional style options
Each additional style option adds costs to the clang-format project. Some of these costs affect the clang-format
development itself, as we need to make sure that any given combination of options work and that new features don’t
break any of the existing options in any way. There are also costs for end users as options become less discoverable
and people have to think about and make a decision on options they don’t really care about.

The goal of the clang-format project is more on the side of supporting a limited set of styles really well as opposed to
supporting every single style used by a codebase somewhere in the wild. Of course, we do want to support all major
projects and thus have established the following bar for adding style options. Each new style option must ..

• be used in a project of significant size (have dozens of contributors)

• have a publicly accessible style guide

• have a person willing to contribute and maintain patches

Examples
A style similar to the Linux Kernel style:

BasedOnStyle: LLVM
IndentWidth: 8
UseTab: Always
BreakBeforeBraces: Linux
AllowShortIfStatementsOnASingleLine: false
IndentCaseLabels: false

The result is (imagine that tabs are used for indentation here):

void test()
{
        switch (x) {
        case 0:
        case 1:
                do_something();
                break;
        case 2:
                do_something_else();
                break;
        default:
                break;
        }
        if (condition)
                do_something_completely_different();

        if (x == y) {
                q();
        } else if (x > y) {
                w();
        } else {
                r();
        }
}

A style similar to the default Visual Studio formatting style:

UseTab: Never
IndentWidth: 4

Clang-Format Style Options

860

https://www.kernel.org/doc/Documentation/CodingStyle


BreakBeforeBraces: Allman
AllowShortIfStatementsOnASingleLine: false
IndentCaseLabels: false
ColumnLimit: 0

The result is:

void test()
{
    switch (suffix)
    {
    case 0:
    case 1:
        do_something();
        break;
    case 2:
        do_something_else();
        break;
    default:
        break;
    }
    if (condition)
        do_something_completely_different();

    if (x == y)
    {
        q();
    }
    else if (x > y)
    {
        w();
    }
    else
    {
        r();
    }
}

Clang Formatted Status
Clang Formatted Status describes the state of LLVM source tree in terms of conformance to ClangFormat as of:
March 06, 2022 17:32:26 (830ba4cebe79).

LLVM Clang-Format Status

Directory Total Files
Formatted

Files
Unformatted

Files % Complete

bolt/include/bolt/Core 15 10 5 66%

bolt/include/bolt/Passes 47 47 0 100%

bolt/include/bolt/Profile 8 8 0 100%

bolt/include/bolt/Rewrite 5 4 1 80%

bolt/include/bolt/RuntimeLibs 3 3 0 100%

bolt/include/bolt/Utils 4 4 0 100%

bolt/lib/Core 14 5 9 35%

bolt/lib/Passes 45 21 24 46%

Clang Formatted Status

861

https://github.com/llvm/llvm-project/commit/830ba4cebe79


Directory Total Files
Formatted

Files
Unformatted

Files % Complete

bolt/lib/Profile 7 3 4 42%

bolt/lib/Rewrite 6 0 6 0%

bolt/lib/RuntimeLibs 3 3 0 100%

bolt/lib/Target/AArch64 1 0 1 0%

bolt/lib/Target/X86 1 0 1 0%

bolt/lib/Utils 2 1 1 50%

bolt/runtime 3 0 3 0%

bolt/tools/driver 1 0 1 0%

bolt/tools/heatmap 1 1 0 100%

bolt/tools/llvm-bolt-fuzzer 1 1 0 100%

bolt/tools/merge-fdata 1 0 1 0%

bolt/unittests/Core 1 1 0 100%

clang/bindings/python/tests/cindex/I
NPUTS

5 3 2 60%

clang/docs/analyzer/checkers 2 0 2 0%

clang/examples/AnnotateFunctions 1 0 1 0%

clang/examples/Attribute 1 1 0 100%

clang/examples/CallSuperAttribute 1 1 0 100%

clang/examples/PluginsOrder 1 1 0 100%

clang/examples/PrintFunctionName
s

1 0 1 0%

clang/include/clang/Analysis 16 4 12 25%

clang/include/clang/Analysis/Analys
es

15 3 12 20%

clang/include/clang/Analysis/Domai
nSpecific

2 0 2 0%

clang/include/clang/Analysis/FlowS
ensitive

16 15 1 93%

clang/include/clang/Analysis/Suppo
rt

1 0 1 0%

clang/include/clang/APINotes 2 2 0 100%

clang/include/clang/ARCMigrate 3 0 3 0%

clang/include/clang/AST 114 20 94 17%

clang/include/clang/ASTMatchers 5 1 4 20%

clang/include/clang/ASTMatchers/D
ynamic

4 1 3 25%

clang/include/clang/Basic 82 32 50 39%

clang/include/clang/CodeGen 9 0 9 0%

clang/include/clang/CrossTU 2 1 1 50%

clang/include/clang/DirectoryWatch
er

1 1 0 100%

Clang Formatted Status

862



Directory Total Files
Formatted

Files
Unformatted

Files % Complete

clang/include/clang/Driver 17 4 13 23%

clang/include/clang/Edit 5 1 4 20%

clang/include/clang/Format 1 1 0 100%

clang/include/clang/Frontend 28 7 21 25%

clang/include/clang/FrontendTool 1 0 1 0%

clang/include/clang/Index 7 2 5 28%

clang/include/clang/IndexSerializati
on

1 1 0 100%

clang/include/clang/Interpreter 2 2 0 100%

clang/include/clang/Lex 29 6 23 20%

clang/include/clang/Parse 5 2 3 40%

clang/include/clang/Rewrite/Core 6 0 6 0%

clang/include/clang/Rewrite/Fronten
d

4 0 4 0%

clang/include/clang/Sema 32 3 29 9%

clang/include/clang/Serialization 14 3 11 21%

clang/include/clang/StaticAnalyzer/
Checkers

4 1 3 25%

clang/include/clang/StaticAnalyzer/
Core

5 1 4 20%

clang/include/clang/StaticAnalyzer/
Core/BugReporter

4 1 3 25%

clang/include/clang/StaticAnalyzer/
Core/PathSensitive

37 10 27 27%

clang/include/clang/StaticAnalyzer/
Frontend

5 2 3 40%

clang/include/clang/Testing 2 2 0 100%

clang/include/clang/Tooling 17 10 7 58%

clang/include/clang/Tooling/ASTDiff 2 2 0 100%

clang/include/clang/Tooling/Core 2 0 2 0%

clang/include/clang/Tooling/Depend
encyScanning

5 5 0 100%

clang/include/clang/Tooling/Inclusio
ns

3 3 0 100%

clang/include/clang/Tooling/Refacto
ring

15 12 3 80%

clang/include/clang/Tooling/Refacto
ring/Extract

2 2 0 100%

clang/include/clang/Tooling/Refacto
ring/Rename

6 5 1 83%

clang/include/clang/Tooling/Syntax 5 5 0 100%

clang/include/clang/Tooling/Syntax/
Pseudo

5 5 0 100%

Clang Formatted Status

863



Directory Total Files
Formatted

Files
Unformatted

Files % Complete

clang/include/clang/Tooling/Transfo
rmer

8 6 2 75%

clang/include/clang-c 10 3 7 30%

clang/INPUTS 2 0 2 0%

clang/lib/Analysis 28 3 25 10%

clang/lib/Analysis/FlowSensitive 7 7 0 100%

clang/lib/Analysis/plugins/CheckerD
ependencyHandling

1 1 0 100%

clang/lib/Analysis/plugins/CheckerO
ptionHandling

1 0 1 0%

clang/lib/Analysis/plugins/SampleA
nalyzer

1 1 0 100%

clang/lib/APINotes 3 3 0 100%

clang/lib/ARCMigrate 22 0 22 0%

clang/lib/AST 81 2 79 2%

clang/lib/AST/Interp 44 18 26 40%

clang/lib/ASTMatchers 3 1 2 33%

clang/lib/ASTMatchers/Dynamic 6 1 5 16%

clang/lib/Basic 39 13 26 33%

clang/lib/Basic/Targets 50 25 25 50%

clang/lib/CodeGen 87 9 78 10%

clang/lib/CrossTU 1 0 1 0%

clang/lib/DirectoryWatcher 2 2 0 100%

clang/lib/DirectoryWatcher/default 1 0 1 0%

clang/lib/DirectoryWatcher/linux 1 0 1 0%

clang/lib/DirectoryWatcher/mac 1 0 1 0%

clang/lib/DirectoryWatcher/windows 1 0 1 0%

clang/lib/Driver 14 2 12 14%

clang/lib/Driver/ToolChains 94 41 53 43%

clang/lib/Driver/ToolChains/Arch 20 7 13 35%

clang/lib/Edit 3 0 3 0%

clang/lib/Format 35 35 0 100%

clang/lib/Frontend 32 4 28 12%

clang/lib/Frontend/Rewrite 8 0 8 0%

clang/lib/FrontendTool 1 0 1 0%

clang/lib/Headers 146 14 132 9%

clang/lib/Headers/openmp_wrapper
s

5 4 1 80%

clang/lib/Headers/ppc_wrappers 7 2 5 28%

clang/lib/Index 11 2 9 18%

Clang Formatted Status

864



Directory Total Files
Formatted

Files
Unformatted

Files % Complete

clang/lib/IndexSerialization 1 1 0 100%

clang/lib/Interpreter 5 5 0 100%

clang/lib/Lex 24 1 23 4%

clang/lib/Parse 15 1 14 6%

clang/lib/Rewrite 5 0 5 0%

clang/lib/Sema 55 4 51 7%

clang/lib/Serialization 17 2 15 11%

clang/lib/StaticAnalyzer/Checkers 122 19 103 15%

clang/lib/StaticAnalyzer/Checkers/c
ert

2 2 0 100%

clang/lib/StaticAnalyzer/Checkers/M
PI-Checker

6 0 6 0%

clang/lib/StaticAnalyzer/Checkers/R
etainCountChecker

4 0 4 0%

clang/lib/StaticAnalyzer/Checkers/U
ninitializedObject

3 1 2 33%

clang/lib/StaticAnalyzer/Checkers/
WebKit

10 8 2 80%

clang/lib/StaticAnalyzer/Core 47 10 37 21%

clang/lib/StaticAnalyzer/Frontend 8 3 5 37%

clang/lib/Testing 1 1 0 100%

clang/lib/Tooling 16 7 9 43%

clang/lib/Tooling/ASTDiff 1 0 1 0%

clang/lib/Tooling/Core 2 0 2 0%

clang/lib/Tooling/DependencyScann
ing

5 4 1 80%

clang/lib/Tooling/DumpTool 4 3 1 75%

clang/lib/Tooling/Inclusions 3 3 0 100%

clang/lib/Tooling/Refactoring 5 3 2 60%

clang/lib/Tooling/Refactoring/Extrac
t

2 1 1 50%

clang/lib/Tooling/Refactoring/Rena
me

5 2 3 40%

clang/lib/Tooling/Syntax 7 6 1 85%

clang/lib/Tooling/Syntax/Pseudo 8 8 0 100%

clang/lib/Tooling/Transformer 7 4 3 57%

clang/tools/amdgpu-arch 1 1 0 100%

clang/tools/apinotes-test 1 1 0 100%

clang/tools/arcmt-test 1 0 1 0%

clang/tools/c-index-test 1 0 1 0%

clang/tools/clang-check 1 0 1 0%

Clang Formatted Status

865



Directory Total Files
Formatted

Files
Unformatted

Files % Complete

clang/tools/clang-diff 1 0 1 0%

clang/tools/clang-extdef-mapping 1 0 1 0%

clang/tools/clang-format 1 1 0 100%

clang/tools/clang-format/fuzzer 1 0 1 0%

clang/tools/clang-fuzzer 6 4 2 66%

clang/tools/clang-fuzzer/fuzzer-initia
lize

2 0 2 0%

clang/tools/clang-fuzzer/handle-cxx 2 0 2 0%

clang/tools/clang-fuzzer/handle-llvm 3 1 2 33%

clang/tools/clang-fuzzer/proto-to-cx
x

5 0 5 0%

clang/tools/clang-fuzzer/proto-to-llv
m

3 0 3 0%

clang/tools/clang-import-test 1 0 1 0%

clang/tools/clang-linker-wrapper 3 2 1 66%

clang/tools/clang-nvlink-wrapper 1 1 0 100%

clang/tools/clang-offload-bundler 1 0 1 0%

clang/tools/clang-offload-wrapper 1 1 0 100%

clang/tools/clang-pseudo 1 1 0 100%

clang/tools/clang-refactor 4 4 0 100%

clang/tools/clang-rename 1 1 0 100%

clang/tools/clang-repl 1 1 0 100%

clang/tools/clang-scan-deps 1 1 0 100%

clang/tools/clang-shlib 1 1 0 100%

clang/tools/diagtool 9 0 9 0%

clang/tools/driver 4 1 3 25%

clang/tools/libclang 35 5 30 14%

clang/tools/scan-build-py/tests/funct
ional/src/include

1 1 0 100%

clang/unittests/Analysis 6 2 4 33%

clang/unittests/Analysis/FlowSensiti
ve

14 13 1 92%

clang/unittests/AST 30 8 22 26%

clang/unittests/ASTMatchers 6 3 3 50%

clang/unittests/ASTMatchers/Dyna
mic

3 0 3 0%

clang/unittests/Basic 8 4 4 50%

clang/unittests/CodeGen 6 1 5 16%

clang/unittests/CrossTU 1 1 0 100%

clang/unittests/DirectoryWatcher 1 0 1 0%

clang/unittests/Driver 5 1 4 20%

Clang Formatted Status

866



Directory Total Files
Formatted

Files
Unformatted

Files % Complete

clang/unittests/Format 24 24 0 100%

clang/unittests/Frontend 11 7 4 63%

clang/unittests/Index 1 1 0 100%

clang/unittests/Interpreter 2 2 0 100%

clang/unittests/Interpreter/Exception
Tests

1 0 1 0%

clang/unittests/Introspection 1 0 1 0%

clang/unittests/Lex 8 4 4 50%

clang/unittests/libclang 2 0 2 0%

clang/unittests/libclang/CrashTests 1 1 0 100%

clang/unittests/Rename 6 0 6 0%

clang/unittests/Rewrite 2 1 1 50%

clang/unittests/Sema 3 2 1 66%

clang/unittests/Serialization 2 2 0 100%

clang/unittests/StaticAnalyzer 16 7 9 43%

clang/unittests/Tooling 30 10 20 33%

clang/unittests/Tooling/RecursiveA
STVisitorTests

30 12 18 40%

clang/unittests/Tooling/Syntax 7 3 4 42%

clang/unittests/Tooling/Syntax/Pseu
do

4 4 0 100%

clang/utils/perf-training/cxx 1 0 1 0%

clang/utils/TableGen 22 3 19 13%

clang-tools-extra/clang-apply-replac
ements/include/clang-apply-replace
ments/Tooling

1 1 0 100%

clang-tools-extra/clang-apply-replac
ements/lib/Tooling

1 1 0 100%

clang-tools-extra/clang-apply-replac
ements/tool

1 1 0 100%

clang-tools-extra/clang-change-nam
espace

2 0 2 0%

clang-tools-extra/clang-change-nam
espace/tool

1 0 1 0%

clang-tools-extra/clang-doc 17 16 1 94%

clang-tools-extra/clang-doc/tool 1 1 0 100%

clang-tools-extra/clang-include-fixer 13 8 5 61%

clang-tools-extra/clang-include-fixer
/find-all-symbols

17 13 4 76%

clang-tools-extra/clang-include-fixer
/find-all-symbols/tool

1 0 1 0%

clang-tools-extra/clang-include-fixer
/plugin

1 1 0 100%

Clang Formatted Status

867



Directory Total Files
Formatted

Files
Unformatted

Files % Complete

clang-tools-extra/clang-include-fixer
/tool

1 0 1 0%

clang-tools-extra/clang-move 4 1 3 25%

clang-tools-extra/clang-move/tool 1 1 0 100%

clang-tools-extra/clang-query 5 4 1 80%

clang-tools-extra/clang-query/tool 1 0 1 0%

clang-tools-extra/clang-reorder-field
s

2 1 1 50%

clang-tools-extra/clang-reorder-field
s/tool

1 0 1 0%

clang-tools-extra/clang-tidy 20 14 6 70%

clang-tools-extra/clang-tidy/abseil 42 31 11 73%

clang-tools-extra/clang-tidy/altera 11 9 2 81%

clang-tools-extra/clang-tidy/android 33 23 10 69%

clang-tools-extra/clang-tidy/boost 3 3 0 100%

clang-tools-extra/clang-tidy/bugpron
e

125 106 19 84%

clang-tools-extra/clang-tidy/cert 29 28 1 96%

clang-tools-extra/clang-tidy/concurr
ency

5 4 1 80%

clang-tools-extra/clang-tidy/cppcore
guidelines

45 42 3 93%

clang-tools-extra/clang-tidy/darwin 5 2 3 40%

clang-tools-extra/clang-tidy/fuchsia 15 10 5 66%

clang-tools-extra/clang-tidy/google 33 22 11 66%

clang-tools-extra/clang-tidy/hicpp 9 7 2 77%

clang-tools-extra/clang-tidy/linuxker
nel

3 2 1 66%

clang-tools-extra/clang-tidy/llvm 11 10 1 90%

clang-tools-extra/clang-tidy/llvmlibc 7 7 0 100%

clang-tools-extra/clang-tidy/misc 33 30 3 90%

clang-tools-extra/clang-tidy/moderni
ze

67 48 19 71%

clang-tools-extra/clang-tidy/mpi 5 5 0 100%

clang-tools-extra/clang-tidy/objc 17 12 5 70%

clang-tools-extra/clang-tidy/openmp 5 5 0 100%

clang-tools-extra/clang-tidy/perform
ance

31 24 7 77%

clang-tools-extra/clang-tidy/plugin 1 1 0 100%

clang-tools-extra/clang-tidy/portabili
ty

5 3 2 60%

Clang Formatted Status

868



Directory Total Files
Formatted

Files
Unformatted

Files % Complete

clang-tools-extra/clang-tidy/readabil
ity

88 76 12 86%

clang-tools-extra/clang-tidy/tool 3 2 1 66%

clang-tools-extra/clang-tidy/utils 35 31 4 88%

clang-tools-extra/clang-tidy/zircon 3 3 0 100%

clang-tools-extra/clangd 97 81 16 83%

clang-tools-extra/clangd/benchmark
s

1 1 0 100%

clang-tools-extra/clangd/benchmark
s/CompletionModel

1 0 1 0%

clang-tools-extra/clangd/fuzzer 2 2 0 100%

clang-tools-extra/clangd/index 39 36 3 92%

clang-tools-extra/clangd/index/dex 9 7 2 77%

clang-tools-extra/clangd/index/dex/
dexp

1 1 0 100%

clang-tools-extra/clangd/index/remo
te

2 2 0 100%

clang-tools-extra/clangd/index/remo
te/marshalling

2 2 0 100%

clang-tools-extra/clangd/index/remo
te/monitor

1 1 0 100%

clang-tools-extra/clangd/index/remo
te/server

1 1 0 100%

clang-tools-extra/clangd/index/remo
te/unimplemented

1 1 0 100%

clang-tools-extra/clangd/indexer 1 1 0 100%

clang-tools-extra/clangd/refactor 6 5 1 83%

clang-tools-extra/clangd/refactor/tw
eaks

14 10 4 71%

clang-tools-extra/clangd/support 25 24 1 96%

clang-tools-extra/clangd/tool 2 2 0 100%

clang-tools-extra/clangd/unittests 79 66 13 83%

clang-tools-extra/clangd/unittests/d
ecision_forest_model

1 1 0 100%

clang-tools-extra/clangd/unittests/re
mote

1 1 0 100%

clang-tools-extra/clangd/unittests/su
pport

11 11 0 100%

clang-tools-extra/clangd/unittests/tw
eaks

20 19 1 95%

clang-tools-extra/clangd/unittests/xp
c

1 1 0 100%

clang-tools-extra/clangd/xpc 3 3 0 100%

Clang Formatted Status

869



Directory Total Files
Formatted

Files
Unformatted

Files % Complete

clang-tools-extra/clangd/xpc/frame
work

1 1 0 100%

clang-tools-extra/clangd/xpc/test-cli
ent

1 1 0 100%

clang-tools-extra/modularize 9 1 8 11%

clang-tools-extra/pp-trace 3 1 2 33%

clang-tools-extra/tool-template 1 1 0 100%

clang-tools-extra/unittests/clang-ap
ply-replacements

1 1 0 100%

clang-tools-extra/unittests/clang-ch
ange-namespace

1 0 1 0%

clang-tools-extra/unittests/clang-do
c

9 9 0 100%

clang-tools-extra/unittests/clang-incl
ude-fixer

2 0 2 0%

clang-tools-extra/unittests/clang-incl
ude-fixer/find-all-symbols

1 0 1 0%

clang-tools-extra/unittests/clang-mo
ve

1 0 1 0%

clang-tools-extra/unittests/clang-qu
ery

2 0 2 0%

clang-tools-extra/unittests/clang-tidy 16 9 7 56%

clang-tools-extra/unittests/include/c
ommon

1 0 1 0%

compiler-rt/include/fuzzer 1 0 1 0%

compiler-rt/include/sanitizer 15 3 12 20%

compiler-rt/include/xray 3 2 1 66%

compiler-rt/lib/asan 57 5 52 8%

compiler-rt/lib/asan/tests 17 1 16 5%

compiler-rt/lib/BlocksRuntime 2 0 2 0%

compiler-rt/lib/builtins 11 9 2 81%

compiler-rt/lib/builtins/arm 1 0 1 0%

compiler-rt/lib/builtins/ppc 1 1 0 100%

compiler-rt/lib/cfi 1 0 1 0%

compiler-rt/lib/dfsan 14 9 5 64%

compiler-rt/lib/fuzzer 47 9 38 19%

compiler-rt/lib/fuzzer/afl 1 0 1 0%

compiler-rt/lib/fuzzer/dataflow 3 0 3 0%

compiler-rt/lib/fuzzer/tests 2 1 1 50%

compiler-rt/lib/gwp_asan 12 12 0 100%

compiler-rt/lib/gwp_asan/optional 10 10 0 100%

Clang Formatted Status

870



Directory Total Files
Formatted

Files
Unformatted

Files % Complete

compiler-rt/lib/gwp_asan/platform_s
pecific

13 13 0 100%

compiler-rt/lib/gwp_asan/tests 15 14 1 93%

compiler-rt/lib/gwp_asan/tests/platfo
rm_specific

1 1 0 100%

compiler-rt/lib/hwasan 30 9 21 30%

compiler-rt/lib/interception 8 1 7 12%

compiler-rt/lib/interception/tests 3 1 2 33%

compiler-rt/lib/lsan 20 4 16 20%

compiler-rt/lib/memprof 31 29 2 93%

compiler-rt/lib/memprof/tests 2 2 0 100%

compiler-rt/lib/msan 18 4 14 22%

compiler-rt/lib/msan/tests 4 0 4 0%

compiler-rt/lib/orc 21 16 5 76%

compiler-rt/lib/orc/unittests 10 9 1 90%

compiler-rt/lib/profile 6 0 6 0%

compiler-rt/lib/safestack 3 1 2 33%

compiler-rt/lib/sanitizer_common 167 29 138 17%

compiler-rt/lib/sanitizer_common/sy
mbolizer

2 2 0 100%

compiler-rt/lib/sanitizer_common/te
sts

46 12 34 26%

compiler-rt/lib/scudo 20 0 20 0%

compiler-rt/lib/scudo/standalone 49 48 1 97%

compiler-rt/lib/scudo/standalone/be
nchmarks

1 1 0 100%

compiler-rt/lib/scudo/standalone/fuz
z

1 1 0 100%

compiler-rt/lib/scudo/standalone/incl
ude/scudo

1 1 0 100%

compiler-rt/lib/scudo/standalone/tes
ts

25 24 1 96%

compiler-rt/lib/scudo/standalone/too
ls

1 1 0 100%

compiler-rt/lib/stats 3 0 3 0%

compiler-rt/lib/tsan/benchmarks 6 0 6 0%

compiler-rt/lib/tsan/dd 3 0 3 0%

compiler-rt/lib/tsan/go 1 0 1 0%

compiler-rt/lib/tsan/rtl 59 14 45 23%

compiler-rt/lib/tsan/rtl-old 61 13 48 21%

compiler-rt/lib/tsan/tests/rtl 10 0 10 0%

compiler-rt/lib/tsan/tests/unit 11 3 8 27%

Clang Formatted Status

871



Directory Total Files
Formatted

Files
Unformatted

Files % Complete

compiler-rt/lib/ubsan 27 7 20 25%

compiler-rt/lib/ubsan_minimal 1 0 1 0%

compiler-rt/lib/xray 40 27 13 67%

compiler-rt/lib/xray/tests/unit 10 8 2 80%

compiler-rt/tools/gwp_asan 2 2 0 100%

cross-project-tests/debuginfo-tests/
clang_llvm_roundtrip

2 1 1 50%

cross-project-tests/debuginfo-tests/
dexter/feature_tests/commands/pen
alty

10 0 10 0%

cross-project-tests/debuginfo-tests/
dexter/feature_tests/commands/per
fect

7 0 7 0%

cross-project-tests/debuginfo-tests/
dexter/feature_tests/commands/per
fect/dex_declare_address

7 0 7 0%

cross-project-tests/debuginfo-tests/
dexter/feature_tests/commands/per
fect/dex_declare_file/dex_and_sour
ce

1 1 0 100%

cross-project-tests/debuginfo-tests/
dexter/feature_tests/commands/per
fect/dex_declare_file/precompiled_
binary

1 1 0 100%

cross-project-tests/debuginfo-tests/
dexter/feature_tests/commands/per
fect/dex_declare_file/precompiled_
binary_different_dir/source

1 1 0 100%

cross-project-tests/debuginfo-tests/
dexter/feature_tests/commands/per
fect/dex_declare_file/windows_non
canonical_path/source

1 0 1 0%

cross-project-tests/debuginfo-tests/
dexter/feature_tests/commands/per
fect/dex_finish_test

8 0 8 0%

cross-project-tests/debuginfo-tests/
dexter/feature_tests/commands/per
fect/expect_step_kind

5 0 5 0%

cross-project-tests/debuginfo-tests/
dexter/feature_tests/commands/per
fect/limit_steps

8 2 6 25%

cross-project-tests/debuginfo-tests/
dexter/feature_tests/subtools

1 0 1 0%

cross-project-tests/debuginfo-tests/
dexter/feature_tests/subtools/clang-
opt-bisect

2 0 2 0%

cross-project-tests/debuginfo-tests/
dexter-tests

15 3 12 20%

Clang Formatted Status

872



Directory Total Files
Formatted

Files
Unformatted

Files % Complete

cross-project-tests/debuginfo-tests/l
lgdb-tests

8 0 8 0%

cross-project-tests/debuginfo-tests/l
lvm-prettyprinters/gdb

2 1 1 50%

flang/examples 1 1 0 100%

flang/examples/FlangOmpReport 3 3 0 100%

flang/examples/PrintFlangFunction
Names

1 1 0 100%

flang/include/flang 1 1 0 100%

flang/include/flang/Common 21 21 0 100%

flang/include/flang/Decimal 2 2 0 100%

flang/include/flang/Evaluate 23 23 0 100%

flang/include/flang/Frontend 11 10 1 90%

flang/include/flang/FrontendTool 1 1 0 100%

flang/include/flang/Lower 25 24 1 96%

flang/include/flang/Lower/Support 2 2 0 100%

flang/include/flang/Optimizer/Builde
r

7 7 0 100%

flang/include/flang/Optimizer/Builde
r/Runtime

10 10 0 100%

flang/include/flang/Optimizer/Code
Gen

1 1 0 100%

flang/include/flang/Optimizer/Dialect 5 5 0 100%

flang/include/flang/Optimizer/Suppo
rt

8 8 0 100%

flang/include/flang/Optimizer/Transf
orms

1 1 0 100%

flang/include/flang/Parser 17 16 1 94%

flang/include/flang/Runtime 28 27 1 96%

flang/include/flang/Semantics 9 8 1 88%

flang/lib/Common 4 4 0 100%

flang/lib/Decimal 3 3 0 100%

flang/lib/Evaluate 33 31 2 93%

flang/lib/Frontend 8 6 2 75%

flang/lib/FrontendTool 1 1 0 100%

flang/lib/Lower 20 20 0 100%

flang/lib/Optimizer/Builder 6 6 0 100%

flang/lib/Optimizer/Builder/Runtime 9 9 0 100%

flang/lib/Optimizer/CodeGen 10 10 0 100%

flang/lib/Optimizer/Dialect 5 5 0 100%

flang/lib/Optimizer/Support 4 4 0 100%

Clang Formatted Status

873



Directory Total Files
Formatted

Files
Unformatted

Files % Complete

flang/lib/Optimizer/Transforms 10 10 0 100%

flang/lib/Parser 35 35 0 100%

flang/lib/Semantics 78 69 9 88%

flang/module 1 1 0 100%

flang/runtime 74 72 2 97%

flang/tools/bbc 1 1 0 100%

flang/tools/f18 1 1 0 100%

flang/tools/f18-parse-demo 2 2 0 100%

flang/tools/fir-opt 1 1 0 100%

flang/tools/flang-driver 2 2 0 100%

flang/tools/tco 1 1 0 100%

flang/unittests/Common 1 1 0 100%

flang/unittests/Decimal 2 2 0 100%

flang/unittests/Evaluate 15 15 0 100%

flang/unittests/Frontend 2 2 0 100%

flang/unittests/Optimizer 4 3 1 75%

flang/unittests/Optimizer/Builder 4 4 0 100%

flang/unittests/Optimizer/Builder/Ru
ntime

10 10 0 100%

flang/unittests/Runtime 22 22 0 100%

libc/AOR_v20.02/math 4 1 3 25%

libc/AOR_v20.02/math/include 1 0 1 0%

libc/AOR_v20.02/networking 1 0 1 0%

libc/AOR_v20.02/networking/includ
e

1 0 1 0%

libc/AOR_v20.02/string 1 0 1 0%

libc/AOR_v20.02/string/include 1 0 1 0%

libc/benchmarks 15 14 1 93%

libc/benchmarks/automemcpy/inclu
de/automemcpy

4 4 0 100%

libc/benchmarks/automemcpy/lib 5 5 0 100%

libc/benchmarks/automemcpy/unitte
sts

2 2 0 100%

libc/config/linux 1 1 0 100%

libc/fuzzing/math 6 6 0 100%

libc/fuzzing/stdlib 3 3 0 100%

libc/fuzzing/string 3 2 1 66%

libc/include 1 1 0 100%

libc/include/llvm-libc-macros 2 2 0 100%

libc/include/llvm-libc-macros/linux 1 1 0 100%

Clang Formatted Status

874



Directory Total Files
Formatted

Files
Unformatted

Files % Complete

libc/include/llvm-libc-types 28 28 0 100%

libc/loader/linux/aarch64 1 1 0 100%

libc/loader/linux/x86_64 1 1 0 100%

libc/src/assert 3 1 2 33%

libc/src/ctype 32 32 0 100%

libc/src/errno 4 4 0 100%

libc/src/fcntl 3 3 0 100%

libc/src/fcntl/linux 3 3 0 100%

libc/src/fenv 28 28 0 100%

libc/src/inttypes 6 6 0 100%

libc/src/math 91 91 0 100%

libc/src/math/aarch64 10 10 0 100%

libc/src/math/generic 94 94 0 100%

libc/src/math/x86_64 3 3 0 100%

libc/src/signal 8 8 0 100%

libc/src/signal/linux 10 10 0 100%

libc/src/stdio 3 3 0 100%

libc/src/stdlib 46 46 0 100%

libc/src/stdlib/linux 2 2 0 100%

libc/src/string 61 61 0 100%

libc/src/string/memory_utils 8 7 1 87%

libc/src/sys/mman 2 2 0 100%

libc/src/sys/mman/linux 2 1 1 50%

libc/src/sys/stat 2 2 0 100%

libc/src/sys/stat/linux 2 2 0 100%

libc/src/threads 16 16 0 100%

libc/src/threads/linux 11 7 4 63%

libc/src/time 12 12 0 100%

libc/src/unistd 7 7 0 100%

libc/src/unistd/linux 7 7 0 100%

libc/src/__support 10 10 0 100%

libc/src/__support/CPP 11 10 1 90%

libc/src/__support/File 2 2 0 100%

libc/src/__support/FPUtil 15 14 1 93%

libc/src/__support/FPUtil/aarch64 3 3 0 100%

libc/src/__support/FPUtil/generic 3 3 0 100%

libc/src/__support/FPUtil/x86_64 6 5 1 83%

libc/src/__support/OSUtil 3 3 0 100%

libc/src/__support/OSUtil/linux 3 2 1 66%

Clang Formatted Status

875



Directory Total Files
Formatted

Files
Unformatted

Files % Complete

libc/src/__support/OSUtil/linux/aarc
h64

1 1 0 100%

libc/src/__support/OSUtil/linux/x86_
64

1 1 0 100%

libc/src/__support/threads 1 1 0 100%

libc/src/__support/threads/linux 1 1 0 100%

libc/utils/HdrGen 9 9 0 100%

libc/utils/HdrGen/PrototypeTestGen 1 1 0 100%

libc/utils/LibcTableGenUtil 2 2 0 100%

libc/utils/MPFRWrapper 3 3 0 100%

libc/utils/testutils 10 9 1 90%

libc/utils/tools/WrapperGen 1 1 0 100%

libc/utils/UnitTest 12 11 1 91%

libclc/generic/include 2 1 1 50%

libclc/generic/include/clc 6 2 4 33%

libclc/generic/include/clc/async 4 4 0 100%

libclc/generic/include/clc/atomic 11 7 4 63%

libclc/generic/include/clc/cl_khr_glo
bal_int32_base_atomics

6 5 1 83%

libclc/generic/include/clc/cl_khr_glo
bal_int32_extended_atomics

5 5 0 100%

libclc/generic/include/clc/cl_khr_int6
4_base_atomics

6 3 3 50%

libclc/generic/include/clc/cl_khr_int6
4_extended_atomics

5 5 0 100%

libclc/generic/include/clc/cl_khr_loc
al_int32_base_atomics

6 5 1 83%

libclc/generic/include/clc/cl_khr_loc
al_int32_extended_atomics

5 5 0 100%

libclc/generic/include/clc/common 6 6 0 100%

libclc/generic/include/clc/explicit_fe
nce

1 1 0 100%

libclc/generic/include/clc/float 1 0 1 0%

libclc/generic/include/clc/geometric 8 8 0 100%

libclc/generic/include/clc/image 2 0 2 0%

libclc/generic/include/clc/integer 16 13 3 81%

libclc/generic/include/clc/math 95 92 3 96%

libclc/generic/include/clc/misc 2 0 2 0%

libclc/generic/include/clc/relational 18 12 6 66%

libclc/generic/include/clc/shared 5 3 2 60%

libclc/generic/include/clc/synchroniz
ation

2 2 0 100%

Clang Formatted Status

876



Directory Total Files
Formatted

Files
Unformatted

Files % Complete

libclc/generic/include/clc/workitem 8 8 0 100%

libclc/generic/include/integer 1 1 0 100%

libclc/generic/include/math 15 15 0 100%

libclc/generic/lib 1 0 1 0%

libclc/generic/lib/math 8 1 7 12%

libclc/generic/lib/relational 1 0 1 0%

libclc/utils 1 0 1 0%

libcxx/benchmarks 28 10 18 35%

libcxx/include 22 0 22 0%

libcxx/include/__algorithm 102 15 87 14%

libcxx/include/__bit 2 0 2 0%

libcxx/include/__charconv 3 0 3 0%

libcxx/include/__chrono 8 0 8 0%

libcxx/include/__compare 13 1 12 7%

libcxx/include/__concepts 22 0 22 0%

libcxx/include/__coroutine 4 0 4 0%

libcxx/include/__filesystem 16 3 13 18%

libcxx/include/__format 17 2 15 11%

libcxx/include/__functional 27 0 27 0%

libcxx/include/__ios 1 0 1 0%

libcxx/include/__iterator 36 0 36 0%

libcxx/include/__memory 19 1 18 5%

libcxx/include/__numeric 13 4 9 30%

libcxx/include/__random 37 2 35 5%

libcxx/include/__ranges 29 2 27 6%

libcxx/include/__support/android 1 0 1 0%

libcxx/include/__support/fuchsia 1 0 1 0%

libcxx/include/__support/ibm 6 2 4 33%

libcxx/include/__support/musl 1 0 1 0%

libcxx/include/__support/newlib 1 0 1 0%

libcxx/include/__support/openbsd 1 1 0 100%

libcxx/include/__support/solaris 3 2 1 66%

libcxx/include/__support/win32 2 0 2 0%

libcxx/include/__support/xlocale 3 0 3 0%

libcxx/include/__thread 2 0 2 0%

libcxx/include/__utility 17 5 12 29%

libcxx/include/__variant 1 0 1 0%

libcxx/src 42 6 36 14%

libcxx/src/experimental 2 1 1 50%

Clang Formatted Status

877



Directory Total Files
Formatted

Files
Unformatted

Files % Complete

libcxx/src/filesystem 5 0 5 0%

libcxx/src/include 6 1 5 16%

libcxx/src/include/ryu 9 8 1 88%

libcxx/src/ryu 3 3 0 100%

libcxx/src/support/ibm 3 0 3 0%

libcxx/src/support/solaris 1 0 1 0%

libcxx/src/support/win32 3 0 3 0%

libcxxabi/fuzz 1 0 1 0%

libcxxabi/include 2 0 2 0%

libcxxabi/src 25 1 24 4%

libcxxabi/src/demangle 4 2 2 50%

libunwind/include 5 0 5 0%

libunwind/include/mach-o 1 0 1 0%

libunwind/src 10 1 9 10%

lld/COFF 37 13 24 35%

lld/Common 11 9 2 81%

lld/ELF 48 25 23 52%

lld/ELF/Arch 14 4 10 28%

lld/include/lld/Common 14 8 6 57%

lld/include/lld/Core 20 4 16 20%

lld/MachO 45 43 2 95%

lld/MachO/Arch 6 6 0 100%

lld/MinGW 1 1 0 100%

lld/tools/lld 1 1 0 100%

lld/wasm 29 15 14 51%

lldb/bindings/python 1 1 0 100%

lldb/examples/darwin/heap_find/hea
p

1 1 0 100%

lldb/examples/functions 1 0 1 0%

lldb/examples/interposing/darwin/fd
_interposing

1 0 1 0%

lldb/examples/lookup 1 0 1 0%

lldb/examples/plugins/commands 1 1 0 100%

lldb/examples/synthetic/bitfield 1 1 0 100%

lldb/include/lldb 12 6 6 50%

lldb/include/lldb/API 70 60 10 85%

lldb/include/lldb/Breakpoint 25 9 16 36%

lldb/include/lldb/Core 61 31 30 50%

lldb/include/lldb/DataFormatters 18 10 8 55%

Clang Formatted Status

878



Directory Total Files
Formatted

Files
Unformatted

Files % Complete

lldb/include/lldb/Expression 17 7 10 41%

lldb/include/lldb/Host 39 20 19 51%

lldb/include/lldb/Host/android 1 1 0 100%

lldb/include/lldb/Host/common 8 2 6 25%

lldb/include/lldb/Host/freebsd 1 0 1 0%

lldb/include/lldb/Host/linux 6 4 2 66%

lldb/include/lldb/Host/macosx 2 0 2 0%

lldb/include/lldb/Host/netbsd 1 0 1 0%

lldb/include/lldb/Host/openbsd 1 0 1 0%

lldb/include/lldb/Host/posix 9 7 2 77%

lldb/include/lldb/Host/windows 10 4 6 40%

lldb/include/lldb/Initialization 3 1 2 33%

lldb/include/lldb/Interpreter 49 36 13 73%

lldb/include/lldb/Symbol 35 14 21 40%

lldb/include/lldb/Target 78 51 27 65%

lldb/include/lldb/Utility 63 41 22 65%

lldb/include/lldb/Version 1 1 0 100%

lldb/source/API 73 36 37 49%

lldb/source/Breakpoint 24 6 18 25%

lldb/source/Commands 70 57 13 81%

lldb/source/Core 49 26 23 53%

lldb/source/DataFormatters 16 3 13 18%

lldb/source/Expression 13 5 8 38%

lldb/source/Host/android 2 2 0 100%

lldb/source/Host/common 31 16 15 51%

lldb/source/Host/freebsd 2 2 0 100%

lldb/source/Host/linux 5 5 0 100%

lldb/source/Host/macosx/cfcpp 14 12 2 85%

lldb/source/Host/macosx/objcxx 1 1 0 100%

lldb/source/Host/netbsd 2 0 2 0%

lldb/source/Host/openbsd 2 1 1 50%

lldb/source/Host/posix 9 6 3 66%

lldb/source/Host/windows 11 7 4 63%

lldb/source/Initialization 3 3 0 100%

lldb/source/Interpreter 44 24 20 54%

lldb/source/Plugins/ABI/AArch64 6 3 3 50%

lldb/source/Plugins/ABI/ARC 2 0 2 0%

lldb/source/Plugins/ABI/ARM 6 2 4 33%

lldb/source/Plugins/ABI/Hexagon 2 0 2 0%

Clang Formatted Status

879



Directory Total Files
Formatted

Files
Unformatted

Files % Complete

lldb/source/Plugins/ABI/Mips 6 2 4 33%

lldb/source/Plugins/ABI/PowerPC 6 3 3 50%

lldb/source/Plugins/ABI/SystemZ 2 0 2 0%

lldb/source/Plugins/ABI/X86 13 4 9 30%

lldb/source/Plugins/Architecture/AAr
ch64

2 2 0 100%

lldb/source/Plugins/Architecture/Ar
m

2 1 1 50%

lldb/source/Plugins/Architecture/Mip
s

2 0 2 0%

lldb/source/Plugins/Architecture/PP
C64

2 2 0 100%

lldb/source/Plugins/Disassembler/L
LVMC

2 1 1 50%

lldb/source/Plugins/DynamicLoader/
Darwin-Kernel

2 0 2 0%

lldb/source/Plugins/DynamicLoader/
Hexagon-DYLD

4 3 1 75%

lldb/source/Plugins/DynamicLoader/
MacOSX-DYLD

6 3 3 50%

lldb/source/Plugins/DynamicLoader/
POSIX-DYLD

4 2 2 50%

lldb/source/Plugins/DynamicLoader/
Static

2 1 1 50%

lldb/source/Plugins/DynamicLoader/
wasm-DYLD

2 2 0 100%

lldb/source/Plugins/DynamicLoader/
Windows-DYLD

2 1 1 50%

lldb/source/Plugins/ExpressionPars
er/Clang

51 25 26 49%

lldb/source/Plugins/Instruction/ARM 4 2 2 50%

lldb/source/Plugins/Instruction/ARM
64

2 0 2 0%

lldb/source/Plugins/Instruction/MIP
S

2 0 2 0%

lldb/source/Plugins/Instruction/MIP
S64

2 1 1 50%

lldb/source/Plugins/Instruction/PPC
64

2 2 0 100%

lldb/source/Plugins/Instrumentation
Runtime/ASan

2 2 0 100%

lldb/source/Plugins/Instrumentation
Runtime/MainThreadChecker

2 2 0 100%

lldb/source/Plugins/Instrumentation
Runtime/TSan

2 2 0 100%

Clang Formatted Status

880



Directory Total Files
Formatted

Files
Unformatted

Files % Complete

lldb/source/Plugins/Instrumentation
Runtime/UBSan

2 2 0 100%

lldb/source/Plugins/JITLoader/GDB 2 1 1 50%

lldb/source/Plugins/Language/Clan
gCommon

2 2 0 100%

lldb/source/Plugins/Language/CPlu
sPlus

30 19 11 63%

lldb/source/Plugins/Language/ObjC 21 14 7 66%

lldb/source/Plugins/Language/ObjC
PlusPlus

2 2 0 100%

lldb/source/Plugins/LanguageRunti
me/CPlusPlus

2 0 2 0%

lldb/source/Plugins/LanguageRunti
me/CPlusPlus/ItaniumABI

2 0 2 0%

lldb/source/Plugins/LanguageRunti
me/ObjC

2 0 2 0%

lldb/source/Plugins/LanguageRunti
me/ObjC/AppleObjCRuntime

16 5 11 31%

lldb/source/Plugins/LanguageRunti
me/RenderScript/RenderScriptRunti
me

8 3 5 37%

lldb/source/Plugins/MemoryHistory/
asan

2 2 0 100%

lldb/source/Plugins/ObjectContainer
/BSD-Archive

2 0 2 0%

lldb/source/Plugins/ObjectContainer
/Universal-Mach-O

2 2 0 100%

lldb/source/Plugins/ObjectFile/Brea
kpad

4 3 1 75%

lldb/source/Plugins/ObjectFile/ELF 4 1 3 25%

lldb/source/Plugins/ObjectFile/JIT 2 0 2 0%

lldb/source/Plugins/ObjectFile/Mach
-O

2 0 2 0%

lldb/source/Plugins/ObjectFile/Minid
ump

4 4 0 100%

lldb/source/Plugins/ObjectFile/PDB 2 2 0 100%

lldb/source/Plugins/ObjectFile/PEC
OFF

6 3 3 50%

lldb/source/Plugins/ObjectFile/was
m

2 2 0 100%

lldb/source/Plugins/OperatingSyste
m/Python

2 2 0 100%

lldb/source/Plugins/Platform/Androi
d

6 3 3 50%

lldb/source/Plugins/Platform/FreeB
SD

2 1 1 50%

Clang Formatted Status

881



Directory Total Files
Formatted

Files
Unformatted

Files % Complete

lldb/source/Plugins/Platform/gdb-se
rver

2 1 1 50%

lldb/source/Plugins/Platform/Linux 2 1 1 50%

lldb/source/Plugins/Platform/MacO
SX

20 11 9 55%

lldb/source/Plugins/Platform/MacO
SX/objcxx

1 1 0 100%

lldb/source/Plugins/Platform/NetBS
D

2 1 1 50%

lldb/source/Plugins/Platform/OpenB
SD

2 1 1 50%

lldb/source/Plugins/Platform/POSIX 2 0 2 0%

lldb/source/Plugins/Platform/Qemu
User

2 2 0 100%

lldb/source/Plugins/Platform/Windo
ws

2 1 1 50%

lldb/source/Plugins/Process/elf-core 20 18 2 90%

lldb/source/Plugins/Process/FreeBS
D

16 12 4 75%

lldb/source/Plugins/Process/FreeBS
DKernel

10 8 2 80%

lldb/source/Plugins/Process/gdb-re
mote

26 15 11 57%

lldb/source/Plugins/Process/Linux 21 11 10 52%

lldb/source/Plugins/Process/mach-c
ore

4 3 1 75%

lldb/source/Plugins/Process/MacOS
X-Kernel

16 13 3 81%

lldb/source/Plugins/Process/minidu
mp

17 10 7 58%

lldb/source/Plugins/Process/NetBS
D

8 4 4 50%

lldb/source/Plugins/Process/POSIX 8 7 1 87%

lldb/source/Plugins/Process/scripte
d

4 4 0 100%

lldb/source/Plugins/Process/Utility 132 97 35 73%

lldb/source/Plugins/Process/Windo
ws/Common

34 22 12 64%

lldb/source/Plugins/Process/Windo
ws/Common/arm

2 1 1 50%

lldb/source/Plugins/Process/Windo
ws/Common/arm64

2 1 1 50%

lldb/source/Plugins/Process/Windo
ws/Common/x64

2 0 2 0%

Clang Formatted Status

882



Directory Total Files
Formatted

Files
Unformatted

Files % Complete

lldb/source/Plugins/Process/Windo
ws/Common/x86

2 0 2 0%

lldb/source/Plugins/REPL/Clang 2 1 1 50%

lldb/source/Plugins/ScriptInterpreter
/Lua

5 5 0 100%

lldb/source/Plugins/ScriptInterpreter
/None

2 2 0 100%

lldb/source/Plugins/ScriptInterpreter
/Python

16 12 4 75%

lldb/source/Plugins/StructuredData/
DarwinLog

2 0 2 0%

lldb/source/Plugins/SymbolFile/Bre
akpad

2 0 2 0%

lldb/source/Plugins/SymbolFile/DW
ARF

65 39 26 60%

lldb/source/Plugins/SymbolFile/Nati
vePDB

20 10 10 50%

lldb/source/Plugins/SymbolFile/PDB 6 4 2 66%

lldb/source/Plugins/SymbolFile/Sym
tab

2 2 0 100%

lldb/source/Plugins/SymbolVendor/
ELF

2 2 0 100%

lldb/source/Plugins/SymbolVendor/
MacOSX

2 2 0 100%

lldb/source/Plugins/SymbolVendor/
wasm

2 2 0 100%

lldb/source/Plugins/SystemRuntime
/MacOSX

10 1 9 10%

lldb/source/Plugins/Trace/common 8 7 1 87%

lldb/source/Plugins/Trace/intel-pt 18 17 1 94%

lldb/source/Plugins/TraceExporter/c
ommon

2 2 0 100%

lldb/source/Plugins/TraceExporter/c
tf

4 3 1 75%

lldb/source/Plugins/TypeSystem/Cl
ang

2 0 2 0%

lldb/source/Plugins/UnwindAssembl
y/InstEmulation

2 1 1 50%

lldb/source/Plugins/UnwindAssembl
y/x86

4 2 2 50%

lldb/source/Symbol 31 18 13 58%

lldb/source/Target 69 34 35 49%

lldb/source/Utility 58 46 12 79%

lldb/source/Version 1 1 0 100%

lldb/tools/argdumper 1 1 0 100%

Clang Formatted Status

883



Directory Total Files
Formatted

Files
Unformatted

Files % Complete

lldb/tools/darwin-debug 1 1 0 100%

lldb/tools/debugserver/source 51 40 11 78%

lldb/tools/debugserver/source/Mac
OSX

24 16 8 66%

lldb/tools/debugserver/source/Mac
OSX/arm

2 1 1 50%

lldb/tools/debugserver/source/Mac
OSX/arm64

2 1 1 50%

lldb/tools/debugserver/source/Mac
OSX/i386

3 0 3 0%

lldb/tools/debugserver/source/Mac
OSX/x86_64

3 0 3 0%

lldb/tools/driver 4 4 0 100%

lldb/tools/intel-features 1 1 0 100%

lldb/tools/intel-features/intel-mpx 2 1 1 50%

lldb/tools/lldb-instr 1 1 0 100%

lldb/tools/lldb-server 9 4 5 44%

lldb/tools/lldb-test 5 2 3 40%

lldb/tools/lldb-vscode 27 24 3 88%

lldb/unittests 1 1 0 100%

lldb/unittests/API 2 2 0 100%

lldb/unittests/Breakpoint 1 1 0 100%

lldb/unittests/Core 10 9 1 90%

lldb/unittests/DataFormatter 3 3 0 100%

lldb/unittests/debugserver 3 2 1 66%

lldb/unittests/Disassembler 2 0 2 0%

lldb/unittests/Editline 1 1 0 100%

lldb/unittests/Expression 5 3 2 60%

lldb/unittests/Host 16 11 5 68%

lldb/unittests/Host/linux 2 2 0 100%

lldb/unittests/Host/posix 1 0 1 0%

lldb/unittests/Instruction 1 0 1 0%

lldb/unittests/Interpreter 6 2 4 33%

lldb/unittests/Language/CLanguage
s

1 1 0 100%

lldb/unittests/Language/CPlusPlus 1 0 1 0%

lldb/unittests/Language/Highlighting 1 1 0 100%

lldb/unittests/ObjectFile/Breakpad 1 1 0 100%

lldb/unittests/ObjectFile/ELF 1 0 1 0%

lldb/unittests/ObjectFile/MachO 1 0 1 0%

lldb/unittests/ObjectFile/PECOFF 1 0 1 0%

Clang Formatted Status

884



Directory Total Files
Formatted

Files
Unformatted

Files % Complete

lldb/unittests/Platform 3 2 1 66%

lldb/unittests/Platform/Android 1 0 1 0%

lldb/unittests/Process 1 1 0 100%

lldb/unittests/Process/gdb-remote 8 6 2 75%

lldb/unittests/Process/Linux 1 0 1 0%

lldb/unittests/Process/minidump 2 0 2 0%

lldb/unittests/Process/minidump/Inp
uts

1 1 0 100%

lldb/unittests/Process/POSIX 1 1 0 100%

lldb/unittests/Process/Utility 6 4 2 66%

lldb/unittests/ScriptInterpreter/Lua 2 2 0 100%

lldb/unittests/ScriptInterpreter/Pytho
n

3 2 1 66%

lldb/unittests/Signals 1 1 0 100%

lldb/unittests/Symbol 11 7 4 63%

lldb/unittests/SymbolFile/DWARF 6 4 2 66%

lldb/unittests/SymbolFile/DWARF/In
puts

1 1 0 100%

lldb/unittests/SymbolFile/NativePDB 1 1 0 100%

lldb/unittests/SymbolFile/PDB 1 0 1 0%

lldb/unittests/SymbolFile/PDB/Input
s

5 5 0 100%

lldb/unittests/Target 10 6 4 60%

lldb/unittests/TestingSupport 5 4 1 80%

lldb/unittests/TestingSupport/Host 1 1 0 100%

lldb/unittests/TestingSupport/Symb
ol

3 3 0 100%

lldb/unittests/Thread 1 1 0 100%

lldb/unittests/tools/lldb-server/inferio
r

2 0 2 0%

lldb/unittests/tools/lldb-server/tests 7 0 7 0%

lldb/unittests/UnwindAssembly/AR
M64

1 0 1 0%

lldb/unittests/UnwindAssembly/PPC
64

1 1 0 100%

lldb/unittests/UnwindAssembly/x86 1 0 1 0%

lldb/unittests/Utility 45 32 13 71%

lldb/utils/lit-cpuid 1 0 1 0%

lldb/utils/TableGen 6 6 0 100%

llvm/benchmarks 1 0 1 0%

llvm/bindings/go/llvm 6 3 3 50%

Clang Formatted Status

885



Directory Total Files
Formatted

Files
Unformatted

Files % Complete

llvm/bindings/ocaml/llvm 1 1 0 100%

llvm/cmake 2 2 0 100%

llvm/examples/BrainF 3 0 3 0%

llvm/examples/Bye 1 1 0 100%

llvm/examples/ExceptionDemo 1 0 1 0%

llvm/examples/Fibonacci 1 0 1 0%

llvm/examples/HowToUseJIT 1 0 1 0%

llvm/examples/HowToUseLLJIT 1 1 0 100%

llvm/examples/IRTransforms 4 4 0 100%

llvm/examples/Kaleidoscope/Buildin
gAJIT/Chapter1

2 1 1 50%

llvm/examples/Kaleidoscope/Buildin
gAJIT/Chapter2

2 1 1 50%

llvm/examples/Kaleidoscope/Buildin
gAJIT/Chapter3

2 1 1 50%

llvm/examples/Kaleidoscope/Buildin
gAJIT/Chapter4

2 0 2 0%

llvm/examples/Kaleidoscope/Chapt
er2

1 1 0 100%

llvm/examples/Kaleidoscope/Chapt
er3

1 0 1 0%

llvm/examples/Kaleidoscope/Chapt
er4

1 0 1 0%

llvm/examples/Kaleidoscope/Chapt
er5

1 0 1 0%

llvm/examples/Kaleidoscope/Chapt
er6

1 0 1 0%

llvm/examples/Kaleidoscope/Chapt
er7

1 0 1 0%

llvm/examples/Kaleidoscope/Chapt
er8

1 0 1 0%

llvm/examples/Kaleidoscope/Chapt
er9

1 0 1 0%

llvm/examples/Kaleidoscope/includ
e

1 1 0 100%

llvm/examples/Kaleidoscope/MCJIT
/cached

2 0 2 0%

llvm/examples/Kaleidoscope/MCJIT
/complete

1 0 1 0%

llvm/examples/Kaleidoscope/MCJIT
/initial

1 0 1 0%

llvm/examples/Kaleidoscope/MCJIT
/lazy

2 0 2 0%

llvm/examples/ModuleMaker 1 0 1 0%

Clang Formatted Status

886



Directory Total Files
Formatted

Files
Unformatted

Files % Complete

llvm/examples/OrcV2Examples 1 1 0 100%

llvm/examples/OrcV2Examples/LLJ
ITDumpObjects

1 1 0 100%

llvm/examples/OrcV2Examples/LLJ
ITWithCustomObjectLinkingLayer

1 1 0 100%

llvm/examples/OrcV2Examples/LLJ
ITWithExecutorProcessControl

1 1 0 100%

llvm/examples/OrcV2Examples/LLJ
ITWithGDBRegistrationListener

1 1 0 100%

llvm/examples/OrcV2Examples/LLJ
ITWithInitializers

1 1 0 100%

llvm/examples/OrcV2Examples/LLJ
ITWithLazyReexports

1 1 0 100%

llvm/examples/OrcV2Examples/LLJ
ITWithObjectCache

1 1 0 100%

llvm/examples/OrcV2Examples/LLJ
ITWithObjectLinkingLayerPlugin

1 0 1 0%

llvm/examples/OrcV2Examples/LLJ
ITWithOptimizingIRTransform

1 1 0 100%

llvm/examples/OrcV2Examples/LLJ
ITWithRemoteDebugging

3 1 2 33%

llvm/examples/OrcV2Examples/LLJ
ITWithThinLTOSummaries

1 0 1 0%

llvm/examples/ParallelJIT 1 0 1 0%

llvm/examples/SpeculativeJIT 1 0 1 0%

llvm/include/llvm 8 2 6 25%

llvm/include/llvm/ADT 93 25 68 26%

llvm/include/llvm/Analysis 130 52 78 40%

llvm/include/llvm/Analysis/Utils 3 1 2 33%

llvm/include/llvm/AsmParser 5 2 3 40%

llvm/include/llvm/BinaryFormat 15 8 7 53%

llvm/include/llvm/Bitcode 7 2 5 28%

llvm/include/llvm/Bitstream 3 0 3 0%

llvm/include/llvm/CodeGen 158 51 107 32%

llvm/include/llvm/CodeGen/GlobalIS
el

27 8 19 29%

llvm/include/llvm/CodeGen/MIRPar
ser

2 1 1 50%

llvm/include/llvm/CodeGen/PBQP 5 1 4 20%

llvm/include/llvm/DebugInfo 1 1 0 100%

llvm/include/llvm/DebugInfo/CodeVi
ew

57 40 17 70%

llvm/include/llvm/DebugInfo/DWAR
F

32 14 18 43%

Clang Formatted Status

887



Directory Total Files
Formatted

Files
Unformatted

Files % Complete

llvm/include/llvm/DebugInfo/GSYM 14 4 10 28%

llvm/include/llvm/DebugInfo/MSF 5 4 1 80%

llvm/include/llvm/DebugInfo/PDB 50 30 20 60%

llvm/include/llvm/DebugInfo/PDB/DI
A

20 9 11 45%

llvm/include/llvm/DebugInfo/PDB/N
ative

54 35 19 64%

llvm/include/llvm/DebugInfo/Symbol
ize

5 3 2 60%

llvm/include/llvm/Debuginfod 3 3 0 100%

llvm/include/llvm/Demangle 7 3 4 42%

llvm/include/llvm/DWARFLinker 4 4 0 100%

llvm/include/llvm/DWP 3 3 0 100%

llvm/include/llvm/ExecutionEngine 12 2 10 16%

llvm/include/llvm/ExecutionEngine/J
ITLink

16 14 2 87%

llvm/include/llvm/ExecutionEngine/
Orc

38 29 9 76%

llvm/include/llvm/ExecutionEngine/
Orc/Shared

8 4 4 50%

llvm/include/llvm/ExecutionEngine/
Orc/TargetProcess

7 7 0 100%

llvm/include/llvm/FileCheck 1 1 0 100%

llvm/include/llvm/Frontend/OpenMP 5 4 1 80%

llvm/include/llvm/FuzzMutate 6 0 6 0%

llvm/include/llvm/InterfaceStub 3 3 0 100%

llvm/include/llvm/IR 93 28 65 30%

llvm/include/llvm/IRReader 1 0 1 0%

llvm/include/llvm/LineEditor 1 0 1 0%

llvm/include/llvm/Linker 2 0 2 0%

llvm/include/llvm/LTO 4 1 3 25%

llvm/include/llvm/LTO/legacy 4 0 4 0%

llvm/include/llvm/MC 74 24 50 32%

llvm/include/llvm/MC/MCDisassemb
ler

4 1 3 25%

llvm/include/llvm/MC/MCParser 8 3 5 37%

llvm/include/llvm/MCA 10 10 0 100%

llvm/include/llvm/MCA/HardwareUni
ts

6 4 2 66%

llvm/include/llvm/MCA/Stages 8 8 0 100%

llvm/include/llvm/ObjCopy 4 3 1 75%

llvm/include/llvm/ObjCopy/COFF 2 2 0 100%

Clang Formatted Status

888



Directory Total Files
Formatted

Files
Unformatted

Files % Complete

llvm/include/llvm/ObjCopy/ELF 2 2 0 100%

llvm/include/llvm/ObjCopy/MachO 2 2 0 100%

llvm/include/llvm/ObjCopy/wasm 2 2 0 100%

llvm/include/llvm/ObjCopy/XCOFF 2 2 0 100%

llvm/include/llvm/Object 31 12 19 38%

llvm/include/llvm/ObjectYAML 16 12 4 75%

llvm/include/llvm/Option 5 1 4 20%

llvm/include/llvm/Passes 4 2 2 50%

llvm/include/llvm/ProfileData 11 5 6 45%

llvm/include/llvm/ProfileData/Cover
age

3 2 1 66%

llvm/include/llvm/Remarks 12 11 1 91%

llvm/include/llvm/Support 186 68 118 36%

llvm/include/llvm/Support/FileSyste
m

1 1 0 100%

llvm/include/llvm/Support/Solaris/sy
s

1 1 0 100%

llvm/include/llvm/Support/Windows 1 0 1 0%

llvm/include/llvm/TableGen 9 3 6 33%

llvm/include/llvm/Target 6 2 4 33%

llvm/include/llvm/Testing/Support 3 2 1 66%

llvm/include/llvm/TextAPI 9 9 0 100%

llvm/include/llvm/ToolDrivers/llvm-dl
ltool

1 1 0 100%

llvm/include/llvm/ToolDrivers/llvm-li
b

1 0 1 0%

llvm/include/llvm/Transforms 8 2 6 25%

llvm/include/llvm/Transforms/Aggre
ssiveInstCombine

1 0 1 0%

llvm/include/llvm/Transforms/Corout
ines

4 4 0 100%

llvm/include/llvm/Transforms/InstCo
mbine

2 1 1 50%

llvm/include/llvm/Transforms/Instru
mentation

17 10 7 58%

llvm/include/llvm/Transforms/IPO 38 28 10 73%

llvm/include/llvm/Transforms/Scalar 75 47 28 62%

llvm/include/llvm/Transforms/Utils 74 44 30 59%

llvm/include/llvm/Transforms/Vector
ize

5 1 4 20%

llvm/include/llvm/WindowsDriver 2 1 1 50%

llvm/include/llvm/WindowsManifest 1 1 0 100%

Clang Formatted Status

889



Directory Total Files
Formatted

Files
Unformatted

Files % Complete

llvm/include/llvm/WindowsResource 3 1 2 33%

llvm/include/llvm/XRay 17 13 4 76%

llvm/include/llvm-c 27 12 15 44%

llvm/include/llvm-c/Transforms 9 3 6 33%

llvm/lib/Analysis 119 40 79 33%

llvm/lib/AsmParser 3 1 2 33%

llvm/lib/BinaryFormat 13 10 3 76%

llvm/lib/Bitcode/Reader 7 2 5 28%

llvm/lib/Bitcode/Writer 5 0 5 0%

llvm/lib/Bitstream/Reader 1 0 1 0%

llvm/lib/CodeGen 220 60 160 27%

llvm/lib/CodeGen/AsmPrinter 45 18 27 40%

llvm/lib/CodeGen/GlobalISel 24 9 15 37%

llvm/lib/CodeGen/LiveDebugValues 5 1 4 20%

llvm/lib/CodeGen/MIRParser 4 1 3 25%

llvm/lib/CodeGen/SelectionDAG 31 2 29 6%

llvm/lib/DebugInfo/CodeView 40 23 17 57%

llvm/lib/DebugInfo/DWARF 28 9 19 32%

llvm/lib/DebugInfo/GSYM 11 2 9 18%

llvm/lib/DebugInfo/MSF 4 3 1 75%

llvm/lib/DebugInfo/PDB 40 35 5 87%

llvm/lib/DebugInfo/PDB/DIA 18 15 3 83%

llvm/lib/DebugInfo/PDB/Native 50 37 13 74%

llvm/lib/DebugInfo/Symbolize 4 3 1 75%

llvm/lib/Debuginfod 3 3 0 100%

llvm/lib/Demangle 6 4 2 66%

llvm/lib/DWARFLinker 4 3 1 75%

llvm/lib/DWP 2 2 0 100%

llvm/lib/ExecutionEngine 5 1 4 20%

llvm/lib/ExecutionEngine/IntelJITEv
ents

5 0 5 0%

llvm/lib/ExecutionEngine/Interpreter 4 0 4 0%

llvm/lib/ExecutionEngine/JITLink 23 15 8 65%

llvm/lib/ExecutionEngine/MCJIT 2 0 2 0%

llvm/lib/ExecutionEngine/OProfileJI
T

2 0 2 0%

llvm/lib/ExecutionEngine/Orc 37 22 15 59%

llvm/lib/ExecutionEngine/Orc/Share
d

4 4 0 100%

Clang Formatted Status

890



Directory Total Files
Formatted

Files
Unformatted

Files % Complete

llvm/lib/ExecutionEngine/Orc/Target
Process

8 7 1 87%

llvm/lib/ExecutionEngine/PerfJITEv
ents

1 0 1 0%

llvm/lib/ExecutionEngine/RuntimeD
yld

12 1 11 8%

llvm/lib/ExecutionEngine/RuntimeD
yld/Targets

10 1 9 10%

llvm/lib/Extensions 1 0 1 0%

llvm/lib/FileCheck 2 1 1 50%

llvm/lib/Frontend/OpenACC 1 1 0 100%

llvm/lib/Frontend/OpenMP 3 3 0 100%

llvm/lib/FuzzMutate 5 2 3 40%

llvm/lib/InterfaceStub 3 3 0 100%

llvm/lib/IR 69 20 49 28%

llvm/lib/IRReader 1 0 1 0%

llvm/lib/LineEditor 1 0 1 0%

llvm/lib/Linker 3 0 3 0%

llvm/lib/LTO 7 1 6 14%

llvm/lib/MC 65 21 44 32%

llvm/lib/MC/MCDisassembler 6 3 3 50%

llvm/lib/MC/MCParser 14 3 11 21%

llvm/lib/MCA 9 8 1 88%

llvm/lib/MCA/HardwareUnits 6 4 2 66%

llvm/lib/MCA/Stages 8 7 1 87%

llvm/lib/ObjCopy 4 3 1 75%

llvm/lib/ObjCopy/COFF 7 7 0 100%

llvm/lib/ObjCopy/ELF 3 3 0 100%

llvm/lib/ObjCopy/MachO 9 9 0 100%

llvm/lib/ObjCopy/wasm 7 7 0 100%

llvm/lib/ObjCopy/XCOFF 6 3 3 50%

llvm/lib/Object 31 16 15 51%

llvm/lib/ObjectYAML 23 9 14 39%

llvm/lib/Option 4 0 4 0%

llvm/lib/Passes 6 3 3 50%

llvm/lib/ProfileData 11 4 7 36%

llvm/lib/ProfileData/Coverage 3 0 3 0%

llvm/lib/Remarks 13 10 3 76%

llvm/lib/Support 144 61 83 42%

llvm/lib/Support/Unix 1 0 1 0%

Clang Formatted Status

891



Directory Total Files
Formatted

Files
Unformatted

Files % Complete

llvm/lib/TableGen 15 3 12 20%

llvm/lib/Target 5 1 4 20%

llvm/lib/Target/AArch64 60 7 53 11%

llvm/lib/Target/AArch64/AsmParser 1 0 1 0%

llvm/lib/Target/AArch64/Disassembl
er

4 1 3 25%

llvm/lib/Target/AArch64/GISel 14 3 11 21%

llvm/lib/Target/AArch64/MCTargetD
esc

21 6 15 28%

llvm/lib/Target/AArch64/TargetInfo 2 1 1 50%

llvm/lib/Target/AArch64/Utils 2 0 2 0%

llvm/lib/Target/AMDGPU 169 38 131 22%

llvm/lib/Target/AMDGPU/AsmParse
r

1 0 1 0%

llvm/lib/Target/AMDGPU/Disassem
bler

2 0 2 0%

llvm/lib/Target/AMDGPU/MCA 2 2 0 100%

llvm/lib/Target/AMDGPU/MCTarget
Desc

21 5 16 23%

llvm/lib/Target/AMDGPU/TargetInfo 2 1 1 50%

llvm/lib/Target/AMDGPU/Utils 11 4 7 36%

llvm/lib/Target/ARC 24 19 5 79%

llvm/lib/Target/ARC/Disassembler 1 0 1 0%

llvm/lib/Target/ARC/MCTargetDesc 7 6 1 85%

llvm/lib/Target/ARC/TargetInfo 2 2 0 100%

llvm/lib/Target/ARM 76 10 66 13%

llvm/lib/Target/ARM/AsmParser 1 0 1 0%

llvm/lib/Target/ARM/Disassembler 1 0 1 0%

llvm/lib/Target/ARM/MCTargetDesc 26 2 24 7%

llvm/lib/Target/ARM/TargetInfo 2 2 0 100%

llvm/lib/Target/ARM/Utils 2 0 2 0%

llvm/lib/Target/AVR 24 23 1 95%

llvm/lib/Target/AVR/AsmParser 1 1 0 100%

llvm/lib/Target/AVR/Disassembler 1 1 0 100%

llvm/lib/Target/AVR/MCTargetDesc 20 18 2 90%

llvm/lib/Target/AVR/TargetInfo 2 2 0 100%

llvm/lib/Target/BPF 32 9 23 28%

llvm/lib/Target/BPF/AsmParser 1 0 1 0%

llvm/lib/Target/BPF/Disassembler 1 0 1 0%

llvm/lib/Target/BPF/MCTargetDesc 8 1 7 12%

Clang Formatted Status

892



Directory Total Files
Formatted

Files
Unformatted

Files % Complete

llvm/lib/Target/BPF/TargetInfo 2 1 1 50%

llvm/lib/Target/CSKY 23 23 0 100%

llvm/lib/Target/CSKY/AsmParser 1 1 0 100%

llvm/lib/Target/CSKY/Disassembler 1 1 0 100%

llvm/lib/Target/CSKY/MCTargetDes
c

15 14 1 93%

llvm/lib/Target/CSKY/TargetInfo 2 2 0 100%

llvm/lib/Target/Hexagon 80 6 74 7%

llvm/lib/Target/Hexagon/AsmParser 1 0 1 0%

llvm/lib/Target/Hexagon/Disassembl
er

1 0 1 0%

llvm/lib/Target/Hexagon/MCTargetD
esc

26 6 20 23%

llvm/lib/Target/Hexagon/TargetInfo 2 1 1 50%

llvm/lib/Target/Lanai 28 20 8 71%

llvm/lib/Target/Lanai/AsmParser 1 0 1 0%

llvm/lib/Target/Lanai/Disassembler 2 2 0 100%

llvm/lib/Target/Lanai/MCTargetDesc 13 12 1 92%

llvm/lib/Target/Lanai/TargetInfo 2 2 0 100%

llvm/lib/Target/LoongArch 19 19 0 100%

llvm/lib/Target/LoongArch/MCTarge
tDesc

12 12 0 100%

llvm/lib/Target/LoongArch/TargetInf
o

2 2 0 100%

llvm/lib/Target/M68k 26 25 1 96%

llvm/lib/Target/M68k/AsmParser 1 1 0 100%

llvm/lib/Target/M68k/Disassembler 1 1 0 100%

llvm/lib/Target/M68k/GISel 7 6 1 85%

llvm/lib/Target/M68k/MCTargetDesc 12 11 1 91%

llvm/lib/Target/M68k/TargetInfo 2 2 0 100%

llvm/lib/Target/Mips 70 12 58 17%

llvm/lib/Target/Mips/AsmParser 1 0 1 0%

llvm/lib/Target/Mips/Disassembler 1 0 1 0%

llvm/lib/Target/Mips/MCTargetDesc 25 6 19 24%

llvm/lib/Target/Mips/TargetInfo 2 2 0 100%

llvm/lib/Target/MSP430 20 0 20 0%

llvm/lib/Target/MSP430/AsmParser 1 0 1 0%

llvm/lib/Target/MSP430/Disassembl
er

1 0 1 0%

llvm/lib/Target/MSP430/MCTargetD
esc

11 3 8 27%

Clang Formatted Status

893



Directory Total Files
Formatted

Files
Unformatted

Files % Complete

llvm/lib/Target/MSP430/TargetInfo 2 2 0 100%

llvm/lib/Target/NVPTX 44 10 34 22%

llvm/lib/Target/NVPTX/MCTargetDe
sc

9 6 3 66%

llvm/lib/Target/NVPTX/TargetInfo 2 2 0 100%

llvm/lib/Target/PowerPC 54 5 49 9%

llvm/lib/Target/PowerPC/AsmParser 1 0 1 0%

llvm/lib/Target/PowerPC/Disassemb
ler

1 0 1 0%

llvm/lib/Target/PowerPC/GISel 7 7 0 100%

llvm/lib/Target/PowerPC/MCTarget
Desc

20 5 15 25%

llvm/lib/Target/PowerPC/TargetInfo 2 2 0 100%

llvm/lib/Target/RISCV 36 17 19 47%

llvm/lib/Target/RISCV/AsmParser 1 0 1 0%

llvm/lib/Target/RISCV/Disassembler 1 0 1 0%

llvm/lib/Target/RISCV/MCTargetDe
sc

23 13 10 56%

llvm/lib/Target/RISCV/TargetInfo 2 2 0 100%

llvm/lib/Target/Sparc 23 3 20 13%

llvm/lib/Target/Sparc/AsmParser 1 0 1 0%

llvm/lib/Target/Sparc/Disassembler 1 0 1 0%

llvm/lib/Target/Sparc/MCTargetDes
c

14 4 10 28%

llvm/lib/Target/Sparc/TargetInfo 2 2 0 100%

llvm/lib/Target/SystemZ 41 6 35 14%

llvm/lib/Target/SystemZ/AsmParser 1 0 1 0%

llvm/lib/Target/SystemZ/Disassembl
er

1 0 1 0%

llvm/lib/Target/SystemZ/MCTargetD
esc

10 4 6 40%

llvm/lib/Target/SystemZ/TargetInfo 2 2 0 100%

llvm/lib/Target/VE 24 19 5 79%

llvm/lib/Target/VE/AsmParser 1 1 0 100%

llvm/lib/Target/VE/Disassembler 1 1 0 100%

llvm/lib/Target/VE/MCTargetDesc 14 14 0 100%

llvm/lib/Target/VE/TargetInfo 2 1 1 50%

llvm/lib/Target/WebAssembly 61 44 17 72%

llvm/lib/Target/WebAssembly/AsmP
arser

3 0 3 0%

llvm/lib/Target/WebAssembly/Disas
sembler

1 1 0 100%

Clang Formatted Status

894



Directory Total Files
Formatted

Files
Unformatted

Files % Complete

llvm/lib/Target/WebAssembly/MCTa
rgetDesc

12 8 4 66%

llvm/lib/Target/WebAssembly/Targe
tInfo

2 2 0 100%

llvm/lib/Target/WebAssembly/Utils 4 4 0 100%

llvm/lib/Target/X86 82 19 63 23%

llvm/lib/Target/X86/AsmParser 3 0 3 0%

llvm/lib/Target/X86/Disassembler 2 0 2 0%

llvm/lib/Target/X86/MCA 2 2 0 100%

llvm/lib/Target/X86/MCTargetDesc 25 5 20 20%

llvm/lib/Target/X86/TargetInfo 2 1 1 50%

llvm/lib/Target/XCore 27 2 25 7%

llvm/lib/Target/XCore/Disassembler 1 0 1 0%

llvm/lib/Target/XCore/MCTargetDes
c

6 3 3 50%

llvm/lib/Target/XCore/TargetInfo 2 1 1 50%

llvm/lib/Testing/Support 3 3 0 100%

llvm/lib/TextAPI 11 9 2 81%

llvm/lib/ToolDrivers/llvm-dlltool 1 0 1 0%

llvm/lib/ToolDrivers/llvm-lib 1 0 1 0%

llvm/lib/Transforms/AggressiveInstC
ombine

3 1 2 33%

llvm/lib/Transforms/CFGuard 1 1 0 100%

llvm/lib/Transforms/Coroutines 8 0 8 0%

llvm/lib/Transforms/Hello 1 0 1 0%

llvm/lib/Transforms/InstCombine 16 1 15 6%

llvm/lib/Transforms/Instrumentation 21 7 14 33%

llvm/lib/Transforms/IPO 44 9 35 20%

llvm/lib/Transforms/ObjCARC 15 4 11 26%

llvm/lib/Transforms/Scalar 79 16 63 20%

llvm/lib/Transforms/Utils 78 19 59 24%

llvm/lib/Transforms/Vectorize 22 13 9 59%

llvm/lib/WindowsDriver 1 1 0 100%

llvm/lib/WindowsManifest 1 1 0 100%

llvm/lib/XRay 14 11 3 78%

llvm/tools/bugpoint 12 1 11 8%

llvm/tools/bugpoint-passes 1 0 1 0%

llvm/tools/dsymutil 18 16 2 88%

llvm/tools/gold 1 0 1 0%

llvm/tools/llc 1 0 1 0%

Clang Formatted Status

895



Directory Total Files
Formatted

Files
Unformatted

Files % Complete

llvm/tools/lli 4 3 1 75%

llvm/tools/lli/ChildTarget 1 1 0 100%

llvm/tools/llvm-ar 1 0 1 0%

llvm/tools/llvm-as 1 0 1 0%

llvm/tools/llvm-as-fuzzer 1 1 0 100%

llvm/tools/llvm-bcanalyzer 1 1 0 100%

llvm/tools/llvm-c-test 2 0 2 0%

llvm/tools/llvm-cat 1 0 1 0%

llvm/tools/llvm-cfi-verify 1 0 1 0%

llvm/tools/llvm-cfi-verify/lib 4 1 3 25%

llvm/tools/llvm-config 1 0 1 0%

llvm/tools/llvm-cov 23 12 11 52%

llvm/tools/llvm-cvtres 1 0 1 0%

llvm/tools/llvm-cxxdump 4 1 3 25%

llvm/tools/llvm-cxxfilt 1 1 0 100%

llvm/tools/llvm-cxxmap 1 0 1 0%

llvm/tools/llvm-debuginfod-find 1 1 0 100%

llvm/tools/llvm-diff 1 0 1 0%

llvm/tools/llvm-diff/lib 6 0 6 0%

llvm/tools/llvm-dis 1 0 1 0%

llvm/tools/llvm-dis-fuzzer 1 1 0 100%

llvm/tools/llvm-dlang-demangle-fuzz
er

2 2 0 100%

llvm/tools/llvm-dwarfdump 4 3 1 75%

llvm/tools/llvm-dwarfdump/fuzzer 1 0 1 0%

llvm/tools/llvm-dwp 1 0 1 0%

llvm/tools/llvm-exegesis 1 0 1 0%

llvm/tools/llvm-exegesis/lib 44 33 11 75%

llvm/tools/llvm-exegesis/lib/AArch64 1 1 0 100%

llvm/tools/llvm-exegesis/lib/Mips 1 0 1 0%

llvm/tools/llvm-exegesis/lib/PowerP
C

1 1 0 100%

llvm/tools/llvm-exegesis/lib/X86 3 2 1 66%

llvm/tools/llvm-extract 1 0 1 0%

llvm/tools/llvm-gsymutil 1 1 0 100%

llvm/tools/llvm-ifs 3 2 1 66%

llvm/tools/llvm-isel-fuzzer 2 1 1 50%

llvm/tools/llvm-itanium-demangle-fu
zzer

2 1 1 50%

llvm/tools/llvm-jitlink 4 2 2 50%

Clang Formatted Status

896



Directory Total Files
Formatted

Files
Unformatted

Files % Complete

llvm/tools/llvm-jitlink/llvm-jitlink-exec
utor

1 1 0 100%

llvm/tools/llvm-jitlistener 1 0 1 0%

llvm/tools/llvm-libtool-darwin 1 1 0 100%

llvm/tools/llvm-link 1 1 0 100%

llvm/tools/llvm-lipo 1 0 1 0%

llvm/tools/llvm-lto 1 0 1 0%

llvm/tools/llvm-lto2 1 0 1 0%

llvm/tools/llvm-mc 3 1 2 33%

llvm/tools/llvm-mc-assemble-fuzzer 1 0 1 0%

llvm/tools/llvm-mc-disassemble-fuzz
er

1 0 1 0%

llvm/tools/llvm-mca 7 7 0 100%

llvm/tools/llvm-mca/Views 20 19 1 95%

llvm/tools/llvm-microsoft-demangle-f
uzzer

2 2 0 100%

llvm/tools/llvm-ml 3 1 2 33%

llvm/tools/llvm-modextract 1 1 0 100%

llvm/tools/llvm-mt 1 0 1 0%

llvm/tools/llvm-nm 1 0 1 0%

llvm/tools/llvm-objcopy 3 2 1 66%

llvm/tools/llvm-objdump 15 10 5 66%

llvm/tools/llvm-opt-fuzzer 2 0 2 0%

llvm/tools/llvm-opt-report 1 0 1 0%

llvm/tools/llvm-pdbutil 47 15 32 31%

llvm/tools/llvm-profdata 1 0 1 0%

llvm/tools/llvm-profgen 11 6 5 54%

llvm/tools/llvm-rc 12 6 6 50%

llvm/tools/llvm-readobj 19 3 16 15%

llvm/tools/llvm-reduce 7 6 1 85%

llvm/tools/llvm-reduce/deltas 40 39 1 97%

llvm/tools/llvm-remark-size-diff 1 1 0 100%

llvm/tools/llvm-rtdyld 1 0 1 0%

llvm/tools/llvm-rust-demangle-fuzze
r

2 2 0 100%

llvm/tools/llvm-shlib 1 1 0 100%

llvm/tools/llvm-sim 1 0 1 0%

llvm/tools/llvm-size 1 0 1 0%

llvm/tools/llvm-special-case-list-fuzz
er

2 2 0 100%

Clang Formatted Status

897



Directory Total Files
Formatted

Files
Unformatted

Files % Complete

llvm/tools/llvm-split 1 0 1 0%

llvm/tools/llvm-stress 1 0 1 0%

llvm/tools/llvm-strings 1 1 0 100%

llvm/tools/llvm-symbolizer 1 0 1 0%

llvm/tools/llvm-tapi-diff 3 3 0 100%

llvm/tools/llvm-tli-checker 1 0 1 0%

llvm/tools/llvm-undname 1 1 0 100%

llvm/tools/llvm-xray 19 15 4 78%

llvm/tools/llvm-yaml-numeric-parser
-fuzzer

2 2 0 100%

llvm/tools/llvm-yaml-parser-fuzzer 2 2 0 100%

llvm/tools/lto 2 1 1 50%

llvm/tools/obj2yaml 10 5 5 50%

llvm/tools/opt 10 3 7 30%

llvm/tools/remarks-shlib 1 0 1 0%

llvm/tools/sancov 1 0 1 0%

llvm/tools/sanstats 1 1 0 100%

llvm/tools/split-file 1 0 1 0%

llvm/tools/verify-uselistorder 1 0 1 0%

llvm/tools/vfabi-demangle-fuzzer 1 1 0 100%

llvm/tools/yaml2obj 1 1 0 100%

llvm/unittests/ADT 77 29 48 37%

llvm/unittests/Analysis 38 13 25 34%

llvm/unittests/AsmParser 1 1 0 100%

llvm/unittests/BinaryFormat 6 5 1 83%

llvm/unittests/Bitcode 2 1 1 50%

llvm/unittests/Bitstream 2 1 1 50%

llvm/unittests/CodeGen 20 10 10 50%

llvm/unittests/CodeGen/GlobalISel 13 2 11 15%

llvm/unittests/DebugInfo/CodeView 4 2 2 50%

llvm/unittests/DebugInfo/DWARF 17 13 4 76%

llvm/unittests/DebugInfo/GSYM 1 0 1 0%

llvm/unittests/DebugInfo/MSF 3 2 1 66%

llvm/unittests/DebugInfo/PDB 5 3 2 60%

llvm/unittests/DebugInfo/PDB/Input
s

1 1 0 100%

llvm/unittests/Debuginfod 2 2 0 100%

llvm/unittests/Demangle 7 5 2 71%

llvm/unittests/ExecutionEngine 1 0 1 0%

Clang Formatted Status

898



Directory Total Files
Formatted

Files
Unformatted

Files % Complete

llvm/unittests/ExecutionEngine/JITL
ink

1 1 0 100%

llvm/unittests/ExecutionEngine/MCJ
IT

7 0 7 0%

llvm/unittests/ExecutionEngine/Orc 21 14 7 66%

llvm/unittests/FileCheck 1 0 1 0%

llvm/unittests/Frontend 4 3 1 75%

llvm/unittests/FuzzMutate 4 0 4 0%

llvm/unittests/InterfaceStub 1 1 0 100%

llvm/unittests/IR 36 6 30 16%

llvm/unittests/LineEditor 1 0 1 0%

llvm/unittests/Linker 1 0 1 0%

llvm/unittests/MC 7 4 3 57%

llvm/unittests/MC/AMDGPU 1 1 0 100%

llvm/unittests/MC/SystemZ 1 1 0 100%

llvm/unittests/MI 1 0 1 0%

llvm/unittests/MIR 1 0 1 0%

llvm/unittests/ObjCopy 1 1 0 100%

llvm/unittests/Object 9 6 3 66%

llvm/unittests/ObjectYAML 5 3 2 60%

llvm/unittests/Option 2 1 1 50%

llvm/unittests/Passes 5 5 0 100%

llvm/unittests/ProfileData 5 2 3 40%

llvm/unittests/Remarks 8 5 3 62%

llvm/unittests/Support 100 35 65 35%

llvm/unittests/Support/CommandLin
eInit

1 1 0 100%

llvm/unittests/Support/DynamicLibra
ry

4 0 4 0%

llvm/unittests/TableGen 3 1 2 33%

llvm/unittests/Target/AArch64 3 1 2 33%

llvm/unittests/Target/AMDGPU 2 2 0 100%

llvm/unittests/Target/ARM 2 1 1 50%

llvm/unittests/Target/PowerPC 1 1 0 100%

llvm/unittests/Target/WebAssembly 1 0 1 0%

llvm/unittests/Target/X86 1 0 1 0%

llvm/unittests/Testing/Support 1 1 0 100%

llvm/unittests/TextAPI 5 3 2 60%

llvm/unittests/tools/llvm-cfi-verify 2 1 1 50%

llvm/unittests/tools/llvm-exegesis 4 3 1 75%

Clang Formatted Status

899



Directory Total Files
Formatted

Files
Unformatted

Files % Complete

llvm/unittests/tools/llvm-exegesis/A
Arch64

1 1 0 100%

llvm/unittests/tools/llvm-exegesis/A
RM

1 1 0 100%

llvm/unittests/tools/llvm-exegesis/C
ommon

1 1 0 100%

llvm/unittests/tools/llvm-exegesis/Mi
ps

5 3 2 60%

llvm/unittests/tools/llvm-exegesis/P
owerPC

4 1 3 25%

llvm/unittests/tools/llvm-exegesis/X
86

9 6 3 66%

llvm/unittests/tools/llvm-profgen 1 0 1 0%

llvm/unittests/Transforms/IPO 4 2 2 50%

llvm/unittests/Transforms/Scalar 2 0 2 0%

llvm/unittests/Transforms/Utils 19 8 11 42%

llvm/unittests/Transforms/Vectorize 7 7 0 100%

llvm/unittests/XRay 8 7 1 87%

llvm/utils/FileCheck 1 0 1 0%

llvm/utils/fpcmp 1 0 1 0%

llvm/utils/KillTheDoctor 1 0 1 0%

llvm/utils/not 1 1 0 100%

llvm/utils/PerfectShuffle 1 0 1 0%

llvm/utils/TableGen 78 13 65 16%

llvm/utils/TableGen/GlobalISel 17 10 7 58%

llvm/utils/unittest/googlemock/includ
e/gmock

12 0 12 0%

llvm/utils/unittest/googlemock/includ
e/gmock/internal

3 0 3 0%

llvm/utils/unittest/googlemock/includ
e/gmock/internal/custom

3 0 3 0%

llvm/utils/unittest/googletest/include/
gtest

11 0 11 0%

llvm/utils/unittest/googletest/include/
gtest/internal

8 0 8 0%

llvm/utils/unittest/googletest/include/
gtest/internal/custom

4 0 4 0%

llvm/utils/unittest/googletest/src 1 0 1 0%

llvm/utils/unittest/UnitTestMain 1 0 1 0%

llvm/utils/yaml-bench 1 0 1 0%

mlir/examples/standalone/include/S
tandalone

2 2 0 100%

Clang Formatted Status

900



Directory Total Files
Formatted

Files
Unformatted

Files % Complete

mlir/examples/standalone/include/S
tandalone-c

1 1 0 100%

mlir/examples/standalone/lib/CAPI 1 1 0 100%

mlir/examples/standalone/lib/Stand
alone

2 2 0 100%

mlir/examples/standalone/python 1 1 0 100%

mlir/examples/standalone/standalon
e-opt

1 1 0 100%

mlir/examples/standalone/standalon
e-translate

1 1 0 100%

mlir/examples/toy/Ch1 1 1 0 100%

mlir/examples/toy/Ch1/include/toy 3 3 0 100%

mlir/examples/toy/Ch1/parser 1 0 1 0%

mlir/examples/toy/Ch2 1 1 0 100%

mlir/examples/toy/Ch2/include/toy 5 5 0 100%

mlir/examples/toy/Ch2/mlir 2 2 0 100%

mlir/examples/toy/Ch2/parser 1 0 1 0%

mlir/examples/toy/Ch3 1 1 0 100%

mlir/examples/toy/Ch3/include/toy 5 5 0 100%

mlir/examples/toy/Ch3/mlir 3 3 0 100%

mlir/examples/toy/Ch3/parser 1 0 1 0%

mlir/examples/toy/Ch4 1 1 0 100%

mlir/examples/toy/Ch4/include/toy 7 7 0 100%

mlir/examples/toy/Ch4/mlir 4 4 0 100%

mlir/examples/toy/Ch4/parser 1 0 1 0%

mlir/examples/toy/Ch5 1 1 0 100%

mlir/examples/toy/Ch5/include/toy 7 7 0 100%

mlir/examples/toy/Ch5/mlir 5 5 0 100%

mlir/examples/toy/Ch5/parser 1 0 1 0%

mlir/examples/toy/Ch6 1 1 0 100%

mlir/examples/toy/Ch6/include/toy 7 7 0 100%

mlir/examples/toy/Ch6/mlir 6 6 0 100%

mlir/examples/toy/Ch6/parser 1 0 1 0%

mlir/examples/toy/Ch7 1 1 0 100%

mlir/examples/toy/Ch7/include/toy 7 7 0 100%

mlir/examples/toy/Ch7/mlir 6 6 0 100%

mlir/examples/toy/Ch7/parser 1 0 1 0%

mlir/include/mlir 5 5 0 100%

mlir/include/mlir/Analysis 7 5 2 71%

Clang Formatted Status

901



Directory Total Files
Formatted

Files
Unformatted

Files % Complete

mlir/include/mlir/Analysis/AliasAnaly
sis

1 1 0 100%

mlir/include/mlir/Analysis/Presburge
r

9 9 0 100%

mlir/include/mlir/Bindings/Python 1 0 1 0%

mlir/include/mlir/CAPI 12 12 0 100%

mlir/include/mlir/Conversion 1 1 0 100%

mlir/include/mlir/Conversion/AffineT
oStandard

1 1 0 100%

mlir/include/mlir/Conversion/Arithm
eticToLLVM

1 1 0 100%

mlir/include/mlir/Conversion/Arithm
eticToSPIRV

1 1 0 100%

mlir/include/mlir/Conversion/ArmNe
on2dToIntr

1 1 0 100%

mlir/include/mlir/Conversion/AsyncT
oLLVM

1 1 0 100%

mlir/include/mlir/Conversion/Bufferiz
ationToMemRef

1 1 0 100%

mlir/include/mlir/Conversion/Compl
exToLLVM

1 1 0 100%

mlir/include/mlir/Conversion/Compl
exToStandard

1 1 0 100%

mlir/include/mlir/Conversion/Control
FlowToLLVM

1 1 0 100%

mlir/include/mlir/Conversion/Control
FlowToSPIRV

2 2 0 100%

mlir/include/mlir/Conversion/FuncTo
SPIRV

2 2 0 100%

mlir/include/mlir/Conversion/GPUC
ommon

1 1 0 100%

mlir/include/mlir/Conversion/GPUTo
NVVM

1 1 0 100%

mlir/include/mlir/Conversion/GPUTo
ROCDL

2 2 0 100%

mlir/include/mlir/Conversion/GPUTo
SPIRV

2 2 0 100%

mlir/include/mlir/Conversion/GPUTo
Vulkan

1 0 1 0%

mlir/include/mlir/Conversion/LinalgT
oLLVM

1 1 0 100%

mlir/include/mlir/Conversion/LinalgT
oSPIRV

2 2 0 100%

mlir/include/mlir/Conversion/LinalgT
oStandard

1 1 0 100%

Clang Formatted Status

902



Directory Total Files
Formatted

Files
Unformatted

Files % Complete

mlir/include/mlir/Conversion/LLVMC
ommon

7 7 0 100%

mlir/include/mlir/Conversion/MathTo
Libm

1 1 0 100%

mlir/include/mlir/Conversion/MathTo
LLVM

1 1 0 100%

mlir/include/mlir/Conversion/MathTo
SPIRV

2 2 0 100%

mlir/include/mlir/Conversion/MemR
efToLLVM

2 2 0 100%

mlir/include/mlir/Conversion/MemR
efToSPIRV

2 2 0 100%

mlir/include/mlir/Conversion/OpenA
CCToLLVM

1 1 0 100%

mlir/include/mlir/Conversion/OpenA
CCToSCF

1 1 0 100%

mlir/include/mlir/Conversion/OpenM
PToLLVM

1 1 0 100%

mlir/include/mlir/Conversion/PDLTo
PDLInterp

1 1 0 100%

mlir/include/mlir/Conversion/Reconc
ileUnrealizedCasts

1 1 0 100%

mlir/include/mlir/Conversion/SCFTo
ControlFlow

1 1 0 100%

mlir/include/mlir/Conversion/SCFTo
GPU

2 2 0 100%

mlir/include/mlir/Conversion/SCFTo
OpenMP

1 1 0 100%

mlir/include/mlir/Conversion/SCFTo
SPIRV

2 2 0 100%

mlir/include/mlir/Conversion/Shape
ToStandard

1 1 0 100%

mlir/include/mlir/Conversion/SPIRV
ToLLVM

2 2 0 100%

mlir/include/mlir/Conversion/Standa
rdToLLVM

2 2 0 100%

mlir/include/mlir/Conversion/Tensor
ToSPIRV

2 2 0 100%

mlir/include/mlir/Conversion/TosaTo
Linalg

1 1 0 100%

mlir/include/mlir/Conversion/TosaTo
SCF

1 1 0 100%

mlir/include/mlir/Conversion/TosaTo
Standard

1 1 0 100%

mlir/include/mlir/Conversion/Vector
ToGPU

1 1 0 100%

Clang Formatted Status

903



Directory Total Files
Formatted

Files
Unformatted

Files % Complete

mlir/include/mlir/Conversion/Vector
ToLLVM

1 1 0 100%

mlir/include/mlir/Conversion/Vector
ToROCDL

1 1 0 100%

mlir/include/mlir/Conversion/Vector
ToSCF

1 1 0 100%

mlir/include/mlir/Conversion/Vector
ToSPIRV

2 2 0 100%

mlir/include/mlir/Dialect 2 2 0 100%

mlir/include/mlir/Dialect/Affine 4 4 0 100%

mlir/include/mlir/Dialect/Affine/Analy
sis

5 5 0 100%

mlir/include/mlir/Dialect/Affine/IR 3 3 0 100%

mlir/include/mlir/Dialect/AMX 2 2 0 100%

mlir/include/mlir/Dialect/Arithmetic/I
R

1 1 0 100%

mlir/include/mlir/Dialect/Arithmetic/T
ransforms

2 2 0 100%

mlir/include/mlir/Dialect/Arithmetic/
Utils

1 1 0 100%

mlir/include/mlir/Dialect/ArmNeon 1 1 0 100%

mlir/include/mlir/Dialect/ArmSVE 2 2 0 100%

mlir/include/mlir/Dialect/Async 2 2 0 100%

mlir/include/mlir/Dialect/Async/IR 2 2 0 100%

mlir/include/mlir/Dialect/Bufferizatio
n/IR

3 3 0 100%

mlir/include/mlir/Dialect/Bufferizatio
n/Transforms

4 4 0 100%

mlir/include/mlir/Dialect/Complex/IR 1 1 0 100%

mlir/include/mlir/Dialect/ControlFlow
/IR

2 2 0 100%

mlir/include/mlir/Dialect/DLTI 2 2 0 100%

mlir/include/mlir/Dialect/EmitC/IR 1 1 0 100%

mlir/include/mlir/Dialect/Func/IR 1 1 0 100%

mlir/include/mlir/Dialect/Func/Transf
orms

3 3 0 100%

mlir/include/mlir/Dialect/GPU 5 5 0 100%

mlir/include/mlir/Dialect/Linalg 1 1 0 100%

mlir/include/mlir/Dialect/Linalg/Anal
ysis

1 1 0 100%

mlir/include/mlir/Dialect/Linalg/Com
prehensiveBufferize

2 2 0 100%

mlir/include/mlir/Dialect/Linalg/IR 2 2 0 100%

Clang Formatted Status

904



Directory Total Files
Formatted

Files
Unformatted

Files % Complete

mlir/include/mlir/Dialect/Linalg/Tran
sforms

5 5 0 100%

mlir/include/mlir/Dialect/Linalg/Utils 1 1 0 100%

mlir/include/mlir/Dialect/LLVMIR 5 5 0 100%

mlir/include/mlir/Dialect/LLVMIR/Tra
nsforms

2 2 0 100%

mlir/include/mlir/Dialect/Math/IR 1 1 0 100%

mlir/include/mlir/Dialect/Math/Transf
orms

2 2 0 100%

mlir/include/mlir/Dialect/MemRef/IR 1 1 0 100%

mlir/include/mlir/Dialect/MemRef/Tr
ansforms

2 2 0 100%

mlir/include/mlir/Dialect/MemRef/Uti
ls

1 1 0 100%

mlir/include/mlir/Dialect/OpenACC 1 1 0 100%

mlir/include/mlir/Dialect/OpenMP 1 1 0 100%

mlir/include/mlir/Dialect/PDL/IR 3 3 0 100%

mlir/include/mlir/Dialect/PDLInterp/I
R

1 1 0 100%

mlir/include/mlir/Dialect/Quant 6 6 0 100%

mlir/include/mlir/Dialect/SCF 4 4 0 100%

mlir/include/mlir/Dialect/SCF/Utils 2 2 0 100%

mlir/include/mlir/Dialect/Shape/IR 1 1 0 100%

mlir/include/mlir/Dialect/Shape/Tran
sforms

1 1 0 100%

mlir/include/mlir/Dialect/SparseTens
or/IR

1 1 0 100%

mlir/include/mlir/Dialect/SparseTens
or/Pipelines

1 1 0 100%

mlir/include/mlir/Dialect/SparseTens
or/Transforms

1 1 0 100%

mlir/include/mlir/Dialect/SparseTens
or/Utils

1 1 0 100%

mlir/include/mlir/Dialect/SPIRV/IR 9 9 0 100%

mlir/include/mlir/Dialect/SPIRV/Linki
ng

1 1 0 100%

mlir/include/mlir/Dialect/SPIRV/Tran
sforms

2 2 0 100%

mlir/include/mlir/Dialect/SPIRV/Utils 1 1 0 100%

mlir/include/mlir/Dialect/Tensor/IR 3 3 0 100%

mlir/include/mlir/Dialect/Tensor/Tra
nsforms

3 3 0 100%

mlir/include/mlir/Dialect/Tensor/Utils 1 1 0 100%

Clang Formatted Status

905



Directory Total Files
Formatted

Files
Unformatted

Files % Complete

mlir/include/mlir/Dialect/Tosa/IR 1 1 0 100%

mlir/include/mlir/Dialect/Tosa/Transf
orms

2 2 0 100%

mlir/include/mlir/Dialect/Tosa/Utils 3 3 0 100%

mlir/include/mlir/Dialect/Utils 4 4 0 100%

mlir/include/mlir/Dialect/Vector/IR 1 1 0 100%

mlir/include/mlir/Dialect/Vector/Tran
sforms

4 4 0 100%

mlir/include/mlir/Dialect/Vector/Utils 1 1 0 100%

mlir/include/mlir/Dialect/X86Vector 2 2 0 100%

mlir/include/mlir/ExecutionEngine 8 7 1 87%

mlir/include/mlir/Interfaces 14 13 1 92%

mlir/include/mlir/IR 49 29 20 59%

mlir/include/mlir/Parser 1 1 0 100%

mlir/include/mlir/Pass 6 0 6 0%

mlir/include/mlir/Reducer 5 5 0 100%

mlir/include/mlir/Rewrite 2 2 0 100%

mlir/include/mlir/Support 15 9 6 60%

mlir/include/mlir/TableGen 21 19 2 90%

mlir/include/mlir/Target/Cpp 1 1 0 100%

mlir/include/mlir/Target/LLVMIR 6 6 0 100%

mlir/include/mlir/Target/LLVMIR/Dia
lect

1 1 0 100%

mlir/include/mlir/Target/LLVMIR/Dia
lect/AMX

1 1 0 100%

mlir/include/mlir/Target/LLVMIR/Dia
lect/ArmNeon

1 1 0 100%

mlir/include/mlir/Target/LLVMIR/Dia
lect/ArmSVE

1 1 0 100%

mlir/include/mlir/Target/LLVMIR/Dia
lect/LLVMIR

1 1 0 100%

mlir/include/mlir/Target/LLVMIR/Dia
lect/NVVM

1 1 0 100%

mlir/include/mlir/Target/LLVMIR/Dia
lect/OpenACC

1 1 0 100%

mlir/include/mlir/Target/LLVMIR/Dia
lect/OpenMP

1 1 0 100%

mlir/include/mlir/Target/LLVMIR/Dia
lect/ROCDL

1 1 0 100%

mlir/include/mlir/Target/LLVMIR/Dia
lect/X86Vector

1 1 0 100%

mlir/include/mlir/Target/SPIRV 3 3 0 100%

Clang Formatted Status

906



Directory Total Files
Formatted

Files
Unformatted

Files % Complete

mlir/include/mlir/Tools/mlir-lsp-serve
r

1 1 0 100%

mlir/include/mlir/Tools/mlir-reduce 1 1 0 100%

mlir/include/mlir/Tools/PDLL/AST 4 2 2 50%

mlir/include/mlir/Tools/PDLL/CodeG
en

2 2 0 100%

mlir/include/mlir/Tools/PDLL/ODS 4 4 0 100%

mlir/include/mlir/Tools/PDLL/Parser 1 1 0 100%

mlir/include/mlir/Transforms 9 7 2 77%

mlir/include/mlir-c 15 15 0 100%

mlir/include/mlir-c/Bindings/Python 1 1 0 100%

mlir/include/mlir-c/Dialect 11 11 0 100%

mlir/lib/Analysis 7 7 0 100%

mlir/lib/Analysis/AliasAnalysis 1 1 0 100%

mlir/lib/Analysis/Presburger 8 8 0 100%

mlir/lib/Bindings/Python 23 23 0 100%

mlir/lib/Bindings/Python/Conversion
s

1 1 0 100%

mlir/lib/Bindings/Python/Transforms 1 1 0 100%

mlir/lib/CAPI/Conversion 1 1 0 100%

mlir/lib/CAPI/Debug 1 1 0 100%

mlir/lib/CAPI/Dialect 15 15 0 100%

mlir/lib/CAPI/ExecutionEngine 1 1 0 100%

mlir/lib/CAPI/Interfaces 1 1 0 100%

mlir/lib/CAPI/IR 10 10 0 100%

mlir/lib/CAPI/Registration 1 1 0 100%

mlir/lib/CAPI/Transforms 1 1 0 100%

mlir/lib/Conversion 1 1 0 100%

mlir/lib/Conversion/AffineToStandar
d

1 1 0 100%

mlir/lib/Conversion/ArithmeticToLLV
M

1 1 0 100%

mlir/lib/Conversion/ArithmeticToSPI
RV

1 1 0 100%

mlir/lib/Conversion/ArmNeon2dToIn
tr

1 1 0 100%

mlir/lib/Conversion/AsyncToLLVM 1 1 0 100%

mlir/lib/Conversion/BufferizationTo
MemRef

1 0 1 0%

mlir/lib/Conversion/ComplexToLLV
M

1 1 0 100%

Clang Formatted Status

907



Directory Total Files
Formatted

Files
Unformatted

Files % Complete

mlir/lib/Conversion/ComplexToStan
dard

1 1 0 100%

mlir/lib/Conversion/ControlFlowToL
LVM

1 1 0 100%

mlir/lib/Conversion/ControlFlowToS
PIRV

2 2 0 100%

mlir/lib/Conversion/FuncToSPIRV 2 2 0 100%

mlir/lib/Conversion/GPUCommon 5 4 1 80%

mlir/lib/Conversion/GPUToNVVM 2 2 0 100%

mlir/lib/Conversion/GPUToROCDL 1 1 0 100%

mlir/lib/Conversion/GPUToSPIRV 2 2 0 100%

mlir/lib/Conversion/GPUToVulkan 2 2 0 100%

mlir/lib/Conversion/LinalgToLLVM 1 1 0 100%

mlir/lib/Conversion/LinalgToSPIRV 2 1 1 50%

mlir/lib/Conversion/LinalgToStandar
d

1 0 1 0%

mlir/lib/Conversion/LLVMCommon 8 8 0 100%

mlir/lib/Conversion/MathToLibm 1 1 0 100%

mlir/lib/Conversion/MathToLLVM 1 1 0 100%

mlir/lib/Conversion/MathToSPIRV 2 2 0 100%

mlir/lib/Conversion/MemRefToLLV
M

2 2 0 100%

mlir/lib/Conversion/MemRefToSPIR
V

2 2 0 100%

mlir/lib/Conversion/OpenACCToLL
VM

1 1 0 100%

mlir/lib/Conversion/OpenACCToSC
F

1 1 0 100%

mlir/lib/Conversion/OpenMPToLLV
M

1 1 0 100%

mlir/lib/Conversion/PDLToPDLInter
p

7 7 0 100%

mlir/lib/Conversion/ReconcileUnreal
izedCasts

1 1 0 100%

mlir/lib/Conversion/SCFToControlFl
ow

1 1 0 100%

mlir/lib/Conversion/SCFToGPU 2 2 0 100%

mlir/lib/Conversion/SCFToOpenMP 1 1 0 100%

mlir/lib/Conversion/SCFToSPIRV 2 2 0 100%

mlir/lib/Conversion/ShapeToStanda
rd

2 2 0 100%

mlir/lib/Conversion/SPIRVCommon 1 1 0 100%

mlir/lib/Conversion/SPIRVToLLVM 3 3 0 100%

Clang Formatted Status

908



Directory Total Files
Formatted

Files
Unformatted

Files % Complete

mlir/lib/Conversion/StandardToLLV
M

1 1 0 100%

mlir/lib/Conversion/TensorToSPIRV 2 2 0 100%

mlir/lib/Conversion/TosaToLinalg 4 4 0 100%

mlir/lib/Conversion/TosaToSCF 2 2 0 100%

mlir/lib/Conversion/TosaToStandard 2 2 0 100%

mlir/lib/Conversion/VectorToGPU 1 0 1 0%

mlir/lib/Conversion/VectorToLLVM 2 2 0 100%

mlir/lib/Conversion/VectorToROCD
L

1 1 0 100%

mlir/lib/Conversion/VectorToSCF 1 1 0 100%

mlir/lib/Conversion/VectorToSPIRV 2 1 1 50%

mlir/lib/Dialect 1 1 0 100%

mlir/lib/Dialect/Affine/Analysis 5 5 0 100%

mlir/lib/Dialect/Affine/IR 3 2 1 66%

mlir/lib/Dialect/Affine/Transforms 14 14 0 100%

mlir/lib/Dialect/Affine/Utils 3 3 0 100%

mlir/lib/Dialect/AMX/IR 1 1 0 100%

mlir/lib/Dialect/AMX/Transforms 1 1 0 100%

mlir/lib/Dialect/Arithmetic/IR 2 1 1 50%

mlir/lib/Dialect/Arithmetic/Transform
s

4 3 1 75%

mlir/lib/Dialect/Arithmetic/Utils 1 1 0 100%

mlir/lib/Dialect/ArmNeon/IR 1 1 0 100%

mlir/lib/Dialect/ArmSVE/IR 1 1 0 100%

mlir/lib/Dialect/ArmSVE/Transforms 1 1 0 100%

mlir/lib/Dialect/Async/IR 1 1 0 100%

mlir/lib/Dialect/Async/Transforms 6 6 0 100%

mlir/lib/Dialect/Bufferization/IR 4 4 0 100%

mlir/lib/Dialect/Bufferization/Transfo
rms

7 7 0 100%

mlir/lib/Dialect/Complex/IR 2 2 0 100%

mlir/lib/Dialect/ControlFlow/IR 1 1 0 100%

mlir/lib/Dialect/DLTI 2 2 0 100%

mlir/lib/Dialect/EmitC/IR 1 1 0 100%

mlir/lib/Dialect/Func/IR 1 1 0 100%

mlir/lib/Dialect/Func/Transforms 4 4 0 100%

mlir/lib/Dialect/GPU/IR 1 1 0 100%

mlir/lib/Dialect/GPU/Transforms 9 7 2 77%

mlir/lib/Dialect/Linalg/Analysis 1 1 0 100%

Clang Formatted Status

909



Directory Total Files
Formatted

Files
Unformatted

Files % Complete

mlir/lib/Dialect/Linalg/Comprehensiv
eBufferize

2 2 0 100%

mlir/lib/Dialect/Linalg/IR 3 3 0 100%

mlir/lib/Dialect/Linalg/Transforms 25 25 0 100%

mlir/lib/Dialect/Linalg/Utils 1 1 0 100%

mlir/lib/Dialect/LLVMIR/IR 7 5 2 71%

mlir/lib/Dialect/LLVMIR/Transforms 2 2 0 100%

mlir/lib/Dialect/Math/IR 2 2 0 100%

mlir/lib/Dialect/Math/Transforms 3 3 0 100%

mlir/lib/Dialect/MemRef/IR 2 2 0 100%

mlir/lib/Dialect/MemRef/Transforms 7 6 1 85%

mlir/lib/Dialect/MemRef/Utils 1 1 0 100%

mlir/lib/Dialect/OpenACC/IR 1 1 0 100%

mlir/lib/Dialect/OpenMP/IR 1 1 0 100%

mlir/lib/Dialect/PDL/IR 2 2 0 100%

mlir/lib/Dialect/PDLInterp/IR 1 1 0 100%

mlir/lib/Dialect/Quant/IR 4 4 0 100%

mlir/lib/Dialect/Quant/Transforms 3 3 0 100%

mlir/lib/Dialect/Quant/Utils 3 3 0 100%

mlir/lib/Dialect/SCF 1 1 0 100%

mlir/lib/Dialect/SCF/Transforms 12 11 1 91%

mlir/lib/Dialect/SCF/Utils 2 2 0 100%

mlir/lib/Dialect/Shape/IR 1 1 0 100%

mlir/lib/Dialect/Shape/Transforms 5 5 0 100%

mlir/lib/Dialect/SparseTensor/IR 1 1 0 100%

mlir/lib/Dialect/SparseTensor/Pipeli
nes

1 1 0 100%

mlir/lib/Dialect/SparseTensor/Transf
orms

5 4 1 80%

mlir/lib/Dialect/SparseTensor/Utils 1 1 0 100%

mlir/lib/Dialect/SPIRV/IR 8 6 2 75%

mlir/lib/Dialect/SPIRV/Linking/Modul
eCombiner

1 1 0 100%

mlir/lib/Dialect/SPIRV/Transforms 7 6 1 85%

mlir/lib/Dialect/SPIRV/Utils 1 1 0 100%

mlir/lib/Dialect/Tensor/IR 4 4 0 100%

mlir/lib/Dialect/Tensor/Transforms 4 4 0 100%

mlir/lib/Dialect/Tensor/Utils 1 1 0 100%

mlir/lib/Dialect/Tosa/IR 1 1 0 100%

mlir/lib/Dialect/Tosa/Transforms 6 6 0 100%

Clang Formatted Status

910



Directory Total Files
Formatted

Files
Unformatted

Files % Complete

mlir/lib/Dialect/Tosa/Utils 2 2 0 100%

mlir/lib/Dialect/Utils 4 4 0 100%

mlir/lib/Dialect/Vector/IR 1 0 1 0%

mlir/lib/Dialect/Vector/Transforms 11 11 0 100%

mlir/lib/Dialect/Vector/Utils 1 1 0 100%

mlir/lib/Dialect/X86Vector/IR 1 1 0 100%

mlir/lib/Dialect/X86Vector/Transfor
ms

2 2 0 100%

mlir/lib/ExecutionEngine 9 9 0 100%

mlir/lib/Interfaces 12 12 0 100%

mlir/lib/IR 38 31 7 81%

mlir/lib/Parser 14 10 4 71%

mlir/lib/Pass 8 6 2 75%

mlir/lib/Reducer 4 4 0 100%

mlir/lib/Rewrite 4 3 1 75%

mlir/lib/Support 8 8 0 100%

mlir/lib/TableGen 18 18 0 100%

mlir/lib/Target/Cpp 2 2 0 100%

mlir/lib/Target/LLVMIR 7 6 1 85%

mlir/lib/Target/LLVMIR/Dialect/AMX 1 1 0 100%

mlir/lib/Target/LLVMIR/Dialect/Arm
Neon

1 1 0 100%

mlir/lib/Target/LLVMIR/Dialect/Arm
SVE

1 1 0 100%

mlir/lib/Target/LLVMIR/Dialect/LLV
MIR

1 1 0 100%

mlir/lib/Target/LLVMIR/Dialect/NVV
M

1 1 0 100%

mlir/lib/Target/LLVMIR/Dialect/Ope
nACC

1 0 1 0%

mlir/lib/Target/LLVMIR/Dialect/Ope
nMP

1 1 0 100%

mlir/lib/Target/LLVMIR/Dialect/ROC
DL

1 1 0 100%

mlir/lib/Target/LLVMIR/Dialect/X86
Vector

1 1 0 100%

mlir/lib/Target/SPIRV 2 2 0 100%

mlir/lib/Target/SPIRV/Deserializatio
n

4 3 1 75%

mlir/lib/Target/SPIRV/Serialization 4 3 1 75%

mlir/lib/Tools/mlir-lsp-server 5 4 1 80%

mlir/lib/Tools/mlir-lsp-server/lsp 6 4 2 66%

Clang Formatted Status

911



Directory Total Files
Formatted

Files
Unformatted

Files % Complete

mlir/lib/Tools/mlir-reduce 1 1 0 100%

mlir/lib/Tools/PDLL/AST 6 5 1 83%

mlir/lib/Tools/PDLL/CodeGen 2 1 1 50%

mlir/lib/Tools/PDLL/ODS 3 3 0 100%

mlir/lib/Tools/PDLL/Parser 3 1 2 33%

mlir/lib/Transforms 13 11 2 84%

mlir/lib/Transforms/Utils 6 6 0 100%

mlir/lib/Translation 1 1 0 100%

mlir/tools/mlir-cpu-runner 1 1 0 100%

mlir/tools/mlir-linalg-ods-gen 1 1 0 100%

mlir/tools/mlir-lsp-server 1 1 0 100%

mlir/tools/mlir-opt 1 1 0 100%

mlir/tools/mlir-pdll 1 1 0 100%

mlir/tools/mlir-reduce 1 1 0 100%

mlir/tools/mlir-shlib 1 1 0 100%

mlir/tools/mlir-spirv-cpu-runner 1 1 0 100%

mlir/tools/mlir-tblgen 29 28 1 96%

mlir/tools/mlir-translate 1 1 0 100%

mlir/tools/mlir-vulkan-runner 4 4 0 100%

mlir/unittests/Analysis/Presburger 8 8 0 100%

mlir/unittests/Conversion/PDLToPD
LInterp

1 1 0 100%

mlir/unittests/Dialect 1 1 0 100%

mlir/unittests/Dialect/Affine/Analysis 3 3 0 100%

mlir/unittests/Dialect/Quant 1 1 0 100%

mlir/unittests/Dialect/SparseTensor 1 1 0 100%

mlir/unittests/Dialect/SPIRV 2 2 0 100%

mlir/unittests/Dialect/Utils 1 1 0 100%

mlir/unittests/ExecutionEngine 1 1 0 100%

mlir/unittests/Interfaces 3 3 0 100%

mlir/unittests/IR 7 7 0 100%

mlir/unittests/Pass 3 3 0 100%

mlir/unittests/Rewrite 1 1 0 100%

mlir/unittests/Support 5 4 1 80%

mlir/unittests/TableGen 5 3 2 60%

mlir/unittests/Transforms 2 2 0 100%

openmp/libompd/src 9 9 0 100%

openmp/libomptarget/DeviceRTL/in
clude

8 8 0 100%

Clang Formatted Status

912



Directory Total Files
Formatted

Files
Unformatted

Files % Complete

openmp/libomptarget/DeviceRTL/sr
c

12 9 3 75%

openmp/libomptarget/include 9 8 1 88%

openmp/libomptarget/plugins/amdg
pu/dynamic_hsa

3 2 1 66%

openmp/libomptarget/plugins/amdg
pu/impl

13 10 3 76%

openmp/libomptarget/plugins/amdg
pu/src

2 1 1 50%

openmp/libomptarget/plugins/comm
on/elf_common

2 2 0 100%

openmp/libomptarget/plugins/comm
on/MemoryManager

1 1 0 100%

openmp/libomptarget/plugins/cuda/
dynamic_cuda

2 2 0 100%

openmp/libomptarget/plugins/cuda/
src

1 0 1 0%

openmp/libomptarget/plugins/generi
c-elf-64bit/src

1 1 0 100%

openmp/libomptarget/plugins/remot
e/include

1 1 0 100%

openmp/libomptarget/plugins/remot
e/lib

1 0 1 0%

openmp/libomptarget/plugins/remot
e/server

3 3 0 100%

openmp/libomptarget/plugins/remot
e/src

3 2 1 66%

openmp/libomptarget/plugins/ve/src 1 1 0 100%

openmp/libomptarget/src 7 6 1 85%

openmp/libomptarget/tools/devicein
fo

1 1 0 100%

openmp/runtime/doc/doxygen 1 1 0 100%

openmp/runtime/src 75 65 10 86%

openmp/runtime/src/thirdparty/ittnoti
fy

6 5 1 83%

openmp/runtime/src/thirdparty/ittnoti
fy/legacy

1 1 0 100%

openmp/tools/archer 1 1 0 100%

openmp/tools/archer/tests/ompt 1 1 0 100%

openmp/tools/multiplex 1 1 0 100%

openmp/tools/multiplex/tests 1 1 0 100%

openmp/tools/multiplex/tests/custo
m_data_storage

2 1 1 50%

openmp/tools/multiplex/tests/print 2 2 0 100%

Clang Formatted Status

913



Directory Total Files
Formatted

Files
Unformatted

Files % Complete

polly/include/polly 25 25 0 100%

polly/include/polly/CodeGen 14 14 0 100%

polly/include/polly/Support 12 12 0 100%

polly/lib/Analysis 9 9 0 100%

polly/lib/CodeGen 15 15 0 100%

polly/lib/Exchange 1 1 0 100%

polly/lib/External/isl 68 1 67 1%

polly/lib/External/isl/imath 6 1 5 16%

polly/lib/External/isl/imath_wrap 4 0 4 0%

polly/lib/External/isl/include/isl 59 9 50 15%

polly/lib/External/isl/interface 8 1 7 12%

polly/lib/External/pet/include 1 0 1 0%

polly/lib/External/ppcg 17 0 17 0%

polly/lib/Plugin 1 1 0 100%

polly/lib/Support 11 11 0 100%

polly/lib/Transform 15 15 0 100%

polly/tools/GPURuntime 1 1 0 100%

polly/unittests/DeLICM 1 1 0 100%

polly/unittests/Flatten 1 1 0 100%

polly/unittests/Isl 1 1 0 100%

polly/unittests/ScheduleOptimizer 1 1 0 100%

polly/unittests/ScopPassManager 1 1 0 100%

polly/unittests/Support 1 1 0 100%

pstl/include/pstl/internal 23 16 7 69%

pstl/include/pstl/internal/omp 11 8 3 72%

third-party/benchmark/cmake 5 1 4 20%

third-party/benchmark/include/benc
hmark

1 0 1 0%

third-party/benchmark/src 21 21 0 100%

utils/bazel/llvm-project-overlay/clan
g/include/clang/Config

1 1 0 100%

utils/bazel/llvm-project-overlay/llvm/i
nclude/llvm/Config

2 1 1 50%

Total 16432 8857 7575 53%

Clang Linker Wrapper
Introduction 915

Usage 915

Example 915

Clang Linker Wrapper

914



Introduction
This tool works as a wrapper over a linking job. The tool is used to create linked device images for offloading. It
scans the linker’s input for embedded device offloading data stored in sections
.llvm.offloading.<triple>.<arch> and extracts it as a temporary file. The extracted device files will then be
passed to a device linking job to create a final device image. The sections will also be stripped and the resulting file
passed back to the host linker.

Usage
This tool can be used with the following options. Arguments to the host linker being wrapper around are passed as
positional arguments using the -- flag to override parsing.

USAGE: clang-linker-wrapper [options] <options to be passed to linker>...

OPTIONS:

Generic Options:

  --help                    - Display available options (--help-hidden for more)
  --help-list               - Display list of available options (--help-list-hidden for more)
  --version                 - Display the version of this program

clang-linker-wrapper options:

  --host-triple=<string>     - Triple to use for the host compilation
  --linker-path=<string>     - Path of linker binary
  --opt-level=<string>       - Optimization level for LTO
  --ptxas-option=<string>    - Argument to pass to the ptxas invocation
  --save-temps               - Save intermediary results.
  --strip-sections           - Strip offloading sections from the host object file.
  --target-embed-bc          - Embed linked bitcode instead of an executable device image
  --target-feature=<string>  - Target features for triple
  --bitcode-library=<string> - Path for the target bitcode library
  -v                         - Verbose output from tools

Example
This tool links object files with offloading images embedded within it using the -fembed-offload-object flag in
Clang. Given an input file containing the magic section we can pass it to this tool to extract the data contained at that
section and run a device linking job on it.

clang-linker-wrapper -host-triple x86_64 -linker-path /usr/bin/ld -- <Args>

Clang Nvlink Wrapper
Introduction 915

Use Case 916

Working 916

Introduction
This tool works as a wrapper over the nvlink program. It is required because nvlink does not support linking of
archive files implicitly. It transparently passes every input option and object to nvlink except archive files. It reads
each input archive file to extract the archived cubin files as temporary files. These temporary (*.cubin) files are
passed to nvlink.

Clang Nvlink Wrapper

915



Use Case
During linking of heterogeneous device archive libraries with an OpenMP program, the Clang Offload Bundler
creates a device specific archive of cubin files. Such an archive is then passed to this wrapper tool to extract cubin
files before passing to nvlink.

Working
Inputs

A command line generated by the OpenMP-Clang driver targeting NVPTX, containing a set of flags, cubin object
files, and zero or more archive files.

Example:

clang-nvlink-wrapper main.cubin /tmp/libTest-nvptx-sm_50.a -o main-linked.out

Processing

1. From each archive file extract all cubin files as temporary files and store their names in a list, CubinFiles.

2. Create a new command line, NVLinkCommand, such that * Program is nvlink * All input flags are
transparently passed on as flags * All input archive file are replaced with CubinFiles

3. Execute NVLinkCommand

1. Extract (libTest-nvptx-sm_50.a) => /tmp/a.cubin /tmp/b.cubin
2. nvlink -o a.out-openmp-nvptx64 main.cubin /tmp/a.cubin /tmp/b.cubin

Output

Output file generated by nvlink which links all cubin files.

Clang Offload Bundler
Introduction 916

Supported File Formats 917

Bundled Text File Layout 917

Bundled Binary File Layout 917

Bundle Entry ID 918

Target ID 919

Target Specific information 919

Archive Unbundling 920

Introduction
For heterogeneous single source programming languages, use one or more --offload-arch=<target-id>
Clang options to specify the target IDs of the code to generate for the offload code regions.

The tool chain may perform multiple compilations of a translation unit to produce separate code objects for the host
and potentially multiple offloaded devices. The clang-offload-bundler tool may be used as part of the tool
chain to combine these multiple code objects into a single bundled code object.

The tool chain may use a bundled code object as an intermediate step so that each tool chain step consumes and
produces a single file as in traditional non-heterogeneous tool chains. The bundled code object contains the code
objects for the host and all the offload devices.

A bundled code object may also be used to bundle just the offloaded code objects, and embedded as data into the
host code object. The host compilation includes an init function that will use the runtime corresponding to the
offload kind (see Bundled Code Object Offload Kind) to load the offload code objects appropriate to the devices
present when the host program is executed.

Clang Offload Bundler

916



Supported File Formats
Several text and binary file formats are supported for bundling/unbundling. See Supported File Formats for a list of
currently supported formats.

Supported File Formats

File Format File Extension Text/Binary

CPP output i Text

C++ CPP output ii Text

CUDA/HIP output cui Text

Dependency d Text

LLVM ll Text

LLVM Bitcode bc Binary

Assembler s Text

Object o Binary

Archive of objects a Binary

Precompiled header gch Binary

Clang AST file ast Binary

Bundled Text File Layout
The format of the bundled files is currently very simple: text formats are concatenated with comments that have a
magic string and bundle entry ID in between.

"Comment OFFLOAD_BUNDLER_MAGIC_STR__START__ 1st Bundle Entry ID"
Bundle 1
"Comment OFFLOAD_BUNDLER_MAGIC_STR__END__ 1st Bundle Entry ID"
...
"Comment OFFLOAD_BUNDLER_MAGIC_STR__START__ Nth Bundle Entry ID"
Bundle N
"Comment OFFLOAD_BUNDLER_MAGIC_STR__END__ 1st Bundle Entry ID"

Bundled Binary File Layout
The layout of a bundled code object is defined by the following table:

Bundled Code Object Layout

Field Type Size in Bytes Description

Magic String string 24 __CLANG_OFFLOAD_BUNDLE__

Number Of Bundle Entries integ
er

8 Number of bundle entries.

1st Bundle Entry Code Object Offset integ
er

8 Byte offset from beginning of
bundled code object to 1st code
object.

1st Bundle Entry Code Object Size integ
er

8 Byte size of 1st code object.

1st Bundle Entry ID Length integ
er

8 Character length of bundle entry ID
of 1st code object.

Clang Offload Bundler

917



Field Type Size in Bytes Description

1st Bundle Entry ID string 1st Bundle Entry
ID Length

Bundle entry ID of 1st code object.
This is not NUL terminated. See
Bundle Entry ID.

...

Nth Bundle Entry Code Object Offset integ
er

8

Nth Bundle Entry Code Object Size integ
er

8

Nth Bundle Entry ID Length integ
er

8

Nth Bundle Entry ID string 1st Bundle Entry
ID Length

1st Bundle Entry Code Object bytes 1st Bundle Entry
Code Object
Size

...

Nth Bundle Entry Code Object bytes Nth Bundle Entry
Code Object
Size

Bundle Entry ID
Each entry in a bundled code object (see Bundled Binary File Layout) has a bundle entry ID that indicates the kind of
the entry’s code object and the runtime that manages it.

Bundle entry ID syntax is defined by the following BNF syntax:

<bundle-entry-id> ::== <offload-kind> "-" <target-triple> [ "-" <target-id> ]

Where:

offload-kind

The runtime responsible for managing the bundled entry code object. See Bundled Code Object Offload Kind.

Bundled Code Object Offload Kind

Offload Kind Description

host Host code object. clang-offload-bundler always includes this entry as the first
bundled code object entry. For an embedded bundled code object this entry is not used by
the runtime and so is generally an empty code object.

hip Offload code object for the HIP language. Used for all HIP language offload code objects
when the clang-offload-bundler is used to bundle code objects as intermediate
steps of the tool chain. Also used for AMD GPU code objects before ABI version V4 when
the clang-offload-bundler is used to create a fat binary to be loaded by the HIP
runtime. The fat binary can be loaded directly from a file, or be embedded in the host code
object as a data section with the name .hip_fatbin.

hipv4 Offload code object for the HIP language. Used for AMD GPU code objects with at least
ABI version V4 when the clang-offload-bundler is used to create a fat binary to be
loaded by the HIP runtime. The fat binary can be loaded directly from a file, or be
embedded in the host code object as a data section with the name .hip_fatbin.

openmp Offload code object for the OpenMP language extension.

target-triple

The target triple of the code object.

Clang Offload Bundler

918



target-id

The canonical target ID of the code object. Present only if the target supports a target ID. See Target ID.

Each entry of a bundled code object must have a different bundle entry ID. There can be multiple entries for the
same processor provided they differ in target feature settings. If there is an entry with a target feature specified as
Any, then all entries must specify that target feature as Any for the same processor. There may be additional target
specific restrictions.

Target ID
A target ID is used to indicate the processor and optionally its configuration, expressed by a set of target features,
that affect ISA generation. It is target specific if a target ID is supported, or if the target triple alone is sufficient to
specify the ISA generation.

It is used with the -mcpu=<target-id> and --offload-arch=<target-id> Clang compilation options to
specify the kind of code to generate.

It is also used as part of the bundle entry ID to identify the code object. See Bundle Entry ID.

Target ID syntax is defined by the following BNF syntax:

<target-id> ::== <processor> ( ":" <target-feature> ( "+" | "-" ) )*

Where:

processor

Is a the target specific processor or any alternative processor name.

target-feature

Is a target feature name that is supported by the processor. Each target feature must appear at most once in a
target ID and can have one of three values:

Any

Specified by omitting the target feature from the target ID. A code object compiled with a target ID
specifying the default value of a target feature can be loaded and executed on a processor configured with
the target feature on or off.

On

Specified by +, indicating the target feature is enabled. A code object compiled with a target ID specifying a
target feature on can only be loaded on a processor configured with the target feature on.

Off

specified by -, indicating the target feature is disabled. A code object compiled with a target ID specifying a
target feature off can only be loaded on a processor configured with the target feature off.

There are two forms of target ID:

Non-Canonical Form

The non-canonical form is used as the input to user commands to allow the user greater convenience. It allows
both the primary and alternative processor name to be used and the target features may be specified in any
order.

Canonical Form

The canonical form is used for all generated output to allow greater convenience for tools that consume the
information. It is also used for internal passing of information between tools. Only the primary and not alternative
processor name is used and the target features are specified in alphabetic order. Command line tools convert
non-canonical form to canonical form.

Target Specific information
Target specific information is available for the following:

AMD GPU

AMD GPU supports target ID and target features. See User Guide for AMDGPU Backend which defines the
processors and target features supported.

Most other targets do not support target IDs.

Clang Offload Bundler

919

https://llvm.org/docs/AMDGPUUsage.html
https://llvm.org/docs/AMDGPUUsage.html#amdgpu-processors
https://llvm.org/docs/AMDGPUUsage.html#amdgpu-target-features


Archive Unbundling
Unbundling of heterogeneous device archive is done to create device specific archives. Heterogeneous Device
Archive is in a format compatible with GNU ar utility and contains a collection of bundled device binaries where each
bundle file will contain device binaries for a host and one or more targets. The output device specific archive is in a
format compatible with GNU ar utility and contains a collection of device binaries for a specific target.

Heterogeneous Device Archive, HDA = {F1.X, F2.X, ..., FN.Y}
where, Fi = Bundle{Host-DeviceBinary, T1-DeviceBinary, T2-DeviceBinary, ...,
                   Tm-DeviceBinary},
       Ti = {Target i, qualified using Bundle Entry ID},
       X/Y = \*.bc for AMDGPU and \*.cubin for NVPTX

Device Specific Archive, DSA(Tk) = {F1-Tk-DeviceBinary.X, F2-Tk-DeviceBinary.X, ...
                                    FN-Tk-DeviceBinary.Y}
where, Fi-Tj-DeviceBinary.X represents device binary of i-th bundled device
binary file for target Tj.

clang-offload-bundler extracts compatible device binaries for a given target from the bundled device binaries in a
heterogeneous device archive and creates a target specific device archive without bundling.

clang-offload-bundler determines whether a device binary is compatible with a target by comparing bundle ID’s. Two
bundle ID’s are considered compatible if:

• Their offload kind are the same

• Their target triple are the same

• Their GPUArch are the same

Clang Offload Wrapper
Introduction 920

Usage 920

Example 921

OpenMP Device Binary Embedding 921

Enum Types 921

Structure Types 921

Global Variables 922

Binary Descriptor for Device Images 922

Global Constructor and Destructor 923

Image Binary Embedding and Execution for OpenMP 923

Introduction
This tool is used in OpenMP offloading toolchain to embed device code objects (usually ELF) into a wrapper host
llvm IR (bitcode) file. The wrapper host IR is then assembled and linked with host code objects to generate the
executable binary. See Image Binary Embedding and Execution for OpenMP for more details.

Usage
This tool can be used as follows:

$ clang-offload-wrapper -help
OVERVIEW: A tool to create a wrapper bitcode for offload target binaries.
Takes offload target binaries as input and produces bitcode file containing
target binaries packaged as data and initialization code which registers
target binaries in offload runtime.
USAGE: clang-offload-wrapper [options] <input files>

Clang Offload Wrapper

920



OPTIONS:
Generic Options:
  --help                             - Display available options (--help-hidden for more)
  --help-list                        - Display list of available options (--help-list-hidden for more)
  --version                          - Display the version of this program
clang-offload-wrapper options:
  -o=<filename>                      - Output filename
  --target=<triple>                  - Target triple for the output module

Example

clang-offload-wrapper -target host-triple -o host-wrapper.bc gfx90a-binary.out

OpenMP Device Binary Embedding
Various structures and functions used in the wrapper host IR form the interface between the executable binary and
the OpenMP runtime.

Enum Types

Offloading Declare Target Flags Enum lists different flag for offloading entries.

Offloading Declare Target Flags Enum

Name
Valu

e Description

OMP_DECLARE_TARG
ET_LINK

0x01 Mark the entry as having a ‘link’ attribute (w.r.t. link clause)

OMP_DECLARE_TARG
ET_CTOR

0x02 Mark the entry as being a global constructor

OMP_DECLARE_TARG
ET_DTOR

0x04 Mark the entry as being a global destructor

Structure Types

__tgt_offload_entry structure, __tgt_device_image structure, and __tgt_bin_desc structure are the structures used in
the wrapper host IR.

__tgt_offload_entry structure

Type Identifier Description

void* addr Address of global symbol within device image (function or global)

char* name Name of the symbol

size_t size Size of the entry info (0 if it is a function)

int32_t flags Flags associated with the entry (see Offloading Declare Target Flags Enum)

int32_t reserved Reserved, to be used by the runtime library.

__tgt_device_image structure

Type Identifier Description

void* ImageStart Pointer to the target code start

Clang Offload Wrapper

921



Type Identifier Description

void* ImageEnd Pointer to the target code end

__tgt_offload_entry* EntriesBegin Begin of table with all target entries

__tgt_offload_entry* EntriesEnd End of table (non inclusive)

__tgt_bin_desc structure

Type Identifier Description

int32_t NumDeviceImages Number of device types supported

__tgt_device_image* DeviceImages Array of device images (1 per dev. type)

__tgt_offload_entry* HostEntriesBegin Begin of table with all host entries

__tgt_offload_entry* HostEntriesEnd End of table (non inclusive)

Global Variables

Global Variables lists various global variables, along with their type and their explicit ELF sections, which are used to
store device images and related symbols.

Global Variables

Variable Type ELF Section Description

__start_omp_offloading_
entries

__tgt_offload_
entry

.omp_offloading_e
ntries

Begin symbol for the offload entries table.

__stop_omp_offloading_
entries

__tgt_offload_
entry

.omp_offloading_e
ntries

End symbol for the offload entries table.

__dummy.omp_offloadin
g.entry

__tgt_offload_
entry

.omp_offloading_e
ntries

Dummy zero-sized object in the offload
entries section to force linker to define
begin/end symbols defined above.

.omp_offloading.device_i
mage

__tgt_device_i
mage

.omp_offloading_e
ntries

ELF device code object of the first image.

.omp_offloading.device_i
mage.N

__tgt_device_i
mage

.omp_offloading_e
ntries

ELF device code object of the (N+1)th
image.

.omp_offloading.device_i
mages

__tgt_device_i
mage

.omp_offloading_e
ntries

Array of images.

.omp_offloading.descript
or

__tgt_bin_desc .omp_offloading_e
ntries

Binary descriptor object (see details
below).

Binary Descriptor for Device Images

This object is passed to the offloading runtime at program startup and it describes all device images available in the
executable or shared library. It is defined as follows:

__attribute__((visibility("hidden")))
extern __tgt_offload_entry *__start_omp_offloading_entries;
__attribute__((visibility("hidden")))
extern __tgt_offload_entry *__stop_omp_offloading_entries;
static const char Image0[] = { <Bufs.front() contents> };
...
static const char ImageN[] = { <Bufs.back() contents> };
static const __tgt_device_image Images[] = {
  {

Clang Offload Wrapper

922



    Image0,                            /*ImageStart*/
    Image0 + sizeof(Image0),           /*ImageEnd*/
    __start_omp_offloading_entries,    /*EntriesBegin*/
    __stop_omp_offloading_entries      /*EntriesEnd*/
  },
  ...
  {
    ImageN,                            /*ImageStart*/
    ImageN + sizeof(ImageN),           /*ImageEnd*/
    __start_omp_offloading_entries,    /*EntriesBegin*/
    __stop_omp_offloading_entries      /*EntriesEnd*/
  }
};
static const __tgt_bin_desc BinDesc = {
  sizeof(Images) / sizeof(Images[0]),  /*NumDeviceImages*/
  Images,                              /*DeviceImages*/
  __start_omp_offloading_entries,      /*HostEntriesBegin*/
  __stop_omp_offloading_entries        /*HostEntriesEnd*/
};

Global Constructor and Destructor

Global constructor (.omp_offloading.descriptor_reg()) registers the library of images with the runtime by
calling __tgt_register_lib() function. The cunstructor is explicitly defined in .text.startup section.
Similarly, global destructor (.omp_offloading.descriptor_unreg()) calls __tgt_unregister_lib() for
the unregistration and is also defined in .text.startup section.

Image Binary Embedding and Execution for OpenMP
For each offloading target, device ELF code objects are generated by clang, opt, llc, and lld pipeline. These
code objects are passed to the clang-offload-wrapper.

• At compile time, the clang-offload-wrapper tool takes the following actions:

• It embeds the ELF code objects for the device into the host code (see OpenMP Device Binary
Embedding).

• At execution time:

• The global constructor gets run and it registers the device image.

Clang Offload Packager
Introduction 923

Binary Format 924

Usage 925

Example 925

Introduction
This tool bundles device files into a single image containing necessary metadata. We use a custom binary format for
bundling all the device images together. The image format is a small header wrapping around a string map. This tool
creates bundled binaries so that they can be embedded into the host to create a fat-binary.

Clang Offload Packager

923



Binary Format
The binary format is marked by the 0x10FF10AD magic bytes, followed by a version. Each created binary contains
its own magic bytes. This allows us to locate all the embedded offloading sections even after they may have been
merged by the linker, such as when using relocatable linking. Conceptually, this binary format is a serialization of a
string map and an image buffer. The binary header is described in the following table.

Offloading Binary Header

Type Identifier Description

uint8_t magic The magic bytes for the binary format (0x10FF10AD)

uint32_t version Version of this format (currently version 1)

uint64_t size Size of this binary in bytes

uint64_t entry offset Absolute offset of the offload entries in bytes

uint64_t entry size Size of the offload entries in bytes

Once identified through the magic bytes, we use the size field to take a slice of the binary blob containing the
information for a single offloading image. We can then use the offset field to find the actual offloading entries
containing the image and metadata. The offload entry contains information about the device image. It contains the
fields shown in the following table.

Offloading Entry Table

Type Identifier Description

uint16_t image kind The kind of the device image (e.g. bc, cubin)

uint16_t offload kind The producer of the image (e.g. openmp, cuda)

uint32_t flags Generic flags for the image

uint64_t string offset Absolute offset of the string metadata table

uint64_t num strings Number of string entries in the table

uint64_t image offset Absolute offset of the device image in bytes

uint64_t image size Size of the device image in bytes

This table contains the offsets of the string table and the device image itself along with some other integer
information. The image kind lets us easily identify the type of image stored here without needing to inspect the
binary. The offloading kind is used to determine which registration code or linking semantics are necessary for this
image. These are stored as enumerations with the following values for the offload kind and the image kind.

Image Kind

Name Value Description

IMG_None 0x00 No image information provided

IMG_Object 0x01 The image is a generic object file

IMG_Bitcode 0x02 The image is an LLVM-IR bitcode file

IMG_Cubin 0x03 The image is a CUDA object file

IMG_Fatbinary 0x04 The image is a CUDA fatbinary file

IMG_PTX 0x05 The iamge is a CUDA PTX file

Offload Kind

Clang Offload Packager

924



Name Value Description

OFK_None 0x00 No offloading information provided

OFK_OpenMP 0x01 The producer was OpenMP offloading

OFK_CUDA 0x02 The producer was CUDA

OFK_HIP 0x03 The producer was HIP

The flags are used to signify certain conditions, such as the presence of debugging information or whether or not
LTO was used. The string entry table is used to generically contain any arbitrary key-value pair. This is stored as an
array of the string entry format.

Offloading String Entry

Type Identifier Description

uint64_t key offset Absolute byte offset of the key in th string table

uint64_t value offset Absolute byte offset of the value in the string table

The string entries simply provide offsets to a key and value pair in the binary images string table. The string table is
simply a collection of null terminated strings with defined offsets in the image. The string entry allows us to create a
key-value pair from this string table. This is used for passing arbitrary arguments to the image, such as the triple and
architecture.

All of these structures are combined to form a single binary blob, the order does not matter because of the use of
absolute offsets. This makes it easier to extend in the future. As mentioned previously, multiple offloading images are
bundled together by simply concatenating them in this format. Because we have the magic bytes and size of each
image, we can extract them as-needed.

Usage
This tool can be used with the following arguments. Generally information is passed as a key-value pair to the
image= argument. The file, triple, and arch arguments are considered mandatory to make a valid image.

OVERVIEW: A utility for bundling several object files into a single binary.
The output binary can then be embedded into the host section table
to create a fatbinary containing offloading code.

USAGE: clang-offload-packager [options]

OPTIONS:

Generic Options:

  --help                      - Display available options (--help-hidden for more)
  --help-list                 - Display list of available options (--help-list-hidden for more)
  --version                   - Display the version of this program

clang-offload-packager options:

  --image=<<key>=<value>,...> - List of key and value arguments. Required
                                keywords are 'file' and 'triple'.
  -o=<file>                   - Write output to <file>.

Example
This tool simply takes many input files from the image option and creates a single output file with all the images
combined.

clang-offload-packager -o out.bin --image=file=input.o,triple=nvptx64,arch=sm_70

Clang Offload Packager

925



Design Documents

“Clang” CFE Internals Manual
Introduction 927

LLVM Support Library 928

The Clang “Basic” Library 928

The Diagnostics Subsystem 928

The Diagnostic*Kinds.td files 928

The Format String 929

Formatting a Diagnostic Argument 929

Producing the Diagnostic 932

Fix-It Hints 932

The DiagnosticConsumer Interface 933

Adding Translations to Clang 933

The SourceLocation and SourceManager classes 933

SourceRange and CharSourceRange 934

The Driver Library 934

Precompiled Headers 934

The Frontend Library 934

Compiler Invocation 934

Command Line Interface 934

Command Line Parsing 935

Command Line Generation 935

Adding new Command Line Option 935

Option Marshalling Infrastructure 937

Option Marshalling Annotations 938

The Lexer and Preprocessor Library 939

The Token class 940

Annotation Tokens 940

The Lexer class 941

The TokenLexer class 942

The MultipleIncludeOpt class 942

The Parser Library 942

The AST Library 942

Design philosophy 942

Immutability 942

Faithfulness 943

The Type class and its subclasses 943

Canonical Types 944

The QualType class 944

Declaration names 945

Declaration contexts 946

Redeclarations and Overloads 946

Lexical and Semantic Contexts 947

Design Documents

926



Transparent Declaration Contexts 947

Multiply-Defined Declaration Contexts 948

Error Handling 949

Recovery AST 949

Types and dependence 950

ContainsErrors bit 950

The ASTImporter 951

Abstract Syntax Graph 951

Structural Equivalency 951

Redeclaration Chains 952

Traversal during the Import 953

Error Handling 953

Lookup Problems 954

ExternalASTSource 955

Class Template Instantiations 955

Visibility of Declarations 956

Strategies to Handle Conflicting Names 956

The CFG class 956

Basic Blocks 956

Entry and Exit Blocks 956

Conditional Control-Flow 957

Constant Folding in the Clang AST 958

Implementation Approach 958

Extensions 959

The Sema Library 959

The CodeGen Library 959

How to change Clang 959

How to add an attribute 959

Attribute Basics 960

include/clang/Basic/Attr.td 960

Spellings 960

Subjects 961

Documentation 961

Arguments 962

Other Properties 962

Boilerplate 963

Semantic handling 963

How to add an expression or statement 963

Introduction
This document describes some of the more important APIs and internal design decisions made in the Clang C
front-end. The purpose of this document is to both capture some of this high level information and also describe
some of the design decisions behind it. This is meant for people interested in hacking on Clang, not for end-users.
The description below is categorized by libraries, and does not describe any of the clients of the libraries.

Design Documents

927



LLVM Support Library
The LLVM libSupport library provides many underlying libraries and data-structures, including command line
option processing, various containers and a system abstraction layer, which is used for file system access.

The Clang “Basic” Library
This library certainly needs a better name. The “basic” library contains a number of low-level utilities for tracking and
manipulating source buffers, locations within the source buffers, diagnostics, tokens, target abstraction, and
information about the subset of the language being compiled for.

Part of this infrastructure is specific to C (such as the TargetInfo class), other parts could be reused for other
non-C-based languages (SourceLocation, SourceManager, Diagnostics, FileManager). When and if there
is future demand we can figure out if it makes sense to introduce a new library, move the general classes
somewhere else, or introduce some other solution.

We describe the roles of these classes in order of their dependencies.

The Diagnostics Subsystem

The Clang Diagnostics subsystem is an important part of how the compiler communicates with the human.
Diagnostics are the warnings and errors produced when the code is incorrect or dubious. In Clang, each diagnostic
produced has (at the minimum) a unique ID, an English translation associated with it, a SourceLocation to “put the
caret”, and a severity (e.g., WARNING or ERROR). They can also optionally include a number of arguments to the
diagnostic (which fill in “%0“‘s in the string) as well as a number of source ranges that related to the diagnostic.

In this section, we’ll be giving examples produced by the Clang command line driver, but diagnostics can be
rendered in many different ways depending on how the DiagnosticConsumer interface is implemented. A
representative example of a diagnostic is:

t.c:38:15: error: invalid operands to binary expression ('int *' and '_Complex float')
P = (P-42) + Gamma*4;
    ~~~~~~ ^ ~~~~~~~

In this example, you can see the English translation, the severity (error), you can see the source location (the caret
(”^”) and file/line/column info), the source ranges “~~~~”, arguments to the diagnostic (”int*” and
“_Complex float”). You’ll have to believe me that there is a unique ID backing the diagnostic :).

Getting all of this to happen has several steps and involves many moving pieces, this section describes them and
talks about best practices when adding a new diagnostic.

The Diagnostic*Kinds.td files

Diagnostics are created by adding an entry to one of the clang/Basic/Diagnostic*Kinds.td files, depending
on what library will be using it. From this file, tblgen generates the unique ID of the diagnostic, the severity of the
diagnostic and the English translation + format string.

There is little sanity with the naming of the unique ID’s right now. Some start with err_, warn_, ext_ to encode the
severity into the name. Since the enum is referenced in the C++ code that produces the diagnostic, it is somewhat
useful for it to be reasonably short.

The severity of the diagnostic comes from the set {NOTE, REMARK, WARNING, EXTENSION, EXTWARN, ERROR}. The
ERROR severity is used for diagnostics indicating the program is never acceptable under any circumstances. When
an error is emitted, the AST for the input code may not be fully built. The EXTENSION and EXTWARN severities are
used for extensions to the language that Clang accepts. This means that Clang fully understands and can represent
them in the AST, but we produce diagnostics to tell the user their code is non-portable. The difference is that the
former are ignored by default, and the later warn by default. The WARNING severity is used for constructs that are
valid in the currently selected source language but that are dubious in some way. The REMARK severity provides
generic information about the compilation that is not necessarily related to any dubious code. The NOTE level is used
to staple more information onto previous diagnostics.

These severities are mapped into a smaller set (the Diagnostic::Level enum, {Ignored, Note, Remark,
Warning, Error, Fatal}) of output levels by the diagnostics subsystem based on various configuration options.
Clang internally supports a fully fine grained mapping mechanism that allows you to map almost any diagnostic to
the output level that you want. The only diagnostics that cannot be mapped are NOTEs, which always follow the

Design Documents

928

https://llvm.org/docs/ProgrammersManual.html


severity of the previously emitted diagnostic and ERRORs, which can only be mapped to Fatal (it is not possible to
turn an error into a warning, for example).

Diagnostic mappings are used in many ways. For example, if the user specifies -pedantic, EXTENSION maps to
Warning, if they specify -pedantic-errors, it turns into Error. This is used to implement options like
-Wunused_macros, -Wundef etc.

Mapping to Fatal should only be used for diagnostics that are considered so severe that error recovery won’t be
able to recover sensibly from them (thus spewing a ton of bogus errors). One example of this class of error are failure
to #include a file.

The Format String

The format string for the diagnostic is very simple, but it has some power. It takes the form of a string in English with
markers that indicate where and how arguments to the diagnostic are inserted and formatted. For example, here are
some simple format strings:

"binary integer literals are an extension"
"format string contains '\\0' within the string body"
"more '%%' conversions than data arguments"
"invalid operands to binary expression (%0 and %1)"
"overloaded '%0' must be a %select{unary|binary|unary or binary}2 operator"
     " (has %1 parameter%s1)"

These examples show some important points of format strings. You can use any plain ASCII character in the
diagnostic string except “%” without a problem, but these are C strings, so you have to use and be aware of all the C
escape sequences (as in the second example). If you want to produce a “%” in the output, use the “%%” escape
sequence, like the third diagnostic. Finally, Clang uses the “%...[digit]” sequences to specify where and how
arguments to the diagnostic are formatted.

Arguments to the diagnostic are numbered according to how they are specified by the C++ code that produces them,
and are referenced by %0 .. %9. If you have more than 10 arguments to your diagnostic, you are doing something
wrong :). Unlike printf, there is no requirement that arguments to the diagnostic end up in the output in the same
order as they are specified, you could have a format string with “%1 %0” that swaps them, for example. The text in
between the percent and digit are formatting instructions. If there are no instructions, the argument is just turned into
a string and substituted in.

Here are some “best practices” for writing the English format string:

• Keep the string short. It should ideally fit in the 80 column limit of the DiagnosticKinds.td file. This avoids
the diagnostic wrapping when printed, and forces you to think about the important point you are conveying with
the diagnostic.

• Take advantage of location information. The user will be able to see the line and location of the caret, so you
don’t need to tell them that the problem is with the 4th argument to the function: just point to it.

• Do not capitalize the diagnostic string, and do not end it with a period.

• If you need to quote something in the diagnostic string, use single quotes.

Diagnostics should never take random English strings as arguments: you shouldn’t use
“you have a problem with %0” and pass in things like “your argument” or “your return value” as
arguments. Doing this prevents translating the Clang diagnostics to other languages (because they’ll get random
English words in their otherwise localized diagnostic). The exceptions to this are C/C++ language keywords (e.g.,
auto, const, mutable, etc) and C/C++ operators (/=). Note that things like “pointer” and “reference” are not
keywords. On the other hand, you can include anything that comes from the user’s source code, including variable
names, types, labels, etc. The “select” format can be used to achieve this sort of thing in a localizable way, see
below.

Formatting a Diagnostic Argument

Arguments to diagnostics are fully typed internally, and come from a couple different classes: integers, types, names,
and random strings. Depending on the class of the argument, it can be optionally formatted in different ways. This
gives the DiagnosticConsumer information about what the argument means without requiring it to use a specific
presentation (consider this MVC for Clang :).

Here are the different diagnostic argument formats currently supported by Clang:

Design Documents

929



“s” format

Example:

"requires %1 parameter%s1"

Class:

Integers

Description:

This is a simple formatter for integers that is useful when producing English diagnostics. When the integer is 1, it
prints as nothing. When the integer is not 1, it prints as “s”. This allows some simple grammatical forms to be to
be handled correctly, and eliminates the need to use gross things like "requires %1 parameter(s)".

“select” format

Example:

"must be a %select{unary|binary|unary or binary}2 operator"

Class:

Integers

Description:

This format specifier is used to merge multiple related diagnostics together into one common one, without
requiring the difference to be specified as an English string argument. Instead of specifying the string, the
diagnostic gets an integer argument and the format string selects the numbered option. In this case, the “%2”
value must be an integer in the range [0..2]. If it is 0, it prints “unary”, if it is 1 it prints “binary” if it is 2, it prints
“unary or binary”. This allows other language translations to substitute reasonable words (or entire phrases)
based on the semantics of the diagnostic instead of having to do things textually. The selected string does
undergo formatting.

“plural” format

Example:

"you have %1 %plural{1:mouse|:mice}1 connected to your computer"

Class:

Integers

Description:

This is a formatter for complex plural forms. It is designed to handle even the requirements of languages with
very complex plural forms, as many Baltic languages have. The argument consists of a series of
expression/form pairs, separated by “:”, where the first form whose expression evaluates to true is the result of
the modifier.

An expression can be empty, in which case it is always true. See the example at the top. Otherwise, it is a series
of one or more numeric conditions, separated by “,”. If any condition matches, the expression matches. Each
numeric condition can take one of three forms.

• number: A simple decimal number matches if the argument is the same as the number. Example:
"%plural{1:mouse|:mice}4"

• range: A range in square brackets matches if the argument is within the range. Then range is inclusive on
both ends. Example: "%plural{0:none|1:one|[2,5]:some|:many}2"

• modulo: A modulo operator is followed by a number, and equals sign and either a number or a range. The
tests are the same as for plain numbers and ranges, but the argument is taken modulo the number first.
Example: "%plural{%100=0:even hundred|%100=[1,50]:lower half|:everything else}1"

The parser is very unforgiving. A syntax error, even whitespace, will abort, as will a failure to match the
argument against any expression.

“ordinal” format

Example:

"ambiguity in %ordinal0 argument"

Class:

Integers

Description:

Design Documents

930



This is a formatter which represents the argument number as an ordinal: the value 1 becomes 1st, 3 becomes
3rd, and so on. Values less than 1 are not supported. This formatter is currently hard-coded to use English
ordinals.

“objcclass” format

Example:

"method %objcclass0 not found"

Class:

DeclarationName

Description:

This is a simple formatter that indicates the DeclarationName corresponds to an Objective-C class method
selector. As such, it prints the selector with a leading “+”.

“objcinstance” format

Example:

"method %objcinstance0 not found"

Class:

DeclarationName

Description:

This is a simple formatter that indicates the DeclarationName corresponds to an Objective-C instance method
selector. As such, it prints the selector with a leading “-“.

“q” format

Example:

"candidate found by name lookup is %q0"

Class:

NamedDecl *

Description:

This formatter indicates that the fully-qualified name of the declaration should be printed, e.g., “std::vector”
rather than “vector”.

“diff” format

Example:

"no known conversion %diff{from $ to $|from argument type to parameter type}1,2"

Class:

QualType

Description:

This formatter takes two QualTypes and attempts to print a template difference between the two. If tree printing
is off, the text inside the braces before the pipe is printed, with the formatted text replacing the $. If tree printing
is on, the text after the pipe is printed and a type tree is printed after the diagnostic message.

It is really easy to add format specifiers to the Clang diagnostics system, but they should be discussed before they
are added. If you are creating a lot of repetitive diagnostics and/or have an idea for a useful formatter, please bring it
up on the cfe-dev mailing list.

“sub” format

Example:

Given the following record definition of type TextSubstitution:

def select_ovl_candidate : TextSubstitution<
  "%select{function|constructor}0%select{| template| %2}1">;

which can be used as

def note_ovl_candidate : Note<
  "candidate %sub{select_ovl_candidate}3,2,1 not viable">;

Design Documents

931



and will act as if it was written
"candidate %select{function|constructor}3%select{| template| %1}2 not viable".

Description:

This format specifier is used to avoid repeating strings verbatim in multiple diagnostics. The argument to %sub
must name a TextSubstitution tblgen record. The substitution must specify all arguments used by the
substitution, and the modifier indexes in the substitution are re-numbered accordingly. The substituted text must
itself be a valid format string before substitution.

Producing the Diagnostic

Now that you’ve created the diagnostic in the Diagnostic*Kinds.td file, you need to write the code that detects
the condition in question and emits the new diagnostic. Various components of Clang (e.g., the preprocessor, Sema,
etc.) provide a helper function named “Diag”. It creates a diagnostic and accepts the arguments, ranges, and other
information that goes along with it.

For example, the binary expression error comes from code like this:

if (various things that are bad)
  Diag(Loc, diag::err_typecheck_invalid_operands)
    << lex->getType() << rex->getType()
    << lex->getSourceRange() << rex->getSourceRange();

This shows that use of the Diag method: it takes a location (a SourceLocation object) and a diagnostic enum value
(which matches the name from Diagnostic*Kinds.td). If the diagnostic takes arguments, they are specified with
the << operator: the first argument becomes %0, the second becomes %1, etc. The diagnostic interface allows you to
specify arguments of many different types, including int and unsigned for integer arguments, const char* and
std::string for string arguments, DeclarationName and const IdentifierInfo * for names, QualType
for types, etc. SourceRanges are also specified with the << operator, but do not have a specific ordering
requirement.

As you can see, adding and producing a diagnostic is pretty straightforward. The hard part is deciding exactly what
you need to say to help the user, picking a suitable wording, and providing the information needed to format it
correctly. The good news is that the call site that issues a diagnostic should be completely independent of how the
diagnostic is formatted and in what language it is rendered.

Fix-It Hints

In some cases, the front end emits diagnostics when it is clear that some small change to the source code would fix
the problem. For example, a missing semicolon at the end of a statement or a use of deprecated syntax that is easily
rewritten into a more modern form. Clang tries very hard to emit the diagnostic and recover gracefully in these and
other cases.

However, for these cases where the fix is obvious, the diagnostic can be annotated with a hint (referred to as a “fix-it
hint”) that describes how to change the code referenced by the diagnostic to fix the problem. For example, it might
add the missing semicolon at the end of the statement or rewrite the use of a deprecated construct into something
more palatable. Here is one such example from the C++ front end, where we warn about the right-shift operator
changing meaning from C++98 to C++11:

test.cpp:3:7: warning: use of right-shift operator ('>>') in template argument
                       will require parentheses in C++11
A<100 >> 2> *a;
      ^
  (       )

Here, the fix-it hint is suggesting that parentheses be added, and showing exactly where those parentheses would be
inserted into the source code. The fix-it hints themselves describe what changes to make to the source code in an
abstract manner, which the text diagnostic printer renders as a line of “insertions” below the caret line. Other
diagnostic clients might choose to render the code differently (e.g., as markup inline) or even give the user the ability
to automatically fix the problem.

Fix-it hints on errors and warnings need to obey these rules:

• Since they are automatically applied if -Xclang -fixit is passed to the driver, they should only be used
when it’s very likely they match the user’s intent.

Design Documents

932



• Clang must recover from errors as if the fix-it had been applied.

• Fix-it hints on a warning must not change the meaning of the code. However, a hint may clarify the meaning as
intentional, for example by adding parentheses when the precedence of operators isn’t obvious.

If a fix-it can’t obey these rules, put the fix-it on a note. Fix-its on notes are not applied automatically.

All fix-it hints are described by the FixItHint class, instances of which should be attached to the diagnostic using
the << operator in the same way that highlighted source ranges and arguments are passed to the diagnostic. Fix-it
hints can be created with one of three constructors:

• FixItHint::CreateInsertion(Loc, Code)

Specifies that the given Code (a string) should be inserted before the source location Loc.

• FixItHint::CreateRemoval(Range)

Specifies that the code in the given source Range should be removed.

• FixItHint::CreateReplacement(Range, Code)

Specifies that the code in the given source Range should be removed, and replaced with the given Code
string.

The DiagnosticConsumer Interface

Once code generates a diagnostic with all of the arguments and the rest of the relevant information, Clang needs to
know what to do with it. As previously mentioned, the diagnostic machinery goes through some filtering to map a
severity onto a diagnostic level, then (assuming the diagnostic is not mapped to “Ignore”) it invokes an object that
implements the DiagnosticConsumer interface with the information.

It is possible to implement this interface in many different ways. For example, the normal Clang
DiagnosticConsumer (named TextDiagnosticPrinter) turns the arguments into strings (according to the
various formatting rules), prints out the file/line/column information and the string, then prints out the line of code, the
source ranges, and the caret. However, this behavior isn’t required.

Another implementation of the DiagnosticConsumer interface is the TextDiagnosticBuffer class, which is
used when Clang is in -verify mode. Instead of formatting and printing out the diagnostics, this implementation
just captures and remembers the diagnostics as they fly by. Then -verify compares the list of produced
diagnostics to the list of expected ones. If they disagree, it prints out its own output. Full documentation for the
-verify mode can be found in the Clang API documentation for VerifyDiagnosticConsumer.

There are many other possible implementations of this interface, and this is why we prefer diagnostics to pass down
rich structured information in arguments. For example, an HTML output might want declaration names be linkified to
where they come from in the source. Another example is that a GUI might let you click on typedefs to expand them.
This application would want to pass significantly more information about types through to the GUI than a simple flat
string. The interface allows this to happen.

Adding Translations to Clang

Not possible yet! Diagnostic strings should be written in UTF-8, the client can translate to the relevant code page if
needed. Each translation completely replaces the format string for the diagnostic.

The SourceLocation and SourceManager classes

Strangely enough, the SourceLocation class represents a location within the source code of the program.
Important design points include:

1. sizeof(SourceLocation) must be extremely small, as these are embedded into many AST nodes and are
passed around often. Currently it is 32 bits.

2. SourceLocation must be a simple value object that can be efficiently copied.

3. We should be able to represent a source location for any byte of any input file. This includes in the middle of
tokens, in whitespace, in trigraphs, etc.

4. A SourceLocation must encode the current #include stack that was active when the location was
processed. For example, if the location corresponds to a token, it should contain the set of #includes active
when the token was lexed. This allows us to print the #include stack for a diagnostic.

Design Documents

933

file:///doxygen/classclang_1_1VerifyDiagnosticConsumer.html#details


5. SourceLocation must be able to describe macro expansions, capturing both the ultimate instantiation point
and the source of the original character data.

In practice, the SourceLocation works together with the SourceManager class to encode two pieces of
information about a location: its spelling location and its expansion location. For most tokens, these will be the same.
However, for a macro expansion (or tokens that came from a _Pragma directive) these will describe the location of
the characters corresponding to the token and the location where the token was used (i.e., the macro expansion
point or the location of the _Pragma itself).

The Clang front-end inherently depends on the location of a token being tracked correctly. If it is ever incorrect, the
front-end may get confused and die. The reason for this is that the notion of the “spelling” of a Token in Clang
depends on being able to find the original input characters for the token. This concept maps directly to the “spelling
location” for the token.

SourceRange and CharSourceRange

Clang represents most source ranges by [first, last], where “first” and “last” each point to the beginning of their
respective tokens. For example consider the SourceRange of the following statement:

x = foo + bar;
^first    ^last

To map from this representation to a character-based representation, the “last” location needs to be adjusted to point
to (or past) the end of that token with either Lexer::MeasureTokenLength() or
Lexer::getLocForEndOfToken(). For the rare cases where character-level source ranges information is
needed we use the CharSourceRange class.

The Driver Library
The clang Driver and library are documented here.

Precompiled Headers
Clang supports precompiled headers (PCH), which uses a serialized representation of Clang’s internal data
structures, encoded with the LLVM bitstream format.

The Frontend Library
The Frontend library contains functionality useful for building tools on top of the Clang libraries, for example several
methods for outputting diagnostics.

Compiler Invocation

One of the classes provided by the Frontend library is CompilerInvocation, which holds information that
describe current invocation of the Clang -cc1 frontend. The information typically comes from the command line
constructed by the Clang driver or from clients performing custom initialization. The data structure is split into logical
units used by different parts of the compiler, for example PreprocessorOptions, LanguageOptions or
CodeGenOptions.

Command Line Interface

The command line interface of the Clang -cc1 frontend is defined alongside the driver options in
clang/Driver/Options.td. The information making up an option definition includes its prefix and name (for
example -std=), form and position of the option value, help text, aliases and more. Each option may belong to a
certain group and can be marked with zero or more flags. Options accepted by the -cc1 frontend are marked with
the CC1Option flag.

Design Documents

934

https://llvm.org/docs/BitCodeFormat.html


Command Line Parsing

Option definitions are processed by the -gen-opt-parser-defs tablegen backend during early stages of the
build. Options are then used for querying an instance llvm::opt::ArgList, a wrapper around the command line
arguments. This is done in the Clang driver to construct individual jobs based on the driver arguments and also in the
CompilerInvocation::CreateFromArgs function that parses the -cc1 frontend arguments.

Command Line Generation

Any valid CompilerInvocation created from a -cc1 command line can be also serialized back into semantically
equivalent command line in a deterministic manner. This enables features such as implicitly discovered, explicitly
built modules.

Adding new Command Line Option

When adding a new command line option, the first place of interest is the header file declaring the corresponding
options class (e.g. CodeGenOptions.h for command line option that affects the code generation). Create new
member variable for the option value:

  class CodeGenOptions : public CodeGenOptionsBase {

+   /// List of dynamic shared object files to be loaded as pass plugins.
+   std::vector<std::string> PassPlugins;

  }

Next, declare the command line interface of the option in the tablegen file
clang/include/clang/Driver/Options.td. This is done by instantiating the Option class (defined in
llvm/include/llvm/Option/OptParser.td). The instance is typically created through one of the helper
classes that encode the acceptable ways to specify the option value on the command line:

• Flag - the option does not accept any value,

• Joined - the value must immediately follow the option name within the same argument,

• Separate - the value must follow the option name in the next command line argument,

• JoinedOrSeparate - the value can be specified either as Joined or Separate,

• CommaJoined - the values are comma-separated and must immediately follow the option name within the
same argument (see Wl, for an example).

The helper classes take a list of acceptable prefixes of the option (e.g. "-", "--" or "/") and the option name:

  // Options.td

+ def fpass_plugin_EQ : Joined<["-"], "fpass-plugin=">;

Then, specify additional attributes via mix-ins:

• HelpText holds the text that will be printed besides the option name when the user requests help (e.g. via
clang --help).

• Group specifies the “category” of options this option belongs to. This is used by various tools to filter certain
options of interest.

• Flags may contain a number of “tags” associated with the option. This enables more granular filtering than the
Group attribute.

• Alias denotes that the option is an alias of another option. This may be combined with AliasArgs that holds
the implied value.

  // Options.td

  def fpass_plugin_EQ : Joined<["-"], "fpass-plugin=">,
+   Group<f_Group>, Flags<[CC1Option]>,
+   HelpText<"Load pass plugin from a dynamic shared object file.">;

Design Documents

935



New options are recognized by the Clang driver unless marked with the NoDriverOption flag. On the other hand,
options intended for the -cc1 frontend must be explicitly marked with the CC1Option flag.

Next, parse (or manufacture) the command line arguments in the Clang driver and use them to construct the -cc1
job:

  void Clang::ConstructJob(const ArgList &Args /*...*/) const {
    ArgStringList CmdArgs;
    // ...

+   for (const Arg *A : Args.filtered(OPT_fpass_plugin_EQ)) {
+     CmdArgs.push_back(Args.MakeArgString(Twine("-fpass-plugin=") + A->getValue()));
+     A->claim();
+   }
  }

The last step is implementing the -cc1 command line argument parsing/generation that initializes/serializes the
option class (in our case CodeGenOptions) stored within CompilerInvocation. This can be done automatically
by using the marshalling annotations on the option definition:

  // Options.td

  def fpass_plugin_EQ : Joined<["-"], "fpass-plugin=">,
    Group<f_Group>, Flags<[CC1Option]>,
    HelpText<"Load pass plugin from a dynamic shared object file.">,
+   MarshallingInfoStringVector<CodeGenOpts<"PassPlugins">>;

Inner workings of the system are introduced in the marshalling infrastructure section and the available annotations
are listed here.

In case the marshalling infrastructure does not support the desired semantics, consider simplifying it to fit the existing
model. This makes the command line more uniform and reduces the amount of custom, manually written code.
Remember that the -cc1 command line interface is intended only for Clang developers, meaning it does not need to
mirror the driver interface, maintain backward compatibility or be compatible with GCC.

If the option semantics cannot be encoded via marshalling annotations, you can resort to parsing/serializing the
command line arguments manually:

  // CompilerInvocation.cpp

  static bool ParseCodeGenArgs(CodeGenOptions &Opts, ArgList &Args /*...*/) {
    // ...

+   Opts.PassPlugins = Args.getAllArgValues(OPT_fpass_plugin_EQ);
  }

  static void GenerateCodeGenArgs(const CodeGenOptions &Opts,
                                  SmallVectorImpl<const char *> &Args,
                                  CompilerInvocation::StringAllocator SA /*...*/) {
    // ...

+   for (const std::string &PassPlugin : Opts.PassPlugins)
+     GenerateArg(Args, OPT_fpass_plugin_EQ, PassPlugin, SA);
  }

Finally, you can specify the argument on the command line: clang -fpass-plugin=a -fpass-plugin=b and
use the new member variable as desired.

  void EmitAssemblyHelper::EmitAssemblyWithNewPassManager(/*...*/) {
    // ...
+   for (auto &PluginFN : CodeGenOpts.PassPlugins)
+     if (auto PassPlugin = PassPlugin::Load(PluginFN))
+        PassPlugin->registerPassBuilderCallbacks(PB);
  }

Design Documents

936



Option Marshalling Infrastructure

The option marshalling infrastructure automates the parsing of the Clang -cc1 frontend command line arguments
into CompilerInvocation and their generation from CompilerInvocation. The system replaces lots of
repetitive C++ code with simple, declarative tablegen annotations and it’s being used for the majority of the -cc1
command line interface. This section provides an overview of the system.

Note: The marshalling infrastructure is not intended for driver-only options. Only options of the -cc1 frontend need
to be marshalled to/from CompilerInvocation instance.

To read and modify contents of CompilerInvocation, the marshalling system uses key paths, which are declared
in two steps. First, a tablegen definition for the CompilerInvocation member is created by inheriting from
KeyPathAndMacro:

// Options.td

class LangOpts<string field> : KeyPathAndMacro<"LangOpts->", field, "LANG_"> {}
//                   CompilerInvocation member  ^^^^^^^^^^
//                                    OPTION_WITH_MARSHALLING prefix ^^^^^

The first argument to the parent class is the beginning of the key path that references the CompilerInvocation
member. This argument ends with -> if the member is a pointer type or with . if it’s a value type. The child class
takes a single parameter field that is forwarded as the second argument to the base class. The child class can
then be used like so: LangOpts<"IgnoreExceptions">, constructing a key path to the field
LangOpts->IgnoreExceptions. The third argument passed to the parent class is a string that the tablegen
backend uses as a prefix to the OPTION_WITH_MARSHALLING macro. Using the key path as a mix-in on an Option
instance instructs the backend to generate the following code:

// Options.inc

#ifdef LANG_OPTION_WITH_MARSHALLING
LANG_OPTION_WITH_MARSHALLING([...], LangOpts->IgnoreExceptions, [...])
#endif // LANG_OPTION_WITH_MARSHALLING

Such definition can be used used in the function for parsing and generating command line:

// clang/lib/Frontend/CompilerInvoation.cpp

bool CompilerInvocation::ParseLangArgs(LangOptions *LangOpts, ArgList &Args,
                                       DiagnosticsEngine &Diags) {
  bool Success = true;

#define LANG_OPTION_WITH_MARSHALLING(                                          \
    PREFIX_TYPE, NAME, ID, KIND, GROUP, ALIAS, ALIASARGS, FLAGS, PARAM,        \
    HELPTEXT, METAVAR, VALUES, SPELLING, SHOULD_PARSE, ALWAYS_EMIT, KEYPATH,   \
    DEFAULT_VALUE, IMPLIED_CHECK, IMPLIED_VALUE, NORMALIZER, DENORMALIZER,     \
    MERGER, EXTRACTOR, TABLE_INDEX)                                            \
  PARSE_OPTION_WITH_MARSHALLING(Args, Diags, Success, ID, FLAGS, PARAM,        \
                                SHOULD_PARSE, KEYPATH, DEFAULT_VALUE,          \
                                IMPLIED_CHECK, IMPLIED_VALUE, NORMALIZER,      \
                                MERGER, TABLE_INDEX)
#include "clang/Driver/Options.inc"
#undef LANG_OPTION_WITH_MARSHALLING

  // ...

  return Success;
}

void CompilerInvocation::GenerateLangArgs(LangOptions *LangOpts,
                                          SmallVectorImpl<const char *> &Args,
                                          StringAllocator SA) {
#define LANG_OPTION_WITH_MARSHALLING(                                          \
    PREFIX_TYPE, NAME, ID, KIND, GROUP, ALIAS, ALIASARGS, FLAGS, PARAM,        \

Design Documents

937



    HELPTEXT, METAVAR, VALUES, SPELLING, SHOULD_PARSE, ALWAYS_EMIT, KEYPATH,   \
    DEFAULT_VALUE, IMPLIED_CHECK, IMPLIED_VALUE, NORMALIZER, DENORMALIZER,     \
    MERGER, EXTRACTOR, TABLE_INDEX)                                            \
  GENERATE_OPTION_WITH_MARSHALLING(                                            \
      Args, SA, KIND, FLAGS, SPELLING, ALWAYS_EMIT, KEYPATH, DEFAULT_VALUE,    \
      IMPLIED_CHECK, IMPLIED_VALUE, DENORMALIZER, EXTRACTOR, TABLE_INDEX)
#include "clang/Driver/Options.inc"
#undef LANG_OPTION_WITH_MARSHALLING

  // ...
}

The PARSE_OPTION_WITH_MARSHALLING and GENERATE_OPTION_WITH_MARSHALLING macros are defined in
CompilerInvocation.cpp and they implement the generic algorithm for parsing and generating command line
arguments.

Option Marshalling Annotations

How does the tablegen backend know what to put in place of [...] in the generated Options.inc? This is
specified by the Marshalling utilities described below. All of them take a key path argument and possibly other
information required for parsing or generating the command line argument.

Note: The marshalling infrastructure is not intended for driver-only options. Only options of the -cc1 frontend need
to be marshalled to/from CompilerInvocation instance.

Positive Flag

The key path defaults to false and is set to true when the flag is present on command line.

def fignore_exceptions : Flag<["-"], "fignore-exceptions">, Flags<[CC1Option]>,
  MarshallingInfoFlag<LangOpts<"IgnoreExceptions">>;

Negative Flag

The key path defaults to true and is set to false when the flag is present on command line.

def fno_verbose_asm : Flag<["-"], "fno-verbose-asm">, Flags<[CC1Option]>,
  MarshallingInfoNegativeFlag<CodeGenOpts<"AsmVerbose">>;

Negative and Positive Flag

The key path defaults to the specified value (false, true or some boolean value that’s statically unknown in the
tablegen file). Then, the key path is set to the value associated with the flag that appears last on command line.

defm legacy_pass_manager : BoolOption<"f", "legacy-pass-manager",
  CodeGenOpts<"LegacyPassManager">, DefaultFalse,
  PosFlag<SetTrue, [], "Use the legacy pass manager in LLVM">,
  NegFlag<SetFalse, [], "Use the new pass manager in LLVM">,
  BothFlags<[CC1Option]>>;

With most such pair of flags, the -cc1 frontend accepts only the flag that changes the default key path value. The
Clang driver is responsible for accepting both and either forwarding the changing flag or discarding the flag that
would just set the key path to its default.

The first argument to BoolOption is a prefix that is used to construct the full names of both flags. The positive flag
would then be named flegacy-pass-manager and the negative fno-legacy-pass-manager. BoolOption
also implies the - prefix for both flags. It’s also possible to use BoolFOption that implies the "f" prefix and
Group<f_Group>. The PosFlag and NegFlag classes hold the associated boolean value, an array of elements
passed to the Flag class and the help text. The optional BothFlags class holds an array of Flag elements that are
common for both the positive and negative flag and their common help text suffix.

String

The key path defaults to the specified string, or an empty one, if omitted. When the option appears on the command
line, the argument value is simply copied.

Design Documents

938



def isysroot : JoinedOrSeparate<["-"], "isysroot">, Flags<[CC1Option]>,
  MarshallingInfoString<HeaderSearchOpts<"Sysroot">, [{"/"}]>;

List of Strings

The key path defaults to an empty std::vector<std::string>. Values specified with each appearance of the
option on the command line are appended to the vector.

def frewrite_map_file : Separate<["-"], "frewrite-map-file">, Flags<[CC1Option]>,
  MarshallingInfoStringVector<CodeGenOpts<"RewriteMapFiles">>;

Integer

The key path defaults to the specified integer value, or 0 if omitted. When the option appears on the command line,
its value gets parsed by llvm::APInt and the result is assigned to the key path on success.

def mstack_probe_size : Joined<["-"], "mstack-probe-size=">, Flags<[CC1Option]>,
  MarshallingInfoInt<CodeGenOpts<"StackProbeSize">, "4096">;

Enumeration

The key path defaults to the value specified in MarshallingInfoEnum prefixed by the contents of
NormalizedValuesScope and ::. This ensures correct reference to an enum case is formed even if the enum
resides in different namespace or is an enum class. If the value present on command line does not match any of the
comma-separated values from Values, an error diagnostics is issued. Otherwise, the corresponding element from
NormalizedValues at the same index is assigned to the key path (also correctly scoped). The number of
comma-separated string values and elements of the array within NormalizedValues must match.

def mthread_model : Separate<["-"], "mthread-model">, Flags<[CC1Option]>,
  Values<"posix,single">, NormalizedValues<["POSIX", "Single"]>,
  NormalizedValuesScope<"LangOptions::ThreadModelKind">,
  MarshallingInfoEnum<LangOpts<"ThreadModel">, "POSIX">;

It is also possible to define relationships between options.

Implication

The key path defaults to the default value from the primary Marshalling annotation. Then, if any of the elements of
ImpliedByAnyOf evaluate to true, the key path value is changed to the specified value or true if missing. Finally,
the command line is parsed according to the primary annotation.

def fms_extensions : Flag<["-"], "fms-extensions">, Flags<[CC1Option]>,
  MarshallingInfoFlag<LangOpts<"MicrosoftExt">>,
  ImpliedByAnyOf<[fms_compatibility.KeyPath], "true">;

Condition

The option is parsed only if the expression in ShouldParseIf evaluates to true.

def fopenmp_enable_irbuilder : Flag<["-"], "fopenmp-enable-irbuilder">, Flags<[CC1Option]>,
  MarshallingInfoFlag<LangOpts<"OpenMPIRBuilder">>,
  ShouldParseIf<fopenmp.KeyPath>;

The Lexer and Preprocessor Library
The Lexer library contains several tightly-connected classes that are involved with the nasty process of lexing and
preprocessing C source code. The main interface to this library for outside clients is the large Preprocessor class.
It contains the various pieces of state that are required to coherently read tokens out of a translation unit.

The core interface to the Preprocessor object (once it is set up) is the Preprocessor::Lex method, which
returns the next Token from the preprocessor stream. There are two types of token providers that the preprocessor is
capable of reading from: a buffer lexer (provided by the Lexer class) and a buffered token stream (provided by the
TokenLexer class).

Design Documents

939



The Token class

The Token class is used to represent a single lexed token. Tokens are intended to be used by the lexer/preprocess
and parser libraries, but are not intended to live beyond them (for example, they should not live in the ASTs).

Tokens most often live on the stack (or some other location that is efficient to access) as the parser is running, but
occasionally do get buffered up. For example, macro definitions are stored as a series of tokens, and the C++
front-end periodically needs to buffer tokens up for tentative parsing and various pieces of look-ahead. As such, the
size of a Token matters. On a 32-bit system, sizeof(Token) is currently 16 bytes.

Tokens occur in two forms: annotation tokens and normal tokens. Normal tokens are those returned by the lexer,
annotation tokens represent semantic information and are produced by the parser, replacing normal tokens in the
token stream. Normal tokens contain the following information:

• A SourceLocation — This indicates the location of the start of the token.

• A length — This stores the length of the token as stored in the SourceBuffer. For tokens that include them,
this length includes trigraphs and escaped newlines which are ignored by later phases of the compiler. By
pointing into the original source buffer, it is always possible to get the original spelling of a token completely
accurately.

• IdentifierInfo — If a token takes the form of an identifier, and if identifier lookup was enabled when the token
was lexed (e.g., the lexer was not reading in “raw” mode) this contains a pointer to the unique hash value for the
identifier. Because the lookup happens before keyword identification, this field is set even for language
keywords like “for”.

• TokenKind — This indicates the kind of token as classified by the lexer. This includes things like
tok::starequal (for the “*=” operator), tok::ampamp for the “&&” token, and keyword values (e.g.,
tok::kw_for) for identifiers that correspond to keywords. Note that some tokens can be spelled multiple
ways. For example, C++ supports “operator keywords”, where things like “and” are treated exactly like the “&&”
operator. In these cases, the kind value is set to tok::ampamp, which is good for the parser, which doesn’t
have to consider both forms. For something that cares about which form is used (e.g., the preprocessor
“stringize” operator) the spelling indicates the original form.

• Flags — There are currently four flags tracked by the lexer/preprocessor system on a per-token basis:

1. StartOfLine — This was the first token that occurred on its input source line.

2. LeadingSpace — There was a space character either immediately before the token or transitively before
the token as it was expanded through a macro. The definition of this flag is very closely defined by the
stringizing requirements of the preprocessor.

3. DisableExpand — This flag is used internally to the preprocessor to represent identifier tokens which
have macro expansion disabled. This prevents them from being considered as candidates for macro
expansion ever in the future.

4. NeedsCleaning — This flag is set if the original spelling for the token includes a trigraph or escaped
newline. Since this is uncommon, many pieces of code can fast-path on tokens that did not need cleaning.

One interesting (and somewhat unusual) aspect of normal tokens is that they don’t contain any semantic information
about the lexed value. For example, if the token was a pp-number token, we do not represent the value of the
number that was lexed (this is left for later pieces of code to decide). Additionally, the lexer library has no notion of
typedef names vs variable names: both are returned as identifiers, and the parser is left to decide whether a specific
identifier is a typedef or a variable (tracking this requires scope information among other things). The parser can do
this translation by replacing tokens returned by the preprocessor with “Annotation Tokens”.

Annotation Tokens

Annotation tokens are tokens that are synthesized by the parser and injected into the preprocessor’s token stream
(replacing existing tokens) to record semantic information found by the parser. For example, if “foo” is found to be a
typedef, the “foo” tok::identifier token is replaced with an tok::annot_typename. This is useful for a
couple of reasons: 1) this makes it easy to handle qualified type names (e.g., “foo::bar::baz<42>::t”) in C++
as a single “token” in the parser. 2) if the parser backtracks, the reparse does not need to redo semantic analysis to
determine whether a token sequence is a variable, type, template, etc.

Annotation tokens are created by the parser and reinjected into the parser’s token stream (when backtracking is
enabled). Because they can only exist in tokens that the preprocessor-proper is done with, it doesn’t need to keep

Design Documents

940



around flags like “start of line” that the preprocessor uses to do its job. Additionally, an annotation token may “cover”
a sequence of preprocessor tokens (e.g., “a::b::c” is five preprocessor tokens). As such, the valid fields of an
annotation token are different than the fields for a normal token (but they are multiplexed into the normal Token
fields):

• SourceLocation “Location” — The SourceLocation for the annotation token indicates the first token
replaced by the annotation token. In the example above, it would be the location of the “a” identifier.

• SourceLocation “AnnotationEndLoc” — This holds the location of the last token replaced with the annotation
token. In the example above, it would be the location of the “c” identifier.

• void* “AnnotationValue” — This contains an opaque object that the parser gets from Sema. The parser
merely preserves the information for Sema to later interpret based on the annotation token kind.

• TokenKind “Kind” — This indicates the kind of Annotation token this is. See below for the different valid kinds.

Annotation tokens currently come in three kinds:

1. tok::annot_typename: This annotation token represents a resolved typename token that is potentially
qualified. The AnnotationValue field contains the QualType returned by Sema::getTypeName(), possibly
with source location information attached.

2. tok::annot_cxxscope: This annotation token represents a C++ scope specifier, such as “A::B::”. This
corresponds to the grammar productions “::” and “:: [opt] nested-name-specifier”. The AnnotationValue
pointer is a NestedNameSpecifier * returned by the Sema::ActOnCXXGlobalScopeSpecifier and
Sema::ActOnCXXNestedNameSpecifier callbacks.

3. tok::annot_template_id: This annotation token represents a C++ template-id such as “foo<int, 4>”, where
“foo” is the name of a template. The AnnotationValue pointer is a pointer to a malloc’d
TemplateIdAnnotation object. Depending on the context, a parsed template-id that names a type might
become a typename annotation token (if all we care about is the named type, e.g., because it occurs in a type
specifier) or might remain a template-id token (if we want to retain more source location information or produce
a new type, e.g., in a declaration of a class template specialization). template-id annotation tokens that refer to
a type can be “upgraded” to typename annotation tokens by the parser.

As mentioned above, annotation tokens are not returned by the preprocessor, they are formed on demand by the
parser. This means that the parser has to be aware of cases where an annotation could occur and form it where
appropriate. This is somewhat similar to how the parser handles Translation Phase 6 of C99: String Concatenation
(see C99 5.1.1.2). In the case of string concatenation, the preprocessor just returns distinct
tok::string_literal and tok::wide_string_literal tokens and the parser eats a sequence of them
wherever the grammar indicates that a string literal can occur.

In order to do this, whenever the parser expects a tok::identifier or tok::coloncolon, it should call the
TryAnnotateTypeOrScopeToken or TryAnnotateCXXScopeToken methods to form the annotation token.
These methods will maximally form the specified annotation tokens and replace the current token with them, if
applicable. If the current tokens is not valid for an annotation token, it will remain an identifier or “::” token.

The Lexer class

The Lexer class provides the mechanics of lexing tokens out of a source buffer and deciding what they mean. The
Lexer is complicated by the fact that it operates on raw buffers that have not had spelling eliminated (this is a
necessity to get decent performance), but this is countered with careful coding as well as standard performance
techniques (for example, the comment handling code is vectorized on X86 and PowerPC hosts).

The lexer has a couple of interesting modal features:

• The lexer can operate in “raw” mode. This mode has several features that make it possible to quickly lex the file
(e.g., it stops identifier lookup, doesn’t specially handle preprocessor tokens, handles EOF differently, etc). This
mode is used for lexing within an “#if 0” block, for example.

• The lexer can capture and return comments as tokens. This is required to support the -C preprocessor mode,
which passes comments through, and is used by the diagnostic checker to identifier expect-error annotations.

• The lexer can be in ParsingFilename mode, which happens when preprocessing after reading a #include
directive. This mode changes the parsing of “<” to return an “angled string” instead of a bunch of tokens for
each thing within the filename.

Design Documents

941



• When parsing a preprocessor directive (after “#”) the ParsingPreprocessorDirective mode is entered.
This changes the parser to return EOD at a newline.

• The Lexer uses a LangOptions object to know whether trigraphs are enabled, whether C++ or ObjC
keywords are recognized, etc.

In addition to these modes, the lexer keeps track of a couple of other features that are local to a lexed buffer, which
change as the buffer is lexed:

• The Lexer uses BufferPtr to keep track of the current character being lexed.

• The Lexer uses IsAtStartOfLine to keep track of whether the next lexed token will start with its “start of
line” bit set.

• The Lexer keeps track of the current “#if” directives that are active (which can be nested).

• The Lexer keeps track of an MultipleIncludeOpt object, which is used to detect whether the buffer uses the
standard “#ifndef XX / #define XX” idiom to prevent multiple inclusion. If a buffer does, subsequent
includes can be ignored if the “XX” macro is defined.

The TokenLexer class

The TokenLexer class is a token provider that returns tokens from a list of tokens that came from somewhere else.
It typically used for two things: 1) returning tokens from a macro definition as it is being expanded 2) returning tokens
from an arbitrary buffer of tokens. The later use is used by _Pragma and will most likely be used to handle
unbounded look-ahead for the C++ parser.

The MultipleIncludeOpt class

The MultipleIncludeOpt class implements a really simple little state machine that is used to detect the standard
“#ifndef XX / #define XX” idiom that people typically use to prevent multiple inclusion of headers. If a buffer
uses this idiom and is subsequently #include’d, the preprocessor can simply check to see whether the guarding
condition is defined or not. If so, the preprocessor can completely ignore the include of the header.

The Parser Library
This library contains a recursive-descent parser that polls tokens from the preprocessor and notifies a client of the
parsing progress.

Historically, the parser used to talk to an abstract Action interface that had virtual methods for parse events, for
example ActOnBinOp(). When Clang grew C++ support, the parser stopped supporting general Action clients – it
now always talks to the Sema library. However, the Parser still accesses AST objects only through opaque types like
ExprResult and StmtResult. Only Sema looks at the AST node contents of these wrappers.

The AST Library

Design philosophy

Immutability

Clang AST nodes (types, declarations, statements, expressions, and so on) are generally designed to be immutable
once created. This provides a number of key benefits:

• Canonicalization of the “meaning” of nodes is possible as soon as the nodes are created, and is not
invalidated by later addition of more information. For example, we canonicalize types, and use a
canonicalized representation of expressions when determining whether two function template declarations
involving dependent expressions declare the same entity.

• AST nodes can be reused when they have the same meaning. For example, we reuse Type nodes when
representing the same type (but maintain separate TypeLocs for each instance where a type is written),
and we reuse non-dependent Stmt and Expr nodes across instantiations of a template.

• Serialization and deserialization of the AST to/from AST files is simpler: we do not need to track
modifications made to AST nodes imported from AST files and serialize separate “update records”.

Design Documents

942



There are unfortunately exceptions to this general approach, such as:

• The first declaration of a redeclarable entity maintains a pointer to the most recent declaration of that entity,
which naturally needs to change as more declarations are parsed.

• Name lookup tables in declaration contexts change after the namespace declaration is formed.

• We attempt to maintain only a single declaration for an instantiation of a template, rather than having
distinct declarations for an instantiation of the declaration versus the definition, so template instantiation
often updates parts of existing declarations.

• Some parts of declarations are required to be instantiated separately (this includes default arguments and
exception specifications), and such instantiations update the existing declaration.

These cases tend to be fragile; mutable AST state should be avoided where possible.

As a consequence of this design principle, we typically do not provide setters for AST state. (Some are provided for
short-term modifications intended to be used immediately after an AST node is created and before it’s “published” as
part of the complete AST, or where language semantics require after-the-fact updates.)

Faithfulness

The AST intends to provide a representation of the program that is faithful to the original source. We intend for it to
be possible to write refactoring tools using only information stored in, or easily reconstructible from, the Clang AST.
This means that the AST representation should either not desugar source-level constructs to simpler forms, or –
where made necessary by language semantics or a clear engineering tradeoff – should desugar minimally and wrap
the result in a construct representing the original source form.

For example, CXXForRangeStmt directly represents the syntactic form of a range-based for statement, but also
holds a semantic representation of the range declaration and iterator declarations. It does not contain a
fully-desugared ForStmt, however.

Some AST nodes (for example, ParenExpr) represent only syntax, and others (for example, ImplicitCastExpr)
represent only semantics, but most nodes will represent a combination of syntax and associated semantics.
Inheritance is typically used when representing different (but related) syntaxes for nodes with the same or similar
semantics.

The Type class and its subclasses

The Type class (and its subclasses) are an important part of the AST. Types are accessed through the ASTContext
class, which implicitly creates and uniques them as they are needed. Types have a couple of non-obvious features:
1) they do not capture type qualifiers like const or volatile (see QualType), and 2) they implicitly capture typedef
information. Once created, types are immutable (unlike decls).

Typedefs in C make semantic analysis a bit more complex than it would be without them. The issue is that we want
to capture typedef information and represent it in the AST perfectly, but the semantics of operations need to “see
through” typedefs. For example, consider this code:

void func() {
  typedef int foo;
  foo X, *Y;
  typedef foo *bar;
  bar Z;
  *X; // error
  **Y; // error
  **Z; // error
}

The code above is illegal, and thus we expect there to be diagnostics emitted on the annotated lines. In this example,
we expect to get:

test.c:6:1: error: indirection requires pointer operand ('foo' invalid)
  *X; // error
  ^~
test.c:7:1: error: indirection requires pointer operand ('foo' invalid)
  **Y; // error

Design Documents

943



  ^~~
test.c:8:1: error: indirection requires pointer operand ('foo' invalid)
  **Z; // error
  ^~~

While this example is somewhat silly, it illustrates the point: we want to retain typedef information where possible, so
that we can emit errors about “std::string” instead of “std::basic_string<char, std:...”. Doing this
requires properly keeping typedef information (for example, the type of X is “foo”, not “int”), and requires properly
propagating it through the various operators (for example, the type of *Y is “foo”, not “int”). In order to retain this
information, the type of these expressions is an instance of the TypedefType class, which indicates that the type of
these expressions is a typedef for “foo”.

Representing types like this is great for diagnostics, because the user-specified type is always immediately available.
There are two problems with this: first, various semantic checks need to make judgements about the actual structure
of a type, ignoring typedefs. Second, we need an efficient way to query whether two types are structurally identical to
each other, ignoring typedefs. The solution to both of these problems is the idea of canonical types.

Canonical Types

Every instance of the Type class contains a canonical type pointer. For simple types with no typedefs involved (e.g.,
“int”, “int*”, “int**”), the type just points to itself. For types that have a typedef somewhere in their structure
(e.g., “foo”, “foo*”, “foo**”, “bar”), the canonical type pointer points to their structurally equivalent type without
any typedefs (e.g., “int”, “int*”, “int**”, and “int*” respectively).

This design provides a constant time operation (dereferencing the canonical type pointer) that gives us access to the
structure of types. For example, we can trivially tell that “bar” and “foo*” are the same type by dereferencing their
canonical type pointers and doing a pointer comparison (they both point to the single “int*” type).

Canonical types and typedef types bring up some complexities that must be carefully managed. Specifically, the
isa/cast/dyn_cast operators generally shouldn’t be used in code that is inspecting the AST. For example, when
type checking the indirection operator (unary “*” on a pointer), the type checker must verify that the operand has a
pointer type. It would not be correct to check that with “isa<PointerType>(SubExpr->getType())”, because
this predicate would fail if the subexpression had a typedef type.

The solution to this problem are a set of helper methods on Type, used to check their properties. In this case, it
would be correct to use “SubExpr->getType()->isPointerType()” to do the check. This predicate will return
true if the canonical type is a pointer, which is true any time the type is structurally a pointer type. The only hard part
here is remembering not to use the isa/cast/dyn_cast operations.

The second problem we face is how to get access to the pointer type once we know it exists. To continue the
example, the result type of the indirection operator is the pointee type of the subexpression. In order to determine the
type, we need to get the instance of PointerType that best captures the typedef information in the program. If the
type of the expression is literally a PointerType, we can return that, otherwise we have to dig through the typedefs
to find the pointer type. For example, if the subexpression had type “foo*”, we could return that type as the result. If
the subexpression had type “bar”, we want to return “foo*” (note that we do not want “int*”). In order to provide all
of this, Type has a getAsPointerType() method that checks whether the type is structurally a PointerType
and, if so, returns the best one. If not, it returns a null pointer.

This structure is somewhat mystical, but after meditating on it, it will make sense to you :).

The QualType class

The QualType class is designed as a trivial value class that is small, passed by-value and is efficient to query. The
idea of QualType is that it stores the type qualifiers (const, volatile, restrict, plus some extended qualifiers
required by language extensions) separately from the types themselves. QualType is conceptually a pair of “Type*”
and the bits for these type qualifiers.

By storing the type qualifiers as bits in the conceptual pair, it is extremely efficient to get the set of qualifiers on a
QualType (just return the field of the pair), add a type qualifier (which is a trivial constant-time operation that sets a
bit), and remove one or more type qualifiers (just return a QualType with the bitfield set to empty).

Further, because the bits are stored outside of the type itself, we do not need to create duplicates of types with
different sets of qualifiers (i.e. there is only a single heap allocated “int” type: “const int” and “volatile

Design Documents

944



const int” both point to the same heap allocated “int” type). This reduces the heap size used to represent bits
and also means we do not have to consider qualifiers when uniquing types (Type does not even contain qualifiers).

In practice, the two most common type qualifiers (const and restrict) are stored in the low bits of the pointer to
the Type object, together with a flag indicating whether extended qualifiers are present (which must be
heap-allocated). This means that QualType is exactly the same size as a pointer.

Declaration names

The DeclarationName class represents the name of a declaration in Clang. Declarations in the C family of
languages can take several different forms. Most declarations are named by simple identifiers, e.g., “f” and “x” in the
function declaration f(int x). In C++, declaration names can also name class constructors (”Class” in
struct Class { Class(); }), class destructors (”~Class”), overloaded operator names (”operator+”), and
conversion functions (”operator void const *”). In Objective-C, declaration names can refer to the names of
Objective-C methods, which involve the method name and the parameters, collectively called a selector, e.g.,
“setWidth:height:”. Since all of these kinds of entities — variables, functions, Objective-C methods, C++
constructors, destructors, and operators — are represented as subclasses of Clang’s common NamedDecl class,
DeclarationName is designed to efficiently represent any kind of name.

Given a DeclarationName N, N.getNameKind() will produce a value that describes what kind of name N stores.
There are 10 options (all of the names are inside the DeclarationName class).

Identifier

The name is a simple identifier. Use N.getAsIdentifierInfo() to retrieve the corresponding
IdentifierInfo* pointing to the actual identifier.

ObjCZeroArgSelector, ObjCOneArgSelector, ObjCMultiArgSelector

The name is an Objective-C selector, which can be retrieved as a Selector instance via
N.getObjCSelector(). The three possible name kinds for Objective-C reflect an optimization within the
DeclarationName class: both zero- and one-argument selectors are stored as a masked IdentifierInfo
pointer, and therefore require very little space, since zero- and one-argument selectors are far more common
than multi-argument selectors (which use a different structure).

CXXConstructorName

The name is a C++ constructor name. Use N.getCXXNameType() to retrieve the type that this constructor is
meant to construct. The type is always the canonical type, since all constructors for a given type have the same
name.

CXXDestructorName

The name is a C++ destructor name. Use N.getCXXNameType() to retrieve the type whose destructor is being
named. This type is always a canonical type.

CXXConversionFunctionName

The name is a C++ conversion function. Conversion functions are named according to the type they convert to,
e.g., “operator void const *”. Use N.getCXXNameType() to retrieve the type that this conversion
function converts to. This type is always a canonical type.

CXXOperatorName

The name is a C++ overloaded operator name. Overloaded operators are named according to their spelling,
e.g., “operator+” or “operator new []”. Use N.getCXXOverloadedOperator() to retrieve the
overloaded operator (a value of type OverloadedOperatorKind).

CXXLiteralOperatorName

The name is a C++11 user defined literal operator. User defined Literal operators are named according to the
suffix they define, e.g., “_foo” for “operator "" _foo”. Use N.getCXXLiteralIdentifier() to retrieve
the corresponding IdentifierInfo* pointing to the identifier.

CXXUsingDirective

The name is a C++ using directive. Using directives are not really NamedDecls, in that they all have the same
name, but they are implemented as such in order to store them in DeclContext effectively.

Design Documents

945



DeclarationNames are cheap to create, copy, and compare. They require only a single pointer’s worth of storage
in the common cases (identifiers, zero- and one-argument Objective-C selectors) and use dense, uniqued storage
for the other kinds of names. Two DeclarationNames can be compared for equality (==, !=) using a simple bitwise
comparison, can be ordered with <, >, <=, and >= (which provide a lexicographical ordering for normal identifiers but
an unspecified ordering for other kinds of names), and can be placed into LLVM DenseMaps and DenseSets.

DeclarationName instances can be created in different ways depending on what kind of name the instance will
store. Normal identifiers (IdentifierInfo pointers) and Objective-C selectors (Selector) can be implicitly
converted to DeclarationNames. Names for C++ constructors, destructors, conversion functions, and overloaded
operators can be retrieved from the DeclarationNameTable, an instance of which is available as
ASTContext::DeclarationNames. The member functions getCXXConstructorName,
getCXXDestructorName, getCXXConversionFunctionName, and getCXXOperatorName, respectively,
return DeclarationName instances for the four kinds of C++ special function names.

Declaration contexts

Every declaration in a program exists within some declaration context, such as a translation unit, namespace, class,
or function. Declaration contexts in Clang are represented by the DeclContext class, from which the various
declaration-context AST nodes (TranslationUnitDecl, NamespaceDecl, RecordDecl, FunctionDecl, etc.)
will derive. The DeclContext class provides several facilities common to each declaration context:

Source-centric vs. Semantics-centric View of Declarations

DeclContext provides two views of the declarations stored within a declaration context. The source-centric
view accurately represents the program source code as written, including multiple declarations of entities where
present (see the section Redeclarations and Overloads), while the semantics-centric view represents the
program semantics. The two views are kept synchronized by semantic analysis while the ASTs are being
constructed.

Storage of declarations within that context

Every declaration context can contain some number of declarations. For example, a C++ class (represented by
RecordDecl) contains various member functions, fields, nested types, and so on. All of these declarations will
be stored within the DeclContext, and one can iterate over the declarations via
[DeclContext::decls_begin(), DeclContext::decls_end()). This mechanism provides the
source-centric view of declarations in the context.

Lookup of declarations within that context

The DeclContext structure provides efficient name lookup for names within that declaration context. For
example, if N is a namespace we can look for the name N::f using DeclContext::lookup. The lookup itself
is based on a lazily-constructed array (for declaration contexts with a small number of declarations) or hash
table (for declaration contexts with more declarations). The lookup operation provides the semantics-centric
view of the declarations in the context.

Ownership of declarations

The DeclContext owns all of the declarations that were declared within its declaration context, and is
responsible for the management of their memory as well as their (de-)serialization.

All declarations are stored within a declaration context, and one can query information about the context in which
each declaration lives. One can retrieve the DeclContext that contains a particular Decl using
Decl::getDeclContext. However, see the section Lexical and Semantic Contexts for more information about
how to interpret this context information.

Redeclarations and Overloads

Within a translation unit, it is common for an entity to be declared several times. For example, we might declare a
function “f” and then later re-declare it as part of an inlined definition:

void f(int x, int y, int z = 1);

inline void f(int x, int y, int z) { /* ...  */ }

The representation of “f” differs in the source-centric and semantics-centric views of a declaration context. In the
source-centric view, all redeclarations will be present, in the order they occurred in the source code, making this view

Design Documents

946



suitable for clients that wish to see the structure of the source code. In the semantics-centric view, only the most
recent “f” will be found by the lookup, since it effectively replaces the first declaration of “f”.

(Note that because f can be redeclared at block scope, or in a friend declaration, etc. it is possible that the
declaration of f found by name lookup will not be the most recent one.)

In the semantics-centric view, overloading of functions is represented explicitly. For example, given two declarations
of a function “g” that are overloaded, e.g.,

void g();
void g(int);

the DeclContext::lookup operation will return a DeclContext::lookup_result that contains a range of
iterators over declarations of “g”. Clients that perform semantic analysis on a program that is not concerned with the
actual source code will primarily use this semantics-centric view.

Lexical and Semantic Contexts

Each declaration has two potentially different declaration contexts: a lexical context, which corresponds to the
source-centric view of the declaration context, and a semantic context, which corresponds to the semantics-centric
view. The lexical context is accessible via Decl::getLexicalDeclContext while the semantic context is
accessible via Decl::getDeclContext, both of which return DeclContext pointers. For most declarations, the
two contexts are identical. For example:

class X {
public:
  void f(int x);
};

Here, the semantic and lexical contexts of X::f are the DeclContext associated with the class X (itself stored as a
RecordDecl AST node). However, we can now define X::f out-of-line:

void X::f(int x = 17) { /* ...  */ }

This definition of “f” has different lexical and semantic contexts. The lexical context corresponds to the declaration
context in which the actual declaration occurred in the source code, e.g., the translation unit containing X. Thus, this
declaration of X::f can be found by traversing the declarations provided by [decls_begin(), decls_end()) in
the translation unit.

The semantic context of X::f corresponds to the class X, since this member function is (semantically) a member of
X. Lookup of the name f into the DeclContext associated with X will then return the definition of X::f (including
information about the default argument).

Transparent Declaration Contexts

In C and C++, there are several contexts in which names that are logically declared inside another declaration will
actually “leak” out into the enclosing scope from the perspective of name lookup. The most obvious instance of this
behavior is in enumeration types, e.g.,

enum Color {
  Red,
  Green,
  Blue
};

Here, Color is an enumeration, which is a declaration context that contains the enumerators Red, Green, and
Blue. Thus, traversing the list of declarations contained in the enumeration Color will yield Red, Green, and Blue.
However, outside of the scope of Color one can name the enumerator Red without qualifying the name, e.g.,

Color c = Red;

There are other entities in C++ that provide similar behavior. For example, linkage specifications that use curly
braces:

extern "C" {
  void f(int);

Design Documents

947



  void g(int);
}
// f and g are visible here

For source-level accuracy, we treat the linkage specification and enumeration type as a declaration context in which
its enclosed declarations (”Red”, “Green”, and “Blue”; “f” and “g”) are declared. However, these declarations are
visible outside of the scope of the declaration context.

These language features (and several others, described below) have roughly the same set of requirements:
declarations are declared within a particular lexical context, but the declarations are also found via name lookup in
scopes enclosing the declaration itself. This feature is implemented via transparent declaration contexts (see
DeclContext::isTransparentContext()), whose declarations are visible in the nearest enclosing
non-transparent declaration context. This means that the lexical context of the declaration (e.g., an enumerator) will
be the transparent DeclContext itself, as will the semantic context, but the declaration will be visible in every outer
context up to and including the first non-transparent declaration context (since transparent declaration contexts can
be nested).

The transparent DeclContexts are:

• Enumerations (but not C++11 “scoped enumerations”):

enum Color {
  Red,
  Green,
  Blue
};
// Red, Green, and Blue are in scope

• C++ linkage specifications:

extern "C" {
  void f(int);
  void g(int);
}
// f and g are in scope

• Anonymous unions and structs:

struct LookupTable {
  bool IsVector;
  union {
    std::vector<Item> *Vector;
    std::set<Item> *Set;
  };
};

LookupTable LT;
LT.Vector = 0; // Okay: finds Vector inside the unnamed union

• C++11 inline namespaces:

namespace mylib {
  inline namespace debug {
    class X;
  }
}
mylib::X *xp; // okay: mylib::X refers to mylib::debug::X

Multiply-Defined Declaration Contexts

C++ namespaces have the interesting property that the namespace can be defined multiple times, and the
declarations provided by each namespace definition are effectively merged (from the semantic point of view). For
example, the following two code snippets are semantically indistinguishable:

// Snippet #1:
namespace N {

Design Documents

948



  void f();
}
namespace N {
  void f(int);
}

// Snippet #2:
namespace N {
  void f();
  void f(int);
}

In Clang’s representation, the source-centric view of declaration contexts will actually have two separate
NamespaceDecl nodes in Snippet #1, each of which is a declaration context that contains a single declaration of
“f”. However, the semantics-centric view provided by name lookup into the namespace N for “f” will return a
DeclContext::lookup_result that contains a range of iterators over declarations of “f”.

DeclContext manages multiply-defined declaration contexts internally. The function
DeclContext::getPrimaryContext retrieves the “primary” context for a given DeclContext instance, which is
the DeclContext responsible for maintaining the lookup table used for the semantics-centric view. Given a
DeclContext, one can obtain the set of declaration contexts that are semantically connected to this declaration
context, in source order, including this context (which will be the only result, for non-namespace contexts) via
DeclContext::collectAllContexts. Note that these functions are used internally within the lookup and
insertion methods of the DeclContext, so the vast majority of clients can ignore them.

Because the same entity can be defined multiple times in different modules, it is also possible for there to be multiple
definitions of (for instance) a CXXRecordDecl, all of which describe a definition of the same class. In such a case,
only one of those “definitions” is considered by Clang to be the definition of the class, and the others are treated as
non-defining declarations that happen to also contain member declarations. Corresponding members in each
definition of such multiply-defined classes are identified either by redeclaration chains (if the members are
Redeclarable) or by simply a pointer to the canonical declaration (if the declarations are not Redeclarable – in
that case, a Mergeable base class is used instead).

Error Handling

Clang produces an AST even when the code contains errors. Clang won’t generate and optimize code for it, but it’s
used as parsing continues to detect further errors in the input. Clang-based tools also depend on such ASTs, and
IDEs in particular benefit from a high-quality AST for broken code.

In presence of errors, clang uses a few error-recovery strategies to present the broken code in the AST:

• correcting errors: in cases where clang is confident about the fix, it provides a FixIt attaching to the error
diagnostic and emits a corrected AST (reflecting the written code with FixIts applied). The advantage of that is
to provide more accurate subsequent diagnostics. Typo correction is a typical example.

• representing invalid node: the invalid node is preserved in the AST in some form, e.g. when the “declaration”
part of the declaration contains semantic errors, the Decl node is marked as invalid.

• dropping invalid node: this often happens for errors that we don’t have graceful recovery. Prior to Recovery
AST, a mismatched-argument function call expression was dropped though a CallExpr was created for
semantic analysis.

With these strategies, clang surfaces better diagnostics, and provides AST consumers a rich AST reflecting the
written source code as much as possible even for broken code.

Recovery AST

The idea of Recovery AST is to use recovery nodes which act as a placeholder to maintain the rough structure of the
parsing tree, preserve locations and children but have no language semantics attached to them.

For example, consider the following mismatched function call:

int NoArg();
void test(int abc) {

Design Documents

949



  NoArg(abc); // oops, mismatched function arguments.
}

Without Recovery AST, the invalid function call expression (and its child expressions) would be dropped in the AST:

|-FunctionDecl <line:1:1, col:11> NoArg 'int ()'
`-FunctionDecl <line:2:1, line:4:1> test 'void (int)'
 |-ParmVarDecl <col:11, col:15> col:15 used abc 'int'
 `-CompoundStmt <col:20, line:4:1>

With Recovery AST, the AST looks like:

|-FunctionDecl <line:1:1, col:11> NoArg 'int ()'
`-FunctionDecl <line:2:1, line:4:1> test 'void (int)'
  |-ParmVarDecl <col:11, col:15> used abc 'int'
  `-CompoundStmt <col:20, line:4:1>
    `-RecoveryExpr <line:3:3, col:12> 'int' contains-errors
      |-UnresolvedLookupExpr <col:3> '<overloaded function type>' lvalue (ADL) = 'NoArg'
      `-DeclRefExpr <col:9> 'int' lvalue ParmVar 'abc' 'int'

An alternative is to use existing Exprs, e.g. CallExpr for the above example. This would capture more call details
(e.g. locations of parentheses) and allow it to be treated uniformly with valid CallExprs. However, jamming the data
we have into CallExpr forces us to weaken its invariants, e.g. arg count may be wrong. This would introduce a huge
burden on consumers of the AST to handle such “impossible” cases. So when we’re representing (rather than
correcting) errors, we use a distinct recovery node type with extremely weak invariants instead.

RecoveryExpr is the only recovery node so far. In practice, broken decls need more detailed semantics preserved
(the current Invalid flag works fairly well), and completely broken statements with interesting internal structure are
rare (so dropping the statements is OK).

Types and dependence

RecoveryExpr is an Expr, so it must have a type. In many cases the true type can’t really be known until the code
is corrected (e.g. a call to a function that doesn’t exist). And it means that we can’t properly perform type checks on
some containing constructs, such as return 42 + unknownFunction().

To model this, we generalize the concept of dependence from C++ templates to mean dependence on a template
parameter or how an error is repaired. The RecoveryExpr unknownFunction() has the totally unknown type
DependentTy, and this suppresses type-based analysis in the same way it would inside a template.

In cases where we are confident about the concrete type (e.g. the return type for a broken non-overloaded function
call), the RecoveryExpr will have this type. This allows more code to be typechecked, and produces a better AST
and more diagnostics. For example:

unknownFunction().size() // .size() is a CXXDependentScopeMemberExpr
std::string(42).size() // .size() is a resolved MemberExpr

Whether or not the RecoveryExpr has a dependent type, it is always considered value-dependent, because its
value isn’t well-defined until the error is resolved. Among other things, this means that clang doesn’t emit more errors
where a RecoveryExpr is used as a constant (e.g. array size), but also won’t try to evaluate it.

ContainsErrors bit

Beyond the template dependence bits, we add a new “ContainsErrors” bit to express “Does this expression or
anything within it contain errors” semantic, this bit is always set for RecoveryExpr, and propagated to other related
nodes. This provides a fast way to query whether any (recursive) child of an expression had an error, which is often
used to improve diagnostics.

// C++
void recoveryExpr(int abc) {
 unknownFunction(); // type-dependent, value-dependent, contains-errors

 std::string(42).size(); // value-dependent, contains-errors,
                         // not type-dependent, as we know the type is std::string
}

Design Documents

950



// C
void recoveryExpr(int abc) {
  unknownVar + abc; // type-dependent, value-dependent, contains-errors
}

The ASTImporter

The ASTImporter class imports nodes of an ASTContext into another ASTContext. Please refer to the document
ASTImporter: Merging Clang ASTs for an introduction. And please read through the high-level description of the
import algorithm, this is essential for understanding further implementation details of the importer.

Abstract Syntax Graph

Despite the name, the Clang AST is not a tree. It is a directed graph with cycles. One example of a cycle is the
connection between a ClassTemplateDecl and its “templated” CXXRecordDecl. The templated
CXXRecordDecl represents all the fields and methods inside the class template, while the ClassTemplateDecl
holds the information which is related to being a template, i.e. template arguments, etc. We can get the templated
class (the CXXRecordDecl) of a ClassTemplateDecl with ClassTemplateDecl::getTemplatedDecl().
And we can get back a pointer of the “described” class template from the templated class:
CXXRecordDecl::getDescribedTemplate(). So, this is a cycle between two nodes: between the templated
and the described node. There may be various other kinds of cycles in the AST especially in case of declarations.

Structural Equivalency

Importing one AST node copies that node into the destination ASTContext. To copy one node means that we
create a new node in the “to” context then we set its properties to be equal to the properties of the source node.
Before the copy, we make sure that the source node is not structurally equivalent to any existing node in the
destination context. If it happens to be equivalent then we skip the copy.

The informal definition of structural equivalency is the following: Two nodes are structurally equivalent if they are

• builtin types and refer to the same type, e.g. int and int are structurally equivalent,

• function types and all their parameters have structurally equivalent types,

• record types and all their fields in order of their definition have the same identifier names and structurally
equivalent types,

• variable or function declarations and they have the same identifier name and their types are structurally
equivalent.

In C, two types are structurally equivalent if they are compatible types. For a formal definition of compatible types,
please refer to 6.2.7/1 in the C11 standard. However, there is no definition for compatible types in the C++ standard.
Still, we extend the definition of structural equivalency to templates and their instantiations similarly: besides
checking the previously mentioned properties, we have to check for equivalent template parameters/arguments, etc.

The structural equivalent check can be and is used independently from the ASTImporter, e.g. the clang::Sema
class uses it also.

The equivalence of nodes may depend on the equivalency of other pairs of nodes. Thus, the check is implemented
as a parallel graph traversal. We traverse through the nodes of both graphs at the same time. The actual
implementation is similar to breadth-first-search. Let’s say we start the traverse with the <A,B> pair of nodes.
Whenever the traversal reaches a pair <X,Y> then the following statements are true:

• A and X are nodes from the same ASTContext.

• B and Y are nodes from the same ASTContext.

• A and B may or may not be from the same ASTContext.

• if A == X and B == Y (pointer equivalency) then (there is a cycle during the traverse)

• A and B are structurally equivalent if and only if

• All dependent nodes on the path from <A,B> to <X,Y> are structurally equivalent.
When we compare two classes or enums and one of them is incomplete or has unloaded external lexical
declarations then we cannot descend to compare their contained declarations. So in these cases they are

Design Documents

951

file:///home/cbowler/llvm/v1711p/llvm-project/compiler-doc/tools/clang/docs/LibASTImporter.html#algorithm-of-the-import
file:///home/cbowler/llvm/v1711p/llvm-project/compiler-doc/tools/clang/docs/LibASTImporter.html#algorithm-of-the-import


considered equal if they have the same names. This is the way how we compare forward declarations with
definitions.

Redeclaration Chains

The early version of the ASTImporter’s merge mechanism squashed the declarations, i.e. it aimed to have only
one declaration instead of maintaining a whole redeclaration chain. This early approach simply skipped importing a
function prototype, but it imported a definition. To demonstrate the problem with this approach let’s consider an
empty “to” context and the following virtual function declarations of f in the “from” context:

struct B { virtual void f(); };
void B::f() {} // <-- let's import this definition

If we imported the definition with the “squashing” approach then we would end-up having one declaration which is
indeed a definition, but isVirtual() returns false for it. The reason is that the definition is indeed not virtual, it is
the property of the prototype!

Consequently, we must either set the virtual flag for the definition (but then we create a malformed AST which the
parser would never create), or we import the whole redeclaration chain of the function. The most recent version of
the ASTImporter uses the latter mechanism. We do import all function declarations - regardless if they are
definitions or prototypes - in the order as they appear in the “from” context.

If we have an existing definition in the “to” context, then we cannot import another definition, we will use the existing
definition. However, we can import prototype(s): we chain the newly imported prototype(s) to the existing definition.
Whenever we import a new prototype from a third context, that will be added to the end of the redeclaration chain.
This may result in long redeclaration chains in certain cases, e.g. if we import from several translation units which
include the same header with the prototype.

To mitigate the problem of long redeclaration chains of free functions, we could compare prototypes to see if they
have the same properties and if yes then we could merge these prototypes. The implementation of squashing of
prototypes for free functions is future work.

Chaining functions this way ensures that we do copy all information from the source AST. Nonetheless, there is a
problem with member functions: While we can have many prototypes for free functions, we must have only one
prototype for a member function.

void f(); // OK
void f(); // OK

struct X {
  void f(); // OK
  void f(); // ERROR
};
void X::f() {} // OK

Thus, prototypes of member functions must be squashed, we cannot just simply attach a new prototype to the
existing in-class prototype. Consider the following contexts:

// "to" context
struct X {
  void f(); // D0
};

// "from" context
struct X {
  void f(); // D1
};
void X::f() {} // D2

When we import the prototype and the definition of f from the “from” context, then the resulting redecl chain will look
like this D0 -> D2', where D2' is the copy of D2 in the “to” context.

Generally speaking, when we import declarations (like enums and classes) we do attach the newly imported
declaration to the existing redeclaration chain (if there is structural equivalency). We do not import, however, the
whole redeclaration chain as we do in case of functions. Up till now, we haven’t found any essential property of

Design Documents

952



forward declarations which is similar to the case of the virtual flag in a member function prototype. In the future, this
may change, though.

Traversal during the Import

The node specific import mechanisms are implemented in ASTNodeImporter::VisitNode() functions, e.g.
VisitFunctionDecl(). When we import a declaration then first we import everything which is needed to call the
constructor of that declaration node. Everything which can be set later is set after the node is created. For example,
in case of a FunctionDecl we first import the declaration context in which the function is declared, then we create
the FunctionDecl and only then we import the body of the function. This means there are implicit dependencies
between AST nodes. These dependencies determine the order in which we visit nodes in the “from” context. As with
the regular graph traversal algorithms like DFS, we keep track which nodes we have already visited in
ASTImporter::ImportedDecls. Whenever we create a node then we immediately add that to the
ImportedDecls. We must not start the import of any other declarations before we keep track of the newly created
one. This is essential, otherwise, we would not be able to handle circular dependencies. To enforce this, we wrap all
constructor calls of all AST nodes in GetImportedOrCreateDecl(). This wrapper ensures that all newly created
declarations are immediately marked as imported; also, if a declaration is already marked as imported then we just
return its counterpart in the “to” context. Consequently, calling a declaration’s ::Create() function directly would
lead to errors, please don’t do that!

Even with the use of GetImportedOrCreateDecl() there is still a probability of having an infinite import recursion
if things are imported from each other in wrong way. Imagine that during the import of A, the import of B is requested
before we could create the node for A (the constructor needs a reference to B). And the same could be true for the
import of B (A is requested to be imported before we could create the node for B). In case of the templated-described
swing we take extra attention to break the cyclical dependency: we import and set the described template only after
the CXXRecordDecl is created. As a best practice, before creating the node in the “to” context, avoid importing of
other nodes which are not needed for the constructor of node A.

Error Handling

Every import function returns with either an llvm::Error or an llvm::Expected<T> object. This enforces to
check the return value of the import functions. If there was an error during one import then we return with that error.
(Exception: when we import the members of a class, we collect the individual errors with each member and we
concatenate them in one Error object.) We cache these errors in cases of declarations. During the next import call if
there is an existing error we just return with that. So, clients of the library receive an Error object, which they must
check.

During import of a specific declaration, it may happen that some AST nodes had already been created before we
recognize an error. In this case, we signal back the error to the caller, but the “to” context remains polluted with those
nodes which had been created. Ideally, those nodes should not had been created, but that time we did not know
about the error, the error happened later. Since the AST is immutable (most of the cases we can’t remove existing
nodes) we choose to mark these nodes as erroneous.

We cache the errors associated with declarations in the “from” context in ASTImporter::ImportDeclErrors and
the ones which are associated with the “to” context in ASTImporterSharedState::ImportErrors. Note that,
there may be several ASTImporter objects which import into the same “to” context but from different “from” contexts;
in this case, they have to share the associated errors of the “to” context.

When an error happens, that propagates through the call stack, through all the dependant nodes. However, in case
of dependency cycles, this is not enough, because we strive to mark the erroneous nodes so clients can act upon. In
those cases, we have to keep track of the errors for those nodes which are intermediate nodes of a cycle.

An import path is the list of the AST nodes which we visit during an Import call. If node A depends on node B then
the path contains an A->B edge. From the call stack of the import functions, we can read the very same path.

Now imagine the following AST, where the -> represents dependency in terms of the import (all nodes are
declarations).

A->B->C->D
   `->E

We would like to import A. The import behaves like a DFS, so we will visit the nodes in this order: ABCDE. During the
visitation we will have the following import paths:

Design Documents

953



A
AB
ABC
ABCD
ABC
AB
ABE
AB
A

If during the visit of E there is an error then we set an error for E, then as the call stack shrinks for B, then for A:

A
AB
ABC
ABCD
ABC
AB
ABE // Error! Set an error to E
AB  // Set an error to B
A   // Set an error to A

However, during the import we could import C and D without any error and they are independent of A,B and E. We
must not set up an error for C and D. So, at the end of the import we have an entry in ImportDeclErrors for A,B,E
but not for C,D.

Now, what happens if there is a cycle in the import path? Let’s consider this AST:

A->B->C->A
   `->E

During the visitation, we will have the below import paths and if during the visit of E there is an error then we will set
up an error for E,B,A. But what’s up with C?

A
AB
ABC
ABCA
ABC
AB
ABE // Error! Set an error to E
AB  // Set an error to B
A   // Set an error to A

This time we know that both B and C are dependent on A. This means we must set up an error for C too. As the call
stack reverses back we get to A and we must set up an error to all nodes which depend on A (this includes C). But C
is no longer on the import path, it just had been previously. Such a situation can happen only if during the visitation
we had a cycle. If we didn’t have any cycle, then the normal way of passing an Error object through the call stack
could handle the situation. This is why we must track cycles during the import process for each visited declaration.

Lookup Problems

When we import a declaration from the source context then we check whether we already have a structurally
equivalent node with the same name in the “to” context. If the “from” node is a definition and the found one is also a
definition, then we do not create a new node, instead, we mark the found node as the imported node. If the found
definition and the one we want to import have the same name but they are structurally in-equivalent, then we have
an ODR violation in case of C++. If the “from” node is not a definition then we add that to the redeclaration chain of
the found node. This behaviour is essential when we merge ASTs from different translation units which include the
same header file(s). For example, we want to have only one definition for the class template std::vector, even if
we included <vector> in several translation units.

To find a structurally equivalent node we can use the regular C/C++ lookup functions:
DeclContext::noload_lookup() and DeclContext::localUncachedLookup(). These functions do
respect the C/C++ name hiding rules, thus you cannot find certain declarations in a given declaration context. For

Design Documents

954



instance, unnamed declarations (anonymous structs), non-first friend declarations and template specializations
are hidden. This is a problem, because if we use the regular C/C++ lookup then we create redundant AST nodes
during the merge! Also, having two instances of the same node could result in false structural in-equivalencies of
other nodes which depend on the duplicated node. Because of these reasons, we created a lookup class which has
the sole purpose to register all declarations, so later they can be looked up by subsequent import requests. This is
the ASTImporterLookupTable class. This lookup table should be shared amongst the different ASTImporter
instances if they happen to import to the very same “to” context. This is why we can use the importer specific lookup
only via the ASTImporterSharedState class.

ExternalASTSource

The ExternalASTSource is an abstract interface associated with the ASTContext class. It provides the ability to
read the declarations stored within a declaration context either for iteration or for name lookup. A declaration context
with an external AST source may load its declarations on-demand. This means that the list of declarations
(represented as a linked list, the head is DeclContext::FirstDecl) could be empty. However, member functions
like DeclContext::lookup() may initiate a load.

Usually, external sources are associated with precompiled headers. For example, when we load a class from a PCH
then the members are loaded only if we do want to look up something in the class’ context.

In case of LLDB, an implementation of the ExternalASTSource interface is attached to the AST context which is
related to the parsed expression. This implementation of the ExternalASTSource interface is realized with the
help of the ASTImporter class. This way, LLDB can reuse Clang’s parsing machinery while synthesizing the
underlying AST from the debug data (e.g. from DWARF). From the view of the ASTImporter this means both the
“to” and the “from” context may have declaration contexts with external lexical storage. If a DeclContext in the “to”
AST context has external lexical storage then we must take extra attention to work only with the already loaded
declarations! Otherwise, we would end up with an uncontrolled import process. For instance, if we used the regular
DeclContext::lookup() to find the existing declarations in the “to” context then the lookup() call itself would
initiate a new import while we are in the middle of importing a declaration! (By the time we initiate the lookup we
haven’t registered yet that we already started to import the node of the “from” context.) This is why we use
DeclContext::noload_lookup() instead.

Class Template Instantiations

Different translation units may have class template instantiations with the same template arguments, but with a
different set of instantiated MethodDecls and FieldDecls. Consider the following files:

// x.h
template <typename T>
struct X {
    int a{0}; // FieldDecl with InitListExpr
    X(char) : a(3) {}     // (1)
    X(int) {}             // (2)
};

// foo.cpp
void foo() {
    // ClassTemplateSpec with ctor (1): FieldDecl without InitlistExpr
    X<char> xc('c');
}

// bar.cpp
void bar() {
    // ClassTemplateSpec with ctor (2): FieldDecl WITH InitlistExpr
    X<char> xc(1);
}

In foo.cpp we use the constructor with number (1), which explicitly initializes the member a to 3, thus the
InitListExpr {0} is not used here and the AST node is not instantiated. However, in the case of bar.cpp we
use the constructor with number (2), which does not explicitly initialize the a member, so the default
InitListExpr is needed and thus instantiated. When we merge the AST of foo.cpp and bar.cpp we must
create an AST node for the class template instantiation of X<char> which has all the required nodes. Therefore,
when we find an existing ClassTemplateSpecializationDecl then we merge the fields of the

Design Documents

955



ClassTemplateSpecializationDecl in the “from” context in a way that the InitListExpr is copied if not
existent yet. The same merge mechanism should be done in the cases of instantiated default arguments and
exception specifications of functions.

Visibility of Declarations

During import of a global variable with external visibility, the lookup will find variables (with the same name) but with
static visibility (linkage). Clearly, we cannot put them into the same redeclaration chain. The same is true the in case
of functions. Also, we have to take care of other kinds of declarations like enums, classes, etc. if they are in
anonymous namespaces. Therefore, we filter the lookup results and consider only those which have the same
visibility as the declaration we currently import.

We consider two declarations in two anonymous namespaces to have the same visibility only if they are imported
from the same AST context.

Strategies to Handle Conflicting Names

During the import we lookup existing declarations with the same name. We filter the lookup results based on their
visibility. If any of the found declarations are not structurally equivalent then we bumped to a name conflict error
(ODR violation in C++). In this case, we return with an Error and we set up the Error object for the declaration.
However, some clients of the ASTImporter may require a different, perhaps less conservative and more liberal
error handling strategy.

E.g. static analysis clients may benefit if the node is created even if there is a name conflict. During the CTU analysis
of certain projects, we recognized that there are global declarations which collide with declarations from other
translation units, but they are not referenced outside from their translation unit. These declarations should be in an
unnamed namespace ideally. If we treat these collisions liberally then CTU analysis can find more results. Note, the
feature be able to choose between name conflict handling strategies is still an ongoing work.

The CFG class

The CFG class is designed to represent a source-level control-flow graph for a single statement (Stmt*). Typically
instances of CFG are constructed for function bodies (usually an instance of CompoundStmt), but can also be
instantiated to represent the control-flow of any class that subclasses Stmt, which includes simple expressions.
Control-flow graphs are especially useful for performing flow- or path-sensitive program analyses on a given function.

Basic Blocks

Concretely, an instance of CFG is a collection of basic blocks. Each basic block is an instance of CFGBlock, which
simply contains an ordered sequence of Stmt* (each referring to statements in the AST). The ordering of
statements within a block indicates unconditional flow of control from one statement to the next. Conditional
control-flow is represented using edges between basic blocks. The statements within a given CFGBlock can be
traversed using the CFGBlock::*iterator interface.

A CFG object owns the instances of CFGBlock within the control-flow graph it represents. Each CFGBlock within a
CFG is also uniquely numbered (accessible via CFGBlock::getBlockID()). Currently the number is based on the
ordering the blocks were created, but no assumptions should be made on how CFGBlocks are numbered other than
their numbers are unique and that they are numbered from 0..N-1 (where N is the number of basic blocks in the
CFG).

Entry and Exit Blocks

Each instance of CFG contains two special blocks: an entry block (accessible via CFG::getEntry()), which has no
incoming edges, and an exit block (accessible via CFG::getExit()), which has no outgoing edges. Neither block
contains any statements, and they serve the role of providing a clear entrance and exit for a body of code such as a
function body. The presence of these empty blocks greatly simplifies the implementation of many analyses built on
top of CFGs.

Design Documents

956

https://en.wikipedia.org/wiki/Data_flow_analysis#Sensitivities


Conditional Control-Flow

Conditional control-flow (such as those induced by if-statements and loops) is represented as edges between
CFGBlocks. Because different C language constructs can induce control-flow, each CFGBlock also records an
extra Stmt* that represents the terminator of the block. A terminator is simply the statement that caused the
control-flow, and is used to identify the nature of the conditional control-flow between blocks. For example, in the
case of an if-statement, the terminator refers to the IfStmt object in the AST that represented the given branch.

To illustrate, consider the following code example:

int foo(int x) {
  x = x + 1;
  if (x > 2)
    x++;
  else {
    x += 2;
    x *= 2;
  }

  return x;
}

After invoking the parser+semantic analyzer on this code fragment, the AST of the body of foo is referenced by a
single Stmt*. We can then construct an instance of CFG representing the control-flow graph of this function body by
single call to a static class method:

Stmt *FooBody = ...
std::unique_ptr<CFG> FooCFG = CFG::buildCFG(FooBody);

Along with providing an interface to iterate over its CFGBlocks, the CFG class also provides methods that are useful
for debugging and visualizing CFGs. For example, the method CFG::dump() dumps a pretty-printed version of the
CFG to standard error. This is especially useful when one is using a debugger such as gdb. For example, here is the
output of FooCFG->dump():

[ B5 (ENTRY) ]
   Predecessors (0):
   Successors (1): B4

[ B4 ]
   1: x = x + 1
   2: (x > 2)
   T: if [B4.2]
   Predecessors (1): B5
   Successors (2): B3 B2

[ B3 ]
   1: x++
   Predecessors (1): B4
   Successors (1): B1

[ B2 ]
   1: x += 2
   2: x *= 2
   Predecessors (1): B4
   Successors (1): B1

[ B1 ]
   1: return x;
   Predecessors (2): B2 B3
   Successors (1): B0

[ B0 (EXIT) ]

Design Documents

957



   Predecessors (1): B1
   Successors (0):

For each block, the pretty-printed output displays for each block the number of predecessor blocks (blocks that have
outgoing control-flow to the given block) and successor blocks (blocks that have control-flow that have incoming
control-flow from the given block). We can also clearly see the special entry and exit blocks at the beginning and end
of the pretty-printed output. For the entry block (block B5), the number of predecessor blocks is 0, while for the exit
block (block B0) the number of successor blocks is 0.

The most interesting block here is B4, whose outgoing control-flow represents the branching caused by the sole
if-statement in foo. Of particular interest is the second statement in the block, (x > 2), and the terminator, printed
as if [B4.2]. The second statement represents the evaluation of the condition of the if-statement, which occurs
before the actual branching of control-flow. Within the CFGBlock for B4, the Stmt* for the second statement refers
to the actual expression in the AST for (x > 2). Thus pointers to subclasses of Expr can appear in the list of
statements in a block, and not just subclasses of Stmt that refer to proper C statements.

The terminator of block B4 is a pointer to the IfStmt object in the AST. The pretty-printer outputs if [B4.2]
because the condition expression of the if-statement has an actual place in the basic block, and thus the terminator
is essentially referring to the expression that is the second statement of block B4 (i.e., B4.2). In this manner,
conditions for control-flow (which also includes conditions for loops and switch statements) are hoisted into the actual
basic block.

Constant Folding in the Clang AST

There are several places where constants and constant folding matter a lot to the Clang front-end. First, in general,
we prefer the AST to retain the source code as close to how the user wrote it as possible. This means that if they
wrote “5+4”, we want to keep the addition and two constants in the AST, we don’t want to fold to “9”. This means that
constant folding in various ways turns into a tree walk that needs to handle the various cases.

However, there are places in both C and C++ that require constants to be folded. For example, the C standard
defines what an “integer constant expression” (i-c-e) is with very precise and specific requirements. The language
then requires i-c-e’s in a lot of places (for example, the size of a bitfield, the value for a case statement, etc). For
these, we have to be able to constant fold the constants, to do semantic checks (e.g., verify bitfield size is
non-negative and that case statements aren’t duplicated). We aim for Clang to be very pedantic about this,
diagnosing cases when the code does not use an i-c-e where one is required, but accepting the code unless running
with -pedantic-errors.

Things get a little bit more tricky when it comes to compatibility with real-world source code. Specifically, GCC has
historically accepted a huge superset of expressions as i-c-e’s, and a lot of real world code depends on this
unfortunate accident of history (including, e.g., the glibc system headers). GCC accepts anything its “fold” optimizer
is capable of reducing to an integer constant, which means that the definition of what it accepts changes as its
optimizer does. One example is that GCC accepts things like “case X-X:” even when X is a variable, because it
can fold this to 0.

Another issue are how constants interact with the extensions we support, such as __builtin_constant_p,
__builtin_inf, __extension__ and many others. C99 obviously does not specify the semantics of any of these
extensions, and the definition of i-c-e does not include them. However, these extensions are often used in real code,
and we have to have a way to reason about them.

Finally, this is not just a problem for semantic analysis. The code generator and other clients have to be able to fold
constants (e.g., to initialize global variables) and have to handle a superset of what C99 allows. Further, these clients
can benefit from extended information. For example, we know that “foo() || 1” always evaluates to true, but we
can’t replace the expression with true because it has side effects.

Implementation Approach

After trying several different approaches, we’ve finally converged on a design (Note, at the time of this writing, not all
of this has been implemented, consider this a design goal!). Our basic approach is to define a single recursive
evaluation method (Expr::Evaluate), which is implemented in AST/ExprConstant.cpp. Given an expression
with “scalar” type (integer, fp, complex, or pointer) this method returns the following information:

• Whether the expression is an integer constant expression, a general constant that was folded but has no side
effects, a general constant that was folded but that does have side effects, or an uncomputable/unfoldable
value.

Design Documents

958



• If the expression was computable in any way, this method returns the APValue for the result of the expression.

• If the expression is not evaluatable at all, this method returns information on one of the problems with the
expression. This includes a SourceLocation for where the problem is, and a diagnostic ID that explains the
problem. The diagnostic should have ERROR type.

• If the expression is not an integer constant expression, this method returns information on one of the problems
with the expression. This includes a SourceLocation for where the problem is, and a diagnostic ID that
explains the problem. The diagnostic should have EXTENSION type.

This information gives various clients the flexibility that they want, and we will eventually have some helper methods
for various extensions. For example, Sema should have a Sema::VerifyIntegerConstantExpression
method, which calls Evaluate on the expression. If the expression is not foldable, the error is emitted, and it would
return true. If the expression is not an i-c-e, the EXTENSION diagnostic is emitted. Finally it would return false to
indicate that the AST is OK.

Other clients can use the information in other ways, for example, codegen can just use expressions that are foldable
in any way.

Extensions

This section describes how some of the various extensions Clang supports interacts with constant evaluation:

• __extension__: The expression form of this extension causes any evaluatable subexpression to be accepted
as an integer constant expression.

• __builtin_constant_p: This returns true (as an integer constant expression) if the operand evaluates to
either a numeric value (that is, not a pointer cast to integral type) of integral, enumeration, floating or complex
type, or if it evaluates to the address of the first character of a string literal (possibly cast to some other type). As
a special case, if __builtin_constant_p is the (potentially parenthesized) condition of a conditional
operator expression (”?:”), only the true side of the conditional operator is considered, and it is evaluated with
full constant folding.

• __builtin_choose_expr: The condition is required to be an integer constant expression, but we accept any
constant as an “extension of an extension”. This only evaluates one operand depending on which way the
condition evaluates.

• __builtin_classify_type: This always returns an integer constant expression.

• __builtin_inf, nan, ...: These are treated just like a floating-point literal.

• __builtin_abs, copysign, ...: These are constant folded as general constant expressions.

• __builtin_strlen and strlen: These are constant folded as integer constant expressions if the argument
is a string literal.

The Sema Library
This library is called by the Parser library during parsing to do semantic analysis of the input. For valid programs,
Sema builds an AST for parsed constructs.

The CodeGen Library
CodeGen takes an AST as input and produces LLVM IR code from it.

How to change Clang

How to add an attribute

Attributes are a form of metadata that can be attached to a program construct, allowing the programmer to pass
semantic information along to the compiler for various uses. For example, attributes may be used to alter the code
generation for a program construct, or to provide extra semantic information for static analysis. This document
explains how to add a custom attribute to Clang. Documentation on existing attributes can be found here.

Design Documents

959

file://llvm.org/docs/LangRef.html
file://clang.llvm.org/docs/AttributeReference.html


Attribute Basics

Attributes in Clang are handled in three stages: parsing into a parsed attribute representation, conversion from a
parsed attribute into a semantic attribute, and then the semantic handling of the attribute.

Parsing of the attribute is determined by the various syntactic forms attributes can take, such as GNU, C++11, and
Microsoft style attributes, as well as other information provided by the table definition of the attribute. Ultimately, the
parsed representation of an attribute object is an ParsedAttr object. These parsed attributes chain together as a
list of parsed attributes attached to a declarator or declaration specifier. The parsing of attributes is handled
automatically by Clang, except for attributes spelled as keywords. When implementing a keyword attribute, the
parsing of the keyword and creation of the ParsedAttr object must be done manually.

Eventually, Sema::ProcessDeclAttributeList() is called with a Decl and a ParsedAttr, at which point the
parsed attribute can be transformed into a semantic attribute. The process by which a parsed attribute is converted
into a semantic attribute depends on the attribute definition and semantic requirements of the attribute. The end
result, however, is that the semantic attribute object is attached to the Decl object, and can be obtained by a call to
Decl::getAttr<T>(). Similarly, for statement attributes, Sema::ProcessStmtAttributes() is called with a
Stmt a list of ParsedAttr objects to be converted into a semantic attribute.

The structure of the semantic attribute is also governed by the attribute definition given in Attr.td. This definition is
used to automatically generate functionality used for the implementation of the attribute, such as a class derived from
clang::Attr, information for the parser to use, automated semantic checking for some attributes, etc.

include/clang/Basic/Attr.td

The first step to adding a new attribute to Clang is to add its definition to include/clang/Basic/Attr.td. This tablegen
definition must derive from the Attr (tablegen, not semantic) type, or one of its derivatives. Most attributes will
derive from the InheritableAttr type, which specifies that the attribute can be inherited by later redeclarations of
the Decl it is associated with. InheritableParamAttr is similar to InheritableAttr, except that the attribute
is written on a parameter instead of a declaration. If the attribute applies to statements, it should inherit from
StmtAttr. If the attribute is intended to apply to a type instead of a declaration, such an attribute should derive from
TypeAttr, and will generally not be given an AST representation. (Note that this document does not cover the
creation of type attributes.) An attribute that inherits from IgnoredAttr is parsed, but will generate an ignored
attribute diagnostic when used, which may be useful when an attribute is supported by another vendor but not
supported by clang.

The definition will specify several key pieces of information, such as the semantic name of the attribute, the spellings
the attribute supports, the arguments the attribute expects, and more. Most members of the Attr tablegen type do
not require definitions in the derived definition as the default suffice. However, every attribute must specify at least a
spelling list, a subject list, and a documentation list.

Spellings

All attributes are required to specify a spelling list that denotes the ways in which the attribute can be spelled. For
instance, a single semantic attribute may have a keyword spelling, as well as a C++11 spelling and a GNU spelling.
An empty spelling list is also permissible and may be useful for attributes which are created implicitly. The following
spellings are accepted:

Spelling Description

GNU Spelled with a GNU-style __attribute__((attr)) syntax and placement.

CXX11 Spelled with a C++-style [[attr]] syntax with an optional vendor-specific namespace.

C2x Spelled with a C-style [[attr]] syntax with an optional vendor-specific namespace.

Declspec Spelled with a Microsoft-style __declspec(attr) syntax.

Keyword The attribute is spelled as a keyword, and required custom parsing.

GCC Specifies two or three spellings: the first is a GNU-style spelling, the second is a C++-style
spelling with the gnu namespace, and the third is an optional C-style spelling with the gnu
namespace. Attributes should only specify this spelling for attributes supported by GCC.

Design Documents

960

https://github.com/llvm/llvm-project/blob/main/clang/include/clang/Basic/Attr.td


Spelling Description

Clang Specifies two or three spellings: the first is a GNU-style spelling, the second is a C++-style
spelling with the clang namespace, and the third is an optional C-style spelling with the
clang namespace. By default, a C-style spelling is provided.

Pragma The attribute is spelled as a #pragma, and requires custom processing within the
preprocessor. If the attribute is meant to be used by Clang, it should set the namespace to
"clang". Note that this spelling is not used for declaration attributes.

Subjects

Attributes appertain to one or more subjects. If the attribute attempts to attach to a subject that is not in the subject
list, a diagnostic is issued automatically. Whether the diagnostic is a warning or an error depends on how the
attribute’s SubjectList is defined, but the default behavior is to warn. The diagnostics displayed to the user are
automatically determined based on the subjects in the list, but a custom diagnostic parameter can also be specified
in the SubjectList. The diagnostics generated for subject list violations are calculated automatically or specified
by the subject list itself. If a previously unused Decl node is added to the SubjectList, the logic used to
automatically determine the diagnostic parameter in utils/TableGen/ClangAttrEmitter.cpp may need to be updated.

By default, all subjects in the SubjectList must either be a Decl node defined in DeclNodes.td, or a statement node
defined in StmtNodes.td. However, more complex subjects can be created by creating a SubsetSubject object.
Each such object has a base subject which it appertains to (which must be a Decl or Stmt node, and not a
SubsetSubject node), and some custom code which is called when determining whether an attribute appertains to
the subject. For instance, a NonBitField SubsetSubject appertains to a FieldDecl, and tests whether the given
FieldDecl is a bit field. When a SubsetSubject is specified in a SubjectList, a custom diagnostic parameter must also
be provided.

Diagnostic checking for attribute subject lists for declaration and statement attributes is automated except when
HasCustomParsing is set to 1.

Documentation

All attributes must have some form of documentation associated with them. Documentation is table generated on the
public web server by a server-side process that runs daily. Generally, the documentation for an attribute is a
stand-alone definition in include/clang/Basic/AttrDocs.td that is named after the attribute being documented.

If the attribute is not for public consumption, or is an implicitly-created attribute that has no visible spelling, the
documentation list can specify the Undocumented object. Otherwise, the attribute should have its documentation
added to AttrDocs.td.

Documentation derives from the Documentation tablegen type. All derived types must specify a documentation
category and the actual documentation itself. Additionally, it can specify a custom heading for the attribute, though a
default heading will be chosen when possible.

There are four predefined documentation categories: DocCatFunction for attributes that appertain to function-like
subjects, DocCatVariable for attributes that appertain to variable-like subjects, DocCatType for type attributes,
and DocCatStmt for statement attributes. A custom documentation category should be used for groups of attributes
with similar functionality. Custom categories are good for providing overview information for the attributes grouped
under it. For instance, the consumed annotation attributes define a custom category, DocCatConsumed, that
explains what consumed annotations are at a high level.

Documentation content (whether it is for an attribute or a category) is written using reStructuredText (RST) syntax.

After writing the documentation for the attribute, it should be locally tested to ensure that there are no issues
generating the documentation on the server. Local testing requires a fresh build of clang-tblgen. To generate the
attribute documentation, execute the following command:
clang-tblgen -gen-attr-docs -I /path/to/clang/include /path/to/clang/include/clang/Basic/Attr.td -o /path/to/clang/docs/AttributeReference.rst

When testing locally, do not commit changes to AttributeReference.rst. This file is generated by the server
automatically, and any changes made to this file will be overwritten.

Design Documents

961

https://github.com/llvm/llvm-project/blob/main/clang/utils/TableGen/ClangAttrEmitter.cpp
https://github.com/llvm/llvm-project/blob/main/clang/include/clang/Basic/AttrDocs.td


Arguments

Attributes may optionally specify a list of arguments that can be passed to the attribute. Attribute arguments specify
both the parsed form and the semantic form of the attribute. For example, if Args is
[StringArgument<"Arg1">, IntArgument<"Arg2">] then
__attribute__((myattribute("Hello", 3))) will be a valid use; it requires two arguments while parsing,
and the Attr subclass’ constructor for the semantic attribute will require a string and integer argument.

All arguments have a name and a flag that specifies whether the argument is optional. The associated C++ type of
the argument is determined by the argument definition type. If the existing argument types are insufficient, new types
can be created, but it requires modifying utils/TableGen/ClangAttrEmitter.cpp to properly support the type.

Other Properties

The Attr definition has other members which control the behavior of the attribute. Many of them are
special-purpose and beyond the scope of this document, however a few deserve mention.

If the parsed form of the attribute is more complex, or differs from the semantic form, the HasCustomParsing bit
can be set to 1 for the class, and the parsing code in Parser::ParseGNUAttributeArgs() can be updated for the
special case. Note that this only applies to arguments with a GNU spelling – attributes with a __declspec spelling
currently ignore this flag and are handled by Parser::ParseMicrosoftDeclSpec.

Note that setting this member to 1 will opt out of common attribute semantic handling, requiring extra implementation
efforts to ensure the attribute appertains to the appropriate subject, etc.

If the attribute should not be propagated from a template declaration to an instantiation of the template, set the
Clone member to 0. By default, all attributes will be cloned to template instantiations.

Attributes that do not require an AST node should set the ASTNode field to 0 to avoid polluting the AST. Note that
anything inheriting from TypeAttr or IgnoredAttr automatically do not generate an AST node. All other attributes
generate an AST node by default. The AST node is the semantic representation of the attribute.

The LangOpts field specifies a list of language options required by the attribute. For instance, all of the
CUDA-specific attributes specify [CUDA] for the LangOpts field, and when the CUDA language option is not
enabled, an “attribute ignored” warning diagnostic is emitted. Since language options are not table generated nodes,
new language options must be created manually and should specify the spelling used by LangOptions class.

Custom accessors can be generated for an attribute based on the spelling list for that attribute. For instance, if an
attribute has two different spellings: ‘Foo’ and ‘Bar’, accessors can be created:
[Accessor<"isFoo", [GNU<"Foo">]>, Accessor<"isBar", [GNU<"Bar">]>] These accessors will be
generated on the semantic form of the attribute, accepting no arguments and returning a bool.

Attributes that do not require custom semantic handling should set the SemaHandler field to 0. Note that anything
inheriting from IgnoredAttr automatically do not get a semantic handler. All other attributes are assumed to use a
semantic handler by default. Attributes without a semantic handler are not given a parsed attribute Kind enumerator.

“Simple” attributes, that require no custom semantic processing aside from what is automatically provided, should set
the SimpleHandler field to 1.

Target-specific attributes may share a spelling with other attributes in different targets. For instance, the ARM and
MSP430 targets both have an attribute spelled GNU<"interrupt">, but with different parsing and semantic
requirements. To support this feature, an attribute inheriting from TargetSpecificAttribute may specify a
ParseKind field. This field should be the same value between all arguments sharing a spelling, and corresponds to
the parsed attribute’s Kind enumerator. This allows attributes to share a parsed attribute kind, but have distinct
semantic attribute classes. For instance, ParsedAttr is the shared parsed attribute kind, but ARMInterruptAttr and
MSP430InterruptAttr are the semantic attributes generated.

By default, attribute arguments are parsed in an evaluated context. If the arguments for an attribute should be parsed
in an unevaluated context (akin to the way the argument to a sizeof expression is parsed), set
ParseArgumentsAsUnevaluated to 1.

If additional functionality is desired for the semantic form of the attribute, the AdditionalMembers field specifies
code to be copied verbatim into the semantic attribute class object, with public access.

If two or more attributes cannot be used in combination on the same declaration or statement, a
MutualExclusions definition can be supplied to automatically generate diagnostic code. This will disallow the
attribute combinations regardless of spellings used. Additionally, it will diagnose combinations within the same
attribute list, different attribute list, and redeclarations, as appropriate.

Design Documents

962

https://github.com/llvm/llvm-project/blob/main/clang/utils/TableGen/ClangAttrEmitter.cpp
https://github.com/llvm/llvm-project/blob/main/clang/lib/Parse/ParseDecl.cpp


Boilerplate

All semantic processing of declaration attributes happens in lib/Sema/SemaDeclAttr.cpp, and generally starts in the
ProcessDeclAttribute() function. If the attribute has the SimpleHandler field set to 1 then the function to
process the attribute will be automatically generated, and nothing needs to be done here. Otherwise, write a new
handleYourAttr() function, and add that to the switch statement. Please do not implement handling logic directly
in the case for the attribute.

Unless otherwise specified by the attribute definition, common semantic checking of the parsed attribute is handled
automatically. This includes diagnosing parsed attributes that do not appertain to the given Decl or Stmt, ensuring
the correct minimum number of arguments are passed, etc.

If the attribute adds additional warnings, define a DiagGroup in include/clang/Basic/DiagnosticGroups.td named
after the attribute’s Spelling with “_”s replaced by “-“s. If there is only a single diagnostic, it is permissible to use
InGroup<DiagGroup<"your-attribute">> directly in DiagnosticSemaKinds.td

All semantic diagnostics generated for your attribute, including automatically- generated ones (such as subjects and
argument counts), should have a corresponding test case.

Semantic handling

Most attributes are implemented to have some effect on the compiler. For instance, to modify the way code is
generated, or to add extra semantic checks for an analysis pass, etc. Having added the attribute definition and
conversion to the semantic representation for the attribute, what remains is to implement the custom logic requiring
use of the attribute.

The clang::Decl object can be queried for the presence or absence of an attribute using hasAttr<T>(). To
obtain a pointer to the semantic representation of the attribute, getAttr<T> may be used.

The clang::AttributedStmt object can be queried for the presence or absence of an attribute by calling
getAttrs() and looping over the list of attributes.

How to add an expression or statement

Expressions and statements are one of the most fundamental constructs within a compiler, because they interact
with many different parts of the AST, semantic analysis, and IR generation. Therefore, adding a new expression or
statement kind into Clang requires some care. The following list details the various places in Clang where an
expression or statement needs to be introduced, along with patterns to follow to ensure that the new expression or
statement works well across all of the C languages. We focus on expressions, but statements are similar.

1. Introduce parsing actions into the parser. Recursive-descent parsing is mostly self-explanatory, but there are a
few things that are worth keeping in mind:

• Keep as much source location information as possible! You’ll want it later to produce great diagnostics and
support Clang’s various features that map between source code and the AST.

• Write tests for all of the “bad” parsing cases, to make sure your recovery is good. If you have matched
delimiters (e.g., parentheses, square brackets, etc.), use Parser::BalancedDelimiterTracker to
give nice diagnostics when things go wrong.

2. Introduce semantic analysis actions into Sema. Semantic analysis should always involve two functions: an
ActOnXXX function that will be called directly from the parser, and a BuildXXX function that performs the
actual semantic analysis and will (eventually!) build the AST node. It’s fairly common for the ActOnCXX function
to do very little (often just some minor translation from the parser’s representation to Sema’s representation of
the same thing), but the separation is still important: C++ template instantiation, for example, should always call
the BuildXXX variant. Several notes on semantic analysis before we get into construction of the AST:

• Your expression probably involves some types and some subexpressions. Make sure to fully check that
those types, and the types of those subexpressions, meet your expectations. Add implicit conversions
where necessary to make sure that all of the types line up exactly the way you want them. Write extensive
tests to check that you’re getting good diagnostics for mistakes and that you can use various forms of
subexpressions with your expression.

• When type-checking a type or subexpression, make sure to first check whether the type is “dependent”
(Type::isDependentType()) or whether a subexpression is type-dependent

Design Documents

963

https://github.com/llvm/llvm-project/blob/main/clang/lib/Sema/SemaDeclAttr.cpp
https://github.com/llvm/llvm-project/blob/main/clang/include/clang/Basic/DiagnosticGroups.td
https://github.com/llvm/llvm-project/blob/main/clang/include/clang/Basic/DiagnosticSemaKinds.td


(Expr::isTypeDependent()). If any of these return true, then you’re inside a template and you can’t
do much type-checking now. That’s normal, and your AST node (when you get there) will have to deal with
this case. At this point, you can write tests that use your expression within templates, but don’t try to
instantiate the templates.

• For each subexpression, be sure to call Sema::CheckPlaceholderExpr() to deal with “weird”
expressions that don’t behave well as subexpressions. Then, determine whether you need to perform
lvalue-to-rvalue conversions (Sema::DefaultLvalueConversions) or the usual unary conversions
(Sema::UsualUnaryConversions), for places where the subexpression is producing a value you
intend to use.

• Your BuildXXX function will probably just return ExprError() at this point, since you don’t have an
AST. That’s perfectly fine, and shouldn’t impact your testing.

3. Introduce an AST node for your new expression. This starts with declaring the node in
include/Basic/StmtNodes.td and creating a new class for your expression in the appropriate
include/AST/Expr*.h header. It’s best to look at the class for a similar expression to get ideas, and there
are some specific things to watch for:

• If you need to allocate memory, use the ASTContext allocator to allocate memory. Never use raw
malloc or new, and never hold any resources in an AST node, because the destructor of an AST node is
never called.

• Make sure that getSourceRange() covers the exact source range of your expression. This is needed for
diagnostics and for IDE support.

• Make sure that children() visits all of the subexpressions. This is important for a number of features
(e.g., IDE support, C++ variadic templates). If you have sub-types, you’ll also need to visit those sub-types
in RecursiveASTVisitor.

• Add printing support (StmtPrinter.cpp) for your expression.

• Add profiling support (StmtProfile.cpp) for your AST node, noting the distinguishing (non-source
location) characteristics of an instance of your expression. Omitting this step will lead to hard-to-diagnose
failures regarding matching of template declarations.

• Add serialization support (ASTReaderStmt.cpp, ASTWriterStmt.cpp) for your AST node.

4. Teach semantic analysis to build your AST node. At this point, you can wire up your Sema::BuildXXX function
to actually create your AST. A few things to check at this point:

• If your expression can construct a new C++ class or return a new Objective-C object, be sure to update
and then call Sema::MaybeBindToTemporary for your just-created AST node to be sure that the object
gets properly destructed. An easy way to test this is to return a C++ class with a private destructor:
semantic analysis should flag an error here with the attempt to call the destructor.

• Inspect the generated AST by printing it using clang -cc1 -ast-print, to make sure you’re capturing
all of the important information about how the AST was written.

• Inspect the generated AST under clang -cc1 -ast-dump to verify that all of the types in the generated
AST line up the way you want them. Remember that clients of the AST should never have to “think” to
understand what’s going on. For example, all implicit conversions should show up explicitly in the AST.

• Write tests that use your expression as a subexpression of other, well-known expressions. Can you call a
function using your expression as an argument? Can you use the ternary operator?

5. Teach code generation to create IR to your AST node. This step is the first (and only) that requires knowledge
of LLVM IR. There are several things to keep in mind:

• Code generation is separated into scalar/aggregate/complex and lvalue/rvalue paths, depending on what
kind of result your expression produces. On occasion, this requires some careful factoring of code to avoid
duplication.

• CodeGenFunction contains functions ConvertType and ConvertTypeForMem that convert Clang’s
types (clang::Type* or clang::QualType) to LLVM types. Use the former for values, and the latter
for memory locations: test with the C++ “bool” type to check this. If you find that you are having to use
LLVM bitcasts to make the subexpressions of your expression have the type that your expression expects,
STOP! Go fix semantic analysis and the AST so that you don’t need these bitcasts.

Design Documents

964



• The CodeGenFunction class has a number of helper functions to make certain operations easy, such as
generating code to produce an lvalue or an rvalue, or to initialize a memory location with a given value.
Prefer to use these functions rather than directly writing loads and stores, because these functions take
care of some of the tricky details for you (e.g., for exceptions).

• If your expression requires some special behavior in the event of an exception, look at the
push*Cleanup functions in CodeGenFunction to introduce a cleanup. You shouldn’t have to deal with
exception-handling directly.

• Testing is extremely important in IR generation. Use clang -cc1 -emit-llvm and FileCheck to verify
that you’re generating the right IR.

6. Teach template instantiation how to cope with your AST node, which requires some fairly simple code:

• Make sure that your expression’s constructor properly computes the flags for type dependence (i.e., the
type your expression produces can change from one instantiation to the next), value dependence (i.e., the
constant value your expression produces can change from one instantiation to the next), instantiation
dependence (i.e., a template parameter occurs anywhere in your expression), and whether your
expression contains a parameter pack (for variadic templates). Often, computing these flags just means
combining the results from the various types and subexpressions.

• Add TransformXXX and RebuildXXX functions to the TreeTransform class template in Sema.
TransformXXX should (recursively) transform all of the subexpressions and types within your expression,
using getDerived().TransformYYY. If all of the subexpressions and types transform without error, it
will then call the RebuildXXX function, which will in turn call getSema().BuildXXX to perform semantic
analysis and build your expression.

• To test template instantiation, take those tests you wrote to make sure that you were type checking with
type-dependent expressions and dependent types (from step #2) and instantiate those templates with
various types, some of which type-check and some that don’t, and test the error messages in each case.

7. There are some “extras” that make other features work better. It’s worth handling these extras to give your
expression complete integration into Clang:

• Add code completion support for your expression in SemaCodeComplete.cpp.

• If your expression has types in it, or has any “interesting” features other than subexpressions, extend
libclang’s CursorVisitor to provide proper visitation for your expression, enabling various IDE features
such as syntax highlighting, cross-referencing, and so on. The c-index-test helper program can be
used to test these features.

Driver Design & Internals
Introduction 966

Features and Goals 966

GCC Compatibility 966

Flexible 966

Low Overhead 966

Simple 966

Internal Design and Implementation 966

Internals Introduction 967

Design Overview 967

Driver Stages 968

Additional Notes 971

The Compilation Object 971

Unified Parsing & Pipelining 971

ToolChain Argument Translation 971

Unused Argument Warnings 971

Relation to GCC Driver Concepts 971

Driver Design & Internals

965

https://llvm.org/docs/CommandGuide/FileCheck.html


Introduction
This document describes the Clang driver. The purpose of this document is to describe both the motivation and
design goals for the driver, as well as details of the internal implementation.

Features and Goals
The Clang driver is intended to be a production quality compiler driver providing access to the Clang compiler and
tools, with a command line interface which is compatible with the gcc driver.

Although the driver is part of and driven by the Clang project, it is logically a separate tool which shares many of the
same goals as Clang:
GCC Compatibility 966

Flexible 966

Low Overhead 966

Simple 966

GCC Compatibility

The number one goal of the driver is to ease the adoption of Clang by allowing users to drop Clang into a build
system which was designed to call GCC. Although this makes the driver much more complicated than might
otherwise be necessary, we decided that being very compatible with the gcc command line interface was worth it in
order to allow users to quickly test clang on their projects.

Flexible

The driver was designed to be flexible and easily accommodate new uses as we grow the clang and LLVM
infrastructure. As one example, the driver can easily support the introduction of tools which have an integrated
assembler; something we hope to add to LLVM in the future.

Similarly, most of the driver functionality is kept in a library which can be used to build other tools which want to
implement or accept a gcc like interface.

Low Overhead

The driver should have as little overhead as possible. In practice, we found that the gcc driver by itself incurred a
small but meaningful overhead when compiling many small files. The driver doesn’t do much work compared to a
compilation, but we have tried to keep it as efficient as possible by following a few simple principles:

• Avoid memory allocation and string copying when possible.

• Don’t parse arguments more than once.

• Provide a few simple interfaces for efficiently searching arguments.

Simple

Finally, the driver was designed to be “as simple as possible”, given the other goals. Notably, trying to be completely
compatible with the gcc driver adds a significant amount of complexity. However, the design of the driver attempts to
mitigate this complexity by dividing the process into a number of independent stages instead of a single monolithic
task.

Internal Design and Implementation
Internals Introduction 967

Design Overview 967

Driver Stages 968

Additional Notes 971

Relation to GCC Driver Concepts 971

Driver Design & Internals

966



Internals Introduction

In order to satisfy the stated goals, the driver was designed to completely subsume the functionality of the gcc
executable; that is, the driver should not need to delegate to gcc to perform subtasks. On Darwin, this implies that
the Clang driver also subsumes the gcc driver-driver, which is used to implement support for building universal
images (binaries and object files). This also implies that the driver should be able to call the language specific
compilers (e.g. cc1) directly, which means that it must have enough information to forward command line arguments
to child processes correctly.

Design Overview

The diagram below shows the significant components of the driver architecture and how they relate to one another.
The orange components represent concrete data structures built by the driver, the green components indicate
conceptually distinct stages which manipulate these data structures, and the blue components are important helper
classes.

Driver Design & Internals

967



Driver Stages

The driver functionality is conceptually divided into five stages:

1. Parse: Option Parsing

Driver Design & Internals

968



The command line argument strings are decomposed into arguments (Arg instances). The driver expects to
understand all available options, although there is some facility for just passing certain classes of options
through (like -Wl,).

Each argument corresponds to exactly one abstract Option definition, which describes how the option is
parsed along with some additional metadata. The Arg instances themselves are lightweight and merely contain
enough information for clients to determine which option they correspond to and their values (if they have
additional parameters).

For example, a command line like “-Ifoo -I foo” would parse to two Arg instances (a JoinedArg and a
SeparateArg instance), but each would refer to the same Option.

Options are lazily created in order to avoid populating all Option classes when the driver is loaded. Most of the
driver code only needs to deal with options by their unique ID (e.g., options::OPT_I),

Arg instances themselves do not generally store the values of parameters. In many cases, this would simply
result in creating unnecessary string copies. Instead, Arg instances are always embedded inside an ArgList
structure, which contains the original vector of argument strings. Each Arg itself only needs to contain an index
into this vector instead of storing its values directly.

The clang driver can dump the results of this stage using the -### flag (which must precede any actual
command line arguments). For example:

$ clang -### -Xarch_i386 -fomit-frame-pointer -Wa,-fast -Ifoo -I foo t.c
Option 0 - Name: "-Xarch_", Values: {"i386", "-fomit-frame-pointer"}
Option 1 - Name: "-Wa,", Values: {"-fast"}
Option 2 - Name: "-I", Values: {"foo"}
Option 3 - Name: "-I", Values: {"foo"}
Option 4 - Name: "<input>", Values: {"t.c"}

After this stage is complete the command line should be broken down into well defined option objects with their
appropriate parameters. Subsequent stages should rarely, if ever, need to do any string processing.

2. Pipeline: Compilation Action Construction

Once the arguments are parsed, the tree of subprocess jobs needed for the desired compilation sequence are
constructed. This involves determining the input files and their types, what work is to be done on them
(preprocess, compile, assemble, link, etc.), and constructing a list of Action instances for each task. The result
is a list of one or more top-level actions, each of which generally corresponds to a single output (for example,
an object or linked executable).

The majority of Actions correspond to actual tasks, however there are two special Actions. The first is
InputAction, which simply serves to adapt an input argument for use as an input to other Actions. The second is
BindArchAction, which conceptually alters the architecture to be used for all of its input Actions.

The clang driver can dump the results of this stage using the -ccc-print-phases flag. For example:

$ clang -ccc-print-phases -x c t.c -x assembler t.s
0: input, "t.c", c
1: preprocessor, {0}, cpp-output
2: compiler, {1}, assembler
3: assembler, {2}, object
4: input, "t.s", assembler
5: assembler, {4}, object
6: linker, {3, 5}, image

Here the driver is constructing seven distinct actions, four to compile the “t.c” input into an object file, two to
assemble the “t.s” input, and one to link them together.

A rather different compilation pipeline is shown here; in this example there are two top level actions to compile
the input files into two separate object files, where each object file is built using lipo to merge results built for
two separate architectures.

$ clang -ccc-print-phases -c -arch i386 -arch x86_64 t0.c t1.c
0: input, "t0.c", c
1: preprocessor, {0}, cpp-output

Driver Design & Internals

969



2: compiler, {1}, assembler
3: assembler, {2}, object
4: bind-arch, "i386", {3}, object
5: bind-arch, "x86_64", {3}, object
6: lipo, {4, 5}, object
7: input, "t1.c", c
8: preprocessor, {7}, cpp-output
9: compiler, {8}, assembler
10: assembler, {9}, object
11: bind-arch, "i386", {10}, object
12: bind-arch, "x86_64", {10}, object
13: lipo, {11, 12}, object

After this stage is complete the compilation process is divided into a simple set of actions which need to be
performed to produce intermediate or final outputs (in some cases, like -fsyntax-only, there is no “real” final
output). Phases are well known compilation steps, such as “preprocess”, “compile”, “assemble”, “link”, etc.

3. Bind: Tool & Filename Selection

This stage (in conjunction with the Translate stage) turns the tree of Actions into a list of actual subprocess to
run. Conceptually, the driver performs a top down matching to assign Action(s) to Tools. The ToolChain is
responsible for selecting the tool to perform a particular action; once selected the driver interacts with the tool to
see if it can match additional actions (for example, by having an integrated preprocessor).

Once Tools have been selected for all actions, the driver determines how the tools should be connected (for
example, using an inprocess module, pipes, temporary files, or user provided filenames). If an output file is
required, the driver also computes the appropriate file name (the suffix and file location depend on the input
types and options such as -save-temps).

The driver interacts with a ToolChain to perform the Tool bindings. Each ToolChain contains information about
all the tools needed for compilation for a particular architecture, platform, and operating system. A single driver
invocation may query multiple ToolChains during one compilation in order to interact with tools for separate
architectures.

The results of this stage are not computed directly, but the driver can print the results via the
-ccc-print-bindings option. For example:
$ clang -ccc-print-bindings -arch i386 -arch ppc t0.c
# "i386-apple-darwin9" - "clang", inputs: ["t0.c"], output: "/tmp/cc-Sn4RKF.s"
# "i386-apple-darwin9" - "darwin::Assemble", inputs: ["/tmp/cc-Sn4RKF.s"], output: "/tmp/cc-gvSnbS.o"
# "i386-apple-darwin9" - "darwin::Link", inputs: ["/tmp/cc-gvSnbS.o"], output: "/tmp/cc-jgHQxi.out"
# "ppc-apple-darwin9" - "gcc::Compile", inputs: ["t0.c"], output: "/tmp/cc-Q0bTox.s"
# "ppc-apple-darwin9" - "gcc::Assemble", inputs: ["/tmp/cc-Q0bTox.s"], output: "/tmp/cc-WCdicw.o"
# "ppc-apple-darwin9" - "gcc::Link", inputs: ["/tmp/cc-WCdicw.o"], output: "/tmp/cc-HHBEBh.out"
# "i386-apple-darwin9" - "darwin::Lipo", inputs: ["/tmp/cc-jgHQxi.out", "/tmp/cc-HHBEBh.out"], output: "a.out"

This shows the tool chain, tool, inputs and outputs which have been bound for this compilation sequence. Here
clang is being used to compile t0.c on the i386 architecture and darwin specific versions of the tools are being
used to assemble and link the result, but generic gcc versions of the tools are being used on PowerPC.

4. Translate: Tool Specific Argument Translation

Once a Tool has been selected to perform a particular Action, the Tool must construct concrete Commands
which will be executed during compilation. The main work is in translating from the gcc style command line
options to whatever options the subprocess expects.

Some tools, such as the assembler, only interact with a handful of arguments and just determine the path of the
executable to call and pass on their input and output arguments. Others, like the compiler or the linker, may
translate a large number of arguments in addition.

The ArgList class provides a number of simple helper methods to assist with translating arguments; for
example, to pass on only the last of arguments corresponding to some option, or all arguments for an option.

The result of this stage is a list of Commands (executable paths and argument strings) to execute.

5. Execute
Finally, the compilation pipeline is executed. This is mostly straightforward, although there is some interaction
with options like -pipe, -pass-exit-codes and -time.

Driver Design & Internals

970



Additional Notes

The Compilation Object

The driver constructs a Compilation object for each set of command line arguments. The Driver itself is intended to
be invariant during construction of a Compilation; an IDE should be able to construct a single long lived driver
instance to use for an entire build, for example.

The Compilation object holds information that is particular to each compilation sequence. For example, the list of
used temporary files (which must be removed once compilation is finished) and result files (which should be removed
if compilation fails).

Unified Parsing & Pipelining

Parsing and pipelining both occur without reference to a Compilation instance. This is by design; the driver expects
that both of these phases are platform neutral, with a few very well defined exceptions such as whether the platform
uses a driver driver.

ToolChain Argument Translation

In order to match gcc very closely, the clang driver currently allows tool chains to perform their own translation of the
argument list (into a new ArgList data structure). Although this allows the clang driver to match gcc easily, it also
makes the driver operation much harder to understand (since the Tools stop seeing some arguments the user
provided, and see new ones instead).

For example, on Darwin -gfull gets translated into two separate arguments, -g and
-fno-eliminate-unused-debug-symbols. Trying to write Tool logic to do something with -gfull will not
work, because Tool argument translation is done after the arguments have been translated.

A long term goal is to remove this tool chain specific translation, and instead force each tool to change its own logic
to do the right thing on the untranslated original arguments.

Unused Argument Warnings

The driver operates by parsing all arguments but giving Tools the opportunity to choose which arguments to pass on.
One downside of this infrastructure is that if the user misspells some option, or is confused about which options to
use, some command line arguments the user really cared about may go unused. This problem is particularly
important when using clang as a compiler, since the clang compiler does not support anywhere near all the options
that gcc does, and we want to make sure users know which ones are being used.

To support this, the driver maintains a bit associated with each argument of whether it has been used (at all) during
the compilation. This bit usually doesn’t need to be set by hand, as the key ArgList accessors will set it automatically.

When a compilation is successful (there are no errors), the driver checks the bit and emits an “unused argument”
warning for any arguments which were never accessed. This is conservative (the argument may not have been used
to do what the user wanted) but still catches the most obvious cases.

Relation to GCC Driver Concepts

For those familiar with the gcc driver, this section provides a brief overview of how things from the gcc driver map to
the clang driver.

• Driver Driver

The driver driver is fully integrated into the clang driver. The driver simply constructs additional Actions to bind
the architecture during the Pipeline phase. The tool chain specific argument translation is responsible for
handling -Xarch_.

The one caveat is that this approach requires -Xarch_ not be used to alter the compilation itself (for example,
one cannot provide -S as an -Xarch_ argument). The driver attempts to reject such invocations, and overall
there isn’t a good reason to abuse -Xarch_ to that end in practice.

The upside is that the clang driver is more efficient and does little extra work to support universal builds. It also
provides better error reporting and UI consistency.

Driver Design & Internals

971



• Specs

The clang driver has no direct correspondent for “specs”. The majority of the functionality that is embedded in
specs is in the Tool specific argument translation routines. The parts of specs which control the compilation
pipeline are generally part of the Pipeline stage.

• Toolchains

The gcc driver has no direct understanding of tool chains. Each gcc binary roughly corresponds to the
information which is embedded inside a single ToolChain.

The clang driver is intended to be portable and support complex compilation environments. All platform and tool
chain specific code should be protected behind either abstract or well defined interfaces (such as whether the
platform supports use as a driver driver).

Offloading Design & Internals
Introduction 972

OpenMP Offloading 972

Offloading Overview 972

Compilation Process 973

Generating Offloading Entries 973

Accessing Entries on the Device 974

Debugging Information 974

Offload Device Compilation 974

Creating Fat Objects 975

Linking Target Device Code 975

Device Binary Wrapping 975

Structure Types 975

Global Variables 976

Binary Descriptor for Device Images 976

Global Constructor and Destructor 977

Offloading Example 977

Introduction
This document describes the Clang driver and code generation steps for creating offloading applications. Clang
supports offloading to various architectures using programming models like CUDA, HIP, and OpenMP. The purpose
of this document is to illustrate the steps necessary to create an offloading application using Clang.

OpenMP Offloading
Clang supports OpenMP target offloading to several different architectures such as NVPTX, AMDGPU, X86_64,
Arm, and PowerPC. Offloading code is generated by Clang and then executed using the libomptarget runtime
and the associated plugin for the target architecture, e.g. libomptarget.rtl.cuda. This section describes the
steps necessary to create a functioning device image that can be loaded by the OpenMP runtime. More information
on the OpenMP runtimes can be found at the OpenMP documentation page.

Offloading Overview

The goal of offloading compilation is to create an executable device image that can be run on the target device.
OpenMP offloading creates executable images by compiling the input file for both the host and the target device. The
output from the device phase then needs to be embedded into the host to create a fat object. A special tool then
needs to extract the device code from the fat objects, run the device linking step, and embed the final image in a
symbol the host runtime library can use to register the library and access the symbols on the device.

Offloading Design & Internals

972

https://openmp.llvm.org


Compilation Process

The compiler performs the following high-level actions to generate OpenMP offloading code:

• Compile the input file for the host to produce a bitcode file. Lower #pragma omp target declarations to
offloading entries and create metadata to indicate which entries are on the device.

• Compile the input file for the target device using the offloading entry metadata created by the host.

• Link the OpenMP device runtime library and run the backend to create a device object file.

• Run the backend on the host bitcode file and create a fat object file using the device object file.

• Pass the fat object file to the linker wrapper tool and extract the device objects. Run the device linking action on
the extracted objects.

• Wrap the device images and offload entries in a symbol that can be accessed by the host.

• Add the wrapped binary to the linker input and run the host linking action. Link with libomptarget to register
and execute the images.

Generating Offloading Entries

The first step in compilation is to generate offloading entries for the host. This information is used to identify function
kernels or global values that will be provided by the device. Blocks contained in a #pragma omp target or
symbols inside a #pragma omp declare target directive will have offloading entries generated. The following
table shows the offload entry structure.

__tgt_offload_entry Structure

Type Identifier Description

void* addr Address of global symbol within device image (function or global)

char* name Name of the symbol

size_t size Size of the entry info (0 if it is a function)

int32_t flags Flags associated with the entry (see Target Region Entry Flags)

int32_t reserved Reserved, to be used by the runtime library.

The address of the global symbol will be set to the device pointer value by the runtime once the device image is
loaded. The flags are set to indicate the handling required for the offloading entry. If the offloading entry is an entry to
a target region it can have one of the following entry flags.

Target Region Entry Flags

Name Value Description

OMPTargetRegionEntryTargetRegion 0x00 Mark the entry as generic target region

OMPTargetRegionEntryCtor 0x02 Mark the entry as a global constructor

OMPTargetRegionEntryDtor 0x04 Mark the entry as a global destructor

If the offloading entry is a global variable, indicated by a non-zero size, it will instead have one of the following global
flags.

Target Region Global

Offloading Design & Internals

973



Name
Valu

e Description

OMPTargetGlobalVarEntryTo 0x00 Mark the entry as a ‘to’ attribute (w.r.t. the to clause)

OMPTargetGlobalVarEntryLin
k

0x01 Mark the entry as a ‘link’ attribute (w.r.t. the link clause)

The target offload entries are used by the runtime to access the device kernels and globals that will be provided by
the final device image. Each offloading entry is set to use the omp_offloading_entries section. When the final
application is created the linker will provide the __start_omp_offloading_entries and
__stop_omp_offloading_entries symbols which are used to create the final image.

This information is used by the device compilation stage to determine which symbols need to be exported from the
device. We use the omp_offload.info metadata node to pass this information device compilation stage.

Accessing Entries on the Device

Accessing the entries in the device is done using the address field in the offload entry. The runtime will set the
address to the pointer associated with the device image during runtime initialization. This is used to call the
corresponding kernel function when entering a #pragma omp target region. For variables, the runtime maintains
a table mapping host pointers to device pointers. Global variables inside a #pragma omp target declare
directive are first initialized to the host’s address. Once the device address is initialized we insert it into the table to
map the host address to the device address.

Debugging Information

We generate structures to hold debugging information that is passed to libomptarget. This allows the front-end to
generate information the runtime library uses for more informative error messages. This is done using the standard
identifier structure used in libomp and libomptarget. This is used to pass information and source locations to the
runtime.

ident_t Structure

Type Identifier Description

int32_t reserved Reserved, to be used by the runtime library.

int32_t flags Flags used to indicate some features, mostly unused.

int32_t reserved Reserved, to be used by the runtime library.

int32_t reserved Reserved, to be used by the runtime library.

char* psource Program source information, stored as “;filename;function;line;column;;\0”

If debugging information is enabled, we will also create strings to indicate the names and declarations of variables
mapped in target regions. These have the same format as the source location in the identifier structure, but the
function name is replaced with the variable name.

Offload Device Compilation

The input file is compiled for each active device toolchain. The device compilation stage is performed differently from
the host stage. Namely, we do not generate any offloading entries. This is set by passing the
-fopenmp-is-device flag to the front-end. We use the host bitcode to determine which symbols to export from
the device. The bitcode file is passed in from the previous stage using the -fopenmp-host-ir-file-path flag.
Compilation is otherwise performed as it would be for any other target triple.

When compiling for the OpenMP device, we set the visibility of all device symbols to be protected by default. This
improves performance and prevents a class of errors where a symbol in the target device could preempt a host
library.

The OpenMP runtime library is linked in during compilation to provide the implementations for standard OpenMP
functionality. For GPU targets this is done by linking in a special bitcode library during compilation, (e.g.
libomptarget-nvptx64-sm_70.bc) using the -mlink-builtin-bitcode flag. Other device libraries, such as

Offloading Design & Internals

974



CUDA’s libdevice, are also linked this way. If the target is a standard architecture with an existing libomp
implementation, that will be linked instead. Finally, device tools are used to create a relocatable device object file that
can be embedded in the host.

Creating Fat Objects

A fat binary is a binary file that contains information intended for another device. We create a fat object by
embedding the output of the device compilation stage into the host as a named section. The output from the device
compilation is passed to the host backend using the -fembed-offload-object flag. This embeds the device
image into the .llvm.offloading section using a special binary format that behaves like a string map. This binary
format is used to bundle metadata about the image so the linker can associate the proper device linking action with
the image. Each device image will start with the magic bytes 0x10FF10AD.

@llvm.embedded.object = private constant [1 x i8] c"\00", section ".llvm.offloading"

The device code will then be placed in the corresponding section one the backend is run on the host, creating a fat
object. Using fat objects allows us to treat offloading objects as standard host objects. The final object file should
contain the following offloading sections. We will use this information when Linking Target Device Code.

Offloading Sections

Section Description

omp_offloading_entries Offloading entry information (see __tgt_offload_entry structure)

.llvm.offloading Embedded device object file for the target device and architecture

Linking Target Device Code

Objects containing Offloading Sections require special handling to create an executable device image. This is done
using a Clang tool, see Clang Linker Wrapper for more information. This tool works as a wrapper over the host
linking job. It scans the input object files for the offloading section .llvm.offloading. The device files stored in
this section are then extracted and passed tot he appropriate linking job. The linked device image is then wrapped to
create the symbols used to load the device image and link it with the host.

The linker wrapper tool supports linking bitcode files through link time optimization (LTO). This is used whenever the
object files embedded in the host contain LLVM bitcode. Bitcode will be embedded for architectures that do not
support a relocatable object format, such as AMDGPU or SPIR-V, or if the user requested it using the
-foffload-lto flag.

Device Binary Wrapping

Various structures and functions are used to create the information necessary to offload code on the device. We use
the linked device executable with the corresponding offloading entries to create the symbols necessary to load and
execute the device image.

Structure Types

Several different structures are used to store offloading information. The device image structure stores a single
linked device image and its associated offloading entries. The offloading entries are stored using the
__start_omp_offloading_entries and __stop_omp_offloading_entries symbols generated by the
linker using the __tgt_offload_entry structure.

__tgt_device_image Structure

Type Identifier Description

void* ImageStart Pointer to the target code start

void* ImageEnd Pointer to the target code end

__tgt_offload_entry* EntriesBegin Begin of table with all target entries

Offloading Design & Internals

975



Type Identifier Description

__tgt_offload_entry* EntriesEnd End of table (non inclusive)

The target target binary descriptor is used to store all binary images and offloading entries in an array.

__tgt_bin_desc Structure

Type Identifier Description

int32_t NumDeviceImages Number of device types supported

__tgt_device_image* DeviceImages Array of device images (1 per dev. type)

__tgt_offload_entry* HostEntriesBegin Begin of table with all host entries

__tgt_offload_entry* HostEntriesEnd End of table (non inclusive)

Global Variables

Global Variables lists various global variables, along with their type and their explicit ELF sections, which are used to
store device images and related symbols.

Global Variables

Variable Type ELF Section Description

__start_omp_offloading
_entries

__tgt_offload_
entry

.omp_offloading_
entries

Begin symbol for the offload entries table.

__stop_omp_offloading
_entries

__tgt_offload_
entry

.omp_offloading_
entries

End symbol for the offload entries table.

__dummy.omp_offloadi
ng.entry

__tgt_offload_
entry

.omp_offloading_
entries

Dummy zero-sized object in the offload
entries section to force linker to define
begin/end symbols defined above.

.omp_offloading.device
_image

__tgt_device_i
mage

.omp_offloading_
entries

ELF device code object of the first image.

.omp_offloading.device
_image.N

__tgt_device_i
mage

.omp_offloading_
entries

ELF device code object of the (N+1)th image.

.omp_offloading.device
_images

__tgt_device_i
mage

.omp_offloading_
entries

Array of images.

.omp_offloading.descrip
tor

__tgt_bin_des
c

.omp_offloading_
entries

Binary descriptor object (see Binary
Descriptor for Device Images)

Binary Descriptor for Device Images

This object is passed to the offloading runtime at program startup and it describes all device images available in the
executable or shared library. It is defined as follows:

__attribute__((visibility("hidden")))
extern __tgt_offload_entry *__start_omp_offloading_entries;
__attribute__((visibility("hidden")))
extern __tgt_offload_entry *__stop_omp_offloading_entries;
static const char Image0[] = { <Bufs.front() contents> };
...
static const char ImageN[] = { <Bufs.back() contents> };
static const __tgt_device_image Images[] = {
  {
    Image0,                            /*ImageStart*/

Offloading Design & Internals

976



    Image0 + sizeof(Image0),           /*ImageEnd*/
    __start_omp_offloading_entries,    /*EntriesBegin*/
    __stop_omp_offloading_entries      /*EntriesEnd*/
  },
  ...
  {
    ImageN,                            /*ImageStart*/
    ImageN + sizeof(ImageN),           /*ImageEnd*/
    __start_omp_offloading_entries,    /*EntriesBegin*/
    __stop_omp_offloading_entries      /*EntriesEnd*/
  }
};
static const __tgt_bin_desc BinDesc = {
  sizeof(Images) / sizeof(Images[0]),  /*NumDeviceImages*/
  Images,                              /*DeviceImages*/
  __start_omp_offloading_entries,      /*HostEntriesBegin*/
  __stop_omp_offloading_entries        /*HostEntriesEnd*/
};

Global Constructor and Destructor

The global constructor (.omp_offloading.descriptor_reg()) registers the device images with the runtime by
calling the __tgt_register_lib() runtime function. The constructor is explicitly defined in .text.startup
section and is run once when the program starts. Similarly, the global destructor
(.omp_offloading.descriptor_unreg()) calls __tgt_unregister_lib() for the destructor and is also
defined in .text.startup section and run when the program exits.

Offloading Example

This section contains a simple example of generating offloading code using OpenMP offloading. We will use a simple
ZAXPY BLAS routine.

#include <complex>

using complex = std::complex<double>;

void zaxpy(complex *X, complex *Y, complex D, std::size_t N) {
#pragma omp target teams distribute parallel for
  for (std::size_t i = 0; i < N; ++i)
    Y[i] = D * X[i] + Y[i];
}

int main() {
  const std::size_t N = 1024;
  complex X[N], Y[N], D;
#pragma omp target data map(to:X[0 : N]) map(tofrom:Y[0 : N])
  zaxpy(X, Y, D, N);
}

This code is compiled using the following Clang flags.

$ clang++ -fopenmp -fopenmp-targets=nvptx64 -O3 zaxpy.cpp -c

The output section in the object file can be seen using the readelf utility. The .llvm.offloading section has the
SHF_EXCLUDE flag so it will be removed from the final executable or shared library by the linker.

$ llvm-readelf -WS zaxpy.o
Section Headers:
[Nr] Name                   Type     Address          Off    Size   ES Flg Lk Inf Al
[11] omp_offloading_entries PROGBITS 0000000000000000 0001f0 000040 00   A  0   0  1
[12] .llvm.offloading       PROGBITS 0000000000000000 000260 030950 00   E  0   0  8

Offloading Design & Internals

977



Compiling this file again will invoke the clang-linker-wrapper utility to extract and link the device code stored at
the section named .llvm.offloading and then use entries stored in the section named
omp_offloading_entries to create the symbols necessary for libomptarget to register the device image and
call the entry function.

$ clang++ -fopenmp -fopenmp-targets=nvptx64 zaxpy.o -o zaxpy
$ ./zaxpy

We can see the steps created by clang to generate the offloading code using the -ccc-print-phases option in
Clang. This matches the description in Offloading Overview.
$ clang++ -fopenmp -fopenmp-targets=nvptx64 -ccc-print-phases zaxpy.cpp
# "x86_64-unknown-linux-gnu" - "clang", inputs: ["zaxpy.cpp"], output: "/tmp/zaxpy-host.bc"
# "nvptx64-nvidia-cuda" - "clang", inputs: ["zaxpy.cpp", "/tmp/zaxpy-e6a41b.bc"], output: "/tmp/zaxpy-07f434.s"
# "nvptx64-nvidia-cuda" - "NVPTX::Assembler", inputs: ["/tmp/zaxpy-07f434.s"], output: "/tmp/zaxpy-0af7b7.o"
# "x86_64-unknown-linux-gnu" - "clang", inputs: ["/tmp/zaxpy-e6a41b.bc", "/tmp/zaxpy-0af7b7.o"], output: "/tmp/zaxpy-416cad.o"
# "x86_64-unknown-linux-gnu" - "Offload::Linker", inputs: ["/tmp/zaxpy-416cad.o"], output: "a.out"

Precompiled Header and Modules Internals
Using Precompiled Headers with clang 978

Design Philosophy 978

AST File Contents 979

Metadata Block 980

Source Manager Block 981

Preprocessor Block 981

Types Block 981

Declarations Block 981

Statements and Expressions 982

Identifier Table Block 982

Method Pool Block 983

AST Reader Integration Points 983

Chained precompiled headers 984

Modules 984

This document describes the design and implementation of Clang’s precompiled headers (PCH) and modules. If you
are interested in the end-user view, please see the User’s Manual.

Using Precompiled Headers with clang
The Clang compiler frontend, clang -cc1, supports two command line options for generating and using PCH files.

To generate PCH files using clang -cc1, use the option -emit-pch:

$ clang -cc1 test.h -emit-pch -o test.h.pch

This option is transparently used by clang when generating PCH files. The resulting PCH file contains the serialized
form of the compiler’s internal representation after it has completed parsing and semantic analysis. The PCH file can
then be used as a prefix header with the -include-pch option:

$ clang -cc1 -include-pch test.h.pch test.c -o test.s

Design Philosophy
Precompiled headers are meant to improve overall compile times for projects, so the design of precompiled headers
is entirely driven by performance concerns. The use case for precompiled headers is relatively simple: when there is
a common set of headers that is included in nearly every source file in the project, we precompile that bundle of
headers into a single precompiled header (PCH file). Then, when compiling the source files in the project, we load
the PCH file first (as a prefix header), which acts as a stand-in for that bundle of headers.

A precompiled header implementation improves performance when:

Precompiled Header and Modules Internals

978



• Loading the PCH file is significantly faster than re-parsing the bundle of headers stored within the PCH file.
Thus, a precompiled header design attempts to minimize the cost of reading the PCH file. Ideally, this cost
should not vary with the size of the precompiled header file.

• The cost of generating the PCH file initially is not so large that it counters the per-source-file performance
improvement due to eliminating the need to parse the bundled headers in the first place. This is particularly
important on multi-core systems, because PCH file generation serializes the build when all compilations require
the PCH file to be up-to-date.

Modules, as implemented in Clang, use the same mechanisms as precompiled headers to save a serialized AST file
(one per module) and use those AST modules. From an implementation standpoint, modules are a generalization of
precompiled headers, lifting a number of restrictions placed on precompiled headers. In particular, there can only be
one precompiled header and it must be included at the beginning of the translation unit. The extensions to the AST
file format required for modules are discussed in the section on modules.

Clang’s AST files are designed with a compact on-disk representation, which minimizes both creation time and the
time required to initially load the AST file. The AST file itself contains a serialized representation of Clang’s abstract
syntax trees and supporting data structures, stored using the same compressed bitstream as LLVM’s bitcode file
format.

Clang’s AST files are loaded “lazily” from disk. When an AST file is initially loaded, Clang reads only a small amount
of data from the AST file to establish where certain important data structures are stored. The amount of data read in
this initial load is independent of the size of the AST file, such that a larger AST file does not lead to longer AST load
times. The actual header data in the AST file — macros, functions, variables, types, etc. — is loaded only when it is
referenced from the user’s code, at which point only that entity (and those entities it depends on) are deserialized
from the AST file. With this approach, the cost of using an AST file for a translation unit is proportional to the amount
of code actually used from the AST file, rather than being proportional to the size of the AST file itself.

When given the -print-stats option, Clang produces statistics describing how much of the AST file was actually
loaded from disk. For a simple “Hello, World!” program that includes the Apple Cocoa.h header (which is built as a
precompiled header), this option illustrates how little of the actual precompiled header is required:

*** AST File Statistics:
  895/39981 source location entries read (2.238563%)
  19/15315 types read (0.124061%)
  20/82685 declarations read (0.024188%)
  154/58070 identifiers read (0.265197%)
  0/7260 selectors read (0.000000%)
  0/30842 statements read (0.000000%)
  4/8400 macros read (0.047619%)
  1/4995 lexical declcontexts read (0.020020%)
  0/4413 visible declcontexts read (0.000000%)
  0/7230 method pool entries read (0.000000%)
  0 method pool misses

For this small program, only a tiny fraction of the source locations, types, declarations, identifiers, and macros were
actually deserialized from the precompiled header. These statistics can be useful to determine whether the AST file
implementation can be improved by making more of the implementation lazy.

Precompiled headers can be chained. When you create a PCH while including an existing PCH, Clang can create
the new PCH by referencing the original file and only writing the new data to the new file. For example, you could
create a PCH out of all the headers that are very commonly used throughout your project, and then create a PCH for
every single source file in the project that includes the code that is specific to that file, so that recompiling the file
itself is very fast, without duplicating the data from the common headers for every file. The mechanisms behind
chained precompiled headers are discussed in a later section.

AST File Contents
An AST file produced by clang is an object file container with a clangast (COFF) or __clangast (ELF and
Mach-O) section containing the serialized AST. Other target-specific sections in the object file container are used to
hold debug information for the data types defined in the AST. Tools built on top of libclang that do not need debug
information may also produce raw AST files that only contain the serialized AST.

Precompiled Header and Modules Internals

979

https://llvm.org/docs/BitCodeFormat.html
https://llvm.org/docs/BitCodeFormat.html


The clangast section is organized into several different blocks, each of which contains the serialized
representation of a part of Clang’s internal representation. Each of the blocks corresponds to either a block or a
record within LLVM’s bitstream format. The contents of each of these logical blocks are described below.

The llvm-objdump utility provides a -raw-clang-ast option to extract the binary contents of the AST section
from an object file container.

The llvm-bcanalyzer utility can be used to examine the actual structure of the bitstream for the AST section. This
information can be used both to help understand the structure of the AST section and to isolate areas where the AST
representation can still be optimized, e.g., through the introduction of abbreviations.

Metadata Block

The metadata block contains several records that provide information about how the AST file was built. This
metadata is primarily used to validate the use of an AST file. For example, a precompiled header built for a 32-bit x86
target cannot be used when compiling for a 64-bit x86 target. The metadata block contains information about:

Language options

Describes the particular language dialect used to compile the AST file, including major options (e.g., Objective-C
support) and more minor options (e.g., support for “//” comments). The contents of this record correspond to
the LangOptions class.

Target architecture

The target triple that describes the architecture, platform, and ABI for which the AST file was generated, e.g.,
i386-apple-darwin9.

AST version

The major and minor version numbers of the AST file format. Changes in the minor version number should not
affect backward compatibility, while changes in the major version number imply that a newer compiler cannot
read an older precompiled header (and vice-versa).

Original file name

The full path of the header that was used to generate the AST file.

Predefines buffer

Precompiled Header and Modules Internals

980

https://llvm.org/docs/BitCodeFormat.html
https://llvm.org/docs/CommandGuide/llvm-bcanalyzer.html


Although not explicitly stored as part of the metadata, the predefines buffer is used in the validation of the AST
file. The predefines buffer itself contains code generated by the compiler to initialize the preprocessor state
according to the current target, platform, and command-line options. For example, the predefines buffer will
contain “#define __STDC__ 1” when we are compiling C without Microsoft extensions. The predefines buffer
itself is stored within the Source Manager Block, but its contents are verified along with the rest of the metadata.

A chained PCH file (that is, one that references another PCH) and a module (which may import other modules) have
additional metadata containing the list of all AST files that this AST file depends on. Each of those files will be loaded
along with this AST file.

For chained precompiled headers, the language options, target architecture and predefines buffer data is taken from
the end of the chain, since they have to match anyway.

Source Manager Block

The source manager block contains the serialized representation of Clang’s SourceManager class, which handles
the mapping from source locations (as represented in Clang’s abstract syntax tree) into actual column/line positions
within a source file or macro instantiation. The AST file’s representation of the source manager also includes
information about all of the headers that were (transitively) included when building the AST file.

The bulk of the source manager block is dedicated to information about the various files, buffers, and macro
instantiations into which a source location can refer. Each of these is referenced by a numeric “file ID”, which is a
unique number (allocated starting at 1) stored in the source location. Clang serializes the information for each kind of
file ID, along with an index that maps file IDs to the position within the AST file where the information about that file
ID is stored. The data associated with a file ID is loaded only when required by the front end, e.g., to emit a
diagnostic that includes a macro instantiation history inside the header itself.

The source manager block also contains information about all of the headers that were included when building the
AST file. This includes information about the controlling macro for the header (e.g., when the preprocessor identified
that the contents of the header dependent on a macro like LLVM_CLANG_SOURCEMANAGER_H).

Preprocessor Block

The preprocessor block contains the serialized representation of the preprocessor. Specifically, it contains all of the
macros that have been defined by the end of the header used to build the AST file, along with the token sequences
that comprise each macro. The macro definitions are only read from the AST file when the name of the macro first
occurs in the program. This lazy loading of macro definitions is triggered by lookups into the identifier table.

Types Block

The types block contains the serialized representation of all of the types referenced in the translation unit. Each
Clang type node (PointerType, FunctionProtoType, etc.) has a corresponding record type in the AST file.
When types are deserialized from the AST file, the data within the record is used to reconstruct the appropriate type
node using the AST context.

Each type has a unique type ID, which is an integer that uniquely identifies that type. Type ID 0 represents the NULL
type, type IDs less than NUM_PREDEF_TYPE_IDS represent predefined types (void, float, etc.), while other
“user-defined” type IDs are assigned consecutively from NUM_PREDEF_TYPE_IDS upward as the types are
encountered. The AST file has an associated mapping from the user-defined types block to the location within the
types block where the serialized representation of that type resides, enabling lazy deserialization of types. When a
type is referenced from within the AST file, that reference is encoded using the type ID shifted left by 3 bits. The
lower three bits are used to represent the const, volatile, and restrict qualifiers, as in Clang’s QualType
class.

Declarations Block

The declarations block contains the serialized representation of all of the declarations referenced in the translation
unit. Each Clang declaration node (VarDecl, FunctionDecl, etc.) has a corresponding record type in the AST file.
When declarations are deserialized from the AST file, the data within the record is used to build and populate a new
instance of the corresponding Decl node. As with types, each declaration node has a numeric ID that is used to
refer to that declaration within the AST file. In addition, a lookup table provides a mapping from that numeric ID to the
offset within the precompiled header where that declaration is described.

Precompiled Header and Modules Internals

981



Declarations in Clang’s abstract syntax trees are stored hierarchically. At the top of the hierarchy is the translation
unit (TranslationUnitDecl), which contains all of the declarations in the translation unit but is not actually written
as a specific declaration node. Its child declarations (such as functions or struct types) may also contain other
declarations inside them, and so on. Within Clang, each declaration is stored within a declaration context, as
represented by the DeclContext class. Declaration contexts provide the mechanism to perform name lookup within
a given declaration (e.g., find the member named x in a structure) and iterate over the declarations stored within a
context (e.g., iterate over all of the fields of a structure for structure layout).

In Clang’s AST file format, deserializing a declaration that is a DeclContext is a separate operation from
deserializing all of the declarations stored within that declaration context. Therefore, Clang will deserialize the
translation unit declaration without deserializing the declarations within that translation unit. When required, the
declarations stored within a declaration context will be deserialized. There are two representations of the
declarations within a declaration context, which correspond to the name-lookup and iteration behavior described
above:

• When the front end performs name lookup to find a name x within a given declaration context (for example,
during semantic analysis of the expression p->x, where p’s type is defined in the precompiled header), Clang
refers to an on-disk hash table that maps from the names within that declaration context to the declaration IDs
that represent each visible declaration with that name. The actual declarations will then be deserialized to
provide the results of name lookup.

• When the front end performs iteration over all of the declarations within a declaration context, all of those
declarations are immediately de-serialized. For large declaration contexts (e.g., the translation unit), this
operation is expensive; however, large declaration contexts are not traversed in normal compilation, since such
a traversal is unnecessary. However, it is common for the code generator and semantic analysis to traverse
declaration contexts for structs, classes, unions, and enumerations, although those contexts contain relatively
few declarations in the common case.

Statements and Expressions

Statements and expressions are stored in the AST file in both the types and the declarations blocks, because every
statement or expression will be associated with either a type or declaration. The actual statement and expression
records are stored immediately following the declaration or type that owns the statement or expression. For example,
the statement representing the body of a function will be stored directly following the declaration of the function.

As with types and declarations, each statement and expression kind in Clang’s abstract syntax tree (ForStmt,
CallExpr, etc.) has a corresponding record type in the AST file, which contains the serialized representation of that
statement or expression. Each substatement or subexpression within an expression is stored as a separate record
(which keeps most records to a fixed size). Within the AST file, the subexpressions of an expression are stored, in
reverse order, prior to the expression that owns those expression, using a form of Reverse Polish Notation. For
example, an expression 3 - 4 + 5 would be represented as follows:

IntegerLiteral(5)

IntegerLiteral(4)

IntegerLiteral(3)

IntegerLiteral(-)

IntegerLiteral(+)

STOP

When reading this representation, Clang evaluates each expression record it encounters, builds the appropriate
abstract syntax tree node, and then pushes that expression on to a stack. When a record contains N subexpressions
— BinaryOperator has two of them — those expressions are popped from the top of the stack. The special STOP
code indicates that we have reached the end of a serialized expression or statement; other expression or statement
records may follow, but they are part of a different expression.

Identifier Table Block

The identifier table block contains an on-disk hash table that maps each identifier mentioned within the AST file to
the serialized representation of the identifier’s information (e.g, the IdentifierInfo structure). The serialized
representation contains:

Precompiled Header and Modules Internals

982

https://en.wikipedia.org/wiki/Reverse_Polish_notation


• The actual identifier string.

• Flags that describe whether this identifier is the name of a built-in, a poisoned identifier, an extension token, or
a macro.

• If the identifier names a macro, the offset of the macro definition within the Preprocessor Block.

• If the identifier names one or more declarations visible from translation unit scope, the declaration IDs of these
declarations.

When an AST file is loaded, the AST file reader mechanism introduces itself into the identifier table as an external
lookup source. Thus, when the user program refers to an identifier that has not yet been seen, Clang will perform a
lookup into the identifier table. If an identifier is found, its contents (macro definitions, flags, top-level declarations,
etc.) will be deserialized, at which point the corresponding IdentifierInfo structure will have the same contents
it would have after parsing the headers in the AST file.

Within the AST file, the identifiers used to name declarations are represented with an integral value. A separate table
provides a mapping from this integral value (the identifier ID) to the location within the on-disk hash table where that
identifier is stored. This mapping is used when deserializing the name of a declaration, the identifier of a token, or
any other construct in the AST file that refers to a name.

Method Pool Block

The method pool block is represented as an on-disk hash table that serves two purposes: it provides a mapping from
the names of Objective-C selectors to the set of Objective-C instance and class methods that have that particular
selector (which is required for semantic analysis in Objective-C) and also stores all of the selectors used by entities
within the AST file. The design of the method pool is similar to that of the identifier table: the first time a particular
selector is formed during the compilation of the program, Clang will search in the on-disk hash table of selectors; if
found, Clang will read the Objective-C methods associated with that selector into the appropriate front-end data
structure (Sema::InstanceMethodPool and Sema::FactoryMethodPool for instance and class methods,
respectively).

As with identifiers, selectors are represented by numeric values within the AST file. A separate index maps these
numeric selector values to the offset of the selector within the on-disk hash table, and will be used when
de-serializing an Objective-C method declaration (or other Objective-C construct) that refers to the selector.

AST Reader Integration Points
The “lazy” deserialization behavior of AST files requires their integration into several completely different submodules
of Clang. For example, lazily deserializing the declarations during name lookup requires that the name-lookup
routines be able to query the AST file to find entities stored there.

For each Clang data structure that requires direct interaction with the AST reader logic, there is an abstract class that
provides the interface between the two modules. The ASTReader class, which handles the loading of an AST file,
inherits from all of these abstract classes to provide lazy deserialization of Clang’s data structures. ASTReader
implements the following abstract classes:

ExternalSLocEntrySource

This abstract interface is associated with the SourceManager class, and is used whenever the source manager
needs to load the details of a file, buffer, or macro instantiation.

IdentifierInfoLookup

This abstract interface is associated with the IdentifierTable class, and is used whenever the program
source refers to an identifier that has not yet been seen. In this case, the AST reader searches for this identifier
within its identifier table to load any top-level declarations or macros associated with that identifier.

ExternalASTSource

This abstract interface is associated with the ASTContext class, and is used whenever the abstract syntax tree
nodes need to loaded from the AST file. It provides the ability to de-serialize declarations and types identified by
their numeric values, read the bodies of functions when required, and read the declarations stored within a
declaration context (either for iteration or for name lookup).

ExternalSemaSource

This abstract interface is associated with the Sema class, and is used whenever semantic analysis needs to read
information from the global method pool.

Precompiled Header and Modules Internals

983



Chained precompiled headers
Chained precompiled headers were initially intended to improve the performance of IDE-centric operations such as
syntax highlighting and code completion while a particular source file is being edited by the user. To minimize the
amount of reparsing required after a change to the file, a form of precompiled header — called a precompiled
preamble — is automatically generated by parsing all of the headers in the source file, up to and including the last
#include. When only the source file changes (and none of the headers it depends on), reparsing of that source file
can use the precompiled preamble and start parsing after the #includes, so parsing time is proportional to the size
of the source file (rather than all of its includes). However, the compilation of that translation unit may already use a
precompiled header: in this case, Clang will create the precompiled preamble as a chained precompiled header that
refers to the original precompiled header. This drastically reduces the time needed to serialize the precompiled
preamble for use in reparsing.

Chained precompiled headers get their name because each precompiled header can depend on one other
precompiled header, forming a chain of dependencies. A translation unit will then include the precompiled header
that starts the chain (i.e., nothing depends on it). This linearity of dependencies is important for the semantic model
of chained precompiled headers, because the most-recent precompiled header can provide information that
overrides the information provided by the precompiled headers it depends on, just like a header file B.h that includes
another header A.h can modify the state produced by parsing A.h, e.g., by #undef’ing a macro defined in A.h.

There are several ways in which chained precompiled headers generalize the AST file model:

Numbering of IDs

Many different kinds of entities — identifiers, declarations, types, etc. — have ID numbers that start at 1 or some
other predefined constant and grow upward. Each precompiled header records the maximum ID number it has
assigned in each category. Then, when a new precompiled header is generated that depends on (chains to)
another precompiled header, it will start counting at the next available ID number. This way, one can determine,
given an ID number, which AST file actually contains the entity.

Name lookup

When writing a chained precompiled header, Clang attempts to write only information that has changed from the
precompiled header on which it is based. This changes the lookup algorithm for the various tables, such as the
identifier table: the search starts at the most-recent precompiled header. If no entry is found, lookup then
proceeds to the identifier table in the precompiled header it depends on, and so one. Once a lookup succeeds,
that result is considered definitive, overriding any results from earlier precompiled headers.

Update records

There are various ways in which a later precompiled header can modify the entities described in an earlier
precompiled header. For example, later precompiled headers can add entries into the various name-lookup
tables for the translation unit or namespaces, or add new categories to an Objective-C class. Each of these
updates is captured in an “update record” that is stored in the chained precompiled header file and will be loaded
along with the original entity.

Modules
Modules generalize the chained precompiled header model yet further, from a linear chain of precompiled headers to
an arbitrary directed acyclic graph (DAG) of AST files. All of the same techniques used to make chained precompiled
headers work — ID number, name lookup, update records — are shared with modules. However, the DAG nature of
modules introduce a number of additional complications to the model:

Numbering of IDs

The simple, linear numbering scheme used in chained precompiled headers falls apart with the module DAG,
because different modules may end up with different numbering schemes for entities they imported from
common shared modules. To account for this, each module file provides information about which modules it
depends on and which ID numbers it assigned to the entities in those modules, as well as which ID numbers it
took for its own new entities. The AST reader then maps these “local” ID numbers into a “global” ID number
space for the current translation unit, providing a 1-1 mapping between entities (in whatever AST file they
inhabit) and global ID numbers. If that translation unit is then serialized into an AST file, this mapping will be
stored for use when the AST file is imported.

Declaration merging

It is possible for a given entity (from the language’s perspective) to be declared multiple times in different places.
For example, two different headers can have the declaration of printf or could forward-declare

Precompiled Header and Modules Internals

984



struct stat. If each of those headers is included in a module, and some third party imports both of those
modules, there is a potentially serious problem: name lookup for printf or struct stat will find both
declarations, but the AST nodes are unrelated. This would result in a compilation error, due to an ambiguity in
name lookup. Therefore, the AST reader performs declaration merging according to the appropriate language
semantics, ensuring that the two disjoint declarations are merged into a single redeclaration chain (with a
common canonical declaration), so that it is as if one of the headers had been included before the other.

Name Visibility

Modules allow certain names that occur during module creation to be “hidden”, so that they are not part of the
public interface of the module and are not visible to its clients. The AST reader maintains a “visible” bit on
various AST nodes (declarations, macros, etc.) to indicate whether that particular AST node is currently visible;
the various name lookup mechanisms in Clang inspect the visible bit to determine whether that entity, which is
still in the AST (because other, visible AST nodes may depend on it), can actually be found by name lookup.
When a new (sub)module is imported, it may make existing, non-visible, already-deserialized AST nodes visible;
it is the responsibility of the AST reader to find and update these AST nodes when it is notified of the import.

ABI tags

Introduction
This text tries to describe gcc semantic for mangling “abi_tag” attributes described in
https://gcc.gnu.org/onlinedocs/gcc/C_002b_002b-Attributes.html

There is no guarantee the following rules are correct, complete or make sense in any way as they were determined
empirically by experiments with gcc5.

Declaration
ABI tags are declared in an abi_tag attribute and can be applied to a function, variable, class or inline namespace
declaration. The attribute takes one or more strings (called tags); the order does not matter.

See https://gcc.gnu.org/onlinedocs/gcc/C_002b_002b-Attributes.html for details.

Tags on an inline namespace are called “implicit tags”, all other tags are “explicit tags”.

Mangling
All tags that are “active” on an <unqualified-name> are emitted after the <unqualified-name>, before <template-args>
or <discriminator>, and are part of the same <substitution> the <unqualified-name> is.

They are mangled as:

<abi-tags> ::= <abi-tag>*   # sort by name
<abi-tag> ::= B <tag source-name>

Example:

__attribute__((abi_tag("test")))
void Func();
// gets mangled as: _Z4FuncB4testv (prettified as `Func[abi:test]()`)

Active tags
A namespace does not have any active tags. For types (class / struct / union / enum), the explicit tags are the active
tags.

For variables and functions, the active tags are the explicit tags plus any “required tags” which are not in the
“available tags” set:

derived-tags := (required-tags - available-tags)
active-tags := explicit-tags + derived-tags

ABI tags

985

https://gcc.gnu.org/onlinedocs/gcc/C_002b_002b-Attributes.html
https://gcc.gnu.org/onlinedocs/gcc/C_002b_002b-Attributes.html


Required tags for a function
If a function is used as a local scope for another name, and is part of another function as local scope, it doesn’t have
any required tags.

If a function is used as a local scope for a guard variable name, it doesn’t have any required tags.

Otherwise the function requires any implicit or explicit tag used in the name for the return type.

Example:

namespace A {
  inline namespace B __attribute__((abi_tag)) {
    struct C { int x; };
  }
}

A::C foo(); // gets mangled as: _Z3fooB1Bv (prettified as `foo[abi:B]()`)

Required tags for a variable
A variable requires any implicit or explicit tag used in its type.

Available tags
All tags used in the prefix and in the template arguments for a name are available. Also, for functions, all tags from
the <bare-function-type> (which might include the return type for template functions) are available.

For <local-name>s all active tags used in the local part (<function- encoding>) are available, but not implicit tags
which were not active.

Implicit and explicit tags used in the <unqualified-name> for a function (as in the type of a cast operator) are NOT
available.

Example: a cast operator to std::string (which is std::__cxx11::basic_string<…>) will use ‘cxx11’ as an active tag, as
it is required from the return type std::string but not available.

Hardware-assisted AddressSanitizer Design Documentation
This page is a design document for hardware-assisted AddressSanitizer (or HWASAN) a tool similar to
AddressSanitizer, but based on partial hardware assistance.

Introduction
AddressSanitizer tags every 8 bytes of the application memory with a 1 byte tag (using shadow memory), uses
redzones to find buffer-overflows and quarantine to find use-after-free. The redzones, the quarantine, and, to a less
extent, the shadow, are the sources of AddressSanitizer’s memory overhead. See the AddressSanitizer paper for
details.

AArch64 has Address Tagging (or top-byte-ignore, TBI), a hardware feature that allows software to use the 8 most
significant bits of a 64-bit pointer as a tag. HWASAN uses Address Tagging to implement a memory safety tool,
similar to AddressSanitizer, but with smaller memory overhead and slightly different (mostly better) accuracy
guarantees.

Intel’s Linear Address Masking (LAM) also provides address tagging for x86_64, though it is not widely available in
hardware yet. For x86_64, HWASAN has a limited implementation using page aliasing instead.

Algorithm

• Every heap/stack/global memory object is forcibly aligned by TG bytes (TG is e.g. 16 or 64). We call TG the
tagging granularity.

• For every such object a random TS-bit tag T is chosen (TS, or tag size, is e.g. 4 or 8)

Hardware-assisted AddressSanitizer Design Documentation

986

https://www.usenix.org/system/files/conference/atc12/atc12-final39.pdf
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.den0024a/ch12s05s01.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.den0024a/ch12s05s01.html
https://software.intel.com/content/www/us/en/develop/download/intel-architecture-instruction-set-extensions-programming-reference.html


• The pointer to the object is tagged with T.

• The memory for the object is also tagged with T (using a TG=>1 shadow memory)

• Every load and store is instrumented to read the memory tag and compare it with the pointer tag, exception is
raised on tag mismatch.

For a more detailed discussion of this approach see https://arxiv.org/pdf/1802.09517.pdf

Short granules

A short granule is a granule of size between 1 and TG-1 bytes. The size of a short granule is stored at the location in
shadow memory where the granule’s tag is normally stored, while the granule’s actual tag is stored in the last byte of
the granule. This means that in order to verify that a pointer tag matches a memory tag, HWASAN must check for
two possibilities:

• the pointer tag is equal to the memory tag in shadow memory, or

• the shadow memory tag is actually a short granule size, the value being loaded is in bounds of the granule and
the pointer tag is equal to the last byte of the granule.

Pointer tags between 1 to TG-1 are possible and are as likely as any other tag. This means that these tags in
memory have two interpretations: the full tag interpretation (where the pointer tag is between 1 and TG-1 and the last
byte of the granule is ordinary data) and the short tag interpretation (where the pointer tag is stored in the granule).

When HWASAN detects an error near a memory tag between 1 and TG-1, it will show both the memory tag and the
last byte of the granule. Currently, it is up to the user to disambiguate the two possibilities.

Instrumentation

Memory Accesses

In the majority of cases, memory accesses are prefixed with a call to an outlined instruction sequence that verifies
the tags. The code size and performance overhead of the call is reduced by using a custom calling convention that

• preserves most registers, and

• is specialized to the register containing the address, and the type and size of the memory access.

Currently, the following sequence is used:
// int foo(int *a) { return *a; }
// clang -O2 --target=aarch64-linux-android30 -fsanitize=hwaddress -S -o - load.c
[...]
foo:
      stp     x30, x20, [sp, #-16]!
      adrp    x20, :got:__hwasan_shadow               // load shadow address from GOT into x20
      ldr     x20, [x20, :got_lo12:__hwasan_shadow]
      bl      __hwasan_check_x0_2_short_v2            // call outlined tag check
                                                      // (arguments: x0 = address, x20 = shadow base;
                                                      // "2" encodes the access type and size)
      ldr     w0, [x0]                                // inline load
      ldp     x30, x20, [sp], #16
      ret

[...]
__hwasan_check_x0_2_short_v2:
      sbfx    x16, x0, #4, #52                        // shadow offset
      ldrb    w16, [x20, x16]                         // load shadow tag
      cmp     x16, x0, lsr #56                        // extract address tag, compare with shadow tag
      b.ne    .Ltmp0                                  // jump to short tag handler on mismatch
.Ltmp1:
      ret
.Ltmp0:
      cmp     w16, #15                                // is this a short tag?
      b.hi    .Ltmp2                                  // if not, error
      and     x17, x0, #0xf                           // find the address's position in the short granule
      add     x17, x17, #3                            // adjust to the position of the last byte loaded
      cmp     w16, w17                                // check that position is in bounds
      b.ls    .Ltmp2                                  // if not, error
      orr     x16, x0, #0xf                           // compute address of last byte of granule
      ldrb    w16, [x16]                              // load tag from it
      cmp     x16, x0, lsr #56                        // compare with pointer tag
      b.eq    .Ltmp1                                  // if matches, continue
.Ltmp2:
      stp     x0, x1, [sp, #-256]!                    // save original x0, x1 on stack (they will be overwritten)
      stp     x29, x30, [sp, #232]                    // create frame record
      mov     x1, #2                                  // set x1 to a constant indicating the type of failure
      adrp    x16, :got:__hwasan_tag_mismatch_v2      // call runtime function to save remaining registers and report error
      ldr     x16, [x16, :got_lo12:__hwasan_tag_mismatch_v2] // (load address from GOT to avoid potential register clobbers in delay load handler)
      br      x16

Hardware-assisted AddressSanitizer Design Documentation

987

https://arxiv.org/pdf/1802.09517.pdf


Heap

Tagging the heap memory/pointers is done by malloc. This can be based on any malloc that forces all objects to be
TG-aligned. free tags the memory with a different tag.

Stack

Stack frames are instrumented by aligning all non-promotable allocas by TG and tagging stack memory in function
prologue and epilogue.

Tags for different allocas in one function are not generated independently; doing that in a function with M allocas
would require maintaining M live stack pointers, significantly increasing register pressure. Instead we generate a
single base tag value in the prologue, and build the tag for alloca number M as ReTag(BaseTag, M), where ReTag
can be as simple as exclusive-or with constant M.

Stack instrumentation is expected to be a major source of overhead, but could be optional.

Globals

Most globals in HWASAN instrumented code are tagged. This is accomplished using the following mechanisms:

• The address of each global has a static tag associated with it. The first defined global in a translation unit
has a pseudorandom tag associated with it, based on the hash of the file path. Subsequent global tags are
incremental from the previously-assigned tag.

• The global’s tag is added to its symbol address in the object file’s symbol table. This causes the global’s
address to be tagged when its address is taken.

• When the address of a global is taken directly (i.e. not via the GOT), a special instruction sequence needs
to be used to add the tag to the address, because the tag would otherwise take the address outside of the
small code model (4GB on AArch64). No changes are required when the address is taken via the GOT
because the address stored in the GOT will contain the tag.

• An associated hwasan_globals section is emitted for each tagged global, which indicates the address of
the global, its size and its tag. These sections are concatenated by the linker into a single
hwasan_globals section that is enumerated by the runtime (via an ELF note) when a binary is loaded
and the memory is tagged accordingly.

A complete example is given below:

// int x = 1; int *f() { return &x; }
// clang -O2 --target=aarch64-linux-android30 -fsanitize=hwaddress -S -o - global.c

[...]
f:
      adrp    x0, :pg_hi21_nc:x            // set bits 12-63 to upper bits of untagged address
      movk    x0, #:prel_g3:x+0x100000000  // set bits 48-63 to tag
      add     x0, x0, :lo12:x              // set bits 0-11 to lower bits of address
      ret

[...]
      .data
.Lx.hwasan:
      .word   1

      .globl  x
      .set x, .Lx.hwasan+0x2d00000000000000

[...]
      .section        .note.hwasan.globals,"aG",@note,hwasan.module_ctor,comdat
.Lhwasan.note:
      .word   8                            // namesz
      .word   8                            // descsz
      .word   3                            // NT_LLVM_HWASAN_GLOBALS

Hardware-assisted AddressSanitizer Design Documentation

988



      .asciz  "LLVM\000\000\000"
      .word   __start_hwasan_globals-.Lhwasan.note
      .word   __stop_hwasan_globals-.Lhwasan.note

[...]
      .section        hwasan_globals,"ao",@progbits,.Lx.hwasan,unique,2
.Lx.hwasan.descriptor:
      .word   .Lx.hwasan-.Lx.hwasan.descriptor
      .word   0x2d000004                   // tag = 0x2d, size = 4

Error reporting

Errors are generated by the HLT instruction and are handled by a signal handler.

Attribute

HWASAN uses its own LLVM IR Attribute sanitize_hwaddress and a matching C function attribute. An alternative
would be to re-use ASAN’s attribute sanitize_address. The reasons to use a separate attribute are:

• Users may need to disable ASAN but not HWASAN, or vise versa, because the tools have different
trade-offs and compatibility issues.

• LLVM (ideally) does not use flags to decide which pass is being used, ASAN or HWASAN are being
applied, based on the function attributes.

This does mean that users of HWASAN may need to add the new attribute to the code that already uses the old
attribute.

Comparison with AddressSanitizer
HWASAN:

• Is less portable than AddressSanitizer as it relies on hardware Address Tagging (AArch64). Address
Tagging can be emulated with compiler instrumentation, but it will require the instrumentation to remove
the tags before any load or store, which is infeasible in any realistic environment that contains
non-instrumented code.

• May have compatibility problems if the target code uses higher pointer bits for other purposes.

• May require changes in the OS kernels (e.g. Linux seems to dislike tagged pointers passed from address
space: https://www.kernel.org/doc/Documentation/arm64/tagged-pointers.txt).

• Does not require redzones to detect buffer overflows, but the buffer overflow detection is probabilistic,
with roughly 1/(2**TS) chance of missing a bug (6.25% or 0.39% with 4 and 8-bit TS respectively).

• Does not require quarantine to detect heap-use-after-free, or stack-use-after-return. The detection is
similarly probabilistic.

The memory overhead of HWASAN is expected to be much smaller than that of AddressSanitizer: 1/TG extra
memory for the shadow and some overhead due to TG-aligning all objects.

Supported architectures
HWASAN relies on Address Tagging which is only available on AArch64. For other 64-bit architectures it is possible
to remove the address tags before every load and store by compiler instrumentation, but this variant will have limited
deployability since not all of the code is typically instrumented.

On x86_64, HWASAN utilizes page aliasing to place tags in userspace address bits. Currently only heap tagging is
supported. The page aliases rely on shared memory, which will cause heap memory to be shared between
processes if the application calls fork(). Therefore x86_64 is really only safe for applications that do not fork.

HWASAN does not currently support 32-bit architectures since they do not support Address Tagging and the address
space is too constrained to easily implement page aliasing.

Hardware-assisted AddressSanitizer Design Documentation

989

http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.den0024a/ch12s05s01.html
https://www.kernel.org/doc/Documentation/arm64/tagged-pointers.txt
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.den0024a/ch12s05s01.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.den0024a/ch12s05s01.html


Related Work

• SPARC ADI implements a similar tool mostly in hardware.

• Effective and Efficient Memory Protection Using Dynamic Tainting discusses similar approaches (“lock & key”).

• Watchdog discussed a heavier, but still somewhat similar “lock & key” approach.

• TODO: add more “related work” links. Suggestions are welcome.

Constant Interpreter
Introduction 990

Bytecode Compilation 990

Primitive Types 990

Composite types 991

Bytecode Execution 991

Memory Organisation 991

Blocks 991

Descriptors 992

Pointers 993

BlockPointer 993

ExternPointer 994

TargetPointer 994

TypeInfoPointer 994

InvalidPointer 994

TODO 994

Missing Language Features 994

Known Bugs 995

Introduction
The constexpr interpreter aims to replace the existing tree evaluator in clang, improving performance on constructs
which are executed inefficiently by the evaluator. The interpreter is activated using the following flags:

• -fexperimental-new-constant-interpreter enables the interpreter, emitting an error if an
unsupported feature is encountered

Bytecode Compilation
Bytecode compilation is handled in ByteCodeStmtGen.h for statements and ByteCodeExprGen.h for
expressions. The compiler has two different backends: one to generate bytecode for functions (ByteCodeEmitter)
and one to directly evaluate expressions as they are compiled, without generating bytecode (EvalEmitter). All
functions are compiled to bytecode, while toplevel expressions used in constant contexts are directly evaluated since
the bytecode would never be reused. This mechanism aims to pave the way towards replacing the evaluator,
improving its performance on functions and loops, while being just as fast on single-use toplevel expressions.

The interpreter relies on stack-based, strongly-typed opcodes. The glue logic between the code generator, along
with the enumeration and description of opcodes, can be found in Opcodes.td. The opcodes are implemented as
generic template methods in Interp.h and instantiated with the relevant primitive types by the interpreter loop or by
the evaluating emitter.

Primitive Types

• PT_{U|S}int{8|16|32|64}

Constant Interpreter

990

https://lazytyped.blogspot.com/2017/09/getting-started-with-adi.html
https://www.cc.gatech.edu/~orso/papers/clause.doudalis.orso.prvulovic.pdf
https://www.cis.upenn.edu/acg/papers/isca12_watchdog.pdf


Signed or unsigned integers of a specific bit width, implemented using the `Integral` type.

• PT_{U|S}intFP

Signed or unsigned integers of an arbitrary, but fixed width used to implement integral types which are required
by the target, but are not supported by the host. Under the hood, they rely on APValue. The Integral
specialisation for these types is required by opcodes to share an implementation with fixed integrals.

• PT_Bool

Representation for boolean types, essentially a 1-bit unsigned Integral.

• PT_RealFP

Arbitrary, but fixed precision floating point numbers. Could be specialised in the future similarly to integers in
order to improve floating point performance.

• PT_Ptr

Pointer type, defined in "Pointer.h". A pointer can be either null, reference interpreter-allocated memory
(BlockPointer) or point to an address which can be derived, but not accessed (ExternPointer).

• PT_FnPtr

Function pointer type, can also be a null function pointer. Defined in "FnPointer.h".

• PT_MemPtr

Member pointer type, can also be a null member pointer. Defined in "MemberPointer.h"

• PT_VoidPtr

Void pointer type, can be used for rount-trip casts. Represented as the union of all pointers which can be cast to
void. Defined in "VoidPointer.h".

• PT_ObjCBlockPtr

Pointer type for ObjC blocks. Defined in "ObjCBlockPointer.h".

Composite types

The interpreter distinguishes two kinds of composite types: arrays and records (structs and classes). Unions are
represented as records, except at most a single field can be marked as active. The contents of inactive fields are
kept until they are reactivated and overwritten. Complex numbers (_Complex) and vectors
(__attribute((vector_size(16)))) are treated as arrays.

Bytecode Execution
Bytecode is executed using a stack-based interpreter. The execution context consists of an InterpStack, along
with a chain of InterpFrame objects storing the call frames. Frames are built by call instructions and destroyed by
return instructions. They perform one allocation to reserve space for all locals in a single block. These objects store
all the required information to emit stack traces whenever evaluation fails.

Memory Organisation
Memory management in the interpreter relies on 3 data structures: Block objects which store the data and
associated inline metadata, Pointer objects which refer to or into blocks, and Descriptor structures which
describe blocks and subobjects nested inside blocks.

Blocks

Blocks contain data interleaved with metadata. They are allocated either statically in the code generator (globals,
static members, dummy parameter values etc.) or dynamically in the interpreter, when creating the frame containing
the local variables of a function. Blocks are associated with a descriptor that characterises the entire allocation, along
with a few additional attributes:

• IsStatic indicates whether the block has static duration in the interpreter, i.e. it is not a local in a frame.

Constant Interpreter

991



• DeclID identifies each global declaration (it is set to an invalid and irrelevant value for locals) in order to
prevent illegal writes and reads involving globals and temporaries with static storage duration.

Static blocks are never deallocated, but local ones might be deallocated even when there are live pointers to them.
Pointers are only valid as long as the blocks they point to are valid, so a block with pointers to it whose lifetime ends
is kept alive until all pointers to it go out of scope. Since the frame is destroyed on function exit, such blocks are
turned into a DeadBlock and copied to storage managed by the interpreter itself, not the frame. Reads and writes to
these blocks are illegal and cause an appropriate diagnostic to be emitted. When the last pointer goes out of scope,
dead blocks are also deallocated.

The lifetime of blocks is managed through 3 methods stored in the descriptor of the block:

• CtorFn: initializes the metadata which is store in the block, alongside actual data. Invokes the default
constructors of objects which are not trivial (Pointer, RealFP, etc.)

• DtorFn: invokes the destructors of non-trivial objects.

• MoveFn: moves a block to dead storage.

Non-static blocks track all the pointers into them through an intrusive doubly-linked list, required to adjust and
invalidate all pointers when transforming a block into a dead block. If the lifetime of an object ends, all pointers to it
are invalidated, emitting the appropriate diagnostics when dereferenced.

The interpreter distinguishes 3 different kinds of blocks:

• Primitives

A block containing a single primitive with no additional metadata.

• Arrays of primitives

An array of primitives contains a pointer to an InitMap storage as its first field: the initialisation map is a bit
map indicating all elements of the array which were initialised. If the pointer is null, no elements were initialised,
while a value of (InitMap*)-1 indicates that the object was fully initialised. When all fields are initialised, the
map is deallocated and replaced with that token.

Array elements are stored sequentially, without padding, after the pointer to the map.

• Arrays of composites and records

Each element in an array of composites is preceded by an InlineDescriptor which stores the attributes
specific to the field and not the whole allocation site. Descriptors and elements are stored sequentially in the
block. Records are laid out identically to arrays of composites: each field and base class is preceded by an
inline descriptor. The InlineDescriptor has the following fields:

• Offset: byte offset into the array or record, used to step back to the parent array or record.

• IsConst: flag indicating if the field is const-qualified.

• IsInitialized: flag indicating whether the field or element was initialized. For non-primitive fields, this is
only relevant to determine the dynamic type of objects during construction.

• IsBase: flag indicating whether the record is a base class. In that case, the offset can be used to
identify the derived class.

• IsActive: indicates if the field is the active field of a union.

• IsMutable: indicates if the field is marked as mutable.
Inline descriptors are filled in by the CtorFn of blocks, which leaves storage in an uninitialised, but valid state.

Descriptors

Descriptors are generated at bytecode compilation time and contain information required to determine if a particular
memory access is allowed in constexpr. They also carry all the information required to emit a diagnostic involving a
memory access, such as the declaration which originates the block. Currently there is a single kind of descriptor
encoding information for all block types.

Constant Interpreter

992



Pointers

Pointers, implemented in Pointer.h are represented as a tagged union. Some of these may not yet be available in
upstream clang.

• BlockPointer: used to reference memory allocated and managed by the interpreter, being the only pointer
kind which allows dereferencing in the interpreter

• ExternPointer: points to memory which can be addressed, but not read by the interpreter. It is equivalent
to APValue, tracking a declaration and a path of fields and indices into that allocation.

• TargetPointer: represents a target address derived from a base address through pointer arithmetic, such
as ((int *)0x100)[20]. Null pointers are target pointers with a zero offset.

• TypeInfoPointer: tracks information for the opaque type returned by typeid

• InvalidPointer: is dummy pointer created by an invalid operation which allows the interpreter to continue
execution. Does not allow pointer arithmetic or dereferencing.

Besides the previously mentioned union, a number of other pointer-like types have their own type:

• ObjCBlockPointer tracks Objective-C blocks

• FnPointer tracks functions and lazily caches their compiled version

• MemberPointer tracks C++ object members

Void pointers, which can be built by casting any of the aforementioned pointers, are implemented as a union of all
pointer types. The BitCast opcode is responsible for performing all legal conversions between these types and
primitive integers.

BlockPointer

Block pointers track a Pointee, the block to which they point, along with a Base and an Offset. The base
identifies the innermost field, while the offset points to an array element relative to the base (including one-past-end
pointers). The offset identifies the array element or field which is referenced, while the base points to the outer object
or array which contains the field. These two fields allow all pointers to be uniquely identified, disambiguated and
characterised.

As an example, consider the following structure:

struct A {
    struct B {
        int x;
        int y;
    } b;
    struct C {
        int a;
        int b;
    } c[2];
    int z;
};
constexpr A a;

On the target, &a and &a.b.x are equal. So are &a.c[0] and &a.c[0].a. In the interpreter, all these pointers
must be distinguished since the are all allowed to address distinct range of memory.

In the interpreter, the object would require 240 bytes of storage and would have its field interleaved with metadata.
The pointers which can be derived to the object are illustrated in the following diagram:

    0   16  32  40  56  64  80  96  112 120 136 144 160 176 184 200 208 224 240
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
+ B | D | D | x | D | y | D | D | D | a | D | b | D | D | a | D | b | D | z |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
    ^   ^   ^       ^       ^   ^   ^       ^       ^   ^       ^       ^
    |   |   |       |       |   |   |   &a.c[0].b   |   |   &a.c[1].b   |

Constant Interpreter

993



    a   |&a.b.x   &a.y    &a.c  |&a.c[0].a          |&a.c[1].a          |
      &a.b                   &a.c[0]            &a.c[1]               &a.z

The Base offset of all pointers points to the start of a field or an array and is preceded by an inline descriptor (unless
Base is zero, pointing to the root). All the relevant attributes can be read from either the inline descriptor or the
descriptor of the block.

Array elements are identified by the Offset field of pointers, pointing to past the inline descriptors for composites
and before the actual data in the case of primitive arrays. The Offset points to the offset where primitives can be
read from. As an example, a.c + 1 would have the same base as a.c since it is an element of a.c, but its offset
would point to &a.c[1]. The array-to-pointer decay operation adjusts a pointer to an array (where the offset is equal
to the base) to a pointer to the first element.

ExternPointer

Extern pointers can be derived, pointing into symbols which are not readable from constexpr. An external pointer
consists of a base declaration, along with a path designating a subobject, similar to the LValuePath of an APValue.
Extern pointers can be converted to block pointers if the underlying variable is defined after the pointer is created, as
is the case in the following example:

extern const int a;
constexpr const int *p = &a;
const int a = 5;
static_assert(*p == 5, "x");

TargetPointer

While null pointer arithmetic or integer-to-pointer conversion is banned in constexpr, some expressions on target
offsets must be folded, replicating the behaviour of the offsetof builtin. Target pointers are characterised by 3
offsets: a field offset, an array offset and a base offset, along with a descriptor specifying the type the pointer is
supposed to refer to. Array indexing adjusts the array offset, while the field offset is adjusted when a pointer to a
member is created. Casting an integer to a pointer sets the value of the base offset. As a special case, null pointers
are target pointers with all offsets set to 0.

TypeInfoPointer

TypeInfoPointer tracks two types: the type assigned to std::type_info and the type which was passed to
typeinfo.

InvalidPointer

Such pointers are built by operations which cannot generate valid pointers, allowing the interpreter to continue
execution after emitting a warning. Inspecting such a pointer stops execution.

TODO

Missing Language Features

• Changing the active field of unions

• volatile

• __builtin_constant_p

• dynamic_cast

• new and delete

• Fixed Point numbers and arithmetic on Complex numbers

• Several builtin methods, including string operations and __builtin_bit_cast

Constant Interpreter

994



• Continue-after-failure: a form of exception handling at the bytecode level should be implemented to allow
execution to resume. As an example, argument evaluation should resume after the computation of an argument
fails.

• Pointer-to-Integer conversions

• Lazy descriptors: the interpreter creates a Record and Descriptor when it encounters a type: ones which
are not yet defined should be lazily created when required

Known Bugs

• If execution fails, memory storing APInts and APFloats is leaked when the stack is cleared

Indices and tables
• genindex

• modindex

• search

Indices and tables

995


	Clang pre-release 15 Release Notes
	Introduction
	What’s New in Clang pre-release 15?
	Potentially Breaking Changes
	Major New Features
	Bug Fixes
	Improvements to Clang’s diagnostics

	Non-comprehensive list of changes in this release
	New Compiler Flags
	Deprecated Compiler Flags
	Modified Compiler Flags
	Removed Compiler Flags
	New Pragmas in Clang
	Attribute Changes in Clang
	Windows Support
	AIX Support
	C Language Changes in Clang
	C2x Feature Support
	C++ Language Changes in Clang
	C++20 Feature Support
	C++2b Feature Support

	CUDA/HIP Language Changes in Clang
	Objective-C Language Changes in Clang
	OpenCL C Language Changes in Clang
	ABI Changes in Clang
	OpenMP Support in Clang
	CUDA Support in Clang
	X86 Support in Clang
	DWARF Support in Clang
	Arm and AArch64 Support in Clang
	Floating Point Support in Clang
	Internal API Changes
	Build System Changes
	AST Matchers
	clang-format
	libclang
	Static Analyzer
	Undefined Behavior Sanitizer (UBSan)

	Core Analysis Improvements
	New Issues Found
	Python Binding Changes

	Significant Known Problems
	Additional Information

	Using Clang as a Compiler
	Clang Compiler User’s Manual
	Introduction
	Terminology
	Basic Usage

	Command Line Options
	Options to Control Error and Warning Messages
	Formatting of Diagnostics
	Individual Warning Groups

	Options to Control Clang Crash Diagnostics
	Options to Emit Optimization Reports
	Current limitations

	Options to Emit Resource Consumption Reports
	Other Options
	Configuration files

	Language and Target-Independent Features
	Controlling Errors and Warnings
	Controlling How Clang Displays Diagnostics
	Diagnostic Mappings
	Diagnostic Categories
	Controlling Diagnostics via Command Line Flags
	Controlling Diagnostics via Pragmas
	Controlling Diagnostics in System Headers
	Controlling Deprecation Diagnostics in Clang-Provided C Runtime Headers
	Enabling All Diagnostics
	Controlling Static Analyzer Diagnostics

	Precompiled Headers
	Generating a PCH File
	Using a PCH File
	Relocatable PCH Files

	Controlling Floating Point Behavior
	A note about __FLT_EVAL_METHOD__
	A note about Floating Point Constant Evaluation

	Controlling Code Generation
	Profile Guided Optimization
	Differences Between Sampling and Instrumentation
	Using Sampling Profilers
	Sample Profile Formats
	Sample Profile Text Format

	Profiling with Instrumentation
	Disabling Instrumentation
	Instrumenting only selected files or functions
	Profile remapping

	GCOV-based Profiling
	Controlling Debug Information
	Controlling Size of Debug Information
	Controlling Macro Debug Info Generation
	Controlling Debugger “Tuning”

	Controlling LLVM IR Output
	Controlling Value Names in LLVM IR

	Comment Parsing Options

	C Language Features
	Extensions supported by clang
	Differences between various standard modes
	GCC extensions not implemented yet
	Intentionally unsupported GCC extensions
	Microsoft extensions

	C++ Language Features
	Controlling implementation limits

	Objective-C Language Features
	Objective-C++ Language Features
	OpenMP Features
	Controlling implementation limits

	OpenCL Features
	OpenCL Specific Options
	OpenCL Targets
	Specific Targets
	Generic Targets

	OpenCL Header
	OpenCL Extensions
	OpenCL-Specific Attributes
	nosvm
	opencl_unroll_hint
	convergent
	noduplicate

	C++ for OpenCL
	Constructing and destroying global objects
	Libraries


	Target-Specific Features and Limitations
	CPU Architectures Features and Limitations
	X86
	ARM
	PowerPC
	Other platforms

	Operating System Features and Limitations
	Windows
	Cygwin
	MinGW32
	MinGW-w64

	AIX

	SPIR-V support

	clang-cl
	Command-Line Options
	The /clang: Option
	The /Zc:dllexportInlines- Option
	Finding Clang runtime libraries



	Assembling a Complete Toolchain
	Introduction
	Tools
	Clang frontend
	Language frontends for other languages
	Assembler
	Linker

	Runtime libraries
	Compiler runtime
	compiler-rt (LLVM)
	libgcc_s (GNU)

	Atomics library
	compiler-rt (LLVM)
	libatomic (GNU)

	Unwind library
	libunwind (LLVM)
	libgcc_s (GNU)
	libunwind (nongnu.org)
	libunwind (PathScale)

	Sanitizer runtime
	C standard library
	C++ ABI library
	libc++abi (LLVM)
	libsupc++ (GNU)
	libcxxrt (PathScale)

	C++ standard library
	libc++ (LLVM)
	libstdc++ (GNU)



	Clang Language Extensions
	Objective-C Literals
	Introduction
	NSNumber Literals
	Examples
	Discussion

	Boxed Expressions
	Boxed Enums
	Boxed C Strings
	Boxed C Structures

	Container Literals
	Examples
	Discussion

	Object Subscripting
	Examples
	Subscripting Methods
	Array-Style Subscripting
	Dictionary-Style Subscripting

	Discussion

	Caveats
	Grammar Additions
	Availability Checks

	Language Specification for Blocks
	Revisions
	Overview
	The Block Type
	Block Variable Declarations
	Block Literal Expressions
	The Invoke Operator
	The Copy and Release Operations
	The __block Storage Qualifier
	Control Flow
	Objective-C Extensions
	C++ Extensions

	Block Implementation Specification
	History
	High Level
	Imported Variables
	Imported const copy variables
	Imported const copy of Block reference
	Importing __attribute__((NSObject)) variables

	Imported __block marked variables
	Layout of __block marked variables
	Access to __block variables from within its lexical scope
	Importing __block variables into Blocks
	Importing __attribute__((NSObject)) __block variables
	__block escapes
	Nesting


	Objective C Extensions to Blocks
	Importing Objects
	Blocks as Objects
	__weak&nbsp;__block Support

	C++ Support
	Runtime Helper Functions
	Copyright

	Objective-C Automatic Reference Counting (ARC)
	About this document
	Purpose
	Background
	Evolution

	General
	Retainable object pointers
	Retain count semantics
	Retainable object pointers as operands and arguments
	Consumed parameters
	Retained return values
	Unretained return values
	Bridged casts

	Restrictions
	Conversion of retainable object pointers
	Conversion to retainable object pointer type of expressions with known semantics
	Conversion from retainable object pointer type in certain contexts


	Ownership qualification
	Spelling
	Property declarations

	Semantics
	Restrictions
	Weak-unavailable types
	Storage duration of __autoreleasing objects
	Conversion of pointers to ownership-qualified types
	Passing to an out parameter by writeback
	Ownership-qualified fields of structs and unions
	Formal rules for non-trivial types in C
	Application of the formal C rules to nontrivial ownership qualifiers
	C/C++ compatibility for structs and unions with non-trivial members


	Ownership inference
	Objects
	Indirect parameters
	Template arguments


	Method families
	Explicit method family control
	Semantics of method families
	Semantics of init
	Related result types


	Optimization
	Object liveness
	No object lifetime extension
	Precise lifetime semantics

	Miscellaneous
	Special methods
	Memory management methods
	dealloc

	@autoreleasepool
	Externally-Retained Variables
	self
	Fast enumeration iteration variables
	Blocks
	Exceptions
	Interior pointers
	C retainable pointer types
	Auditing of C retainable pointer interfaces


	Runtime support
	id&nbsp;objc_autorelease(id&nbsp;value);
	void&nbsp;objc_autoreleasePoolPop(void&nbsp;*pool);
	void&nbsp;*objc_autoreleasePoolPush(void);
	id&nbsp;objc_autoreleaseReturnValue(id&nbsp;value);
	void&nbsp;objc_copyWeak(id&nbsp;*dest,&nbsp;id&nbsp;*src);
	void&nbsp;objc_destroyWeak(id&nbsp;*object);
	id&nbsp;objc_initWeak(id&nbsp;*object,&nbsp;id&nbsp;value);
	id&nbsp;objc_loadWeak(id&nbsp;*object);
	id&nbsp;objc_loadWeakRetained(id&nbsp;*object);
	void&nbsp;objc_moveWeak(id&nbsp;*dest,&nbsp;id&nbsp;*src);
	void&nbsp;objc_release(id&nbsp;value);
	id&nbsp;objc_retain(id&nbsp;value);
	id&nbsp;objc_retainAutorelease(id&nbsp;value);
	id&nbsp;objc_retainAutoreleaseReturnValue(id&nbsp;value);
	id&nbsp;objc_retainAutoreleasedReturnValue(id&nbsp;value);
	id&nbsp;objc_retainBlock(id&nbsp;value);
	void&nbsp;objc_storeStrong(id&nbsp;*object,&nbsp;id&nbsp;value);
	id&nbsp;objc_storeWeak(id&nbsp;*object,&nbsp;id&nbsp;value);
	id&nbsp;objc_unsafeClaimAutoreleasedReturnValue(id&nbsp;value);


	Matrix Types
	Draft Specification
	Matrix Type
	Matrix Type Attribute
	Standard Conversions
	Arithmetic Conversions
	Matrix Type Element Access Operator
	Matrix Type Binary Operators
	Matrix Type Builtin Operations
	TODOs

	Decisions for the Implementation in Clang

	Introduction
	Feature Checking Macros
	__has_builtin
	__has_feature and __has_extension
	__has_cpp_attribute
	__has_c_attribute
	__has_attribute
	__has_declspec_attribute
	__is_identifier

	Include File Checking Macros
	__has_include
	__has_include_next
	__has_warning

	Builtin Macros
	Vectors and Extended Vectors
	Boolean Vectors
	Vector Literals
	Vector Operations
	Vector Builtins

	Matrix Types
	Half-Precision Floating Point
	Messages on deprecated and unavailable Attributes
	Attributes on Enumerators
	C++11 Attributes on using-declarations
	‘User-Specified’ System Frameworks
	Checks for Standard Language Features
	C++98
	C++ exceptions
	C++ RTTI

	C++11
	C++11 SFINAE includes access control
	C++11 alias templates
	C++11 alignment specifiers
	C++11 attributes
	C++11 generalized constant expressions
	C++11 decltype()
	C++11 default template arguments in function templates
	C++11 defaulted functions
	C++11 delegating constructors
	C++11 deleted functions
	C++11 explicit conversion functions
	C++11 generalized initializers
	C++11 implicit move constructors/assignment operators
	C++11 inheriting constructors
	C++11 inline namespaces
	C++11 lambdas
	C++11 local and unnamed types as template arguments
	C++11 noexcept
	C++11 in-class non-static data member initialization
	C++11 nullptr
	C++11 override&nbsp;control
	C++11 reference-qualified functions
	C++11 range-based for loop
	C++11 raw string literals
	C++11 rvalue references
	C++11 static_assert()
	C++11 thread_local
	C++11 type inference
	C++11 strongly typed enumerations
	C++11 trailing return type
	C++11 Unicode string literals
	C++11 unrestricted unions
	C++11 user-defined literals
	C++11 variadic templates

	C++14
	C++14 binary literals
	C++14 contextual conversions
	C++14 decltype(auto)
	C++14 default initializers for aggregates
	C++14 digit separators
	C++14 generalized lambda capture
	C++14 generic lambdas
	C++14 relaxed constexpr
	C++14 return type deduction
	C++14 runtime-sized arrays
	C++14 variable templates

	C11
	C11 alignment specifiers
	C11 atomic operations
	C11 generic selections
	C11 _Static_assert()
	C11 _Thread_local

	Modules

	Type Trait Primitives
	Blocks
	ASM Goto with Output Constraints
	Objective-C Features
	Related result types
	Automatic reference counting
	Weak references
	Enumerations with a fixed underlying type
	Interoperability with C++11 lambdas
	Object Literals and Subscripting
	Objective-C Autosynthesis of Properties
	Objective-C retaining behavior attributes
	Objective-C @available
	Objective-C++ ABI: protocol-qualifier mangling of parameters

	Initializer lists for complex numbers in C
	OpenCL Features
	__cl_clang_bitfields
	__cl_clang_function_pointers
	__cl_clang_variadic_functions
	__cl_clang_non_portable_kernel_param_types
	Remove address space builtin function
	Legacy 1.x atomics with generic address space

	Builtin Functions
	__builtin_alloca
	__builtin_alloca_with_align
	__builtin_assume
	__builtin_call_with_static_chain
	__builtin_readcyclecounter
	__builtin_dump_struct
	__builtin_shufflevector
	__builtin_convertvector
	__builtin_bitreverse
	__builtin_rotateleft
	__builtin_rotateright
	__builtin_unreachable
	__builtin_unpredictable
	__builtin_expect
	__builtin_expect_with_probability
	__builtin_prefetch
	__sync_swap
	__builtin_addressof
	__builtin_function_start
	__builtin_operator_new and __builtin_operator_delete
	__builtin_preserve_access_index
	__builtin_debugtrap
	__builtin_trap
	__builtin_sycl_unique_stable_name
	Multiprecision Arithmetic Builtins
	Checked Arithmetic Builtins
	Floating point builtins
	__builtin_canonicalize
	String builtins
	Memory builtins
	Guaranteed inlined copy

	Atomic Min/Max builtins with memory ordering
	__c11_atomic builtins
	Low-level ARM exclusive memory builtins
	Non-temporal load/store builtins
	C++ Coroutines support builtins
	Source location builtins
	Alignment builtins

	Non-standard C++11 Attributes
	Target-Specific Extensions
	ARM/AArch64 Language Extensions
	Memory Barrier Intrinsics

	X86/X86-64 Language Extensions
	Memory references to specified segments

	PowerPC Language Extensions
	Set the Floating Point Rounding Mode
	PowerPC cache builtins


	Extensions for Static Analysis
	Extensions for Dynamic Analysis
	Extensions for selectively disabling optimization
	Extensions for loop hint optimizations
	Vectorization, Interleaving, and Predication
	Loop Unrolling
	Loop Distribution
	Additional Information

	Extensions to specify floating-point flags
	Specifying an attribute for multiple declarations (#pragma clang attribute)
	Subject Match Rules
	Supported Attributes

	Specifying section names for global objects (#pragma clang section)
	Specifying Linker Options on ELF Targets
	Evaluating Object Size Dynamically
	Deprecating Macros
	Restricted Expansion Macros
	Final Macros
	Line Control
	Extended Integer Types
	Intrinsics Support within Constant Expressions

	Clang command line argument reference
	Introduction
	Actions
	Compilation flags
	Preprocessor flags
	Include path management
	Dependency file generation
	Dumping preprocessor state

	Diagnostic flags
	Target-independent compilation options
	OpenCL flags
	SYCL flags

	Target-dependent compilation options
	AARCH64
	AMDGPU
	ARM
	Hexagon
	Hexagon
	M68k
	MIPS
	PowerPC
	WebAssembly
	WebAssembly Driver
	X86
	RISCV
	Long double flags

	Optimization level
	Debug information generation
	Kind and level of debug information
	Debug level
	Debugger to tune debug information for

	Debug information flags


	Static analyzer flags
	Fortran compilation flags
	Linker flags
	

	Attributes in Clang
	Introduction
	AMD GPU Attributes
	amdgpu_flat_work_group_size
	amdgpu_num_sgpr
	amdgpu_num_vgpr
	amdgpu_waves_per_eu

	Calling Conventions
	aarch64_sve_pcs
	aarch64_vector_pcs
	fastcall
	ms_abi
	pcs
	preserve_all
	preserve_most
	regcall
	regparm
	stdcall
	thiscall
	vectorcall

	Consumed Annotation Checking
	callable_when
	consumable
	param_typestate
	return_typestate
	set_typestate
	test_typestate

	Customizing Swift Import
	swift_async
	swift_async_error
	swift_async_name
	swift_attr
	swift_bridge
	swift_bridged
	swift_error
	swift_name
	swift_newtype
	swift_objc_members
	swift_private

	Declaration Attributes
	Owner
	Pointer
	_Packed
	__single_inhertiance, __multiple_inheritance, __virtual_inheritance
	asm
	deprecated
	empty_bases
	enum_extensibility
	external_source_symbol
	flag_enum
	layout_version
	lto_visibility_public
	managed
	novtable
	ns_error_domain
	objc_boxable
	objc_direct
	objc_direct_members
	objc_non_runtime_protocol
	objc_nonlazy_class
	objc_runtime_name
	objc_runtime_visible
	objc_subclassing_restricted
	preferred_name
	randomize_layout, no_randomize_layout
	randomize_layout, no_randomize_layout
	selectany
	transparent_union
	trivial_abi
	using_if_exists

	Field Attributes
	no_unique_address

	Function Attributes
	#pragma omp declare simd
	#pragma omp declare target
	#pragma omp declare variant
	SV_GroupIndex
	_Export
	_Noreturn
	abi_tag
	acquire_capability, acquire_shared_capability
	alloc_align
	alloc_size
	allocator
	always_inline, __force_inline
	artificial
	assert_capability, assert_shared_capability
	assume
	assume_aligned
	availability
	btf_decl_tag
	callback
	carries_dependency
	cf_consumed
	cf_returns_not_retained
	cf_returns_retained
	cfi_canonical_jump_table
	clang::builtin_alias, clang_builtin_alias
	clang_arm_builtin_alias
	cmse_nonsecure_entry
	code_seg
	convergent
	cpu_dispatch
	cpu_specific
	diagnose_as_builtin
	diagnose_if
	disable_sanitizer_instrumentation
	disable_tail_calls
	enable_if
	enforce_tcb
	enforce_tcb_leaf
	error, warning
	exclude_from_explicit_instantiation
	export_name
	flatten
	force_align_arg_pointer
	format
	gnu_inline
	guard
	ifunc
	import_module
	import_name
	internal_linkage
	interrupt (ARM)
	interrupt (AVR)
	interrupt (MIPS)
	interrupt (RISCV)
	kernel
	lifetimebound
	long_call, far
	malloc
	micromips
	mig_server_routine
	min_vector_width
	no_builtin
	no_caller_saved_registers
	no_profile_instrument_function
	no_sanitize
	no_sanitize_address, no_address_safety_analysis
	no_sanitize_memory
	no_sanitize_thread
	no_speculative_load_hardening
	no_split_stack
	no_stack_protector
	noalias
	nocf_check
	nodiscard, warn_unused_result
	noduplicate
	noinline
	nomicromips
	noreturn, _Noreturn
	not_tail_called
	nothrow
	ns_consumed
	ns_consumes_self
	ns_returns_autoreleased
	ns_returns_not_retained
	ns_returns_retained
	numthreads
	objc_method_family
	objc_requires_super
	optnone
	os_consumed
	os_consumes_this
	os_returns_not_retained
	os_returns_retained
	os_returns_retained_on_non_zero
	os_returns_retained_on_zero
	overloadable
	patchable_function_entry
	preserve_access_index
	reinitializes
	release_capability, release_shared_capability
	retain
	shader
	short_call, near
	signal
	speculative_load_hardening
	sycl_kernel
	target
	target_clones
	try_acquire_capability, try_acquire_shared_capability
	used
	xray_always_instrument, xray_never_instrument, xray_log_args
	xray_always_instrument, xray_never_instrument, xray_log_args
	zero_call_used_regs

	Handle Attributes
	acquire_handle
	release_handle
	use_handle

	Nullability Attributes
	_Nonnull
	_Null_unspecified
	_Nullable
	_Nullable_result
	nonnull
	returns_nonnull

	OpenCL Address Spaces
	[[clang::opencl_global_device]], [[clang::opencl_global_host]]
	[[clang::opencl_global_device]], [[clang::opencl_global_host]]
	__constant, constant, [[clang::opencl_constant]]
	__generic, generic, [[clang::opencl_generic]]
	__global, global, [[clang::opencl_global]]
	__local, local, [[clang::opencl_local]]
	__private, private, [[clang::opencl_private]]

	Statement Attributes
	#pragma clang loop
	#pragma unroll, #pragma nounroll
	__read_only, __write_only, __read_write (read_only, write_only, read_write)
	fallthrough
	intel_reqd_sub_group_size
	likely and unlikely
	likely and unlikely
	musttail
	nomerge
	opencl_unroll_hint
	suppress
	sycl_special_class

	Type Attributes
	__ptr32
	__ptr64
	__sptr
	__uptr
	align_value
	arm_sve_vector_bits
	btf_type_tag
	clang_arm_mve_strict_polymorphism
	cmse_nonsecure_call
	device_builtin_surface_type
	device_builtin_texture_type
	noderef
	objc_class_stub

	Type Safety Checking
	argument_with_type_tag
	pointer_with_type_tag
	type_tag_for_datatype

	Variable Attributes
	always_destroy
	called_once
	dllexport
	dllimport
	init_priority
	init_seg
	leaf
	loader_uninitialized
	maybe_unused, unused
	no_destroy
	nodebug
	noescape
	nosvm
	objc_externally_retained
	pass_object_size, pass_dynamic_object_size
	require_constant_initialization, constinit (C++20)
	section, __declspec(allocate)
	standalone_debug
	swift_async_context
	swift_context
	swift_error_result
	swift_indirect_result
	swiftasynccall
	swiftcall
	thread
	tls_model
	uninitialized


	Diagnostic flags in Clang
	Introduction
	Diagnostic flags
	-W
	-W#pragma-messages
	-W#warnings
	-WCFString-literal
	-WCL4
	-WIndependentClass-attribute
	-WNSObject-attribute
	-Wabi
	-Wabsolute-value
	-Wabstract-final-class
	-Wabstract-vbase-init
	-Waddress
	-Waddress-of-packed-member
	-Waddress-of-temporary
	-Waggregate-return
	-Waggressive-restrict
	-Waix-compat
	-Walign-mismatch
	-Wall
	-Walloca
	-Walloca-with-align-alignof
	-Walways-inline-coroutine
	-Wambiguous-delete
	-Wambiguous-ellipsis
	-Wambiguous-macro
	-Wambiguous-member-template
	-Wambiguous-reversed-operator
	-Wanalyzer-incompatible-plugin
	-Wanon-enum-enum-conversion
	-Wanonymous-pack-parens
	-Warc
	-Warc-bridge-casts-disallowed-in-nonarc
	-Warc-maybe-repeated-use-of-weak
	-Warc-non-pod-memaccess
	-Warc-performSelector-leaks
	-Warc-repeated-use-of-weak
	-Warc-retain-cycles
	-Warc-unsafe-retained-assign
	-Wargument-outside-range
	-Wargument-undefined-behaviour
	-Warray-bounds
	-Warray-bounds-pointer-arithmetic
	-Wasm
	-Wasm-operand-widths
	-Wassign-enum
	-Wassume
	-Wat-protocol
	-Watimport-in-framework-header
	-Watomic-access
	-Watomic-alignment
	-Watomic-implicit-seq-cst
	-Watomic-memory-ordering
	-Watomic-properties
	-Watomic-property-with-user-defined-accessor
	-Wattribute-packed-for-bitfield
	-Wattribute-warning
	-Wattributes
	-Wauto-disable-vptr-sanitizer
	-Wauto-import
	-Wauto-storage-class
	-Wauto-var-id
	-Wavailability
	-Wavr-rtlib-linking-quirks
	-Wbackend-plugin
	-Wbackslash-newline-escape
	-Wbad-function-cast
	-Wbinary-literal
	-Wbind-to-temporary-copy
	-Wbinding-in-condition
	-Wbit-int-extension
	-Wbitfield-constant-conversion
	-Wbitfield-enum-conversion
	-Wbitfield-width
	-Wbitwise-conditional-parentheses
	-Wbitwise-instead-of-logical
	-Wbitwise-op-parentheses
	-Wblock-capture-autoreleasing
	-Wbool-conversion
	-Wbool-conversions
	-Wbool-operation
	-Wbraced-scalar-init
	-Wbranch-protection
	-Wbridge-cast
	-Wbuiltin-assume-aligned-alignment
	-Wbuiltin-macro-redefined
	-Wbuiltin-memcpy-chk-size
	-Wbuiltin-requires-header
	-Wc++-compat
	-Wc++0x-compat
	-Wc++0x-extensions
	-Wc++0x-narrowing
	-Wc++11-compat
	-Wc++11-compat-deprecated-writable-strings
	-Wc++11-compat-pedantic
	-Wc++11-compat-reserved-user-defined-literal
	-Wc++11-extensions
	-Wc++11-extra-semi
	-Wc++11-inline-namespace
	-Wc++11-long-long
	-Wc++11-narrowing
	-Wc++14-attribute-extensions
	-Wc++14-binary-literal
	-Wc++14-compat
	-Wc++14-compat-pedantic
	-Wc++14-extensions
	-Wc++17-attribute-extensions
	-Wc++17-compat
	-Wc++17-compat-mangling
	-Wc++17-compat-pedantic
	-Wc++17-extensions
	-Wc++1y-extensions
	-Wc++1z-compat
	-Wc++1z-compat-mangling
	-Wc++1z-extensions
	-Wc++20-attribute-extensions
	-Wc++20-compat
	-Wc++20-compat-pedantic
	-Wc++20-designator
	-Wc++20-extensions
	-Wc++2a-compat
	-Wc++2a-compat-pedantic
	-Wc++2a-extensions
	-Wc++2b-extensions
	-Wc++98-c++11-c++14-c++17-compat
	-Wc++98-c++11-c++14-c++17-compat-pedantic
	-Wc++98-c++11-c++14-compat
	-Wc++98-c++11-c++14-compat-pedantic
	-Wc++98-c++11-compat
	-Wc++98-c++11-compat-binary-literal
	-Wc++98-c++11-compat-pedantic
	-Wc++98-compat
	-Wc++98-compat-bind-to-temporary-copy
	-Wc++98-compat-extra-semi
	-Wc++98-compat-local-type-template-args
	-Wc++98-compat-pedantic
	-Wc++98-compat-unnamed-type-template-args
	-Wc11-extensions
	-Wc2x-extensions
	-Wc99-compat
	-Wc99-designator
	-Wc99-extensions
	-Wcall-to-pure-virtual-from-ctor-dtor
	-Wcalled-once-parameter
	-Wcast-align
	-Wcast-calling-convention
	-Wcast-function-type
	-Wcast-of-sel-type
	-Wcast-qual
	-Wcast-qual-unrelated
	-Wchar-align
	-Wchar-subscripts
	-Wclang-cl-pch
	-Wclass-conversion
	-Wclass-varargs
	-Wcmse-union-leak
	-Wcomma
	-Wcomment
	-Wcomments
	-Wcompare-distinct-pointer-types
	-Wcompletion-handler
	-Wcomplex-component-init
	-Wcompound-token-split
	-Wcompound-token-split-by-macro
	-Wcompound-token-split-by-space
	-Wconcepts-ts-compat
	-Wconditional-type-mismatch
	-Wconditional-uninitialized
	-Wconfig-macros
	-Wconstant-conversion
	-Wconstant-evaluated
	-Wconstant-logical-operand
	-Wconstexpr-not-const
	-Wconsumed
	-Wconversion
	-Wconversion-null
	-Wcoroutine
	-Wcoroutine-missing-unhandled-exception
	-Wcovered-switch-default
	-Wcpp
	-Wcstring-format-directive
	-Wctad-maybe-unsupported
	-Wctor-dtor-privacy
	-Wctu
	-Wcuda-compat
	-Wcustom-atomic-properties
	-Wcxx-attribute-extension
	-Wdangling
	-Wdangling-else
	-Wdangling-field
	-Wdangling-gsl
	-Wdangling-initializer-list
	-Wdarwin-sdk-settings
	-Wdate-time
	-Wdealloc-in-category
	-Wdebug-compression-unavailable
	-Wdeclaration-after-statement
	-Wdefaulted-function-deleted
	-Wdelegating-ctor-cycles
	-Wdelete-abstract-non-virtual-dtor
	-Wdelete-incomplete
	-Wdelete-non-abstract-non-virtual-dtor
	-Wdelete-non-virtual-dtor
	-Wdelimited-escape-sequence-extension
	-Wdeprecate-lax-vec-conv-all
	-Wdeprecated
	-Wdeprecated-altivec-src-compat
	-Wdeprecated-anon-enum-enum-conversion
	-Wdeprecated-array-compare
	-Wdeprecated-attributes
	-Wdeprecated-comma-subscript
	-Wdeprecated-copy
	-Wdeprecated-copy-dtor
	-Wdeprecated-copy-with-dtor
	-Wdeprecated-copy-with-user-provided-copy
	-Wdeprecated-copy-with-user-provided-dtor
	-Wdeprecated-coroutine
	-Wdeprecated-declarations
	-Wdeprecated-dynamic-exception-spec
	-Wdeprecated-enum-compare
	-Wdeprecated-enum-compare-conditional
	-Wdeprecated-enum-enum-conversion
	-Wdeprecated-enum-float-conversion
	-Wdeprecated-experimental-coroutine
	-Wdeprecated-implementations
	-Wdeprecated-increment-bool
	-Wdeprecated-non-prototype
	-Wdeprecated-objc-isa-usage
	-Wdeprecated-objc-pointer-introspection
	-Wdeprecated-objc-pointer-introspection-performSelector
	-Wdeprecated-pragma
	-Wdeprecated-register
	-Wdeprecated-this-capture
	-Wdeprecated-type
	-Wdeprecated-volatile
	-Wdeprecated-writable-strings
	-Wdeprecated-xl-loop-pragmas
	-Wdirect-ivar-access
	-Wdisabled-macro-expansion
	-Wdisabled-optimization
	-Wdiscard-qual
	-Wdistributed-object-modifiers
	-Wdiv-by-zero
	-Wdivision-by-zero
	-Wdll-attribute-on-redeclaration
	-Wdllexport-explicit-instantiation-decl
	-Wdllimport-static-field-def
	-Wdocumentation
	-Wdocumentation-deprecated-sync
	-Wdocumentation-html
	-Wdocumentation-pedantic
	-Wdocumentation-unknown-command
	-Wdollar-in-identifier-extension
	-Wdouble-promotion
	-Wdtor-name
	-Wdtor-typedef
	-Wduplicate-decl-specifier
	-Wduplicate-enum
	-Wduplicate-method-arg
	-Wduplicate-method-match
	-Wduplicate-protocol
	-Wdynamic-class-memaccess
	-Wdynamic-exception-spec
	-Weffc++
	-Welaborated-enum-base
	-Welaborated-enum-class
	-Wembedded-directive
	-Wempty-body
	-Wempty-decomposition
	-Wempty-init-stmt
	-Wempty-margins
	-Wempty-translation-unit
	-Wencode-type
	-Wendif-labels
	-Wenum-compare
	-Wenum-compare-conditional
	-Wenum-compare-switch
	-Wenum-conversion
	-Wenum-enum-conversion
	-Wenum-float-conversion
	-Wenum-too-large
	-Wexceptions
	-Wexcess-initializers
	-Wexit-time-destructors
	-Wexpansion-to-defined
	-Wexplicit-initialize-call
	-Wexplicit-ownership-type
	-Wexport-unnamed
	-Wexport-using-directive
	-Wextern-c-compat
	-Wextern-initializer
	-Wextra
	-Wextra-qualification
	-Wextra-semi
	-Wextra-semi-stmt
	-Wextra-tokens
	-Wfinal-dtor-non-final-class
	-Wfinal-macro
	-Wfixed-enum-extension
	-Wfixed-point-overflow
	-Wflag-enum
	-Wflexible-array-extensions
	-Wfloat-conversion
	-Wfloat-equal
	-Wfloat-overflow-conversion
	-Wfloat-zero-conversion
	-Wfor-loop-analysis
	-Wformat
	-Wformat-extra-args
	-Wformat-insufficient-args
	-Wformat-invalid-specifier
	-Wformat-non-iso
	-Wformat-nonliteral
	-Wformat-pedantic
	-Wformat-security
	-Wformat-type-confusion
	-Wformat-y2k
	-Wformat-zero-length
	-Wformat=2
	-Wfortify-source
	-Wfour-char-constants
	-Wframe-address
	-Wframe-larger-than
	-Wframe-larger-than=
	-Wframework-include-private-from-public
	-Wfree-nonheap-object
	-Wfunction-def-in-objc-container
	-Wfunction-multiversion
	-Wfuse-ld-path
	-Wfuture-attribute-extensions
	-Wfuture-compat
	-Wgcc-compat
	-Wglobal-constructors
	-Wglobal-isel
	-Wgnu
	-Wgnu-alignof-expression
	-Wgnu-anonymous-struct
	-Wgnu-array-member-paren-init
	-Wgnu-auto-type
	-Wgnu-binary-literal
	-Wgnu-case-range
	-Wgnu-complex-integer
	-Wgnu-compound-literal-initializer
	-Wgnu-conditional-omitted-operand
	-Wgnu-designator
	-Wgnu-empty-initializer
	-Wgnu-empty-struct
	-Wgnu-flexible-array-initializer
	-Wgnu-flexible-array-union-member
	-Wgnu-folding-constant
	-Wgnu-imaginary-constant
	-Wgnu-include-next
	-Wgnu-inline-cpp-without-extern
	-Wgnu-label-as-value
	-Wgnu-line-marker
	-Wgnu-null-pointer-arithmetic
	-Wgnu-pointer-arith
	-Wgnu-redeclared-enum
	-Wgnu-statement-expression
	-Wgnu-statement-expression-from-macro-expansion
	-Wgnu-static-float-init
	-Wgnu-string-literal-operator-template
	-Wgnu-union-cast
	-Wgnu-variable-sized-type-not-at-end
	-Wgnu-zero-line-directive
	-Wgnu-zero-variadic-macro-arguments
	-Wgpu-maybe-wrong-side
	-Wheader-guard
	-Wheader-hygiene
	-Whip-only
	-Whlsl-extensions
	-Widiomatic-parentheses
	-Wignored-attributes
	-Wignored-availability-without-sdk-settings
	-Wignored-optimization-argument
	-Wignored-pragma-intrinsic
	-Wignored-pragma-optimize
	-Wignored-pragmas
	-Wignored-qualifiers
	-Wignored-reference-qualifiers
	-Wimplicit
	-Wimplicit-atomic-properties
	-Wimplicit-const-int-float-conversion
	-Wimplicit-conversion-floating-point-to-bool
	-Wimplicit-exception-spec-mismatch
	-Wimplicit-fallthrough
	-Wimplicit-fallthrough-per-function
	-Wimplicit-fixed-point-conversion
	-Wimplicit-float-conversion
	-Wimplicit-function-declaration
	-Wimplicit-int
	-Wimplicit-int-conversion
	-Wimplicit-int-float-conversion
	-Wimplicit-retain-self
	-Wimplicitly-unsigned-literal
	-Wimport
	-Wimport-preprocessor-directive-pedantic
	-Winaccessible-base
	-Winclude-next-absolute-path
	-Winclude-next-outside-header
	-Wincompatible-exception-spec
	-Wincompatible-function-pointer-types
	-Wincompatible-library-redeclaration
	-Wincompatible-ms-struct
	-Wincompatible-pointer-types
	-Wincompatible-pointer-types-discards-qualifiers
	-Wincompatible-property-type
	-Wincompatible-sysroot
	-Wincomplete-framework-module-declaration
	-Wincomplete-implementation
	-Wincomplete-module
	-Wincomplete-setjmp-declaration
	-Wincomplete-umbrella
	-Winconsistent-dllimport
	-Winconsistent-missing-destructor-override
	-Winconsistent-missing-override
	-Wincrement-bool
	-Winfinite-recursion
	-Winit-self
	-Winitializer-overrides
	-Winjected-class-name
	-Winline
	-Winline-asm
	-Winline-namespace-reopened-noninline
	-Winline-new-delete
	-Winstantiation-after-specialization
	-Wint-conversion
	-Wint-conversions
	-Wint-in-bool-context
	-Wint-to-pointer-cast
	-Wint-to-void-pointer-cast
	-Winteger-overflow
	-Winterrupt-service-routine
	-Winvalid-command-line-argument
	-Winvalid-constexpr
	-Winvalid-iboutlet
	-Winvalid-initializer-from-system-header
	-Winvalid-ios-deployment-target
	-Winvalid-no-builtin-names
	-Winvalid-noreturn
	-Winvalid-offsetof
	-Winvalid-or-nonexistent-directory
	-Winvalid-partial-specialization
	-Winvalid-pch
	-Winvalid-pp-token
	-Winvalid-source-encoding
	-Winvalid-token-paste
	-Wjump-seh-finally
	-Wkeyword-compat
	-Wkeyword-macro
	-Wknr-promoted-parameter
	-Wlanguage-extension-token
	-Wlarge-by-value-copy
	-Wliblto
	-Wlinker-warnings
	-Wliteral-conversion
	-Wliteral-range
	-Wlocal-type-template-args
	-Wlogical-not-parentheses
	-Wlogical-op-parentheses
	-Wlong-long
	-Wloop-analysis
	-Wmacro-redefined
	-Wmain
	-Wmain-return-type
	-Wmalformed-warning-check
	-Wmany-braces-around-scalar-init
	-Wmax-tokens
	-Wmax-unsigned-zero
	-Wmemset-transposed-args
	-Wmemsize-comparison
	-Wmethod-signatures
	-Wmicrosoft
	-Wmicrosoft-abstract
	-Wmicrosoft-anon-tag
	-Wmicrosoft-cast
	-Wmicrosoft-charize
	-Wmicrosoft-comment-paste
	-Wmicrosoft-const-init
	-Wmicrosoft-cpp-macro
	-Wmicrosoft-default-arg-redefinition
	-Wmicrosoft-drectve-section
	-Wmicrosoft-end-of-file
	-Wmicrosoft-enum-forward-reference
	-Wmicrosoft-enum-value
	-Wmicrosoft-exception-spec
	-Wmicrosoft-exists
	-Wmicrosoft-explicit-constructor-call
	-Wmicrosoft-extra-qualification
	-Wmicrosoft-fixed-enum
	-Wmicrosoft-flexible-array
	-Wmicrosoft-goto
	-Wmicrosoft-inaccessible-base
	-Wmicrosoft-include
	-Wmicrosoft-mutable-reference
	-Wmicrosoft-pure-definition
	-Wmicrosoft-redeclare-static
	-Wmicrosoft-sealed
	-Wmicrosoft-static-assert
	-Wmicrosoft-template
	-Wmicrosoft-template-shadow
	-Wmicrosoft-union-member-reference
	-Wmicrosoft-unqualified-friend
	-Wmicrosoft-using-decl
	-Wmicrosoft-void-pseudo-dtor
	-Wmisexpect
	-Wmisleading-indentation
	-Wmismatched-new-delete
	-Wmismatched-parameter-types
	-Wmismatched-return-types
	-Wmismatched-tags
	-Wmissing-braces
	-Wmissing-constinit
	-Wmissing-declarations
	-Wmissing-exception-spec
	-Wmissing-field-initializers
	-Wmissing-format-attribute
	-Wmissing-include-dirs
	-Wmissing-method-return-type
	-Wmissing-noescape
	-Wmissing-noreturn
	-Wmissing-prototype-for-cc
	-Wmissing-prototypes
	-Wmissing-selector-name
	-Wmissing-sysroot
	-Wmissing-variable-declarations
	-Wmisspelled-assumption
	-Rmodule-build
	-Wmodule-conflict
	-Wmodule-file-config-mismatch
	-Wmodule-file-extension
	-Rmodule-import
	-Wmodule-import-in-extern-c
	-Rmodule-lock
	-Wmodules-ambiguous-internal-linkage
	-Wmodules-import-nested-redundant
	-Wmost
	-Wmove
	-Wmsvc-include
	-Wmsvc-not-found
	-Wmultichar
	-Wmultiple-move-vbase
	-Wnarrowing
	-Wnested-anon-types
	-Wnested-externs
	-Wnew-returns-null
	-Wnewline-eof
	-Wnoderef
	-Wnoexcept-type
	-Wnon-c-typedef-for-linkage
	-Wnon-gcc
	-Wnon-literal-null-conversion
	-Wnon-modular-include-in-framework-module
	-Wnon-modular-include-in-module
	-Wnon-pod-varargs
	-Wnon-power-of-two-alignment
	-Wnon-virtual-dtor
	-Wnonnull
	-Wnonportable-cfstrings
	-Wnonportable-include-path
	-Wnonportable-system-include-path
	-Wnonportable-vector-initialization
	-Wnontrivial-memaccess
	-Wnsconsumed-mismatch
	-Wnsreturns-mismatch
	-Wnull-arithmetic
	-Wnull-character
	-Wnull-conversion
	-Wnull-dereference
	-Wnull-pointer-arithmetic
	-Wnull-pointer-subtraction
	-Wnullability
	-Wnullability-completeness
	-Wnullability-completeness-on-arrays
	-Wnullability-declspec
	-Wnullability-extension
	-Wnullability-inferred-on-nested-type
	-Wnullable-to-nonnull-conversion
	-Wobjc-autosynthesis-property-ivar-name-match
	-Wobjc-bool-constant-conversion
	-Wobjc-boxing
	-Wobjc-circular-container
	-Wobjc-cocoa-api
	-Wobjc-designated-initializers
	-Wobjc-dictionary-duplicate-keys
	-Wobjc-flexible-array
	-Wobjc-forward-class-redefinition
	-Wobjc-interface-ivars
	-Wobjc-literal-compare
	-Wobjc-literal-conversion
	-Wobjc-macro-redefinition
	-Wobjc-messaging-id
	-Wobjc-method-access
	-Wobjc-missing-property-synthesis
	-Wobjc-missing-super-calls
	-Wobjc-multiple-method-names
	-Wobjc-noncopy-retain-block-property
	-Wobjc-nonunified-exceptions
	-Wobjc-property-assign-on-object-type
	-Wobjc-property-implementation
	-Wobjc-property-implicit-mismatch
	-Wobjc-property-matches-cocoa-ownership-rule
	-Wobjc-property-no-attribute
	-Wobjc-property-synthesis
	-Wobjc-protocol-method-implementation
	-Wobjc-protocol-property-synthesis
	-Wobjc-protocol-qualifiers
	-Wobjc-readonly-with-setter-property
	-Wobjc-redundant-api-use
	-Wobjc-redundant-literal-use
	-Wobjc-root-class
	-Wobjc-signed-char-bool
	-Wobjc-signed-char-bool-implicit-float-conversion
	-Wobjc-signed-char-bool-implicit-int-conversion
	-Wobjc-string-compare
	-Wobjc-string-concatenation
	-Wobjc-unsafe-perform-selector
	-Wodr
	-Wold-style-cast
	-Wold-style-definition
	-Wopencl-unsupported-rgba
	-Wopenmp
	-Wopenmp-51-extensions
	-Wopenmp-clauses
	-Wopenmp-loop-form
	-Wopenmp-mapping
	-Wopenmp-target
	-Woption-ignored
	-Wordered-compare-function-pointers
	-Wout-of-line-declaration
	-Wout-of-scope-function
	-Wover-aligned
	-Woverflow
	-Woverlength-strings
	-Woverloaded-shift-op-parentheses
	-Woverloaded-virtual
	-Woverride-init
	-Woverride-module
	-Woverriding-method-mismatch
	-Woverriding-t-option
	-Wpacked
	-Wpadded
	-Wparentheses
	-Wparentheses-equality
	-Wpartial-availability
	-Rpass
	-Rpass-analysis
	-Wpass-failed
	-Rpass-missed
	-Wpch-date-time
	-Wpedantic
	-Wpedantic-core-features
	-Wpedantic-macros
	-Wpessimizing-move
	-Wpointer-arith
	-Wpointer-bool-conversion
	-Wpointer-compare
	-Wpointer-integer-compare
	-Wpointer-sign
	-Wpointer-to-enum-cast
	-Wpointer-to-int-cast
	-Wpointer-type-mismatch
	-Wpoison-system-directories
	-Wpotentially-direct-selector
	-Wpotentially-evaluated-expression
	-Wpragma-clang-attribute
	-Wpragma-once-outside-header
	-Wpragma-pack
	-Wpragma-pack-suspicious-include
	-Wpragma-system-header-outside-header
	-Wpragmas
	-Wpre-c++14-compat
	-Wpre-c++14-compat-pedantic
	-Wpre-c++17-compat
	-Wpre-c++17-compat-pedantic
	-Wpre-c++20-compat
	-Wpre-c++20-compat-pedantic
	-Wpre-c++2b-compat
	-Wpre-c++2b-compat-pedantic
	-Wpre-c2x-compat
	-Wpre-c2x-compat-pedantic
	-Wpre-openmp-51-compat
	-Wpredefined-identifier-outside-function
	-Wprivate-extern
	-Wprivate-header
	-Wprivate-module
	-Wprofile-instr-missing
	-Wprofile-instr-out-of-date
	-Wprofile-instr-unprofiled
	-Wproperty-access-dot-syntax
	-Wproperty-attribute-mismatch
	-Wprotocol
	-Wprotocol-property-synthesis-ambiguity
	-Wpsabi
	-Wquoted-include-in-framework-header
	-Wrange-loop-analysis
	-Wrange-loop-bind-reference
	-Wrange-loop-construct
	-Wreadonly-iboutlet-property
	-Wreceiver-expr
	-Wreceiver-forward-class
	-Wredeclared-class-member
	-Wredundant-consteval-if
	-Wredundant-decls
	-Wredundant-move
	-Wredundant-parens
	-Wregister
	-Wreinterpret-base-class
	-Rremark-backend-plugin
	-Wreorder
	-Wreorder-ctor
	-Wreorder-init-list
	-Wrequires-super-attribute
	-Wreserved-id-macro
	-Wreserved-identifier
	-Wreserved-macro-identifier
	-Wreserved-user-defined-literal
	-Wrestrict-expansion
	-Wretained-language-linkage
	-Wreturn-stack-address
	-Wreturn-std-move
	-Wreturn-type
	-Wreturn-type-c-linkage
	-Wrewrite-not-bool
	-Rround-trip-cc1-args
	-Wrtti
	-Rsanitize-address
	-Rsearch-path-usage
	-Wsection
	-Wselector
	-Wselector-type-mismatch
	-Wself-assign
	-Wself-assign-field
	-Wself-assign-overloaded
	-Wself-move
	-Wsemicolon-before-method-body
	-Wsentinel
	-Wsequence-point
	-Wserialized-diagnostics
	-Wshadow
	-Wshadow-all
	-Wshadow-field
	-Wshadow-field-in-constructor
	-Wshadow-field-in-constructor-modified
	-Wshadow-ivar
	-Wshadow-uncaptured-local
	-Wshift-count-negative
	-Wshift-count-overflow
	-Wshift-negative-value
	-Wshift-op-parentheses
	-Wshift-overflow
	-Wshift-sign-overflow
	-Wshorten-64-to-32
	-Wsign-compare
	-Wsign-conversion
	-Wsign-promo
	-Wsigned-enum-bitfield
	-Wsigned-unsigned-wchar
	-Wsizeof-array-argument
	-Wsizeof-array-decay
	-Wsizeof-array-div
	-Wsizeof-pointer-div
	-Wsizeof-pointer-memaccess
	-Wslash-u-filename
	-Wslh-asm-goto
	-Wsometimes-uninitialized
	-Wsource-mgr
	-Wsource-uses-openmp
	-Wspir-compat
	-Wspirv-compat
	-Wstack-exhausted
	-Wstack-protector
	-Wstatic-float-init
	-Wstatic-in-inline
	-Wstatic-inline-explicit-instantiation
	-Wstatic-local-in-inline
	-Wstatic-self-init
	-Wstdlibcxx-not-found
	-Wstrict-aliasing
	-Wstrict-aliasing=0
	-Wstrict-aliasing=1
	-Wstrict-aliasing=2
	-Wstrict-overflow
	-Wstrict-overflow=0
	-Wstrict-overflow=1
	-Wstrict-overflow=2
	-Wstrict-overflow=3
	-Wstrict-overflow=4
	-Wstrict-overflow=5
	-Wstrict-potentially-direct-selector
	-Wstrict-prototypes
	-Wstrict-selector-match
	-Wstring-compare
	-Wstring-concatenation
	-Wstring-conversion
	-Wstring-plus-char
	-Wstring-plus-int
	-Wstrlcpy-strlcat-size
	-Wstrncat-size
	-Wsuggest-destructor-override
	-Wsuggest-override
	-Wsuper-class-method-mismatch
	-Wsuspicious-bzero
	-Wsuspicious-memaccess
	-Wswift-name-attribute
	-Wswitch
	-Wswitch-bool
	-Wswitch-default
	-Wswitch-enum
	-Wsync-fetch-and-nand-semantics-changed
	-Wsynth
	-Wtarget-clones-mixed-specifiers
	-Wtautological-bitwise-compare
	-Wtautological-compare
	-Wtautological-constant-compare
	-Wtautological-constant-in-range-compare
	-Wtautological-constant-out-of-range-compare
	-Wtautological-objc-bool-compare
	-Wtautological-overlap-compare
	-Wtautological-pointer-compare
	-Wtautological-type-limit-compare
	-Wtautological-undefined-compare
	-Wtautological-unsigned-char-zero-compare
	-Wtautological-unsigned-enum-zero-compare
	-Wtautological-unsigned-zero-compare
	-Wtautological-value-range-compare
	-Wtcb-enforcement
	-Wtentative-definition-incomplete-type
	-Wthread-safety
	-Wthread-safety-analysis
	-Wthread-safety-attributes
	-Wthread-safety-beta
	-Wthread-safety-negative
	-Wthread-safety-precise
	-Wthread-safety-reference
	-Wthread-safety-verbose
	-Wtrigraphs
	-Wtype-limits
	-Wtype-safety
	-Wtypedef-redefinition
	-Wtypename-missing
	-Wunable-to-open-stats-file
	-Wunaligned-access
	-Wunaligned-qualifier-implicit-cast
	-Wunavailable-declarations
	-Wundeclared-selector
	-Wundef
	-Wundef-prefix
	-Wundefined-bool-conversion
	-Wundefined-func-template
	-Wundefined-inline
	-Wundefined-internal
	-Wundefined-internal-type
	-Wundefined-reinterpret-cast
	-Wundefined-var-template
	-Wunderaligned-exception-object
	-Wunevaluated-expression
	-Wunguarded-availability
	-Wunguarded-availability-new
	-Wunicode
	-Wunicode-homoglyph
	-Wunicode-whitespace
	-Wunicode-zero-width
	-Wuninitialized
	-Wuninitialized-const-reference
	-Wunknown-argument
	-Wunknown-assumption
	-Wunknown-attributes
	-Wunknown-cuda-version
	-Wunknown-directives
	-Wunknown-escape-sequence
	-Wunknown-pragmas
	-Wunknown-sanitizers
	-Wunknown-warning-option
	-Wunnamed-type-template-args
	-Wunneeded-internal-declaration
	-Wunneeded-member-function
	-Wunqualified-std-cast-call
	-Wunreachable-code
	-Wunreachable-code-aggressive
	-Wunreachable-code-break
	-Wunreachable-code-fallthrough
	-Wunreachable-code-generic-assoc
	-Wunreachable-code-loop-increment
	-Wunreachable-code-return
	-Wunsequenced
	-Wunsupported-abi
	-Wunsupported-abs
	-Wunsupported-availability-guard
	-Wunsupported-cb
	-Wunsupported-dll-base-class-template
	-Wunsupported-floating-point-opt
	-Wunsupported-friend
	-Wunsupported-gpopt
	-Wunsupported-nan
	-Wunsupported-target-opt
	-Wunsupported-visibility
	-Wunusable-partial-specialization
	-Wunused
	-Wunused-argument
	-Wunused-but-set-parameter
	-Wunused-but-set-variable
	-Wunused-command-line-argument
	-Wunused-comparison
	-Wunused-const-variable
	-Wunused-exception-parameter
	-Wunused-function
	-Wunused-getter-return-value
	-Wunused-label
	-Wunused-lambda-capture
	-Wunused-local-typedef
	-Wunused-local-typedefs
	-Wunused-macros
	-Wunused-member-function
	-Wunused-parameter
	-Wunused-private-field
	-Wunused-property-ivar
	-Wunused-result
	-Wunused-template
	-Wunused-value
	-Wunused-variable
	-Wunused-volatile-lvalue
	-Wused-but-marked-unused
	-Wuser-defined-literals
	-Wuser-defined-warnings
	-Wvarargs
	-Wvariadic-macros
	-Wvec-elem-size
	-Wvector-conversion
	-Wvector-conversions
	-Wvexing-parse
	-Wvisibility
	-Wvla
	-Wvla-extension
	-Wvoid-pointer-to-enum-cast
	-Wvoid-pointer-to-int-cast
	-Wvoid-ptr-dereference
	-Wvolatile-register-var
	-Wwasm-exception-spec
	-Wweak-template-vtables
	-Wweak-vtables
	-Wwritable-strings
	-Wwrite-strings
	-Wxor-used-as-pow
	-Wzero-as-null-pointer-constant
	-Wzero-length-array


	Cross-compilation using Clang
	Introduction
	Cross compilation issues
	General Cross-Compilation Options in Clang
	Target Triple
	CPU, FPU, ABI
	Toolchain Options

	Target-Specific Libraries
	Multilibs


	Clang Static Analyzer
	Available Checkers
	Default Checkers
	core
	core.CallAndMessage (C, C++, ObjC)
	core.DivideZero (C, C++, ObjC)
	core.NonNullParamChecker (C, C++, ObjC)
	core.NullDereference (C, C++, ObjC)
	core.StackAddressEscape (C)
	core.UndefinedBinaryOperatorResult (C)
	core.VLASize (C)
	core.uninitialized.ArraySubscript (C)
	core.uninitialized.Assign (C)
	core.uninitialized.Branch (C)
	core.uninitialized.CapturedBlockVariable (C)
	core.uninitialized.UndefReturn (C)

	cplusplus
	cplusplus.InnerPointer (C++)
	cplusplus.NewDelete (C++)
	cplusplus.NewDeleteLeaks (C++)
	cplusplus.PlacementNewChecker (C++)
	cplusplus.SelfAssignment (C++)
	cplusplus.StringChecker (C++)

	deadcode
	deadcode.DeadStores (C)

	nullability
	nullability.NullPassedToNonnull (ObjC)
	nullability.NullReturnedFromNonnull (ObjC)
	nullability.NullableDereferenced (ObjC)
	nullability.NullablePassedToNonnull (ObjC)
	nullability.NullableReturnedFromNonnull (ObjC)

	optin
	optin.cplusplus.UninitializedObject (C++)
	optin.cplusplus.VirtualCall (C++)
	optin.mpi.MPI-Checker (C)
	optin.osx.cocoa.localizability.EmptyLocalizationContextChecker (ObjC)
	optin.osx.cocoa.localizability.NonLocalizedStringChecker (ObjC)
	optin.performance.GCDAntipattern
	optin.performance.Padding
	optin.portability.UnixAPI

	security
	security.FloatLoopCounter (C)
	security.insecureAPI.UncheckedReturn (C)
	security.insecureAPI.bcmp (C)
	security.insecureAPI.bcopy (C)
	security.insecureAPI.bzero (C)
	security.insecureAPI.getpw (C)
	security.insecureAPI.gets (C)
	security.insecureAPI.mkstemp (C)
	security.insecureAPI.mktemp (C)
	security.insecureAPI.rand (C)
	security.insecureAPI.strcpy (C)
	security.insecureAPI.vfork (C)
	security.insecureAPI.DeprecatedOrUnsafeBufferHandling (C)

	unix
	unix.API (C)
	unix.Malloc (C)
	unix.MallocSizeof (C)
	unix.MismatchedDeallocator (C, C++)
	unix.Vfork (C)
	unix.cstring.BadSizeArg (C)
	unix.cstring.NullArg (C)

	osx
	osx.API (C)
	osx.NumberObjectConversion (C, C++, ObjC)
	osx.ObjCProperty (ObjC)
	osx.SecKeychainAPI (C)
	osx.cocoa.AtSync (ObjC)
	osx.cocoa.AutoreleaseWrite
	osx.cocoa.ClassRelease (ObjC)
	osx.cocoa.Dealloc (ObjC)
	osx.cocoa.IncompatibleMethodTypes (ObjC)
	osx.cocoa.Loops
	osx.cocoa.MissingSuperCall (ObjC)
	osx.cocoa.NSAutoreleasePool (ObjC)
	osx.cocoa.NSError (ObjC)
	osx.cocoa.NilArg (ObjC)
	osx.cocoa.NonNilReturnValue
	osx.cocoa.ObjCGenerics (ObjC)
	osx.cocoa.RetainCount (ObjC)
	osx.cocoa.RunLoopAutoreleaseLeak
	osx.cocoa.SelfInit (ObjC)
	osx.cocoa.SuperDealloc (ObjC)
	osx.cocoa.UnusedIvars (ObjC)
	osx.cocoa.VariadicMethodTypes (ObjC)
	osx.coreFoundation.CFError (C)
	osx.coreFoundation.CFNumber (C)
	osx.coreFoundation.CFRetainRelease (C)
	osx.coreFoundation.containers.OutOfBounds (C)
	osx.coreFoundation.containers.PointerSizedValues (C)

	Fuchsia
	fuchsia.HandleChecker

	WebKit
	webkit.RefCntblBaseVirtualDtor
	webkit.NoUncountedMemberChecker
	webkit.UncountedLambdaCapturesChecker


	Experimental Checkers
	alpha.clone
	alpha.clone.CloneChecker (C, C++, ObjC)

	alpha.core
	alpha.core.BoolAssignment (ObjC)
	alpha.core.C11Lock
	alpha.core.CallAndMessageUnInitRefArg (C,C++, ObjC)
	alpha.core.CastSize (C)
	alpha.core.CastToStruct (C, C++)
	alpha.core.Conversion (C, C++, ObjC)
	alpha.core.DynamicTypeChecker (ObjC)
	alpha.core.FixedAddr (C)
	alpha.core.IdenticalExpr (C, C++)
	alpha.core.PointerArithm (C)
	alpha.core.PointerSub (C)
	alpha.core.SizeofPtr (C)
	alpha.core.StackAddressAsyncEscape (C)
	alpha.core.TestAfterDivZero (C)

	alpha.cplusplus
	alpha.cplusplus.DeleteWithNonVirtualDtor (C++)
	alpha.cplusplus.EnumCastOutOfRange (C++)
	alpha.cplusplus.InvalidatedIterator (C++)
	alpha.cplusplus.IteratorRange (C++)
	alpha.cplusplus.MismatchedIterator (C++)
	alpha.cplusplus.MisusedMovedObject (C++)
	alpha.cplusplus.SmartPtr (C++)

	alpha.deadcode
	alpha.deadcode.UnreachableCode (C, C++)

	alpha.fuchsia
	alpha.fuchsia.Lock

	alpha.llvm
	alpha.llvm.Conventions

	alpha.osx
	alpha.osx.cocoa.DirectIvarAssignment (ObjC)
	alpha.osx.cocoa.DirectIvarAssignmentForAnnotatedFunctions (ObjC)
	alpha.osx.cocoa.InstanceVariableInvalidation (ObjC)
	alpha.osx.cocoa.MissingInvalidationMethod (ObjC)
	alpha.osx.cocoa.localizability.PluralMisuseChecker (ObjC)

	alpha.security
	alpha.security.ArrayBound (C)
	alpha.security.ArrayBoundV2 (C)
	alpha.security.MallocOverflow (C)
	alpha.security.MmapWriteExec (C)
	alpha.security.ReturnPtrRange (C)

	alpha.security.cert
	alpha.security.cert.pos
	alpha.security.cert.pos.34c

	alpha.security.cert.env
	alpha.security.cert.env.InvalidPtr

	alpha.security.taint
	alpha.security.taint.TaintPropagation (C, C++)

	alpha.unix
	alpha.unix.StdCLibraryFunctionArgs (C)
	alpha.unix.BlockInCriticalSection (C)
	alpha.unix.Chroot (C)
	alpha.unix.PthreadLock (C)
	alpha.unix.SimpleStream (C)
	alpha.unix.Stream (C)
	alpha.unix.cstring.BufferOverlap (C)
	alpha.unix.cstring.NotNullTerminated (C)
	alpha.unix.cstring.OutOfBounds (C)
	alpha.unix.cstring.UninitializedRead (C)
	alpha.nondeterminism.PointerIteration (C++)
	alpha.nondeterminism.PointerSorting (C++)

	alpha.WebKit
	alpha.webkit.UncountedCallArgsChecker
	alpha.webkit.UncountedLocalVarsChecker


	Debug Checkers
	debug
	debug.AnalysisOrder
	debug.ConfigDumper
	debug.DumpCFG Display
	debug.DumpCallGraph
	debug.DumpCalls
	debug.DumpDominators
	debug.DumpLiveVars
	debug.DumpTraversal
	debug.ExprInspection
	debug.Stats
	debug.TaintTest
	debug.ViewCFG
	debug.ViewCallGraph
	debug.ViewExplodedGraph



	User Docs
	Cross Translation Unit (CTU) Analysis
	Overview
	PCH-based analysis
	Manual CTU Analysis
	Automated CTU Analysis with CodeChecker
	Automated CTU Analysis with scan-build-py (don’t do it)

	On-demand analysis
	Manual CTU Analysis
	Automated CTU Analysis with CodeChecker
	Automated CTU Analysis with scan-build-py (don’t do it)


	Taint Analysis Configuration
	Overview
	Example configuration file
	Configuration file syntax and semantics
	Filter syntax and semantics
	Propagation syntax and semantics
	Sink syntax and semantics



	Developer Docs
	Debug Checks
	General Analysis Dumpers
	Path Tracking
	State Checking
	ExprInspection checks

	Statistics
	Output testing checkers

	Inlining
	c++-inlining
	c++-template-inlining
	c++-stdlib-inlining
	c++-container-inlining

	Basics of Implementation
	Retry Without Inlining
	Deciding When to Inline
	Dynamic Calls and Devirtualization
	DynamicTypeInfo
	RuntimeDefinition
	Inlining Dynamic Calls
	Bifurcation
	Objective-C Message Heuristics
	C++ Caveats
	CallEvent


	Initializer List
	Nullability Checks
	Inlining
	Annotations on multi level pointers
	Implementation notes

	Region Store
	Binding Invalidation
	ObjCIvarRegions
	Region Invalidation
	Default Bindings
	Lazy Bindings (LazyCompoundVal)



	Thread Safety Analysis
	Introduction
	Getting Started
	Running The Analysis

	Basic Concepts: Capabilities
	Reference Guide
	GUARDED_BY(c) and PT_GUARDED_BY(c)
	REQUIRES(…), REQUIRES_SHARED(…)
	ACQUIRE(…), ACQUIRE_SHARED(…), RELEASE(…), RELEASE_SHARED(…), RELEASE_GENERIC(…)
	EXCLUDES(…)
	NO_THREAD_SAFETY_ANALYSIS
	RETURN_CAPABILITY(c)
	ACQUIRED_BEFORE(…), ACQUIRED_AFTER(…)
	CAPABILITY()
	SCOPED_CAPABILITY
	TRY_ACQUIRE(, …), TRY_ACQUIRE_SHARED(, …)
	ASSERT_CAPABILITY(…) and ASSERT_SHARED_CAPABILITY(…)
	GUARDED_VAR and PT_GUARDED_VAR
	Warning flags

	Negative Capabilities
	Frequently Asked Questions
	Known Limitations
	Lexical scope
	Private Mutexes
	No conditionally held locks.
	No checking inside constructors and destructors.
	No inlining.
	No alias analysis.
	ACQUIRED_BEFORE(…) and ACQUIRED_AFTER(…) are currently unimplemented.

	mutex.h

	Data flow analysis: an informal introduction
	Abstract
	Data flow analysis
	The purpose of data flow analysis
	Sample problem and an ad-hoc solution
	Too much information and “top” values
	Uninitialized variables and “bottom” values
	A practical lattice that tracks sets of concrete values
	Formalization

	Symbolic execution: a very short informal introduction
	Symbolic values
	Flow condition
	Symbolic pointers

	Example: finding output parameters
	Problem description
	Lattice design
	Using data flow results to identify output parameters

	Example: finding dead stores
	Example: definitive initialization
	Example: refactoring raw pointers to unique_ptr
	Example: finding redundant branch conditions
	Example: finding unchecked std::optional unwraps
	Example: finding dead code behind A/B experiment flags
	Example: finding inefficient usages of associative containers
	Example: refactoring types that implicitly convert to each other

	AddressSanitizer
	Introduction
	How to build
	Usage
	Symbolizing the Reports
	Additional Checks
	Initialization order checking
	Stack Use After Return (UAR)
	Memory leak detection

	Issue Suppression
	Suppressing Reports in External Libraries
	Conditional Compilation with __has_feature(address_sanitizer)
	Disabling Instrumentation with __attribute__((no_sanitize("address")))
	Suppressing Errors in Recompiled Code (Ignorelist)
	Suppressing memory leaks

	Code generation control
	Instrumentation code outlining

	Limitations
	Supported Platforms
	Current Status
	More Information

	ThreadSanitizer
	Introduction
	How to build
	Supported Platforms
	Usage
	__has_feature(thread_sanitizer)
	__attribute__((no_sanitize("thread")))
	__attribute__((disable_sanitizer_instrumentation))
	Ignorelist
	Limitations
	Current Status
	More Information

	MemorySanitizer
	Introduction
	How to build
	Usage
	__has_feature(memory_sanitizer)
	__attribute__((no_sanitize("memory")))
	__attribute__((disable_sanitizer_instrumentation))
	Ignorelist

	Report symbolization
	Origin Tracking
	Use-after-destruction detection
	Handling external code
	Supported Platforms
	Limitations
	Current Status
	More Information

	UndefinedBehaviorSanitizer
	Introduction
	How to build
	Usage
	Available checks
	Volatile

	Minimal Runtime
	Stack traces and report symbolization
	Logging
	Silencing Unsigned Integer Overflow
	Issue Suppression
	Disabling Instrumentation with __attribute__((no_sanitize("undefined")))
	Suppressing Errors in Recompiled Code (Ignorelist)
	Runtime suppressions

	Supported Platforms
	Current Status
	Additional Configuration
	Example

	More Information

	DataFlowSanitizer
	DataFlowSanitizer Design Document
	Use Cases
	Interface
	Taint label representation
	Origin tracking trace representation
	Memory layout and label management
	Propagating labels through arguments
	Implementing the ABI list
	Checking ABI Consistency

	Introduction
	How to build libc++ with DFSan
	Usage
	ABI List
	Compilation Flags
	Environment Variables

	Example
	Origin Tracking
	Current status
	Design

	LeakSanitizer
	Introduction
	Usage
	Supported Platforms
	More Information

	SanitizerCoverage
	Introduction
	Tracing PCs with guards
	Inline 8bit-counters
	Inline bool-flag
	PC-Table
	Tracing PCs
	Instrumentation points
	Edge coverage

	Tracing data flow
	Disabling instrumentation with __attribute__((no_sanitize("coverage")))
	Disabling instrumentation without source modification
	Default implementation
	Sancov data format
	Sancov Tool
	Coverage Reports
	Output directory


	SanitizerStats
	Introduction
	How to build and run

	Sanitizer special case list
	Introduction
	Goal and usage
	Example
	Format

	Control Flow Integrity
	Control Flow Integrity Design Documentation
	Forward-Edge CFI for Virtual Calls
	Optimizations
	Stripping Leading/Trailing Zeros in Bit Vectors
	Short Inline Bit Vectors
	Virtual Table Layout
	Alignment
	Padding to Powers of 2
	Eliminating Bit Vector Checks for All-Ones Bit Vectors

	Forward-Edge CFI for Virtual Calls by Interleaving Virtual Tables
	Split virtual table groups into separate virtual tables
	Order virtual tables by a pre-order traversal of the class hierarchy
	Interleave virtual tables


	Forward-Edge CFI for Indirect Function Calls
	Shared library support
	CallSiteTypeId
	CFI_Check
	CFI Shadow
	CFI_SlowPath
	Position-independent executable requirement

	Backward-edge CFI for return statements (RCFI)
	Leaf Functions
	Functions called once
	Functions called in a small number of call sites
	General case
	Returns from functions called indirectly
	Cross-DSO calls
	Non-goals

	Hardware support

	Introduction
	Available schemes
	Trapping and Diagnostics
	Forward-Edge CFI for Virtual Calls
	Performance

	Bad Cast Checking
	Non-Virtual Member Function Call Checking
	Strictness

	Indirect Function Call Checking
	-fsanitize-cfi-icall-generalize-pointers
	-fsanitize-cfi-canonical-jump-tables
	-fsanitize=cfi-icall and -fsanitize=function

	Member Function Pointer Call Checking
	Ignorelist
	Shared library support
	Design
	Publications

	LTO Visibility
	Example

	SafeStack
	Introduction
	Performance
	Compatibility
	Known compatibility limitations

	Security
	Known security limitations


	Usage
	Supported Platforms
	Low-level API
	__has_feature(safe_stack)
	__attribute__((no_sanitize("safe-stack")))
	__builtin___get_unsafe_stack_ptr()
	__builtin___get_unsafe_stack_bottom()
	__builtin___get_unsafe_stack_top()
	__builtin___get_unsafe_stack_start()


	Design
	setjmp and exception handling
	Publications


	ShadowCallStack
	Introduction
	Comparison
	Compatibility

	Security
	Usage
	Low-level API
	__has_feature(shadow_call_stack)
	__attribute__((no_sanitize("shadow-call-stack")))


	Example

	Source-based Code Coverage
	Introduction
	The code coverage workflow
	Compiling with coverage enabled
	Running the instrumented program
	Creating coverage reports
	Exporting coverage data
	Interpreting reports
	Format compatibility guarantees
	Impact of llvm optimizations on coverage reports
	Using the profiling runtime without static initializers
	Using the profiling runtime without a filesystem

	Collecting coverage reports for the llvm project
	Drawbacks and limitations
	Clang implementation details
	Gap regions
	Branch regions
	Switch statements


	Modules
	Introduction
	Problems with the current model
	Semantic import
	Problems modules do not solve

	Using Modules
	Objective-C Import declaration
	Includes as imports
	Module maps
	Compilation model
	Command-line parameters
	-cc1 Options

	Using Prebuilt Modules

	Module Semantics
	Macros

	Module Map Language
	Lexical structure
	Module map file
	Module declaration
	Requires declaration
	Header declaration
	Umbrella directory declaration
	Submodule declaration
	Export declaration
	Re-export Declaration
	Use declaration
	Link declaration
	Configuration macros declaration
	Conflict declarations

	Attributes
	Private Module Map Files

	Modularizing a Platform
	Future Directions
	Where To Learn More About Modules

	MSVC compatibility
	ABI features
	Template instantiation and name lookup

	Misexpect
	OpenCL Support
	Missing features or with limited support
	Internals Manual
	OpenCL Metadata
	OpenCL Specific Options
	OpenCL builtins
	OpenCL Extensions and Features
	Implementation guidelines

	Address spaces attribute

	C++ for OpenCL Implementation Status
	Missing features or with limited support

	OpenCL C 3.0 Usage
	OpenCL C 3.0 Implementation Status

	Experimental features
	C++ libraries for OpenCL


	OpenMP Support
	General improvements
	Cuda devices support
	Directives execution modes
	Data-sharing modes
	Features not supported or with limited support for Cuda devices

	OpenMP 5.0 Implementation Details
	OpenMP 5.1 Implementation Details
	OpenMP Extensions
	SYCL Compiler and Runtime architecture design
	Introduction
	Address space handling

	HLSL Support
	Introduction
	Project Goals
	Non-Goals

	Guiding Principles
	Architectural Direction
	DXC Driver
	Parser
	Sema
	CodeGen

	HLSL Language
	An Aside on GPU Languages
	Pointers & References
	HLSL this Keyword
	Bitshifts
	Non-short Circuiting Logical Operators
	Precise Qualifier
	Differences in Templates
	Vector Extensions
	Standard Library
	Unsupported C & C++ Features


	ThinLTO
	Introduction
	Current Status
	Clang/LLVM
	Linkers

	Usage
	Basic
	Controlling Backend Parallelism
	Incremental
	Cache Pruning
	Clang Bootstrap

	More Information

	API Notes: Annotations Without Modifying Headers
	Usage
	Limitations
	“Versioned” API Notes
	Reference

	Clang “man” pages
	Basic Commands
	clang - the Clang C, C++, and Objective-C compiler
	SYNOPSIS
	DESCRIPTION
	OPTIONS
	Stage Selection Options
	Language Selection and Mode Options
	Target Selection Options
	Code Generation Options
	Driver Options
	Diagnostics Options
	Preprocessor Options

	ENVIRONMENT
	BUGS
	SEE ALSO

	diagtool - clang diagnostics tool
	SYNOPSIS
	DESCRIPTION
	SUBCOMMANDS
	find-diagnostic-id
	list-warnings
	show-enabled
	tree




	Frequently Asked Questions (FAQ)
	Driver
	I run clang&nbsp;-cc1&nbsp;... and get weird errors about missing headers
	I get errors about some headers being missing (stddef.h, stdarg.h)



	Using Clang as a Library
	Choosing the Right Interface for Your Application
	LibClang
	Clang Plugins
	LibTooling

	External Clang Examples
	Introduction
	List of projects and tools

	Introduction to the Clang AST
	Introduction
	Examining the AST
	AST Context
	AST Nodes

	LibTooling
	Introduction
	Parsing a code snippet in memory
	Writing a standalone tool
	Parsing common tools options
	Creating and running a ClangTool
	Putting it together — the first tool
	Running the tool on some code
	Builtin includes
	Linking


	LibFormat
	Design
	Interface
	Style Options

	Clang Plugins
	Introduction
	Writing a PluginASTAction
	Registering a plugin
	Defining pragmas
	Defining attributes
	Putting it all together
	Running the plugin
	Using the compiler driver
	Using the cc1 command line
	Using the clang command line
	Interaction with -clear-ast-before-backend


	How to write RecursiveASTVisitor based ASTFrontendActions.
	Introduction
	Creating a FrontendAction
	Creating an ASTConsumer
	Using the RecursiveASTVisitor
	Accessing the SourceManager and ASTContext
	Putting it all together

	Tutorial for building tools using LibTooling and LibASTMatchers
	Step 0: Obtaining Clang
	Step 1: Create a ClangTool
	Intermezzo: Learn AST matcher basics
	Step 2: Using AST matchers
	Step 3.5: More Complicated Matchers
	Step 4: Retrieving Matched Nodes

	Matching the Clang AST
	Introduction
	How to create a matcher
	Binding nodes in match expressions
	Writing your own matchers
	VariadicDynCastAllOfMatcher
	AST_MATCHER_P(Type,&nbsp;Name,&nbsp;ParamType,&nbsp;Param)
	Matcher creation functions


	Clang Transformer Tutorial
	What is Clang Transformer?
	Who is Clang Transformer for?
	Getting Started
	Example: style-checking names
	Example: renaming a function
	Example: method to function
	Example: rewriting method calls

	Reference: ranges, stencils, edits, rules
	Rewriting ASTs to… Text?
	Range Selectors
	Stencils
	Edits
	EditGenerators (Advanced)
	Rules

	Using a RewriteRule as a clang-tidy check
	Related Reading

	ASTImporter: Merging Clang ASTs
	Introduction
	Algorithm of the import
	API
	Errors during the import process
	Error propagation
	Polluted AST


	Using the -ast-merge Clang front-end action
	Example for C
	Example for C++


	How To Setup Clang Tooling For LLVM
	Introduction
	Setup Clang Tooling Using CMake and Make
	Setup Clang Tooling Using CMake on Windows
	Using Clang Tools
	Using Ninja Build System

	JSON Compilation Database Format Specification
	Background
	Supported Systems
	Format
	Build System Integration
	Alternatives

	Clang’s refactoring engine
	Introduction
	Refactoring Action Rules
	Rule Types
	How to Create a Rule

	Refactoring Action Rule Requirements
	Selection Requirements
	Other Requirements

	Refactoring Options


	Using Clang Tools
	Overview
	Clang Tools Organization
	Core Clang Tools
	clang-check
	clang-format

	Extra Clang Tools
	clang-tidy

	Ideas for new Tools

	ClangCheck
	ClangFormat
	Standalone Tool
	Vim Integration
	Emacs Integration
	BBEdit Integration
	CLion Integration
	Visual Studio Integration
	Visual Studio Code Integration
	Script for patch reformatting
	Current State of Clang Format for LLVM

	Clang-Format Style Options
	Configuring Style with clang-format
	Disabling Formatting on a Piece of Code
	Configuring Style in Code
	Configurable Format Style Options
	Adding additional style options
	Examples

	Clang Formatted Status
	Clang Linker Wrapper
	Introduction
	Usage
	Example

	Clang Nvlink Wrapper
	Introduction
	Use Case
	Working

	Clang Offload Bundler
	Introduction
	Supported File Formats
	Bundled Text File Layout
	Bundled Binary File Layout
	Bundle Entry ID
	Target ID
	Target Specific information
	Archive Unbundling

	Clang Offload Wrapper
	Introduction
	Usage
	Example
	OpenMP Device Binary Embedding
	Enum Types
	Structure Types
	Global Variables
	Binary Descriptor for Device Images

	Global Constructor and Destructor

	Image Binary Embedding and Execution for OpenMP

	Clang Offload Packager
	Introduction
	Binary Format
	Usage
	Example


	Design Documents
	“Clang” CFE Internals Manual
	Introduction
	LLVM Support Library
	The Clang “Basic” Library
	The Diagnostics Subsystem
	The Diagnostic*Kinds.td files
	The Format String
	Formatting a Diagnostic Argument
	Producing the Diagnostic
	Fix-It Hints
	The DiagnosticConsumer Interface
	Adding Translations to Clang

	The SourceLocation and SourceManager classes
	SourceRange and CharSourceRange

	The Driver Library
	Precompiled Headers
	The Frontend Library
	Compiler Invocation
	Command Line Interface
	Command Line Parsing
	Command Line Generation
	Adding new Command Line Option
	Option Marshalling Infrastructure
	Option Marshalling Annotations

	The Lexer and Preprocessor Library
	The Token class
	Annotation Tokens
	The Lexer class
	The TokenLexer class
	The MultipleIncludeOpt class

	The Parser Library
	The AST Library
	Design philosophy
	Immutability
	Faithfulness

	The Type class and its subclasses
	Canonical Types

	The QualType class
	Declaration names
	Declaration contexts
	Redeclarations and Overloads
	Lexical and Semantic Contexts
	Transparent Declaration Contexts
	Multiply-Defined Declaration Contexts

	Error Handling
	Recovery AST
	Types and dependence
	ContainsErrors bit

	The ASTImporter
	Abstract Syntax Graph
	Structural Equivalency
	Redeclaration Chains
	Traversal during the Import
	Error Handling
	Lookup Problems
	ExternalASTSource

	Class Template Instantiations
	Visibility of Declarations
	Strategies to Handle Conflicting Names

	The CFG class
	Basic Blocks
	Entry and Exit Blocks
	Conditional Control-Flow

	Constant Folding in the Clang AST
	Implementation Approach
	Extensions


	The Sema Library
	The CodeGen Library
	How to change Clang
	How to add an attribute
	Attribute Basics
	include/clang/Basic/Attr.td
	Spellings
	Subjects
	Documentation
	Arguments
	Other Properties

	Boilerplate
	Semantic handling

	How to add an expression or statement


	Driver Design & Internals
	Introduction
	Features and Goals
	GCC Compatibility
	Flexible
	Low Overhead
	Simple

	Internal Design and Implementation
	Internals Introduction
	Design Overview
	Driver Stages
	Additional Notes
	The Compilation Object
	Unified Parsing & Pipelining
	ToolChain Argument Translation
	Unused Argument Warnings

	Relation to GCC Driver Concepts


	Offloading Design & Internals
	Introduction
	OpenMP Offloading
	Offloading Overview
	Compilation Process

	Generating Offloading Entries
	Accessing Entries on the Device
	Debugging Information

	Offload Device Compilation
	Creating Fat Objects
	Linking Target Device Code
	Device Binary Wrapping
	Structure Types

	Global Variables
	Binary Descriptor for Device Images
	Global Constructor and Destructor

	Offloading Example


	Precompiled Header and Modules Internals
	Using Precompiled Headers with clang
	Design Philosophy
	AST File Contents
	Metadata Block
	Source Manager Block
	Preprocessor Block
	Types Block
	Declarations Block
	Statements and Expressions
	Identifier Table Block
	Method Pool Block

	AST Reader Integration Points
	Chained precompiled headers
	Modules

	ABI tags
	Introduction
	Declaration
	Mangling
	Active tags
	Required tags for a function
	Required tags for a variable
	Available tags

	Hardware-assisted AddressSanitizer Design Documentation
	Introduction
	Algorithm
	Short granules

	Instrumentation
	Memory Accesses
	Heap
	Stack
	Globals
	Error reporting
	Attribute

	Comparison with AddressSanitizer
	Supported architectures
	Related Work

	Constant Interpreter
	Introduction
	Bytecode Compilation
	Primitive Types
	Composite types

	Bytecode Execution
	Memory Organisation
	Blocks
	Descriptors
	Pointers
	BlockPointer
	ExternPointer
	TargetPointer
	TypeInfoPointer
	InvalidPointer


	TODO
	Missing Language Features
	Known Bugs



	Indices and tables

