IBM z/0S Debugger
15.0.3

User's Guide

.||I

Note!

Before using this information and the product it supports, be sure to read the general information under
“Notices” on page 547.

Fourth Edition (October 2021)

This edition applies to IBM® z/0S® Debugger, 15.0.3 (Program Number 5724-T07 with the PTF for PH41774), which
supports the following compilers:

» Open Enterprise SDK for Go 1.16 (Program Number 5655-G0Z)

« C/C++ feature of z/OS Version 2 (Program Number 5650-Z0S)

« C/C++ feature of z/OS Version 1 (Program Number 5694-A01)

« C/C++ feature of 0S5/390° (Program Number 5647-A01)

« C/C++ for MVS/ESA Version 3 (Program Number 5655-121)

« AD/Cycle C/370 Version 1 Release 2 (Program Number 5688-216)

» Enterprise COBOL for z/OS Version 6 Release 1, Release 2, and Release 3 (Program Number 5655-EC6)
« Enterprise COBOL for z/OS Version 5 (Program Number 5655-W32)

« Enterprise COBOL for z/OS Version 4 (Program Number 5655-571)

» Enterprise COBOL for z/OS and 0S/390 Version 3 (Program Number 5655-G53)

« COBOL for 0S/390 & VM Version 2 (Program Number 5648-A25)

« COBOL for MVS™ & VM Version 1 Release 2 (Program Number 5688-197)

» COBOL/370 Version 1 Release 1 (Program Number 5688-197)

« VS COBOLII Version 1 Release 3 and Version 1 Release 4 (Program Numbers 5668-958, 5688-023) - with limitations
« OS/VS COBOL, Version 1 Release 2.4 (5740-CB1) - with limitations

- High Level Assembler for MVS & VM & VSE Version 1 Release 4, Version 1 Release 5, Version 1 Release 6 (Program
Number 5696-234)

« Enterprise PL/I for z/OS Version 5 Release 1, Release 2, and Release 3 (Program Number 5655-PL5)
« Enterprise PL/I for z/OS Version 4 (Program Number 5655-W67)

» Enterprise PL/I for z/OS and 0S/390 Version 3 (Program Number 5655-H31)

- VisualAge® PL/I for 0S/390 Version 2 Release 2 (Program Number 5655-B22)

« PL/Ifor MVS & VM Version 1 Release 1 (Program Number 5688-235)

» OS PL/I Version 2 Release 1, Version 2 Release 2, Version 2 Release 3 (Program Numbers 5668-909, 5668-910) - with
limitations

This edition also applies to all subsequent releases and modifications until otherwise indicated in new editions or
technical newsletters.

You can access publications online at www.ibm.com/e-business/linkweb/publications/servlet/pbi.wss
You can find out more about IBM z/OS Debugger by visiting the following IBM Web sites:
» IBM Debug for z/0S: https://www.ibm.com/products/debug-for-zos

» IBM Developer for z/0S: https://www.ibm.com/products/developer-for-zos

» IBM Wazi Developer for Red Hat CodeReady Workspaces: https://www.ibm.com/products/wazi-developer

© Copyright International Business Machines Corporation 1992, 2021.
US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract with
IBM Corp.

https://www.ibm.com/products/debug-for-zos
https://www.ibm.com/products/developer-for-zos
https://www.ibm.com/products/wazi-developer

Contents

About this document.........cccieiiiiiiiiiiiiiiiiircc sttt tsetsecsessessnssassanas Xvii
Who might Use this dOCUMENT........uiiicee e e e tee e s re e e s ere e e s bae e e raeeenes Xvii
Accessing z/0S licensed documents on the INTerNEt......cciieciiicciii e XVii
How this dOCUMENT IS OFGANIZEM. ... uiiiiciieecciiee ettt ete e e ctte e e stae e e tee e sbee e s baeesbaeesbaeesbaeessaeannes Xviii
Terms used iN thiS OCUMENT.....ccciiiieiieete ettt sttt e e sbe e st e be e saaeesbeesatessbaessaesasesnsaesnns XX
HOW 10 read SYNtaX dia@ramS. ...ccccuieieiieeeiiieeeieeeecite e et e e cteeetteeestaeeeteeessaeessaeeesseesnsseessseesnsseessseeensseenn XXi

1YY 2] 0o =TSP XXi
YY1 2 D =T 1 0 1= SRR XXii
)Y 2 D=y & Laa] o] LTSRS XXii
HOW 10 Provide YOUr COMMENTS......iiiiiiieiciieceieeeeieecetee e eteeeete e e e e e e s tee e sateeseateeesateeessseesensaeennseesnsseesnens xxiii

Summary of CHaANGES....cuiiuiiiieiiiiiiiiiiiiiiiicitcitestcsitettetettessetestesssessesassesans XXV

Overview of IBM z/0S DebUZEEer.....cccccuiieiieiieiieieniiniiniieiieiieniesteniecsscsscsssssssassans XXXi

Part 1. Getting started with z/0S Debugger........ccccuuiiuiieiiniiniiniieiieiieiincinicieniennen. 1
Chapter 1. Z/OS DEbDUZEEI: OVEIVIEBW.....ccccuiieeiieeeieeeeteeeeteeeeteeeeteeeeseeesseesesseeesssesessesesssessssssssssesssssessnnes 3

Z/OS DEDUZGZEI INtEITACES....iiiiiieeetieeeee ettt e e e e e te e e e tae e ebaeesabaeeebasesabaeesnsaeeansaeennes 5
BatCh MOGE..c ittt sttt e st e st e e be e st e e be e sab e e bae s et e e baesaae e beenbaesareenbae s 5
FULL-SCIEEN MOTE . iiiiieiieete ettt ettt ettt e st e s bt e sae e sabe e beesabeesbeesabessbaessaesnseensaessseensasnssesns 5
Full-screen mode using the Terminal Interface Manager.......cccccueeeeieeeciieeecciee e 5
LT aaTe) (=l [T o TN T =3 o aToTe [TON USSP 6

IBM Z/OS DEDUZZEI ULILItIES. . uieeciiieeciieeiieeccteectee ettt erte e et e e te e e ve e e bae e s beeseabaeesssaeesnseeesnsaeennsens 7
IBM z/0S Debugger Utilities: JOb Card......cuiicciieeiiieciee ettt tee e iee e vee e s vee e sbae e svaeeenns 7
IBM z/0S Debugger Utilities: Program Preparation........ccccceeecceeeeceeecceeeeceeeeceeeeciee e sveeeeveeesnnnas 7
IBM z/0S Debugger Utilities: z/OS Debugger Setup File.......ouciieiiieiciieeceeecee e 7
IBM z/0S Debugger Utilities: IMS TM DEBUZZEING.....ccccueiiiieeicieeceieeeeieeeetee e e eeteeesreeesereeeeraeeeans 8
IBM z/0S Debugger Utilities: Load Module ANALYZEer..........cocueeieciieiciee ettt 8
IBM z/0S Debugger Utilities: z/OS Debugger User Exit Data Set.......cccccveeceeeecieeccieeeceeeeieeeeen, 8
IBM z/0S Debugger Utilities: Other IBM Application Delivery Foundation for z/OS tools.............. 8
IBM z/0S Debugger Utilities: JCL for BatCh DEDUZZING.......cceciieiciieeciee ettt eeveee s 8
IBM z/0S Debugger Utilities: IMS BTS DEDUZZING......ccocuiieeiieeeieeeceeeeee ettt e 8
IBM z/0S Debugger Utilities: JCL to Setup File CONVEISION.....ccccvieeieeeeiee et 8
IBM z/0S Debugger Utilities: Delay Debug Profile........ueeiiieeiiiieieeeeeeeee et 8
IBM z/0S Debugger Utilities: IMS Transaction and User ID Cross Reference Tablecccceeueenee. 9
IBM z/0S Debugger Utilities: Non-CICS Debug Session Start and Stop Message Viewer 9
IBM z/0S Debugger Utilities: z/OS Debugger Code COVEIage.......cceevurmrrririerrieerireeeeireesireeeeveeeennens 9
IBM z/0S Debugger Utilities: z/OS Debugger Deferred Breakpoints........ccccceeeeveeecieeccieeccveeennee. 9
IBM z/0S Debugger Utilities: IBM z/0S Debugger JCL Wizard..........ccccveeecveeeiieeeiieeecieeecreeecenenn 9
Starting IBM z/OS DebUgger ULILItIES.....ciuuiieeieieciieeeee ettt ettt e st e e tae s earae e 9

Chapter 2. Debugging a program in full-screen mode: introduction........ccceeeeeeeciieiccieccceeecee e 11

Compiling or assembling your program with the proper compiler 0ptions.........ccocevveerceervieineennnenne 11

StArtiNG Z/OS DEDUGEEN ...ee ettt ettt ete e e ete e et e e eette e e bte e ssateesbteesseeeaseessnseessnsesesnseeesnsens 12

The z/OS Debugger full SCreen INTEITACE......uii e e e e 12

Stepping throUZh @ Programi. ... e e et re e e e e et e e e abae e abeeennraeeeaes 14

Running your program t0 @ SPECIfIC lIN@....ciccuiiieciiiiciee ettt et be e s e e e e vreeeans 14

SEtHING @ DrEAKPOINT....eii et e e te e e tte e e tte e e bte e s btee s stee s steesseaesstaesnsteenans 14

Displaying the value of @ variable ... e 15

Displaying memory through the Memory WiNAOW.......cocciiiriiiiniiiinieeieiee e seiee e e s seeesseeesenee 16

Changing the value Of @ Variable.......c.uiiiiiiiieiecece ettt e e s sraeesane 17
SKIPPING @ BreakpPOint.. ittt e s ae e st e e s e e s abe e e s abeeesbeeenars 17
Clearing @ BreakPOiNt. ... i ettt e e s see e s ee e s saee e s sate e s saee e seate e s sate e ssaeeesnneeeenees 17
Recording and replaying StatemMeENtS........uivciiiiiiiiieee ettt s 18
Y] o] o]l F= 44 L @ S 1T o TN T == S TR PR 19
Part 2. Preparing your program for debugging......c.cccccceruiruiruiiniininincncneciennecnanes 21
Chapter 3. Preparing to remote debug in standard MOde.......cceiveieiiiiiiiiniieiiieccec e 23
Chapter 4. Planning youUr dEDUE SESSION.....ciiciiiriiieriiieriieercieesiteessareessreeesseeesssseesssseesssseessssaessssaessnseenn 25
Choosing compiler options fOr dEBUZEING......cuiiiiiiiiiiiiiiieeeeee e essaee s 25
Choosing TEST or NOTEST compiler suboptions for COBOL Programs........cceeceeeerveerseeesseeesnnnes 27
Choosing TEST or NOTEST compiler suboptions for PL/I programs.......ccccceeeeveeinieeesnieeesnieeesnnnes 34
Choosing TEST or DEBUG compiler suboptions for C programs.......cceeceeeerveeeenieeeenseessieeessieeesnnnes 39
Choosing TEST or DEBUG compiler suboptions for C++ programs........ccceeeeveercveerseeesseessneeennne a4
Understanding how hooks work and why you need them........ccccovvveiriiiiniieiniiecneeee e, 48
Understanding what symbol tables do and why saving them elsewhere can make your
oY oY o1 Tor= YA ToT ATy g T 1| 1= SRR 49
Choosing @ debUZEING MOUE.......uiiiiiiiiiieriteeritee ettt e st e s st e s ee e s sabe e ssabeessabeesssbeessaseesnnses 49
Debugging in DroWSE MOGE......iiiiiiiiciee ettt seee e s eaee e s bt e e sebee e sereeesebeeesneeesans 51
Choosing a method or methods for starting z/OS DebUZEET........civviiiiriiiiriieeicieeeiee e seeee e 53
Choosing how to debug 0ld COBOL ProSramS....c.cueeecieerireeriieesieeessieessseeesssseesssseessseessssesssesesssseess 56
Creating deferred breakpoints for COBOL and PL/I Programs......ccceeceeerrieernieesnieessieeessieeesseeessnenes 57
Chapter 5. Updating your processes so you can debug programs with z/OS Debugger..........cccecueeneen. 59
Update your compilation, assembly, and liNKING ProCESS......cuiiriiiiriiieriieeriieeesreessieessieeessieeessaeeens 59
Compiling your program without using IBM z/OS Debugger ULilitieS.....cccccvvrvieirniieernieeiniieeennen. 59
Compiling your program by using IBM z/0S Debugger Utilities.......ccoevveirieeinieeiniieeeieeeieeeen 61
Compiling a Enterprise PL/I program on an HFS or zFS file system.....ccccccvviiiriiieniieennieennneen. 62
Compiling your C program With €89 OF CH+....iiiiiiiiiiiiiiieiitc ettt s 62
Compiling a C program on an HFS or ZFS file SYyStemML......cuiiiciiiiiiiiciecteccte et 63
Compiling a C++ program on an HFS or zFS file SyStemMi......iiiiiiiiiiiiiieciecciecsec e 63
Update your library and promotion PrOCESS........uuiiiiecciieeeeeciee e e eecttee e e eetre e e eeraee e seebaeeeseesseeeesennsens 64
Make the modifications necessary to implement your preferred method of starting z/OS
BT 01U === SRS 64
Chapter 6. Preparing a LangX COBOL ProSram......ccceeicueereiuerriieessieesieessseesseseesssseesssseesssseesssseesssseessssees 67
Compiling your OS/VS COBOL PrOZIam ..ccc.uieiiiiiriiieriieesiieessreessreessseessseesssseessssesssssesssssessssseessssees 67
Compiling your VS COBOL IT PrOZIram ...ccccueeecveeriieeriieesieeesseeessseeessseesssssessssesssssssssssssssssssssssssens 68
Compiling your Enterprise COBOL PrOSramceccuieeecvieirieersieeesiteessseeessssesssseeesssssessssessssesesssesssssseens 68
Creating the EQALANGX file for LangX COBOL ProgramsS....ccceeeveerrrieernsieesssieesssseesssseesssseesssseesssseesnns 68
LiNK-€dItiNg YOUT PrOBIaM . .iiiciieiiiieiiieereteeseieeseteesasteesasteesssseesasseessssaessseesssseesssseessssessssseesssseesssseesns 69
Chapter 7. Preparing an assemMbLler PrOSramMi....cuci e eeieceeieiieerieeesireesssieesseeessseesseeesseeesssaesssseessssessnnnes 71
Before you assemble YOUT PrOSIram.. .. . e cieieiieeiieeesiteesieessieeesieeesteeesbeessbeessbeesssseesssseesnssaessssens 71
ASSEMDBLING YOUT PrOSIAM...iiiiiuiieriieeriieereteesiteesateessteesaseeesaseesasseesasseesasseesssseesssseessseesssseessnseessssees 71
Creating the EQALANGX file for an assembler program........cceveerieeniieennieenieeesiee e 71
Assembling your program and creating EQALANGX......ccviiiittriieeiiieenrieessieesieesseeessneeessneeessneeesane 72
LiNK-EdItiNg YOUT PrOSIaM . .iiiciieiirieiiieerittessteeseteesateesasteesssseesasseesssseesssseesssseesssseesssseesssseesssseesssseesns 73
Restrictions for link-editing your assembler Program......ccouceeeecieeecieeeiieeeree e eseesesieeeseeee e 74
Chapter 8. Preparing @ DD2 Program.......ccuiivciiiiiiieniieenciee sttt e sseeessteessieeessseeesssseesssseessseesssenessnseesas 75
Processing SQL StatemMENTS...cuiiciiiiiieieiieeree ettt ettt ee e s te e s s ee e s sate e ssate e s aeeesnseaesneas 75
Linking Db2 programs for debUZEING.......cuvuiiiiiiiiiieirieeee et e s sbe e s s bee e s ree e sneas 76

Binding Db2 programs for debUZEING......ccovviiiiiiiiiiiiieie ettt ssae e s saee e s 77

Chapter 9. Preparing a Db2 stored procedures Program.......cceeeveeriieeenieeesneeessieeessreesssseesssseesssseessnes 79

Chapter 10. Preparing @ CICS PrOZIaM.....cocciiiereeirrieeesiieeesieeesreesssseesssseessssesssssesssssessssseessssesssssesssssasssne 81
Link-editing EQADCCXT iNtO YOUT PrOSIaM..cccccuueiiceeerireeerirteesireeessreeessseesssseeessseesssseesssseesssseesssseessssees 81
Creating and storing a DTCN Profile. ...ttt e ste e s sbe e s sre e s seeeens 82

Displaying a list of active DTCN profiles and managing DTCN profiles......ccccccvevieerivieerivieenniieennns 85
Description of fields on the DTCN Primary MENU SCIrEEN.......uiieeecvieeeeeiiieeeeeccteeeeeeerreeeeeenreeeeeans 86
Description of fields on the DTCN MENU 2 SCIrEEN.......uuiieeiectiieeeeecttee e e ectiee e e eereeeeseeraeeeseenreeeeeas 90
Description of fields on the DTCN Advanced OptionS SCrEEN......cccvvveeeeciieeeeeeiiee e eeceree e e eaaeee e 91
Creating and storing debugging profiles With CADP.......ccccitiiiiiiiiienieeeee e s e s s 92
Starting z/OS Debugger for non-Language Environment programs under CICS.........ccccevvveirieennnnen. 92
Passing runtime parameters to z/OS Debugger for non-Language Environment programs
(U g e [=T 03 (0TSPTSRO 92

Chapter 11. Preparing an IMS ProSrami. ... i eeeeieeeeiieeeieeesieeessieesssieesssseesssseesssseesssseessssessssseessssessssnens 95
Starting z/OS Debugger under IMS by using CEEUOPT or CEEROPT......cccccviiiieiriieenieeeseeesee e 95
Managing runtime options for IMSplex users by using IBM z/0S Debugger Utilities.........cccecueernneen. 95
Setting up the DFSBXITA USEr €XIT FOULINE....iiiiiiiiiieiiciee ettt see e siee s siee e siee s sae e e saee e sbeessbeessaneas 96

Chapter 12. Specifying the TEST runtime options through the Language Environment user exit.......... 97
Editing the source code of CEEBXITA.ot iiiiiiiieirite ettt e siee s ite s st e s ste e s sbeessseessateessaseessasaesnanas 98

Modifying the NAMING PAtTEIN...cciciiiiiiie et e s e s ae e s be e s abeessasaeeas 98
Modifying the message diSplay LEVEL......cuuuiiiiiiiieeete e 99
Modifying the call back routing regiStration........ccvecuieiriiieriiieieeeeee e 99
Activate the cross reference function and modifying the cross reference table data set name100
Comparing the two methods of Linking CEEBXITA......cciiiitiiiiiniieiriteesieessieeesieeesveeeseeessveessvee s 100
Linking the CEEBXITA user exit into your application program.......c.cccceeveernieeinieesnieessseeessieeesnnnes 100
Linking the CEEBXITA user exit into a private copy of a Language Environment runtime module..101
Creating and managing the TEST runtime options data Sel.....cccccvvveeiriiiiniieinieeeree e 102
Creating and managing the TEST runtime options data set by using Terminal Interface
TR (1 R 102
Creating and managing the TEST runtime options data set by using IBM z/OS Debugger
L0113 =TSPTSRO PSRN 104

Part 3. Starting z/OS Debugger.....ccccccriruireiiniiniiniincincnecnecresnesrestsssassassscsecsecsess 105

Chapter 13. Writing the TEST runtime Option STHNG......cociiiiiieriiieiieeeiee et seee s 107
Special considerations while using the TEST run-time OptioN......ccccevvviieriieeniiieeieeseesee e 107

Y a0 (=R N S o] o] £ o] o VOSSPSRt 107
Defining TEST SUDOPLIONS IN YOUF PrOZBIaM.....icieviereiieriieereieessieessteessseessseesssseesssseesssseesssseesns 108
SUDOPTIONS @NA NOTEST ...ttt ettt rree e e e eeree e e e e et b e e e s eenbeeeesenbeeeesesnseneeessssenaesanes 108
L] o] Loy il oY f=T=1 2 oY] | £ 108
Primary commands file and USE fil€.......uuiiiiicciieee ettt e e e e e e veee e e 108
RUNNING iN DATCH MOttt sttt e s sabe e s s te e s sabaessneeesnnee 108
Starting z/OS Debugger at different POINTS.....cciiiiciiiriiiiee e s 108
ST=E 11 o] i (o= SO ST PRUPPRRR 109
Precedence of Language Environment runtime OPtioNS......cucuieviieiniiennieennee e ssveeeseeeesvee e 109
Example: TEST rUNTiME OPtiONS.....uiiieiccciiiee e ectie e eectee e e eete e e e eeree e e s e ebte e e e e s nseeeesenseaeesennssenessennnes 110
Specifying additional run-time options with VS COBOL II and PL/I programs......ccccccceevveeerreeeennnen 114
Specifying the STORAGE run-time OPLioN.....c.civeiieiiiieiiiiesieesite st ssieessreesseeessreessseessaeee s 114
Specifying the TRAP(ON) run-time OPtioN.....uccceeeeerciereeeieeseeete et e steesee e ee et e seeeeteesreeeeeens 114
Specifying TEST run-time option with #pragma runopts in Cand CH++......cceeveviiieeinieeinieeenieeene 114
Chapter 14. Starting z/OS Debugger from the IBM z/0S Debugger Utilities......ccccvvvveiriierrieennieennnnen. 117
Creating the SETUP fIlB..uii ittt s st s s e s s e e s s e e s sabeeesabaeesanees 117
Editing an exXiSting SETUP file....uiiiiiiiiiieiecee e e s aeas 117

Copying information into a setup file from an exiSting JCL.......cccvvviiieriiiierniiienieeeee e 118

Entering file allocation statements, runtime options, and program parameters........cccoeveeerveeennne. 118
SAVING YOUT SETUP TIlB.iiiiiiiiiiiieeieeett ettt e s be e e s sbee e saeeesbteessbaesseeesneeean 119
Y= La] =AY o TU] o o] o ={ -1 | PO P PSP SPUPR 119
Chapter 15. Starting z/OS Debugger from @ Program......c.cceeceeeecieeiiieriiieenieeesseeesseeesseeeessseessseesssnens 121
Starting z/OS Debugger With CEETESTuuiiiiiiiiieicte ettt sttt sae e s s e s 121
Additional notes about starting z/OS Debugger with CEETEST.....ccccccvvivieiinieenniieesrieeeniee e 123
Example: using CEETEST to start z/OS Debugger from C/CH+.....ciiiiiniieiiiieeniieerieessieessvee e 124
Example: using CEETEST to start z/OS Debugger from COBOL......ccccvvrviiiiriieiniiienniieesieeesieesseeens 125
Example: using CEETEST to start z/OS Debugger from PL/L.....cccciiriiiiriiiinieeeieceeeeceeesee e 126
Starting z/OS Debugger With PLITESTccuiiiiieiriieiiiesrite st ssieessiee s siee s siee s sbee s sseessseeessseessnees 127
Starting z/OS Debugger with the __ctest() fFUNCLION.......ceecirecieeece e 128
Chapter 16. Starting z/OS Debugger in batch MOde......oociiiiiiiiieece e 131
Example: JCL that runs z/OS Debugger in batch Mode. ... 131
Modifying the example to debug in full-screen Mode......cocceiieiiiiiiiiiiieeceeeeee e 132
Chapter 17. Starting z/OS Debugger for batch or TSO Programs........cecveereieernieenniieensieessieessieessseeens 133
Starting a debugging session in full-screen mode using the Terminal Interface Manager or a
dedicated tErMINAL ..o e s s nne e eare s 133
Starting z/OS Debugger for programs that start in Language Environment......cccccoeevevinveiinieennnen. 135
Example: Allocating z/OS Debugger load library data set......ccccceeveiicieiiiieiniieenieeeee e 136
Example: Allocating z/OS DebUZEEr fileS.....uiiiiiiiiiiiiiieiriee sttt e e s see e ssee e sseeesns 136
Starting z/OS Debugger for programs that start outside of Language Environment..........cccccuce...... 136
Passing parameters t0 EQANMDBG......cccctiiiiitriiieiiitessiee st e st e ssreessreessbeessbeessbeesssaessasees 137
Example: Modifying JCL that invokes an assembler Db2 program running in a batch TSO
ENVITONMENT ettt ettt sttt ettt st e bt e sab e e be e sabe e bt e saeeebeesae e e beesmeeenbeesneesnsennnes 139
Chapter 18. Starting z/OS Debugger Under CICS.........oooviiiriiieiiiieeiieeesiee et ssee e see e s sae e s sae e s 141
Comparison of methods for starting z/OS Debugger under CICS.........cccoeveiriieiniieenieeeneee e 141
Starting z/OS Debugger under CICS by USINE DTCN......iiiiiiiiiiieiiieeeeieeseieeseieesseeesseeesseeesseeesnnee 142
Ending a CICS debugging session that was started by DTCN......ccccoveveiriieiniiennieeeree e, 143
Example: How z/OS Debugger chooses a CICS program for debugging........ccecceevvvveirciveincieennne 143
Starting z/OS Debugger for CICS programs by Using CADP.......cccccviiiieiiiieinieeeriee e e saee s 143
Starting z/OS Debugger under CICS by USing CEEUOPTcoivciiiiiiiieiieeeite et ssvee e siee s seee e 143
Starting z/OS Debugger under CICS by using compiler direCtives........ccvevrieeriiieernieeniieensieesneeens 144
Chapter 19. Starting @ debUg SESSION......uiiiiiieriieeree ettt ste e s saee e s saee e ssabeesssseessaseess 145
Chapter 20. Starting z/OS Debugger in other enVirONMENTS........ccccviieiiiiiiieeiiieeeriee e e seeeeseee e 147
Starting z/OS Debugger from Db2 stored proCedUIeS.........cuvivciieiiieeriieeniieeecieessreesseeessieeessaeeeas 147
Part 4. Debugging your programs in full-screen mode........ccccccceucreirnirncininncnncnenne 149
Chapter 21. Using full-SCreen MOdE: OVEIVIEW........iiiriiiiiiieiiiieinieeeeieeesreesseeesseeessteessseessseesssseesnnee 151
Z/OS DeDUZEET SESSION PANEL ..uviiiiiiiiiiieiiiiei ettt e ste e te e s ste e s sbeessbeesssbaesssseesssseesssseesnnes 151
YRR (o] T o F= L (= N g 1= o 1= SRS 152
SOUNCE WINAOW.ee.utieiiiiteeiierteeete st e eiee st et esaee e bt e saee s bt e saeesabeesseesase e seesaseeabeesasesaseesneeenseenneesnsens 154
MONIEOT WINGOW. ..eetieiieeieecte ettt ettt st e st e st e e b e st e e bt e st e e bt e saeeeabeesmeesaseenneesmeeenneesnes 154
LOZ WINTOW...eeiiutiiiiiieieieeeeieeeeteessteessteessaeessateessateesssbeessseeesssseesaseasssssessnseessnssessnnsessnseessnsenesnsees 155
N 1= T aTo T AT/ Ve [0 Y SRSt 156
CommMaNd POP=UP WINAOW.....eeeieecriieeieiciiieeeeeiiieeeeeeiuteeeesessteeeesessseeessessssessssssssessssessssssssssssssnesnnns 157
(1S3 oo o BT U] oY1V T o [1V 2SR 157
Creating @ PreferenCeS Tl ittt s s s e e e e e e sareas 158
DiSPLayiNG The SOUICE..iiiiiiieiieieite ettt ettt et ste e s s te e s sate e s sabeesssbeessstaessssaeesssaesnsseesssseesnns 158
Changing which file appears in the SoUrce WiNdOW.......cccieviiiiiiiieiniieieeeee e 159

vi

Entering commands 0N the SESSION PANEL....ciiciiiiiiiiiiiieiieeeeese et s e e s saeeeas 160

Order in which z/OS Debugger accepts commands from the session panel.......ccccccccvecveernneen. 162
Using the session panel command LiN€........cocceiiiiiiiiiiiiiieiiie st see s s e s 162
ISSUING SYSTEM COMMEANGS....uiiiiiiieiiieeiiiee et srte et e st e s sate e stteessbbeesssteessteessseesasseesnsseesansaesan 162
Entering prefix commands on specific lines or statements.......ccccvvvieiriiieniiieniceeeieeeeeeeenn 163
Entering multiple commands in the Memory WiNdOW........ccccuieriiieriieeniieeniieenne e essieeesieeens 164
Using commands that are sensitive to the cursor poSition.......ccocccevvevieiriiieinsceeeseeeeeeeeee e, 164
Using Program Function (PF) keys to enter COMmMaNdS........ccueevveereeriieeseenieeceesee e e eee e 164
INITIal PF KEY SETHINES. uuiiieiiiieitieeiteectt sttt ettt e s e s aee e s saee e s saae e s s abaesnasae s senesneas 165
Retrieving previous COMMANGS. ...c.uiiiiieiieeerieeesiee st e ssreessbeesssree s s beessseessbeesssseesssseesssseesssens 165
Composing commands from lines in the Log and Source WindOWS........cccceveieerrieennieesneeesnnnen. 166
Opening the Command pop-up window to enter long z/OS Debugger commands.........cc.cce.... 166
Navigating through z/OS Debugger WINAOWS.......cc.uiiiiiiiiiiiriiieeieeerieessie et ssre e s e e s seeessveessaees 166
Moving the cursor DEtWEEN WINAOWS......ccuuiiiiieiiiieeeiieeeite ettt ettt e s ste e s sae e s sareessaeeas 167
Switching between the Memory window and LOZg WINAOW........cccceerriieiniieiniieesniieeneeseieeeenees 167
Scrolling through the physical WiNAOWS.........coviiiiiiiiiiiieite e see e 167
Enlarging a phySiCal WiNAOW......c.ueiiuiiiiiiiiniieecieescie ettt e s e s sate e ssare e ssbe e ssaseessseesseaesas 168
Scrolling to a particular Line NUMBET......ccooiiiie e s 168
FIiNdiNg @ STHNG iN @ WINAOW...ciiiiiiiiieiiiee ittt e st e seieeseeeeseseeeseseeessseeessnteesaseeessseesssnsesssseassans 169
Displaying the line at which execution halted.........cccevvviiiiiiiiniieie e 171
Navigating through the Memory WiNAOW......cocciiiiiieiriiiiirieecie ettt see s s siee e seee e snees 171
Creating @ CoOMMANAS fIlE.. ittt et rte e st e e s ba e e sbee s sbaeesabaeesasaeesasaeenns 173
Recording your debug session in @ L0g file.....cuiiiiiiiiiieiiieeciee e 174
Creating the LOZ flle ittt s bt e s b e e s be e e s bt e e sbeeesnteesseeenn 174
Recording how many times each SOUrce liNE FUNS......cocciiieiieeeiieceiteceee e 175
Recording the breakpoints @NCOUNTEIEd.......iiiciiiiiieiiiieieieeete et ee e ssbee e sraeeeaee 175
Setting breakpoints to halt your program at @ liN€......ccueevcieiiiieiiiieeeiee et ee e 176
Setting breakpoints in a load module that is not loaded or in a program that is not active............ 176
Controlling how z/OS Debugger handles warnings about invalid data in comparisons................... 176
Stepping through or rUNNING YOUT PrOSIaM....ciccviiieiieieieeieieeeeieessieessreessreesseeesseeessseeessseeessseeesnns 177
Recording and replaying StatemENtS. ...ttt ssaae s 178
Saving and restoring settings, breakpoints, and monitor specifications.......ccccccvevevinvieinieeinieenns 180
Saving and restoring automMatiCally......cuiveieiiiier e 182
Disabling the automatic saving and restoring of breakpoints, monitors, and settings.............. 183
RESTONNG MANUALLY ... vttt s e e be e e s bt e e s beeesbaeesbaeesseaesseeesn 183
Performance considerations in multi-enclave environments.......cccccvveeiieirenieenieeseeseeeeeee e 184
Displaying and monitoring the value of a variable........ccoccueiiiiiiiiiiiiieeecec e 184
One-time display of the value of variables...........cooiiii i 185
Adding variables to the Monitor WiNAOW........ccuciiiiiiiiiriieiiiesiee e 186
Displaying the Working-Storage Section of a COBOL program in the Monitor window.............. 186
Displaying the data type of a variable in the Monitor WindOW........ccccveviieeniiieniieeniieencieeeseeenn 187
Replacing a variable in the Monitor window with another variable.......cccccovviiiniiinieinieennee. 187
Adding variables to the Monitor window automatically......cccccccevrviiiiiieiniieinieeceee e 188
How z/OS Debugger handles characters that cannot be displayed in their declared data type191
Modifying characters that cannot be displayed in their declared data type....ccccceveveeriieennnenn. 191
Formatting values in the Monitor WINAOW........cocuiiiiiiiiiiieniiienieessie et essiaeessaeeeas 191
Displaying values in hexadecimal fOrmat......cccccviriieiriiiiniieiree e e e 192
Monitoring the value of variables in hexadecimal format.......ccccoeeeeiriiiiniiieiniieeceee e 192
Modifying variables or storage by using a ComMmMand.........ccoecuiiiriiierniierniienreessee e see e 192
Modifying variables or storage by typing over an existing value.......cccccvvvvieiriieinieennseeenieennnne 193
Opening and closing the MoNItor WINAOW........cocciiiiriieiiiiieiniiensite et esve s sbeeesae e s aee s 194
Displaying and modifying memory through the Memory WindOW........cccevvvveircieeniieeniiesscieeeieeene 194
Modifying memory through the hexadecimal data area.......ccceceevvciiiiciiiniiinncieieeee e 194
Managing file AllOCAtIONS. ..cciciiiiiiie ittt st e s st e s s be e s sabe e e s beessabaessabaesanreens 194
Displaying error numbers for messages in the LOg WiNOW.......cocceeiriieiniieeiniieeinieeiniee e ssiee e 195
Displaying a list of compile units known to z/OS DebUZEET......ccccuvviiiiiiiiiiiieitecee e 196
Requesting an attention interrupt during interactive SESSIONS.......civvieiriieeriiieeeieeere e 196
Ending a full-Screen debug SESSION.......uii ittt esee e seaeeesane 197

vii

viii

Chapter 22. Debugging a COBOL program in full-screen Mode........coocceeirviieiiiiieiniiieinsieeinieessieessieeens 199

Example: sample COBOL program for debUZZING.ccccveiriiieiriieiniiieinieeesieessieessieesseeesseeesseeesns 199
Halting when certain routines are called in COBOL.......ccooviiiriieiiieeiiieeiieeseieeseieeseeeesseeesseeesenee 202
Identifying the statement where your COBOL program has Stopped........cccceevueerevieeinceeenniieennsieennns 202
Modifying the value of @ COBOL Variable.. ...ttt 202
Halting on a COBOL line only if 2 CONAItION IS TrUE....ccuuiiiiiiiiiieeite ettt 203
Debugging COBOL when only a few parts are compiled with TEST......ccooveviiveiiiieeiiieecee e 204
Capturing COBOL I/O t0 the SyStem CONSOLE......iiiciiiiciiiiiieeciee sttt re e srae e sraeesane 204
Displaying raw Storage in COBOL.....uuiiiiiiiriiieriieriieescteessieessteessieeessateessseeesssseesssseesssseesssseesssseens 205
Getting @ COBOL routing traCebaCK. .. .uiieciiieiiieeieeeiie sttt sae e s sve s saee e s ae e s see e s eeessaeas 205
Tracing the run-time path for COBOL code compiled With TEST.....ccccccevviiiiiiieiniieeree e 205
Generating a COBOL run-time paragraph traCe......cuuuiiiriernieeiniieeeieeseitessreesseesseesssreesssneeessnees 206
Finding unexpected storage overwrite errors in COBOL.......ccccciiiriiieinrieeiiieeisieessieessieesseeesseeesnne 207
Halting before calling an invalid program in COBOL.......cccceiiiiiiiiieiiiieeniecceeeeiee e siee e see s svee s 207
Chapter 23. Debugging a LangX COBOL program in full-screen mode........ccocceeveieeriieercieeniiieenceeennns 209
Example: sample LangX COBOL program for debuUgging.........ccceeveviiriieiriieeiiieeniieescieeseeeeseeee e 209
Defining a compilation unit as LangX COBOL and loading debug information......c.cccceecveeriveenunenn. 211
Defining a compilation unit in a different load module as LangX COBOL.........ccccvvvueerrvieeirrieernneeennne 211
Halting when certain LangX COBOL programs are Called........ccvceiiriieiiiieinieeinieecneecseeeseee e 212
Identifying the statement where your LangX COBOL program has stopped......c.cccceveveercveerinennane 212
Displaying and modifying the value of LangX COBOL variables or storage.......c.cccevveeerrveerrvreennnnen. 212
Halting on a line in LangX COBOL only if 2 cONdition iS trU€.....ccueivrvieriiieriieerrieessieessieessveesseeeeas 212
Debugging LangX COBOL when debug information is only available for a few parts......cc.cccceeuuuee. 213
Getting a LangX COBOL program traCebacK.....c..ciicueiriieiiiieeiiieesiieescieessiteeseteessieeesveeessveeessneeesane 213
Finding unexpected storage overwrite errors in LangX COBOL........covcveiriieiriieeniieeniieescieeessieeennne 213
Chapter 24. Debugging a PL/I program in full-screen Mode.......cccccvevviiieiiiiniiieniiienieeesee e 215
Example: sample PL/I program for debUZEING......cccuiiiiiiiriiiiniiieniieeerie sttt srereessieeessaeeessaeeees 215
Halting when certain PL/I functions are called.......ccoviiiiiiiiiiiiiinieceecee e 218
Identifying the statement where your PL/I program has stopped.......ccccoeceeirvieeinciieinieeeniieessieennne 218
Modifying the value of @ PL/T Variable. ...ttt srae e 218
Halting on a PL/I line only if @ CONAItION IS TrUB.....uiiiiiiiiiieeee ettt 219
Debugging PL/I when only a few parts are compiled With TEST......ccccvviiviieiiiieiniieinrieeeeeeeieeene 219
Displaying raw STOrage iN PL/ ...ttt sttt sste e st essate e ssste e s steessseeessnsaessseesnnseenn 220
Getting a PL/I fuNCLION traCebacK.....uiiicuiiiiiieiciiecteecte ettt ra e e sre e saee 220
Tracing the run-time path for PL/I code compiled With TEST.....cccccviiiiiiiiiiniiieinieeeciee e 220
Finding unexpected storage overwrite errors in PL/ ..o ieieiiiiniieieieceeeesiee s e siee e 221
Halting before calling an undefined program in PL/ ...t ssee e 222
Chapter 25. Debugging a C program in full-SCreen Mode......ccuiiiiciiiiiieiiieicieceee et 223
Example: sample C program for debUZEING.......ceivvuiiiiiiiiiiiiieieerieceee et sre e srae e 223
Halting when certain functions are called in C.......coiiviiiiriiiiiiiecieeeeeerre et sree e 226
Modifying the value of @ C Variable.......uii ittt 226
Halting on aline in C only if @ CONItioN IS trUE....cciciiiiiiieirieeete et re e 227
Debugging C when only a few parts are compiled With TEST......ccccevvviiiniieiniienreeeree e 227
Capturing C oULPUL 10 STAOUL.....eiiiiieieieieie ettt ettt e s s e s sae e s s beessataeenaeas 228
(02T o) (0] 1o ¥ =8 O T o] o1V A (o JX=] (o I o OO PO 228
Calling a C function from Z/OS DEBUZEET......ciiciiiiciiiiieeeiiee ettt e svee s ssrae s ssree e svae e sraeesane 228
Displaying raw STOraBE iN Cu..uiiicieeiiieeiiieesciee st e st e sttt e seieeesetteeseseeeseseeesaseeesaseessaseessaseessaseessaseessan 229
DEDUZEING @ C DLL.uuiiiiiiiieiiiieiee ettt ettt ste e s sate e s te e s ate e ssate e seate e ssateessteesseeesseeesseeesnnens 229
Getting a fuNCioON tracebaCK iN Cu..ciuiiiiiieeiicce ettt e s e s aee e saeeesseaeen 229
Tracing the run-time path for C code compiled With TEST......cccovviiiiiieiiiieniieeneeccee e 229
Finding unexpected storage overwrite €rrors iN C..uivuieieeeeecieesiieeenieessieeseeeessieesseeesseeeesseeesnee 230
Finding uninitialized STOrage €rrOrS iN Cu..uiivieiiciiieiieesiieesrie et ssieeessreeessaeessaeeesssaaesseaesnnsaean 231
Halting before calling @ NULL C fUNCLION.....ciciiiiiiierie ettt ste e siee e s saee e ssee e s saae e s e 231

Chapter 26. Debugging a C++ program in full-screen Mode..........cccvvvviiiiiieiniieiniieeeieeeee e eeeee e 233

Example: sample C++ program for debUZZING......cccviiiviiiiiiieieiieeciee ettt svee e svee e sre e s seee e 233
Halting when certain functions are called in CH. .. 236
Modifying the value of @ CH++ Variable. ... 237
Halting on a line in C++ only if @ CONAITION IS TrUE.....uiiiiiiirciiiciecceesee e 238
Viewing and modifying data members of the this pointer in C++.....ccocviiiiiiiiinniieeeeeeeeee, 238
Debugging C++ when only a few parts are compiled With TEST......coocvvirviiiniiiiniieineecee e 238
Capturing C++ OULPUL 10 STAOUL...eiiiiiiiiee ittt sbee e sebee e sbee e sbae e sbeeesneeesans 239
Capturing CH++ INPUL 10 STAIN...uiiiiiieieieeeecee et sre s e ssbee e s sbee e s sate e ssabeesnaeaessneaas 239
Calling a C++ function from Z/OS DEDUZEET.......utiiiiiiiiiieicieeectee ettt e e s see e s sbeessaeeeeas 240
Displaying raw STOrage iN C.iiiiiiiiieiiiieesiieeseieeseiee st e ssteesseeesssteesssbeesssseesssseesssseesssseesssseesanseens 240
DEDUZEING @ Ct DLLuciiiiiiiiiieiiiieieiteeeite st e sttt ett e st e s ste e e sbe e e sbaeesbaeesssaessnsaessnsaessnsaessnsaeans 240
Getting a fuNCtion traceback iN CH ... it s s e e e s e s bee s s 240
Tracing the run-time path for C++ code compiled With TEST......ccccvviiiiriiiiniiiiinieeeeeeeee e 241
Finding unexpected storage overwrite errors iN CH4..cuiiiieceercieeceesieecee e estee e eeeeseeeeeeeseeeseeens 242
Finding uninitialized StOrage errors iN CH .. iiiiiiieiiitesriee st ssreessree st essbeessbeessreeesbeessaneas 242
Halting before calling @ NULL C4+ fUNCHION......uiiiiiiiiiiceieccieese et 243
Chapter 27. Debugging an assembler program in full-screen Mmode......coccvvevieiniieiniieinseeeereeeeieeens 245
Example: sample assembler program for debUZZEINgG.......ccueivvieiriieiiiieiiiieeete et 245
Defining a compilation unit as assembler and loading debug data.......c.ccccevvviiiiiviiiiieiinieniiieeeen, 247
DEFEITEA LDDS...ceieeieeieeete ettt ettt et st sae e bt e st et esat e s b e e sme e s b e e sneesase e beesnneeabeesaneenseesneens 248
Re-appearance of an aSSEMDBLEr CU........uiiiiiiciieie ettt e e e e e e e rae e e s e e nree e e e ennees 248
Multiple compilation units in a single aSSEMBLY....cccuiiiiiiiiiiierc e 248
Loading debug data from multiple CSECTs in a single assembly using one LDD command...... 249
Loading debug data from multiple CSECTs in a single assembly using separate LDD
(olo] 301 aT=1 3 T TSP PUUTOPRPRTOPO 249
Debugging multiple CSECTs in a single assembly after the debug data is loaded..................... 249
Halting when certain assembler routines are called......ccoccvvvciiiiiiiiniieiniieceeee e 250
Identifying the statement where your assembler program has stopped........cccecvvevveeirieennieennnnen. 250
Displaying and modifying the value of assembler variables or storage......c.ccccveevevvieeernieeiineeennnen, 250
Converting a hexadecimal address t0 a Symbolic @ddress.......cueeviieieieeirieeinieeiriee e 251
Halting on a line in assembler only if 2 CONAITION IS trUE.....cciiciiiiiieiiiee e 251
Getting an assembler routing tracebacK........ccuuiviiiiiiiiiiiii e 251
Finding unexpected storage overwrite errors in asSemMbBLEr......covciviviieiicieiniere e 252
Chapter 28. Customizing your full-SCreen SESSION......uiiiciiiriieerieeeee et ee e s 253
DETINING PF KEYS.nutiiieiieieiteiette ettt sttt et e s be e s s sba e e st ee e ssbee e s bteesabeeessseeesnseeesssaesnseeesnnsaesnnens 253
Defining a symbol for commands or Other StrNES.....ccuuiirieiieieiiiiee e 253
Customizing the layout of physical windows on the session panel.....ccccccceceevnviernieenniieescieeeneeenn 254
Opening and closing phySiCal WINAOWS......cccuiiriiiiiiiiinieceieescire s saae e s saeeesseeessaeee s 254
ReSIZING PhYSICAl WINAOWS....iiiiiiiiiiieiiiteeeee ettt sree e ste e s ste e s sae e s sbeessbaessasaeesaraeenane 255
Zooming a window to occupy the Whole SCreen........ceviiieiiiiniee e 255
Customizing SESSION PANEL COLOTS...ciuviiiiiiiiiiieirieeeette et e st e st e st essbe e s s be e s sbeessbeessbaessaraesssseens 255
CustomMiIzing Profile SETHINES....uuii ittt e e st e s s e e e s e e s s bee s sbeeesans 256
Saving customized settings in a preferences file. ... 258
Saving and restoring customizations between z/OS Debugger SeSSIONS.......coevveerireeriieesireesineeens 259
Part 5. Debugging your programs by using z/0S Debugger commands................. 261
Chapter 29. Entering z/OS Debugger COMMAaNAS......cccciiiieiriieiiiieeniiee e e sieeessieeesreessaeessreessseesssvens 263
Using uppercase, lowercase, and DBCS in z/OS Debugger commands.........cceccveerrveeriveeriveesineens 263
DSttt ettt ettt ettt et h et h ettt b et h et e sh e et e a e e e b e et e eh e e bt eat e b e et e sheeabesheebeeatenbeetenaean 263
Character case and DBCS in C and Cuuiiiiiiiiiieiiiieirieeeeieessieessieessieesseeesseeessseessseeessnsessnnee 263
Character case in COBOL and PL/L....coooiieiueeiieeeeeeeeee ettt s s s e e e s e e e e eaeaens 264
Abbreviating z/OS Debugger KEYWOIS.ccuuiiiiieiiriieieiieieieeesieessieessieessieesseeesseeesseeessseeessssaesnns 264

Entering multiline commands in fULl=SCrEEN......coiviiiiiiiiieecc et see e 265

Entering multiline commands in @ commands fil€.....c.ciiriiiiiiiiiiiiiiiee e 265
Entering multiline commands without CONtINUATION........iiiiiiiiiiieniiieeieeeee e 265
Using blanks in z/OS Debugger COMMAaNAS.......coccviiiiiiiriiieniieeeiie e see e ssiee e s see e ssee e s seeessaeas 266
Entering comments in z/OS Debugger COMMAaNGS......coccuieiiiieriiieeniiienrieessieessieessreesseeesseeessneeess 266
Using constants in z/OS Debugger COMMAaNGS.......cocciiiriieiniieiniieeeteeeeeessee e eiee e ssieeessree e ssaeeesaees 266
Getting online help for z/OS Debugger command SYNtaX.....ccecvveervierriieiriieenieeesieeeeieeeereeessseeeens 267
Chapter 30. Debugging COBOL PrOSramS.....ccuueirueersireersireersireessseesssseesssseesssseessssessssseessssessssseesssseessssees 269
z/0OS Debugger commands that resemble COBOL Statements......occeeveieeriieeniieeniieesrieessiee s 269
COBOL cOMMANd fOMMAL..c..eiiiiieiiieiierie ettt sttt b e smee s be e s e e enreesns 269
COBOL compiler options in effect for z/OS Debugger commandsccecvveervieeriieenieeenceeenne 270
COBOL reServed KEYWOITS.uiiieecectiieee ettt e eecttee e e e etee e e e e ctee e e e sertaeeseensaeeesesnssaeesesnseneesennnnes 270
Using COBOL variables With Z/OS DEDUZEET......c.uuiviiiiiiiiercieeeieesree sttt e e e ssaeee s 270
AccesSiNG COBOL VAriables......coiciiiiiiieiiiecciecectecste ettt et e s sae e s ste e ssate e s sbeesasaesnaseens 271
Assigning values t0 COBOL Variables......cuuiiiiieiiiieieeeieeeiitesite st sire e saaeessneeessaee s 271
Example: assigning values to COBOL variables........ccceiviiiiieiniiieniiecieecieceiee e 271
Displaying values of COBOL variables. ...ttt st ssae e s 272
Using DBCS characters in COBOL....uiiiiiiiiiiiiieircies et site e sree s siee s siee s siee s sbee s sbeessseessseessneessanens 273
Y%PATHCODE Values fOr COBOL...ccuuiiiieiiiriienieeieesee st et st e siee st et sae e bt e saee b e saeesneesmeesaneesneean 273
Declaring session variables in COBOL....iuuuiiiiiiiiiiniieiniieesitessieeseieeesieessieesssaeeessseesssseesssneeessnens 274
z/OS Debugger evaluation of COBOL EXPreSSIONS.....cueierveeriieerrieesrieesneeesseeesssseesssssessssnesssseessnnes 275
Displaying the results of COBOL expression evaluation........ccoccueeveieeieieeniieeisieeseieesseeesseeenane 275
Using constants in COBOL EXPrESSIONS.cucutiirieeiriieriieessieessieessseessseesssseesssseesssseesssseesssseesas 276
Using z/OS Debugger functions With COBOL......c.ccuiiviiiiiiiiiniiienieeeieesee e ssee e s e s 276
USING YoHEX With COBOL...c.ueiiiiiieieieeiee ettt ettt sttt sttt sbe et s bt sae e besaeesbeeaeens 276
Using the %STORAGE function With COBOL......cccccviriiiiiiieiiiieenceessceeesieessieessveeesieessveessanees 277
Qualifying variables and changing the point of view in COBOL........ccccccvirviiinieieiniieeeieeeeieeessieeeeane 277
Qualifying variables IN COBOL.....ciiciiiiiieiiiee ittt site e siee s st e s sbee s sbee s s beessbaessasaesnanas 277
Changing the point of VIEW iN COBOL.......ciiiviiiiriieiiieinieeesieeeeieessieesseeessteesseeessaeesssseessssaesnns 278
Considerations when debugging @ COBOL ClasS......cccuivriieiniieiniieiniesseeesee e ssieeesee e 279
Debugging VS COBOL IT PrOZramS..cccueeeceeerrreeriieessiueessseesssseesssseesssseesssseessssesssssesssssesssssesssssesssssens 279
Finding the listing of @ VS COBOL II PrOgram.....cccccceercieerieeeriiennieessiieessreeessseesssseessseesssseessnnes 280
Chapter 31. Debugging a LangX COBOL Programl.....ccccececeererieerniieeesiieeeireeesseessseesssseessseessseesssseessssees 281
Loading a LangX COBOL program's debug information.......cccecveveviiiiniiieinieeinieesniee e ssieeeseee e 281
z/OS Debugger session panel while debugging a LangX COBOL Program.......ccceeeeeeeeeerceeeessveessnnes 281
Restrictions for debugging a LangX COBOL ProSrami.....c.ceieceeeerieerieeenieeesseeessseeesssseessseesssseeesssneens 282
%PATHCODE values for LangX COBOL PrOgramsS......cucueeieieerrrieersieersieessseeesseeessssesssseessssesssseessns 283
Restrictions for debugging non-Language Environment programs........cueeeveeeeceeenieessseessseeesssneens 283
Chapter 32. Debugging PL/T PrOZramsS....cccecceeereieereteesieteesiiteesireeessseesssseesssseesssseesssseesssseessssaessssesssssees 285
z/OS Debugger subset 0f PL/I COMMEANGAS......ciiiiiiiiiiiiiieiniteeeiee et sereeesseeeessieeessseesssaeessaeesseeeas 285
PL/T langUage StatEMENTS. . ciiiiiiiiiieiiiieerte sttt st s s e e s be e s s bee s st e e ssbeeesbeeessbeeessenesnnes 285
QOPATHCODE VAlLUES fOF PL/ It e e s s e e e e e e e e e e e e e e e e et eee e as s s aa s sesseeeaaaaaaes 286
PL/I conditions and condition handliNg.........cccueieiiiiriiiiniiieieeeieeeee e s s 287
Entering commands in PL/I DBCS freeform format........ccccvvciiiniieiniienniienriee e ssiee s 288
Initializing z/OS Debugger for PL/I programs when TEST(ERROR, ...) run-time option is in effect.288
z/0OS Debugger enhancements to LIST STORAGE PL/I command......ccccceevvveeriieenieeenineesieeeesnnneens 288
PL/I support for z/OS Debugger session variables.........uuiiiiiiiiiniiieiececcee e 288
Accessing PL/I program Variables.ttt ettt e s e ssaaeeeas 288
ACCESSING PL/T STTUCTUES...eiiiutiiiiiteeiieeerite st et e st e st e s be e s s bee s s beessabaessbeesssbeessssaesssseeessseesssees 289
z/OS Debugger evaluation Of PL/L @XPreSSIONS....c..uiiciiiiiiieriieessieessieessieesseeessseesssseesssseessseessanes 291
Supported PL/I BUilt=in FUNCHIONS.....cii ettt e e e e e e e e e e e e naaee s 291
Using SET WARNING PL/I command with built-in funCtions........ccecvevriienniiinniieinieceee e 293
Unsupported PL/I Llanguage ElemMENTS.. ... ciiiicieiicieeiiieesciiee st esiteessiteessreesssreeessaeessseeessssessseessane 293
DebUZZING OS PL/I PrOSramS..ccccueeieieereieeriitesareesaieesateessseessseesssseessssessssseesssseesssseesssseesssseessssees 293

Restrictions while debugging Enterprise PL/I Programs.........cceevcueeriieeieieeensieesseeesseesssneeseeeesane 293

Chapter 33. Debugging C and CH+ PrOgramMS....cueiecueeecreeriieeeireessreessseeesssseesssseesssseesssssesssssesssssesssness 297

z/0S Debugger commands that resemble C and C++ commands.......ccceeceeeeeereeecieeneescieeseeseeenens 297
Using C and C++ variables With Z/OS DEDUZZEN.......ccuvvviiiriiiiiiieieieecriee st e s sre e s seeesseeesnee 298
Accessing C and C++ program VariablesS.......uuiiieiiieiiecieeeiee st see s e s 298
Displaying values of C and C++ variables or eXpressions.........iieeieennieeenieesnieeeseeeeseee e 298
Assigning values to C and CH++ variables. ...t 299
Y%PATHCODE values fOr C and Cu.iiiiiiieiiiiciieieiteeriee st essieesste e ssteesseeesseeessseeessseeessseessssenesnes 299
Declaring session variables With Cand CH+.....couiiiiiiiiiiiiiiieeiee et 300
(O Y g ol 08 T o o] £ 1] o [T SR 300
Calling C and C++ functions from z/OS DEDUZEET.........uiviiiiriiierriteeeeesee st 302
C reSEIVEA KEYWOITS. ... iiieiee ettt ettt ettt e e e te e e e ee e e e s et ee e e e eesseeee s e nsaeeesenseeaessansssnesssnnstnnessanns 303
OR o]0 =171 o] -3 UaTe lo] 01T =Y a T =S 303
Language Environment conditions and their C and C++ equivalents.......cccccceevvieeriieeriieeniieesnnens 304
z/OS Debugger evaluation of C and CH++ XPreSSIONS......uiieciieririeereiiersiieessreessireesssseesssreesssseesssseesns 304
Intercepting files when debugging C and C++ ProgramsS....cc.ceecveerereeriieeriieesnieesseeessseessseessseesas 305
Yol o LN ol ile] o] [=Tor €3N 1 T OAF=a o 00 S 307
Storage Classes iN C and CH ... iiiiiiee ettt ste e ste e see e setee e saee e ssbee e sbee s saeessabeesssaessasens 308
Blocks and block identifiers fOr C.. ..ot 308
Blocks and block identifiers fOr CH. ..ttt ssee e ssabe e s sabee s reessasae s 309
Example: referencing variables and setting breakpoints in C and C++ blocks......cccccceveeeiriueennnnen. 309
Scope and visibility of objects in Cand C++ Programs........ccceeeeieeeniiernieesniieesssieesssseesssseesssseesns 310
Blocks and block identifiers in C and C++ Programs......ccceeeveereieerniieernieesssieessseesssseesssseesssseesns 310
Displaying environmental information for C and C++ programs........ccceeueeceereeecieeseesseeseeseeeseenns 310
Qualifying variables and changing the point of view in Cand CH+.....ccceviriieiiiniiereeneeeeceeeeen 311
Qualifying variables IN C and CH+....iiiii ettt st e sre e st e s e s s e e s s e e s sabaassabeessanees 311
Changing the point of View in Cand CH.....ciiiciiiiiieiiieccieccee st see s see s s e s 312
Example: using qualification iN Cu...ivuiiieiieiiieenieeeiee ettt st e s sbe e s sae e s sabe e ssabaessasae s 312
Stepping throUgh CH+ PrOZramIS... .o iiieieieieeeie ettt sttt see s see e s saee e s ate e s saea e ssaeeessaeaesnneeas 313
Setting BreakpPOiNTS IN C ittt ettt s e e st e s sbe e s sbe e e sbeessabeessabaessneeesnneeas 314
Setting breakpoints in C++ USing AT ENTRY/EXIT...ccccutiiiiieiiiieinitennieesnieessieessieessveessveessaneas 314
Setting breakpoints in C++ USING AT CALL..cccuiiiiiiieiiiieeiieeereeste sttt e s e siee e sssaeessaeeesaeee s 314
e T a1 T a T O o] oY= Tox £ F TR 315
Example: displaying attributes of C++4 ObJECES....cccviiiiiiiiiciiicecee e 315
MONITOTING STOFAZE IN CAuiiiiiiiiiieiiiieeeiiee ettt e st e s ste e s be e s te e s sateesssteessbeesasseessseessseesasseesnsseenan 316
Example: monitoring and modifying registers and storage in C.......ccccvevveeviieeriiieeniieennieesseeenns 316
Chapter 34. Debugging an assembler Programi. ceiieerniiensieesrieessreessteessaeessreessbeessbeessseessanes 319
The SET ASSEMBLER and SET DISASSEMBLY COMMANS.....cciiiiriieriieieenieeiee st ereesiee e seee s 319
Loading an assembler program's debug information........ccccecceiicieiniiienniieeneeesee e 319
z/OS Debugger session panel while debugging an assembler program......ccccccevevveevcveencieenceennnne 320
%PATHCODE values for assembler PrOSramS......ccuivcieeieieeieieessieessiessseeesseeessreeessseeessseesssseessnens 321
Using the STANDARD and NOMACGEN VIEW......cciccuiiiriieiniieinieessieessieesseeesseeesseessseessssesssssesssnes 323
Debugging NoN-reentrant @SSEMDLETc.uiiiiiieieeeieeete ettt s ser e e s eae e sbaeesbeeesneeens 324
Manipulating breakpoints in non-reentrant assembler load modules.......cccocccevrviiinveiincieennnen. 324
Manipulating local variables in non-reentrant assembler load modules.........ccevevrnveiiniieennen. 324
Restrictions for debugging an assembler Program..........cccveivriieiieennieensee e 324
Restrictions for debugging a Language Environment assembler MAIN program.........cccecueenee. 326
Restrictions on setting breakpoints in the prologue of Language Environment assembler
PIOBIAIMS e eittieeeettte e e e ettt et e e uttteeeeaneteeeeanseeeeeanseteee s nneeeee s aseteeaaansseeeeeanneeeeeenseeeeseanseaaeanan 326
Restrictions for debugging non-Language Environment programs.........cccveveerneeennvveessveesnneens 326
Restrictions for debugging assembler code that uses instructions as data......cc.cccceveeerriueennnne. 326
Restrictions for debugging self-modifying assembler code.......ccccvirviiiniiiinieiinieecec e, 327
Restrictions for debugging assembler programs that consist of multiple sections................... 328
Chapter 35. Debugging a disassembled Program. ...ttt e e e ssreesseeesseee s 331
The SET ASSEMBLER and SET DISASSEMBLY COMMANS...c..ciiiiiiiieriieieenieesiee e eieesiee e seee e 331
Capabilities of the disasSEMbBLY VIEW........cei it e e e e e e s 331

xi

Starting the diSaSSEMDBLY VIEW.....ciiciiiiiiieieiieieiee ettt ettt ste e s ste e s ste e s sataessateesssseessssaesnnes 332

The diSASSEMDLY VIEW..cci i ittt ettt e e ctree e e e e tee e e e et e e e e s anteeeeesnbeseesesnseeeeeennnseeeenan 332
Performing single-step operations in the disassembly VIEW......cccuevrviiiiiieiniieeniiiecneecee e, 333
Setting breakpoints in the diSassembBLly VIEW.......cocciiiiiiiiriiiniceeceee et seee e 333
Restrictions for debugging self-modifying COAE.....cuiiiiiiiniiieeeee e 333
Displaying and modifying registers in the disassembly VIEW.......ccccevvvveiiiieiiiieinieeeneeesee e 334
Displaying and modifying storage in the disassembly VIEW.......ccccevriieiniieiniieiniiecreecereeeee e 334
Changing the program displayed in the disassembly VIEW.......ccccovcvieiriieiiiieiniieeriieesieeesiee e 334
Restrictions for the diSasSemMbBLY VIEW......cuuiiiiicciiee ettt eeree e trre e e e e e s e aaaee e 334
Part 6. Debugging in different environments.......ccccccccireiiniiniiniiniinciiciicciecnniennee 335
Chapter 36. Debugging DD2 ProOSramS.....ccueiccieiriieeriteeeiteesiteesseeessreesssseesssseessseesssseesssseesssseessseesssnes 337
Debugging Db2 programs in batCh MOGE.....cccuiiiiiiiiiiicieecec e s 337
Debugging Db2 programs in full-SCreen MOAE......oociiiiiiiiriiierieecteeeee et saeeessaee s 337
Chapter 37. Debugging Db2 Stored ProCEAUIES........tiiiiiirriiertterritesrtte st e st e s sreessreessbeessbeessasaeeas 339
Resolving some common problems while debugging Db2 stored procedures.......ccccccevvveeerreeennnee. 339
Chapter 38. DebUZZING IMS PrOZIamMS. .. .cciccuieieiiieieiiieesieeeseteesireeesisteessseeessseeessssessssaesssssesssssesssseessssseens 341
Using IMS Transaction Isolation to create a private message-processing region and select
traNSACTIONS 10 AEDUE..ciuviiiiiiiiciieeete ettt e s st e e s st e e e sba e e sbeeesbeeesabaeessaesns 341
Using IMS pseudo wait-for-input (PWFI) with IMS Transaction Isolation.........ccccevveevieencencieennnen. 343
Debugging IMS batch programs interactively by running BTS in TSO foreground.........cccccceeveuveennns 344
Debugging non-Language Environment IMS BTS ProgramsS......ccueeeceeerieeenieeesneeesseeesseeessseeesssneens 344
Debugging IMS batch programs in batch Mode.......occiiiiiiiiniiii e 345
Debugging non-Language Environment IMS MPPS.....ccciiiiiiiiiieiecriecsiee et e e e ssvee s 345
Verifying configuration and starting a region for non-Language Environment IMS MPPs.......... 345
Choosing an interface and gathering information for non-Language Environment IMS MPPs.. 346
Running the EQASET transaction for non-Language Environment IMS MPPs........cccccccevrieennnen. 346
Debugging Language Environment IMS MPPs without issuing /SIGN ON........cccccceevrieerrieerrieennnne 348
Syntax of the EQASET transaction for Language Environment MPPS.........cccoccvviveeiiviecineeennnee. 348
Creating setup file for your IMS program by using IBM z/OS Debugger Utilities......cc.ccceervveercunene 348
Using IMS message region templates to dynamically swap transaction class and debug in a
PrIVAtE MESSAZE FEEION...ciiiiieiriieiiteeiiieeeeiteeesteeesteesssteessseeessseeesasteessseesssseeessseesssseesssseesssseessnsees 349
Placing breakpoints in IMS applications to avoid the appearance of z/OS Debugger becoming
UNTESPONSIVE. 1eeeiieuteeeeeeettreeeeeitteeeesateeeeeeaasteeesaaastesesesassssesssasssssessssssessessssssessessnsssessssssssesessnnsssnnes 351
Chapter 39. Debugging CICS PrOSramS...cccueeieieerereereieesaieesateesseeesseeessssessssesssssesssssesssssesssssesssssessans 353
Displaying the contents of channels and CONTAINEIS......occiiiiiiiiieireee e 353
Controlling pattern-match breakpoints with the DISABLE and ENABLE commands.......c..cccceuee.. 355
Preventing z/OS Debugger from stopping at EXEC CICS RETURN......ccovviiiiiiieiniiieinieeenieeeneee e 356
Early detection of CICS Storage VIolatioNS......ccueiieieiiiieiiiiee st ste s see s see e siee s siee e see s s aee s sbee e 357
Saving settings while debugging a pseudo-conversational CICS program........ccceceerevveereveeessveeennne 357
Saving and restoring breakpoints and monitor specifications for CICS programs.......cc.ccceeevveeennee. 357
Restrictions when debugging UNder CICS.........coooviiiiiiiiiiiiiiiee et see e ssee e s sree s s saee e s aees 358
Accessing CICS resources during a debugging SESSION......ccivviiiriieiiiieiniiecree et sae e 359
Accessing CICS storage before or after a debugging SESSION......c.cevecueeiriieiiiiieirieeeeeeeee e 359
Chapter 40. Debugging ISPF appliCatiONS......ciccuiiieiiieieiieiniieesieessiteseitessreeesetesseeeesreeesseessseeesasneens 361
Chapter 41. Debugging programs in a production enVIirONMENT.......cccvrvieiriieeniieenee e see e sree e 363
Fine-tuning your programs for zZ/OS DEDUZEET......ccuiiiiiiiieiiiecrieerte st vee s 363
REMOVING NOOKS. ...ttt s e e s abe e s bee e s aeeessaea e s sbaesnabaesnssaesnnseas 363
Removing statement and symbol tables. ...t 364
Debugging without hooks, statement tables, and symbol tables.........ccociviviiiiniiiiniieinieeee e, 364

Debugging optimized COBOL PrOSramS.....cueeicueeriueereieesareesaeeesareeesaeeesaeesssseesssseessaseesssssesssaessne 366

Chapter 42. Debugging UNIX System ServiCes ProgramsS....ccueecueerrcreersireersieessseessseessseesssseesssseesssnees 367

Debugging MVS POSIX PrOSIaMS. ...cccueruerireereerireeseesireeseessseeseesseesseesseesseesseesseessessnsessseesnsessseesns 367
Chapter 43. Debugging non-Language Environment Programs........cceceeeeerreeseenieeeseesieessreeseessneesneens 369
Debugging exclusively non-Language EnvVironment Programs........cceeeereeeseesieeesreeseessreeseessveesneens 369
Debugging MVS batch or TSO non-Language Environment initial programs......ccccceceeveeneerieenneen. 369
Debugging CICS non-Language Environment assembler or non-Language Environment COBOL
LR N oo =1 = L o 1TSS PPRTROP 369
Part 7. Debugging complex applications......ccccceieiieiiniieiniiciniciesieiieciaccacnecneens 371
Chapter 44. Debugging multilanguage appliCatioNS.......ucciiieiieiriieineeeree et esee e e sre e s see e s 373
z/OS Debugger evaluation Of HLL @XPreSSiONS.....uuiiciieiiieeriiteriieessieessiieessseeessseeesssseesssseesssesesssseens 373
z/OS Debugger interpretation of HLL variables and constants........ccoeceevevieeiiviieiniee e 373
HLL VATIADLES. ..ottt sttt st e s st s e e e b e st e s be e s e e e neesaee 374
HLL CONSTANTS...eintiiiiiieeetieeeee ettt ettt ettt e e et e s e e b e e e e e e s ne e e s ne e e saneeesaneeesnenens 374
z/0OS Debugger commands that resemble HLL cOmmands.........cccceveveeinieeiniieeinieeiniee e sseee e 374
Qualifying variables and changing the point Of VIEW......cccciiviiiiiiieiiiecceceec e 375
QUALITYING VAIADLES . cei ittt ettt be e s s te e s sate e s s aee e ssabeessasaesnneeas 375
Changing the POINT OF VIEW....ciiciiiiiiiiies ettt ee s st e e s be e s sbee s sbee e ans 376
Handling conditions and exceptions in Z/OS DEDUZEET.......ciiriiiiriieiiieerniee ettt eseeeesseeesseeeeane 377
Handling conditions in Z/OS DEDUZEET.......uuiiiieiiiiieiciee ettt see e sree s ste s sbee s sbee s sbeeesaneas 377
Handling exceptions within expressions (C and C++ and PL/I only)....cccccveevveerceeneerceeseesieenee 378
Debugging multilanguage appliCatiONS.......uiivciiiiriieirie ettt ssre e s s see e s sae e ssaeeesaeas 378
Debugging an application fully supported by Language Environment.......cccccccevvveeinveennieeeennnen. 379
Using session variables across different programming languages........cccveveerevveeiiieerevieessreeenans 379
Creating a commands file that can be used across different programming languages............. 381
Coexistence With Other debUZEEIS......uiiiiii it e s 381
Coexistence with unsupported HLL MOAULES.........uviiii it e e e e 381
Chapter 45. Debugging multithreading Programs.......cocueeecieeriiieriieeniieeesieessreesseeessseeessseeessseeesssseens 383
Restrictions when debugging multithreading applications........cccvviieiriiiiniieeniieeeeeee e 383
Chapter 46. Debugging across multiple processes and enClaves........cocceevreerniieernieennieeenieessee e 385
Starting z/OS Debugger Within @n @NCLAVE........covcii i 385
Viewing z/OS Debugger windows across multiple @nclaves........coievevieieviieinciieinieeeeeeesee e 385
Ending a z/OS Debugger session within multiple enclaves......c.cccvvvieiniiiiniieiniiecee e 385
Using z/OS Debugger commands within multiple enclaves........ccccveeeinieiniieiniienreeeree e 386
Chapter 47. Debugging a multiple-enclave interlanguage communication (ILC) application.............. 391
Chapter 48. Debugging programs called by Java native methods........ccccevvveiriieiniiieniiecnie e 393
Chapter 49. Solving problems in complex appliCatioNS........ceeciiircieieiieeneeeeee e sae e 395
Debugging programs loaded from library lookaside (LLA)......cccueeieeceerieeieenieeieeseesieesieeseeeseeans 395
Debugging user programs that use system prefixed NAmMES.......occcvivvieiriieiniieinieeer e 395
DiSPlaying SYSTEM PrefiXES...ciiciiieiiiiriiieiiite ettt re e st e s st e s te e s sbe e s s beessabeeesbeessareessanes 396
Debugging programs with names similar to system COmMpoNeNntS........ccovvveerriieeinieeeniieeenieee e 396
Debugging programs containing data-only MOdULES.........ceeviiiriiiiniiieniiecee e 396
Optimizing the debugging of large appliCatioNS......cc.viiiiiiiiiiieriiiecreeeeesee e s 396
Using explicit debug mode to load debug data for only specific modules.......cccccccevrvivernieennen. 397
Excluding specific load modules and cOmMPile UNITS......coccviriiiiniieiniieinee e 398
Displaying current NAMES SETHINGS....uiiiiiiriiiiiieieiieerte sttt s e e s ste e s s e s ba e s sabaesssraessaseeeas 398
Using the EQAOPTS NAMES command to include or exclude the initial load module.................... 398
Using delay debug mode to delay starting of a debug SESSION ...ccccvieieiiiiiiiiiiiieiriee et 399
USAEE NOTES. . ittt ettt ettt ettt e e ettt e e e e bee e e e sttt e e saanbeee e e e usateeeeenseeeeeenreteeeeanneeeeanan 400

xiii

xiv

Debugging subtasks created by the ATTACH assembler Macro.......ccvevveeveieereieennieessieessieesseeeenns 400

Debugging tasks running under a generic user ID by using Terminal Interface Manager 401
Appendix A. Data sets used by z/0S Debugger.......c.cccccceruiiniiniininincieciecrecrencannes 403
Appendix B. How does z/0S Debugger locate source, listing, or separate debug

L L L= 3N 409
Remote debugging in standard MOE........coccuiiiiiiiiiiieiieeriee sttt e s e e s be e s sbeessbeessssees 409
Non-remote debugging and remote debugging in Debug Tool compatibility mode........cccccevrveernnenn. 410

How does z/OS Debugger locate source and Listing fileS?....ccuiiieiiiiiieiiiieicieececee e 412

How does z/OS Debugger locate COBOL source during code COVErage.......oocuvvrueernvueerniveerniveeennens 412

How does z/OS Debugger locate COBOL and PL/I separate debug files.......ccccvevriiiiriieeriieerinnenn. 413

How does z/0OS Debugger locate EQALANGX fIlES....ccuiiiiiiiiiieiiiee ettt see s ssiee s 413

How does z/OS Debugger locate the C/C++ source file and the .dbg file?.......ccccovviiirviiiniiiiiiinnnns 414

How does z/OS Debugger locate the C/C++ .mMdbg fileP...cuiiiiiiiiriiieieeeeeeeeeee et 414

Appendix C. Examples: Preparing programs and modifying setup files with IBM

z/0S Debugger Utilities....cccccvieiiiiiiiiiniieiiniieiiniiniineineiiniiieniesiesisiacscsessesses 417
Creating PersoNal data SETS.. ..ottt ettt e st e s s te e s s be e s sabe e s sabeessbeessabaesnans 417
Starting IBM z/OS DebUZEEr ULILITIES....uiiiiiiieiee ettt st iee e s aee e s iee s s ree e saee e saeas 418
Compiling or assembling your program by using IBM z/0S Debugger Utilities.......cccccevvveeirveeinvennnns 418
Modifying and USING @ SETUP fIl.iiuiiiiriiiiiiiiee ettt e s te e s ee e s sate e s sateessseeesnee 421
Run the program in fOr@8roUNG......ccuuiiviiiiiiie ittt ettt s e e s e e s ste e s sabeessbaeesaseesnnes 421
RUN the pProgram in DatCh.. ... st st s e e s ateessaeae s 421
Appendix D. IBM z/0S Debugger JCL Wizard........cccceirireirecreniecneninniaccnccacsecsenne 423
Invoking the IBM z/OS Debugger JCL WIZard........ccvevcieiriieeiiieeeiieeesieeecitesssitesssieesssveeessvaeesseesssvnessnns 424
Viewing help iNthe PANEL... et s sbee e s bee e st e e s bt e s sbae e sabeeesanens 425
(0fe]palaaF=TaTe = TaTo o T= Y= Ua g L= =T TSR 427
Debugging a Language Environment program using Terminal Interface Manager.......ccccceevveeriveerinnenn. 428
Debugging a Language Environment program using a remote debugger without Debug Manager......433
Debugging a Language Environment program using a remote debugger with Debug Manager........... 437
Debugging a non-Language Environment program using Terminal Interface Manager.........cccocuveenneen. 439

Debugging a Language Environment Db2 program using a remote debugger with Debug Manager....445
Debugging a non-Language Environment Db2 program using a remote debugger with Debug

N F=Y A= Y=< PP PPPPPPTTN 447
Starting z/OS DebUZEEr COUE COVEIAZE. .. .uuiiriiiirietiiieereieeseieessteessteessreeessseeessseesssseesssseesssseesssseessssees 451
WithOUT @ dEDUE SESSION..c..uiiiiiiiiiiee ettt e st e s see e s saee e s ateessstaessateesssteessnteesnes 451
With a debug session using Terminal Interface Manager......cccvcveercieiriiieriieeniieeesre e e sseneenn 453
Debugging a Language Environment VS COBOL II program compiled with the NOTEST option by
using the Terminal INterface Man@gErottt s e e s re e s be e s sreessasaeeas 455
Debugging a Language Environment COBOL program that calls non-Language Environment
YU o] o] o= U o[- J PSP PR PP 458
REMOVING JCL STatEMENTS. . .eiii ettt st et e s e b e st e s b e smeeeaneesneenn 462
Appendix E. z/0S Debugger Code CoVerage.....ccccceirirnirecrenresresrassacacsecsecsessessens 465
Overview of zZ/OS Debugger COAe COVEIAZE.ccutiiiiiiriiieriiteriieessiteseteessteessieeessseeessseeesssseessssaessssaesas 465
Introduction to z/OS Debugger COde COVEIABE.cuumuiiinriernirierriiersreeesirtessreeessreeessseesssseesssseessssees 465
Collecting code coverage observations with z/OS DEDUZEET.......ccuviviieiriieiriieirieeeee et 466
Code coverage selection and exXtraCtion PrOCESS......uiiiiiieiiiieriiierirte st e st e srreesseeessreessareessaeeesas 466
COodE COVErage rEPOITING PrOCESS. .uviiirreereieeieieerateeesteessteesssteessteesssseessseeesssseesassesssssesssssesssssasssnes 467
COUE COVEIAZE VIBWET ... eiiiiiieeiiieesciiee sttt e sttt e setteestteesetteesebteesasteesseeesasteesaseeesstaesassessaseassassessaseessane 468
Code coverage by USING Z/OS DEDUZEEN....cccuuiiiiiieiiiteeiiee sttt et e st e s sae e s sbe e s s e e s ssbaessabaessaneas 469
Y= KU o TSR 469
Generating code coverage extracted 0bSErvations.......ocueiviiiiriieeniieececcec e 472
IBM z/0S Debugger Utilities OPLioN E......ccccieiicieiiiieiiiieeniieesiteessieesssveeessveessveesssveessseesssnesssneenas 475

ANNOtated LSTING FOIMAT. . ciii it s e e s st e s s te e s ssbe e s sabeeessteessssaesnes 483

BatC fACIlITIES ettt ieiie ittt st e s st e e e s ta e s s ba e e s baeeebaeeeraeen 487
T o A= e Ly a1 L= SR 488
Generating code coverage for CICS tranSaCtioNS......ociiirieeiniieeirieeeniee st e st e esee e esee e ssee e ssaeeesaees 489
Generating code coverage in IMS Transaction ISOlation........cccccveerrviieiniiieiniieineeereeeeee e 489
XML 1285 TOr COUE COVETAZE. . ciicuriirriiirititeiitee st e sttt e setteesetteesetteesabteesbteesseeessaeesseeesseeesaseessaseesssseaesans 490
XML tags definition for the Observation file........cuviiiriiiniiiiieeeeee e 490
XML tag hierarchy for the ObsServation file.......ccvvciiiriieiriiieece e 493
XML Tags used in the OPtioNS filE. ..ttt s e s e s s 493
XML tags used in the SELeCTioN filE. .ttt s s ee e s aees 493
Appendix F. Notes on debugging in batch mode........ccccccevuiruiiniiniiniincincciciciennens 497
Appendix G. Using IMS message region templates to dynamically swap
transaction class and debug in a private message region........c..cccceeerenirannnnee. 499
Appendix H. Displaying and modifying CICS storage with DTST......c.ccccceerecrannnnnes 501
SEANTINE DT ST iiiittiiiieeeitee et sete e sttt e sttt e sttt e stte e s steesseeessaeessseesasaeesasteesaseaesassaessseessseessseesassaesnnsaenas 501
EXamPLES OF STArTING DT ST . .ii ettt ettt ettt et e s te e s sate e s ste e s sate e ssaeeessaeeessstaesnseaesnnsaesnnens 501
Modifying storage through the DTST Storage WindOW........coeiueeeiieeniieiniieenieeeieesie e sseeesseeesseeessaees 503
Navigating through the DTST StOrage WiNAOW......c.ceivcieiriieiiiieeitee e s sieessieeesieessieessseesssseessseessans 503
DTST STOrAZE WINTUOW...uuiiiiiuieiiiieeiitieeseteesetteeseiteeseteeesetteesesteesaseeesaseeesasaeesaseessastessaseessseessaseessaseesssseessns 504
Navigation Keys fOr NELP SCIEENS......iii ettt s e e s be e s sbe e s sbaeesbaessasaeans 505
Syntax Of the DTST tranSACTION......uiiiiiccieeecccite e e cecee e e e e e e e e stree e e e e sateeeeesenseeeessensseeeseeassesessssnssnneessnes 505
e 11 0] o] (=T PSR SPTSPSP 507
Appendix I. z/0S Debugger Load Module Analyzer........ccccevieininecnecnecneciesiecnannans 509
Choosing a method to start Load Module ANALYZEr.......c.eiviiiiiiiiiiiienieesieesete st 509
Starting the Load Module Analyzer by USING JCL.....couciiiriieinieieeeceitecsiee ettt e s see e s eee s saee e s 509
Starting the Load Module Analyzer by using IBM z/OS Debugger ULilities.....cccccvrvierrieerniienniieennneen. 509
Description of the JCL statements to use with Load Module Analyzer........ccoccvveeeiecvieeeecccieee e, 509
Description of DD names used by Load Module ANalyzZer..........cuiiecciiieeecciieeeeccieee e cveee e 510
Description of parameters used by Load Module ANAlyZer.......cccuueeeeeeciiieeieciiee e 511
Description of EQASYSPF file fOrmMat.......uuieiiieiiiee ettt e e e e e e e e e e e 512
Description of EQAPGMNM file fOrMaATt........ueiiieiiiiieiccciiiee ettt et e e e svr e e e s aee e e e eanes 513
Description of program output created by Load Module Analyzer........ccccovveeriieinniieeniieennieennieenns 514
Description of output contents created by Load Module AnalyzZer.......cccueeeeeeciieeeecciieeeeeciieee s 514
Example: Output created by Load Module Analyzer for an OS/VS COBOL load module....................... 514
Example: Compiler options output created by Load Module AnalyzZer........cceeeeeciiieeeecciieeeeecieee s 515
Appendix J. Running NEWCOPY on programs by using DTNP transaction............. 517
Appendix K. Using the IBM Debug Tool plug=ins.......cccceerurreirniniincncnecnecnecresnennes 519
Migrating to the z/OS Debugger Profiles VIEW......c.uiiiiiiriiiieiieeeiecete sttt 521
Instrument JCL for Debug Tool Debugging plUS=iN.......ccccueiriiieiriiieiniieirieeeee e see e see e 522
Debug Tool Code COVEIage PLUS=IN....ciiiiiiiiiieriieeecite st e st e s rre e ssteessareessaeeessateesssseessseeesssseessnseessnsaesas 524
Load MOdULE ANALYZEE PLUS-IN...ciiiiiieiiieeiieeete ettt ste e s et e s saee e ssabeessaeeessseeessneaesnsaesnsseesnnens 526
Locating the trace file of the DTCN Profile, the DTSP Profile, Instrument JCL for Debugging, Code
Coverage, and Load Module ANALYZET VIEW......ccuiiiriieiiieeiiieesrieeseieessteesseeesseeesssteeseseeessneeessseeesane 528
Example: .debugtool.dfCn.trace file. .t s 528
Examples: .debugtool.diSP.trace fileS. ..ottt s 529
Examples: .debugtool.bjfd.trace fileS. ... e 529

Appendix L. Debugging a program processed by the Automatic Binary Optimizer
(0] g4 L0 1= PPN 531

XV

xvi

Appendix M. Limitations of 64-bit support in Debug Tool compatibility mode....... 533

Appendix N. Debugging programs compiled with IBM Open Enterprise SDK for

€ RN 535
Appendix O. Support resources and problem solving information........c..cccceceaeeaes 539
Searching KNOWLEAZE DaSES......uii ittt st e s s aee s s e e e sbee e sbaessabeessans 539
Searching IBM DOCUMENTATION.cuiiiiiieriiieeiieesrtt ettt e st e st essbe e s st e s s e e s ssbaeesbeessaseessaseesnnnes 539
Searching product SUPPOIT OCUMENTS.....ciiiiiiiiiieiieeeie sttt see e ssareessabeessseeesaeeesn 539
LCT=Y AL 0T DTSSR 540
SUDSCIIDING t0 SUPPOIT UPAATES...iiiiiiiiiiiiieiieeiee ettt ettt e s saee e st e s ate e s ateesesseessaeesanseess 540
RSS feeds and social media SUDSCIIPTIONS.......ccicciiiiir it e e e e re e e e aree e e 540

LY T 41 [or=Y o o TSR 541

(0fo] a1 r- Tord oY =g 121 I U] o] o Yo o O PRPRR 541
Define the problem and determine the severity of the problem........cccoccoiiiieciieiccc e, 542
Gather diagnostiC INTOrMAtION.....iiiviii ittt e s st e s s be e s sbee s sbaeesanas 542
Submit the problem 10 IBM SUPPOIttt e e e e e bree e s e e atee e e e e nsae e e e sennseeee s 543
Appendix P. AcCesSibility....ccceiiiiieiiiiiieiiiieiiieiietiiieiietiiieniteciesiecestecescessecescessens 545
O] T T S AV (= Tod g a o] Ko == TP 545
Keyboard navigation of the USEr iNtErfacCe.......uuuiiiiiiiiiieeee e 545
Accessibility Of thisS OCUMENT....cci e e e e e e et e e e et ee e e s e enraeeeeesanaeeeeean 545
01 o= RN 547
(000])Y 71 0 B U Tol=Y o 1T PRRPPPRRPPPROE 547
Programming interface iNfOrmMation. ... e s esaees 547
Trademarks and SEIrVICE MArKS......iiciiiiiiiiiiiieiiee ettt e st e s sabe e ssaeeessaeeesssbeesssbeesanseess 548
GlOSSANY . cuiuiiuiiienteieitereerenrenstessecastossssassssassassssassesssssssssasssssssassssassassssassassssassasas 549
=11 FT0 Y= - ¥] 1) 559
IBM Z/OS Debugger PUBLICAtIONS.....uiiiciiiiciee ittt ettt ettt siae e siee e sbte e sbee e sbteesbeeesseeessneesans 559
High level language pUBLICAtIONS.ciii ittt st sare e s ste e s seeesssteessaeeesnnes 559
=P Y (= To J o 18] o] L Tot=1 o o [T R 561
INO@Xcteuiruiiruiiieiinniecreiiresieesiaesrassressrssssestassssssrsssssssssssssssassrsssssssasssssssssssnsssnssanss 563

About this document

z/0S Debugger combines the richness of the z/OS environment with the power of Language Environment®
to provide a debugger for programmers to isolate and fix their program bugs and test their applications.
z/0OS Debugger gives you the capability of testing programs in batch, using a nonprogrammable terminal
in full-screen mode, or using a workstation interface to remotely debug your programs.

Who might use this document

This document is intended for programmers using z/OS Debugger to debug high-level languages (HLLs)
with Language Environment and assembler programs either with or without Language Environment.
Throughout this document, the HLLs are referred to as C, C++, COBOL, and PL/I.

z/0OS Debugger runs on the z/0S operating system and supports the following subsystems:
« CICS®

« Db2°

« IMS

« JES batch

« TSO

« UNIX System Services in remote debug mode or full-screen mode using the Terminal Interface Manager
only

To use this document and debug a program written in one of the supported languages, you need to know
how to write, compile, and run such a program.

Accessing z/0S licensed documents on the Internet

z/0S licensed documentation is available on the Internet in PDF format at the IBM Resource Link® Web
site at:

http://www.ibm.com/servers/resourcelink

Licensed documents are available only to customers with a z/OS license. Access to these documents
requires an IBM Resource Link user ID and password, and a key code. With your z/OS order you received a
Memo to Licensees, (GI10-8928), that includes this key code.

To obtain your IBM Resource Link user ID and password, log on to:

http://www.ibm.com/servers/resourcelink

To register for access to the z/OS licensed documents:

1. Sign in to Resource Link using your Resource Link user ID and password.
2. Select User Profiles located on the left-hand navigation bar.

Note: You cannot access the z/0S licensed documents unless you have registered for access to them and
received an e-mail confirmation informing you that your request has been processed.

Printed licensed documents are not available from IBM.

You can use the PDF format on either z/0OS Licensed Product Library CD-ROM or IBM Resource Link to
print licensed documents.

© Copyright IBM Corp. 1992, 2021 xvii

http://www.ibm.com/servers/resourcelink
http://www.ibm.com/servers/resourcelink

How this document is organized

Note: Chapters 2, 14, 21 to 28, and Appendices C, E to J are not applicable to IBM Developer for z/OS
(non-Enterprise Edition), IBM Wazi Developer for Red Hat® CodeReady Workspaces. In addition, Chapters
3, 6,31 and Appendix L are not applicable to IBM Wazi Developer for Red Hat CodeReady Workspaces.

This document is divided into areas of similar information for easy retrieval of appropriate information.
The following list describes how the information is grouped:

« Part 1 groups together introductory information about z/OS Debugger. The following list describes each
chapter:

— Chapter 1 introduces z/OS Debugger and describes some of its features.

— Chapter 2 describes a simple scenario of how to use z/OS Debugger in full-screen mode, introducing
you to some basic commands that you might use frequently.

 Part 2 groups together information about how to prepare programs for debugging. The following list
describes each chapter:

— Chapter 3 describes how to compile your program to prepare to remote debug in standard mode.

— Chapter 4 describes how to choose compiler options, debugging mode, and runtime options so
that you can prepare programs for debugging. It also describes your options for debugging COBOL
programs compiled with compilers that are now out-of-service.

— Chapter 5 describes how to implement the choices you made in chapter 4.

— Chapter 6 describes how to prepare a LangX COBOL program.

— Chapter 7 describes how to prepare an assembler program.

— Chapter 8 describes how to prepare a Db2 program.

— Chapter 9 describes how to prepare a Db2 stored procedures program.

— Chapter 10 describes how to prepare a CICS program.

— Chapter 11 describes how to prepare an IMS program.

— Chapter 12 describes how to include a call to the TEST runtime option into a program.

 Part 3 groups together information that describes the different methods you can use to start z/OS
Debugger. The following list describes each chapter:

— Chapter 13 describes how to write the TEST runtime option to indicate how and when you want to
start z/OS Debugger.

— Chapter 14 describes how to start z/OS Debugger from IBM z/0S Debugger Utilities.
— Chapter 15 describes how to start z/OS Debugger from a program.

— Chapter 16 describes how to start z/OS Debugger in batch mode.

— Chapter 17 describes how to start z/OS Debugger for your batch or TSO programs.
— Chapter 18 describes how to start z/OS Debugger from CICS programs.

— Chapter 19 describes how to start z/OS Debugger in full-screen mode.

— Chapter 20 describes how to start z/OS Debugger in full-screen mode using the Terminal Interface
Manager. This chapter also describes some tips to starting z/OS Debugger from a stored procedure.

 Part 4 groups together information about how to debug a program in full-screen mode and provides
an example of how to debug a C, COBOL, and PL/I program in full-screen mode. The following list
describes each chapter:

— Chapter 21 provides overview information about full-screen mode.
— Chapter 22 provides a sample COBOL program to describe how to debug it in full-screen mode.

— Chapter 23 provides a sample OS/VS COBOL program as representative of non-Language
Environment COBOL programs to describe how to debug it in full-screen mode.

— Chapter 24 provides a sample PL/I program to describe how to debug it in full-screen mode.

xviii IBM z/0S Debugger: User's Guide

Chapter 25 provides a sample C program to describe how to debug it in full-screen mode.

Chapter 26 provides a sample C++ program to describe how to debug it in full-screen mode.

Chapter 27 provides a sample assembler program to describe how to debug it in full-screen mode.

Chapter 28 describes how to modify the appearance of a full-screen mode debugging session and
save those changes, as well as other settings, into files.

« Part 5 groups together information about how to enter and use z/OS Debugger commands.

— Chapter 29 provides information about entering mixed case commands, using DBCS characters,
abbreviating commands, entering multiline commands, and entering comments.

— Chapter 30 describes how to use z/OS Debugger commands to debug COBOL programs.

— Chapter 31 describes how to use z/OS Debugger commands to debug LangX COBOL programs.
— Chapter 32 describes how to use z/OS Debugger commands to debug PL/I programs.

— Chapter 33 describes how to use z/OS Debugger commands to debug C or C++ programs.

— Chapter 34 describes how to use z/OS Debugger commands to debug assembler programs.

— Chapter 35 describes how to use z/OS Debugger commands to debug disassembly programs.

 Part 6 groups together information about debugging Db2, Db2 stored procedures, IMS, CICS, ISPF,
UNIX System Services, and production-level programs.

— Chapter 36 describes how to debug a Db2 program.

— Chapter 37 describes how to debug a Db2 stored procedure.

— Chapter 38 describes how to debug an IMS program.

— Chapter 39 describes how to debug a CICS program.

— Chapter 40 describes how to debug an ISPF program.

— Chapter 41 describes how to debug a production-level program.

— Chapter 42 describes how to debug a program running in the UNIX System Services shell.

— Chapter 43 describes how to debug programs that do not start or run in Language Environment.

« Part 7 groups together information about how to debug programs written in multiple language or
running in multiple processes.

— Chapter 44 describes how to debug a program written in multiple languages.
— Chapter 45 describes the restrictions when you debug a multithreaded program.
— Chapter 46 describes how to debug a program that runs across multiple processes and enclaves.

— Chapter 47 describes how to debug a multiple-enclave interlanguage communication (ILC)
application.

— Chapter 48 describes how to debug programs that are called by Java™ native methods.
— Chapter 49 describes how to solve various problems when debugging complex applications.
« Part 8 groups together appendixes. The following list describes each appendix:

— Appendix A describes the data sets that z/OS Debugger uses to retrieve and store information.
— Appendix B describes the process z/OS Debugger uses to locate source, listing, or side files.

— Appendix C provides an example that guides you through the process of preparing a sample program
and modifying existing setup files by using IBM z/OS Debugger Utilities.

— Appendix D describes the IBM z/0S Debugger JCL Wizard.
— Appendix E describes how to use z/OS Debugger Code Coverage.
— Appendix F describes notes on debugging in batch mode.

— Appendix G describes using IMS message region templates to dynamically swap transaction class
and debug in a private message region.

— Appendix H describes how to use the DTST transaction to display and modify CICS storage.

About this document xix

— Appendix I describes how to use Load Module Analyzer, a stand-alone program that is shipped with
z/0OS Debugger.

— Appendix J describes how you can use the DTNP transaction, supplied by z/OS Debugger, to load a
new copy of a program into an active CICS region.

— Appendix K describes how to install the IBM Debug Tool DTCN Profile Manager, DTSP Profile Manager,
Instrument JCL for Debugging, z/OS Debugger Code Coverage, and Load Module Analyzer plug-ins.

— Appendix L describes how to debug a load module or program object processed by the Automatic
Binary Optimizer for z/0S.

— Appendix M describes the resources that are available to help you solve any problems you might
encounter with z/OS Debugger.

— Appendix N describes the features and tools available to people with physical disabilities that help
them use z/OS Debugger and z/OS Debugger documents.

The last several topics list notices, bibliography, and glossary of terms.

Terms used in this document

Because of differing terminology among the various programming languages supported by z/0OS
Debugger, as well as differing terminology between platforms, a group of common terms is established.
The following table lists these terms and their equivalency in each language.

z/0S Debugger Cand C++ COBOL or LangX PL/I equivalent assembler
term equivalent COBOL equivalent
Compile unit Cand C++ source Program « Program CSECT

file

« PL/I source file
for Enterprise
PL/I

- A package
statement or the
name of the main
procedure for
Enterprise PL/I%

Block Function or Program, nested Block CSECT
compound program, method,
statement or PERFORM group

of statements

Label Label Paragraph name or Label Label
section name

Note:
1. The PL/I program must be compiled with and run in one of the following environments:

« Compiled with Enterprise PL/I for z/OS, Version 3.6 or later, and run with the following versions of
Language Environment:

— Language Environment Version 1.9, or later

— Language Environment Version 1.6, Version 1.7, or Version 1.8, with the PTF for APAR PK33738
applied

- Compiled with Enterprise PL/I for z/OS, Version 3.5, with the PTFs for APARs PK35230 and PK35489
applied and run with the following versions of Language Environment:

— Language Environment Version 1.9, or later

xx IBM z/0S Debugger: User's Guide

— Language Environment Version 1.6, Version 1.7, or Version 1.8, with the PTF for APAR PK33738
applied

z/OS Debugger provides facilities that apply only to programs compiled with specific levels of compilers.
Because of this, IBM z/0S Debugger User's Guide uses the following terms:

assembler
Refers to assembler programs with debug information assembled by using the High Level Assembler
(HLASM).

COBOL
Refers to the all COBOL compilers supported by z/OS Debugger except the COBOL compilers
described in the term LangX COBOL.

Disassembly or disassembled
Refers to high-level language programs compiled without debug information or assembler programs
without debug information. The debugging support z/OS Debugger provides for these programs is
through the disassembly view.

Enterprise PL/I
Refers to the Enterprise PL/I for z/OS and 0S/390 and the VisualAge PL/I for 0S/390 compilers.

LangX COBOL
Refers to any of the following COBOL programs that are supported through use of the EQALANGX
debug file:

» Programs compiled using the IBM 0S/VS COBOL compiler.
e Programs compiled using the VS COBOL II compiler with the NOTEST compiler option.

« Programs compiled using the Enterprise COBOL for z/OS V3 and V4 compiler with the NOTEST
compiler option.

When you read through the information in this document, remember that 0S/VS COBOL programs
are non-Language Environment programs, even though you might have used Language Environment
libraries to link and run your program.

VS COBOL II programs are non-Language Environment programs when you link them with the non-
Language Environment library. VS COBOL II programs are Language Environment programs when you
link them with the Language Environment library.

Enterprise COBOL programs are always Language Environment programs. Note that COBOL DLL's
cannot be debugged as LangX COBOL programs.

Read the information regarding non-Language Environment programs for instructions on how to start
z/0OS Debugger and debug non-Language Environment COBOL programs, unless information specific
to LangX COBOL is provided.

PL/I
Refers to all levels of PL/I compilers. Exceptions will be noted in the text that describe which specific
PL/I compiler is being referenced.

How to read syntax diagrams

This section describes how to read syntax diagrams. It defines syntax diagram symbols, items that
may be contained within the diagrams (keywords, variables, delimiters, operators, fragment references,
operands) and provides syntax examples that contain these items.

Syntax diagrams pictorially display the order and parts (options and arguments) that comprise a
command statement. They are read from left to right and from top to bottom, following the main path of
the horizontal line.

Symbols

The following symbols may be displayed in syntax diagrams:

About this document xxi

Symbol

Definition

-—-—

Indicates the beginning of the syntax diagram.

—

Indicates that the syntax diagram is continued to the next line.

-——

Indicates that the syntax is continued from the previous line.

—_—

Indicates the end of the syntax diagram.

Syntax items

Syntax diagrams contain many different items. Syntax items include:

Keywords - a command name or any other literal information.

Variables - variables are italicized, appear in lowercase and represent the name of values you can
supply.

Delimiters - delimiters indicate the start or end of keywords, variables, or operators. For example, a left
parenthesis is a delimiter.

Operators - operators include add (+), subtract (-), multiply (*), divide (/), equal (=), and other
mathematical operations that may need to be performed.

Fragment references - a part of a syntax diagram, separated from the diagram to show greater detail.

Separators - a separator separates keywords, variables or operators. For example, a comma (,) is a
separator.

Keywords, variables, and operators may be displayed as required, optional, or default. Fragments,
separators, and delimiters may be displayed as required or optional.

Item type

Definition

Required

Required items are displayed on the main path of the horizontal line.

Optional

Optional items are displayed below the main path of the horizontal line.

Default

Default items are displayed above the main path of the horizontal line.

Syntax examples

The following table provides syntax examples.

Table 1. Syntax examples

Item

Syntax example

Required item.

»w— KEYWORD — required_item -»«

Required items appear on the main path of the
horizontal line. You must specify these items.

Required choice. »— KEYWORD required_choicel
A required choice (two or more items) appears in a

vertical stack on the main path of the horizontal line.

required_choice2

You must choose one of the items in the stack.

xxii IBM z/0S Debugger: User's Guide

Table 1. Syntax examples (continued)

Item Syntax example

Optional item.

»— KEYWORD ><
Optional items appear below the main path of the L optional_jtem _J
horizontal line.

Optional choice.

»— KEYWORD ><
An optional choice (two or more items) appears in a t optional_choicel j
vertical stack below the main path of the horizontal
line. You may choose one of the items in the stack. optional_choice2
Default. default_choicel
Default items appear above the main path of the »»— KEYWORD f_ T ><
horizontal line. The remaining items (required or . .
optional) appear on (required) or below (optional) the t optional_choice2 j

main path of the horizontal line. The following example
displays a default with optional items.

optional_choice3

Variable. »— KEYWORD — variable -«

Variables appear in lowercase italics. They represent
names or values.

Repeatable item.

A

An arrow returning to the left above the main path £

of the horizontal line indicates an item that can be »— KEYWORD repeatable_item
repeated.

A character within the arrow means you must separate l a]
repeated items with that character. »»— KEYWORD repeatable_item

An arrow returning to the left above a group of
repeatable items indicates that one of the items can
be selected, or a single item can be repeated.

Fragment. »— KEYWORD

The — fragment |—symbol indicates that a labelled

group is described below the main syntax diagram. fragment

Syntax is occasionally broken into fragments if the » , — required_choicel ><
inclusion of the fragment would overly complicate the | — default_choice J
main syntax diagram. | required_choice2 f_ T

L , — optional_choice —J

How to provide your comments

Your feedback is important in helping us to provide accurate, high-quality information. If you have
comments about this document or any other z/OS Debugger documentation, you can leave a comment in
IBM Documentation:

« IBM Developer for z/OS and IBM Developer for z/OS Enterprise Edition: https://www.ibm.com/docs/en/
developer-for-zos

- IBM Debug for z/OS: https://www.ibm.com/docs/debug-for-zos
« IBM Wazi Developer for Red Hat CodeReady Workspaces: https://www.ibm.com/docs/en/wdfrhcw

About this document xxiii

https://www.ibm.com/docs/en
https://www.ibm.com/docs/en/developer-for-zos
https://www.ibm.com/docs/en/developer-for-zos
https://www.ibm.com/docs/debug-for-zos
https://www.ibm.com/docs/en/wdfrhcw

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information
in any way it believes appropriate without incurring any obligation to you.

xxiv IBM z/0S Debugger: User's Guide

Summary of changes

15.0.3

z/0S 2.5

— Support is added for z/0OS 2.5.
IBM Open Enterprise SDK for Go

— In Debug Tool compatibility mode, you can now debug Go programs compiled with IBM Open
Enterprise SDK for Go 1.16. For more information, see Appendix N, “Debugging programs compiled
with IBM Open Enterprise SDK for Go,” on page 535.

64-bit support

— Debug Tool compatibility mode now supports playback for 64-bit COBOL programs. For the remaining
limitations, see Appendix M, “Limitations of 64-bit support in Debug Tool compatibility mode,” on

page 533.
Source level code coverage for COBOL

— When you start a code coverage session with the Eclipse IDE or headless code coverage, you can
now choose to use the source listing. Source level code coverage offers direct mapping between code
coverage entries and the program source, to exclude the need to post process the code coverage
data. Source level code coverage improves integration with tools like ZUnit and SonarQube as part
of an automated pipeline. For more information, see “How does z/OS Debugger locate COBOL source
during code coverage” on page 412.

Code Coverage Service API

— Code Coverage Service (CCS) RESTful API is now available to enable custom extensions. For more
information, see "Code Coverage Service RESTful API Documentation" in IBM Documentation.

z/0S Debugger Profiles view

— Remote IMS Application with Isolation launch configurations have been replaced by the IMS Isolation
debug profiles. All existing IMS launch configurations are automatically migrated to the z/0S
Debugger Profiles view. You can create and activate IMS Isolation profiles in the view to debug
and run code coverage for IMS transactions in private regions.

To use this function, ensure that the system programmer installed and configured the IMS transaction
isolation extension for the ADFz Common Components server. If you want to configure the region
name for the private region, ask the system programmer to update z/OS Debugger to 15.0.3 or later,
with the PTF for APAR PH41774 applied.

Note: IMS Isolation profiles are only available in IBM Developer for z/OS Enterprise Edition.

— You can now view the Remote System Explorer z/OS connection status in the view. A new option
Refresh z/0S Connections is provided in the view toolbar to establish all z/OS connections and
synchronize the profiles.

— You can now duplicate the content from an existing debug profile to create a new one efficiently.

— Generic profiles might trigger z/OS Debugger unexpectedly and consume unnecessary resources.
When you activate a generic profile, warnings are now displayed. You can choose to hide the
warnings.

— In the Debug Profile Editor, you can now save a debug profile without activating it, and leave it for
future use.

For more information, see "Managing debug profiles with the z/OS Debugger Profiles view" in IBM

Documentation.

Debug Profile Service

© Copyright IBM Corp. 1992, 2021 XXV

https://www.ibm.com/docs/en
https://www.ibm.com/support/knowledgecenter
https://www.ibm.com/support/knowledgecenter

— You now only need to expose one port to use Debug Profile Service. A new configuration switch is
added to eqaprof.env to select whether to use secure HTTP protocol. For more information, see
"Customizing with the sample job EQAPRFSU" in IBM z/0S Debugger Customization Guide.

« 2/0S Debugger commands
— The following commands are now supported in Debug Tool compatibility mode for remote debugging:
- STEP
- GO
- RUNTO
- JUMPTO
- COMMENT
« Dark theme support
— Dark theme is now supported for remote debugger in the Eclipse IDE.
« Message EQA9924U

— Message ICH408I is now issued in the console with EQA9924U to provide you with more information
to address the issue.

15.0.2
- IBM Z° Open Debug 1.2.5

— You can now debug High Level Assembler (HLASM) z/0S programs with IBM Z Open Debug.
— For Wazi Developer for Workspaces, the log files are now in /projects/.debug/logs.
« Code coverage

— Inthe Code Coverage Results view, you can now export code coverage results in Cobertura
format. For more information, see "Exporting code coverage results in Cobertura format" in IBM
Documentation.

— You can now specify parameters in the startup key to generate code coverage results in Cobertura
and SonarQube formats. In addition, short parameters values -e, exportertype=SQ|PDF | COB are
added for you to use both in the startup key and in the headless code coverage daemon. For more
information, see "Specifying code coverage options in the startup key" and "Starting and stopping the
headless code coverage daemon" in IBM Documentation.

— When you view code coverage results in an editor, you can now see a code coverage summary of the
included files for PL/I source files with 8INCLUDE statements. For more information, see "Viewing
code coverage results in an editor" in IBM Documentation.

- z/0S batch applications launches

— In the Remote Systems or z/0S Projects view, or when you are editing the JCL source in the editor,
after you choose Debug As or Code Coverage As from the menu, the following options are available:

- z/0S Batch Application: Launch a debug or code coverage session without a debug profile.

- z/0S Batch Application with a debug profile: Launch a debug or code coverage session with a
debug profile.

- z/0S Batch Application ...: Create a launch configuration to launch a debug or code coverage
session.

For more information, see "Launching a debug session for z/OS batch applications using existing JCL"

in IBM Documentation.

- IBM z/0S Debugger JCL Wizard

— The Program/Procedure Selection List panel is updated to include procedures, in addition to
programs. Selecting a procedure will provide a panel to enter the procedure step override for the
DD statements generated. The After (A) and Before (B) line commands are no longer required.

xxvi IBM z/0S Debugger: User's Guide

https://www.ibm.com/docs/en
https://www.ibm.com/docs/en
https://www.ibm.com/docs/en
https://www.ibm.com/docs/en
https://www.ibm.com/support/knowledgecenter

— You can now select SVC screening to enable SVC screening for batch non-Language Environment
programs.

— You can now select Intercept on to show COBOL DISPLAY statements on the IBM z/0OS Debugger log
or Debug Console in the Eclipse IDE.

— Error messages are improved.

— The END command (PF3) in the Program/Procedure Selection List panel is modified to cancel the
request. Previously, selecting PF3 would not exit the panel.

— When the process is completed, the cursor is now placed on the command line.

— The z/0S Debugger LDD Generation for Non-LE Programs panel is now populated with the initial
program name and subprograms selected in the Request AT ENTRY Sub-Program Breakpoints
panel. Program names provided in this panel can be modified.

— After you select Code Coverage from the parameters selection panel, the EQAXOPT lines
are generated to specify CCPROGSELECTDSN, CCOUTPUTDSN and CCOUTPUTDSNALLOC, if the
CODE_COVERAGE_SETUP value is configured to YES in the EQAJCL REXX procedure.

— Previously the wizard would verify the program source members identified in the z/OS Debugger
LDD Generation for Non-LE Programs panel with each library identified by the z/OS Debugger
Debug Libraries panel to verify that the members are present. This function is removed because
z/0S Debugger now flags any such members in the IBM z/0S Debugger log or Debug Console in the
Eclipse IDE when the LDD command is entered.

For more information, see IBM z/0S Debugger JCL Wizard
« AT LABEL * command

— For Enterprise COBOL for z/OS Version 5 and later, AT LABEL * now highlights the labels similar to
statement breakpoints.

— You can now use PF6 or AT LINE to remove or add a single global label hook if AT LABEL * was
issued. To disable this functionality, use DISABLE AT LABEL =*.

— Ifyouissue AT LABEL % again oruse ENABLE AT LABEL =*, the global label hooks are reset. The
hooks that you removed are added back.

For more information, see "AT LABEL command" in IBM z/0S Debugger Reference and Messages.

15.0.1
« 64-bit support
— Debug Tool compatibility mode now supports the following features:

- Code coverage
- Source entry breakpoints
- CEETEST

For the remaining limitations, see Appendix M, “Limitations of 64-bit support in Debug Tool
compatibility mode,” on page 533.

- Code coverage

— With Concurrent Debug and Code Coverage, you can run code coverage collection in parallel with the
active debug session in the Eclipse IDE. The code coverage data is collected during the debug run,
and code coverage annotations are displayed and updated in the debug editor. For more information,
see the "Generating code coverage in a remote debug session" topic in IBM Documentation.

— Headless code coverage report can now be exported with a Cobertura exporter. For more information,
see the "Starting and stopping the headless code coverage daemon" topic in IBM Documentation.

— Headless code coverage collector now supports filtering of module, compiler units, and files. For
more information, see the "Filtering code coverage results" topic in IBM Documentation.

- Debug Profile Editor

Summary of changes xxvii

https://www.ibm.com/docs/en
https://www.ibm.com/docs/en
https://www.ibm.com/docs/en

In the Debug Profile Editor of the Eclipse IDE, new key bindings are available to show the error tooltip
and the overall error summary. For more information, see the "Debug profile key bindings" topic in
IBM Documentation.

 Debug Profile Service

As an alternative of a keystore file, you can now use a RACF managed key ring to enable
secure communication with Debug Profile Service. For more information, see the "Enabling secure
communication with a RACF managed key ring" section in IBM z/0S Debugger Customization Guide.

A new optional HOST attribute is added to the CICS region configuration. For more information, see
the instructions in the /etc/debug/dtcn.ports sample configuration file.

The Debug Profile Service API now provides more detailed diagnostic messages when authentication
fails.

- IBM Z Open Debug

Log files can now be found in the user's home directory.

« CICS trace entries

A new parameter, DNT, is added to the CICS startup parameter INITPARM to support disabling
generation of z/OS Debugger trace entries. For more information, see the "Adding support for
debugging under CICS" topic in IBM z/0S Debugger Customization Guide.

15.0.0
« 64-bit support

Debug Tool compatibility mode now supports the following compiler features:
- The 64-bit COBOL feature of z/OS for COBOL V6.3 and later
- The 64-bit C/C++ feature of z/OS

For the limitations, see Appendix M, “Limitations of 64-bit support in Debug Tool compatibility
mode,” on page 533.

The PTFs for z/OS Language Environment APARs PH26071 and PH28997 are required for this
support.

- IBM Z Open Debug

IBM Z Open Debug is now also available with the Wazi Developer for Workspaces IDE, in addition

to the Wazi Developer for VS Code IDE. Both IDEs are offered in IBM Wazi Developer for Red Hat
CodeReady Workspaces and IBM Developer for z/OS Enterprise Edition. For a comparison of features
provided in different products and IDEs, see Overview of IBM z/0OS Debugger.

You can now specify TEST(, , ,RDS:*) for the TEST runtime option to start a debug session using
Remote Debug Service for Wazi Developer for VS Code or Wazi Developer for Workspaces.

« Code coverage

Headless code coverage for z/OS is now included with IBM Debug for z/OS. Use the headless

code coverage collector to generate code coverage results of tests that are run as part of your
DEVOPS pipeline. For more information, see the "Generating code coverage in headless mode using a
daemon" section in IBM Documentation.

Single letter parameters are now supported in the headless code coverage collector command

line and in EQA_STARTUP_KEY when you use JCL. For more information, see topics "Starting and
stopping the headless code coverage daemon" and "Specifying code coverage options in the startup
key" in IBM Knowledge Center.

Support is added for PL/I programs compiled with LISTVIEW(SOURCE) to generate code coverage
results for main program and all ¥INCLUDE files. For more information, see the "Supported compilers
and options for code coverage in Debug Tool compatibility mode" topic in IBM Knowledge Center.

The Code Coverage Results view of the Eclipse IDE now supports CCS result locations. You can add
a CCS result location which collects and retrieves code coverage data by using RESTful API, and

xxviii IBM z/0S Debugger: User's Guide

https://www.ibm.com/support/knowledgecenter
https://www.ibm.com/docs/en
https://www.ibm.com/docs/en
https://www.ibm.com/docs/en

interact with the results under the CCS result location in the same way as locally stored results. For
more information, see the "Viewing code coverage results in the Code Coverage Results view" topic in
IBM Knowledge Center.

— You can now also use Remote Debug Service to collect code coverage results similar to the
headless code coverage collector for IBM Wazi Developer for Red Hat CodeReady Workspaces or
IBM Developer for z/OS Enterprise Edition. For more information, see the "Generating code coverage
in headless mode using Remote Debug Service" topic in IBM Knowledge Center.

- Debug Profile Editor
— Inthe Debug Profile Editor of the Eclipse IDE, you can now use the quick outline to navigate to a field.

For more information, see the "Quick outline for the Debug Profile Editor" topic in IBM Knowledge
Center.

- 2/OS C/C++

— Support is added for DEBUG (NOFILE). For more information, see Choosing DEBUG compiler
suboptions for C programs and Choosing DEBUG compiler suboptions for C++ programs.

« Debug Tool plug-ins

— The following Debug Tool plug-ins of the Eclipse IDE are deprecated and will be removed in the next
release:

- DTCN Profile Manager plug-in

- DTSP Profile Manager plug-in

- Instrument JCL for Debug Tool Debugging plug-in
- Debug Tool Code Coverage plug-in

- Load Module Analyzer plug-in

You can use the z/0OS Debugger Profiles view to create and manage debug profiles, z/OS batch
applications launches to dynamically instrument and submit JCL, and the Code Coverage Results
view to work with compiled code coverage results. For more information, see the following topics
in IBM Documentation: Managing debug profiles with the z/OS Debugger Profiles view, Launching a
debug session for z/OS batch applications using existing JCL, and Viewing code coverage results in
the Code Coverage Results view.

« Load Module Analyzer

— The Load Module Analyzer is deprecated and will be removed in a future version.
« Host configuration

— Remote Debug Service can now be configured to collect headless code coverage. For more
information, see the "Adding support for Remote Debug Service" section in IBM z/0S Debugger
Customization Guide.

— The record size for the DTCN VSAM file is increased to 3000 bytes. To use the DTCN VSAM repository
with z/OS Debugger 15.0, create a new file using the SEQASAMP (EQAWCRVS) sample JCL. You can
also convert your existing VSAM file to the new record size and format using the EQADPCNV utility.
For more information, see the "Migrating a debug profiles VSAM file from an earlier release" topic in
IBM z/0S Debugger Customization Guide.

— The IMS Transaction Isolation Facility is enhanced to utilize type 2 IMS commands for retrieving
information on transactions, in cases where the type 1 commands that are normally used are
disallowed. For more information, see the "Scenario F: Enabling the Transaction Isolation Facility"
topic in IBM z/0S Debugger Customization Guide.

Summary of changes xxix

https://www.ibm.com/docs/en
https://www.ibm.com/docs/en
https://www.ibm.com/docs/en
https://www.ibm.com/docs/en
https://www.ibm.com/support/knowledgecenter

xxx IBM z/OS Debugger: User's Guide

Overview of IBM z/0S Debugger

IBM z/OS Debugger is the next iteration of IBM debug technology on IBM Z and consolidates the IBM
Integrated Debugger and IBM Debug Tool engines into one unified technology. IBM z/0OS Debugger is
progressing towards one remote debug mode based on Debug Tool compatibility mode. In support of this
direction, Debug Tool compatibility mode, when available in the user interface, is selected by default for
V14.1.2 or later.

IBM z/0S Debugger is a host component that supports various debug interfaces, like the Eclipse and
Visual Studio Code IDEs. z/OS Debugger and the supported debug interfaces are provided with the
following products:

IBM Developer for z/OS Enterprise Edition
This product is included in IBM Application Delivery Foundation for z/OS. IBM Developer for z/0OS
Enterprise Edition provides all the debug features.

IBM Developer for z/OS Enterprise Edition currently provides debug functions in the following IDEs:

« IBM Developer for z/OS Eclipse
« Wazi Developer for Workspaces, through IBM Z Open Debug
- Wazi Developer for VS Code, through IBM Z Open Debug

See Table 3 on page xxxiv for the debug features supported in different IDEs.

IBM Developer for z/0S
IBM Developer for z/OS is a subset of IBM Developer for z/OS Enterprise Edition. IBM Developer for
z/0S, previously known as IBM Developer for z Systems or IBM Rational® Developer for z Systems®, is
an Eclipse-based integrated development environment for creating and maintaining z/OS applications
efficiently.

IBM Developer for z/OS includes all enhancements in IBM Developer for z/OS Enterprise Edition
except for the debug features noted in Table 2 on page xxxii.

IBM Debug for z/0S
IBM Debug for z/OS is a subset of IBM Developer for z/OS Enterprise Edition. IBM Debug for z/OS
focuses on debugging solutions for z/OS application developers. See Table 2 on page xxxii for the
debug features supported.

IBM Debug for z/OS does not provide advanced developer features that are available in IBM
Developer for z/OS Enterprise Edition.

For information about how to install the IBM Debug for z/OS Eclipse IDE, see Installation of
IBM Developer for z Systems and IBM Debug for z Systems (https://developer.ibm.com/mainframe/
2016/12/02/installation-of-ibm-developer-for-z-systems-and-ibm-debug-for-z-systems/).

IBM Wazi Developer for Red Hat CodeReady Workspaces
IBM Wazi Developer for Red Hat CodeReady Workspaces is a single integrated solution, which delivers
a cloud-native developer experience for z/OS. It enables application developers to develop and
test z/OS application components in a virtual z/OS environment on an OpenShift-powered hybrid
multicloud platform, and to use an industry standard integrated development environment (IDE) of
their choice.

IBM Wazi Developer for Red Hat CodeReady Workspaces currently provides debug functions in the
following IDEs:

- Wazi Developer for Workspaces, through IBM Z Open Debug
« Wazi Developer for VS Code, through IBM Z Open Debug
- Wazi Developer for Eclipse

See Table 2 on page xxxii and Table 3 on page xxxiv for the debug features supported in the product
and different IDEs.

© Copyright IBM Corp. 1992, 2021 xxxi

https://www.ibm.com/us-en/marketplace/developer-for-z-systems
https://www.ibm.com/products/app-delivery-foundation-on-zsystems
https://www.ibm.com/us-en/marketplace/developer-for-z-systems
https://www.ibm.com/us-en/marketplace/debug-for-z-systems
https://developer.ibm.com/mainframe/2016/12/02/installation-of-ibm-developer-for-z-systems-and-ibm-debug-for-z-systems/
https://developer.ibm.com/mainframe/2016/12/02/installation-of-ibm-developer-for-z-systems-and-ibm-debug-for-z-systems/
https://www.ibm.com/products/wazi-developer

Table 2 on page xxxii maps out the features that differ in products. Not all the available features are listed.

To find the features available in different remote IDEs, see Table 3 on page xxxiv.

Table 2. Debug feature comparison

IBM Debug for
z/0S

IBM Developer for
z/0S

IBM Developer for
z/0S Enterprise
Edition

IBM Wazi
Developer for Red
Hat CodeReady
Workspaces

Main features

3270 interface,
including z/OS
Debugger Utilities

Eclipse IDE, see
Table 3 on page
xxxiv for feature
details.t

IBM Z Open Debug
provided with the
Wazi Developer
for Workspaces
IDE, see Table 3
on page xxxiv for
feature details.1

IBM Z Open Debug
provided with the
Wazi Developer for
VS Code IDE, see
Table 3 on page
xxxiv for feature
details.2

Code Coverage features

Compiled
Language Code
Coverage?

v

Headless Code
Coverage

Java Code
Coverage

ZUnit Code
Coverage?

z/0S Debugger
Code Coverage
(3270 and remote
interfaces) 2

3270 features

z/0S Debugger full
screen, batch or
line mode

xxxii IBM z/OS Debugger: User's Guide

Table 2. Debug feature comparison (continued)

IBM Wazi

IBM Developer for | Developer for Red
IBM Debug for IBM Developer for |z/OS Enterprise Hat CodeReady
z/0S z/0S Edition Workspaces

IMS Isolation Vv Vv
support

Compiler support features

Assembler v v v
support: Create
EQALANGX files

Assembler v v V7 v?
support:

Debugging ©

LANGX COBOL \ Vv Vv

support &

Support for Vv v v

Automatic Binary
Optimizer (ABO)

Load Module Vv Vv
Analyzer?

Notes:
1. The following features are supported only in remote debug mode:

« Support for 64-bit COBOL feature of z/OS for COBOL V6.3 and later
« Support for 64-bit Enterprise PL/I for z/OS Version 5
« Support for 64-bit C/C++ feature of z/OS
« Support for IBM Open Enterprise SDK for Go 1.16.
2. Code coverage does not support Go programs.

3. IBM Developer for z/OS includes z/OS Debugger remote debug and compiled code coverage Eclipse
interface, but does not include z/OS Debugger Code Coverage.

4. ZUnit Code Coverage is only supported in Debug Tool compatibility mode.
5. z/OS Debugger Code Coverage can only be enabled in the 3270 interface.

6. Debugging assembler requires that you have EQALANGX files that have been created via ADFz
Common Components or a product that ships the ADFz Common Components.

7. This feature is only available with the Eclipse IDE.
8. LANGX COBOL refers to any of the following programs:
« A program compiled with the IBM 0S/VS COBOL compiler.
« A program compiled with the IBM VS COBOL II compiler with the NOTEST compiler option.

« A program compiled with the IBM Enterprise COBOL for z/OS Version 3 or Version 4 compiler with
the NOTEST compiler option.

9. Load Module Analyzer is deprecated and will be removed in a future version.

Overview of IBM z/0S Debugger xxxiii

Table 3. Remote IDE debug feature comparison

Feature Eclipse-based debug interface |IBM Z Open Debug 1-10
Debug Tool compatibility mode2 |v Vv
Standard mode3-10 VA4

Integration with Language
Editors1®

- COBOL Editor®

- PL/I Editor2

- Remote C/C++ Editor4>2
« System z LPEX Editor®2

= Z Open Editor

Visual Debug V210
Debugging ZUnit tests V610
Debug profile management V410 v
IMS Isolation UI V7
Integration with CICS Explorer V45
views
Integration with property groups |v210
Team Debug support V43
Integrated launch1® » z/OS UNIX Application launch
configuration
- z/OS Batch Application using
existing JCL
« z/OS Batch Application using a
property group2
Debug Tool Plug-ins v4 8
Modules v
Memory v
Program navigation
Step over/Next Vv Vv
Step into/Step in v
Step return/Step out v Vv
Jump to location vi0
Run to location/Run to cursor V10
Resume/Continue v v
Terminate v
Animated step v
Playback vi0
Breakpoints
Line/statement breakpoints v Vv
Entry breakpoints v

xxxiv IBM z/0S Debugger: User's Guide

Table 3. Remote IDE debug feature comparison (continued)

Feature Eclipse-based debug interface |IBM Z Open Debug 1-10
Source entry breakpoints vi0
Event breakpoint v10
Address breakpoint v10
Watch breakpoint v10

Variables & Registers

Variables Vv \

Registers i V2

Modifying variable and register v v
values

Setting variable filter

Changing variable representation

Dereferencing variables

Displaying in memory view

< < <<

Monitors

Displaying monitor

Modifying monitor value

Changing variable representation

Dereferencing variables

<< <<

Debug Console

Evaluating variables and Vv
expressions

z/0S Debugger commands vi0

Notes:

1.
2.
3.

co g o o b~

IBM Z Open Debug is provided with Wazi Developer for Workspaces and Wazi Developer for VS Code.
Debug Tool compatibility mode does not support 64-bit Enterprise PL/I for z/OS Version 5.

Standard mode does not support 64-bit COBOL feature of z/OS for COBOL V6.3 and later. Source view
for COBOL V6.2 and later is supported only in standard mode.

. This feature is not available in Wazi Developer for Eclipse.

. This feature is not available in IBM Debug for z/0S.

. Debugging ZUnit tests is only supported in Debug Tool compatibility mode.

. This feature is only available in IBM Developer for z/OS Enterprise Edition.

. IBM Developer for z/OS includes Debug Tool plug-ins, but does not include Load Module Analyzer and

z/0S Debugger Code Coverage 3270 interfaces.

. Registers are available in the Variables view.
10.

Programs compiled with IBM Open Enterprise SDK for Go are not supported.

Overview of IBM z/OS Debugger xxxv

xxxvi IBM z/0S Debugger: User's Guide

Part 1. Getting started with z/0OS Debugger

© Copyright IBM Corp. 1992, 2021

2 IBM z/0S Debugger: User's Guide

Chapter 1. z/0S Debugger: overview

z/0S Debugger helps you test programs and examine, monitor, and control the execution of programs that
are written in assembler, C, C++, COBOL, PL/I, or Go on a z/0OS system. Your applications can include
other languages; z/OS Debugger provides a disassembly view where you can debug, at the machine code
level, those portions of your application. However, in the disassembly view, your debugging capabilities
are limited. Table 4 on page 3 and Table 5 on page 4 map out the combinations of compilers and
subsystems that z/OS Debugger supports.

You can use z/0S Debugger to debug your programs in batch mode, interactively in full-screen mode, or in
remote debug mode.

Table 4 on page 3 maps out the z/OS Debugger interfaces and compilers or assemblers each interface
supports.

Table 4. z/0OS Debugger interface type by compiler or assembler

Full-
scree Remote
Batch n debug

Compiler or assembler mode mode model
Open Enterprise SDK for Go 1.16 X
Enterprise COBOL for z/0OS V3 and V4 compiled with the NOTEST compiler option 2 X X X
Enterprise COBOL for z/OS compiled with the TEST compiler option X X X
Enterprise COBOL for z/OS and 0S/390 compiled with the NOTEST compiler option X X
Enterprise COBOL for z/OS and 0S/390 compiled with the TEST compiler option X X
COBOL for 0S/390 & VM X X
COBOL for MVS & VM X X X
AD/Cycle COBOL/370 Version 1 Release 1 X X
VS COBOL IT Version 1 Release 3 and Version 1 Release 4 (with limitations; for X X

programs compiled with the NOTEST compiler option and linked with the Language
Environment library.) 2

VS COBOL II Version 1 Release 3 and Version 1 Release 4 (with limitations; X X
for programs compiled with the NOTEST compiler option and linked with a non-
Language Environment library.) 2

VS COBOL II Version 1 Release 3 and Version 1 Release 4 (with limitations; for X X X
programs compiled with the TEST compiler option and linked with the Language
Environment library.)

0S/VS COBOL, Version 1 Release 2.4 (with limitations) 2 X X
Enterprise PL/I for z/OS compiled with the TEST compiler option X X
Enterprise PL/I for z/OS and 0S/390 compiled with the TEST compiler option X X

PL/I for MVS & VM X X

OS PL/I Version 2 Release 1, Version 2 Release 2, and Version 2 Release 3 (with X X
limitations)

C/C++ feature of z/OS X X X

© Copyright IBM Corp. 1992, 2021 3

Table 4. z/0S Debugger interface type by compiler or assembler (continued)

Full-
scree Remote
Batch n debug

Compiler or assembler mode mode mode?
C/C++ feature of 0S/390 Version 2 Release 10 and later X X X
C/C++ feature of 0S/390 Version 1 Release 3 and earlier X X
C/C++ for MVS/ESA Version 3 Release 2 X X
AD/Cycle C/370 Version 1 Release 2 X X
IBM High Level Assembler (HLASM), Version 1 Release 4, Version 1 Release 5, and X X X

Version 1 Release 6

Notes:

1. This column of the table is only applicable for Debug Tool compatibility mode. For standard mode, see
Chapter 3, “Preparing to remote debug in standard mode,” on page 23.

2. See Chapter 6, “Preparing a LangX COBOL program,” on page 67 for information about how to prepare a
program of this type.

Table 5 on page 4 maps out the z/OS Debugger interfaces and subsystems each interface supports.

Table 5. z/0OS Debugger interface type by subsystem

Full-screen

mode using
the Terminal
Batch Full-screen Interface Remote

Subsystem mode mode Manager debug mode
TSO X X X X
JES batch X X X
UNIX System Services X X
CICS x1 X
Db2 X X X X
Db2 stored procedures X X
IMSTM X X
IMS batch X X X
IMS BTS X X X
Airline Control System (ALCS) X2

1You can use 3 different ways to debug CICS programs in full-screen mode:
single terminal mode, screen control mode, and separate terminal mode.
2 Only for C and C++ programs.

Refer to the following topics for more information related to the material discussed in this topic.

Related concepts
“z/0S Debugger interfaces” on page 5

Related tasks

4 IBM z/0OS Debugger: User's Guide

Chapter 4, “Planning your debug session,” on page 25
Chapter 21, “Using full-screen mode: overview,” on page 151

Related references
IBM z/0S Debugger Reference and Messages

z/0S Debugger interfaces

The terms full-screen mode, batch mode, and remote debug mode identify the types of debugging
interfaces that z/OS Debugger provides. Only remote debug mode supports debugging Go programs and
64-bit COBOL, PL/I, and C/C++ programs.

Batch mode
Notes:

 This mode is not applicable to IBM Developer for z/OS (non-Enterprise Edition) or IBM Wazi Developer
for Red Hat CodeReady Workspaces.

« This mode does not support Go programs and 64-bit COBOL, PL/I, and C/C++ programs. Use remote
debug mode instead to debug these programs.

You can use a z/OS Debugger commands file to predefine a series of z/OS Debugger commands to

be performed on a running application. Neither terminal input, nor user interaction is available during
batch mode debugging. When commands in the commands file are processed by the debugger, they can
produce messages that are written to the z/OS Debugger log. Log messages are written to a log file for
your review at a later time.

The term "batch mode" debugging refers to this debugging method, which is controlled by a predefined
script. Note that batch mode debugging is not limited to debugging batch programs. Batch mode can
be used with any type of application supported by z/OS Debugger, including online applications running
under CICS, IMS/TM, or TSO.

Full-screen mode

Notes:

« This mode is not applicable to IBM Developer for z/OS (non-Enterprise Edition) or IBM Wazi Developer
for Red Hat CodeReady Workspaces.

 This mode does not support Go programs and 64-bit COBOL, PL/I, and C/C++ programs. Use remote
debug mode instead to debug these programs.

z/OS Debugger provides an interactive full-screen interface on a 3270 device, with debugging information
displayed in three windows:

« A Source window in which to view your program source or listing

« A Log window, which records commands and other interactions between z/0S Debugger and your
program

« A Monitor window in which to monitor changes in your program
You can debug all languages supported by z/OS Debugger in full-screen mode.
Refer to the following topics for more information related to the material discussed in this topic.

Related tasks
IBM z/0S Debugger Customization Guide

Full-screen mode using the Terminal Interface Manager

Notes:

Chapter 1. z/OS Debugger: overview 5

« This mode is not applicable to IBM Developer for z/OS (non-Enterprise Edition) or IBM Wazi Developer
for Red Hat CodeReady Workspaces.

« This mode does not support Go programs and 64-bit COBOL, PL/I, and C/C++ programs. Use remote
debug mode instead to debug these programs.

Full-screen mode using the Terminal Interface Manager provides the same interactive full-screen
interface that full-screen mode provides and enables you to debug types of programs that you could

not debug with full-screen mode. For example, you can debug a COBOL batch job running in MVS/JES, a
Db2 Stored Procedure, an IMS transaction running on a IMS MPP region, or an application running in UNIX
System Services.

The Terminal Interface Manager (TIM) is a component of z/OS Debugger that provides communication
between the debugger, which controls an application program as it runs, and a terminal session where
you interact with the debugger. To use the TIM you connect a 3270 terminal session to the TIM.

The debugger displays on that terminal session in full-screen mode and accepts your commands. You can
connect to the TIM from a dedicated 3270 terminal session, for example, a terminal emulator session
configured to connect to it. Optionally, you can access the TIM from VTAM® session manager software.

Contact your system administrator to determine how to access a terminal session using the TIM on your
system.

Remote debug mode

In remote debug mode, the host application starts z/OS Debugger, which communicates through a TCP/IP
connection to a remote debugger on your workstation. Only remote debug mode supports debugging
64-bit COBOL, PL/I, and C/C++ programs.

z/0S Debugger can work with the remote IDE to provide you with the ability to debug host programs,
including batch programs, through a graphical user interface (GUI) on the workstation.

IBM z/0S Debugger supports two modes of remote debugging:

Standard mode
Uses the Program Information and Control Library (PICL) engine technology. With the PICL
technology, part of the processing is performed in the client machine, which can reduce the overhead
in the z/OS system. Standard mode supports 64-bit Enterprise PL/I for z/OS Version 5 and the 64-bit
C/C++ feature of z/OS. Source view for COBOL V6.2 and later is supported only in standard mode.

Debug Tool compatibility mode
Uses the remote debug engine from the former Debug Tool for z/OS to perform all host debugging
tasks. This mode supports all features that are available in Debug Tool for z/OS. Debug Tool
compatibility mode supports the 64-bit COBOL feature of z/OS for COBOL V6.3 and later, the 64-bit
C/C++ feature of z/OS, and IBM Open Enterprise SDK for Go 1.16. The following feature is provided in
the Debug Tool compatibility mode only:

« Debugging and collecting code coverage for ZUnit tests

IBM z/0S Debugger is progressing towards one remote debug mode based on Debug Tool
compatibility mode. In support of this direction, Debug Tool compatibility mode, when available in
the user interface, is selected by default for V14.1.2 or later. Any existing launches, property groups,
or updated preferences remain unchanged.

You can enter some z/0S Debugger commands through the remote debugger's Debug Console. For
a list of z/OS Debugger commands that you can enter, see "z/0OS Debugger commands supported in
remote debug mode" in the IBM z/0S Debugger Reference and Messages.

Unless otherwise specified, the information about remote debug mode in IBM z/0S Debugger User's Guide
applies only to Debug Tool compatibility mode.

For more information about remote debugging with IBM z/0S Debugger, see the IBM Developer for z/0S,
IBM Wazi Developer for Red Hat CodeReady Workspaces documentation in IBM Documentation.

6 IBM z/0S Debugger: User's Guide

https://www.ibm.com/docs/en

IBM z/0S Debugger Utilities

Note: This section is not applicable to IBM Developer for z/OS (non-Enterprise Edition) or IBM Wazi
Developer for Red Hat CodeReady Workspaces.

IBM z/0S Debugger Utilities is a set of ISPF panels that give you access to tools that can help you manage
your debugging sessions. This topic describes these tools.

IBM z/0S Debugger Utilities: Job Card

The tool (under option 0, called Job Card) helps you create a JOB card that is used by the tools in
Program Preparation (option 1), z/0OS Debugger Setup File (option 2), and JCL for Batch Debugging
(option 8).

IBM z/0S Debugger Utilities: Program Preparation

The set of tools under the Program Preparation (option 1) can help you manage all the tasks required

to compile or assemble, and link your programs. They can also help you convert older COBOL source

code and copybooks to newer versions of COBOL by using COBOL and CICS Command Level Conversion
Aid (CCCA). The Program Preparation option can be very useful if you do not have an established build
process at your site. The following list describes the specific tasks that Program Preparation can help you
do:

* Run the Db2 precompiler or the CICS translator.

« Set compiler options.

« Specify naming patterns for your data sets.

« Specify input data sets for copy processing.

« Convert, compile, and link-edit your programs in either TSO foreground or MVS batch.

« Convert, compile, and link-edit your high level language programs in either TSO foreground or MVS
batch.

- Convert, assemble, and link-edit your assembler programs in either TSO foreground or MVS batch.
« Generate EQALANGX side files.

« Generate a listing from an EQALANGX or COBOL SYSDEBUG side file.

 Prepare the following COBOL programs for debugging:

— Programs written for non-Language Environment COBOL.
— Programs previously compiled with the CMPR2 compiler option.

To prepare these programs, you convert the source to the newer COBOL standard and compile it with
the newer compilers. After you debug your program, you can do one of the following;:

— Make changes to your non-Language Environment COBOL source and repeat the conversion and
compilation every time you want to debug your program.

— Make changes in the converted source and stop maintaining your non-Language Environment COBOL
source.

IBM z/0S Debugger Utilities: z/OS Debugger Setup File

Setup files can save you time when you are debugging a program that needs to be restarted multiple
times. Setup files store information needed to allocate the necessary files and run a single job-step
with z/OS Debugger either in MVS batch or TSO foreground. You can create several setup files for each
program; each setup file can store information about starting and running your program in different
circumstances. To create and manage setup files, select z/0S Debugger Setup File (option 2).

Chapter 1. z/OS Debugger: overview 7

IBM z/0S Debugger Utilities: IMS TM Debugging

You can create private IMS message regions to debug test applications without interfering with other
regions by using one of two features:

 You can use predefined IMS message region templates to start a private IMS message region, assign a
specific transaction to the region, and run that transaction in the region

« You can use the IMS Transaction Isolation function to view a list of IMS transactions for Message
Processing Regions in an IMS system, and select the ones that you want to debug. You can also use this
function to clone a transaction's operating environment into a private message-processing region that is
reserved for your use. Any transactions that you register to debug are routed to this private environment
to isolate you from other users of that same transaction and environment.

For IMSplex users, you can modify the Language Environment runtime parameters table without relinking
the applications. The tools that can help you complete these tasks are found under option 4, called IMS
TM Debugging.

IBM z/0S Debugger Utilities: Load Module Analyzer

Load Module Analyzer analyzes MVS load modules or program objects to determine the language
translator (compiler or assembler) used to generate the object for each CSECT. The tool that can help
you complete this task can be found under option 5, called Load Module Analyzer.

IBM z/0S Debugger Utilities: z/0OS Debugger User Exit Data Set

This function assists you in preparing a TEST runtime option data set that is used by the z/OS Debugger
Language Environment user exit. The z/OS Debugger Language Environment user exits use this TEST
runtime option string to start a debug session. The tool that can help you complete this task is found
under option 6, called z/OS Debugger User Exit Data Set, in IBM z/0S Debugger Utilities.

IBM z/0S Debugger Utilities: Other IBM Application Delivery Foundation for
z/0S tools

This function provides an interface to the IBM File Manager ISPF functions. You can find these tools under
option 7, called Other IBM Application Delivery Foundation for z/OS tools, in IBM z/0S Debugger Utilities.

IBM z/0S Debugger Utilities: JCL for Batch Debugging

Modify the JCL for a batch job so that z/OS Debugger is started when the job is run. The tool that can help
you complete this task is found under option 8, called JCL for Batch Debugging, in IBM z/0OS Debugger
Utilities.

IBM z/0S Debugger Utilities: IMS BTS Debugging

The IMS BTS Debugging option helps you run and debug IMS BTS programs by saving, into a set up file,
the information needed to create the runtime environment for the program. IBM z/0S Debugger Utilities
uses the information in the set up file to create the appropriate JCL statements, which you can then runin
the foreground or submit as a batch job.

IBM z/0S Debugger Utilities: JCL to Setup File Conversion

The JCL to Setup File Conversion option is an alternative to the z/OS Debugger Setup File option above.
With this option, you can select from a list of JCL steps rather than from a list of JCL cards to specify what
to convert to a set up file format.

IBM z/0S Debugger Utilities: Delay Debug Profile

The Delay Debug Profile function assists you in preparing a data set that contains TEST runtime options,
and pattern match arguments. The data set is used by the z/OS Debugger delay debug mode to find a

8 IBM z/0S Debugger: User's Guide

match of a program name or C function name (compile unit) (along with an optional load module name).
When a match is found, z/OS Debugger uses the TEST runtime option string to start a debug session. The
tool that helps you complete this task is found under Option B, called Delay Debug Profile, in IBM z/0S
Debugger Utilities.

IBM z/0S Debugger Utilities: IMS Transaction and User ID Cross Reference
Table

The IMS Transaction and User ID Cross Reference Table contains the cross reference information
between an IMS Transaction and a User ID. z/OS Debugger uses the information to find the ID of the
user who wants to debug the transaction and to construct the name of the user's debug profile data set.
This function is used when an IMS transaction runs using a generic ID as is in the case with transactions
started using the MQ or web gateway.

IBM z/0S Debugger Utilities: Non-CICS Debug Session Start and Stop
Message Viewer

The Non-CICS Debug Session Start and Stop Message Viewer allows users to browse the start and stop
messages of debug sessions. You can use it to track debug sessions and identify abnormal sessions that
are started but not terminated.

IBM z/0S Debugger Utilities: z/0S Debugger Code Coverage

The z/OS Debugger Code Coverage allows users to view the code coverage observations generated from
the z/OS Debugger session. It also provides functions to extract and merge the code observations and
generate reports.

IBM z/0S Debugger Utilities: z/0OS Debugger Deferred Breakpoints

The z/OS Debugger Deferred Breakpoints allows users to create and view a list of breakpoints prior to
starting the debug session. It reduces the time spent in the debugging session and also the system
resource usages.

IBM z/0S Debugger Utilities: IBM z/0S Debugger JCL Wizard

The IBM z/0OS Debugger JCL Wizard, an ISPF edit macro named EQAJCL, can be used to modify a JCL or
procedure member and create statements to invoke z/OS Debugger in various environments.

Starting IBM z/0S Debugger Utilities
IBM z/0S Debugger Utilities can be started in one of the following ways:

- If an option was installed to access the IBM z/0S Debugger Utilities primary options ISPF panel from an
existing panel, then select that option by using instructions from the installer.

- If the z/OS Debugger data sets were installed into your normal logon procedure, enter the following
command from the ISPF Command Shell panel (by default set as option 6):

EQASTART NATLANG (Language_1id)

- If z/OS Debugger was not installed in your ISPF environment, enter this command from the ISPF
Command Shell panel (by default set as option 6):

EX 'hlg.SEQAEXEC(EQASTART)' 'NATLANG(language_id)'

To determine which method to use on your system, contact your system administrator.

NATLANG(language_id) is optional. If you specify NATLANG(language_id), your settings are remembered
by EQASTART and become the default on subsequent starts of EQASTART when you do not specify
parameters.

Chapter 1. z/OS Debugger: overview 9

NATLANG

The NATLANG parameter specifies that national language to be used to display program messages. The
syntax of this parameter is:

(

»— NATLANG — (—<— language id —p—) >«

ENU
1

UEN
JPN

N KOR 7

language_id
One of the following IDs:
ENU
English
UEN
Uppercase English

JPN
Japanese

Feature needed: JPN is not a valid choice unless the JPN feature of z/OS Debugger has been
installed.

KOR
Korean

Feature needed: KOR is not a valid choice unless the KOR feature of z/OS Debugger has been
installed.

10 IBM z/OS Debugger: User's Guide

Chapter 2. Debugging a program in full-screen mode:
introduction

Note: This chapter is not applicable to IBM Developer for z/OS (non-Enterprise Edition) or IBM Wazi
Developer for Red Hat CodeReady Workspaces.

Full-screen mode is the interface that z/OS Debugger provides to help you debug programs on a 3270
terminal. This topic describes the following tasks which make up a basic debugging session:

1. “Compiling or assembling your program with the proper compiler options” on page 11
2. “Starting z/OS Debugger” on page 12

3. After you start z/OS Debugger, you will see the full-screen mode interface. “The z/OS Debugger full
screen interface” on page 12 describes the parts of the interface. Then you can do any of the
following tasks:

« “Stepping through a program” on page 14

« “Running your program to a specific line” on page 14

- “Setting a breakpoint” on page 14

« “Skipping a breakpoint” on page 17

« “Clearing a breakpoint” on page 17

« “Displaying the value of a variable” on page 15

 “Displaying memory through the Memory window” on page 16

« “Changing the value of a variable” on page 17

« “Recording and replaying statements” on page 18
4. “Stopping z/OS Debugger” on page 19

Each topic directs you to other topics that provide more information.

Compiling or assembling your program with the proper compiler
options

Each programming language has a comprehensive set of compiler options. It is important to use the
correct compiler options to prepare your program for debugging. The following list describes the simplest
set of compiler options to use for each programming language:

Compiler options that you can use with C programs
The TEST and DEBUG compiler options provide suboptions to refine debugging capabilities. Which
compiler option and suboptions to choose depends on the version of the C compiler that you are
using.

Compiler options that you can use with C++ programs
The TEST and DEBUG compiler options provide suboptions to refine debugging capabilities. Which
compiler option and suboptions to choose depends on the version of the C++ compiler that you are
using.

Compiler options that you can use with COBOL programs
The TEST compiler option provides suboptions to refine debugging capabilities. Some suboptions are
used only with a specific version of COBOL. This chapter assumes the use of suboptions available to
all versions of COBOL.

Compiler options that you can use with LangX COBOL programs
When you compile your OS/VS COBOL program, the following options are required: NOTEST, SOURCE,
DMAP, PMAP, VERB, XREF, NOLST, NOBATCH, NOSYMDMP, NOCOUNT.

© Copyright IBM Corp. 1992, 2021 11

When you compile your VS COBOL II program, the following options are required: NOOPTIMIZE,
NOTEST, SOURCE, MAP, XREF, and LIST (or OFFSET).

When you compile your Enterprise COBOL for z/OS V3 and V4 program, the following options are
required: NOOPTIMIZE, NOTEST, SOURCE, MAP, XREF, and LIST.

Compiler options that you can use with PL/I programs
The TEST compiler option provides suboptions to refine debugging capabilities. Some suboptions are
used only with a specific version of PL/I. This chapter assumes the use of suboptions available to all
versions of PL/I, except for PL/I for MVS or OS PL/I compilers, which must also specify the SOURCE
suboption.

Assembler options that you can use with assembler programs
When you assemble your program, you must specify the ADATA option. Specifying this option
generates a SYSADATA file, which the EQALANGX postprocessor needs to create a debug file.

See Chapter 4, “Planning your debug session,” on page 25 for instructions on how to choose the correct
combination of compiler options and suboptions to use for your situation.

Starting z/0S Debugger

There are several methods to start z/OS Debugger in full-screen mode. Each method is designed to help
you start z/OS Debugger for programs that are compiled with an assortment of compiler options and that
run in a variety of runtime environments. Part 3, “Starting z/OS Debugger,” on page 105 describes each of
these methods.

In this topic, we describe the simplest and most direct method to start z/OS Debugger for a program that
runs in Language Environment in TSO. At a TSO READY prompt, enter the following command:

CALL 'USERID1.MYLIB(MYPROGRAM)' '/TEST'

Place the slash (/) before or after the TEST runtime option, depending on the programming language you
are debugging.

The following topics can give you more information about other methods of starting z/OS Debugger:

« Chapter 14, “Starting z/OS Debugger from the IBM z/0S Debugger Utilities,” on page 117
e Chapter 13, “Writing the TEST runtime option string,” on page 107

- “Starting z/OS Debugger with CEETEST” on page 121

 “Starting z/OS Debugger with PLITEST” on page 127

 “Starting z/OS Debugger with the __ctest() function” on page 128

- “Starting z/OS Debugger for programs that start in Language Environment” on page 135
« Chapter 16, “Starting z/OS Debugger in batch mode,” on page 131

 “Starting z/OS Debugger for programs that start outside of Language Environment” on page 136
 “Starting z/OS Debugger under CICS by using DTCN” on page 142

 “Starting z/OS Debugger for CICS programs by using CADP” on page 143

« “Starting z/OS Debugger under CICS by using CEEUOPT” on page 143

 “Starting z/OS Debugger under CICS by using compiler directives” on page 144

- “Starting a debugging session in full-screen mode using the Terminal Interface Manager or a dedicated
terminal” on page 133

 “Starting z/OS Debugger from Db2 stored procedures” on page 147

The z/0S Debugger full screen interface

After you start z/OS Debugger, the z/OS Debugger screen appears:

12 IBM z/OS Debugger: User's Guide

COoBOL LOCATION: EMPLOOK initialization

Command ===> Scroll ===> PAGE
MONITOR --+----1----4#----2----4----3----4----4----4----5----4+----6 LINE: O OF O
""""""""""""""""""" TOP OF MONITOR skkskskskokoksksk sk sk kok ok s o sk kok ok o ook ok ok ok ok o o
"""""""""""""""""" BOTTOM OF MONITOR %% kkkkkskskkkkkkskkhhkkkkkkkk

SOURCE: EMPLOOK --1----4----2-=--4---=3=-=-t--=-d-=--4----5----+ LINE: 1 OF 349

1 kkkkkkkkkkkkkkk ko ko ko ko sk ok sk ko ko ke ok ke ok .

2 * *

3 * *

4 ||

5

6 ok ok ke ok ke ok ke ok ke ok ke ok ke ok ke ok ok ok ok ok ok sk ok ok ok ok ke ok ko ko ko ko ko ok ok ok ok ke ok ko ke k ke k ke ko ko

7 IDENTIFICATION DIVISION.

8 ||

9 PROGRAM-ID. "EMPLOOK" . .
LOG O----4----1----4----2----4----3----+----4----+----5----4----6- LINE: 1 OF 5
"""""""""""""""""" TOP OF LOG Hkskokskokskhkhk ok kokkkkk ok ok ok k ok ks ks k sk ok k4

IBM z/0S Debugger 15.0.n

08/04/2020 03:55:40 AM

5724-TO7: Copyright IBM Corp. 1992, 2020

PF 1:? 2:STEP 3:QUIT 4:LIST 5:FIND 6:AT/CLEAR
PF 7:UP 8:DOWN 9:G0 10:Z00M 11:Z00M LOG 12:RETRIEVE

The default screen is divided into four sections: the session panel header and three physical windows.
The sessional panel header is the top two lines of the screen, which display the header fields and a
command line. The header fields describe the programming language and the location in the program.
The command line is where you enter z/OS Debugger commands.

A physical window is the space on the screen dedicated to the display of a specific type of debugging
information. The debugging information is organized into the following types, called logical windows:

Monitor window
Variables and their values, which you can display by entering the SET AUTOMONITOR ON and
MONITOR commands.

Source window
The source or listing file, which z/OS Debugger finds or you can specify where to find it.

Log window
The record of your interactions with z/OS Debugger and the results of those interactions.

Memory window
A section of memory, which you can display by entering the MEMORY command.

The default screen displays three physical windows, with one assigned the Monitor window, the second
assigned the Source window, and the third assigned the Log window. You can swap the Memory window
with the Log window.

Refer to the following topics for more information related to the material discussed in this topic.

Related tasks

“Entering commands on the session panel” on page 160

“Navigating through z/OS Debugger windows” on page 166

“Customizing the layout of physical windows on the session panel” on page 254

Related references

“z/0S Debugger session panel” on page 151

MEMORY command in IBM z/0S Debugger Reference and Messages

MONITOR command in IBM z/0S Debugger Reference and Messages

SET AUTOMONITOR command in IBM z/OS Debugger Reference and Messages
WINDOW SWAP command in IBM z/0S Debugger Reference and Messages

Chapter 2. Debugging a program in full-screen mode: introduction 13

Stepping through a program

Stepping through a program means that you run a program one line at a time. After each line is run, you
can observe changes in program flow and storage. These changes are displayed in the Monitor window,
Source window, and Log window. Use the STEP command to step through a program.

Refer to the following topics for more information related to the material discussed in this topic.

Related tasks
“Stepping through or running your program” on page 177

Running your program to a specific line

You can run from one point in a program to another point by using one of the following methods:

- Set a breakpoint and use the GO command. This command runs your program from the point where it
stopped to the breakpoint that you set. Any breakpoints that are encountered cause your program to
stop. The RUN command is synonymous with the GO command.

e Use the GOTO command. This command resumes your program at the point that you specify in the
command. The code in between is skipped.

« Use the JUMPTO command. This command moves the point at which your program resumes running
to the statement you specify in the command; however, the program does not resume. The code in
between is skipped.

 Use the RUNTO command. This command runs your program to the point that you specify in the RUNTO
command. The RUNTO command is helpful when you haven't set a breakpoint at the point you specify in
the RUNTO command.

Refer to the following topics for more information related to the material discussed in this topic.

Related references
IBM z/0S Debugger Reference and Messages

Setting a breakpoint

In z/OS Debugger, breakpoints can indicate a stopping point in your program and a stopping point in time.
Breakpoints can also contain activities, such as instructions to run, calculations to perform, and changes
to make.

A basic breakpoint indicates a stopping point in your program. For example, to stop on line 100 of your
program, enter the following command on the command line:

AT 100

In the Log window, the message AT 100 ; appears. If line 100 is not a valid place to set a breakpoint,
the Log window displays a message similar to Statement 100 is not valid. The breakpointis also
indicated in the Source window by a reversing of the colors in the prefix area.

Breakpoints do more than just indicate a place to stop. Breakpoints can also contain instructions. For
example, the following breakpoint instructs z/OS Debugger to display the contents of the variable myvar
when z/0S Debugger reaches line 100:

AT 100 LIST myvar;

A breakpoint can contain instructions that alter the flow of the program. For example, the following
breakpoint instructs z/OS Debugger to go to label newPlace when it reaches line 100:

AT 100 GOTO newPlace ;

14 IBM z/0OS Debugger: User's Guide

A breakpoint can contain a condition, which means that z/OS Debugger stops at the breakpoint only if the
condition is met. For example, to stop at line 100 only when the value of myvar is greater than 10, enter
the following command:

AT 100 WHEN myvar > 10;

A breakpoint can contain complex instructions. In the following example, when z/OS Debugger reaches
line 100, it alters the contents of the variable myvar if the value of the variable mybool is true:

AT 100 if (mybool == TRUE) myvar = 10 ;

The syntax of the complex instruction depends on the program language that you are debugging. The
previous example assumes that you are debugging a C program. If you are debugging a COBOL program,
the same example is written as follows:

AT 100 if mybool = TRUE THEN myvar = 10 ; END-IF ;

Refer to the following topics for more information related to the material discussed in this topic.

Related references
IBM z/0S Debugger Reference and Messages

Displaying the value of a variable

After you are familiar with setting breakpoints and running through your program, you can begin
displaying the value of a variable. The value of a variable can be displayed in one of the following ways:

« One-time display (in the Log window) is useful for quickly checking the value of a variable.

For one-time display, enter the following command on the command line, where x is the name of the
variable:

LIST (x)
The Log window shows a message in the following format:

LIST (=) ;
x = 10

Alternatively, you can enter the L prefix command in the prefix area of the Source window. In the
following line from the Source window, type in L2 in the prefix area, then press Enter to display the
value of var2:

200 varl = var2 + var3;

z/0S Debugger creates the command LIST (var2), runs it, then displays the following message in the
Log window:

LIST (VAR2) ;
VAR2 = 50

You can use the L prefix command only with programs assembled or compiled with the following
assemblers or compilers:

Enterprise PL/I for z/OS, Version 3.6 or 3.7 with the PTF for APAR PK70606, or later
Enterprise COBOL (compiled with the TEST compiler option)

Assembler

Disassembly
« Continuous display (in the Monitor window) is useful for observing the value of a variable over time.

Chapter 2. Debugging a program in full-screen mode: introduction 15

For continuous display, enter the following command on the command line, where x is the name of the
variable:

MONITOR LIST (x)

In the Monitor window, a line appears with the name of the variable and the current value of the variable
next to it. If the value of the variable is undefined, the variable is not initialized, or the variable does not
exist, a message appears underneath the variable name declaring the variable unusable.

Alternatively, you can enter the M prefix command in the prefix area of the Source window. In the
following line from the Source window, type in M3 in the prefix area, then press Enter to add var3 to the
Monitor window:

200 varl = var2 + var3;
z/0S Debugger creates the command MONITOR LIST (vax3), runsit, then adds var3 to the Monitor
window.

You can use the M prefix command only with programs assembled or compiled with the following
assemblers or compilers:

Enterprise PL/I for z/OS, Version 3.6 or 3.7 with the PTF for APAR PK70606, or later
Enterprise COBOL (compiled with the TEST compiler option)

Assembler

Disassembly
« A combination of one-time and continuous display, where the value of variables coded in the current
line are displayed, is useful for observing the value of variables when the variables are used.

For a combination of one-time and continuous display, enter the following command on the command
line:

SET AUTOMONITOR ON ;

After a line of code is run, the Monitor window displays the name and value of each variable on the line
of code. The SET AUTOMONITOR command can be used only with specific programming languages, as
described in IBM z/0S Debugger Reference and Messages.

Refer to the following topics for more information related to the material discussed in this topic.

Related tasks

“Displaying values of C and C++ variables or expressions” on page 298
“Displaying values of COBOL variables” on page 272

“Displaying and monitoring the value of a variable” on page 184

Related references

“Monitor window” on page 154

Description of the MONITOR COMMAND in IBM z/0S Debugger Reference and Messages
Description of the SET AUTOMONITOR COMMAND in IBM z/0S Debugger Reference and Messages

Displaying memory through the Memory window

Sometimes it is helpful to look at memory directly in a format similar to a dump. You can use the Memory
window to view memory in this format.

The Memory window is not displayed in the default screen. To display the Memory window, use the
WINDOW SWAP MEMORY LOG command. z/OS Debugger displays the Memory window in the location of
the Log window.

After you display the Memory window, you can navigate through it using the SCROLL DOWN and SCROLL
UP commands. You can modify the contents of memory by typing the new values in the hexadecimal data
area.

16 IBM z/OS Debugger: User's Guide

Refer to the following topics for more information related to the material discussed in this topic.

Related tasks

Chapter 28, “Customizing your full-screen session,” on page 253

“Displaying the Memory window” on page 171

“Displaying and modifying memory through the Memory window” on page 194
“Scrolling through the physical windows” on page 167

Related references

“z/0S Debugger session panel” on page 151

WINDOW SWAP command in IBM z/0S Debugger Reference and Messages

Changing the value of a variable

After you see the value of a variable, you might want to change the value. If, for example, the assigned
value isn't what you expect, you can change it to the desired value. You can then continue to study the
flow of your program, postponing the analysis of why the variable wasn't set correctly.

Changing the value of a variable depends on the programming language that you are debugging. In z/OS
Debugger, the rules and methods for the assignment of values to variables are the same as programming
language rules and methods. For example, to assign a value to a C variable, use the C assignment rules
and methods:

var = 1 ;

Refer to the following topics for more information related to the material discussed in this topic.

Related tasks
“Assigning values to C and C++ variables” on page 299
“Assigning values to COBOL variables” on page 271

Skipping a breakpoint

Use the DISABLE command to temporarily disable a breakpoint. Use the ENABLE command to re-enable
the breakpoint.

Refer to the following topics for more information related to the material discussed in this topic.

Related references
Description of the DISABLE command in IBM z/0S Debugger Reference and Messages
Description of the ENABLE command in IBM z/0S Debugger Reference and Messages

Clearing a breakpoint

When you no longer require a breakpoint, you can clear it. Clearing it removes any of the instructions
associated with that breakpoint. For example, to clear a breakpoint on line 100 of your program, enter the
following command on the command line:

CLEAR AT 100

The Log window displays a line that says CLEAR AT 100 ; and the prefix area reverts to its original
colors. These changes indicate that the breakpoint at line 100 is gone.

Refer to the following topics for more information related to the material discussed in this topic.

Related references
Description of the CLEAR command in IBM z/0S Debugger Reference and Messages

Chapter 2. Debugging a program in full-screen mode: introduction 17

Recording and replaying statements

You can record and subsequently replay statements that you run. When you replay statements, you can
replay them in a forward direction or a backward direction. Table 6 on page 18 describes the sequence
in which statements are replayed when you replay them in a forward direction or a backward direction.

Table 6. The sequence in which statements are replayed.
PLAYBACK PLAYBACK
FORWARD BACKWARD
sequence sequence COBOL Statements
1 9 DISPLAY "CALC Begins."
2 8 MOVE 1 TO BUFFER-PTR.
3 7 PERFORM ACCEPT-INPUT 2 TIMES.
8 2 DISPLAY "CALC Ends."
9 1 GOBACK.
ACCEPT-INPUT.
4,6 4,6 ACCEPT INPUT-RECORD FROM A-INPUT-FILE
5,7 3,5 MOVE RECORD-HEADER TO REPROR-HEADER.

To begin recording, enter the following command:
PLAYBACK ENABLE

Statements that you run after you enter the PLAYBACK ENABLE command are recorded.
To replay the statements that you record:
1. Enter the PLAYBACK START command.

. To move backward one statement, enter the STEP command.

2
3. Repeat step 2 as many times as you can to replay another statement.
4

. To move forward (from the current statement to the next statement), enter the PLAYBACK FORWARD
command.

5. Enter the STEP command to replay another statement.

6. Repeat step 5 as many times as you want to replay another statement.

7. To move backward, enter the PLAYBACK BACKWARD command.

PLAYBACK BACKWARD and PLAYBACK FORWARD change the direction commands like STEP move in.

When you have finished replaying statements, enter the PLAYBACK STOP command. z/OS Debugger
returns you to the point at which you entered the PLAYBACK START command. You can resume normal
debugging. z/OS Debugger continues to record your statements. To replay a new set of statements, begin
at step 1.

When you finish recording and replaying statements, enter the following command:
PLAYBACK DISABLE

z/OS Debugger no longer records any statements and discards information that you recorded. The
PLAYBACK START, PLAYBACK FORWARD, PLAYBACK BACKWARD, and PLAYBACK STOP commands are
no longer available.

Refer to the following topics for more information related to the material discussed in this topic.

Related references

18 IBM z/OS Debugger: User's Guide

Description of the PLAYBACK commands in IBM z/0S Debugger Reference and Messages

Stopping z/0S Debugger

To stop your debug session, do the following steps:

1. Enter the QUIT command.

2. In response to the message to confirm your request to stop your debug session, press "Y" and then
press Enter.

Your z/OS Debugger screen closes.

Refer to IBM z/0S Debugger Reference and Messages for more information about the QQUIT, QUIT ABEND
and QUIT DEBUG commands which can stop your debug session.

Refer to the following topics for more information related to the material discussed in this topic.
Related references

Description of the QUIT command in IBM z/0S Debugger Reference and Messages
Description of the QQUIT command in IBM z/0OS Debugger Reference and Messages

Chapter 2. Debugging a program in full-screen mode: introduction 19

20 IBM z/OS Debugger: User's Guide

Part 2. Preparing your program for debugging

© Copyright IBM Corp. 1992, 2021

21

22 IBM z/0OS Debugger: User's Guide

Chapter 3. Preparing to remote debug in standard
mode

About this task
Note: This chapter is not applicable to IBM Wazi Developer for Red Hat CodeReady Workspaces.

To prepare to remote debug in standard mode, you must compile your program with certain compiler
options.

You can specify compiler options in the following ways:

« Creating and managing property groups in the Property Group Manager (See "Resource management
with property groups.")

« Specifying the options in the COBOL and PL/I Compile Step Options window, which generates JCL
(See "COBOL and PL/I step options.")

- Editing the JCL directly.

Procedure

To add compiler options to the JCL directly, complete the following steps:
1. Open the JCL file in the Remote Systems view of the z/OS Projects perspective.
2. Specify the following options:

Table 7. Compiler options for debugging

Compiler Required options Recommended options

z/OS Cand C++ |DEBUG or DEBUG (NOHOOK) for better generated code
DEBUG (FORMAT (DWARF))

Enterprise TEST or TEST (SEPARATE) 1

COBOL for z/OS

V6.2 and later

Enterprise TEST

COBOL for z/0OS

V5and V6.1

Enterprise SOURCE, LIST, XREF,MAP,NONU |NOTEST for better performance

COBOL forz/OS | M

V3.4 and V4

Enterprise PL/T | TEST (NOHOOK) TEST (NOHOOK, SEPARATE) for better

for z/OS V4 and performance

V5 (31-bit)

Enterprise PL/T | TEST
for z/OS V5 (64-
bit)

High Level ADATA
Assembler V1.6

© Copyright IBM Corp. 1992, 2021

Related information
“Remote debugging in standard mode” on page 409

1 Wwith TEST the debug data is placed in a NOLOAD segment in the program object. With TEST (SEPARATE)
the debug data is placed in a separate debug file.

24 1BM z/0OS Debugger: User's Guide

Chapter 4. Planning your debug session

Before you begin debugging, create a plan that can help you make the following choices:
« The compiler or assembler options and suboptions you need to use when you compile or assemble
programs.

« The debugging mode (batch, full-screen, full-screen mode using the Terminal Interface Manager, or
remote debug mode) that you will use to interact with z/OS Debugger.

« The method or methods you can use to start z/OS Debugger.

« If you have older COBOL programs, as listed in the COBOL and CICS Command Level Conversion Aid for
05/390 & MVS & VM: User's Guide, how you want to debug them.

To help you create your plan, do the following tasks:

1. Use Table 8 on page 26 to record the compiler options and suboptions that you will use for your
programs. The table contains compiler options that can provide the most debugging capability with the
smallest program size for a general set of compilers. See “Choosing compiler options for debugging”
on page 25 for the following information:

« The prerequisites required for a compiler option and suboption.

« Additional tasks that you might need to do to make a compiler option and suboption work at your
site.

 Information about how a compiler option and suboption might affect program size and z/0S
Debugger functionality.

- If you are using other Application Delivery Foundation for z/OS tools, information on how to choose
compiler options so that you create output that can be used by the other Application Delivery
Foundation for z/OS tools.

2. Use Table 5 on page 4 to record the debugging mode you will use. See “Choosing a debugging mode”
on page 49 to learn about prerequisites and tasks you must do to make the debugging mode work.

3. Use Table 14 on page 54 to record the methods you will use to specify TEST runtime options. See
“Choosing a method or methods for starting z/OS Debugger” on page 53 to help you determine which
method will work best for your programs.

4. If you have older COBOL programs (as listed in the COBOL and CICS Command Level Conversion Aid
for 05/390 & MVS & VM: User's Guide) that you want to debug, you must decide between the following
options:

« Leave them in their old source and possibly have to debug them as LangX COBOL programs.
« Convert them to the 1985 COBOL Standard level.

See “Choosing how to debug old COBOL programs” on page 56 for more information.

After you have completed these tasks, use the information you collected to follow the instructions in
Chapter 5, “Updating your processes so you can debug programs with z/OS Debugger,” on page 59.

Choosing compiler options for debugging

Compiler options affect the size of your load module and the amount of z/OS Debugger functionality
available to you. z/OS Debugger uses information such as hooks and symbol tables to gain control of

a program, run the program statement-by-statement or line-by-line, and display information about your
program.

To learn more about how hooks and symbol tables help z/OS Debugger debug your program, read the
following topics:

« “Understanding how hooks work and why you need them” on page 48

© Copyright IBM Corp. 1992, 2021 25

« “Understanding what symbol tables do and why saving them elsewhere can make your application
smaller” on page 49

To learn more about how the compiler options affect z/OS Debugger functionality, read the following
topics:

« “Choosing TEST or NOTEST compiler suboptions for COBOL programs” on page 27
« “Choosing TEST or NOTEST compiler suboptions for PL/I programs” on page 34

« “Choosing TEST or DEBUG compiler suboptions for C programs” on page 39

» “Choosing DEBUG compiler suboptions for C programs” on page 40

« “Choosing TEST or NOTEST compiler suboptions for C programs” on page 41

« “Choosing DEBUG compiler suboptions for C++ programs” on page 45

» “Choosing TEST or DEBUG compiler suboptions for C++ programs” on page 44

« “Choosing TEST or NOTEST compiler options for C++ programs” on page 46

Table 8. Record the compiler options you need to use in this table.

Compiler or assembler Compiler options you will use

Open Enterprise SDK for Go No compiler option is needed. DWARF data is always produced for Go and cannot
be turned off.

Enterprise COBOL for z/OS Version 6 Release 2 with APAR PH044851 installed or later TEST(EJPD, SEPARATE (DSNAME) , SOURCE) or
compiled with the TEST compiler option

Enterprise COBOL for z/OS Version 5 and Version 62 compiled with the TEST compiler TEST(EJPD,SOURCE) or
option

Enterprise COBOL for z/OS Version 4 compiled with the TEST compiler option TEST (NOHOOK, SEPARATE, EJPD) or

Enterprise COBOL for z/OS Version 3 or Version 4 compiled with the NOTEST compiler NOTEST,NOOPTIMIZE, SOURCE,MAP, XREF,LIST(or OFFSET) or

option 2

Enterprise COBOL for z/OS and 0S/390, Version 3 TEST (NONE,SYM, SEPARATE) or
COBOL for 0S/390 & VM TEST (NONE, SYM, SEPARATE) or
COBOL for MVS & VM TEST(ALL,SYM) or

AD/Cycle COBOL/370 Version 1 Release 1 TEST(ALL,SYM) or

VS COBOL II Version 1 Release 3 and Version 1 Release 4 (for programs compiled with NOTEST,NOOPTIMIZE, SOURCE,MAP, XREF, LIST(or OFFSET) or
the NOTEST compiler option and linked with the Language Environment library.) 3

VS COBOL II Version 1 Release 3 and Version 1 Release 4 (for programs compiled with NOTEST,NOOPTIMIZE, SOURCE,MAP, XREF ,LIST(or OFFSET) or
the NOTEST compiler option and linked with a non-Language Environment library.) 3

VS COBOL II Version 1 Release 3 and Version 1 Release 4 (for programs compiled with TEST or
the TEST compiler option and linked with the Language Environment library.)

0S/VS COBOL, Version 1 Release 2.4 3 NOTEST, SOURCE, DMAP, PMAP, VERB, XREF ,NOLST, NOBATCH, NOSYMDMP , NOCOU
NT or
Enterprise PL/I, Version 4 or Version 54 (31-bit) TEST(ALL,NOHOOK,SYM, SEPARATE) and LISTVIEW and

GONUMBER (SEPARATE) or

Enterprise PL/I, Version 3.8 or later TEST(ALL,NOHOOK,SYM,SEPARATE) and LISTVIEW or

Enterprise PL/I, Version 3.7 TEST(ALL,NOHOOK, SYM, SEPARATE, SOURCE) or

26 IBM z/OS Debugger: User's Guide

Table 8. Record the compiler options you need to use in this table. (continued)

Compiler or assembler Compiler options you will use

Enterprise PL/I, Version 3.5 or later TEST(ALL,NOHOOK,SYM, SEPARATE) or
Enterprise PL/I, Version 3.4 TEST (ALL,NOHOOK, SYM) or

Enterprise PL/I, Version 3.1 through Version 3.3 TEST(ALL,SYM) or

PL/I for MVS & VM TEST(ALL,SYM) or

OS PL/I Version 2 Release 1, Version 2 Release 2, and Version 2 Release 3 TEST (ALL,SYM) or

C/C++ feature of z/OS, Version 2.3 or later DEBUG (FORMAT (DWARF) ,NOFILE) GOFF or
C/C++ feature of z/OS, Version 1.6 or later (31-bit) DEBUG (FORMAT (DWARF)) or

- Cfeature of 0S/390 Version 2 Release 6 or later TEST (HOOK) or

« Cfeature of z/OS, Version 1.5 or earlier

« AD/Cycle C/370 Version 1 Release 1 TEST or
« C/C++ for MVS/ESA Version 3 Release 1 or later

« C++ feature of 0S/390 Version 2 Release 6 or later

« C++ feature of z/OS, Version 1.5 or earlier

IBM High Level Assembler (HLASM), Version 1 Release 4, Version 1 Release 5, Version1 ~ ADATA
Release 62

1. Enterprise COBOL for z/OS Version 6 Release 2 APAR PH04485: New suboptions DSNAME | NODSNAME are added to the TEST |[NOTEST (SEPARATE) option to control
whether the SYSDEBUG data set name used during compilation will or will not be stored in the object program.

. Support for Enterprise COBOL for z/OS Version 6 is a superset of that for Version 5 in z/OS Debugger.

. See Chapter 6, “Preparing a LangX COBOL program,” on page 67 for information on how to prepare a program of this type.

2
3
4. Support for Enterprise PL/I for z/OS Version 5 (31-bit) is the same as that for Version 4 in z/OS Debugger.
5

. For more information, see Chapter 7, “Preparing an assembler program,” on page 71.

Choosing TEST or NOTEST compiler suboptions for COBOL programs

This topic describes the combination of TEST compiler option and suboptions you need to specify
to obtain the debugging scenario. This topic assumes you are compiling your COBOL program with
Enterprise COBOL for z/0S, Version 3.4, or later; however, the topics provide information about
alternatives to use for older versions of the COBOL compiler.

The COBOL compiler provides the TEST compiler option and its suboptions to control the following
actions:

« The generation and placement of hooks and symbol tables.
« The placement of debug information into the object file or a separate debug file.

The following instructions help you choose the combination of TEST compiler suboptions that provide the
functionality you need to debug your program:

1. Choose a debugging scenario, keeping in mind your site's resources, from the following list:

« Scenario A: If you are compiling with Enterprise COBOL for z/OS, Version 4, you can get the most
z/0S Debugger functionality and a small program size by using TEST (NOHOOK , SEPARATE). If you
need to debug programs that are loaded into protected storage, verify that your site installed the
Authorized Debug Facility.

If you want to compile your program with the OPT (STD) or OPT(FULL) compiler option, you must
also specify the EJPD suboption of the TEST compiler option to be able to do the following tasks:

— Use the GOTO or JUMPTO commands.

Chapter 4. Planning your debug session 27

— Modify variables with predictable results.
When you use the EJPD suboption, you might lose some optimization.

If you are using other Application Delivery Foundation for z/OS tools, review the information in IBM
Application Delivery Foundation for z/0S Common Components Customization Guide and User Guide
to make sure you specify all the compiler options you need to create the files needed by all the
Application Delivery Foundation for z/OS tools.

« Scenario B: If you are compiling with any of the following compilers, you can get the most z/0S
Debugger functionality and a small program size by using TEST (NONE, SYM, SEPARATE):

Enterprise COBOL for z/OS and 0S/390, Version 3 Release 2 or later

Enterprise COBOL for z/OS and 0S/390, Version 3 Release 1 with APAR PQ63235
COBOL for 0S/390 & VM, Version 2 Release 2

COBOL for 0S5/390 & VM, Version 2 Release 1 with APAR PQ63234.

If you need to debug programs that are loaded into protected storage, verify that your site installed
the Authorized Debug Facility.

If you want to compile your program with optimization and be able to get the most z/OS Debugger
functionality, you must compile it with one of the following combination of compiler options:

— OPT(STD) TEST(NONE,SYM)
— OPT(STD) TEST(NONE,SYM, SEPARATE)
— OPT(FULL) TEST(NONE,SYM)
— OPT(FULL) TEST(NONE,SYM, SEPARATE)

For these types of programs, you can modify variables, but the results might be unpredictable.

If you are using other Application Delivery Foundation for z/OS tools, review the information in IBM
Application Delivery Foundation for z/0S Common Components Customization Guide and User Guide
to make sure you specify all the compiler options you need to create the files needed by all the
Application Delivery Foundation for z/OS tools.

« Scenario C: To get all z/OS Debugger functionality but have a larger program size and do not want
debug information in a separate debug file, compile with one of the following compiler options for
the compilers specified:

— TEST (HOOK, NOSEPARATE) with Enterprise COBOL for z/OS, Version 4.
— TEST(ALL,SYM,NOSEPARATE) with any of the following compilers:

- Enterprise COBOL for z/OS and 0S/390, Version 3 Release 2 or later

- Enterprise COBOL for z/OS and 0S/390, Version 3 Release 1 with APAR PQ63235
- COBOL for 0S/390 & VM, Version 2 Release 2

- COBOL for 0S/390 & VM, Version 2 Release 1 with APAR PQ40298

If you are using other Application Delivery Foundation for z/OS tools, review the information in IBM
Application Delivery Foundation for z/0S Common Components Customization Guide and User Guide
to make sure you specify all the compiler options you need to create the files needed by all the
Application Delivery Foundation for z/OS tools.

« Scenario D: If you are using COBOL for 0S/390 & VM, Version 2 Release 1, or earlier, and you want to
get all z/OS Debugger functionality, use TEST (ALL,SYM).

If you are using other Application Delivery Foundation for z/OS tools, review the topic in IBM
Application Delivery Foundation for z/0S Common Components Customization Guide and User Guide
that corresponds to the compiler that you are using from the following list to make sure that you
specify all the compiler options that you need to create the files needed by all the Application
Delivery Foundation for z/OS tools:

— Enterprise COBOL for z/OS Version 3 and COBOL for 0S/390 and VM programs

28 IBM z/0OS Debugger: User's Guide

— COBOL for MVS(tm) and VM programs
— VS COBOL II programs
— 0OS/VS COBOL programs

Scenario E: You can get most of z/OS Debugger's functionality by compiling with the NOTEST
compiler option and generating an EQALANGX file. This requires that you debug your program in
LangX COBOL mode.

Scenario F: You can get some z/0OS Debugger's functionality by compiling with the NOTEST compiler
option. This requires that you debug your program in disassembly mode.

If you are using other Application Delivery Foundation for z/OS tools, review the topic in IBM
Application Delivery Foundation for z/0S Common Components Customization Guide and User Guide
that corresponds to the compiler that you are using from the following list to make sure you specify
all the compiler options that you need to create the files needed by all the Application Delivery
Foundation for z/OS tools:

— Enterprise COBOL for z/OS Version 4 programs

Enterprise COBOL for z/OS Version 3 and COBOL for 0S/390 and VM programs
COBOL for MVS(tm) and VM programs

VS COBOL II programs

0OS/VS COBOL programs

Scenario G: If you are compiling with Enterprise COBOL for z/OS Version 5 or Version 6 Release

1, you can get the most z/OS Debugger functionality by using TEST (SOURCE). If you need to

debug programs that are loaded into protected storage, you must verify that your site installed the
Authorized Debug Facility. With the TEST (SOURCE) compiler option, the debug data is saved in the
program object in a NOLOAD debug segment. The debug data does not increase the size of the loaded
program. The debug data always matches the executable and is always available, so there is no need
to search the lists of data sets. The size of the program object increases but not the footprint in
memory, unless it is required to load the debug data while you are debugging a program.

Note: Do not use the binder PAGE statement when you link-edit a load module that contains more
than one Enterprise COBOL for z/OS Version 5 or later program that is compiled with a TEST
compiler option where the debug data is saved in the program object in a NOLOAD debug segment.

Scenario H: If you are compiling with Enterprise COBOL for z/OS Version 6 Release 2 or later, you can
get the most z/OS Debugger functionality by using TEST (SOURCE) or TEST (SEPARATE, SOURCE).
For Enterprise COBOL for z/OS Version 6 Release 2 with APAR PH04485 installed or later, you can
specify TEST (SEPARATE (DSNAME) , SOURCE) to store the separate debug file name, which is the
SYSDEBUG DD data set name, in the object program. If you need to debug programs that are loaded
into protected storage, you must verify that your site installed the Authorized Debug Facility.

— With the TEST (SOURCE) compiler option, the debug data is saved in the program object in a
NOLOAD debug segment. The debug data does not increase the size of the loaded program. The
debug data always matches the executable and is always available, so there is no need to search
the lists of data sets. The size of the program object increases but not the footprint in memory,
unless it is required to load the debug data when you are debugging a program.

Note: Do not use the binder PAGE statement when you link-edit a load module that contains more
than one Enterprise COBOL for z/OS Version 5 or later program that is compiled with a TEST
compiler option where the debug data is saved in the program object in a NOLOAD debug segment.
— With the TEST (SEPARATE, SOURCE) compiler option, the debug data is saved in a separate
debug file. The compiler uses the SYSDEBUG DD statement to specify the separate debug file.

- For Enterprise COBOL for z/OS Version 6 Release 2 with APAR PH04485 installed or later, you
can specify SEPARATE (DSNAME) to store the name of the separate debug file in the program
object.

- If you do not specify SEPARATE (DSNAME) or the location of the separate debug file has
changed since the compilation, specify the separate debug file location with one of the following
methods. z/OS Debugger looks for the separate debug file in the following order:

Chapter 4. Planning your debug session 29

SET SOURCE command to specify the exact location of the separate debug file

EQAUEDAT user exit

SET DEFAULT LISTINGS command

EQADEBUG DD name

« EQA_DBG_SYSDEBUG environment variable

If you use an EQAUEDAT user exit, SET DEFAULT LISTINGS command, EQADEBUG DD name,

or EQA_DBG_SYSDEBUG environment variable, specify a PDS data set or z/OS UNIX System
Services directory as the separate debug file location.

If you use a SET DEFAULT LISTINGS command, EQADEBUG DD name, or
EQA_DBG_SYSDEBUG environment variable, and if the separate debug file is not found because
the file name does not match the CU name, z/OS Debugger will do an exhaustive search of

the data sets specified by the same method to locate the matching debug file. The exhaustive
search might be slow.

2. For COBOL programs using IMS, include the IMS interface module DFSLIO00 from the IMS RESLIB
library.

3. For scenarios A, B and E, do the following steps:

a. If you use the Dynamic Debug facility to place hooks into programs that reside in read-only storage,
verify with your system administrator that the Authorized Debug facility has been installed and that
you are authorized to use it.

b. After you start z/OS Debugger, verify that you have not deactivated the Dynamic Debug facility by
entering the QUERY DYNDEBUG command.

c. Verify that the separate debug file is a non-temporary file and is available during the debug session.
The listing does not need to be saved.

4. Verify whether you need to do any of the following tasks:

« If you specify NUMBER with TEST, make sure the sequence fields in your source code all contain
numeric characters.

 You need to specify the SYM suboption of the TEST compiler option to do the following actions:

To specify labels (paragraph or section names) as targets of the GOTO command.

To reference program variables by name.

To access a variable or expression through commands like LIST or DESCRIBE.
To use the DATA suboption of the PLAYBACK ENABLE command.

You need to specify the SYM suboption to do these actions only if you are compiling with any of the
following compilers:

— Any release of Enterprise COBOL for z/OS and 0S/390, Version 3
— Any release of COBOL for 0S/390 & VM, Version 2

« The TEST compiler option and the DEBUG runtime option are mutually exclusive, with DEBUG taking
precedence. If you specify both the WITH DEBUGGING MODE clause in your SOURCE-COMPUTER
paragraph and the USE FOR DEBUGGING statement in your code, TEST is deactivated. The TEST
compiler option appears in the list of options, but a diagnostic message is issued telling you that
because of the conflict, TEST is not in effect.

« For VS COBOL II programs, if you use the TEST compiler option, you must specify:

— the SOURCE compiler option. This option is required to generate a listing file and save it at location
userid.pgmname.list.

— the RESIDENT compiler option. This option is required by Language Environment to ensure that
the necessary z/0OS Debugger routines are loaded dynamically at run time.

In addition, you must link your program with the Language Environment SCEELKED library and not
the VS COBOL II COB2L1IB library.

30 IBM z/OS Debugger: User's Guide

After you have chosen the compiler options and suboptions, see Chapter 4, “Planning your debug
session,” on page 25 to determine the next task you must complete.

Refer to the following topics for more information related to the material discussed in this topic.

Related references

Description of the TEST compiler option in Enterprise COBOL for z/OS Programming Guide

The following table explains the effects of the NOTEST compiler option, the TEST compiler option, and
some of the suboptions of the TEST compiler option on z/OS Debugger behavior or the availability of
features, which are not described in Enterprise COBOL for z/OS Programming Guide:

Table 9. Description of the effects that the COBOL NOTEST compiler option and some of the TEST compiler
suboptions have on z/0OS Debugger.

Name of compiler
option or suboption

Description of the effect

NOTEST

= You cannot step through program statements.

» You can suspend execution of the program only at the initialization of the
main compile unit.

» You can include calls to CEETEST in your program to allow you to suspend
program execution and issue z/OS Debugger commands.

» You cannot examine or use any program variables.
» You can list storage and registers.

= The source listing produced by the compiler cannot be used; therefore,
no listing is available during a debug session. Using the SET DEFAULT
LISTINGS command cannot make a listing available.

» Because a statement table is not available, you cannot set any statement
breakpoints or use commands such as GOTO or QUERY location.

However, you can still debug your program using the disassembly view.
To learn how to use the disassembly view, see Chapter 35, “Debugging a
disassembled program,” on page 331.

Chapter 4. Planning your debug session 31

Table 9. Description of the effects that the COBOL NOTEST compiler option and some of the TEST compiler
suboptions have on z/0S Debugger. (continued)

Name of compiler
option or suboption

Description of the effect

NONE and NOHOOK

« If you use one of the following compilers, you can use the GOTO or the
JUMPTO commands when you debug a non-optimized program:

— Enterprise COBOL for z/OS, Version 4
— Any release of Enterprise COBOL for z/OS and 0S/390, Version 3
— Any release of COBOL for 0S/390 & VM, Version 2

If you compile your program by using Enterprise COBOL for z/OS Version
4.1, you can use the GOTO or JUMPTO commands when you debug an
optimized program. To enable the GOTO or JUMPTO commands, you must
specify the EJPD suboption of the TEST option. When you specify the EJPD
suboption, you might lose some optimization.

You can use the SET WARNING OFF setting to obtain limited support for
GOTO and JUMPTO when you compile with the NOEJPD suboption of the
TEST compiler option. GOTO and JUMPTO are not enabled.

» A callto CEETEST can be used at any point to start z/OS Debugger.

« NONE and NOHOOK are not available with Enterprise COBOL for z/0OS
Version 5, but when you specify the TEST compile with this compiler, it
creates an object similar to specifying NONE and NOHOOK with previous
compilers.

EJPD

You can modify variables in an optimized program that was compiled with
one the following compilers:

» Enterprise COBOL for z/0S, Version 5
» Enterprise COBOL for z/0S, Version 4
» Enterprise COBOL for z/OS and 0S/390, Version 3 Release 2 or later

Enterprise COBOL for z/OS and 0S/390, Version 3 Release 1 with APAR
PQ63235 installed

COBOL for 0S/390 & VM, Version 2 Release 2
COBOL for 0S/390 & VM, Version 2 Release 1 with APAR PQ63234 installed

However, results might be unpredictable. To obtain more predictable results,
compile your program with Enterprise COBOL for z/OS, Version 4 and 5, and
specify the EJPD suboption of the TEST compiler option. However, variables
that are declared with the VALUE clause to initialize them cannot be modified.

LOUD
The LOUD parameter is suggested, but optional. If you specify it,
additional informational and statistical messages are displayed.

32 IBM z/0OS Debugger: User's Guide

Table 9. Description of the effects that the COBOL NOTEST compiler option and some of the TEST compiler
suboptions have on z/0S Debugger. (continued)

Name of compiler
option or suboption

Description of the effect

NOSYM

» You cannot reference program variables by name.

« You cannot use commands such as LIST or DESCRIBE to access a variable
or expression.

« You cannot use commands such as CALL variable to branch to another
program, or GOTO to branch to another label (paragraph or section name).

If you are compiling with Enterprise COBOL for z/OS, Version 4, the compiler
ignores SYM or NOSYM and always creates a symbol table.

This option is not available with Enterprise COBOL for z/OS Version 5.

STMT

» The COBOL compiler generates compiled-in hooks for date processing
statements only when the DATEPROC compiler option is specified. A date
processing statement is any statement that references a date field, or any
EVALUATE or SEARCH statement WHEN phrase that references a date field.

» You can set breakpoints at all statements and step through your program.

« z/OS Debugger cannot gain control at path points unless they are also at
statement boundaries.

» Branching to all statements and labels using the z/OS Debugger command
GOTO is allowed.

If you are compiling with Enterprise COBOL for z/OS, Version 4, the compiler
treats the STMT suboption as if it were the HOOK suboption, which is
equivalent to the ALL suboption for any release of Enterprise COBOL for z/OS
and 0S/390, Version 3, or COBOL for 0S/390 & VM, Version 2.

This option is not available with Enterprise COBOL for z/OS Version 5.

PATH

» z/OS Debugger can gain control only at path points and block entry and
exit points. If you attempt to step through your program, z/OS Debugger
gains control only at statements that coincide with path points, giving the
appearance that not all statements are executed.

« Acall to CEETEST can be used at any point to start z/OS Debugger.

» The z/OS Debugger command GOTO is valid for all statements and labels
coinciding with path points.

If you are compiling with Enterprise COBOL for z/OS, Version 4, the compiler
treats the PATH suboption as if it were the HOOK suboption, which is
equivalent to the ALL suboption for any release of Enterprise COBOL for z/OS
and 0S/390, Version 3, or COBOL for 0S/390 & VM, Version 2.

This option is not available with Enterprise COBOL for z/OS Version 5.

Chapter 4. Planning your debug session 33

Table 9. Description of the effects that the COBOL NOTEST compiler option and some of the TEST compiler
suboptions have on z/0S Debugger. (continued)

Name of compiler
option or suboption

Description of the effect

BLOCK

» z/0S Debugger gains control at entry and exit of your program, methods,
and nested programs.

= z/OS Debugger can be explicitly started at any point with a call to CEETEST.

« Issuing a command such as STEP causes your program to run until it
reaches the next entry or exit point.

» GOTO can be used to branch to statements that coincide with block entry
and exit points.

If you are compiling with Enterprise COBOL for z/OS, Version 4, the compiler
treats the BLOCK suboption as if it were the HOOK suboption, which is
equivalent to the ALL suboption for any release of Enterprise COBOL for z/OS
and 0S/390, Version 3, or COBOL for 0S/390 & VM, Version 2.

This option is not available with Enterprise COBOL for z/OS Version 5.

ALL

» You can set breakpoints at all statements and path points, and step through
your program.

= z/OS Debugger can gain control of the program at all statements, path
points, date processing statements, labels, and block entry and exit points,
allowing you to enter z/OS Debugger commands.

» Branching to statements and labels using the z/OS Debugger command
GOTO is allowed.

If you are compiling with Enterprise COBOL for z/OS, Version 4, the compiler
treats the ALL suboption as if it were the HOOK suboption, which is equivalent
to the ALL suboption for any release of Enterprise COBOL for z/OS and OS/
390, Version 3, or COBOL for 0S/390 & VM, Version 2.

This option is not available with Enterprise COBOL for z/OS Version 5, but
when you specify the TEST compile with this compiler, it creates an object
similar to specifying ALL with the exception that compiled-in hooks are not
available.

Choosing TEST or NOTEST compiler suboptions for PL/I programs

This topic describes the combination of TEST compiler option and suboptions you need to specify to
obtain the desired debugging scenario. This topic assumes you are compiling your PL/I program with
Enterprise PL/I for z/OS, Version 3.5, or later; however, the topics provide information about alternatives
to use for older versions of the PL/I compiler.

The PL/I compiler provides the TEST compiler option and its suboptions to control the following actions:

« The generation and placement of hooks and symbol tables.

« The placement of debug information into the object file or separate debug file.

z/0OS Debugger does not support debugging optimized PL/I programs. Do not use compiler options other

than NOOPTIMIZE,

34 IBM z/OS Debugger: User's Guide

The following instructions help you choose the combination of TEST compiler suboptions that provide the
functionality you need to debug your program:

1. Choose a debugging scenario, keeping in mind your site's resources, from the following list:

« Scenario A: If you are using Enterprise PL/I for z/OS, Version 3.8 or later, and you
want to get the most z/OS Debugger functionality and a small program size, use
TEST(ALL,NOHOOK,SYM, SEPARATE) and the LISTVIEW (SOURCE) compiler option. If you need to
debug programs that are loaded into protected storage, verify that your site installed the Authorized
Debug Facility.

Consider the following options:

— If you are using Enterprise PL/I for z/OS, Version 4 or later, you can specify the
GONUMBER (SEPARATE) compiler option, which can help make the program size smaller. You must
install the PTF for APAR PM19445 on Language Environment, Version 1.10 to Version 1.12.

— You can specify any of the LISTVIEW sub-options (SOURCE, AFTERALL, AFTERCICS,
AFTERMACRO, or AFTERSQL), as described in Enterprise PL/I for z/0S Programming Guide, to
display either the original source or the source after the specified preprocessor.

— If you are debugging in full-screen mode and you want to debug programs with INCLUDE files that
have executable code, specify the LISTVIEW(AFTERMACRO) compiler option and, if you do not
specify the MACRO compiler option, specify the PP (MACRO (INCONLY)) compiler option.

— If you are debugging in remote debug mode and you want to automonitor variables in INCLUDE
files, specify the LISTVIEW (AFTERMACRO) compiler option and, if you do not specify the MACRO
compiler option, specify the PP (MACRO (INCONLY)) compiler option.

If you are using other Application Delivery Foundation for z/OS tools, see topic Enterprise PL/I
Version 3.5 and Version 3.6 programs in IBM Application Delivery Foundation for z/0S Common
Components Customization Guide and User Guide to make sure you specify all the compiler options
you need to create the files needed by all the Application Delivery Foundation for z/OS tools.

« Scenario B: If you are using Enterprise PL/I for z/OS, Version 3.7, and you
want to get the most z/OS Debugger functionality and a small program size, use
TEST(ALL,NOHOOK,SYM, SEPARATE, SOURCE). If you need to debug programs that are loaded into
protected storage, verify that your site installed the Authorized Debug Facility.

Consider the following options:

— You can substitute SOURCE with AFTERALL, AFTERCICS, AFTERMACRO, or AFTERSQL, as
described in Enterprise PL/I for z/0OS Programming Guide.

— If you are debugging in full-screen mode and you want to debug programs with INCLUDE files that
have executable code, specify the TEST (ALL,NOHOOK, SYM, SEPARATE , AFTERMACRO) compiler
options and, if you do not specify the MACRO compiler option, specify the PP (MACRO (INCONLY))
compiler option.

— If you are debugging in remote debug mode and you want to automonitor variables in INCLUDE
files, specify the TEST (ALL,NOHOOK, SYM, SEPARATE , AFTERMACRO) compiler options and, if
you do not specify the MACRO compiler option, specify the PP (MACRO (INCONLY)) compiler
option.

If you are using other Application Delivery Foundation for z/OS tools, see topic Enterprise PL/I
Version 3.5 and Version 3.6 programs in IBM Application Delivery Foundation for z/0S Common
Components Customization Guide and User Guide to make sure you specify all the compiler options
you need to create the files needed by all the Application Delivery Foundation for z/OS tools.

« Scenario C: If you are using Enterprise PL/I for z/OS, Version 3.5 or 3.6, and you want to get most
z/0S Debugger functionality and a small program size, use TEST (ALL, NOHOOK, SYM, SEPARATE). If
you need to debug programs that are loaded into protected storage, verify that your site installed the
Authorized Debug Facility.

If you are using other Application Delivery Foundation for z/OS tools, see topic Enterprise PL/I
Version 3.5 and Version 3.6 programs in IBM Application Delivery Foundation for z/0S Common

Chapter 4. Planning your debug session 35

Components Customization Guide and User Guide to make sure you specify all the compiler options
you need to create the files needed by all the Application Delivery Foundation for z/OS tools.

Scenario D: If you are using Enterprise PL/I for z/OS, Version 3.4, and you want to debug your
program without compiled-in hooks, use TEST (ALL,NOHOOK, SYM). If you need to debug programs
that are loaded into protected storage, verify that your site installed the Authorized Debug Facility.

If you are using other Application Delivery Foundation for z/OS tools, see topic Enterprise

PL/I Version 3.4 and earlier programs in IBM Application Delivery Foundation for z/0S Common
Components Customization Guide and User Guide to make sure you specify all the compiler options
you need to create the files needed by all the Application Delivery Foundation for z/OS tools.

Scenario E: If you are using Enterprise PL/I for z/OS, Version 3.3 or earlier, and you want to get all
z/0S Debugger functionality, use TEST (ALL,SYM).

If you are using other Application Delivery Foundation for z/OS tools, see topic Enterprise PL/I
Version 3.4 and earlier programs or PL/I for MVS(tm) and VM and OS PL/I programs in IBM
Application Delivery Foundation for z/0S Common Components Customization Guide and User Guide
to make sure you specify all the compiler options you need to create the files needed by all the
Application Delivery Foundation for z/OS tools.

Scenario F: You can get some z/0OS Debugger functionality by compiling with the NOTEST compiler
option. This requires that you debug your program in disassembly mode.

If you are using other Application Delivery Foundation for z/OS tools, review the topic in IBM
Application Delivery Foundation for z/0S Common Components Customization Guide and User Guide
that corresponds to the compiler that you are using from the following list to make sure you

specify all the compiler options you need to create the files needed by all the Application Delivery
Foundation for z/OS tools:

— Enterprise PL/I Version 3.5 and Version 3.6 programs
— Enterprise PL/I Version 3.4 and earlier programs
— PL/I for MVS(tm) and VM and OS PL/I programs

2. For scenarios A, B, C, E, and F, do the following steps:

a. If you use the Dynamic Debug facility to place hooks into programs that reside in read-only storage,
verify with your system administrator that the Authorized Debug facility has been installed and that
you are authorized to use it.

b. After you start z/OS Debugger, verify that you have not deactivated the Dynamic Debug facility by
entering the QUERY DYNDEBUG command.

c. Verify that the separate debug file is a non-temporary file and is available during the debug session.
3. Verify whether you need to do any of the following tasks:

« When you compile a program, do not associate SYSIN with an in-stream data set (for example //
SYSIN DD *) because z/OS Debugger requires access to a permanent data set for the source of the
program you are debugging.

« If you are compiling a PL/I for MVS & VM or OS PL/I program and to be able to view your listing
while debugging in full-screen mode, you must compile the program with the SOURCE compiler
option. The SOURCE compiler option is required to generate a listing file. You must direct the listing
to a non-temporary file that is available during the debug session. During a debug session, z/0S
Debugger displays the first file it finds named userid.pgmname.list in the Source window. In
addition, you must link your program with the Language Environment SCEELKED library; do not use
the OS PL/I PLIBASE or SIBMBASE library.

If z/OS Debugger cannot find the listing at this location, see “Changing which file appears in the
Source window” on page 159.

After you have chosen the compiler options and suboptions, see Chapter 4, “Planning your debug
session,” on page 25 to determine the next task you must complete.

36 IBM z/OS Debugger: User's Guide

Table 10. Description of the effects that the PL/I NOTEST compiler option and the TEST compiler
suboptions have on z/0S Debugger.

Name of compiler
option or suboption

Description of the effect

NOTEST

Some behaviors or features change when you debug a PL/I program compiled
with the NOTEST compiler option. The following list describes these changes:

» You can list storage and registers.

» You can include calls to PLITEST or CEETEST in your program so you can
suspend running your program and issue z/OS Debugger commands.

» You cannot step through program statements. You can suspend running
your program only at the initialization of the main compile unit.

» You cannot examine or use any program variables.

« Because hooks at the statement level are not inserted, you cannot set
any statement breakpoints or use commands such as GOTO or QUERY
LOCATION.

» The source listing produced by the compiler cannot be used; therefore, no
listing is available during a debug session.

However, you can still debug your program using the disassembly view.
To learn how to use the disassembly view, see Chapter 35, “Debugging a
disassembled program,” on page 331.

NOHOOK

Some behaviors or features change when you debug a PL/I program compiled
with the NOHOOK suboption of the TEST compiler option. The following list
describes these changes:

» For z/OS Debugger to generate overlay hooks, one of the suboptions ALL,
PATH, STMT or BLOCK must be in effect, but HOOK need not be specified,
and NOHOOK would be recommended.

» If NOHOOK is specified, ENTRY and EXIT breakpoints are the only PATH
breakpoints at which z/OS Debugger stops.

NONE

When you compile a PL/I program with the NONE suboption of the TEST
compiler option, you can start z/OS Debugger at any point in your program by
writing a call to PLITEST or CEETEST in your program.

SYM

Some behaviors or features change when you debug a PL/I program compiled
with the SYM suboption of the TEST compiler option. The following list
describes these changes:

 You can reference all program variables by name, which allows you to
examine them or use them in expressions and use the DATA parameter of
the PLAYBACK ENABLE command.

» Enables support for the SET AUTOMONITOR ON command.
» Enables the support for labels as GOTO targets.

Chapter 4. Planning your debug session 37

Table 10. Description of the effects that the PL/I NOTEST compiler option and the TEST compiler
suboptions have on z/0S Debugger. (continued)

Name of compiler
option or suboption

Description of the effect

NOSYM

Some behaviors or features change when you debug a PL/I program compiled
with the NOSYM suboption of the TEST compiler option. The following list
describes these changes:

» You cannot reference program variables by name.

« You cannot use commands such as LIST or DESCRIBE to access a variable
or expression.

« You cannot use commands such as CALL variable to branch to another
program, or GOTO to branch to another label (procedure or block name).

BLOCK

Some behaviors or features change when you debug a PL/I program compiled
with the BLOCK suboption of the TEST compiler option. The following list
describes these changes:

» Enables z/OS Debugger to gain control at block boundaries: block entry and
block exit.

« When Dynamic Debug is not active and you use the HOOK compiler option,
you can gain control only at the entry and exit points of your program and
all entry and exit points of internal program blocks. When you enter the
STEP command, for example, your program runs until it reaches the next
block entry or exit point.

« When Dynamic Debug is active, you can set breakpoints at all statements
and step through your program.

» You cannot gain control at path points unless you also specify PATH.

» Acall to PLITEST or CEETEST can be used to start z/OS Debugger at any
point in your program.

» Hooks are not inserted into an empty ON-unit or an ON-unit consisting of a
single GOTO statement.

STMT

Some behaviors or features change when you debug a PL/I program compiled
with the STMT suboption of the TEST compiler option. The following list
describes these changes:

» You can set breakpoints at all statements and step through your program.

= z/OS Debugger cannot gain control at path points unless they are also at
statement boundaries, unless you also specify PATH.

« Branching to all statements and labels using the z/OS Debugger command
GOTO is allowed.

38 IBM z/0OS Debugger: User's Guide

Table 10. Description of the effects that the PL/I NOTEST compiler option and the TEST compiler
suboptions have on z/0S Debugger. (continued)

Name of compiler
option or suboption Description of the effect

ALL

Some behaviors or features change when you debug a PL/I program compiled
with the ALL suboption of the TEST compiler option. The following list
describes these changes:

» You can set breakpoints at all statements and path points, and STEP
through your program.

» z/OS Debugger can gain control of the program at all statements, path
points, labels, and block entry and exit points, allowing you to enter z/OS
Debugger commands.

« Enables branching to statements and labels using the z/OS Debugger
command GOTO.

Refer to the following topics for more information related to the material discussed in this topic.

Related references
Description of the TEST compiler option in Enterprise PL/I for z/0S Programming Guide.

Choosing TEST or DEBUG compiler suboptions for C programs

This topic describes the combination of TEST or DEBUG compiler options and suboptions you need to
specify to obtain the desired debugging scenario. This topic assumes you are compiling your C program
with z/OS C/C++, Version 1.6, or later; however, the topics provide information about alternatives to use
for older versions of the C compiler.

Choosing between TEST and DEBUG compiler options

I

f you are compiling with z/OS C/C++, Version 1.5 or earlier, you must choose the TEST compiler option.

The C/C++ compiler option DEBUG was introduced with z/OS C/C++ Version 1.5. z/OS Debugger supports

t

he DEBUG compiler option in z/OS C/C++ Version 1.6 or later. The DEBUG compiler option replaces the

TEST compiler option that was available with previous versions of the compiler.

I

f you are compiling with z/OS C/C++, Version 1.6 or later, choose the DEBUG compiler option and take

advantage of the following benefits:

For C++ programs, you can specify the HOOK (NOBLOCK) compiler option, which can improve debug
performance.

For C and C++ programs, if you specify the FORMAT (DWARF) suboption of the DEBUG compiler option,
the load modules are smaller; however, you must save the . dbg file in addition to the source file. z/OS
Debugger needs both of these files to debug your program.

For C and C++ programs compiled with z/OS XL C/C++, Version 1.10 or later, if you specify the
FORMAT (DWARF) suboption of the DEBUG compiler option, the load modules are smaller and you can
create .mdbg files with captured source. z/OS Debugger needs only the . mdbg file to debug your
program.

For C and C++ programs compiled with z/OS XL C/C++, Version 2.3 or later, if you specify the

FORMAT (DWARF) and NOFILE suboptions of the DEBUG compiler option, along with the compiler option
GOFF, the program objects are larger but you do not need to save the . dbg file. z/OS Debugger needs
only the source file to debug your program.

Chapter 4. Planning your debug session 39

Choosing DEBUG compiler suboptions for C programs

This topic describes the debugging scenarios available, and how to create a particular debugging scenario
by choosing the correct DEBUG compiler suboptions.

The C compiler provides the DEBUG compiler option and its suboptions to control the following actions:

« The generation and placement of hooks and symbol tables.
« The placement of debug information into the object file or separate debug file.

z/0OS Debugger does not support debugging optimized C programs. Do not use any OPTIMIZE compiler
options other than NOOPTIMIZE or OPTIMIZE(O).

The following instructions help you choose the combination of DEBUG compiler suboptions that provide
the functionality you need to debug your program:

1. Choose a debugging scenario, keeping in mind your site's resources, from the following list:

« Scenario A: To get the most z/OS Debugger functionality, a smaller program size, and better
performance, use one of the following combinations:

DEBUG (FORMAT (DWARF) , HOOK (LINE, NOBLOCK, PATH) ,SYMBOL ,FILE(file_location))

The compiler options are the same whether you use only .dbg files or also use .mdbg files.

« Scenario B: To get all z/OS Debugger functionality but have a larger program size and do not want the
debug information in a separate file, use the following combination:

DEBUG (FORMAT (ISD) ,HOOK(LINE,NOBLOCK,PATH) ,SYMBOL)

Scenario C: You can get some z/0S Debugger functionality by compiling with the NODEBUG compiler
option. This requires that you debug your program in disassembly mode.

Scenario D: If you are compiling with z/OS C/C++ Version 2.3 or later, use the following combination
to get the most z/OS Debugger functionality with no separate file for the debug information:

DEBUG (FORMAT (DWARF) ,NOFILE,HOOK(LINE,NOBLOCK,PATH),SYMBOL) GOFF

The debug data does not increase the size of the loaded program. The size of the program object
increases but not the footprint in memory, unless it is required to load the debug data when you are
debugging a program. The debug data always matches the executable and is always available, so
there is no need to search the lists of data sets.

For all scenarios, if you are using Application Delivery Foundation for z/OS tools, see topic z/0S

XL C and C++ programs in IBM Application Delivery Foundation for z/0S Common Components
Customization Guide and User Guide to make sure you specify all the compiler options you need to
create the files needed by all the Application Delivery Foundation for z/OS tools.

2. For the scenario you selected, verify that you have the following resources:
 For scenario A, do the following tasks:
— If you create an .mdbg file, do the following tasks:

a. Specify YES for the EQAOPTS MDBG command (which requires z/OS Debugger to search for
a .dbg file in a .mdbg file)2.

b. Verify that the .dbg files are non-temporary files.

c. Create the .mdbg file with captured source by using the -c option for the dbgld command or the
CAPSRC option on the CDADBGLD utility.

d. Verify that the .mdbg file is a non-temporary file.

2 In situations where you can specify environment variables, you can set the environment variable
EQA_USE_MDBG to YES or NO, which overrides any setting (including the default setting) of the EQAOPTS
MDBG command.

40 IBM z/OS Debugger: User's Guide

— If you use only .dbg files, verify that the .dbg files are non-temporary files and specify NO for the
EQAOPTS MDBG commands3.

« For scenario C, do the following steps:

a. If you are running on z/OS Version 1.6 or Version 1.7, verify that Language Environment PTF for
APAR PK12833 is installed.

b. If you use the Dynamic Debug facility to place hooks into programs that reside in read-only
storage, verify with your system administrator that the Authorized Debug facility has been
installed and that you are authorized to use it.

c. After you start z/OS Debugger, verify that you have not deactivated the Dynamic Debug facility by
entering the QUERY DYNDEBUG command.

3. Verify whether you need to do any of the following tasks:

« You can specify any combination of the C DEBUG suboptions in any order. The default suboptions are
BLOCK, LINE, PATH, and SYMBOL.

« When you compile a program, do not associate SYSIN with an in-stream data set (for example //
SYSIN DD *) because z/0OS Debugger requires access to a permanent data set for the source of the
program you are debugging.

« z/OS Debugger does not support the LP64 compiler option. You must specify or have in effect the
ILP32 compiler option.

« If you specify the OPTIMIZE compiler option with a level higher than 0, then no hooks are generated
for line, block or path points, and no symbol table is generated. Only hooks for function entry and exit
points are generated for optimized programs. The TEST compiler option has the same restriction.

« You cannot call user-defined functions from the command line.
Refer to the following topics for more information related to the material discussed in this topic.

Related references
Description of the DEBUG compiler option in z/0S XL C/C++ User's Guide

Choosing TEST or NOTEST compiler suboptions for C programs

This topic describes the debugging scenarios available, and how to create a particular debugging scenario
by choosing the correct TEST compiler suboptions.

The C compiler provides the TEST compiler option and its suboptions to control the generation and
placement of hooks and symbol tables.

z/0OS Debugger does not support debugging optimized C programs. Do not use compiler options other
than NOOPTIMIZE,

The following instructions help you choose the combination of TEST compiler suboptions that provide the
functionality you need to debug your program:

1. Choose a debugging scenario, keeping in mind your site's resources, from the following list:

 Scenario A: To get all z/OS Debugger functionality but have a larger program size (compared to using
DEBUG (FORMAT (DWARF))), use TEST (ALL,HOOK, SYMBOL).

« Scenario B: You can get some z/0S Debugger functionality by compiling with the NOTEST compiler
option. This requires that you debug your program in disassembly mode.

« Scenario C: If you are debugging programs running in ALCS, you must compile with the HOOK
suboption of the TEST compiler option.

For all scenarios, if you are using other Application Delivery Foundation for z/OS tools, see topic
z/0S XL C and C++ programs in IBM Application Delivery Foundation for z/0S Common Components

3 In situations where you can specify environment variables, you can set the environment variable
EQA_USE_MDBG to YES or NO, which overrides any setting (including the default setting) of the EQAOPTS
MDBG command.

Chapter 4. Planning your debug session 41

Customization Guide and User Guide to make sure you specify all the compiler options you need to
create the files needed by all the Application Delivery Foundation for z/OS tools.

2. For scenario B, do the following steps:

a. If you are running on z/0S Version 1.6 or Version 1.7, verify that Language Environment PTF for
APAR PK12833 is installed.

b. If you use the Dynamic Debug facility to place hooks into programs that reside in read-only storage,
verify with your system administrator that the Authorized Debug facility has been installed and that
you are authorized to use it.

c. After you start z/OS Debugger, verify that you have not deactivated the Dynamic Debug facility by
entering the SET DYNDEBUG OFF command.

3. Verify whether you need to do any of the following tasks:

« When you compile a program, do not associate SYSIN with an in-stream data set (for example //
SYSIN DD *) because z/0OS Debugger requires access to a permanent data set for the source of the
program you are debugging.

« If you are using #fpragma statements to specify your TEST or NOTEST compiler options, see
“Compiling your C program with the #pragma statement” on page 43.

« The C TEST compiler option implicitly specifies the GONUMBER compiler option, which causes the
compiler to generate line number tables that correspond to the input source file. You can explicitly
remove this option by specifying NOGONUMBER. When the TEST and NOGONUMBER options are
specified together, z/OS Debugger does not display the current execution line as you step through
your code.

» Programs that are compiled with both the TEST compiler option and either the OPT (1) or OPT(2)
compiler option do not have hooks at line, block, and path points, or generate a symbol table,
regardless of the TEST suboptions specified. Only hooks for function entry and exit points are
generated for optimized programs.

« You can specify any number of TEST suboptions, including conflicting suboptions (for example, both
PATH and NOPATH). The last suboptions that are specified take effect. For example, if you specify
TEST(BLOCK, NOBLOCK, BLOCK, NOLINE, LINE), what takes effectis TEST(BLOCK, LINE)
because BLOCK and LINE are specified last.

« No duplicate hooks are generated even if two similar TEST suboptions are specified. For example,
if you specify TEST(BLOCK, PATH), the BLOCK suboption causes the generation of hooks at entry
and exit points. The PATH suboption also causes the generation of hooks at entry and exit points.
However, only one hook is generated at each entry and exit point.

Table 11. Description of the effects that the C NOTEST compiler option and the TEST compiler suboptions
have on z/0OS Debugger.

Name of compiler
option or suboption Description of the effect

NOTEST

The following list explains the effect the NOTEST compiler option will have
on how z/0S Debugger behaves or the availability of features, which are not
described in z/0S XL C/C++ User's Guide:

» You cannot step through program statements. You can suspend execution
of the program only at the initialization of the main compile unit.

» You cannot examine or use any program variables.

 You can list storage and registers.

» You cannot use the z/OS Debugger command GOTO.

However, you can still debug your program using the disassembly view.

To learn how to use the disassembly view, see Chapter 35, “Debugging a
disassembled program,” on page 331.

42 IBM z/OS Debugger: User's Guide

Table 11. Description of the effects that the C NOTEST compiler option and the TEST compiler suboptions
have on z/0OS Debugger. (continued)

Name of compiler
option or suboption Description of the effect

TEST

The following list explains the effect some of the suboptions of the TEST
compiler option will have on how z/OS Debugger behaves or the availability of
features, which are not described in z/0S XL C/C++ User's Guide:

» The maximum number of lines in a single source file cannot exceed
131,072.

« The maximum number of include files that have executable statements
cannot exceed 1024.

NOSYM

The following list explains the effect the NOSYM suboption of the TEST
compiler option will have on how z/0OS Debugger behaves or the availability of
features, which are not described in z/0S XL C/C++ User's Guide.

« You cannot reference program variables by name.

« You cannot use commands such as LIST or DESCRIBE to access a variable
or expression.

« You cannot use commands such as CALL or GOTO to branch to another
label (paragraph or section name).

Refer to the following topics for more information related to the material discussed in this topic.

Related references
Description of the TEST compiler option in z/0S XL C/C++ User's Guide

Compiling your C program with the #pragma statement

The TEST/NOTEST compiler option can be specified either when you compile your program or directly in
your program, using a #fpragma.

This #fpragma must appear before any executable code in your program.

The following example generates symbol table information, symbol information for nested blocks, and
hooks at line numbers:

{#pragma options (test(SYM,BLOCK,LINE))

This is equivalent to TEST (SYM, BLOCK, LINE, PATH).

You can also use a #pragma to specify runtime options.

Delay debug mode for C requires the FUNCEVENT(ENTRYCALL) compiler
suboption

You must specify the FUNCEVENT (ENTRYCALL) compiler option when you compile your programs for
delay debug usage.
Usage notes:

« The FUNCEVENT (ENTRYCALL) compiler option is available in the z/OS 2.1 XL C/C++ compiler with the
PTF for APAR P119326 applied.

« The z/OS 2.1 Language Environment with the PTF for APAR PI12415 applied must be available on the
target system where the C programs are executed.

Chapter 4. Planning your debug session 43

« If your C application runs on UNIX System Services with imported functions from a DLL module and
you want to delay the starting of a debug session until one of those functions is called, the DLL module
name must be the same as the load library name.

Rules for the placement of hooks in functions and nested blocks

The following rules apply to the placement of hooks for getting in and out of functions and nested blocks:
« The hook for function entry is placed before any initialization or statements for the function.

- The hook for function exit is placed just before actual function return.

« The hook for nested block entry is placed before any statements or initialization for the block.
« The hook for nested block exit is placed after all statements for the block.

Refer to the following topics for more information related to the material discussed in this topic.

Related references
z/OS XL C/C++ User's Guide

Rules for placement of hooks in statements and path points
The following rules apply to the placement of hooks for statements and path points:

« Label hooks are placed before the code and all other statement or path point hooks for the statement.
« The statement hook is placed before the code and path point hook for the statement.
« A path point hook for a statement is placed before the code for the statement.

Refer to the following topics for more information related to the material discussed in this topic.

Related references
z/OS XL C/C++ User's Guide

Choosing TEST or DEBUG compiler suboptions for C++ programs

This topic describes the combination of TEST or DEBUG compiler options and suboptions you need to
specify to obtain the desired debugging scenario. This topic assumes you are compiling your C++ program
with z/OS C/C++, Version 1.6, or later; however, the topics provide information about alternatives to use
for older versions of the C++ compiler.

Choosing between TEST and DEBUG compiler options
If you are compiling with z/OS C/C++, Version 1.5 or earlier, you must choose the TEST compiler option.

The C/C++ compiler option DEBUG was introduced with z/OS C/C++ Version 1.5. z/OS Debugger supports
the DEBUG compiler option in z/OS C/C++ Version 1.6 or later. The DEBUG compiler option replaces the
TEST compiler option that was available with previous versions of the compiler.

If you are compiling with z/OS C/C++, Version 1.6 or later, choose the DEBUG compiler option and take
advantage of the following benefits:

« For C++ programs, you can specify the HOOK (NOBLOCK) compiler option, which can improve debug
performance.

« For C and C++ programes, if you specify the FORMAT (DWARF) suboption of the DEBUG compiler option,
the load modules are smaller; however, you must save the . dbg file in addition to the source file. z/0OS
Debugger needs both of these files to debug your program.

e For C and C++ programs compiled with z/OS XL C/C++, Version 1.10 or later, if you specify the
FORMAT (DWARF) suboption of the DEBUG compiler option, the load modules are smaller and you can
create .mdbg files with captured source. z/OS Debugger needs only the . mdbg file to debug your
program.

« For C and C++ programs compiled with z/OS XL C/C++, Version 2.3 or later, if you specify the
FORMAT (DWARF) and NOFILE suboptions of the DEBUG compiler option, along with the compiler option

44 1BM z/0OS Debugger: User's Guide

GOFF, the program objects are larger but you do not need to save the . dbg file. z/OS Debugger needs
only the source file to debug your program.

Choosing DEBUG compiler suboptions for C++ programs

This topic describes the debugging scenarios available, and how to create a particular debugging scenario
by choosing the correct DEBUG compiler suboptions.

The C++ compiler provides the DEBUG compiler option and its suboptions to control the following actions:

« The generation and placement of hooks and symbol tables.
« The placement of debug information into the object file or separate debug file.

z/0OS Debugger does not support debugging optimized C programs. Do not use any OPTIMIZE compiler
options other than NOOPTIMIZE or OPTIMIZE(O).

The following instructions help you choose the combination of DEBUG compiler suboptions that provide
the functionality you need to debug your program:

1. Choose a debugging scenario, keeping in mind your site's resources, from the following list:

« Scenario A: To get the most z/OS Debugger functionality, a smaller program size, and better
performance, use one of the following combinations:

DEBUG (FORMAT (DWARF) , HOOK (LINE, NOBLOCK, PATH) ,SYMBOL ,FILE(file_location))

The compiler options are the same whether you use only .dbg files or also use .mdbg files.

« Scenario B: To get all z/OS Debugger functionality but have a larger program size and do not want the
debug information in a separate file, use the following combination:

DEBUG (FORMAT (ISD) , HOOK (LINE, NOBLOCK, PATH) , SYMBOL)

« Scenario C: You can get some z/0OS Debugger functionality by compiling with the NODEBUG compiler
option. This requires that you debug your program in disassembly mode.

« Scenario D: If you are compiling with z/OS C/C++ Version 2.3 or later, use the following combination
to get the most z/OS Debugger functionality with no separate file for the debug information:

DEBUG (FORMAT (DWARF) ,NOFILE,HOOK(LINE,NOBLOCK,PATH),SYMBOL) GOFF

The debug data does not increase the size of the loaded program. The size of the program object
increases but not the footprint in memory, unless it is required to load the debug data when you are
debugging a program. The debug data always matches the executable and is always available, so
there is no need to search the lists of data sets.

For all scenarios, if you are using other Application Delivery Foundation for z/OS tools, see IBM
Application Delivery Foundation for z/70S Common Components Customization Guide and User Guide
to make sure you specify all the compiler options you need to create the files needed by all the
Application Delivery Foundation for z/OS tools.

2. For the scenario you selected, verify that you have the following resources:
 For scenario A, do the following tasks:
— If you create an .mdbg file, do the following tasks:

a. Specify YES for the EQAOPTS MDBG command (which requires z/OS Debugger to search for
a .dbg file in a .mdbg file)?.

b. Verify that the .dbg files are non-temporary files.

4 In situations where you can specify environment variables, you can set the environment variable
EQA_USE_MDBG to YES or NO, which overrides any setting (including the default setting) of the EQAOPTS
MDBG command.

Chapter 4. Planning your debug session 45

c. Create the .mdbg file with captured source by using the -c option for the dbgld command or the
CAPSRC option on the CDADBGLD utility.

d. Verify that the .mdbg file is a non-temporary file.

— If you use only .dbg files, verify that the .dbg files are non-temporary files and specify NO for the
EQAOPTS MDBG command®.

 For scenario C, do the following steps:
a. If you are running on z/OS Version 1.6 or Version 1.7, verify that Language Environment PTF for
APAR PK12833 is installed.

b. If you use the Dynamic Debug facility to place hooks into programs that reside in read-only
storage, verify with your system administrator that you are authorized to do so

c. After you start z/OS Debugger, verify that you have not deactivated the Dynamic Debug facility by
entering the QUERY DYNDEBUG command.

3. Verify whether you need to do any of the following tasks:
« You can specify any combination of the C++ DEBUG suboptions in any order. The default suboptions
are BLOCK, LINE, PATH, and SYM.

« When you compile a program, do not associate SYSIN with an in-stream data set (for example //
SYSIN DD *) because z/0OS Debugger requires access to a permanent data set for the source of the
program you are debugging.

« z/OS Debugger does not support the LP64 compiler option. You must specify or have in effect the
ILP32 compiler option.

- If you specify the OPTIMIZE compiler option with a level higher than 0, then no hooks are generated
for line, block or path points, and no symbol table is generated. Only hooks for function entry and exit
points are generated for optimized programs. The TEST compiler option has the same restriction.

« You cannot call user defined functions from the command line.

After you have chosen the compiler options and suboptions, see Chapter 4, “Planning your debug
session,” on page 25 to determine the next task you must complete.

Refer to the following topics for more information related to the material discussed in this topic.

Related references
Description of the DEBUG compiler option in z/0S XL C/C++ User's Guide

Choosing TEST or NOTEST compiler options for C++ programs

This topic describes the debugging scenarios available, and how to create a particular debugging scenario
by choosing the correct TEST compiler suboptions.

The C++ compiler provides the TEST compiler option and its suboptions to control the generation and
placement of hooks and symbol tables.

z/0S Debugger does not support debugging optimized C++ programs. Do not use compiler options other
than NOOPTIMIZE,

The following instructions help you choose the combination of TEST compiler suboptions that provide the
functionality you need to debug your program:

1. Choose a debugging scenario, keeping in mind your site's resources, from the following list:

« Scenario A: To get all z/OS Debugger functionality but have a larger program size (compared to using
DEBUG (FORMAT (DWARF))), use TEST.

« Scenario B: You can get some z/OS Debugger functionality by compiling with the NOTEST compiler
option. This requires that you debug your program in disassembly mode.

5 In situations where you can specify environment variables, you can set the environment variable
EQA_USE_MDBG to YES or NO, which overrides any setting (including the default setting) of the EQAOPTS
MDBG command.

46 IBM z/OS Debugger: User's Guide

 Scenario C: If you are debugging programs running in ALCS, you must compile with the HOOK
suboption of the TEST compiler option.

For all scenarios, if you are using other Application Delivery Foundation for z/OS tools, see IBM
Application Delivery Foundation for z/0S Common Components Customization Guide and User Guide
to make sure you specify all the compiler options you need to create the files needed by all the
Application Delivery Foundation for z/OS tools.

2. Verify whether you need to do any of the following tasks:

« When you compile a program, do not associate SYSIN with an in-stream data set (for example //
SYSIN DD *) because z/0OS Debugger requires access to a permanent data set for the source of the
program you are debugging.

e The C++ TEST compiler option implicitly specifies the GONUMBER compiler option, which causes
the compiler to generate line number tables that correspond to the input source file. You can
explicitly remove this option by specifying NOGONUMBER. When the TEST and NOGONUMBER options
are specified together, z/OS Debugger does not display the current execution line as you step
through your code.

« Programs that are compiled with both the TEST compiler option and either the OPT (1) or OPT(2)
compiler option do not have hooks at line, block, and path points, or generate a symbol table. Only
hooks for function entry and exit points are generated for optimized programs.

After you have chosen the compiler options and suboptions, see Chapter 4, “Planning your debug
session,” on page 25 to determine the next task you must complete.

Table 12. Description of the effects that the C++ NOTEST and TEST compiler option have on z/0S
Debugger.

Name of compiler
option or suboption Description of the effect

NOTEST

The following list explains the effect of the NOTEST compiler has on z/0S
Debugger behavior, which are not described in z/0S XL C/C++ User's Guide:

» You cannot step through program statements. You can suspend execution
of the program only at the initialization of the main compile unit.

» You cannot examine or use any program variables.

 You can list storage and registers.

» You cannot use the z/OS Debugger command GOTO.

However, you can still debug your program using the disassembly view.

To learn how to use the disassembly view, see Chapter 35, “Debugging a
disassembled program,” on page 331.

TEST

The following list explains the effect the TEST compiler has on z/0OS
Debugger behavior, which are not described in z/0S XL C/C++ User's Guide:

« The maximum number of lines in a single source file cannot exceed
131,072.

« The maximum number of include files that have executable statements
cannot exceed 1024.

Refer to the following topics for more information related to the material discussed in this topic.

Related references
Description of the TEST compiler option in z/0S XL C/C++ User's Guide

Chapter 4. Planning your debug session 47

Rules for the placement of hooks in functions and nested blocks
The following rules apply to the placement of hooks for functions and nested blocks:

« The hook for function entry is placed before any initialization or statements for the function.

« The hook for function exit is placed just before actual function return.

« The hook for nested block entry is placed before any statements or initialization for the block.
« The hook for nested block exit is placed after all statements for the block.

Refer to the following topics for more information related to the material discussed in this topic.

Related references
z/0S XL C/C++ User's Guide

Rules for the placement of hooks in statements and path points
The following rules apply to the placement of hooks for statements and path points:

« Label hooks are placed before the code and all other statement or path point hooks for the statement.
« The statement hook is placed before the code and path point hook for the statement.
« A path point hook for a statement is placed before the code for the statement.

Refer to the following topics for more information related to the material discussed in this topic.

Related references
z/OS XL C/C++ User's Guide

Understanding how hooks work and why you need them

Hooks enable you to set breakpoints. Hooks are instructions that can be inserted into a program by

a compiler at compile time. Hooks can be placed at the entrances and exits of blocks, at statement
boundaries, and at points in the program where program flow might change between statement
boundaries (called path points). If you compile a program with the TEST compiler option and specify any
suboption except NONE or NOHOOK, the compiler inserts hooks into your program (except for Enterprise
COBOL for z/OS Version 5, which never generates compiled in hooks).

How the Dynamic Debug facility can help you get maximum performance
without hooks

In the following situations, you can compile or create a program without hooks. Then, you can use the
Dynamic Debug facility to insert hooks at runtime whenever you set a breakpoint or enter the STEP
command:

« Assembler, disassembly, and LangX COBOL programs do not contain hooks.
« Enterprise COBOL for z/OS Version 5 always generates programs without hooks.

- If you use Enterprise COBOL for z/OS, Version 4, you can compile your programs without hooks by using
the TEST (NOHOOK) compiler option.

« If you use one of the following compilers, you can compile your programs without hooks by using the
TEST (NONE) compiler option:

— Enterprise COBOL for z/OS and 0S/390, Version 3
— COBOL for 0S/390 & VM, Version 2 Release 2
— COBOL for 0S/390 & VM, Version 2 Release 1, with APAR PQ40298

« If you use the Enterprise PL/I for z/OS, Version 3.4 or later, compiler, you can compile your programs
without hooks by using the TEST (NOHOOK) compiler option.

The Dynamic Debug facility can also help improve the performance of z/OS Debugger while debugging
programs compiled with any of the following compilers:

48 IBM z/0OS Debugger: User's Guide

- any COBOL compiler supported by z/OS Debugger
« any PL/I compiler supported by z/OS Debugger
« any C/C++ compiler supported by z/OS Debugger

When you compile with one the following compilers and have the compiler insert hooks, you can enhance
the program's performance while you debug it by using the Dynamic Debug facility:

« any COBOL compiler supported by z/OS Debugger
« any PL/I compiler supported by z/OS Debugger
« any C/C++ compiler supported by z/OS Debugger

When you start z/OS Debugger, the Dynamic Debug facility is activated unless you change the default by
using the DYNDEBUG EQAOPTS command. If the DYNDEBUG EQAOPTS command was used to change the
default to DYNDEBUG OFF, you can activate it by using the SET DYNDEBUG ON z/OS Debugger command.
Note that the SET DYNDEBUG ON z/OS Debugger command must be issued before you enter the STEP or
GO command. If the Dynamic Debug facility is not active, z/OS Debugger uses the hooks inserted by the
compiler, instead of the hooks inserted by the Dynamic Debug facility.

Understanding what symbol tables do and why saving them elsewhere can
make your application smaller
The symbol table contains descriptions of variables, their attributes, and their location in storage. z/OS
Debugger uses these descriptions when it references variables. The symbol tables can be stored in the

object file of the program or in a separate debug file. You can save symbol tables in a separate debug file if
you compile or assemble your programs with one of the following compilers or assemble:

« Enterprise COBOL for z/OS, Version 4

« Enterprise COBOL for z/OS and 0S/390, Version 3

« COBOL for 0S/390 & VM, Version 2 Release 2

« COBOL for 0S5/390 & VM, Version 2 Release 1 with APAR PQ40298
- OS/VS COBOL Version 1, Release 2.4

« Enterprise PL/I for z/OS, Version 3 Release 5 or later

« High Level Assembler for MVS & VM & VSE, Release 4 or later

Saving symbol tables in a separate debug file can reduce the size of the load module for your program.

For C and C++ programs, debug tables can be saved in a separate debug file (.dbg file) by specifying the
FORMAT (DWARF) suboption of the DEBUG compiler option. z/OS Debugger supports the DEBUG compiler
option shipped with z/OS C/C++ Version 1.6 or later.

Programs compiled with the Enterprise COBOL for z/OS Version 5 compiler, Version 6 Release 1 compiler
or Version 6 Release 2 and above compiler with the TEST (NOSEPARATE) compiler option have all of their
debug information (including the symbol table) stored in a NOLOAD segment of the program object. This
segment is only loaded into memory when you are debugging the program object.

Choosing a debugging mode

Use the following list to determine which debugging mode to use for your programs:

For TSO programs
Choose full-screen mode. If you want to use a supported remote debugger, choose remote debug
mode.

For JES batch programs
If you want to interact with your batch program, choose full-screen mode using the Terminal Interface
Manager. If you want to interact with your batch program using a supported remote debugger, choose
remote debug mode. If you don't want to interact with your batch program, use batch mode and
specify commands through a commands file and review results in a log file.

Chapter 4. Planning your debug session 49

For UNIX System Services programs
Choose full-screen mode using the Terminal Interface Manager. If you want to use a supported
remote debugger, choose remote debug mode.

For CICS programs
If you want to interact with z/OS Debugger on a 3270 device, choose full-screen mode and one of the
following terminal modes:

« Single terminal mode: The application program and z/OS Debugger share the same terminal. Use
this terminal mode to debug a transaction that interacts with a 3270 terminal. When you create your
CADP or DTCN profile, set the Display Device to the terminal ID that the application program uses.

« Screen control mode: z/OS Debugger displays its screens on a terminal running the DTSC
transaction.

If you use screen control mode, the DTSC transaction runs in the same region as your application
program on a terminal of your choice, and displays z/OS Debugger screens on behalf of the task you
are debugging, which might not have its own terminal.

Use screen control mode to debug application programs which are not typically associated with a
terminal, and which are running in an MRO environment.

Screen control mode works in the following manner:

1. Enter DTSC on the terminal that you want to use to display z/OS Debugger. This terminal can be
connected directly to the region where the application program runs, or connected to the region
with CRTE or Transaction Routing. If you use Transaction Routing, you must ensure that DTSC
runs in the same region as the application program using it.

2. Set the Display Device in your DTCN or CADP profile to the terminal running the DTSC
transaction.

3. Start the application program.
4. Press Enter on the terminal running the DTSC transaction to connect to z/OS Debugger.

 Separate terminal mode (formerly called Dual Terminal Mode): z/OS Debugger dynamically starts
the CDT# transaction on a terminal.

Use separate terminal mode to debug application programs which are not typically associated with
a terminal, and your terminal is connected directly to the region running your application program.

Separate terminal mode works in the following manner:

1. Set the Display Device in your DTCN or CADP profile to an available terminal and that terminal
can be located by the CICS region running z/OS Debugger.

2. Start the application program.

If you want to debug your program with a remote debugger, select remote debug mode. Make note of
the TCP/IP address of your remote debugger because you will need it when you update your CADP or
DTCN profile.

If you do not use single terminal mode and your program sends a screen to the terminal without the
WAIT option, CICS Terminal Control holds that screen until the program runs an EXEC CICS SEND or
EXEC CICS RECEIVE statement.

If you want to debug programs that use Distributed Program Link (DPL), you can select one of the
following debugging modes:

« Select remote debug mode and use the remote debugger to debug both the DPL client and DPL
server.

« Select full screen mode and use two 3270 terminals, one for the DPL client and one for the DPL
server.

You can connect the 3270 terminal to the DPL server in one of the following ways:

— Directly to the server region.
— To the client region. If you choose this option, use one of the following terminal modes:

50 IBM z/OS Debugger: User's Guide

- Screen Control Mode with DTSC running on a terminal that is connected to the server with CRTE

- Separate Terminal Mode with the terminal connected to the client region and configure the
server region so that it looks for the terminal in the client region. To configure the server region,
see "Separate terminal mode terminal connects to a TOR and application runs in an AOR" in the
IBM z/0S Debugger Customization Guide.

For Db2 programs
Choose full-screen mode using the Terminal Interface Manager. If you want to use a supported
remote debugger, choose remote debug mode.

For Db2 Stored Procedures
Choose full-screen mode using the Terminal Interface Manager. If you want to use a supported
remote debugger, choose remote debug mode.

For IMS TM programs
Choose full-screen mode using the Terminal Interface Manager. If you want to use a supported
remote debugger, choose remote debug mode.

For IMS batch programs
If you want to interact with your IMS batch programs, choose full-screen mode using the Terminal
Interface Manager. If you want to interact with your IMS batch programs with a supported remote
debugger, choose remote debug mode. If you do not want to interact with your IMS batch program,
choose batch mode and specify commands through a commands file and review results in a log file.

For IMS BTS programs
If you want your program and your debugging session to run on a single screen, choose full-screen
mode. If you want your BTS data to display on your TSO terminal and your debugging session to
display on another terminal, choose full-screen mode using the Terminal Interface Manager. If you
want your BTS data to display on your TSO terminal and your debugging session to display on a
supported remote debugger, choose remote debug mode.

For ALCS programs
You must choose remote debug mode.

Refer to the following topics for more information related to the material discussed in this topic.

Related references
IMS/VS Batch Terminal Simulator Program Reference and Operations Manual

Debugging in browse mode

When you debug in some production environments, it might be necessary to restrict your ability to change
storage contents and execution flow. Debugging in browse mode enables you to debug your programs
while restricting your ability to change storage contents and execution flow. z/OS Debugger uses the
RACF® authority of the current user, an EQAOPTS command, or both to determine whether to operate in
browse mode.

When you debug in browse mode, you can not do the following actions:

« Modify the contents of memory or registers
« Alter the sequence of program execution

You can use the QUERY BROWSE MODE command to determine if browse mode is active.

For information on how to install and control browse mode, see IBM z/0S Debugger Customization Guide.

Browse mode debugging in full screen, line, and batch mode

If you are debugging in full screen, line, or batch mode; browse mode is active; and you enter any of the
following commands, z/OS Debugger displays a message that the command is not permitted in browse
mode:

« ALLOCATE command
- Assignment command (assembler and disassembly)

Chapter 4. Planning your debug session 51

« Assignment command (LangX COBOL)
« Assignment command (PL/I)

« CALL 9%CECI command

« CALL entry_name (COBOL)
« CALL %FMcommand

« CALL 9%HOGAN command

« CLEAR LOG command

« COMPUTE command

- FREE command

- GO BYPASS command

« GOTO command

« GOTO LABEL command

« INPUT command

« JUMPTO command

« JUMPTO LABEL command

« MEMORY command (z/OS Debugger displays the Memory window, but you cannot modify anything)
« MOVE command

« QUIT command

« QUIT expression command
* QQUIT command

« SET INTERCEPT command

« SET command (COBOL)

« STORAGE command

« SYSTEM command

e TRIGGER command

« TSO command

If you enter a command with an expression or condition that might alter any storage, register, or similar
data, or the command invokes any user-written function or alters the sequence of execution, z/OS
Debugger displays a message that the command is not permitted in browse mode:

« do/while

« DO command (PL/I)

« EVALUATE command (COBOL)

« expression command (C and C++)
« for command (C and C++)

e %IF command

« IF command

e LIST expression command

« switch command

« while command

Browse mode debugging in remote debug mode

When you use the remote debugger and browse mode is active, the remote debugger does not allow you
to do the following actions:

« JumpTo Location — Source window RMB action

52 IBM z/0OS Debugger: User's Guide

- Change Value — Expression, Variable, and Registers RMB action
- Typing over memory in the Memory window

In addition, the remote debugger enforces following restrictions:

« Change Value — the remote debugger does not allow Registers RMB action and displays an error
message

« Terminate Button — the program terminates with an abend (instead, click on Disconnect to continue
running the program without the debugger)

Also, the remote debugger does not allow you to enter the following Debug Console commands:
« JUMPTO (and JUMPTO in the Action field of the Add a Breakpoint window)

« SET INTERCEPT

« QUIT

If an abend occurs while debugging in remote debug mode and browse mode is active, the remote
debugger does not give you any continuation options. You can not continue program execution after the
abend occurs.

Controlling browse mode

Browse mode can be controlled (activated or deactivated) by changing RACF access, specifying the
EQAOPTS BROWSE command, both of these, or neither of these. To control browse mode through RACF
access, change your RACF access to the following RACF Facilities:

« For CICS: EQADTOOL.BROWSE.CICS
» For non-CICS: EQADTOOL.BROWSE.MVS

To control browse mode through an EQAOPTS command, specify either ON or OFF for the EQAOPTS
BROWSE command.

The following table shows how combinations of these control methods (by RACF access or by the
EQAOPTS BROWSE command) can activate or deactivate browse mode. For instructions using these
controls see IBM z/0S Debugger Customization Guide.

Table 13. How different combinations of RACF access and the EQAOPTS BROWSE command activate or
deactivate browse mode.

Setting of the EQAOPTS BROWSE command

Not set (use RACF ON OFF
status)

Status of RACF access

facility (access) not
defined

normal mode (browse
mode is not active)

browse mode is active

normal mode

ACCESS=NONE

Cannot use z/0S
Debugger

Cannot use z/0S
Debugger

Cannot use z/0S
Debugger

ACCESS=READ

browse mode is active

browse mode is active

browse mode is active

normal mode

browse mode is active

normal mode

ACCESS=UPDATE (or
higher)

Choosing a method or methods for starting z/0S Debugger

Table 14 on page 54 indicates that there are several different methods to start z/OS Debugger for each
type of program. In this topic, you will read about the circumstances in which each applicable method
works for each type of program. Then you can select which method would work best for your site. After
you complete this topic, you will have selected the methods that work best for your programs.

Chapter 4. Planning your debug session 53

Table 14. Methods for specifying the TEST runtime options and the subsystems that support these methods.
UNIX Db2 stored Db2 stored
System procedures procedures IMS
Services (PROGRAM (PROGRAM batc | IMS
TSO JESbatch |1 CICS Db2 TYPE=MAIN) TYPE=SUB) IMSTM | h BTS
Use the DFSBXITA user exit X X X
Use the CADP transaction X
Use the DTCN transaction X
Use the Db2 catalog x3 X
From within a program by coding a call to X X X X X X X X X X
CEETEST, __ctest(), or PLITEST
Through CEEUOPT or CEEROPT X X X x2 X2 x2:3 X X X
Use the CEEOPTS DD statement in JCL or X X X X X X
CEEOPTS allocation in TSO
Use the parameters on the EXEC statement X
when you start your program
Use the parameters on the RUN statement when X
you start your program
Use the parameters on the CALL statement X
when you start your program
Through the EQASET transaction? x4
Through the EQANMDBG program?® X5 x5 x5 | x5
Use the EQAD3CXT user exit routine X X X X X X
Note:
1. Go programs only run under UNIX System Services, with the following limitations:
« __ctest() might not work as expected when cgo is in use.
« CEEOPTS allocation cannot be used.
2. You cannot use CEEROPT to specify TEST runtime options.
3. The Db2 catalog method always takes precedence over CEEUOPT.
4. This method is only for non-Language Environment assembler programs.
5. This method is only for non-Language Environment programs.
6. This method is only for Db2 stored procedures invoked with the call_sub function.
7. EQAD3CXT also supports Db2 stored procedures (PROGRAM TYPE=SUB) if you set the RRTN_SW flag as x'01".

For each subsystem, Table 14 on page 54 shows that you can choose from several different methods of
specifying the TEST runtime options. The following list can help you select the method that best applies
to your situation, ordered by flexibility and convenience:

For TSO programs

 For programs that start in Language Environment, specify the TEST runtime options using the
CEEOPTS allocation in TSO for the most flexible method of specifying the runtime options.

- Specify the TEST runtime options using the parameters on the CALL statement if you have a small
number of runtime options or need to invoke EQANMDBG for a non-Language Environment program.

« If you specify the TEST runtime options by coding a call to CEETEST, __ctest(), or PLITEST, you will
have to recompile your program every time you want to change the options.

For JES batch programs

 For programs that start in Language Environment, specify the TEST runtime options using the
CEEOPTS DD statement in your JCL for the most flexible method of specifying runtime options.

« Specify the TEST runtime options using the parameters on the EXEC statement option if you have
a small number of runtime options or need to invoke EQANMDBG for a non-Language Environment
program.

« If you specify the TEST runtime options by coding a call to CEETEST, __ctest(), or PLITEST, you will
have to recompile your program every time you want to change the options.

54 IBM z/0OS Debugger: User's Guide

For UNIX System Services programs

« Specify the TEST runtime options by setting the _CEE_RUNOPTS environment variable.
« If you specify the TEST runtime options by coding a call to CEETEST, __ctest(), or PLITEST, you will
have to recompile your program every time you want to change the options.

For CICS programs

« Specify the TEST runtime options using either the DTCN or CADP transaction to create and store a
profile that contains the TEST runtime options.

« If you specify the TEST runtime options by coding a call to CEETEST, __ctest(), or PLITEST, you will
have to recompile your program every time you want to change the options.

For Db2 programs

« Specify the TEST runtime options using the CEEOPTS DD statement in JCL or CEEOPTS allocation in
TSO for the most flexible method of specifying runtime options.

« Specify the TEST runtime options using the parameters on the RUN statement option if you have a
small number of runtime options.

« If you specify the TEST runtime options by coding a call to CEETEST, __ctest(), or PLITEST, you will
have to recompile your program every time you want to change the options.

For Db2 stored procedures that have the PROGRAM TYPE of MAIN

« Specify the TEST runtime options using the Language Environment EQAD3CXT user exit routine. You
can run the stored procedure with your own set of suboptions. Another user can run or debug the
stored procedure with a separate set of suboptions. Therefore, multiple users can run or debug the
stored procedure at the same time.

- If the exit routine is not available at your site, specify the TEST runtime options using the Db2
catalog. However, you are limited to specifying one specific set of suboptions, which means that
every user that runs or debugs that stored procedure uses the same set of suboptions.

If you implement both methods, the Language Environment exit routine takes precedence over the
Db2 catalog.

For Db2 stored procedures that have the PROGRAM TYPE of SUB

 For programs invoked with the call_sub function, specify the TEST runtime options using the
Language Environment EQAD3CXT exit routine. You can run or debug the Db2 stored procedure with
your own set of suboptions, while another user can run or debug the Db2 stored procedure with a
separate set of suboptions.

- If the exit routine is not available at your site, specify the TEST runtime options using the Db2
catalog. You are limited to specifying one set of suboptions, which means that every user that runs
or debugs that stored procedure uses the same set of suboptions.

If you implement both methods, the Language Environment exit routine takes precedence over the
Db2 catalog.

For programs invoked by any other method, specify the TEST runtime options using the Db2 catalog.
You are limited to specifying one set of suboptions, which means that every user that runs or debugs
that stored procedure uses the same set of suboptions.

For IMS TM programs

« Specify the TEST runtime options using the Language Environment EQAD3CXT user exit routine.

« If your program is a non-Language Environment program, issue the EQASET transaction to setup
your debugging preference.

Chapter 4. Planning your debug session 55

If the EQAD3CXT user exit routine is not available at your site, specify the TEST runtime options
using the DFSBXITA user exit routine.

If the EQAD3CXT or DFSBXITA user exit routines are not available at your site, specify the TEST
runtime options using CEEUOPT or CEEROPT.

If none of the previous options is available at your site, specify the TEST runtime options by coding a
call to CEETEST, __ctest(), or PLITEST. However, you will have to recompile your program every time
you want to change the options.

For IMS batch programs

For programs that start in Language Environment, specify the TEST runtime options using the
CEEOPTS allocation in JCL because this method can be the most flexible method.

Specify the TEST runtime options using the EQAD3CXT user exit routine.

If your program is a non-Language Environment program, use the EQANMDBG program to start your
debugging session.

If the EQAD3CXT user exit routine is not available at your site, specify the TEST runtime
options using the DFSBXITA user exit routine; however, you must specify PROGRAM rather than
TRANSACTION.

If the EQAD3CXT or DFSBXITA user exit routines are not available at your site, specify the TEST
runtime options using CEEUOPT or CEEROPT.

If none of the previous options is available at your site, specify the TEST runtime options by coding a
call to CEETEST, __ctest(), or PLITEST. However, you will have to recompile your program every time
you want to change the options.

For IMS BTS programs

For programs that start in Language Environment, specify the TEST runtime options using the
CEEOPTS allocation in JCL because this method can be the most flexible method.

Specify the TEST runtime options using the EQAD3CXT user exit routine.

If your program is a non-Language Environment program, use the EQANIAFE application front-
end program to start your debug session. For more information, see “Debugging non-Language
Environment IMS BTS programs” on page 344.

If the EQAD3CXT user exit routine is not available at your site, specify the TEST runtime options
using the DFSBXITA user exit routine.

If the EQAD3CXT or DFSBXITA user exit routines are not available at your site, specify the TEST
runtime options using CEEUOPT or CEEROPT.

If none of the previous options is available at your site, specify the TEST runtime options by coding a
call to CEETEST, __ctest(), or PLITEST. However, you will have to recompile your program every time
you want to change the options.

After you have identified the method or methods you will use to start z/OS Debugger, see Chapter 4,
“Planning your debug session,” on page 25 to determine the next task you must complete.

Choosing how to debug old COBOL programs

Programs compiled with the OS/VS COBOL compiler can be debugged by doing one of the following;:

« Debug them as LangX COBOL programs.

« Convert them to the 1985 COBOL Standard level and compile them with the Enterprise COBOL for z/OS
and 0S/390 or COBOL for 0S/390 & VM compiler. You can use the Load Module Analyzer to identify
0S/VS COBOL programs in a load module, then use COBOL and CICS Command Level Conversion Aid
(CCCA) to convert the programs.

To convert an OS/VS COBOL program to 1985 COBOL Standard, do the following steps:

56 IBM z/0OS Debugger: User's Guide

1. Identify the OS/VS COBOL programs in your load module by using the Load Module Analyzer. For

instructions on using Load Module Analyzer, see Appendix I, “z/OS Debugger Load Module Analyzer,”
on page 509.
. Convert your OS/VS COBOL source by using COBOL and CICS Command Level Conversion Aid (CCCA).

For instructions on using CCCA, see COBOL and CICS Command Level Conversion Aid for 0S/390 & MVS
& VM User's Guide.

. Compile the new source with either the Enterprise COBOL for z/OS and 0S/390 or COBOL for 0S/390 &
VM.

You can combine steps 2 and 3 by using the Convert and Compile option of IBM z/OS Debugger
Utilities.

4. Debug the object module by using z/OS Debugger.

After you convert and debug your program, you can do one of the following options:

Continue to use the OS/VS COBOL compiler. Every time you want to debug your program, you need to do
the steps described in this section.

Use the new source that was produced by the steps described in this section. You can compile the
source and debug it without repeating the steps described in this section.

CCCA can use any level of COBOL source program as input, including VS COBOL II, COBOL for MVS & VM,
and COBOL for 0S/390 & VM programs that were previously compiled with the CMPR2 compiler option.

Creating deferred breakpoints for COBOL and PL/I programs

Creating a list of breakpoints before starting the z/OS Debugger session reduces system resource usage
and the time spent in the debugging session.

To create and use the deferred breakpoints, complete the following steps:

Create breakpoints and save the definitions in a file-based repository using the Create breakpoints
option in the z/OS Debugger Deferred Breakpoints selection in DTU. You can also use IBM Fault Analyzer
to create breakpoints. See IBM Fault Analyzer User's Guide and Reference for details.

View the breakpoints in the repository and save the definitions in a commands file in the z/OS Debugger
command format using the View breakpoints option in the z/OS Debugger Deferred Breakpoints
selection in DTU.

Set the breakpoints that are defined in the commands file during the debug session by using one of
the methods where the commands file is accepted like a commands file, a preference file, or a USE
command.

The breakpoint types supported are AT STATEMENT and AT LABEL.

The following programming languages and side file configurations are supported:

Table 15. The supported programming languages and side file configurations

Programming language Side file Compiled with
Enterprise COBOL V4 or earlier LANGX NOTEST

Enterprise COBOL V4 or earlier SYSDEBUG TEST (SEPARATE)
Enterprise COBOL V5 Program Object TEST (SOURCE)
Enterprise PL/I SYSDEBUG TEST (SYM,SEPARATE)

Chapter 4. Planning your debug session 57

58 IBM z/0OS Debugger: User's Guide

Chapter 5. Updating your processes so you can debug
programs with z/0OS Debugger

After you have completed the tasks in Chapter 4, “Planning your debug session,” on page 25, you can use
the information you have collected to update the following processes:

« Your compilation and linking processes so that programs are compiled with the correct compiler options
and suboptions and that the required files are saved (for example, the separate debug file).

« Your library or promotion processes so that files containing information that z/OS Debugger needs to
debug your programs are available.

« Your libraries or security systems so that you have access to the files that z/OS Debugger needs to
debug your programs. For example, if you have RACF security measures, you might need to update
them so that z/OS Debugger can access the files it needs.

For more information about how to update these processes, see the following topics:

« “Update your compilation, assembly, and linking process” on page 59

« “Update your library and promotion process” on page 64

« “Make the modifications necessary to implement your preferred method of starting z/OS Debugger” on
page 64

Update your compilation, assembly, and linking process

This topic describes the changes you must make to your compilation, assembly, and linking process

to implement the choices you made in Chapter 4, “Planning your debug session,” on page 25. If you

are familiar with managing JCL and with your site's compilation or assembly process, see “Compiling
your program without using IBM z/0S Debugger Utilities” on page 59 for instructions on the specific
changes you need to make. If your site uses IBM z/OS Debugger Utilities to manage these processes, see
“Compiling your program by using IBM z/0S Debugger Utilities” on page 61 for instructions on how to
use the Program Preparation option to update these processes.

Compiling your program without using IBM z/0S Debugger Utilities

Create or modify JCL so that it includes all the statements you need to compile or assemble your
programs, then properly link any libraries. The following list describes the changes you need to make:

« Specify the correct compiler options and suboptions that you chose from Table 8 on page 26.

For each compiler, there might be additional updates you might need to make so that z/OS Debugger
starts. The following list describes these updates:

— If you are compiling an Enterprise PL/I program on an HFS or zFS file system, see “Compiling a
Enterprise PL/I program on an HFS or zFS file system” on page 62.

— If you are compiling a C program on an HFS or zFS file system, see “Compiling a C program on an HFS
or zFS file system” on page 63.

— If you are compiling a C program with c89 or c++, see “Compiling your C program with c89 or c++” on
page 62.

— If you are compiling a C++ program on an HFS or zFS file system, see “Compiling a C++ program on
an HFS or zFS file system” on page 63.

« Specify the statements to save the files that z/OS Debugger needs. Table 16 on page 60 can help you
identify which file you need to save for a particular compiler option. For example, if you are compiling a
COBOL program with the SEPARATE suboption of the TEST compiler option, make sure you specify the
DD statement with the name of the separate debug file.

© Copyright IBM Corp. 1992, 2021 59

- If you are using other Application Delivery Foundation for z/OS tools, see IBM Application Delivery
Foundation for z/0S Common Components Customization Guide and User Guide that correspond to the
compilers or assembler that you are using. Those topics contain instructions on other updates you must
make to your compilation, assembler, and linking processes.

« If YES is specified for the EQAOPT MDBG command (which requires z/OS Debugger to search for a .dbg
file in a .mdbg file)®, verify that the .mdbg file is a non-temporary file and is available during the debug
session. Ensure that the .mdbg file was created with captured source by using the -c option for the
dbgld command or the CAPSRC option on the CDADBGLD utility.

« For LangX COBOL programs, write JCL that generates the EQALANGX file, as described in “Creating the
EQALANGX file for LangX COBOL programs” on page 68.

« For assembler programs, write a SYSADATA DD statement that generates the EQALANGX files, as
described in “Creating the EQALANGX file for an assembler program” on page 71.

« For Db2 programs, specify the correct Db2 preprocessor and coprocessor, as described in “Processing
SQL statements” on page 75.

Table 16. Files that you need to save when compiling with a particular compiler option or suboption

Programming | Compiler suboption or
language assembler option File you need to save
COBOL

SEPARATE separate debug file

any other listing7

NOTEST listing”
LangX COBOL

“Compiling your 0S/VS COBOL | EQALANGX

program ” on page 67

“Compiling your VS COBOL IT

program ” on page 68

“Compiling your Enterprise

COBOL program ” on page 68

any other listing file containing pseudo-assembler code
PL/I

SEPARATE separate debug file

any other (pre-Enterprise PL/I) |listing file

any other (Enterprise PL/I) source file that was used as input to the compiler

NOTEST listing file containing pseudo-assembler code
C/C++

DEBUG (DWARF) the .dbg file and source file

If you are using an .mdbg file that stores the source file,
then save that .mdbg file.
TEST source file that was used as input to the compiler

6 In situations where you can specify environment variables, you can set the environment variable
EQA_USE_MDBG to YES or NO, which overrides any setting (including the default setting) of the EQAOPTS
MDBG command.

7 Tt is except for Enterprise COBOL for z/OS Version 5.

60 IBM z/0OS Debugger: User's Guide

Table 16. Files that you need to save when compiling with a particular compiler option or suboption (continued)

Programming | Compiler suboption or
language assembler option File you need to save

NOTEST listing file containing pseudo-assembler code
assembler

ADATA EQALANGX

no debug information saved listing file containing pseudo-assembler code

After you complete this task, see “Update your library and promotion process” on page 64.

Compiling your program by using IBM z/0S Debugger Utilities

Note: This section is not applicable to IBM Developer for z/OS (non-Enterprise Edition) or IBM Wazi
Developer for Red Hat CodeReady Workspaces.

z/0S Debugger Utilities provides several utilities than can help you compile your programs and start z/OS
Debugger. The steps described in this topic apply to the following category of compilers and assemblers:

« Enterprise PL/I

« Enterprise COBOL
« C/C++

« Assembler

If you are using IBM z/0OS Debugger Utilities to prepare your program and start z/OS Debugger, read
Appendix C, “Examples: Preparing programs and modifying setup files with IBM z/0S Debugger Utilities,”
on page 417, which describes how to prepare a sample program and start z/OS Debugger by using

IBM z/OS Debugger Utilities. After you read the sample and understand how to use IBM z/0OS Debugger
Utilities, do the following steps:

1. Start IBM z/0S Debugger Utilities.

2. Typein "1" to select Program Preparation, then press Enter.
3. Type in the number that corresponds to the compiler you want to use, then press Enter.
4

. Type in the information about the program you are compiling and select the appropriate options for
the CICS and Db2/SQL fields.

If the program source is a sequential data set and the Db2 precompiler is selected, make sure the
DBRMLIB data set field in panel EQAPPC1B, EQAPPC2B, EQAPPC3B, EQAPPC4B, or EQAPPC5B is a
partitioned data set with a member name. For example, DEBUG . TEST.DBRMLIB(PROG1).

Type in the backslash character (/") in the Enter / to edit options and data set name patterns field,
then press Enter.

5. Using the information you collected in Table 8 on page 26, fill out the fields with the appropriate
values. After you have made all the changes you want to make, press PF3 to save this information and
return to the previous panel.

6. Review the choices you made. Press Enter.
7. Verify your selections, then press Enter.

8. After the compilation is done, a panel is displayed. If there were errors in the compilation, review the
messages and make any changes. Return to step 1 to repeat the compilation.

9. Press PF3 until you return to the Program Preparation panel.
10. In the Program Preparation panel, type in "L", then press Enter.

11. In the Link Edit panel, specify whether you want the link edit to run in the foreground or background.
Specify the name of other libraries you need to link to your program. After you are done making all
your changes, press Enter.

Chapter 5. Updating your processes so you can debug programs with z/OS Debugger 61

12. Verify any selections, then press Enter.

13. After the link edit is done, if there were errors in the link edit, review the messages and make any
changes. Return to step 1 to repeat the process.

14. Press PF3 until you return to the main IBM z/0OS Debugger Utilities panel.

After you complete this task, see “Update your library and promotion process” on page 64.

Compiling a Enterprise PL/I program on an HFS or zFS file system

If you are compiling and launching Enterprise PL/I programs on an HFS or zFS file system, you must do
one of the following:

« Compile and launch the programs from the same location, or
- specify the full path name when you compile the programs.

By default, the Enterprise PL/I compiler stores the relative path and file names in the object file. When
you start a debug session, if the source is not in the same location as where the program is launched, z/0OS
Debugger does not locate the source. To avoid this problem, specify the full path name for the source
when you compile the program. For example, if you execute the following series of commands, z/OS
Debugger does not find the source because it is located in another directory (/u/myid/mypgm):

1. Change to the directory where your program resides and compile the program.

cd /u/myid/mypgm
pli -g "//TEST.LOAD(HELLO)" hello.pli

2. Exit UNIX System Services and return to the TSO READY prompt.
3. Launch the program with the TEST run-time option.

call TEST.LOAD(HELLO) 'test/'

z/0S Debugger does find the source if you change the compile command to:
pli -g "//TEST.LOAD(HELLO)" /u/myid/mypgm/hello.pli

The same restriction applies to programs that you compile to run in a CICS environment.

Compiling your C program with c89 or c++
If you build your application using the c89 or c++, do the following steps:

1. Compile your source code as usual, but specify the —g option to generate debugging information. The
—g option is equivalent to the TEST compiler option under TSO or MVS batch. For example, to compile
the C source file fred. c from the u,/mike,’app directory, specify:

cd S/u/mike,/app
c89 -g -o ",’PROJ.LOAD(FRED)" fred.c
Note: The quotation marks (") in the command line above are required.

2. Set up your TSO environment, as described in “Compiling your program without using IBM z/0S
Debugger Utilities” on page 59 or “Compiling your program by using IBM z/0S Debugger Utilities” on
page 61.

3. Debug the program under TSO by entering the following:

FRED TEST ENVAR('PWD=,/u,/mike,app') ./ asis
Note: The apostrophes (') in the command line above are required. ENVAR (' PWD=,’u,/mike.’app ")

sets the environment variable PWD to the path from where the source files were compiled. z/0S
Debugger uses this information to determine from where it should read the source files.

62 IBM z/0OS Debugger: User's Guide

If you are creating .mdbg files, capture the source files into the .mdbg file by specify the -c option with
the dbgld command, or the CAPSRC option with the CDADBGLD utility. To learn how to use the dbgld
command and the CDADBGLD utility, see z/0S XL C/C++ User's Guide. z/OS Debugger needs access to
the .mdbg file to debug your program.

Compiling a C program on an HFS or zFS file system

If you are compiling and launching programs on an HFS or zFS file system, you must do one of the
following:

« Compile and launch the programs from the same location.
« Specify the full path name when you compile the programs.

By default, the C compiler stores the relative path and file names of the source files in the object file.
When you start a debug session, if the source is not in the same location as where the program is
launched, z/OS Debugger does not find the source. To avoid this problem, specify the full path name of
the source when you compile the program. For example, if you execute the following series of commands,
z/0S Debugger does not find the source because it is located in another directory (/u/myid/mypgm):

1. Change to the directory where your program resides and compile the program.

cd /u/myid/mypgm
c89 -g -o "//TEST.LOAD(HELLO)" hello.c

2. Exit UNIX System Services and return to the TSO READY prompt.
3. Launch the program with the TEST run-time option.

call TEST.LOAD(HELLO) 'test/'
z/0OS Debugger finds the source if you change the compile command to:
c89 -g -o "//TEST.LOAD(HELLO)" /u/myid/mypgm/hello.c

The same restriction applies to programs that you compile to run in a CICS environment.

If you are creating .mdbg files, capture the source files into the .mdbg file by specify the -c option with
the dbgld command, or the CAPSRC option with the CDADBGLD utility. To learn how to use the dbgld
command and the CDADBGLD utility, see z/0S XL C/C++ User's Guide. z/OS Debugger needs access to
the .mdbg file to debug your program.

Compiling a C++ program on an HFS or zFS file system

If you are compiling and launching programs on an HFS or zFS file system, you must do one of the
following:

« Compile and launch the programs from the same location, or
- specify the full path name when you compile the programs.

By default, the C++ compiler stores the relative path and file names of the source files in the object

file. When you start a debug session, if the source is not in the same location as where the program is
launched, z/OS Debugger does not locate the source. To avoid this problem, specify the full path name of
the source when you compile the program. For example, if you execute the following series of commands,
z/0S Debugger does not find the source because it is located in another directory (/u/myid/mypgm):

1. Change to the directory where your program resides and compile the program.

cd /u/myid/mypgm
c++ -g -0 "//TEST.LOAD(HELLO)" hello.cpp

2. Exit UNIX System Services and return to the TSO READY prompt.

Chapter 5. Updating your processes so you can debug programs with z/OS Debugger 63

3. Launch the program with the TEST run-time option.
call TEST.LOAD(HELLO) 'test/'
z/0S Debugger finds the source if you change the compile command to:
c++ -g -0 "//TEST.LOAD(HELLO)" /u/myid/mypgm/hello.cpp

The same restriction applies to programs that you compile to run in a CICS environment.

If you are creating .mdbg files, capture the source files into the .mdbg file by specify the -c option with
the dbgld command, or the CAPSRC option with the CDADBGLD utility. To learn how to use the dbgld
command and the CDADBGLD utility, see z/0S XL C/C++ User's Guide. z/OS Debugger needs access to
the .mdbg file to debug your program.

Update your library and promotion process

If you use a library to maintain your program and a promotion process to move programs through levels
of quality and testing, you might have to update these processes to ensure that z/OS Debugger can find
the files it needs to obtain information about your programs. For example, if your final production level
does not have access to the same libraries as your development level, and you want to be able to debug
programs that are in the final product level, you might need to update the environment in your final
production level so that it can access to the following resources:

« All the data sets required to debug your program, for example, the source file, listing file, separate
debug file, or EQALANGX file.

« Access to all the libraries required by your program or z/OS Debugger.

If you are using other Application Delivery Foundation for z/OS tools, see IBM Application Delivery
Foundation for z/0S Common Components Customization Guide and User Guide that correspond to the
compilers or assembler that you are using. Those topics give instructions on which files to move through
your levels so that the Application Delivery Foundation for z/OS tools can find the files they need.

If you manage your source code with a library system that requires you specify the SUBSYS=ssss
parameter when you allocate a data set, you or your site need to specify the EQAOPTS SUBSYS command,
which provides the value for ssss. You must do this for the following types of programs:

- Enterprise PL/I program that was compiled without the SEPARATE suboption of TEST compiler option
« C/C++ programs

This support is not available for CICS programs. To learn how to specify EQAOPTS commands, see the
IBM z/0S Debugger Reference and Messages or the IBM z/0S Debugger Customization Guide.

Make the modifications necessary to implement your preferred
method of starting z/0S Debugger

In this topic, you will use the information you gathered after completing 2 in Chapter 4, “Planning your
debug session,” on page 25 and “Choosing a method or methods for starting z/OS Debugger” on page 53
to write the TEST runtime options string, then save that string in the appropriate location.

You might have to write several different TEST runtime options strings. For example, the TEST runtime
options string that you write for your CICS programs might not be the same TEST runtime options string
you can use for your IMS programs. For this situation, you might want to use Table 17 on page 64 to
record the string you want to use for each type of program you are debugging.

Table 17. Record the TEST runtime options strings you need for your site

Test runtime options string (for example,
TEST(ALL, , ,MFI%SYSTEMO1.TRMLUOO1:))

TSO

64 IBM z/0OS Debugger: User's Guide

Table 17. Record the TEST runtime options strings you need for your site (continued)

Test runtime options string (for example,
TEST(ALL, , ,MFI%SYSTEMO1.TRMLUOO1:))

JES batch

UNIX System
Services

CICS
Db2

Db2 stored
procedures
(PROGRAM
TYPE=MAIN)

Db2 stored
procedures
(PROGRAM
TYPE=SUB)

IMSTM
IMS batch
IMS BTS

If you are not familiar with the format of the TEST runtime option string, see the following topics:

« Description of the TEST runtime option in IBM z/0S Debugger Reference and Messages
« Chapter 13, “Writing the TEST runtime option string,” on page 107

After you have written the TEST runtime option strings, you need to save them in the appropriate location.
Using the information you recorded in Table 14 on page 54, review the following list, which directs you to
the instructions on where and how to save the TEST runtime options strings:

Through the EQAD3CXT user exit routine
See Chapter 12, “Specifying the TEST runtime options through the Language Environment user exit,”
on page 97.

Through the DFSBXITA user exit routine
See “Setting up the DFSBXITA user exit routine” on page 96.

Using the CADP transaction
See “Creating and storing debugging profiles with CADP” on page 92.

Using the DTCN transaction
See “Creating and storing a DTCN profile” on page 82.

Using the Db2 catalog
See Chapter 9, “Preparing a Db2 stored procedures program,” on page 79.

By coding a call to CEETEST, __ctest(), or PLITEST
See one of the following topics:

- “Starting z/OS Debugger with CEETEST” on page 121
 “Starting z/OS Debugger with the __ctest() function” on page 128
 “Starting z/OS Debugger with PLITEST” on page 127

Through CEEUOPT or CEEROPT
See one of the following topics:

« “Starting z/OS Debugger under CICS by using CEEUOPT” on page 143

Chapter 5. Updating your processes so you can debug programs with z/OS Debugger 65

« “Linking Db2 programs for debugging” on page 76

 “Starting z/OS Debugger under IMS by using CEEUOPT or CEEROPT” on page 95
Using the CEEOPTS DD statement in JCL or CEEOPTS allocation in TSO

Use the JCL for Batch Debugging option in IBM z/OS Debugger Utilities.

Using the parms on the EXEC statement when you start your program
When you specify the EXEC statement, include the TEST runtime option as a parameter.

Use the parms on the RUN statement when you start your program
When you specify the RUN statement, include the TEST runtime option as a parameter.

Using the parms on the CALL statement when you start your program
See the example in “Starting z/OS Debugger” on page 12.

Through the EQASET transaction
See “Running the EQASET transaction for non-Language Environment IMS MPPs” on page 346.

Through the EQANMDBG program
See “Starting z/OS Debugger for programs that start outside of Language Environment” on page 136.

66 IBM z/0OS Debugger: User's Guide

Chapter 6. Preparing a LangX COBOL program

Note: This chapter is not applicable to IBM Wazi Developer for Red Hat CodeReady Workspaces.

This chapter describes how to prepare a LangX COBOL program that you can debug with z/OS Debugger.
The term LangX COBOL refers to any of the following programs:

A program compiled with the IBM OS/VS COBOL compiler.

« A program compiled with the IBM VS COBOL II compiler with the NOTEST compiler option.

« A program compiled with the IBM Enterprise COBOL for z/OS Version 3 or Version 4 compiler with the
NOTEST compiler option.

To prepare a LangX COBOL program, you must do the following steps:

1. Compile your program with the IBM 0OS/VS COBOL, the IBM VS COBOL II, or the IBM Enterprise COBOL
compiler using the proper options.

2. Create the EQALANGX file.
3. Link-edit your program.
As you read through the information in this document, remember that 0S/VS COBOL programs are

non-Language Environment programs, even though you might have used Language Environment libraries
to link and run your program.

VS COBOL II programs are non-Language Environment programs when you link them with the non-
Language Environment library. VS COBOL II programs are Language Environment programs when you link
them with the Language Environment library.

Enterprise COBOL programs are always Language Environment programs. Note that COBOL DLL's cannot
be debugged as LangX COBOL programs.

Read the information regarding non-Language Environment programs for instructions on how to start z/OS
Debugger and debug non-Language Environment COBOL programs, unless information specific to LangX
COBOL is provided.

Compiling your 0S/VS COBOL program

You must compile your OS/VS COBOL program with the IBM 0S/VS COBOL compiler and use the following
options:

« NOTEST

« SOURCE

- DMAP

- PMAP

- VERB

« XREF

« NOLST

« NOBATCH

« NOSYMDMP
« NOCOUNT

If you are using other Application Delivery Foundation for z/OS tools (for example, Application
Performance Analyzer), you might need to specify additional compiler options. To understand how the
Application Delivery Foundation for z/OS tools work together, see IBM Application Delivery Foundation
for z/0S Common Components Customization Guide and User Guide. To learn which additional compiler

© Copyright IBM Corp. 1992, 2021 67

options you might need to specify, see IBM Application Delivery Foundation for z/0S Common Components
Customization Guide and User Guide.

Compiling your VS COBOL II program

You must compile your VS COBOL II program with the IBM VS COBOL II compiler and use the following
options:

« NOTEST

NOOPTIMIZE

- SOURCE

« MAP

« XREF

e LIST or OFFSET

If you are using other Application Delivery Foundation for z/OS tools (for example, Application
Performance Analyzer), you might need to specify additional compiler options. To understand how the
Application Delivery Foundation for z/OS tools work together, see IBM Application Delivery Foundation

for z/0S Common Components Customization Guide and User Guide. To learn which additional compiler
options you might need to specify, see IBM Application Delivery Foundation for z/0S Common Components
Customization Guide and User Guide.

Compiling your Enterprise COBOL program

You must compile your Enterprise COBOL program with the IBM Enterprise COBOL compiler and use the
following options:

* NOTEST
NOOPTIMIZE
SOURCE

« MAP

« XREF

LIST

Creating the EQALANGX file for LangX COBOL programs

Note: The EQALANGX program is part of IBM Application Delivery Foundation for z/0OS Common
Components, which is not shipped with IBM Wazi Developer for Red Hat CodeReady Workspaces.

Use the EQALANGX program to create the EQALANGX file. The EQALANGX program is an alias of
IPVLANGX, which is shipped as part of the ADFz Common Components. It is in IPV.SIPVMODA. It is
the same as the IDILANGX alias that Fault Analyzer uses and the CAZLANGX alias that Application
Performance Analyzer uses. The module names can be used interchangeably.

For further information about the xxxLANGX program, look for IDILANGX in the Fault Analyzer User's
Guide and Reference. For return codes and messages, look for IPVLANGX in the IBM Application Delivery
Foundation for z/0S Common Components Customization Guide and User Guide.

To create the EQALANGX file, do the following steps:

1. Create JCL similar to the following:

//XTRACT EXEC PGM=EQALANGX,REGION=32M,

// PARM='(COBOL ERROR LOUD'

//STEPLIB DD DISP=SHR,DSN=IPV.SIPVMODA

//LISTING DD DISP=SHR,DSN=yourid.langxcompiler.listing
//IDILANGX DD DISP=0LD,DSN=yourid.EQALANGX

68 IBM z/0OS Debugger: User's Guide

The following list describes the variables used in this example and the parameters you can use with
the EQALANGX program:

PARM=

COBOL
The COBOL parameter indicates that a LangX COBOL module is being processed.

ERROR
The ERROR parameter is suggested, but optional. If you specify it, additional information is
displayed when an error is detected.

LOUD
The LOUD parameter is suggested, but optional. If you specify it, additional informational and
statistical messages are displayed.

64K CREF
The 64K and CREF parameters are optional. Previously, these options were required.

The messages displayed by specifying the ERROR and LOUD parameters are Write To Operator or
Write To Programmer (WTO or WTP) messages. See the IBM Application Delivery Foundation for
z/0S Common Components Customization Guide and User Guide for detailed information about the
messages and return codes displayed by the IPVLANGX program.

IPV.SIPVMODA
The name of the data set that contains the ADFz Common Components load modules. If the ADFz
Common Components load modules are in a system linklib data set, you can omit the following
line:

//STEPLIB DD DISP=SHR,DSN=IPV.SIPVMODA

yourid.langxcompiler.listing
The name of the listing data set generated by the IBM 0S/VS COBOL, IBM VS COBOL II, or IBM
Enterprise COBOL compiler. If this is a partitioned data set, the member name must be specified.
For information about the characteristics of this data set, see IBM 0S/VS COBOL Compiler and
Library Programmer's Guide, VS COBOL II Application Programming Guide for MVS and CMS, or
Enterprise COBOL for z/OS Programming Guide.

yourid.EQALANGX
The name of the data set where the EQALANGX debug file is to be placed. This data set must have
variable block record format (RECFM=VB) and a logical record length of 1562 (LRECL=1562).

z/0S Debugger searches for the EQALANGX debug file in a partitioned data set with the name
yourid. EQALANGX and a member name that matches the name of the program. If you want the
member name of the EQALANGX debug file to match the name of the program, you do not need to
specify a member name on the DD statement.

2. Submit the JCL and verify that the EQALANGX file is created in the location you specified on the
IDILANGX DD statement.

Link-editing your program

You can link-edit your program by using your normal link-edit procedures.

After you link-edit your program, you can run your program and start z/OS Debugger.

Chapter 6. Preparing a LangX COBOL program 69

70 IBM z/OS Debugger: User's Guide

Chapter 7. Preparing an assembler program

To debug an assembler program with the full capabilities of z/OS Debugger, you need to prepare the
program.

1. Assemble your program with the proper options.
2. Create the EQALANGX file.
3. Link-edit your program.

If you use IBM z/OS Debugger Utilities to prepare your assembler program, you can do steps 1 and 2 in
one step.

Before you assemble your program

When you debug an assembler program, you can use most of the z/OS Debugger commands. There are
three differences between debugging an assembler program and debugging programs written in other
programming languages supported by z/OS Debugger:

« After you assemble your program, you must create a debug information file, also called the EQALANGX
file. z/OS Debugger uses this file to obtain information about your assembler program.

« z/OS Debugger assumes all compile units are written in some high-level language (HLL). You must
inform z/OS Debugger that a compile unit is an assembler compile unit and instruct z/OS Debugger to
load the assembler compile unit's debug information. Do this by entering the LOADDEBUGDATA (or LDD)
command.

« Assembler does not have language elements you can use to write expressions. z/OS Debugger provides
assembler-like language elements you can use to write expressions for z/OS Debugger commands that
require an expression. See IBM z/0S Debugger Reference and Messages for a description of the syntax of
the assembler-like language.

After you verify that your assembler program meets these requirements, prepare your assembler program
by doing the following tasks:

1. “Assembling your program” on page 71.
2. “Creating the EQALANGKX file for an assembler program” on page 71.

“Assembling your program and creating EQALANGX” on page 72 describes how to prepare an assembler
program by using IBM z/0S Debugger Utilities.

Assembling your program

If you assemble your program without using IBM z/OS Debugger Utilities, you must use the High Level
Assembler (HLASM) and specify a SYSADATA DD statement and the ADATA option. This causes the
assembler to create a SYSADATA file. The SYSADATA file is required to generate the debug information
(the EQALANGX file) used by z/OS Debugger.

If you are using other Application Delivery Foundation for z/OS tools, see IBM Application Delivery
Foundation for z/0S Common Components Customization Guide and User Guide to make sure you specify
all the assembler options you need to create the files needed by all the Application Delivery Foundation
for z/OS tools.

Creating the EQALANGX file for an assembler program

Note: The EQALANGX program is part of IBM Application Delivery Foundation for z/OS Common
Components, which is not shipped with IBM Wazi Developer for Red Hat CodeReady Workspaces.

Use the EQALANGX program to create the EQALANGX file. The EQALANGX program is an alias of
IPVLANGX, which is shipped as part of the ADFz Common Components. It is in IPV.SIPVMODA. It is

© Copyright IBM Corp. 1992, 2021 71

the same as the IDILANGX alias that Fault Analyzer uses and the CAZLANGX alias that Application
Performance Analyzer uses. The module names can be used interchangeably.

For further information about the xxxLANGX program, look for IDILANGX in the Fault Analyzer User's
Guide and Reference. For return codes and messages, look for IPVLANGX in the IBM Application Delivery
Foundation for z/0S Common Components Customization Guide and User Guide.

To create the EQALANGX files without using IBM z/0S Debugger Utilities, use JCL similar to the following:

//XTRACT EXEC PGM=EQALANGX,REGION=32M,

// PARM='(ASM ERROR LOUD'

//STEPLIB DD DISP=SHR,DSN=IPV.SIPVMODA
//SYSADATA DD DISP=SHR,DSN=yourid.sysadata
//IDILANGX DD DISP=0LD,DSN=yourid.EQALANGX

The following list describes the variables used in this example the parameters you can use with the
EQALANGX program:

PARM=

(ASM
Indicates that an assembler module is being processed.

ERROR
This parameter is suggested but optional. If you specify it, additional information is displayed
when an error is detected.

LOUD
The LOUD parameter is suggested, but optional. If you specify it, additional informational and
statistical messages are displayed.

The messages displayed by specifying the ERROR and LOUD parameters are Write To Operator or
Write To Programmer (WTO or WTP) messages. See the IBM Application Delivery Foundation for
z/0S Common Components Customization Guide and User Guide for detailed information about the
messages and return codes displayed by the IPVLANGX program.

IPV.SIPVMODA
The name of the data set that contains the ADFz Common Components load modules. If the ADFz
Common Components load modules are in a system linklib data set, you can omit the following line:

//STEPLIB DD DISP=SHR,DSN=IPV.SIPVMODA

yourid.sysadata
The name of the data set containing the SYSADATA output from the assembler. If this is a partitioned
data set, the member name must be specified. For information about the characteristics of this data
set, see HLASM Programmer's Guide.

yourid.EQALANGX
The name of the data set where the EQALANGX debug file is to be placed. This data set must have
variable block record format (RECFM=VB) and a logical record length of 1562 (LRECL=1562).

z/0S Debugger searches for the EQALANGX debug file in a partitioned data set with the name
yourid.EQALANGX and a member name that matches the name of the first CSECT in the assembly.
If you want the member name of the EQALANGX debug file to match the first CSECT in the assembly,
you do not need to specify a member name on the DD statement. Otherwise, you must specify a
member name on the DD statement. In this case, you must use the SET SOURCE command to direct
z/0S Debugger to the member containing the EQALANGX data.

z/0S Debugger does not support debugging of Private Code (unnamed CSECT).

Assembling your program and creating EQALANGX

Note: This section is not applicable to IBM Developer for z/OS (non-Enterprise Edition) or IBM Wazi
Developer for Red Hat CodeReady Workspaces.

72 IBM z/OS Debugger: User's Guide

You can assemble your program and create the EQALANGX file at the same time by using IBM z/0S
Debugger Utilities. Do the following:

1. Start IBM z/0S Debugger Utilities. The IBM z/0S Debugger Utilities panelis displayed.
2. Select option 1, "Program Preparation" . The z/0S Debugger Program Preparation panelis
displayed.

3. Select option 5, "Assemble". The z/0S Debugger Program Preparation - High Level
Assembler panelis displayed. In this panel, specify the name of the source file and the assemble
options that are used by High Level Assembler (HLASM) to assemble the program.

If option 5 is not available, contact your system administrator.

4. Press Enter. The High Level Assembler - Verify Selections panelis displayed. Verify that
the information on the panel is correct and then press Enter.

5. If any of the output data sets you specified do not existed, you are asked to verify the options used to
create them.

6. If you specified that the processing be completed by batch, the JCL created to run the batch job is
displayed. Verify that the JCL is correct, type Submit in the command line, press Enter and then press
PF3.

7. After the processing is completed, the High Level Assembler - View Outputs panelis
displayed. This panel displays the return code of each process completed and enables you to view,
edit, or browse the input and output data sets.

To read more information about a field in any panel, place the cursor in the input field and press PF1. To
read more information about a panel, place the cursor anywhere on the panel that is not an input field and
press PF1.

After you assemble your program and create the EQALANGX file, you can link-edit your program.

Link-editing your program

You can link-edit your program by using your normal link-edit procedures or you can use IBM z/0S
Debugger Utilities by doing the following:

Note: z/OS Debugger Utilities is not available in IBM Developer for z/OS (non-Enterprise Edition), IBM
Wazi Developer for Red Hat CodeReady Workspaces.

1. From the z/0S Debugger Program Preparation panel, select option L, "Link Edit". The z/0S
Debugger Program Preparation - Link Edit panelis displayed. In this panel, specify the
input data sets and link edit options that you need the linker to use.

2. Press Enter. The Link Edit - Verify Selections panelis displayed. Verify that the information
on the panel is correct and then press Enter.

3. If any of the output data sets you specified do not exist, you are asked to verify the options used to
create them. Press Enter after you verify the options.

4. If you specified that the processing be completed by batch, the JCL created to run the batch job is
displayed. Verify that the JCL is correct and press PF3.

5. After the processing is completed, the Link Edit - View Outputs panelis displayed. This panel
displays the return code of each process completed and enables you to view, edit, or browse the input
and output data sets.

To read more information about a field in any panel, place the cursor in the input field and press PF1. To
read more information about a panel, place the cursor anywhere on the panel that is not an input field and
press PF1.

After you link-edit your program, you can run your program and start z/OS Debugger.

Chapter 7. Preparing an assembler program 73

Restrictions for link-editing your assembler program

z/0OS Debugger cannot find the EQALANGX member when you change the name with a CHANGE
link statement. For example, the message "EQALANGX debug file cannot be found for PGM1TEST" is
displayed when you use the following link statements:

CHANGE PGMTEST1 (PGMATEST)
INCLUDE LINKLIB(PGMTEST1)

74 1BM z/0OS Debugger: User's Guide

Chapter 8. Preparing a Db2 program

You do not need to use any special coding techniques to debug Db2 programs with z/OS Debugger.
The following sections describe the tasks you need to do to prepare a Db2 program for debugging:

1. “Processing SQL statements” on page 75.
2. “Linking Db2 programs for debugging” on page 76.
3. “Binding Db2 programs for debugging” on page 77.

Refer to the following topics for more information related to the material discussed in this topic.

Related references
DB2° UDB for z/0S Application Programming and SQL Guide

Processing SQL statements

You must run your program through the Db2 preprocessor or coprocessor, which processes SQL
statements, either before or as part of the compilation. In this section, we describe how and when each
compiler uses the Db2 preprocessor or coprocessor. Then you can choose the right method so that you
can debug the program with z/OS Debugger.

« If you are preparing a COBOL program using a compiler earlier than Enterprise COBOL for z/OS and
0S/390 Version 2 Release 2, use the Db2 precompiler. Then compile your program as described in the
appropriate section for your programming language.

- If you are preparing a COBOL program using Enterprise COBOL for z/OS and 0OS/390 Version 2 Release 2
or later, do one of the following tasks:

— Use the Db2 precompiler. Then compile your program as described in the appropriate section for your
programming language.

— Use the SQL compiler option so that the SQL statements are processed by the Db2 coprocessor
during compilation. Save the program listing if you compiled with the NOSEPARATE suboption of the
TEST compiler option or the separate debug file if you compiled with the SEPARATE suboption of the
TEST compiler option.

« If you are preparing a PL/I program using a compiler earlier than Enterprise PL/I for z/OS and
0S/390 Version 3 Release 1, use the Db2 precompiler. Then compile your program as described in
the appropriate section for your programming language.

« The following table describes your options for specific PL/I compilers.

If you are using any of the following PL/I
compilers: Choose one of the following tasks:

— Enterprise PL/I for z/OS and 0S/390 Version 3 |- Use the Db2 precompiler. Save the program
Release 1 through Version 3 Release 4 source files generated by the Db2 precompiler,

— Enterprise PL/I for z/OS, Version 3.5 or which z/OS Debugger uses to debug your

later, and you do not specify the SEPARATE program. Then compile your program as

suboption of the TEST compiler option described in the appropriate section for your

programming language.

— Use the PP(SQL:(‘option,...")) compiler option so
that the SQL statements are processed by the
Db2 coprocessor during compilation. Save the
program source file that you used as input to
the compiler.

« If you are preparing a program using Enterprise PL/I for z/OS, Version 3.5 or later, and you specify the
SEPARATE suboption of the TEST compiler option, do one of the following tasks:

© Copyright IBM Corp. 1992, 2021 75

— Use the Db2 precompiler. Compile the program source files generated by the Db2 precompiler with
the appropriate compiler options, as described in “Choosing TEST or NOTEST compiler suboptions for
PL/I programs” on page 34, select scenario B. Save the separate debug file created by the compiler.

— Use the PP(SQL:(‘option,...")) compiler option so that the SQL statements are processed by the Db2
coprocessor during compilation. Save the separate debug file created by the compiler.

« If you are preparing a C or C++ program using a compiler earlier than C/C++ for z/OS Version 1 Release
5, use the Db2 precompiler. Save the program source files generated by the Db2 precompiler, which
z/0S Debugger uses to debug your program. Then compile your program as described in the appropriate
section for your programming language.

« If you are preparing a C or C++ program using C/C++ for z/OS Version 1 Release 5 or later, do one of the
following tasks:

— Use the Db2 precompiler. Save the program source files generated by the Db2 precompiler, which
z/0S Debugger uses to debug your program. Then compile your program as described in the
appropriate section for your programming language.

— Specify the SQL compiler option so that the SQL statements are processed by the Db2 coprocessor
during compilation. Save the program source file that you used as input to the compiler.

- If you are using an assembler program, first run your program through the Db2 precompiler, then
assemble your program using the output of the Db2 precompiler. Generate a EQALANGX file from the
assembler output and save the EQALANGX file.

Important: Ensure that your program source, separate debug file, or program listing is stored in a
permanent data set that is available to z/OS Debugger.

To enhance the performance of z/OS Debugger, use a large block size when you save these files. If you are
using COBOL or Enterprise PL/I separate debug files, it is important that you allocate these files with the
correct attributes to optimize the performance of z/OS Debugger. Use the following attributes for the PDS
that contains the COBOL or PL/I separate debug file:

- RECFM=FB
- LRECL=1024
« BLKSIZE set so the system determines the optimal size

Refer to the following topics for more information related to the material discussed in this topic.

Related references
DB2 UDB for 0S5/390 Application Programming and SQL Guide

Linking Db2 programs for debugging

To debug Db2 programs, you must link the output from the compiler into your program load library. You
can include the user runtime options module, CEEUOPT, by doing the following:

1. Find the user runtime options program CEEUOPT in the Language Environment SCEESAMP library.
2. Change the NOTEST parameter into the desired TEST parameter. For example:

old: NOTEST=(ALL,*,PROMPT,INSPPREF),
new: TEST=(,*,;,*),

If you are using remote debug mode, specify the TCPIP suboption, as in the following example:
TEST=(,,, TCPIP&&9. 2404 .79%8001 : %)

Note: Double ampersand is required.

If you are using full-screen mode using a dedicated terminal without Terminal Interface Manager,
specify the MFI suboption with a VTAM LU name, as in the following example:

Test=(,, ,MFI%TRMLUGO1)

76 IBM z/OS Debugger: User's Guide

If you are using full-screen mode using the Terminal Interface Manager, specify the VTAM suboption
with your user ID, as in the following example:

Test=(,,,VTAMXUSERABCD)

3. Assemble the CEEUOPT program and keep the object code.
4. Link-edit the CEEUOPT object code with any program to start z/OS Debugger.

The modified assembler program, CEEUOPT, is shown below.

*/**/

%*/* LICENSED MATERIALS - PROPERTY OF IBM */
/ */
/ 5694-A01 */
/ */
/ (C) COPYRIGHT IBM CORP. 1991, 2001 */
/ */
/ US GOVERNMENT USERS RESTRICTED RIGHTS - USE, */
/ DUPLICATION OR DISCLOSURE RESTRICTED BY GSA ADP */
* /% SCHEDULE CONTRACT WITH IBM CORP. */
/ */
/ STATUS = HLE7705 */

Kk [ko ok k ko
CEEUOPT CSECT
CEEUOPT AMODE ANY
CEEUOPT RMODE ANY
CEEXOPT TEST=(,*,;,*)
END

The user runtime options program can be assembled with predefined TEST runtime options to establish
defaults for one or more applications. Link-editing an application with this program results in the default
options when that application is started.

If your system programmer has not already done so, include all the proper libraries in the SYSLIB
concatenation. For example, the ISPLOAD library for ISPLINK calls, and the Db2 DSNLOAD library for the
Db2 interface modules (DSNxxxx).

Refer to the following topics for more information related to the material discussed in this topic.

Related tasks
Chapter 15, “Starting z/OS Debugger from a program,” on page 121

Binding Db2 programs for debugging

Before you can run your Db2 program, you must run a Db2 bind in order to bind your program with the
relevant DBRM output from the precompiler step. No special requirements are needed for z/OS Debugger.

Chapter 8. Preparing a Db2 program 77

78 IBM z/0OS Debugger: User's Guide

Chapter 9. Preparing a Db2 stored procedures
program

This topic describes the information you need to collect and the steps you must take to prepare a Db2
stored procedure for debugging with z/OS Debugger. z/OS Debugger can debug stored procedures where
PROGRAM TYPE is MAIN or SUB; the preparation steps are the same.

Before you begin, verify that you can use the supported debugging modes. z/OS Debugger can debug
stored procedures written in assembler, C, C++, COBOL and Enterprise PL/I in any of the following
debugging modes:

« remote debug

« full-screen mode using the Terminal Interface Manager
- batch

Review the topic "Creating a stored procedure" in the Db2 Application Programming and SQL Guide
to verify that your stored procedure complies with the format and restrictions for external stored
procedures. z/OS Debugger supports debugging only external stored procedures.

To prepare a Db2 stored procedure, do the following steps:

1. Verify that your Db2 system administrator has completed the tasks described in section Preparing
your environment to debug a Db2 stored procedures" of IBM z/0S Debugger Customization Guide.
The Db2 system administrator must define the address space where the stored procedure runs, give
Db2 programs the appropriate RACF read authorizations, and recycle the address space so that the
updates take effect.

2. If you are not familiar with the parameters used to create the Db2 stored procedure you want to
debug, you can enter the SELECT statement, as illustrated in the following example, to obtain this
information:

SELECT PROGRAM_TYPE,STAYRESIDENT,RUNOPTS, LANGUAGE
FROM SYSIBM.SYSROUTINES
WHERE NAME='name_of_Db2_stored_procedure';

3. For stored procedures of program type SUB that are not invoked by the call_sub function, verify
that when your system programmer or Db2 system administrator defines the WLM address space, the
value for NUMTCB is set to 1. NUMTCB specifies the maximum number of Task Control Blocks (TCBs)
that can run concurrently in a WLM address space. If the stored procedure might run in a TCB other
than the one it was started in, you will not able to debug that stored procedure. Setting the value of
NUMTCB to 1 ensures that the stored procedure is not run in a different TCB.

4. When you define your stored procedure, verify the following items:

 Specify the correct value for the LANGUAGE parameter and the PROGRAM TYPE parameter. For C,
C++, COBOL or Enterprise PL/I, the PROGRAM TYPE can be either MAIN or SUB. For assembler, the
PROGRAM TYPE must be MAIN.

« For stored procedures of program type SUB that are not invoked by the call_sub function,
determine if other users might run the stored procedure while you are debugging it. If other users
might run the stored procedure, you can not debug it.

« For stored procedures of program type SUB that are invoked by the call_sub function, review the
following options:

— If you plan to specify the TEST runtime options through the Language Environment EQAD3CXT
exit routine, specify STAY RESIDENT NO.

— If you plan to specify the TEST runtime options through the Db2 catalog, you can specify either
YES or NO for STAY RESIDENT.

© Copyright IBM Corp. 1992, 2021 79

5. Compile or assemble your program, as described in Part 2, “Preparing your program for debugging,” on
page 21. For Enterprise PL/I programs, also specify the RENT compiler option.

6. Review the following list to determine how to specify the TEST runtime options:

« For stored procedures of program type MAIN, you can specify the TEST runtime option either
through the Language Environment EQAD3CXT exit routine, or through the Db2 catalog. If you use
both methods, the Language Environment EQAD3CXT exit routine take precedence over the Db2
catalog.

« For stored procedures of program type SUB that are invoked by the call_sub function, you can
specify the TEST runtime option either through the Language Environment EQAD3CXT exit routine
or through the Db2 catalog. If you choose to use the Language Environment EQAD3CXT exit routine,
you must specify the NOTEST runtime option for the RUN OPTIONS parameter when you define the
stored procedure.

- For stored procedures of program type SUB that are not invoked by the call_sub function, you can
specify the TEST runtime option through the Db2 catalog or from within a program by coding a call to
CEETEST, __ctest(), or PLITEST.

7. To specify the TEST runtime options through the Language Environment EQAD3CXT exit routine,
prepare a copy of the EQAD3CXT user exit as described in Chapter 12, “Specifying the TEST runtime
options through the Language Environment user exit,” on page 97.

Remember that if you want to debug an existing stored procedure of program type SUB that is
invoked by the call_sub function, you must modify the stored procedure so that it uses the NOTEST
runtime option for the RUN OPTIONS parameter. The following example shows how to use the ALTER
PROCEDURE statement to make this modification:

ALTER PROCEDURE name_of_Db2_stored_procedure RUN OPTIONS 'NOTEST';

8. To specify the TEST runtime options through the Db2 catalog, do the following steps:

a. If you have not created the stored procedure, write the stored procedure using the CREATE
PROCEDURE statement. You can use the following example as a guide:

CREATE PROCEDURE SPROC1
LANGUAGE COBOL
EXTERNAL NAME SPROC1
PARAMETER STYLE GENERAL
WLM ENVIRONMENT WLMENV1
RUN OPTIONS 'TEST(,,,TCPIP&9.112.27.99%8001:%)"
PROGRAM TYPE SUB;

This example creates a stored procedure for a COBOL program called SPROC1, the program type is
SUB, it runs in a WLM address space called WLMENV1, and it is debugged in remote debug mode.

b. If you need to modify an existing stored procedure, use the ALTER PROCEDURE statement. You can
use the following example as a guide:

The IP address for the remote debugger changed from 9.112.27.99 t0 9.112.27.21. To modify the
stored procedure, enter the following statement:

ALTER PROCEDURE name_of_Db2_stored_procedure
RUN OPTIONS 'TEST(,,,TCPIP&9.112.27.21%8001:%)";

c. Verify that the stored procedure is defined correctly by entering the SELECT statement. For
example, you can enter the following SELECT statement:

SELECT * FROM SYSIBM.SYSROUTINES;

80 IBM z/0OS Debugger: User's Guide

Chapter 10. Preparing a CICS program

To prepare a CICS program for debugging, you must do the following tasks:

1. Complete the program preparation tasks for COBOL, PL/I, C, C++, assembler, or LangX COBOL, as
described in the following sections:

“Choosing TEST or NOTEST compiler suboptions for COBOL programs” on page 27
“Choosing TEST or NOTEST compiler suboptions for PL/I programs” on page 34
“Choosing TEST or DEBUG compiler suboptions for C programs” on page 39
“Choosing TEST or DEBUG compiler suboptions for C++ programs” on page 44
Chapter 7, “Preparing an assembler program,” on page 71

Chapter 6, “Preparing a LangX COBOL program,” on page 67

2. Determine if your site uses CADP or DTCN debugging profiles and verify that your system has been
configured to use the chosen debugging profile.

3. Determine if you need to link edit EQADCCXT into your program by reviewing the instructions in
“Link-editing EQADCCXT into your program” on page 81.

4. Do one of the following tasks:

« If your site is using DTCN debugging profiles, create and store a DTCN debugging profile. Instructions
for creating a DTCN debugging profile are in “Creating and storing a DTCN profile” on page 82.

- If you are using CICS Transaction Server for z/OS Version 2 Release 3 or later and your site uses
CADP to manage debugging profiles, create and store a CADP debugging profile. See “Creating and
storing debugging profiles with CADP” on page 92 for more information about using CADP.

Link-editing EQADCCXT into your program

z/0S Debugger provides an Language Environment CEEBXITA assembler exit called EQADCCXT to help
you activate, by using the DTCN transaction, a debugging session under CICS. You do not need to use this
exit if you are running any of the following options:

 You are running under CICS Transaction Server for z/OS Version 2 Release 3 or later and you use the
CADP transaction to define debug profiles.

« You are using the DTCN transaction and you are debugging non-Language Environment Assembler
programs.

 You are using the DTCN transaction and you are debugging COBOL programs, or PL/I programs in the
following situation:

— Compiled with Enterprise PL/I for z/OS, Version 3 Release 4 with the PTF for APAR PK03264 applied,
or later

— Running with Language Environment Version 1 Release 6 with the PTF for APAR PK0O3093 applied, or
later

When you use EQADCCXT, be aware of the following conditions:

- If your site does not use an Language Environment assembler exit (CEEBXITA), then link-edit member
EQADCCXT, which contains the CSECT CEEBXITA and is in library hlqg.SEQAMOD, into your main
program.

« If your site uses an existing CEEBXITA, the EQADCCXT exit provided by z/OS Debugger must be merged
with it. The source for EQADCCXT is in hlg.SEQASAMP (EQADCCXT). Link the merged exit into your
main program.

After you link-edit your program, use the DTCN transaction to create a profile that specifies the
combination of resources that you want to debug. See “Creating and storing a DTCN profile” on page
82.

© Copyright IBM Corp. 1992, 2021 81

Creating and storing a DTCN profile

You can create and store DTCN profiles, or CICS profiles, in the following ways:

- By using the DTCN transaction. The rest of the information in these topics describe how to do this.

« By creating a CICS profile from the z/OS Debugger Profiles view. For more information about creating a
debug configuration for a CICS application, see topic "Creating a debug profile for a CICS application" in
IBM Documentation.

The DTCN transaction stores debugging profiles in a repository. The repository can be either a CICS
temporary storage queue or a VSAM file. The following list describes the differences between using a
CICS temporary storage queue or a VSAM file:

« If you don't log on to CICS or you log on as the default user, you cannot use a VSAM file. You must use a
CICS temporary storage queue.

« If you use a CICS temporary storage queue, the profile will be deleted if the terminal that created the
profile has been disconnected or the CICS region is terminated. If you use a VSAM file, the profile will
persist through disconnections or CICS region restarts.

- If you use a CICS temporary storage queue, there can be only one profile on a single terminal. If you use
a VSAM file, there can be multiple profiles, each created by a different user, on a single terminal.

z/0OS Debugger determines which storage method is used based on the presence of a debugging profile
VSAM file. If z/OS Debugger finds a debugging profile VSAM file allocated to the CICS region, it assumes
you are using a VSAM file as the repository. If it doesn't find a debugging profile VSAM file, it assumes you
are using a CICS temporary storage queue as the repository. See the IBM z/0S Debugger Customization
Guide or contact your system programmer for more information about how the VSAM files are created and
managed.

If the repository is a temporary storage queue, each profile is retained in the repository until one of the
following events occurs:

« The profile is explicitly deleted by the terminal that entered it.

« DTCN detects that the terminal which created the profile has been disconnected.

- The CICS region is terminated.

If the repository is a VSAM file, each profile is retained until it is explicitly deleted. The DTCN transaction

uses the user ID to identify a profile. Therefore, each user ID can have only one profile stored in the VSAM
file.

Profiles are either active or inactive. If a profile is active, DTCN tries to match it with a transaction that
uses the resources specified in the profile. DTCN does not try to match a transaction with an inactive
profile. To make a profile active or inactive, use the z/OS Debugger CICS Control - Primary Menu panel
(the main DTCN panel) to make the profile active or inactive, then save it. If the repository is a VSAM file,
when DTCN detects that the terminal is disconnected, it makes the profile inactive.

To create and store a DTCN profile:

1. Log on to a CICS terminal and enter the transaction ID DTCN. The DTCN transaction displays the main
DTCN screen, z/OS Debugger CICS Control - Primary Menu, shown below.

82 IBM z/0OS Debugger: User's Guide

https://www.ibm.com/docs/en

DTCN z/0S Debugger CICS Control - Primary Menu SO7CICPD
* VSAM storage method *

Select the combination of resources to debug (see Help for more information)

Terminal Id ==> 0090

Transaction Id ==>

LoadMod: :>CU(s) ==> > ==> >
==> > ==> >
=> > ==> >
==> 1> ==> >

User Id ==> CICSUSER

NetName ==>

IP Name/Address ==>

Select type and ID of debug display device

Session Type ==> MFI MFI, TCP, DIR, DTC, DBM

Port Number ==> TCP Port

Display Id ==> 0090

Generated String: TEST(ERROR, '*',PROMPT, 'MFI%0090:x")
Repository String: No string currently saved in repository
Profile Status: No Profile Saved. Press PF4 to save current settings.

PF1=HELP 2=GHELP 3=EXIT 4=SAVE 5=ACT/INACT 6=DEL 7=SHOW 8=ADV 9=0PT 10=CUR TRM

Line] displays a message to indicate that DTCN will store the profile in a temporary storage queue
orin a VSAM file. Some of the entry fields are filled in with values from one of the following sources:

- If the temporary storage queue is the type of repository, the fields are filled in with default values
that start z/OS Debugger, in full-screen mode, for tasks running on this terminal.

- If a VSAM file is the type of repository and a profile exists for the current user, the fields are filled in
with data found in that profile. If a VSAM file is the type of repository and a profile does not exist for
the current user, the fields are filled in with default values that start z/OS Debugger, in full-screen
mode, for tasks running on this terminal.

If you do not want to change these fields, you can skip the next two steps and proceed to step “4” on
page 83. If you want to change the settings on this panel, continue to the next step.

. Specify the combination of resources that identify the transaction or program that you want to debug.
For more information about these fields, do one of the following tasks:

« Read “Description of fields on the DTCN Primary Menu screen” on page 86.

« Place the cursor next to the field and press PF1 to display the online help.

. Specify the type of debugging session you want to run and the ID of the device that displays the
debugging session. For more information about these fields, do one of the following tasks:

« Read “Description of fields on the DTCN Primary Menu screen” on page 86.

» Place the cursor next to the field and press PF1 to display the online help.

. Specify the TEST runtime options, other runtime options, commands file, preferences file, and
EQAOPTS file that you want to use for the debugging session by pressing PF9 to display the
secondary options menu, which looks like the following example:

DTCN z/0S Debugger CICS Control - Menu 2 SO7CICPD
Select z/0S Debugger options

Test Option ==> TEST Test/Notest

Test Level ==> ERROR All/Error/None

Commands File ==> %

Prompt Level ==> PROMPT

Preference File ==> *
EQAOPTS File ==>

Any other valid Language Environment options
==>

PF1=HELP 2=GHELP 3=RETURN

Chapter 10. Preparing a CICS program 83

Some of the entry fields are filled in with default values that start z/OS Debugger, in full-screen mode,
for tasks running on this terminal. If you do not want to change the defaults, you can skip the rest

of this step and proceed to step “5” on page 84. If you want to change the settings on this panel,
continue with this step.

5. Press PF3 to return to the main DTCN panel.

6. If you want to use data passed through COMMAREA or containers to help identify transactions and
programs that you want to debug, press PF8. The Advanced Options panel is displayed, which looks
like the following example:

DTCN z/0S Debugger CICS Control - Advanced Options SO7CICPD

Select advanced program interruption criteria:

Commarea Offset ==> 0
Commarea Data ==>
Container Name ==>
Container Offset ==> 0
Container Data ==>
URM Debugging ==> NO

Default offset and data representation is decimal/character.
See Help for more information.

PF1=HELP 2=GHELP 3=RETURN

You can specify data in the COMMAREA or containers, but not both. You can also use this panel to
indicate whether you want to debug user replaceable modules (URMs). For more information about
these fields, do one of the following tasks:

« Read “Description of fields on the DTCN Primary Menu screen” on page 86.

« Place the cursor next to the field and press PF1 to display the online help.
7. Press PF3 to return to the main DTCN panel.

8. Press PF4 to save the profile. DTCN performs data verification on the data that you entered in the
DTCN panel. When DTCN discovers an error, it places the cursor in the erroneous field and displays a
message. You can use context-sensitive help (PF1) to find what is wrong with the input.

9. Press PF5 to change the status from active to inactive, or from inactive to active. A profile has three
possible states:

No profile saved
A profile has not yet been created for this terminal.

Active
The profile is active for pattern matching.

Inactive
Pattern matching is skipped for this profile.

10. After you save the profile in the repository, DTCN shows the saved TEST string in the display field
Repository String. If you are satisfied with the saved profile, press PF3 to exit DTCN.

Now, any tasks that run in the CICS system and match the resources that you specified in the previous
steps will start z/OS Debugger.

Refer to the following topics for more information related to the material discussed in this topic.

Related tasks
“Displaying a list of active DTCN profiles and managing DTCN profiles” on page 85

84 IBM z/0OS Debugger: User's Guide

Related references
“Description of fields on the DTCN Primary Menu screen” on page 86
Description of the DTCD transaction in IBM z/0S Debugger Customization Guide

Displaying a list of active DTCN profiles and managing DTCN profiles
To display all of the active DTCN profiles in the CICS region, do the following steps:

1. If you have not started the DTCN transaction, Log on to a CICS terminal and enter the transaction ID
DTCN. The DTCN transaction displays the main DTCN screen, z/OS Debugger CICS Control - Primary
Menu.

2. Press PF7. The z/OS Debugger CICS Control - All Sessions screen displays, shown below.

DTCN z/0S Debugger CICS Control - All Sessions SO7CICPD
Overtype "_" with "D" to delete, "A" to activate, "I" to inactivate a profile.

Owner Sta Term Tzxan User Id NetName Applid Display Id

_ 0090 ACT 0090 TRN1 USER1 0072 SO7CICPD 0090
LoadMod: : >CU(s) CIC9060 1> CS9060 CBLAC?3 1> %9361
28> 1>
> >
> >
IP Name/Addr
The column titles are defined below:
Owner
The ID of the terminal that created the profile by using DTCN.
Sta
Indicates if the profile is active (ACT) or inactive (INA).
Term
The value that was entered on the main DTCN screen in the Terminal Id field.
Tran
The value that was entered on the main DTCN screen in the Transaction Id field.
User Id
The value that was entered on the main DTCN screen in the User Id field.
Netname
The value the entered on the main DTCN screen in the Netname field.
Applid
The application identifier associated with this profile.
Display Id
Identifies the target destination for z/OS Debugger information.
LoadMod(s)
The values that were entered on the main DTCN screen in the LoadMod(s) field.
CU(s)
The values that were entered on the main DTCN screen in the CU(s) field.
IP Name/Addr

The value that was entered on the main DTCN screen in the IP Name/Address field.

DTCN also reads the Language Environment NOTEST option supplied to the CICS region in CEECOPT or
CEEROPT. You can supply suboptions, such as the name of a preferences file, with the NOTEST option
to supply additional defaults to DTCN.

3. To delete a profile, move your cursor to the underscore character (_) that is next to the profile you want
to delete. Type in "D" and then press Enter.

Chapter 10. Preparing a CICS program 85

4. To make a profile inactive, move your cursor to the underscore character () that is next to the profile
you want to make inactive. Type in "I" and then press Enter.

5. To make a profile active, move your cursor to the underscore character (_) that is next to the profile
you want to make active. Type in "A" and then press Enter.

6. To leave this panel and return to the DTCN primary menu, press PF3.
Refer to the following topics for more information related to the material discussed in this topic.

Related tasks
“Creating and storing a DTCN profile” on page 82

Description of fields on the DTCN Primary Menu screen
This topic describes the fields that are displayed on the DTCN Primary Menu screen.

The following list describes the resources you can specify to help identify the program or transaction that
you want to debug:

Terminal Id
Specify the CICS terminal identifier associated with the transaction you want to debug. By default,
DTCN sets the ID by one of the following rules:

- If the type of repository is a VSAM file and the current user ID has a saved profile, DTCN fills in
the field with the terminal ID that is in the repository. You can change the terminal ID to the ID of
the terminal you are currently running on, by placing your cursor on the terminal ID field and then
pressing PF10. Press PF4 to save the profile with this new value.

« If the type of repository is a VSAM file and the current user ID does not have a saved profile, the
terminal ID field is filled in with the ID of the terminal you are currently running on.

If the type of repository is a temporary storage queue, the terminal ID field is filled in with the ID of
the terminal you are currently running on.

If the CICS transaction or program that you want to debug is not associated with a specific terminal
(for example, the request to start a debug session comes from a browser), make this field blank.

If YES is specified for the EQAOPTS DTCNFORCETERMID command, you must specify a terminal
identifier. To learn about the EQAOPTS DTCNFORCETERMID command, see the topic "EQAOPTS

commands" in the IBM z/0S Debugger Customization Guide or IBM z/0S Debugger Reference and
Messages.

Transaction Id
Specify the CICS transaction to debug. If you specify a transaction ID without any other resource,
z/0S Debugger is started every time any of the following situations occurs:
 You run the transaction.
 The first program run by the transaction is started.
« Any other user runs the transaction.
« Any enabled DFH* module is the first program run by the transaction.

To start z/OS Debugger at the desired program that the transaction runs, specify the program name in
the Program Id(s) field.

If YES is specified for the EQAOPTS DTCNFORCETRANID command, you must specify a transaction ID.
To learn about the EQAOPTS DTCNFORCETRANID command, see the topic "EQAOPTS commands" in
the IBM z/0S Debugger Customization Guide or IBM z/0S Debugger Reference and Messages.

86 IBM z/0OS Debugger: User's Guide

LoadMod::>CU(s)
Specify the resource pair or pairs, consisting of a load module name and a compile unit (CU) name
that you want to debug. Type in the load module name after the ==> and the corresponding CU name
after the : : >. You can specify any of the following names:

LoadMod

The name of a load module that you want to debug. The load module must comply with the
following requirements:

» For z/OS Debugger initialization, the load module can be any CICS load module if it is invoked as
an Language Environment enclave or over a CICS Link Level. This includes the following types of
load modules:

— The initial load module in a transaction.
— A load module invoked by CICS LINK or XCTL.

- Any non-Language Environment assembler load module which is loaded through an EXEC CICS
LOAD command.

Ccu

The name of the compile unit (CU) that you want to debug. The CU must comply with the following
requirements:

- Any CICS CU if it is invoked as an Language Environment enclave or over a CICS Link Level. This
includes the following types of CUs:

— The initial CU in a transaction
— A CU invoked by CICS LINK or XCTL

« Any COBOL CU, even if it is a nested CU or a subprogram within a composite load module,
invoked by a static or dynamic CALL.

« Any Enterprise PL/I for z/OS Version 3 Release 4 CU (with the PTF for APAR PK03264 applied),
or later, running with Language Environment Version 1 Release 6 (with the PTF for APAR
PK03093 applied), or later, even if it is a nested CU or a subprogram within a composite load
module, invoked as a static or dynamic CALL.

« Any non-Language Environment assembler CU which is loaded through an EXEC CICS LOAD
command.

Usage Notes®:

If you specify a LoadMod and leave the corresponding CU field blank, the CU field defaults to an
asterisk (*).

If you specify a CU and leave the corresponding LoadMod field blank, the LoadMod field defaults to
an asterisk (*).

If you leave all LoadMod and CU fields blank and you set the Prompt Level on the "z/OS Debugger
CICS Control - Menu 2" to PROMPT, z/0OS Debugger initializes for the first program invoked.

If you migrate from a version of z/OS Debugger prior to Version 10.1, you can obtain the same
behavior produced by the DTCN Program Id resource by usingthe LoadMod: : >CU resource pair
and specifying only the CU resource. The LoadMod resource defaults to an asterisk (*).

You can specify wildcard characters (*) and (?).

If z/OS Debugger was started by another program before the EXEC CICS LOAD command that
starts this non-Language Environment assembler program, you need to enter one of the following
commands so that z/OS Debugger gains control of this program:

- LDD
— SET ASSEMBLER ON
— SET DISASSEMBLY ON

When you specify a CU for C/C++ and Enterprise PL/I programs (languages that use a fully qualified
data set name as the compile unit name), you must specify the correct part of the compile unit

Chapter 10. Preparing a CICS program 87

name in the CU field. Use the following rules to determine which part of the compile unit name you
need to specify:

— If you are using a PDS or PDSE, you must specify the member name. For example, if the
compile unit names are DEV1.TEST.ENTPLI.SOURCE(ABC) and DEV1.TEST.C.SOURCE(XYZ), you
must specify ABC and XYZ in the program ID field.

— If you are using a sequential data set, specify one of the following:

- The last qualifier of the sequential data set. For example, if the compile unit names are
DEV1.TEST.ENTPLI.SOURCE.ABC and DEV1.TEST.C.SOURCE.XYZ, you must specify ABC and
XYZ in the program ID field.

- Wildcards. For example, if the compile unit names are DEV1.TEST.ENTPLI.ABC.SOURCE and
DEV1.TEST.C.XYZ.SOURCE, you must specify *ABC* and *XYZ* in the program ID field.

— If you compiled your PL/I program with the following compiler and it is running in the following
environment, you need to use the package name or the main procedure name:

- Enterprise PL/I for z/OS, Version 3.5, with the PTFs for APARs PK35230 and PK35489 applied,
or Enterprise PL/I for z/OS, Version 3.6 or later

- Language Environment, Version 1.6 through 1.8 with the PTF for APAR PK33738 applied, or
later

« Specifying a CICS program in the LoadMod::>CU field is similar to setting a breakpoint by using the
AT ENTRY command and z/OS Debugger stops each time you enter LoadMod::>CU.

- If z/OS Debugger is already running and it cannot find the separate debug file, then z/OS Debugger
does not stop at the CICS program specified in the LoadMod::>CU field. Use the AT APPEARANCE or
AT ENTRY command to stop at this CICS program.

« If YES is specified for the EQAOPTS DTCNFORCELOADMODID command, you must specify a value
for the LoadMod field. To learn about the EQAOPTS DTCNFORCELOADMODID command, see the
topic "EQAOPTS commands" in the IBM z/0S Debugger Customization Guide or IBM z/0S Debugger
Reference and Messages.

« If YES is specified for the EQAOPTS DTCNFORCEPROGID or DTCNFORCECUID commands, you
must specify a value for the CU field. To learn about the EQAOPTS DTCNFORCEPROGID or
DTCNFORCECUID commands, see the topic "EQAOPTS commands" in the IBM z/0S Debugger
Customization Guide or IBM z/0S Debugger Reference and Messages.

User Id
Specify the user identifier associated with the transaction you want to debug. The following list can
help you decide what to enter in this field:

- If the useridentifier is the same one that is currently running DTCN, use the default user identifier.

- If the useridentifier is different than the one currently running DTCN and you know the user
identifier, enter that user identifier.

- If you do not know the user identifier or the transaction is not associated with a user identifier,
specify the wild character or blanks.

If YES is specified for the EQAOPTS DTCNFORCEUSERID command, you must specify a user identifier.
To learn about the EQAOPTS DTCNFORCEUSERID command, see the topic "EQAOPTS commands" in
the IBM z/0S Debugger Customization Guide or IBM z/0S Debugger Reference and Messages.

NetName
Specify the four character name of a CICS terminal or a CICS system that you want to use to run your
debugging session. This name is used by VTAM to identify the CICS terminal or system.

If YES is specified for the EQAOPTS DTCNFORCENETNAME command, you must specify a value for the
NetName field. To learn about the EQAOPTS DTCNFORCENETNAME command, see the topic "EQAOPTS
commands" in the IBM z/0S Debugger Customization Guide or IBM z/0S Debugger Reference and
Messages.

88 IBM z/0OS Debugger: User's Guide

IP Name/Address
The client IP name or IP address that is associated with a CICS application. All IP names are treated
as upper case. Wildcards (* and ?) are permitted. z/OS Debugger is invoked for every task that is
started for that client.

If YES is specified for the EQAOPTS DTCNFORCEIP command, you must specify an IP address. To
learn about the EQAOPTS DTCNFORCEIP command, see the topic "EQAOPTS commands" in the IBM
z/0S Debugger Customization Guide or IBM z/0S Debugger Reference and Messages.

The following list describes the fields that you can use to indicate which type of debugging session you
want to run.

Session Type
Select one of the following options:
MFI
Indicates that z/OS Debugger initializes on a 3270 type of terminal.
TCP
Indicates that you want to interact with z/OS Debugger using a remote debugger in Debug Tool
compatibility mode connected with a TCP/IP host name or address.

z/0OS Debugger is progressing towards one remote debug mode based on Debug Tool compatibility
mode. In support of this direction, TCP is the preferred option to debug CICS transactions with a
remote IDE.

DIR
Indicates that you want to interact with z/OS Debugger using a remote debugger in standard mode
connected with a TCP/IP host name or address.
Standard mode is not available in IBM Wazi Developer for Red Hat CodeReady Workspaces.

DTC
Indicates that you want to interact with z/OS Debugger using a remote debugger in Debug Tool
compatibility mode connected with a z/OS Debugger Debug Manager userid.

z/0S Debugger is progressing towards one remote debug mode based on Debug Tool compatibility
mode. In support of this direction, DTC is the preferred option to debug CICS transactions using
Debug Manager with a remote IDE.

DBM
Indicates that you want to interact with z/OS Debugger using a remote debugger in standard mode
connected with a z/OS Debugger Debug Manager userid.
Standard mode is not available in IBM Wazi Developer for Red Hat CodeReady Workspaces.

RDS
Indicates that you want to start a debug session with IBM Z Open Debug using Remote Debug
Service.

Port Number
Specifies the TCP/IP port number that the debug daemon is listening for debug or code coverage
sessions. The debug daemon default port is 8001. If you entered DTC or DBM in the Session Type
field, this field must be left blank.

Note: Code coverage is not supported by IBM Wazi Developer for Red Hat CodeReady Workspaces.

Display Id
Identifies the target destination for z/OS Debugger.

If you entered DTC or DBM in the Session Type field, enter the userid that your workstation is using to
connect to the z/OS remote system.

If you entered TCP or DIR in the Session Type field, determine the IP address or host name of the
workstation that is running the remote debugger. Change the value in the Display Id field by doing the
following steps:

1. Place your cursor on the Display Id field.

Chapter 10. Preparing a CICS program 89

2. Type in the IP address or host name of the workstation that is running the remote debugger.
3. To save the profile with this new value, press PF4.

If you entered MFI in the Session Type field, DTCN fills in the Display Id field according to the
following rules:

- If the type of repository is a VSAM file and the current user ID has a saved profile, DTCN fills in the
field with the display ID that is in the repository.

- If the type of repository is a VSAM file and the current user ID does not have a saved profile, DTCN
fills in the field with the ID of the terminal you are currently running on.

- If the type of repository is a temporary storage queue, DTCN fills in the field with the ID of the
terminal you are currently running on.

You can use one of the following terminal modes to display z/OS Debugger on a 3270 terminal:

- Single terminal mode: z/OS Debugger and the application program share the same terminal. To use
this mode, enter the ID of the terminal being used by your application program or move the cursor
to the Display ID field and press PF10.

« Screen control mode: z/OS Debugger displays its screens on a terminal which is running the DTSC
transaction. To use this mode, start the DTSC transaction on a terminal and specify that terminal’s
ID in the Display ID field.

« Separate terminal mode: z/OS Debugger displays its screens on a terminal which is available for
use (not associated with any transaction) and can be located by CICS. To use this mode, specify the
terminal’s ID in the Display ID field.

Description of fields on the DTCN Menu 2 screen

The following list describes the fields that you can use to specify the TEST runtime options, other runtime
options, commands file, and preferences file that you want to use for the debugging session:

Test Option
TESTNOTEST specifies the conditions under which z/OS Debugger assumes control during the
initialization of your application.

Test Level
ALL/ERRORMNONE specifies what conditions need to be met for z/OS Debugger to gain control.

Commands File
A valid fully qualified data set name that specifies the commands file for this run. Do not enclose
the name of the data set in quotation marks (") or apostrophes (*). The CICS region must have read
authorization to the commands file.

If you leave this field blank and have a value for a default user commands file set through the
EQAOPTS COMMANDSDSN command, z/OS Debugger does the following tasks to find a commands file:

1. z/OS Debugger constructs the name of a data set from the naming pattern specified in the
command.

2. z/0S Debugger locates the data set.

3. If the data set contains a member with a name that matches the name of the initial load module in
the first enclave, it processes that member as a commands file.

If you do not want specify a commands file, and want to prevent z/OS Debugger from using the file
specified by the EQAOPTS COMMANDSDSN command, specify NULLFILE for the commands file.

To learn how to specify the EQAOPTS COMMANDSDSN command, see the topic "EQAOPTS commands"
in either the IBM z/0S Debugger Customization Guide or IBM z/0S Debugger Reference and Messages.

Prompt Level
Specifies whether z/OS Debugger is started at Language Environment initialization.

90 IBM z/OS Debugger: User's Guide

Preferences File
A valid fully qualified data set name that specifies the preferences file for this run. Do not enclose
the name of the data set in quotation marks (") or apostrophes (*). The CICS region must have read
authorization to the preferences file.

If you leave this field blank and have a value for a default user preferences file set through the

EQAOPTS PREFERENCESDSN command, z/OS Debugger does the following tasks to find a preferences

file:

1. z/OS Debugger constructs the name of a data set from the naming pattern specified in the
command.

2. z/OS Debugger locates the data set and processes it as a preferences file.

If you do not want to specify a preferences file, and want to prevent z/OS Debugger from using the file
specified by the EQAOPTS PREFERENCESDSN command, specify NULLFILE for the preferences file.

To learn how to specify the EQAOPTS PREFERENCESDSN command, see the topic "EQAOPTS
commands" in either the IBM z/0S Debugger Customization Guide or IBM z/0S Debugger Reference
and Messages.

EQAOPTS File
A valid fully qualified data set name that specifies the EQAOPTS file for this run. Do not enclose
the name of the data set in quotation marks (") or apostrophes (*). The CICS region must have read
authorization to the EQAOPTS file.

Any other valid Language Environment Options
You can change any Language Environment option that your site has defined as overrideable
except the STACK option. For additional information about Language Environment options, see z/0S
Language Environment Programming Reference or contact your CICS system programmer.

Description of fields on the DTCN Advanced Options screen

The following list describes the fields that you can use to specify the data passed through COMMAREA or
containers that can help identify transactions and programs that you want to debug;:

Commarea offset
Specifies the offset of data within a commarea passed to a program on invocation. You can specify the
offset in decimal format (for example, 13) or in hexadecimal format (for example, X'D'"). If you specify
data in hexadecimal format, you must specify an even number of hexadecimal digits.

Commarea data
Specifies the data within a commarea that is passed to a program on invocation. You can specify the
data in character format (for example, "ABC") or in hexadecimal format (for example, X'C1C2C3").

Container name
Specifies the name of a container within the current channel passed to a program on invocation.
Container names are case sensitive.

Container offset
Specifies the offset of data in the named container passed to a program in the current channel on
invocation. You can specify the offset in decimal format (for example, 13) or in hexadecimal format
(for example, X'D").

Container data
Specified the data in the named container passed to a program in the current channel on invocation.
You can specify the data in character format (for example, "ABC") or in hexadecimal format (for
example, X'C1C2C3"). If you specify data in hexadecimal format, you must specify an even number of
hexadecimal digits.

URM debugging
Specifies whether you want z/OS Debugger to include the debugging of URMs as part of the debug
session. Choose from the following options:

YES
z/0S Debugger debugs URMs which match normal z/OS Debugger debugging criteria.

Chapter 10. Preparing a CICS program 91

NO
z/0OS Debugger excludes URMs form debugging sessions.

Creating and storing debugging profiles with CADP

CADP is an interactive transaction supplied by CICS Transaction Server for z/OS Version 2 Release 3, or
later. CADP helps you maintain persistent debugging profiles. These profiles contain a pattern of CICS
resource names that identify a task that you want to debug. When CICS programs are started, CICS tries
to match the executing resources to find a profile whose resources match those that are specified in a
CADP profile. During this pattern matching, CICS selects the best matching profile, which is the one with
greatest number of resources that match the active task.

Before using CADP, verify that you have done the following tasks:

« Compiled and linked your program as described in Chapter 10, “Preparing a CICS program,” on page 81.

« Verified that your site uses CADP and that all the tasks required to customize z/OS Debugger so that
it can debug CICS programs described in IBM z/0S Debugger Customization Guide are completed.
In particular, verify that the DEBUGTOOL system initialization parameter is set to YES so that z/0S
Debugger uses the CADP profile repository instead of the DTCN profile repository to find a matching
debugging profile.

See CICS Supplied Transactions for instructions on how to use the CADP utility transaction. If you are
going to debug user-replaceable modules (URMs), specify ENVAR ("INCLUDEURM=YES") in the Other
Language Environment Options field.

Refer to the following topics for more information related to the material discussed in this topic.

Related references
CICS Application Programming Guide for a description of debugging profiles.

Starting z/0S Debugger for non-Language Environment programs
under CICS

You can start z/OS Debugger to debug a program that does not run in the Language Environment run time
by using the existing debug profile maintenance transactions DTCN and CADP. You must use DTCN with
versions of CICS prior to CICS Transaction Server for z/OS Version 2 Release 3.

To debug CICS non-Language Environment programs, the z/OS Debugger non-Language Environment
Exits must have been previously started.

To debug non-Language Environment assembler programs or non-Language Environment COBOL
programs that run under CICS, you must start the required z/OS Debugger global user exits before

you start the programs. z/OS Debugger provides the following global user exits to help you debug non-
Language Environment applications: XPCFTCH, XEIIN, XEIOUT, XPCTA, and XPCHAIR. The exits can be
started by using either the DTCX transaction (provided by z/OS Debugger), or using a PLTPI program
that runs during CICS region startup. DTCXXO activates the non-Language Environment Exits for z/OS
Debugger in CICS. DTCXXF inactivates the non-Language Environment Exits for z/OS Debugger in CICS.

Refer to the following topics for more information related to the material discussed in this topic.

Related tasks
IBM z/0S Debugger Customization Guide

Passing runtime parameters to z/0S Debugger for non-Language
Environment programs under CICS
When you define your debugging profile using the DTCN Options Panel (PF9) or the CADP Create/Modify
Debugging Profile Panel, you can pass a limited set of runtime options that will take effect during your

debugging session when you debug programs that do not run in Language Environment. You can pass the
following runtime options:

92 IBM z/0OS Debugger: User's Guide

TEST/NOTEST: must be TEST
TEST LEVEL: must be ALL

- Commands file

« Prompt Level: must be PROMPT
Preferences file

You can also specify the following runtime options in a TEST string:

— NATLANG: to specify the National Language used to communicate with z/OS Debugger
— COUNTRY: to specify a Country Code for z/OS Debugger
— TRAP: to specify whether z/OS Debugger is to intercept Abends

Refer to the following topics for more information related to the material discussed in this topic.

Related references
IBM z/0S Debugger Reference and Messages

Chapter 10. Preparing a CICS program 93

94 IBM z/0OS Debugger: User's Guide

Chapter 11. Preparing an IMS program

To prepare an IMS program, do the following tasks:

1. Verify that Chapter 4, “Planning your debug session,” on page 25 and Chapter 5, “Updating your
processes so you can debug programs with z/OS Debugger,” on page 59 have been completed.

2. Contact your system programmer to find out the preferred method for starting z/OS Debugger and
which of the following methods you need to use to specify TEST runtime options:

« Specifying the TEST runtime options in a data set, which is then extracted by a customized version
of the Language Environment user exit routine CEEBXITA. See Chapter 12, “Specifying the TEST
runtime options through the Language Environment user exit,” on page 97 for instructions.

« Specifying the TEST runtime options in a CEEUOPT (application level, which you link-edit to your
application program) or CEEROPT modaule, (region level). See “Starting z/OS Debugger under IMS by
using CEEUOPT or CEEROPT” on page 95 for instructions.

« Specifying the TEST runtime options through the EQASET transaction for non-Language Environment
assembler programs running in IMS TM. See “Running the EQASET transaction for non-Language
Environment IMS MPPs” on page 346 for instructions.

- “Managing runtime options for IMSplex users by using IBM z/OS Debugger Utilities” on page 95.

Starting z/0S Debugger under IMS by using CEEUOPT or CEEROPT

You can specify your TEST runtime options by using CEEUOPT (which is an assembler module that uses
the CEEXOPT macro to set application level defaults, and is link-edited into an application program) or
CEEROPT (which is an assembler module that uses the CEEXOPT macro to set region level defaults).
Every time your application program runs, z/OS Debugger is started.

To use CEEUOPT to specify your TEST runtime options, do the following steps:

1. Code an assembler program that includes a CEEXOPT macro invocation that specifies your application
program's runtime options.

2. Assemble the program.

3. Link-edit the program into your application program by specifying an INCLUDE
LibraryDDname(CEEUOPT-member name)

4. Place your application program in the load library used by IMS.
To use CEEROPT to specify your TEST runtime options, do the following steps:

1. Code an assembler program that includes a CEEXOPT macro invocation that specifies your region's
runtime options.

2. Assemble the program.

3. Link-edit the program into a load module named CEEROPT by specifying an INCLUDE
LibraryDDname(CEEROPT-member name)

4. Place the CEEROPT load module into the load library used by IMS.

Managing runtime options for IMSplex users by using IBM z/0S
Debugger Utilities

Note: This section is not applicable to IBM Developer for z/OS (non-Enterprise Edition) or IBM Wazi
Developer for Red Hat CodeReady Workspaces.

This topic describes how to add, delete, or modify TEST runtime options that are stored in the IMS
Language Environment runtime parameter repository. To manage the items in this repository, do the
following steps:

© Copyright IBM Corp. 1992, 2021 95

1. From the main IBM z/0S Debugger Utilities panel (EQA@PRIM), type 4 in the Option line and press
Enter.

2. In the Manage IMS Programs panel (EQAPRIS), type 1 in the Option line and press Enter.

3. In the Manage LE Runtime Options in IMS panel (EQAPRI), type in the IMSplex ID and optional
qualifiers. IBM z/0S Debugger Utilities uses this information to search through the IMS Language
Environment runtime parameter repository and find the entries that most closely match the
information you typed in. You can use wild cards (* and %) to increase the chances of a match. After
you type in your search criteria, press Enter.

4. In the Edit LE Runtime Options Entries in IMS panel (EQAPRIM), a table displays all the entries found
in the IMS Language Environment runtime parameter repository that most closely match your search
criteria. You can do the following tasks in this panel:

« Delete an entry.

« Add a new entry.

« Edit an existing entry.

- Copy an existing entry.

For more information about a command or field, press PF1 to display a help panel.

5. After you finish making your changes, press PF3 to save your changes and close the panel that is
displayed. If necessary, press the PF3 repeatedly to close other panels until you reach the Manage IMS
Programs panel (EQAPRIS).

Setting up the DFSBXITA user exit routine

To make the debug session use the options you specified in the Manage LE Runtime Options in IMS
function, you must use the DFSBXITA user exit supplied by IMS. This exit contains a copy of the Language
Environment CEEBXITA user exit that is customized for IMS. The DFSBXITA user exit either replaces the
exit supplied by Language Environment in CEEBINIT, or is placed in your load module.

« To make the user exit available installation-wide, do a replace link edit of the IMS CEEBXITA into the
CEEBINIT load module in your system hlqg.SCEERUN Language Environment runtime library.

- To make the user exit available region-wide, copy the CEEBINIT in your hlg.SCEERUN library into a
private library, and then do a replace link edit of the IMS CEEBXITA into the CEEBINIT load module in
your private library. Then place your private library in the STEPLIB DD concatenation sequence before
the system h1q.SCEERUN data set in the MPR region startup job.

« To make the user exit available to a specific application, link the IMS CEEBXITA into your load module.
The user exit runs only when the application is run.

The following sample JCL describes how to do a replace link edit of the IMS CEEBXITA into a CEEBINIT
load module:

INCLUDE MYOBJ(CEEBXITA)

REPLACE CEEBXITA

INCLUDE SYSLIB(CEEBINIT)

ORDER CEEBINIT MODE AMODE(24),RMODE(24)
ENTRY CEEBINIT

ALIAS CEEBLIBM

NAME CEEBINIT(R)

When you assembled the IMS user exit DFSBXITA, if you named the resulting object member DFSBXITA,
replace CEEBXITA on line [fil}] with DFSBXITA.

96 IBM z/OS Debugger: User's Guide

Chapter 12. Specifying the TEST runtime options
through the Language Environment user exit

z/0S Debugger provides a customized version of the Language Environment user exit (CEEBXITA). The
user exit returns a TEST runtime option when called by the Language Environment initialization logic. z/OS
Debugger provides a user exit that supports three different environments. This topic is also described in
IBM z/0S Debugger Customization Guide with information specific to system programmers.

The user exit extracts the TEST runtime option from a user controlled data set with a name that is
constructed from a naming pattern. The naming pattern can include the following tokens:

&USERID
z/0S Debugger replaces the &USERID token with the user ID of the current user. Each user can
specify an individual TEST runtime option when debugging an application. This token is optional.

&PGMNAME
z/0S Debugger replaces the &PGMNAME token with the name of the main program (load module). Each
program can have its own TEST runtime options. This token is optional.

z/0S Debugger provides the user exit in two forms:

« Aload module. The load modules for the three environments are in the hlg.SEQAMOD data set. Use this
load module if you want the default naming patterns and message display level. The default naming
pattern is &USERID.DBGTOOL . EQAUOPTS and the default message display level is X'00'.

« Sample assembler user exit that you can edit. The assembler user exits for the three environments are
in the hlg.SEQASAMP data set. You can also merge this source with an existing version of CEEBXITA.
Use this source code if you want naming patterns or message display levels that are different than the
default values.

z/0OS Debugger provides a customized version of the Language Environment user exit named EQAD3CXT.
The following table shows the environments in which this user exit can be used. The EQAD3CXT user exit
determines the runtime environment internally and can be used in multiple environments.

Table 18. Language Environment user exits for various environments

Environment User exit name

The following types of Db2 stored procedures that run in WLM- EQAD3CXT
established address spaces:

. type MAIN?

. type SUB2

IMS TM3 and BTS4 EQAD3CXT
Batch EQAD3CXT
Note:

1. EQAD3CXT is supported for DB2 version 7 or later. If Db2 RUNOPTS is specified, EQAD3CXT takes
precedence over Db2 RUNOPTS.

2. If you have installed the PTF for APAR PM15192 for Language Environment Version 1.10 to Version
1.12, or have Language Environment Version 1.13 or higher, the type SUB stored procedure is invoked
by the call_sub function and EQAD3CXT is not needed.

3. For IMS TM, if you do not sign on to the IMS terminal, you might need to run the EQASET transaction
with the TSOID option. For instructions on how to run the EQASET transaction, see "Debugging
Language Environment IMS MPPs without issuing /SIGN ON" in the IBM z/0S Debugger User's Guide.

© Copyright IBM Corp. 1992, 2021 97

4. For BTS, you need to specify Environment command (./E) with the user ID of the I0 PCB. For example,
if the user ID is ECSVT2, then the Environment command is . /E USERID=ECSVT2.

Each user exit can be used in one of the following ways:

« You can link the user exit into your application program.

« You can link the user exit into a private copy of a Language Environment module (CEEBINIT, CEEPIPI,
or both), and then, only for the modules you might debug, place the SCEERUN data set containing this
module in front of the system Language Environment modules in CEE.SCEERUN in the load module
search path.

To learn about the advantages and disadvantages of each method, see “Comparing the two methods of
linking CEEBXITA” on page 100.

To prepare a program to use the Language Environment user exit, do the following tasks:

1. “Editing the source code of CEEBXITA” on page 98.

2. “Linking the CEEBXITA user exit into your application program” on page 100 or “Linking the CEEBXITA
user exit into a private copy of a Language Environment runtime module” on page 101.

3. “Creating and managing the TEST runtime options data set” on page 102.

Editing the source code of CEEBXITA

You can edit the sample assembler user exit that is provided in hlg.SEQASAMP to customize the naming
patterns or message display level by doing one of the following tasks:

« Use SMP/E USERMOD EQAUMODK to update the copy of the exit in the hlg.SEQAMOD data set. The
system programmer usually implements the USERMOD. The USERMOD is in hlqg.SEQASAMP.

« Create a private load module for the customized exit. Copy the assembler user exit that has the same
name as the user exit from hlg.SEQASAMP to a local data set. Edit the patterns or message display
level. Customize and run the JCL to generate a load module.

Modifying the naming pattern

The naming pattern of the data set that has the TEST runtime option is in the form of a sequential data set
name. You can optionally specify a &USERID token, which z/OS Debugger substitutes with the user ID of
the current user. You can also add a &PGMNAME token, which z/OS Debugger substitutes with the name of
the main program (load module). However, if users create and manage the TEST runtime option data set
with the DTSP Profile view in the remote debugger, do not specify the &PGMNAME token because the view
does not support that token.

In some cases, the first character of a user ID is not valid for a name qualifier. A character can be
concatenated before the &USERID token to serve as the prefix character for the user ID. For example, you
can prefix the token with the character "P" to form P&USERID, which is a valid name qualifier after the
current user ID is substituted for &USERID. For IMS, &USERID token might be substituted with one of the
following values:

« IMS user ID, if users sign on to IMS.
« TSO user ID, if users do not sign on to IMS.

The default naming pattern is &=USERID.DBGTOOL . EQAUOPTS. This is the pattern that is in the load
module provided in hlqg.SEQAMOD.

The following table shows examples of naming patterns and the corresponding data set names after z/OS
Debugger substitutes the token with a value.

Table 19. Data set naming patterns, values for tokens, and resulting data set names

Naming pattern User ID Program name Name after user ID substitution
&USERID.DBGTOOL.EQAUOPTS JOHNDOE JOHNDOE.DBGTOOL.EQAUOPTS
P&USERID.EQAUOPTS 123456 P123456.EQAUOPTS

98 IBM z/0OS Debugger: User's Guide

Table 19. Data set naming patterns, values for tokens, and resulting data set names (continued)

Naming pattern User ID Program name Name after user ID substitution
DT.&USERID.TSTOPT TESTID DT.TESTID.TSTOPT
DT.&USERID.&PGMNAME.TSTOPT TESTID IVP1 DT.TESTID.IVP1.TSTOPT

To customize the naming pattern of the data set that has TEST runtime option, change the value of the
DSNT DC statement in the sample user exit. For example:

* Modify the value in DSNT DC field below.
*

* Note: &USERID below has one additional '&', which is an escape

* character.

*

DSNT_LN DC A(DSNT_SIZE) Length field of naming pattern
DSNT DC C'&&USERID.DBGTOOL.EQAUOPTS'

DSNT_SIZE EQU *-DSNT Size of data set naming pattern

*

Modifying the message display level

You can modify the message display level for CEEBXITA. The following values set WTO message display
level:
X'oo’
Do not display any messages.
X'o1'
Display error and warning messages.
X'o2'
Display error, warning, and diagnostic messages.

The default value, which is in the load module in hlg.SEQAMOD, is X'00".

To customize the message display level, change the value of the MSGS_SW DC statement in the sample
user exit. For example:

* The following switch is to control WTO message display level.
*

* x'00' - no messages

* x'01' - error and warning messages

* x'02' - error, warning, and diagnostic messages

*

MSGS_SW DC X'00' message level

*

Modifying the call back routine registration

You can register a call back routine to the Language Environment. The Language Environment invokes the
call back routine prior to calling a type SUB program using CALL_SUB API in the CEEPIPI environment.
The call back routine performs a pattern match to determine if the type SUB program is to be debugged.

To customize the registration, change the value of the RRTN_SW DC statement.
x'00'

No registration of the call back routine.
x'01'

Registration of the call back routine.

Chapter 12. Specifying the TEST runtime options through the Language Environment user exit 99

Activate the cross reference function and modifying the cross reference
table data set name

You can activate the cross reference function of the IMS Transaction and User ID Cross Reference Table
and provide a cross reference table data set name. When an IMS transaction is initiated from the web
or MQ gateway, it runs with a generic ID. If a user wants to debug the transaction, the cross reference
function provides a way to associate the transaction with his or her user ID.

To customize the activation, change the value of the XRDSN_SW DC statement.
x'00'

Cross reference function is not activated.
x'01'

Cross reference function is activated.

To customize the cross reference table data set name, change the value of the XRDSN DC statement. You
must provide a fully qualified MVS sequential data set name.

Comparing the two methods of linking CEEBXITA

You can link in the user exit CEEBXITA in the following ways:

« Link it into the application program.

Advantage
The user exit affects only the application program being debugged. This means you can control
when z/0S Debugger is started for the application program. You might also not need to make any
changes to your JCL to start z/OS Debugger.

Disadvantage
You must remember to remove the user exit for production or, if it isn't part of your normal build
process, you must remember to relink it to the application program.

« Link it into a private copy of a Language Environment runtime load module (CEEBINIT, CEEPIPI, or both)

Advantage
You do not have to change your application program to use the user exit. In addition, you do not
have to link edit extra modules into your application program.

Disadvantage
You need to take extra steps in preparing and maintaining your runtime environment:

— Make a private copy of one or more Language Environment runtime routines

— Only for the modules you might debug, customize your runtime environment to place the private
copies in front of the system Language Environment modules in CEE.SCEERUN in the load module
search path

— When you apply maintenance to Language Environment, you might need to relink the routines.
— When you upgrade to a new version of Language Environment, you must relink the routines.

If you link the user exit into the application program and into a private copy of a Language Environment
runtime load module, which is in the load module search path of your application execution, the copy of
the user exit in the application load module is used.

Linking the CEEBXITA user exit into your application program

If you choose to link the CEEBXITA user exit into your application program, use the following sample JCL,
which links the user exit with the program TESTPGM. If you have customized the user exit and placed it
in a private library, replace the data name, (hlqg.SEQAMOD) of the first SYSLIB DD statement with the data
set name that contains the modified user exit load module.

//SAMPLELK JOB ,
// MSGCLASS=H,TIME=(,30),MSGLEVEL=(2,0),NOTIFY=&SYSUID,REGION=0M

100 IBM z/OS Debugger: User's Guide

/1%

//LKED EXEC PGM=HEWL,REGION=4M,

// PARM="CALL, XREF,LIST,LET,MAP,RENT'
//SYSLMOD DD DISP=SHR,DSN=USERID.OUTPUT.LOAD

//SYSPRINT DD DISP=0LD,DSN=USERID.OUTPUT.LINKLIST(TESTPGM)
//SYSUT1 DD UNIT=SYSDA,SPACE=(1024, (200,20))

/1%
//SYSLIB DD DISP=SHR,DSN=hlg.SEQAMOD
/1] DD DISP=SHR,DSN=CEE.SCEELKED
/1%

//0BJECT DD DISP=SHR,DSN=USERID.INPUT.OBJECT
//SYSLIN DD *

INCLUDE OBJECT(TESTPGM)

INCLUDE SYSLIB(EQAD3CXT)

NAME TESTPGM(R)
/*

Linking the CEEBXITA user exit into a private copy of a Language
Environment runtime module

If you choose to customize a private copy of a Language Environment runtime load module, you need to
ensure that your private copy of these load modules is placed ahead of your system copy of CEE.SCEERUN
in your runtime environment.

The following table shows the Language Environment runtime load module and the user exit needed for
each environment.

Table 20. Language Environment runtime module and user exit required for various environments
Environment User exit name CEE load module
The following types of Db2 stored procedures that run in WLM- | EQAD3CXT CEEPIPI
established address spaces:

- type MAIN

. type SUB?

IMS TM and BTS EQAD3CXT CEEBINIT

Batch EQAD3CXT CEEBINIT
Note:

1. If you have installed the PTF for APAR PM15192 for Language Environment Version 1.10 to Version
1.12, or have Language Environment Version 1.13 or higher, the type SUB stored procedure is invoked
by the call_sub function and EQAD3CXT is not needed.

Edit and run sample hlq.SEQASAMP(EQAWLCE3) to create these updated Language Environment runtime
modules. This is typically done by the system programmer installing z/OS Debugger. The sample creates
the following load module data sets:

« hlq.DB2SP.SCEERUN(CEEPIPI)
 hlg.IMSTM.SCEERUN(CEEBINIT)
« hlg.BATCH.SCEERUN(CEEBINIT)

When you apply service to Language Environment that affects either of these modules (CEEPIPI or
CEEBINIT) or you move to a new level of Language Environment, you need to rebuild your private copy of
these modules by running the sample again.

Option 8 of the Debug Tool Utilities ISPF panel, "JCL for Batch Debugging", uses hlqg.BATCH.SCEERUN if
you use Invocation Method E.

Chapter 12. Specifying the TEST runtime options through the Language Environment user exit 101

Creating and managing the TEST runtime options data set

The TEST runtime options data set is an MVS data set that contains the Language Environment runtime
options. The z/OS Debugger Language Environment user exit EQAD3CXT constructs the name of this data
set based on a naming pattern described in "Modifying the naming pattern” in the IBM z/0S Debugger
Customization Guide.

You can create this data set in one of the following ways:

By using Terminal Interface Manager (TIM), as described in “Creating and managing the TEST runtime
options data set by using Terminal Interface Manager (TIM)” on page 102.

By using IBM z/0S Debugger Utilities option 6, "z/OS Debugger User Exit Data Set", as described in
“Creating and managing the TEST runtime options data set by using IBM z/0S Debugger Utilities” on
page 104.

By using the z/0S Debugger Profiles view. For more information, see the "Working with the z/OS
Debugger Profiles view" topic in IBM Documentation.

By specifying a non-CICS profile in the z/OS Batch Application with existing JCL launch configuration.
For more information, see the "Launching a debug session using existing JCL" topic in IBM
Documentation.

By configuring the Remote Profile tab from Remote IMS Application with Isolation debug
configurations.

Creating and managing the TEST runtime options data set by using Terminal

Interf

ace Manager (TIM)

Note: This section is not applicable to IBM Developer for z/OS (non-Enterprise Edition) or IBM Wazi
Developer for Red Hat CodeReady Workspaces.

Before you begin, verify that the user ID that you use to log on to Terminal Interface Manager (TIM) has
permission to read and write the TEST runtime options data set.

To create the TEST runtime options data set by using Terminal Interface Manager, do the following steps:

1.
2.

3

Log on to Terminal Interface Manager.
In the z/0OS Debugger TERMINAL INTERFACE MANAGER panel, press PF10.

. In the * Specify TEST Run-time Option Data Set * panel, type in the name of a data set which follows
the naming pattern specified by your system administrator, in the Data Set Name field. If the data set
is not cataloged, type in a volume serial.

. Press Enter. If Terminal Interface Manager cannot find the data set, it displays the * Allocate TEST
Run-time Option Data Set * panel. Specify allocation parameters for the data set, then press Enter.
Terminal Interface Manager creates the data set.

. In the * Edit TEST Run-time Option Data Set * panel, make the following changes:

Program name(s)
Specify the names of up to eight programs you want to debug. You can specify specific names (for
example, EMPLAPP), names appended with a wildcard character (*), or just the wildcard character
(which means you want to debug all Language Environment programs).

Test Option
Specify whether to use TEST or NOTEST runtime option.

Test Level
Specify which TEST level to use: ALL, ERROR, or NONE.

Commands File
If you want to use a commands file, specify the name of a commands file in the format described in
the commands_file_designator section of the topic "Syntax of the TEST run-time option" in the IBM
z/0OS Debugger Reference and Messages manual.

102 IBM z/OS Debugger: User's Guide

https://www.ibm.com/docs/en
https://www.ibm.com/support/knowledgecenter
https://www.ibm.com/support/knowledgecenter

Prompt Level
Specify whether to use PROMPT or NOPROMPT.

Preferences File
If you want to use a preferences file, specify the name of a preferences file in the format described
in the preferences_file_designator section of the topic "Syntax of the TEST run-time option" in the
IBM z/0S Debugger Reference and Messages manual.

EQAOPTS File
If you want z/OS Debugger to run any EQAOPTS commands at run time, specify the name of the
EQAOPTS file as a fully-qualified data set name.
Other run-time options
Type in any other Language Environment runtime options.
6. Terminal Interface Manager displays the part of the TEST runtime option that specifies which session
type (debugging mode and display information) you want to use under the Current debug display
information field. To change the session type, do the following steps:

a. Press PF9.
b. In the Change session type panel, select one of the following options:

Full-screen mode using the z/OS Debugger Terminal Interface Manager
Type in the user ID you will use to log on to Terminal Interface Manager and debug your
program in the User ID field.

Remote debug mode
Type in the IP address in the Address field and port number in the Port field of the remote
debugger's daemon.

c. (Optional) Press Enter. Terminal Interface Manager accepts the changes and refreshes the panel.
d. Press PF4. Terminal Interface Manager displays the * Edit TEST Run-time Option Data Set * panel
and under the Current debug session type string: displays one of the following strings:
- VTAM¥userid, if you selected Full-screen mode using the z/0S Debugger Terminal Interface
Manager.
« TCPIP&IP_address%port, if you selected Remote debug mode.
7. Press PF4 to save your changes to the TEST runtime options data set and to return to the main
Terminal Interface Manager screen.
Refer to the following topics for more information related to the material discussed in this topic.

« For more information about the values to specify for the Test Option, Test Level, and Prompt Level fields,
see the topic "Syntax of the TEST run-time option" in the IBM z/0S Debugger Reference and Messages
manual.

« Forinstructions on creating a commands file or preferences file, see the topics “Creating a commands
file” on page 173 or “Creating a preferences file” on page 158.

« For instructions on creating an EQAOPTS file, see the topic "Providing EQAOPTS commands at run time"
in the IBM z/0S Debugger Reference and Messages manual or IBM z/0S Debugger Customization Guide.

- For more information about other Language Environment runtime options, see Language Environment
Programming Reference, SA22-7562.

- For more information about the values to specify for the Full-screen mode using the z/0S Debugger
Terminal Interface Manager field, see “Starting a debugging session in full-screen mode using the
Terminal Interface Manager or a dedicated terminal” on page 133.

« For more information about the values to specify for the Remote debug mode field, see the online help
for the remote GUL.

Chapter 12. Specifying the TEST runtime options through the Language Environment user exit 103

Creating and managing the TEST runtime options data set by using IBM z/0S
Debugger Utilities

Note: This section is not applicable to IBM Developer for z/OS (non-Enterprise Edition) or IBM Wazi
Developer for Red Hat CodeReady Workspaces.

To create the TEST runtime options data set by using IBM z/0S Debugger Utilities, do the following steps:

1.
2.

Start IBM z/0OS Debugger Utilities and select option 6, "z/OS Debugger User Exit Data Set".

Provide the name of a new or existing data set. Make sure the name matches the naming pattern. If
you do not know the naming pattern, ask your system administrator. Remember the following rules:

« Substitute the &PGMNAME token with the name of the program you want to debug. The program must
be the main CSECT of the load module in a Language Environment enclave.

« For IMS, &USERID token might be substituted with one of the following values:
— IMS user ID, if users sign on to IMS.
— TSO user ID, if users do not sign on to IMS.

. Fill out the rest of the fields with the TEST runtime options you want to use and the names of up to

eight additional programs to debug.

. For IMS, you can also fill out the IMS Subsystem ID, or IMS Transaction ID field, or both. If provided,

the IDs are used as additional filtering criteria.

. For batch, you can also specify the Job name or Step name fields, or both. If provided, the names are

used as additional filtering criteria.

You can use a wildcard (*) at the end of a job name or step name. For example, a job name of
JOB1* means that a job name that starts with JOB1 passes the matching test, like JOB1, JOB1A, or
JOB1ABC; a job name of * means that any job name passes the matching test.

104 IBM z/OS Debugger: User's Guide

Part 3. Starting z/OS Debugger

© Copyright IBM Corp. 1992, 2021 105

106 IBM z/OS Debugger: User's Guide

Chapter 13. Writing the TEST runtime option string

The instructions in this section apply to programs that run in Language Environment. For programs that do
not run in Language Environment, refer to the instructions in “Starting z/OS Debugger for programs that
start outside of Language Environment” on page 136.

This topic describes some of the factors that you need to consider when you use the TEST runtime option,
provides examples, and describes other runtime options that you might need to specify. The syntax of the
TEST runtime option is described in the topic “TEST run-time option” in IBM z/0S Debugger Reference and
Messages.

To specify how z/OS Debugger gains control of your application and begins a debug session, use the TEST
runtime option.

The simplest form of the TEST option is TEST with no suboptions specified. If Debug Profile Service is
active, a simple TEST option enables delay debug mode, regardless of whether the DLAYDBG EQAOPTS
command is in effect. z/OS Debugger acquires the naming pattern for the delay debug data set from the
profile service. For more information about this behavior, see “Simple TEST option” on page 107.

If you choose a more detailed TEST option, suboptions provide you with more flexibility. There are four
types of suboptions available:

test_level
Determines what high-level language conditions raised by your program cause z/OS Debugger to gain
control of your program.

commands_file
Determines which primary commands file is used as the initial source of commands.

prompt_level
Determines whether an initial commands list is unconditionally run during program initialization.

preferences_file
Specifies the session parameter and a file that you can use to specify default settings for your
debugging environment, such as customizing the settings on the z/OS Debugger Profile panel.

Special considerations while using the TEST run-time option

When you use the TEST run-time option, there are several implications to consider, which are described in
this section.

Simple TEST option

You can add a simple TEST option with no suboptions, or specify the default TEST suboptions of
TEST (ALL,*,PROMPT, INSPPREF) to start z/OS Debugger in delay debug mode under most conditions
for non-CICS tasks if the Debug Profile Service API is available.

« For batch applications, add TEST to the PARM string or CEEOPTS DD.

« For IMS dependent regions, add TEST to the CEEOPTS DD.

« For WLM procedures used by Db2 Stored Procedures, add TEST to the CEEOPTS DD.

« For Unix Systems Services processes, add TEST to the _CEE_RUNOPTS environment variable.
The following rules apply:

« If you define the TEST suboptions in your program with #pragma runopts or the PLIXOPT string,
those suboptions are in effect. For more information, see Defining TEST suboptions in your program.

- If you are executing a process in a TSO interactive session from z/OS Debugger Setup Utility or
using a TSO command, the debugger starts under your TSO session, as though you had specified
TEST (ALL,*,PROMPT,MFI:INSPPREF).

© Copyright IBM Corp. 1992, 2021 107

- Inall other cases, when Debug Profile Service is active, z/OS Debugger operates in delay debug
mode. The following delay debug commands are in effect unless you explicitly specify them using the
EQAOPTS load module:

— DLAYDBGCND: ALL.
— DLAYDBGTRC: 0.
— DLAYDBGXRF is not in effect.

DLAYDBGDSN is set based on the value supplied to the Debug Profile Service API. If you specify
DLAYDBGDSN in your EQAOPTS load module, the EQAOPTS setting is ignored.

For more information on delay debug mode, see “Using delay debug mode to delay starting of a debug
session ” on page 399.

Defining TEST suboptions in your program

In C, C++ or PL/I, you can define TEST with suboptions using a #fpragma runopts or PLIXOPT string,
then specify TEST with no suboptions at run time. This causes the suboptions specified in the #pragma
runopts or PLIXOPT string to take effect.

You can change the TEST/NOTEST run-time options at any time with the SET TEST command.

Suboptions and NOTEST

Some suboptions are disabled with NOTEST, but are still allowed. This means you can start your program
using the NOTEST option and specify suboptions you might want to take effect later in your debug session.
The program begins to run without z/OS Debugger taking control.

To enable the suboptions you specified with NOTEST, start z/OS Debugger during your program's run time
by using a library service call such as CEETEST, PLITEST, or the __ctest () function.

Implicit breakpoints

If the test level in effect causes z/OS Debugger to gain control at a condition or at a particular program
location, an implicit breakpoint with no associated action is assumed. This occurs even though you have
not previously defined a breakpoint for that condition or location using an initial command string or a
primary commands file. Control is given to your terminal or to your primary commands file.

Primary commands file and USE file

The primary commands file acts as a surrogate terminal. After it is accessed as a source of commands,
it continues to act in this capacity until all commands have been run or the application has ended. This
differs from the USE file in that, if a USE file contains a command that returns control to the program (such
as STEP or GO), all subsequent commands are discarded. However, USE files started from within a primary
commands file take on the characteristics of the primary commands file and can be run until complete.

The initial command list, whether it consists of a command string included in the run-time options or a

primary commands file, can contain a USE command to get commands from a secondary file. If started

from the primary commands file, a USE file takes on the characteristics of the primary commands file.
Running in batch mode

In batch mode, when the end of your commands file is reached, a GO command is run at each request for
a command until the program terminates. If another command is requested after program termination, a
QUIT command is forced.

Starting z/0S Debugger at different points

If z/OS Debugger is started during program initialization, it is started before all the instructions in the
main prolog are run. At that time, no program blocks are active and references to variables in the main

108 IBM z/OS Debugger: User's Guide

procedure cannot be made, compile units cannot be called, and the GOTO command cannot be used.
However, references to static variables can be made.

If you enter the STEP command at this point, before entering any other commands, both program and
Language Environment initialization are completed and you are given access to all variables. You can also
enter all valid commands.

If z/OS Debugger is started while your program is running (for example, by using a CEETEST call), it
might not be able to find all compile units associated with your application. Compile units located in load
modules that are not currently active are not known to z/OS Debugger, even if they were run prior to z/OS
Debugger's initialization.

For example, suppose load module mod1 contains compile units cul and cu2, both compiled with the
TEST option. The compile unit cul calls cux, contained in load module mod2, which returns after it
completes processing. The compile unit cu2 contains a call to the CEETEST library service. When the call
to CEETEST initializes z/OS Debugger, only cul and cu2 are known to z/OS Debugger. z/OS Debugger
does not recognize cux.

The initial command string is run only once, when z/0OS Debugger is first initialized in the process.

Commands in the preferences file are run only once, when z/0S Debugger is first initialized in the process.

Session log

The session log stores the commands entered and the results of the execution of those commands. The
session log saves the results of the execution of the commands as comments. This allows you to use the
session log as a commands file.

Refer to the following topics for more information related to the material discussed in this topic.

Related tasks
“Link-editing EQADCCXT into your program” on page 81

Related references
IBM z/0S Debugger Reference and Messages

Precedence of Language Environment runtime options

The Language Environment runtime options have the following order of precedence (from highest to
lowest):

1. Installation options in the CEEDOPT file that were specified as nonoverrideable with the NONOVR
attribute.

2. Options specified by the Language Environment assembler user exit. In the CICS environment, z/0OS
Debugger uses the DTCN transaction and the customized Language Environment user exit EQADCCXT,
which is link-edited with the application. In the IMS Version 8 environment, IMS retrieves the options
that most closely match the options in its Language Environment runtime options table. You can edit
this table by using IBM z/0S Debugger Utilities.

3. Options specified at the invocation of your application, using the TEST runtime option, unless
accepting runtime options is disabled by Language Environment (EXECOPSNOEXECOPS).

4. Options specified within the source program (with #fpragma or PLIXOPT) or application options
specified with CEEUOPT and link-edited with your application.

If the object module for the source program is input to the linkage editor before the CEEUOPT object
module, then these options override CEEUOPT defaults. You can force the order in which objects
modules are input by using linkage editor control statements.

5. Region-wide CICS or IMS options defined within CEEROPT.
6. Option defaults specified at installation in CEEDOPT.
7. IBM-supplied defaults.

Suboptions are processed in the following order:

Chapter 13. Writing the TEST runtime option string 109

1. Commands entered at the command line override any defaults or suboptions specified at run time.

2. Commands run from a preferences file override the command string and any defaults or suboptions
specified at run time.

3. Commands from a commands file override default suboptions, suboptions specified at run time,
commands in a command string, and commands in a preferences file.

Refer to the following topics for more information related to the material discussed in this topic.

Related references
z/0S Language Environment Programming Guide

Example: TEST runtime options

The following examples of using the TEST runtime option are provided to illustrate runtime options

available for your programs. These commands do not illustrate complete commands. The complete
syntax of the TEST runtime option can be found in "Syntax of the TEST run-time option" in IBM z/0S
Debugger Reference and Messages.

Remote debugging
If you are working in remote debug mode, that is, you are debugging your host application from your
workstation, the following examples apply:

Table 21. TEST runtime option examples for remote debugging

Scenario TEST runtime option usage

Eclipse IDE using Debug Manager TEST(,,,DBMDT: %)

Indicates that you want to start a debug session
in Debug Tool compatibility mode for an Eclipse
debug client. The address of the client is
automatically determined by Debug Manager for
the current user ID.

Eclipse IDE using workstation IP address TEST(,,,TCPIP&abc.example.com¥%8001:*
)

Indicates that you want to start a debug

session in Debug Tool compatibility mode for

an Eclipse debug client. In this example, the
TCP/IP address of the client is manually specified
as abc.example.com and the debug daemon is
listening on port 8001.

110 IBM z/OS Debugger: User's Guide

Table 21. TEST runtime option examples for remote debugging (continued)

Scenario

TEST runtime option usage

IBM Z Open Debug

TEST(,,,RDS:*)

Indicates that you want to start a debug session
using Remote Debug Service for Wazi Developer
for VS Code or Wazi Developer for Workspaces.
In this scenario, Remote Debug Service must be
running and configured.

TEST(,,,TCPIP&127.0.0.1%8001:)

Indicates that you want to start a debug

session using Remote Debug Service for Wazi
Developer for VS Code or Wazi Developer for
Workspaces. In this scenario, Remote Debug
Service is running on the local z/OS machine
using the TCP/IP address of 127.0.0.1 and it is
listening on port 8001 for internal z/OS Debugger
connections.

When Debug Profile Service is active, optionally you can use TEST with no suboptions specified to
enable delay debug mode. For more information, see “Simple TEST option” on page 107.

Code coverage

If you want to start code coverage sessions, the following examples apply:

Table 22. TEST runtime option examples for code coverage

Scenario

TEST runtime option usage

Code coverage with Eclipse IDE using Debug
Manager

TEST(,,,DBMDT:*)

Indicates that you want to start a code coverage
session in Debug Tool compatibility mode for

an Eclipse IDE. The address of the client is
automatically determined by Debug Manager for
the current user ID.

Code coverage with Eclipse IDE using
workstation IP address

TEST(,,,TCPIP&abc.example.com%8001:*
)

Indicates that you want to start a code coverage
session in Debug Tool compatibility mode for

an Eclipse IDE. In this example, the TCP/IP
address of the client is manually specified as
abc.example.com and the debug daemon is
listening on port 8001.

Headless code coverage using Remote Debug
Service

TEST(,,,RDS:%*)

Indicates that you want to run a code coverage
session and connect to Remote Debug Service.
In this scenario, Remote Debug Service must be
running and configured to collect code coverage.

Chapter 13. Writing the TEST runtime option string 111

Table 22. TEST runtime option examples for code coverage (continued)

Scenario TEST runtime option usage

Headless code coverage on z/0S TEST(,,,TCPIP&127.0.0.1%8001:%)

Indicates that you want to run a code coverage
session using headless code coverage. In this
scenario, headless code coverage is running on
the local z/OS machine using the TCP/IP address
of 127.0.0.1 and it is listening on port 8001 for
z/0S Debugger connections.

Headless code coverage with a Windows or Linux [TEST(,,, TCPIP&cde.example.com%8001:*
client)

Indicates that you want to start a code coverage
session using headless code coverage. In this
scenario, the headless code coverage daemon is
running on a Windows or Linux machine using
the TCP/IP address of cde.example.com and it

is listening on port 8001 for z/OS Debugger
connections.

Notes:

- The EQA_STARTUP_KEY is also required to indicate code coverage. For more information, see
“EQA_STARTUP_KEY” on page 471 and the "Specifying code coverage options in the startup key"
topic in IBM Documentation.

- Code coverage is not supported in IBM Wazi Developer for Red Hat CodeReady Workspaces.
« Headless code coverage is not supported in IBM Debug for z/0S.

Full-screen debugging
If you want to use full-screen debugging, the following examples apply:

Table 23. TEST runtime options for full-screen debugging

Scenario TEST runtime option usage
CICS full screen mode TEST(ALL, , ,MFI%F000:)

When running under CICS®, z/OS Debugger
displays its screens on terminal ID FOOO.

112 IBM z/OS Debugger: User's Guide

https://www.ibm.com/docs/en

Table 23. TEST runtime options for full-screen debugging (continued)

Scenario

TEST runtime option usage

Full-screen mode with a dedicated terminal

TEST (ALL, , ,MFI%TRMLUOOL:)

For use with full-screen mode using a dedicated
terminal without Terminal Interface Manager.
The VTAM LU TRMLUQO1 is used for display. This
terminal must be known to VTAM and not in
session when z/0S Debugger is started.

TEST (ALL, , ,MFI%SYSTEMO1.TRMLUOO1:)
For use in the following situations:

 You are using full-screen mode using a
dedicated terminal without Terminal Interface
Manager.

« You must specify a network identifier.

The VTAM LU TRMLUOO1 on network node
SYSTEMO1 is used for display. This terminal must
be known to VTAM and not in session when z/0S
Debugger is started.

Full-screen mode using Terminal Interface
Manager

TEST(ALL, ,,VTAM%USERABCD:)

For use with full-screen mode using the Terminal
Interface Manager. The user accessed the z/0OS
Debugger Terminal Interface Manager with user
id USERABCD.

TSO full-screen mode

TEST(,, ,MFI:x)

Indicates that you want the debugger to start a
debug session in TSO full-screen mode.

Note: Full-screen debugging is supported only in IBM Developer for z/OS Enterprise Edition and IBM

Debug for z/0S.
NOTEST

z/0S Debugger is not started at program initialization. Note that a call to CEETEST, PLITEST, or
__ctest () causes z/0OS Debugger to be started during the program's execution.

NOTEST (ALL,MYCMDS, %, %)

z/0S Debugger is not started at program initialization. Note that a call to CEETEST, PLITEST, or
__ctest() causes z/OS Debugger to be started during the program's execution. After z/OS Debugger
is started, the suboptions specified become effective and the commands in the file allocated to DD

name of MYCMDS are processed.

If you specify NOTEST and control has returned from the program in which z/OS Debugger
first became active, you can no longer debug non-Language Environment programs or detect non-

Language Environment events.
TEST

Specifying TEST with no suboptions causes a check for other possible definitions of the suboption.
For example, C and C++ allow default suboptions to be selected at compile time using #pragma
runopts. Similarly, PL/I offers the PLIXOPT string. Language Environment provides the macro
CEEXOPT. Using this macro, you can specify installation and program-specific defaults.

If no other definitions for the suboptions exist, the IBM-supplied default suboptions
(ALL,*,PROMPT, INSPPREF) are in effect. In an environment that is not a foreground TSO task, z/0OS
Debugger operates in delay debug mode when the Debug Profile Service API is active.

Chapter 13. Writing the TEST runtime option string 113

TEST(ALL, %, %, %)
z/0OS Debugger is not started initially; however, any condition or an attention in your program causes
z/0S Debugger to be started, as does a call to CEETEST, PLITEST, or __ctest (). Neither a primary
commands file nor preferences file is used.

TEST(NONE, , %, %)
z/0S Debugger is not started initially and begins by running in a "production mode", that is, with
minimal effect on the processing of the program. However, z/OS Debugger can be started using
CEETEST, PLITEST, or __ctest().

TEST(ALL, test.scenario, PROMPT, prefer)
z/0S Debugger is started at the end of environment initialization, but before the main program prolog
has completed. The ddname prefer is processed as the preferences file, and subsequent commands
are found in data set test.scenario. If all commands in the commands file are processed and
you issue a STEP command when prompted, or a STEP command is run in the commands file, the
main block completes initialization (that is, its AUTOMATIC storage is obtained and initial values
are set). If z/OS Debugger is reentered later for any reason, it continues to obtain commands from
test.scenario repeating this process until end-of-file is reached. At this point, commands are
obtained from your terminal.

Refer to the following topics for more information related to the material discussed in this topic.

Related references
z/0S Language Environment Programming Guide

Specifying additional run-time options with VS COBOL II and PL/I
programs

There are two additional run-time options that you might need to specify to debug COBOL and PL/I
programs: STORAGE and TRAP (ON).

Specifying the STORAGE run-time option

The STORAGE run-time option controls the initial content of storage when allocated and freed, and
the amount of storage that is reserved for the "out-of-storage" condition. When you specify one of
the parameters in the STORAGE run-time option, all allocated storage processed by the parameter is
initialized to that value. If your program does not have self-initialized variables, you must specify the
STORAGE run-time option.

Specifying the TRAP(ON) run-time option

The TRAP (ON) run-time option is used to fully enable the Language Environment condition handler

that passes exceptions to the z/OS Debugger. Along with the TEST option, it must be used if you want
the z/OS Debugger to take control automatically when an exception occurs. You must also use the

TRAP (ON) run-time option if you want to use the GO BYPASS command and to debug handlers you have
written. Using TRAP (OFF) with the z/OS Debugger causes unpredictable results to occur, including the
operating system cancelling your application and z/OS Debugger when a condition, abend, or interrupt is
encountered.

Note: This option replaces the OS PL/I and VS COBOL II STAE/NOSTAE options.

Specifying TEST run-time option with #pragma runopts in C and
C++

The TEST run-time option can be specified either when you start your program, or directly in your source
by using this #pragma:

#pragma runopts (test(suboption,suboption...))

114 IBM z/OS Debugger: User's Guide

This #fpragma must appear before the first statement in your source file. For example, if you specified the
following in the source:

#pragma runopts (notest(all,x,prompt))

then entered TEST on the command line, the result would be

TEST(ALL, %, PROMPT) .
TEST overrides the NOTEST option specified in the #pragma and, because TEST does not contain any
suboptions of its own, the suboptions ALL, *, and PROMPT remain in effect.

If you link together two or more compile units with differing #fpragmas, the options specified with the first
compile are honored. With multiple enclaves, the options specified with the first enclave (or compile unit)
started in each new process are honored.

If you specify options on the command line and in a #pragma, any options entered on the command line
override those specified in the #pragma unless you specify NOEXECOPS. Specifying NOEXECOPS, either in
a ffpragma or with the EXECOPS compiler option, prevents any command line options from taking effect.

Refer to the following topics for more information related to the material discussed in this topic.

Related tasks
z/0OS XL C/C++ User's Guide

Chapter 13. Writing the TEST runtime option string 115

116 IBM z/OS Debugger: User's Guide

Chapter 14. Starting z/0S Debugger from the IBM
z/0S Debugger Utilities

Note: This chapter is not applicable to IBM Developer for z/OS (non-Enterprise Edition) or IBM Wazi
Developer for Red Hat CodeReady Workspaces.

The z/0S Debugger Setup File option (starts z/OS Debugger Setup Utilities or DTSU) in IBM z/0S
Debugger Utilities helps you manage setup files which store the following information:

- file allocation statements
 run-time options

e program parameters

« the name of your program

Then you use the setup files to run your program in foreground or batch. The z/OS Debugger Setup Utility
(DTSU) RUN command performs the file allocations and then starts the program with the specified options
and parameters in the foreground. The DTSU SUBMIT command submits a batch job to start the program.

Refer to the following topics for more information related to the material discussed in this topic.

Related tasks

“Creating the setup file” on page 117
“Editing an existing setup file” on page 117
“Saving your setup file” on page 119
“Starting your program” on page 119

Creating the setup file

You can have several setup files, but you must create them one at a time. To create a setup file, do the
following steps:

1. From the IBM z/0S Debugger Utilities panel, select the z/0S Debugger Setup File option.

2.Inthe z/0S Debugger Foreground - Edit Setup File panel, type the name of the new setup
file in the Setup File Library or Other Data Set Name field. Do not specify a member name if you are
creating a sequential data set. If you are creating a setup file for a Db2 program, select the Initialize
New setup file for Db2 field. Press Enter.

3. A panel similar to the ISPF 3.2 "Allocate New Data Set" panel appears when you enter the name of the
new set up file in the Other Data Set Name field. You can modify the default allocation parameters.
Enter the END command or press PF3 to continue.

4. The Edit - Edit Setup File panel appears. You can enter file allocation statements, run-time
options, and program parameters.

Refer to the following topics for more information related to the material discussed in this topic.

Related tasks
“Entering file allocation statements, runtime options, and program parameters” on page 118

Editing an existing setup file

You can have several setup files, but you can edit only one file at a time. To edit an existing setup file, do
the following steps:

1. Fromthe IBM z/0S Debugger Utilities panel, select the z/OS Debugger Setup File option.

2. Inthe z/0S Debugger Foreground - Edit Setup File panel, type the name of the existing
setup file in the Setup File Library or Other Data Set Name field. Press Enter to continue.

© Copyright IBM Corp. 1992, 2021 117

3. TheEdit - Edit Setup File panel appears. You can modify file allocation statements, run-time
options, and program parameters.

Refer to the following topics for more information related to the material discussed in this topic.

Related tasks
“Entering file allocation statements, runtime options, and program parameters” on page 118

Copying information into a setup file from an existing JCL

You can enter the COPY command to copy an EXEC statement and its associated DD statements from
another data set containing JCL.

You can use option A to select a step of a job, and convert it to the setup file format.

Entering file allocation statements, runtime options, and program
parameters

The top part of the Edit—Setup File panel contains the name of the program (load module) that you want
to run and the runtime parameter string. If the setup file is for a Db2 program, the panel also contains
fields for the Db2 System identifier and the Db2 plan. The bottom part of the Edit—Setup File panel
contains the file allocation statements. This part of the panel is similar to an ISPF edit panel. You can
insert new lines, copy (repeat) a line, delete a line, and type over information on a line.

To modify the name of the load module, type the new name in the Load Module Name field.
To modify the parameter string:

1. Select the format of the parameter string and whether the program is to start in the Language
Environment. Non-Language Environment COBOL programs do not run in Language Environment.
If you are debugging a non-Language Environment COBOL program, select the non-Language
Environment option.

2. Enter the parameter string in one of the following ways:

« Type the parameter string in the Enter / to modify parameters field.

» Type a slash (/") before the Enter / to modify parameters field and press Enter. The z/OS Debugger
Foreground - Modify Parameter String panel appears. Define your runtime options and suboptions by
doing the following steps:

a. Define the TEST run-time option and its suboptions.

b. Enter any Language Environment or z/OS Debugger runtime options and other program
parameters.

c. Press PF3. DTSU creates the parameter string from the options that you specified and puts it in
the Enter / to modify parameters field.

In the file allocation section of the panel, each line represents an element of a DD name allocation or
concatenation. The statements can be modified, copied, deleted, and reordered.

To modify a statement, do one of the following steps:
« Modify the statement directly on the Edit — Edit Setup File panel:

1. Move your cursor to the statement you want to modify.
2. Type the new information over the existing information.
3. Press Enter.

- Modify the statement by using a select command:
1. Move your cursor to the statement you want to modify.
2. Type one of the following select commands:

— SA - Specify allocation information

118 IBM z/OS Debugger: User's Guide

SD - Specify DCB information

SS - Specify SMS information

SP - Specify protection information

SO - Specify sysout information

SX - Specify all DD information by column display

SZ - Specify all DD information by section display
3. Press Enter.

To copy a statement, do the following steps:

1. Move your cursor to the Cmd field of the statement you want to copy.
2. Type R and press Enter. The statement is copied into a new line immediately following the current line.

To delete a statement, do the following steps:

1. Move your cursor to the Cmd field of the statement you want to delete.
2. Type D and press Enter. The statement is deleted.

IBM z/0S Debugger Utilities does not support reordering the DD names, only the data sets within each
concatenation. The DD names are automatically sorted in alphabetical order. To reorder statements in a
concatenation, do the following steps:

1. Move your cursor to the sequence number field of a statement you want to move and enter the new
sequence number.

To insert a new line, do the following steps:

1. Move your cursor to the Cmd field of the line right above the line you want a new statement inserted.
2. Type I and press Enter.
3. Move your cursor to the new line and type in the new information or use one of the Select commands.

The Edit and Browse line commands allow you to modify or view the contents of the data set name
specified for DD and SYSIN DD types.

You can use the DDNAME STEPLIB to specify the load module search order.
For additional help, move the cursor to any field and enter the HELP command or press PF1.
Refer to the following topics for more information related to the material discussed in this topic.

Related tasks
“Saving your setup file” on page 119

Saving your setup file

To save your information, enter the SAVE command. To save your information in a second data set and
continue editing in the second data set, enter the SAVE AS command.

To save your setup file and exit the Edit—Edit Setup File panel, enter the END command or press PF3.

To exit the Edit—Edit Setup File panel without saving any changes to your setup file, enter the CANCEL
command or press PF12.

Refer to the following topics for more information related to the material discussed in this topic.

Related tasks
“Starting your program” on page 119

Starting your program

To perform the allocations and run the program with the specified parameter string, enter the RUN
command or press PF4.

Chapter 14. Starting z/OS Debugger from the IBM z/0S Debugger Utilities 119

To generate JCL from the information in the setup file and then submit to the batch job, enter the SUBMIT
command or press PF10.

120 IBM z/OS Debugger: User's Guide

Chapter 15. Starting z/0OS Debugger from a program

The instructions in this section apply to programs that run in Language Environment. For programs that do
not run in Language Environment, refer to the instructions in “Starting z/OS Debugger for programs that
start outside of Language Environment” on page 136.

z/0OS Debugger can also be started directly from within your program using one of the following methods:

« Language Environment provides the callable service CEETEST that is started from Language
Environment-enabled languages.

« For C or C++ programs, you can use a __ctest () function call or include a #pragma runopts
specification in your program.

Note: The __ctest () function is not supported in CICS.

« For PL/I programs, you can use a call to PLITEST or by including a PLIXOPT string that specifies the
correct TEST run-time suboptions to start z/OS Debugger.

However, you cannot use these methods in Db2 stored procedures with the PROGRAM TYPE of SUB.

If you use these methods to start z/OS Debugger, you can debug non-Language Environment programs
and detect non-Language Environment events only in the enclave in which z/OS Debugger first appeared
and in subsequent enclaves. You cannot debug non-Language Environment programs or detect non-
Language Environment events in higher-level enclaves.

To start z/OS Debugger using these alternatives, you still need to be aware of the TEST suboptions
specified using NOTEST, CEEUOPT, or other "indirect" settings.

“Example: using CEETEST to start z/OS Debugger from C/C++” on page 124
“Example: using CEETEST to start z/OS Debugger from COBOL” on page 125
“Example: using CEETEST to start z/OS Debugger from PL/I” on page 126

Related tasks

“Starting z/OS Debugger with CEETEST” on page 121

“Starting z/OS Debugger with PLITEST” on page 127

“Starting z/OS Debugger with the __ctest() function” on page 128
“Starting z/OS Debugger under CICS by using CEEUOPT” on page 143

Refer to the following topics for more information related to the material discussed in this topic.

Related references
“Special considerations while using the TEST run-time option” on page 107

Starting z/0S Debugger with CEETEST

Using CEETEST, you can start z/OS Debugger from within your program and send it a string of commands.
If no command string is specified, or the command string is insufficient, z/OS Debugger prompts you for
commands from your terminal or reads them from the commands file. In addition, you have the option of
receiving a feedback code that tells you whether the invocation procedure was successful.

If you don't want to compile your program with hooks, you can use CEETEST calls to start z/OS Debugger
at strategic points in your program. If you decide to use this method, you still need to compile your
application so that symbolic information is created.

Using CEETEST when z/OS Debugger is already initialized results in a reentry that is similar to a
breakpoint.

The following diagrams describe the syntax for CEETEST:
For C and C++

© Copyright IBM Corp. 1992, 2021 121

»— void — CEETEST — ()) — >«
L string_of commands J L fc J

For COBOL

»»— CALL — "CEETEST" — USING — string_of commands — ,— fc — ;-»«

For PL/I

»»— CALL — CEETEST — (* , *)— ;>
L string_of commands —J L fc J

string_of_commands (input)
Halfword-length prefixed string containing a z/OS Debugger command list. The command string
string_of commands is optional.

If z/OS Debugger is available, the commands in the list are passed to the debugger and carried out.
If string_of commands is omitted, z/OS Debugger prompts for commands in interactive mode.

For z/OS Debugger, remember to use the continuation character if your command exceeds 72
characters.

The first command in the command string can indicate that you want to start z/OS Debugger in one of
the following debug modes:

« full-screen mode using the Terminal Interface Manager
« remote debug mode

To indicate that you want to start z/OS Debugger in full-screen mode using a dedicated terminal
without Terminal Interface Manager, specify the MFI suboption of the TEST runtime option with the LU
name of the dedicated terminal. For example, you can code the following call in your PL/I program:

Call CEETEST('MFI%TRMLUGO1:%*;Query Location;Describe CUS;', *);

For a COBOL program, you can code the following call:

01 PARMS.
05 LEN PIC S9(4) BINARY Value 43.
05 PARM PIC X(43) Value 'MFI%TRMLUGO1:%*;Query Location;Describe CUS;'.

CALL "CEETEST" USING PARMS FC.
To indicate that you want to start z/OS Debugger in full-screen mode using the Terminal Interface

Manager, specify the VTAM suboption of the TEST runtime option with the User ID that you supplied to
the Terminal Interface Manager. For example, you can code the following call in your PL/I program:

Call CEETEST(VTAM%USERABCD:*;Query Location;Describe CUS;, *);

In these examples, the suboption :* can be replaced with the name of a preferences file. If you
started z/OS Debugger the TEST runtime option and specified a preferences file and you specify
another preferences file in the CEETEST call, the preferences file in the CEETEST call replaces the
preferences file specified with the TEST runtime option.

To indicate that you want to start z/OS Debugger in remote debug mode, specify the DBMDT or TCPIP
suboptions of the TEST runtime option with the userid you logged on RSE with (DBMDT) or the IP
address and port number that the remote debugger is listening to (TCPIP).

Note: You cannot use CEETEST to start z/OS Debugger in standard mode.

122 IBM z/OS Debugger: User's Guide

To start z/OS Debugger in Debug Tool compatibility mode during remote debug by using Debug
Manager and specify the user ID you logged on RSE with, code the following call:

Call CEETEST(’DBMDT%userid:;’,*);

To start z/OS Debugger in Debug Tool compatibility mode and specify the TCP/IP address of your
workstation, code the following call:

Call CEETEST('TCPIP&your.company.com%8001:x%; "', *);

These calls must include the trailing semicolon (;).

fc (output)
A 12-byte feedback code, optional in some languages, that indicates the result of this service.

CEEO000

Severity =0
Msg_No = Not Applicable
Message = Service completed successfully

CEE2F2
Severity = 3
Msg_No = 2530

Message = A debugger was not available

Note: The CEE2F2 feedback code can also be obtained by MVS/JES batch applications. For example,
either the z/OS Debugger environment was corrupted or the debug event handler could not be loaded.

Language Environment provides a callable service called CEEDCOD to help you decode the fields in the
feedback code. Requesting the return of the feedback code is recommended.

For C and C++ and COBOL, if z/OS Debugger was started through CALL CEETEST, the GOTO command is
only allowed after z/OS Debugger has returned control to your program via STEP or GO.

Additional notes about starting z/0S Debugger with CEETEST

Cand C++
Include 1leawi. h header file.

COoBOL
Include CEEIGZCT. CEEIGZCT is in the Language Environment SCEESAMP data set.

PL/I
Include CEEIBMAW and CEEIBMCT. CEEIBMAW is in the Language Environment SCEESAMP data set.

Batch and CICS nonterminal processes
We strongly recommend that you use feedback codes (fc) when using CEETEST to initiate z/OS

Debugger from a batch process or a CICS nonterminal task; otherwise, results are unpredictable.

QUIT DEBUG
After you use QUIT DEBUG to stop your debug session, you can restart z/OS Debugger with CEETEST.

To start z/OS Debugger when a CEETEST call is encountered, set the EQAOPTS CEEREACTAFTERQDBG
command to YES.

Note: You cannot use CEETEST to start z/OS Debugger in standard mode for remote debugging.
“Example: using CEETEST to start z/OS Debugger from C/C++” on page 124

“Example: using CEETEST to start z/OS Debugger from COBOL” on page 125
“Example: using CEETEST to start z/OS Debugger from PL/I” on page 126

Related tasks
“Entering multiline commands in full-screen” on page 265

Related references

Chapter 15. Starting z/OS Debugger from a program 123

z/0S Language Environment Programming Guide
IBM z/0S Debugger Reference and Messages

Example: using CEETEST to start z/0S Debugger from C/C++

The following examples show how to use the Language Environment callable service CEETEST to start
z/0OS Debugger from C or C++ programs.

Example 1
In this example, an empty command string is passed to z/OS Debugger and a pointer to the Language
Environment feedback code is returned. If no other TEST run-time options have been compiled into
the program, the call to CEETEST starts z/OS Debugger with all defaults in effect. After it gains
control, z/OS Debugger prompts you for commands.

#include <leawi.h>
#include <string.h>
#include <stdio.h>

int main(void) f{
_VSTRING commands;
_FEEDBACK fc;

strcpy (commands.string, "");
commands.length = strlen(commands.string);

CEETEST (&commands, &fc);
%

Example 2
In this example, a string of valid z/OS Debugger commands is passed to z/OS Debugger and a pointer
to Language Environment feedback code is returned. The call to CEETEST starts z/OS Debugger and
the command string is processed. At statement 23, the values of x and y are displayed in the Log, and
execution of the program resumes. Barring further interrupts, the behavior at program termination
depends on whether you have set AT TERMINATION:

 If you have set AT TERMINATION, z/OS Debugger regains control and prompts you for commands.
- If you have not set AT TERMINATION, the program terminates.

The command LIST(z) is discarded when the command GO is executed.

Note: If you include a STEP or GO in your command string, all commands after that are not processed.
The command string operates like a commands file.

#include <leawi.h>
#include <string.h>
#include <stdio.h>

int main(void) {
_VSTRING commands;
_FEEDBACK fc;

strcpy(commands.string, "AT LINE 23; $LIST(x); LIST(y);% GO; LIST(z)");
_ commands.length = strlen(commands.string);

: CEETEST (&commands, &fc);
%

Example 3
In this example, a string of valid z/OS Debugger commands is passed to z/OS Debugger and a pointer
to the feedback code is returned. If the call to CEETEST fails, an informational message is printed.

If the call to CEETEST succeeds, z/OS Debugger is started and the command string is processed. At

statement 30, the values of x and y are displayed in the Log, and execution of the program resumes.
Barring further interrupts, the behavior at program termination depends on whether you have set AT
TERMINATION:

124 IBM z/OS Debugger: User's Guide

« If you have set AT TERMINATION, z/OS Debugger regains control and prompts you for commands.
« If you have not set AT TERMINATION, the program terminates.

#include <leawi.h>
#include <string.h>
#include <stdio.h>
#define SUCCESS "\0\0\0\0"
int main (void) f{

int x,y,z;

_VSTRING commands;

_FEEDBACK fc;

strcpy (commands.string, "AT LINE 30 { LIST(x); LIST(y); % GO;");
commands.length = strlen(commands.string);

CEETEST (&commands, &fc) ;
if (memcmp (&fc,SUCCESS,4) != 0) {

printf ("CEETEST failed with message number %d\n",fc.tok_msgno);
return(2999);

Example: using CEETEST to start z/0S Debugger from COBOL

The following examples show how to use the Language Environment callable service CEETEST to start
z/0OS Debugger from COBOL programs.

Example 1
A command string is passed to z/OS Debugger at its invocation and the feedback code is returned.
After it gains control, z/OS Debugger becomes active and prompts you for commands or reads them
from a commands file.

01 FC.
02 CONDITION-TOKEN-VALUE.
COPY CEEIGZCT.
03 CASE-1-CONDITION-ID.
04 SEVERITY PIC S9(4) BINARY.
04 MSG-NO PIC S9(4) BINARY.
03 CASE-2-CONDITION-ID
REDEFINES CASE-1-CONDITION-ID.
04 CLASS-CODE PIC S9(4) BINARY.
04 CAUSE-CODE PIC S9(4) BINARY.
03 CASE-SEV-CTL PIC X.
03 FACILITY-ID PIC XXX.

02 1I-S-INFO PIC S9(9) BINARY.
77 Debugger PIC x(7) Value 'CEETEST'.
01 Parms.
05 AA PIC S9(4) BINARY Value 14.
05 BB PIC x(14) Value 'SET SCREEN ON;'.

CALL Debugger USING Parms FC.

Example 2
A string of commands is passed to z/OS Debugger when it is started. After it gains control, z/OS
Debugger sets a breakpoint at statement 23, runs the LIST commands and returns control to the
program by running the GO command. The command string is already defined and assigned to the
variable COMMAND-STRING by the following declaration in the DATA DIVISION of your program:

01 COMMAND-STRING.
05 AA PIC 99 Value 60 USAGE IS COMPUTATIONAL.
05 BB PIC x(60) Value 'AT STATEMENT 23; LIST (x); LIST (y); GO;'.

The result of the call is returned in the feedback code, using a variable defined as:

01 FC.
02 CONDITION-TOKEN-VALUE.
COPY CEEIGZCT.

Chapter 15. Starting z/OS Debugger from a program 125

03 CASE-1-CONDITION-ID.
04 SEVERITY PIC S9(4) BINARY.
04 MSG-NO PIC S9(4) BINARY.
03 CASE-2-CONDITION-ID
REDEFINES CASE-1-CONDITION-ID.
04 CLASS-CODE PIC S9(4) BINARY.
04 CAUSE-CODE PIC S9(4) BINARY.
03 CASE-SEV-CTL PIC X.
03 FACILITY-ID PIC XXX.
02 I-S-INFO PIC S9(9) BINARY.

in the DATA DIVISION of your program. You are not prompted for commands.

CALL "CEETEST" USING COMMAND-STRING FC.

Example: using CEETEST to start z/0S Debugger from PL/I

The following examples show how to use the Language Environment callable service CEETEST to start
z/0S Debugger from PL/I programs.

Example 1
No command string is passed to z/OS Debugger at its invocation and no feedback code is returned.
After it gains control, z/OS Debugger becomes active and prompts you for commands or reads them
from a commands file.

CALL CEETEST(*,%); /% omit arguments */

Example 2
A command string is passed to z/OS Debugger at its invocation and the feedback code is returned.
After it gains control, z/OS Debugger becomes active and executes the command string. Barring
any further interruptions, the program runs to completion, where z/OS Debugger prompts for further
commands.

DCL ch char(50)
init ('AT STATEMENT 10 DO; LIST(x); LIST(y); END; GO;');

DCL 1 f£b,
5 Severity Fixed bin(15),
5 MsgNo Fixed bin(15),
5 flags,

8 Case bit(2),
8 Sev bit(3),
8 Ctrl bit(3),
5 FacID Char(3),
5 I_S_info Fixed bin(31);

DCL CEETEST ENTRY (CHAR(*) VAR OPTIONAL,
1 optional ,

254 real fixed bin(15), /* MsgSev *,/
254 real fixed bin(15), /% MSGNUM *,/
254 /* Flags *,7,
255 bit(2), /* Flags_Case *,/
255 bit(3), /% Flags_Severity */
255 bit(3), /% Flags_Control =/
254 char(3), /% Facility_ID *,/
254 fixed bin(31)) /% I_S _Info *,/

options(assembler) ;
CALL CEETEST(ch, fb);
Example 3

This example assumes that you use predefined function prototypes and macros by including
CEEIBMAW, and predefined feedback code constants and macros by including CEEIBMCT.

A command string is passed to z/OS Debugger that sets a breakpoint on every tenth executed
statement. Once a breakpoint is reached, z/OS Debugger displays the current location information and
continues the execution. After the CEETEST call, the feedback code is checked for proper execution.

126 IBM z/OS Debugger: User's Guide

Note: The feedback code returned is either CEEOQO or CEE2F2. There is no way to check the result of
the execution of the command passed.

%INCLUDE CEEIBMAW;
%INCLUDE CEEIBMCT;
DCL 01 FC FEEDBACK;

/% if CEEIBMCT is NOT included, the following DECLARES need to be
provided: = ---------- comment start -------------

Declare CEEIBMCT Character(8) Based;
Declare ADDR Builtin;
%DCL FBCHECK ENTRY;
%FBCHECK: PROC(fbtoken, condition) RETURNS(CHAR);
DECLARE

fbtoken CHAR;

condition CHAR;
RETURN(' (ADDR(' | |fbtoken||')->CEEIBMCT = '||condition]||')"');
%END FBCHECK;
%ACT FBCHECK;

---------- comment end --------------- %/

Call CEETEST('AT Every 10 STATEMENT % Do; Q Loc; Go; End;'|]
'List AT;', FC);

If -FBCHECK(FC, CEE000)
Then Put Skip List('----> ERROR! in CEETEST call', FC.MsgNo);

Starting z/0S Debugger with PLITEST

For PL/I programs, the preferred method of Starting z/OS Debugger is to use the built-in subroutine
PLITEST. It can be used in exactly the same way as CEETEST, except that you do not need to include
CEEIBMAW or CEEIBMCT, or perform declarations.

The syntax is:

»w— CALL — PLITEST L _J ; P
(— character_string_expression —)

character_string_expression
Specifies a list of z/OS Debugger commands. If necessary, this is converted to a fixed-length string.

Note:

1. If z/OS Debugger executes a command ina CALL PLITEST command string that causes control to
return to the program (GO for example), any commands remaining to be executed in the command
string are discarded.

2. If you don't want to compile your program with hooks, you can use CALL PLITEST statements as
hooks and insert them at strategic points in your program. If you decide to use this method, you still
need to compile your application so that symbolic information is created.

The following examples show how to use PLITEST to start z/OS Debugger for PL/I.

Example 1
No argument is passed to z/OS Debugger when it is started. After gaining control, z/OS Debugger
prompts you for commands.

CALL PLITEST;

Example 2
A string of commands is passed to z/OS Debugger when it is started. After gaining control, z/OS
Debugger sets a breakpoint at statement 23, and returns control to the program. You are not
prompted for commands. In addition, the List Y; command is discarded because of the execution
of the GO command.

CALL PLITEST('At statement 23 Do; List X; End; Go; List Y;');

Chapter 15. Starting z/OS Debugger from a program 127

Example 3
Variable ch is declared as a character string and initialized as a string of commands. The string of
commands is passed to z/OS Debugger when it is started. After it runs the commands, z/OS Debugger
prompts you for more commands.
DCL ch Char(45) Init('At Statement 23 Do; List x; End;');

CALL PLITEST(ch);

Starting z/0S Debugger with the __ctest() function

You can also use the C and C++ library routine __ctest () or ctest() to start z/OS Debugger. Add:

f##include <ctest.h>

to your program to use the ctest () function.

Note: If you do not include ctest.h in your source or if you compile using the option LANGLVL (ANST),
you must use __ctest () function. The __ctest () function is not supported in CICS.

When a list of commands is specified with __ctest (), z/OS Debugger runs the commands in that list. If
you specify a null argument, z/OS Debugger gets commands by reading from the supplied commands file
or by prompting you. If control returns to your application before all commands in the command list are
run, the remainder of the command list is ignored. z/OS Debugger will continue reading from the specified
commands file or prompt for more input.

If you do not want to compile your program with hooks, you can use __ctest () function calls to start
z/0OS Debugger at strategic points in your program. If you decide to use this method, you still need to
compile your application so that symbolic information is created.

Using __ctest () when z/0OS Debugger is already initialized results in a reentry that is similar to a
breakpoint.

The syntax for this option is:

1
»— int — __ctest —— (— char — *char_strexp —)— ;-»«
Notes:

1 The syntax for ctest () and __ctest() is the same.

char_str_exp
Specifies a list of z/OS Debugger commands.

The following examples show how to use the __ctest() function for C and C++.

Example 1
A null argument is passed to z/OS Debugger when it is started. After it gains control, z/OS Debugger
prompts you for commands (or reads commands from the primary commands file, if specified).

__ctest(NULL);

Example 2
A string of commands is passed to z/OS Debugger when it is started. At statement 23, z/OS Debugger
lists x and y, then returns control to the program. You are not prompted for commands. In this case,
the command 1ist z; is never executed because of the execution of the command GO.

__ctest("at line 23 {"
" list x;"
" list y;"
II}II
g
"list z;");

128 IBM z/OS Debugger: User's Guide

Example 3

Variable ch is declared as a pointer to character string and initialized as a string of commands.
The string of commands is passed to z/OS Debugger when it is started. After it runs the string of
commands, z/OS Debugger prompts you for more commands.

phar +xch = "at line 23 list x;";

;_ctest(ch);

Example 4

A string of commands is passed to z/OS Debugger when it is started. After z/OS Debugger gains
control, you are not prompted for commands. z/OS Debugger runs the commands in the command
string and returns control to the program by way of the GO command.

#include <stdio.h>
#include <string.h>

char xch = "at line 23 printf(\"x.y is %d\n\", x.y); go;";
char buffer[35.132];

strcpy(buffer, "at change x.y;");

__ctest(strcat(buffer, ch));

Chapter 15. Starting z/OS Debugger from a program 129

130 IBM z/OS Debugger: User's Guide

Chapter 16. Starting z/0OS Debugger in batch mode

Choose one of the following options to start z/OS Debugger in batch mode:

- Follow the instructions outlined in this section. This includes modifying your JCL to include the
appropriate z/OS Debugger data sets and TEST runtime options.

« Use the z/OS Debugger Setup Utility (DTSU). DTSU can generate JCL that includes the appropriate z/0OS
Debugger data sets and TEST runtime options, and can submit your batch job. For instructions on how
to use DTSU, refer to Chapter 14, “Starting z/OS Debugger from the IBM z/0OS Debugger Utilities,” on
page 117.

To start z/OS Debugger in batch mode without using DTSU, do the following steps:

1. Ensure that you have compiled your program with the TEST compiler option.

2. Modify the JCL that runs your batch program to include the appropriate z/OS Debugger data sets and
to specify the TEST run-time option.

3. Run the modified JCL.
You can interactively debug an MVS batch job by choosing one of the following options:

« In full-screen mode using the Terminal Interface Manager. Follow the instructions in “Starting a
debugging session in full-screen mode using the Terminal Interface Manager or a dedicated terminal”
on page 133.

« In remote debug mode. Follow the instructions in the topic "Preparing to debug" of the online help for
the remote IDE.

Refer to the following topics for more information related to the material discussed in this topic.

Related tasks
Appendix F, “Notes on debugging in batch mode,” on page 497
Chapter 29, “Entering z/OS Debugger commands,” on page 263

Example: JCL that runs z/0S Debugger in batch mode

Sample JCL for a batch debug session for the COBOL program, EMPLRUN, is provided below. The job card
and data set names need to be modified to suit your installation.

//DEBUGJCL JOB <appropriate JOB card information>

[] F Fokkkokkkkokdkkokkkokokdokok ok ok okok sk okok ok okok sk okok ok ok ok sk okok ok ook sk okok ok ok ok ok ok ok ok ok ook
//* JCL to run a batch z/0S Debugger session

//* Program EMPLRUN was previously compiled with the COBOL

//* compiler TEST option

//* *hkkkkhkkhkkkkhkkhkkkhkhkhkkhkkhkhkhkkhkkhhkkhkkhkhhkkhkkhhhkkhhhkkhkkhhhkkhhhkkhkhhkhkkhkhhkkhhhkhkkhhhkkhkkhhhkkhhhkk
//STEP1 EXEC PGM=EMPLRUN,

// PARM="'/TEST(, INSPIN, ,)"
AS
//* Include the z/0S Debugger SEQAMOD data set
//*
//STEPLIB DD DISP=SHR,DSN=userid.TEST.LOAD
DD DISP=SHR,DSN=hlqg.SEQAMOD
VA
//* Specify a commands file with DDNAME matching the one
//* specified in the /TEST runtime option above

//* This example shows inline data but a data set could be
//* specified 1like: //INSPIN DD DISP=SHR,DSN=userid.TEST.INSPIN
*

//INSPIN DD =
STEP;
AT *
PERFORM
QUERY LOCATION;
GO;
END-PERFORM;
GO;
QUIT;

© Copyright IBM Corp. 1992, 2021 131

/*

[/

//* Specify a log file for the debug session

//* Log file can be a data set with LRECL >= 42 and <= 256
//* For COBOL only, use LRECL <= 72 if you are planning to

//* use the log file as a commands file in subsequent Debug
//* Tool sessions. You can specify the log file like:

//* //INSPLOG DD DISP=SHR,DSN=userid.TEST.INSPLOG

//*

//INSPLOG DD SYSOUT=«,DCB=(LRECL=72,RECFM=FB,BLKSIZE=0)

//SYSPRINT DD SYSOUT=x
//SYSUDUMP DD DUMMY
//SYSOUT DD SYSOUT=x
/*

//

Modifying the example to debug in full-screen mode

The example in “Example: JCL that runs z/OS Debugger in batch mode” on page 131 can be modified
so that the batch program can be debugged in full-screen mode. Change line [} to one of the following
examples:

« To use full-screen mode using a dedicated terminal without Terminal Interface Manager, use the
following statement:

// PARM="'/TEST(, INSPIN, ,MFI%TRMLUGO1:) '
 To use full-screen mode using the Terminal Interface Manager, use the following statement:

// PARM="/TEST(, INSPIN, ,VTAM%USERABCD:)

132 IBM z/OS Debugger: User's Guide

Chapter 17. Starting z/0OS Debugger for batch or TSO
programs

This section describes how to start z/OS Debugger to debug programs that run in the following situations:

« Programs that start in Language Environment
- Programs that start outside of Language Environment

Starting a debugging session in full-screen mode using the
Terminal Interface Manager or a dedicated terminal

Note: This section is not applicable to IBM Developer for z/OS (non-Enterprise Edition) or IBM Wazi
Developer for Red Hat CodeReady Workspaces.

You can debug batch programs interactively by using full-screen mode using the Terminal Interface
Manager or full-screen mode using a dedicated terminal without Terminal Interface Manager. Before you
start this debugging session, contact your system administrator to verify that your system was customized
to support this type of debugging session, and for instructions on how to access a terminal that supports
this mode.

You need to decide whether you will use the z/OS Debugger Terminal Interface Manager. The z/0OS
Debugger Terminal Interface Manager enables you to associate a user ID with a specific dedicated
terminal, which removes the need to update your runtime parameter string whenever the dedicated
terminal LU name changes. This is the recommended method for most users.

To start a debugging session in full-screen mode using the Terminal Interface Manager, do the following
steps:

1. Start two terminal emulator sessions in either of the following ways:

- Two separate emulator windows.
- If you use IBM Session Manager, you can select two sessions from the IBM Session Manager menu.

In either case, connect the second emulator session to a terminal that can handle a full-screen mode
using the Terminal Interface Manager and that also starts the Terminal Interface Manager.

2. On the first terminal emulator session, log on to TSO.

3. On the second terminal emulator session, provide your login credentials to the Terminal Interface
Manager and press Enter. The login credentials can be your TSO user ID and password, PassTicket,
password phrase, or MFA token.

Notes:

a. You are not logging on TSO. You are indicating that you want your user ID associated with this
terminal LU.

b. When the number of characters entered into the password field, including blanks, exceeds 8, the
input is passed to the security system as a password phrase.

c. To use PassTickets with Terminal Interface Manager, ensure that the PTKTDATA profile is defined
following the rules for MVS batch jobs by your system programmer.

A panel similar to the following panel is then displayed on the second terminal emulator session:

© Copyright IBM Corp. 1992, 2021 133

z/0S DEBUGGER TERMINAL INTERFACE MANAGER

EQAYOO1I Terminal TRMLUGO1 connected for user USER1
EQAY001I Ready for z/0S Debugger

PF3=EXIT PF10=Edit LE options data set
PF12=LOGOFF

The terminal is now ready to receive a z/OS Debugger full-screen mode using the Terminal Interface
Manager session.

4. Edit the PARM string of your batch job so that you specify the TEST runtime parameter as follows:

TEST(,,,VTAMY%userid:*)

Place a slash (/) before or after the parameter, depending on our programming language. userid is the
TSO user ID that you provided to the Terminal Interface Manager.

5. Submit the batch job.

6. On the second terminal emulator session, a full-screen mode debugging session is displayed. Interact
with it the same way you would with any other full-screen mode debugging session.

7. After you exit z/OS Debugger, the second terminal emulator session displays the panel and messages
you saw in step 3. This indicates that z/OS Debugger can use this session again. (this will happen each
time you exit from z/OS Debugger).

8. If you want to start another debugging session, return to step 5. If you are finished debugging, you can
do one of the following tasks:

« Close the second terminal emulator session.
« Exit the Terminal Interface Manager by choosing one of the following options:

— Press PF12 to display the Terminal Interface Manager logon panel. You can log in with the same
ID or a different user ID.

— Press PF3 to exit the Terminal Interface Manager.

To start a debugging session using a dedicated terminal without the z/OS Debugger Terminal Interface
Manager, do the following steps:

1. Ask your system programmer if you need to specify a VTAM network identifier to communicate with
the terminal LU you will use for display. If so, make a note of the network identifier.

2. Start two terminal emulator sessions. Connect the second emulator session to a terminal that can
handle a full-screen mode debugging session through a dedicated terminal.

3. On the first terminal emulator session, log on to TSO.

4. On the second terminal emulator session, note the LU name of the terminal. If a session manager is
displayed, exit from it.

5. Edit the PARM string of your batch job so that you specify the TEST runtime parameter in one of the
following ways:

134 IBM z/OS Debugger: User's Guide

e TEST(,,,MFI%Lluname:*)

e TEST(,,,MFI%network_identifier.luname:*)

Place a slash (/) before or after the parameter, depending on your programming language. luname
is the VTAM LU name of the second terminal emulator. network_identifier is the name of the VTAM
network node that contains luname.

6. Submit the batch job.

7. On the second terminal emulator session, a full-screen mode debugging session is displayed. Interact
with it the same way you would with any other full-screen mode debugging session.

8. After you exit z/OS Debugger, a USSMSG10 or Telnet Solicitor Logon panel is displayed on the second
terminal emulator session.

9. Go back to step 6 if you need to restart the debugging session.

Starting z/0S Debugger for programs that start in Language
Environment

Choose one of the following options to start z/OS Debugger under MVS in TSO:

« You can follow the instructions outlined in this section. The instructions describe how to allocate all the
files you need to start your debug session and how to start your program with the proper parameters.

« Use the z/0OS Debugger Setup Utility (DTSU). DTSU helps you allocate all the files you need to start your
debug session, and can start your program or submit your batch job. For instructions on using DTSU,
refer to Chapter 14, “Starting z/OS Debugger from the IBM z/0S Debugger Utilities,” on page 117.

To start z/OS Debugger under MVS in TSO without using DTSU, do the following steps:

1. Ensure your program has been compiled with the TEST compiler option.
2. Ensure that the z/OS Debugger SEQAMOD library is in the load module search path.SEQAMOD must

be placed before any other library in the load module search path that contains CEEEVDBG for z/OS
Debugger to get control of a debug session.

Note: High-level qualifiers and load library names are specific to your installation. Ask the person
who installed z/OS Debugger the name of the data set. By default, the name of the data set ends in
SEQAMOD. This data set might already be in the linklist or included in your TSO logon procedure, in
which case you don't need to do anything to access it.

3. Allocate all other data sets containing files your program needs.

4. Allocate any z/0OS Debugger files that you want to use. For example, if you want a session log file,
allocate a data set for the session log file. Do not allocate the session log file to a terminal. For
example, do not use ALLOC FI(INSPLOG) DA(*).

5. Start your program with the TEST run-time option, specifying the appropriate suboptions, or include a
call to CEETEST, PLITEST, or __ctest() in the program's source.

Refer to the following topics for more information related to the material discussed in this topic.

Related tasks

Chapter 13, “Writing the TEST runtime option string,” on page 107

“Starting a debugging session in full-screen mode using the Terminal Interface Manager or a dedicated
terminal” on page 133

“Recording your debug session in a log file” on page 174

Chapter 15, “Starting z/OS Debugger from a program,” on page 121

Related references
IBM z/0OS Debugger Reference and Messages
z/0S Language Environment Programming Guide

Chapter 17. Starting z/OS Debugger for batch or TSO programs 135

Example: Allocating z/0OS Debugger load library data set

The following example CLIST fragments show how you might allocate the z/OS Debugger load library data
set (SEQAMOD) if it is not in the linklist or TSO logon procedure:

Example 1:

PROC O TEST
TSOLIB ACTIVATE DA('hlqg.SEQAMOD')
END

Example 2:

PROC O TEST

TSOLIB DEACTIVATE

FREE FILE(SEQAMOD)

ALLOCATE DA('hlqg.SEQAMOD') FILE(SEQAMOD) SHR REUSE
TSOLIB ACTIVATE FILE(SEQAMOD)

END

If you store either example CLIST in MYID.CLIST(DTSETUP), you can run the CLIST by entering the
following command at the TSO READY prompt:

EXEC '"MYID.CLIST(DTSETUP)'

The CLIST runs and the appropriate z/OS Debugger data set is allocated.

Example: Allocating z/0OS Debugger files

The following example illustrate how you can use the command line to allocate the preferences and log
files, then start the COBOL program tstscxrpt with the TEST run-time option:

ALLOCATE FILE(insppref) data set(setup.pref) REUSE
ALLOCATE FILE(insplog) data set(session.log) REUSE
CALL 'USERID1.MYLIB(TSTSCRPT)' '/TEST'

The example illustrates that the default z/OS Debugger run-time suboptions and the default Language
Environment run-time options were assumed.

The following example illustrates how you can use a CLIST to define the preferences file
(debug.preferen) and the log file (debug. log), then start the C program progl with the TEST run-

time option:
ALLOC FI(insplog) DA(debug.log) REUSE
ALLOC FI(insppref) DA(debug.preferen) REUSE

CALL 'MYID.MYQUAL.LOAD(PROG1)' +
' TRAP(ON) TEST(,*,;,insppref).’’

All the data sets must exist before starting this CLIST.

Starting z/0S Debugger for programs that start outside of
Language Environment

To debug an MVS batch or TSO program that has an initial program that does not run under the control
of Language Environment, including non-Language Environment COBOL programs, use the z/OS Debugger
program EQANMDBG to start z/OS Debugger.

If you need to debug a non-Language Environment program where EQANMDBG is used to start z/OS
Debugger, and your program frees SUBPOOL 1 (which z/OS Debugger uses itself by default), you need to
specify a new parm to EQANMDBG.

The parameter is NONLESP(nnn) where nnn is a SUBPOOL number from 2 - 127, that specifies the
SUBPOOL for z/OS Debugger to use for its storage.

136 IBM z/OS Debugger: User's Guide

If the initial program does run under the control of Language Environment and subsequent programs

run

outside the control of Language Environment, you can use the methods described in “Starting z/OS

Debugger for programs that start in Language Environment” on page 135 to debug all the programs.

To start z/OS Debugger by using EQANMDBG, do one of the following options:

B

ei

.- B

y using the IBM z/0S Debugger Utilities option 2, z/0S Debugger Setup File to run the programs
ither under TSO or in MVS batch.

y modifying the MVS JCL, TSO CLIST or REXX EXEC that you use to start your program, making the

following changes:

Change the name of the program to be started to EQANMDBG.
Make one of the following updates:

- Change the parameters by adding the name of the program to be debugged and any required z/0S
Debugger run-time parameters. See “Passing parameters to EQANMDBG by using only the PARM
string” on page 138 for instructions.

- Add a EQANMDBG DD statement that provides the name of the program to be debugged and any
required z/OS Debugger run-time parameters. See “Passing parameters to EQANMDBG using only
the EQANMDBG DD statement” on page 138 for instructions.

- Change the parameters by adding the name of the program to be debugged, and add an
EQANMDBG DD statement that provides any required z/OS Debugger run-time parameters. See
“Passing parameters to EQANMDBG using the PARM string and EQANMDBG DD statement” on page
138 for instructions.

- Verify that the z/OS Debugger SEQAMOD and SEQABMOD libraries are in the load module search
path. SEQAMOD must be placed before any other library in the load module search path that
contains CEEEVDBG for z/OS Debugger to get control of a debug session.

Refer to the following topics for more information related to the material discussed in this topic.

Related tasks
Chapter 14, “Starting z/OS Debugger from the IBM z/0S Debugger Utilities,” on page 117

Passing parameters to EQANMDBG

Wh

en you modify your JCL, CLIST, or REXX EXEC to start EQANMDBG, you pass the following parameters

to EQANMDBG:

. T

he name of the user program to be debugged (required)

« Any of the following run-time options (optional):

COUNTRY to specify a country code for z/OS Debugger
NATLANG to specify the national language used to communicate with z/OS Debugger
NONLESP to specify the SUBPOOL for z/OS Debugger to use for its storage

TEST to specify z/OS Debugger options. For example, you can use suboptions of the TEST run-time

option to specify the data sets that contain z/OS Debugger commands and preferences. You can use
suboptions to specify whether to use a remote debug mode session or a full-screen mode using the
Terminal Interface Manager session.

TRAP to specify whether z/OS Debugger is to intercept abends.

You can specify these parameters in one of following ways:

“
)

Passing parameters to EQANMDBG by using only the PARM string” on page 138

‘
.

‘Passing parameters to EQANMDBG using only the EQANMDBG DD statement” on page 138

“
)

Passing parameters to EQANMDBG using the PARM string and EQANMDBG DD statement” on page 138

Refer to the following topics for more information related to the material discussed in this topic.

Related references

Chapter 17. Starting z/OS Debugger for batch or TSO programs 137

z/0S Debugger run-time options (IBM z/0S Debugger Reference and Messages)

Passing parameters to EQANMDBG by using only the PARM string

The easiest way to pass parameters to EQANMDBG is to modify the PARM string to contain the name of
the program to be debugged, optionally followed by any of the z/OS Debugger run-time options and the
parameters required by your program.

The syntax for this string is:

»— user_program_name >
E)<] L | — user_parms —J
, run-time_parm

The following table compares how a sample JCL statement might look like after you modify the PARM
string:

Original sample JCL Modified sample JCL
//STEP1 EXEC PGM=MYPROG,PARM="'ABC,X(12)" //STEP1 EXEC PGM=EQANMDBG,
e // PARM='MYPROG, NATLANG (UEN) /ABC,X(12) "
// .
//

Passing parameters to EQANMDBG using only the EQANMDBG DD statement

If the user parameter string that you are passing to your program is too long to add the necessary z/0OS
Debugger parameters to the PARM string, you can leave the PARM string unchanged and pass all required
parameters to z/OS Debugger by using the EQANMDBG DD statement.

When you add an EQANMDBG DD statement to your JCL or allocate the EQANMDBG file in your TSO
session, it can point to a data set with any RECFM (F, V, or U) and any LRECL. The data set must contain
one or more lines. If it contains more than one line, all trailing blanks are removed from each line.
However, each line is assumed to start in column 1 with any leading blanks considered to be part of the
parameter data. Sequence numbers are not supported in this file.

The following table compares original JCL and modified JCL:

Original JCL Modified JCL

//STEP1 EXEC PGM=MYPROG,PARM='ABC,X(12)" //STEP1 EXEC PGM=EQANMDBG,
A // PARM='ABC,X(12)"

// //EQANMDBG DD *

MYPROG,

TEST(ALL,INSPIN, ,MFI:%),

NATLANG (ENU)

/*

/1l

Passing parameters to EQANMDBG using the PARM string and EQANMDBG DD
statement

With this method you can put the name of the user program to be debugged as part of the PARM string,
and then specify all other z/OS Debugger run-time options by using the EQANMDBG DD statement.

This can be desirable if you need to pass the same run-time parameters to several programs, you have
room in the PARM string to add the name of the program to be debugged, but you do not have room to add
all of the run-time parameters to the PARM string.

When you use this method, you must do the following:

138 IBM z/OS Debugger: User's Guide

« Include an EQANMDBG DD statement that includes, at a minimum, an asterisk as the first positional
parameter to indicate that the user-program name is to be taken from the PARM string.

« Modify the PARM string to include the user-program name followed by a slash at the beginning of the

PARM string.

The following table compares original JCL and modified JCL:

Original JCL

Modified JCL

//STEP1 EXEC PGM=MYPROG,PARM="'ABC,X(12)"
/!

//STEP1 EXEC PGM=EQANMDBG,

// PARM='MYPROG/ABC,X(12)"

//EQANMDBG DD *

%, TEST(ALL,INSPIN, ,MFI:%),NATLANG(ENU)
/*

/1l

Example: Modifying JCL that invokes an assembler Db2 program running in a

batch TSO environment

The following example shows a portion of JCL that invokes an assembler Db2 program and the
modifications you make to this portion of the JCL to start z/OS Debugger.

Original sample JCL

Modified sample JCL

//RUN EXEC PGM=IKJEFTO1,DYNAMNBR=20

//SYSTSIN DD =

DSN SYSTEM(Db2_subsystem_id)

RUN PROGRAM(MYPGM) PLAN(MYPGM) -
PARM('program-parameters"')

END

/*

// ... other DD statements as needed ...
// ... for TSO and the application ...

//RUN EXEC PGM=IKJEFTO1,DYNAMNBR=20
//SYSTSIN DD *
DSN SYSTEM(Db2_subsystem_id)
RUN PROGRAM(EQANMDBG) PLAN(MYPGM) -
PARM('program-parameters"')
END
/*
//EQANMDBG DD *
MYPGM,TEST(, , ,VTAM%user-id:)

/*
// ... other DD statements as needed ...
// ... for TSO and the application ...

Chapter 17. Starting z/OS Debugger for batch or TSO programs 139

140 IBM z/OS Debugger: User's Guide

Chapter 18. Starting z/0S Debugger under CICS

This topic compares the different methods you can use to start z/OS Debugger and gives instructions on
each method. This topic assumes you have completed the following tasks:

Ensured that all of the required installation and configuration steps for CICS Transaction Server,
Language Environment, and z/OS Debugger have been completed. For more information, refer to the
installation and customization guides for each product.

Completed all the tasks in the following topics:
— Chapter 4, “Planning your debug session,” on page 25
— Chapter 5, “Updating your processes so you can debug programs with z/OS Debugger,” on page 59

— Chapter 10, “Preparing a CICS program,” on page 81

Comparison of methods for starting z/OS Debugger under CICS

There are several different mechanisms available to start z/OS Debugger under CICS. Each mechanism
has a different advantage and are listed below:

DTCN is a full-screen CICS transaction that z/OS Debugger provides. By using DTCN, you can create

a profile that contains a pattern of CICS resource names that identify a task that you want to debug.
You can dynamically change any Language Environment TEST or NOTEST runtime option that your
application was originally link-edited with. You can also use DTCN to dynamically change any other
Language Environment runtime options that are not specific to z/OS Debugger which are defined in your
CICS installation except the STACK option.

DTCN has the following advantages and differences compared to CADP:

— Provides a view to create CICS profiles (DTCN profiles) for remote users. For more information, see
the "Working with the z/OS Debugger Profiles view" topic in IBM Documentation.

— Provides two mechanisms for managing debug profiles:

1. In a Temporary Storage Queue (TSQ) - debug profiles are owned by the terminal that created
them. The debug profiles are deleted if the terminal that created the profile is disconnected or the
CICS region is terminated. Also, a single terminal can have only one debug profile.

2. In a VSAM file - debug profiles are owned by the user ID that created them. The debug profiles
persist through disconnections or CICS region restarts. Also, a single terminal can have multiple
debug profiles that are created by using different users.

— Provides general and field sensitive help.

— Provides a service that deletes ownerless profiles from the DTCN repository. See "Deleting DTCN
profiles with the DTCN LINK service" in the IBM z/0S Debugger Customization Guide.

— Displays both the generated and saved repository runtime strings.
— Provides the following additional CICS resources for identifying a task that you want to debug:

- Eight pairs of Load Module and CU Names (including wildcards)
- IP Name/Address

- Commarea Offset

- Commarea Data

- Container Name

- Container Offset

- Container Data

- URM Debugging

© Copyright IBM Corp. 1992, 2021 141

https://www.ibm.com/docs/en

— Provides a EQAOPTS File field. You can use this field to specify a file that contains a set of z/0S
Debugger EQAOPTS commands for the debug session.

To learn how to set up profiles by using DTCN, see Chapter 10, “Preparing a CICS program,” on page 81.

- CADP is a CICS transaction for you to manage debugging profiles. This transaction is available with CICS
Transaction Server for z/OS Version 2 Release 3.

CADP has the following advantages and differences compared to DTCN:

— With CADP, you can add multiple profiles from the same display device by using a single program
name. There is no limit to the number of supported profiles. You can specify the program names by
using a wildcard.

— CADP provides the same abilities as DTCN for managing debug profiles for Language Environment
applications. CADP can also manage debug profiles for Java applications, Enterprise Java Beans
(EJBs), and CORBA stateless objects.

— CADP profiles are persistent, and are kept in VSAM files. Persistence means that if a CADP profile
is present before a CICS region is restarted, the CADP profile is present after the CICS region is
restarted.

— CADP profiles can be shared across a CICSPLEX.

« Language Environment CEEUOPT module link-edited into your application, containing an appropriate
TEST option, which tells Language Environment to start z/OS Debugger every time the application is
run.

This mechanism can be useful during initial testing of new code when you will want to run z/OS
Debugger frequently.

« A compiler directive within the application, such as #pragma runopts(test) (for Cand C++) or CALL
CEETEST.

These directives can be useful when you need to run multiple debug sessions for a piece of code

that is deep inside a multiple enclave or multiple CU application. The application runs without z/0OS
Debugger until it encounters the directive, at which time z/OS Debugger is started at the precise point
that you specify. With CALL CEETEST, you can even make the invocation of z/OS Debugger conditional,
depending on variables that the application can test.

If your program uses several of these methods, the order of precedence is determined by Language
Environment. For more information about the order of precedence for Language Environment run-time
options, see z/0S Language Environment Programming Guide.

Starting z/0S Debugger under CICS by using DTCN

If a DTCN profile exists, when a CICS program starts, z/OS Debugger analyzes the program's resources
to see if they match a profile. If z/OS Debugger finds a match, z/OS Debugger starts a debugging session
for that program. If multiple profiles exist, z/OS Debugger selects the profile with the greatest number of
resources that match the program. If two programs have an equal number of matching resources, z/0OS
Debugger selects the older profile.

Before you begin, verify that you prepared your CICS program as instructed in Chapter 10, “Preparing a
CICS program,” on page 81.

To start z/OS Debugger under CICS by using DTCN, do the following steps:

1. If you chose screen control mode, start the DTSC transaction on the terminal you specified in the
Display Id field.

2. Run your CICS programs. If z/OS Debugger identifies a task that matches a DTCN profile, z/OS
Debugger starts. If you chose screen control mode, press Enter on the terminal running the DTSC
transaction to connect to z/OS Debugger.

Refer to the following topics for more information related to the material discussed in this topic.

Related tasks

142 IBM z/OS Debugger: User's Guide

“Choosing TEST or NOTEST compiler suboptions for COBOL programs” on page 27

Ending a CICS debugging session that was started by DTCN

After you have finished debugging your program, use DTCN again to turn off your debug profile by pressing
PF6 to delete your debug profile and then pressing PF3 to exit. You do not need to remove EQADCCXT
from the load module; in fact, it's a good idea to leave it there for the next time you want to start z/OS
Debugger.

Example: How z/0S Debugger chooses a CICS program for debugging

For example, consider the following two profiles:

- First, profile A is saved, specifying resource CU PROG1

« Later, profile B is saved, specifying resource User Id USER1
When PROG1 is run by USERZ, profile A is used.

If this situation occurs, an error message is displayed on the system console, suggesting that you should
specify additional resources. In the above example, each profile should specify both a User Id and a CU
resource.

Starting z/0S Debugger for CICS programs by using CADP

Before you begin, verify that you prepared your CICS program as instructed in Chapter 10, “Preparing a
CICS program,” on page 81.

To start z/OS Debugger under CICS by using CADP, do the following steps:

1. If you chose screen control mode, start the DTSC transaction on the terminal you specified in the
Display Id field.

2. Run your CICS programs. If z/OS Debugger identifies a task that matches a CADP profile, z/OS
Debugger starts. If you chose screen control mode, press Enter on the terminal running the DTSC
transaction to connect to z/OS Debugger.

Refer to the following topics for more information related to the material discussed in this topic.

Related tasks
“Creating and storing debugging profiles with CADP” on page 92

Related references
CICS Supplied Transactions

Starting z/0S Debugger under CICS by using CEEUOPT

To request that Language Environment start z/OS Debugger every time the application is run, assemble a
CEEUOPT module with an appropriate TEST run-time option. It is a good idea to link-edit the CEEUOPT
module into a library and just add an INCLUDE LibraryDDname (CEEUOPT-MemberName) statement to
the link-edit options when you link your application. Once the application program has been placed in the
load library (and NEWCOPY'd if required), whenever it is run z/OS Debugger will be started.

z/OS Debugger runs in the mode defined in the TEST run-time option you supplied, normally Single
Terminal mode, although you could provide a primary commands file and a log file and not use a terminal
at all.

To start z/OS Debugger, simply run the application. Don't forget to remove the CEEUOPT containing your
TEST run-time option when you have finished debugging your program.

Refer to the following topics for more information related to the material discussed in this topic.

Related tasks
Chapter 13, “Writing the TEST runtime option string,” on page 107

Chapter 18. Starting z/OS Debugger under CICS 143

Starting z/0S Debugger under CICS by using compiler directives

When compile-directives are processed by your program, z/OS Debugger will be started in single terminal
mode (this method supports only single terminal mode).

Refer to the following topics for more information related to the material discussed in this topic.

Related tasks
“Starting z/OS Debugger with CEETEST” on page 121

144 IBM z/OS Debugger: User's Guide

Chapter 19. Starting a debug session

You can start z/OS Debugger by using the Language Environment TEST run-time option in one of the
following ways:

« Using the z/OS Debugger Setup Utility (DTSU). DTSU helps you allocate files and can start your program.
The methods listed below describe how you manually perform the same tasks.

Note: DTSU is not available in IBM Developer for z/OS (non-Enterprise Edition), IBM Wazi Developer for
Red Hat CodeReady Workspaces.

« For TSO programs that start in Language Environment, start your program with the TEST run-time
option as described in “Starting z/OS Debugger for programs that start in Language Environment” on
page 135.

« For MVS batch programs that start in Language Environment, start your Language Environment program
with the TEST runtime option and specify the appropriate suboptions, as described in Chapter 16,
“Starting z/OS Debugger in batch mode,” on page 131.

« For MVS batch programs that do not start in Language Environment, start the non-Language
Environment z/OS Debugger (EQANMDBG), and pass your program name and the TEST runtime option.
Specify the appropriate suboptions, as described in “Starting z/OS Debugger for programs that start
outside of Language Environment” on page 136.

« For CICS, make sure z/OS Debugger is installed in your CICS region. Enter DTCN or CADP (in CICS
Transaction Server for z/OS Version 2 Release 3 and later) to start the z/OS Debugger control
transaction. Enter the name of the transaction and program that you want to debug and any other
criteria, such as terminal id or user id. If you are using DTCN, press PF4 to save the default debugging
profile, then press PF3 to exit the DTCN transaction. You are now setup to start your transaction and
begin a debugging session.

If you are using CADP to manage your debugging profiles, make sure that the DEBUGTOOL system
initialization parameter is set to YES.

« For CICS transactions that run non-Language Environment assembler programs or non-Language
Environment COBOL programs, verify with your system administrator that the z/OS Debugger CICS
global user exits are installed and active. If exits are active and the non-Language Environment
assembler or non-Language Environment COBOL programs are defined in a DTCN or CADP debugging
profile, z/OS Debugger will debug the non-Language Environment assembler or non-Language
Environment COBOL programs. These programs must be the first program to run at a CICS Link Level
(for example, at the start of a task or through a CICS LINK or XCTL request).

Refer to the following topics for more information related to the material discussed in this topic.

Related tasks

Chapter 14, “Starting z/OS Debugger from the IBM z/0S Debugger Utilities,” on page 117
“Choosing TEST or DEBUG compiler suboptions for C programs” on page 39

“Choosing TEST or DEBUG compiler suboptions for C++ programs” on page 44
“Choosing TEST or NOTEST compiler suboptions for COBOL programs” on page 27
“Choosing TEST or NOTEST compiler suboptions for PL/I programs” on page 34

“Ending a full-screen debug session” on page 197

“Entering commands on the session panel” on page 160

“Passing parameters to EQANMDBG” on page 137

Related references
“z/0S Debugger session panel” on page 151

© Copyright IBM Corp. 1992, 2021 145

146 IBM z/OS Debugger: User's Guide

Chapter 20. Starting z/OS Debugger in other
environments

You can start z/OS Debugger to debug batch programs from Db2 stored procedures.

Starting z/0S Debugger from Db2 stored procedures

Before you run the stored procedure, verify that you have completed all the instructions in Chapter 9,
“Preparing a Db2 stored procedures program,” on page 79.

To verify that the stored procedure has started, enter the following Db2 Display command, where xxxx is
the name of the stored procedure:

Display Procedure (xxxx)
If the stored procedure is not started, enter the following Db2 command:

Start procedure (xxxx)

If z/OS Debugger or the remote debugger do not start when the stored procedure calls them, verify that
you have correctly specified connection information (for example, the TCP/IP address and port number) in
the Language Environment EQAD3CXT exit routine or the Db2 catalog.

Refer to the following topics for more information related to the material discussed in this topic.

Related tasks
Chapter 4, “Planning your debug session,” on page 25

© Copyright IBM Corp. 1992, 2021 147

148 IBM z/OS Debugger: User's Guide

Part 4. Debugging your programs in full-screen mode

Note: This part is not applicable to IBM Developer for z/OS (non-Enterprise Edition), IBM Wazi Developer
for Red Hat CodeReady Workspaces.

© Copyright IBM Corp. 1992, 2021 149

150 IBM z/OS Debugger: User's Guide

Chapter 21. Using full-screen mode: overview

Note: This chapter is not applicable to IBM Developer for z/OS (non-Enterprise Edition) or IBM Wazi
Developer for Red Hat CodeReady Workspaces.

The topics below describe the z/OS Debugger full-screen interface, and how to use this interface to
perform common debugging tasks.

Debugging your programs in full-screen mode is the easiest way to learn how to use z/OS Debugger, even
if you plan to use batch or line modes later.

The following list describes the maximum screen size supported by z/OS Debugger for a particular type of
terminal:

« Infull screen mode, you can use any screen size supported by ISPF.

« In full-screen mode using the Terminal Interface Manager or a CICS terminal, you can use a maximum
screen size (number of rows times number of columns) of 10922. If the number of rows times the
number of columns is not less than 10923, z/OS Debugger displays a WTO error message and abends.

Note: The PF key definitions used in these topics are the default settings.
Refer to the following topics for more information related to the material discussed in this topic.

Related tasks

Chapter 19, “Starting a debug session,” on page 145

“Ending a full-screen debug session” on page 197

“Entering commands on the session panel” on page 160

“Navigating through z/OS Debugger windows” on page 166

“Recording your debug session in a log file” on page 174

“Setting breakpoints to halt your program at a line” on page 176

“Setting breakpoints in a load module that is not loaded or in a program that is not active” on page 176
“Stepping through or running your program” on page 177

“Displaying and monitoring the value of a variable” on page 184

“Displaying error numbers for messages in the Log window” on page 195
“Displaying a list of compile units known to z/OS Debugger” on page 196
“Requesting an attention interrupt during interactive sessions” on page 196
Chapter 25, “Debugging a C program in full-screen mode,” on page 223
Chapter 26, “Debugging a C++ program in full-screen mode,” on page 233
Chapter 22, “Debugging a COBOL program in full-screen mode,” on page 199
Chapter 24, “Debugging a PL/I program in full-screen mode,” on page 215

z/0S Debugger session panel

The z/OS Debugger session panel contains a header with information about the program you are
debugging, a command line, and up to three physical windows. A physical window is the space on the
screen dedicated to the display of a specific type of debugging information. The debugging information is
organized into the following types, called logical windows:

Monitor window
Variables and their values, which you can display by entering the SET AUTOMONITOR ON and
MONITOR commands.

Source window
The source or listing file, which z/OS Debugger finds or you can specify where to find it.

Log window
The record of your interactions with z/OS Debugger and the results of those interactions.

© Copyright IBM Corp. 1992, 2021 151

Memory window
Section of memory, which you can select by entering the MEMORY command.

Each physical window can be assigned only one logical window. The physical window assumes the name
of the logical window, so when you enter commands that affect the physical window (for example, the
WINDOW SIZE command), you identify the physical window by providing the name of its assigned logical
window. Physical windows can be closed (not displayed), but at least one physical window must remain
open at any time.

The z/OS Debugger session panel below shows the default layout which contains three physical windows:
one for the Monitor window [}, a second for the Source window [, and the third for the Log window E}.

COBOL LOCATION: DTAMO1 :> 109.1

Command ===> Scroll ===> PAGE

MONITOR -+----1----4----2----4-==--3----4----f----4----5----4----6- LINE: 1 OF 7

""""""""""""""" TOP OF MONITOR ks skskokoksksk sk sk hok ok s s ek ok ok ok o o skok ok ok ok e o koke
B e e By e e T Y,

0001 1 NUM1 0000000005
0002 2 NUM4 191414141°
0003 3 WK-LONG-FIELD-2 1123456790 223456790 323456790 423456790 5234
0004 56790 623456790 723456790 8234567890 9234567
0005 90 023456790 123456790 223456790 323456790 4
0006 23456790 5234567890 623456790 723456790 8234
SOURCE: DTAMOL ---1----4==--2cc-4o=-3ecuugou--bo--4----5--- LINE: 107 OF 196
107 * SINGLE DATAITEM IN A STRUCTURE
108 SRS RS S R S R B R B S S S SR SRS .
109 ADD 1 TO AA-NUM1
110 .
111 frocoscooocoocosaonocooaonacooaooao0oco0ao0aEo0o00000c00a0000s .
112 % SINGLE DATAITEM IN A STRUCTURE - QUALIFIED .
LOG @--=-t--=-L-=-t-==-D-cm-t=--3ocmotoo--Bom-mt-=--b----t---- LINE: 40 OF 43

0040 MONITOR

0041 LIST NUM4 ;

0042 MONITOR
0043 LIST WK-LONG-FIELD-2 ;

Refer to the following topics for more information related to the material discussed in this topic.

Related tasks
“Customizing the layout of physical windows on the session panel” on page 254

Related references

“Session panel header” on page 152
“Monitor window” on page 154
“Source window” on page 154

“Log window” on page 155
“Memory window” on page 156

Session panel header

The first few lines of the z/OS Debugger session panel contain a command line and header fields that
display information about the program that you are debugging.

Below is an example header for a C program.

c LOCATION: MYID.SOURCE(TSTPGM1):>248
Command ===> SCROLL ===> PAGE
[5 |

Below is an example header for a COBOL program.

COoBOL LOCATION: XYZPROG: :>SUBR:>118
Command ===> SCROLL ===> PAGE

The header fields are described below.

152 IBM z/OS Debugger: User's Guide

Assemble, C, COBOL, LX COBOL, Disassem, or PL/I
The name of the current programming language. This language is not necessarily the programming
language of the code in the Source window. The language that is displayed in this field determines the
syntax rules that you must follow for entering commands.

Note:

1. z/OS Debugger does not differentiate between C and C++ programs. If there is a C++ program in
the Source window, only C is displayed in this field.

2. LX COBOL is used to indicate LangX COBOL.

A LOCATION
The program unit name and statement where execution is suspended, usually in the form compile
unit:>nnnnnn.

In the C example above, execution in MYID.SOURCE (TSTPGM1) is suspended at line 248.

In the COBOL example above, execution in XYZPROG is suspended at XYZPROG: : >SUBR:>118, or
line 118 of subroutine SUBR.

If you are replaying recorded statements, the word "LOCATION" is replaced by PBK<LOC or PBK>LOC.
The < and > symbols indicate whether the recorded statements are being replayed in the backward
(<) or forward (>) direction.

If you are using the Enterprise PL/I compiler or the C/C++ compiler, the compile unit name is the
entire data set name of the source. If the setting for LONGCUNAME is ON (the default) to display the
CU name in long form, the name might be truncated. If your PL/I program was compiled with the
following compiler and running in the following environment, the package statement or the name of
the main procedure is displayed.

« Enterprise PL/I for z/0S, Version 3.5, compiler with the PTFs for APARs PK35230 and PK35489
applied, or Enterprise PL/I for z/OS, Version 3.6 or later

 Language Environment, Version 1.6 through 1.8 with the PTF for APAR PK33738 applied, or later

E] COMMAND
The input area for the next z/OS Debugger command. You can enter any valid z/OS Debugger
command here.

] SCROLL
The number of lines or columns that you want to scroll when you enter a SCROLL command without

an amount specified. To hide this field, enter the SET SCROLL DISPLAY OFF command. To modify
the scroll amount, use the SET DEFAULT SCROLL command.

The value in this field is the operand applied to the SCROLL UP, SCROLL DOWN, SCROLL LEFT, and
SCROLL RIGHT scrolling commands. Table 24 on page 153 lists all the scrolling commands.

Table 24. Scrolling commands

Command Description

n Scroll by n number of lines.

HALF Scroll by half a page.

PAGE Scroll by a full page.

TOP Scroll to the top of the data.

BOTTOM Scroll to the bottom of the data.

MAX Scroll to the limit of the data.

LEFT x Scroll to the left by x number of characters.
RIGHT «x Scroll to the right by x number of characters.
CURSOR Position of the cursor.

Chapter 21. Using full-screen mode: overview 153

Table 24. Scrolling commands (continued)

Command Description

TO x Scroll to line x, where x is an integer.

] Message areas
Information and error messages are displayed in the space immediately below the command line.

Source window

EEMSOURCE: MULTCU ---1--=-#=-==2=-cat==cc3eccatmnncdeanat-=--5----+ LINE: 70 OF 85

70 PROCEDURE DIVISION. 5

71 *kkkkkkhkkhkkhkkhkkhkkhkkhkhkkhkkhkhhkhkkhhkhkkhkhhkkhkkhhhkkhhhkhkkhhhkkhkhhkhkkhhhkkhkhhhkkhhhkkhkkhkhkhkkhhhkkkk |

72 * THIS IS THE MAIN PROGRAM AREA. This program only displays

73 * text. R .

74 *hkkkkkkhkkhkkhkkhkkkhkkhhkkhkkhkhhkkhkhhkhkkhkhhkkhkkhhhkkhhhkhkkhhhkkhkhhkhkkhkhhkkhkhhhkkhhhkkhkkhhhkkhhhkkk |
75 DISPLAY "MULTCU COBOL SOURCE STARTED." UPON CONSOLE.

76 MOVE 25 TO PROGRAM-USHORT-BIN. .

77 MOVE -25 TO PROGRAM-SSHORT-BIN. N 4 |

78 PERFORM TEST-900.

79 PERFORM TEST-1000.

80 DISPLAY "MULTCU COBOL SOURCE ENDED." UPON CONSOLE.

The Source window displays the source file or listing. The Source window has four parts, described below.

Header area
Identifies the window, shows the compile unit name, and shows the current position in the source or
listing.

A Prefix area
Occupies the left-most eight columns of the Source window. Contains statement numbers or line
numbers you can use when referring to the statements in your program. You can use the prefix area
to set, display, and remove breakpoints with the prefix commands AT, CLEAR, ENABLE, DISABLE,
QUERY, and SHOW.

Kl Source display area
Shows the source code (for a C and C++ program), the source listing (for a COBOL, LangX COBOL,
or PL/I program), a pseudo assembler listing (for an assembler program), or the disassembly view
(for programs without debug information) for the currently qualified program unit. If the current
executable statement is in the source display area, it is highlighted.

I Suffix area
A narrow, variable-width column at the right of the screen that z/OS Debugger uses to display
frequency counts. It is only as wide as the largest count it must display.

The suffix area is optional. To show the suffix area, enter SET SUFFIX ON. To hide the suffix area,
enter SET SUFFIX OFF. You can also set it on or off with the Source Listing Suffix field in the Profile
Settings panel.

The labeled header line for each window contains a scale and a line counter. If you scroll a window
horizontally, the scale also scrolls to indicate the columns displayed in the window. The line counter
indicates the line number at the top of a window and the total number of lines in that window. If you scroll
a window vertically, the line counter reflects the top line number currently displayed in that window.

Refer to the following topics for more information related to the material discussed in this topic.

Related tasks
“Entering prefix commands on specific lines or statements” on page 163
“Customizing profile settings” on page 256

Monitor window

The Monitor window displays the names and values of variables selected by the SET AUTOMONITOR or
MONITOR commands.

154 IBM z/OS Debugger: User's Guide

The following diagram shows the default Monitor window and highlights the parts of the Monitor window:

COBOL LOCATION: DTAMO1 :> 109.1

Command ===> Scroll ===> PAGE

MONITOR -+----1----4----2----4-==--3----4----f----4----5----4----6- LINE: 1 OF 7

"""""""""""""""""" TOP OF MONITOR shkskskokokok s sk hok s o ok kok ok o ook ok okeok ok o oo
----- 4----1----t----2----+-|--3----+----4--

0001 1 NUM1 0000000005

0002 2 NUM4 191414141°

0003 3 WK-LONG-FIELD-2 1123456790 223456790 323456790 423456790 5234
0004 56790 623456790 723456790 8234567890 9234567
0005 90 023456790 123456790 223456790 323456790 4
0006 23456790 5234567890 623456790 723456790 8234
0007 4 HEX-NUM1 X'ABCD 1234'

Monitor value scale, which provides a reference to help you measure the column position in the
Monitor value area.

Monitor value area, where z/OS Debugger displays the values of the variables. z/OS Debugger extends
the display to the right up to the full width of the displayable area of the Monitor window.

Monitor name area, where z/OS Debugger displays the names of the variables.

Monitor reference number area, where z/OS Debugger displays the reference number it assigned to a
variable.

When you enter the MONITOR LIST, MONITOR QUERY, MONITOR DESCRIBE, and SET AUTOMONITOR
commands, z/OS Debugger displays the output in the Monitor window. If this window is not open, z/OS
Debugger opens it when you enter a MONITOR or SET AUTOMONITOR command.

By default, the Monitor window displays a maximum of 1000 lines. You can change this maximum by
using the SET MONITOR LIMIT command. However, monitoring large amounts of data can use large
amounts of storage, which might create problems. Verify that there is enough storage available to monitor
large data items or data items that contain a large number of elements. To find out the current maximum,
enter the QUERY MONITOR LIMIT command.

Refer to the following topics for more information related to the material discussed in this topic.

Related tasks

“Adding variables to the Monitor window” on page 186

“Replacing a variable in the Monitor window with another variable” on page 187
“Adding variables to the Monitor window automatically” on page 188

“Scrolling through the physical windows” on page 167

Related references
"SET MONITOR command" in IBM z/0S Debugger Reference and Messages
"QUERY command" in IBM z/0S Debugger Reference and Messages

Log window

LEE @ momirmm e e m s ame e o2 e m = =B e e e e e S o et — o LLUES 6 @F 4l
0007 MONITOR

0008 LIST PROGRAM-USHORT-BIN ;

0009 MONITOR

0010 LIST PROGRAM-SSHORT-BIN ;

0011 AT 75 ;

0012 AT 77 ;

0013 AT 79 ;

0014 GO ;

The Log window records and displays your interactions with z/OS Debugger.

Chapter 21. Using full-screen mode: overview 155

At the beginning of a debug session, if you have specified any of the following files, the Log window
displays messages indicating the beginning and end of any commands issued from these files:

- global preferences file
- preferences file
- commands file

If a global preferences file exists, the data set name of the global preferences file is displayed.
The following commands are not recorded in the Log window.

PANEL

FIND

CURSOR

RETRIEVE

SCROLL

WINDOW

IMMEDIATE

QUERY prefix command
SHOW prefix command

If SET INTERCEPT ONis in effect for a file, that file's output also appears in the Log window.
You can optionally exclude STEP and GO commands from the log by specifying SET ECHO OFF.

Commands that can be used with IMMEDIATE, such as the SCROLL and WINDOW commands, are excluded
from the Log window.

By default, the Log window keeps 1000 lines for display. The default value can be changed by one of the
following methods:

« The system administrator changes it through a global preferences file.
 You can change it through a preferences file.

 You can change it by entering SET LOG KEEP n, where n is the number of lines you want kept for
display

The maximum number of lines is determined by the amount of storage available.

The labeled header line for each window contains a scale and a line counter. If you scroll a window
horizontally, the scale also scrolls to indicate the columns displayed in the window. The line counter
indicates the line number at the top of a window and the total number of lines in that window. If you scroll
a window vertically, the line counter reflects the top line number currently displayed in that window.

Memory window

The Memory window displays the contents of memory. The following figure highlights the parts of the
Memory window.

MEMORY---1----4--==2----4=---3----d--ccl---pom--Bmm e e cpmmmmpm = =T oo -
History: 24702630 2505A000
Base address: 265B1018 Amode: 31
+00000 265B1018 11C3D6C2 D6D34040 4011D3D6 C3C1E3C9
+00010 265B1028 D6D57A12 D7D9D6C7 F1407A6E 40OFAF44B

.COBOL .LOCA
ON:.PROG1 :> 4

TI
4

| |

| |
+00020 265B1038 F1404040 40404040 40404040 40404040 | 1 |
+00030 265B1048 40404040 40404040 40404040 40404040 | [6 | |
+00040 265B1058 40404040 40404040 40404040 40404040 | |
+00050 265B1068 11C39694 94819584 117E7E7E 6E009389 | .Command.===>.11i |
+00060 265B1078 A2A340A2 A3969981 87854DA2 A399F16B | st storage(strl, |
+00070 265B1088 F3F25D40 40404040 40404040 40404040 | 32) |
Header area

The header area identifies the window and contains a scale.

156 IBM z/OS Debugger: User's Guide

HiInformation area
The information area displays a memory history of up to 8 base addresses. The information area also
displays the address mode and up to 8 unique base addresses.

The following sections are collectively known as the memory dump area.
] Offset column
The offset column displays the offset from the base address of the line of data in memory.

] Address column
The address column displays the low-order 32 bits of the starting address of the line of data in
memory.

E Hexadecimal data column
The hexadecimal data area displays data in hexadecimal format. Each line displays 16 bytes of
memory in four 4 byte groups.

[A Character data column
The character data area displays data in character format. Each line displays 16 bytes of memory.

The maximum number of lines that the Memory window can display is limited to the size of the window.
You can use the SCROLL DOWN and SCROLL UP commands to display additional memory.

Refer to the following topics for more information related to the material discussed in this topic.

Related tasks
“Navigating through the Memory window using the history area” on page 172

Command pop-up window

z/0OS Debugger displays the Command pop-up window as a pop-up window over the Source, Log, and
Monitor windows so that you to can more easily enter long or multiline commands. z/OS Debugger
displays the Command pop-up window when any of the following situations occur:

You enter the POPUP command

« You enter an incomplete command on the command line
 You enter a continuation character on the command line
 You type over long text in the Source or Log window

You can control the size of the window by doing any of the following actions:

« When you enter the POPUP command, specify the number of lines you want for that particular instance
of a Command pop-up window

« If you want the Command pop-up window to display the same number of lines every time you enter the
POPUP command, specify the number of lines you want with the SET POPUP command

« Resize the window by moving the cursor below the last line in the Command pop-up window and then
press Enter

After you finish entering commands, press Enter to run the commands and close the window.

List pop-up window

When the Log window is not visible, z/OS Debugger displays the results of a LIST expression
command in the List pop-up window and writes the results to the log. If the expression evaluation fails,
z/0S Debugger displays the List pop-up window with the error message. While the List pop-up window

is open, you can not alter the value of a variable. You can scroll up and down in the List pop-up window
by entering the SCROLL UP and SCROLL DOWN commands in the Command line or using the appropriate
PF key. The maximum lines of data for the List pop-up window can not exceed 1000 lines. If the result

of the expression evaluation exceeds 1000 lines, z/OS Debugger displays a warning message below the
Command line. To close the List pop-up window, do either of the following:

« Press Enter.

Chapter 21. Using full-screen mode: overview 157

« Enter any command except SCROLL UP or SCROLL DOWN in the Command line. z/OS Debugger closes
the window and runs the command.

Creating a preferences file

If you have a preference as to the appearance or behavior of z/OS Debugger, you can set these options in
a preferences file. You can modify the layout of the windows of the session panel, set PF keys to specific
actions, or change the colors use in the session panel. “Saving customized settings in a preferences file”
on page 258 describes what you can specify in a preferences file and how to make z/0S Debugger use
your preferences file.

If your site has preferences for all users to use, the system administrator can set these preferences in a
global preferences file. When z/OS Debugger starts, it does the following steps:

1. Checks for a global preferences file specified through the EQAOPTS GPFDSN command and runs any
commands specified in that file.

2. If you specify a preferences file, z/OS Debugger looks for that preferences file and runs any commands
in that preferences file. A preferences file can be specified through one of the following methods:

« directly; for example, through the TEST runtime option
« through the EQAOPTS PREFERENCESDSN command

3. If you specify a commands file, z/OS Debugger looks for that commands file and runs any commands
in that commands file. A commands file can be specified through one of the following methods:

« Directly, for example, through the TEST runtime option.

« Through the EQAOPTS COMMANDSDSN command. If that file has a member in it that matches
the name of the initial load module in the first enclave, z/OS Debugger reads that member as a
commands file.

Because of the order in which z/OS Debugger processes these files, any settings that you specify in your
preferences and commands files can override settings in the global preferences file. To learn how to
specify EQAOPTS commands, see the topic "EQAOPTS commands" in the IBM z/0S Debugger Reference
and Messages or IBM z/0S Debugger Customization Guide. To learn about what format to use for the global
preferences file, preferences file, and commands file, see Appendix A, “Data sets used by z/OS Debugger,”

on page 403.

Displaying the source

z/OS Debugger displays your source in the Source Window using a source, listing, or separate debug file,
depending on how you prepared your program.

When you start z/OS Debugger, if your source is not displayed, see “Changing which file appears in the
Source window” on page 159 for instructions on how find and display the source.

If there is no debug data, you can display the disassembled code by entering the SET DISASSEMBLY
command.

If your programs contain Db2 or CICS code, you might need to use a different file. See Chapter 8,
“Preparing a Db2 program,” on page 75 or Chapter 10, “Preparing a CICS program,” on page 81 for more
information.

Refer to the following topics for more information related to the material discussed in this topic.

Related tasks

“Choosing TEST or NOTEST compiler suboptions for COBOL programs” on page 27
Chapter 6, “Preparing a LangX COBOL program,” on page 67

“Choosing TEST or NOTEST compiler suboptions for PL/I programs” on page 34
“Choosing TEST or DEBUG compiler suboptions for C programs” on page 39
“Choosing TEST or DEBUG compiler suboptions for C++ programs” on page 44
Chapter 7, “Preparing an assembler program,” on page 71

158 IBM z/OS Debugger: User's Guide

Chapter 8, “Preparing a Db2 program,” on page 75

Chapter 9, “Preparing a Db2 stored procedures program,” on page 79
Chapter 10, “Preparing a CICS program,” on page 81

Chapter 11, “Preparing an IMS program,” on page 95

Related references
Appendix B, “How does z/OS Debugger locate source, listing, or separate debug files?” on page 409
IBM z/0S Debugger Reference and Messages

Changing which file appears in the Source window

This topic describes several different ways of changing which file appears in the Source window. This
topic assumes you already know the name of the source, listing, or separate debug file that you want
to display. If you don't know the name of the file, see “Displaying a list of compile units known to z/OS
Debugger” on page 196 for suggestions on how to find the name of a file.

Before you change the file that appears in the Source window, make sure you understand how z/0S
Debugger locates source, listing, and separate debug files by reading Appendix B, “How does z/0S
Debugger locate source, listing, or separate debug files?” on page 409.

To change which file appears in the Source window, choose one of the following options:

Type over the name after SOURCE :, which is in the Header area of the Source window, with the desired
name. The new name must be the name of a compile unit that is known to z/OS Debugger.

Use the Source Identification panel to direct z/OS Debugger to the new files:
1. With the cursor on the command line, press PF4 (LIST).
In the Source Identification panel, you can associate the source, listing, or separate debug file that
show in the Source window with their compile unit.
2. Type over the Listing/Source File field with the new name.
Use the SET SOURCE command. With the cursor on the command line, type SET SOURCE ON
(cuname) new_file_name, where new_file_name is the new source file. Press Enter.

If you need to do this repeatedly, you can use the SET SOURCE ON commands generated in the Log
window. You can save these commands in a file and reissue them with the USE command for future
invocations of z/OS Debugger.

Enter the PANEL PROFILE command, which displays the Profile Settings panel. Enter the new file
name in the Default Listing PDS name field.

Use the SET DEFAULT LISTINGS command. With the cursor on the command line, type SET
DEFAULT LISTINGS new_file_name, where new_file_name is the renamed listing or separate debug
file. Press Enter.

To point z/OS Debugger to several renamed files, you can use the SET DEFAULT LISTINGS command
and specify the renamed files, separated by commas and enclosed in parenthesis. For example,

to point z/OS Debugger to the files SVTRSAMP . TS99992 . MYPROG, PGRSAMP . LLTEST . PROGA, and
RRSAMP .CRTEST . PROGR, enter the following command:

SET DEFAULT LISTINGS (SVTRSAMP.TS99992.MYPROG, PGRSAMP.LLTEST.PROGA,
RRSAMP.CRTEST.PROGR) ;

Use the EQADEBUG DD statement to define the location of the files.
Code the EQAUEDAT user exit with the location of the files.

For C and C++ programs compiled with the FORMAT (DWARF) and FILE suboptions of the DEBUG compiler
option, the information in this topic describes how to specify the location of the source file. If you or your
site specified YES for the EQAOPTS MDBG command (which requires z/OS Debugger to search for the .dbg
and the source file in a.mdbg file)8, you cannot specify another location for the source file.

Chapter 21. Using full-screen mode: overview 159

Entering commands on the session panel

You can enter a command or modify what is on the session panel in several areas, as shown in Figure 1 on
page 160 and Figure 2 on page 161.

© LOCATION: MYID.SOURCE(ICFSSCU1) :> 89

Command ===> Scroll ===> PAGE

MONITOR --+----1----+----2----4----3----4----4----4----5----+----6 LINE: 1 OF 2

*kkkkkkkhhkhkkhhkkhhkxkhkrxkkrkkkrkkkixx TOP OF MONITOR *kkkhhkhhkhhkrkhhkrkhhrkhhhhhhhhhrhrxk
cocefhocccileccedocccdoccodecccfeocaococllosss

0001 1 VARBL1 10

0002 2 VARBL2 20

Kk kkkkkkkkkkkkkkkkkkkkkkxkkkkkkx BOTTOM OF MONITOR *kkkkkkkkhkkkkkkkhkhkkkkkkhkkkkkkx

SOURCE: ICFSSCU1l -JEN--+----2----+----3----4----4----+----5----+ |INE: 81 OF 96

81 main()
82 $
83 int VARBL1 = 10;
84 int VARBL2 = 20;
85 int R = 1;
86
87 printf("--- IBFSSCC1 : BEGIN\n");
88 do %
89 VARBL1++;
920 printf ("INSIDE PERFORM\n");
91 VARBL2 = VARBL2 - 2;
92 R++; .
LOG HW--+----1----+----2----4----3----4----4----+----5----4+----6 LINE: 7 OF 15
0007 STEP ;
0008 AT 87 ;
0009 MONITOR
0010 LIST VARBL1 ;
0011 MONITOR
0012 LIST VARBL2 ;
0013 GO ;
0014 STEP ;
0015 STEP ;

Figure 1. z/OS Debugger session panel displaying the Log window.

8 In situations where you can specify environment variables, you can set the environment variable
EQA_USE_MDBG to YES or NO, which overrides any setting (including the default setting) of the EQAOPTS
MDBG command.

160 IBM z/OS Debugger: User's Guide

COBOL LOCATION: PROG1 :> 44

Command ===> Scroll ===> CSR
MONITOR -+--=-L1----F=--=2c---4-=--3--ctomz-bomootom-=bouot-=--6- LINE: 1 OF 2
------------------------------- TOP OF MONITOR othokkbohokkkbokokkkokokskokokokokkokokkokkok

0001 1 STR1 'ONE '
0002 2 STR3 ' THREE '
------------------------------ BOTTOM OF MONITOR sokkskkokokkkkkkokkkkkdkk koo ke
SOURCE: PROGL -JEN-1----+----2----#--=-3----4----4----4----5----4 LINE: 43 OF 53

43 MOVE "ONE" TO STR1. MOVE "TWO" TO STR2. MOVE "THREE" TO S

44 MOVE "FOUR" TO STR4. MOVE "FIVE" TO STR5.

45 PERFORM UNTIL R = 9 o
46 MOVE "TOP" TO STR1 MOVE "BEG" TO STR2 MOVE "UP" TO STR3 .

47 ADD 1 TO VARBL1

48 SUBTRACT 2 FROM VARBL2

49 ADD 1 TO R .

50 MOVE "BOT" TO STR1 MOVE "END" TO STR2 MOVE "DOW" TO STR .

51 END-PERFORM. o

52 MOVE "DONE" TO STR1. MOVE "END" TO STR2. MOVE "FIN" TO ST .

53 STOP RUN.

*hkkkkkkkkkkkkkkkkkkkkkkkkkkxxx BOTTOM OF SOURCE *******************************
MEMORIFM-+----2----+----3----4----4----+----5----p----p----t----TF----4----8----+

History: 329D47DA 329D65CC 329D88AB 329D8000O
329D90E8 Ea

Base address: 329D90E8 Amode: 31

+00000 329D9GES D6D5C540 40000000 E3E6D640 40000000 | ONE ...TWO ... |

+00010 329D90F8 E3C8D9C5 C5000000 OOOOOOOO OOOOOOOO | THREE...........

+00020 329D9108 (0OOOOOOO OCOOOOEEO OOOEOEOOO CEOOOOOO | cocoonoc00008060C
+00030 329D9118 00OOCOOOO OOOOOOEO OOOOOOEO OO [e
+00040 329D9128 (00000000 OOOOOEOO OOOEOOOO OEOOOOOO [e
+00050 329D9138 (0OOO0OOO OCOOOOEEO OOOEOEOOO OEOOOOOO | cocoonoc00008060C
+00060 329D9148 00000000 OOOOOOOO OOOOOOEO OOOOOOOO [e
+00070 329D9158 (00000000 OOOOOEOO OOOEOOOO OEOOOOOO [

PF 1:Z00M MEM 2:STEP 3:QUIT 4:SWAP 5:MEMORY 6:BREAK

PF 7:UP 8:DOWN 9:G0 10:Z00M SRC 11:Z00M LOG 12:RETRIEVE

Figure 2. z/0OS Debugger session panel displaying the Memory window.

Note: Figure 2 on page 161 shows PF keys that were redefined. If you want to redefine your PF keys, see
“Defining PF keys” on page 253.

Command line
You can enter any valid z/OS Debugger command on the command line.

H Scroll area
You can redefine the default amount you want to scroll by typing the desired value over the value
currently displayed.

EJ Compile unit name area
You can change the qualification by typing the desired qualification over the value currently displayed.
For example, to change the current qualification from ICFSSCU1, as shown in the Source window
header, to ICFSSCU2, type ICFSSCU2 over ICFSSCU1 and press Enter.

] Prefix area
You can enter only z/OS Debugger prefix commands in the prefix area, located in the left margin of the
Source window.

K Source window
You can modify any lines in the Source window and place them on the command line.

@ Window id area
You can change your window configuration by typing the name of the window you want to display over
the name of the window that is currently being displayed.

Log window
You can modify any lines in the log and have z/OS Debugger place them on the command line.

k3 Memory window
You can modify memory or specify a new memory base address. This window is not displayed
by default. You must enter the WINDOW SWAP MEMORY LOG command, WINDOW OPEN MEMORY
command, or WINDOW ZOOM MEMORY command to display this window.

Refer to the following topics for more information related to the material discussed in this topic.

Chapter 21. Using full-screen mode: overview 161

Related tasks

“Using the session panel command line” on page 162

“Issuing system commands” on page 162

“Entering prefix commands on specific lines or statements” on page 163
“Entering multiple commands in the Memory window” on page 164

“Using commands that are sensitive to the cursor position” on page 164

“Using Program Function (PF) keys to enter commands” on page 164
“Retrieving previous commands” on page 165

“Composing commands from lines in the Log and Source windows” on page 166

Related references
“Order in which z/OS Debugger accepts commands from the session panel” on page 162
“Initial PF key settings” on page 165

Order in which z/0S Debugger accepts commands from the session panel

If you enter commands in more than one valid input area on the session panel and press Enter, the input
areas are processed in the following order of precedence.

1. Prefix area

. Command line

. Compile unit name area
. Scroll area

. Window id area

. Source/Log window

N o oA WODN

. Memory window

Using the session panel command line

You can enter any z/OS Debugger command in the command field. You can also enter any TSO command
by prefixing them with SYSTEM or TSO. Commands can be up to 48 SBCS characters or 23 DBCS
characters in length.

If you need to enter a lengthy command, z/OS Debugger provides a command continuation character, the
SBCS hyphen (-). When the current programming language is C and C++, you can also use the backslash
(\) as a continuation character. You can continue requesting additional command lines by entering the
continuation characters until you complete your command.

z/0OS Debugger also provides automatic continuation if your command is not complete; for example, if you
enter a left brace ({) without the matching right brace (}). If you need to continue your command, z/0S
Debugger displays the Command pop-up window. You type in the rest of your command and any other
commands. Press Enter to run the commands and close the Command pop-up window.

Refer to the following topics for more information related to the material discussed in this topic.

Related tasks
Chapter 29, “Entering z/OS Debugger commands,” on page 263

Issuing system commands

During your z/OS Debugger session, you can still access your base operating system using the SYSTEM
command. The string following the SYSTEM command is passed on to your operating system. You can
communicate with TSO in a TSO environment. For example, if you want to see a TSO catalog listing while
in a debugging session, enter SYSTEM LISTC;.

When you are entering system commands, you must comply with the following:

162 IBM z/OS Debugger: User's Guide

« A command is required after the SYSTEM keyword. Do not enter any required parameters. z/0OS
Debugger prompts you.

- If you are debugging in batch and need system services, you can include commands and their requisite
parameters in a CLIST and substitute the CLIST name in place of the command.

« If you want to enter several TSO commands, you can include them in a USE file, a procedure, or other
commands list. Or you can enter:

SYSTEM ISPF;

This starts ISPF and displays an ISPF panel on your host emulator screen that you can use to issue
commands.

For CICS only: The SYSTEM command is not supported.

TS0 is a synonym for the SYSTEM command. Truncation of the TSO command is not allowed.

Entering prefix commands on specific lines or statements

You can type certain commands, known as prefix commands, in the prefix area of specific lines in the
Source or Monitor window so that those commands affect only those lines. For example, you can type the
AT command in the prefix area of line 8 in the Source window, press Enter, then z/OS Debugger sets a
statement breakpoint only on line 8.

The following prefix commands can be entered in the prefix area of the Source window:
« AT

- CLEAR

DISABLE

ENABLE

L

M

« QUERY

« RUNTO

« SHOW

The following prefix commands can be entered in the prefix area of the Monitor window, including the
automonitor section:

« HEX

- DEF

- CL

e LIST

« CC...code coverage(to clear a range of lines)

To enter a prefix command into the Source window, do the following steps:

1. Scroll through the Source window until you see the line or lines of code you want to change.
2. Move your cursor to the prefix area of the line you want to change.

3. Type in the appropriate prefix command.
4

. If there are multiple statements or verbs on the ling, you can indicate which statement or verb you
want to change by typing in a number indicating the relative position of the statement or verb. For
example, if there are three statements on the line and you want to set a breakpoint on the third
statement, type in a 3 following the AT prefix command. The resulting prefix command is AT 3.

5. If there are more lines you want to change, return to step 3.
6. Press Enter. z/OS Debugger runs the commands you typed on the lines you typed them on.

Chapter 21. Using full-screen mode: overview 163

To enter a prefix command into the Monitor window, do the following steps:

1. Scroll through the Monitor window until you see the line or lines you want to change.

2. Move your cursor to the prefix area of the line you want to change.

3. Type in the appropriate prefix command.

4. If there are more lines you want to change, return to step 3.

5. Press Enter. z/OS Debugger runs the commands you typed on the lines you typed them on.

Refer to the following topics for more information related to the material discussed in this topic.

Related references
SET MONITOR command in IBM z/0S Debugger Reference and Messages
Prefix commands in IBM z/0S Debugger Reference and Messages

Entering multiple commands in the Memory window

You can enter multiple commands and changes into the Memory window. z/OS Debugger processes the
user input line by line, starting at the top of the Memory window, as described in the following list:

1. History entry area. Processing stops at an invalid input, which displays an error message, or after the
first "G" or "R" command. The Memory window is refreshed and the remaining commands and changes
you typed into the Memory window are ignored.

2. Base address. Processing stops at an invalid input, which displays an error message; after valid input;
or after the first "G" command. The Memory window is refreshed and the remaining commands and
changes you typed into the Memory window are ignored.

3. Address column. Processing stops at an invalid input, which displays an error message; after valid
input; or after the first "G" command. The Memory window is refreshed and the remaining commands
and changes you typed into the Memory window are ignored.

4. Hexadecimal data area. Processing stops at an invalid input, which displays an error message; after
valid input; or after the first "G" command. Valid changes that z/OS Debugger encounters before invalid
changes or the "G" command are processed. The Memory window is refreshed and the remaining
commands or changes you typed into the Memory window are ignored.

Using commands that are sensitive to the cursor position

Certain commands are sensitive to the position of the cursor. These commands, called cursor-sensitive
commands, include all those that contain the keyword CURSOR (AT CURSOR, DESCRIBE CURSOR, FIND
CURSOR, LIST CURSOR, SCROLL...CURSOR, TRIGGER AT CURSOR, WINDOW. ..CURSOR).

To enter a cursor-sensitive command, type it on the command line, position the cursor at the location
in your Source window where you want the command to take effect (for example, at the beginning of a
statement or at a verb), and press Enter.

You can also issue cursor-sensitive commands by assigning them to PF keys.

Note: Do not confuse cursor-sensitive commands with the CURSOR command, which returns the cursor to
its last saved position.

Refer to the following topics for more information related to the material discussed in this topic.

Related tasks
“Defining PF keys” on page 253

Using Program Function (PF) keys to enter commands

The cursor-sensitive commands, as well as other full-screen tasks, can be issued more quickly by
assigning the commands to PF keys. You can issue the WINDOW CLOSE, LIST, CURSOR, SCROLL TO,
DESCRIBE ATTRIBUTES, RETRIEVE, FIND, WINDOW SIZE, and the scrolling commands (SCROLL UP,
DOWN, LEFT, and RIGHT) this way. Using PF keys makes tasks convenient and easy.

164 IBM z/OS Debugger: User's Guide

Refer to the following topics for more information related to the material discussed in this topic.

Related tasks
“Defining PF keys” on page 253

“Using commands that are sensitive to the cursor position” on page 164

Related references
“Initial PF key settings” on page 165

Initial PF key settings

The table below shows the initial PF key settings.

PF key [Label Definition Use

PF1 ? ? “Getting online help for z/OS Debugger
command syntax” on page 267

PF2 STEP STEP “Stepping through or running your program”
on page 177

PF3 QUIT QUIT “Ending a full-screen debug session” on page
197

PF4 LIST LIST “Displaying a list of compile units known to
z/0S Debugger” on page 196

PF4 LIST LIST variable_name “Displaying and monitoring the value of a
variable” on page 184

PF5 FIND IMMEDIATE FIND “Finding a string in a window” on page 169

PF6 AT/CLEAR AT TOGGLE CURSOR “Setting breakpoints to halt your program at a
line” on page 176

PF7 uP IMMEDIATE UP “Scrolling through the physical windows” on
page 167

PF8 DOWN IMMEDIATE DOWN “Scrolling through the physical windows” on
page 167

PF9 GO GO “Stepping through or running your program”
on page 177

PF10 ZOOM IMMEDIATE ZOOM “Zooming a window to occupy the whole
screen” on page 255

PF11 ZOOM LOG IMMEDIATE ZOOM LOG “Zooming a window to occupy the whole
screen” on page 255

PF12 RETRIEVE IMMEDIATE RETRIEVE “Retrieving previous commands” on page 165

Refer to the following topics for more information related to the material discussed in this topic.

Related tasks
“Defining PF keys” on page 253

Retrieving previous commands

To retrieve the last command you entered, press PF12 (RETRIEVE). The retrieved command is displayed
on the command line. You can make changes to the command, then press Enter to issue it.

To step backwards through previous commands, press PF12 to retrieve each command in sequence. If a
retrieved command is too long to fit in the command line, only its last line is displayed.

Chapter 21. Using full-screen mode: overview 165

Refer to the following topics for more information related to the material discussed in this topic.

Related tasks
“Composing commands from lines in the Log and Source windows” on page 166

Composing commands from lines in the Log and Source windows
You can use lines in the Log and Source windows to compose new commands.
To compose a command from lines in the Log or Source window, do the following steps:

1. Move the cursor to the desired line.

2. Modify one or more lines that you want to include in the command. For example, delete any comment
characters.

3. Press Enter. z/OS Debugger displays the input line or lines on the command line. If the line or lines do
not fit on the command line, z/OS Debugger displays the Command pop-up window with the command
as typed in so far. Any trailing blanks on the last line are removed. If you want to expand the Command
pop-up window, place the cursor below it and press Enter.

4. If the command is incomplete, modify the command.
5. Press Enter to run the command.

Refer to the following topics for more information related to the material discussed in this topic.

Related tasks

“Retrieving previous commands” on page 165

Chapter 29, “Entering z/OS Debugger commands,” on page 263

Related references

“COBOL command format” on page 269

“z/0S Debugger subset of PL/I commands” on page 285

“PL/I language statements” on page 285

“z/0S Debugger commands that resemble C and C++ commands” on page 297

Opening the Command pop-up window to enter long z/0S Debugger
commands

If you need to enter a command that is longer than the length of the command line, enter the POPUP
command to open the Command pop-up window and then enter your z/OS Debugger command.

z/0S Debugger automatically displays the Command pop-up window in the following situations:

« You enter an incomplete command on the command line.
 You enter a continuation character on the command line.

You can enter the rest of your command in the Command pop-up window.

Navigating through z/0S Debugger windows

You can navigate in any of the windows using the CURSOR command and the scrolling commands: SCROLL
UP, DOWN, LEFT, RIGHT, TO, NEXT, TOP, and BOTTOM. You can also search for character strings using the
FIND command, which scrolls you automatically to the specified string.

The window acted upon by any of these commands is determined by one of several factors. If you specify
a window name (LOG, MEMORY, MONITOR, or SOURCE) when entering the command, that window is acted
upon. If the command is cursor-oriented, the window containing the cursor is acted upon. If you do not
specify a window name and the cursor is not in any of the windows, the window acted upon is determined
by the settings of Default window and Default scroll amount under the Profile Settings panel.

Refer to the following topics for more information related to the material discussed in this topic.
Related tasks

166 IBM z/OS Debugger: User's Guide

“Moving the cursor between windows” on page 167

“Scrolling through the physical windows” on page 167

“Scrolling to a particular line number” on page 168

“Finding a string in a window” on page 169

“Changing which file appears in the Source window” on page 159
“Displaying the line at which execution halted” on page 171
“Customizing profile settings” on page 256

Moving the cursor between windows

To move the cursor back and forth quickly from the Monitor, Source, or Log window to the command

line, use the CURSOR command. This command, and several other cursor-oriented commands, are highly
effective when assigned to PF keys. After assigning the CURSOR command to a PF key, move the cursor by
pressing that PF key. If the cursor is not on the command line when you issue the CURSOR command, it
goes there. To return it to its previous position, press the CURSOR PF key again.

Refer to the following topics for more information related to the material discussed in this topic.

Related tasks
“Defining PF keys” on page 253

Switching between the Memory window and Log window

z/0S Debugger has four logical windows, but can only display up to three physical windows at a time. You
can alternate between the Memory window and the Log window by entering the WINDOW SWAP MEMORY
LOG command on the command line. You can navigate through the physical windows by entering scroll
commands.

Refer to the following topics for more information related to the material discussed in this topic.

Related tasks
“Scrolling to a particular line number” on page 168
“Scrolling through the physical windows” on page 167

Scrolling through the physical windows

You can scroll through the physical windows by using commands or PF keys. Either way, the placement of
the cursor plays a key role in determining which physical window is affected by the command.

To scroll through a physical window by using commands, do the following steps:

1. If you are going to scroll left or right through the Monitor value area of the Monitor window, enter the
SET MONITOR WRAP OFF command.

2. Type in the scroll command in the command line, but do not press the Enter key. You can enter any
of the following scroll commands: SCROLL LEFT, SCROLL RIGHT,SCROLL UP,SCROLL DOWN. You
cannot scroll left or right in the Memory window.

3. Move the cursor to the physical window or area of the physical window you want to scroll through. In
the Memory window, move the cursor to any section of the memory dump area. In the Monitor window,
move the cursor to the Monitor value area to scroll left or right through that area. If you did not enter
the SET MONITOR WRAP OFF command, then the scroll command will scroll the entire window.

4. Press Enter.

If you scroll a window or area to the right or left, z/OS Debugger adjusts the scale in the window or area to
indicate the columns displayed in the window. If you scroll a window up or down, the line counter reflects
the top line number currently displayed in that window. In the Memory window, if you scroll up or down,
all the sections of the memory dump area adjust to display the new information.

You can combine steps 2 and 3 above by using the command to indicate which physical window you want
to scroll through. For example, if you want to scroll up 5 lines in the physical window that is displaying the
Monitor window, you enter the command SCROLL UP 5 MONITOR.

Chapter 21. Using full-screen mode: overview 167

To scroll through a physical window using PF keys, do the following steps:

1. Move the cursor to the physical window or scrollable area you want to scroll through. A scrollable area
includes the memory dump area of the Memory window.

2. Press the PF7 (UP) key to scroll up or the PF8 (DOWN) key to scroll down. The number of lines that you
scroll through is determined by the value of the Default scroll amount setting.

If you do not move the cursor to a specific physical window, the default logical window is scrolled. To find
out which logical window is the default logical window, enter the QUERY DEFAULT WINDOW command.

Refer to the following topics for more information related to the material discussed in this topic.

Related tasks

“Customizing the layout of physical windows on the session panel” on page 254
“Scrolling to a particular line number” on page 168

“Customizing profile settings” on page 256

“Enlarging a physical window” on page 168

“Navigating through the Memory window using the history area” on page 172

Related references

QUERY command in IBM z/0S Debugger Reference and Messages

SCROLL command in IBM z/0S Debugger Reference and Messages

SET DEFAULT WINDOW command in IBM z/0S Debugger Reference and Messages

Enlarging a physical window

You can enlarge a physical window to full screen by using the WINDOW ZOOM command or a PF key. To
enlarge a physical window by using the WINDOW ZOOM command, type in WINDOW ZOOM, followed by

the name of the physical window you want to enlarge, then press Enter. To reduce the physical window
back to its original size, enter the WINDOW ZOOM command again. For example, if you want to enlarge the
physical window that is displaying the Monitor window, enter the command WINDOW ZOOM. To reduce the
size of that physical window back to its original size, enter the command WINDOW ZOOM.

To enlarge a physical window by using a PF key, move the cursor into the physical window that you want
to enlarge, then press the PF10 (ZOOM) key. For example, if you want to enlarge the physical window
that is displaying the Source window, move your cursor somewhere into the Source window, then press
the PF10 (ZOOM) key. To reduce the size of that physical window back to its original size, press the PF10
(ZOOM) key.

Refer to the following topics for more information related to the material discussed in this topic.

Related tasks
“Customizing the layout of physical windows on the session panel” on page 254

Related references
WINDOW command in IBM z/0S Debugger Reference and Messages

Scrolling to a particular line number

To display a particular line at the top of a window, use the POSITION or SCROLL TO command with
the line or statement numbers shown in the window prefix areas. Enter POSITION nor SCROLL TO n
(where nis a line number) on the command line and press Enter.

For example, to bring line 345 to the top of the window, enter POSITION 345 OR SCROLL TO 345on
the command line. z/OS Debugger scrolls the selected window vertically so that it displays line 345 at the
top of that window.

If you used the LIST AT LINE or LIST AT STATEMENT command to get a list of line or statement
breakpoints, then use the POSITION or SCROLL TO command to display one of those breakpoints at
the top of the Source window. As an alternate to using the combination of the LIST AT LINE or

LIST AT STATEMENT command with the POSITION or SCROLL TO command, you can use the FINDBP

168 IBM z/OS Debugger: User's Guide

command. The FINDBP command works in @ manner similar to the FIND command for strings, except
that it searches for line, statement, and offset breakpoints.

Finding a string in a window

You can search for strings in the Source, Monitor, or Log window. You can specify where to start the
search, to search either forward or backward, and, for the Source window, the columns that are searched.
The default window that is searched is the window specified by the SET DEFAULT WINDOW command or
the Default window entry in your Profile Settings panel. The default direction for searches is forward. For
the Source window, the default boundaries for columns are 1 to *, unless you specify a different set of
boundaries with the SET FIND BOUNDS command.

To find a string within the default window using the default search direction, do the following steps:

1. Type in the FIND command, specifying the string you want to find. Ensure that the string complies with
the rules described “Syntax of a search string” on page 169.

2. Press Enter.
If you want to repeat the previous search, hit the PF5 key.
Refer to the following topics for more information related to the material discussed in this topic.

Related concepts
“How does z/0S Debugger search for strings?” on page 169

Related references
“Syntax of a search string” on page 169

How does z/0S Debugger search for strings?

The z/OS Debugger FIND command uses many of the same rules for beginning a search that the ISPF
FIND command uses to begin its searches. z/OS Debugger begins a search in the first position after the
cursor location.

If you reach the end, z/OS Debugger displays a message indicating you have reached the end. Repeat the
FIND command by pressing the PF5 key and then the search starts from the top.

If you were searching backwards and you reach the beginning, z/OS Debugger displays a message
indicating you have reached the beginning. Repeat the FIND command by pressing the PF5 key and the
search begins from the end.

Syntax of a search string

The string can contains any combination of characters, numbers, and symbols. However, if the string
contains any of the following characters, it must be enclosed in quotation marks (") or apostrophes ('):

- spaces

e an asterisk ("*")

« aquestion mark ("?")

« asemicolon (";")

Use the following rules to determine whether to use quotation marks (") or apostrophes ('):

« If you are debugging a C or C++ program, the string must be enclosed in quotation marks ().

« If you are debugging an assembler, COBOL, LangX COBOL, disassembly, or PL/I program, the string can
be enclosed in quotation marks (") or apostrophes (').

Finding the same string in a different window

To find the same string in a different window, type in the command: FIND * window_name.

Chapter 21. Using full-screen mode: overview 169

Finding a string in the Monitor value area when SET MONITOR WRAP OFF is in
effect
Type the FIND command with the string, then place the cursor in the Monitor window. z/OS Debugger

searches the entire Monitor window, including the scrolled data in the Monitor value area, until the string
is found or until the end of data is reached.

Finding the same string in a different direction

To find the same string in a different direction, enter the FIND * command with the string and the PREV
or NEXT keyword. For example, the following command searches for the string "RecordDate" in the
backwards direction:

FIND RecordDate PREV ;

Specifying the boundaries of a search in the Source window

You can specify that z/OS Debugger search through a limited number of columns in the Source window,
which can be useful when you are searching through a very large source file and some text is organized
in specific columns. You can specify the boundaries to use for the current search or for all searches. The
column alignment of the source might not match the original source code. The column specifications for
the FIND command are related to the scale shown in the Source window, not the original source code.

To specify the boundaries for the current search, enter the FIND command and specify the search string
and the boundaries. For example, to search for "ABC" in columns 7 through 12, enter the following
command:

FIND "ABC" 7 12;

To search for "VAR1" that begins in column 8 or any column after that, enter the following command:

FIND "VAR1" 8 x;

To search for "VAR1" beginning in column 1, enter the following command:

FIND "VAR1" 1;

To specify the default boundaries to use for all searches, enter the SET FIND BOUNDS command,
specifying the left and right boundaries. After you enter the SET FIND BOUNDS command, every time
you enter the FIND command without specifying boundaries, z/OS Debugger searches for the string you
specified only within those boundaries. For example, to specify that you want z/OS Debugger to always
search for text within columns 7 through 52, enter the following command:

SET FIND BOUNDS 7 52;

Afterward, every time you enter the FIND command without specifying boundaries, z/OS Debugger
searches only within columns 7 through 52. To reset the boundaries to the default setting, which is 1
through *, enter the following command:

SET FIND BOUNDS;

Refer to the following topics for more information related to the material discussed in this topic.

Related references

“Example: Searching for COBOL paragraph names” on page 171

FIND command in IBM z/0S Debugger Reference and Messages

SET FIND BOUNDS command in IBM z/0S Debugger Reference and Messages
QUERY command in IBM z/0S Debugger Reference and Messages

170 IBM z/OS Debugger: User's Guide

Example: Complex searches

To find a string in the backwards direction in a different window, enter the FIND command with the string,
the PREV keyword, and the name of the window. For example, the following command searches for the
string "EmployeeName" in the Log window:

FIND EmployeeName PREV LOG;

Example: Searching for COBOL paragraph names

To find a COBOL paragraph name that begins in column 8, enter the following command:
FIND paraa 8;

z/0S Debugger will find only the string that starts in column 8.

To find a reference to a COBOL paragraph name in COBOL’s Area B within columns 12 through 72, enter
the following command:

FIND paraa 12 72;

z/0OS Debugger will find only the string that starts and ends within columns 12 to 72.

Displaying the line at which execution halted

After displaying different source files and scrolling, you can go back to the halted execution point by
entering the SET QUALIFY RESET command.

Navigating through the Memory window

This topic describes the navigational aids available through the Memory window that are not available
through other windows.

Displaying the Memory window
You can display the Memory window by doing one of the following options:

- Entering the WINDOW SWAP MEMORY LOG command. z/OS Debugger replaces the contents of the
physical window that is displaying the Log window with the Memory window. The Memory window is
empty if you did not specify a base address (by using the MEMORY command) or the history area is
empty.

- After assigning the Memory window to a physical window, entering the WINDOW OPEN MEMORY
command. z/OS Debugger opens the physical window and displays the contents of the Memory window.

« Customizing the session panel so that the Memory window is displayed in a default physical window
instead of the Log window. Use this option if you want the Memory window to display continuously and
in place of the Log window.

Refer to the following topics for more information related to the material discussed in this topic.

Related tasks

“Scrolling through the physical windows” on page 167

“Switching between the Memory window and Log window” on page 167
“Displaying memory through the Memory window” on page 16

“Customizing the layout of physical windows on the session panel” on page 254

Related references

“Memory window” on page 156

“Order in which z/0S Debugger accepts commands from the session panel” on page 162
MEMORY command in IBM z/0S Debugger Reference and Messages

Chapter 21. Using full-screen mode: overview 171

Navigating through the Memory window using the history area

Every time you enter a new MEMORY command or use the G command, the current base address is moved
to the right and down in the history area. The history area can hold up to eight base addresses. When the
history area is full and you enter a new base address, z/OS Debugger removes the oldest base address
(located at the bottom and right-most part of the history area) from the history area and puts the new
base address on the top left. The history area is persistent in a debug session.

To use the history area to navigate through the Memory window, enter the G or g command over an
address in the history area, then press Enter. z/OS Debugger displays the memory dump data starting
with the new address. You can clear the history area by entering the CLEAR MEMORY command. You can
remove an entry in the history area by typing over the entry with the R or r command.

Refer to the following topics for more information related to the material discussed in this topic.

Related tasks
“Scrolling through the physical windows” on page 167
“Specifying a new base address” on page 172

Specifying a new base address
You can use any of the following methods to specify a new base address:

Enter the MEMORY command on the command line

If you defined a PF key as the MEMORY command, place the cursor in the Source window under a
variable name and press that PF key.

« Type over an existing address in the Memory window in one of the following locations:
— Information area: Type over the current base address.
— Memory dump area: Type over an address in the address column.

Use the G command in the Memory window in one of the following locations:

— Information area: Enter the G command over an entry in the history area.

— Memory dump area: Enter the G command over an address in the address column or hexadecimal
data columns.

If you enter the G command in the hexadecimal data columns, verify that the address is completely
in one column and does not span across columns. For example, in the following screen, the
hexadecimal addresses X'329E6470' appears in two locations:

- In the second row, it spans the first and second column.
- In the fifth row, it is contained in the third column.

MEMORY - - =1 = = = === = =2 == ==m==3mmfmmmafmmmofmm e =Bmm e dm e e ofmmm o m =T e hn
History: 24702630 2505A000

Base address: 265B1018 Amode: 31

+00000 265B1018 40404040 40404040 40404040 40404040 |
+00010 265B1028 4040329E 64704040 40404040 40404040 |
+00020 265B1038 40404040 40404040 40404040 40404040 |
+00030 265B1048 40404040 40404040 40404040 40404040 |
+00040 265B1058 40404040 40404040 329E6470 40404040 |
+00050 265B1068 40404040 40404040 40404040 40404040 |
+00060 265B1078 40404040 40404040 40404040 40404040 |
+00070 265B1088 40404040 40404040 40404040 40404040 |

If you enter the G command over the second row, first column, z/OS Debugger tries to set the base
address to X'4040329E". If you enter the G command over the second row, second column, z/0S
Debugger tries to set the base address to X'64704040'. If you want to set the base address to
X'329E6470', do one of the following options:

- Type the G command over the address in the fifth row, third column.

- Enter X'329E6470"' in the Base address field.

172 IBM z/OS Debugger: User's Guide

- Type in X'329E6470" in an address column, without spanning two columns, and then press Enter.

Creating a commands file

A commands file is a convenient method of reproducing debug sessions or resuming interrupted sessions.
Use one of the following methods to create a commands file:

- Record your debug session in a log file and then use the log file as a commands file. This is the fastest
way to create a valid commands file.

 Create a commands file manually. Appendix A, “Data sets used by z/OS Debugger,” on page 403
describes the requirements for this file and when z/OS Debugger processes it.

When you create a commands file that might be used in an application program that was created
with several different programming languages, you might want to use z/OS Debugger commands that
are programming language neutral. The following guidelines can help you write commands that are
programming language neutral:

« Write conditions with the %$IF command.
« Delimit strings and long compile unit names with quotation marks (").

« Prefix a hexadecimal constant with an X or x, followed by an apostrophe ('), then suffix the
constant with an apostrophe (). For example, you can write the hexadecimal constant C1C2C3C4 as
x'C1C2C3C4".

« Group commands together with the BEGIN and END commands.

« Check the IBM z/0S Debugger Reference and Messages to determine if a command works with only
specific programming languages.

- Type in comments beginning at column 2 and not extending beyond column 72. Begin comments with
"/*"and end them with "*/".

For PL/I programs, if your commands file has sequence numbers in columns 73 through 80, you must
enter the SET SEQUENCE ON command as the first command in the commands file or before you use the
commands file. After you enter this command, z/OS Debugger does not interpret the data in columns 73
through 80 as a command. Later, if you want z/OS Debugger to interpret the data in columns 73 through
80 as a command, enter the command SET SEQUENCE OFF.

For C and C++ programs, if you use commands that reference blocks, the block names can differ if the
same program is compiled with either the ISD or DWARF compiler option. If your program is compiled
with the ISD compiler option, z/OS Debugger assigns block names in a sequential manner. If your program
is compiled with the DWARF compiler option, z/OS Debugger assigns block names in a non-sequential
manner. Therefore, the names might differ. If you switch compiler options, check the block names in
commands you use in your commands file.

At runtime, a commands file can be specified through one of the following methods:

« Directly, for example, through the TEST runtime option.

« Through the EQAOPTS COMMANDSDSN command. If that file has a member in it that matches the name
of the initial load module in the first enclave, z/OS Debugger reads that member as a commands file.

To learn how to specify EQAOPTS commands, see the topic "EQAOPTS commands" in the IBM z/0S
Debugger Reference and Messages or IBM z/0OS Debugger Customization Guide. To learn about what format
to use for the commands file, see Appendix A, “Data sets used by z/OS Debugger,” on page 403.

Refer to the following topics for more information related to the material discussed in this topic.

Related tasks
“Entering comments in z/OS Debugger commands” on page 266

Related references
BEGIN command in IBM z/0S Debugger Reference and Messages
%IF command in IBM z/0S Debugger Reference and Messages

Chapter 21. Using full-screen mode: overview 173

Recording your debug session in a log file

z/0OS Debugger can record your commands and their generated output in a session log file. This allows you
to record your session and use the file as a reference to help you analyze your session strategy. You can
also use the log file as a command input file in a later session by specifying it as your primary commands
file. This is a convenient method of reproducing debug sessions or resuming interrupted sessions.

The following appear as comments (preceded by an asterisk {*} in column 7 for COBOL programs, and
enclosed in/* *for C, C++, PL/I and assembler programs):

« All command output

« Commands from USE files

« Commands specified ona __ctest () function call

« Commands specified on a CALL CEETEST statement

« Commands specified on a CALL PLITEST statement

« Commands specified in the run-time TEST command string suboption

e QUIT commands

« z/0OS Debugger messages about the program execution (for example, intercepted console messages and
exceptions)

Refer to the following topics for more information related to the material discussed in this topic.

Related tasks
“Creating the log file” on page 174
“Saving and restoring settings, breakpoints, and monitor specifications” on page 180

Creating the log file
For debugging sessions in full-screen mode, you can create a log file in one of the following ways:

« Automatically by using the EQAOPTS LOGDSN and LOGDSNALLOC commands. This method helps new
z/0S Debugger users automatically create a log file. To learn how to specify EQAOPTS commands,
see the topic "EQAOPTS commands" in the IBM z/0S Debugger Reference and Messages or IBM z/0S
Debugger Customization Guide.

If you are an existing user that saves settings in a SAVESETS data set, z/OS Debugger does not create a
new log file for you because the SAVESETS data set contains a SET LOG command. z/OS Debugger uses
the log file specified in that SET LOG command.

« Manually as described in this topic.

For debugging sessions in batch mode, manually create the log file as described in this topic.

To create a permanent log of your debug session, first create a file with the following specifications:

« RECFM(F) or RECFM(FB) and 32<=LRECL<=256

« RECFM(V) or RECFM(VB) and 40<=LRECL<=264

Then, allocate the file to the DD name INSPLOG in the CLIST, JCL, or EXEC you use to run your program.

For COBOL and LangX COBOL only, if you want to subsequently use the session log file as a commands
file, make the RECFM FB and the LRECL equal to 72. z/OS Debugger ignores everything after column 72
for file input during a COBOL debug session.

For CICS only, SET LOG OFF is the default. To start the log, you must use the SET LOG ON file
command. For example, to have the log written to a data set named TSTPINE.DT.LOG, issue: SET LOG
ON FILE TSTPINE.DT.LOG;.

Make sure the default of SET LOG ON is still in effect. If you have issued SET LOG OFF, output to the log
file is suppressed. If z/OS Debugger is never given control, the log file is not used.

174 IBM z/OS Debugger: User's Guide

When the default log file INSPLOG) is accessed during initialization, any existing file with the same name
is overwritten. On MVS, if the log file is allocated with disposition of MOD, the log output is appended

to the existing file. Entering the SET LOG ON FILE xxx command also appends the log output to the
existing file.

If a log file was not allocated for your session, you can allocate one with the SET LOG command by
entering:

SET LOG ON FILE logddn;
This causes z/OS Debugger to write the log to the file which is allocated to the DD name LOGDDN.

Note: A sequential file is recommended for a session log since z/OS Debugger writes to the log file.

At any time during your session, you can stop information from being sent to a log file by entering:
SET LOG OFF;

To resume use of the log file, enter:
SET LOG ON;

The log file is active for the entire z/OS Debugger session.

z/OS Debugger keeps a log file in the following modes of operation: line mode, full-screen mode, and
batch mode.

Recording how many times each source line runs

To record of how many times each line of your code was executed:

1. Use a log file if you want to keep a permanent record of the results. To learn how to create a log file,
see “Creating the log file” on page 174.

2. Issue the command:

SET FREQUENCY ON;

After you have entered the SET FREQUENCY ON command, your Source window is updated to show
the current frequency count. Remember that this command starts the statistic gathering to display the
actual count, so if your application has already executed a section of code, the data for these executed
statements will not be available.

If you want statement counts for the entire program, issue:

GO ;
LIST FREQUENCY % ;

which lists the number of times each statement is run. When you quit, the results are written to the Log
file. You can issue the LIST FREQUENCY = at any time, but it will only display the frequency count for
the currently active compile unit.

Refer to the following topics for more information related to the material discussed in this topic.

Related tasks
“Creating the log file” on page 174

Recording the breakpoints encountered

If you are debugging a compile unit that does not support automonitoring, you can use the SET
AUTOMONITOR command to record the breakpoints encountered in that compile unit. After you enter
the SET AUTOMONITOR ON command, z/OS Debugger records the location of each breakpoint that is
encountered, as if you entered the QUERY LOCATION command.

Chapter 21. Using full-screen mode: overview 175

Setting breakpoints to halt your program at a line

To set or clear a line breakpoint, move the cursor over an executable line in the Source window and press
PF6 (AT/CLEAR). You can temporarily turn off the breakpoint with DISABLE and turn it back on with
ENABLE.

Refer to the following topics for more information related to the material discussed in this topic.

Related tasks

“Halting on a line in C only if a condition is true” on page 227
“Halting on a line in C++ only if a condition is true” on page 238
“Halting on a COBOL line only if a condition is true” on page 203
“Halting on a PL/I line only if a condition is true” on page 219

Setting breakpoints in a load module that is not loaded or in a
program that is not active

You can browse the source or set breakpoints in a load module that has not yet been loaded orin a
program that is not yet active by using the following command:

SET QUALIFY CU load_spec ::> cu_spec ;

In this command, specify the name of the load module and CU in which you wish to set breakpoints. The
load module is then implicitly loaded, if necessary, and a CU is created for the specified CU. The source
for the specified CU is then displayed in the SOURCE window. You can then set statement breakpoints as
desired.

When program execution is resumed because of a command such as GO or STEP, any implicitly

loaded modules are deleted, all breakpoints in implicitly created CUs are suspended, and any implicitly
created CUs are destroyed. If the CU is later created during normal program execution, the suspended
breakpoints are reactivated.

If you use the SET SAVE BPS function to save and restore breakpoints, the breakpoints are saved

and restored under the name of the first load module in the active enclave. Therefore, if you use the
command SET QUALIFY CU to set breakpoints in programs that execute as part of different enclaves,
the breakpoints that you set by using this command are not restored when run in a different enclave.

Controlling how z/0S Debugger handles warnings about invalid
data in comparisons

When z/0S Debugger processes (evaluates) a conditional expression and the data in one of the operands

is invalid, the conditional expression becomes invalid. In this situation, z/OS Debugger stops and prompts
you for a command. You have to enter the GO command to continue running your program. If you want to

prevent z/OS Debugger from prompting you in this situation, enter the SET WARNING OFF command.

A conditional expression can become invalid for several reasons, including the following situations:

« Avariable is not initialized and the data in the variable is not valid for the variable's attributes.

« Afield has multiple definitions, with each definition having different attributes. While the program
is running, the type of data in the field changes. When z/0S Debugger evaluates the conditional
expression, the data in the variable used in the comparison is not valid for the variable's attributes.

If an exception is raised during the evaluation of a conditional expression and SET WARNING is OFF, z/OS
Debugger still stops, displays a message about the exception, and prompts you to enter a command.

The following example describes what happens when you use a field that has multiple definitions, with
each definition having different attributes, as part of a conditional expression:

176 IBM z/OS Debugger: User's Guide

1. You enter the following command to check the value of WK-TEST-NUM, which is a field with two
definitions, one is numeric, the other is string;:

AT CHANGE WK-TEST-NUM
BEGIN;
IF WK-TEST-NUM = 10;
LIST 'WK-TEST-NUM IS 10';
ELSE;
GO;
END-IF;
End;

2. When z/0S Debugger evaluates the conditional expression WK-TEST-NUM = 10, the type of datain
the field WK-TEST-NUM is string. Because the data in the field WK-TEST-NUM is a string and it cannot
be compared to 10, the comparison becomes invalid. z/OS Debugger stops and prompts you to enter a
command.

3. You decide you want z/OS Debugger to continue running the program and stop only when the type of
datain the field is numeric and matches the 10.

4. You enter the following command, which adds calls to the SET WARNING OFF and SET WARNING ON
commands:

AT CHANGE WK-TEST-NUM
BEGIN;
SET WARNING OFF;
IF WK-TEST-NUM = 10;
LIST 'WK-TEST-NUM IS 10';
ELSE;
BEGIN;
SET WARNING ON;
GO;
END;
END-IF;
SET WARNING ON;
END;

Now, when the value of the field WK-TEST-NUM is not 10 or it is not a numeric type, z/OS Debugger
evaluates the conditional expression WK-TEST-NUM = 10 as false and runs the GO command. z/0S
Debugger does not stop and prompt you for a command.

In this example, the display of warning messages about the conditional expression (WK-TEST-NUM = 10)
was suppressed by entering the SET WARNING OFF command before the conditional expression was
evaluated. After the conditional expression was evaluated, the display of warning messages was allowed
by entering the SET WARNING ON command.

Carefully consider when you enter the SET WARNING OFF command because you might suppress the
display of warning messages that might help you detect other problems in your program.

Stepping through or running your program

By default, when z/OS Debugger starts, none of your program has run yet (including C++ constructors and
static object initialization).

z/0OS Debugger defines a line as one line on the screen, commonly identified by a line number. A
statement is a language construct that represents a step in a sequence of actions or a set of declarations.
A statement can equal one line, it can span several lines, or there can be several statements on one line.
The number of statements that z/OS Debugger runs when you step through your program depends on
where hooks are placed.

To run your program up to the next hook, press PF2 (STEP). If you compiled your program with a
combination of any of the following TEST or DEBUG compiler suboptions, STEP performs one statement:

« For C, compile with TEST (ALL) or DEBUG (HOOK (LINE,NOBLOCK, PATH)).
« For C++, compile with TEST or DEBUG (HOOK (LINE,NOBLOCK, PATH)).

« For any release of Enterprise COBOL for z/0S, Version 3, or Enterprise COBOL for z/OS and 0S/390,
Version 2, compile with one of the following suboptions:

Chapter 21. Using full-screen mode: overview 177

— TEST(ALL)
— TEST(NONE) and use the Dynamic Debug facility
« For Enterprise COBOL for z/OS, Version 4, compile with one of the following suboptions:

— TEST (HOOK)
— TEST(NOHOOK) and use the Dynamic Debug facility
« For any release of Enterprise PL/I for z/OS, compile with TEST (ALL).
« For Enterprise PL/I for z/OS, Version 3.4 or later, compile with TEST (ALL, NOHOOK) and use the
Dynamic Debug facility.
To run your program until a breakpoint is reached, the program ends, or a condition is raised, press PF9
(GO).
Note: A condition being raised is determined by the setting of the TEST run-time suboption test_level.

The command STEP OVER runs the called function without stepping into it. If you accidentally step into a
function when you meant to step over it, issue the STEP RETURN command that steps to the return point
(just after the call point).

Refer to the following topics for more information related to the material discussed in this topic.

Related tasks
Chapter 4, “Planning your debug session,” on page 25
Chapter 13, “Writing the TEST runtime option string,” on page 107

Recording and replaying statements

z/0OS Debugger provides a set of commands (the PLAYBACK commands) that helps you record and replay
the statements that you run while you debug your program. To record and replay statements, you need to
do the following:

1. Record the statements that you run (PLAYBACK ENABLE command). If you specify the DATA
parameter or the DATA parameter is defaulted, additional information about your program is recorded.

. Prepare to replay statements (PLAYBACK START command).

. Replay the statements that you recorded (STEP or RUNTO command).

. Change the direction that the statements are replayed (PLAYBACK FORWARD command).
. Stop replaying statements (PLAYBACK STOP command).

. Stop recording the statements that you run (PLAYBACK DISABLE command). All data for the compile
units specified or implied on the PLAYBACK DISABLE command is discarded.

o 01 WN

Each of these steps are described in more detail in the sections that follow.
Refer to the following topics for more information related to the material discussed in this topic.

Related references
IBM z/0S Debugger Reference and Messages

Recording the statements that you run
The PLAYBACK ENABLE command includes a set of parameters to specify:
« Which compile units to record
« The maximum amount of storage to use to record the statements that you run
« Whether to record the following additional information about your program:
— The value of variables.

— The value of registers.

— Information about the files you use: open, close, last operation performed on the files, how the files
were opened.

178 IBM z/OS Debugger: User's Guide

The PLAYBACK ENABLE command can be used to record the statements that you run for all compile units
or for specific compile units. For example, you can record the statements that you run for compile units

A, B, and C, where A, B, and C are existing compile units. Later, you can enter the PLAYBACK ENABLE
command and specify that you want to record the statements that you run for all compile units. You can
use an asterisk (*) to specify all current and future compile units.

The number of statements that z/OS Debugger can record depends on the following:

- The amount of storage specified or defaulted.
« The number of changes made to the variables.
« The number of changes made to files.

You cannot change the storage value after you have started recording. The more storage that you specify,
the more statements that z/OS Debugger can record. After z/OS Debugger has filled all the available
storage, z/OS Debugger puts information about the most recent statements over the oldest information.
When the DATA parameter is in effect, the available storage fills more quickly.

You can use the DATA parameter with programs compiled with the SYM suboption of the TEST compiler
option only if they are compiled with the following compilers:

« Enterprise COBOL for z/0S, Version 6

Enterprise COBOL for z/0S, Version 5

« Enterprise COBOL for z/OS, Version 4°

« Enterprise COBOL for z/OS and 0S/390, Version 3 Release 2 or later

« Enterprise COBOL for z/OS and 0S/390, Version 3 Release 1 with APAR PQ63235
« COBOL for 0S/390 & VM, Version 2 with APAR PQ63234

Refer to the following topics for more information related to the material discussed in this topic.

Related tasks
“Stop the recording” on page 180

Preparing to replay the statements that you recorded

The PLAYBACK START command notifies z/OS Debugger that you want to replay the statements that you
recorded. This command suspends normal debugging; all breakpoints are suspended and you cannot use
many z/0S Debugger commands. IBM z/0S Debugger Reference and Messages provides a complete list of
which commands you cannot use while you replay statements.

The initial direction is backward.

Replaying the statements that you recorded

To replay the statements that you recorded, enter the STEP or RUNTO command. You can replay the
statements you recorded until one of the following conditions is reached:

« Ifyou are replaying in the backward direction, you reach the point where you entered the PLAYBACK
ENABLEcommand. If you are replaying in the forward direction, you reach the point where you entered
the PLAYBACK START command. command.

« You reach the point where there are no more statements to replay, because you have run out of storage.

You can replay as far forward as the point where you entered the PLAYBACK START command. As you
replay statements, you see only the statements that you recorded for those compile units you indicated
you wanted to record. While you are replaying steps, you cannot modify variables. If the DATA parameter
is in effect, you can access the contents of variables and expressions.

9 With Enterprise COBOL for z/0S, Version 4, and the TEST compiler option the symbol tables are always
generated.

Chapter 21. Using full-screen mode: overview 179

Changing the direction that statements are replayed

To change the direction that statements are replayed, enter the PLAYBACK FOWARD or PLAYBACK
BACKWARD command. The initial direction is backward.

Stop the replaying

To stop replaying the statements that you recorded and resume normal debugging, enter the PLAYBACK
STOP command. This command resumes normal debugging at the point where you entered the PLAYBACK
START command. z/OS Debugger continues to record the statements that you run.

Stop the recording

To stop recording the statements that you run and collecting additional information about your program,
enter the PLAYBACK DISABLE command. This command can be used to stop recording the statements
that you run in all or specific compile units. If you stop recording for one or more compile units, the data
collected for those compile units is discarded. If you stop recording for all compile units, the PLAYBACK
START command is no longer available.

Restrictions on recording and replaying statements
You cannot modify the value of variables or storage while you are replaying statements.

When you replay statements, many z/OS Debugger commands are unavailable. IBM z/0S Debugger
Reference and Messages contains a complete list of all the commands that are not available.

Restrictions on accessing COBOL data

If the DATA parameter is specified or defaulted for a COBOL compile unit that supports this parameter,
you can access data defined in the following section of the DATA DIVISION:

FILE SECTION
WORKING-STORAGE SECTION
LOCAL-STORAGE SECTION
LINKAGE SECTION

You can also access special registers, except for the ADDRESS OF, LENGTH OF, and WHEN-COMPILED
special registers. You can also access all the special registers supported by z/OS Debugger commands.

When you are replaying statements, many z/OS Debugger commands are available only if the following
conditions are met:

« The DATA parameter must be specified or defaulted for the compile unit.
« The compile unit must be compiled with a compiler that supports the DATA parameter.

You can use the QUERY PLAYBACK command to determine the compile units for which the DATA option is
in effect.

IBM z/0S Debugger Reference and Messages contains a complete list of all the commands that can be
used when you specify the DATA parameter.

Saving and restoring settings, breakpoints, and monitor
specifications

You can save settings, breakpoints, and monitor specifications from one debugging session and then
restore them in a subsequent debugging session. You can save the following information:

Settings
The settings for the WINDOW SIZE, WINDOW CLOSE, and SET command, except for the following
settings for the SET command:

180 IBM z/OS Debugger: User's Guide

- DBCS

FREQUENCY

NATIONAL LANGUAGE

« PROGRAMMING LANGUAGE

 FILE operand of the RESTORE SETTINGS switch
e QUALIFY

- SOURCE

« TEST

Breakpoints
All of the breakpoints currently set or suspended in the current debugging session as well as all
LOADDEBUGDATA (LDD) specifications. The following breakpoints are saved:

« APPEARANCE breakpoints

e CALL breakpoints

« DELETE breakpoints

« ENTRY breakpoints

« EXIT breakpoints

» GLOBAL APPEARANCE breakpoints
« GLOBAL CALL breakpoints

e GLOBAL DELETE breakpoints

« GLOBAL ENTRY breakpoints

« GLOBAL EXIT breakpoints

« GLOBAL LABEL breakpoints

« GLOBAL LOAD breakpoints

« GLOBAL STATEMENT breakpoints
e GLOBAL LINE breakpoints

« LABEL breakpoints

« LOAD breakpoints

« OCCURRENCE breakpoints

« STATEMENT breakpoints

« LINE breakpoints

« TERMINATION breakpoints

If a deferred AT ENTRY breakpoint has not been encountered, it is not saved nor restored.

Monitor specifications
All of the monitor and LOADDEBUGDATA (LDD) specifications that are currently in effect.

In most environments, z/OS Debugger uses specific default data set names to save these items so that

it can automatically save and restore these items for you. In these environments, you must automatically
restore the settings so that the SET RESTORE BPS AUTO and SET RESTORE MONITORS AUTO
commands are in effect during z/OS Debugger initialization. There are some environments where you
have to use the RESTORE command to restore these items manually.

In TSO, CICS (when you log on with your own ID), and UNIX System Services, the following default data
set names are used:

« userid.DBGTOOL .SAVESETS (a sequential data set) is used to save the settings.

« userid.DBGTOOL .SAVEBPS (a PDS or PDSE data set) is used to save the breakpoints, monitor
specifications, and LDD specifications.

Chapter 21. Using full-screen mode: overview 181

In non-interactive mode (MVS batch mode without using full-screen mode using the Terminal Interface
Manager), you must include an INSPSAFE DD statement to indicate the data set that you want z/OS
Debugger to use to save and restore the settings and an INSPBPM DD statement to indicate the data
set that you want z/OS Debugger to use to save and restore the breakpoints and monitor and LDD
specifications.

Use a sequential data set to save and restore the settings. Use a PDS or PDSE to save and restore the
breakpoints and monitor and LDD specifications. We recommend that you use a PDSE to avoid having
to compress the data set. z/OS Debugger uses a separate member to store the breakpoints, LDD data,
and monitor specifications for each enclave. z/OS Debugger names the member the name of the initial
load module in the enclave. If you want to discard all of the saved breakpoints, LDD data, and monitor
specifications for an enclave, you can delete the corresponding member. However, do not alter the
contents of the member.

Saving and restoring automatically

Saving and restoring automatically means that every time you finish a debugging session, z/OS Debugger
saves information about your debugging session. The next time you start a debugging session, z/0OS
Debugger restores that information. Setting up automatic saving and restoring requires that you allocate
files and enter the appropriate commands that enable this feature. You can do this in one of the following
ways:

« You or your site can specify the EQAOPTS SAVESETDSNALLOC and SAVEBPDSNALLOC commands.
These commands can create the files and enter the appropriate commands for you, your group, or your
entire site. If you choose this method, you can skip the rest of this topic and follow the instructions
in the topic "EQAOPTS commands" in the IBM z/0S Debugger Reference and Messages or IBM z/0S
Debugger Customization Guide.

« Run the EQAWSVST job in hlqg.SEQASAMP to create the data set and run the appropriate commands.
The disadvantage to this method is that you have to determine if the values for the EQAOPTS
SAVESETDSN and SAVEBPDSN commands have been altered, and then make a similar change to the
job.

« You can do the steps described in this topic.

To enable automatic saving and restoring, you must do the following steps:

1. Pre-allocate a sequential data set with the default name where settings will be saved. If you are
running in non-interactive mode (MVS batch mode without using full-screen mode using the Terminal
Interface Manager), you must include an INSPSAFE DD statement that references this data set.

2. Pre-allocate a PDSE or PDS with the default name where breakpoints, monitor, and LDD specifications
will be saved. If you are running in non-interactive mode (MVS batch mode without using full-screen
mode using the Terminal Interface Manager), you must include an INSPBPM DD statement that
references this data set.

3. Start z/OS Debugger.

« If you are running in CICS, you must log on as a user other than the default user and the CICS region
must have update authorization to the SAVE SETTINGS and SAVE BPS data sets.

« If you are running in non-interactive mode (MVS batch mode without using full-screen mode
using the Terminal Interface Manager), you must add INSPSAFE and INSPBPM DD statements that
reference the data sets you allocated in step 1 and 2.

4. Enable automatic saving and restoring of settings by using the following commands:

SET SAVE SETTINGS AUTO;
SET RESTORE SETTINGS AUTO;

5. If you want to enable automatic saving and restoring of breakpoints and LDD specifications or monitor
and LDD specifications, use the following commands:

SET SAVE BPS AUTO;
SET RESTORE BPS AUTO;

182 IBM z/OS Debugger: User's Guide

SET SAVE MONITORS AUTO;
SET RESTORE MONITORS AUTO;

You must do step 4 (enabling automatic saving and restoring of settings) if you want to enable
automatic restoring of breakpoints or monitor specifications.
6. Shutdown z/OS Debugger. Your settings are saved in the corresponding data set.

The next time you start z/OS Debugger, the settings are automatically restored. If you are debugging the
same program, the breakpoints and monitor specifications are also automatically restored.

Disabling the automatic saving and restoring of breakpoints, monitors, and
settings

To disable automatic saving of breakpoints and monitors, you must ensure that the following settings are
in effect:

« SET SAVE BPS NOAUTO;
« SET SAVE MONITORS NOAUTO;

To disable automatic saving of settings, you must ensure that the SET SAVE SETTINGS NOAUTO;
setting is in effect.

To disable automatic restoring of breakpoints and monitors, you must ensure that the following settings
are in effect:

« SET RESTORE BPS NOAUTO;
« SET RESTORE MONITORS NOAUTO;

To disable automatic restoring of settings, you must ensure that the SET RESTORE SETTINGS NOAUTO;
setting is in effect.

If you disable the automatic saving of any of these values, the last saved data is still present in the
appropriate data sets. Therefore, you can restore from these data sets. Be aware that this means you will
restore values from the last time the data was saved which might not be from the last time you ran z/OS
Debugger.

Restoring manually
Automatic restoring is not supported in the following environments:

« Debugging in CICS without logging-on
- Debugging Db2 stored procedures

You can save and restore breakpoints, monitor, and LDD specifications by doing the following steps:

1. Pre-allocate a sequential data set for saving and restoring of settings.

2. Pre-allocate a PDSE or PDS for saving and restoring breakpoints and monitor specifications.
3. Start z/OS Debugger.
4

. To enable automatic saving of settings, use the following command where mysetdsn is the name of the
data set that you allocated in step 1:

SET SAVE SETTINGS AUTO FILE mysetdsn;

5. To enable automatic saving of breakpoints and LDD specifications or monitor and LDD specifications,
use the following commands, where mybpdsn is the name of the data set that you allocated in step 2:

SET SAVE BPS AUTO FILE mybpdsn;
SET SAVE MONITORS AUTO;

6. Shutdown z/0OS Debugger.

Chapter 21. Using full-screen mode: overview 183

The next time you start z/OS Debugger in one of these environments, you must use the following
commands, in the sequence shown, at the beginning of your z/OS Debugger session.

SET SAVE SETTINGS AUTO FILE mysetdsn;
RESTORE SETTINGS;

SET SAVE BPS AUTO FILE mybpdsn;
RESTORE BPS MONITORS;

You can put these commands into a user preferences file.

Performance considerations in multi-enclave environments

Each time information is saved or restored, the following actions must take place:

1. The data set is allocated.

2. The data set is opened.

3. The data set is written or read.
4. The data set is closed.

5. The data set is deallocated.

Because each of these steps requires operating system services, the overall process can require a
significant amount of elapsed time.

For saving and restoring settings, this process is done once when z/0S Debugger is activated and
once when z/0S Debugger terminates. Therefore, unless z/OS Debugger is repeatedly activated and
terminated, the process is not excessively time-consuming. However, for saving and restoring of
breakpoints, monitors, or both, this process occurs once on entry to each enclave and once on
termination of each enclave.

If your program consists of multiple enclaves or an enclave that is run repeatedly, this process might
occur many times. In this case, if performance is a concern, you might want to consider disabling saving
and restoring of breakpoints and monitors. If your program runs under CICS with DTCN and saving and
restoring of breakpoints and monitors is not enabled (SET SAVE BPS NOAUTO;, SET SAVE MONITORS
NOAUTO;, SET RESTORE BPS NOAUTO;,and SET RESTORE MONITORS NOAUTO; are in effect),
breakpoints are saved and restored from a CICS Temporary Storage Queue which is less time-consuming
than the standard method but does not preserve breakpoints across CICS restarts nor does it provide for
saving and restoring of monitors.

Displaying and monitoring the value of a variable

z/0OS Debugger can display the value of variables in the following ways:

« One-time display, by using the LIST command, the PF4 key, or the L prefix command. One-time display
displays the value of the variable at the moment you enter the LIST command, press the PF4 key, or
enter the L prefix command. If you step or run through your program, any changes to the value of the
variable are not displayed. The L and M prefix commands are available only when you use the following
languages or compilers:

Enterprise PL/I for z/OS, Version 3.6 or 3.7 with the PTF for APAR PK70606, or later
Enterprise COBOL compiled with the TEST compile option

Assembler

Disassembly

« Continuous display, called monitoring, by using the MONITOR LIST command, the SET AUTOMONITOR
command, or the M prefix command. If you step or run through your program, any changes to the value
of the variable are displayed.

Note: Use the command SET LIST TABULAR to format the LIST output for arrays and structures in
tabular format. See the IBM z/0S Debugger Reference and Messages for more information about this
command.

184 IBM z/OS Debugger: User's Guide

If z/OS Debugger cannot display the value of a variable in its declared data type, see “How z/OS Debugger
handles characters that cannot be displayed in their declared data type” on page 191.

One-time display of the value of variables

Before you begin, determine if you want to change the format in which information is displayed. Variables
that are areas and structures might be easier to read if they are arranged in a tabular format on the
screen. To make changes to the format, do one of the following options:

- If you want to change the format of the output for arrays and structures to tabular format when
displaying a variable, do the following steps:

1. Move the cursor to the command line.
2. Enter the following command: SET LIST TABULAR ON

- If you want to change the format of the output for arrays and structures to linear format when displaying
a variable, do the following steps:

1. Move the cursor to the command line.
2. Enter the following command: SET LIST TABULAR OFF

- If you want to format the logged output of arrays and structures when SET AUTOMONITOR ON LOGis
in effect, do the following steps:

1. Move the cursor to the command line.
2. Enter the following command: SET LIST TABULAR ON
3. Enter the following command: SET AUTOMONITOR ON LOG
To display the contents of a variable once, do one of the following options:
- By using the PF4 key, do the following steps:
1. Scroll through the Source window until you find the variable you want to display.
2. Move your cursor to the variable name.
3. Press the PF4 (LIST) key. The value of the variable is displayed in the Log window.
« By using the LIST command:
1. Move the cursor to the command line.
2. Type the following command, substituting your variable name for variable-name:

LIST variable-name;

3. Press Enter. The value of the variable is displayed in the Log window.
« By using the L prefix command, do the following steps:

1. Scroll through the Source window until you find the operand you want to display.
2. Move your cursor to the prefix area of the line that contains the operand you want to display.

3. Type in an "L" in the prefix area, then press Enter to display the value of all of the operands on that
line. If you want to display the value of a specific operand on that line, do the following steps:

a. If you are debugging a high-level language program, beginning from the left and with the number
1, assign a number to the first occurrence of each variable. For example, in the following line,
rightSide is 1, leftSide is 2, and bottomSide is 3:

rightSide = (leftSide x leftSide) + (bottomSide * bottomSide);

If you are debugging an assembler or disassembly program, beginning from the left and beginning
with number 1 assign the each operand of the machine instruction a number.

b. Type inan "L" in the prefix area, followed by the number assigned to the operand that you want
to display. If you wanted to display the value of leftSide in the previous example, you would enter
"L2" in the prefix area.

Chapter 21. Using full-screen mode: overview 185

c. Press Enter. z/OS Debugger displays the value of leftSide in the Log window.

Adding variables to the Monitor window

When you add a variable to the Monitor window, you are monitoring the value of that variable. To add a
variable to the Monitor window, do one of the following options:

e Touse the MONITOR LIST command, do the following steps:

1. Move the cursor to the command line.
2. Type the following command, substituting your variable name for variable-name:

MONITOR LIST wariable-name;

3. Press Enter. z/OS Debugger assigns the variable a reference number between 1 and 99, adds the
variable to the Monitor window (above the automonitor section, if it is displayed), and displays the
current value of the variable.

Every time z/OS Debugger receives control or every time you enter a z/OS Debugger command that can
affect the display, z/OS Debugger updates the value of variable-name in the Monitor window so that the
Monitor window always displays the current value.

« To use the M prefix command, do the following steps:

1. Scroll through the Source window until you find the operand you want to monitor.

2. Move your cursor to the prefix area of the line that contains the operand you want to monitor.

3. Type in an "M" in the prefix area, then press Enter to monitor the value of all of the operands on that
line. If you want to monitor the value of a specific operand on that line, do the following steps:

a. If you are debugging a high-level language program, beginning from the left and with number
1, assign a number to the first occurrence of each variable. For example, in the following line,
rightSide is 1, leftSide is 2, and bottomSide is 3:

rightSide = (leftSide x leftSide) + (bottomSide % bottomSide);

If you are debugging an assembler or disassembly program, beginning from the left and beginning
with number 1 assign the each operand of the machine instruction a number.

b. Type in an "M" in the prefix area, followed by the number assigned to the operand that you want
to monitor. If you wanted to monitor the value of leftSide in the previous example, you would
enter "M2" in the prefix area.

c. Press Enter.

Every time z/OS Debugger receives control or every time you enter a z/OS Debugger command that
can affect the display, z/OS Debugger updates the value of leftSide in the Monitor window so that the
Monitor window always displays the current value.

Refer to the following topics for more information related to the material discussed in this topic.

Related tasks
“Adding variables to the Monitor window automatically” on page 188

Displaying the Working-Storage Section of a COBOL program in the Monitor
window

You can add all of the variables in the Working-Storage Section of a COBOL program to the Monitor
window by doing the following steps:

1. Move the cursor to the command line.
2. Type in the following command: MONITOR LIST TITLED WSS;

186 IBM z/OS Debugger: User's Guide

3. Press Enter. z/OS Debugger assigns the WSS entry a reference number between 1 and 99, adds
the WSS entry to the Monitor window, and displays the current values of all of the variables in the
Working-Storage Section.

Every time z/OS Debugger receives control or you enter a z/OS Debugger command that can effect the
display, z/OS Debugger updates the value of each variable in the Monitor window so that z/OS Debugger
always displays the current value.

Because the Working-Storage Section can contain many variables, monitoring the Working-Storage
Section can add a substantial amount of overhead and use more storage.

Refer to the following topics for more information related to the material discussed in this topic.

Related tasks
“Modifying variables or storage by typing over an existing value” on page 193

Displaying the data type of a variable in the Monitor window

The command SET MONITOR DATATYPE ON displays the data type of the variables displayed in the
Monitor window, including those in the automonitor section. The data type is ordinarily the type which
was used in the declaration of the variable. The command SET MONITOR DATATYPE OFF disables the

display of this information.
To display the value and data type of a variable in the Monitor window:
1. Move the cursor to the command line.
2. Enter the following command:
SET MONITOR DATATYPE ON;
3. Enter one of the following commands:

e MONITOR LIST variable-name;

Substitute the name of your variable name for variable-name. z/OS Debugger adds the variable to
the Monitor window and displays the current value and data type of the variable.

e SET AUTOMONITOR ON;

z/0S Debugger adds the variable or variables in the current statement to the automonitor section of
the Monitor window and displays the current value and data type of the variable or variables.

e SET AUTOMONITOR ON LOG;

z/0S Debugger adds the variable or variables to the automonitor section of the Monitor window,
displays the current value and data type of the variable or variables, and saves that information in

the log.

Replacing a variable in the Monitor window with another variable

When you add a variable to the Monitor window, z/OS Debugger assigns the variable a reference number
between 1 and 99. You can use the reference numbers to help you replace a variable in the Monitor
window with another variable.

To replace a variable in the Monitor window with another variable, do the following steps:

1. Verify that you know the reference number of the variable in the Monitor window that you want to
replace.

2. Move the cursor to the command line.

Chapter 21. Using full-screen mode: overview 187

3. Type the following command, substituting reference_number with the reference number of the variable
you want to replace and variable-name with the name of a new variable:

MONITOR reference_number LIST variable-name;

You can specify only an existing reference number or a reference number that is one greater than the
highest existing reference number.

4. Press Enter. z/OS Debugger adds the new variable to the Monitor window on the line that displayed the
old variable, and displays the current value of that variable.

If you added an element of an array to the Monitor window, you can replace that element with another
element of the same array by doing the following steps:

1. Move your cursor to the Monitor window and place it under the subscript you want to change.
2. Type in the new subscript.

3. Press Enter. z/OS Debugger replaces the old element with the new element, then displays a message
confirming the change.

Adding variables to the Monitor window automatically

As you step through a program, you might want to monitor variables that are on each statement as you
run each statement. Manually adding variables to the Monitor window (as described in “Adding variables
to the Monitor window” on page 186) before you run each statement can be time consuming. z/0OS
Debugger can automatically add the variables at each statement, before or after it is run; display the
values of those variables, before or after the statement is run; then remove the variables from the Monitor
window after you run the statement. To do this, use the SET AUTOMONITOR ON command.

Before you begin, make sure you understand how the SET AUTOMONITOR command works by reading
“How z/0OS Debugger automatically adds variables to the Monitor window” on page 189.

To add variables to the Monitor window automatically, do the following steps:

1. Move the cursor to the command line.
2. Enter one of the following commands:
« SET AUTOMONITOR ON; if you want to display variables at the current statement, before the
statement is run.

« SET AUTOMONITOR ON PREVIOUS; if you want to display variables at the statement z/0OS
Debugger just ran, after the statement was run.

« SET AUTOMONITOR ON BOTH; if you want to display variables at the statement z/OS Debugger just
ran, after the statement was run, and the current statement, before the statement is run.

As you step through your program, z/OS Debugger displays the names and values of the variables in

the automonitor section of the window.

3. To stop adding variables to the Monitor window automatically, enter the SET AUTOMONITOR OFF
command. z/OS Debugger removes the line *xx*x*xx*x**x AUTOMONITOR ***xx%**x%* and any
variables underneath that line.

Refer to the following topics for more information related to the material discussed in this topic.

Related concepts
“How z/0OS Debugger automatically adds variables to the Monitor window” on page 189

Related tasks
“Saving the information in the automonitor section to the log file” on page 189

Related references
Description of the SET AUTOMONITOR command in IBM z/OS Debugger Reference and Messages.
“Example: How z/0S Debugger adds variables to the Monitor window automatically” on page 190

188 IBM z/OS Debugger: User's Guide

Saving the information in the automonitor section to the log file
To save the following information in the log file, enter the SET AUTOMONITOR ON LOG command:

« Breakpoint locations
« The names and values of the variables at the breakpoints

The default option is NOLOG, which would not save the above information.

Each entry in the log file contains the breakpoint location within the program and the names and values
of the variables in the statement. To stop saving this information in the log file and continue updating the
automonitor section of the Monitor window, enter the SET AUTOMONITOR ON NOLOG command.

Refer to the following topics for more information related to the material discussed in this topic.

Related concepts
“How z/0S Debugger automatically adds variables to the Monitor window” on page 189

Related tasks
“Adding variables to the Monitor window automatically” on page 188

Related references
Description of the SET AUTOMONITOR command in IBM z/0S Debugger Reference and Messages.
“Example: How z/OS Debugger adds variables to the Monitor window automatically” on page 190

How z/0S Debugger automatically adds variables to the Monitor window

When you enter the SET AUTOMONITOR ON command, z/OS Debugger displays the line x%%*xxxxxx%*
AUTOMONITOR #**x%%xxk%* at the bottom of the list of any monitored variables in the Monitor window,
as shown in the following example:

COBOL LOCATION: DTAMO1 :> 109.1

Command ===> Scroll ===> PAGE

MONITOR -+----1----4----2----4----3----4----4----4----5----4----6- LINE: 1 OF 7

*hkkkkkkkhkkkkkkkkkkkkkkkkkkkkkxkkk TOP OF MONITOR *kkkkkkhkhkkkkhkkhkhkkkkkkhkhkkkkkkkkk
R N R e e 1

0001 1 NUM1 0000000005

0002 2 NUM4 '1111"

0003 3 WK-LONG-FIELD-2 '123456790 223456790 323456790 423456790 523
0004 456790 623456790 723456790 823456790 9234567
0005 90 023456790 123456790 223456790 323456790 4
0006 23456790 523456790 623456790 723456790 82345
0007 *kkkkkkkkk AUTOMONITOR *kkkkkkkkk

The area below this line is called the automonitor section. Each time you enter the STEP command or a
breakpoint is encountered, z/OS Debugger does the following tasks:

1. Removes any variable names and values displayed in the automonitor section.

2. Displays the names and values of the variables of the statement that z/OS Debugger runs next. The
values displayed are values before the statement is run.

This behavior displays the value of the variables before z/OS Debugger runs the statement. If you

want to see the value of the variables after z/OS Debugger runs the statement, you can enter the SET
AUTOMONITOR ON PREVIOUS command. z/OS Debugger displays the line *%****xxx% AUTOMONITOR
— PREVIOUS load-name ::> cu-name :> statement-id xxikxx**xxx atthe bottom of the list of
any monitored variables in the Monitor window. Each time you enter the STEP command or a breakpoint
is encountered, z/OS Debugger does the following tasks:

1. Removes any variable names and values displayed in the automonitor section.

2. Displays the names and the values of the variables of the most recent statement that z/OS Debugger
ran. The values displayed are values after that statement was run.

Chapter 21. Using full-screen mode: overview 189

If you want to see the value of the variables before and after z/OS Debugger runs the statement, you

can enter the SET AUTOMONITOR ON BOTH command. z/OS Debugger displays the line **xx%*xx**
AUTOMONITOR load-name ::> cu-name :> statement-id *kxkxxx*%* atthe bottom of the list
of any monitored variables in the Monitor window. Below this line, z/OS Debugger displays the names and
values of the variables on the statement that z/OS Debugger runs next. Then, z/OS Debugger displays

the line *%x%*x Previous Statement load-name ::> cu-name :> statement-id xxx%* .
Below this line, z/OS Debugger displays the names and values of the variables of the statement that

z/OS Debugger just ran. Each time you enter the STEP command or a breakpoint is encountered, z/0OS
Debugger does the following tasks:

1. Removes any variable names and values displayed in the automonitor section.

2. Displays the names and values of the variables of the statement that z/OS Debugger runs next. The
values displayed are values before the statement is run.

3. Displays the names and the values of the variables of the statement that z/OS Debugger just ran. The
values displayed are values after the statement was run.

Refer to the following topics for more information related to the material discussed in this topic.

Related tasks
“Adding variables to the Monitor window automatically” on page 188

Related references
Description of the SET AUTOMONITOR command in IBM z/0S Debugger Reference and Messages.
“Example: How z/0S Debugger adds variables to the Monitor window automatically” on page 190

Example: How z/0S Debugger adds variables to the Monitor window
automatically

The example in this section assumes that the following two lines of COBOL code are to be run:

COMPUTE LOAN-AMOUNT = FUNCTION NUMVAL (LOAN-AMOUNT-IN).
COMPUTE INTEREST-RATE = FUNCTION NUMVAL (INTEREST-RATE-IN).

Before you run the statement in Line i}, enter the following command:
SET AUTOMONITOR ON ;

The name and value of the variables LOAN-AMOUNT and LOAN-AMOUNT - IN are displayed in the
automonitor section of the Monitor window. These values are the values of the variables before you
run the statement.

Enter the STEP command. z/OS Debugger removes LOAN-AMOUNT and LOAN-AMOUNT - IN from the
automonitor section of the Monitor window and then displays the name and value of the variables
INTEREST-RATE and INTEREST-RATE-IN. These values are the values of the variables before you run
the statement.

Refer to the following topics for more information related to the material discussed in this topic.

Related concepts
“How z/0S Debugger automatically adds variables to the Monitor window” on page 189

Related tasks
“Adding variables to the Monitor window automatically” on page 188

Related references
Description of the SET AUTOMONITOR command in IBM z/0S Debugger Reference and Messages.

190 IBM z/OS Debugger: User's Guide

How z/0S Debugger handles characters that cannot be displayed in their
declared data type

In the Monitor window, z/OS Debugger uses one of the following characters to indicate that a character
cannot be displayed in its declared data type:

« For COBOL and PL/I programs, z/OS Debugger displays a dot (X'4B').
« For assembler and LangX COBOL programs, z/OS Debugger displays a quotation mark (*).
« For C and C++ programs, z/OS Debugger displays the character as an escape sequence.

Characters that cannot be displayed in their declared data type can vary from code page to code page,
but, in general, these are characters that have no corresponding symbol that can be displayed on a
screen.

To be able to modify these characters, you can use the HEX and DEF prefix commands to help you verify
which character you are modifying.

Refer to the following topics for more information related to the material discussed in this topic.

Related tasks
“Modifying characters that cannot be displayed in their declared data type” on page 191

Modifying characters that cannot be displayed in their declared data type

As described in “How z/0S Debugger handles characters that cannot be displayed in their declared data
type” on page 191, if you want to modify characters that can't be displayed in their declared data type and
ensure that the results are what you expected, do the following steps:

1. Move the cursor to the prefix area of the Monitor window, along the line that contains the character you
want to modify.

2. Enter the HEX prefix command. z/OS Debugger changes the character to display in hexadecimal
format.

3. Move the cursor to the character.

4. Type in the new hexadecimal value and then press Enter. z/OS Debugger modifies the character and
displays the new value in hexadecimal format.

5. If you want to view the character in its declared data type, move the cursor to the prefix area and enter
the DEF command.

Refer to the following topics for more information related to the material discussed in this topic.

“Displaying and monitoring the value of a variable” on page 184

“Modifying the value of a COBOL variable” on page 202

“Displaying and modifying the value of LangX COBOL variables or storage” on page 212
“Modifying the value of a PL/I variable” on page 218

“Modifying the value of a C variable” on page 226

“Modifying the value of a C++ variable” on page 237

“Displaying and modifying the value of assembler variables or storage” on page 250
Related references

Prefix commands in IBM z/0S Debugger Reference and Messages

Formatting values in the Monitor window

To monitor the value of the variable in columnar format, enter the SET MONITOR COLUMN ON command.
The variable names that are displayed in the Monitor window are aligned to the same column and values
are aligned to the same column. z/OS Debugger displays the Monitor value area scale under the header
line for the Monitor window.

Chapter 21. Using full-screen mode: overview 191

To display the value of the monitored variables wrapped in the Monitor window, enter the SET MONITOR
WRAP ON command. To display the value of the monitored variables in a scrollable line, enter the SET
MONITOR WRAP OFF command after you enter the SET MONITOR COLUMN ON command.

Displaying values in hexadecimal format

You can display the value of a variable in hexadecimal format by entering the LIST 9%HEX command or
defining a PF key with the LIST %HEX command. For PL/I programs, to display the value of a variable in
hexadecimal format, use the PL/I built-in function HEX. For more information about the PL/I HEX built-in
function, see Enterprise PL/I for z/0OS: Programming Guide. If you display a PL/I variable in hexadecimal
format, you cannot edit the value of the variable by typing over the existing value in the Monitor window.

To display the value of a variable in hexadecimal format, enter one of the following commands,
substituting variable-name with the name of your variable:

« For PL/I programs: LIST HEX(variable-name) ;
« Forall other programs: LIST %HEX(variable-name) ;

z/0S Debugger displays the value of the variable variable-name in hexadecimal format.
If you defined a PF key with the LIST %HEX command, do the following steps:

1. If the variable is not displayed in the Source window, scroll through your program until the variable you
want is displayed in the Source window.

2. Move your cursor to the variable name.

3. Press the PF key to which you defined LIST %HEX command. z/OS Debugger displays the value of the
variable variable-name in hexadecimal format.

You cannot define a PF key with the PL/I HEX built-in function.

Monitoring the value of variables in hexadecimal format

You can monitor the value of a variable in either the variable's declared data type or in hexadecimal
format. To monitor the value of a variable in its declared data type, follow the instructions described in
“Adding variables to the Monitor window” on page 186. If you monitor a PL/I variable in hexadecimal
format by using the PL/I HEX built-in function, you cannot edit the value of the variable by typing over the
existing value in the Monitor window. Instead of using the PL/I HEX built-in function, us the commands
described in this topic.

To monitor the value of a variable or expression in hexadecimal format, do one of the following
instructions:

- If the variable is already being monitored, enter the following command:

MONITOR n HEX ;

Substitute n with the number in the monitor list that corresponds to the monitored expression that you
would like to display in hexadecimal format.

- If the variable is not being monitored, enter the following command:

MONITOR LIST (expression) HEX ;

Substitute expression with the name of the variable or a complex expression that you want to monitor.
Refer to the following topics for more information related to the material discussed in this topic.

Related tasks
“Entering prefix commands on specific lines or statements” on page 163

Modifying variables or storage by using a command

You can modify the value of a variable or storage by using one of the following commands:

192 IBM z/OS Debugger: User's Guide

- assignment command for assembler or disassembly
- assignment command for LangX COBOL

« assignment command for PL/I

« COMPUTE command for COBOL

« Expression command for C and C++

« MOVE command for COBOL

« SET command for COBOL

« STORAGE

Each command is described in IBM z/0S Debugger Reference and Messages.
Refer to the following topics for more information related to the material discussed in this topic.

Related tasks

“Displaying values of COBOL variables” on page 272

“Displaying values of C and C++ variables or expressions” on page 298

“Accessing PL/I program variables” on page 288

“Displaying and modifying the value of assembler variables or storage” on page 250

Modifying variables or storage by typing over an existing value
To modify the value of a variable by typing over the existing value in the Monitor window, do the following
steps:

1. Move the cursor to the existing value. If the part of value you that want to modify is out of screen, use
the SCROLL Monitor value area function (available with the SET MONITOR WRAP OFF command) and
move the cursor to the position of existing value.

2. Type in the new value. Black vertical bars mark the area where you can type in your new value; you
cannot type anything before and including the left vertical bar nor can you type anything including and
after the right vertical bar.

3. Press Enter.

z/0OS Debugger modifies the variable or storage. The command that z/OS Debugger generated to
modify the variable or storage is stored in the log file.

Restrictions for modifying variables in the Monitor window

You can modify the value of a variable by typing over the existing value in the Monitor window, with the
following exceptions:

« You cannot type in a value that is larger than the declared type of the variable. For example, if you
declare a variable as a string of four character and you try to type in five characters, z/OS Debugger
prevents you from typing in the fifth character.

- If z/OS Debugger cannot display the entire value in the Monitor window and the setting of MONITOR
WRAP is ON, you cannot modify the value of that variable.

- If you modify a long value and the setting of MONITOR WRAP is OFF, z/OS Debugger creates a
STORAGE command to modify the value. If you are debugging a program that is optimized, the STORAGE
command might not modify the value.

 You cannot modify the value of z/OS Debugger variables, except value of registers %GPRn, %FPRn,
%EPRnN, %LPRnN.

« You cannot modify the value of a z/OS Debugger built-in function.
 You cannot modify the value of a PL/I built-in function.
» You cannot modify a complex expression.

If you type quotation marks (") or apostrophes (') in the Monitor value area, carefully verify that they
comply with any applicable quotation rules.

Chapter 21. Using full-screen mode: overview 193

Opening and closing the Monitor window

If the Monitor window is closed before you enter the SET AUTOMONITOR ON command, z/OS Debugger
opens the Monitor window and displays the name and value of the variables of statement you run in the
automonitor section of the window.

If the Monitor window is open before you enter the SET AUTOMONITOR OFF command and you are
watching the value of variables not monitored by SET AUTOMONITOR ON, the Monitor window remains
open.

Displaying and modifying memory through the Memory window

z/OS Debugger can display sections of memory through the Memory window. You can open the Memory
window and have it display a specific section of memory by doing one of the following options:

« Entering the MEMORY command and specifying a base address. If the Memory window is already
displayed through a physical window, the memory dump area displays memory starting at the base
address.

If the Memory window is not displayed through a physical window, the base address is saved for usage
later when the Memory window is displayed through a physical window.

To display the Memory window through a physical window, use the WINDOW SWAP MEMORY LOG
command or PANEL LAYOUT command.

« Assigning the MEMORY command to a PF key. After you assign the MEMORY command to a PF key, you
can move the cursor to a variable, then press the PF key. If the Memory window is already displayed
through a physical window, the memory dump area displays memory starting at the base address. If the
Memory window is not displayed through a physical window, the base address is saved for usage later
when the Memory window is displayed through a physical window.

To display the Memory window through a physical window, use the WINDOW SWAP MEMORY LOG
command or PANEL LAYOUT command.

Refer to the following topics for more information related to the material discussed in this topic.

Related tasks

“Scrolling through the physical windows” on page 167

“Switching between the Memory window and Log window” on page 167
“Displaying memory through the Memory window” on page 16

“Customizing the layout of physical windows on the session panel” on page 254

Related references

“Memory window” on page 156

“Order in which z/OS Debugger accepts commands from the session panel” on page 162
MEMORY command in IBM z/0S Debugger Reference and Messages

Modifying memory through the hexadecimal data area

You can type over the hexadecimal data area with hexadecimal characters (0-9, A-F, a-f). z/OS Debugger
updates the memory with the value you typed in. If you modify the program instruction area of memory,
z/0S Debugger does not do any STEP commands or stop at any AT breakpoints near the area where you
modified memory. In addition, if you try to run the program, the results are unpredictable.

The character data column is the character representation of the data and is only for viewing purposes.

Managing file allocations

You can manage files while you are debugging by using the DESCRIBE ALLOCATIONS, ALLOCATE, and
FREE commands. You cannot manage files while debugging CICS programs.

194 IBM z/OS Debugger: User's Guide

To view a current list of allocated files, enter the DESCRIBE ALLOCATIONS command. The following
screen displays the command and sample output:

DESCRIBE ALLOCATIONS ;

* Current allocations:

* VOLUME CAT DISP OPEN DDNAME DSNAME

% [1]eo=[2][3 poosas [4 F [5 fe=e== | 6 peoooooooooooooocccccccoccooocoooccacaaaas
* CODOOG8 =+ SHR KEEP * EQAZSTEP BCARTER.TEST.LOAD

* SMSO04 * SHR KEEP SHARE .CEE210.SCEERUN

*x CODOOB =+ OLD KEEP * INSPLOG BCARTER.DTOOL.LOGV

* VIO NEW DELETE ISPCTLO SYS02190.T085429.RA000.BCARTER.RO100269
* CODO16 * SHR KEEP ISPEXEC BCARTER.MVS.EXEC

*x IPLB13 * SHR KEEP ISPF.SISPEXEC.VB

* VIO NEW DELETE ISPLST1 SYS02190.T085429.RA000.BCARTER.R0100274
* IPLB13 % SHR KEEP * ISPMLIB ISPF.SISPMENU

* SMS278 =+ SHR KEEP SHARE .ANALYZ21.SIDIMLIB

* SHR89A * SHR KEEP SHARE .ISPMLIB

* SMS25F % SHR KEEP * ISPPLIB SHARE.PROD.ISPPLIB

* SMS891 =« SHR KEEP SHARE . ISPPLIB

* SMS25F * SHR KEEP SHARE . ANALYZ21.SIDIPLIB

* IPLB13 % SHR KEEP ISPF.SISPPENU

*x IPLB13 * SHR KEEP SDSF.SISFPLIB

* IPLB13 * SHR KEEP SYS1.SBPXPENU

* CO0DOO2 % OLD KEEP * ISPPROF BCARTER.ISPPROF

* NEW DELETE SYSIN TERMINAL

* NEW DELETE SYSOUT TERMINAL

* NEW DELETE SYSPRINT TERMINAL

The following list describes each column:

VOLUME
The volume serial of the DASD volume that contains the data set.

A CAT

An asterisk in this column indicates that the data set was located by using the system catalog.

IEN DISP

The disposition that is assigned to the data set.

N OPEN

An asterisk in this column indicates that the file is currently open.

I DDNAME
DD name for the file.

Il DSNAME
Data set name for a DASD data set:

« DUMMY for a DD DUMMY

« SYSOUT (x) for a SYSOUT data set

- TERMINAL for a file allocated to the terminal

- % fora DD * file
You can allocate files to an existing, cataloged data set by using the ALLOCATE command.
You can free an allocated file by using the FREE command.

By default, the DESCRIBE ALLOCATIONS command lists the files allocated by the current user. You can
specify other parameters to list other system allocations, such as the data sets currently allocated to
LINK list, LPA list, APF list, system catalogs, Parmlib, and Proclib. The IBM z/0S Debugger Reference and
Messages describes the parameters you must specify to list this information.

Displaying error numbers for messages in the Log window

When an error message shows up in the Log window without a message ID, you can have the message ID
show up as in:

EQA1807E The command element d is ambiguous.

Chapter 21. Using full-screen mode: overview 195

Either modify your profile or use the SET MSGID ON command. To modify your profile, use the PANEL
PROFILE command and set Show message ID numbers to YES by typing over the NO.

Refer to the following topics for more information related to the material discussed in this topic.

Related tasks
“Customizing profile settings” on page 256

Displaying a list of compile units known to z/0S Debugger

This topics describes what to do if you want to know which compile units are known to z/OS Debugger.
This is helpful if you have forgotten the name of a compile unit or the load module that a compile unit
belongs to.

To determine which compile units are known to z/OS Debugger, do one of the following options:
« Enter the LIST NAMES CUS command.

- If you are debugging an assembler or disassembly program, enter the SET DISASSEMBLY ON or SET
ASSEMBLER ON command, then enter the LIST NAMES CUS command.

After you run the LIST NAMES CUS command, z/OS Debugger displays a list of compile units in the Log
window. You can use this list to compose a SET QUALIFY CUcommand by typingin the words "SET
QUALIFY CU" over the name of a compile unit. Then press Enter. z/OS Debugger displays the command
constructed from the words that you typed in and the name of the compile unit. Press Enter again to run
the command.

For example, after you enter the LIST NAMES CUS command, z/OS Debugger displays the following lines
in the Log window:

USERID.MFISTART.C(CALC)
USERID.MFISTART.C(PUSHPOP)
USERID.MFISTART.C(READTOKN)

If you type "SET QUALIFY CU" over the last line, then press Enter, z/OS Debugger composes the following
command into the command line: SET QUALIFY CU "USERID.MFISTART.C(READTOKN)". Press Enter
and z/0OS Debugger runs the command.

This method saves keystrokes and reduces errors in long commands.
Refer to the following topics for more information related to the material discussed in this topic.

Related tasks
“Changing which file appears in the Source window” on page 159

Requesting an attention interrupt during interactive sessions

During an interactive z/OS Debugger session, you can request an attention interrupt, if necessary. For
example, you can stop what appears to be an unending loop, stop the display of voluminous output at
your terminal, or stop the execution of the STEP command.

An attention interrupt should not be confused with the ATTENTION condition. If you set an AT
OCCURRENCE or ON ATTENTION, the commands associated with that breakpoint are not run at an
attention interrupt.

Language Environment TRAP and INTERRUPT run-time options should both be set to ON in order for
attention interrupts that are recognized by the host operating system to be also recognized by Language
Environment. The test_level suboption of the TEST run-time option should not be set to NONE.

An attention interrupt key is not supported in the following environment and debugging modes:
- CICS
« full-screen mode using the Terminal Interface Manager

196 IBM z/OS Debugger: User's Guide

For MVS only: For C, when using an attention interrupt, use SET INTERCEPT ON FILE stdoutto
intercept messages to the terminal. This is required because messages do not go to the terminal after an
attention interrupt.

For the Dynamic Debug facility only: The Dynamic Debug facility supports attention interrupts only for
programs that have compiled-in hooks.

The correct key might not be marked ATTN on every keyboard. Often the following keys are used:
« Under TSO: PA1 key

« Under IMS: PA1 key

When you request an attention interrupt, control is given to z/OS Debugger:

« At the next hook if z/OS Debugger has previously gained control or if you specified either TEST (ERROR)
or TEST (ALL) or have specifically set breakpoints

« Ata__ctest() or CEETEST call
« When an HLL condition is raised in the program, such as SIGINT in C
Refer to the following topics for more information related to the material discussed in this topic.

Related tasks

“Starting a debugging session in full-screen mode using the Terminal Interface Manager or a dedicated
terminal” on page 133

Related references
z/0S Language Environment Programming Guide

Ending a full-screen debug session

When you have finished debugging your program, you can end your full-screen debug session by using
one of the following methods:

Method A

1. Press PF3 (QUIT) or enter QUIT on the command line.
2. Type Y to confirm your request and press Enter. Your program stops running.

If you are debugging a CICS non-Language Environment assembler or non-Language Environment
COBOL program, QUIT ends z/OS Debugger and the task ends with an ABEND 4038.

Method B

1. Enter the QQUIT command. You are not prompted to confirm your request to end your debug
session. Your program stops running.

If you are debugging a CICS non-Language Environment assembler or non-Language Environment
COBOL program, QUIT ends z/OS Debugger and the task ends with an ABEND 4038.

Method C

1. Enter the QUIT DEBUG or the QUIT DEBUG TASK (CICS only) command.

2. Type Y to confirm your request and press Enter. z/OS Debugger ends and your program continues
running.

Refer to the following topics for more information related to the material discussed in this topic.

Related references
IBM z/0S Debugger Reference and Messages

Chapter 21. Using full-screen mode: overview 197

198 IBM z/OS Debugger: User's Guide

Chapter 22. Debugging a COBOL program in full-
screen mode

Note: This chapter is not applicable to IBM Developer for z/OS (non-Enterprise Edition) or IBM Wazi
Developer for Red Hat CodeReady Workspaces.

The descriptions of basic debugging tasks for COBOL refer to the following COBOL program.
“Example: sample COBOL program for debugging” on page 199

Refer to the following topics for more information related to the material discussed in this topic.

Related tasks

Chapter 30, “Debugging COBOL programs,” on page 269

“Halting when certain routines are called in COBOL” on page 202

“Modifying the value of a COBOL variable” on page 202

“Halting on a COBOL line only if a condition is true” on page 203

“Debugging COBOL when only a few parts are compiled with TEST” on page 204
“Capturing COBOL I/0O to the system console” on page 204

“Displaying raw storage in COBOL” on page 205

“Getting a COBOL routine traceback” on page 205

“Tracing the run-time path for COBOL code compiled with TEST” on page 205
“Generating a COBOL run-time paragraph trace” on page 206

“Finding unexpected storage overwrite errors in COBOL” on page 207
“Halting before calling an invalid program in COBOL” on page 207

Example: sample COBOL program for debugging

The program below is used in various topics to demonstrate debugging tasks.

This program calls two subprograms to calculate a loan payment amount and the future value of a series

of cash flows. It uses several COBOL intrinsic functions.
Main program COBCALC

COBCALC

* *
* *
* A simple program that allows financial functions to *
* be performed using intrinsic functions. *
* *

IDENTIFICATION DIVISION.
PROGRAM-ID. COBCALC.
ENVIRONMENT DIVISION.
DATA DIVISION.
WORKING-STORAGE SECTION.

01 PARM-1.
05 CALL-FEEDBACK PIC XX.
01 FIELDS.
05 INPUT-1 PIC X(10).
01 INPUT-BUFFER-FIELDS.
05 BUFFER-PTR PIC 9.
05 BUFFER-DATA.
10 FILLER PIC X(10) VALUE "LOAN".
10 FILLER PIC X(10) VALUE "PVALUE".
10 FILLER PIC X(10) VALUE "pvalue".
10 FILLER PIC X(10) VALUE "END".

05 BUFFER-ARRAY REDEFINES BUFFER-DATA
OCCURS 4 TIMES
PIC X(10).

PROCEDURE DIVISION.
DISPLAY "CALC Begins." UPON CONSOLE.

© Copyright IBM Corp. 1992, 2021

199

MOVE 1 TO BUFFER-PTR.
MOVE SPACES TO INPUT-1.
* Keep processing data until END requested
PERFORM ACCEPT-INPUT UNTIL INPUT-1 EQUAL TO "END".
END requested
DISPLAY "CALC Ends." UPON CONSOLE.
GOBACK.
* End of program.

*

*

Accept input data from buffer

ACCEPT-INPUT.
MOVE BUFFER-ARRAY (BUFFER-PTR) TO INPUT-1.
ADD 1 BUFFER-PTR GIVING BUFFER-PTR.
* Allow input data to be in UPPER or lower case
EVALUATE FUNCTION UPPER-CASE (INPUT-1)
WHEN "END"
MOVE "END" TO INPUT-1
WHEN "LOAN"
PERFORM CALCULATE-LOAN
WHEN "PVALUE"
PERFORM CALCULATE-VALUE
WHEN OTHER
DISPLAY "Invalid input: " INPUT-1
END-EVALUATE.
*
* Calculate Loan via CALL to subprogram
*
CALCULATE-LOAN.
CALL "COBLOAN" USING CALL-FEEDBACK.
IF CALL-FEEDBACK IS NOT EQUAL "OK" THEN
DISPLAY "Call to COBLOAN Unsuccessful.".
*
* Calculate Present Value via CALL to subprogram

*
CALCULATE-VALUE.
CALL "COBVALU" USING CALL-FEEDBACK.
IF CALL-FEEDBACK IS NOT EQUAL "OK" THEN
DISPLAY "Call to COBVALU Unsuccessful.".

Subroutine COBLOAN

COBLOAN

* *
* *
* A simple subprogram that calculates payment amount *
* for a loan. *
* *

IDENTIFICATION DIVISION.
PROGRAM-ID. COBLOAN.
ENVIRONMENT DIVISION.
DATA DIVISION.
WORKING-STORAGE SECTION.

01 FIELDS.
05 INPUT-1 PIC X(26).
05 PAYMENT PIC S9(9)V99 USAGE COMP.
05 PAYMENT-OUT PIC $$$%,$%%,$$9.99 USAGE DISPLAY.
05 LOAN-AMOUNT PIC S9(7)V99 USAGE COMP.
05 LOAN-AMOUNT-IN PIC X(16).
05 INTEREST-IN PIC X(5).
05 INTEREST PIC S9(3)V99 USAGE COMP.
05 NO-OF-PERIODS-IN PIC X(3).
05 NO-OF-PERIODS PIC 99 USAGE COMP.
05 OUTPUT-LINE PIC X(79).
LINKAGE SECTION.
01 PARM-1.
05 CALL-FEEDBACK PIC XX.

PROCEDURE DIVISION USING PARM-1.
MOVE "NO" TO CALL-FEEDBACK.
MOVE "30000 .09 24 " TO INPUT-1.
UNSTRING INPUT-1 DELIMITED BY ALL " "
INTO LOAN-AMOUNT-IN INTEREST-IN NO-OF-PERIODS-IN.
* Convert to numeric values
COMPUTE LOAN-AMOUNT = FUNCTION NUMVAL (LOAN-AMOUNT-IN).
COMPUTE INTEREST = FUNCTION NUMVAL (INTEREST-IN).
COMPUTE NO-OF-PERIODS = FUNCTION NUMVAL (NO-OF-PERIODS-IN).
* Calculate annuity amount required
COMPUTE PAYMENT = LOAN-AMOUNT =%

200 IBM z/OS Debugger: User's Guide

FUNCTION ANNUITY((INTEREST / 12) NO-OF-PERIODS).
* Make it presentable
MOVE SPACES TO OUTPUT-LINE
MOVE PAYMENT TO PAYMENT-OUT.
STRING "COBLOAN:_Repayment_amount_for_a_" NO-OF-PERIODS-IN
" month_loan_of_ " LOAN-AMOUNT-IN
"_at_" INTEREST-IN "_interest_is:_ "
DELIMITED BY SPACES
INTO OUTPUT-LINE.
INSPECT OUTPUT-LINE REPLACING ALL "_" BY SPACES.
DISPLAY OUTPUT-LINE PAYMENT-OUT.
MOVE "OK" TO CALL-FEEDBACK.
GOBACK.

Subroutine COBVALU

COBVALU

* *
* *
* A simple subprogram that calculates present value *
* for a series of cash flows. *
* *

IDENTIFICATION DIVISION.
PROGRAM-ID. COBVALU.
ENVIRONMENT DIVISION.
DATA DIVISION.
WORKING-STORAGE SECTION.
01 CHAR-DATA.

05 INPUT-1 PIC X(10).

05 PAYMENT-OUT PIC $$%$,%%$%,$%$9.99 USAGE DISPLAY.
05 INTEREST-IN PIC X(5).

05 NO-OF-PERIODS-IN PIC X(3).

05 INPUT-BUFFER PIC X(10) VALUE "5069837544".

05 BUFFER-ARRAY REDEFINES INPUT-BUFFER
OCCURS 5 TIMES

PIC XX.
05 OUTPUT-LINE PIC X(79).
01 NUM-DATA.
05 PAYMENT PIC S9(9)V99 USAGE COMP.
05 INTEREST PIC S9(3)V99 USAGE COMP.
05 COUNTER PIC 99 USAGE COMP.
05 NO-OF-PERIODS PIC 99 USAGE COMP.

05 VALUE-AMOUNT OCCURS 99 PIC S9(7)V99 COMP.
LINKAGE SECTION.
01 PARM-1.
05 CALL-FEEDBACK PIC XX.
PROCEDURE DIVISION USING PARM-1.
MOVE "NO" TO CALL-FEEDBACK.
MOVE ".12 5 " TO INPUT-1.
UNSTRING INPUT-1 DELIMITED BY "," OR ALL " "
INTO INTEREST-IN NO-OF-PERIODS-IN.
* Convert to numeric values
COMPUTE INTEREST = FUNCTION NUMVAL (INTEREST-IN).
COMPUTE NO-OF-PERIODS = FUNCTION NUMVAL (NO-OF-PERIODS-IN).
* Get cash flows
PERFORM GET-AMOUNTS VARYING COUNTER FROM 1 BY 1 UNTIL
COUNTER IS GREATER THAN NO-OF-PERIODS.
Calculate present value
COMPUTE PAYMENT =
FUNCTION PRESENT-VALUE(INTEREST VALUE-AMOUNT(ALL)).
* Make it presentable
MOVE PAYMENT TO PAYMENT-OUT.
STRING "COBVALU:_Present_value_for_rate_of_"
INTEREST-IN "_given_amounts_"
BUFFER-ARRAY (1) ",_"
BUFFER-ARRAY (2) ",_"
BUFFER-ARRAY (3) "
BUFFER-ARRAY (4) "
BUFFER-ARRAY (5) "_is:_"
DELIMITED BY SPACES
INTO OUTPUT-LINE.
INSPECT OUTPUT-LINE REPLACING ALL "_" BY SPACES.
DISPLAY OUTPUT-LINE PAYMENT-OUT.
MOVE "OK" TO CALL-FEEDBACK.
GOBACK.

*

’
’
’

n
’

*

* Get cash flows for each period
*

GET-AMOUNTS.

Chapter 22. Debugging a COBOL program in full-screen mode 201

MOVE BUFFER-ARRAY (COUNTER) TO INPUT-1.
COMPUTE VALUE-AMOUNT (COUNTER) = FUNCTION NUMVAL(INPUT-1).

Refer to the following topics for more information related to the material discussed in this topic.

Related tasks
Chapter 22, “Debugging a COBOL program in full-screen mode,” on page 199

Halting when certain routines are called in COBOL

This topic describes how to halt just before or just after a routine is called by using the AT CALL or
AT ENTRY commands. The “Example: sample COBOL program for debugging” on page 199 is used to
describe these commands.

To use the AT CALL command, you must compile the calling program with the TEST compiler option.

To halt just before COBLOAN is called, enter the following command:

AT CALL COBLOAN ;

To use the AT ENTRY command, you must compile the called program with the TEST compiler option.

To halt just after COBVALU is called, enter the following command:

AT ENTRY COBVALU ;

To halt just after COBVALU is called and only when CALL-FEEDBACK equals OK, enter the following
command:

AT ENTRY COBVALU WHEN CALL-FEEDBACK = "OK" ;

Identifying the statement where your COBOL program has stopped

If you have many breakpoints set in your program, enter the following command to have z/OS Debugger
identify your program has been stopped:

QUERY LOCATION
The z/OS Debugger Log window displays something similar to the following example:

QUERY LOCATION ;
You were prompted because STEP ended.
The program is currently entering block COBVALU.

Modifying the value of a COBOL variable

“Example: sample COBOL program for debugging” on page 199

To list the contents of a single variable, move the cursor to an occurrence of the variable name in the
Source window and press PF4 (LIST). Remember that z/OS Debugger starts after program initialization
but before symbolic COBOL variables are initialized, so you cannot view or modify the contents of
variables until you have performed a step or run. The value is displayed in the Log window. This is
equivalent to entering LIST TITLED wvariable onthe command line. Run the COBCALC program to the
statement labeled [YX&E}, and enter AT 46 ; GO ; onthe z/OS Debugger command line. Move the
cursor over INPUT-1 and press LIST (PF4). The following appears in the Log window:

LIST (INPUT-1) ;
INPUT-1 = 'LOAN '

To modify the value of INPUT-1, enter on the command line:

MOVE 'pvalue' to INPUT-1 ;

202 IBM z/OS Debugger: User's Guide

You can enter most COBOL expressions on the command line.

Now step into the call to COBVALU by pressing PF2 (STEP) and step until the statement labeled JNVH] is
reached. To view the attributes of the variable INTEREST, issue the z/OS Debugger command:

DESCRIBE ATTRIBUTES INTEREST ;
The result in the Log window is:

ATTRIBUTES FOR INTEREST
ITS LENGTH IS 4
ITS ADDRESS IS 00011DC8
02 COBVALU:>INTEREST S999vV99 COMP

You can use this action as a simple browser for group items and data hierarchies. For example, you can
list all the values of the elementary items for the CHAR-DATA group with the command:

LIST CHAR-DATA ;
with results in the Log window appearing something like this:

LIST CHAR-DATA ;

02 COBVALU:>INPUT-1 of 01 COBVALU:>CHAR-DATA = '.12 5 '

Invalid data for 02 COBVALU:>PAYMENT-OUT of 01 COBVALU:>CHAR-DATA is found.
02 COBVALU:>INTEREST-IN of 01 COBVALU:>CHAR-DATA = '.12 '

02 COBVALU:>NO-OF-PERIODS-IN of 01 COBVALU:>CHAR-DATA = '5 '

02 COBVALU:>INPUT-BUFFER of 01 COBVALU:>CHAR-DATA = '5069837544'

SUB(1) of 02 COBVALU:>BUFFER-ARRAY of 01 COBVALU:>CHAR-DATA = '50'

SUB(2) of 02 COBVALU:>BUFFER-ARRAY of 01 COBVALU:>CHAR-DATA = '69'

SUB(3) of 02 COBVALU:>BUFFER-ARRAY of 01 COBVALU:>CHAR-DATA = '83'

SUB(4) of 02 COBVALU:>BUFFER-ARRAY of 01 COBVALU:>CHAR-DATA = '75'

SUB(5) of 02 COBVALU:>BUFFER-ARRAY of 01 COBVALU:>CHAR-DATA = '44'

Note: If you use the LIST command to list the contents of an uninitialized variable, or a variable that
contains invalid data, z/OS Debugger displays INVALID DATA.

Refer to the following topics for more information related to the material discussed in this topic.

Related tasks
“Using COBOL variables with z/OS Debugger” on page 270

Halting on a COBOL line only if a condition is true

Often a particular part of your program works fine for the first few thousand times, but it fails under
certain conditions. You don't want to just set a line breakpoint because you will have to keep entering GO.

“Example: sample COBOL program for debugging” on page 199

For example, in COBVALU you want to stop at the calculation of present value only if the discount rate is
less than or equal to -1 (before the exception occurs). First run COBCALC, step into COBVALU, and stop at
the statement labeled NAYMBF}. To accomplish this, issue these z/OS Debugger commands at the start of
COBCALC:

AT 67 ; GO ;
CLEAR AT 67 ; STEP 4 ;

Now set the breakpoint like this:
AT 44 IF INTEREST > -1 THEN GO ; END-IF ;

Line 44 is the statement labeled J/AXXEE]. The command causes z/OS Debugger to stop at line 44. If the
value of INTEREST is greater than -1, the program continues. The command causes z/0OS Debugger to
remain on line 44 only if the value of INTEREST is less than or equal to -1.

To force the discount rate to be negative, enter the z/OS Debugger command:

MOVE '-2 5' TO INPUT-1 ;

Chapter 22. Debugging a COBOL program in full-screen mode 203

Run the program by issuing the GO command. z/OS Debugger halts the program at line 44. Display the
contents of INTEREST by issuing the LIST INTEREST command. To view the effect of this breakpoint
when the discount rate is positive, begin a new debug session and repeat the z/OS Debugger commands
shown in this section. However, do not issue the MOVE '-2 5' TO INPUT-1 command. The program
execution does not stop at line 44 and the program runs to completion.

Debugging COBOL when only a few parts are compiled with TEST

“Example: sample COBOL program for debugging” on page 199

Suppose you want to set a breakpoint at entry to COBVALU. COBVALU has been compiled with TEST but
the other programs have not. z/OS Debugger comes up with an empty Source window. You can use the
LIST NAMES CUS command to determine if the COBVALU compile unit is known to z/OS Debugger and
then set the appropriate breakpoint using either the AT APPEARANCE or the AT ENTRY command.

Instead of setting a breakpoint at entry to COBVALU in this example, issue a STEP command when z/0S
Debugger initially displays the empty Source window. z/OS Debugger runs the program until it reaches the
entry for the first routine compiled with TEST, COBVALU in this case.

Refer to the following topics for more information related to the material discussed in this topic.

Related tasks
“Halting when certain routines are called in COBOL” on page 202

Capturing COBOL I/0 to the system console

To redirect output normally appearing on the system console to your z/OS Debugger terminal, enter the
following command:

SET INTERCEPT ON CONSOLE ;

“Example: sample COBOL program for debugging” on page 199

For example, if you run COBCALC and issue the z/OS Debugger SET INTERCEPT ON CONSOLE
command, followed by the STEP 3 command, you will see the following output displayed in the z/OS
Debugger Log window:

SET INTERCEPT ON CONSOLE ;
STEP 3 ;
CONSOLE : CALC Begins.

The phrase CALC Begins. is displayed by the statement DISPLAY "CALC Begins." UPON CONSOLE
in COBCALC.

The SET INTERCEPT ON CONSOLE command not only captures output to the system console, but
also allows you to input data from your z/OS Debugger terminal instead of the system console by using
the z/OS Debugger INPUT command. For example, if the next COBOL statement executed is ACCEPT
INPUT-DATA FROM CONSOLE, the following message appears in the z/OS Debugger Log window:

CONSOLE : IGZOOOOI AWAITING REPLY.

The program is waiting for input from CONSOLE.

Use the INPUT command to enter 114 characters for the intercepted
fixed-format file.

Continue execution by replying to the input request by entering the following z/OS Debugger command:

INPUT some data ;

Note: Whenever z/OS Debugger intercepts system console I/0, and for the duration of the intercept, the
display in the Source window is empty and the Location field in the session panel header at the top of the
screen shows Unknown.

204 IBM z/OS Debugger: User's Guide

Displaying raw storage in COBOL

You can display the storage for a variable by using the LIST STORAGE command. For example, to display
the storage for the first 12 characters of BUFFER-DATA enter:

LIST STORAGE (BUFFER-DATA,12)

You can also display only a section of the data. For example, to display the storage that starts at offset 4
for a length of 6 characters, enter:

LIST STORAGE(BUFFER-DATA,4,6)

Refer to the following topics for more information related to the material discussed in this topic.

Related tasks
“Displaying and modifying memory through the Memory window” on page 194

Getting a COBOL routine traceback

Often when you get close to a programming error, you want to know how you got into that situation, and
especially what the traceback of calling routines is. To get this information, issue the command:

LIST CALLS ;

“Example: sample COBOL program for debugging” on page 199

For example, if you run the COBCALC example with the commands:

AT APPEARANCE COBVALU AT ENTRY COBVALU;
GO;

GO;

LIST CALLS;

the Log window contains something like:

AT APPEARANCE COBVALU
AT ENTRY COBVALU ;
GO ;
GO ;
LIST CALLS ;
At ENTRY in COBOL program COBVALU.
From LINE 67.1 in COBOL program COBCALC.

which shows the traceback of callers.

Tracing the run-time path for COBOL code compiled with TEST

To trace a program showing the entry and exit points without requiring any changes to the program,
place the following z/OS Debugger commands in a file or data set and USE them when z/OS Debugger
initially displays your program. Assuming you have a PDS member, USERID.DT.COMMANDS(COBCALC),
that contains the following z/OS Debugger commands:

* Commands in a COBOL USE file must be coded in columns 8-72.
* If necessary, commands can be continued by coding a '-' in
* column 7 of the continuation line.
01 LEVEL PIC 99 USAGE COMP;
MOVE 1 TO LEVEL;
AT ENTRY * PERFORM;
COMPUTE LEVEL = LEVEL + 1;
LIST ("Entxry:", LEVEL, %CU);
GO;
END-PERFORM;
AT EXIT * PERFORM;
LIST ("Exit:", LEVEL);
COMPUTE LEVEL = LEVEL - 1;
GO;
END-PERFORM;

Chapter 22. Debugging a COBOL program in full-screen mode 205

You can use this file as the source of commands to z/OS Debugger by entering the following command:

USE USERID.DT.COMMANDS (COBCALC)

If, after executing the USE file, you run COBCALC, the following trace (or similar) is displayed in the Log
window:

ENTRY:
LEVEL = 00002
%CU = COBCALC
ENTRY:
LEVEL = 00003
%CU = COBLOAN
EXIT:
LEVEL = 00003
ENTRY:
LEVEL = 00003
%CU = COBVALU
EXIT:
LEVEL = 00003
ENTRY:
LEVEL = 00003
%CU = COBVALU
EXIT:
LEVEL = 00003
EXIT:
LEVEL = 00002

If you do not want to create the USE file, you can enter the commands through the command line, and the
same effect is achieved.

Generating a COBOL run-time paragraph trace

To generate a trace showing the names of paragraphs through which execution has passed, the z/0OS
Debugger commands shown in the following example can be used. You can either enter the commands
from the z/OS Debugger command line or place the commands in a file or data set.

“Example: sample COBOL program for debugging” on page 199

Assume you have a PDS member, USERID.DT.COMMANDS(COBCALC?2), that contains the following z/OS
Debugger commands.

* COMMANDS IN A COBOL USE FILE MUST BE CODED IN COLUMNS 8-72.
* IF NECESSARY, COMMANDS CAN BE CONTINUED BY CODING A '-' IN
* COLUMN 7 OF THE CONTINUATION LINE.
AT GLOBAL LABEL PERFORM;
LIST LINES %LINE;
GO;
END-PERFORM;

When z/0S Debugger initially displays your program, enter the following command:
USE USERID.DT.COMMANDS (COBCALC2)

After executing the USE file, you can run COBCALC and the following trace (or similar) is displayed in the
Log window:

206 IBM z/OS Debugger: User's Guide

42 ACCEPT-INPUT.

59 CALCULATE-LOAN.
42 ACCEPT-INPUT.

66 CALCULATE-VALUE.
64 GET-AMOUNTS.

64 GET-AMOUNTS.

64 GET-AMOUNTS.

64 GET-AMOUNTS.

64 GET-AMOUNTS.

42 ACCEPT-INPUT.

66 CALCULATE-VALUE.
64 GET-AMOUNTS.

64 GET-AMOUNTS.

64 GET-AMOUNTS.

64 GET-AMOUNTS.

64 GET-AMOUNTS.

42 ACCEPT-INPUT.

Finding unexpected storage overwrite errors in COBOL

During program run time, some storage might unexpectedly change its value and you want to find out
when and where this happened. Consider this example where the program changes more than the caller
expects it to change.

05 FIELD-1 OCCURS 2 TIMES
PIC X(8).
05 FIELD-2 PIC X(8).
PROCEDURE DIVISION.
* (An invalid index value is set)

MOVE 3 TO PTR.
MOVE "TOO MUCH" TO FIELD-1(PTR).

Find the address of FIELD-2 with the command:
DESCRIBE ATTRIBUTES FIELD-2

Suppose the result is X'0000F559'. To set a breakpoint that watches for a change in storage values
starting at that address for the next 8 bytes, issue the command:

AT CHANGE %STORAGE (H'GG00F559',8)

When the program runs, z/OS Debugger halts if the value in this storage changes.

Halting before calling an invalid program in COBOL

Calling an undefined program is a severe error. If you have developed a main program that calls a
subprogram that doesn't exist, you can cause z/OS Debugger to halt just before such a call. For example, if
the subprogram NOTYET doesn't exist, you can set the breakpoint:

AT CALL (NOTYET)

When z/0S Debugger stops at this breakpoint, you can bypass the CALL by entering the GO BYPASS
command. This allows you to continue your debug session without raising a condition.

Chapter 22. Debugging a COBOL program in full-screen mode 207

208 IBM z/OS Debugger: User's Guide

Chapter 23. Debugging a LangX COBOL program in
full-screen mode

Note: This chapter is not applicable to IBM Wazi Developer for Red Hat CodeReady Workspaces.
The descriptions of basic debugging tasks for LangX COBOL refer to the following program.
“Example: sample LangX COBOL program for debugging” on page 209

As you read through the information in this document, remember that OS/VS COBOL programs are
non-Language Environment programs, even though you might have used Language Environment libraries
to link and run your program.

VS COBOL II programs are non-Language Environment programs when you link them with the non-
Language Environment library. VS COBOL II programs are Language Environment programs when you link
them with the Language Environment library.

Enterprise COBOL programs are always Language Environment programs. Note that COBOL DLL's cannot
be debugged as LangX COBOL programs.

Read the information regarding non-Language Environment programs for instructions on how to start z/OS
Debugger and debug non-Language Environment COBOL programs, unless information specific to LangX
COBOL is provided.

Example: sample LangX COBOL program for debugging

The program below is used in various topics to demonstrate debugging tasks. It is an OS/VS COBOL
program which is being used as a representative of LangX COBOL programs.

To run this sample program, do the following steps:

1. Prepare the sample program as described in Chapter 6, “Preparing a LangX COBOL program,” on page
67.

2. Verify that the debug information for this program is located in the COB030 and COBO3AO members of
the yourid EQALANGX data set.

3. Start z/OS Debugger as described in “Starting z/OS Debugger for programs that start outside of
Language Environment” on page 136.

4. To load the debug information for this program, enter the following command:

LDD (COBO30,COBO3A0) ;

This program is a small example of an 0S/VS COBOL program (COB030) that calls another 0S/VS COBOL
program (COB0O3A0).

Load module: COB030

CcoBO030
Sk ko ok ok ke ok ok ke ok ok ok ok ko ok ok ok ok
* PROGRAM NAME: COBO30 *
* *
% COMPILED WITH IBM 0S/VS COBOL COMPILER *

KAKAAAAAAAAAAAAAAAAAAAAAAAA AR A A A A A A A A A Ak hkhkhkkhkhkkhkkhkhkhhx

IDENTIFICATION DIVISION.
PROGRAM-ID. COBO30.

* *
*x LICENSED MATERIALS - PROPERTY OF IBM *
* *
* 5655-P14: Debug Tool *

* (C) Copyright IBM Corp. 2005 All Rights Reserved *

© Copyright IBM Corp. 1992, 2021 209

US GOVERNMENT USERS RESTRICTED RIGHTS - USE, DUPLICATION OR
DISCLOSURE RESTRICTED BY GSA ADP SCHEDULE CONTRACT WITH IBM
CORP.

* % K ok Xk ok

* % K ok Xk ok

ENVIRONMENT DIVISION.
DATA DIVISION.
WORKING-STORAGE SECTION.

01 LOAN PIC 999999.

01 INTEREST-RATE PIC 99V99.

01 INTEREST-DUE PIC 999999.

01 INTEREST-SAVE PIC 999999.

01 INTEREST-AFTER-MULTIPLY PIC 999999.
01 INTEREST-AFTER-DIVIDE PIC 999999.

* DATE THAT WILL RECEIVE INCREMENTED JULIAN-DATE

01 INC-DATE PIC 9(7).
* LOOP COUNT TO INCREMENT DATE 1000 TIMES *
01 LOOPCOUNT PIC 9999.
* JULIAN DATE
01 JULIAN-DATE PIC 9(7).
01 J-DATE REDEFINES JULIAN-DATE.
05 J-YEAR PIC 9(4).
05 J-DAY PIC 9(3).
* SAVE DATE
01 SAVE-DATE PIC 9(7).

PROCEDURE DIVISION.
PROG.
ACCEPT JULIAN-DATE FROM DAY
DISPLAY 'JULIAN DATE: ' JULIAN-DATE
MOVE JULIAN-DATE TO SAVE-DATE
MOVE 10000 TO LOAN
CALL 'COBO3AO' USING LOAN INTEREST-DUE.

DISPLAY 'LOAN: ' LOAN
DISPLAY 'INTEREST-DUE: ' INTEREST-DUE

COBO3AO

STOP RUN.
* PROGRAM NAME: COBO3AO *
* *
* COMPILED WITH IBM 0S/VS COBOL COMPILER *

*kkkkkkkkkkkkkhkkkkkkkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkkhkhkhkkhkhkhhkhkhkhkhkkhkkkk

IDENTIFICATION DIVISION.
PROGRAM-ID. COBO3AO.

LICENSED MATERIALS - PROPERTY OF IBM

5655-P14: Debug Tool
(C) Copyright IBM Corp. 2005 All Rights Reserved

US GOVERNMENT USERS RESTRICTED RIGHTS - USE, DUPLICATION OR
DISCLOSURE RESTRICTED BY GSA ADP SCHEDULE CONTRACT WITH IBM
CORP.

ENVIRONMENT DIVISION.
DATA DIVISION.
WORKING-STORAGE SECTION.
77 INTEREST-RATE PIC 99V99 VALUE 0.22.
LINKAGE SECTION.
01 USING-LIST.
02 LOANAMT PIC 999999.
02 INTEREST PIC 999999.

210 IBM z/OS Debugger: User's Guide

PROCEDURE DIVISION USING USING-LIST.

PROG.
COMPUTE INTEREST = LOANAMT * INTEREST-RATE.
DISPLAY 'INTEREST-RATE: ' INTEREST-RATE.

GOBACK.

Defining a compilation unit as LangX COBOL and loading debug
information

Before you can debug a LangX COBOL program, you must define the compilation unit (CU) as a LangX
COBOL CU and load the debug data for the CU. This can only be done for a CU that is currently known to
z/OS Debugger as a disassembly CU or for a CU that is not currently known to z/OS Debugger.

You use the LOADDEBUGDATA command (abbreviated as LDD) to define a disassembly CU as a LangX
COBOL CU and to cause the debug data for this CU to be loaded. When you invoke the LDD command,
you can specify either a single CU name or a list of CU names enclosed in parenthesis. Each of the names
specified must be either:

« the name of a disassembly CU that is currently known to z/OS Debugger
- a name that does not match the name of a CU currently known to z/OS Debugger

When the CU name is currently known to z/OS Debugger, the CU is immediately marked as a LangX
COBOL CU and an attempt is made to load the debug as follows:

- If your debug data is in a partitioned data set where the high-level qualifier is the current user ID, the
low-level qualifier is EQALANGX, and the member name is the same as the name of the CU that you
want to debug no other action is necessary

« If your debug data is in a different partitioned data set than userid.EQALANGX but the member name
is the same as the name of the CU that you want to debug, enter the following command before or after
you enter the LDD command: SET DEFAULT LISTINGS

- If your debug data is in a sequential data set or is a member of a partitioned data set but the member
name is different from the CU name, enter the following command before or after the LDD command:
SET SOURCE

When the CU name specified on the LDD command is not currently known to z/OS Debugger, a message
is issued and the LDD command is deferred until a CU by that name becomes known (appears). At that
time, the CU is automatically created as a LangX COBOL CU and an attempt is made to load the debug
data using the default data set name or the current SET DEFAULT LISTINGS specification.

After you have entered an LDD command for a CU, you cannot view the CU as a disassembly CU.

If z/OS Debugger cannot find the associated debug data after you have entered an LDD command, the CU
is a LangX COBOL CU rather than a disassembly CU. You cannot enter another LDD command for this CU.
However, you can enter a SET DEFAULT LISTING command ora SET SOURCE command to cause the
associated debug data to be loaded from a different data set.

Defining a compilation unit in a different load module as LangX
COBOL

You must use the LDD command to identify a CU as a LangX COBOL CU. If the CU is part of a load module
that has not yet been loaded when you enter the LDD command, z/OS Debugger displays a message
indicating that the CU was not found and that the running of the LDD command has been