
IBM SPSS Statistics Programmability
Extension Developer's Guide for Windows

IBM

Note

Before using this information and the product it supports, read the information in “Notices” on page
41.

Product Information

This edition applies to version 28, release 0, modification 0 of IBM® SPSS® Statistics and to all subsequent releases and
modifications until otherwise indicated in new editions.
© Copyright International Business Machines Corporation .
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract with
IBM Corp.

Contents

Chapter 1. Overview.. 1
Introduction to IBM SPSS Statistics ... 1

Data Structure...1
Metadata...2
Syntax Commands..3
Output... 3
Basic Steps for Submitting IBM SPSS Statistics Commands.. 4
How Commands Are Processed Normally... 5

Introduction to the Programmability Extension ...5
The Programmability Extension and Other IBM SPSS Statistics Programming Features.................... 7

Overview of Programmability SDK Contents...7

Chapter 2. Streaming Binary Data in IBM SPSS Statistics 9
GET DATA /TYPE=BINARYSTREAM... 10

Overview... 10
Examples.. 11
PIPE Subcommand...11
SOCKET Subcommand... 12
VARIABLES Subcommand... 12
Common Binary Format of the Stream.. 13

SAVE, XSAVE /TYPE=BINARYSTREAM..13
Overview... 13
Example.. 14
PIPE Subcommand...14
SOCKET Subcommand... 14
UNSELECTED Subcommand.. 15
DROP and KEEP Subcommands.. 15
Common Binary Format of the Stream.. 15

Chapter 3. Creating an Integration Plug-in... 17
Planning..17
Invoking IBM SPSS Statistics from an External Processor...17

Python Example..18
Invoking an External Processor from IBM SPSS Statistics .. 18

Creating an InvokeMyLanguage library... 18
Modifying the DX configuration file..19

Language-specific Wrappers... 20
Deploying An Integration Plug-in.. 21

Chapter 4. Introduction to the XD API.. 23
Controlling IBM SPSS Statistics ..23
Variable Dictionary Information.. 24
XML Workspace ...25
Getting Case Data, Adding New Variables, and Appending Cases to the Active Dataset........................25
Creating and Accessing Multiple Datasets..26
Creating Pivot Tables and Text Blocks.. 29
Examples..30

Running IBM SPSS Statistics Commands..30
Getting Variable Dictionary Information..31
Getting Case Data, Adding New Variables, and Appending Cases to the Active Dataset.................. 31

 iii

Creating and Accessing Multiple Datasets.. 35
Retrieving Output from Syntax Commands... 37

Notices..41
Trademarks.. 42

Index.. 43

iv

Chapter 1. Overview

The IBM SPSS Statistics Programmability Extension Developer's Guide provides information about the
tools available for working with the IBM SPSS Statistics Programmability Extension, which is available
with the Core system.

Introduction to IBM SPSS Statistics
Before developing plug-ins and applications with the IBM SPSS Statistics Programmability Extension, it is
useful to understand the basics of what IBM SPSS Statistics does and how it works.

Programmability is supported in three applications:

• IBM SPSS Statistics
• IBM SPSS Statistics Server
• IBM SPSS Statistics Batch Facility, a batch processing utility that is included with the IBM SPSS

Statistics Server application.

All three applications provide a powerful statistical-analysis and data-management system. The statistics
and data management facilities are controlled by the command syntax language.

IBM SPSS Statistics has a graphical user interface (GUI) of menus and dialog boxes that provides point
and click access to the same features that are controlled by the command language; however the IBM
SPSS Statistics Programmability Extension doesn’t use the GUI.

IBM SPSS Statistics Server is a distributed application. It has a client/server architecture. It distributes
client requests for resource-intensive operations to powerful analytic server software. Requests are
submitted by the IBM SPSS Statistics client and processed by IBM SPSS Statistics Server.

IBM SPSS Statistics Batch Facility is included with IBM SPSS Statistics Server. It is intended for
automated data management and production of statistical output. Automated production provides the
ability to submit commands without user intervention. The Batch Facility takes as its input a command
syntax file with requests for data manipulation and statistics. It has no graphical user interface.

This section provides a quick overview of the basics of IBM SPSS Statistics. If you are not familiar with
IBM SPSS Statistics, please refer to the Command Syntax Reference, which is installed with IBM SPSS
Statistics and can be accessed from the Help menu. The Universals chapter contains information that is
particularly useful for the reader interested in programmability. Also see the Core System User's Guide,
which is on the manuals CD-ROM included with IBM SPSS Statistics.

Data Structure
IBM SPSS Statistics defines data as variables (similar to database fields) and cases (similar to database
records). A variable contains information that you want to analyze—for example, an attribute like
horsepower. A case is an observation—for example, a specific car.

When a data file is open in IBM SPSS Statistics it becomes the active dataset and is displayed in the
Data View tab of the Data Editor window, which is a spreadsheet-like system for entering and editing data.
Variables are displayed in columns and cases are displayed in rows.

Data is saved in a proprietary format, the .sav file. It consists of the data and information about the data.

Metadata
Metadata are data about data, for example, information about the type, labels, and other characteristics.
A dictionary contains some metadata at two levels—information about the data file and information about
the variables.

The file-level dictionary information contains an optional file label, documents, and attributes that you
define.

The variable-level dictionary information includes:

• Name
• Type
• Format
• Label
• Measurement level
• Missing values
• Value labels

You can also define your own variable metadata and assign attribute values to variables in the active
dataset. Creating your own file-level and variable-level dictionary attributes can be quite useful in

2 IBM SPSS Statistics Programmability Extension Developer's Guide for Windows

conjunction with Programmability because those attributes can then be used to control the flow of a
command syntax job.

Syntax Commands
Syntax commands are used to indicate what type of data management and statistical analysis you want
to perform. You use syntax commands to:

• Perform data transformations
• Run statistical procedures and produce output
• Create charts and other graphical output
• Display information about settings

For example if you want to calculate descriptive statistics for a variable, you could use the Descriptives
statistical procedure. The command syntax could be:

DESCRIPTIVES
 VARIABLES=weight
 /STATISTICS=MEAN STDDEV MIN MAX.

Although syntax commands indicate what to do and what output to produce, it is difficult to use command
syntax for jobwise flow control; for instance, to run different procedures for different variables based on
each variable's metadata, or to determine which procedure to run next based on the output from the last
procedure. This is where programmability can help. You can use programmability to branch or loop syntax
commands based on:

• The state of the active dataset’s dictionary
• Values in the IBM SPSS Statistics output
• Case data from the active dataset
• Error level return codes from procedures

The code to control IBM SPSS Statistics is written in an external language, utilizing functions provided
with an integration plug-in that are designed to interact with IBM SPSS Statistics.

Output
When you submit commands, IBM SPSS Statistics processes them and produces output. Output includes
statistical results, tables, charts, trees, text, and other output.

For example, if you look at the Viewer window below you can see that the Mean, or average, fuel efficiency
(mpg) of all cars in the active dataset is 23.84. This output was produced as a result of a DESCRIPTIVES
request.

Chapter 1. Overview 3

The Output Management System (OMS) provides the ability to automatically write selected categories of
output to different destinations and in different formats. The XML workspace destination is designed for
use with the IBM SPSS Statistics Programmability Extension, allowing values in the output to be accessed
programmatically using XPath expressions.

For example, if you look at the XML produced by OMS for a DESCRIPTIVES request, you can see
that it contains the same information as the Viewer output shown above. With the IBM SPSS Statistics
Programmability Extension, this information is available through an API.

Basic Steps for Submitting IBM SPSS Statistics Commands
The basic steps to manipulate and analyze data with commands are:

1. Get data. You can open a previously saved external IBM SPSS Statistics data file, read a spreadsheet,
database, a text data file, and other file formats.

2. Specify the commands and variables. You can use syntax commands to transform data, calculate
statistics, and to create charts and trees.

3. Direct the output. By default output appears in the Viewer window. You may want it there or you may
choose to direct it to OMS.

4 IBM SPSS Statistics Programmability Extension Developer's Guide for Windows

4. Submit the commands. IBM SPSS Statistics processes the commands and produces output.
5. Use the output. Use the output to control the flow of additional syntax commands or as the final

product.

How Commands Are Processed Normally
To process commands:

1. IBM SPSS Statistics gets a command from an input stream—commands from a file or the GUI, or a
command typed at a prompt.

2. The command is evaluated. If it is valid for the current state, it is executed. If it is invalid for the current
state, it is not executed.

3. Either way, IBM SPSS Statistics does something to the active data set or puts something into the
output and gets the next command.

With the IBM SPSS Statistics Programmability Extension, IBM SPSS Statistics breaks out of normal mode
and responds to an external processor—that is when your code gets used.

Introduction to the Programmability Extension
The IBM SPSS Statistics Programmability Extension, included with the IBM SPSS Statistics Core system,
provides generic support for extending IBM SPSS Statistics to work with external programming languages,
each of which requires a separate integration plug-in. Integration with external languages is provided
through the following means:

• spssxd.dll and spssxd.dll. In-process (spssxd.dll) and out-of-process (spssxd.dll) implementations of a
C API, called the XD API, that allow an external processor to control IBM SPSS Statistics. The functions
available in the API are detailed in Chapter 4, “Introduction to the XD API,” on page 23. Integration
plug-ins interact with IBM SPSS Statistics through this library.

• A framework (installed with IBM SPSS Statistics) that enables IBM SPSS Statistics to execute external
language code from within BEGIN PROGRAM <language> - END PROGRAM blocks in command
syntax. Invocation of the processor for the external language is provided by a separate library that forms
an optional part of an integration plug-in.

Programmability Integration Plug-in
An integration plug-in contains code that can invoke and control IBM SPSS Statistics from an external
processor through the XD API (and can optionally invoke an external processor from IBM SPSS Statistics)
and support communication between the applications. A plug-in will also typically include a wrapper to
the low level XD API functions, written in the language supported by the plug-in. Generically, a plug-in will
include the following libraries:

Chapter 1. Overview 5

MyLanguageInvokeXD
Loads spssxd.dll or spssxd.dll and makes the XD API available in an external language (the API is
implemented in C). This is a required piece of every plug-in.

InvokeMyLanguage
An adapter to invoke an external processor from IBM SPSS Statistics and execute language
statements (written in an external language) contained in a BEGIN PROGRAM <language> - END
PROGRAM block. This is an optional component of a plug-in.

The IBM SPSS Statistics - Programmability SDK includes the source code for an example plug-in for
Python that can be used as a model for creating your own plug-in. Language-specific plug-ins provided
by IBM SPSS are available from the IBM SPSS Predictive Analytics community at https://www.ibm.com/
community/spss-statistics .

Operational Modes
The IBM SPSS Statistics Programmability Extension provides two modes for controlling IBM SPSS
Statistics from an external language processor, both of which utilize spssxd.dll. In the more complex of the
two, you invoke an external language processor from IBM SPSS Statistics through an InvokeMyLanguage
library. The load sequence includes MyLanguageInvokeXD and spssxd.dll, which then allows the processor
to interact with IBM SPSS Statistics. This mode of operation is designed for end users who want to
leverage the power of an external programming language from within a command syntax job. The
following flowchart captures how IBM SPSS Statistics processes commands when responding to an
external processor in this mode.

In a simpler mode of operation you invoke and control the IBM SPSS Statistics backend in a completely
external manner through the use of MyLanguageInvokeXD and spssxd.dll. This mode of operation is
designed for applications developers who want to create applications that utilize IBM SPSS Statistics
functionality, while leveraging the power of an external programming language to build the user interface
and drive the program logic. For example, a Python developer can use the IBM SPSS Statistics -
Integration Plug-in for Python to execute commands and capture appropriate output by calling functions
that are provided with the plug-in.

Example
As an example of the kind of task suited for the IBM SPSS Statistics Programmability Extension,
consider running a procedure for just those variables that have a particular property, as defined by the
variable's metadata. Specifically, we'll instruct IBM SPSS Statistics to run the Descriptives procedure for
the variables whose measurement level is scale. A scale variable is a numeric variable whose values
represent ordered categories with a meaningful metric, so that distance comparisons between values are
appropriate. Examples of scale variables include age in years and income in thousands of dollars.

6 IBM SPSS Statistics Programmability Extension Developer's Guide for Windows

https://www.ibm.com/community/spss-statistics
https://www.ibm.com/community/spss-statistics

Regardless of the operational mode used, the task is accomplished with code written in an external
language, like Python, making use of functions in an integration plug-in that provide a wrapper to the low
level XD API. Without tying ourselves to a particular language, a block of pseudo-code to accomplish this
task might look like:

varcount=PlugInFunctionToGetVariableCount()
loop i to varcount:
 if PlugInFunctionToGetVariableMeasurementLevel(i)='scale'
 varname=PlugInFunctionToGetVariableName(i)
 append varname to list of scale variables (ScaleVarList)
PlugInFunctionToSubmitCommands
 ("DESCRIPTIVES VARIABLES= ", ScaleVarList, ".")

A comprehensive introduction to working with the example IBM SPSS Statistics - Integration Plug-in for
Python provided with the IBM SPSS Statistics - Programmability SDK can be found in Programming and
Data Management for IBM SPSS Statistics , available from the IBM SPSS Predictive Analytics community at
https://www.ibm.com/community/spss-statistics .

The Programmability Extension and Other IBM SPSS Statistics Programming
Features

IBM SPSS Statistics includes other developer tools. The tools, and their relationship to the IBM SPSS
Statistics Programmability Extension, are discussed in this section.

OLE Automation and Scripting
OLE Automation and the IBM SPSS Statistics Basic Script development environment makes it possible
to write applications that incorporate, or extend, the functionality of IBM SPSS Statistics on Windows
systems. OLE Automation allows an external application to access IBM SPSS Statistics output objects
and manipulate them using methods and properties. Use OLE Automation when you need to integrate
Viewer output into applications that support OLE automation, such as Microsoft PowerPoint, or when
you need to control IBM SPSS Statistics from an application that supports Visual Basic, such as
Microsoft Office or Visual Basic itself.

Macro
Program macros, which are blocks of syntax commands enclosed in DEFINE and !ENDDEFINE
commands, can be used to parameterize repetitive tasks. Macros are named definitions. When IBM
SPSS Statistics encounters a macro name, it expands the macro according to its definition. The IBM
SPSS Statistics macro is a text substitution mechanism, not a scripting language. If you are working
in Python, the spss module included in the IBM SPSS Statistics - Programmability SDK contains the
function SetMacroValue which defines a macro that can be used just like a macro created with
DEFINE and !ENDDEFINE. We suggest that you use SetMacroValue instead of defining macros with
DEFINE and !ENDDEFINE, or use the IBM SPSS Statistics - Programmability SDK to write your own
macro definition function.

Matrix
Matrix programs, which are blocks of matrix algebra commands enclosed in MATRIX and END
MATRIX commands, can be used to write customized statistical routines. With the IBM SPSS Statistics
Programmability Extension you can retrieve case data from the active dataset, allowing you to
perform custom calculations on your data or utilize the scientific programming libraries and packages
available with external languages like Python or R.

Production Jobs
Production jobs allow you to run command syntax jobs in an automated fashion, producing output
from regularly repeated, time-consuming statistical analyses. Consider using the IBM SPSS Statistics
Programmability Extension and the Batch Facility, or the Batch Facility alone to meet your production
needs.

Overview of Programmability SDK Contents
In addition to this Developer’s Guide, the IBM SPSS Statistics - Programmability SDK includes binaries,
source, projects, and other documentation to help you create plug-ins and applications for the IBM SPSS
Statistics Programmability Extension. All file paths listed are relative to the directory where the IBM SPSS
Statistics - Programmability SDK is installed.

Chapter 1. Overview 7

https://www.ibm.com/community/spss-statistics

Programmability Extension Files and Documentation
• For developers interested in building their own plug-in, the directory \XD_API includes the files--

spssxd.h, spssxd.lib , and spssxd.lib --needed to build an implementation of MyLanguageInvokeXD.
You can choose to build an implementation that is either in-process (spssxd.lib) or out-of-process
(spssxd.lib) with IBM SPSS Statistics. The in-process approach typically has better performance for
executing large tasks, however, the out-of-process approach is recommended when using the nesting
feature. Sample C++ code for loading spssxd.dll or spssxd.dll , and exercising the functions available in
the API can be found in \XD_API\in_process\examples and \XD_API\out_of_process\examples.

• Documentation for the XD API is accessible from \documentation\XDAPI\index.html.
• The IBM SPSS Statistics Programmability Extension utilizes the configuration file spssdxcfg.ini when

invoking an external language processor from IBM SPSS Statistics (an optional feature of an integration
plug-in). An example of this file can be found in \DX_API\config.

IBM SPSS Statistics - Integration Plug-in for Python Source
The IBM SPSS Statistics - Programmability SDK includes the source code to build an example plug-in
for Python consisting of an extension module that makes the XD API available from Python, a library for
invoking Python from IBM SPSS Statistics, a Python module that provides a wrapper for the low level XD
API, and other supporting files. The plug-in enables you to drive IBM SPSS Statistics from any separate
Python process (such as a Python IDE or the Python interpreter) or to execute Python code contained
within a BEGIN PROGRAM-END PROGRAM block in a command syntax job. The IBM SPSS Statistics -
Programmability SDK includes the following items:

• PyInvokeSpss. A Python extension module which loads spssxd.dll and makes the XD API available from
Python. Source files can be found in \Statistics_Python\spss\src.

• InvokePython. A Python-specific library that enables IBM SPSS Statistics to invoke Python. Source files
and instructions for building this library can be found in \DX_API\InvokePython.

• spssxdcfg.ini. A configuration file which is used by Python to determine the location of spssxd.dll . A
template can be found in \Statistics_Python\spss.

The main application files that constitute the wrapper for the low level XD API are available from
\Statistics_Python\spss. They are:

• __init__.py. The Python Integration Package for IBM SPSS Statistics initialization code.
• spss.py. A Python module that wraps the low level XD API functions exposed to Python by

PyInvokeSpss. It provides functions that invoke IBM SPSS Statistics and execute command syntax.
• cursors.py. A Python module that provides functions for getting case data, adding new variables, and

appending cases to the active dataset.
• dataStep.py. A Python module that provides functions for creating and managing multiple concurrent

datasets.
• pivotTable.py. A Python module that provides functions for creating custom pivot tables and text

blocks.
• preaction.py and postaction.py. Python modules that provide functions for getting Python output into

IBM SPSS Statistics.

8 IBM SPSS Statistics Programmability Extension Developer's Guide for Windows

Chapter 2. Streaming Binary Data in IBM SPSS
Statistics

Through command syntax you can instruct the IBM SPSS Statistics backend to read binary data from
a pipe or socket, and you can independently instruct the backend to write binary data from the active
dataset to a pipe or socket. This allows you to eliminate the time-consuming step of writing data to a
disk file when reading data into IBM SPSS Statistics or when passing data from IBM SPSS Statistics to an
external program for further processing.

The two independent functions of streaming data into IBM SPSS Statistics and streaming data from
IBM SPSS Statistics require separate threads on the parts of the external processes that are involved
in providing a stream to IBM SPSS Statistics and/or reading a stream from IBM SPSS Statistics. The
IBM SPSS Statistics backend process is single-threaded. For example, you might stream data into IBM
SPSS Statistics from an external processor that collects real-time data, and then use IBM SPSS Statistics
to analyze the data and produce the results. Or, you might start with an IBM SPSS Statistics dataset,
transform it, and stream it to an external processor for further analysis. You can also combine the
capabilities of streaming data into and out of IBM SPSS Statistics in the same IBM SPSS Statistics
backend process, as shown in the following figure. This illustrates the use of IBM SPSS Statistics as an
intermediate data transformation step in a larger analysis which involves one or more external processors
(the two external threads shown in the figure may or may not belong to the same processor).

You use the GET DATA command with /TYPE=BINARYSTREAM to read from a stream, and you use the
SAVE or XSAVE command with /TYPE=BINARYSTREAM to write to a stream (details of the command
syntax are provided in the sections that follow). Remotely instructing IBM SPSS Statistics to read from
and/or write to a binary stream is done by submitting command syntax to an instance of the IBM SPSS
Statistics backend. This can be done in one of the following ways:

• Use the IBM SPSS Statistics - Integration Plug-in for Python and pass the necessary command syntax
to IBM SPSS Statistics, from an external Python program, using the Submit function (available with all
integration plug-ins). The Submit function starts up an instance of the IBM SPSS Statistics backend if
there isn't one already. Plug-ins are freely available from the IBM SPSS Predictive Analytics community
at https://www.ibm.com/community/spss-statistics .

• Use the IBM SPSS Statistics Batch Facility (a separate executable provided with IBM SPSS Statistics
Server) with a command syntax (.sps) file containing the necessary syntax. The IBM SPSS Statistics
Batch Facility starts up an instance of the IBM SPSS Statistics backend.

For help getting started with the IBM SPSS Statistics - Integration Plug-in for Python, see Python
Integration Package for IBM SPSS Statistics.pdf, available from \documentation\PythonPackage. You may
also want to consult Programming and Data Management for IBM SPSS Statistics , available from the IBM
SPSS Predictive Analytics community.

For information about using the Batch Facility, see the IBM SPSS Statistics Batch Facility User's Guide,
provided in PDF with the IBM SPSS Statistics Server product DVD/CD.

https://www.ibm.com/community/spss-statistics

GET DATA /TYPE=BINARYSTREAM
The following syntax diagram shows all of the subcommands, keywords, and specifications available for
the GET DATA command with /TYPE=BINARYSTREAM.

GET DATA /TYPE=BINARYSTREAM

 { /PIPE='name' [REWINDABLE='name2' [SEEKABLE]] }

 { /SOCKET=portnum [HOST={localhost**}] [REWINDABLE [SEEKABLE]] }
 {'hostname' }

 /VARIABLES = varname format ...

** Default if the keyword is omitted.

Example

GET DATA /TYPE=BINARYSTREAM
 /PIPE='\\.\pipe\datapipe'
 /VARIABLES=V1 F3.2 V2 F6.4 V3 DOLLAR9.2 V4 ADATE10 V5 A33.

Overview
The GET DATA command with /TYPE=BINARYSTREAM reads records of cases from a pipe or socket,
allowing you to stream data into IBM SPSS Statistics from an external processor. In the discussion that
follows, the provider of the data is referred to as the stream provider and data source refers to the data
that it provides. You can stream data values from the active dataset in IBM SPSS Statistics to a pipe
or socket using the SAVE or XSAVE commands with /TYPE = BINARYSTREAM. See the topic “SAVE,
XSAVE /TYPE=BINARYSTREAM” on page 13 for more information.

OptionsBasic Specification

Pipe. The source of case records can be a named pipe. The pipe must be created by an external program
prior to executing GET DATA /TYPE=BINARYSTREAM. The pipe option assumes that the stream provider
and IBM SPSS Statistics are on the same machine.

Socket. The source of case records can be the port number of a TCP socket. The TCP socket must
exist in the listening state and be ready to accept a connection prior to executing GET DATA /
TYPE=BINARYSTREAM. The socket option allows for the stream provider and IBM SPSS Statistics to be on
different machines.

The basic specification for GET DATA /TYPE=BINARYSTREAM is a named pipe or the port number and
hostname of a socket, and the name and format for at least one variable.

• In the absence of the REWINDABLE keyword the data source provides only one pass of the data.

Syntax Rules

• Subcommand names, keywords, and options must be spelled in full.
• Either the PIPE or SOCKET subcommand, but not both, must be specified.
• An error occurs if the SEEKABLE keyword is specified in the absence of the REWINDABLE keyword.

Operations

• GET DATA /TYPE=BINARYSTREAM does not initiate the reading of data from the specified pipe or
socket. Data are read as needed by procedures that follow GET DATA /TYPE=BINARYSTREAM, or by a
following SAVE command.

• If REWINDABLE is specified, IBM SPSS Statistics will send a rewind command to the stream provider
when it requires that the provider rewind to the beginning of the data source. In the absence of
REWINDABLE, IBM SPSS Statistics will not send rewind commands to the stream provider and will be
unable to rewind the data source; any subsequent data requests to this data source will yield errors.

• If SEEKABLE is specified, IBM SPSS Statistics will send a seek command to the stream provider when it
requires data for a specific case number. In the absence of SEEKABLE, IBM SPSS Statistics will not send
seek commands to the stream provider.

10 IBM SPSS Statistics Programmability Extension Developer's Guide for Windows

• An error occurs if the pipe or socket connection cannot be established or cannot provide case records
when needed.

• An error occurs if REWINDABLE is specified and the pipe specified for rewind or the full duplex socket
connection cannot be established or cannot be maintained through the life of the data source.

Examples
Streaming Data From a Pipe

GET DATA /TYPE=BINARYSTREAM
 /PIPE='\\.\pipe\datapipe' REWINDABLE='\\.\pipe\rewpipe'
 /VARIABLES=V1 F3.2 V2 F6.4 V3 DOLLAR9.2 V4 ADATE10 V5 A33.

• The PIPE subcommand specifies that the stream provider will provide cases of data on the pipe named
\\.\pipe\datapipe.

• REWINDABLE specifies that the stream provider allows the data source to be rewound and is listening
for rewind commands on the pipe named \\.\pipe\rewpipe.

• The VARIABLES subcommand defines the variables that will be populated by the streamed data.

Streaming Data From a Socket

GET DATA /TYPE=BINARYSTREAM
 /SOCKET=5764 HOST='myhost.mycompany.com' REWINDABLE SEEKABLE
 /VARIABLES=V1 F3.2 V2 F6.4 V3 DOLLAR9.2 V4 ADATE10 V5 A33.

• The SOCKET subcommand specifies that the stream provider will provide cases of data on the socket on
port 5764 on the host myhost.mycompany.com.

• REWINDABLE specifies that the socket is full duplex and that the stream provider allows the data source
to be rewound and is listening for rewind commands on the specified socket.

• SEEKABLE specifies that the stream provider will listen for, and honor, a seek command from IBM SPSS
Statistics specifying a particular case number.

PIPE Subcommand
The PIPE subcommand specifies a named pipe on which the stream provider will provide case data to
IBM SPSS Statistics. Use of a pipe assumes that the stream provider and IBM SPSS Statistics are on the
same machine.

• The pipe must be created by an external program prior to executing this command.
• The name of the pipe must be enclosed in quotes. You cannot assign a file handle to a pipe.
• Since, for pipes, IBM SPSS Statistics and the stream provider are on the same machine, they are both

assumed to be in the same endian. The binary format of the pipe stream is as described in .

REWINDABLE. Option to specify that the stream provider supports multiple data passes. Use of this option
requires a second named pipe (enclose the name in quotes) on which the stream provider is ready to
listen for, and honor, a rewind command from IBM SPSS Statistics. In the absence of this option, IBM
SPSS Statistics will not attempt to rewind the data source; only one pass of the data is provided and the
stream provider is free to close the named pipe after the last case.

• The rewind command is the null-terminated character message: "RWND". After receiving a rewind
command, the next case that the stream provider provides must be the first case in the data source.

• The stream provider must also listen on the rewind pipe for, and honor, a close command from IBM
SPSS Statistics. The close command is the null-terminated character message: "STOP". IBM SPSS
Statistics sends the close command when it is finished with the data source.

• The rewind pipe must be created by an external program prior to executing this command.

SEEKABLE. Option to specify that the stream provider supports the seek operation in conjunction with
multiple data passes. This option specifies that the stream provider will listen for, and honor, a seek
command from IBM SPSS Statistics on the rewind pipe. In the absence of this option, IBM SPSS Statistics
will not send seek commands to the stream provider.

Chapter 2. Streaming Binary Data in IBM SPSS Statistics 11

• To specify SEEKABLE, REWINDABLE must also be specified.
• The seek command is the null-terminated character string message: "SEEK n" and is sent to the stream

provider on the rewind pipe. After receiving a seek command, the next case provided must be case
number n, where the first case is defined as case number 1.

SOCKET Subcommand
The SOCKET subcommand specifies the port number of a TCP socket on which the stream provider will
provide case data to IBM SPSS Statistics.

• The TCP socket must already be in the listening state, ready to accept a connection, prior to executing
this command.

• For endian detection by IBM SPSS Statistics, the socket stream provider must write a 32-bit integer
value (between 1 and 255) to the socket prior to sending any data, and only send this integer once.

• Upon executing this command, IBM SPSS Statistics will read the first 4 bytes of data from the socket to
determine if the host is big or little endian. IBM SPSS Statistics will perform byte swapping, if necessary.
The remainder of the stream is as described in .

• You cannot assign a file handle to the port number of a TCP socket.

HOST. Optional host name of the stream provider. This option specifies the server machine on which the
TCP socket exists. In the absence of the HOST option, the local computer, also referred to as localhost, is
assumed.

REWINDABLE. Option to specify that the stream provider supports multiple data passes. This option
specifies that the socket is full duplex and that the stream provider is ready to listen for, and honor, a
rewind command from IBM SPSS Statistics. In the absence of this option, IBM SPSS Statistics will not
attempt to rewind the data source; only one pass of the data is provided and the stream provider is free to
close the socket after the last case.

• The rewind command is the null-terminated character message: "RWND". After receiving a rewind
command, the next case that the stream provider provides must be the first case in the data source.

• The stream provider must also listen on the socket for, and honor, a close command from IBM SPSS
Statistics. The close command is the null-terminated character message: "STOP". IBM SPSS Statistics
sends the close command when it is finished with the data source.

SEEKABLE. Option to specify that the stream provider supports the seek operation in conjunction with
multiple data passes. This option specifies that the stream provider will listen for, and honor, a seek
command from IBM SPSS Statistics. In the absence of this option, IBM SPSS Statistics will not send seek
commands to the stream provider.

• To specify SEEKABLE, REWINDABLE must also be specified.
• The seek command is the null-terminated character string message: "SEEK n". After receiving a seek

command, the next case provided must be case number n, where the first case is defined as case
number 1.

VARIABLES Subcommand
The VARIABLES subcommand is required and specifies the properties of the variables in the active
dataset to be created from the streamed data. At least one variable must be specified.

• The order of the variables specified on the VARIABLES subcommand is the order in which they will be
populated from the streaming data.

• Each variable specified on the VARIABLES subcommand must have a name and a format (used to
specify type of variable, numeric or string, and the input format). Variable names must conform to IBM
SPSS Statistics variable naming rules and must be unique. All IBM SPSS Statistics input formats are
supported. Variable naming rules as well as IBM SPSS Statistics variable formats are described in the
"Universals" chapter of the Command Syntax Reference, available in the Help system or in PDF form
from the Help menu.

12 IBM SPSS Statistics Programmability Extension Developer's Guide for Windows

Common Binary Format of the Stream
Case data is written as a packed stream of 8 byte entities such that each case is represented by the same
number of bytes. Cases and variables within cases are written in the order specified by the active data set,
honoring the effects of any KEEP and DROP subcommands.

• Each numeric variable is a double, 8 bytes wide, and in the endian of the IBM SPSS Statistics backend.
The IBM SPSS Statistics backend does not perform byte swapping. Examples of numeric variables
include, but are not limited to, those with formats Fn.d, DATEn, ADATEn, or DOLLARn.d.

• Variables with a date or date and time format, represent the number of seconds from 0 hours, 0
minutes, and 0 seconds on Oct. 14, 1582.

• Missing values for numeric variables are specified by setting the value to the most negative normalized
double supported by IEEE double floating point (big endian representation: X’FFEFFFFF FFFFFFFF’) or
to an invalid IEEE floating point double.

• String variables in IBM SPSS Statistics can have widths from 1 to 32767 characters, however, they are
written to the stream in widths that are integer multiples of 8 bytes, large enough to hold the defined
length of the string variable, and padded with spaces if needed. For example, the width of the buffer
provided for a string variable defined as A7 will be 8 bytes with the last byte set to a space (ASCII code
decimal 32), whereas the buffer for a string variable defined as A12 will be 16 bytes with the last 4
bytes set to spaces. The strings are multibyte strings and in the same locale as the IBM SPSS Statistics
backend.

• Missing values for string variables are specified by setting all characters in the string to spaces (ASCII
code decimal 32).

SAVE, XSAVE /TYPE=BINARYSTREAM
The following syntax diagrams show all of the subcommands, keywords, and specifications available for
the SAVE and XSAVE commands with /TYPE=BINARYSTREAM.

SAVE /TYPE = BINARYSTREAM

 {/PIPE='name' }
 {/SOCKET=portnum}

 [/UNSELECTED = [{RETAIN**}]]
 {DELETE }

 [/KEEP = {ALL** }] [/DROP = varlist]
 {varlist}

XSAVE /TYPE = BINARYSTREAM

 {/PIPE='name' }
 {/SOCKET=portnum}

 [/KEEP = {ALL** }] [/DROP = varlist]
 {varlist}

** Default if the subcommand is omitted.

Example

SAVE /TYPE=BINARYSTREAM
 /PIPE='\\.\pipe\datapipe'.

Overview
The SAVE and XSAVE commands with /TYPE=BINARYSTREAM write cases from the active dataset to a
specified pipe or socket. The SAVE command reads the active dataset, causes execution of any pending
commands, and causes the data to be written to the specified pipe or socket. The XSAVE command
does not read the active dataset; it is stored, pending execution with the next command that reads the
dataset. In the discussion that follows, the consumer of the case data is referred to as the stream reader.
You can stream data values into IBM SPSS Statistics from a pipe or socket using GET DATA /TYPE =
BINARYSTREAM. See the topic “GET DATA /TYPE=BINARYSTREAM” on page 10 for more information.

OptionsBasic Specification

Chapter 2. Streaming Binary Data in IBM SPSS Statistics 13

Pipe. The destination for case records can be a named pipe to be created by IBM SPSS Statistics. The
pipe option assumes that the stream reader and IBM SPSS Statistics are on the same machine.

Socket. The destination for case records can be the port number of a TCP socket to which IBM SPSS
Statistics binds, and waits for a connection. The socket option allows for the stream reader and IBM SPSS
Statistics to be on different machines.

The basic specification for SAVE /TYPE=BINARYSTREAM or XSAVE /TYPE=BINARYSTREAM is a pipe
name or socket port number.

Syntax Rules

• Subcommand names, keywords, and options must be spelled in full.
• Either the PIPE or SOCKET subcommand, but not both, must be specified.
• XSAVE /TYPE=BINARYSTREAM cannot appear within a DO REPEAT—END REPEAT structure.
• Multiple XSAVE /TYPE=BINARYSTREAM commands writing to the same pipe or socket are not

allowed.

Operations

• The PIPE subcommand creates the named pipe, writes all of the specified cases to the pipe, and then
closes the pipe.

• The SOCKET subcommand creates one listening socket, waits for one TCP connection, writes all of the
specified cases to the socket, and then closes the socket.

Example
SAVE /TYPE=BINARYSTREAM
 /PIPE='\\.\pipe\datapipe'
 /DROP=GRADE STORE
 /KEEP=LNAME NAME TENURE JTENURE ALL.

• The PIPE subcommand specifies that IBM SPSS Statistics will write cases from the active dataset to the
pipe named \\.\pipe\datapipe.

• DROP excludes variables GRADE and STORE from the written stream. KEEP specifies that LNAME, NAME,
TENURE, and JTENURE are the first four variables written to the stream (for each case), followed by all
remaining variables not specified on DROP. These remaining variables are written to the stream in the
same order as they occur in the active dataset.

PIPE Subcommand
The PIPE subcommand specifies a named pipe to be created by IBM SPSS Statistics and to which IBM
SPSS Statistics will write case data. Use of a pipe assumes that IBM SPSS Statistics and the stream reader
are on the same machine.

• The name of the pipe must be enclosed in quotes. You cannot assign a file handle to a pipe.
• Both forward slashes and backslashes can be used as path separators in the pipe name.
• Since, for pipes, IBM SPSS Statistics and the stream reader are on the same machine, they are both

assumed to be in the same endian. The binary format of the pipe stream created by IBM SPSS Statistics
is as described in .

SOCKET Subcommand
The SOCKET subcommand specifies the port number for which IBM SPSS Statistics will create a TCP
socket in the listening state. IBM SPSS Statistics will wait for a connection, write a 32-bit integer number
(between 1 and 255) for endian detection, and then write case data to the socket with no byte swapping.
The stream reader is required to detect endian and perform byte-swapping, if necessary.

• You cannot assign a file handle to the port number of a TCP socket.
• Following the initial 32-bit integer used for endian detection, the remainder of the stream created by

IBM SPSS Statistics is as described in .

14 IBM SPSS Statistics Programmability Extension Developer's Guide for Windows

UNSELECTED Subcommand
The UNSELECTED subcommand, which applies to SAVE but not XSAVE, determines whether cases
excluded by a previous FILTER or USE command are to be retained or deleted in the output stream.
The default is RETAIN.

• The UNSELECTED subcommand has no effect when the active dataset does not contain unselected
cases.

RETAIN. Retain the unselected cases. All cases in the active dataset are written to the stream. This setting
is the default when UNSELECTED is specified by itself.

DELETE. Delete the unselected cases. Only cases that meet the FILTER or USE criteria currently in effect
are written to the stream.

DROP and KEEP Subcommands
DROP and KEEP are used to specify a subset of variables to be written to the stream. DROP specifies
the variables that are not to be included in the output stream. KEEP specifies the variables that are to
be included in the output stream. When KEEP is specified, variables that are not named on KEEP are
dropped.

• Variables can be specified in any order. The order of variables on KEEP determines the order of variables
in the output stream. The order on DROP does not affect the order of variables in the stream.

• The keyword ALL on KEEP refers to all remaining variables that were not previously specified on KEEP.
ALL must be the last specification on KEEP.

• If a variable is specified twice on the same DROP or KEEP subcommand, only the first mention is
recognized.

• Multiple DROP and KEEP subcommands are allowed. If a variable is specified that is not in the active
dataset or that has been dropped because of a previous DROP or KEEP subcommand, an error results,
and the SAVE or XSAVE command is not executed.

• The keyword TO can be used to specify a group of consecutive variables in the active dataset.

Common Binary Format of the Stream
Case data is written as a packed stream of 8 byte entities such that each case is represented by the same
number of bytes. Cases and variables within cases are written in the order specified by the active data set,
honoring the effects of any KEEP and DROP subcommands.

• Each numeric variable is a double, 8 bytes wide, and in the endian of the IBM SPSS Statistics backend.
The IBM SPSS Statistics backend does not perform byte swapping. Examples of numeric variables
include, but are not limited to, those with formats Fn.d, DATEn, ADATEn, or DOLLARn.d.

• Variables with a date or date and time format, represent the number of seconds from 0 hours, 0
minutes, and 0 seconds on Oct. 14, 1582.

• Missing values for numeric variables are specified by setting the value to the most negative normalized
double supported by IEEE double floating point (big endian representation: X’FFEFFFFF FFFFFFFF’) or
to an invalid IEEE floating point double.

• String variables in IBM SPSS Statistics can have widths from 1 to 32767 characters, however, they are
written to the stream in widths that are integer multiples of 8 bytes, large enough to hold the defined
length of the string variable, and padded with spaces if needed. For example, the width of the buffer
provided for a string variable defined as A7 will be 8 bytes with the last byte set to a space (ASCII code
decimal 32), whereas the buffer for a string variable defined as A12 will be 16 bytes with the last 4
bytes set to spaces. The strings are multibyte strings and in the same locale as the IBM SPSS Statistics
backend.

• Missing values for string variables are specified by setting all characters in the string to spaces (ASCII
code decimal 32).

Chapter 2. Streaming Binary Data in IBM SPSS Statistics 15

16 IBM SPSS Statistics Programmability Extension Developer's Guide for Windows

Chapter 3. Creating an Integration Plug-in

An integration plug-in is code that you write that:

• Invokes IBM SPSS Statistics from an external processor.
• Supports communication between IBM SPSS Statistics and the external processor.
• Optionally invokes an external processor from IBM SPSS Statistics and passes language statements

(written in the external language), contained in a BEGIN PROGRAM <language> - END PROGRAM
block of command syntax, to the external processor. For example, if you create a plug-in for the Basic
language then you can wrap Basic statements in a BEGIN PROGRAM BASIC - END PROGRAM block
in command syntax. When you run the syntax, the Basic statements will be executed by the Basic
processor.

We recommend that your plug-ins be at the same release level as the IBM SPSS Statistics application
software, although they may work with versions as low as 14.0.

Planning
Before you start writing code, consider:

• Language type. You can create plug-ins for the IBM SPSS Statistics Programmability Extension in any
language that can call a C API. The optional feature of invoking an external language from IBM SPSS
Statistics is designed for interpreted or dynamically compiled languages.

• Processes and threads. If you are building a plug-in that will only invoke IBM SPSS Statistics from
an external processor and are using the in-process mode, then you should be aware that there is
one process with two threads, one for the IBM SPSS Statistics application and one for your external
processor. The IBM SPSS Statistics application is single-threaded—only one instance of IBM SPSS
Statistics can be running in the process. Because the IBM SPSS Statistics application and your
implementation operate in the same process, they may share the runtime library. Be sure that your
implementation does not make changes to the state of the runtime that would affect IBM SPSS
Statistics. For example, a C setlocale call to set the process locale would change the locale in
which IBM SPSS Statistics is running, but it would not completely effect this change because IBM SPSS
Statistics needs to do additional tasks when the locale changes.

• Synchronization. When using the in-process mode, the two threads execute synchronously. Only one
thread is executing at a given time. The other thread waits for execution to complete.

• Resource utilization. The IBM SPSS Statistics application can have a large footprint. The amount of
computing resources (for example RAM, CPU time and disc space) that it requires in order to operate
varies according to what it is doing. The XD API has a small footprint.

• Functions. Decide which XD API functions you need to use. For an introduction to the available
functions, see Chapter 4, “Introduction to the XD API,” on page 23.

Invoking IBM SPSS Statistics from an External Processor
You invoke IBM SPSS Statistics from an external processor through a library that calls the XD API. For
example, this can be a C++ interface to the low-level functions that the C API in spssxd.dll or spssxd.dll
implements. We generically refer to this library as MyLanguageInvokeXD. The sequence of actions for
invoking IBM SPSS Statistics in this manner is as follows:

1. MyLanguageInvokeXD loads.
2. MyLanguageInvokeXD determines the path to spssxd.dll or spssxd.dll and loads the library.

The mechanism for determining the path might involve reading from a configuration file or may involve
reading from the registry. Ultimately the path must initially be determined when a user installs a plug-in or
an application.

The code that you write to launch IBM SPSS Statistics from an external processor needs to include, at a
minimum, functions to:

• Load and unload spssxd.dll or spssxd.dll .
• Submit command syntax to IBM SPSS Statistics for processing.
• Get information from your external processor to the IBM SPSS Statistics application.

Building MyLanguageInvokeXD

To build MyLanguageInvokeXD you use the spssxd.h and spssxd.lib (or spssxd.lib) files which are available
from \XD_API in the directory where the IBM SPSS Statistics - Programmability SDK is installed. An
implementation of MyLanguageInvokeXD can only be used with a version of spssxd.dll (or spssxd.dll) that
matches the version of IBM SPSS Statistics associated with the IBM SPSS Statistics - Programmability
SDK used to build MyLanguageInvokeXD. For more information, see the section labeled Versions in .

Python Example
The IBM SPSS Statistics - Programmability SDK includes PyInvokeSpss as an example implementation
of how to invoke IBM SPSS Statistics from Python. The source files and script to build PyInvokeSpss are
included in the IBM SPSS Statistics - Programmability SDK in \Statistics_Python. The readme file in that
directory provides further information about building PyInvokeSpss.

The Path to spssxd.dll or spssxd.dll

The Python example utilizes the configuration file spssxdcfg.ini (a template is available in
\Statistics_Python\spss) to determine the path to spssxd.dll or spssxd.dll . Specifically, the path is stored
as the value of spssxd_path in this file. Regardless of the language and implementation of the plug-in, it
is the responsibility of the program that installs the plug-in to query the user for the path to the desired
installation of IBM SPSS Statistics (spssxd.dll and spssxd.dll are located in the IBM SPSS Statistics
application installation directory) and to store that value so that it can be retrieved at run-time.

Invoking an External Processor from IBM SPSS Statistics
To invoke the processor for an external language from IBM SPSS Statistics, you will need to create the
following:

• A library that launches and initializes the processor. We generically refer to this library as
InvokeMyLanguage. An external processor invoked from IBM SPSS Statistics should provide access
to all the functionality of the external programming language—in some programming languages
this is called embedding. Details on creating the library are provided in the topic “Creating an
InvokeMyLanguage library” on page 18.

• A section in the configuration file spssdxcfg.ini (located in the directory where IBM SPSS Statistics is
installed) that provides the details needed to invoke the external language processor, such as the name
of the library and the path to the home directory for the external processor. Details are provided in the
topic “Modifying the DX configuration file” on page 19.

Note: The framework for invoking an external language from IBM SPSS Statistics is designed for
interpreted or dynamically compiled languages.

Creating an InvokeMyLanguage library
The InvokeMyLanguage library should include a set of functions that are called by the framework that
invokes external language processors from IBM SPSS Statistics. Following are the functions:

int init_embedded_x (int argc, char **argv)
The init_embedded_x function initializes the external language. It is only called once during an IBM SPSS
Statistics session. The argument argv is an array of strings containing the set of values, if any, specified
by the ARGS keyword in the spssdxcfg.ini configuration file (See the topic “Modifying the DX configuration

18 IBM SPSS Statistics Programmability Extension Developer's Guide for Windows

file” on page 19 for more information.). The argument argc is an integer specifying the number of
elements in the string array. A return value of 0 indicates success. init_embedded_x is a required function.

int stop_embedded_x ()
The stop_embedded_x function stops the external language. It is only called once during an IBM SPSS
Statistics session. A return value of 0 indicates success. stop_embedded_x is a required function.

int pre_action ()
The pre_action function is called prior to the beginning of each BEGIN PROGRAM <language> -
END PROGRAM block and should handle any actions that are required prior to executing the block. For
example, if you intend to capture text output from the external processor then you would typically use
the pre_action function to handle redirecting the output to a temporary file. A return value of 0 indicates
success. pre_action is a required function.

int post_action ()
The post_action function is called at the completion of each BEGIN PROGRAM <language> - END
PROGRAM block and should handle any actions that are required after executing the block. For example,
if you intend to capture text output from the external processor then you would typically use the
post_action function to retrieve any output directed to a temporary file and post it to IBM SPSS Statistics.
A return value of 0 indicates success. post_action is a required function.

int execute_x (char *cmd)
The execute_x function accepts a string containing the contents of a BEGIN PROGRAM <language>
- END PROGRAM block (i.e. statements written in the external language) and passes it to the external
processor for execution. The string is null-terminated with multiple lines separated by "\n". A return
value of 0 indicates success. execute_x is a required function.

void set_post_spss_output (FPPostSpssOutput fpSpssOutput)
The set_post_spss_output function is called by the framework in order to pass a pointer to the function
that should be used to post text output to IBM SPSS Statistics. Output is posted to a log item in the IBM
SPSS Statistics Viewer. The argument fpSpssOutput is a function pointer and its function prototype is:

typedef int (*FPPostSpssOutput)(const char* text, int length);.

Note that set_post_spss_output is an optional function. You can also post text output to IBM SPSS
Statistics with the PostSpssOutput function in the XD API.

Source files and instructions for building example implementations of InvokeMyLanguage for Python
can be found in \DX_API\InvokePython, located in the directory where the IBM SPSS Statistics -
Programmability SDK is installed. The example in \DX_API\InvokePython supports invoking the Python
processor from IBM SPSS Statistics as well as utilizing the XD API to interact with IBM SPSS Statistics.

Modifying the DX configuration file
The configuration file spssdxcfg.ini specifies how to invoke the processor for an external language. The file
contains an entry for each external processor that can be invoked from IBM SPSS Statistics. spssdxcfg.ini
is part of the IBM SPSS Statistics Programmability Extension and is located in the IBM SPSS Statistics
application installation directory. It is the responsibility of the installation program for a plug-in to
populate this file if the plug-in supports invoking the associated language from IBM SPSS Statistics.

To add support for a new external language:

1. Add the name of the language to the existing list in the [SUPPORTED_LANG] section, using a
semicolon as a delimiter. The name is case insensitive but cannot contain blank characters. For

Chapter 3. Creating an Integration Plug-in 19

example, if the existing list is specified as X=PYTHON;R, then you add a language named MYLANGUAGE
by updating the list to:

X=PYTHON;R;MYLANGUAGE.

Note that the name you specify for the language is the name that users will specify when creating
BEGIN PROGRAM <language> - END PROGRAM blocks. For the current example, users will create
BEGIN PROGRAM MYLANGUAGE - END PROGRAM blocks.

2. Add a section for your language to spssdxcfg.ini. A template for the contents of the section is as
follows:

[MYLANGUAGE]
LIB_NAME=
HOME=
ARGS=

[MYLANGUAGE]. The name of the external language enclosed in square brackets.

LIB_NAME. The name of the library that provides the adapter for your external processor--what we
have generically called InvokeMyLanguage. This is required. For example, if the name of the library is
InvokeMyLanguage then specify: LIB_NAME=InvokeMyLanguage.

HOME. An absolute path to the external processor. This is required.

ARGS. A blank separated list of arguments, if any, to pass to the init_embedded_x function in the
InvokeMyLanguage library. Values should be specified as unquoted strings, as in: ARGS=arg1 arg2
arg3. The ARGS keyword is optional.

You can also add key/value pairs specifying any environment variables that may be needed by your
plug-in. In that regard, note that for UNIX platforms (including MacOS), the process in which the
external processor runs only inherits the following environment variables: SPSS_HOME, SPSSDXTEMP,
SPSS_EXTENSIONS_PATH and the library path (LD_LIBRARY_PATH for Linux and Solaris, LIBPATH for AIX,
and DYLD_LIBRARY_PATH for MacOS).

For example, if your plug-in requires libraries distributed with the external processor and the path to
those libraries is not in the current library search path, then you would add a library path environment
variable to the [MYLANGUAGE] section, as in the following for Windows:

PATH=<library path>;%PATH%

Likewise, for Linux or Solaris you would add:

LD_LIBRARY_PATH=<library path>:$LD_LIBRARY_PATH

Language-specific Wrappers
For ease of use by applications developers and end users, you may want to consider providing a
wrapper to the library that loads and exposes the XD API to the external language, i.e. a wrapper to
MyLanguageInvokeXD. In this regard, the IBM SPSS Statistics - Programmability SDK includes an example
module for Python, spss.py, that wraps PyInvokeSpss. The source files are included in the IBM SPSS
Statistics - Programmability SDK in \Statistics_Python\spss.

Setting the IBM SPSS Statistics Locale
When writing language-specific wrappers, you should be aware that the StartSPSS function at the level
of the XD API does not set the IBM SPSS Statistics locale. In the example, the locale for IBM SPSS
Statistics is set by the StartSPSS function at the level of the wrapper to MyLanguageInvokeXD--that is, at
the level of spss.py for Python.

In designing your own plug-ins and optional wrappers, you'll have to decide where best to set the IBM
SPSS Statistics locale when starting an IBM SPSS Statistics session. And if you decide to write your own
wrapper for PyInvokeSpss, you'll need to set the IBM SPSS Statistics locale as part of the process of
starting an IBM SPSS Statistics session.

20 IBM SPSS Statistics Programmability Extension Developer's Guide for Windows

Deploying An Integration Plug-in
You can deploy a plug-in that you have developed using the IBM SPSS Statistics - Programmability SDK.
Your plug-in can only be used with a licensed IBM SPSS Statistics application. For information about
licensing or distribution arrangements, please contact IBM Corp. directly.

In order for your plug-in to run properly on the target computer you must have:

• An IBM SPSS Statistics application
• Your chosen programming language
• Your plug-in files
• Updated configuration files

Programming Language
The programming language that you used to develop your plug-in must be installed on the computer
where you will run it. Note that if you are using your plug-in from an IBM SPSS Statistics client which is
connected to IBM SPSS Statistics Server, the programming language and plug-in must be installed on the
computer on which IBM SPSS Statistics Server is running.

Integration Plug-in
Your plug-in files must be available on the computer where you will run your plug-in.

MyLanguageInvokeXD
The library that loads spssxd.dll or spssxd.dll and makes the XD API available in an external
language should be installed in a location where your programming language can find it (for example,
C:\Python39\Lib\site-packages\MyPackage).

InvokeMyLanguage
The optional library that invokes an external processor from IBM SPSS Statistics must be
installed in the IBM SPSS Statistics application’s root directory. Note that the IBM SPSS Statistics
Programmability Extension files— spssxd.dll , spssxd.dll , and spssdxcfg.ini —are installed in this
directory as part of the IBM SPSS Statistics application installation.

Language-specific wrappers
Wrappers to MyLanguageInvokeXD should be installed in a location where your programming language
can find them (for example, C:\Python39\Lib\site-packages\MyPackage).

Configuration File Updates
If your plug-in invokes an external language processor from IBM SPSS Statistics, make sure to update the
configuration file spssdxcfg.ini so that the appropriate libraries can be located by your plug-in. Be sure
to update the path settings for the value of HOME in spssdxcfg.ini to be an absolute path to the external
processor.

Versions
To build MyLanguageInvokeXD you use the spssxd.h and spssxd.lib (or spssxd.lib) files which are included
in the IBM SPSS Statistics - Programmability SDK. The version of spssxd.dll (or spssxd.dll) on the target
machine needs to be the same as the version of spssxd.h and spssxd.lib (or spssxd.lib) used to build
MyLanguageInvokeXD. You can check the version of spssxd.dll and spssxd.dll , on the target machine,
from the value of SpssdxVersion in spssdxcfg.ini, located in the IBM SPSS Statistics application's root
directory. The copies of spssxd.h , spssxd.lib , and spssxd.lib included with the IBM SPSS Statistics -
Programmability SDK are compatible with the version of IBM SPSS Statistics given in the readme file
located at the root of the IBM SPSS Statistics - Programmability SDK installation directory.

Chapter 3. Creating an Integration Plug-in 21

Documentation
You can deploy IBM SPSS Statistics Programmability Extension documentation with your plug-in,
including:

Dictionary schema documentation
The dictionary schema is distributed with the IBM SPSS Statistics application, in dictionary-1.xsd.
Documentation is included in the IBM SPSS Statistics - Programmability SDK and accessible from
\documentation\DictionarySchema\dictionary_schema_intro.htm.

Output schema documentation
The output schema is distributed with your IBM SPSS Statistics application, in spss-output-1.8.xsd.
Documentation is included in the IBM SPSS Statistics - Programmability SDK and accessible from
\documentation\OutputSchema\oms_oxml_schema_intro.htm.

Plug-in documentation
You may want to write documentation for your plug-in. You can use
\documentation\PythonPackage\Python Integration Package for IBM SPSS Statistics.pdf as an
example.

Programmability SDK documentation
You can distribute this document with your plug-in.

22 IBM SPSS Statistics Programmability Extension Developer's Guide for Windows

Chapter 4. Introduction to the XD API

An overview of the functions available with the XD API, along with examples of using them to accomplish
basic tasks follows. Complete documentation of the XD API is included in the IBM SPSS Statistics -
Programmability SDK and accessible from \documentation\XDAPI\index.html.

The XD API in spssxd.dll contains low-level functions which you can sequence to:

• Submit requests for actions to IBM SPSS Statistics.
• Submit requests for information to IBM SPSS Statistics.

Typically, the return value from an action request is an error code. Typically, the return value from an
information request is the information requested.

Functions operate on IBM SPSS Statistics, the variable dictionary, the XML workspace, and the active
dataset.

Controlling IBM SPSS Statistics
With programmability you can use an external programming language to control IBM SPSS Statistics.
Functions include:

StartSPSS. Action request that starts the IBM SPSS Statistics backend.

• Note that this function does not set the IBM SPSS Statistics locale. You must set the appropriate
locale (after starting the backend) with set locale command syntax executed with the Submit
function. An example of command syntax to set the locale is: set locale = 'English_United
States.1252'.

• Starting with version 21, IBM SPSS Statistics operates in Unicode mode by default. If you need to work
in code page mode, you can use the Submit function with SET UNICODE=NO syntax.

StopSPSS. Action request that causes the backend to shutdown when it was started from an external
application. The function has no effect when IBM SPSS Statistics is the main program.

Submit. Action request that queues a line of syntax command text and executes all of the currently
queued lines.

QueueCommandPart. Action request that queues a line of syntax command text but does not execute it.

PostSpssOutput. Action request that adds a line to the IBM SPSS Statistics log.

IsBackendReady. Information request used to determine if IBM SPSS Statistics is ready to receive
commands.

IsXDriven. Information request used to determine whether the backend is being driven by an external
processor.

IsUTF8mode. Information request to determine whether IBM SPSS Statistics is running in Unicode mode
or code page mode.

GetGraphic. Action request to display an R-style graphic in the IBM SPSS Statistics Viewer.

GetSPSSLocale. Information request to get the current locale of the IBM SPSS Statistics processor.

GetOutputLanguage. Action request to get the output language of the IBM SPSS Statistics processor.

SetOutputLanguage. Action request to set the output language of the IBM SPSS Statistics processor.

GetFileHandles. Action request to get any defined file handles.

GetOMStagList. Information request that returns a list of tags associated with any active OMS requests.

GetSetting. Information request that returns the value of an options setting, as set from the SET
command.

EncryptTempFiles. Action request that specifies whether temp files are encrypted. By default, temp files
are not encrypted.

Variable Dictionary Information
A variable dictionary describes the contents of a dataset. Two sets of functions are available for retrieving
dictionary information; one set for retrieving information from the active dataset, and another set for
retrieving information from a cursor. While a cursor is open, both sets of functions return information
about the current cursor and give identical results. Functions that only retrieve information from the
current cursor have a suffix of InProcDS. Cursors are created with the MakeCaseCursor function and
provide both read and write access to the active dataset.

GetCValueLabels. Information request that returns the value labels for a specified string variable.

GetNValueLabels. Information request that returns the value labels for a specified numeric variable.

GetRowCount (GetRowCountInProcDS). Information request that returns the number of cases in the
active dataset (or current cursor).

GetVarAttributeNames (GetVarAttributeNamesInProcDS). Information request that returns the names
of all variable attributes for a specified variable.

GetVarAttributes (GetVarAttributesInProcDS). Information request that returns the attribute values for
a specified variable and variable attribute.

GetVarCMissingValues (GetVarCMissingValuesInProcDS). Information request that returns the user-
missing values for a specified string variable.

GetVarNMissingValues (GetVarNMissingValuesInProcDS). Information request that returns the user-
missing values for a specified numeric variable.

GetVariableCount (GetVariableCountInProcDS). Information request that returns the number of
variables in the active dataset (or current cursor).

GetVariableFormat (GetVariableFormatInProcDS). Information request that returns the display format
of a specified variable.

GetVariableLabel (GetVariableLabelInProcDS). Information request that returns the Label of a specified
variable.

GetVariableMeasurementLevel (GetVariableMeasurementLevelInProcDS). Information request that
returns the measurement level (nominal, ordinal, scale, or unknown) of a specified variable.

GetVariableName (GetVariableNameInProcDS). Information request that returns the name of a
specified variable. Variables are specified by an index value representing position in the active dataset (or
current cursor), starting with 0 for the first variable in file order.

GetVariableRole (GetVariableRoleInProcDS). Information request that returns the variable role for a
specified variable. Variables are specified by an index value representing position in the active dataset (or
current cursor), starting with 0 for the first variable in file order.

GetVariableType (GetVariableTypeInProcDS). Information request that returns the variable type
(numeric or string) for a specified variable.

GetWeightVar. Information request that returns the name of the weight variable, if any, in the active
dataset.

GetSPSSLowHigh. Information request that returns the values IBM SPSS Statistics uses for LO and HI.

GetSystemMissingValue. Information request that returns the system-missing value.

GetMultiResponseSetNames (GetMultiResponseSetNamesInProcDS). Information request that returns
the names of any multiple response sets for the active dataset.

GetMultiResponseSet (GetMultiResponseSetInProcDS). Information request that returns the details of
a specified multiple response set.

24 IBM SPSS Statistics Programmability Extension Developer's Guide for Windows

SetVarRole. Action request that sets the variable role for a specified variable.

XML Workspace
The XML workspace is an area in memory where you can store and then retrieve both dictionary
information and syntax command output. A variable dictionary describes the contents of a dataset. To
get dictionary information into the XML workspace, use the CreateXPathDictionary function. Use
this when you want access to dictionary information that isn’t directly accessible with the dictionary
information request functions listed above. IBM SPSS Statistics output includes statistical results, tables,
charts, trees, and text. To get output into the XML workspace, use the OMS syntax command with the
XMLWORKSPACE destination. See the topic “Retrieving Output from Syntax Commands” on page 37 for
more information.

XML workspace functions include:

CreateXPathDictionary. Action request that creates an XPath DOM from the active dataset’s dictionary
and adds it to the XML workspace with the given handle.

EvaluateXPath. Information request that evaluates the XPath expression in the given context
against a specified XPath DOM--either a dictionary DOM or an output DOM. Dictionary
DOM's have a structure that conforms to the dictionary schema that is distributed with
the IBM SPSS Statistics application, and output DOM's have a structure that conforms to
the output schema distributed with your IBM SPSS Statistics application. Documentation for
the dictionary and output schemas is included in the IBM SPSS Statistics - Programmability
SDK and accessible from \documentation\DictionarySchema\dictionary_schema_intro.htm and
\documentation\OutputSchema\oms_oxml_schema_intro.htm respectively.

GetStringFromList. Information request that gets a single string from the list returned from
EvaluateXPath.

GetStringListLength. Information request that returns the length of the list found with EvaluateXPath.

GetHandleList. Information request that gets the list of handles of the objects currently in the XML
workspace.

RemoveStringList. Action request that deletes the storage associated with the string list found with
EvaluateXPath.

RemoveXPathHandle. Action request that removes an object from the XML workspace, freeing the
storage.

GetXmlUtf16. Information request that gets XML from the XML workspace and returns a Utf16
representation of it.

GetImage. Information request that returns a pointer to an image generated by a syntax command and
stored in the XML workspace.

Getting Case Data, Adding New Variables, and Appending Cases to
the Active Dataset

The active dataset contains variables (columns) and cases (rows). Case data functions for the active
dataset include:

MakeCaseCursor. Action request that creates a data cursor. Cursors have three modes: read, write, and
append.

HasCursor. Information request that returns an integer indicating if a cursor is running.

NextCase. Action request that moves the cursor to the next case.

IsEndSplit. Information request that returns an integer indicating if the cursor position has crossed a split
boundary.

ResetDataPass. Action request to reset the cursor to the first case.

Chapter 4. Introduction to the XD API 25

GetCursorPosition. Information request that gets the row index of the cursor.

GetNumericValue. Information request that gets a numeric data value and missing status for a specific
variable and case.

GetStringValue. Information request that gets a string data value and missing status for a specific
variable and case.

RemoveCaseCursor. Action request to free the storage for a case.

AllocNewVarsBuffer. Action request to specify the buffer size, in bytes, to use when adding new variables
in the context of multiple data passes.

CommitHeader. Action request used in write mode to commit the dictionary information for new
variables to the current cursor.

CommitCaseRecord. Action request used in write mode to commit changes to the current case in the
current cursor.

CommitNewCase. Action request used in append mode to commit data for a new case to the current
cursor.

EndChanges. Action request used in append mode to signal the end of appending new cases.

SetOneVarNameAndType. Action request used in write mode to create a single new variable in the active
dataset. This function is intended to be used in conjunction with the AllocNewVarsBuffer function.

SetValueChar. Action request used in write mode or append mode to set the value for the current case
for a string variable.

SetValueNumeric. Action request used in write mode or append mode to set the value for the current
case for a numeric variable.

SetVarAlignment. Action request used in write mode to set the variable alignment property for a new
variable.

SetVarAttributes. Action request used in write mode to set a value in an attribute array for a new
variable.

SetVarCMissingValues. Action request used in write mode to specify user-missing values for a new string
variable.

SetVarCValueLabel. Action request used in write mode to specify value labels for a new string variable.

SetVarFormat. Action request used in write mode to specify the display format for a new variable.

SetVarLabel. Action request used in write mode to specify the variable label for a new variable.

SetVarMeasureLevel. Action request used in write mode to specify the measurement level (nominal,
ordinal, or scale) for a new variable.

SetVarNameAndType. Action request used in write mode to create new variables in the active dataset.

SetVarNMissingValues. Action request used in write mode to specify user-missing values for a new
numeric variable.

SetVarNValueLabel. Action request used in write mode to specify value labels for a new numeric
variable.

ValidateVarName. Information request used to validate a potential variable name.

Creating and Accessing Multiple Datasets
In addition to accessing the active dataset, you can concurrently access multiple open datasets as well
as create new datasets. This allows you to create one or more new datasets from existing datasets,
combining the data from the existing datasets in any way you choose. It also allows you to concurrently
modify multiple datasets. The environment that allows you to create new datasets and access multiple

26 IBM SPSS Statistics Programmability Extension Developer's Guide for Windows

datasets is initiated with the StartDataStep function. Functions for creating and accessing multiple
datasets include:

StartDataStep. Action request that initiates a data step.

EndDataStep. Action request that ends a data step.

CreateDataset. Action request that provides access to an open dataset or creates a new empty dataset.

SetDatasetName. Action request to rename a dataset. Acts on a dataset object created by the
CreateDataset function.

GetNewDatasetName. Information request to get the name of a newly created dataset.

GetActive. Information request to get the name of the active dataset.

SetActive. Action request to set the active dataset.

CopyDataset. Action request to create a deep copy of a dataset.

GetSpssDatasets. Information request to return a list of the names of the currently open datasets.

GetDatastepDatasets. Information request to return a list of the names of the datasets that are available
in the current datastep. These are the datasets accessed with the CreateDataset function.

CloseDataset. Action request to close a dataset accessed with the CreateDataset function.

InsertVariable. Action request to insert a new variable into a specified dataset. Acts on a dataset object
created by the CreateDataset function.

DeleteVariable. Action request to delete a specified variable from a specified dataset. Acts on a dataset
object created by the CreateDataset function.

GetVarCountInDS. Information request to return the number of variables in a specified dataset.

GetVarNameInDS. Information request to return the name of the variable at a specified index position in
a specified dataset.

SetVarNameInDS. Action request to set the name of the variable at a specified index position in a
specified dataset.

GetVarLabelInDS. Information request to get the label of the variable at a specified index position in a
specified dataset.

SetVarLabelInDS. Action request to set the label of the variable at a specified index position in a
specified dataset.

GetVarTypeInDS. Information request to get the variable type (numeric or string) of the variable at a
specified index position in a specified dataset.

SetVarTypeInDS. Action request to set the variable type of the variable at a specified index position in a
specified dataset.

GetVarFormatInDS. Information request to get the display format of the variable at a specified index
position in a specified dataset.

SetVarFormatInDS. Action request to set the display format of the variable at a specified index position
in a specified dataset.

GetVarAlignmentInDS. Information request to get the alignment (left, right, or center) of the variable at a
specified index position in a specified dataset.

SetVarAlignmentInDS. Action request to set the alignment of the variable at a specified index position in
a specified dataset.

GetVarMeasurementLevelInDS. Information request to get the measurement level (nominal, ordinal,
scale, or unknown) of the variable at a specified index position in a specified dataset.

SetVarMeasurementLevelInDS. Action request to set the measurement level (nominal, ordinal, or scale)
of the variable at a specified index position in a specified dataset.

Chapter 4. Introduction to the XD API 27

GetVarNMissingValuesInDS. Information request to get the missing values of the numeric variable at a
specified index position in a specified dataset.

SetVarNMissingValuesInDS. Action request to set the missing values of the numeric variable at a
specified index position in a specified dataset.

GetVarCMissingValuesInDS. Information request to get the missing values of the string variable at a
specified index position in a specified dataset.

SetVarCMissingValuesInDS. Action request to set the missing values of the string variable at a specified
index position in a specified dataset.

GetVarAttributesNameInDS. Information request to get the names of the custom variable attributes
associated with a specified variable in a specified dataset.

GetVarAttributesInDS. Information request to get the values associated with a particular custom
variable attribute for a specified variable in a specified dataset.

SetVarAttributesInDS. Action request to set the values associated with a particular custom variable
attribute for a specified variable in a specified dataset.

DelVarAttributesInDS. Action request to delete the values associated with a particular custom variable
attribute for a specified variable in a specified dataset.

GetVarNValueLabelInDS. Information request to get the value labels associated with the numeric
variable at a specified index position in a specified dataset.

SetVarNValueLabelInDS. Action request to set a single value label for the numeric variable at a specified
index position in a specified dataset.

GetVarCValueLabelInDS. Information request to get the value labels associated with the string variable
at a specified index position in a specified dataset.

SetVarCValueLabelInDS. Action request to set a single value label for the string variable at a specified
index position in a specified dataset.

DelVarValueLabelInDS. Action request to delete all value labels associated with a specified variable in a
specified dataset.

DelVarNValueLabelInDS. Action request to delete a given value label associated with a specified
numeric variable in a specified dataset.

DelVarCValueLabelInDS. Action request to delete a given value label associated with a specified string
variable in a specified dataset.

GetVarColumnWidthInDS. Information request to get the column width of the variable at a specified
index position in a specified dataset. This is the column width for data values displayed in the Data Editor.

SetVarColumnWidthInDS. Action request to set the column width of the variable at a specified index
position in a specified dataset. This is the column width for data values displayed in the Data Editor.

InsertCase. Action request to insert a case at a specified position in a specified dataset.

DeleteCase. Action request to delete the case at a specified position in a specified dataset.

GetCaseCountInDS. Information request to get the number of cases in a specified dataset.

GetNCellValue. Information request to get the value for a specified case for a particular numeric variable
in a specified dataset.

SetNCellValue. Action request to set the value for a specified case for a particular numeric variable in a
specified dataset.

GetCCellValue. Information request to get the value for a specified case for a particular string variable in
a specified dataset.

SetCCellValue. Action request to set the value for a specified case for a particular string variable in a
specified dataset.

28 IBM SPSS Statistics Programmability Extension Developer's Guide for Windows

GetMultiResponseSetNamesInDS. Information request to get the names of any multiple response sets
for a specified dataset.

GetMultiResponseSetInDS. Information request to get the details of a specified multiple response set
for a specified dataset.

SetMultiResponseSetInDS. Action request to create a multiple response set for a specified dataset.

DelMultiResponseSetInDS. Action request to delete a specified multiple response set from a specified
dataset.

GetDataFileAttributeNamesInDS. Information request to get the names of any datafile attributes for a
specified dataset.

GetDataFileAttributesInDS. Information request to get the value of a specified datafile attribute in a
specified dataset.

SetDataFileAttributesInDS. Action request to create a datafile attribute in a specified dataset.

DelDataFileAttributesInDS. Action request to delete a specified datafile attribute from a specified
dataset.

GetVarRoleInDS. Information request that returns the variable role for a specified variable in a specified
dataset.

SetVarRoleInDS. Action request to set the variable role for a specified variable in a specified dataset.

Creating Pivot Tables and Text Blocks
Pivot tables and text blocks are generated within the context of user procedures created with the
StartProcedure function. Functions for working with pivot tables and text blocks include:

StartProcedure. Action request that creates a user procedure and signals the beginning of pivot table or
text block output.

EndProcedure. Action request that ends a user procedure and signals the end of pivot table or text block
output.

HasProcedure. Information request that returns an integer indicating if a user procedure is running.

SplitChange. Action request to process a split change when creating a pivot table from data that have
splits. Split changes are detected with the IsEndSplit function.

StartPivotTable. Action request to create a pivot table. Dimensions, categories, and cell values are
specified separately.

MinDataColumnWidth. Action request to set the minimum column width for a pivot table.

MaxDataColumnWidth. Action request to set the maximum column width for a pivot table.

PivotTableCaption. Action request to add a caption to a pivot table.

AddCellFootnotes. Action request to add a footnote, associated with a specified cell, to a pivot table.

HidePivotTableTitle. Action request to hide the title of a pivot table.

AddDimension. Action request that adds a row, column, or layer dimension to a pivot table.

AddNumberCategory. Action request that adds a category with a numeric value to a specified dimension
in a pivot table.

AddStringCategory. Action request that adds a category with a string value to a specified dimension in a
pivot table. The string will not be translated.

AddVarNameCategory. Action request that adds a category representing a variable name to a specified
dimension in a pivot table. Display settings for variable names in pivot tables (names, labels, or both) will
be honored.

Chapter 4. Introduction to the XD API 29

AddVarValueDoubleCategory. Action request that adds a category representing the value of a numeric
variable to a specified dimension in a pivot table. Display settings for variable values in pivot tables
(values, labels, or both) will be honored.

AddVarValueStringCategory. Action request that adds a category representing the value of a string
variable to a specified dimension in a pivot table. Display settings for variable values in pivot tables
(values, labels, or both) will be honored.

SetNumberCell. Action request to set a pivot table cell to a numeric value.

SetStringCell. Action request to set a pivot table cell to a string value. The string will not be translated.

SetDateCell. Action request to set a pivot table cell to a date value.

SetVarNameCell. Action request to set a pivot table cell to a variable name. Display settings for variable
names in pivot tables (names, labels, or both) will be honored.

SetVarValueDoubleCell. Action request to set a pivot table cell to the value of a numeric variable. Display
settings for variable values in pivot tables (values, labels, or both) will be honored.

SetVarValueStringCell. Action request to set a pivot table cell to the value of a string variable. Display
settings for variable values in pivot tables (values, labels, or both) will be honored.

SetFormatSpec<format name>. Action request to set the format used for numeric values of cells and
categories in a pivot table--for instance, SetFormatSpecGeneralStat. Each of the available formats
has an associated Set function. The default format for numeric values of cells and categories in a pivot
table is Count, which rounds values to the nearest integer.

AddTextBlock. Action request to create and populate a text block item.

Examples

Running IBM SPSS Statistics Commands
You execute a single IBM SPSS Statistics command by providing a string representation of the command
as shown in this example. When submitting a single command in this manner the period (.) at the end of
the command is optional.

// Open a data file
string filename = "/data/Employee data.sav";
string cmd = "GET FILE='" + filename + "'.";
Submit(cmd.c_str(),(int)cmd.length());

//Queue multiple command parts for a multi-line command
cmd = "OMS /SELECT TABLES";
QueueCommandPart(cmd.c_str(),(int)cmd.length());
cmd = "/IF COMMANDS = ['Descriptives' 'Frequencies']";
QueueCommandPart(cmd.c_str(),(int)cmd.length());
cmd = "/DESTINATION FORMAT = HTML";
QueueCommandPart(cmd.c_str(),(int)cmd.length());
cmd = "IMAGES = NO OUTFILE = '/temp/stats.html'.";
QueueCommandPart(cmd.c_str(),(int)cmd.length());

// Execute a Descriptives command and call OMSEND to write the output
cmd = "DESCRIPTIVES jobcat.";
QueueCommandPart(cmd.c_str(),(int)cmd.length());
cmd = "OMSEND.";
Submit(cmd.c_str(),(int)cmd.length());

• The first Submit function executes a GET command to open a data file.
• The QueueCommandPart function is used to queue a set of lines specifying the syntax for an OMS

command and a DESCRIPTIVES command. In this example, the OMS command routes output from the
DESCRIPTIVES command to an html file.

• The Submit function is called again to execute an OMSEND command as well as the queued commands.

Notes

• You can direct output to the XML workspace and subsequently retrieve it using XPath expressions. See
the topic “Retrieving Output from Syntax Commands” on page 37 for more information.

30 IBM SPSS Statistics Programmability Extension Developer's Guide for Windows

• When submitting syntax that includes a BEGIN PROGRAM-END PROGRAM block, each of the lines in the
block (including BEGIN PROGRAM) must be queued using the QueueCommandPart function. The END
PROGRAM statement, however, can be submitted with the Submit function. In addition, note that you
cannot submit an empty BEGIN PROGRAM-END PROGRAM block. The block must contain at least one
statement in the associated language (Python or R).

Getting Variable Dictionary Information
Consider the common scenario of running a particular block of command syntax only if a specific variable
exists in the dataset. For example, you are processing many datasets containing employee records and
want to split them by gender--if a gender variable exists--to obtain separate statistics for the two gender
groups. We will assume that if a gender variable exists, it has the name gender, although it may be spelled
in upper case or mixed case. The following sample code illustrates the approach:

string filename = "/data/Employee data.sav";
string cmd = "GET FILE='" + filename + "'.";
Submit(cmd.c_str(),(int)cmd.length());

int errLevel;
unsigned int varNum = GetVariableCount(errLevel);
for (unsigned int n=0; n < varNum; n++) {
 string varName = GetVariableName(n,errLevel);
 for (unsigned int m=0; m < varName.length(); m++) {
 varName[m] = toupper(varName[m]);
 }
 if (varName == "GENDER")
 {
 string cmd = "SORT CASES BY " + varName + ".";
 QueueCommandPart(cmd.c_str(),(int)cmd.length());

 cmd = "SPLIT FILE LAYERED BY " + varName + ".";
 Submit(cmd.c_str(),(int)cmd.length());

 break;
 }
}

The example makes use of the GetVariableCount and GetVariableName functions for retrieving the
number of variables in the active dataset and the name of a specified variable respectively. Variables are
specified by their position in the dataset, starting with 0 for the first variable in file order. This is referred
to as the index value of the variable.

Getting Case Data, Adding New Variables, and Appending Cases to the
Active Dataset

You can read case data from the active dataset, create new variables in the active dataset, and append
new cases to the active dataset using cursors. Cursors are created with the MakeCaseCursor function.
The function takes a single argument that specifies the type of cursor: "r" allows you to read cases from
the active dataset and is the default; "w" allows you to add new variables (and their case values) to the
active dataset; and "a" allows you to append new cases to the active dataset.

The following rules apply to the use of cursors:

• You cannot use the Submit function while a cursor is open. You must close the cursor first using the
RemoveCaseCursor function. In particular, if you need to save changes made to the active dataset to
an external file, then use the Submit function to submit a SAVE command after closing the cursor.

• Only one cursor can be open at any point in an application. To define a new cursor, you must first close
the previous one. You can use the HasCursor function to determine if a cursor is already open.

Reading Case Data
To read case data you create a cursor in read mode by calling MakeCaseCursor("r") (the argument can
be omitted for read mode). Cases can only be read sequentially, although variable values within a case
can be accessed directly by specifying the index of the variable. Index values represent position in the
dataset, starting with 0 for the first variable in file order. When reading case data, the following rules apply
to retrieved values:

• String values are right-padded to the defined width of the string variable.

Chapter 4. Introduction to the XD API 31

• Data retrieved from a variable representing a date, or a date and a time, is given as the number of
seconds from October 14, 1582.

Example

This example demonstrates reading case data from the active dataset.

string filename = "/data/mydata.sav";
string cmd = "GET FILE='" + filename + "'.";
Submit(cmd.c_str(),(int)cmd.length());

int errLevel, isMissing;
double dResult;
char *cResult;

int varCount = GetVariableCount(errLevel);
int *varType = new int[varCount];

for(int i = 0; i < varCount; i++) {
 varType[i] = GetVariableType(i,errLevel);
}

errLevel = MakeCaseCursor();
int rowCount = GetRowCount(errLevel);
for(int i = 0; i < rowCount; i++) {
 errLevel = NextCase();
 for(int j = 0; j < varCount; j++) {
 if(varType[j] == 0) {
 errLevel = GetNumericValue(j,dResult,isMissing);
 }
 else {
 cResult = new char[varType[j] + 1];
 memset(cResult,'\0',varType[j] + 1);
 errLevel = GetStringValue(j,cResult,varType[j] + 1,isMissing);
 }
 }
}

errLevel = RemoveCaseCursor();

• The GET command is used to get the data to be read.
• The GetVariableType function gets the type of the specified variable: 0 for numeric variables and the

length in bytes for string variables. Variables are specified by their index.
• The NextCase function moves the cursor to the next case.
• Values for numeric variables are retrieved using the GetNumericValue function and values for string

variables are retrieved using the GetStringValue function. The parameter isMissing indicates if the
value is missing: 0 if the value is not missing; 1 if the value is user-missing; and 2 if the value is
system-missing.

• The RemoveCaseCursor function closes the cursor.

Note: When reading datasets in which split file processing is in effect, you'll need to be aware of
the behavior at a split boundary. Detecting split changes is necessary when you're creating custom
pivot tables from data with splits and want separate results displayed for each split group (using the
SplitChange function). The IsEndSplit function allows you to detect split changes when reading from
datasets that have splits.

Creating New Variables in the Active Dataset
To add new variables along with their case values to the active dataset, you create a cursor in write mode
by calling MakeCaseCursor("w").

• When adding new variables, the CommitHeader function must be called after the statements defining
the new variables and prior to setting case values for those variables. You cannot add new variables to
an empty dataset. If you need to create a dataset from scratch, use a data step. See the topic “Creating
and Accessing Multiple Datasets” on page 35 for more information.

• When setting case values for new variables, the CommitCaseRecord function must be called for each
case that is modified. The NextCase function is used to advance the record pointer by one case.

• Changes to the active dataset do not take effect until the cursor is closed.
• Write mode supports multiple data passes and allows you to add new variables on each pass. In the

case of multiple data passes where you need to add variables on a data pass other than the first, you
must call the AllocNewVarsBuffer function to allocate the buffer size for the new variables. When
used, AllocNewVarsBuffer must be called before reading any data with NextCase.

32 IBM SPSS Statistics Programmability Extension Developer's Guide for Windows

• The SetVarNameAndType and SetOneVarNameAndType functions are used to add new variables to
the active dataset. The SetValueChar and SetValueNumeric functions are used to set case values.

Example

In this example we create a new string variable and a new numeric variable and populate their case
values. A sample dataset is first created.

string cmd = "DATA LIST FREE /case (A5).";
QueueCommandPart(cmd.c_str(),(int)cmd.length());
cmd = "BEGIN DATA";
QueueCommandPart(cmd.c_str(),(int)cmd.length());
cmd = "case1";
QueueCommandPart(cmd.c_str(),(int)cmd.length());
cmd = "case2";
QueueCommandPart(cmd.c_str(),(int)cmd.length());
cmd = "END DATA.";
Submit(cmd.c_str(),(int)cmd.length());

char *varName[] = {"numvar","strvar"};
int varType[] = {0,8};
unsigned int nVars = 2;
char *varLabel_0 = "Sample numeric variable";
char *varLabel_1 = "Sample string variable";

int errLevel = MakeCaseCursor("w");
errLevel = SetVarNameAndType(varName,varType,nVars);
errLevel = SetVarLabel(varName[0],varLabel_0);
errLevel = SetVarLabel(varName[1],varLabel_1);
errLevel = CommitHeader();

char *cValue = "cheese";
int rowCount = GetRowCount(errLevel);

for(int i = 0; i < rowCount; i++) {
 errLevel = NextCase();
 errLevel = SetValueNumeric(varName[0],i);
 errLevel = SetValueChar(varName[1],cValue,strlen(cValue));
 errLevel = CommitCaseRecord();
}

errLevel = RemoveCaseCursor();

• The first argument to the SetVarNameAndType function is an array of strings that specifies the name
of each new variable. The second argument is an array of integers specifying the variable type of each
variable. Numeric variables are specified by a value of 0 for the variable type. String variables are
specified with a type equal to the defined length of the string (maximum of 32767). In this example, we
create a numeric variable named numvar and a string variable of length 8 named strvar.

• After calling SetVarNameAndType you have the option of specifying variable properties (in addition to
the variable type) such as the measurement level, variable label, and missing values. In this example,
variable labels are specified using the SetVarLabel function.

• Specifications for new variables must be committed to the cursor's dictionary before case values can be
set. This is accomplished by calling the CommitHeader function, which takes no arguments. The active
dataset's dictionary is updated when the cursor is closed.

• To set case values, you first position the record pointer to the desired case using the NextCase
function, which advances the record pointer by one case. Note: To set the value for the first case in the
dataset you must call NextCase as shown in this example.

• Case values are set using the SetValueNumeric function for numeric variables and the
SetValueChar function for string variables. For both functions, the first argument is the variable name
and the second argument is the value for the current case. A numeric variable whose value is not
specified is set to the system-missing value. A string variable whose value is not specified will have a
blank value. The value will be valid unless you explicitly define the blank value to be missing for that
variable.

• The CommitCaseRecord function must be called to commit the values for each modified case.
Changes to the active dataset take effect when the cursor is closed.

Note: To save the modified active dataset to an external file, use the Submit function (following the
RemoveCaseCursor function) to submit a SAVE command, as in:

cmd = "SAVE OUTFILE='/data/mydata.sav'.";
Submit(cmd.c_str(),(int)cmd.length());

Example: Multiple Data Passes

Chapter 4. Introduction to the XD API 33

Sometimes more than one pass of the data is required, as in the following example involving two data
passes. The first data pass is used to read the data and compute a summary statistic. The second data
pass is used to add a summary variable to the active dataset.

string cmd = "DATA LIST FREE /var (F6).";
QueueCommandPart(cmd.c_str(),(int)cmd.length());
cmd = "BEGIN DATA";
QueueCommandPart(cmd.c_str(),(int)cmd.length());
cmd = "57000";
QueueCommandPart(cmd.c_str(),(int)cmd.length());
cmd = "40200";
QueueCommandPart(cmd.c_str(),(int)cmd.length());
cmd = "21450";
QueueCommandPart(cmd.c_str(),(int)cmd.length());
cmd = "21900";
QueueCommandPart(cmd.c_str(),(int)cmd.length());
cmd = "END DATA.";
Submit(cmd.c_str(),(int)cmd.length());

int isMissing;
double dResult;
double total = 0;

int errLevel = MakeCaseCursor("w");
errLevel = AllocNewVarsBuffer(8);
int rowCount = GetRowCount(errLevel);

for(int i = 0; i < rowCount; i++) {
 errLevel = NextCase();
 errLevel = GetNumericValue(0,dResult,isMissing);
 total = total + dResult;
}
double meanVal = total/rowCount;

ResetDataPass();
SetOneVarNameAndType("mean",0);
errLevel = CommitHeader();

for(int i = 0; i < rowCount; i++) {
 errLevel = NextCase();
 errLevel = SetValueNumeric("mean",meanVal);
 errLevel = CommitCaseRecord();
}

errLevel = RemoveCaseCursor();

• Because we'll be adding a new variable on the second data pass, the AllocNewVarsBuffer function
is called to allocate the required space. In the current example we're creating a single numeric variable,
which requires 8 bytes.

• The first for loop is used to read the data and total the case values.
• After the data pass, the ResetDataPass function must be called prior to defining new variables.
• The SetOneVarNameAndType function is used to add a single new variable. The first argument is the

variable name and the second argument is the variable type. In this example, we create a numeric
variable named mean. The CommitHeader function is called to commit this variable to the cursor.

• The second data pass (second for loop) is used to set the case values of the new variable.

Appending New Cases
To append new cases to the active dataset, you create a cursor in append mode by calling
MakeCaseCursor("a"). A cursor in append mode cannot be used to add new variables or read case
data from the active dataset. A dataset must contain at least one variable in order to append cases to it,
but it need not contain any cases. If you need to create a dataset from scratch, use a data step. See the
topic “Creating and Accessing Multiple Datasets” on page 35 for more information.

• The CommitNewCase function must be called for each case that is added.
• The EndChanges function must be called before the cursor is closed.
• Changes to the active dataset do not take effect until the cursor is closed.
• The SetValueChar and SetValueNumeric functions are used to set variable values for new cases.

Example

In this example two new cases are appended to the active dataset.

string cmd = "DATA LIST FREE /case (F) value (A1).";
QueueCommandPart(cmd.c_str(),(int)cmd.length());
cmd = "BEGIN DATA";
QueueCommandPart(cmd.c_str(),(int)cmd.length());
cmd = "1 a";
QueueCommandPart(cmd.c_str(),(int)cmd.length());

34 IBM SPSS Statistics Programmability Extension Developer's Guide for Windows

cmd = "END DATA.";
Submit(cmd.c_str(),(int)cmd.length());

int errLevel = MakeCaseCursor("a");
errLevel = SetValueNumeric("case",2);
errLevel = SetValueChar("value","b",strlen("b"));
errLevel = CommitNewCase();
errLevel = SetValueNumeric("case",3);
errLevel = SetValueChar("value","c",strlen("c"));
errLevel = CommitNewCase();
errLevel = EndChanges();
errLevel = RemoveCaseCursor();

• For both the SetValueNumeric and SetValueChar functions, the first argument is the variable name,
as a string, and the second argument is the value for the current case. A numeric variable whose value is
not specified is set to the system-missing value. A string variable whose value is not specified will have
a blank value. The value will be valid unless you explicitly define the blank value to be missing for that
variable.

• The CommitNewCase function must be called to commit the values for each new case. Changes to the
active dataset take effect when the cursor is closed. When working in append mode, the cursor is ready
to accept values for a new case (using SetValueNumeric and SetValueChar) once CommitNewCase
has been called for the previous case.

• The EndChanges function signals the end of appending cases and must be called before the cursor is
closed or the new cases will be lost.

Note: To save the modified active dataset to an external file, use the Submit function (following the
RemoveCaseCursor function) to submit a SAVE command, as in:

cmd = "SAVE OUTFILE='/data/mydata.sav'.";
Submit(cmd.c_str(),(int)cmd.length());

Creating and Accessing Multiple Datasets
Using a data step, you can create and work concurrently with multiple datasets. Data steps are initiated
with the StartDataStep function. Once a data step has been initiated, you access existing datasets and
create new datasets with the CreateDataset function.

Limitations

• Within a data step you cannot create a cursor, a pivot table, or a text block, and you cannot call the
StartProcedure function or the Submit function.

• You cannot start a data step if there are pending transformations or if a user procedure exists. If you
need to access case data in the presence of pending transformations, use a cursor.

• Only one data step can exist at a time.
• A new dataset created with the CreateDataset function is not automatically set to be the active

dataset, unless explicitly specified as such with CreateDataset("*",true). To make a dataset the
active one, use the SetActive function.

Example: Creating and Saving a New Dataset

StartDataStep();
int errLevel = CreateDataset("newds", true);
errLevel = InsertVariable("newds",0,"numvar",0);
errLevel = InsertVariable("newds",1,"strvar",1);
errLevel = SetVarLabelInDS("newds",0,"Sample Numeric Variable");
errLevel = SetVarLabelInDS("newds",1,"Sample String Variable");
errLevel = InsertCase("newds",0);
errLevel = SetNCellValue("newds",0,0,0);
errLevel = SetCCellValue("newds",0,1,"a");
errLevel = InsertCase("newds",1);
errLevel = SetNCellValue("newds",1,0,1);
errLevel = SetCCellValue("newds",1,1,"b");
errLevel = SetActive("newds");
EndDataStep();
string cmd = "SAVE OUTFILE='/data/mynewdata.sav'.";
Submit(cmd.c_str(),(int)cmd.length());

• Once a data step has been initiated, you create a new dataset with the CreateDataset function. The
first argument specifies the name of the new dataset, and setting the second argument to true specifies
a new dataset (you can also use the CreateDataset function to access existing datasets).

Chapter 4. Introduction to the XD API 35

• You add variables to a dataset using the InsertVariable function. The arguments are the name of the
dataset, the position (0-based) at which to add the variable, the name of the variable, and the variable
type (0 for numeric variables, and an integer equal to the defined length for string variables).

• You can set variable properties, such as the variable label and measurement level, using additional
functions. For example, you can set the variable label using the SetVarLabelInDS function, whose
arguments are the name of the dataset, the position of the variable, and the variable label. Functions for
setting variable properties are easily identified by the common suffix InDs.

• You add cases to a dataset using the InsertCase function. The arguments are the name of the dataset
and the position of the case (0-based). The InsertCase function inserts an empty case. To populate
the case values you use the SetNCellValue (for numeric values) and SetCCellValue (for string
values) functions, which allow you to set the case value for a single variable. The arguments to each of
these functions are the same and as follows: the name of the dataset, the position of the case for which
a value will be set, the position of the variable within the case, and the value of the variable.

• The SetActive function is used to make the new dataset the active one. This is not necessary, but
simplifies the process of saving the dataset--an action which must be performed outside of the data
step.

• You end a data step with the EndDataStep function.
• The new dataset is saved by submitting a SAVE command outside of the data step.

Example: Modifying Case Values

string cmd = "DATA LIST FREE /cust (F2) amt (F5).";
QueueCommandPart(cmd.c_str(),(int)cmd.length());
cmd = "BEGIN DATA";
QueueCommandPart(cmd.c_str(),(int)cmd.length());
cmd = "210 4500";
QueueCommandPart(cmd.c_str(),(int)cmd.length());
cmd = "242 6900";
QueueCommandPart(cmd.c_str(),(int)cmd.length());
cmd = "370 32500";
QueueCommandPart(cmd.c_str(),(int)cmd.length());
cmd = "END DATA.";
QueueCommandPart(cmd.c_str(),(int)cmd.length());
cmd = "DATASET NAME ds1.";
Submit(cmd.c_str(),(int)cmd.length());

StartDataStep();
int err, isMissing;
int errLevel = CreateDataset("ds1");
int rowCount = GetCaseCountInDS("ds1",errLevel);
for(int i = 0; i < rowCount; i++) {
 errLevel = SetNCellValue("ds1",i,1,1.05*GetNCellValue("ds1",i,1,isMissing,err));
}
EndDataStep();

• A sample dataset is created and assigned the name ds1.
• To modify case values in an existing dataset, you first access the dataset using the CreateDataset

function, specifying the name of the dataset as the argument.
• Case values are modified using the SetNCellValue (for numeric values) and SetCCellValue (for

string values) functions, which allow you to set the case value for a single variable. The arguments to
each of these functions are the same and as follows: the name of the dataset, the position of the case
for which a value will be set, the position of the variable within the case, and the value of the variable.

Example: Comparing Datasets

Data steps allow you to concurrently work with the case data from multiple datasets. As a simple
example, we'll compare the cases in two datasets and indicate identical cases with a new variable added
to one of the datasets.

//Create the first dataset
string cmd = "DATA LIST FREE /id (F2) salary (DOLLAR8) jobcat (F1).";
QueueCommandPart(cmd.c_str(),(int)cmd.length());
cmd = "BEGIN DATA";
QueueCommandPart(cmd.c_str(),(int)cmd.length());
cmd = "1 57000 3";
QueueCommandPart(cmd.c_str(),(int)cmd.length());
cmd = "3 40200 1";
QueueCommandPart(cmd.c_str(),(int)cmd.length());
cmd = "2 21450 1";
QueueCommandPart(cmd.c_str(),(int)cmd.length());
cmd = "END DATA.";
QueueCommandPart(cmd.c_str(),(int)cmd.length());
cmd = "SORT CASES BY id.";
QueueCommandPart(cmd.c_str(),(int)cmd.length());
cmd = "DATASET NAME ds1.";

36 IBM SPSS Statistics Programmability Extension Developer's Guide for Windows

QueueCommandPart(cmd.c_str(),(int)cmd.length());

//Create the second dataset
cmd = "DATA LIST FREE /id (F2) salary (DOLLAR8) jobcat (F1).";
QueueCommandPart(cmd.c_str(),(int)cmd.length());
cmd = "BEGIN DATA";
QueueCommandPart(cmd.c_str(),(int)cmd.length());
cmd = "3 41000 1";
QueueCommandPart(cmd.c_str(),(int)cmd.length());
cmd = "1 59280 3";
QueueCommandPart(cmd.c_str(),(int)cmd.length());
cmd = "2 21450 1";
QueueCommandPart(cmd.c_str(),(int)cmd.length());
cmd = "END DATA.";
QueueCommandPart(cmd.c_str(),(int)cmd.length());
cmd = "SORT CASES BY id.";
QueueCommandPart(cmd.c_str(),(int)cmd.length());
cmd = "DATASET NAME ds2.";
Submit(cmd.c_str(),(int)cmd.length());

//Perform the comparison
StartDataStep();
int err, isMissing;
int errLevel = CreateDataset("ds1");
int rowCount = GetCaseCountInDS("ds1",errLevel);
errLevel = CreateDataset("ds2");
int varCount = GetVarCountInDS("ds2",errLevel);
errLevel = InsertVariable("ds2",varCount,"match",0);

for(int i = 0; i < rowCount; i++) {
 errLevel = SetNCellValue("ds2",i,varCount,1);
 for(int j = 0; j < varCount; j++) {
 if (GetNCellValue("ds1",i,j,isMissing,err) != \
 GetNCellValue("ds2",i,j,isMissing,err)){
 errLevel = SetNCellValue("ds2",i,varCount,0);
 break;
 }
 }
}
EndDataStep();

• The two sample datasets are sorted by the variable id which is common to both datasets.
• The new variable match, added to ds2, is set to 1 for cases that are identical and 0 otherwise.

Retrieving Output from Syntax Commands
To retrieve command output, you first route it via the Output Management System (OMS) to the XML
workspace where it is stored as an XPath DOM that conforms to the Output XML Schema (xml.spss.com/
spss/oms). Textual output is retrieved from this workspace with functions that employ XPath expressions.
Charts generated by syntax commands can be retrieved with the GetImage function. See the topic
“Retrieving Chart Output” on page 39 for more information.

Constructing the correct XPath expression (IBM SPSS Statistics currently supports XPath 1.0) requires
an understanding of the Output XML schema. The output schema spss-output-1.8.xsd is distributed with
IBM SPSS Statistics. Documentation is included in the IBM SPSS Statistics - Programmability SDK and
accessible from \documentation\OutputSchema\oms_oxml_schema_intro.htm.

Example
In this example, we'll retrieve the mean value of a variable calculated from the Descriptives procedure.

string cmd = "GET FILE='/data/Employee data.sav'.";
QueueCommandPart(cmd.c_str(),(int)cmd.length());
cmd = "OMS SELECT TABLES";
QueueCommandPart(cmd.c_str(),(int)cmd.length());
cmd = "/IF COMMANDS=['Descriptives'] SUBTYPES=['Descriptive Statistics']";
QueueCommandPart(cmd.c_str(),(int)cmd.length());
cmd = "/DESTINATION FORMAT=OXML XMLWORKSPACE='desc_table'";
QueueCommandPart(cmd.c_str(),(int)cmd.length());
cmd = "/TAG='desc_out'.";
QueueCommandPart(cmd.c_str(),(int)cmd.length());
cmd = "DESCRIPTIVES VARIABLES=salary, salbegin, jobtime, prevexp ";
QueueCommandPart(cmd.c_str(),(int)cmd.length());
cmd = "/STATISTICS=MEAN.";
QueueCommandPart(cmd.c_str(),(int)cmd.length());
cmd = "OMSEND TAG='desc_out'.";
Submit(cmd.c_str(),(int)cmd.length());

int err;
const char* handle = "desc_table";
const char* context = "/outputTree";
const char* xpath = "//pivotTable[@subType='Descriptive Statistics']" \
 "/dimension[@axis='row']" \
 "/category[@varName='salary']" \
 "/dimension[@axis='column']" \
 "/category[@text='Mean']" \
 "/cell/@text";
void* result = EvaluateXPath(handle,context,xpath,err);
int len = GetStringListLength(result);
if(len > 0){
 const char* str = GetStringFromList(result,0);

Chapter 4. Introduction to the XD API 37

}
RemoveStringList(result);
RemoveXPathHandle(handle);

• The OMS command is used to direct output from a syntax command to the XML workspace. The
XMLWORKSPACE keyword on the DESTINATION subcommand, along with FORMAT=OXML, specifies the
XML workspace as the output destination. It is a good practice to use the TAG subcommand, as done
here, so as not to interfere with any other OMS requests that may be operating. The identifiers used for
the COMMANDS and SUBTYPES keywords on the IF subcommand can be found in the OMS Identifiers
dialog box, available from the Utilities menu in IBM SPSS Statistics.

• The XMLWORKSPACE keyword is used to associate a name with this XPath DOM in the workspace.
In the current example, output from the DESCRIPTIVES command will be identified with the name
desc_table. You can have many XPath DOM's in the XML workspace, each with its own unique name.

• The OMSEND command terminates active OMS commands, causing the output to be written to the
specified destination--in this case, the XML workspace.

• You retrieve values from the XML workspace with the EvaluateXPath function. The function takes an
explicit XPath expression, evaluates it against a specified XPath DOM in the XML workspace, and returns
the result as a list of string values.

• The first argument to the EvaluateXPath function specifies the XPath DOM to which an XPath
expression will be applied. This argument is referred to as the handle name for the XPath DOM and
is simply the name given on the XMLWORKSPACE keyword on the associated OMS command. In this case
the handle name is desc_table.

• The second argument to EvaluateXPath defines the XPath context for the expression and should be
set to "/outputTree" for items routed to the XML workspace by the OMS command.

• The third argument to EvaluateXPath specifies the remainder of the XPath expression (the context is
the first part). For users familiar with XSLT for OXML and accustomed to including a namespace prefix,
note that XPath expressions for the EvaluateXPath function should not contain the oms: namespace
prefix.

• The XPath expression in this example is specified by the variable xpath. It is not the minimal expression
needed to select the mean value of interest but is used for illustration purposes and serves to highlight
the structure of the XML output.

//pivotTable[@subType='Descriptive Statistics'] selects the Descriptives Statistics table.

/dimension[@axis='row']/category[@varName='salary'] selects the row for the variable
salary.

/dimension[@axis='column']/category[@text='Mean'] selects the Mean column within this
row, thus specifying a single cell in the pivot table.

/cell/@text selects the textual representation of the cell contents.
• The RemoveStringList function frees the storage associated with the specified result from
EvaluateXPath, and RemoveXPathHandle frees the storage associated with the specified XPath
DOM.

If you're familiar with XPath, note that the mean value of salary can also be selected with the following
simpler XPath expression:

//category[@varName='salary']//category[@text='Mean']/cell/@text

Notes
To the extent possible, construct your XPath expressions using language-independent attributes, such as
the variable name rather than the variable label. That will help reduce the translation effort if you need to
deploy your code in multiple languages. Also consider factoring out language-dependent identifiers, such
as the name of a statistic, into constants. You can obtain the current language used for pivot table output
from the GetOutputLanguage function.

38 IBM SPSS Statistics Programmability Extension Developer's Guide for Windows

You may also consider using text_eng attributes in place of text attributes in XPath expressions.
text_eng attributes are English versions of text attributes and have the same value regardless of the
output language. The OATTRS subcommand of the SET command specifies whether text_eng attributes
are included in OXML output.

When writing and debugging XPath expressions, it is often useful to inspect the associated XPath DOM.
This is provided by the GetXmlUtf16 function, as well as by an option on the OMS syntax command.

Retrieving Chart Output
Charts generated by syntax commands whose output has been routed to the XML workspace can be
retrieved with the GetImage function.

Example

In this example, we'll retrieve a control chart generated by the SPCHART command.

int err = 0;
const char* cmd1 = "GET FILE='/data/clothing_defects.sav'.";
const char* cmd2 = "OMS /SELECT CHARTS /IF COMMANDS=['SPchart'] " \
 "/DESTINATION FORMAT=OXML XMLWORKSPACE ='spchart' " \
 "IMAGES=YES IMAGEFORMAT=JPG CHARTFORMAT=IMAGE.";
const char* cmd3 = "SPCHART /P=COUNT(defects) N(sampled) BY lot /RULES=All /SIGMAS=3.";
const char* cmd4 = "OMSEND.";
QueueCommandPart(cmd1,strlen(cmd1));
QueueCommandPart(cmd2,strlen(cmd2));
QueueCommandPart(cmd3,strlen(cmd3));
Submit(cmd4,strlen(cmd4));
int real_image_size = 0;
char* imageType = 0;
const char* handle = "spchart";
const char* context = "/outputTree";
const char* xpath = "//command[@command='SPchart']" \
 "/chartTitle[@text='p of defects by lot']/chart/@imageFile";
void* result = EvaluateXPath(handle,context,xpath,err);
const char* image_name = GetStringFromList(result,0);
const char* image = GetImage(handle,image_name,real_image_size,&imageType,err);
assert(err == 0);
fstream ftemp;
string output_image = "/images/";
output_image.append(image_name);
ftemp.open(output_image.c_str(),ios::out|ios::binary);
ftemp.write(image,real_image_size);

ftemp.close();
RemoveStringList(result);
RemoveXPathHandle(handle);

• The OMS command is used to direct output from the SPCHART command to the XML workspace. See the
topic “Retrieving Output from Syntax Commands” on page 37 for more information.

• To route images along with the OXML output, the IMAGES keyword on the DESTINATION subcommand
(of the OMS command) must be set to YES, and the CHARTFORMAT, MODELFORMAT, or TREEFORMAT
keyword must be set to IMAGE.

• The EvaluateXPath function is used to retrieve the name of the image associated with
the control chart output from the SPCHART command. In the present example, the value
returned by EvaluateXPath is a list with a single element, whose value is extracted with the
GetStringFromList function and stored to the variable image_name.

• The GetImage function returns a pointer to the image.

The first argument to GetImage specifies the XPath DOM that contains the output from the command
that generated the image.

The second argument to GetImage is the filename associated with the image in the OXML output--
specifically, the value of the imageFile attribute of the chart, modelView or treeView element
associated with the image.

On return, the third argument to GetImage is set to the amount of memory required for the image.

On return, the fourth argument to GetImage is set to a string specifying the image type: “PNG”, “JPG”,
“EMF”, “BMP”, or “VML”.

• In the present example, the retrieved image is written to an external file.

Chapter 4. Introduction to the XD API 39

40 IBM SPSS Statistics Programmability Extension Developer's Guide for Windows

Notices

This information was developed for products and services offered in the US. This material might be
available from IBM in other languages. However, you may be required to own a copy of the product or
product version in that language in order to access it.

IBM may not offer the products, services, or features discussed in this document in other countries.
Consult your local IBM representative for information on the products and services currently available in
your area. Any reference to an IBM product, program, or service is not intended to state or imply that
only that IBM product, program, or service may be used. Any functionally equivalent product, program, or
service that does not infringe any IBM intellectual property right may be used instead. However, it is the
user's responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this
document. The furnishing of this document does not grant you any license to these patents. You can
send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive, MD-NC119
Armonk, NY 10504-1785
US

For license inquiries regarding double-byte (DBCS) information, contact the IBM Intellectual Property
Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan Ltd.
19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION "AS IS"
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. Some jurisdictions do not allow disclaimer of express or implied warranties in
certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically
made to the information herein; these changes will be incorporated in new editions of the publication.
IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM websites are provided for convenience only and do not in
any manner serve as an endorsement of those websites. The materials at those websites are not part of
the materials for this IBM product and use of those websites is at your own risk.

IBM may use or distribute any of the information you provide in any way it believes appropriate without
incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the
exchange of information between independently created programs and other programs (including this
one) and (ii) the mutual use of the information which has been exchanged, should contact:

IBM Director of Licensing
IBM Corporation
North Castle Drive, MD-NC119
Armonk, NY 10504-1785
US

Such information may be available, subject to appropriate terms and conditions, including in some cases,
payment of a fee.

The licensed program described in this document and all licensed material available for it are provided by
IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement or any
equivalent agreement between us.

The performance data and client examples cited are presented for illustrative purposes only. Actual
performance results may vary depending on specific configurations and operating conditions.

Information concerning non-IBM products was obtained from the suppliers of those products, their
published announcements or other publicly available sources. IBM has not tested those products
and cannot confirm the accuracy of performance, compatibility or any other claims related to non-
IBMproducts. Questions on the capabilities of non-IBM products should be addressed to the suppliers of
those products.

Statements regarding IBM's future direction or intent are subject to change or withdrawal without notice,
and represent goals and objectives only.

This information contains examples of data and reports used in daily business operations. To illustrate
them as completely as possible, the examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to actual people or business enterprises is
entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs
in any form without payment to IBM, for the purposes of developing, using, marketing or distributing
application programs conforming to the application programming interface for the operating platform
for which the sample programs are written. These examples have not been thoroughly tested under
all conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these
programs. The sample programs are provided "AS IS", without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

Each copy or any portion of these sample programs or any derivative work, must include a copyright
notice as follows:
© Copyright IBM Corp. 2021. Portions of this code are derived from IBM Corp. Sample Programs.
© Copyright IBM Corp. 1989 - 2021. All rights reserved.

Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business
Machines Corp., registered in many jurisdictions worldwide. Other product and service names might be
trademarks of IBM or other companies. A current list of IBM trademarks is available on the web at
"Copyright and trademark information" at www.ibm.com/legal/copytrade.shtml.

Adobe, the Adobe logo, PostScript, and the PostScript logo are either registered trademarks or
trademarks of Adobe Systems Incorporated in the United States, and/or other countries.

Intel, Intel logo, Intel Inside, Intel Inside logo, Intel Centrino, Intel Centrino logo, Celeron, Intel Xeon,
Intel SpeedStep, Itanium, and Pentium are trademarks or registered trademarks of Intel Corporation or
its subsidiaries in the United States and other countries.

Linux is a registered trademark of Linus Torvalds in the United States, other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the
United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Java and all Java-based trademarks and logos are trademarks or registered trademarks of Oracle and/or
its affiliates.

42 IBM SPSS Statistics Programmability Extension Developer's Guide for Windows

http://www.ibm.com/legal/us/en/copytrade.shtml

Index

G
GET DATA (command)

streaming data from a pipe or socket 10

I
InvokePython library 7, 18

P
pipe

streaming data from 10
streaming data to 13

plug-in 5
PyInvokeSpss library 7, 18
Python

plug-in 7
spss module 7

S
SAVE (command)

streaming data to a pipe or socket 13
socket

streaming data from 10
streaming data to 13

spssdx library 5
spssdxcfg.ini 19
spssxd library 5
spssxdcfg.ini 7, 18
streaming data

from a pipe 10
from a socket 10
to a pipe 13
to a socket 13

X
XD API 23
XSAVE (command)

streaming data to a pipe or socket 13

Index 43

44 IBM SPSS Statistics Programmability Extension Developer's Guide for Windows

IBM®

	Contents
	Chapter 1. Overview
	Introduction to IBM SPSS Statistics
	Data Structure
	Metadata
	Syntax Commands
	Output
	Basic Steps for Submitting IBM SPSS Statistics Commands
	How Commands Are Processed Normally

	Introduction to the Programmability Extension
	The Programmability Extension and Other IBM SPSS Statistics Programming Features

	Overview of Programmability SDK Contents

	Chapter 2. Streaming Binary Data in IBM SPSS Statistics
	GET DATA /TYPE=BINARYSTREAM
	Overview
	Examples
	PIPE Subcommand
	SOCKET Subcommand
	VARIABLES Subcommand
	Common Binary Format of the Stream

	SAVE, XSAVE /TYPE=BINARYSTREAM
	Overview
	Example
	PIPE Subcommand
	SOCKET Subcommand
	UNSELECTED Subcommand
	DROP and KEEP Subcommands
	Common Binary Format of the Stream

	Chapter 3. Creating an Integration Plug-in
	Planning
	Invoking IBM SPSS Statistics from an External Processor
	Python Example

	Invoking an External Processor from IBM SPSS Statistics
	Creating an InvokeMyLanguage library
	Modifying the DX configuration file

	Language-specific Wrappers
	Deploying An Integration Plug-in

	Chapter 4. Introduction to the XD API
	Controlling IBM SPSS Statistics
	Variable Dictionary Information
	XML Workspace
	Getting Case Data, Adding New Variables, and Appending Cases to the Active Dataset
	Creating and Accessing Multiple Datasets
	Creating Pivot Tables and Text Blocks
	Examples
	Running IBM SPSS Statistics Commands
	Getting Variable Dictionary Information
	Getting Case Data, Adding New Variables, and Appending Cases to the Active Dataset
	Reading Case Data
	Creating New Variables in the Active Dataset
	Appending New Cases

	Creating and Accessing Multiple Datasets
	Retrieving Output from Syntax Commands
	Retrieving Chart Output

	Notices
	Trademarks

	Index

