
z/OS
3.1

Language Environment
Concepts Guide

IBM

SA38-0687-60

Note

Before using this information and the product it supports, read the information in “Notices” on page
39.

This edition applies to IBM® z/OS® 3.1 (5655-ZOS) and to all subsequent releases and modifications until otherwise
indicated in new editions.

Last updated: 2024-01-20
© Copyright International Business Machines Corporation 1991, 2024.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract with
IBM Corp.

Contents

Figures.. v

Tables... vii

About this document...ix
Using your documentation... x
z/OS information..xi

How to provide feedback to IBM.. xiii

Summary of changes..xv
Summary of changes for z/OS 3.1..xv

Chapter 1. Overview.. 1
What you can do with Language Environment.. 5

Common use of system resources gives you greater control..5
Consistent condition handling simplifies error recovery...5
Language Environment protects your programming investment..5
ILC capability offers greater efficiency and flexibility... 6
Common dump puts all debugging information in one place... 6
POSIX-conforming application support enhances code portability... 6
Locale callable services enhance the development of internationalized applications........................ 6

Debugging in your common environment... 7
IBM C/C++ productivity tools for OS/390... 7

Chapter 2. The model for Language Environment.. 9
The Language Environment program management model...9

Language Environment program management model terminology... 9
Program management..10
Processes..10
Enclaves..11
Threads...11

Language Environment condition-handling model...12
Condition-handling terminology.. 13
Condition-handling model description.. 13
How condition tokens are created and used... 15
Condition-handling responses...16
Runtime dump service provides information in one place..17

Language Environment message handling model and national language support................................. 17
National language support...17

Language Environment storage management model... 17
Stack storage.. 18
Heap storage.. 18
Storage management options..18

Chapter 3. Language Environment callable services..21
Language Environment calling conventions..21

Invoking callable services from C.. 22
Invoking callable services from COBOL...22

 iii

Invoking callable services from PL/I... 22
Invoking callable services from assembler... 23

Language Environment callable services.. 23

Chapter 4. Sample routines..31
Sample assembler routine...31
Sample C/C++ routine..31
Sample C routine with POSIX functions..32
Sample COBOL program.. 33
Sample PL/I routine...34

Appendix A. Accessibility.. 37

Notices..39
Terms and conditions for product documentation... 40
IBM Online Privacy Statement.. 41
Policy for unsupported hardware.. 41
Minimum supported hardware.. 41
Programming Interface Information... 42
Trademarks.. 42

Language Environment glossary...43

Index.. 75

iv

Figures

1. Components of Language Environment..1

2. The common runtime environment.. 3

3. The common runtime environment for AMODE 64.. 4

4. Language Environment resource ownership.. 10

5. Language Environment program management.. 12

6. Condition-handling stack configuration... 14

7. How condition tokens are created and used.. 16

8. Language Environment heap storage... 18

9. Sample invocation of a callable service from C..22

10. Omitting the feedback code when calling a service from C...22

11. Sample invocation of a callable service from COBOL.. 22

12. Omitting the feedback code when calling a service from COBOL... 22

13. Sample invocation of a callable service from PL/I...22

14. Omitting the feedback code when calling a service from PL/I.. 23

15. Sample invocation of a callable service from assembler...23

16. Omitting the feedback code when calling a service from assembler..23

 v

vi

Tables

1. How to use z/OS Language Environment publications... x

2. Communicating conditions services...24

3. Condition handling services..24

4. Date and time services..25

5. Dynamic storage services... 26

6. General services..26

7. Initialization and termination services... 27

8. Locale callable services.. 28

9. Mathematical services.. 28

10. Message handling services... 30

11. National language support services... 30

 vii

viii

About this document

IBM Language Environment® (also called Language Environment) provides common services and
language-specific routines in a single runtime environment for C, C++, COBOL, Fortran (z/OS only; no
support for z/OS UNIX System Services or CICS®), PL/I, and assembler applications. It offers consistent
and predictable results for language applications, independent of the language in which they are written.

Language Environment is the prerequisite runtime environment for applications that are generated with
the following IBM compiler products:

• z/OS XL C/C++ (feature of z/OS)
• z/OS C/C++
• OS/390® C/C++
• C/C++ for MVS/ESA
• C/C++ for z/VM®

• XL C/C++ for z/VM
• AD/Cycle C/370
• IBM Toolkit for Swift on z/OS
• VisualAge® for Java™, Enterprise Edition for OS/390
• Enterprise COBOL for z/OS
• Enterprise COBOL for z/OS and OS/390
• COBOL for OS/390 & VM
• COBOL for MVS™ & VM (formerly COBOL/370)
• Enterprise PL/I for z/OS
• Enterprise PL/I for z/OS and OS/390
• VisualAge PL/I
• PL/I for MVS & VM (formerly PL/I MVS & VM)
• VS FORTRAN and FORTRAN IV (in compatibility mode)
• IBM Open Enterprise SDK for Go
• IBM Open XL C/C++ for z/OS

Although not all compilers that are listed are currently supported, Language Environment supports the
compiled objects that they created.

Language Environment supports, but is not required for, an interactive debug tool for debugging
applications in your native z/OS environment. IBM Debug for z/OS is also available as a stand-alone
product.

Language Environment supports, but is not required for, VS FORTRAN Version 2 compiled code (z/OS
only).

Language Environment consists of the common execution library (CEL) and the runtime libraries for C/C+
+, COBOL, Fortran, and PL/I.

For more information about IBM Toolkit for Swift on z/OS, program number 5655-SFT, see the product
documentation.

For more information about VisualAge for Java, Enterprise Edition for OS/390, program number 5655-
JAV, see the product documentation.

This information introduces you to the Language Environment architecture, a system of constructs
and interfaces that provides a common runtime environment and runtime services for all Language

© Copyright IBM Corp. 1991, 2024 ix

Environment-conforming programming language products (those products that adhere to common
interface used by Language Environment).

An overview of Language Environment, descriptions of Language Environment full program model,
callable services, and a glossary of Language Environment terms are provided. This is not a programming
manual, but rather a conceptual introduction to Language Environment.

Language Environment Concepts Guide should be read by those who design systems installations and
develop application programs. This high-level guide will show how best to plan for systems to support
your enterprise.

Terms that might be new to you are italicized on their first use. Definitions of these terms can be found in
“Language Environment glossary” on page 43.

Using your documentation
The publications provided with Language Environment are designed to help you:

• Manage the runtime environment for applications generated with a Language Environment-conforming
compiler.

• Write applications that use the Language Environment callable services.
• Develop interlanguage communication applications.
• Customize Language Environment.
• Debug problems in applications that run with Language Environment.
• Migrate your high-level language applications to Language Environment.

Language programming information is provided in the supported high-level language programming
manuals, which provide language definition, library function syntax and semantics, and programming
guidance information.

Each publication helps you perform different tasks, some of which are listed in Table 1 on page x.

Table 1. How to use z/OS Language Environment publications

To Use

Evaluate Language Environment z/OS Language Environment Concepts Guide

Plan for Language Environment z/OS Language Environment Concepts Guide

z/OS Language Environment Runtime Application
Migration Guide

Install Language Environment z/OS Program Directory

Customize Language Environment z/OS Language Environment Customization

Understand Language Environment
program models and concepts

z/OS Language Environment Concepts Guide

z/OS Language Environment Programming Guide

z/OS Language Environment Programming Guide for 64-
bit Virtual Addressing Mode

Find syntax for Language Environment
runtime options and callable services

z/OS Language Environment Programming Reference

Develop applications that run with
Language Environment

z/OS Language Environment Programming Guide and
your language programming guide

Debug applications that run with Language
Environment, diagnose problems with
Language Environment

z/OS Language Environment Concepts Guide

x About this document

Table 1. How to use z/OS Language Environment publications (continued)

To Use

Get details on runtime messages z/OS Language Environment Runtime Messages

Develop interlanguage communication (ILC)
applications

z/OS Language Environment Writing Interlanguage
Communication Applications and your language
programming guide

Migrate applications to Language
Environment

z/OS Language Environment Runtime Application
Migration Guide and the migration guide for each
Language Environment-enabled language

z/OS information
This information explains how z/OS references information in other documents and on the web.

When possible, this information uses cross-document links that go directly to the topic in reference using
shortened versions of the document title. For complete titles and order numbers of the documents for all
products that are part of z/OS, see z/OS Information Roadmap.

To find the complete z/OS library, go to IBM Documentation (www.ibm.com/docs/en/zos).

About this document xi

https://www.ibm.com/docs/en/zos

xii z/OS: z/OS Language Environment Concepts Guide

How to provide feedback to IBM

We welcome any feedback that you have, including comments on the clarity, accuracy, or completeness of
the information. For more information, see How to send feedback to IBM.

© Copyright IBM Corp. 1991, 2024 xiii

https://www.ibm.com/docs/zos/3.1.0?topic=how-send-feedback

xiv z/OS: z/OS Language Environment Concepts Guide

Summary of changes

This information includes terminology, maintenance, and editorial changes. Technical changes or
additions to the text and illustrations for the current edition are indicated by a vertical line to the left
of the change.

Note: IBM z/OS policy for the integration of service information into the z/OS product documentation
library is documented on the z/OS Internet Library under IBM z/OS Product Documentation Update Policy
(www.ibm.com/docs/en/zos/latest?topic=zos-product-documentation-update-policy).

Summary of changes for z/OS 3.1
The following content is new, changed, or no longer included in z/OS 3.1.

New
The following content is new.
September 2023 release

• None.

Changed
The following content is changed.
December 2023 refresh

• References to IBM Debug for z/OS were updated.

September 2023 release

• None.

Deleted
The following content was deleted.
September 2023 release

• None.

© Copyright IBM Corp. 1991, 2024 xv

https://www.ibm.com/docs/en/zos/latest?topic=zos-product-documentation-update-policy
https://www.ibm.com/docs/en/zos/latest?topic=zos-product-documentation-update-policy

xvi z/OS: z/OS Language Environment Concepts Guide

Chapter 1. Overview

Today, enterprises need efficient, consistent, and less complex ways to develop quality applications and
to maintain their existing inventory of applications. The trend in application development is to modularize
and share code, and to develop applications on a workstation-based front end. Language Environment
gives you a common environment for all Language Environment-conforming high-level language (HLL)
products. An HLL is a programming language above the level of assembler language and below that of
program generators and query languages.

In the past, programming languages also have had limited ability to call each other and behave
consistently across different operating systems. This restriction has constrained those who wanted to use
several languages in an application. Programming languages have had different rules for implementing
data structures and condition handling, and for interfacing with system services and library routines.

Language Environment establishes a common runtime environment for all participating HLLs. It combines
essential runtime services, such as routines for runtime message handling, condition handling, and
storage management. All of these services are available through a set of interfaces that is consistent
across programming languages. You can either call these interfaces yourself, or use language-specific
services that call the interfaces. With Language Environment, you can use one runtime environment for
your applications, regardless of the application's programming language or system resource needs.

Language Environment consists of:

• Basic routines that support starting and stopping programs, allocating storage, communicating with
programs written in different languages, and indicating and handling conditions.

• Common library services, such as math services and date and time services that are commonly needed
by programs running on the system. These functions are supported through a library of callable
services.

• Language-specific portions of the runtime library. Because many language-specific routines call
Language Environment services, behavior is consistent across languages.

Figure 1 on page 1 shows the separate components that make up Language Environment. POSIX
support is provided in the Language Environment base and in the C language-specific library.

Figure 1. Components of Language Environment

© Copyright IBM Corp. 1991, 2024 1

z/OS Language Environment is the prerequisite runtime environment for applications that are generated
with the following IBM compiler products:

• z/OS XL C/C++ (feature of z/OS)
• z/OS C/C++
• OS/390 C/C++
• C/C++ for MVS/ESA
• C/C++ for z/VM
• XL C/C++ for z/VM
• AD/Cycle C/370
• IBM Toolkit for Swift on z/OS
• VisualAge for Java, Enterprise Edition for OS/390
• Enterprise COBOL for z/OS
• Enterprise COBOL for z/OS and OS/390
• COBOL for OS/390 & VM
• COBOL for MVS & VM (formerly COBOL/370)
• Enterprise PL/I for z/OS
• Enterprise PL/I for z/OS and OS/390
• VisualAge PL/I
• PL/I for MVS & VM (formerly PL/I MVS & VM)
• VS FORTRAN and FORTRAN IV (in compatibility mode)
• IBM Open Enterprise SDK for Go
• IBM Open XL C/C++ for z/OS

Although not all compilers listed are currently supported, Language Environment supports the compiled
objects that they created.

Language Environment supports, but is not required for, VS Fortran Version 2 compiled code (OS/390
only).

In many cases, you can run compiled code that is generated from the previous versions of the previously-
listed compilers. A set of assembler macros is also provided to allow assembler routines to run with
Language Environment.

For more information about IBM Toolkit for Swift on z/OS, program number 5655-SFT, see the product
documentation.

For more information on IBM VisualAge for Java, Enterprise Edition for OS/390, program number 5655-
JAV, refer to the product documentation.

Figure 2 on page 3 illustrates the common environment that Language Environment creates.

2 z/OS: z/OS Language Environment Concepts Guide

Figure 2. The common runtime environment

Figure 3 on page 4 illustrates the common environment that Language Environment creates for AMODE
64.

Chapter 1. Overview 3

COBOL PL/I C/C++ ASM

COBOL PL/I C/C++ Assembler

C/C++PL/I

COBOL

CEL

z/OS

z/OS UNIX Db2*

Language Environment

Source Code

Compiler

Assembler does not require a runtime library

Batch TSO
*Db2 is C/C++ only

Figure 3. The common runtime environment for AMODE 64

Language Environment supports 64-bit addressing for applications that are written in C, C++, COBOL,
PL/I, or Language Environment-conforming Assembler.

Before support for 64-bit addressing, Language Environment applications could be written in COBOL,
PL/I, C, C++, Fortran, or Language Environment-conforming Assembler. These applications could run
in either 24-bit addressing mode (AMODE 24) or 31-bit addressing mode (AMODE 31). Language
Environment includes some support for compatibility between these two addressing modes. In AMODE
24, addresses are 24 bits in length, which allows access to virtual storage up to 16 Megabytes. This
is often referred to as the 16-megabyte line. AMODE 31 applications use addresses that are 31 bits in
length, which allows access to virtual storage up to 2 gigabytes. This limit on 31-bit addressing is referred
to as the 2-gigabyte bar. Both of these terms can be shortened to the "line" or the "bar" when used in the
context of addressable storage.

In the 64-bit addressing mode (AMODE 64) supported by Language Environment, addresses are 64 bits in
length, which allows access to virtual storage up to 16 exabytes. While this is an extremely high address,
there are a few very important facts to consider:

• Existing or new Language Environment applications that use AMODE 24 or AMODE 31 can continue to
run without change. They run using the same Language Environment services that existed before 64-bit
addressing was introduced, and these services will continue to be supported and enhanced.

• Language Environment applications that use AMODE 64 are not compatible with applications that
use AMODE 24 or AMODE 31. The only means of communication between AMODE 64 and AMODE
24 or AMODE 31 applications is through mechanisms that can communicate across processes or

4 z/OS: z/OS Language Environment Concepts Guide

address spaces. However, Language Environment applications that use AMODE 64 can run with existing
applications that use AMODE 24 or AMODE 31 on the same physical System Z.

• Where necessary, there are new Language Environment runtime options to support AMODE 64
applications. The new runtime options primarily support of the new stack and heap storage that is
located above the bar. All other existing runtime options continue to be supported and enhanced for
AMODE 24 and AMODE 31 applications.

What you can do with Language Environment
Language Environment helps you create mixed-language applications and gives you a consistent method
of accessing common, frequently used services. Building mixed-language applications is easier with
Language Environment-conforming routines because Language Environment establishes a consistent
environment for all languages in the application.

Common use of system resources gives you greater control
Language Environment provides the base for future IBM language library enhancements in the z/OS
environment. Many system dependencies have been removed from Language Environment-conforming
language products.

Because Language Environment provides a common library, with services that you can call through
a common callable interface, the behavior of your applications will be easier to predict. Language
Environment's common library includes common services such as messages, date and time functions,
math functions, application utilities, system services, and subsystem support. The language-specific
portions of Language Environment provide language interfaces and specific services that are supported
for each individual language.

Language Environment is accessed through defined common calling conventions, described in Chapter 3,
“Language Environment callable services,” on page 21.

Consistent condition handling simplifies error recovery
Language Environment establishes consistent condition handling for HLLs, debug tools, and assembler
language routines. For languages with little or no condition handling function, like COBOL, Language
Environment provides a user-controlled method that was not available before for predictable, robust error
recovery. Language Environment condition handling honors single- and mixed-language semantics and is
integrated with message handling services to provide you with specific information about each condition.

This language-independent condition handler, unlike some existing HLL condition semantics, is stack
frame-based and delivers predictable behavior at a given stack frame. Language Environment condition
handling enables you to construct applications out of building blocks of modules and control which
modules will handle certain conditions.

A complete description of condition handling model and message services is described in Chapter 2, “The
model for Language Environment,” on page 9.

Language Environment protects your programming investment
Language Environment provides compatible support for existing HLL applications. Applications linked
with the migration tools provided with libraries that predate Language Environment do not need to
be linked with the Language Environment library routines. For mixed-language applications, however,
relinking with Language Environment may be required if the application was not previously relinked
using migration tools available with pre-Language Environment libraries. Routines compiled with the new
Language Environment-conforming compilers can be mixed with old routines in an application. Thus,
applications can be enhanced or maintained selectively, without recompiling the whole application when
a change is made to a single routine. Some modifications of existing applications may be required.

Chapter 1. Overview 5

ILC capability offers greater efficiency and flexibility
Language Environment eliminates incompatibilities among language-specific runtime environments.
Routines call one another within one common runtime environment, eliminating the need for initialization
and termination of a language-specific runtime environment with each call. This makes interlanguage
communication (ILC) in mixed-language applications easier, more efficient, and more consistent.

This ILC capability also means that you can share and reuse code easily. You can write a service routine
in the language of your choice (C/C++, COBOL, PL/I, or assembler) and allow that routine to be called
from C/C++, COBOL, PL/I, or assembler applications. Similarly, vendors can write one application package
in the language of their choice, and allow the application package to be called from C/C++, PL/I, and
assembler routines or from Fortran or COBOL programs.

In addition, Language Environment lets you use the best language for any task. Some programming
languages are better suited for certain tasks. Improved interlanguage communication (ILC) allows the
best language to be used for any given application task. Many programmers, each experienced in a
different programming language, can work together to build applications with component routines written
in a variety of languages. The enhanced ILC offered by Language Environment allows you to build
applications with component routines written in a variety of languages. The result is code that runs faster,
is less prone to errors, and is easier to maintain.

Common dump puts all debugging information in one place
Language Environment provides a common dump for all conforming languages. The dump includes, in an
easy-to-read format, a description of any relevant conditions and information on error location, variables,
and storage.

With a common dump, you can locate precisely the module where an error occurred, saving you many
hours of debugging, especially if your module is built with several languages. A common dump also
allows programmers of differing language skills to collaborate effectively in determining the location of a
problem that involves modules of different languages.

POSIX-conforming application support enhances code portability
The IEEE Portable Operating System Interface (POSIX) standard is a series of industry standards for
code and user interface portability. POSIX support allows applications written for a UNIX-like operating
system to be run on z/OS. C language programmers can access operating system services through a set
of standard language bindings. C language programmers who install z/OS UNIX System Services (z/OS
UNIX) and z/OS Language Environment can call C language functions defined in the POSIX standard
from their C applications and can run applications that conform to ISO/IEC 9945-1:1990. 1 C language
programmers with z/OS UNIX installed can also call a subset of the proposed programming interface
for thread management (a subset of draft 6 of POSIX.4a). Through C interfaces, Language Environment
functions conform to XPG4.2 specifications and are branded by X/Open.

Applications that call POSIX functions can perform limited ILC under Language Environment. In addition,
C POSIX-conforming applications may use all Language Environment services.

Locale callable services enhance the development of internationalized
applications

Demand is steadily increasing in global markets for software products, and application developers are
seeking to make their products available in multiple countries. While marketing their products globally,
however, programmers must also make their applications function with the specific language and cultural
conventions of the individual user's locale. With locale callable services, application developers can build
programs that can be marketed globally, and still meet end users' needs to work with specific languages,
cultures, and conventions.

1 ISO/IEC 9945-1:1990, which is also ANSI-IEEE 1003.1-1990, is based on the POSIX.1 standard.

6 z/OS: z/OS Language Environment Concepts Guide

Language Environment provides pre-defined locales, previously available to C/370 routines only, that your
PL/I routines and COBOL programs can access at run time through the locale callable services. You can
also create your own locales, or modify the IBM-supplied locales, using the C locale definition utility
available with the C/C++ compiler.

While C routines can use the locale callable services, it is recommended that they use the equivalent
native C library services instead for portability across platforms.

For more information about Language Environment locale support, see Locale callable services in z/OS
Language Environment Programming Guide.

Debugging in your common environment
Language Environment supports IBM Debug for z/OS, an interactive source-level debugger. It enables you
to examine, monitor, and control the execution of Assembler, C, C++, COBOL, and PL/I programs on z/OS
systems.

IBM Debug for z/OS also includes tools to help you identify OS/VS and VS COBOL II source code and to
upgrade the code to Enterprise COBOL. It provides tools that can help you quickly identify and convert
OS/VS COBOL code to the ANSI 85 standard. It also provides tools to help you determine how thoroughly
your code was tested.

IBM C/C++ productivity tools for OS/390
With the IBM C/C++ Productivity Tools for OS/390 product, you can expand your z/OS application
development environment out to your workstation, while remaining close to your familiar host
environment.

IBM C/C++ Productivity Tools for OS/390 include the following workstation-based tools to increase your
productivity and code quality:

• A Performance Analyzer to help analyze, understand, and tune your C and C++ applications for improved
performance. (References to the Performance Analyzer in this section refer to the Performance Analyzer
included in the C/C++ Productivity Tools for OS/390 product.)

• A Distributed Debugger that allows you to debug C or C++ programs from the convenience of your
workstation.

• A workstation editor to improve the productivity of your C and C++ source entry.
• Advanced online help, with full text search and hypertext topics as well as printable, viewable, and

searchable Portable Document Format (PDF) documents.

In addition, IBM C/C++ Productivity Tools for OS/390 include the following host components:

• IBM Debug for z/OS
• Host Performance Analyzer

Use the Performance Analyzer on your workstation to graphically display and analyze a profile of the
running of your host z/OS C or C++ application. Use this information to time and tune your code so that
you can increase the performance of your application.

Use the Distributed Debugger to debug your z/OS C/C++ application remotely from your workstation.

Set a break point with a click of the mouse. Use the windowing capabilities of your workstation to view
multiple segments of your source and your storage, while monitoring a variable at the same time.

Use the workstation-based editor to quickly develop C and C++ application code that runs on z/OS.
Context-sensitive help information is available to you when you need it.

Chapter 1. Overview 7

8 z/OS: z/OS Language Environment Concepts Guide

Chapter 2. The model for Language Environment

This topic describes the Language Environment architecture, a system of user conventions, product
conventions, and processing models that, when followed by HLL application programmers, provides a
common, consistent runtime environment.

Models for program management, condition handling, message services, and storage management are
outlined.

The Language Environment program management model
The Language Environment program management model provides a framework within which an
application runs. It is the foundation of all of the component models—condition handling, runtime
message handling, and storage management—that comprise the Language Environment architecture. The
program management model defines the effects of programming language semantics in mixed-language
applications and integrates transaction processing and multithreading.

Language Environment program management model terminology
Some terms used to describe the program management model are common programming terms; other
terms are described differently in other languages. It is important that you understand the meaning of the
terminology in a Language Environment context as compared to other contexts.

For more detailed definitions of these and other Language Environment terms, consult the “Language
Environment glossary” on page 43.

General programming terms

Application program
A collection of one or more programs cooperating to achieve particular objectives, such as inventory
control or payroll.

Environment
In Language Environment, normally a reference to the runtime environment of HLLs at the enclave
level.

Language Environment terms and their HLL equivalents:
Routine

In Language Environment, refers to either a procedure, function, or subroutine.

Equivalent HLL terms: COBOL—program; C/C++—function; PL/I—procedure, BEGIN block.

Enclave
The enclave defines the scope of HLL semantics. In Language Environment, a collection of routines,
one of which is named as the main routine. The enclave contains at least one thread.

Equivalent HLL terms: COBOL—run unit, C/C++—program, consisting of a main C function and its
subfunctions, PL/I—main procedure and its subroutines, and Fortran—program and its subroutines.

Process
The highest level of the Language Environment program management model. A process is a collection
of resources, both program code and data, and consists of at least one enclave.

Thread
An execution construct that consists of synchronous invocations and terminations of routines. The
thread is the basic runtime path within the Language Environment program management model, and

© Copyright IBM Corp. 1991, 2024 9

is dispatched by the system with its own runtime stack, instruction counter, and registers. Threads
may exist concurrently with other threads.

Terminology for data
Automatic data

Data that does not persist across calls. It is allocated with the same value on entry and reentry into a
routine.

External data
Data that can be referenced by multiple routines and data areas. External data is known throughout
an enclave.

Local data
Data that is known only to the routine in which it is declared.

Equivalent HLL terms: C/C++—local data, COBOL—WORKING-STORAGE data items and LOCAL-
STORAGE data items, PL/I—data declared with the PL/I INTERNAL attribute.

Program management
Program management defines the program execution constructs of an application, and the semantics
associated with the integration of various components management of such constructs.

Three entities (process, enclave, and thread) are at the core of the Language Environment program
management model. They are described in this section.

Refer to Figure 4 on page 10 as you read the following discussion about processes, enclaves, and
threads. This figure illustrates the simplest form of the Language Environment program management
model and how resources such as storage are managed.

Condition
manager

Condition
manager

Data shared
between enclaves

Data shared
between enclaves

Enclave-
specific data

Enclave-
specific data

Runtime
stack

Runtime
stack

Language Environment message file

Enclave

Process

COBOL main routine PL/I main procedure

Subroutine

Heap storage Heap storage

Thread Thread

Enclave

Figure 4. Language Environment resource ownership

Processes
The highest level component of the Language Environment program model is the process. A process
consists of at least one enclave and is logically separate from other processes. Processes do not share
storage and are independent of and equal to each other; they are not hierarchically related.

10 z/OS: z/OS Language Environment Concepts Guide

Language Environment generally does not allow language file sharing across enclaves nor does it provide
the ability to access collections of externally stored data.

However, in PL/I, SYSPRINT can be shared across enclaves if all the code in all the enclaves has been
compiled either with PL/I for MVS & VM or with Enterprise PL/I for z/OS, but not both.

The Language Environment message file also can be shared across enclaves, since it is managed at
the process level. The Language Environment message file contains messages from all routines running
within a process, making it a useful central location for messages that are generated during run time.

Processes can create new processes and communicate to each other by using Language Environment-
defined communication for such things as indicating when a created process has been terminated.

Enclaves
A key feature of the program management model is the enclave, a collection of the routines that make up
an application. The enclave is the equivalent of any of the following:

• A run unit, in COBOL
• A program, consisting of a main C function and its subfunctions, in C and C++
• A main procedure and all of its subroutines, in PL/I
• A program and its subroutines, in Fortran

The enclave consists of one main routine and zero or more subroutines. (However, a POSIX application
might not have a main routine active at a given time.) The main routine is the first to execute in an enclave;
all subsequent routines are named as subroutines.

Characteristics of the enclave
The enclave logically owns resources normally associated with the running of a program. Some resources
are owned directly, such as heap storage; some are owned indirectly, such as the runtime stack, which is
owned by a thread. Heap storage, the runtime stack, and threads are discussed in the following sections.

Heap storage is shared among all routines in an enclave and can be allocated by a routine in one language
and be freed by a routine in another language. For a discussion about stack and heap storage, see
“Language Environment storage management model” on page 17.

The enclave defines the scope (that is, how far the semantic effects of language statements reach) of the
language semantics for its component routines, just as a COBOL run unit defines the scope of semantics
of a COBOL program.

The enclave defines the following in a Language Environment-conforming application:

• Scope of shared external data, such as COBOL EXTERNAL data and PL/I external data
• Scope of external files, such as COBOL EXTERNAL files 2

• Scope of the effect of language statements, for example, STOP constructs, such as STOP RUN in COBOL
or other terminating mechanisms

• Lifetime of heap storage, in its last-used state

Threads
Each enclave consists of at least one thread, the basic instance of a particular routine. A thread is created
during enclave initialization with its own runtime stack, which keeps track of the thread's execution,
as well as a unique instruction counter, registers, and condition-handling mechanisms. Each thread
represents an independent instance of a routine running under an enclave's resources.

Threads share all of the resources of an enclave. A thread can address all storage within an enclave. All
threads are equal and independent of one another and are not related hierarchically. A thread can create
a new enclave. Because threads operate with unique runtime stacks, they can run concurrently within an

2 The sharing of files across languages is not permitted in z/OS Language Environment.

Chapter 2. The model for Language Environment 11

enclave and allocate and free their own storage. Because they may execute concurrently, threads can be
used to implement parallel processing applications and event-driven applications.

The following figure illustrates the full Language Environment program model, with its multiple processes,
enclaves, and threads. As it shows, each process is within its own address space. An enclave consists of
one main routine, with any number of subroutines. A main routine might not be active at all times in a
POSIX application, if the thread in which the main routine executes terminates before the other threads it
created.

External data is available only within the enclave where it resides; notice that even though the external
data may have identical names in different enclaves, the external data is unique to the enclave. The scope
of external data is the enclave. The threads can create enclaves, which can create more threads, and so
on.

Process

Process

Enclave

Enclave

Enclave

Thread

Thread

Thread

Thread

Main

Main

Main

External

data X

External

data X

External

data Y

Sub

External

data Y

External

data Y

External

data Z

Sub

Sub

... ...

...

...

...

Sub

Figure 5. Language Environment program management

Language Environment condition-handling model
For single- and mixed-language applications, the Language Environment runtime library provides a
consistent and predictable condition-handling facility. It does not replace current HLL condition handling,
but instead allows each language to respond to its own unique environment as well as to a mixed-
language environment.

Language Environment condition management gives you the flexibility to respond directly to conditions by
providing callable services to signal conditions and to interrogate information about those conditions. It
also provides functions for error diagnosis, reporting, and recovery.

12 z/OS: z/OS Language Environment Concepts Guide

Language Environment condition handling is based on the stack frame, an area of storage that is allocated
when a routine runs and that represents the history of execution of that routine. It can contain automatic
variables, information on program linkage and condition handling, and other information. Using the stack
frame as the model for condition handling allows conditions to be handled in the stack frame in which
they occur. This allows you to tailor condition handling according to a specific routine, rather than handle
every possible condition that could occur within one global condition handler.

A unique feature of Language Environment condition handling is the condition token. The token is a
12-byte data type that contains an accumulation of information about each condition. The information
can be returned to the user as a feedback code when calling Language Environment callable services. It
can also be used as a communication vehicle within the runtime environment.

Serviceability is improved with interactive problem control system (IPCS) exits.

Condition-handling terminology
For more detailed definitions of these and other Language Environment terms, see the “Language
Environment glossary” on page 43.

Condition
Any change to the normal programmed flow of a program. In Language Environment, a condition can
be generated by an event that has historically been called an exception, interruption, or condition.

Condition handler
A routine invoked by Language Environment that responds to conditions in an application. Condition
handlers are registered through the CEEHDLR callable service, or provided by the language libraries,
by such constructs as PL/I ON statements.

Condition token
In Language Environment, a data type consisting of 12 bytes with structured fields that indicate
various aspects of a condition, including severity, associated message number, and information that is
specific to a given instance of the condition.

Feedback code
A condition token value used to communicate information when using the Language Environment
callable services.

Resume cursor
Contains the address where execution resumes after a condition is handled. Initially, it will be the
point in the application where a condition occurred when it is first reported to Language Environment.

Stack frame
The physical representation of the activation of a routine. The stack frame is allocated on a last in, first
out (LIFO) basis and can contain automatic variables, information on program linkage and condition
handling, and other information.

A stack frame is conceptually equivalent to a dynamic save area (DSA) in PL/I, or a save area in
assembler.

Condition-handling model description
The Language Environment condition handler is based on a stack frame model. A stack frame is an area
of storage that can contain automatic variables, information on program linkage and condition handling,
and other information. The stack frame is allocated using Language Environment-managed storage, either
HEAP or STACK, depending on the language being used. It is created through any of the following,

• A function call in C or C++
• Entry into a compile unit in COBOL
• Entry into a procedure or begin block in PL/I
• Entry into an ON-unit in PL/I

Chapter 2. The model for Language Environment 13

Each routine adds a unique stack frame, in a LIFO manner, to the Language Environment storage, either
HEAP or STACK. User-written condition handlers (registered through CEEHDLR) are associated with each
stack frame. In addition, HLL handling semantics can affect the processing conditions at each stack
frame. For an illustration of the Language Environment runtime stack and its divisions into stack frames,
see Figure 6 on page 14.

main ()

CEEHDLR (parm1, parm2);
A();

A: PROC

call B;

CBL LIB, APOST

call "CEEHDLR" using
PGMPTR Token
a=1/0

C main
routine

Resume
cursor

PL/I
subroutine
A

COBOL
subroutine
B

COBOL handler

Sub B
stack frame

Sub A
stack frame

Handle cursor

Main
stack frame

User-written handler

PL/I handler

User-written handler

C handler

Language Environment
and HLL default
handling semantics

Initial stack

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Figure 6. Condition-handling stack configuration

Each Language Environment user condition handler is explicitly registered through the callable service
CEEHDLR or through the USRHDLR runtime option. Language-defined handling mechanisms are
registered through language-provided constructs, such as the PL/I ON statement or the C signal()
function. When a routine returns to its caller, its stack frame is removed from the stack and the associated
handlers are automatically unregistered. Semantics associated with a routine are honored; for example,
PL/I semantics on a return specify that any ON-units within a routine will be unregistered. If the USRHDLR
runtime option is used, the user-written condition handler is registered at stack frame 0.

A condition is signaled within Language Environment as a result of one of the following occurrences:

• A hardware-detected interrupt
• An operating system-detected exception
• A condition generated by Language Environment callable services
• A condition explicitly signaled within a routine

The first three types of conditions are managed by Language Environment and signaled if appropriate.
The last may be signaled by user-written code through a call to the service CEESGL or signaled by HLL
semantics such as SIGNAL in PL/I or raise in C.

When a condition is signaled, whether by a user routine, by Language Environment in response to
an operating system or hardware detected condition, or by a callable service, Language Environment
directs the appropriate condition handlers in the stack frame to handle the condition. Condition handling
proceeds first with user-written condition handlers in the queue, if present, then with any HLL-specific
condition handlers, such as a PL/I ON-unit or a C signal handler, that may be established. The process
continues for each frame in the stack, from the most recently allocated to the least recently allocated.

If a condition remains unhandled after the stack is traversed, the condition is handled by either Language
Environment or by the default semantics of the language where the condition occurred.

14 z/OS: z/OS Language Environment Concepts Guide

How conditions are represented
A condition token is used to communicate information about a condition to Language Environment,
message services, callable services, and routines. The token is a 12-byte data type with fields that
indicate the following information about a condition:

• Severity of a condition
• Associated message number
• Facility ID: This field identifies the owner of the condition (Language Environment, Language

Environment component, or user-specified). It is also used to identify a file containing message text
that is unique for the condition.

• Instance specific information: This field is created if the condition requires that data or text be inserted
into a message, for example, a variable name. This field also contains qualifying data, which can be used
to specify data (input or output) to be used when a routine resumes processing after a condition occurs.

How condition tokens are created and used
If the condition is detected by the operating system or by the hardware, Language Environment will
automatically build the condition token and signal the condition. With Language Environment callable
services, you can create a condition token with corresponding message or data inserts and then signal the
condition to the application running within Language Environment by returning the token.

When used in Language Environment callable services, the entire condition token represents a value
called the feedback code. You can include a feedback parameter to Language Environment callable
services, and check the result of the call; or, in PL/I and C, you can omit the feedback parameter, and any
errors in the call are signaled to you. Figure 7 on page 16 shows how condition tokens are created and
used.

Chapter 2. The model for Language Environment 15

....

.... ..

Language
Environment
message file

Condition token

User actions

CEENCOD (parm1, parm2);

CEEMSG
(parm1, parm2);

CEESGL
(parm1, parm2);

Language
Environment
condition
handling

CEE3205c The
system or user
ABEND S06
was issued

Language
Environment
message file

Condition token

User actions

fc

CEExxx (parm1, fc);

CEEMSG
(parm1,dfc);

CEESGL
(parm1, dfc);

Language
Environment
condition
handling

CEE3380 The
target load
module was not
recognized by
Language
Environment.

If (fc=CEE39K)
then

User-written
condition
handling

Condition token

CEExxx (parm1, NULL);

CEExxx

Language
Environment
condition
handling

Figure 7. How condition tokens are created and used

Condition-handling responses
Conditions are responded to in one of the following ways:
Resume

Terminates condition handling and resumeaction transfers control usually to the location
immediately following the point where the condition occurred.

16 z/OS: z/OS Language Environment Concepts Guide

A resume cursor points to the place where a routine should resume; it can be moved by the callable
service CEEMRCR to point to another resume point.

Percolate
Defers condition handling for an percolate action unchanged condition. Condition handling continues
at the next condition handler.

Promote
Promote is similar to percolate in that it passes the condition on to the next condition handler.
However, it transforms a condition to another condition, one with a new meaning. Condition handling
then continues, this time with a new type of condition.

Runtime dump service provides information in one place
The Language Environment callable service CEE3DMP dumps the runtime environment of Language
Environment into one easily readable report. CEE3DMP can be called directly from an application to
produce a dump that is formatted for printing. Depending on the options you choose, the dump report
may contain information on conditions, tracebacks, variables, control blocks, stack and heap storage,
file status and attributes, and language-specific information. The report can also be requested with the
TERMTHDACT runtime option when a program terminates due to an unhandled condition.

Serviceability is improved with a traceback section in CEEDUMP.

Language Environment message handling model and national
language support

A set of common message handling services that create and send runtime informational and diagnostic
messages is provided by Language Environment.

With the message handling services, you can use the condition token that is returned from a callable
service or from some other signaled condition, format it into a message, and deliver it to a defined output
device or to a buffer.

National language support
Messages can be formatted according to national language support specifications for the following
languages:

• Mixed-case American English (ENU)
• Uppercase American English (UEN)
• Japanese (JPN)

National language support callable services allow you to set a national language that affects the language
of the error messages and the names of the day, week, and month. It also allows you to change the
country setting, which affects the default date format, time format, currency symbol, decimal separator
character, and thousands separator.

Language Environment storage management model
Common storage management services are provided for all Language Environment-conforming
programming languages; Language Environment controls stack and heap storage used at run time. It
allows single- and mixed-language applications to access a central set of storage management facilities,
and offers a multiple-heap storage model to languages that do not now provide one. The common
storage model removes the need for each language to maintain a unique storage manager and avoids the
incompatibilities between different storage mechanisms.

Chapter 2. The model for Language Environment 17

Stack storage
In Language Environment, a runtime stack, or stack storage, is automatically created when a thread
is created, and freed when the thread terminates. When a thread is created, Language Environment
allocates an initial stack, which can have stack increments added to it as needed. Users can specify
the sizes of the initial stack and additional stack increments. They can also tune the stack for better
performance. For more information about tuning the stack, see Tuning stack storage in z/OS Language
Environment Programming Guide for 64-bit Virtual Addressing Mode.

For AMODE 64 support, users can specify a stack size above the bar and can also specify the maximum
stack size. See Stack and heap storage in z/OS Language Environment Programming Guide for 64-bit
Virtual Addressing Mode.

In AMODE 31, each stack segment is allocated separately. In AMODE 64, the maximum possible stack
size can be specified. A contiguous block of storage is allocated above the bar and each segment is
unguarded as needed.

Heap storage
Heap storage can be allocated and freed in no particular order. (Stack storage, in contrast, is allocated
when a routine is entered and freed when the routines ends.) Language Environment provides multiple
heaps that may be dynamically created and discarded by using Language Environment callable services.
Language Environment's heap storage is reliable because it provides a level of isolation and prevents
common errors such as attempting to free a heap element that has already been freed.

Heap storage is shared among all program units and all threads in an enclave. Allocated heap storage
remains allocated until it is explicitly freed by a thread or until the enclave terminates. Heap storage
is typically controlled by the programmer through Language Environment runtime options and callable
services.

Heap storage consists of an initial heap segment that is allocated when the first heap element is
allocated by a call to CEEGTST. The Language Environment storage manager allocates heap increments as
previously allocated segments become full.

Figure 8 on page 18 illustrates heap storage.

Heap
elements

Heap
elements

incr__size

init__size

Initial heap segment Increment

Unallocated storage

Unallocated storage

Unallocated storage

Unallocated storage

Figure 8. Language Environment heap storage

Storage management options

18 z/OS: z/OS Language Environment Concepts Guide

Storage report
You can write a storage report using the runtime option RPTSTG. The report summarizes all heap and
stack activity, including total amount of storage used, number of heap elements allocated and freed,
number of operating system calls performed, and recommended heap and stack sizes. Proper setting of
heap and stack sizes can significantly improve performance by reducing the number of operating system
calls made to allocate and free storage.

Storage option
In Language Environment, the runtime option STORAGE may be used to automatically initialize all heap
and stack storage to a specified character. This is useful as a debugging aid to find references to
uninitialized program variables.

For AMODE 64 support, you must specify MEMLIMIT. The overall storage above the bar is controlled in
MVS.

Chapter 2. The model for Language Environment 19

20 z/OS: z/OS Language Environment Concepts Guide

Chapter 3. Language Environment callable services

This topic gives an overview of Language Environment callable services and the common calling
procedure required to invoke them from C/C++, COBOL, PL/I, Fortran, and assembler.

This common set of callable services is designed to supplement your programming language's intrinsic
capability. For example, COBOL application developers will find consistent condition handling services
by Language Environment especially useful. All languages can benefit from the rich set of Language
Environment common math services, as well as the date and time services.

The listed callable services are for AMODE 31 only. For AMODE 64, none of the application writer
interfaces (AWIs) will be supported in their present form. There may be C functions that provide similar
functionality for some of the AWIs. A few nonstandard C functions have been added to provide the
functionality of some of the AWIs.

Language Environment callable services are divided into the following groups:

• Communicating Conditions Services
• Condition Handling Services
• Date and Time Services
• Dynamic Storage Services
• General Callable Services
• Initialization/Termination Services
• Locale Callable Services
• Math Services
• Message Handling Services
• National Language Support Services

Direct invocation of Language Environment callable services is not supported from Fortran. However,
support is provided to use callable services using a Fortran library subroutine service. For more
information, see Language Environment for MVS & VM Fortran Run-Time Migration Guide. Alternatively,
a Fortran program can call another Language Environment-enabled high-level language or an assembler
program that can invoke a Language Environment callable service.

Language-specific services, including those that call Language Environment callable services, are
documented in the language publications.

Language Environment calling conventions
Language Environment services can be invoked by HLL library routines, other Language Environment
services, and user-written HLL calls. In many cases, services are invoked by HLL library routines, as a
result of a user-specified function, such as a COBOL intrinsic function.

Language Environment-conforming languages exhibit consistent behavior because language functions call
Language Environment services. For example, each of these directly or indirectly calls CEEGTST to obtain
storage.

• C malloc() function call
• PL/I ALLOCATE statement
• COBOL ALLOCATE statement

The following sections show examples of the syntax that is used to invoke Language Environment callable
services.

© Copyright IBM Corp. 1991, 2024 21

Invoking callable services from C
In C, invoke a Language Environment callable service (with feedback code) using the following syntax:

#include <leawi.h>
main ()
{
 CEESERV(parm1, parm2, ... parmn, fc);
 }

Figure 9. Sample invocation of a callable service from C

leawi.h is a header file shipped with Language Environment that contains declarations of Language
Environment callable services and OMIT_FC, which is used to explicitly omit the feedback code
parameter.

#include <leawi.h>
main ()
{
 CEESERV(parm1, parm2, ... parmn, OMIT_FC);
 }

Figure 10. Omitting the feedback code when calling a service from C

Invoking callable services from COBOL
In COBOL, invoke a Language Environment callable service using the following syntax:

01 FEEDBACK.
 02 Condition-Token-Value.
 COPY CEEIGZCT.
 03 Case-1-Condition-ID.
 04 Severity PIC S9(4) BINARY.
 04 Msg-No PIC S9(4) BINARY.
 03 Case-2-Condition-ID REDEFINES Case-1-Condition-ID.
 04 Class-Code PIC S9(4) BINARY.
 04 Cause-Code PIC S9(4) BINARY.
 03 Case-Sev-Ctl PIC X.
 03 Facility-ID PIC XXX.
 02 I-S-Info PIC S9(9) BINARY.

Figure 11. Sample invocation of a callable service from COBOL

CEEIGZCT is an include file shipped with Language Environment that contains declarations of Language
Environment symbolic feedback codes.

You can omit the feedback code parameter in COBOL for OS/390 & VM and COBOL for MVS & VM as
shown in the following syntax:

01 Feedback.
COPY CEEIGZCT
CALL "CEESERV" USING parm1 parm2 ... parmn OMITTED

Figure 12. Omitting the feedback code when calling a service from COBOL

Invoking callable services from PL/I
In PL/I, invoke a Language Environment callable service (with feedback code) using the following syntax:

%INCLUDE CEEIBMAW
⋮
CALL CEESERV (parm1, parm2, ... parmn, fc);

Figure 13. Sample invocation of a callable service from PL/I

CEEIBMAW is an include file shipped with Language Environment that contains declarations of Language
Environment callable services.

22 z/OS: z/OS Language Environment Concepts Guide

PL/I allows you to omit arguments when invoking callable services. To do so, code an asterisk (*) in place
of the argument.

%INCLUDE CEEIBMAW
⋮
CALL CEESERV (parm1, parm2, ... parmn, *);

Figure 14. Omitting the feedback code when calling a service from PL/I

Invoking callable services from assembler
In assembler, invoke a Language Environment callable service (with feedback code) using the following
syntax:

 LA R1,PLIST
 L R15,=V(CEESERV)
 BALR R14,R15
 CLC FC(12),CEE000 Check if feedback code is zero
 BNE ER1 If not, branch to error routine
⋮
PLIST DS 0D
 DC A(PARM1)
⋮
 Parms 2 through n

DC A(FC+X'80000000') Feedback code as last parm

PARM1 DC F'5' Parm 1
⋮
 Parms 2 through n

FC DS 12C Feedback code as last parm
CEE000 DC 12X'00' Good feedback code

Figure 15. Sample invocation of a callable service from assembler

Assembler allows you to omit arguments when invoking callable services. To do so, place an X'80000000'
in the last parameter address slot if fc is the last parameter, or X'00000000' in the corresponding address
slot if fc is not the last parameter.

 LA R1,PLIST
 L R15,=V(CEESERV)
 BALR R14,R15
⋮
PLIST DS 0D
 DC A(PARM1)
⋮
 Parms 2 through n
DC A(X'80000000') Omitted feedback code in last slot

PARM1 DC F'5' Parm 1
⋮
 Parms 2 through n

Figure 16. Omitting the feedback code when calling a service from assembler

Language Environment callable services
Naming conventions of the callable services are as follows:

• Services starting with CEE are intended to be cross-system consistent; they operate on z/OS systems.
• Services starting with CEE3 are services that exploit unique characteristics of z/OS systems.

Communicating conditions services

Chapter 3. Language Environment callable services 23

Table 2. Communicating conditions services

Service name Description

CEEDCOD (Decompose a condition token) Decomposes an existing condition token.

CEENCOD (Construct a condition token) Dynamically constructs a condition token. The condition token
communicates with message services, condition management,
Language Environment callable services, and user applications.

Condition handling services
Table 3. Condition handling services

Service name Description

CEE3CIB (Return pointer to condition
information block)

Given a condition token that is passed to a user-written condition
handler, CEE3CIB returns a pointer to the condition information
block associated with a condition. Allows access to detailed
information about the subject condition during condition handling.

CEE3GRN (Get name of routine that
incurred condition)

Obtains the name of the routine that is running when a condition
is raised. If there are nested conditions, the most recently
signaled condition is used.

CEE3GRO (Return offset) Returns the offset of the location within the most current
Language Environment-conforming routine where a condition
occurred.

CEE3SPM (Query and modify Language
Environment hardware condition
enablement)

Allows the user to manipulate the program mask by enabling or
masking hardware interrupts.

CEE3SRP (Set resume point) Sets a resume point within user application code to resume from a
Language Environment user condition handler.

CEEGQDT (Retrieve q_data_Token) Retrieves the q_data token from the instance-specific information
(ISI) to be used by user condition handlers.

CEEHDLR (Register a user condition
handler)

Registers a user condition handler for the current stack frame.

CEEHDLU (Unregister a user condition
handler)

Unregisters a user condition handler for the current stack frame.

CEEITOK (Return initial condition token) Returns the initial condition token for the current condition.

CEEMRCE (Resume user routine) Resumes execution of a user routine at the location that is
established by CEE3SRP.

CEEMRCR (Move resume cursor relative
to handle cursor)

Moves the resume cursor. You can either move the resume cursor
to the call return point of the routine that registered the executing
condition handler, or move the resume cursor to the caller of the
routine that registered the executing condition handler.

CEESGL (Signal a condition) Signals a condition to the Language Environment condition
manager. It also can be used to provide qualifying data and create
an instance-specific information (ISI) field. The ISI contains
information that is used by the Language Environment condition
manager to identify and react to conditions.

24 z/OS: z/OS Language Environment Concepts Guide

Date and time services
Table 4. Date and time services

Service name Description

CEECBLDY (Convert date to COBOL Lilian
format)

Converts a string representing a date into a COBOL Lilian date
format. The COBOL Lilian date format represents a date as the
number of days since 31 December 1600.

CEEDATE (Convert Lilian date to
character format)

Converts a number representing a Lilian date to a date written
in character format. The output is a character string such as
1992/07/25.

CEEDATM (Convert seconds to character
timestamp)

Converts a number representing the number of seconds since
00:00:00 14 October 1582 to a character format. The format of
the output is a character string, such as "1992/07/26 20:37:00."

CEEDAYS (Convert date to Lilian format) Converts a string representing a date into a Lilian format. The
Lilian format represents a date as the number of days since 14
October 1582, the beginning of the Gregorian calendar.

CEEDYWK (Calculate day of week from
Lilian date)

Calculates the day of the week on which a Lilian date falls. The
day of the week is returned to the calling routine as a number
between 1 and 7.

CEEGMT (Get current Greenwich mean
time)

Returns the current Greenwich Mean Time (GMT) as both a Lilian
date and as the number of seconds since 00:00:00 14 October
1582. These values are compatible with those generated and
used by the other Language Environment date and time services.

CEEGMTO (Get offset from Greenwich
mean time to local time)

Returns values to the calling routine that represents the
difference between the local system time and Greenwich Mean
Time.

CEEISEC (Convert integers to seconds) Converts separate binary integers representing year, month, day,
hour, minute, second, and millisecond to a number representing
the number of seconds since 00:00:00 14 October 1582. Use
CEEISEC instead of CEESECS when the input is in numeric format
rather than character format.

CEELOCT (Get current local time) Returns the current local time in three formats:

• Lilian date (the number of days since 14 October 1582)
• Lilian timestamp (the number of seconds since 00:00:00 14

October 1582)
• Gregorian character string (in the form YYYYMMDDHHMISS999)

CEEQCEN (Query the century window) Queries the century within which Language Environment assumes
2-digit year values lie. Use it with CEESCEN when it is necessary
to save and restore the current setting.

CEESCEN (Set the century window) Sets the century where Language Environment assumes 2-digit
year values lie. Use it with CEEDAYS or CEESECS when you
process date values that contain 2-digit years (for example, in
the YYMMDD format), or when the Language Environment default
century interval does not meet the requirements of a particular
application.

Chapter 3. Language Environment callable services 25

Table 4. Date and time services (continued)

Service name Description

CEESECI (Convert seconds to integers) Converts a number representing the number of seconds since
00:00:00 14 October 1582 to seven separate binary integers
representing year, month, day, hour, minute, second, and
millisecond. Use CEESECI instead of CEEDATM when the output
is needed in numeric format rather than character format.

CEESECS (Convert timestamp to number
of seconds)

Converts a string representing a timestamp into a number
representing the number of seconds since 00:00:00 14 October
1582. This service makes it easier to do time arithmetic, such as
calculating the elapsed time between two timestamps.

CEEUTC (Get Coordinated Universal
Time)

CEEUTC is an alias of CEEGMT.

Dynamic storage services
Table 5. Dynamic storage services

Service name Description

CEECRHP (Create new additional heap) Defines additional heaps. The heaps that are defined by CEECRHP
can be used just like the Language Environment initial heap (heap
ID of 0). However, the entire heap that is created by CEECRHP
may be quickly freed with a single call to the CEEDSHP (discard
heap) service.

CEECZST (Reallocate storage) Changes the size of a previously allocated storage element while
preserving its contents. Reallocation of a storage element is
accomplished by allocating a new storage element of a new size
and copying the contents of the old element to the new element.

CEEDSHP (Discard heap) Discards an entire heap that you created previously with a call to
CEECRHP.

CEEFRST (Free heap storage) Frees storage previously allocated by CEEGTST. It can be used
to free both large and small blocks of storage efficiently because
freed storage is retained on a free chain instead of being returned
to the operating system.

CEEGTST (Get heap storage) Allocates storage from a heap whose ID you specify. It can be
used to efficiently acquire both large and small blocks of storage.

General services
Table 6. General services

Service name Description

CEE3DLY (Suspend processing of an
active enclave in seconds)

Suspends processing of an active enclave for a specified number
of seconds up to a maximum of one hour.

CEE3DMP (Generate dump) Generates a dump of the runtime environment of Language
Environment and of the member language libraries. The dump
can be modified to selectively include such information as number
and contents of enclaves and threads, traceback of all routines
on a call chain, file attributes, and variable, register, and storage
contents.

26 z/OS: z/OS Language Environment Concepts Guide

Table 6. General services (continued)

Service name Description

CEE3INF (Provide enclave information) Provides current Language Environment information about the
enclave.

CEETDLI (Invoke IMS) Invokes IMS.

CEE3RPH (Set report heading) Sets the heading that is displayed at the top of the storage
or runtime options report. Language Environment generates the
storage report when the RPTSTG(ON) runtime option is specified,
and the options report when the RPTOPTS(ON) runtime option is
specified.

CEE3USR (Set or query user area fields) Sets or queries one of two 4-byte fields in the enclave data block
known as the user area fields. The user area fields are associated
with an enclave and are maintained on an enclave basis. A user
area might be used by vendor or applications to store a pointer to
a global data area or keep a recursion counter.

CEEDLYM (Suspend processing of an
active enclave in milliseconds)

Suspends processing of an active enclave for a specific number of
milliseconds up to a maximum of one hour.

CEEENV (Query, set, or delete
environment variables)

Allows for querying, setting, and deleting of environment
variables.

CEEGPID (Retrieve the Language
Environment version and platform ID)

Retrieves the Language Environment version ID and the platform
ID of the version and platform of Language Environment that is in
use for processing the currently active condition.

CEEGTJS (Retrieves the value of an
exported JCL symbol)

Retrieves and returns to the caller the length of an exported JCL
symbol value or the symbol value.

CEEMICT (Manage the interoperability
state of current task)

Allows high-level language programs to manage the
interoperability state of the current task.

CEERAN0 (Calculate uniform random
numbers)

Generates a sequence of uniform pseudo-random numbers
between 0 and 1 using the multiplicative congruential method
with a user-specified seed.

CEETEST (Invoke debugging) Invokes a debug tool, such as IBM Debug for z/OS.

CEEUSGD (Usage Data Collection service) Allows high-level languages to call the IFAUSAGE service for
usage data collection.

Initialization and termination services
Table 7. Initialization and termination services

Service name Description

CEE3ABD (Terminate enclave with an
abend)

Requests Language Environment to terminate the enclave via an
abend. The abend can be issued either with or without cleanup.

CEE3AB2 (Add a reason code to an
abend)

Supports the addition of a reason code to the ABEND. This
enhances CEE3ABD to allow for more control of diagnostic
information collection.

CEE3GRC (Get the enclave return code) Retrieves the current value of the user enclave return code.

Chapter 3. Language Environment callable services 27

Table 7. Initialization and termination services (continued)

Service name Description

CEE3PRM (Query parameter string) Returns to the calling routine the parameter string that was
specified at invocation of the program. The returned parameter
string contains only user parameters. If no user parameters are
available, a blank string is returned.

CEE3PR2 (Supports longer parameter
lists)

Supports longer parameter lists.

CEE3SRC (Set the enclave return code) Modifies the user enclave return code. The value set is used in the
calculation of the final enclave return code at enclave termination.

Locale callable services
Table 8. Locale callable services

Service name Description

CEEFMON (Format monetary string) Converts numeric values to monetary strings.

CEEFTDS (Format time and date into
character string)

Converts time and date specifications into a character string.

CEELCNV (Query locale numeric
conventions)

Returns information about the LC_NUMERIC and LC_MONETARY
categories of the locale.

CEEQDTC (Query locale date and time
conventions)

Queries the locale's date and time conventions.

CEEQRYL (Query active locale
environment)

Allows the calling routine to query the current locale.

CEESCOL (Compare collation weight of
two strings)

Compares two character strings that are based on the collating
sequence that is specified in the LC_COLLATE category of the
locale.

CEESETL (Set locale operating
environment)

Allows an enclave to establish a global operating environment. An
enclave's National Language operating environment determines
the behavior of character collation, character classification,
date and time formatting, numeric punctuation, and message
response.

CEESTXF (Transform string characters
into collation weights)

Transforms each character in a character string into its collation
weight and returns the length of the transformed string.

Mathematical services
Language Environment math services are scalar routines. x is a data type variable.

Table 9. Mathematical services

Service name Description

CEESxABS Absolute value

CEESxACS Arccosine

CEESxASN Arcsine

CEESxATH Hyperbolic arctangent

28 z/OS: z/OS Language Environment Concepts Guide

Table 9. Mathematical services (continued)

Service name Description

CEESxATN Arctangent

CEESxAT2 Arctangent x/y

CEESxCJG Conjugate of complex

CEESxCOS Cosine

CEESxCSH Hyperbolic cosine

CEESxCTN Cotangent

CEESxDIM Positive difference

CEESxDVD Floating complex divide

CEESxERF Error function

CEESxEXP Exponential (base e)

CEESxGMA Gamma function

CEESxIMG Imaginary part of complex

CEESxINT Truncation

CEESxLGM Log gamma function

CEESxLG1 Logarithm base 10

CEESxLG2 Logarithm base 2

CEESxLOG Logarithm base e

CEESxMLT Floating complex multiply

CEESxMOD Modular arithmetic

CEESxNIN Nearest integer

CEESxNWN Nearest whole number

CEESxSGN Transfer of sign

CEESxSIN Sine

CEESxSNH Hyperbolic sine

CEESxSQT Square root

CEESxTAN Tangent

CEESxTNH Hyperbolic tangent

CEESxXPx Exponentiation

Chapter 3. Language Environment callable services 29

Message handling services
Table 10. Message handling services

Service name Description

CEECMI (Store and load message insert
data)

Stores the message insert data and loads the address of that data
into the instance-specific information (ISI) field that is associated
with the condition that is being processed after optionally creating
an ISI.

CEEMGET (Get a message) Retrieves, formats, and stores a message in a buffer for
manipulation or output by the caller.

CEEMOUT (Dispatch a message) Dispatches a message to a destination which you specify.

CEEMSG (Get, format, and dispatch a
message)

Gets/formats/dispatches a message corresponding to an input
condition token received from a callable service. You can use
this service to print a message after a call to any Language
Environment service that returns a condition token.

National language support services
Table 11. National language support services

Service name Description

CEE3CTY (Set default country) Allows the calling routine to change or query the current national
country setting. The country setting affects the date format,
the time format, the currency symbol, the decimal separator
character, and the thousands separator.

CEE3LNG (Set national language) Allows the calling routine to change or query the current national
language. The national languages can be recorded on a LIFO
national language stack. Changing the national language changes
the languages of error messages, the names of the days of the
week, and the names of the months.

CEE3MCS (Obtain default currency
symbol)

Returns the default currency symbol for the country specified.

CEE3MDS (Obtain default decimal
separator)

Returns the default decimal separator for the country specified.

CEE3MTS (Obtain default thousands
separator)

Returns the default thousands separator for the country specified.

CEEFMDA (Obtain default date format) Returns to the calling routine the default date picture string for a
specified country.

CEEFMDT (Obtain default date and time
format)

Returns to the calling routine the default date and time picture
strings for the country specified.

CEEFMTM (Obtain default time format) Returns to the calling routine the default time picture string for
the country specified.

30 z/OS: z/OS Language Environment Concepts Guide

Chapter 4. Sample routines

Sample routines that demonstrate several aspects of Language Environment are included.

• Assembler routine, “Sample assembler routine” on page 31
• C/C++ routine, “Sample C/C++ routine” on page 31
• C routine with POSIX functions, “Sample C routine with POSIX functions” on page 32
• COBOL program, “Sample COBOL program” on page 33
• PL/I routine, “Sample PL/I routine” on page 34

Sample assembler routine
* ===
*
* Shows a simple main assembler routine that brings up the environment,
* returns with a return code of 0, modifier of 0, and prints a
* message in the main routine.
*
* ===
MAIN CEEENTRY PPA=MAINPPA
*
*
 LA 1,PARMLIST
 L 15,=V(CEEMOUT)
 BALR 14,15
*
* Terminate the Language Environment environment and return to the caller
*
 CEETERM RC=0,MODIFIER=0
* ==
* CONSTANTS AND WORKAREAS
* ==
PARMLIST DC AL4(STRING)
 DC AL4(DEST)
 DC X'80000000' Omitted feedback code
*
STRING DC AL2(STRLEN)
STRBEGIN DC CL19'In the main routine'
STRLEN EQU *-STRBEGIN
DEST DC F'2'
MAINPPA CEEPPA Constants describing the code block
 CEEDSA Mapping of the dynamic save area
 CEECAA Mapping of the common anchor area
 END MAIN Nominate MAIN as the entry point

Sample C/C++ routine
This routine demonstrates the following Language Environment callable services:

• CEEMOUT—Dispatch a message
• CEELOCT—Get current time
• CEEDATE—Convert Lilian date to character format

#include <leawi.h>
#include <string.h>
main ()
{
 _FEEDBACK fbcode; /* fbcode for all callable services */

/***/
/* Parameters passed to CEEMOUT. Typedefs found in leawi.h. */
/***/
 _VSTRING msg;
 _INT4 destination;

© Copyright IBM Corp. 1991, 2024 31

/***/
/* Parameters passed to CEELOCT. Typedefs found in leawi.h. */
/***/
 _INT4 lildate;
 _FLOAT8 lilsecs;
 _CHAR17 greg;
/***/
/* Parameters passed to CEEDATE. Typedefs found in leawi.h. */
/***/
 _CHAR80 str_date;
 _VSTRING pattern;
/***/
/* Starting and ending messages */
/***/
 _CHAR80 startmsg = "Callable service example starting (C/370).";
 _CHAR80 endingmsg = "Callable service example ending (C/370).";

/***/
/* Start execution. Print the first message. */
/***/
 destination = 2;
 strcpy(msg.string, startmsg);
 msg.length = strlen(msg.string);
 CEEMOUT (&msg, &destination, &fbcode);
/***/
/* Get the local date and time, format it, and print it out. */
/***/
 CEELOCT (&lildate, &lilsecs, greg, &fbcode);
 strcpy (pattern.string,\
 "Today is Wwwwwwwwwwwwz, Mmmmmmmmmmz ZD, YYYY.");
 pattern.length = strlen(pattern.string);
 memset (msg.string , ' ' , 80);
 CEEDATE (&lildate, &pattern, msg.string, &fbcode);
 msg.length = 80;
 CEEMOUT (&msg, &destination, &fbcode);
/***/
/* Say goodbye. */
/***/
 strcpy (msg.string, endingmsg);
 msg.length = strlen(msg.string);
 CEEMOUT (&msg, &destination, &fbcode);
}

Sample C routine with POSIX functions
This C routine creates multiple threads by using POSIX functions.

#pragma longname
#define _POSIX_SOURCE
#define _OPEN_THREADS
#pragma runopts (POSIX(ON))
#include <leawi.h>
#include <types.h>
#include <stdio.h>
#include <pthread.h>
#include <unistd.h>
#include <errno.h>

void * CEPSXT1(void *);

main()
{
pthread_t CEPSXT1_pid[3];

 int status[2], i, j[2], rc, count=0;

 fprintf(stderr,"\n Creating two threads................\n");
 fflush(stderr);
 for(i=0; i<2; i++)
 {
 j[i] = i+1;
 rc = pthread_create(&CEPSXT1_pid[i], NULL, &CEPSXT1, &j[i])
 if (rc)
 {
 fprintf(stderr, "Thread creation unsuccessful;Error: %d",errno);
 fprintf(stderr, "pthread_create() returns %d ",rc);
 fflush(stderr);
 exit(-1);
 }

32 z/OS: z/OS Language Environment Concepts Guide

 else
 fprintf(stderr,"Thread %d created\n",j[i]);
 }
 for(i=0; i<2; i++)
 {
 j[i] = i+1;
 if (!(rc = pthread_join(CEPSXT1_pid[i],(void*) &status[i])))
 {
 if (status[i] == 1)
 count++;
 }
 else
 {
 fprintf(stderr,"pthread_join failed for thread %d\n",j[i]);
 fflush(stderr);
 exit(-1);
 }
 } if (count == 2)
 fprintf(stderr,"\n***** SUCCESS *****\n");
 else
 fprintf(stderr,"\n***** ERROR *****\n");
 fflush(stderr);
 pthread_exit(0);
}
void * CEPSXT1(void *arg)
{
 int status=0, success=0;
 div_t ans;
 char path = '/';
 int i, rc;

 i = *((int *)arg);

 fprintf(stderr,"\n Call POSIX access() function in Thread %d",i);
 fflush(stderr);
 if (access(path, F_OK) == 0)
 fprintf(stderr,"\nPOSIX access() function succeeds in Thread %d\n",i);
 else
 fprintf(stderr, "Error generated by call to access() is %d", errno);

 fflush(stderr);

 status=1;

 fprintf(stderr,"***** Thread %d completed *****\n", i);
 fflush(stderr);
 pthread_exit((void*) status);
}

Sample COBOL program
This program demonstrates the following Language Environment callable services:

• CEEMOUT—Dispatch a message
• CEELOCT—Get current time
• CEEDATE—Convert Lilian date to character format

 **
 * This program demonstrates the following Language *
 * Environment callable *
 * services : CEEMOUT, CEELOCT, CEEDATE *
 **
 **
 ** I D D I V I S I O N ***
 **
 Identification Division.
 Program-id. AWIXMP.
 **
 ** D A T A D I V I S I O N ***
 **
 Data Division.
 Working-Storage Section.
 **
 ** Declarations for the local date/time service.
 **

Chapter 4. Sample routines 33

 01 Feedback.
 COPY CEEIGZCT.
 02 Fb-severity PIC 9(4) Binary.
 02 Fb-detail PIC X(10).
 77 Dest-output PIC S9(9) Binary.
 77 Lildate PIC S9(9) Binary.
 77 Lilsecs COMP-2.
 77 Greg PIC X(17).
 **
 ** Declarations for messages and pattern for date formatting.
 **
 01 Pattern.
 02 PIC 9(4) Binary Value 45.
 02 PIC X(45) Value
 "Today is Wwwwwwwwwwwwz, Mmmmmmmmmmz ZD, YYYY.".

 77 Start-Msg PIC X(80) Value
 "Callable Service example starting.".

 77 Ending-Msg PIC X(80) Value
 "Callable Service example ending.".

 01 Msg.
 02 Stringlen PIC S9(4) Binary.
 02 Str .
 03 PIC X Occurs 1 to 80 times
 Depending on Stringlen.
 **
 ** P R O C D I V I S I O N ***
 **
 Procedure Division.
 000-Main-Logic.
 Perform 100-Say-Hello.
 Perform 200-Get-Date.
 Perform 300-Say-Goodbye.
 Stop Run.
 **
 ** Setup initial values and say we are starting.
 **
 100-Say-Hello.
 Move 80 to Stringlen.
 Move 02 to Dest-output.
 Move Start-Msg to Str.
 CALL "CEEMOUT" Using Msg Dest-output Feedback.
 Move Spaces to Str.
 CALL "CEEMOUT" Using Msg Dest-output Feedback.
 **
 ** Get the local date and time and display it.
 **
 200-Get-Date.
 CALL "CEELOCT" Using Lildate Lilsecs Greg Feedback.
 CALL "CEEDATE" Using Lildate Pattern Str Feedback.
 CALL "CEEMOUT" Using Msg Dest-output Feedback.
 Move Spaces to Str.
 CALL "CEEMOUT" Using Msg Dest-output Feedback.
 **
 ** Say Goodbye.
 **
 300-Say-Goodbye.
 Move Ending-Msg to Str.
 CALL "CEEMOUT" Using Msg Dest-output Feedback.
 End program AWIXMP.

Tip: CEEIGZCT is found in SCEESAMP.

Sample PL/I routine
This routine demonstrates the following Language Environment callable services:

• CEEMOUT—Dispatch a message
• CEELOCT—Get current time
• CEEDATE—Convert Lilian date to character format

 /* Declarations for callable services */
 %INCLUDE CEEIBMAW;
 %INCLUDE CEEIBMCT;

34 z/OS: z/OS Language Environment Concepts Guide

 /* feedback code for all callable services*/
 dcl 01 fc FEEDBACK;
 /**/
 /** Parameters passed to CEEMOUT. **/
 /** **/
 /**/
 dcl startmsg CHAR80
 init('Callable service example starting (PL/I)');
 dcl endmsg CHAR80
 init('Callable service example ending (PL/I)');
 dcl strmsg CHAR80;
 dcl destination real fixed binary (31,0);
 /**/
 /** Parameters passed to CEELOCT. **/
 /** **/
 /**/
 dcl lildate real fixed binary (31,0);
 dcl lilsecs real float decimal (16);
 dcl greg character (17);
 /**/
 /** Parameters for CEEDATE. **/
 /** **/
 /**/
 dcl pattern CHAR80;
 dcl chrdate CHAR80 init ((80)' ');
 /**/
 /** Start execution. Print the first message. **/
 /** **/
 /**/
 destination = 2;
 call CEEMOUT (startmsg , destination , fc);
 IF ¬ FBCHECK(fc, CEE000) THEN DO;
 DISPLAY('CEEMOUT failed with msg ' || fc.MsgNo);
 STOP;
 END;
 /**/
 /** Get the local date and time. Format it, and print it **/
 /** out. **/
 /**/
 call CEELOCT (lildate , lilsecs , greg , fc);
 IF ¬ FBCHECK(fc, CEE000) THEN DO;
 DISPLAY('CEELOCT failed with msg ' || fc.MsgNo);
 STOP;
 END;
 pattern = 'Today is Wwwwwwwwwwwwz, Mmmmmmmmmmz, ZD, YYYY.';
 call CEEDATE (lildate , pattern , chrdate , fc);
 IF ¬ FBCHECK(fc, CEE000) THEN DO;
 DISPLAY('CEEDATE failed with msg ' || fc.MsgNo);
 STOP;
 END;

 strmsg = chrdate;
 call CEEMOUT (strmsg , destination , fc);
 IF ¬ FBCHECK(fc, CEE000) THEN DO;
 DISPLAY('CEEMOUT failed with msg ' || fc.MsgNo);
 STOP;
 END;

/**/
 /** Say good bye. **/
 /** **/
 /**/
 call CEEMOUT (endmsg , destination , fc);
 IF ¬ FBCHECK(fc, CEE000) THEN DO;
 DISPLAY('CEEMOUT failed with msg ' || fc.MsgNo);
 STOP;
 END;

 end;

Chapter 4. Sample routines 35

36 z/OS: z/OS Language Environment Concepts Guide

Appendix A. Accessibility

Accessible publications for this product are offered through IBM Documentation for z/OS (www.ibm.com/
docs/en/zos).

If you experience difficulty with the accessibility of any z/OS documentation see How to Send Feedback to
IBM to leave documentation feedback.

© Copyright IBM Corp. 1991, 2024 37

https://www.ibm.com/docs/en/zos
https://www.ibm.com/docs/en/zos
https://www.ibm.com/docs/en/zos/latest?topic=how-send-feedback
https://www.ibm.com/docs/en/zos/latest?topic=how-send-feedback

38 z/OS: z/OS Language Environment Concepts Guide

Notices

This information was developed for products and services that are offered in the USA or elsewhere.

IBM may not offer the products, services, or features discussed in this document in other countries.
Consult your local IBM representative for information on the products and services currently available in
your area. Any reference to an IBM product, program, or service is not intended to state or imply that
only that IBM product, program, or service may be used. Any functionally equivalent product, program, or
service that does not infringe any IBM intellectual property right may be used instead. However, it is the
user's responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this
document. The furnishing of this document does not grant you any license to these patents. You can
send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive, MD-NC119
Armonk, NY 10504-1785
United States of America

For license inquiries regarding double-byte character set (DBCS) information, contact the IBM Intellectual
Property Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan Ltd.
19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of
express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically
made to the information herein; these changes will be incorporated in new editions of the publication.
IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

This information could include missing, incorrect, or broken hyperlinks. Hyperlinks are maintained in
only the HTML plug-in output for IBM Documentation. Use of hyperlinks in other output formats of this
information is at your own risk.

Any references in this information to non-IBM websites are provided for convenience only and do not in
any manner serve as an endorsement of those websites. The materials at those websites are not part of
the materials for this IBM product and use of those websites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the
exchange of information between independently created programs and other programs (including this
one) and (ii) the mutual use of the information which has been exchanged, should contact:

IBM Corporation
Site Counsel
2455 South Road

© Copyright IBM Corp. 1991, 2024 39

Poughkeepsie, NY 12601-5400
USA

Such information may be available, subject to appropriate terms and conditions, including in some cases,
payment of a fee.

The licensed program described in this document and all licensed material available for it are provided by
IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement or any
equivalent agreement between us.

Any performance data contained herein was determined in a controlled environment. Therefore, the
results obtained in other operating environments may vary significantly. Some measurements may have
been made on development-level systems and there is no guarantee that these measurements will be
the same on generally available systems. Furthermore, some measurements may have been estimated
through extrapolation. Actual results may vary. Users of this document should verify the applicable data
for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of those products, their
published announcements or other publicly available sources. IBM has not tested those products and
cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM
products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of
those products.

All statements regarding IBM's future direction or intent are subject to change or withdrawal without
notice, and represent goals and objectives only.

This information contains examples of data and reports used in daily business operations. To illustrate
them as completely as possible, the examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to the names and addresses used by an
actual business enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs
in any form without payment to IBM, for the purposes of developing, using, marketing or distributing
application programs conforming to the application programming interface for the operating platform
for which the sample programs are written. These examples have not been thoroughly tested under
all conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these
programs. The sample programs are provided "AS IS", without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

Terms and conditions for product documentation
Permissions for the use of these publications are granted subject to the following terms and conditions.

Applicability
These terms and conditions are in addition to any terms of use for the IBM website.

Personal use
You may reproduce these publications for your personal, noncommercial use provided that all proprietary
notices are preserved. You may not distribute, display or make derivative work of these publications, or
any portion thereof, without the express consent of IBM.

Commercial use
You may reproduce, distribute and display these publications solely within your enterprise provided
that all proprietary notices are preserved. You may not make derivative works of these publications, or

40 z/OS: z/OS Language Environment Concepts Guide

reproduce, distribute or display these publications or any portion thereof outside your enterprise, without
the express consent of IBM.

Rights
Except as expressly granted in this permission, no other permissions, licenses or rights are granted, either
express or implied, to the publications or any information, data, software or other intellectual property
contained therein.

IBM reserves the right to withdraw the permissions granted herein whenever, in its discretion, the use
of the publications is detrimental to its interest or, as determined by IBM, the above instructions are not
being properly followed.

You may not download, export or re-export this information except in full compliance with all applicable
laws and regulations, including all United States export laws and regulations.

IBM MAKES NO GUARANTEE ABOUT THE CONTENT OF THESE PUBLICATIONS. THE PUBLICATIONS
ARE PROVIDED "AS-IS" AND WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED,
INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT,
AND FITNESS FOR A PARTICULAR PURPOSE.

IBM Online Privacy Statement
IBM Software products, including software as a service solutions, ("Software Offerings") may use cookies
or other technologies to collect product usage information, to help improve the end user experience,
to tailor interactions with the end user, or for other purposes. In many cases no personally identifiable
information is collected by the Software Offerings. Some of our Software Offerings can help enable you
to collect personally identifiable information. If this Software Offering uses cookies to collect personally
identifiable information, specific information about this offering’s use of cookies is set forth below.

Depending upon the configurations deployed, this Software Offering may use session cookies that collect
each user’s name, email address, phone number, or other personally identifiable information for purposes
of enhanced user usability and single sign-on configuration. These cookies can be disabled, but disabling
them will also eliminate the functionality they enable.

If the configurations deployed for this Software Offering provide you as customer the ability to collect
personally identifiable information from end users via cookies and other technologies, you should seek
your own legal advice about any laws applicable to such data collection, including any requirements for
notice and consent.

For more information about the use of various technologies, including cookies, for these purposes, see
IBM’s Privacy Policy at ibm.com®/privacy and IBM’s Online Privacy Statement at ibm.com/privacy/details
in the section entitled “Cookies, Web Beacons and Other Technologies,” and the “IBM Software Products
and Software-as-a-Service Privacy Statement” at ibm.com/software/info/product-privacy.

Policy for unsupported hardware
Various z/OS elements, such as DFSMSdfp, JES2, and MVS, contain code that supports specific hardware
servers or devices. In some cases, this device-related element support remains in the product even after
the hardware devices pass their announced End of Service date. z/OS may continue to service element
code; however, it will not provide service related to unsupported hardware devices. Software problems
related to these devices will not be accepted for service, and current service activity will cease if a
problem is determined to be associated with out-of-support devices. In such cases, fixes will not be
issued.

Minimum supported hardware
The minimum supported hardware for z/OS releases identified in z/OS announcements can subsequently
change when service for particular servers or devices is withdrawn. Likewise, the levels of other software
products supported on a particular release of z/OS are subject to the service support lifecycle of those

Notices 41

http://www.ibm.com/privacy
http://www.ibm.com/privacy/details
http://www.ibm.com/software/info/product-privacy

products. Therefore, z/OS and its product publications (for example, panels, samples, messages, and
product documentation) can include references to hardware and software that is no longer supported.

• For information about software support lifecycle, see: IBM Lifecycle Support for z/OS (www.ibm.com/
software/support/systemsz/lifecycle)

• For information about currently-supported IBM hardware, contact your IBM representative.

Programming Interface Information
This book documents intended Programming Interfaces that allow the customer to write programs to
obtain the services of z/OS Language Environment.

Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business
Machines Corporation in the United States, other countries, or both. If these and other IBM trademarked
terms are marked on their first occurrence in this information with a trademark symbol (® or ™), these
symbols indicate U.S. registered or common law trademarks owned by IBM at the time this information
was published. Such trademarks may also be registered or common law trademarks in other countries.
A current list of IBM trademarks is available on the Web at Copyright and Trademark information
(www.ibm.com/legal/copytrade.shtml).

Java and all Java-based trademarks and logos are trademarks or registered trademarks of Oracle, its
affiliates, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

42 z/OS: z/OS Language Environment Concepts Guide

http://www.ibm.com/software/support/systemsz/lifecycle
http://www.ibm.com/software/support/systemsz/lifecycle
http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/legal/copytrade.shtml

Language Environment glossary

This glossary defines technical terms and abbreviations used in z/OS Language Environment
documentation.

This glossary includes terms and definitions from: Portable Operating System Interface (POSIX) Part 1:
System Application Program Interface (API) [C Language], ISO/EIC 9945-1: 1990, IEEE Std 1003.1-1990,
copyright 1992 by The Institute of Electrical and Electronics Engineers, Inc., 345 East 47th Street, New
York, NY 10017. These terms are identified by [POSIX.1].
abend

Abnormal end of application.
absolute value

The magnitude of a real number regardless of its algebraic sign.
active routine

The currently executing routine.
actual argument

The Fortran term for the data passed to a called routine at the point of call. See also dummy argument.
additional heap

A Language Environment heap created and controlled by a call to CEECRHP. See also below heap,
anywhere heap, and initial heap.

addressing mode
An attribute that refers to the address length that a routine is prepared to handle upon entry.
Addresses may be 24 or 31 bits long.

address space
Domain of addresses that are accessible by an application.

advanced floating point registers (AFP)
For IEEE support, 12 additional floating point registers, for a total of 16 floating-point registers.

AFP
See advanced floating-point registers (AFP).

aggregate
A structured collection of data items that form a single data type. Contrast with scalar.

AIB
Application interface block.

ALLOCATE command
In MVS, the TSO command that serves as the connection between a file's logical name (the ddname)
and the file's physical name (the data set name).

American National Standard Code for Information Interchange (ASCII)
The code developed by the American National Standards Institute (ANSI) for information interchange
among data processing systems, data communications systems, and associated equipment. The
ASCII character set consists of 7-bit control characters and symbolic characters.

AMODE
Provided by the linkage editor, the attribute of a load module that indicates the addressing mode in
which the load module should be entered.

AMODE 31
Addressing mode 31.

AMODE 64
Addressing mode 64.

© Copyright IBM Corp. 1991, 2024 43

anywhere heap
The Language Environment heap controlled by the ANYHEAP runtime option. It contains library data,
such as Language Environment control blocks and data structures not normally accessible from user
code. The anywhere heap may reside above 16M. See also below heap, additional heap, initial heap.

APAR
Authorized program analysis report.

application
A collection of one or more routines cooperating to achieve particular objectives.

application interface block (AIB)
IMS interface between an application and an IMS database.

application program
A collection of software components used to perform specific types of work on a computer, such as a
program that does inventory control or payroll.

argument
1) An expression used at the point of a call to specify a data item or aggregate to be passed to the
called routine. 2) The data passed to a called routine at the point of call or the data received by a
called routine. See also actual argument and dummy argument.

array
An aggregate that consists of data objects, each of which may be uniquely referenced by subscripting.

array element
A data item in an array.

ASCII
American National Standard Code for Information Interchange.

assembler
Translates symbolic assembler language into binary machine language. The High Level Assembler is
an IBM licensed program.

assembler user exit
A routine to tailor the characteristics of an enclave prior to its establishment. The name of the routine
is CEEBXITA.

async safe
An application is able to mask off asynchronous signals when it is working with critical data or
structures. The application can request to process the asynchronous signals when it has finished
updated the critical data or structure.

atexit list
A list of actions specified in the Language Environment atexit() function that occur at normal
program termination.

authorized program analysis report (APAR)
A request for correction of a problem caused by a defect in a current unaltered release of a program.

automatic call
The process used by the linkage editor to resolve external symbols left undefined after all the primary
input has been processed. See also automatic call library.

automatic call library
Contains load modules or object modules that are to be used as secondary input to the linkage editor
to resolve external symbols left undefined after all the primary input has been processed.

The automatic call library may be:

• Libraries containing object modules, with or without linkage editor control statements
• Libraries containing load modules
• The library containing Language Environment runtime routines (SCEELKED) (SCEELKED and

SAFHFORT)

44 z/OS: z/OS Language Environment Concepts Guide

automatic conversion
For Enhanced ASCII functionality, the automatic conversion of text data from EBCDIC to ASCII, or
from ASCII to EBCDIC, as part of using internationalized applications developed on (or for) ASCII
platforms and ported to z/OS platforms. See also file tag and coded character set ID (CCSID).

automatic data
Data for a routine that is automatically allocated when the routine is called and automatically freed
when the routine returns. Automatic data does not persist from one call of the routine to the next.

automatic library call
Automatic call. See also automatic call library.

automatic storage
Storage that is allocated on entry to a routine or block and is freed on the subsequent return.
Sometimes referred to as stack storage or dynamic storage.

AWI
Application writer interface.

background process
A process that is a member of a background process group. [POSIX.1]

background process group
Any process group, other than a foreground process group, that is a member of a session that has
established a connection with a controlling terminal. [POSIX.1]

base
The core product, upon which features may be separately ordered and installed.

batch
Pertaining to activity involving little or no user action. Contrast with interactive.

below heap
The Language Environment heap controlled by the BELOWHEAP runtime option, which contains
library data, such as Language Environment control block and data structures not normally accessible
from user code. Below heap always resides below 16M. See also anywhere heap, initial heap,
additional heap.

BFP
See binary floating point (BFP).

binary floating point
For IEEE, binary floating point registers.

breakpoint
A place in a program, usually specified by a command or a condition, where execution may be
interrupted and control given to the workstation user or to a specified debug tool program.

buffer
An area of storage into which data is read or from which it is written. Typically, buffers are used only
for temporary storage.

by content
See pass by content.

by reference
See pass by reference.

by value
See pass by value.

byte
The basic unit of storage addressability. It has a length of 8 bits.

C language
A high-level language used to develop software applications in compact, efficient code that can be run
on different types of computers with minimal change.

Language Environment glossary 45

C++ language
An object-oriented high-level language that evolved from the C language. C++ exploits the benefits of
object-oriented technology such as code modularity, portability, and reuse.

C-CAA
C/370-specific common anchor area in the runtime environment.

CAA
Common anchor area.

call chain
A trace of all active routines and subroutines that can be constructed by the user from information
included in a system dump, such as the locations of save areas and the names of routines.

callable service stub
A short routine that is link-edited with an application and that is used to transfer control from the
application to a callable service.

callable services
A set of services that can be invoked by a Language Environment-conforming high-level language
using the conventional Language Environment-defined call interface, and usable by all programs
sharing the Language Environment conventions.

Use of these services helps to decrease an application’s dependence on the specific form and content
of the services delivered by any single operating system.

called routine
A routine or program that is invoked by another.

callee
A routine or program that is invoked by another.

caller
A routine or program that invokes another routine.

calling routine
A routine or program that invokes another routine.

CASE
Computer-aided software engineering.

cast
In C, an expression that converts the type of the operand to a specified data type (the operator).

cataloged procedure
A set of job control language (JCL) statements placed in a library and retrievable by name.

CBIPO
Custom-Built Installation Process Offering.

CBPDO
Custom-Built Product Delivery Offering.

CCSID
See coded character set ID (CCSID).

CEEDUMP
A dump of the runtime environment for Language Environment and the member language libraries.
Sections of the dump are selectively included, depending on options specified on the dump
invocation. This is not a dump of the full address space, but a dump of storage and control blocks
that Language Environment and its members control.

century window
The 100-year interval in which Language Environment assumes all 2-digit years lie. The Language
Environment default century window begins 80 years before the system date.

chained list
Synonym for linked list.

46 z/OS: z/OS Language Environment Concepts Guide

character
A letter, digit, or other symbol. A letter, digit, or other symbol that is used as part of the organization,
control, or representation of data. A character is often in the form of a spatial arrangement of adjacent
or connected strokes.

child enclave
The nested enclave created as a result of certain commands being issued from a parent enclave.

CIB
Condition information block.

CICS
Customer Information Control System.

CICS destination control table (DCT)
A table that contains an entry for each extrapartition, intrapartition, and indirect destination.
Extrapartition entries address data sets external to the CICS region. Intrapartition destination entries
contain the information required to locate the queue in the intrapartition data set. Indirect destination
entries contain the information required to locate the queue in the intrapartition data set.

CICS OTE
CICS Open Transaction Environment.

CICS run unit
Consists of a statically and/or dynamically bound set of one or more load modules which can be
loaded by a CICS loader. A CICS run unit is equivalent to a Language Environment enclave.

CICS translator
A routine that accepts as input an application containing EXEC CICS commands and produces as
output an equivalent application in which each CICS command has been translated into the language
of the source.

CLIST
TSO command list.

CLLE
COBOL load list entry.

CMS
Conversational monitor system.

CMS extended parameter list
A type of parameter list available in the CMS environment consisting of a string composed exactly as
the user typed it at the terminal. There is no tokenization performed on the string.

CMS tokenized parameter list
A type of parameter list available in the CMS environment consisting of 8-byte tokens, folded to
uppercase, terminating with a double word of X'FF'. Not supported under Language Environment.

COBCOM
Control block containing information about a COBOL partition.

COBOL
COmmon Business-Oriented Language. A high-level language, based on English, that is primarily used
for business applications.

COBOL load list entry (CLLE)
Entry in the load list containing the name of the program and the load address.

COBOL run unit
A COBOL-specific term that defines the scope of language semantics. Equivalent to a Language
Environment enclave.

COBPACK
A collection of individual modules that are packaged into a single load module in order to reduce the
time that would otherwise be needed to load the individual load modules.

COBVEC
A COBOL vector table containing the address of the COBOL library routines.

Language Environment glossary 47

coded character set ID (CCSID)
For Enhanced ASCII functionality, a 16-bit value is a number that represents a character set used by
file tagging. It identifies the current character set of text strings within a program. This is stored in the
file tag of new files or used for the automatic conversion of old files when automatic conversion is in
effect. See also automatic conversion and file tag.

command processor parameter list (CPPL)
The format of a TSO parameter list. When a TSO terminal monitor application attaches a command
processor, register 1 contains a pointer to the CPPL, containing addresses required by the command
processor.

COMMAREA
A communication area made available to applications running under CICS.

common anchor area (CAA)
Dynamically acquired storage that represents a Language Environment thread. Thread-related
storage/resources are anchored off of the CAA. This area acts as a central communications area
for the program, holding addresses of various storage and error-handling routines, and control blocks.
The CAA is anchored by an address in register 12.

common block
A storage area that may be referenced by one or more compilation units. It is declared in a Fortran
program with the COMMON statement. See also external data.

compilation unit
An independently compilable sequence of HLL statements. Each HLL product has different rules for
what makes up a compilation unit. Synonymous with program unit.

compile-time options
Keywords that can be specified to control certain aspects of compilation. Compiler options can control
the nature of the load module generated by the compiler, the types of printed output to be produced,
the efficient use of the compiler, the destination of error messages, and other things.

compiler options
Keywords that can be specified to control certain aspects of compilation. Compiler options can control
the nature of the load module generated by the compiler, the types of printed output to be produced,
the efficient use of the compiler, and the destination of error messages. See also compiler-time
options.

component
A set of modules that performs a major function within a system.

computer-aided software engineering (CASE)
A software engineering discipline for automating the application development process and thereby
improving the quality of application and the productivity of application developers.

condition
An exception that has been enabled, or recognized, by Language Environment and thus is eligible to
activate user and language condition handlers. Conditions can be detected by the hardware/operating
system and result in an interrupt. They can also be detected by language-specific generated code or
language library code.

condition code
A code that reflects the result of a previous input/output, arithmetic, or logical operation.

condition handler
A user-written routine or language-specific routine (such as a PL/I ON-unit or C signal() function
call) invoked by the Language Environment condition manager to respond to conditions.

condition handling
In Language Environment, the diagnosis, reporting, and/or tolerating of errors that occur while a
routine is running.

condition information block (CIB)
The platform-specific data block used by the Language Environment condition manager as a
repository for data about conditions raised in the Language Environment runtime environment.

48 z/OS: z/OS Language Environment Concepts Guide

condition manager
Manages conditions in the common execution environment by invoking various user-written and
language-specific condition handlers.

condition step
The step of the Language Environment condition handling model that follows the enablement step.
In the condition step, user-written condition handlers, C signal handlers, and PL/I ON-units are first
given a chance to handle a condition. See also enablement step and termination imminent step.

condition token
In Language Environment, a data type consisting of 96 bits (12 bytes). The condition token contains
structured fields that indicate various aspects of a condition including the severity, the associated
message number, and information that is specific to a given instance of the condition.

condition variable
A data object that is used for waiting for long durations of time. An application can wait for the variable
to become true before continuing processing. [POSIX.1]

conflicting name
One of 20 names that exist in both the Fortran and the C/C++ libraries. See also conflicting reference.

conflicting reference
An external reference from a Fortran or assembler language routine to a Fortran library routine with
a name that is the same as the name of a C/C++ library routine. The reference is considered to be a
conflicting reference only when the intended resolution is to the Fortran library routine rather than to
the corresponding C/C++ library routine.

constructed reentrancy
The attribute of applications that contain external data and require additional processing to make
them reentrant. Contrast with natural reentrancy.

control block
A storage area used by a computer program to hold control information.

control section (CSECT)
The part of a program specified by the programmer to be a relocatable unit, all elements of which are
to be loaded into adjoining main storage locations.

control statement
In programming languages, a statement that is used to alter the continuous sequential execution
of statements; a control statement can be a conditional statement, such as IF, or an imperative
statement, such as STOP. In JCL, a statement in a job that is used in identifying the job or describing
its requirements to the operating system.

conversational monitor system (CMS)
A virtual machine operating system that provides general interactive time sharing, problem solving,
and program development capabilities, and operates only under the control of the VM/370 control
program.

CPPL
Command processor parameter list.

CSECT
Control section.

cumulative service tape
A tape sent with a new function order, containing all current PTFs for that function.

cursor
One of two pointers managed by the condition manager as it processes a condition. See handle cursor
and resume cursor.

Custom-Built Installation Process Offering (CBIPO)
A CBIPO is a tape that has been specially prepared with the products (at the appropriate release
levels) requested by the customer. A CBIPO simplifies installing various products together.

Language Environment glossary 49

Custom-Built Product Delivery Offering (CBPDO)
A CBPDO is a tape that has been specially prepared for installing a particular product and the related
service requested by the customer. A CBPDO simplifies installing a product and the service for it.

Customer Information Control System (CICS)
CICS is an OnLine Transaction Processing (OLTP) system that provides specialized interfaces to
databases, files and terminals in support of business and commercial applications.

CWI
Compiler-writer interface.

dangling pointer
A pointer to storage that has been freed.

data, qualifying
See qualifying data.

data aggregate
A logical collection of data elements that can be referred to either collectively or individually. In PL/I,
an array or a structure.

data division
In COBOL, the part of a program that describes the files to be used in the program and the records
contained within the files. It also describes any WORKING-STORAGE data items, LINKAGE SECTION
data items, and LOCAL-STORAGE data items that are needed.

data set
Under MVS, a named collection of related data records that is stored and retrieved by an assigned
name. Equivalent to a CMS file.

data type
The properties and internal representation that characterize data.

datum, qualifying
A single element of qualifying data associated with a condition. See qualifying data.

DBCS
Double-byte character set.

DCLCB
Declare control block.

DCT
Destination control table.

DD statement
In MVS, the data definition statement. A JCL control statement that serves as the connection between
a file's logical name (the ddname) and the file's physical name (the data set name).

ddname
Data definition name. The logical name of a file within an application. The ddname provides the means
for the logical file to be connected to the physical file through a FILEDEF command, DD statement, or
ALLOCATE command. DD statement or ALLOCATE command.

decimal overflow
A condition that occurs when one or more nonzero digits are lost because the destination field in a
decimal operation is too short to contain the results.

declare control block (DCLCB)
Control block containing file information.

default
A value that is used or an action that is taken when no alternative is specified.

dereference
In C, the application of the unary operator (*) to a pointer to access the object the pointer points to.
Also known as indirection.

50 z/OS: z/OS Language Environment Concepts Guide

descriptor
PL/I control block that holds information such as string lengths, array subscript bounds, and area
sizes, and is passed from one PL/I routine to another during run time.

descriptor, q_data
See q_data descriptor.

destination control table (DCT)
In CICS, a table containing an entry for each extrapartition, intrapartition, and indirect destination.
Extrapartition entries address data sets external to the CICS region. Indirect destination entries
redirect data to a destination controlled by another DCT entry. Intrapartition destination entries
contain the information required to locate the queue in the intrapartition data set.

device
A computer peripheral or an object that appears to the application as such. [POSIX.1]

direct argument passing
A type of parameter passing in which the value of the argument is placed directly in the argument list
body.

directory entry
An object that associates a filename with a file. Several directory entries can associate names with the
same file. [POSIX.1]

disabled/enabled
See enabled/disabled.

distribution libraries
IBM-supplied partitioned data sets on tape containing one or more components that the user restores
to disk for subsequent inclusion in a new system.

distribution zone
In SMP/E, a group of VSAM records that describe the SYSMODs and elements in the distribution
libraries.

double-byte character set (DBCS)
A collection of characters represented by a 2-byte code.

downward-growing stack
With Extra Performance Linkage (XPLINK), a stack that grows from high addresses to low addresses in
memory.

downwardly compatible
The ability of applications that have been compiled and linked with Language Environment to run on
previous releases of OS/390. In order for an application to be downwardly compatible, it must not
have exploited any new Language Environment function unavailable in the targeted release.

double-precision
Pertaining to the use of two computer words to represent a number in accordance with the required
precision. See also precision, single-precision.

doubleword
A sequence of bits or characters that comprises eight bytes (two 4-byte words) and is referenced as a
unit.

doubleword boundary
A storage location whose address is evenly divisible by 8.

driving system
The system used to install the program. Contrast with target system.

DSA
Dynamic storage area.

dummy argument
The Fortran term for the data received by a called routine. See also actual argument.

dynamic call
A call that results in locating a called routine at run time, that is, by loading the routine into virtual
storage. Contrast with static call.

Language Environment glossary 51

dynamic loading
See dynamic call.

dynamic storage
Storage acquired as needed at run time. Contrast with static storage.

dynamic storage area (DSA)
An area of storage obtained during the running of an application that consists of a register save
area and an area for automatic data, such as program variables. DSAs are generally allocated within
Language Environment–managed stack segments. DSAs are added to the stack when a routine is
entered and removed upon exit in a last in, first out (LIFO) manner. In Language Environment, a DSA is
also known as a stack frame.

EBCDIC
Extended binary-coded decimal interchange code.

EIB
EXEC interface block.

enabled/disabled
A condition is enabled when its occurrence will result in the execution of condition handlers or
in the performance of a standard system action to handle the condition as defined by Language
Environment.

A condition is disabled when its occurrence is ignored by the condition manager.

enablement
The determination by a language at run time that an exception should be processed as a condition.
This is the capability to intercept an exception and to determine whether it should be ignored or
not; unrecognized exceptions are always defined to be enabled. Normally, enablement is used to
supplement the hardware for capabilities that it does not have and language enforcement of a
language’s semantics. An example of supplementing the hardware is the specialized handling of
exponent-overflow exceptions based on language standards.

enablement step
The first step of the Language Environment condition handling model. In the enablement step it is
determined whether an exception is to be enabled and processed as a condition. See also condition
step and termination imminent step.

enclave
In Language Environment, an independent collection of routines, one of which is designated as the
main routine and is invoked first. An enclave is roughly analogous to a program or run unit. an
executable program.

enterprise
The composite of all operational entities, functions, and resources that form the total business
concern.

entry name
In assembler language, a programmer-specified name within a control section that identifies an entry
point and can be referred to by any control section. See also entry point.

entry point
The address or label of the first instruction that is executed when a routine is entered for execution.
Within a load module, the location to which control is passed when the load module is invoked.

entry point name
The symbol (or name) that represents an entry point. See also entry point.

environment
A set of services and data available to a program during execution. In Language Environment,
environment is normally a reference to the runtime environment of HLLs at the enclave level.

environment variable
A variable that is included in the current software environment and is therefore available to any called
program that requests it.

52 z/OS: z/OS Language Environment Concepts Guide

epilog
Code generated at the end of a routine, normally causing a return to the caller of the routine.

euro
The monetary unit of the European Monetary Union (EMU) that was introduced alongside national
currencies on 01 January 1999.

EuroReady product
A product is EuroReady if the product, when used in accordance with its associated documentation, is
capable of correctly processing monetary data in the euro denomination, respecting the euro currency
formatting conventions (including the euro sign). This assumes that all other products (for example,
hardware, software, and firmware) that are used with this product are also EuroReady. IBM hardware
products that are EuroReady may or may not have an engraved euro sign key on their keyboards.

EXEC interface block (EIB)
In CICS, a control block containing information useful in the execution of an application, such as a
transaction identifier and a time and a date when the transaction is started.

exception
The original event such as a hardware signal, software detected event, or user-signaled event which is
a potential condition. This action may or may not include an alteration in a program's normal flow. See
also condition.

execution time
Synonym for run time.

execution environment
Synonym for runtime environment.

extended binary-coded decimal interchange code (EBCDIC)
A set of 256 8-bit characters.

exponent-overflow exception
The program interruption that occurs when an overflow occurs during the execution of a floating-point
instruction, that is, when the result value from the instruction has a characteristic that is larger than
the floating-point data format can handle.

exponent-underflow exception
The program interruption that occurs when the result value from executing a floating-point instruction
has a nonzero fraction and a characteristic is smaller than the floating-point data format can handle.
This program interruption can be disabled through a program mask bit setting.

extended error handling facility
The VS FORTRAN facility that provided automatic error correction and control over both the handling
of the errors and the printing of error messages.

external data
Data that persists over the lifetime of an enclave and maintains last-used values whenever a routine
within the enclave is reentered. Within an enclave consisting of a single load module, it is equivalent
to any C data objects that have static storage duration, a Fortran common block, and COBOL
EXTERNAL data.

external reference
In an object module, a reference to a symbol, such as an entry point name, defined in another
program or module.

Extra Performance Linkage (XPLINK)
Extra Performance Linkage (XPLINK) is an enhanced linkage between programs that can significantly
improve the performance of your C and C++ programs. The primary goal of XPLINK is to make
subroutine calls as fast and efficient as possible by removing all nonessential instructions from the
main program path. The XPLINK runtime option controls the initialization of the XPLINK environment.

FCB
File control block.

feature
A part of an IBM product that may be ordered separately by a customer.

Language Environment glossary 53

feature code
A four-digit code used by IBM to process hardware and software orders.

feedback code (fc)
A condition token value. If you specify fc in a call to a callable service, a condition token indicating
whether the service completed successfully is returned to the calling routine.

fetch
The dynamic load of a PL/I procedure.

FIB
File information block.

file
A named collection of related data records that is stored and retrieved by an assigned name.
Equivalent to an MVS data set.

file control block (FCB)
Block containing the addresses of I/O routines, information about how they were opened and closed,
and a pointer to the file information block.

FILEDEF
File definition statement.

file definition statement (FILEDEF)
In CMS, serves as the connection between the logical name of a file and the physical name of a file.

file descriptor
A per-process unique, nonnegative integer used to identify an open file for the purpose of file access.
[POSIX.1]

file information block (FIB)
A read-only block describing the characteristics of an I/O file.

file system
A collection of files and certain of their attributes. A file system provides a name space for file serial
numbers referring to those files.

file tag
For Enhanced ASCII functionality, a file attribute that identifies the character set of the text data
within a file and indicates whether the file is eligible for automatic conversion. See also automatic
conversion and coded character set ID (CCSID).

fix
A correction of an error in a program, usually a temporary correction or bypass of defective code.

fix-up and resume
The correction of a condition either by changing the argument or parameter and running the routine
again or by providing a specific value for the result.

fixed decimal
See packed decimal format.

fixed-point overflow exception
A program interruption caused by an overflow during signed binary arithmetic or signed left-shift
operations. This program interruption can be disabled through a program mask bit setting.

floating point control register (FPC register)
For IEEE, a floating point control register.

FMID
Function modification identifier.

Fortran
A high-level language used primarily for applications involving numeric computations. In previous
usage, the name of the language was written in all capital letters, that is, FORTRAN.

Fortran signature CSECT
The resident routine that indicates that the load module in which it is present contains a Fortran
routine.

54 z/OS: z/OS Language Environment Concepts Guide

FORTRAN 66
The FORTRAN language standard formally known as American National Standard FORTRAN, ANSI
X3.9-1966. This language standard specifies the form and establishes the interpretation of programs
written to conform to it.

FORTRAN 77
The FORTRAN language standard formally known as American National Standard FORTRAN, ANSI
X3.9-1978. This language standard specifies the form and establishes the interpretation of programs
written to conform to it.

FPC
See floating point control register (FPC register).

fullword
A sequence of bits or characters that comprises four bytes (one word) and is referenced as a unit.

fullword boundary
A storage location whose address is evenly divisible by 4.

function
A routine that is invoked by coding its name in an expression. The routine passes a result back to the
invoker through the routine name.

function modification identifier (FMID)
The value used to distinguish separate parts of a product. A product tape or cartridge has at least one
FMID.

GET
Global error table.

global error table (GET)
A method employed by some HLLs, for example, Language Environment and Fortran, to determine
actions for handling conditions. Whereas Language Environment condition handling actions are
defined at the stack frame level, actions defined using the global error table apply to an entire
application until explicitly changed. See also extended error handling facility.

Gregorian calendar
The calendar in use since Friday, 15 October 1582 throughout most of the world. Used as the basis for
the Lilian date used in many Language Environment date and time services.

GTAB table
Table in C/370 containing error information.

handle cursor
A pointer used by the condition manager as it traverses the stack. The handle cursor points to the
condition handler currently being invoked in the stack frame, whether it be a user-written condition
handler or an HLL-specific condition handler.

handled condition
A condition that either a user-written condition handler or the HLL-specific condition handler has
processed and for which the condition handler has specified that execution should continue.

handler
See condition handler.

header file
A file that contains system-defined control information that precedes user data.

heap 0
Synonymous with initial heap.

heap
An area of storage used for allocation of storage whose lifetime is not related to the execution of
the current routine. The heap consists of the initial heap segment and zero or more increments. See
anywhere heap, below heap, initial heap, and additional heap.

Language Environment glossary 55

heap element
A contiguous area of storage allocated by a call to the CEEGTST service. Heap elements are always
allocated within a single heap segment.

heap increment
See increment.

heap pool
A storage pool that, when used by the storage manager, can be used to improve the performance of
heap storage allocation. This can improve the performance of a multi-threaded application.

heap segment
A contiguous area of storage obtained directly from the operating system. The Language Environment
storage management scheme subdivides heap segments into individual heap elements. If the initial
heap segment becomes full, Language Environment obtains a second segment, or increment, from the
operating system.

heap storage
See heap.

heavy weight thread
A heavy weight thread has a one-to-one correspondence with an MVS task control block (TCB) in that
the lifetime of the thread is the lifetime of the TCB. [POSIX.1]

hexadecimal
A base 16 numbering system. Hexadecimal digits range from 0 through 9 (decimal 0 to 9) and
uppercase or lowercase A through F (decimal 10 to 15) and A through F, giving values of 0 through 15.

high-level language (HLL)
A programming language above the level of assembler language and below that of program generators
and query languages. Examples are C, C++, COBOL, Fortran, and PL/I.

HLL
High-level language.

hook
The location in a compiled program where the compiler inserts an instruction that allows the user to
later interrupt the program (by setting breakpoints) for debugging purposes.

IBM service representative
An individual in IBM who performs maintenance services for IBM products or systems.

IBM Software Distribution (ISD)
The IBM department responsible for software distribution.

IBM Support Center
The IBM department responsible for software service.

IBM systems engineer (SE)
An IBM service representative who performs maintenance services for IBM software in the field.

implementation defined
An indication that the implementation defines and documents the requirements for correct program
constructs and correct data of a value or behavior. [POSIX.1]

ILC
Interlanguage communication.

IMS
Information Management System, IBM licensed product. IMS supports hierarchical databases, data
communication, translation processing, and database backout and recovery.

increment
The second and subsequent segments of storage allocated to the stack or heap.

indirect argument passing
The body of the argument list contains a pointer to the argument value.

indirection
See dereference.

56 z/OS: z/OS Language Environment Concepts Guide

initial heap
The Language Environment heap controlled by the HEAP runtime option and designated by a heap_id
of 0. The initial heap contains dynamically allocated user data. See also additional heap.

initial heap segment
The first heap segment. A heap consists of the initial heap segment and zero or more additional
segments or increments.

Initial process thread (IPT)
See initial thread.

initial program load (IPL)
The process of loading system programs and preparing a system to run jobs.

initial stack segment
The first stack segment. A stack consists of the initial stack segment and zero or more additional
segments or increments.

initial thread
In terms of POSIX, either the thread established by the fork() that created the process, or the first
thread that calls main() after an exec. Also known as initial process thread (IPT). [POSIX.1]

input procedure
A set of statements, to which control is given during the execution of a SORT statement, for the
purpose of controlling the release of specified records to be sorted.

instance-specific information (ISI)
Located within the Language Environment condition token, information used by a condition handler or
the condition manager to interpret and react to a specific occurrence of a condition. Qualifying data is
an example of instance-specific information.

integer
A positive or negative whole number or zero.

interactive
Pertaining to a program or system that alternately accepts input and responds. In an interactive
system, a constant dialog exists between user and system. Contrast with batch.

interactive problem control system (IPCS)
A component of z/OS that permits online problem management, interactive problem diagnosis, online
debugging for disk-resident CP abend dumps, problem tracking, and problem reporting.

Interactive System Productivity Facility (ISPF)
A dialog manager for interactive applications. It provides control and services to permit execution of
dialogs.

interface validation exit
A routine that, when used with the binder, automatically resolves conflicting references within Fortran
routines.

interlanguage communication (ILC)
The ability of routines written in different programming languages to communicate. ILC support allows
the application writer to readily build applications from component routines written in a variety of
languages.

interrupt
A suspension of a process, such as the execution of a computer program, caused by an event external
to that process, and performed in such a way that the process can be resumed.

interruption
Synonym for interrupt.

IPCS
Interactive problem control system

IPL
Initial program load.

ISI
Instance specific information.

Language Environment glossary 57

ISPF
Interactive System Productivity Facility.

JCL
Job control language.

job control language (JCL)
A sequence of commands used to identify a job to an operating system and to describe a job’s
requirements.

job step
The job control (JCL) statements that request and control execution of a program and that specify the
resources needed to run the program. The JCL statements for a job step include one EXEC statement,
which specifies the program or procedure to be invoked, followed by one or more DD statements,
which specify the data sets or I/O devices that might be needed by the program.

Julian date
A date format that contains the year in positions 1 and 2, and the day in positions 3 through 5. The day
is represented as 1 through 366, right-adjusted, with zeros in the unused high-order position.

kernel
The part of the component that contains programs for such tasks as I/O, management, and
communication.

KSDS
Key-sequenced data set. See also VSAM.

L-name
In Language Environment, this is a mixed-case external identifier that is up to 255 characters long.
See also S-name.

Language Environment
Short form of z/OS Language Environment. A set of architectural constructs and interfaces that
provides a common runtime environment and runtime services for C, C++, COBOL, Fortran, PL/I, and
Java applications compiled by Language Environment-conforming compilers.

Language Environment-conforming
Adhering to common interface conventions of Language Environment.

Language Environment-enabled
A program that has been link-edited with the routines or stubs provided with Language Environment.

language-sensitive editing
A set of editing functions that are responsive to the programming language, syntax, and environment
of source programs as they are being edited. Typical language-sensitive editing features are automatic
indenting, token highlighting, syntax checking, and language-sensitive help.

LIBPACK
A collection of individual modules that are packaged into a single load module in order to reduce the
time that would otherwise be needed to load the individual load modules.

library
A collection of functions, subroutines, or other data.

library latch
An object similar to a mutex and used within the Language Environment library to synchronize access
to resources shared among threads.

library vector table (LIBVEC)
A vector table used to support access to library routines (Language Environment and HLLs) from
compiler-generated code, user-written assembly language code, and other subroutines.

library workspace (LWS)
Special register save areas for certain PL/I library routines, preallocated in nonstack storage.

LIBVEC
Library vector table.

58 z/OS: z/OS Language Environment Concepts Guide

LIFO
Last in, first out method of access. A queuing technique in which the next item to be retrieved is the
item most recently placed in the queue.

Lilian date
The number of days since the beginning of the Gregorian calendar. Day one is Friday, 15 October
1582. The Lilian date format is named in honor of Luigi Lilio, the creator of the Gregorian calendar.

link pack area (LPA)
In MVS, an area of main storage containing reenterable routines from system libraries. Their presence
in main storage saves loading time when a reenterable routine is needed.

link-edit
To create a loadable computer program by means of a linkage editor or binder.

linkage editor
An operating system component that resolves cross-references between separately compiled or
assembled modules and then assigns final addresses to create a single relocatable load module. The
linkage editor then stores the load module in a load library on disk.

linked list
A list in which the data elements may be dispersed but in which each data element contains
information for locating the next. Synonymous with chained list.

load module
A collection of one or more routines that have been stored in a library by the linkage or binder after
having been compiled or assembled. External references have usually been—but are not necessarily—
resolved. When the external references have been resolved, the load module is in a form suitable for
execution.

local data
Data that is known only to the routine in which it is declared. Equivalent to local data in C and both
WORKING-STORAGE and LOCAL-STORAGE in COBOL.

locale
An identifier that determines the way in which data is processed, printed, and displayed in a particular
user community. A locale includes conventions for a specific language and culture, with appropriate
numeric representation, date and time formatting, and monetary formatting.

locator
PL/I control block that holds the address of data such as structures or arrays and the address of the
descriptor.

LPA
Link pack area.

LWS
Library workspace.

machine readable
Pertaining to data a machine can acquire or interpret (read) from a storage device, a data medium, or
other source.

main program
The first routine in an enclave to gain control from the invoker. In Fortran, a main program does not
have a FUNCTION, SUBROUTINE, or BLOCK DATA statement as its first statement. It could have a
PROGRAM statement as its first statement. Contrast with subprogram.

main task
In the context of MVS multitasking and the C Multitasking Facility (MTF), the main program in a
multitasking environment. The main task runs the main task program.

main task program
In the context of MVS multitasking and the C Multitasking Facility (MTF), the part of a program that
controls overall processing. The main task program is run by the main task.

Language Environment glossary 59

mapped condition
A condition that is generated by one component and converted, or mapped, to another component;
for example, some Language Environment conditions, such as attention interrupts or the decimal
divide condition, map directly to the PL/I ATTENTION and ZERODIVIDE conditions, respectively.

megabyte (MB)
1,048,576 bytes.

medium weight thread
A medium weight thread has a one-to-one correspondence with an MVS TCB except the lifetime of the
TCB may exceed the lifetime of the thread. [POSIX.1]

memory file control block (MFCB)
Block residing at thread level in C/370 containing the memory information about the file.

MFCB
Memory file control block.

microfiche
A sheet of microfilm capable of containing microimages in a grid pattern, usually containing a title that
can be read without magnification.

module
A language construct that consists of procedures or data declarations and can interact with other such
constructs. In PL/I, an external procedure.

MTF
Multitasking Facility.

multilevel security
Allows the classification of data and users based on a system of hierarchical security levels, combined
with a system of non-hierarchical security categories. The security administrator classifies users and
data, and the system then imposes mandatory access controls restricting which users can access
data, based on a comparison of the classification of the users and the data.

Multitasking Facility (MTF)
Facility provided separately by Language Environment and by Fortran to improve turnaround time
on multiprocessor configurations by using MVS multitasking facilities. MTF is provided by C library
functions or by Fortran callable services.

multitasking
A mode of operation in which two or more tasks can be performed at the same time.

multithreading
A mode of operation in which the operating system can run different parts of a program, called
threads, simultaneously.

mutex
A mutual exclusive variable that is intended to serialize access to a shared data object for a short
duration of time. [POSIX.1]

MVS
Multiple Virtual Storage operating system.

n-way ILC application
An ILC application that includes three or more of the following: a C routine, a COBOL program, a
Fortran program, and a PL/I routine.

NAB
Next available byte.

name scope
The portion of an application within which a particular declaration of external data applies or is
known.

name space
The portion of a load module within which a particular declaration of external data applies or is
known.

60 z/OS: z/OS Language Environment Concepts Guide

named heap
A heap set up specifically by the CEECRHP callable service. An identifier is returned when the heap is
created.

national language support
Translation requirements affecting parts of licensed programs; for example, translation of message
text and conversion of symbols specific to countries.

natural reentrancy
The attribute of applications that contain no static external data and do not require additional
processing to make them reentrant. Contrast with constructed reentrancy.

nested condition
A condition that occurs during the handling of another, previous condition. Language Environment
by default permits 10 levels of nested conditions. This setting may be changed by altering the
DEPTHCONDLMT runtime option.

nested enclave
A new enclave created by an existing enclave. The nested enclave that is created must be a new main
routine within the process. See also child enclave and parent enclave.

nested program
In COBOL, a program that is directly contained within another program.

next available byte (NAB)
The address of the next available byte of storage on a doubleword boundary. This address is a
segment of stack storage.

next sequential instruction
The next instruction to be executed in the absence of any branch or transfer of control.

nonreentrant
A type of program that cannot be shared by multiple users.

null
Empty, having no meaning.

null character
A character that represents X'00'.

null string
A string containing no element. A character or bit string with a length of zero.

object module
A collection of one or more control sections produced by an assembler or compiler and used as input
to the linkage editor or binder. Synonym for text deck or object deck.

offset
The number of measuring units from an arbitrary starting point in a record, area, or control block, to
some other point.

omitted parameter
A parameter not needed in a call.

online
Pertaining to a user's ability to interact with a computer. Pertaining to a user's access to a computer
via a terminal.

OpenExtensions
VM/ESA services that support an environment within which operating systems, servers, distributed
systems, and workstations share common interfaces. OpenExtensions supports standard application
development across multi-vendor systems. It is required if you want to create and use VM/ESA
applications that conform to the POSIX standard.

operating system
Software that controls the running of programs; in addition, an operating system may provide services
such as resource allocation, scheduling, input/output control, and data management.

Language Environment glossary 61

OS PL/I
See PL/I.

out-of-storage condition
A condition signaled when an application has used all of the storage allocated to it. If the STORAGE
runtime option is set to a value other than 0, Language Environment adds a reserve stack segment to
the overflowing stack, and then signals the out-of-storage condition.

output procedure
A set of statements, to which control is given during the execution of a SORT statement after the sort
function is completed, or during the MERGE statement after the merge function reaches a point at
which it can select the next record in merged order when requested.

overflow
Exceeding the capacity of the intended unit of storage. See also fixed-point overflow exception and
exponent-overflow exception.

overlay
To write over existing data in storage.

owning stack frame
Given the calling sequence of Routine 1 calling Routine 2 that in turn calls Routine 3, Routine 3 is the
owning stack frame if a condition occurs while Routine 3 is executing.

ON-unit
The specified action to be taken upon detection of the condition named in the containing ON
statement.

packed decimal format
A format in which each byte in a field except the rightmost digit represents two numeric digits. The
rightmost byte contains one digit and the sign. For example, the decimal value +123 is represented as
0001 0010 0011 1111.

pad
To fill unused positions in a field with dummy data, usually zeros, ones, or blanks.

parallel function
In the context of MVS multitasking and the C Multitasking Facility, those portions of a program that
can run independently of the main task program and each other. Subtasks run the parallel functions.

parallel program
In the context of the Fortran parallel facility (not MTF), a program that uses parallel language
constructs, invokes any of the parallel callable services, or was compiled with the PARALLEL compile-
time option.

parallel subroutine
In the context of MVS multitasking and the Fortran Multitasking Facitity, those portions of a program
that can run independently of the main task program and each other. The parallel subroutines run in
MVS subtasks.

parameter
1) Data items that are received by a routine. 2) The term used in certain other languages for the
Fortran term dummy argument. See argument, actual argument, and dummy argument.

parent enclave
The enclave that issues a call to system services or language constructs to create a nested (child)
enclave. See also child enclave and nested enclave.

partition
A fixed-size division of storage.

pass by content
A COBOL argument passing style synonymous with passing an argument by value (indirect). In this
style, R1 contains a pointer to a copy of the argument.

62 z/OS: z/OS Language Environment Concepts Guide

pass by reference
In programming languages, one of the basic argument passing semantics where the address of the
object is passed. Any changes made by the callee to the argument value will be reflected in the calling
routine at the time the change is made.

pass by value
In programming languages, one of the basic argument passing semantics where the value of the
object is passed. Any changes made by the callee to the argument value will not be reflected in the
calling routine.

percolate
The action taken by the condition manager when the returned value from a condition handler
indicates that the handler could not handle the condition, and the condition will be transferred to
the next handler.

picture string
Character strings used to specify date and time formats.

PID
Process ID.

PL/I
A general purpose scientific/business high-level language. PL/I is a high-powered procedure-oriented
language especially well suited for solving complex scientific problems or running lengthy and
complicated business transactions and record-keeping applications.

pointer
A data element that indicates the location of another data element.

portability
The ability to transfer an application from one platform to another with relatively few changes to the
source code.

Portable Operating System Interface (POSIX)
Portable Operating System Interface for computing environments, an interface standard governed by
the IEEE and based on UNIX. POSIX is not a product. Rather, it is an evolving family of standards
describing a wide spectrum of operating system components ranging from C language and shell
interfaces to system administration.

POSIX
Portable Operating System Interface.

POSIX process
An address space and single thread of control that executes within that address space, and its
required system resources. A process is created by another process issuing the fork() function. The
process that issues fork() is known as the parent process, and the new process created by the
fork() is known as the child process. [POSIX.1]

POSIX signal
A mechanism by which a process may be notified of, or affected by, an event occurring in the system.
Examples of such events include hardware exceptions and specific actions by processes. The term
signal is also used to refer to the event itself. [POSIX.1]

PPA1 entry point block
Program Prolog Area. This block contains information about the compiled module.

PPA2 entry point block
An extension of the PPA1 entry point block.

PPT
Processing program table.

precedence
In programming languages, an order relation defining the sequence of the application of operations or
options.

Language Environment glossary 63

precision
A measure of the ability to distinguish between nearly equal values, usually with data of different
lengths. See also single-precision and double-precision.

preinitialization
A facility that allows a routine to initialize the runtime environment once, perform multiple executions
within the environment, then explicitly terminate the environment.

Preinitialized Environments for Authorized Programs
A facility that allows an authorized AMODE 64 application to run z/OS XL C/C++ and Language-
Environment conforming Assembler routines through the use of preinitialized environments.

pre-Language Environment-conforming
Any HLL program that does not adhere to the Language Environment common interface. For example,
For example, VS COBOL II, OS/VS COBOL, OS PL/I, C/370 Version 1 and Version 2, VS FORTRAN
Version 1, VS FORTRAN Version 2, FORTRAN IV G1, and FORTRAN IV H Extended are all pre-Language
Environment-conforming HLLs.

prelinker
A utility that collects compile-time initialization information from one or more object modules into a
single initialization unit. In the process, the static external data part is mapped.

preprocessor
A routine that examines application source code for preprocessor statements that are then executed,
resulting in the alteration of the source.

preventive service planning (PSP)
The online repository of program temporary fixes (PTFs) and other service information. This
information could affect installation.

procedure
In COBOL, a procedure is a paragraph or section that can only be performed from within the program.
In PL/I, a named block of code that can be invoked externally, usually via a call.

procedure library (PROCLIB)
A program library in direct access storage with job definitions. The reader/interpreter can be directed
to read and interpret a particular job definition by an execute statement in the input stream.

process
The highest level of the Language Environment program management model. A process is a collection
of resources, both program code and data, and consists of at least one enclave. See also POSIX
process.

process ID (PID)
The unique identifier representing a process. A process ID is a positive integer that can be contained
in the data type pid_t. A process ID shall not be reused by the system until the process lifetime ends.
In addition, if there exists a process groups whose process group ID is equal to that process ID, the
process ID shall not be reused by the system until the process group lifetime ends. A process that is
not a system process shall not have a process ID of 1. [POSIX.1]

processing program table (PPT)
Contains information about CICS load modules (whether the module is in storage or not, its language,
use count and entry point address, etc.) needed to complete a transaction.

program
See enclave.

program control data
In PL/I, data used to affect how a program runs; that is, any data that is not string or arithmetic data.

program interruption
The interruption of the execution of a program due to some event such as an operation exception, an
exponent-overflow exception, or an addressing exception.

program level
The modification level, release, version, and fix level.

64 z/OS: z/OS Language Environment Concepts Guide

program management
The functions within the system that provide for establishing the necessary activation and invocation
for a program to run in the applicable runtime environment when it is called.

program mask
In bits 20 through 23 of the program status word (PSW), a 4-bit structure that controls whether each
of the fixed-point overflow, decimal overflow, exponent-overflow, and significance exceptions should
cause a program interruption. The bits of the program mask can be manipulated to enable or disable
the occurrence of a program interruption.

program number
The seven-digit code (in the format xxxx-xxx) used by IBM to identify each program product.

program specification block (PSB)
In IMS/VS, a control block that contains all database program communication blocks (DB PCB) that
exist for a single application program. DB PCBs define which segments in a database an application
can access.

program status word (PSW)
A 64-bit structure that includes the instruction address, program mask, and other information used to
control instruction sequencing and to determine the state of the CPU. See also program mask.

program temporary fix (PTF)
A temporary solution or bypass of a problem diagnosed by IBM as resulting from a defect in a current
unaltered release of the program.

program unit
Synonym for compilation unit.

programmable workstation (PWS)
A workstation that has some degree of processing capability and that allows a user to change its
functions.

prolog
The code sequence when a routine is entered.

promote
To change a condition to a different one by a condition handler. A condition handler routine promotes
a condition because the error needs to be handled in a way other than that suggested by the original
condition.

PSB
Program specification block.

PSP
Preventive service planning.

PSW
Program status word.

PWS
Programmable workstation.

q_data
Qualifying data. Information that a user-written condition handler can use to identify and react to a
given instance of a condition.

q_data descriptor
A qualifying datum that contains the data type and length of the immediately following qualifying
datum associated with a condition token.

q_data_token
An optional 32-bit data object that is placed in the ISI. It is used to access the qualifying data
associated with a given instance of a condition.

qualifier
A modifier that makes a name unique.

Language Environment glossary 65

qualifying data
q_data. Unique information associated through a condition token with a given instance of a condition.
A user-written condition handler uses qualifying data to identify and react to the condition.

qualifying datum
A single element of qualifying data associated with a condition. See qualifying data.

reason code
1) Return code to CICS only. 2) A value returned to the invoker of an enclave that indicates
how the enclave terminated. The value reflects whether the enclave terminated successfully, or
unsuccessfully, to an unhandled condition.

recursive routine
A routine that can call itself or be called by another routine that it has called.

reenterable
reentrant

reentrant
The attribute of a routine or application that allows more than one user to share a single copy of a load
module.

register
Special processing areas that hold a specific amount of data and can process, load, and store this data
quickly. To specify formally. In Language Environment, to register a condition handler means to add a
user-written condition handler onto a routine's stack frame.

register save area (RSA)
Area of main storage in which contents of registers are saved.

regular file
A file that is a randomly accessible sequence of bytes, with no further structure imposed by the
system. [POSIX.1]

relative pathname
A pathname that does not begin with a slash. The predecessor of the first filename in the pathname is
taken to be the current working directory of the process. [POSIX.1]

reserved word
In programming languages, a keyword that may not be used as an identifier.

resident modules
A module that remains in a particular area of storage.

resident routines
The Language Environment library routines linked with your application. They include such things as
initialization routines and callable service stubs.

resume
To continue execution in an application at the point immediately after which a condition occurred.
This occurs when a condition handler determines that a condition has been handled and normal
application execution should continue.

resume cursor
The point in an application at which execution should continue if a condition handler requests the
resume action for a condition it is processing. When a condition is signaled, the resume cursor is at
the location at which the error occurred or at which the condition was first reported to the condition
manager. The resume cursor can be moved with the CEEMRCE or CEEMRCR callable service.

return code
A code produced by a routine to indicate its success or failure. It may be used to influence the
execution of succeeding instructions or programs.

return_code_modifier
A value set by Language Environment routines to indicate the severity of an unhandled condition. The
return_code_modifier is a component of the return code that indicates the status of the execution of
an enclave.

66 z/OS: z/OS Language Environment Concepts Guide

RMODE
Residence mode. Provided by the linkage editor, the attribute of a load module that specifies whether
the module, when loaded, must reside below the 16MB virtual storage line or may reside anywhere in
virtual storage.

rollback
The process of restoring data changed by an application to the state at its last commit point.

root load module
The load module containing a main routine and the first to be executed in an application.

routine
In Language Environment, refers to a PL/I procedure, a C function, a Fortran main program or
subprogram, or a COBOL program or a separate subroutine.

RSA
Register save area.

run
To cause a program, utility, or other machine function to be performed.

RUNCOM
COBOL block containing the ID and address of the main program.

run time
Any instant at which a program is being executed. Synonymous with execution time.

runtime environment
A set of resources that are used to support the execution of a program. Synonymous with execution
environment.

run unit
One or more object programs that are executed together. In Language Environment, a run unit is the
equivalent of an enclave.

safe condition
Any condition having a severity of 0 or 1. Such conditions are ignored if no condition handler handles
the condition.

save area
Area of main storage in which contents of registers are saved.

SBCS
Single-byte character set.

scalar
A quantity characterized by a single value. Contrast with aggregate.

scalar instruction
An instruction, such as a load, store, arithmetic, or logical instruction, that operates on a scalar.
Contrast with vector instruction.

scope
A term used to describe the effective range of the enablement of a condition and/or the establishment
of a user-generated routine to handle a condition. Scope can be both statically and dynamically
defined. The portion of an application within which the definition of a variable remains unchanged.

scope terminator
Variable at the end of a statement.

segment
See stack segment.

severity code
A part of runtime messages that indicates the severity of the error condition (1, 2, 3, or 4).

shared segment
In VM, a feature of a saved system that allows one or more segments of reentrant code in real storage
to be shared among many virtual machines.

Language Environment glossary 67

shared storage
An area of storage that is the same for each virtual address space. Because it is the same space for all
users, information stored there can be shared and does not have to be loaded in the user region.

shared virtual area (SVA)
In VSE, a high address area of virtual storage that contains a system directory list (SDL) of frequently
used phases, resident programs that can be shared between partitions, and an area for system
support.

signal
In C, signals are conditions that may or may not be reported during program execution, depending
upon how they are defined to the condition handler. A condition is registered in C using the signal()
function; a condition is raised using the raise() function. See also POSIX signal and synchronous
signal. To make the condition manager aware of a condition for processing.

signal catching function
In POSIX, analogous to signal handler. The signal catching function is specified through the
sigaction() function. [POSIX.1]

signal handler
In C, a function to be called when a signal is reported.

signature CSECT
The resident routine that indicates that the load module in which it is present contains a routine
written in a particular language.

significance exception
The program interruption that occurs when the resulting fraction in a floating-point addition or
subtraction instruction is zero. This program interruption can be disabled through a program mask
bit setting.

single-byte character set (SBCS)
A collection of characters represented by a 1-byte code.

single-precision
Pertaining to the use of one computer word to represent a number in accordance with the required
precision. See also precision and double-precision.

S-name
In C, this is a single-case external identifier that is at most eight characters long. See also L-name.

softcopy
One or more files that can be electronically distributed, manipulated, and printed by a user. Contrasts
with hardcopy.

sort/merge program
A processing program that can be used to sort or merge records in a prescribed sequence.

source code
The input to a compiler or assembler, written in a source language.

source program
A set of instructions written in a programming language that must be translated to machine language
before the program can be run.

stack
An area of storage used for suballocation of stack frames. Such suballocations are allocated and freed
on a LIFO (last in, first out) basis. A stack is a collection of one or more stack segments consisting of
an initial stack segment and zero or more increments.

stack frame
The physical representation of the activation of a routine. The stack frame is allocated on a LIFO stack
and contains various pieces of information including a save area, condition handling routines, fields
to assist the acquisition of a stack frame from the stack, and the local, automatic variables for the
routine. In Language Environment, a stack frame is synonymous with DSA.

68 z/OS: z/OS Language Environment Concepts Guide

stack frame collapse
An action that occurs when the condition manager skips over one or more active routines and
execution resumes in an earlier routine on the stack. A stack frame collapse happens is an explicit
GOTO is coded in a C or PL/I routine or if the resume cursor is moved with the CEEMRCR.

stack increment
See increment.

stack segment
A contiguous area of storage obtained directly from the operating system. The Language Environment
storage management scheme subdivides stack segments into individual DSAs. If the initial stack
segment becomes full, a second segment or increment is obtained from the operating system.

stack storage
See stack and automatic storage.

standard system action
The name given to the language-defined default action taken when a condition occurs and it is not
handled by a condition handler.

static call
A call that results in the resolution of the called program during the link-edit of the application.
Contrast with dynamic call.

static data
Data that retains its last-used state across calls.

static storage
Storage that persists and retains its value across calls. Contrast with dynamic storage.

storage heap
An unordered group of program stack areas that may be associated with programs running within a
process.

SUBCOM
Control block containing information about multiple COBOL programs.

suboption
A value that can be provided as part of a compile-time or runtime option to further specify the
meaning of the option.

subpool storage
All of the storage blocks allocated under a subpool number for a particular task.

subprogram
A program unit that is invoked or used by another program unit. In Fortran, a subprogram has
a FUNCTION, SUBROUTINE, or BLOCK DATA statement as its first statement. Contrast with main
program.

SUBSET
The value that specifies the FMID for a product level.

subsystem
A secondary or subordinate system, or programming support, usually capable of operating
independently of or asynchronously with a controlling system. Examples are CICS and IMS.

subtask
In the context of MVS multitasking and the C Multitasking Facility (MTF), a task that is initiated and
terminated by a higher order task (the main task. Subtasks run the parallel functions, those portions of
the program that can run independently of the main task program and each other.

SVC
Supervisor call. A request that serves as the interface to certain functions, such as the allocation of
storage.

symbolic feedback code
The symbolic representation of the first 8 bytes of the 12-byte condition token. In a condition-
handling routine, a symbolic feedback code is substituted for the hexadecimal coding of the condition-
handling routine.

Language Environment glossary 69

synchronous signal
A signal attributable to a specific thread. Signals that can be generated synchronously are SIGABRT,
SIGILL, SIGFPE, SIGPIPE, and SIGSEGV.

syntax
The rules governing the structure of a programming language and the construction of a statement in a
programming language.

system abend
An abend caused by the operating system’s inability to process a routine; may be caused by errors in
the logic of the source routine.

systems programming facility
runtime facilities provided by C that allow programs to be developed that do not require the Language
Environment common library.

target libraries
In SMP/E, a collection of data sets in which the various parts of an operating system are stored. These
data sets are sometimes called system libraries.

target zone
In SMP/E, a collection of VSAM records describing the target system macros, modules, assemblies,
load modules, source modules, and libraries copied from DLIBs during system generation, and the
SYSMODs applied to the target system.

task
In a multiprogramming or multiprocessing environment, one or more sequences of instructions
treated by a control program as an element of work to be accomplished by a computer.

task control block (TCB)
An MVS related control block which contains information and pointers associated with the task in
process.

task global table (TGT)
Table with information about addresses and length of working storage and the program start address.

TCB
Task control block.

termination imminent step
The final step of the 3-step Language Environment condition handling model. In the termination
imminent step, user-written condition handlers and PL/I ON-units are given one last chance to
handle a condition or perform cleanup before the thread is terminated. See also condition step and
enablement step.

THDCOM
Control block with COBOL thread information.

thread
The basic runtime path within the Language Environment program management model. It is
dispatched by the system with its own instruction counter and registers. The thread is where actual
code resides.

thread safe
A locking mechanism (mutex) that allows a thread to work with critical data or structures while
preventing other threads from gaining access to the same data or structures. When the thread has
finished processing the critical data or structures, it must release the lock to allow other threads to
gain access to the data or structures. [POSIX.1]

time sharing option (TSO/E)
An option on the operating system; for System/370, the option provides interactive time sharing from
remote terminals.

token
See condition token.

70 z/OS: z/OS Language Environment Concepts Guide

trace
A record of the execution of a computer program. It exhibits the sequence in which the instructions
were executed. To record a series of events as they occur.

traceback
A section of a dump that provides information about the stack frame (DSA), the program unit address,
the entry point of the routine, the statement number, and status of the routines on the call-chain at
the time the traceback was produced.

translator
See CICS translator.

transient data queue
A file to which runtime messages are written under CICS. Under Language Environment, the name of
this file is CESE. Also a sequential data set used by the Folder Application Facility in CICS/MVS to log
system messages.

transient routines
The Language Environment library routines that are loaded at run time. Contrast with resident
routines.

translator
See CICS translator.

TSO
TSO/E.

TSO/E
Time Sharing Option Extensions. An MVS component that permits interactive compiling, link-editing,
executing, and debugging of programs.

UCLIN
In SMP/E, the command used to initiate changes to SMP/E data sets. Actual changes are made by
subsequent UCL statements.

underflow
See exponent-underflow exception.

unhandled condition
A condition that isn't handled by any condition handler for any stack frame in the call chain. Contrast
with handled condition.

UNIX
See z/OS UNIX System Services.

unpacked decimal format
A format for representing numbers in which the digit is contained in bits 4 through 7 and the sign
is contained in bits 0 through 3 of the rightmost byte. Bits 0 through 3 of all other bytes contain 1s
(hex F). For example, the decimal value of +123 is represented as 1111 0001 1111 0010 1111 0011.
Synonymous with zoned decimal format.

upward-growing stack
With Extra Performance Linkage (XPLINK), a stack that grows from low addresses to high addresses in
memory.

upwardly compatible
The ability for applications that have been linked with Language Environment to continue to run on
later releases of OS/390 Language Environment, without the need to recompile or relink. Language
Environment is guaranteed to be upwardly compatible.

user abend
A request made by user code to the operating system to abnormally terminate a routine. Contrast with
system abend.

user-written condition handler
A routine that analyzes and possibly takes action on conditions presented to it by the condition
manager. The condition handler is registered either by calling the CEEHDLR callable service or by
specifying the USRHDLR runtime option.

Language Environment glossary 71

user exit
A routine that takes control at a specific point in an application. Two assembler user exits and one HLL
user exit are provided by Language Environment. They are invoked to perform initialization functions
and both normal and abnormal termination functions.

user heap
See initial heap.

usermod
User modification.

user stack
An independent area of stack storage that may be located above or below 16M, designed to be used
by both library routines and compiled code. See also stack and stack frame.

vector
A linearly ordered collection of scalars of the same type. Each scalar is said to be an element of the
vector. See also array. Contrast with scalar.

vector instruction
An instruction, such as a load, store, arithmetic, or logical instruction, that operates on vectors
residing in storage or in a vector register in the vector facility. Contrast with scalar instruction.

vendor
A person or company that provides a service or product to another person or company.

virtual origin
The address of an element in an array whose subscripts are all zero.

VO
Virtual origin.

void function
The C representation of a procedure invocation. A void function is a function that does not return a
value.

VOLSER
Volume serial number.

volume
A certain portion of data, together with its data carrier, that can be handled conveniently as a unit. A
data carrier mounted and demounted as a unit; for example, a reel of magnetic tape, a disk pack.

volume label
An area on a standard label tape used to identify the tape volume and its owner. This area is the first
80 bytes and contains VOL 1 in the first four positions.

volume serial number
A number in a volume label assigned when a volume is prepared for use in a system.

VSAM
Virtual storage access method. A high-performance mass storage access method. Three types of data
organization are available: entry sequenced data sets (ESDS), key sequenced data sets (KSDS), and
relative record data sets (RRDS).

VSTRING
The VSTRING data type is used for the character string parameters in many of the Language
Environment callable services. In z/OS Language Environment, VSTRING is a halfword length-prefixed
character string for input, or a fixed-length 80-character string for output.

weak external reference
A special type of external reference that is not to be resolved by automatic library calls unless
an ordinary external reference to the same symbol is found. The external symbol dictionary entry
specifies the symbol; the location is unknown.

work registers
Registers used by the PL/I compiler as required.

72 z/OS: z/OS Language Environment Concepts Guide

WORKING-STORAGE
In COBOL, the storage required for data items in the WORKING-STORAGE section. WORKING-
STORAGE is a portion of main storage that is used by a computer program to hold data temporarily.

workstation
One or more programmable or nonprogrammable devices that allow a user to do work on a computer.
See also programmable workstation.

writable static
In C, writable static may be any of the following:

• Program variables with the extern storage class
• Program variables with the static storage class
• Writable strings

The Language Environment term for writable static is external data.

XPG4
This term refers to the XPG4 interface standard. The XPG4 standard is described in detail in X/Open
Specification Issue 4.

XPLINK (Extra Performance Linkage)
See Extra Performance Linkage.

zoned decimal format
Synonym for unpacked decimal format.

z/OS Language Environment
An element of z/OS that provides a common runtime environment and common runtime services for
C/C++, COBOL, PL/I, and Fortran applications.

z/OS UNIX System Services (z/OS UNIX)
The set of functions provided by the Shell and Utilities, kernel, debugger, file system, C/C++ Runtime
Library, Language Environment, and other elements of the z/OS operating system that allow users to
write and run application programs that conform to UNIX standards.

31–bit mode
See AMODE 31.

64–bit virtual mode
See AMODE 64.

Language Environment glossary 73

74 z/OS: z/OS Language Environment Concepts Guide

Index

A
accessibility

contact IBM 37
assembler language

application example 23
sample callable service syntax 31

assistive technologies 37

B
benefits of 6

C
C/370

application example 31
callable services

invoking 21
table listing 23

COBOL
application example 33
sample callable service syntax 22

common environment, introduction 3
condition 13
condition handler 13
condition handling

callable services for 23
model 12, 17

condition token 13, 15
contact

z/OS 37
cursor, resume 13, 16

D
dump, common 17
dynamic save area (DSA) 13

E
enclave 11
environment, common 3
exception handling 12

F
feedback code

description of 15
in callable services 22, 23

file sharing 11

H
heap storage 18
HLL condition handler 14

I
IBM Debug for z/OS 7
IBM Open XL C/C++ for z/OS ix, 2
increment

heap 18
interlanguage communication (ILC) 6
interrupts 14

J
Japanese language support 17

K
keyboard

navigation 37
PF keys 37
shortcut keys 37

L
language support

callable services for 30
description of 17

M
math services 28
message handling

callable services for 29
description of 17

models, architectural
condition handling 12, 17
message handling 17
program management 9, 12
storage management 17, 19

N
national language support (NLS)

callable services for 30
navigation

keyboard 37

P
parallel processing 12
participating languages

Language Environment 2
PL/I for MVS & VM

application example 34
sample callable service syntax 22

POSIX 6
process 10
processes 10

Index 75

program and tasking model 9
promote action 16

R
report

storage 19
resume

cursor 13, 16
resume cursor 13
runtime environment, introduction 3

S
sample callable service syntax 22
scope

of language semantics 11
shortcut keys 37
stack

frame 13
storage 18

stack frame 13
static storage, in enclave 11
storage

callable services for 26
in thread 11
management model 17
report 19
static, in enclave 11

suballocations, of storage 13
summary of changes xv
syntax

calling 21

T
terminology

condition handling model 13
program management model 9

thread 11
token, condition 15
trademarks 42

U
user interface

ISPF 37
TSO/E 37

user-written condition handler 14

Z
z/OS UNIX System Services 6

76 z/OS: z/OS Language Environment Concepts Guide

IBM®

Product Number: 5655-ZOS

SA38-0687-60

	Contents
	Figures
	Tables
	About this document
	Using your documentation
	z/OS information

	How to provide feedback to IBM
	Summary of changes
	Summary of changes for z/OS 3.1

	Chapter 1. Overview
	What you can do with Language Environment
	Common use of system resources gives you greater control
	Consistent condition handling simplifies error recovery
	Language Environment protects your programming investment
	ILC capability offers greater efficiency and flexibility
	Common dump puts all debugging information in one place
	POSIX-conforming application support enhances code portability
	Locale callable services enhance the development of internationalized applications

	Debugging in your common environment
	IBM C/C++ productivity tools for OS/390

	Chapter 2. The model for Language Environment
	The Language Environment program management model
	Language Environment program management model terminology
	Program management
	Processes
	Enclaves
	Characteristics of the enclave

	Threads

	Language Environment condition-handling model
	Condition-handling terminology
	Condition-handling model description
	How conditions are represented

	How condition tokens are created and used
	Condition-handling responses
	Runtime dump service provides information in one place

	Language Environment message handling model and national language support
	National language support

	Language Environment storage management model
	Stack storage
	Heap storage
	Storage management options
	Storage report
	Storage option

	Chapter 3. Language Environment callable services
	Language Environment calling conventions
	Invoking callable services from C
	Invoking callable services from COBOL
	Invoking callable services from PL/I
	Invoking callable services from assembler

	Language Environment callable services

	Chapter 4. Sample routines
	Sample assembler routine
	Sample C/C++ routine
	Sample C routine with POSIX functions
	Sample COBOL program
	Sample PL/I routine

	Appendix A. Accessibility
	Notices
	Terms and conditions for product documentation
	IBM Online Privacy Statement
	Policy for unsupported hardware
	Minimum supported hardware
	Programming Interface Information
	Trademarks

	Language Environment glossary
	Index
	A
	B
	C
	D
	E
	F
	H
	I
	J
	K
	L
	M
	N
	P
	R
	S
	T
	U
	Z

