
z/OS
2.5

MVS Programming: Callable Services for
High-Level Languages

IBM

SA23-1377-50

Note

Before using this information and the product it supports, read the information in “Notices” on page
719.

This edition applies to Version 2 Release 5 of z/OS® (5650-ZOS) and to all subsequent releases and modifications until
otherwise indicated in new editions.

Last updated: 2023-08-02
© Copyright International Business Machines Corporation 1994, 2023.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract with
IBM Corp.

Contents

Figures... xi

Tables.. xiii

About this information.. xix
Who should use this information.. xix
How to use this information.. xix
z/OS information..xix

How to send your comments to IBM...xxi
If you have a technical problem..xxi

Summary of changes... xxiii
Summary of changes for z/OS MVS Programming: Callable Services for High-Level Languages for

Version 2 Release 5 (V2R5)..xxiii
Summary of changes for z/OS V2R4... xxiv
Summary of changes for z/OS V2R3.. xxv

Part 1. Window services.. 1

Chapter 1. Introduction to window services... 3
Permanent data objects... 3
Temporary data objects..3
Structure of a data object...3
What does window services provide?..4

The ways that window services can map an object... 4
Access to permanent data objects... 7
Access to temporary data objects.. 8

Chapter 2. Using window services...9
Obtaining access to a data object.. 10

Identifying the object... 10
Specifying the object’s size.. 11
Specifying the type of access... 11
Obtaining a scroll area.. 11

Defining a view of a data object... 11
Identifying the data object... 12
Identifying a window.. 12
Defining the disposition of a window’s contents... 12
Defining the expected reference pattern... 13
Identifying the blocks you want to view...13
Extending the size of a data object...14

Defining multiple views of an object..14
Non-overlapping views... 14
Overlapping views...14

Saving interim changes to a permanent data object...15
Updating a temporary data object... 15
Refreshing changed data... 16
Updating a permanent object on DASD... 16

 iii

When there is a scroll area... 16
When there is no scroll area... 17

Changing a view in a window... 17
Terminating access to a data object.. 18
Handling return codes and abnormal terminations.. 18

Chapter 3. Window services.. 19
CSREVW — View an object and sequentially access it.. 19

Abend codes... 21
Return codes and reason codes... 21

CSRIDAC — Request or terminate access to a data object... 22
Abend codes... 25
Return codes and reason codes... 25

CSRREFR — Refresh an object... 26
Abend codes... 27
Return codes and reason codes... 27

CSRSAVE — Save changes made to a permanent object.. 28
Abend codes... 29
Return codes and reason codes... 29

CSRSCOT — Save object changes in a scroll area..30
Abend codes... 31
Return codes and reason codes... 31

CSRVIEW — View an object..32
Abend codes... 35
Return codes and reason codes... 35

Chapter 4. Window services coding examples... 37
ADA example.. 37
C/370 example... 41
COBOL example..43
FORTRAN example... 46
Pascal example...50
PL/I example.. 53

Part 2. Reference pattern services... 59

Chapter 5. Introduction to reference pattern services...61
How does the system manage data?... 61
An example of how the system manages data in an array..62

What pages does the system bring in when a gap exists?...63

Chapter 6. Using reference pattern services...65
Defining the reference pattern for a data area.. 65

Defining the range of the area.. 65
Identifying the direction of the reference.. 65
Defining the reference pattern... 66
Choosing the number of bytes on a page fault.. 67

Examples of using CSRIRP to define a reference pattern...69
Removing the definition of the reference pattern... 70
Handling return codes..70

Chapter 7. Reference pattern services..71
CSRIRP — Define a reference pattern..71

Return codes and reason codes... 73
CSRRRP — Remove a reference pattern.. 73

Return codes and reason codes... 74

iv

Chapter 8. Reference pattern services coding examples... 75
C/370 example... 75
COBOL example..77
FORTRAN example... 81
Pascal example...83
PL/I example.. 85

Part 3. Global resource serialization latch manager services................................. 89

Chapter 9. Using the latch manager services... 91
Syntax and linkage conventions for latch manager callable services.. 91
ISGLCRT — Create a latch set.. 91

ABEND codes.. 93
Return codes... 93
Examples of calls to latch manager services... 94

ISGLOBT — Obtain a latch..95
ABEND codes.. 97
Return codes... 97
Example.. 98

ISGLREL — Release a latch.. 98
ABEND codes.. 100
Return codes...100
Example.. 100

ISGLPRG — Purge a requestor from a latch set...101
ABEND codes.. 101
Return codes...101
Example.. 102

ISGLPBA — Purge a group of requestors from a group of latch sets.. 102
ABEND codes.. 103
Return codes...103

Part 4. Resource recovery services (RRS)..105

Chapter 10. Using protected resources.. 107
Resource recovery programs... 107
Two-phase commit protocol..108
Resource recovery process..108
Requesting resource protection and recovery.. 110
Using distributed resource recovery..110
Application_Backout_UR (SRRBACK)..111

Description..111
Application_Commit_UR (SRRCMIT)...114

Description..114
Additional callable services... 118

Part 5. CEA TSO/E address space services.. 119

Chapter 11. Introduction to CEA TSO/E address space services...121
CEA TSO/E address space manager components...121
System prerequisites for the CEA TSO/E address space services..122
Working with TSO/E address spaces started by CEA ... 123

Communicating with programs running in the TSO/E address spaces.......................................124
Reconnecting to CEA TSO/E address spaces...127

Chapter 12. Using CEA TSO/E address space services.. 129
Invoking the CEATsoRequest API.. 129

 v

Parameters... 129
Requirements for callers.. 134
Understanding the request types...134

Invoking the CEAmsgsnd API.. 143
Invoking the CEAmsgrcv API... 145
Invoking the CEAWSNDT API...146
Return, reason, and diagnostic codes... 148

Return codes...148
Reason codes..149
Diagnostic codes...158

CEAYTSOR header file..162
CEAXRDEF header file..165
Programming example...169

Sample compile job.. 183

Part 6. zEnterprise Data Compression (zEDC)... 185

Chapter 13. Overview and planning of zEnterprise Data Compression (zEDC)..................................... 187
Requirements for zEnterprise Data Compression...187
Planning for zEnterprise Data Compression..188

Chapter 14. Application interfaces for zEnterprise Data Compression... 191
Invoking unauthorized interfaces for zEnterprise Data Compression..191

zlib for zEnterprise Data Compression...191
Invoking System z authorized interfaces for zEnterprise Data Compression.................................. 196

System z authorized compression services...197

Chapter 15. Troubleshooting for zEDC..215

Part 7. Other callable services..217

Chapter 16. IEAAFFN — Assign processor affinity for encryption or decryption...................................219
Restrictions and limitations... 220
Requirements...220
Return codes.. 220

Chapter 17. CSRL16J/CSRLJ1 — Transfer control with all registers intact... 221
Defining the entry characteristics of the target routine.. 221
Freeing dynamic storage associated with the caller...222
Programming requirements...222
Restrictions.. 225
Performance implications..225
Syntax diagram...226

C/370 syntax...226
PL/I syntax..226

Parameters... 226
Return codes.. 226
Example..227

C/370 example program.. 227
Assembler program for use with the C/370 example... 229

Chapter 18. CSRSI — System information service..231
Description... 231

Environment..231
Programming requirements... 231
Restrictions... 231
Input register information.. 232

vi

Output register information..232
Syntax... 232
Parameters... 232
Return codes...234

CSRSIC C/370 header file..234

Part 8. Base Control Program internal interface (BCPii) services..........................243

Chapter 19. Base Control Program internal interface (BCPii).. 245
BCPii setup and installation...245

Setting up connectivity to the support element.. 246
Setting up authority to use BCPii..251
BCPii configuration considerations.. 254
Setting up event notification for BCPii z/OS UNIX applications.. 255
Setting up access to BCPii REXX execs..256
BCPii startup and shutdown...257

SMF recording in BCPii... 258
BCPii callable services... 259
Syntax, linkage and programming considerations.. 259

Calling formats..260
BCPii connection scope.. 260
Linkage considerations...261
REXX programming considerations... 261
Assembler programming considerations...270
Programming Examples... 271

HWICMD / HWICMD2 — Issue a BCPii hardware management command...................................... 271
Description..271

HWICONN — Establish a BCPii connection... 295
Description..295

HWIDISC — Release a BCPii connection... 308
Description..308

HWIEVENT — Register or unregister for BCPii events...315
Monitoring events occurring on a particular CPC or image... 315
Monitoring operating system message events (Hwi_Event_OpSysMsg).................................... 315
Monitoring communication availability between BCPii and the CPC.. 316
Monitoring the status of the BCPii address space... 316
Description..316

HWILIST — Retrieve HMC and BCPii configuration-related information..328
Description..329

HWIQUERY — BCPii retrieval of SE/HMC-managed attributes... 344
Description..344

HWIREST — Issue RESTlike requests to the SE.. 375
Description..375

HWISET/HWISET2 — BCPii set single or multiple SE/HMC-managed attributes.............................392
Description..392

HWIBeginEventDelivery — Begin delivery of BCPii event notifications..439
Description..439

HWIEndEventDelivery — End delivery of BCPii event notifications..443
Description..443

HWIManageEvents — Manage the list of BCPii events..446
Description..446

HWIGetEvent — Retrieve outstanding BCPii event notifications..451
Description..451

Part 9. z/OS client web enablement toolkit...457

Chapter 20. The z/OS JSON parser... 459

 vii

Elements of the z/OS JSON parser.. 460
Availability of the z/OS JSON parser..461
Syntax, linkage, and programming considerations... 462
z/OS JSON parser callable services...467
HWTCONST — Initialize predefined variables (REXX)...469
HWTJCREN — Create JSON entry..470
HWTJDEL — Delete a JSON entry.. 482
HWTJESCT — Encode or decode escape sequences (REXX)..489
HWTJGAEN — Get array entry... 490
HWTJGBOV — Get boolean value.. 494
HWTJGENC — Get JSON encoding.. 498
HWTJGJST — Get JSON type... 502
HWTCONST — Initialize predefined variables (REXX)...506
HWTJGNUE — Get number of entries..507
HWTJGNUV — Get number value (non-REXX).. 511
HWTJGOEN — Get object entry... 517
HWTJGVAL — Get value... 522
HWTJINIT — Initialize a parser instance...527
HWTJOPTS — Set parser options...531
HWTJPARS — Parse a JSON string.. 536
HWTJSENC — Set JSON encoding... 543
HWTJSERI — Serialize (build) JSON text...547
HWTJSRCH — Search... 553
HWTJTERM — Terminate a parser instance.. 561

Chapter 21. The z/OS HTTP/HTTPS protocol enabler.. 567
Elements of the z/OS HTTP/HTTPS enabler..568
Availability of the z/OS HTTP/HTTPS enabler... 569
Syntax, linkage, and programming considerations... 569
AT-TLS usage overview.. 582
Server identity.. 585
z/OS HTTP/HTTPS callable services..586
HWTCONST — Initialize predefined variables (REXX)...587
HWTHCONN — Connect to an HTTP server...588
HWTHDISC — Disconnect from an HTTP server... 594
HWTHINIT — Initialize an HTTP connection or request... 601
HWTHRQST — Send a request to an HTTP server...605
HWTHRSET — Reset an HTTP connection or request...611
HWTHSET — Set HTTP connection or request options... 616
HWTHSLST — Linked list append service.. 623
HWTHTERM — Terminate an HTTP connection or request...629
HTTP/HTTPS enabler options and values... 634

Options for connections... 634
Options for requests... 644
Capturing trace data through environment variables..647

Sending data to a server (non-REXX).. 650
Buffer with the HWTH_OPT_REQUESTBODY option... 651
Streaming send exit..651

Receiving data from a server (non-REXX)... 652
Processing response headers with the response header callback routine................................ 653
Response body processing options... 653
Usage considerations for the toolkit callback routines... 655

Part 10. SMF Services.. 657

Chapter 22. SMF real-time interface...659
IFAMCON — Connect to an SMF in-memory resource.. 659

viii

IFAMDSC — Disconnect from an SMF in-memory resource..662
IFAMGET — Obtain data from an SMF in-memory resource...665
IFAMQRY — Query SMF in-memory resources..669

Part 11. Cloud Data Access (CDA) Services... 675

Chapter 23. Introduction to DFSMSdfp Cloud Data Access (CDA)...677

Chapter 24. Cloud Data Access configuration.. 679
System administrator configuration quick-start... 679
User configuration quick-start... 681

Chapter 25. Cloud Data Access files... 683
Key file.. 683
Config file..683
Provider file.. 684

Chapter 26. Cloud Data Access cloud credential storage.. 689
Error conditions..691

Appendix A. BCPii communication error reason codes.. 693

Appendix B. BCPii summary tables.. 695
BCPii configuration considerations... 695
HWICMD / HWICMD2.. 695
HWIEVENT... 697
HWIQUERY and HWISET / HWISET2 attributes... 699
HWIREST attributes...714

Appendix C. General use C/C++ header files... 715

Appendix D. Accessibility...717

Notices..719
Terms and conditions for product documentation... 720
IBM Online Privacy Statement.. 721
Policy for unsupported hardware..721
Minimum supported hardware..721
Additional notices..722
Programming interface information..722
Trademarks.. 722

Glossary.. 723

Index.. 725

 ix

x

Figures

1. Structure of a Data Object...4

2. Mapping a Permanent Object That Has No Scroll Area.. 5

3. Mapping a Permanent Object That Has a Scroll Area...5

4. Mapping a Temporary Object.. 6

5. Mapping an Object to Multiple Windows.. 6

6. Mapping Multiple Objects..7

7. Illustration of a Reference Pattern with a Gap... 64

8. Two Typical Reference Patterns... 66

9. Illustration of Forward Direction of Reference...67

10. Illustration of Backward Direction of Reference..67

11. ATM Transaction..108

12. Two-Phase Commit Actions... 109

13. Backout — Application Request..109

14. Backout — Resource Manager Votes NO.. 110

15. Transaction — Distributed Resource Recovery.. 110

16. Sample REXX EXEC...124

17. Example illustrating that the REXX SYSTERMID is the same as the z/OSMF ISPF application
identifier .. 124

18. Sample TSO/E messages written to the queue..126

19. Contents included in the ceasapit.x file... 129

20. CSRLJPLI declarations for return codes for PL/I... 225

21. BCPii setup and installation steps..246

22. Tasks index..250

 xi

23. Customize API settings...251

24. Retrieve LPAR GPP weight for the LOCAL LPAR... 376

25. Retrieve LPAR GPP weight when the CPC and LPAR name are known... 377

26. POLLing result of an asynchronous operation... 377

27. Example of JSON text... 459

28. Example of JSON single line comment.. 460

29. Example of JSON multi-line comment on one line.. 460

30. Example of JSON multi-line comment... 460

31. Example of comments on JSON data...460

32. Example of JSON single line comment.. 532

33. Example of JSON multi-line comment on one line.. 532

34. Example of JSON multi-line comment... 532

35. Example of JSON multi-line comment... 533

36. Example of comments on JSON data...533

37. Commented JSON Example 1.. 533

38. Commented JSON Example 2.. 533

39. Commented JSON Example 3.. 533

40. Invoking the Cloud Data Access authorization utility from the ISPF command shell.......................... 690

41. Cloud Data Access authorization utility Options Menu..691

42. Cloud Data Access authorization utility entering alternate credentials..691

xii

Tables

1. CSREVW Return and Reason Codes..21

2. CSRIDAC Return and Reason Codes...25

3. CSRREFR Return and Reason Codes.. 28

4. CSRSAVE Return and Reason Codes.. 30

5. CSRSCOT Return and Reason Codes.. 32

6. CSRVIEW Return and Reason Codes.. 35

7. ISGLCRT Return Codes..93

8. ISGLOBT Return Codes... 97

9. ISGLREL Return Codes..100

10. ISGLPRG Return Codes...102

11. ISGLPBA Return Codes...104

12. CEA TSO/E address space manager components... 121

13. System prerequisites.. 122

14. Message type identifiers...125

15. Message types.. 125

16. Data types... 126

17. Input and output for each structure used for the CeaTsoStart request type..135

18. Input and output for each structure used for the CeaTsoAttn request type...136

19. Input and output for each structure used for the CeaTsoEnd request type... 137

20. Input and output for each structure used for the CeaTsoPing request type.. 138

21. Input and output for each structure that is used for Version 1 of the CeaTsoQuery request type...... 138

22. Input and output for each structure that is used for Version 2 of the CeaTsoQuery request type...... 140

23. Input and output for each structure used for Version 1 of the CeaTsoQueryApp request type...........141

 xiii

24. Input and output for each structure used for Version 2 of the CeaTsoQueryApp request type...........142

25. Return codes... 148

26. Reason codes.. 149

27. Diagnostic code...159

28. Comparison table between unauthorized and System z authorized interfaces for zEDC.................... 188

29. Standard zlib functions and whether they are supported using zEDC.. 192

30. Compression and decompression with zlib... 196

31. Compression and decompression with System z authorized interfaces for zEDC................................197

32. Environment for the FPZ4RZV service... 197

33. Parameters for the FPZ4RZV service... 198

34. Return and reason codes for the FPZ4RZV service... 199

35. Environment for the FPZ4PRB service... 200

36. Parameters for the FPZ4PRB service... 201

37. Return and Reason Codes for the FPZ4PRB service..201

38. Environment for the FPZ4RMR service.. 202

39. Parameters for the FPZ4RMR service.. 202

40. Return and Reason Codes for the FPZ4RMR service... 203

41. Environment for the FPZ4DMR service.. 204

42. Parameters for the FPZ4DMR service.. 205

43. Return and Reason Codes for the FPZ4DMR service...205

44. Environment for the FPZ4ABC service... 206

45. Parameters for the FPZ4ABC service... 206

46. Header elements in the FPZ4ABC-generated list..208

47. Entries elements in the FPZ4ABC-generated list.. 208

48. Return and Reason Codes for the FPZ4ABC service..208

xiv

49. Environment for the FPZ4URZ service... 211

50. Parameters for the FPZ4URZ service... 211

51. Return and Reason Codes for the FPZ4URZ service..211

52. IEAAFFN Return Codes...220

53. CSRL16J/CSRLJ1 Return Codes...226

54. Minimum BCPii microcode levels by SE hardware level.. 247

55. Minimum BCPii microcode levels by HMC level...247

56. Minimum BCPii microcode levels by LPAR level.. 248

57. BCPii APIs supported in the REXX environment..261

58. HWIREXX keywords..262

59. Return codes from the HWIREXX service.. 263

60. Return codes from a REXX BCPii host command...267

61. REXX return codes from the BCPii hwihost function... 269

62. HWICMD syntax.. 273

63. HWICMD2 syntax.. 273

64. Structure pointed to by CmdParm_Ptr (non-REXX); CmdParm stem variable (REXX)......................... 277

65. Reasons for abend X'042', RC X'0001yyyy' for HWICMD or X'0008yyyy' for HWICMD2 for................286

66. Reasons for abend X'042', RC X'0002yyyy'... 300

67. Reasons for abend X'042', RC X'0003yyyy'... 311

68. Reasons for abend X'042', RC X'0004yyyy'... 322

69. Reasons for abend X'042', RC X'0005yyyy'... 335

70. Valid query attribute identifiers..347

71. Reasons for abend X'042', RC X'0006yyyy'... 366

72. Reasons for abend X'042', RC X'0009yyyy' for HWIREST... 378

73. Non-REXX parameters..379

 xv

74. RequestParmPtr parameter..379

75. ResponseParmPtr parameter... 382

76. REXX parameters.. 386

77. RequestParm stem tail variables..387

78. ResponseParm stem variables... 389

79. HWISET syntax..394

80. HWISET2 syntax... 394

81. Parameters of the (SetParm) structure pointed by the SetParm_Ptr ...429

82. Reasons for abend X'042', RC X'0007yyyy' for HWISET or X'0009yyyy' for HWISET2........................430

83. Reasons for abend X'042', RC X'0004yyyy'... 448

84. JSON parser programming interface..462

85. Calling formats for the z/OS JSON parser callable services..462

86. Host return codes for REXX.. 465

87. JSON parser programming sample files.. 467

88. Return codes for the HWTCONST service.. 470

89. Return codes for the HWTJCREN service...475

90. Return codes for the HWTJDEL service..484

91. Return codes for the HWTJESCT service... 490

92. Return codes for the HWTJGAEN service.. 492

93. Return codes for the HWTJGBOV service.. 496

94. Return codes for the HWTJGENC service.. 500

95. Return codes for the HWTJGJST service... 504

96. Return codes for the HWTCONST service.. 507

97. Return codes for the HWTJGNUE service.. 509

98. Return codes for the HWTJGNUV service.. 514

xvi

99. Return codes for the HWTJGOEN service.. 520

100. Return codes for the HWTJGVAL service... 525

101. Return codes for the HWTJINIT service.. 529

102. Return codes for the HWTJOPTS service...534

103. Return codes for the HWTJPARS service... 539

104. Return codes for the HWTJSENC service...545

105. Return codes for the HWTJSERI service..550

106. Return codes for the HWTJSRCH service...557

107. Return codes for the HWTJTERM service.. 563

108. HTTP enabler.. 569

109. Calling formats for the z/OS HTTP enabler callable services..569

110. Toolkit handling of HTTP redirection status response codes..578

111. Host return codes for REXX..579

112. z/OS HTTP enabler programming sample files..581

113. AT-TLS policy types...584

114. Return codes for the HWTCONST service.. 588

115. Return codes for the HWTHCONN service... 590

116. Return codes for the HWTHDISC service...596

117. Return codes for the HWTHINIT service... 603

118. Return codes for the HWTHRQST service..607

119. Return codes for the HWTHRSET service.. 613

120. Return codes for the HWTHSET service...619

121. Return codes for the HWTHSLST service...626

122. Return codes for the HWTHTERM service... 631

123. Return and reason codes for the IFAMCON service.. 661

 xvii

124. Return and reason codes for the IFAMDSC service...664

125. Return and reason codes for the IFAMGET service... 668

126. Return and reason codes for the IFAMQRY service...672

127. DFSMSdfp CDA variables..687

128. ICSF reason codes..692

129. HWICMD types..695

130. HWIEVENT types.. 697

131. HWIQUERY and HWISET / HWISET2 attributes.. 699

xviii

About this information

Callable services are for use by any program coded in C, COBOL, FORTRAN, Pascal, or PL/I — this
information refers to programs written in these languages as high-level language (HLL) programs. Callable
services enable HLL programs to use specific MVS™ services by issuing program CALLs.

Who should use this information
This information is for programmers who code in C, COBOL, FORTRAN, Pascal, or PL/I and want to use the
callable services that MVS provides.

How to use this information
This information is one of the set of programming documents for MVS. This set describes how to write
programs in assembler language or high-level languages, such as C, FORTRAN, and COBOL. For more
information about the content of this set of documents, see z/OS Information Roadmap.

z/OS information
This information explains how z/OS references information in other documents and on the web.

When possible, this information uses cross-document links that go directly to the topic in reference using
shortened versions of the document title. For complete titles and order numbers of the documents for all
products that are part of z/OS, see z/OS Information Roadmap.

To find the complete z/OS library, go to IBM Documentation (www.ibm.com/docs/en/zos).

© Copyright IBM Corp. 1994, 2023 xix

https://www.ibm.com/docs/en/zos

xx z/OS: z/OS MVS Callable Services for HLL

How to send your comments to IBM

We invite you to submit comments about the z/OS product documentation. Your valuable feedback helps
to ensure accurate and high-quality information.

Important: If your comment regards a technical question or problem, see instead “If you have a technical
problem” on page xxi.

Submit your feedback by using the appropriate method for your type of comment or question:
Feedback on z/OS function

If your comment or question is about z/OS itself, submit a request through the IBM RFE Community
(www.ibm.com/developerworks/rfe/).

Feedback on IBM® Documentation function
If your comment or question is about the IBM Documentation functionality, for example search
capabilities or how to arrange the browser view, send a detailed email to IBM Documentation Support
at ibmdocs@us.ibm.com.

Feedback on the z/OS product documentation and content
If your comment is about the information that is provided in the z/OS product documentation library,
send a detailed email to mhvrcfs@us.ibm.com. We welcome any feedback that you have, including
comments on the clarity, accuracy, or completeness of the information.

To help us better process your submission, include the following information:

• Your name, company/university/institution name, and email address
• The following deliverable title and order number: z/OS MVS Callable Services for HLL,

SA23-1377-50
• The section title of the specific information to which your comment relates
• The text of your comment.

When you send comments to IBM, you grant IBM a nonexclusive authority to use or distribute the
comments in any way appropriate without incurring any obligation to you.

IBM or any other organizations use the personal information that you supply to contact you only about the
issues that you submit.

If you have a technical problem
If you have a technical problem or question, do not use the feedback methods that are provided for
sending documentation comments. Instead, take one or more of the following actions:

• Go to the IBM Support Portal (support.ibm.com).
• Contact your IBM service representative.
• Call IBM technical support.

© Copyright IBM Corp. 1994, 2023 xxi

http://www.ibm.com/developerworks/rfe/
http://www.ibm.com/developerworks/rfe/
mailto:ibmdocs@us.ibm.com
mailto:mhvrcfs@us.ibm.com
http://support.ibm.com

xxii z/OS: z/OS MVS Callable Services for HLL

Summary of changes

This information includes terminology, maintenance, and editorial changes. Technical changes or
additions to the text and illustrations for the current edition are indicated by a vertical line to the left
of the change.

Note: IBM z/OS policy for the integration of service information into the z/OS product documentation
library is documented on the z/OS Internet Library under IBM z/OS Product Documentation
Update Policy (www-01.ibm.com/servers/resourcelink/svc00100.nsf/pages/ibm-zos-doc-update-policy?
OpenDocument).

Summary of changes for z/OS MVS Programming: Callable Services
for High-Level Languages for Version 2 Release 5 (V2R5)

The following content is new, changed, or no longer included in V2R5.

New
The following content is new.
June 2023 refresh

• A new section was added to “Options for connections” on page 634. See “Server identity” on page
585 (APAR OA64456).

March 2023 refresh

• Part 11, “Cloud Data Access (CDA) Services,” on page 675 is added in support of APAR OA62318.
(APAR OA62318, which also applies to V2R4)

Prior to March 2023 refresh

• Added a bullet cautioning that IBM does not recommend REXX applications use variable names that
are the same as stem tail names documented by BCPii. See “REXX Programming tips” on page 266.

Changed
The following content is changed.
June 2023 refresh

• The description of the QryParmBlock parameter is updated in “IFAMQRY — Query SMF in-memory
resources” on page 669.

Prior to June 2023 refresh

• Clarification was added that the SAF resource profile CEA.CEATSO.TSOREQUEST is in the SERVAUTH
class. See “ System prerequisites for the CEA TSO/E address space services” on page 122.

• z/OS BCPii now allows unrestricted access from ISV REXX and TSO/E REXX environments to
previously restricted HWIREST requests. See “REXX Programming tips” on page 266. (APAR
OA61976)

• zEDC task termination processing has been enhanced to only delete RZVTokens that are associated
with the task being terminated. (APAR OA54048). See “System z authorized compression services”
on page 197.

• The JSON Parser now tolerates single and multi-line comments defined by the JSON5 Data
Interchange Format extension to JSON (https://spec.json5.org/#comments). See Chapter 20, “The
z/OS JSON parser,” on page 459. (APAR OA61974)

© Copyright IBM Corp. 1994, 2023 xxiii

https://www-01.ibm.com/servers/resourcelink/svc00100.nsf/pages/ibm-zos-doc-update-policy?OpenDocument
https://www-01.ibm.com/servers/resourcelink/svc00100.nsf/pages/ibm-zos-doc-update-policy?OpenDocument
https://www-01.ibm.com/servers/resourcelink/svc00100.nsf/pages/ibm-zos-doc-update-policy?OpenDocument
https://spec.json5.org/#comments

• For HWIQUERY, additional information is added to the table of valid query attribute identifiers. See
“Parameters” on page 346.

Deleted
The following content was deleted.

• This information contains no technical changes for this release.

Summary of changes for z/OS MVS Callable Services for HLL for
z/OS Version 2 Release 4 (V2R4)

The following changes have been made to this publication for z/OS Version 2 Release 4 (V2R4). The most
recent updates are listed at the top of each section.

New
May 2021 refresh

New note added to Receiving data from a server (non-REXX) regarding the use of the streaming
response body exit option (HWTH_OPT_STREAM_RECEIVE_EXIT) for response bodies that are larger
than available storage (memory). (APAR OA60739)

April 2021 refresh
New HWIREST API added from APAR OA60351. See “HWIREST — Issue RESTlike requests to the SE”
on page 375.

January 2021 refresh
A new step was added to the running zlib process that describes how SIMD acceleration can be used
in checksum verification. For more information, refer to “Running zlib” on page 194.

Prior to July 2020 refresh

• In support of apar OA54601, added Compilation consideration to “Environmental considerations”
on page 571 of the z/OS HTTP/HTTPS protocol enabler.

• In support of defect 300715, added

z/OS Language Environment Runtime Environment REUSE (RTEREUS) option consideration to
“Environmental considerations” on page 571 of the z/OS HTTP/HTTPS protocol enabler.

Changed
March 2021 refresh

• Updated steps to add the BCPii community name definition to the SE configuration. See “Define the
BCPii community name on the support element” on page 250.

• Console setup added to “Environment” on page 271 of HWICMD / HWICMD2 - Issue a BCPii
hardware management command in support of Defect 399017.

• Technote link to demonstrate how to write the XML parameter for the HWI_CMD_TEMPCAP added
in support of Defect 400992. See “REXX programming considerations for the HWICMD / HWICMD2
service” on page 272, “Parameters” on page 273, and “HWICMD / HWICMD2” on page 695.

July 2020 refresh

• Chapter 17, “CSRL16J/CSRLJ1 — Transfer control with all registers intact,” on page 221 is updated
to add support for L16J1 and CSRLJ1.

Prior to July 2020 refresh

• Updated “Syntax, linkage, and programming considerations” on page 569 and “SSL/TLS support
options” on page 639 in support of TLS 1.3.

• Updated HWI_CURRPPOWERMODE, HWI_SUPPPPOWERMODE, and HWI_POWERMODEALLOWED
of Table 70 on page 347 for REXX programming considerations for the HWIQUERY service.

xxiv z/OS: z/OS MVS Callable Services for HLL

• In support of APAR OA56143, updates made to:

– “Running zlib” on page 194
– Parameters for FPZ4PRB - Probe device availability compression service. See “Description” on

page 200.
– Description of “FPZ4RMR - Memory registration compression service” on page 202
– Parameters and Return and Reason Codes for “FPZ4ABC — Submit compression request” on

page 206
– Table 28 on page 188
– “Requirements for zEnterprise Data Compression” on page 187.

• In support of defect 298657, updates made to:

– “Authority to the particular resource” on page 252
– “HWICONN — Establish a BCPii connection” on page 295
– “HWIDISC — Release a BCPii connection” on page 308
– “HWILIST — Retrieve HMC and BCPii configuration-related information” on page 328
– “HWIQUERY — BCPii retrieval of SE/HMC-managed attributes” on page 344
– “HWISET/HWISET2 — BCPii set single or multiple SE/HMC-managed attributes” on page 392
– “HWIQUERY and HWISET / HWISET2 attributes” on page 699

• In support of defect 232880, updates made to:

– “IFAMCON — Connect to an SMF in-memory resource” on page 659
– “IFAMDSC — Disconnect from an SMF in-memory resource” on page 662
– “IFAMGET — Obtain data from an SMF in-memory resource” on page 665
– “IFAMQRY — Query SMF in-memory resources” on page 669

Summary of changes for z/OS MVS Callable Services for HLL for
z/OS Version 2 Release 3 (V2R3)

The following changes have been made to this publication for z/OS Version 2 Release 3 (V2R3). The most
recent updates are listed at the top of each section.

New
• As a result of zlib 1.2.11-zEDC, the following updates were made:

– Added path information for xplink dynamic library files, see “Running zlib” on page 194.
– Added five standard zlib functions, see “Standard zlib functions” on page 192.

• Added support for UTF-8. For more information see:

“z/OS JSON parser callable services” on page 467
“HWTJCREN — Create JSON entry” on page 470
“HWTJDEL — Delete a JSON entry” on page 482
“HWTJGENC — Get JSON encoding” on page 498
“HWTJGOEN — Get object entry” on page 517
“HWTJGVAL — Get value” on page 522
“HWTJPARS — Parse a JSON string” on page 536
“HWTJSENC — Set JSON encoding” on page 543
“HWTJSERI — Serialize (build) JSON text” on page 547
“HWTJSRCH — Search” on page 553

• APAR OA51597 - Added content to support Remote TSO/E Address Space Manager to Part 5, “CEA
TSO/E address space services,” on page 119.

Summary of changes xxv

• Added new return code 10 (030B) for “FPZ4RZV - Rendezvous compression service” on page 197.
• Added new reason codes 34C and 118 in “Reason codes” on page 149.
• Added new return code FFFFFFFE in “Return codes” on page 148.
• Added HWICMD2 support for the BCPii service HWICMD in “HWICMD / HWICMD2 — Issue a BCPii

hardware management command” on page 271.
• Added new type codes 95 - 99 and 9A - 9E for the BCPii services HWIQUERY in “Parameters” on page

346 and HWISET in “Parameters” on page 394.
• Added HWISET2 support for the BCPii service HWISET in “HWISET/HWISET2 — BCPii set single or

multiple SE/HMC-managed attributes” on page 392.
• Added HWTJDEL — Delete a JSON entry in the z/OS Client Web Enablement Toolkit. For more

information, see “HWTJDEL — Delete a JSON entry” on page 482.
• Add new return code HWI_QUERY_ATTRIB_NOT_AVAILABLE to HWIQUERY. See “Return codes” on

page 366.
• Information about the streaming send exit and streaming receive exit has been added in Chapter 21,

“The z/OS HTTP/HTTPS protocol enabler,” on page 567.
• APAR OA53546 - Added z/OS Language Environment Heap runtime option considerations to

Environmental considerations of “Syntax, linkage, and programming considerations” on page 569 and
HWTH_OPT_SSLCIPHERSPECS support to “HTTP/HTTPS enabler options and values” on page 634.

• Added AT-TLS interoperability support for HTTP/HTTPS protocol enabler in the z/OS Client Web
Enablement Toolkit. For more information, see “Syntax, linkage, and programming considerations” on
page 569 and “HTTP/HTTPS enabler options and values” on page 634

Changed
• Updates in support of JSON shallow search in “HWTJSRCH — Search” on page 553.
• Updates in support of Defect 289189 (PMR 54646,442,000, group profiles attributes) in “Return codes”

on page 366.
• Updates in support of Defect 237304 in “Parameters” on page 394 and “Parameters” on page 346.
• Updates in support of Defect 275254 to return code 82 (130) in Appendix A, “BCPii communication

error reason codes,” on page 693.
• Updates in support of Defect 271318 to HWI_CMD_OOCOD in Table 64 on page 277.
• The sample code to invoke the CEATsoRequest API from a C program has been updated in

“Programming example” on page 169.
• Updates to Parameters for the FPZ4RMR service of “FPZ4RMR - Memory registration compression

service” on page 202.
• Dynamic modification of CPC names for BCPii has been updated under Chapter 19, “Base Control

Program internal interface (BCPii),” on page 245.
• APAR OA53580 - Updates to Part 8, “Base Control Program internal interface (BCPii) services,” on page

243, Configure the local Support Element (SE) to support BCPii of “BCPii setup and installation” on page
245 and Table 54 on page 247.

• Updates to programming requirements of “IFAMCON — Connect to an SMF in-memory resource” on
page 659.

• Updates to programming requirements of “IFAMGET — Obtain data from an SMF in-memory resource”
on page 665.

• Updates to programming requirements and parameters of “IFAMQRY — Query SMF in-memory
resources” on page 669.

xxvi z/OS: z/OS MVS Callable Services for HLL

Part 1. Window services

© Copyright IBM Corp. 1994, 2023 1

2 z/OS: z/OS MVS Callable Services for HLL

Chapter 1. Introduction to window services

Window services allow HLL programs to:

• Read or update an existing permanent data object
• Create and save a new permanent data object
• Create and use a temporary data object

Window services enable your program to access data objects without your program performing any input
or output (I/O) operations. All your program needs to do is issue a CALL to the appropriate service
program. The service program performs any I/O operations that are required to make the data object
available to your program. When you want to update or save a data object, window services again perform
any required I/O operations.

Permanent data objects
A permanent data object is a virtual storage access method (VSAM) linear data set that resides on DASD.
(This type of data set is also called a data-in-virtual object.) You can read data from an existing permanent
object and also update the content of the object. You can create a new permanent object and when you
are finished, save it on DASD. Because you can save this type of object on DASD, window services calls it
a permanent object. Window services can handle very large permanent objects that contain as many as 4
gigabytes (four billion bytes).

Note: Installations whose FORTRAN programs used data-in-virtual objects prior to MVS/SP 3.1.0 had
to write an assembler language interface program to allow the FORTRAN program to invoke the data-in-
virtual program. Window services eliminates the need for this interface program.

Temporary data objects
A temporary data object is an area of expanded storage that window services provides for your program.
You can use this storage to hold temporary data, such as intermediate results of a computation, instead of
using a DASD workfile. Or you might use the storage area as a temporary buffer for data that your program
generates or obtains from some other source. When you finish using the storage area, window services
deletes it. Because you cannot save the storage area, window services calls it a temporary object. Window
services can handle very large temporary objects that contain as many as 16 terabytes (16 trillion bytes).

Structure of a data object
Think of a data object as a contiguous string of bytes organized into blocks, each 4096 bytes long. The
first block contains bytes 0 to 4095 of the object, the second block contains bytes 4096 to 8191, and so
forth.

Your program references data in the object by identifying the block or blocks that contain the desired
data. Window services makes the blocks available to your program by mapping a window in your program
storage to the blocks. A window is a storage area that your program provides and makes known to window
services. Mapping the window to the blocks means that window services makes the data from those
blocks available in the window when you reference the data. You can map a window to all or part of a data
object depending on the size of the object and the size of the window. You can examine or change data
that is in the window by using the same instructions that you use to examine or change any other data in
your program storage.

The following figure shows the structure of a data object and shows a window mapped to two of the
object’s blocks.

© Copyright IBM Corp. 1994, 2023 3

Figure 1. Structure of a Data Object

What does window services provide?
Window services allows you to view and manipulate data objects in a number of ways. You can have
access to one or more data objects at the same time. You can also define multiple windows for a given
data object. You can then view a different part of the object through each window. Before you can access
any data object, you must request access from window services.

When you request access to a permanent data object, you must indicate whether you want a scroll area.
A scroll area is an area of expanded storage that window services obtains and maps to the permanent
data object. You can think of the permanent object as being available in the scroll area. When you request
a view of the object, window services maps the window to the scroll area. If you do not request a scroll
area, window services maps the window directly to the object on DASD.

A scroll area enables you to save interim changes to a permanent object without changing the object on
DASD. Also, when your program accesses a permanent object through a scroll area, your program might
attain better performance than it would if the object were accessed directly on DASD.

When you request a temporary object, window services provides an area of expanded storage. This
area of expanded storage is the temporary data object. When you request a view of the object, window
services maps the window to the temporary object. Window services initializes a temporary object to
binary zeroes.

Note:

1. Window services does not transfer data from the object on DASD, from the scroll area, or from
the temporary object until your program references the data. Then window services transfers those
blocks.

2. The expanded storage that window services uses for a scroll area or for a temporary object is called
a hiperspace. A hiperspace is a range of contiguous virtual storage addresses that a program can
indirectly access through a window in the program’s virtual storage. Window services uses as many
hiperspaces as needed to contain the data object.

The ways that window services can map an object
Window services can map a data object a number of ways. The following examples show how window
services can:

• Map a permanent object that has no scroll area
• Map a permanent object that has a scroll area

4 z/OS: z/OS MVS Callable Services for HLL

• Map a temporary object
• Map an object to multiple windows
• Map multiple objects

Example 1 — Mapping a permanent object that has no scroll area
If a permanent object has no scroll area, window services maps the object from DASD directly to your
window. In this example, your window provides a view of the first and second blocks of an object.

Figure 2. Mapping a Permanent Object That Has No Scroll Area

Example 2 — Mapping a permanent object that has a scroll area
If the object has a scroll area, window services maps the object from DASD to the scroll area. Window
services then maps the blocks that you wish to view from the scroll area to your window. In this example,
your window provides a view of the third and fourth blocks of an object.

Figure 3. Mapping a Permanent Object That Has a Scroll Area

Chapter 1. Introduction to window services 5

Example 3 — Mapping a temporary object
Window services uses a hiperspace as a temporary object. In this example, your window provides a view
of the first and second blocks of a temporary object.

Figure 4. Mapping a Temporary Object

Example 4 — Mapping multiple Windows to an object
Window services can map multiple windows to the same object. In this example, one window provides a
view of the second and third blocks of an object, and a second window provides a view of the last block.

Figure 5. Mapping an Object to Multiple Windows

Example 5 — Mapping multiple objects
Window services can map windows in the same address space to multiple objects. The objects can be
temporary objects, permanent objects, or a combination of temporary and permanent objects. In this
example, one window provides a view of the second block of a temporary object, and a second window
provides a view of the fourth and fifth blocks of a permanent object.

6 z/OS: z/OS MVS Callable Services for HLL

Figure 6. Mapping Multiple Objects

Access to permanent data objects
When you have access to a permanent data object, you can:

• View the object through one or more windows — Depending on the object size and the window size, a
single window can view all or part of a permanent object. If you define multiple windows, each window
can view a different part of the object. For example, one window might view the first block of the
permanent object and another window might view the second block. You can also have several windows
view the same part of the object or have views in multiple windows overlap. For example, one window
might view the first and second blocks of a data object while another window views the second and
third blocks.

• Change data that appears in a window — You can examine or change data that is in a window by using
the same instructions you use to examine or change any other data in your program’s storage. These
changes do not alter the object on DASD or in the scroll area.

• Save interim changes in a scroll area — After changing data in a window, you can have window
services save the changed blocks in a scroll area, if you have requested one. Window services replaces
blocks in the scroll area with corresponding changed blocks from the window. Saving changes in the
scroll area does not alter the object on DASD or alter data in the window.

Chapter 1. Introduction to window services 7

• Refresh a window or the scroll area — After you change data in a window or save changes in the scroll
area, you may discover that you no longer need those changes. In that case, you can have window
services refresh the changed data. To refresh the window or the scroll area, window services replaces
changed data with data from the object as it appears on DASD.

• Replace the view in a window — After you finish using data that is in a window, you can have window
services replace the view in the window with a different view of the object. For example, if you are
viewing the third, fourth, and fifth blocks of an object and are finished with those blocks, you might have
window services replace that view with a view of the sixth, seventh, and eighth blocks.

• Update the object on DASD — If you have changes available in a window or in the scroll area, you
can save the changes on DASD. Window services replaces blocks on DASD with corresponding changed
blocks from the window and the scroll area. Updating an object on DASD does not alter data in the
window or in the scroll area.

Access to temporary data objects
When you have access to a temporary data object, you can:

• View the object through one or more windows — Depending on the object size and the window
size, a single window can view all or part of a temporary object. If you define multiple windows, each
window can view a different part of the object. For example, one window might view the first block of
the temporary object and another window might view the second block. Unlike a permanent object,
however, you cannot define multiple windows that have overlapping views of a temporary object.

• Change data that appears in a window — This function is the same for a temporary object as it is for
a permanent object: you can examine or change data that is in a window by using the same instructions
you use to examine or change any other data in your address space.

• Update the temporary object — After you have changed data in a window, you can have window
services update the object with those changes. Window services replaces blocks in the object with
corresponding changed blocks from the window. The data in the window remains as it was.

• Refresh a window or the object — After you change data in a window or save changes in the object,
you may discover that you no longer need those changes. In that case, you can have window services
refresh the changed data. To refresh the window or the object, window services replaces changed data
with binary zeroes.

• Replace the view in a window — After you finish using data that is in a window, you can have window
services replace the view in the window with a different view of the object. For example, if you are
viewing the third, fourth, and fifth blocks of an object and are finished with those blocks, you might have
window services replace that view with a view of the sixth, seventh, and eighth blocks.

8 z/OS: z/OS MVS Callable Services for HLL

Chapter 2. Using window services

To use, create, or update a data object, you call a series of programs that window services provides. These
programs enable you to:

• Access an existing object, create and save a new permanent object, or create a temporary object
• Obtain a scroll area where you can make interim changes to a permanent object
• Define windows and establish views of an object in those windows
• Change or terminate the view in a window
• Update a scroll area or a temporary object with changes you have made in a window
• Refresh changes that you no longer need in a window or a scroll area
• Update a permanent object on DASD with changes that are in a window or a scroll area
• Terminate access to an object

The window services programs that you call and the sequence in which you call them depends on your
use of the data object.

The first step in using any data object is to gain access to the object. To gain access, call CSRIDAC. The
object can be an existing permanent object, or a new permanent or temporary object you want to create.
For a permanent object, you can request an optional scroll area. A scroll area enables you to make interim
changes to an object’s data without affecting the data on DASD. When CSRIDAC grants access, it provides
an object identifier that identifies the object. Use that identifier to identify the object when you request
other services from window services.

After obtaining access to an object, define one or more windows and establish views of the object in those
windows. To establish a view of an object, tell window services which blocks you want to view and in
which windows. You can view multiple objects and multiple parts of each object at the same time. To
define windows and establish views, call CSRVIEW or CSREVW. After establishing a view, you can examine
or change data that is in the window using the same instructions you use to examine or change other data
in your program’s storage.

After making changes to the part of an object that is in a window, you will probably want to save those
changes. How you save changes depends on whether the object is permanent, is temporary, or has a
scroll area.

If the object is permanent and has a scroll area, you can save changes in the scroll area without affecting
the object on DASD. Later, you can update the object on DASD with changes saved in the scroll area. If the
object is permanent and has no scroll area, you can update it on DASD with changes that are in a window.
If the object is temporary, you can update it with changes that are in a window. To update an object on
DASD, call CSRSAVE. To update a temporary object or a scroll area, call CSRSCOT.

After making changes in a window and possibly saving them in a scroll area or using them to update a
temporary object, you might decide that you no longer need those changes. In this case, you can refresh
the changed blocks. After refreshing a block of a permanent object or a scroll area to which a window
is mapped, the refreshed block contains the same data that the corresponding block contains on DASD.
After refreshing a block of a temporary object to which a window is mapped, the block contains binary
zeroes. To refresh a changed block, call CSRREFR.

After finishing with a view in a window, you can use the same window to view a different part of the object
or to view a different object. Before changing the view in a window, you must terminate the current view.
If you plan to view a different part of the same object, terminate the current view by calling CSRVIEW.
If you plan to view a different object or will not reuse the window, you can terminate the view by calling
CSRIDAC.

When you finish using a data object, terminate access to the object by calling CSRIDAC.

The following restrictions apply to using window services:

© Copyright IBM Corp. 1994, 2023 9

1. When you attach a new task, you cannot pass ownership of a mapped virtual storage window to the
new task. That is, you cannot use the ATTACH or ATTACHX keywords GSPV and GSPL to pass the
mapped virtual storage.

2. While your program is in cross-memory mode, your program cannot invoke data-in-virtual services;
however, your program can reference and update data in a mapped virtual storage window.

3. The task that obtains the ID (through DIV IDENTIFY) is the only one that can issue other DIV services
for that ID.

4. When you identify a data-in-virtual object using the IDENTIFY service, you cannot request a
checkpoint until you invoke the corresponding UNIDENTIFY service.

This topic explains how to do the previously described functions and contains the following subtopics:

• “Obtaining access to a data object” on page 10
• “Defining a view of a data object” on page 11
• “Defining multiple views of an object” on page 14
• “Saving interim changes to a permanent data object” on page 15
• “Updating a temporary data object” on page 15
• “Refreshing changed data” on page 16
• “Updating a permanent object on DASD” on page 16
• “Changing a view in a window” on page 17
• “Terminating access to a data object” on page 18
• “Handling return codes and abnormal terminations” on page 18.

Obtaining access to a data object
To obtain access to a permanent or temporary data object, call CSRIDAC. Indicate that you want to access
an object by specifying BEGIN as the value for op_type. For a description of the CSRIDAC parameters and
return codes, see “CSRIDAC — Request or terminate access to a data object” on page 22.

Identifying the object
You must identify the data object you wish to access. How you identify the object depends on whether the
object is permanent or temporary.

Permanent object
For a permanent object, object_name and object_type work together. For object_name you have a choice:
specify either the data set name of the object or the DDNAME to which the object is allocated. The
object_type parameter must then indicate whether object_name is a DDNAME or a data set name:

• If object_name is a DDNAME, specify DDNAME as the value for object_type.
• If object_name is a data set name, specify DSNAME as the value for object_type.

If you specify DSNAME for object_type, indicate whether the object already exists or whether window
services is to create it:

• If the object already exists, specify OLD as the value for object_state.
• If window services is to create the object, specify NEW as the value for object_state.

Note: Requirement for NEW objects: If you specify NEW as the value for object_state, your system must
include MVS/Data Facility Product. (MVS/DFP) 3.1.0 and SMS must be active.

10 z/OS: z/OS MVS Callable Services for HLL

Temporary object
To identify a temporary object, specify TEMPSPACE as the value for object_type. Window services
assumes that a temporary object is new and ignores the value that you specify for object_state.

Specifying the object’s size
If the object is permanent and new or is temporary, you must tell window services the size of the object.
You specify object size through the object_size parameter. The size specified becomes the maximum size
that window services will allow for that object. You express the size as a number of 4096-byte blocks. If
the number of bytes in the object is not an exact multiple of 4096, round object_size to the next whole
number. For example:

• If the object size is to be less than 4097 bytes, specify 1.
• If the object size is 5000 bytes, specify 2.
• If the object size is 410,000 bytes, specify 101.

Specifying the type of access
For an existing (OLD) permanent object, you must specify how you intend to access the object. You
specify your intentions through the access_mode parameter:

• If you intend to only read the object, specify READ for access_mode.
• If you intend to update the object, specify UPDATE for access_mode.

For a new permanent object and for a temporary object, window services assumes you will update the
object and ignores the value you specify for access_mode.

Obtaining a scroll area
A scroll area is storage that window services provides for your use. This storage is outside your program’s
storage area and is accessible only through window services.

For a permanent object, a scroll area is optional. A scroll area allows you to make interim changes to
a permanent object without altering the object on DASD. Later, if you want, you can update the object
on DASD with the interim changes. A scroll area might also improve performance when your program
accesses a permanent object.

For a temporary object, the scroll area is the object. Therefore, for a temporary object, a scroll area is
required.

To indicate whether you want a scroll area, provide the appropriate value for scroll_area:

• To request a scroll area, supply a value of YES. YES is required for a temporary object.
• To indicate you do not want a scroll area, supply a value of NO.

Defining a view of a data object
To view all or part of a data object, you must provide window services with information about the object
and how you want to view it. You must provide window services with the following information:

• The object identifier
• Where the window is in your address space
• Window disposition — that is, whether window services is to initialize the window the first time you

reference data in the window
• Whether you intend to reference blocks of data sequentially or randomly
• The blocks of data that you want to view
• Whether you want to extend the size of the object

Chapter 2. Using window services 11

To define a view of a data object, call CSRVIEW or CSREVW. Whether you use CSRVIEW or CSREVW
depends on how you plan to reference the data. “Defining the expected reference pattern” on page
13 describes the differences between the two services. Specify BEGIN on CSRVIEW or CSREVW as the
type of operation. For descriptions of the CALL syntax and return codes from CSRVIEW or CSREVW, see
“CSRVIEW — View an object” on page 32 or “CSREVW — View an object and sequentially access it” on
page 19.

Identifying the data object
To identify the object you want to view, specify the object identifier as the value for object_id. Use the
same value CSRIDAC returned in object_id when you requested access to the object.

Identifying a window
You must identify the window through which you will view the object. The window is a virtual storage
area in your address space. You are responsible for obtaining the storage, which must meet the following
requirements:

• The storage must not be page fixed.
• Pages in the window must not be page loaded (must not be loaded by the PGLOAD macro).
• The storage must start on a 4K boundary and must be a multiple of 4096 bytes in length.

To identify the window, use the window_name parameter. The value supplied for window_name must be
the symbolic name you assigned to the window storage area in your program.

Defining a window in this way provides one window through which you can view the object. To define
multiple windows that provide simultaneous views of different parts of the object, see “Defining multiple
views of an object” on page 14.

Defining the disposition of a window’s contents
You must specify whether window services is to replace or retain the window contents. You do this by
selecting either the replace or retain option. This option determines how window services handles the
data that is in the window the first time you reference the data. You select the option by supplying a value
of REPLACE or RETAIN for disposition.

Replace option
If you specify the replace option, the first time you reference a block to which a window is mapped,
window services replaces the data in the window with corresponding data from the object. For example,
assume you have requested a view of the first block of a permanent object and have specified the replace
option. The first time you reference the window, window services replaces the data in the window with the
first 4096 bytes (the first block) from the object.

If you have selected the replace option and then call CSRSAVE to update a permanent object, or call
CSRSCOT to update a scroll area, or call CSRSCOT to update a temporary object, window services updates
only the specified blocks that have changed and to which a window is mapped.

Select the replace option when you want to examine, use, or change data that is currently in an object.

Retain option
If you select the retain option, window services retains data that is in the window. When you reference a
block in the window the first time, the block contains the same data it contained before the reference.

When you select the retain option, window services considers all of the data in the window as changed.
Therefore, if you call CSRSCOT to update a scroll area or a temporary object, or call CSRSAVE to update
a permanent object, window services updates all of the specified blocks to which a window or scroll area
are mapped.

12 z/OS: z/OS MVS Callable Services for HLL

Select the retain option when you want to replace data in an object without regard for the data that it
currently contains. You also use the retain option when you want to initialize a new object.

Defining the expected reference pattern
You must tell window services whether you intend to reference the blocks of an object sequentially or
randomly. An intention to access randomly tells window services to bring one block (4096 bytes) of data
into the window at a time. An intention to access sequentially tells window services to read more than one
block into your window at one time. The performance gain is in having blocks of data already in central
storage at the time the program needs to reference them. You specify the intent on either CSRVIEW or
CSREVW, two services that differ on how to specify sequential access.

• CSRVIEW allows you a choice between random or sequential access.

If you specify random, when you reference data that is not in your window, window services brings in
one block — the one that contains the data your program references.

If you specify sequential, when you reference data that is not in your window, window services
transfers up to 16 blocks — the one that contains the data your program requests, plus the next 15
consecutive blocks. The number of consecutive blocks varies, depending on the size of the window and
availability of central storage. Use CSRVIEW if one of the following is true:

– You are going to access randomly.
– You are going to access sequentially, and you are satisfied with a maximum of 16 blocks coming into

the window at a time.
• CSREVW is for sequential access only. It allows you to specify the maximum number of consecutive

blocks that window services brings into the window at one time. The number ranges from one block
through 256 blocks. Use CSREVW if you want fewer than 16 blocks or more than 16 blocks at one time.
Programs that benefit from having more than 16 blocks come into a window at one time reference data
areas that are greater than one megabyte.

To specify the reference pattern on CSRVIEW, supply a value of SEQ or RANDOM for usage.

To specify the reference pattern on CSREVW, supply a number from 0 through 255 for pfcount. pfcount
represents the number of blocks window services will bring into the window, in addition to the one that it
always brings in.

Note that window services brings in multiple pages differently depending on whether your object is
permanent or temporary and whether the system has had to move pages of your data from central
storage to make those pages of central available for other programs. The rule is that SEQ on CSRVIEW and
pfcount on CSREVW apply to:

• A permanent object when movement is from the object on DASD to central storage
• A temporary object when your program has scrolled the data out and references it again

SEQ and pfcount do not apply after the system has had to move data (either changed or unchanged) to
auxiliary or expanded storage, and your program again references it, requiring the system to bring the
data back into central storage.

End the view, whether established with CSRVIEW or CSREVW, with CSRVIEW END.

Identifying the blocks you want to view
To identify the blocks of data you want to view, use offset and span. The values you assign to offset and
span, together, define a contiguous string of blocks that you want to view:

• The value assigned to offset specifies the relative block at which to start the view. An offset of 0 means
the first block; an offset of 1 means the second block; an offset of 2 means the third block, and so forth.

• The value assigned to span specifies the number of blocks to view. A span of 1 means one block; a span
of 2 means two blocks, and so forth. A span of 0 has special meaning: it means the view is to start at the
specified offset and extend until the currently defined end of the object.

Chapter 2. Using window services 13

The following table shows examples of several offset and span combinations and the resulting view in the
window.

Offset Span Resulting view in the window

0 0 view the entire object

0 1 view the first block only

1 0 view the second block through the last block

1 1 view the second block only

2 2 view the third and fourth blocks only

Extending the size of a data object
You can use offset and span to extend the size of an object up to the previously defined maximum size for
the object. You can extend the size of either permanent objects or temporary objects. For objects created
through CSRIDAC, the value assigned to object_size defines the maximum allowable size. When you call
CSRIDAC to gain access to an object, CSRIDAC returns a value in high_offset that defines the current size
of the object.

For example, assume you have access to a permanent object whose maximum allowable size is four
4096-byte blocks. The object is currently two blocks long. If you define a window and specify an offset
of 1 and a span of 2, the window contains a view of the second block and a view of a third block, which
does not yet exist in the permanent object. When you reference the window, the content of the second
block, as seen in the window, depends on the disposition you selected, replace or retain. The third block,
as seen in the window, initially contains binary zeroes. If you later call CSRSAVE to update the permanent
object with changes from the window, window services extends the size of the permanent object to three
blocks by appending the new block of data to the object.

Defining multiple views of an object
You might need to view different parts of an object at the same time. For a permanent object, you can
define windows that have non-overlapping views as well as windows that have overlapping views. For a
temporary object, you can define windows that have only non-overlapping views.

• A non-overlapping view means that no two windows view the same block of the object. For example, a
view is non-overlapping when one window views the first and second blocks of an object and another
window views the ninth and tenth blocks of the same object. Neither window views a common block.

• An overlapping view means that two or more windows view the same block of the object. For example,
the view overlaps when the second window in the previous example views the second and third blocks.
Both windows view a common block, the second block.

Non-overlapping views
To define multiple windows that have a non-overlapping view, call CSRIDAC once to obtain the object
identifier. Then call CSRVIEW or CSREVW once to define each window. On each call, specify the value
BEGIN for operation_type, the same object identifier for object_id, and a different value for window_name.
Define each window’s view by specifying values for offset and span that create windows with non-
overlapping views.

Overlapping views
To define multiple windows that have an overlapping view of a permanent object, define each window as
though it were viewing a different object. That is, define each window under a different object identifier.
To obtain the object identifiers, call CSRIDAC once for each identifier you need. Only one of the calls to
CSRIDAC can specify an access mode of UPDATE. Other calls to CSRIDAC must specify an access mode of
READ.

14 z/OS: z/OS MVS Callable Services for HLL

After calling CSRIDAC, call CSRVIEW or CSREVW once to define each window. On each call, specify the
value BEGIN for the operation type, a different object identifier for object_id, and a different value for
window_name. Define each window’s view by specifying values for offset and span that create windows
with the required overlapping views.

Saving interim changes to a permanent data object
Window services allows you to save interim changes you make to a permanent object. You must have
previously requested a scroll area for the object, however. You request a scroll area when you call
CSRIDAC to gain access to the object. Window services saves changes by replacing blocks in the scroll
area with corresponding changed blocks from a window. Saving changes in the scroll area does not alter
the object on DASD.

After you have a view of the object and have made changes in the window, you can save those changes
in the scroll area. To save changes in the scroll area, call CSRSCOT. For a description of the CSRSCOT
parameters and return codes, see “CSRSCOT — Save object changes in a scroll area” on page 30.

To identify the object, you must supply an object identifier for object_id. The value supplied for object_id
must be the same value CSRIDAC returned in object_id when you requested access to the object.

To identify the blocks in the object that you want to update, use offset and span. The values assigned to
offset and span, together, define a contiguous string of blocks in the object:

• The value assigned to offset specifies the relative block at which to start. An offset of 0 means the first
block; an offset of 1 means the second block; an offset of 2 means the third block, and so forth.

• The value assigned to span specifies the number of blocks to save. A span of 1 means one block; a span
of 2 means two blocks, and so forth. A span of 0 has special meaning: it requests that window services
save all changed blocks to which a window is mapped.

Window services replaces each block within the range specified by offset and span providing the block has
changed and a window is mapped to the block.

Updating a temporary data object
After making changes in a window to a temporary object, you can update the object with those changes.
You must identify the object and must specify the range of blocks that you want to update. To be updated,
a block must be mapped to a window and must contain changes in the window. Window services replaces
each block within the specified range with the corresponding changed block from a window.

To update a temporary object, call CSRSCOT. For a description of the CSRSCOT parameters and return
codes, see “CSRSCOT — Save object changes in a scroll area” on page 30.

To identify the object, you must supply an object identifier for object_id. The value you supply for
object_id must be the same value CSRIDAC returned in object_id when you requested access to the
object.

To identify the blocks in the object that you want to update, use offset and span. The values assigned to
offset and span, together, define a contiguous string of blocks in the object:

• The value assigned to offset specifies the relative block at which to start. An offset of 0 means the first
block; an offset of 1 means the second block; an offset of 2 means the third block, and so forth.

• The value assigned to span specifies the number of blocks to save. A span of 1 means one block; a span
of 2 means two blocks, and so forth. A span of 0 has special meaning: it requests that window services
update all changed blocks to which a window is mapped.

Window services replaces each block within the range specified by offset and span providing the block has
changed and a window is mapped to the block.

Chapter 2. Using window services 15

Refreshing changed data
You can refresh blocks that are mapped to either a temporary object or to a permanent object. You must
identify the object and specify the range of blocks you want to refresh. When you refresh blocks mapped
to a temporary object, window services replaces, with binary zeros, all changed blocks that are mapped to
the window. When you refresh blocks mapped to a permanent object, window services replaces specified
changed blocks in a window or in the scroll area with corresponding blocks from the object on DASD.

To refresh an object, call CSRREFR. For a description of CSRREFR parameters and return codes, see
“CSRREFR — Refresh an object” on page 26.

To identify the object, you must supply an object identifier for object_id. The value supplied for object_id
must be the same value CSRIDAC returned in object_id when you requested access to the object.

To identify the blocks of the object that you want to refresh, use offset and span. The values assigned to
offset and span, together, define a contiguous string of blocks in the object:

• The value assigned to offset specifies the relative block at which to start. An offset of 0 means the first
block; an offset of 1 means the second block; an offset of 2 means the third block, and so forth.

• The value assigned to span specifies the number of blocks to save. A span of 1 means one block; a span
of 2 means two blocks, and so forth. A span of 0 has special meaning: it requests that window services
refresh all changed blocks to which a window is mapped, or that have been saved in a scroll area.

Window services refreshes each block within the range specified by offset and span providing the
block has changed and a window or a scroll area is mapped to the block. At the completion of the
refresh operation, blocks from a permanent object that have been refreshed appear the same as the
corresponding blocks on DASD. Refreshed blocks from a temporary object contain binary zeroes.

Updating a permanent object on DASD
You can update a permanent object on DASD with changes that appear in a window or in the object’s
scroll area. You must identify the object and specify the range of blocks that you want to update.

To update an object, call CSRSAVE. For a description of theCSRSAVE parameters and return codes, see
“CSRSAVE — Save changes made to a permanent object” on page 28.

To identify the object, you must supply an object identifier for object_id. The value you provide for
object_id must be the same value CSRIDAC returned when you requested access to the object.

To identify the blocks of the object that you want to update, use offset and span. The values assigned to
offset and span, together, define a contiguous string of blocks in the object:

• The value assigned to offset specifies the relative block at which to start. An offset of 0 means the first
block; an offset of 1 means the second block; an offset of 2 means the third block, and so forth.

• The value assigned to span specifies the number of blocks to save. A span of 1 means one block; a span
of 2 means two blocks, and so forth. A span of 0 has special meaning: it requests that window services
update all changed blocks to which a window is mapped, or have been saved in the scroll area.

When there is a scroll area
When the object has a scroll area, window services first updates blocks in the scroll area with
corresponding blocks from windows. To be updated, a scroll area block must be within the specified
range, a window must be mapped to the block, and the window must contain changes. Window services
next updates blocks on DASD with corresponding blocks from the scroll area. To be updated, a DASD
block must be within the specified range and have changes in the scroll area. Blocks in the window remain
unchanged.

16 z/OS: z/OS MVS Callable Services for HLL

When there is no scroll area
When there is no scroll area, window services updates blocks of the object on DASD with corresponding
blocks from a window. To be updated, a DASD block must be within the specified range, mapped to a
window, and have changes in the window. Blocks in the window remain unchanged.

Changing a view in a window
To change the view in a window so you can view a different part of the same object or view a different
object, you must first terminate the current view. To terminate the view, whether the view was mapped by
CSRVIEW or CSREVW, call CSRVIEW and supply a value of END for operation_type. You must also identify
the object, identify the window, identify the blocks you are currently viewing, and specify a disposition for
the data that is in the window. For a description of CSRVIEW parameters and return codes, see “CSRVIEW
— View an object” on page 32.

To identify the object, supply an object identifier for object_id. The value supplied for object_id must be
the value you supplied when you established the view.

To identify the window, supply the window name for window_name. The value supplied for window_name
must be the same value you supplied when you established the view.

To identify the blocks you are currently viewing, supply values for offset and span. The values you supply
must be the same values you supplied for offset and span when you established the view.

To specify a disposition for the data you are currently viewing, supply a value for disposition. The value
determines what data will be in the window after the CALL to CSRVIEW completes.

• For a permanent object that has no scroll area:

– To retain the data that is currently in the window, supply a value of RETAIN for disposition.
– To discard the data that is currently in the window, supply a value of REPLACE for disposition. After

the operation completes, the window contents are unpredictable.

For example, assume that a window is mapped to one block of a permanent object that has no scroll
area. The window contains the character string AAA……A and the block to which the window is mapped
contains BBB……B. If you specify a value of RETAIN, upon completion of the CALL, the window still
contains AAA……A, and the mapped block contains BBB……B. If you specify a value of REPLACE, upon
completion of the CALL, the window contents are unpredictable and the mapped block still contains
BBB……B.

• For a permanent object that has a scroll area or for a temporary object:

– To retain the data that is currently in the window, supply a value of RETAIN for disposition. CSRVIEW
also updates the mapped blocks of the scroll area or temporary object so that they contain the same
data as the window.

– To discard the data that is currently in the window, supply a value of REPLACE for disposition. Upon
completion of the operation, the window contents are unpredictable.

For example, assume that a window is mapped to one block of a temporary object. The window contains
the character string AAA……A and the block to which the window is mapped contains BBB……B. If you
specify a value of RETAIN, upon completion of the CALL, the window still contains AAA……A and the
mapped block of the object also contains AAA……A. If you specify a value of REPLACE, upon completion
of the CALL, the window contents are unpredictable and the mapped block still contains BBB……B.

CSRVIEW ignores the values you assign to the other parameters.

When you terminate the view of an object, the type of object that is mapped and the value you specify
for disposition determine whether CSRVIEW updates the mapped blocks. CSRVIEW updates the mapped
blocks of a temporary object or a permanent object’s scroll area if you specify a disposition of RETAIN. In
all other cases, to update the mapped blocks, call the appropriate service before terminating the view:

• To update a temporary object, or to update the scroll area of a permanent object, call CSRSCOT.
• To update an object on DASD, call CSRSAVE.

Chapter 2. Using window services 17

Upon successful completion of the CSRVIEW operation, the content of the window depends on the value
specified for disposition. The window is no longer mapped to a scroll area or to an object, however. The
storage used for the window is available for other use, perhaps to use as a window for a different part of
the same object or to use as a window for a different object.

Terminating access to a data object
When you finish using a data object, you must terminate access to the object. When you terminate
access, window services returns to the system any virtual storage it obtained for the object: storage for
a temporary object or storage for a scroll area. If the object is temporary, window services deletes the
object. If the object is permanent and window services dynamically allocated the data set when you
requested access to the object, window services dynamically unallocates the data set. Your window is no
longer mapped to the object or to a scroll area.

When you terminate access to a permanent object, window services does not update the object on
DASD with changes that are in a window or the scroll area. To update the object, call CSRSAVE before
terminating access to the object.

To terminate access to an object, call CSRIDAC and supply a value of END for operation_type. To identify
the object, supply an object identifier for object_id. The value you supply for object_id must be the same
value CSRIDAC returned when you obtained access to the object.

Upon successful completion of the call, the storage used for the window is available for other use,
perhaps as a window for viewing a different part of the same object or to use as a window for viewing a
different object.

Handling return codes and abnormal terminations
Each time you call a service, your program receives either a return code and reason code or an abend
code and a reason code. These codes indicate whether the service completed successfully, encountered
an unusual condition, or was unable to complete successfully.

When you receive a return code that indicates a problem or an unusual condition, your program can
either attempt to correct the problem or can terminate its execution. Return codes and reason codes are
explained in Chapter 3, “Window services,” on page 19 with the description of each callable service
program.

When an abend occurs, the system passes control to a recovery routine, if you or your installation have
provided one. A recovery routine might be able to correct the problem that caused the abend and allow
your program to continue execution. If a recovery routine has been provided, it can handle the abend
condition the same way it handles other abend conditions. If a recovery routine has not been provided,
the system terminates execution of your program. For an explanation of the abend codes, see z/OS MVS
System Codes.

18 z/OS: z/OS MVS Callable Services for HLL

Chapter 3. Window services

To use window services, you issue CALLs that invoke the appropriate window services program. Each
service program performs one or more functions and requires a set of parameters coded in a specific
order on the CALL statement.

Depending on the function requested from a service, there might be one or more parameter values that
the service ignores. Although a service might ignore a parameter value, you must still code that parameter
on the CALL statement. Because the service ignores the parameter value, you can assign the parameter
any value that is acceptable for the parameter’s data type. If the service uses a particular parameter
value, the CALL statement description in this topic defines the allowable values that you can assign to the
parameter.

This topic describes the CALL statements that invoke window services. Each description includes a syntax
diagram, parameter descriptions, and return code and reason code explanations with recommended
actions. Return codes and reason codes are shown in hexadecimal followed by the decimal equivalent
enclosed in parentheses. For examples of how to code the CALL statements, see Chapter 4, “Window
services coding examples,” on page 37.

This topic contains the following subtopics:

• “CSREVW — View an object and sequentially access it” on page 19
• “CSRIDAC — Request or terminate access to a data object” on page 22
• “CSRREFR — Refresh an object” on page 26
• “CSRSAVE — Save changes made to a permanent object” on page 28
• “CSRSCOT — Save object changes in a scroll area” on page 30
• “CSRVIEW — View an object” on page 32

CSREVW — View an object and sequentially access it
Call CSREVW if you reference data in a sequential pattern and you want to:

• Map a window to one or more blocks (4096 bytes) of a data object. If you specified scrolling when you
called CSRIDAC to identify the object, CSREVW maps the window to the blocks in the scroll area and
maps the scroll area to the object.

• Specify how many blocks window services is to bring into the window each time CSREVW needs more
data from the object.

Mapping a data object enables your program to access the data that is viewed through the window the
same way it accesses other data in your storage.

The CSREVW and CSRVIEW services differ on how to specify sequential access:

• If you use CSRVIEW and specify sequential, when you reference data that is not in your window,
window services reads up to 16 blocks — the one that contains the data your program requests, plus
the next 15 consecutive blocks. The number of consecutive blocks varies, depending on the size of the
window and the availability of central storage.

• If you use CSREVW, you can specify the number of additional consecutive blocks that window services
reads into the window at one time. The number ranges from 0 through 255.

Use CSREVW if your program has sequential access and can benefit from having more than 16 blocks
come into a window at one time, or fewer than 16 blocks at one time.

Code the CALL following the syntax of the high-level language you are using and specifying all parameters
in the order shown below. For parameters that CSREVW uses to obtain input values, assign appropriate
values. For parameters that CSREVW ignores, assign any value that is valid for the particular parameter’s
data type.

CSREVW

© Copyright IBM Corp. 1994, 2023 19

• To map a window to a data object and begin viewing the object, specify BEGIN and SEQ and assign
values, acceptable to CSREVW, to:

– object_id
– offset
– span
– window_name
– disposition
– pfcount

• CSREVW returns values in return_code and in reason_code.

To end the view and unmap the data object, use CSRVIEW END and specify all values, except for
pfcount, that you specified when you mapped the window.

CALL statement Parameters

CALL CSREVW

(operation_type
,object_id
,offset
,span
,window_name
,usage
,disposition
,pfcount
,return_code
,reason_code)

operation_type
Specify BEGIN to request that CSREVW map a data object.

,object_id
Specifies the object identifier. Supply the object identifier that CSRIDAC returned when you obtained
access to the object.

Define object_id as character data of length 8.

,offset
Specifies the offset of the view into the object. Specify the offset in blocks of 4096 bytes.

Define offset as integer data of length 4.

,span
Specifies the window size in blocks of 4096 bytes.

Define span as integer data of length 4.

,window_name
Specifies the symbolic name you assigned to the window in your address space.

,usage
Specify SEQ to tell CSREVW that the expected pattern of references to data in the object will be
sequential.

Define this field as character data of length 6. Pad the string on the right with 1 blank.

,disposition
Defines how CSREVW is to handle data that is in the window when you begin a view. When you specify
CSREVW BEGIN and a disposition of:

CSREVW

20 z/OS: z/OS MVS Callable Services for HLL

REPLACE
The first time you reference a block to which the window is mapped, CSREVW replaces the data in
the window with the data from the referenced block.

RETAIN
When you reference a block to which the window is mapped, the data in the window remains
unchanged. When you call CSRSAVE to save the mapped blocks, CSRSAVE saves all of the mapped
blocks because CSRSAVE considers them changed.

Define disposition as character data of length 7. If you specify RETAIN, pad the string on the right with
1 blank.

,pfcount
Specifies the number of additional blocks you want window services to bring into the window each
time your program references data that is not already in the window. The number you specify is added
to the minimum of one block that window services always brings in. That is, if you specify a value of
20, window services brings in a total of 21. The number of additional blocks ranges from zero through
255.

Define pfcount as integer data of length 4.

,return_code
When CSREVW completes, return_code contains the return code. Define return_code as integer data of
length 4.

Return codes and reason codes are explained under “Return codes and reason codes” on page 21.

,reason_code
When CSREVW completes, reason_code contains the reason code. Define reason_code as integer data
of length 4.

Return codes and reason codes are explained under “Return codes and reason codes” on page 21.

Abend codes
CSREVW issues abend code X'019'. For more information, see z/OS MVS System Codes.

Return codes and reason codes
When CSREVW returns control to your program, return_code contains a return code and reason_code
contains a reason code. Return codes and reason codes are shown in hexadecimal followed by the
decimal equivalent enclosed in parentheses. Table 1 on page 21 identifies return code and reason code
combinations, tells what each means, and recommends an action that you should take.

A return code of X'4' with a reason code of X'0125' or a return code of X'C' with any reason code means
that data-in-virtual encountered a problem or an unexpected condition. Data-in-virtual reason codes,
which are two bytes long and right justified, are explained in z/OS MVS Programming: Assembler Services
Reference ABE-HSP. To resolve a data-in-virtual problem, request help from your system programmer.

Table 1. CSREVW Return and Reason Codes

Return Code Reason Code Meaning and Action

00000000 (0) 00000000 (0) Meaning: The operation was successful.

Action: Continue normal program execution.

00000004 (4) xxxx0125 (293) Meaning: The operation was successful. The service could not retain all the data that
was in the scroll area, however.

Action: Notify your system programmer.

00000012 (18) xxxx000A (10) Meaning: There is another service currently executing with the specified ID.

Action: Use a different ID or wait until the other service completes. If the problem
persists, notify your system programmer.

CSREVW

Chapter 3. Window services 21

Table 1. CSREVW Return and Reason Codes (continued)

Return Code Reason Code Meaning and Action

0000000C (12) xxxx0017 (23) Meaning: An I/O error has occurred.

Action: Notify your system programmer.

0000000C (12) xxxx001A (26) Meaning: The specified range does not encompass any mapped area of the object.

Action: If you expect this reason code, take whatever action the design of your
program dictates. If the reason code is unexpected, check your program for errors:
you might have specified the wrong range of blocks on CSRVIEW or on CSRREFR. If
you do not find any errors in your program, notify your system programmer.

0000000C (12) xxxx001C (28) Meaning: The object cannot be accessed at the current time.

Action: Try running your program at a later time. If the problem persists, notify your
system programmer.

0000000C (12) xxxx0040 (64) Meaning: The specified MAP range would cause the hiperspace data-in-virtual object
to be extended such that the installation data space limits would be exceeded.

Action: Change the MAP range you have specified or request your system programmer
to increase the installation’s data space limits.

0000000C (12) xxxx0801 (2049) Meaning: System error — Insufficient storage available to build the necessary data-in-
virtual control block structure.

Action: Notify your system programmer.

0000000C (12) xxxx0802 (2050) Meaning: System error — I/O driver failure.

Action: Notify your system programmer.

0000000C (12) xxxx0803 (2051) Meaning: System error — A necessary page table could not be read into real storage.

Action: Notify your system programmer.

0000000C (12) xxx00804 (2052) Meaning: System error — Catalog update failed.

Action: Notify your system programmer.

0000000C (12) xxxx0806 (2054) Meaning: System error — I/O error.

Action: Notify your system programmer.

0000000C (12) xxxx0808 (2056) Meaning: System error — I/O from a previous request has not completed.

Action: Notify your system programmer.

0000002C (44) 00000004 (4) Meaning: Window services have not been defined to your system or the link to the
service failed.

Action: Notify your system programmer.

CSRIDAC — Request or terminate access to a data object
Call CSRIDAC to:

• Request access to a data object
• Terminate access to a data object

Code the CALL following the syntax of the high-level language you are using and specifying all parameters
in the order shown. For parameters that CSRIDAC uses to obtain input values, assign values that are
acceptable to CSRIDAC. For parameters that CSRIDAC ignores, assign any value that is valid for the
particular parameter’s data type.

The parameter values that CSRIDAC uses depends on whether you are requesting access to an object or
terminating access.

• To request access to a data object, specify BEGIN for operation_type, and assign values, acceptable to
CSRIDAC, to the following parameters:

– object_type

CSRIDAC

22 z/OS: z/OS MVS Callable Services for HLL

– object_name if the object is permanent
– scroll_area
– object_state if the object is permanent and object_type specifies DSNAME
– access_mode if the object exists and is permanent
– object_size if the object is new or temporary
– object_size if the object is new or temporary

CSRIDAC ignores other parameter values. CSRIDAC returns values in object_id, high_offset, return_code,
and reason_code.

• To terminate access to a data object, specify END for operation_type, and assign a value, acceptable
to CSRIDAC, to object_id. CSRIDAC ignores other parameter values. CSRIDAC returns values in
return_code and reason_code.

CALL statement Parameters

CALL CSRIDAC

(operation_type
,object_type
,object_name
,scroll_area
,object_state
,access_mode
,object_size
,object_id
,high_offset
,return_code
,reason_code)

operation_type
Specifies the type of operation the service is to perform:

• To request access to an object, specify BEGIN.
• To terminate access to an object, specify END. If the object is temporary, CSRIDAC deletes it.

Define operation_type as character data of length 5. If you specify END, pad the string on the right
with 1 or 2 blanks.

,object_type
Specifies the type of object. The types are:
DDNAME

The object is an existing (OLD) VSAM linear data set allocated to the file whose DDNAME is
specified by object_name.

DSNAME
The object is the linear VSAM data set whose name is specified by object_name. The data set may
already exist or may be a new data set that you want window services to create.

TEMPSPACE
The object is a temporary data object. Window services deletes the object when your program
calls CSRIDAC and operation_type equals END.

If operation_type is BEGIN, you must supply a value.

Define this parameter as character data of length 9. If you specify either DDNAME or DSNAME, pad
the string on the right with 1 to 3 blanks.

,object_name
Specifies the data set name of a permanent object or the DDNAME of a data definition (DD) statement
that defines a permanent object.

CSRIDAC

Chapter 3. Window services 23

• If object_type is DDNAME, object_name must contain the name of a DD statement.
• If object_type is DSNAME, object_name must contain the data set name of the permanent object.

If operation_type is BEGIN and object_type is DDNAME or DSNAME, you must supply a value for
object_name.

Define object_name as character data of length 1 to 45. If object_name contains fewer than 45
characters, pad the name on the right with a blank.

,scroll_area
Specifies whether window services is to create a scroll area for the data object.
YES

Create a scroll area.
NO

Do not create a scroll area.

If operation_type is BEGIN and object_type is TEMPSPACE, specify YES.

Define scroll_area as character data of length 3. If you specify NO, pad the string on the right with a
blank.

,object_state
Specifies the state of the object.
OLD

The object exists.
NEW

The object does not exist and window services must create it.

If operation_type is BEGIN and object_type is DSNAME, you must supply a value for object_state.

Define object_state as character data of length 3.

,access_mode
Specifies the type of access required.
READ

READ access.
UPDATE

UPDATE access.

If operation_type is BEGIN and object_type is DDNAME or DSNAME, you must supply a value for
access_mode. For a new or temporary data object, window services assumes UPDATE.

Define access_mode as character data of length 6. If you specify READ, pad the string on the right with
1 or 2 blanks.

,object_size
Specifies the maximum size of the new object in units of 4096 bytes.

This parameter is required if either of the following conditions is true:

• Operation_type is BEGIN, object_type is DSNAME, and object_state is NEW
• Operation_type is BEGIN and object_type is TEMPSPACE

Define object_size as integer data of length 4.

,object_id
Specifies the object identifier.

When operation_type is BEGIN, the service returns the object identifier in this parameter. Use the
identifier to identify the object to other window services.

When operation_type is END, you must supply the object identifier in this parameter.

Define object_id as character data of length 8.

CSRIDAC

24 z/OS: z/OS MVS Callable Services for HLL

,high_offset
When CSRIDAC completes, high_offset contains the size of the existing object expressed in blocks of
4096 bytes

Define high_offset as integer data of length 4.

,return_code
When CSRIDAC completes, return_code contains the return code. Define return_code as integer data
of length 4.

Return codes and reason codes are explained under “Return codes and reason codes” on page 25.

,reason_code
When CSRIDAC completes, reason_code contains the reason code. Define reason_code as integer
data of length 4.

Return codes and reason codes are explained under “Return codes and reason codes” on page 25.

Abend codes
CSRIDAC issues abend code X'019'. For more information, see z/OS MVS System Codes.

Return codes and reason codes
When CSRIDAC returns control to your program, return_code contains a return code and reason_code
contains a reason code. Return codes and reason codes are shown in hexadecimal followed by the
decimal equivalent enclosed in parentheses. Table 2 on page 25 identifies return code and reason code
combinations, tells what each means, and recommends an action that you should take.

A return code of X'C' means that data-in-virtual encountered a problem or an unexpected condition. The
associated reason codes are data-in-virtual reason codes. Data-in-virtual reason codes are two bytes long
and right justified. To resolve a data-in-virtual problem, request help from your system programmer. For
information about data-in-virtual, see the z/OS MVS Programming: Assembler Services Guide.

Table 2. CSRIDAC Return and Reason Codes

Return Code Reason Code Meaning and Action

00000000 (0) 00000000 (0) Meaning: The operation was successful.

Action: Continue normal program execution.

00000008 (8) 00000118 (280) Meaning: The system could not obtain enough storage to create a hiperspace for the
temporary object or the scroll area.

Note: Hiperspace is the name the system uses to identify the storage it uses to create
a temporary object or a scroll area for a permanent object.

Action: Notify your system programmer. The system programmer might have to
increase the SMF limit for data spaces and hiperspace that are intended for the user.

00000008 (8) 00000119 (281) Meaning: The system could not delete or unidentify the temporary object or the scroll
area.

Action: Notify your system programmer.

00000008 (8) 0000011A (282) Meaning: The system was unable to create a new VSAM linear data set. DFP 3.1 must
be running and SMS must be active.

Action: Notify your system programmer.

0000000C (12) xxxx000A (10) Meaning: Another service currently is executing with the specified ID.

Action: Use a different ID or wait until the other service completes. If the problem
persists, notify your system programmer.

0000000C (12) xxxx001C (28) Meaning: The object cannot be accessed at the current time.

Action: Try running your program at a later time. If the problem persists, notify your
system programmer.

CSRIDAC

Chapter 3. Window services 25

Table 2. CSRIDAC Return and Reason Codes (continued)

Return Code Reason Code Meaning and Action

0000000C (12) xxxx0037 (55) Meaning: The caller invoked ACCESS. The access is successful, but the system is
issuing a warning that the data set was not allocated with a SHAREOPTIONS(1,3).

Action: Notify your system programmer.

0000000C (12) xxxx003E (62) Meaning: The hiperspace data-in-virtual object may not be accessed at this time.
(If MODE=READ, the object is already accessed under a different ID for UPDATE. If
MODE=UPDATE, the object is already accessed under at least one other ID.)

Action: Try running your program at a later time. If the problem persists, notify your
system programmer.

0000000C (12) xxxx0801 (2049) Meaning: System error — Insufficient storage available to build the necessary data-in-
virtual control block structure.

Action: Notify your system programmer.

0000000C (12) xxxx0802 (2050) Meaning: System error — I/O driver failure.

Action: Notify your system programmer.

0000000C (12) xxxx0805 (2053) Meaning: System error — A system error of indeterminate origin has occurred.

Action: Notify your system programmer.

0000000C (12) xxxx0808 (2056) Meaning: System error — I/O from a previous request has not completed.

Action: Notify your system programmer.

00000010 (16) rrrrnnnn Meaning: The system was unable to allocate or unallocate the data set specified
as object_name. The value rrrr is the return code from dynamic allocation. The
value nnnn is the two-byte reason code from dynamic allocation. See z/OS MVS
Programming: Authorized Assembler Services Guide for dynamic allocation return and
reason codes.

Action: If object_state is NEW, make sure that a data set of the same name does not
already exist. If one does already exist, either use the existing data set or change the
name of your data set. If you are unable to correct the problem, notify your system
programmer.

0000002C (44) 00000004 (4) Meaning: Window services have not been defined to your system or the link to the
service failed.

Action: Notify your system programmer.

CSRREFR — Refresh an object
To refresh changed data that is in a window, a scroll area, or a temporary object, call CSRREFR. CSRREFR
refreshes changed data within specified blocks as follows:

• If the object is permanent, CSRREFR replaces specified changed blocks in windows or the scroll area
with corresponding blocks from the object on DASD.

• For a temporary object, CSRREFR refreshes specified changed blocks in windows and the object by
setting the blocks to binary zeroes.

Code the CALL following the syntax of the high-level language you are using and specifying all parameters
in the order shown. For parameters that CSRREFR uses to obtain input values, assign values that are
acceptable to CSRREFR. For parameters that CSRREFR ignores, assign any value that is valid for the
particular parameter’s data type.

Assign values, acceptable to CSRREFR, to object_id, offset, and span. CSRREFR ignores other parameter
values. CSRREFR returns values in return_code and reason_code.

CSRREFR

26 z/OS: z/OS MVS Callable Services for HLL

CALL statement Parameters

CALL CSRREFR

(object_id
,offset
,span
,return_code
,reason_code)

object_id
Specifies the object identifier. Supply the same object identifier that CSRIDAC returned when you
obtained access to the object.

Define object_id as character data of length 8.

,offset
Specifies the offset into the object in blocks of 4096 bytes. A value of 0 specifies the first block of
4096 bytes or bytes 0 to 4095 of the object; a value of 1 specifies the second block of 4096 bytes, or
bytes 4096 to 8191 of the object, and so forth.

Define offset as integer data of length 4.

offset and span, together, determine which part of the object window services refreshes. To refresh
the entire object, specify 0 for offset and 0 for span.

,span
Specifies how many 4096-byte blocks CSRREFR is to refresh.

Define span as integer data of length 4.

,return_code
When CSRREFR completes, return_code contains the return code. Define return_code as integer data
of length 4.

Return codes and reason codes are explained under “Return codes and reason codes” on page 27.

,reason_code
When CSRREFR completes, reason_code contains the reason code. Define reason_code as integer
data of length 4.

Return codes and reason codes are explained under “Return codes and reason codes” on page 27.

Abend codes
CSRREFR issues abend code X'019'. For more information, see z/OS MVS System Codes.

Return codes and reason codes
When CSRREFR returns control to your program, return_code contains a return code and reason_code
contains a reason code. Return codes and reason codes are shown in hexadecimal followed by the
decimal equivalent enclosed in parentheses. Table 3 on page 28 identifies return code and reason code
combinations, tells what each means, and recommends an action that you should take.

A return code of X'C' means that data-in-virtual encountered a problem or an unexpected condition. The
associated reason codes are data-in-virtual reason codes. Data-in-virtual reason codes are two bytes long
and right justified. To resolve a data-in-virtual problem, request help from your system programmer.

CSRREFR

Chapter 3. Window services 27

Table 3. CSRREFR Return and Reason Codes

Return Code Reason Code Meaning and Action

00000000 (0) 00000000 (0) Meaning: The operation was successful.

Action: Continue normal program execution.

00000008 (8) 00000152 (338) Meaning: The system could not refresh all of the temporary object within the specified
span.

Action: Notify your system programmer.

0000000C (12) xxxx000A (10) Meaning: There is another service currently executing with the specified ID.

Action: Use a different ID or wait until the other service completes. If the problem
persists, notify your system programmer.

0000000C (12) xxxx0017 (23) Meaning: An I/O error has occurred.

Action: Notify your system programmer.

0000000C (12) xxxx001A (26) Meaning: The specified range does not include any mapped block of the object.

Action: If you expect this reason code, take whatever action the design of your
program dictates. If the reason code is unexpected, check your program for errors:
you might have specified the wrong range of blocks on CSRVIEW or on CSRREFR. If
you do not find any errors in your program, notify your system programmer.

0000000C (12) xxxx0801 (2049) Meaning: System error — Insufficient storage available to build the necessary data-in-
virtual control block structure.

Action: Notify your system programmer.

0000000C (12) xxxx0803 (2051) Meaning: System error — A necessary page table could not be read into real storage.

Action: Notify your system programmer.

0000000C (12) xxxx0805 (2053) Meaning: System error — A system error of indeterminate origin has occurred.

Action: Notify your system programmer.

0000000C (12) xxxx0806 (2054) Meaning: System error — I/O error.

Action: Notify your system programmer.

0000000C (12) xxxx0808 (2056) Meaning: System error — I/O from a previous request has not completed.

Action: Notify your system programmer.

0000002C (44) 00000004 (4) Meaning: Window services have not been defined to your system or the link to the
service failed.

Action: Notify your system programmer.

CSRSAVE — Save changes made to a permanent object
To update specified blocks of a permanent object with changes, call CSRSAVE. The changes can be in
blocks that are mapped to the scroll area, in blocks that are mapped to windows, or in a combination of
these places.

Note: You cannot use CSRSAVE to save changes made to a temporary object. If you call CSRSAVE for a
temporary object, CSRSAVE ignores the request and returns control to your program with a return code
of 8. To save changes made to a temporary object, call CSRSCOT.

Code the CALL following the syntax of the high-level language you are using and specifying all parameters
in the order shown. For parameters that CSRSAVE uses to obtain input values, assign values that are
acceptable to CSRSAVE. For parameters that CSRSAVE ignores, assign any value that is valid for the
particular parameter’s data type.

Assign values, acceptable to CSRSAVE, to object_id, offset, and span. CSRSAVE ignores other parameter
values. CSRSAVE returns values in new_hi_offset, return_code, and reason_code.

CSRSAVE

28 z/OS: z/OS MVS Callable Services for HLL

CALL statement Parameters

CALL CSRSAVE

(object_id
,offset
,span
,new_hi_offset
,return_code
,reason_code)

object_id
Specifies the object identifier. Supply the same object identifier that CSRIDAC returned when you
obtained access to the object.

Define object_id as character data of length 8.

,offset
Specifies the offset into the object in blocks of 4096 bytes. A value of 0 specifies the first block of
4096 bytes or bytes 0 to 4095 of the object; a value of 1 specifies the second block of 4096 bytes, or
bytes 4096 to 8191 of the object, and so forth.

Define offset as integer data of length 4.

offset and span, together, determine which part of the object window services saves. To save the
entire object, specify 0 for offset and 0 for span.

,span
Specifies how many 4096-byte blocks CSRSAVE is to save.

Define span as integer data of length 4.

,new_hi_offset
When CSRSAVE completes, new_hi_offset contains the new size of the object expressed in units of
4096 bytes.

Define new_hi_offset as integer data of length 4.

,return_code
When CSRSAVE completes, return_code contains the return code. Define return_code as integer data
of length 4.

Return codes and reason codes are explained under “Return codes and reason codes” on page 29.

,reason_code
When CSRSAVE completes, reason_code contains the reason code. Define reason_code as integer
data of length 4.

Return codes and reason codes are explained under “Return codes and reason codes” on page 29.

Abend codes
CSRSAVE issues abend code X'019'. For more information, see z/OS MVS System Codes.

Return codes and reason codes
When CSRSAVE returns control to your program, return_code contains a return code and reason_code
contains a reason code. Return codes and reason codes are shown in hexadecimal followed by the
decimal equivalent enclosed in parentheses. Table 4 on page 30 identifies return code and reason code
combinations, tells what each means, and recommends an action that you should take.

A return code of X'4' with a reason code of X'0807' or a return code of X'C' with any reason code means
that data-in-virtual encountered a problem or an unexpected condition. Data-in-virtual reason codes are

CSRSAVE

Chapter 3. Window services 29

two bytes long and right justified. To resolve a data-in-virtual problem, request help from your system
programmer. For information about data-in-virtual, see the z/OS MVS Programming: Assembler Services
Guide.

Table 4. CSRSAVE Return and Reason Codes

Return Code Reason Code Meaning and Action

00000000 (0) 00000000 (0) Meaning: The operation was successful.

Action: Continue normal program execution.

00000004 (4) xxxx0807 (2055) Meaning: Media damage may be present in allocated DASD space. The damage is
beyond the currently saved portion of the object. The SAVE operation completed
successfully.

Action: Notify your system programmer.

00000008 (8) xxxx0143 (323) Meaning: You cannot use the SAVE service for a temporary object.

Action: Use the scrollout (CSRSCOT) service.

0000000C (12) xxxx000A (10) Meaning: There is another service currently executing with the specified ID.

Action: Use a different ID or wait until the other service completes. If the problem
persists, notify your system programmer.

0000000C (12) xxxx0017 (23) Meaning: An I/O error has occurred.

Action: Notify your system programmer.

0000000C (12) xxxx001A (26) Meaning: The specified range does not encompass any mapped area of the object.

Action: If you expect this reason code, take whatever action the design of your
program dictates. If the reason code is unexpected, check your program for errors:
you might have specified the wrong range of blocks on CSRVIEW or on CSRREFR. If
you do not find any errors in your program, notify your system programmer.

0000000C (12) xxxx0801 (2049) Meaning: System error — Insufficient storage available to build the necessary data-in-
virtual control block structure.

Action: Notify your system programmer.

0000000C (12) xxxx0802 (2050) Meaning: System error — I/O driver failure.

Action: Notify your system programmer.

0000000C (12) xxxx0803 (2051) Meaning: System error — A necessary page table could not be read into real storage.

Action: Notify your system programmer.

0000000C (12) xxxx0804 (2052) Meaning: System error — Catalog update failed.

Action: Notify your system programmer.

0000000C (12) xxxx0806 (2054) Meaning: System error — I/O error.

Action: Notify your system programmer.

0000000C (12) xxxx0808 (2056) Meaning: System error — I/O from a previous request has not completed.

Action: Notify your system programmer.

0000002C (44) 00000004 (4) Meaning: Window services have not been defined to your system or the link to the
service failed.

Action: Notify your system programmer.

CSRSCOT — Save object changes in a scroll area
Call CSRSCOT to:

• Update specified blocks of a permanent object’s scroll area with changes that appear in a window you
have defined for the object. CSRSCOT requires that the permanent object have a scroll area. CSRSCOT
changes only the content of the scroll area and not the content of the permanent data object.

CSRSCOT

30 z/OS: z/OS MVS Callable Services for HLL

• Update specified blocks of a temporary data object with the changes that appear in a window you have
defined for the data object.

Code the CALL following the syntax of the high-level language you are using and specifying all parameters
in the order shown. For parameters that CSRSCOT uses to obtain input values, assign values that are
acceptable to CSRSCOT. For parameters that CSRSCOT ignores, assign any value that is valid for the
particular parameter’s data type.

Assign values, acceptable to CSRSCOT, to object_id, offset, and span. CSRSCOT ignores other parameter
values. CSRSCOT returns values in return_code and reason_code.

CALL statement Parameters

CALL CSRSCOT

(object_id
,offset
,span
,return_code
,reason_code)

object_id
Specifies the object identifier. Supply the same object identifier that CSRIDAC returned when you
obtained access to the object.

Define object_id as character data of length 8.

,offset
Specifies the offset into the object in blocks of 4096 bytes. A value of 0 specifies the first block of
4096 bytes or bytes 0 to 4095 of the object; a value of 1 specifies the second block of 4096 bytes, or
bytes 4096 to 8191 of the object, and so forth.

Define offset as integer data of length 4.

offset and span, together, determine which part of the object CSRSCOT updates. To update the entire
object, specify 0 for offset and 0 for span.

,span
Specifies how many 4096-byte blocks CSRSCOT is to update.

Define span as integer data of length 4.

,return_code
When CSRSCOT completes, return_code contains the return code. Define return_code as integer data
of length 4.

Return codes and reason codes are explained under “Return codes and reason codes” on page 31.

,reason_code
When CSRSCOT completes, reason_code contains the reason code. Define reason_code as integer
data of length 4.

Return codes and reason codes are explained under “Return codes and reason codes” on page 31.

Abend codes
CSRSCOT issues abend code X'019'. For more information, see z/OS MVS System Codes.

Return codes and reason codes
When CSRSCOT returns control to your program, return_code contains a return code and reason_code
contains a reason code. Return codes and reason codes are shown in hexadecimal followed by the

CSRSCOT

Chapter 3. Window services 31

decimal equivalent enclosed in parentheses. Table 5 on page 32 identifies return code and reason code
combinations, tells what each means, and recommends an action that you should take.

A return code of X'C' means that data-in-virtual encountered a problem or an unexpected condition. The
associated reason codes are data-in-virtual reason codes. Data-in-virtual reason codes are two bytes long
and right justified. For information about data-in-virtual, see z/OS MVS Programming: Assembler Services
Guide. To resolve the problem, request help from your system programmer.

Table 5. CSRSCOT Return and Reason Codes

Return Code Reason Code Meaning and Action

00000000 (0) 00000000 (0) Meaning: The operation was successful.

Action: Continue normal program execution.

00000004 (4) xxxx0807 (2055) Meaning: Media damage may be present in allocated DASD space. The damage is
beyond the currently saved portion of the object. The SAVE operation completed
successfully.

Action: Notify your system programmer.

0000000C (12) xxxx000A (10) Meaning: There is another service currently executing with the specified ID.

Action: Use a different ID or wait until the other service completes. If the problem
persists, notify your system programmer.

0000000C (12) xxxx0017 (23) Meaning: An I/O error has occurred.

Action: Notify your system programmer.

0000000C (12) xxxx001A (26) Meaning: The specified range does not encompass any mapped area of the object.

Action: If you expect this reason code, take whatever action the design of your
program dictates. If the reason code is unexpected, check your program for errors:
you might have specified the wrong range of blocks on CSRVIEW or on CSRREFR. If
you do not find any errors in your program, notify your system programmer.

0000000C (12) xxxx0801 (2049) Meaning: System error — Insufficient storage available to build the necessary data-in-
virtual control block structure.

Action: Notify your system programmer.

0000000C (12) xxxx0802 (2050) Meaning: System error — I/O driver failure.

Action: Notify your system programmer.

0000000C (12) xxxx0803 (2051) Meaning: System error — A necessary page table could not be read into real storage.

Action: Notify your system programmer.

0000000C (12) xxxx0804 (2052) Meaning: System error — Catalog update failed.

Action: Notify your system programmer.

0000000C (12) xxxx0806 (2054) Meaning: System error — I/O error.

Action: Notify your system programmer.

0000000C (12) xxxx0808 (2056) Meaning: System error — I/O from a previous request has not completed.

Action: Notify your system programmer.

0000002C (44) 00000004 (4) Meaning: Window services have not been defined to your system or the link to the
service failed.

Action: Notify your system programmer.

CSRVIEW — View an object
Call CSRVIEW to:

• Map a window to one or more blocks of a data object. If you specified scrolling when you called
CSRIDAC to identify the object, CSRVIEW maps the window to the scroll area and the scroll area to the
object.

• Specify that the reference pattern you are using is either random or sequential.

CSRVIEW

32 z/OS: z/OS MVS Callable Services for HLL

• End a view that you previously created through CSRVIEW or CSREVW and unmap the object.

Mapping a data object enables your program to access the data that is viewed through the window the
same way it accesses other data in your storage.

The CSREVW service also maps a data object. Use that service if your program can benefit from having
more than 16 blocks come into a window at one time or if it can benefit from having fewer than 16.

Code the CALL following the syntax of the high-level language you are using and specifying all parameters
in the order shown. For parameters that CSRVIEW uses to obtain input values, assign values that are
acceptable to CSRVIEW. For parameters that CSRVIEW ignores, assign any value that is valid for the
particular parameter’s data type.

The type of function you request determines which parameter values CSRVIEW uses to obtain input
values:

• To map a window to a data object and begin viewing the object, specify BEGIN for operation_type, and
assign values, acceptable to CSRVIEW, to:

– object_id
– offset
– span
– window_name
– usage
– disposition

CSRVIEW ignores other parameter values. CSRVIEW returns values in return_code and in reason_code.
• To end a view set by either CSRVIEW or CSREVW and to unmap the data object, specify END for

operation_type, and assign values, acceptable to CSRVIEW, to:

– object_id
– offset
– span
– window_name
– usage
– disposition

CSRVIEW ignores other parameter values. CSRVIEW returns values in return_code and reason_code.

CALL statement Parameters

CALL CSRVIEW

(operation_type
,object_id
,offset
,span
,window_name
,usage
,disposition
,return_code
,reason_code)

operation_type
Specifies the type of operation CSRVIEW is to perform. To begin viewing an object, specify BEGIN. To
end a view, specify END.

CSRVIEW

Chapter 3. Window services 33

Define operation_type as character data of length 5. If you specify END, pad the string on the right
with 1 or 2 blanks.

,object_id
Specifies the object identifier. Supply the object identifier that CSRIDAC returned when you obtained
access to the object.

Define object_id as character data of length 8.

,offset
Specifies the offset of the view into the object. Specify the offset in blocks of 4096 bytes.

Define offset as integer data of length 4.

,span
Specifies the window size in blocks of 4096 bytes.

Define span as integer data of length 4.

,window_name
Specifies the symbolic name you assigned to the window in your address space.

,usage
Specifies the expected pattern of references to pages in the object. Specify one of the following
values:
SEQ

The reference pattern is expected to be sequential. If you specify SEQ, window services brings up
to 16 blocks of data into the window at a time, depending on the size of the window.

RANDOM
The reference pattern is expected to be random. If you specify RANDOM, window services brings
data into the window one block at a time.

Define usage as character data of length 6. If you specify SEQ, pad the string on the right with 1 to 3
blanks.

,disposition
Defines how CSRVIEW is to handle data that is in the window when you begin or end a view.

• When you specify CSRVIEW with an operation_type of BEGIN and a disposition of:
REPLACE

The first time you reference a block to which the window is mapped, CSRVIEW replaces the data
in the window with the data from the referenced block.

RETAIN
When you reference a block to which the window is mapped, the data in the window remains
unchanged. When you call CSRSAVE to save the mapped blocks, CSRSAVE saves all of the
mapped blocks because CSRSAVE considers them changed.

• When you specify CSRVIEW with an operation_type of END and a disposition of:
REPLACE

CSRVIEW discards the data that is in the window making the window contents unpredictable.
CSRVIEW does not update mapped blocks of the object or scroll area.

RETAIN
If the object is permanent and has no scroll area, CSRVIEW retains the data that is in the
window. CSRVIEW does not update mapped blocks of the object. If the object is permanent and
has a scroll area, or if the object is temporary, CSRVIEW retains the data that is in the window
and updates the mapped blocks of the object or scroll area.

Define disposition as character data of length 7. If you specify RETAIN, pad the string on the right with
a blank.

,return_code
When CSRVIEW completes, return_code contains the return code. Define return_code as integer data
of length 4.

CSRVIEW

34 z/OS: z/OS MVS Callable Services for HLL

Return codes and reason codes are explained under “Return codes and reason codes” on page 35.

,reason_code
When CSRVIEW completes, reason_code contains the reason code. Define reason_code as integer
data of length 4.

Return codes and reason codes are explained under “Return codes and reason codes” on page 35.

Abend codes
CSRVIEW issues abend code X'019'. For more information, see z/OS MVS System Codes.

Return codes and reason codes
When CSRVIEW returns control to your program, return_code contains a return code and reason_code
contains a reason code. Return codes and reason codes are shown in hexadecimal followed by the
decimal equivalent enclosed in parentheses. Table 6 on page 35 identifies return code and reason code
combinations, tells what each means, and recommends an action that you should take.

A return code of X'4' with a reason code of X'0125' or a return code of X'C' with any reason code means
that data-in-virtual encountered a problem or an unexpected condition. Data-in-virtual reason codes are
two bytes long and right justified. For information about data-in-virtual, see z/OS MVS Programming:
Assembler Services Guide. To resolve the problem, request help from your system programmer.

Table 6. CSRVIEW Return and Reason Codes

Return Code Reason Code Meaning and Action

00000000 (0) 00000000 (0) Meaning: The operation was successful.

Action: Continue normal program execution.

00000004 (4) xxxx0125 (293) Meaning: The operation was successful. The service could not retain all the data that
was in the scroll area, however.

Action: Notify your system programmer.

0000000C (12) xxxx000A (10) Meaning: There is another service currently executing with the specified ID.

Action: Use a different ID or wait until the other service completes. If the problem
persists, notify your system programmer.

0000000C (12) xxxx0017 (23) Meaning: An I/O error has occurred.

Action: Notify your system programmer.

0000000C (12) xxxx001A (26) Meaning: The specified range does not encompass any mapped area of the object.

Action: If you expect this reason code, take whatever action the design of your
program dictates. If the reason code is unexpected, check your program for errors:
you might have specified the wrong range of blocks on CSRVIEW or on CSRREFR. If
you do not find any errors in your program, notify your system programmer.

0000000C (12) xxxx001C (28) Meaning: The object cannot be accessed at the current time.

Action: Try running your program at a later time. If the problem persists, notify your
system programmer.

0000000C (12) xxxx0040 (64) Meaning: The specified MAP range would cause the hiperspace data-in-virtual object
to be extended such that the installation data space limits would be exceeded.

Action: Change the MAP range you have specified or request your system programmer
to increase the installation’s data space limits.

0000000C (12) xxxx0801 (2049) Meaning: System error — Insufficient storage available to build the necessary data-in-
virtual control block structure.

Action: Notify your system programmer.

0000000C (12) xxxx0802 (2050) Meaning: System error — I/O driver failure.

Action: Notify your system programmer.

CSRVIEW

Chapter 3. Window services 35

Table 6. CSRVIEW Return and Reason Codes (continued)

Return Code Reason Code Meaning and Action

0000000C (12) xxxx0803 (2051) Meaning: System error — A necessary page table could not be read into real storage.

Action: Notify your system programmer.

0000000C (12) xxx00804 (2052) Meaning: System error — Catalog update failed.

Action: Notify your system programmer.

0000000C (12) xxxx0806 (2054) Meaning: System error — I/O error.

Action: Notify your system programmer.

0000000C (12) xxxx0808 (2056) Meaning: System error — I/O from a previous request has not completed.

Action: Notify your system programmer.

0000002C (44) 00000004 (4) Meaning: Window services have not been defined to your system or the link to the
service failed.

Action: Notify your system programmer.

CSRVIEW

36 z/OS: z/OS MVS Callable Services for HLL

Chapter 4. Window services coding examples

The following examples show how to invoke window services from each of the supported languages.
Following each program example is an example of the JCL needed to compile, link edit, and execute the
program example. Use these examples to supplement and reinforce information that is presented in other
topics within this information.

Note: Included in the FORTRAN example is the code for a required assembler language program. This
program ensures that the window for the FORTRAN program is aligned on a 4K boundary.

The examples are presented in Chapter 4, “Window services coding examples,” on page 37:

• “ADA example” on page 37
• “C/370 example” on page 41
• “COBOL example” on page 43
• “FORTRAN example” on page 46
• “Pascal example” on page 50
• “PL/I example” on page 53

ADA example
-- --- --
-- This program illustrates how Data Window services are invoked --
-- using ADA. Note that the data object referenced in this program --
-- is permanent and already allocated, and is defined by the DD --
-- statement CSRDD1 in the JCL. --
-- --
-- This program must be linkedited with the CSR linkage-assist --
-- routines (also known as stubs) in SYS1.CSSLIB. --
-- --- --

with EBCDIC; use EBCDIC;
with System;
with Text_Io;
with Unchecked_Conversion;
with Td_Standard; use Td_Standard;

procedure CRTPAN06 is

 subtype Str3 is EString (1..3);
 subtype Str5 is EString (1..5);
 subtype Str6 is EString (1..6);
 subtype Str7 is EString (1..7);
 subtype Str8 is EString (1..8);
 subtype Str9 is EString (1..9);

 function Integer_Address is new Unchecked_Conversion
 (System.Address, Integer);

 function Int_To_32 is new Unchecked_Conversion
 (Integer, Integer_32);
 Orig, -- Index to indicate the 'start'
 -- of an array
 Ad, I : Integer; -- Temporary variables
 Voffset, -- Offset passed as parameter
 Vofset2, -- Offset passed as parameter
 Vobjsiz, -- Object size, as parameter
 Vwinsiz, -- Window size, as parameter
 High_Offset, -- Size of object in pages
 New_Hi_Offset, -- New max size of the object
 Return_Code, -- Return code
 Reason_Code : Integer_32; -- Reason code
 Object_Id : Str8; -- Identifying token
 Cscroll : Str3; -- Scroll area YES/NO
 Cobstate : Str3; -- Object state NEW/OLD
 Coptype : Str5; -- Operation type BEGIN/END
 Caccess : Str6; -- Access RANDOM/SEQ
 Cusage : Str6; -- Usage READ/UPDATE

ADA Example

© Copyright IBM Corp. 1994, 2023 37

 Cdisp : Str7; -- Disposition RETAIN/REPLACE
 Csptype : Str9; -- Object type DSNAME/DDNAME/TEMPSPACE
 Cobname : Str7; -- Object name
 K : constant Integer := 1024; -- One kilo-byte
 Pagesize : constant Integer := 4 * K; -- Page (4K) boundary
 Offset : constant Integer_32 := 0; -- Start of permanent object
 Window_Size : constant Integer := 40; -- Window size in pages
 Num_Win_Elem : constant Integer := Window_Size*K; -- Num of 4-byte
 -- elements in window
 Object_Size : constant Integer := 3*Window_Size; -- Chosen object
 -- size in pages
 Num_Sp_Elem : constant Integer := (Window_Size+1)*K; -- Num of
 -- 4-byte elements in space

 type S is array (positive range <>) of Integer; -- Define byte
 -- aligned space
 Sp : S (1..Num_Sp_Elem); -- Space allocated for window

 procedure CSRIDAC (Op_Type : in Str5;
 Object_Type : in Str9;
 Object_Name : in Str7;
 Scroll_Area : in Str3;
 Object_State: in Str3;
 Access_Mode : in Str6;
 Vobjsiz : in Integer_32;
 Object_Id : out Str8;
 High_Offset : out Integer_32;
 Return_Code : out Integer_32;
 Reason_Code : out Integer_32);
 pragma Interface (Assembler, CSRIDAC);

 procedure CSRVIEW (Op_Type : in Str5;
 Object_Id : in Str8;
 Offset : in Integer_32;
 Window_Size : in Integer_32;
 Window_Name : in S;
 Usage : in Str6;
 Disposition : in Str7;
 Return_Code : out Integer_32;
 Reason_Code : out Integer_32);
 pragma Interface (Assembler, CSRVIEW);

 procedure CSRSCOT (Object_Id : in Str8;
 Offset : in Integer_32;
 Span : in Integer_32;
 Return_Code : out Integer_32;
 Reason_Code : out Integer_32);
 pragma Interface (Assembler, CSRSCOT);

 procedure CSRSAVE (Object_Id : in Str8;
 Offset : in Integer_32;
 Span : in Integer_32;
 New_Hi_Offset : out Integer_32;
 Return_Code : out Integer_32;
 Reason_Code : out Integer_32);
 pragma Interface (Assembler, CSRSAVE);

 procedure CSRREFR (Object_Id : in Str8;
 Offset : in Integer_32;
 Span : in Integer_32;
 Return_Code : out Integer_32;
 Reason_Code : out Integer_32);
 pragma Interface (Assembler, CSRREFR);

 begin
 Text_Io.Put_Line ("<<Begin Window Services Interface Validation>>");
 Text_Io.New_Line;

 Vobjsiz := Int_To_32(Object_Size); -- Set object size in variable
 Voffset := Offset; -- Set offset to 0 for 1st map
 Vwinsiz := Int_To_32(Window_Size); -- Set window size in variable
 Vofset2 := Offset+Vwinsiz; -- Set offset to 40 for 2nd map

 Coptype := "BEGIN";
 Csptype := "DDNAME ";
 Cobname := "CSRDD1 ";
 Cscroll := "YES";
 Cobstate := "OLD";
 Caccess := "UPDATE";

 CSRIDAC (Coptype, -- Set up access to the
 Csptype, -- permanent object and

ADA Example

38 z/OS: z/OS MVS Callable Services for HLL

 Cobname, -- request a scroll area
 Cscroll,
 Cobstate,
 Caccess,
 Vobjsiz,
 Object_Id,
 High_Offset,
 Return_Code,
 Reason_Code);

-- When you want to map a window to your object, data window services
-- expects the address of the start of the window to be on a page (4K)
-- boundary, and the length of the window to be a multiple of 4096 bytes.
-- If your window is an array, the address of the first element
-- of the array must be on a page boundary. If this is not the case,
-- you can appropriately choose one slice of your array that starts
-- on a 4K boundary and is a multiple of 4096 bytes in length to map
-- onto your object.
-- To illustrate, consider the array A(1..max_len). If the address of
-- A(1) is not on page boundary, you cannot map A(1..max_len) to your
-- object. You can, however, map A(n..m) to your object if you choose
-- some appropriate values n and m such that A(n) starts on a 4K
-- boundary and A(n..m) is a multiple of 4096 bytes in length.

 Ad := Integer_Address(Sp(1)'Address); -- Get address of start of array

-- Determine the first element whose address is on page boundary
-- and use that element as the origin of the array.

 Orig := (Ad mod Pagesize); -- See where the start of
 -- array is in page

 if Orig = 0 then -- If already on page boundary
 Orig := 1; -- Keep the old origin
 else
 Orig := (Pagesize - Orig) / 4 + 1; -- Need new origin
 end if;

 Coptype := "BEGIN";
 Cusage := "RANDOM";
 Cdisp := "REPLACE";

-- You can pass an array slice as a parameter to a non-Ada subprogram,
-- and because the slice is a composite object, the parameter list
-- contains the actual address of the first element in the slice.
-- To elaborate further:
-- Scalar data is passed by copy, but composite data is passed by
-- reference. If the scalar value was passed as a scalar, the assemble\
-- program would receive the address of the copy and not the address of
-- the scalar. By passing the scalar value as an array slice, a
-- composite data type is being passed and thus is passed by reference.
-- Using this technique, the assembler code receives the actual address
-- of the scalar, not a copy of the scalar.

 CSRVIEW (Coptype, -- Now map a window (the array)
 Object_Id, -- to the permanent object.
 Voffset, -- (Actually, CSRVIEW will map the
 Vwinsiz, -- window to the blocks in the
 Sp(Orig..Num_Sp_Elem), -- scroll area and map the scroll
 Cusage, -- area to the object.)
 Cdisp,
 Return_Code,
 Reason_Code);

 for I in 0 .. Num_Win_Elem-1 loop -- Put data in window area
 Sp(I+Orig) := I+1;
 end loop;

 CSRSCOT (Object_Id, -- Capture the view in window.
 Voffset, -- Note: only the scroll area
 Vwinsiz, -- is updated, the permanent
 Return_Code, -- object remains unchanged.
 Reason_Code);

 Coptype := "END ";
 Cusage := "RANDOM";
 Cdisp := "RETAIN ";

 CSRVIEW (Coptype, -- End the view in window
 Object_Id,
 Voffset,

ADA Example

Chapter 4. Window services coding examples 39

 Vwinsiz,
 Sp(Orig..Num_Sp_Elem),
 Cusage,
 Cdisp,
 Return_Code,
 Reason_Code);

 Coptype := "BEGIN";
 Cusage := "RANDOM";
 Cdisp := "REPLACE";

 CSRVIEW (Coptype, -- Now map the same window
 Object_Id, -- to different part of the
 Vofset2, -- permanent object.
 Vwinsiz,
 Sp(Orig..Num_Sp_Elem),
 Cusage,
 Cdisp,
 Return_Code,
 Reason_Code);

 for I in 0 .. Num_Win_Elem-1 loop -- Put data in window area
 Sp(I+Orig) := I+1;
 end loop;

 CSRSAVE (Object_Id, -- Capture the view in window.
 Vofset2, -- Note: this time the permanent
 Vwinsiz, -- object is updated with the
 New_Hi_Offset, -- changes.
 Return_Code,
 Reason_Code);

 Coptype := "END ";
 CUsage := "RANDOM";
 Cdisp := "RETAIN ";

 CSRVIEW (Coptype, -- End the current view in
 Object_Id, -- the window
 Vofset2,
 Vwinsiz,
 Sp(Orig..Num_Sp_Elem),
 Cusage,
 Cdisp,
 Return_Code,
 Reason_Code);

 Coptype := "BEGIN";
 Cusage := "RANDOM";
 Cdisp := "REPLACE";

 CSRVIEW (Coptype, -- Now go back to reestablish
 Object_Id, -- the 1st map using the same
 Voffset, -- window area
 Vwinsiz,
 Sp(Orig..Num_Sp_Elem),
 Cusage,
 Cdisp,
 Return_Code,
 Reason_Code);

 CSRREFR (Object_Id, -- Refresh the data in the window
 Voffset,
 Vwinsiz,
 Return_Code,
 Reason_Code);

 Coptype := "END ";
 Cusage := "RANDOM";
 Cdisp := "RETAIN ";

 CSRVIEW (Coptype, -- End the view in window
 Object_Id,
 Voffset,
 Vwinsiz,
 Sp(Orig..Num_Sp_Elem),
 Cusage,
 Cdisp,
 Return_Code,
 Reason_Code);

 Coptype := "END ";
 Csptype := "DDNAME ";

ADA Example

40 z/OS: z/OS MVS Callable Services for HLL

 Cobname := "CSRDD1 ";
 Cscroll := "YES";
 Cobstate := "OLD";
 Caccess := "UPDATE";

 CSRIDAC (Coptype, -- Terminate access to the
 Csptype, -- permanent object
 Cobname,
 Cscroll,
 Cobstate,
 Caccess,
 Vwinsiz,
 Object_Id,
 High_Offset,
 Return_Code,
 Reason_Code);

end CRTPAN06;

//ADAJOB JOB 00000100
//* 00000500
//* JCL USED TO COMPILE, LINK, AND EXECUTE THE ADA PROGRAM CRTPAN06 00000600
//* THAT USES DATA WINDOW SERVICES 00000700
//* 00000800
/*JOBPARM T=2,L=99 00050000
//ADACOBI EXEC PGM=IKJEFT01,DYNAMNBR=133 00055813
//SYSTSPRT DD SYSOUT=* 00055913
//SYSTSIN DD * 00056008
 ALLOC FI(SYSLIB) DS('SYS1.CSSLIB') SHR 00056147
 EX 'HLQ.SEVGEXE1(ADA)' 'USERID.DWS.ADA'' (MAI CRE' 00056251
/* 00057008
//ADARUN EXEC PGM=CRTPAN06,DYNAMNBR=133 00070036
//STEPLIB DD DISP=SHR,DSN=HLQ.SEVHMOD1 00100051
// DD DISP=SHR,DSN=USERID.LOAD 00110051
//CSRDD1 DD DSN=USERID.ADA.DWSTEST.DATA,DISP=SHR 00120051
//CONOUT DD SYSOUT=*, 00130013
// DCB=(LRECL=133,RECFM=F) 00140027

C/370 example
The following example, coded in C/370, creates and uses a temporary data object.

#include <stdio.h>
#include <stdlib.h>
/* Defined macros that will be used in the program. */
#define SIZE 8*1024
#define OBJ_SIZE 8
#define PAGE_SIZE (4*1024)
#define DWS_FILE "DWS.FILE1 "
#define TRUE 1
#define FALSE 0
char windows[SIZE];
char *view;
void init_mem(char init_value, char *low_mem, int size);
int chk_code(long int ret, long int reason, int linenumber);
main()
{
 /* Initialized variables that will be used in the Callable */
 /* Services. */
 char op_type1[5] = "BEGIN";
 char op_type2[5] = "END ";
 char object_type[9] = "TEMPSPACE";
 char object_name[45] = DWS_FILE;
 char scroll_area[3] = "YES";
 char object_state[3] = "NEW";
 char access_mode[6] = "UPDATE";
 long int object_size = OBJ_SIZE;
 char disposition[7] = "REPLACE";
 char usage[6] = "SEQ ";
 char object_id[8];
 long int high_offset, return_code, reason_code;
 long int offset, window_size, window_addr;
 long int span, new_hi_offset;
 long int addr;
 int i, ret, origin, errflag = FALSE;
 double id;
 /* Set up access to a Hiperspace object using TEMPSPACE. */
 /* Check for return code and reason code after the call. */

C/370 Example

Chapter 4. Window services coding examples 41

 csridac(op_type1, object_type, object_name, scroll_area, object_state,
 access_mode,&object_size,&object_id,&high_offset,&return_code,;
 &reason_code);
 chk_code(return_code,reason_code,__LINE__);
 /* Define a window in a 4K region and initialize */
 /* variables for CSRVIEW. Define the window for the */
 /* TEMPSPACE and verify the return code and reason code. */
 init_mem('0',windows,SIZE);
 addr = (int) windows % 4096;
 if (addr != 0) view = windows + 4096 - addr;
 offset = 0; window_size = 1;
 csrview(op_type1,&object_id,&offset,&window_size,view,;
 usage, disposition, &return_code, &reason_code);
 chk_code(return_code,reason_code,__LINE__);
 /* Change values in the window into 1. */
 init_mem('1',view,4096);
 /* Capture the view in the 1st window. */
 offset = 0; window_size = 1;
 csrscot(&object_id, &offset, &window_size,&return_code,;
 &reason_code);
 chk_code(return_code,reason_code,__LINE__);
 /* Make sure that CSRSAVE will not save changes for temporary */
 /* object. The return code should be equal to 8 and control */
 /* will be returned to the program. */
 offset = 0; window_size = 1;
 csrsave(&object_id, &offset, &window_size, &high_offset,;
 &return_code, &reason_code);
 if (return_code != 8) {
 errflag = TRUE;
 printf("return_code was not set to proper value.\n");
 }
 /* Terminate the view to the window. */
 offset = 0; window_size = 1;
 csrview(op_type2,&object_id,&offset,&window_size,view,;
 usage, disposition, &return_code, &reason_code);
 chk_code(return_code,reason_code,__LINE__);
 /* Change values in the window array into 0's. */
 init_mem('0',view,4096);
 /* View the window again. */
 offset = 0; window_size = 1;
 csrview(op_type1,&object_id,&offset,&window_size,view,;
 usage, disposition, &return_code, &reason_code);
 chk_code(return_code,reason_code,__LINE__);
 /* The values in the window should remain to 1's. */
 for (i=0; i<4096; i++) {
 if (errflag == TRUE) printf("%d %c ", i, view[i]);
 if (view[i] != '1') errflag = TRUE;
 }
 /* Refresh the window to 0's. */
 offset = 0; window_size = 1;
 csrrefr(&object_id, &offset, &window_size,;
 &return_code, &reason_code);
 chk_code(return_code,reason_code,__LINE__);
 /* The values inside the window should equal to 0's. */
 for (i=0; i<4096; i++) {
 if (errflag == TRUE) printf("%d %c ", i, view[i]);
 if (view[i] != 0) errflag = TRUE;
 }
 /* Terminate the view to the window. */
 offset = 0; window_size = 1;
 csrview(op_type2,&object_id,&offset,&window_size,view,;
 usage, disposition, &return_code, &reason_code);
 chk_code(return_code,reason_code,__LINE__);
 /* Terminate the access to the Hiperspace object. */
 csridac(op_type2, object_type, object_name, scroll_area, object_state,
 access_mode,&object_size,&object_id,&high_offset,&return_code,;
 &reason_code);
 chk_code(return_code,reason_code,__LINE__);
 /* Report the status of the test. */
 if (errflag) {
 printf("Test failed at line %d\n", __LINE__);
 exit(1);
 }
 else {
 printf("Test successful : %s\n", __FILE__);
 exit(0);
 }
}
/* Functions that will be used in the program. */
/* chk_code will check return code and reason code returned from*/
/* the Callable Services. It will report an error if the code(s)*/
/* is not equal to 0. */

C/370 Example

42 z/OS: z/OS MVS Callable Services for HLL

int chk_code(long int ret, long int reason, int linenumber)
{
 if (ret != 0)
 printf("return_code = %ld instead of 0 at line %d\n",
 ret, linenumber);
 if (reason != 0)
 printf("reason_code = %ld instead of 0 at line %d\n",
 reason, linenumber);
}
/* init_mem will initialize a block of memory starting at a */
/* given location to a specified value. */
void init_mem(char init_val, char *low_mem, int size)
{
 int i;
 for (i=0; i<size; i++) *(low_mem+i) = init_val;
}
//*
//*--
//* JCL USED TO COMPILE, LINK, AND, EXECUTE THE C/370 PROGRAM
//*--
//*
//DPTTST1A JOB 'DPT04P,DPT,?,S=I','DPTTST1',MSGCLASS=H,
// CLASS=J,NOTIFY=DPTTST1,MSGLEVEL=(1,1)
//CC EXEC EDCC,INFILE='DPTTST1.DWS.SOURCE(DWS1)',
// CPARM='NOOPT,SOURCE,NOSEQ,NOMAR',
// OUTFILE='DPTTST1.DWS.OBJECT(DWS1)'
//*--
//* LINK STEP
//*--
//LKED EXEC PGM=IEWL,PARM='MAP,RMODE=ANY,AMODE=31'
//SYSLIB DD DSN=CEE.SCEELKED,DISP=SHR
// DD DSN=SYS1.CSSLIB,DISP=SHR
//OBJECT DD DSN=DPTTST1.DWS.OBJECT,DISP=SHR
//SYSLIN DD *
 ENTRY CEESTART
 INCLUDE OBJECT(DWS1)
 NAME DWS1(R)
//SYSLMOD DD DSN=DPTTST1.DWS.LOAD,DISP=SHR
//SYSPRINT DD SYSOUT=*
//SYSUT1 DD DSN=&&SYSUT1,UNIT=SYSDA,DISP=(NEW,DELETE,DELETE),
// SPACE=(32000,(30,30))
//*--
//* GO STEP. THIS STEP DEFINES A NAME FOR A PERMANENT OBJECT THAT
//* THE DDNAME OBJECT TYPE WILL REFERENCE.
//*--
//GO EXEC PGM=DWS1,REGION=4M
//STEPLIB DD DSN=CEE.SCEERUN,DISP=SHR
// DD DSN=DPTTST1.DWS.LOAD,DISP=SHR
//SYSPRINT DD SYSOUT=*,DCB=(RECFM=VB,LRECL=125,BLKSIZE=6000)
//PLIDUMP DD SYSOUT=*
//SYSUDUMP DD SYSOUT=*
//DD1 DD DSN=DPTTST1.DWS.FILE1,DISP=SHR

COBOL example
 IDENTIFICATION DIVISION.

 * Program using COBOL to create a 40-page window *
 * aligned on a page boundary. This is done by locating a *
 * page boundary within a 40*4096+4095 byte work area. *
 * The DWS interface validation routine is then called passing *
 * the 40 page window. *

 PROGRAM-ID. DWSCBSAM.
 ENVIRONMENT DIVISION.
 DATA DIVISION.
 WORKING-STORAGE SECTION.
 1 WORKAREA.
 2 FILLER PIC X OCCURS 167935 TIMES.
 PROCEDURE DIVISION.
 DISPLAY " DWSCBSAM CALLING DWSCB4K "
 CALL "DWSCB4K" USING WORKAREA
 DISPLAY " DWSCBSAM BACK FROM DWSCB4K "
 GOBACK.

 IDENTIFICATION DIVISION.
 PROGRAM-ID. DWSCB4K.
 ENVIRONMENT DIVISION.

COBOL Example

Chapter 4. Window services coding examples 43

 DATA DIVISION.
 WORKING-STORAGE SECTION.
 1 P POINTER.
 1 PR REDEFINES P PIC 9(9) COMP.
 1 DUMMY PIC 9(9) COMP.
 1 R PIC 9(9) COMP.
 LINKAGE SECTION.
 1 INWORK PIC X(167935).
 1 WINDOW.
 2 FILLER PIC X(4096) OCCURS 40 TIMES.
 PROCEDURE DIVISION USING INWORK.
 SET P TO ADDRESS OF INWORK
 DIVIDE PR BY 4096
 GIVING DUMMY
 REMAINDER R
 IF R NOT EQUAL 0 THEN
 COMPUTE PR = PR + 4096 - R
 SET ADDRESS OF WINDOW TO P
 DISPLAY " DWSCBK4 CALLING DWSCB2 "
 CALL "DWSCB2" USING WINDOW.
 DISPLAY " DWSCBK4 BACK FROM DWSCB2 "
 GOBACK.

 IDENTIFICATION DIVISION.
 PROGRAM-ID. DWSCB2.
 ENVIRONMENT DIVISION.
 DATA DIVISION.
 WORKING-STORAGE SECTION.
 * WINDOW SIZE CHOSEN TO BE 40 PAGES
 1 NWINPG PIC 9(9) COMP VALUE 40.
 1 NWINEL PIC 9(9) COMP.
 1 NWLAST PIC 9(9) COMP.
 1 NOBJPG PIC 9(9) COMP.
 * WINDOWS WILL BEGIN ORIGIN-ING AT OFFSET 0 IN DATA OBJECT
 1 WINOFF PIC 9(9) COMP VALUE 0.
 1 RETRN1 PIC 9(9) COMP.
 1 REASON PIC 9(9) COMP.
 1 NEWOFF PIC 9(9) COMP.
 1 OBSIZ PIC 9(9) COMP.
 1 TOKEN PIC X(8).
 1 K PIC 9(9) COMP.
 LINKAGE SECTION.
 1 WINDOW.
 2 FILLER PIC X(4096) OCCURS 40 TIMES.
 1 WINDOW-ARRAY REDEFINES WINDOW.
 2 A PIC S9(8) COMP OCCURS 40960 TIMES.
 PROCEDURE DIVISION USING WINDOW.
 DISPLAY "Begin Data Windowing Services Interface Validation"
 * WINDOW COMPOSED OF 4-BYTE ELEMENTS
 COMPUTE NWINEL = 1024 * NWINPG.
 * WINDOW MAY NOT BEGIN AT ARRAY ELEMENT 1, SO LEAVE ROOM
 COMPUTE NWLAST = 1024 * NWINPG + 1023
 * IN THE FOLLOWING, ARBITRARILY SET OBJECT SIZE = 3 WINDOWS WORTH
 COMPUTE NOBJPG = 3 * NWINPG
 * SET UP ACCESS TO A HIPERSPACE OBJECT
 CALL "CSRIDAC" USING
 BY CONTENT
 "BEGIN",
 "TEMPSPACE",
 "MY FIRST HIPERSPACE",
 "YES",
 "NEW",
 "UPDATE",
 BY REFERENCE
 NOBJPG,
 TOKEN,
 OBSIZ,
 RETRN1,
 REASON
 * PUT SOME DATA INTO THE WINDOW AREA
 MOVE ALL "DATA" TO WINDOW
 * NOW VIEW SOMETHING IN THE WINDOW
 CALL "CSRVIEW" USING
 BY CONTENT
 "BEGIN",
 BY REFERENCE
 TOKEN,
 WINOFF,
 NWINPG,
 WINDOW,
 BY CONTENT

COBOL Example

44 z/OS: z/OS MVS Callable Services for HLL

 "RANDOM",
 "REPLACE",
 BY REFERENCE
 RETRN1,
 REASON
 * CALCULATE SOMETHING IN THE WINDOW AREA
 PERFORM VARYING K FROM 1 BY 1 UNTIL K = NWINEL
 MOVE K TO A(K)
 END-PERFORM
 * CAPTURE THE VIEW IN THE WINDOW
 CALL "CSRSCOT" USING
 TOKEN,
 WINOFF,
 NWINPG,
 RETRN1,
 REASON
 * END THE VIEW IN THE WINDOW
 CALL "CSRVIEW" USING
 BY CONTENT
 "END ",
 BY REFERENCE
 TOKEN,
 WINOFF,
 NWINPG,
 WINDOW,
 BY CONTENT
 "RANDOM",
 "RETAIN ",
 BY REFERENCE
 RETRN1,
 REASON
 * NOW VIEW SOMETHING ELSE (2ND WINDOW"S WORTH OF DATA) IN WINDOW
 ADD NWINPG TO WINOFF
 CALL "CSRVIEW" USING
 BY CONTENT
 "BEGIN",
 BY REFERENCE
 TOKEN,
 WINOFF
 NWINPG,
 WINDOW,
 BY CONTENT
 "RANDOM",
 "RETAIN",
 BY REFERENCE
 RETRN1,
 REASON
 * CALCULATE SOMETHING NEW IN THE WINDOW AREA
 PERFORM VARYING K FROM 1 BY 1 UNTIL K = NWINEL
 COMPUTE A(K) = - K
 END-PERFORM
 * SAVE THE DATA IN THE WINDOW
 CALL "CSRSCOT" USING
 TOKEN,
 WINOFF,
 NWINPG,
 RETRN1,
 REASON
 * NOW END THE CURRENT VIEW IN WINDOW
 CALL "CSRVIEW" USING
 BY CONTENT
 "END ",
 BY REFERENCE
 TOKEN,
 WINOFF
 NWINPG,
 WINDOW,
 BY CONTENT
 "RANDOM",
 "RETAIN ",
 BY REFERENCE
 RETRN1,
 REASON
 * NOW GO BACK TO THE FIRST VIEW IN THE WINDOW
 MOVE 0 TO WINOFF
 CALL "CSRVIEW" USING
 BY CONTENT
 "BEGIN",
 BY REFERENCE
 TOKEN,
 WINOFF,
 NWINPG,

COBOL Example

Chapter 4. Window services coding examples 45

 WINDOW,
 BY CONTENT
 "RANDOM",
 "REPLACE",
 BY REFERENCE
 RETRN1,
 REASON
 * REFRESH THE DATA IN THE WINDOW FOR THIS VIEW
 CALL "CSRREFR" USING
 TOKEN,
 WINOFF,
 NWINPG,
 RETRN1,
 REASON
 * NOW END THE VIEW IN THE WINDOW
 CALL "CSRVIEW" USING
 BY CONTENT
 "END ",
 BY REFERENCE
 TOKEN,
 WINOFF,
 NWINPG,
 WINDOW,
 BY CONTENT
 "RANDOM",
 "RETAIN ",
 BY REFERENCE
 RETRN1,
 REASON
 * TERMINATE ACCESS TO THE HIPERSPACE OBJECT
 CALL "CSRIDAC" USING
 BY CONTENT
 "END ",
 "TEMPSPACE",
 "MY FIRST HIPERSPACE ENDS HERE ",
 "YES",
 "NEW",
 "UPDATE",
 BY REFERENCE
 NOBJPG,
 TOKEN,
 OBSIZ,
 RETRN1,
 REASON
 DISPLAY "-*** Run ended with Object Size in pages = " NEWOFF
 GOBACK
**
* *
* JCL FOR COBOL EXAMPLE *
* *
**
//JOB1XXX JOB 'A9907P,B9222095', 00010000
// 'A.A.USER',RD=R, 00020000
// MSGCLASS=H,NOTIFY=AAUSER, 00030000
// MSGLEVEL=(1,1),CLASS=7 00040000
//LKED EXEC PGM=IEWL,PARM='SIZE=(1024K,512K),LIST,XREF,LET,MAP', 00080000
// REGION=1024K 00090000
//SYSLIN DD DDNAME=SYSIN 00110000
//SYSLMOD DD DSNAME=AAUSER.USER.LOAD(CRTCON01),DISP=SHR 00120000
//SYSLIB DD DSNAME=CEE.SCEELED,DISP=SHR 00140000
//* 00150100
//* FF310.OBJ HOLDS OBJECT CODE FROM THE COMPILE 00150200
//* 00150300
//MYLIB DD DSN=AAUSER.FF310.OBJ,DISP=SHR 00151000
//* 00151100
//* THE CSR STUBS ARE IN SYS1.CSSLIB 00151200
//* 00151300
//INLIB DD DSN=SYS1.CSSLIB,DISP=SHR 00152000
//SYSPRINT DD SYSOUT=* 00170000
//SYSIN DD * 00230000
 INCLUDE MYLIB(DWSCBSAM,DWSCB4K,DWSCB2) 00231000
 LIBRARY INLIB(CSRSCOT,CSRSAVE,CSRREFR,CSRSAVE,CSRVIEW,CSRIDAC) 00240000
 NAME CRTCON01(R) 00250000

FORTRAN example
**
* *
* *

FORTRAN Example

46 z/OS: z/OS MVS Callable Services for HLL

* FORTRAN EXAMPLE. THE FORTRAN EXAMPLE IS FOLLOWED BY AN *
* ASSEMBLER PROGRAM CALLED ADDR. YOU MUST LINKEDIT THIS *
* ASSEMBLER PROGRAM WITH THE FORTRAN PROGRAM OBJECT *
* CODE AND THE CSR STUBS. THE ASSEMBLER PROGRAM ENSURES *
* THAT YOUR WINDOW IS ALIGNED ON A 4K BOUNDARY . *
* *
**
@PROCESS DC(WINCOM)
 PROGRAM CRTFON01
C
C Test Program for Data Window Services
C
C Window size chosen to be 40 pages
 PARAMETER (NWINPG = 40)
C Window composed of 4-byte elements
 PARAMETER (NWINEL = 1024*NWINPG)
C Window may not begin at array element 1, so leave room
 PARAMETER (NWLAST = 1024*NWINPG+1023)
C In the following, arbitrarily set object size = 3 windows worth
 PARAMETER (NOBJPG = 3*NWINPG)
C Windows will begin origin-ing at offset 0 in data object
 INTEGER WINOFF
 PARAMETER (WINOFF = 0)
C
 INTEGER RETRN1, REASON, HIOFF, NEWOFF, OBSIZ, OFF
 INTEGER ADDR, PAGE, A
 INTEGER JUNK /-1599029040/
 REAL*8 TOKEN
 COMMON /WINCOM/ A(NWLAST)
C
C
 WRITE (6, 91)
 91 FORMAT('1*** Begin Data Windowing Services Interface Validation')
C
C Set up access to a Hiperspace object
 CALL CSRIDAC('BEGIN',
 * 'TEMPSPACE',
 * 'MY FIRST HIPERSPACE',
 * 'YES',
 * 'NEW',
 * 'UPDATE',
 * NOBJPG,
 * TOKEN,
 * OBSIZ,
 * RETRN1,
 * REASON)
C
C Determine first page-boundary element in Window Array "A"
 PAGE = ADDR(A(1))
 PAGE = MOD(PAGE, 4096)
 IF (PAGE .NE. 0) PAGE = (4096 - PAGE) / 4
 PAGE = PAGE + 1
C
C Put data into the window
 DO 100 K = 1, NWINEL
 A(K+PAGE-1) = JUNK
 100 CONTINUE
C
C Now view data in the window
 CALL CSRVIEW('BEGIN',
 * TOKEN,
 * WINOFF,
 * NWINPG,
 * A(PAGE),
 * 'RANDOM',
 * 'REPLACE',
 * RETRN1,
 * REASON)
C
C Calculate a value in the window area
 DO 101 K = 1, NWINEL
 A(K+PAGE-1) = K
 101 CONTINUE
C
C Capture the view in the window
 CALL CSRSCOT(TOKEN,
 * WINOFF,
 * NWINPG,
 * RETRN1,
 * REASON)
C
C End the view in the window

FORTRAN Example

Chapter 4. Window services coding examples 47

 CALL CSRVIEW('END ',
 * TOKEN,
 * WINOFF,
 * NWINPG,
 * A(PAGE),
 * 'RANDOM',
 * 'RETAIN ',
 * RETRN1,
 * REASON)
C
C Now view other data (2nd window's worth of data) in window
 CALL CSRVIEW('BEGIN',
 * TOKEN,
 * WINOFF + NWINPG,
 * NWINPG,
 * A(PAGE),
 * 'RANDOM',
 * 'REPLACE',
 * RETRN1,
 * REASON)
C
C Calculate a new value in the window
 DO 102 K = 1, NWINEL
 A(K+PAGE-1) = -K
 102 CONTINUE
C
C Capture the view in the window
 CALL CSRSCOT(TOKEN,
 * WINOFF + NWINPG,
 * NWINPG,
 * RETRN1,
 * REASON)
C
C Now end the current view in window
 CALL CSRVIEW('END ',
 * TOKEN,
 * WINOFF + NWINPG,
 * NWINPG,
 * A(PAGE),
 * 'RANDOM',
 * 'RETAIN ',
 * RETRN1,
 * REASON)
C
C Now go back to the first view in the window
 CALL CSRVIEW('BEGIN',
 * TOKEN,
 * WINOFF,
 * NWINPG,
 * A(PAGE),
 * 'RANDOM',
 * 'REPLACE',
 * RETRN1,
 * REASON)
C
C Refresh the data in the window for this view
 CALL CSRREFR(TOKEN,
 * WINOFF,
 * NWINPG,
 * RETRN1,
 * REASON)
C
C Now end the view in the window
 CALL CSRVIEW('END ',
 * TOKEN,
 * WINOFF,
 * NWINPG,
 * A(PAGE),
 * 'RANDOM',
 * 'RETAIN ',
 * RETRN1,
 * REASON)
C
C Terminate access to the Hiperspace object
 CALL CSRIDAC('END ',
 * 'TEMPSPACE',
 * 'MY FIRST HIPERSPACE ENDS HERE ',
 * 'YES',
 * 'NEW',
 * 'UPDATE',
 * NOBJPG,
 * TOKEN,

FORTRAN Example

48 z/OS: z/OS MVS Callable Services for HLL

 * OBSIZ,
 * RETRN1,
 * REASON)
C
 STOP
 END
**
* *
* *
* THIS ASSEMBLER PROGRAM ENSURES THAT YOUR WINDOW IS ALIGNED *
* ON A 4K BOUNDARY. ASSEMBLE THIS PROGRAM AND LINKEDIT THE *
* OBJECT CODE WITH THE FORTRAN CODE AND THE CSR STUBS. *
* *
**
ADDR TITLE 'LOC/ADDR Function for Fortran'
*
* Calling Sequence:
*
* INTEGER ADDR
* - - -
* L = LOC(x)
* L = ADDR(x)
*
* Returns address of "x" in R0, with high-order bit set to zero
*
ADDR CSECT
 ENTRY LOC
LOC EQU *
 USING *,15
 L 0,0(,1) Get pointer to x
 N 0,MASK Set sign bit to 0
 BR 14 Return
MASK DC A(X'7FFFFFFF') Mask with high-order bit 0
 END
**
* *
* JCL TO COMPILE AND LINKEDIT THE ASSEMBLER PROGRAM, THE *
* FORTRAN PROGRAM, AND THE STUBS. *
* *
**
//FORTJOB JOB 00255013
//* 00003100
//* 00003100
//* Compile and linkedit for FORTRAN 00003100
//* 00003100
//* 00003100
//VSF2CL PROC FVPGM=FORTVS2,FVREGN=2100K,FVPDECK=NODECK, 00001000
// FVPOLST=NOLIST,FVPOPT=0,FVTERM='SYSOUT=A', 00002000
// PGMNAME=MAIN,PGMLIB='&&GOSET',FVLNSPC='3200,(25,6)' 00003000
//* 00003100
//* PARAMETER DEFAULT-VALUE USAGE 00003900
//* 00004000
//* FVPGM FORTVS2 COMPILER NAME 00005000
//* FVREGN 2100K FORT-STEP REGION 00006000
//* FVPDECK NODECK COMPILER DECK OPTION 00007000
//* FVPOLST NOLIST COMPILER LIST OPTION 00008000
//* FVPOPT 0 COMPILER OPTIMIZATION 00009000
//* FVTERM SYSOUT=A FORT.SYSTERM OPERAND 00010000
//* FVLNSPC 3200,(25,6) FORT.SYSLIN SPACE 00011000
//* PGMLIB &&GOSET LKED.SYSLMOD DSNAME 00012000
//* PGMNAME MAIN LKED.SYSLMOD MEMBER NAME 00013000
//* 00014000
//FORT EXEC PGM=&FVPGM,REGION=&FVREGN,COND=(4,LT), 00015000
// PARM='&FVPDECK,&FVPOLST,OPT(&FVPOPT)' 00016000
//STEPLIB DD DSN=HLLDS.FORT230.VSF2COMP,DISP=SHR 00017000
//SYSPRINT DD SYSOUT=A,DCB=BLKSIZE=3429 00018000
//SYSTERM DD &FVTERM 00019000
//SYSPUNCH DD SYSOUT=B,DCB=BLKSIZE=3440 00020000
//SYSLIN DD DSN=&&LOADSET,DISP=(MOD,PASS),UNIT=SYSDA, 00021000
// SPACE=(&FVLNSPC),DCB=BLKSIZE=3200 00022000
//LKED EXEC PGM=HEWL,REGION=768K,COND=(4,LT), 00023000
// PARM='LET,LIST,XREF' 00024000
//SYSPRINT DD SYSOUT=A 00025000
//SYSLIB DD DSN=CEE.SCEELKED,DISP=SHR 00026000
//SYSUT1 DD UNIT=SYSDA,SPACE=(1024,(200,20)) 00027000
//SYSLMOD DD DSN=&PGMLIB.(&PGMNAME),DISP=(,PASS),UNIT=SYSDA, 00028000
// SPACE=(TRK,(10,10,1),RLSE) 00029000
//SYSLIN DD DSN=&&LOADSET,DISP=(OLD,DELETE) 00030000
// DD DDNAME=SYSIN 00040000
// PEND
// EXEC VSF2CL,FVTERM='SYSOUT=H',
// PGMNAME=CRTFON01,PGMLIB='WINDOW.USER.LOAD' 00003000

FORTRAN Example

Chapter 4. Window services coding examples 49

//FORT.SYSIN DD DSN=WINDOW.XAMPLE.LIB(CRTFON01),DISP=SHR
//LKED.SYSLIB DD DSN=CEE.SCEELKED,DISP=SHR 00026000
//LKED.SYSLMOD DD DSN=WINDOW.USER.LOAD,DISP=SHR,UNIT=3380,
// VOL=SER=VM2TSO
//LKED.SYSIN DD *
 LIBRARY IN(CSRSCOT,CSRSAVE,CSRREFR,CSRSAVE,CSRVIEW,CSRIDAC,ADDR)
 NAME CRTFON01(R)
/*
//* The CSR stubs are available in SYS1.CSSLIB.
//* The object code for the ADDR routine is in
//* TEST.OBJ
//*
//LKED.IN DD DSN=SYS1.CSSLIB,DISP=SHR
// DD DSN=WINDOW.TEST.OBJ,DISP=SHR
//*
//*
**
* *
* JCL TO EXECUTE THE FORTRAN PROGRAM. *
* *
**
//FON01 JOB MSGLEVEL=(1,1)
//VSF2G PROC GOPGM=MAIN,GOREGN=100K, 00001000
// GOF5DD='DDNAME=SYSIN', 00002000
// GOF6DD='SYSOUT=A', 00003000
// GOF7DD='SYSOUT=B' 00004000
//* 00005000
//* PARAMETER DEFAULT-VALUE USAGE 00007000
//* 00008000
//* GOPGM MAIN PROGRAM NAME 00009000
//* GOREGN 100K GO-STEP REGION 00010000
//* GOF5DD DDNAME=SYSIN GO.FT05F001 DD OPERAND 00011000
//* GOF6DD SYSOUT=A GO.FT06F001 DD OPERAND 00012000
//* GOF7DD SYSOUT=B GO.FT07F001 DD OPERAND 00013000
//* 00014000
//* 00015000
//GO EXEC PGM=&GOPGM,REGION=&GOREGN,COND=(4,LT) 00016000
//STEPLIB DD DSN=CEE.SCEERUN,DISP=SHR 00017000
//FT05F001 DD &GOF5DD 00018000
//FT06F001 DD &GOF6DD 00019000
//FT07F001 DD &GOF7DD 00020000
// PEND
//GO EXEC VSF2G,GOPGM=CRTFON01,GOREGN=999K
//GO.STEPLIB DD DSN=CEE.SCEERUN,DISP=SHR 00017000
// DD DSN=WINDOW.USER.LOAD,DISP=SHR,VOL=SER=VM2TSO,UNIT=3380

Pascal example
**
* *
* *
* PASCAL example. The data object is permanent and already *
* allocated. A scroll area is used. *
* *
* *
* *
**
program CRTPAN06;
const
 K = 1024; (* One kilo-byte *)
 PAGESIZE = 4 * K; (* 4K page boundary *)
 OFFSET = 0; (* Windows starts *)
 WINDOW_SIZE = 40; (* Window size in pages *)
 NUM_WIN_ELEM = WINDOW_SIZE*K; (* Num of 4-byte elements *)
 OBJECT_SIZE = 3*WINDOW_SIZE; (* Chosen object size in pages*)
 SPACE_SIZE = (WINDOW_SIZE+1)*4*K; (* Space allocated for window *)
type
 S = space[SPACE_SIZE] of INTEGER; (* Define byte aligned space *)
 STR3 = packed array (. 1..3 .) of CHAR;
 STR5 = packed array (. 1..5 .) of CHAR;
 STR6 = packed array (. 1..6 .) of CHAR;
 STR7 = packed array (. 1..7 .) of CHAR;
 STR9 = packed array (. 1..9 .) of CHAR;
 STR44 = packed array (. 1..44 .) of CHAR;
var
 SP : @S; (* Declare pointer to space *)
 ORIG, (* Start address of window *)
 AD, I, (* Temporary variables *)
 VOFFSET, (* Offset passed as parameter *)

Pascal Example

50 z/OS: z/OS MVS Callable Services for HLL

 VOFSET2, (* Offset passed as parameter *)
 VOBJSIZ, (* Object size, as parameter *)
 VWINSIZ, (* Window Size, as parameter *)
 HIGH_OFFSET, (* Size of object in pages *)
 NEW_HI_OFFSET, (* New max size of the object *)
 RETURN_CODE, (* Return code *)
 REASON_CODE : INTEGER; (* Reason code *)
 OBJECT_ID : REAL; (* Identifying token *)
 CSCROLL : STR3; (* Scroll area YES/NO *)
 COBSTATE : STR3; (* Object state NEW/OLD *)
 COPTYPE : STR5; (* Operation type BEGIN/END *)
 CACCESS : STR6; (* Access RANDOM/SEQ *)
 CUSAGE : STR6; (* Usage READ/UPDATE *)
 CDISP : STR7; (* Disposition RETAIN/REPLACE *)
 CSPTYPE : STR9; (* Object type DSNAME/DDNAME/TEMPSPACE *)
 COBNAME : STR44; (* Object name *)
procedure CSRIDAC (var OP_TYPE : STR5;
 var OBJECT_TYPE : STR9;
 var OBJECT_NAME : STR44;
 var SCROLL_AREA : STR3;
 var OBJECT_STATE : STR3;
 var ACCESS_MODE : STR6;
 var VOBJSIZ : INTEGER;
 var OBJECT_ID : REAL;
 var HIGH_OFFSET : INTEGER;
 var RETURN_CODE : INTEGER;
 var REASON_CODE : INTEGER); FORTRAN;
procedure CSRVIEW (var OP_TYPE : STR5;
 var OBJECT_ID : REAL;
 var OFFSET : INTEGER;
 var WINDOW_SIZE : INTEGER;
 var WINDOW_NAME : INTEGER;
 var USAGE : STR6;
 var DISPOSITION : STR7;
 var RETURN_CODE : INTEGER;
 var REASON_CODE : INTEGER); FORTRAN;
procedure CSRSCOT (var OBJECT_ID : REAL;
 var OFFSET : INTEGER;
 var SPAN : INTEGER;
 var RETURN_CODE : INTEGER;
 var REASON_CODE : INTEGER); FORTRAN;
procedure CSRSAVE (var OBJECT_ID : REAL;
 var OFFSET : INTEGER;
 var SPAN : INTEGER;
 var NEW_HI_OFFSET : INTEGER;
 var RETURN_CODE : INTEGER;
 var REASON_CODE : INTEGER); FORTRAN;
procedure CSRREFR (var OBJECT_ID : REAL;
 var OFFSET : INTEGER;
 var SPAN : INTEGER;
 var RETURN_CODE : INTEGER;
 var REASON_CODE : INTEGER); FORTRAN;
begin
 TERMOUT(OUTPUT); (* Output to terminal *)
 WRITELN ('<< Begin Data Windowing Services Interface Validation >>');
 WRITELN;
 VOBJSIZ := OBJECT_SIZE; (* Set object size variable *)
 VOFFSET := OFFSET; (* Set offset variable to 0 *)
 VWINSIZ := WINDOW_SIZE; (* Set window size variable *)
 VOFSET2 := OFFSET+WINDOW_SIZE; (* Set offset variable to 0 *)
 COPTYPE := 'BEGIN' ;
 CSPTYPE := 'DDNAME ' ;
 COBNAME := 'CSRDD1 ' ;
 CSCROLL := 'YES' ;
 COBSTATE := 'NEW' ;
 CACCESS := 'UPDATE' ;
 CSRIDAC (COPTYPE, (* Set up access to a *)
 CSPTYPE, (* hiperspace object *)
 COBNAME,
 CSCROLL,
 COBSTATE,
 CACCESS,
 VOBJSIZ,
 OBJECT_ID,
 HIGH_OFFSET,
 RETURN_CODE,
 REASON_CODE);
 NEW(SP); (* Allocate space *)
 AD := ADDR(SP@); (* or ORD(SP) *) (* Get address of space *)
 ORIG := AD mod PAGESIZE; (* See where space is in page *)
 if ORIG <> 0 then (* If not on page boundary *)
 ORIG := PAGESIZE-ORIG; (* then locate page boundary *)

Pascal Example

Chapter 4. Window services coding examples 51

 for I := 0 to NUM_WIN_ELEM-1 do (* Put data into window *)
 SP@[4*I+ORIG] := 999999; (* area *)
 COPTYPE := 'BEGIN' ;
 CUSAGE := 'RANDOM' ;
 CDISP := 'REPLACE' ;
 CSRVIEW (COPTYPE, (* Now view data in 1st *)
 OBJECT_ID, (* window *)
 VOFFSET,
 VWINSIZ,
 SP@[ORIG],
 CUSAGE,
 CDISP,
 RETURN_CODE,
 REASON_CODE);
 for I := 0 to NUM_WIN_ELEM-1 do (* Calculate a value in 1st *)
 SP@[4*I+ORIG] := I+1; (* window *)
 CSRSCOT(OBJECT_ID, (* Capture the view in 1st *)
 VOFFSET, (* window *)
 VWINSIZ,
 RETURN_CODE,
 REASON_CODE);
 COPTYPE := 'END' ;
 CUSAGE := 'RANDOM' ;
 CDISP := 'RETAIN' ;
 CSRVIEW (COPTYPE, (* End the view in 1st window *)
 OBJECT_ID,
 VOFFSET,
 VWINSIZ,
 SP@[ORIG],
 CUSAGE,
 CDISP,
 RETURN_CODE,
 REASON_CODE);
 COPTYPE := 'BEGIN' ;
 CUSAGE := 'RANDOM' ;
 CDISP := 'REPLACE' ;
 CSRVIEW (COPTYPE, (* Now view other data in the *)
 OBJECT_ID, (* 2nd window *)
 VOFSET2,
 VWINSIZ,
 SP@[ORIG],
 CUSAGE,
 CDISP,
 RETURN_CODE,
 REASON_CODE);
 for I := 0 to NUM_WIN_ELEM-1 do (* Calculate a new value in *)
 SP@[4*I+ORIG] := I-101; (* the window *)
 CSRSAVE (OBJECT_ID,
 VOFSET2,
 VWINSIZ,
 NEW_HI_OFFSET,
 RETURN_CODE,
 REASON_CODE);
 COPTYPE := 'END' ;
 CUSAGE := 'RANDOM' ;
 CDISP := 'RETAIN' ;
 CSRVIEW (COPTYPE, (* End the current view in *)
 OBJECT_ID, (* window *)
 VOFSET2,
 VWINSIZ,
 SP@[ORIG],
 CUSAGE,
 CDISP,
 RETURN_CODE,
 REASON_CODE);
 COPTYPE := 'BEGIN' ;
 CUSAGE := 'RANDOM' ;
 CDISP := 'REPLACE' ;
 CSRVIEW (COPTYPE, (* Now go back to the view in *)
 OBJECT_ID, (* the 1st window *)
 VOFFSET,
 VWINSIZ,
 SP@[ORIG],
 CUSAGE,
 CDISP,
 RETURN_CODE,
 REASON_CODE);
 CSRREFR (OBJECT_ID, (* Refresh the data in 1st *)
 VOFFSET, (* window *)
 VWINSIZ,
 RETURN_CODE,
 REASON_CODE);

Pascal Example

52 z/OS: z/OS MVS Callable Services for HLL

 COPTYPE := 'END' ;
 CUSAGE := 'RANDOM' ;
 CDISP := 'RETAIN' ;
 CSRVIEW (COPTYPE, (* End the view in 1st window *)
 OBJECT_ID,
 VOFFSET,
 VWINSIZ,
 SP@[ORIG],
 CUSAGE,
 CDISP,
 RETURN_CODE,
 REASON_CODE);
 COPTYPE := 'END' ;
 CSPTYPE := 'DDNAME ' ;
 COBNAME := 'CSRDD1 ' ;
 CSCROLL := 'YES' ;
 COBSTATE := 'NEW' ;
 CACCESS := 'UPDATE' ;
 CSRIDAC (COPTYPE, (* Terminate access to the *)
 CSPTYPE, (* Hiperspace object *)
 COBNAME,
 CSCROLL,
 COBSTATE,
 CACCESS,
 VWINSIZ,
 OBJECT_ID,
 HIGH_OFFSET,
 RETURN_CODE,
 REASON_CODE);
end.
**
* *
* JCL to compile and linkedit *
* *
**
//PASC1JOB JOB 00010005
//GO EXEC PAS22CL 00050000
//* 00050102
//* Compile and linkedit for PASCAL 00050202
//* 00050302
//PASC.SYSIN DD DSN=WINDOW.XAMPLE.LIB(CRTPAN06),DISP=SHR 00060006
//LKED.SYSLMOD DD DSN=WINDOW.USER.LOAD,DISP=SHR,UNIT=3380, 00560000
// VOL=SER=VM2TSO 00570000
//LKED.SYSIN DD * 00580000
 LIBRARY IN(CSRSCOT,CSRSAVE,CSRREFR,CSRSAVE,CSRVIEW,CSRIDAC) 00590000
 NAME CRTPAN06(R) 00600006
/* 00610000
//* SYS1.CSSLIB is the source of the CSR stubs 00620002
//* 00650002
//LKED.IN DD DSN=SYS1.CSSLIB,DISP=SHR 00690000
**
* *
* JCL to execute. A DD statement, CSRDD1, is needed to define *
* the permanent object which already exists. *
* *
* *
**
//PASC2JOB JOB MSGLEVEL=(1,1) 00010000
//GO EXEC PGM=CRTPAN06 00020002
//STEPLIB DD DSN=WINDOW.PASCAL22.LINKLIB, 00030000
// DISP=SHR,UNIT=3380, 00040000
// VOL=SER=VM2TSO 00050000
// DD DSN=WINDOW.USER.LOAD, 00060000
// DISP=SHR,UNIT=3380, 00070000
// VOL=SER=VM2TSO 00080000
//CSRDD1 DD DSN=DIV.TESTDS01,DISP=SHR
//OUTPUT DD SYSOUT=A,DCB=(RECFM=VBA,LRECL=133) 00090000
//SYSPRINT DD SYSOUT=A,DCB=(RECFM=VBA,LRECL=133) 00100000

PL/I example

* *
* PL/I EXAMPLE *
* OBJECT IS TEMPORARY *
* *
* *
* *

PL/I Example

Chapter 4. Window services coding examples 53

 CRTPLN3: PROCEDURE OPTIONS (MAIN); CSR00010
 CSR00020
 DCL CSR00030
 (CSR00040
 K INIT(1024), /* ONE KILO-BYTE */ CSR00050
 PAGESIZE INIT(4096), /* 4K PAGE BOUNDARY */ CSR00060
 OFFSET INIT(0), /* WINDOWS STARTS */ CSR00070
 WINDOW_SIZE INIT(20), /* WINDOW SIZE IN PAGES */ CSR00080
 NUM_WIN_ELEM INIT (20480), /* NUM OF 4-BYTE ELEMENTS */ CSR00090
 OBJECT_SIZE INIT (60)) /* CHOSEN OBJECT SIZE IN PGS */ CSR00100
 FIXED BIN(31); CSR00110
 CSR00120
 DCL CSR00130
 /* 32767 IS UPPER LIMIT FOR ARRAY BOUND. */ CSR00140
 S(32767) BIN(31) FIXED BASED(SP); /* DEFINE WORD ALIGNED SPACE */ CSR00150
 CSR00160
 DCL SP PTR; CSR00170
 CSR00180
 DCL CSR00190
 (CSR00200
 ORIG, /* START ADDRESS OF WINDOW */ CSR00210
 AD, I, /* TEMPORARY VARIABLES */ CSR00220
 HIGH_OFFSET, /* SIZE OF OBJECT IN PAGES */ CSR00230
 NEW_HI_OFFSET, /* NEW MAX SIZE OF THE OBJECT */ CSR00240
 RETURN_CODE, /* RETURN CODE */ CSR00250
 REASON_CODE) FIXED BIN(31); /* REASON CODE */ CSR00260
 CSR00270
 DCL CSR00280
 OBJECT_ID CHAR(8); /* IDENTIFYING TOKEN */ CSR00290
 CSR00300
 /**/ CSR00310
 CSR00320
 DCL CSRIDAC ENTRY(CHAR(5), /* OP_TYPE */ CSR00330
 CHAR(9), /* OBJECT_TYPE */ CSR00340
 CHAR(44), /* OBJECT_NAME */ CSR00350
 CHAR(3), /* SCROLL_AREA */ CSR00360
 CHAR(3), /* OBJECT_STATE */ CSR00370
 CHAR(6), /* ACCESS_MODE */ CSR00380
 FIXED BIN(31), /* OBJECT_SIZE */ CSR00390
 CHAR(8), /* OBJECT_ID */ CSR00400
 FIXED BIN(31), /* HIGH_OFFSET */ CSR00410
 FIXED BIN(31), /* RETURN_CODE */ CSR00420
 FIXED BIN(31)) /* REASON_CODE */ CSR00430
 OPTIONS(ASSEMBLER); CSR00440
 CSR00450
 CSR00460
 DCL CSRVIEW ENTRY(CHAR(5), /* OP_TYPE */ CSR00470
 CHAR(8), /* OBJECT_ID */ CSR00480
 FIXED BIN(31), /* OFFSET */ CSR00490
 FIXED BIN(31), /* WINDOW_SIZE */ CSR00500
 FIXED BIN(31), /* WINDOW_NAME */ CSR00510
 CHAR(6), /* USAGE */ CSR00520
 CHAR(7), /* DISPOSITION */ CSR00530
 FIXED BIN(31), /* RETURN_CODE */ CSR00540
 FIXED BIN(31)) /* REASON_CODE */ CSR00550
 OPTIONS(ASSEMBLER); CSR00560
 CSR00570
 CSR00580
 DCL CSRSCOT ENTRY(CHAR(8), /* OBJECT_ID */ CSR00590
 FIXED BIN(31), /* OFFSET */ CSR00600
 FIXED BIN(31), /* SPAN */ CSR00610
 FIXED BIN(31), /* RETURN_CODE */ CSR00620
 FIXED BIN(31)) /* REASON_CODE */ CSR00630
 OPTIONS(ASSEMBLER); CSR00640
 CSR00650
 CSR00660
 DCL CSRSAVE ENTRY(CHAR(8), /* OBJECT_ID */ CSR00670
 FIXED BIN(31), /* OFFSET */ CSR00680
 FIXED BIN(31), /* SPAN */ CSR00690
 FIXED BIN(31), /* NEW_HI_OFFSET */ CSR00700
 FIXED BIN(31), /* RETURN_CODE */ CSR00710
 FIXED BIN(31)) /* REASON_CODE */ CSR00720
 OPTIONS(ASSEMBLER); CSR00730
 CSR00740
 CSR00750
 DCL CSRREFR ENTRY(CHAR(8), /* OBJECT_ID */ CSR00760
 FIXED BIN(31), /* OFFSET */ CSR00770
 FIXED BIN(31), /* SPAN */ CSR00780
 FIXED BIN(31), /* RETURN_CODE */ CSR00790
 FIXED BIN(31)) /* REASON_CODE */ CSR00800
 OPTIONS(ASSEMBLER); CSR00810
 CSR00820

PL/I Example

54 z/OS: z/OS MVS Callable Services for HLL

 /**/ CSR00830
 CSR00840
 CSR00850
 PUT SKIP LIST CSR00860
 ('<< BEGIN DATA WINDOWING SERVICES INTERFACE VALIDATION >>'); CSR00870
 PUT SKIP LIST (' '); CSR00880
 CSR00890
 CALL CSR00900
 CSRIDAC ('BEGIN', /* SET UP ACCESS TO A HIPER- */ CSR00910
 'TEMPSPACE', /* SPACE OBJECT */ CSR00920
 'MY FIRST HIPERSPACE', CSR00930
 'YES', CSR00940
 'NEW', CSR00950
 'UPDATE', CSR00960
 OBJECT_SIZE, CSR00970
 OBJECT_ID, CSR00980
 HIGH_OFFSET, CSR00990
 RETURN_CODE, CSR01000
 REASON_CODE); CSR01010
 CSR01020
 ALLOC S; /* ALLOCATE SPACE */ CSR01030
 AD = UNSPEC(SP); /* GET ADDRESS OF SPACE */ CSR01040
 ORIG = MOD(AD,PAGESIZE); /* SEE WHERE SPACE IS IN PAGE */ CSR01050
 IF ORIG ¬= 0 THEN /* IF NOT ON PAGE BOUNDARY */ CSR01060
 ORIG = (PAGESIZE-ORIG) / 4; /* THEN LOCATE PAGE BOUNDARY */ CSR01070
 ORIG = ORIG + 1; CSR01080
 CSR01090
 DO I = 1 TO NUM_WIN_ELEM; /* PUT SOME DATA INTO WINDOW */ CSR01100
 S(I+ORIG-1) = 99; /* AREA */ CSR01110
 END; CSR01120
 CSR01130
 CALL CSR01140
 CSRVIEW ('BEGIN', /* NOW VIEW DATA IN FIRST */ CSR01150
 OBJECT_ID, /* WINDOW */ CSR01160
 OFFSET, CSR01170
 WINDOW_SIZE, CSR01180
 S(ORIG), CSR01190
 'RANDOM', CSR01200
 'REPLACE', CSR01210
 RETURN_CODE, CSR01220
 REASON_CODE); CSR01230
 CSR01240
 DO I = 1 TO NUM_WIN_ELEM; /* CALCULATE VALUE IN 1ST */ CSR01250
 S(I+ORIG-1) = I+1; /* WINDOW */ CSR01260
 END; CSR01270
 CSR01280
 CALL CSR01290
 CSRSCOT(OBJECT_ID, /* CAPTURE THE VIEW IN 1ST */ CSR01300
 OFFSET, /* WINDOW */ CSR01310
 WINDOW_SIZE, CSR01320
 RETURN_CODE, CSR01330
 REASON_CODE); CSR01340
 CSR01350
 CALL CSR01360
 CSRVIEW ('END ', /* END THE VIEW IN 1ST WINDOW */ CSR01370
 OBJECT_ID, CSR01380
 OFFSET, CSR01390
 WINDOW_SIZE, CSR01400
 S(ORIG), CSR01410
 'RANDOM', CSR01420
 'RETAIN ', CSR01430
 RETURN_CODE, CSR01440
 REASON_CODE); CSR01450
 CSR01460
 CALL CSR01470
 CSRVIEW ('BEGIN', /* NOW VIEW OTHER DATA IN */ CSR01480
 OBJECT_ID, /* 2ND WINDOW */ CSR01490
 OFFSET+WINDOW_SIZE, CSR01500
 WINDOW_SIZE, CSR01510
 S(ORIG), CSR01520
 'RANDOM', CSR01530
 'REPLACE', CSR01540
 RETURN_CODE, CSR01550
 REASON_CODE); CSR01560
 CSR01570
 DO I = 1 TO NUM_WIN_ELEM; /* CALCULATE NEW VALUE IN */ CSR01580
 S(I+ORIG-1) = I-101; /* WINDOW */ CSR01590
 END; CSR01600
 CSR01610
 CALL CSR01620
 CSRSCOT (OBJECT_ID, CSR01630
 OFFSET+WINDOW_SIZE, CSR01640

PL/I Example

Chapter 4. Window services coding examples 55

 WINDOW_SIZE, CSR01650
 RETURN_CODE, CSR01670
 REASON_CODE); CSR01680
 CSR01690
 CALL CSR01700
 CSRVIEW ('END ', /* END THE CURRENT VIEW IN */ CSR01710
 OBJECT_ID, /* WINDOW */ CSR01720
 OFFSET+WINDOW_SIZE, CSR01730
 WINDOW_SIZE, CSR01740
 S(ORIG), CSR01750
 'RANDOM', CSR01760
 'RETAIN ', CSR01770
 RETURN_CODE, CSR01780
 REASON_CODE); CSR01790
 CSR01800
 CALL CSR01810
 CSRVIEW ('BEGIN', /* NOW GO BACK TO THE VIEW IN */ CSR01820
 OBJECT_ID, /* THE 1ST WINDOW */ CSR01830
 OFFSET, CSR01840
 WINDOW_SIZE, CSR01850
 S(ORIG), CSR01860
 'RANDOM', CSR01870
 'REPLACE', CSR01880
 RETURN_CODE, CSR01890
 REASON_CODE); CSR01900
 CSR01910
 CALL CSR01920
 CSRREFR (OBJECT_ID, /* REFRESH THE DATA IN 1ST */ CSR01930
 OFFSET, /* WINDOW */ CSR01940
 WINDOW_SIZE, CSR01950
 RETURN_CODE, CSR01960
 REASON_CODE); CSR01970
 CSR01980
 CALL CSR01990
 CSRVIEW ('END ', /* END THE VIEW IN 1ST WINDOW */ CSR02000
 OBJECT_ID, CSR02010
 OFFSET, CSR02020
 WINDOW_SIZE, CSR02030
 S(ORIG), CSR02040
 'RANDOM', CSR02050
 'RETAIN ', CSR02060
 RETURN_CODE, CSR02070
 REASON_CODE); CSR02080
 CSR02090
 CALL CSR02100
 CSRIDAC ('END ', /* TERMINATE ACCESS TO THE */ CSR02110
 'TEMPSPACE', /* HIPERSPACE OBJECT */ CSR02120
 'MY FIRST HIPERSPACE ENDS HERE ', CSR02130
 'YES', CSR02140
 'NEW', CSR02150
 'UPDATE', CSR02160
 WINDOW_SIZE, CSR02170
 OBJECT_ID, CSR02180
 HIGH_OFFSET, CSR02190
 RETURN_CODE, CSR02200
 REASON_CODE); CSR02210
 CSR02220
 FREE S; CSR02230
 END CRTPLN3; CSR02260

* *
* *
* JCL TO COMPILE AND LINKEDIT PL/I PROGRAM. *
* *
* *
* *

//PLIJOB JOB 00010007
//* 00041001
//* PL/I Compile and Linkedit 00042001
//* 00043001
//* Change all CRTPLNx to CRTPLNy 00044001
//* 00045001
//GO EXEC PLIXCL 00050000
//PLI.SYSIN DD DSN=WINDOW.XAMPLE.LIB(CRTPLN3),DISP=SHR 00060008
//LKED.SYSLMOD DD DSN=WINDOW.USER.LOAD,UNIT=3380,VOL=SER=VM2TSO, 00070000
// DISP=SHR 00080000
//LKED.SYSIN DD * 00090000
 LIBRARY IN(CSRSCOT,CSRSAVE,CSRREFR,CSRSAVE,CSRVIEW,CSRIDAC) 00100001
 NAME CRTPLN3(R) 00110008
/* 00120000
//* 00121001

PL/I Example

56 z/OS: z/OS MVS Callable Services for HLL

//* SYS1.CSSLIB is source of CSR stubs 00130001
//* 00190000
//LKED.IN DD DSN=SYS1.CSSLIB,DISP=SHR 00200000

* *
* *
* JCL TO EXECUTE. *
* *
* *
* *

//PLIRUN JOB MSGLEVEL=(1,1) 00010000
//* 00011001
//* EXECUTE A PL/I TESTCASE 00012001
//* 00013001
//GO EXEC PGM=CRTPLN3 00020000
//STEPLIB DD DSN=WINDOW.USER.LOAD,DISP=SHR, 00030000
// UNIT=3380,VOL=SER=VM2TSO 00040000
//SYSLIB DD DSN=CEE.SCEERUN,DISP=SHR 00050000
//SYSABEND DD SYSOUT=* 00070000
//SYSLOUT DD SYSOUT=* 00080000
//SYSPRINT DD SYSOUT=* 00090000

PL/I Example

Chapter 4. Window services coding examples 57

PL/I Example

58 z/OS: z/OS MVS Callable Services for HLL

Part 2. Reference pattern services

© Copyright IBM Corp. 1994, 2023 59

60 z/OS: z/OS MVS Callable Services for HLL

Chapter 5. Introduction to reference pattern services

Reference pattern services allow HLL programs to define a reference pattern for a specified area of virtual
storage that the program is about to reference. Additionally, the program specifies how much data it
wants the operating system to bring into central storage at one time. Data and instructions in virtual
storage must reside in central storage before they can be processed. The system honors the request
according to the availability of central storage. By bringing in more data at one time, the system might
improve the performance of your program.

The term reference pattern refers to the order in which a program’s instructions process a range of data,
such as an array or part of an array.

Programs that benefit most from reference pattern services are those that reference amounts of data
that are greater than one megabyte. The program should reference the data in a sequential manner and
in a consistent direction, either forward or backward. In forward direction, the program references data
elements in order of ascending addresses. In backward direction, the program references data elements
in order of decreasing addresses. In addition, if the program "skips over" certain areas, and these areas
are of uniform size and are repeated at regular intervals throughout the area, reference pattern services
might provide additional performance improvement.

Two reference pattern services are available through program CALLs:

• CSRIRP identifies the range of data and the reference pattern, and defines the number of bytes that the
system is requested to bring into central storage at one time. These activities are called "defining the
reference pattern".

• CSRRRP removes the definition; it tells the system that the program has stopped using the reference
pattern with the range of data.

A program might have a number of different ways of referencing a particular area. In this case, the
program can issue multiple pairs of CSRIRP and CSRRRP services for the area. Only one pattern can be in
effect at a time.

Although reference pattern services can be used for data structures other than arrays, for simplicity,
examples in Chapter 5, “Introduction to reference pattern services,” on page 61 and Chapter 6, “Using
reference pattern services,” on page 65 use the services with arrays.

How does the system manage data?
Before you can evaluate the performance advantage that reference pattern services offer, you must
understand some facts about how the operating system handles the data your program references.
The system divides the data into 4096-byte chunks; each chunk is called a "page". For the processor
to execute an instruction, the page that contains the data that the instruction requires must reside in
central storage. Central storage contains pages of data for many programs — your program, plus other
programs that the system is working on. The system brings a page of your data into central storage
when your program needs data on that page. If the program uses the data in a sequential manner, once
the program finishes using the data on that page, it will not immediately use the page again. After your
program finishes using that page, the system might remove the page from central storage to make room
for another page of your data or maybe a page of some other program’s data. The system allows pages
to stay in central storage if they are referenced frequently enough and if the system does not need those
pages for other programs.

The process that the system goes through when it pauses to bring a page into central storage is called
a "page fault". This interruption causes the system to stop working on your program (or "suspend" your
program) while more of your program’s data comes into central storage. Then, when the page is in central
storage and the system is available to your program again, the system resumes running your program at
the instruction where it left off.

© Copyright IBM Corp. 1994, 2023 61

Reference pattern services can change the way the system handles your program’s data. With direction
from reference pattern services, the system moves multiple pages into central storage at a time. By
bringing in many pages at a time, the system takes fewer page faults. Fewer page faults mean possible
performance gains for your program.

An example of how the system manages data in an array
To evaluate the performance advantage reference pattern services offers, you need to understand how
the system handles a range of data. The best way to describe this is through an example of a simple
two-dimensional array. As array A(i,j) of 3 rows and 4 columns illustrates, the system stores arrays in
FORTRAN programs in column-major order and stores arrays in COBOL, Pascal, PL/1, and C programs in
row-major order.

• A(1,1) A(1,2) A(1,3) A(1,4)
 A(2,1) A(2,2) A(2,3) A(2,4)
 A(3,1) A(3,2) A(3,3) A(3,4)

The system stores the elements of the arrays in the following order:

 Sequence of FORTRAN COBOL, Pascal, PL/1, C
Element in Storage Array Element Array Element

 1 A(1,1) A(1,1)
 2 A(2,1) A(1,2)
 3 A(3,1) A(1,3)
 4 A(1,2) A(1,4)
 5 A(2,2) A(2,1)
 6 A(3,2) A(2,2)
 7 A(1,3) A(2,3)
 8 A(2,3) A(2,4)
 9 A(3,3) A(3,1)
 10 A(1,4) A(3,2)
 11 A(2,4) A(3,3)
 12 A(3,4) A(3,4)

Examples in Chapter 5, “Introduction to reference pattern services,” on page 61 and Chapter 6, “Using
reference pattern services,” on page 65 depict data as a horizontal string. The elements in the arrays,
therefore, would look like the following:

 Location of elements

1 2 3 4 5 6 7 8 9 10 11 12

Consider a two-dimensional array, ARRAY1, that has 1024 columns and 1024 rows and each element is
eight bytes in size. The size of the array, therefore, is 1048576 elements or 8388608 bytes. For simplicity,
assume the array is aligned on a page boundary. Also, assume the data is not in central storage. The
program references each element in the array in a forward direction, starting with the first element.

First, consider how the system brings data into central storage without information from reference pattern
services. At the first reference of ARRAY1, the system takes a page fault and brings into central storage
the page (of 4096 bytes) that contains the first element. After the program finishes processing the 512th
(4096 divided by 8) element in the array, the system takes another page fault and brings in a second page.
The system takes a page fault every 512 elements, throughout the array.

The following linear representation shows the elements in the array and the page faults the system takes
as a program processes the array.

62 z/OS: z/OS MVS Callable Services for HLL

By bringing in one page at a time, the system takes 2048 page faults (8388608 divided by 4096), each
page fault adding to the elapsed time of the program.

Suppose, through CSRIRP, the system knew in advance that a program would be using the array in a
consistently forward direction. The system could then assume that the program’s use of the pages of
the array would be sequential. To decrease the number of page faults, each time the program requested
data that was not in central storage, the system could bring in more than one page at a time. Suppose
the system brought the next 20 consecutive pages (81920 bytes) of the array into central storage on
each page fault. In this case, the system takes not 2048 page faults, but 103 (8388608 divided by
81920=102.4). Page faults occur in the array as follows:

The system brings in successive pages only to the end of the array.

Consider another way of referencing ARRAY1. The program references the first twenty elements, then
skips over the next 1004 elements, and so forth through the array. CSRIRP allows you to tell the system
to bring in only the pages that contain the data the program references. In this case, the reference pattern
includes a repeating gap of 8032 bytes (1004×8) every 8192 bytes (1024×8). The pattern looks like this:

The grouping of consecutive bytes that the program references is called a reference unit. The grouping
of consecutive bytes that the program skips over is called a gap. Reference units and gaps alternate
throughout the array at regular intervals. The reference pattern is as follows:

• The reference unit is 20 elements in size — 160 consecutive bytes that the program references.
• The gap is 1004 elements in size — 8032 consecutive bytes that the program skips over.

Figure 7 on page 64 shows this reference pattern and the pages that the system does not bring into
central storage.

What pages does the system bring in when a gap exists?
When a gap exists, the number of pages the system brings in depends on the size of the gap, the size of
the reference unit, and where the page boundary lies in relation to the gap and the reference unit. The
following examples illustrate those factors.

Example 1
Figure 7 on page 64 illustrates ARRAY1, the 1024-by-1024 array of eight-byte elements, where the
program references 20 elements, then skips over the next 1004, and so forth in a forward direction
throughout the array. The reference pattern includes a reference unit of 160 and a gap of 8032 bytes. The
reference units begin on every other page boundary.

Chapter 5. Introduction to reference pattern services 63

Figure 7. Illustration of a Reference Pattern with a Gap

Every other consecutive page of the data does not come into central storage; those pages contain only the
"skipped over" data.

Example 2
In example 2, the reference pattern includes a reference unit of 4800 bytes and a gap of 3392 bytes. The
example assumes that the area to be referenced starts on a page boundary.

Because each page contains data that the program references, the system brings in all pages.

Example 3
In example 3, the area to be referenced does not begin on a page boundary. The reference pattern
includes a reference unit of 2000 bytes and a gap of 5000 bytes. When you specify a reference pattern
that includes a gap, the reference unit must be at the start of the area, as the following illustration shows:

Because the gap is larger than 4096 bytes, some pages do not come into central storage. Notice that the
system does not bring in the fifth page.

Summary of how the size of the gap affects the number of pages the system brings into central storage:

• If the gap is less than 4096 bytes, the system has to bring into central all pages of the array.
• If the gap is greater than 4095 bytes and less than 8192, the system might not have to bring in certain

pages. Pages that contain only data in the gap do not come in.
• If the gap is greater than 8191 bytes, the system definitely does not have to bring in certain pages that

contain the gap.

64 z/OS: z/OS MVS Callable Services for HLL

Chapter 6. Using reference pattern services

The two reference pattern services are CSRIRP and CSRRRP. First, you issue CALL CSRIRP to define a
reference pattern for an area; then, issue CALL CSRRRP to remove the definition of reference pattern for
the area. To avoid unnecessary processing, issue the calls outside of the loops that control processing of
the data elements contained in the area.

Defining the reference pattern for a data area
On CSRIRP, you tell the system:

• The lowest address of the area to be referenced
• The size of the area
• The direction of reference
• The reference pattern, in terms of reference unit and gap (if one exists)
• The number of reference units the system is to bring into central storage on a page fault

The system will not process CSRIRP unless the values you specify can result in a performance gain for
your program. To make sure the system processes CSRIRP, ask the system to bring in more than three
pages (that is, 12288 bytes) on each page fault.

Your program can have only one pattern defined for that area at one time. If your program will later
reference the same area with another reference pattern, use CSRRRP to remove the definition, and then
use CSRIRP to define another pattern.

Although the system brings in pages 4096 bytes at a time, you do not have to specify values on CSRIRP or
CSRRRP in increments of 4096.

Defining the range of the area
On CSRIRP, you define the range of the area to be referenced:

• low_address identifies the lowest addressed byte in the range.
• size identifies the size, in bytes, of the range.

When reference is forward, low_address identifies the first element that the program can reference in
the range. When reference is backward, low_address identifies the last element that the program can
reference in the range: reference proceeds from the high-address end in the range towards low_address.

The following parameters define the lowest address and the size of ARRAY1, a 1024-by-1024 array that
consists of 8-byte elements. ARRAY1(1,1) identifies the element in the first row and the first column.

CSRIRP with low_address of ARRAY1(1,1)
 size of 1024*1024*8 bytes

When a gap exists, define the range according to the following rules:

• If direction is forward, low_address must be the first data element in a reference unit.
• If direction is backward, the value you use for size must be such that the first data element the program

references is the high-address end of a reference unit.

These two rules are described and illustrated in “Using CSRIRP when a gap exists” on page 67.

Identifying the direction of the reference
On direction, you specify the direction of reference through the array. Forward reference means
instructions start with the element indicated by low_address and proceed through the range of data

© Copyright IBM Corp. 1994, 2023 65

specified by size. Backward reference means the program starts processing the high-address end of the
range specified by size and proceeds toward the low_address end.

• "+1" indicates forward direction.
• "-1" indicates backward direction.

An example of forward reference through ARRAY1 is specified as follows:

CSRIRP with direction of +1

“Using CSRIRP when a gap exists” on page 67 contains examples of forward and backward references
when a gap exists.

Defining the reference pattern
Figure 8 on page 66 identifies two reference patterns that characterize most of the reference patterns
that reference pattern services applies to.

Figure 8. Two Typical Reference Patterns

How you define the reference pattern depends on whether your program’s reference pattern is like
pattern #1 or pattern #2.

• With pattern #1 where no uniform gap exists, the program uses every element, every other element,
or at least most elements on each page of array data. No definable gap exists. Do not use reference
pattern services if the reference pattern is irregular and includes skipping over many areas larger than a
page.

– The unitsize parameter identifies the reference pattern; it indicates the number of bytes you want the
system to use as a reference unit. Look at logical groupings of bytes, such as one row, a number of
rows, or one element, if the elements are large in size. Or, you might choose to divide the area to be
referenced, and bring in that area on a certain number of page faults. Use the value 0 on gapsize.

– The units parameter tells the system how many reference units to try to bring in on a page fault. For
a reference pattern that begins on a page boundary and has no gaps, the total number of bytes the
system tries to bring into central storage at a time is the value on unitsize times the number on units,
rounded up to the nearest multiple of 4096. See “Choosing the number of bytes on a page fault” on
page 67 for more information on how to choose the total number of bytes.

• With pattern #2 where a uniform gap exists, the pattern includes alternating gaps and reference units.
Specify the reference pattern carefully. If you identify a reference pattern and do not adhere to it, the
system will work harder than if you had not used the service.

66 z/OS: z/OS MVS Callable Services for HLL

– The unitsize and gapsize parameters identify the reference pattern. Pattern #2 in Figure 8 on page 66
includes a reference unit of 20 bytes and a gap of 5000 bytes. Because the gap is greater than 4095,
some pages of the array might not be brought into central storage.

– The units parameter tells the system how many reference units to try to bring into central storage at a
time. “What pages does the system bring in when a gap exists?” on page 63 can help you understand
how many bytes come into central storage at one time when a gap exists.

Using CSRIRP when a gap exists
When a gap exists, you have to follow one of two rules in coding the two parameters, low_address and
size, that define the range of data. The direction of reference determines which rule you follow:

• When reference is forward, low_address must identify the beginning of a reference unit.

Figure 9 on page 67 illustrates forward reference through a range of data that includes gaps. Consider
the reference pattern where the program references 2000 bytes and skips the next 5000 bytes, and so
forth throughout the array. The range of data starts at low_address and ends at the point identified in the
figure by A. A can be any part of a gap or reference unit.

Figure 9. Illustration of Forward Direction of Reference
• When reference is backward, the value you code on size determines the location of the first element the

program actually references. Calculate that value so that the first element the program references is the
high-address end of a reference unit.

Figure 10 on page 67 illustrates backward reference through the same array as in Figure 9 on page 67.
Again, the program references 2000 bytes and skips the next 5000 bytes, and so forth throughout the
array. The range starts at low_address and ends at the point identified in the figure by B, where B must
be the high-address end of a reference unit. low_address can be any part of a gap or reference unit.

Figure 10. Illustration of Backward Direction of Reference

Choosing the number of bytes on a page fault
An important consideration in using reference pattern services is how many bytes to ask the system
to bring in on a page fault. To determine this, you need to understand some factors that affect the
performance of your program.

Pages do not stay in central storage if they are not referenced frequently enough and other programs need
that central storage. The longer it takes for a program to begin referencing a page in central storage, the

Chapter 6. Using reference pattern services 67

greater the chance that the page has been moved out before being referenced. When you tell the system
how many bytes it should try and bring into central at one time, you have to consider the following:

1. Contention for central storage:

Your program contends for central storage along with all other submitted jobs. The greater the size
of central storage, the more bytes you can ask the system to bring in on a page fault. The system
responds with as much of the data you request as possible, given the availability of central storage.

2. Contention for processor time:

Your program contends for the processor’s attention along with all other submitted jobs. The more
competition, the less the processor can do for your program and the smaller the number of bytes you
should request.

3. The elapsed time of processing one page of your data:

How long it takes a program to process a page depends on the number of references per page and the
elapsed time per reference. If your program uses only a small percentage of elements on a page and
references them only once or twice, the program completes the use of pages quickly. If the processing
of each referenced element includes processor-intensive operations or a time-intensive operation,
such as I/O, the time the program takes to process a page increases.

Conditions might vary between the peak activity of the daytime period and the low activity of the
nighttime. You might be able to request a greater number at night than during the day.

What if you specify too many bytes? What if you ask the system to bring in so many pages that, by the time
your program needs to use some of those pages, they have left central storage? The answer is that the
system will have to bring them in again. This action causes an extra page fault and extra system overhead
and decreases the benefit of reference pattern services.

For example, suppose you ask the system to bring in 204800 bytes, or 50 pages, at a time. But, by the
time your program begins referencing the data on the 30th page, the system has moved that page and
the ones after it out of central storage. It moved them out because the program did not use them soon
enough. In this case, your program has lost the benefit of moving the last 21 pages in. Your program
would get more benefit by requesting fewer than 30 pages.

What if you specify too few bytes? If you specify too small a number, the system will take more page faults
than it needs to and you are not taking full advantage of reference pattern services.

For example, suppose you ask the system to bring in 40960 bytes (or 10 pages) at a time. Your program’s
use of each page is not time-intensive, meaning that the program finishes using the pages quickly. The
program can request a number greater than 10 without causing additional page faults.

IBM recommends that you use one of the following approaches, depending on whether you want to
involve your system programmer in the decision.

• The first approach is the simple one. Choose a conservative number of bytes, around 81920 (20 pages),
and run the program. Look for an improvement in the elapsed time. If you like the results, you might
increase the number of bytes. If you continue to increase the number, at some point you will notice a
diminishing improvement or even an increase in elapsed time. Do not ask for so much that your program
or other programs suffer from degraded performance.

• The second approach is for the program that needs very significant performance improvements — those
programs that require amounts in excess of 50 pages. If you have such a program, you and your system
programmer should examine the program's elapsed time, paging speeds, and processor execution
times. In fact, the system programmer can tune the system with your program in mind, providing the
needed paging resources. z/OS MVS Initialization and Tuning Guide can provide information on tuning
the system.

Reference pattern services affects movement of pages from auxiliary and expanded storage to central
storage. To gain insight into the effectiveness of your reference patterns, you and your system
programmer will need the kind of information that the SMF Type 30 record provides. A Type 30 record
includes counts of pages moved in anticipation of your program’s use of those pages. The record
provides counts of pages moved between expanded and central and between auxiliary and central. It
also provides elapsed time values. Use this information to calculate rates of movement in determining

68 z/OS: z/OS MVS Callable Services for HLL

whether to specify a very large number of bytes — for example, amounts greater than 204800 bytes (50
pages).

Examples of using CSRIRP to define a reference pattern
To clarify the relationships between the unitsize, gapsize, and units parameters, this topic contains three
examples of defining a reference pattern. So that you can compare the three examples with what the
system does without information from CSRIRP, the following call approximates the system’s normal
paging operation:

CSRIRP with unitsize of 4096 bytes
 gapsize of 0 bytes
 units of 1 reference unit (that is, one page)

Each time the system takes a page fault, it brings in 4096 bytes (one page), the system’s reference unit. It
brings in one reference unit at a time.

Example 1 The program processes all elements in an array in a forward direction. The processing of
each element is fairly simple. The program runs during the peak hours, and many programs compete for
processor time and central storage. A reasonable value to choose for the number of bytes to come into
central on a page fault might be 80000 bytes (around 20 pages); unitsize can be 4000 bytes and units can
be 20. The following CSRIRP service communicates this pattern to the system:

CSRIRP with unitsize of 4000 bytes
 gapsize of 0 bytes
 units of 20
 direction of +1

Example 2 The program performs the same process as in Example 1, except the program does not
reference every element in the array. The program runs during the night hours when contention for the
processor and for central storage is light. In this case, a reasonable value to choose for the number of
bytes to come into central storage on a page fault might be 200000 bytes (around 50 pages). unitsize can
again be 4000 bytes and units can be 50. The following CSRIRP service communicates this pattern:

CSRIRP with unitsize of 4000 bytes
 gapsize of 0 bytes
 units of 50
 direction of +1

Example 3 The program references in a consistently forward direction through the same large array. The
pattern of reference in this example includes a gap. The program references 8192 bytes, then skips the
next 4096 bytes, references the next 8192 bytes, skips the next 4096 bytes throughout the array. The
program chooses to bring in data 8 pages at a time. Because of the placement of reference units and gaps
on page boundaries, the system does not bring in the data in the gaps.

The following CSRIRP service reflects this reference pattern:

CSRIRP with unitsize of 4096*2 bytes
 gapsize of 4096 bytes
 units of 4
 direction of +1

where the system is to bring into central storage 8 pages (4×4096×2 bytes) on a page fault. The system’s
response to CSRIRP is illustrated as follows:

Chapter 6. Using reference pattern services 69

Removing the definition of the reference pattern
When a program is finished referencing the array in the way you specified on CSRIRP, use CSRRRP to
remove the definition. The following example tells the system that the program in “Defining the range of
the area” on page 65 has stopped referencing the array. low_address and size have the same values you
coded on the CSRIRP service that defined the reference pattern for that area.

CSRRRP with low_address of ARRAY1(1,1)
 size of 1024*1024*8 bytes

Handling return codes
Each time you call CSRIRP or CSRRRP, your program receives a return code and a reason code. These
codes indicate whether the service completed successfully or whether the system rejected the service.

When you receive a return code that indicates a problem or an unusual condition, try to correct the
problem, and rerun the program. Return codes and reason codes are described in Chapter 7, “Reference
pattern services,” on page 71 with the description of each reference pattern service.

70 z/OS: z/OS MVS Callable Services for HLL

Chapter 7. Reference pattern services

To use reference pattern services, you issue CALLs that invoke the appropriate reference pattern services
program. Each service program performs one or more functions and requires a set of parameters coded in
a specific order on the CALL statement.

This topic describes the CALL statements that invoke reference pattern services. Each description
includes a syntax diagram, parameter descriptions, and return code and reason code explanations with
recommended actions. For examples of how to code the CALL statements, see Chapter 8, “Reference
pattern services coding examples,” on page 75.

This topic contains the following subtopics:

• “CSRIRP — Define a reference pattern” on page 71
• “CSRRRP — Remove a reference pattern” on page 73.

CSRIRP — Define a reference pattern
Call CSRIRP to define a reference pattern for a large data area, such as an array, that you are about to
reference. Through CSRIRP, you identify the data area and describe the reference pattern. Additionally,
you tell the system how many bytes of data you want it to bring into central storage on a page fault (that
is, each time the program references data that is not in central storage). This action might significantly
improve the performance of the program.

Two parameters define the reference pattern:

• unitsize refers to a reference unit — a grouping of consecutive bytes that the program references.
• gapsize refers to a gap — a grouping of consecutive bytes that the program repeatedly skips over; when

a pattern has a gap, reference units and gaps alternate throughout the data area.

Reference units and gaps must each be uniform in size and appear throughout the data area at repeating
intervals.

Another parameter, units, allows you to specify how many reference units you want the system to bring
into central storage each time the program references data that is not in central storage.

When you end the reference pattern in that data area, call the CSRRRP service.

Code the CALL following the syntax of the high-level language you are using and specifying all parameters
in the order shown. For parameters that CSRIRP uses to obtain input values, assign appropriate values.

On entry to CSRIRP, register 1 points to the reference pattern service parameter list. Note that when a
FORTRAN program calls CSRIRP, and it is running in access register (AR) mode, register 1 does not point
to the reference pattern service parameter list; it points to a list of parameter addresses. Each address
in this list points to the data in the corresponding parameter of the reference pattern service parameter
list. To use reference pattern services in this environment, the caller must provide an assembler interface
routine to convert the FORTRAN parameter list to the form expected by reference services.

Assign values, acceptable to CSRIRP, to low_address, size, direction, unitsize, gapsize, and units. CSRIRP
returns values in return_code and reason_code.

CSRIRP

© Copyright IBM Corp. 1994, 2023 71

CALL statement Parameters

CALL CSRIRP

(low_address
,size
,direction
,unitsize
,gapsize
,units
,return_code
,reason_code)

The parameters are explained as follows:
low_address

Specifies the beginning point of the data to be referenced.

low_address is the name of the data that resides at the beginning of the data area. When the direction
is forward and a gap exists, low_address must identify the beginning of a reference unit.

,size
Identifies the size, in bytes, of the data area to be accessed. When direction is backward and a
gap exists, the value of size must be such that the first data element the program references is the
high-address end of a reference unit.

Define size as integer data of length 4.

,direction
Indicates the direction of reference, either "+1" for forward or "-1" for backward.

Define direction as integer data of length 4.

,unitsize
Specifies the size of a reference unit.

If the pattern does not have a gap, define the reference unit as a logical grouping according to the
structure of the data array. Examples are: one row, a number of rows, one element, or one page (4096
bytes). If the pattern has a gap, define unitsize as the grouping of bytes that the program references
and gap as the grouping of bytes that the program skips over.

Define unitsize as integer data of length 4.

,gapsize
Specifies the size, in bytes, of a gap. If the pattern has a gap, define the gap as the grouping of bytes
that the program skips over. If the pattern does not have a gap, use the value "0".

Define gapsize as integer data of length 4.

,units
Indicates how many reference units the system is to bring into central storage each time the program
needs data that is not in central storage.

Define units as integer data of length 4.

,return_code
When CSRIRP completes, return_code contains the return code. Define return_code as integer data of
length 4.

,reason_code
When CSRIRP completes, reason_code contains the reason code. Define reason_code as integer data
of length 4.

CSRIRP

72 z/OS: z/OS MVS Callable Services for HLL

Return codes and reason codes
When CSRIRP returns control to your program, return_code contains a return and reason_code contains a
reason code. The following table identifies return code and reason code combinations and tells what each
means.

Return and reason codes, in hexadecimal, from CSRIRP are:

Return Code Reason Code Meaning

00 None CSRIRP completed successfully.

04 xx0001xx CSRIRP completed successfully; however, the system did not accept
the reference pattern the caller specified. The system decided that
bringing in pages of 4096 bytes would be more efficient.

08 xx0002xx Unsuccessful completion. The range that the caller specified
overlaps the range that a previous request specified.

08 xx0003xx Unsuccessful completion. The number of CSRIRP requests for the
user exceeds 100, the maximum number the system allows.

08 xx0004xx Unsuccessful completion. Storage is not available for the CSRIRP
service.

08 00000004 Unsuccessful completion. The direction that the caller specified is
not valid.

CSRRRP — Remove a reference pattern
Call CSRRRP to remove the reference pattern for a data area, as specified by the CSRIRP service. On
CSRRRP, you identify the beginning of the data area and its size. Code low_address and size exactly as you
coded them on the CSRIRP service that defined the reference pattern.

Code the CALL following the syntax of the high-level language you are using and specifying all parameters
in the order shown. For parameters that CSRRRP uses to obtain input values, assign values that are
acceptable to CSRRRP.

Assign values to CSRRRP, to low_address and size. CSRRRP returns values in return_code and
reason_code.

CALL statement Parameters

CALL CSRRRP

(low_address
,size
,return_code
,reason_code)

The parameters are explained as follows:
low_address

Specifies the beginning point of the data to be referenced.

low_address is the name of the data that resides at the beginning of the data area.

,size
Specifies the size, in bytes, of the data area.

Define size as integer data of length 4.

,return_code
When CSRRRP completes, return_code contains the return code. Define return_code as integer data of
length 4.

CSRRRP

Chapter 7. Reference pattern services 73

,reason_code
When CSRRRP completes, reason_code contains the reason code. Define reason_code as integer data
of length 4.

Return codes and reason codes
When CSRRRP returns control to your program, return_code contains a hexadecimal return code and
reason_code contains a hexadecimal reason code. The following table identifies return code and reason
code combinations and tells what each means.

Return Code Reason Code Meaning

00 None CSRRRP completed successfully.

08 xx0101xx Unsuccessful completion. No CSRIRP service request was in effect
for the specified data area. Check to see if the system rejected the
previous CSRIRP request for the data area.

CSRRRP

74 z/OS: z/OS MVS Callable Services for HLL

Chapter 8. Reference pattern services coding
examples

The following examples show how to invoke reference pattern services from each of the supported
languages. Following each program example is an example of the JCL needed to compile, link edit,
and execute the program example. Use these examples to supplement and reinforce information that is
presented in other topics within this information.

Note: Included in the FORTRAN example is the code for a required assembler language program. This
program ensures that the reference pattern for the FORTRAN program is aligned on a 4K boundary.

The programs in this topic are similar. They each process two arrays, A and B. The arrays are 200×200 in
size, each element consisting of 4 bytes. Processing is as follows:

• Declare the arrays.
• Define reference patterns for A and B.
• Initialize A and B.
• Remove the definitions of the reference patterns for A and B.
• Define new reference patterns for A and B.
• Multiply A and B, generating array C.
• Remove the definitions of the reference patterns for A and B.

The examples are presented in the following topics:

• “C/370 example” on page 75
• “COBOL example” on page 77
• “FORTRAN example” on page 81
• “Pascal example” on page 83
• “PL/I example” on page 85

C/370 example
The following example is coded in C/370:

#include <stdio.h>
#include <stdlib.h>
#include "csrbpc"

#define m 200
#define n 200
#define p 200
#define kelement_size 4
int chk_code(long int ret, long int reason, int linenumber);

main()
{
 long int A[m] [n];
 long int B[m] [n];
 long int C[m] [n];
 long int i;
 long int j;
 long int k;
 long int rc;
 long int rsn;
 long int arraysize;
 long int direction;
 long int unitsize;
 long int gap;
 long int units;

 arraysize = m*n*kelement_size;

C/370 example

© Copyright IBM Corp. 1994, 2023 75

 direction = csr_forward;
 unitsize = kelement_size*n;
 gap = 0;
 units = 20;

 csrirp(A, &arraysize, &direction,;
 &unitsize,;
 &gap,;
 &units,;
 &rc,;
 &rsn);
 chk_code(rc,rsn,__LINE__);

 arraysize = m*p*kelement_size;

 csrirp(B, &arraysize, &direction,;
 &unitsize,;
 &gap,;
 &units,;
 &rc,;
 &rsn);
 chk_code(rc,rsn,__LINE__);
 for (i=0; i<m; i++) {
 for (j=0; j<n; j++) {
 A[i][j] = i + j;
 }
 }
 for (i=0; i<n; i++) {
 for (j=0; j<p; j++) {
 B[i][j] = i + j;
 }
 }

 arraysize = m*n*kelement_size;

 csrrrp(A, &arraysize,;
 &rc,;
 &rsn);
 chk_code(rc,rsn,__LINE__);

 arraysize = m*p*kelement_size;
 csrrrp(B, &arraysize,;
 &rc,;
 &rsn);
 chk_code(rc,rsn,__LINE__);

 arraysize = m*n*kelement_size;
 units = 25;
 csrirp(A, &arraysize, &direction,;
 &unitsize,;
 &gap,;
 &units,;
 &rc,;
 &rsn);
 chk_code(rc,rsn,__LINE__);

 arraysize = n*p*kelement_size;
 gap = (p-1)*kelement_size;
 units = 50;
 csrirp(B, &arraysize, &direction,;
 &unitsize,;
 &gap,;
 &units,;
 &rc,;
 &rsn);
 chk_code(rc,rsn,__LINE__);
 for (i=0; i<m; i++) {
 for (j=0; j<p; j++) {
 C[i][j] = 0;
 for (k=0; k<n; k++) {
 C[i][j] = C[i][j] + A[i][k] * B[k][j];
 }
 }
 }
 arraysize = m*n*kelement_size;
 csrrrp(A, &arraysize,;
 &rc,;
 &rsn);
 chk_code(rc,rsn,__LINE__);
 arraysize = n*p*kelement_size;
 csrrrp(B, &arraysize,;

C/370 example

76 z/OS: z/OS MVS Callable Services for HLL

 &rc,;
 &rsn);
 chk_code(rc,rsn,__LINE__);
}

/* chk_code will check return code and reason code from previous */
/* calls to HLL services. It will print a message if any of the */

int chk_code(long int ret, long int reason, int linenumber)
{
 if (ret != 0)
 printf("return_code = %ld instead of 0 at line %d\n",
 ret, linenumber);
 if (reason != 0)
 printf("reason_code = %ld instead of 0 at line %d\n",
 reason, linenumber);
}
//*--
//* JCL USED TO COMPILE, LINK, THE C/370 PROGRAM
//*--
//CJOB JOB
//CCSTEP EXEC EDCCO,
// CPARM='LIST,XREF,OPTIMIZE,RENT,SOURCE',
// INFILE='REFPAT.SAMPLE.PROG(C),DISP=SHR'
//COMPILE.SYSLIN DD DSN='TEST.MPS.OBJ(C),DISP=SHR'
//COMPILE.USERLIB DD DSN=REFPAT.DECLARE.SET,DISP=SHR
//LKSTEP EXEC EDCPLO,
// LPARM='AMOD=31,LIST,REFR,RENT,RMOD=ANY,XREF' 00022007
//PLKED.SYSIN DD DSN='TEST.MPS.OBJ(C),DISP=SHR'
//LKED.SYSLMOD DD DSN=REFPAT.USER.LOAD,DISP=SHR,
// UNIT=3380,VOL=SER=RSMPAK
//LKED.SYSIN DD *
 LIBRARY IN(CSRIRP,CSRRRP)
 NAME BPGC(R)
//LKED.IN DD DSN=SYS1.CSSLIB,DISP=SHR
//*--
//* JCL USED TO EXECUTE THE C/370 PROGRAM
//*--
//CGO JOB TIME=1440,MSGLEVEL=(1,1),MSGCLASS=A
//RUN EXEC PGM=BPGC,TIME=1440 00110804
//STEPLIB DD DSN=REFPAT.USER.LOAD,DISP=SHR, 00111002
// UNIT=3380,VOL=SER=VM2TSO 00111101
// DD DSN=CEE.SCEERUN,DISP=SHR 0111002
//SYSPRINT DD SYSOUT=*
//PLIDUMP DD SYSOUT=*
//SYSUDUMP DD SYSOUT=*

COBOL example
//*--
//* THE FOLLOWING EXAMPLE IS CODED IN COBOL:
//*--

 IDENTIFICATION DIVISION.

 * MULTIPLY ARRAY A TIMES ARRAY B GIVING ARRAY C *
 * USE THE REFERENCE PATTERN CALLABLE SERVICES TO IMPROVE THE *
 * PERFORMANCE. *

 PROGRAM-ID. TESTCOB.
 ENVIRONMENT DIVISION.
 DATA DIVISION.
 WORKING-STORAGE SECTION.

 * COPY THE INCLUDE FILE (WHICH DEFINES CSRFORWARD, CSRBACKWARD)
 COPY CSRBPCOB.

 * DIMENSIONS OF ARRAYS - A IS M BY N, B IS N BY P, C IS M BY P
 1 M PIC 9(9) COMP VALUE 200.
 1 N PIC 9(9) COMP VALUE 200.
 1 P PIC 9(9) COMP VALUE 200.

 * ARRAY DECLARATIONS FOR ARRAY A - M = 200, N = 200
 1 A1.
 2 A2 OCCURS 200 TIMES.
 3 A3 OCCURS 200 TIMES.
 4 ARRAY-A PIC S9(8).

COBOL example

Chapter 8. Reference pattern services coding examples 77

 * ARRAY DECLARATIONS FOR ARRAY B - N = 200, P = 200
 1 B1.
 2 B2 OCCURS 200 TIMES.
 3 B3 OCCURS 200 TIMES.
 4 ARRAY-B PIC S9(8).

 * ARRAY DECLARATIONS FOR ARRAY C - M = 200, P = 200
 1 C1.
 2 C2 OCCURS 200 TIMES.
 3 C3 OCCURS 200 TIMES.
 4 ARRAY-C PIC S9(8).

 1 I PIC 9(9) COMP.
 1 J PIC 9(9) COMP.
 1 K PIC 9(9) COMP.
 1 X PIC 9(9) COMP.
 1 ARRAY-A-SIZE PIC 9(9) COMP.
 1 ARRAY-B-SIZE PIC 9(9) COMP.
 1 UNITSIZE PIC 9(9) COMP.
 1 GAP PIC 9(9) COMP.
 1 UNITS PIC 9(9) COMP.
 1 RETCODE PIC 9(9) COMP.
 1 RSNCODE PIC 9(9) COMP.
 PROCEDURE DIVISION.
 DISPLAY " BPAGE PROGRAM START "

 * CALCULATE CSRIRP PARAMETERS FOR INITIALIZING ARRAY A
 * UNITSIZE WILL BE THE SIZE OF ONE ROW.
 * UNITS WILL BE 25
 * SO WE'RE ASKING FOR 25 ROWS TO COME IN AT A TIME
 COMPUTE ARRAY-A-SIZE = M * N * 4
 COMPUTE UNITSIZE = N * 4
 COMPUTE GAP = 0
 COMPUTE UNITS = 25

 CALL "CSRIRP" USING
 ARRAY-A(1, 1),
 ARRAY-A-SIZE,
 CSRFORWARD,
 UNITSIZE,
 GAP,
 UNITS,
 RETCODE,
 RSNCODE

 DISPLAY "FIRST RETURN CODE IS "
 DISPLAY RETCODE

 * CALCULATE CSRIRP PARAMETERS FOR INITIALIZING ARRAY B
 * UNITSIZE WILL BE THE SIZE OF ONE ROW.
 * UNITS WILL BE 25
 * SO WE'RE ASKING FOR 25 ROWS TO COME IN AT A TIME

 COMPUTE ARRAY-B-SIZE = N * P * 4
 COMPUTE UNITSIZE = P * 4
 COMPUTE GAP = 0
 COMPUTE UNITS = 25
 CALL "CSRIRP" USING

 ARRAY-B(1, 1),
 ARRAY-B-SIZE,
 CSRFORWARD,
 UNITSIZE,
 GAP,
 UNITS,
 RETCODE,
 RSNCODE

 DISPLAY "SECOND RETURN CODE IS "
 DISPLAY RETCODE

 * INITIALIZE EACH ARRAY A ELEMENT TO THE SUM OF ITS INDICES
 PERFORM VARYING I FROM 1 BY 1 UNTIL I = M
 PERFORM VARYING J FROM 1 BY 1 UNTIL J = N
 COMPUTE X = I + J
 MOVE X TO ARRAY-A(I, J)
 END-PERFORM
 END-PERFORM

 * INITIALIZE EACH ARRAY B ELEMENT TO THE SUM OF ITS INDICES
 PERFORM VARYING I FROM 1 BY 1 UNTIL I = N
 PERFORM VARYING J FROM 1 BY 1 UNTIL J = P

COBOL example

78 z/OS: z/OS MVS Callable Services for HLL

 COMPUTE X = I + J
 MOVE X TO ARRAY-B(I, J)
 END-PERFORM
 END-PERFORM

 * REMOVE THE REFERENCE PATTERN ESTABLISHED FOR ARRAY A
 CALL "CSRRRP" USING
 ARRAY-A(1, 1),
 ARRAY-A-SIZE,
 RETCODE,
 RSNCODE

 DISPLAY "THIRD RETURN CODE IS "
 DISPLAY RETCODE

 * REMOVE THE REFERENCE PATTERN ESTABLISHED FOR ARRAY B
 CALL "CSRRRP" USING
 ARRAY-B(1, 1),
 ARRAY-B-SIZE,
 RETCODE,
 RSNCODE

 DISPLAY "FOURTH RETURN CODE IS "
 DISPLAY RETCODE

 * CALCULATE CSRIRP PARAMETERS FOR ARRAY A
 * UNITSIZE WILL BE THE SIZE OF ONE ROW.
 * UNITS WILL BE 20
 * SO WE'RE ASKING FOR 20 ROWS TO COME IN AT A TIME
 COMPUTE ARRAY-A-SIZE = M * N * 4
 COMPUTE UNITSIZE = N * 4
 COMPUTE GAP = 0
 COMPUTE UNITS = 20

 CALL "CSRIRP" USING
 ARRAY-A(1, 1),
 ARRAY-A-SIZE,
 CSRFORWARD,
 UNITSIZE,
 GAP,
 UNITS,
 RETCODE,
 RSNCODE

 DISPLAY "FIFTH RETURN CODE IS "
 DISPLAY RETCODE

 * CALCULATE CSRIRP PARAMETERS FOR ARRAY B
 * UNITSIZE WILL BE THE SIZE OF ONE ELEMENT.
 * GAP WILL BE (N-1)*4 (IE. THE REST OF THE ROW).
 * UNITS WILL BE 50
 * SO WE'RE ASKING FOR 50 ELEMENTS OF A COLUMN TO COME IN
 * AT ONE TIME
 COMPUTE ARRAY-B-SIZE = N * P * 4
 COMPUTE UNITSIZE = 4
 COMPUTE GAP = (N - 1) * 4
 COMPUTE UNITS = 50

 CALL "CSRIRP" USING
 ARRAY-B(1, 1),
 ARRAY-B-SIZE,
 CSRFORWARD,
 UNITSIZE,
 GAP,
 UNITS,
 RETCODE,
 RSNCODE

 DISPLAY "SIXTH RETURN CODE IS "
 DISPLAY RETCODE

 * MULTIPLY ARRAY A TIMES ARRAY B GIVING ARRAY C
 PERFORM VARYING I FROM 1 BY 1 UNTIL I = M
 PERFORM VARYING J FROM 1 BY 1 UNTIL J = P
 COMPUTE ARRAY-C(I, J) = 0
 PERFORM VARYING K FROM 1 BY 1 UNTIL K = N
 COMPUTE X = ARRAY-C(I, J) +
 ARRAY-A(I, K) * ARRAY-B(K, J)
 END-PERFORM
 END-PERFORM
 END-PERFORM

COBOL example

Chapter 8. Reference pattern services coding examples 79

 * REMOVE THE REFERENCE PATTERN ESTABLISHED FOR ARRAY A
 CALL "CSRRRP" USING
 ARRAY-A(1, 1),
 ARRAY-A-SIZE,
 RETCODE,
 RSNCODE

 DISPLAY "SEVENTH RETURN CODE IS "
 DISPLAY RETCODE

 * REMOVE THE REFERENCE PATTERN ESTABLISHED FOR ARRAY B
 CALL "CSRRRP" USING
 ARRAY-B(1, 1),
 ARRAY-B-SIZE,
 RETCODE,
 RSNCODE

 DISPLAY "EIGHTH RETURN CODE IS "
 DISPLAY RETCODE

 DISPLAY " BPAGE PROGRAM END "
 GOBACK.

//*--
//* JCL USED TO COMPILE, LINK, THE COBOL PROGRAM
//*--
//FCHANGC JOB 'D3113P,D31,?','FCHANG6-6756',CLASS=T,
// MSGCLASS=H,NOTIFY=FCHANG,REGION=0K
//CCSTEP EXEC EDCCO,
// CPARM='LIST,XREF,OPTIMIZE,RENT,SOURCE',
// INFILE='FCHANG.PUB.TEST(C)'
//COMPILE.SYSLIN DD DSN='FCHANG.MPS.OBJ(C),DISP=SHR'
//COMPILE.USERLIB DD DSN='FCHANG.DECLARE.SET,DISP=SHR
//LKSTEP EXEC EDCPLO,
// LPARM='AMOD=31,LIST,REFR,RENT,RMOD=ANY,XREF' 00022007
//PLKED.SYSIN DD DSN='FCHANG.MPS.OBJ(C),DISP=SHR'
//LKED.SYSLMOD DD DSN=RSMID.FBB4417.LINKLIB,DISP=SHR,
// UNIT=3380,VOL=SER=RSMPAK
//LKED.SYSIN DD *
 LIBRARY IN(CSRIRP,CSRRRP)
 NAME BPGC(R)
//LKED.IN DD DSN=FCHANG.MPS.OBJ,DISP=SHR
//*--
//* LINK PROGRAM
//*--
//COBOLLK JOB 00010002
//LINKEDIT EXEC PGM=IEWL, 00040000
// PARM='MAP,XREF,LIST,LET,AC=1,SIZE=(1000K,100K)' 00050000
//SYSLIN DD DDNAME=SYSIN 00051000
//SYSLMOD DD DSN=REFPAT.USER.LOAD,DISP=OLD 00052002
//SYSLIB DD DSN=CEE.SCEELKED,DISP=SHR 00053000
//MYLIB DD DSN=REFPAT.COBOL.OBJ,DISP=SHR 00053102
//CSRLIB DD DSN=SYS1.CSSLIB,DISP=SHR 00053202
//SYSPRINT DD SYSOUT=H 00053300
//* 00053400
//SYSUT1 DD UNIT=SYSDA,SPACE=(TRK,(20,10)) 00053500
//SYSUT2 DD UNIT=SYSDA,SPACE=(TRK,(20,10)) 00053600
//SYSIN DD * 00053700
 INCLUDE MYLIB(COBOL) 00053802
 LIBRARY CSRLIB(CSRIRP,CSRRRP) 00053901
 NAME COBLOAD(R) 00054002
/* 00055000
//*--
//* JCL USED TO EXECUTE THE COBOL PROGRAM
//*--
//COB2 JOB MSGLEVEL=(1,1),TIME=1440 00010000
//GO EXEC PGM=COBLOAD 00020001
//STEPLIB DD DSNAME=CEE.SCEERUN,DISP=SHR 00030001
// DD DSN=REFPAT.USER.LOAD,DISP=SHR,VOL=SER=RSMPAK, 00040001
// UNIT=3380 00041001
//SYSABOUT DD SYSOUT=* 00050000
//SYSOUT DD SYSOUT=A 00051001
//SYSDBOUT DD SYSOUT=* 00060000
//SYSUDUMP DD SYSOUT=* 00070000

COBOL example

80 z/OS: z/OS MVS Callable Services for HLL

FORTRAN example
**
* *
* *
* This is FORTRAN. Followed by an assembler routine *
* called ADDR that has to be linkedited with the object *
* code from this testcase, and the CSR stubs. *
* *
**
@PROCESS DC(BPAGEFOR)
 PROGRAM BPAGEFOR
C
 INCLUDE 'SYS1.SAMPLIB(CSRBPFOR)'
C
C Multiply two arrays together - testing CSRIRP, CSRRRP services
C
C
 INTEGER M /200/
 INTEGER N /200/
 INTEGER P /200/
 PARAMETER (NKELEMENT_SIZE=4)
 INTEGER RC,RSN
 COMMON /WINCOM/A(200,200)
 COMMON /WINCOM/B(200,200)
 COMMON /WINCOM/C(200,200)
C
C Initialize the arrays
C
 CALL CSRIRP(A(1,1),
 * M*N*NKELEMENT_SIZE,
 * CSR_FORWARD,
 * M*NKELEMENT_SIZE,
 * 0,
 * 20,
 * RC,
 * RSN)
 CALL CSRIRP(B(1,1),
 * N*P*NKELEMENT_SIZE,
 * CSR_FORWARD,
 * N*NKELEMENT_SIZE,
 * 0,
 * 20,
 * RC,
 * RSN)
 DO 102 J = 1, N
 DO 100 I = 1, M
 A(I,J) = I + J
 100 CONTINUE
 102 CONTINUE
 DO 106 J = 1, P
 DO 104 I = 1, N
 B(I,J) = I + J
 104 CONTINUE
 106 CONTINUE
C
 CALL CSRRRP(A(1,1),
 * M*N*NKELEMENT_SIZE,
 * RC,
 * RSN)
 CALL CSRRRP(B(1,1),
 * N*P*NKELEMENT_SIZE,
 * RC,
 * RSN)
C
C Multiply the two arrays together
C
 CALL CSRIRP (A(1,1),
 * M*N*NKELEMENT_SIZE,
 * CSR_FORWARD,
 * N*NKELEMENT_SIZE,
 * (N-1)*KELEMENT_SIZE,
 * 50,
 * RC,
 * RSN)
 CALL CSRIRP (B(1,1),
 * N*P*NKELEMENT_SIZE,
 * CSR_FORWARD,
 * NKELEMENT_SIZE*N,
 * 0,

FORTRAN example

Chapter 8. Reference pattern services coding examples 81

 * 20,
 * RC,
 * RSN)
 DO 112 I = 1, M
 DO 110 J = 1, N
 DO 108 K = 1, P
 C(I,J) = C(I,J) + A(I,K) * B(K,J)
 108 CONTINUE
 110 CONTINUE
 112 CONTINUE
 CALL CSRRRP (A(1,1),
 * M*N*NKELEMENT_SIZE,
 * RC,
 * RSN)
 CALL CSRRRP (B(1,1),
 * N*P*NKELEMENT_SIZE,
 * RC,
 * RSN)

 STOP
 END

** 00010000
* * 00020000
* THIS IS THE JCL THAT COMPILES THE PROGRAM. * 00030000
* * 00020000
** 00080000
//FORTJOB JOB 00090007
// MSGCLASS=H,RDR=R, 00110007
// MSGLEVEL=(1,1),CLASS=T 00120000
//* 00130000
//* 00140000
//* COMPILE AND LINKEDIT FOR FORTRAN 00150000
//* 00160000
//* 00170000
//* 00180000
//VSF2CL PROC FVPGM=FORTVS2,FVREGN=2100K,FVPDECK=NODECK, 00190000
// FVPOLST=NOLIST,FVPOPT=0,FVTERM='SYSOUT=A', 00200000
// PGMNAME=MAIN,PGMLIB='&&GOSET',FVLNSPC='3200,(25,6)' 00210000
//* 00220000
//* COPYRIGHT: 5668-806 00230000
//* (C) COPYRIGHT IBM CORP 1985, 1988 00240000
//* LICENSED MATERIALS - PROPERTY OF IBM 00250000
//* REFER TO COPYRIGHT INSTRUCTIONS FORM NUMBER G120-2083 00260000
//* 00270000
//* STATUS: 02.03.00 (VV.RR.MM) 00280000
//* 00290000
//* PARAMETER DEFAULT-VALUE USAGE 00300000
//* 00310000
//* FVPGM FORTVS2 COMPILER NAME 00320000
//* FVREGN 2100K FORT-STEP REGION 00330000
//* FVPDECK NODECK COMPILER DECK OPTION 00340000
//* FVPOLST NOLIST COMPILER LIST OPTION 00350000
//* FVPOPT 0 COMPILER OPTIMIZATION 00360000
//* FVTERM SYSOUT=A FORT.SYSTERM OPERAND 00370000
//* FVLNSPC 3200,(25,6) FORT.SYSLIN SPACE 00380000
//* PGMLIB &&GOSET LKED.SYSLMOD DSNAME 00390000
//* PGMNAME MAIN LKED.SYSLMOD MEMBER NAME 00400000
//* 00410000
//FORT EXEC PGM=&FVPGM,REGION=&FVREGN,COND=(4,LT), 00420000
// PARM='&FVPDECK,&FVPOLST,OPT(&FVPOPT)' 00430000
//STEPLIB DD DSN=D24PP.FORT230.VSF2COMP,DISP=SHR 00440000
//SYSPRINT DD SYSOUT=A,DCB=BLKSIZE=3429 00450000
//SYSTERM DD &FVTERM 00460000
//SYSPUNCH DD SYSOUT=B,DCB=BLKSIZE=3440 00470000
//SYSLIN DD DSN=&&LOADSET,DISP=(MOD,PASS),UNIT=SYSDA, 00480000
// SPACE=(&FVLNSPC),DCB=BLKSIZE=3200 00490000
//LKED EXEC PGM=HEWL,REGION=768K,COND=(4,LT), 00500000
// PARM='LET,LIST,XREF' 00510000
//SYSPRINT DD SYSOUT=A 00520000
//SYSLIB DD DSN=CEE.SCEELKED,DISP=SHR 00530000
//SYSUT1 DD UNIT=SYSDA,SPACE=(1024,(200,20)) 00540000
//SYSLMOD DD DSN=&PGMLIB.(&PGMNAME),DISP=(,PASS),UNIT=SYSDA, 00550000
// SPACE=(TRK,(10,10,1),RLSE) 00560000
//SYSLIN DD DSN=&&LOADSET,DISP=(OLD,DELETE) 00570000
// DD DDNAME=SYSIN 00580000
// PEND 00590000
// EXEC VSF2CL,FVTERM='SYSOUT=H', 00600000
// PGMNAME=FORTRAN,PGMLIB='REFPAT.USER.LOAD' 00680008
//FORT.SYSIN DD DSN=REFPAT.SAMPLE.PROG(FORTRAN),DISP=SHR 00690008
//LKED.SYSLIB DD DSN=CEE.SCEELKED,DISP=SHR 00700000

FORTRAN example

82 z/OS: z/OS MVS Callable Services for HLL

//LKED.SYSLMOD DD DSN=REFPAT.USER.LOAD,DISP=SHR 00710007
//LKED.SYSIN DD * 00720000
 INCLUDE IN(CSRIRP,CSRRRP,ADDR) 00730000
 NAME BPGFORT(R) 00740006
/* 00750000
//* THE CSR STUBS ARE AVAILABLE IN SYS1.CSSLIB, 00760007
//* THE OBJ FOR THE ADDR ROUTINE IS IN TEST.OBJ 00770007
//* 00780000
//LKED.IN DD DSN=SYS1.CSSLIB,DISP=SHR 00790007
// DD DSN=REFPAT.TEST.OBJ,DISP=SHR 00mm0007

** 00010000
* * 00020000
* THIS IS THE JCL I USE TO EXECUTE THE PROGRAM. * 00030000
* * 00060000
** 00070000
//FONO1 JOB MSGLEVEL=(1,1),TIME=1440 00080003
//VSF2G PROC GOPGM=MAIN,GOREGN=100K, 00090000
//* 00100000
//* 00110000
//* EXECUTE A FORTRAN TESTCASE - CHANGE ALL CRTFONXX TO CRTFONZZ 00120000
//* 00130000
// GOF5DD='DDNAME=SYSIN', 00140000
// GOF6DD='SYSOUT=A', 00150000
// GOF7DD='SYSOUT=B' 00160000
//* 00170000
//* COPYRIGHT: 5668-806 00180000
//* (C) COPYRIGHT IBM CORP 1985, 1988 00190000
//* LICENSED MATERIALS - PROPERTY OF IBM 00200000
//* REFER TO COPYRIGHT INSTRUCTIONS FORM NUMBER G120-2083 00210000
//* 00220000
//* STATUS: 02.03.00 (VV.RR.MM) 00230000
//* 00240000
//* PARAMETER DEFAULT-VALUE USAGE 00250000
//* 00260000
//* GOPGM MAIN PROGRAM NAME 00270000
//* GOREGN 100K GO-STEP REGION 00280000
//* GOF5DD DDNAME=SYSIN GO.FT05F001 DD OPERAND 00290000
//* GOF6DD SYSOUT=A GO.FT06F001 DD OPERAND 00300000
//* GOF7DD SYSOUT=B GO.FT07F001 DD OPERAND 00310000
//* 00320000
//* 00330000
//GO EXEC PGM=&GOPGM,REGION=&GOREGN,COND=(4,LT) 00340000
//STEPLIB DD DSN=CEE.SCEERUN,DISP=SHR 00350004
//FT05F001 DD &GOF5DD 00360000
//FT06F001 DD &GOF6DD 00370000
//FT07F001 DD &GOF7DD 00380000
// PEND 00390000
//GO EXEC VSF2G,GOPGM=BPGFORT,GOREGN=999K 00400004
//GO.STEPLIB DD DSN=WINDOW.D24PP.FORTLIB,DISP=SHR, 00410004
// VOL=SER=VM2TSO,UNIT=3380 00410104
// DD DSN=WINDOW.R40.VSF2LOAD,DISP=SHR, 00411004
// VOL=SER=VM2TSO,UNIT=3380 00412004
// DD DSN=REFPAT.USER.LOAD,DISP=SHR, 00420003
// VOL=SER=VM2TSO,UNIT=3380 00430004

Pascal example
**
* *
* PASCAL example. The data object is permanent and already *
* allocated. A scroll area is used. *
* *
**
 program BPAGEPAS;

 %include CSRBPPAS

 CONST
 m = 250;
 n = 250;
 p = 250;
 kelement_size = 4;
 a_size = m*n*kelement_size;
 b_size = n*p*kelement_size;
 c_size = m*p*kelement_size;

 VAR

Pascal example

Chapter 8. Reference pattern services coding examples 83

 a : array (.1..m, 1..n.) of integer;
 b : array (.1..n, 1..p.) of integer;
 c : array (.1..m, 1..p.) of integer;
 i : integer;
 j : integer;
 k : integer;
 rc : integer;
 rsn : integer;

 BEGIN
 csrirp (a(.1,1.), a_size, csr_forward,
 kelement_size*m,
 0,
 50,
 rc,
 rsn);
 csrirp (b(.1,1.), b_size, csr_forward,
 kelement_size*n,
 0,
 20,
 rc,
 rsn);
 for i:=1 to m do
 for j:=1 to n do
 a(.i,j.) := i + j;
 for i:=1 to n do
 for j:=1 to p do
 b(.i,j.) := i + j;
 csrrrp (a(.1,1.), a_size,
 rc,
 rsn);
 csrrrp (b(.1,1.), b_size,
 rc,
 rsn);
 /* Multiply the two arrays together */

 csrirp (a(.1,1.), m*n*kelement_size, csr_forward,
 kelement_size*n,
 0,
 20,
 rc,
 rsn);
 csrirp (b(.1,1.), n*p*kelement_size, csr_forward,
 (p-1)*kelement_size,
 0,
 50,
 rc,
 rsn);
 for i:=1 to m do
 for J:=1 to p do
 begin;
 c(.i,j.) := 0;
 for k:=1 to n do
 c(.i,j.) := c(.i,j.) + a(.i,k.) * b(.k,j.);
 end;

 csrrrp (a(.1,1.), m*n*kelement_size,
 rc,
 rsn);
 csrrrp (b(.1,1.), n*p*kelement_size,
 rc,
 rsn);
 END.
** 00010000
* * 00020000
* JCL TO COMPILE AND LINKEDIT * 00030000
* * 00040000
** 00050000
//PASCJOB JOB 00060008
//GOGO EXEC PAS22CL 00100000
//* 00110000
//* COMPILE AND LINKEDIT FOR PASCAL 00120000
//* 00130000
//* CHANGE THE MEMBER NAME ON THE NEXT LINE AND THE 00140000
//* NAME CRTPANXX(R) SIX LINES DOWN 00150000
//* 00160000
//PASC.SYSLIB DD 00161006
// DD 00162006
// DD DSN=REFPAT.DECLARE.SET(CSRBPPAS),DISP=SHR 00163008
//PASC.SYSIN DD DSN=REFPAT.SAMPLE.PROG(PASCAL),DISP=SHR 00170008
//LKED.SYSLMOD DD DSN=REFPAT.USER.LOAD,DISP=SHR,UNIT=3380, 00180008
// VOL=SER=VM2TSO 00190009

Pascal example

84 z/OS: z/OS MVS Callable Services for HLL

//LKED.SYSIN DD * 00200000
 LIBRARY IN(CSRIRP,CSRRRP) 00210005
 NAME BPGPASC(R) 00220003
/* 00230000
//* SYS1.CSSLIB IS THE SOURCE OF THE CSR STUBS 00240008
//* 00250000
//LKED.IN DD DSN=SYS1.CSSLIB,DISP=SHR 00260008
**
* *
* JCL TO EXECUTE PASCAL *
* *
**
//PASC1JOB JOB 00010005
//GO EXEC PAS22CL 00050000
//* 00050102
//* Compile and linkedit for PASCAL 00050202
//* 00050302
//PASC.SYSIN DD DSN=WINDOW.XAMPLE.LIB(CRTPAN06),DISP=SHR 00060006
//LKED.SYSLMOD DD DSN=WINDOW.USER.LOAD,DISP=SHR,UNIT=3380, 00560000
// VOL=SER=VM2TSO 00570000
//LKED.SYSIN DD * 00580000
 LIBRARY IN(CSRSCOT,CSRSAVE,CSRREFR,CSRSAVE,CSRVIEW,CSRIDAC) 00590000
 NAME CRTPAN06(R) 00600006
/* 00610000
//* SYS1.CSSLIB is the source of the CSR stubs 00620002
//* 00650002
//LKED.IN DD DSN=SYS1.CSSLIB,DISP=SHR 00690000

* *
* *
* JCL TO COMPILE AND LINKEDIT. *
* *
* *
* *

** 00010000
* * 00020000
* JCL TO EXECUTE. THIS ONE NEEDS A DD STATEMENT FOR THE * 00030000
* PERMANENT DIV OBJECT - CSRDD1. DATASET ALREADY EXISTS. * 00040000
* * 00060000
** 00070000
//PASCGO JOB MSGLEVEL=(1,1),TIME=1440 00080002
//* 00090000
//* 00100000
//* RUN A PASCAL TESTCASE - CHANGE THE NAME ON THE NEXT LINE 00110000
//* 00/20000
//* 00130000
//GO EXEC PGM=BPGPASC 00140000
//STEPLIB DD DSN=REFPAT.USER.LOAD, 00150002
// DISP=SHR,UNIT=3380, 00190000
// VOL=SER=VM2TSO 00200003
//CSRDD1 DD DSN=DIV.TESTDS,DISP=SHR 00210000
//OUTPUT DD SYSOUT=A,DCB=(RECFM=VBA,LRECL=133) 00220000
//SYSPRINT DD SYSOUT=A,DCB=(RECFM=VBA,LRECL=133) 00230000

PL/I example
**
* *
* PLI example *
* *
**
 BPGPLI: PROCEDURE OPTIONS(MAIN); 00010023
 00020002
 %INCLUDE SYSLIB(CSRBPPLI); 00020122
 00020222
 /* INITs */ 00021013
 DCL M INIT(512) FIXED BIN(31); 00022035
 DCL N INIT(512) FIXED BIN(31); 00023035
 DCL P INIT(512) FIXED BIN(31); 00024035
 00025013
 /* Arrays */ 00026013
 DCL A (M,N) BIN FIXED(31); /* First array */ 00029113
 DCL B (N,P) BIN FIXED(31); /* Second array */ 00029213
 DCL C (M,P) BIN FIXED(31); /* Product of first and second */ 00029313
 DCL KELEMENT_SIZE INIT(4) FIXED BIN(31); /* Size of an element of an 00029416
 array. This value is tied 00029513
 directly to the data type of 00029613

PL/I example

Chapter 8. Reference pattern services coding examples 85

 the three arrays (ie. FIXED(31)00029713
 is 4 bytes */ 00029813
 00029913
 /* Indices */ 00030013
 DCL I FIXED BIN(31), 00031013
 J FIXED BIN(31), 00031113
 K FIXED BIN(31); 00031213
 00032013
 /* Others */ 00037013
 DCL RC FIXED BIN(31); 00039013
 DCL RSN FIXED BIN(31); 00039113
 00390108
 00391808
 /* Initialize the first two arrays such that each element 00411013
 equals the sum of the indices for that element (eg. 00412013
 A(4,10) = 14 */ 00413013
 00414013
 CALL CSRIRP (A(1,1), M*N*KELEMENT_SIZE, CSR_FORWARD, 00415013
 KELEMENT_SIZE*N, 00416013
 0, 00417013
 20, 00418013
 RC, 00419013
 RSN); 00419113
 CALL CSRIRP (B(1,1), N*P*KELEMENT_SIZE, CSR_FORWARD, 00419913
 KELEMENT_SIZE*P, 00420013
 0, 00420113
 20, 00420213
 RC, 00420313
 RSN); 00420413
 DO I = 1 TO M; 00421213
 DO J = 1 TO N; 00421313
 A(I,J) = I + J; 00421413
 END; 00421513
 END; 00421613
 00421713
 DO I = 1 TO N; 00421813
 DO J = 1 TO P; 00421913
 B(I,J) = I + J; 00422013
 END; 00422113
 END; 00422213
 CALL CSRRRP (A(1,1), M*N*KELEMENT_SIZE, 00422313
 RC, 00422513
 RSN); 00422613
 CALL CSRRRP (B(1,1), N*P*KELEMENT_SIZE, 00423413
 RC, 00423613
 RSN); 00423713
 00424513
 /* Multiply the two arrays together */ 00424613
 00424713
 CALL CSRIRP (A(1,1), M*N*KELEMENT_SIZE, CSR_FORWARD, 00424813
 KELEMENT_SIZE*N, 00424913
 0, 00425013
 20, 00425133
 RC, 00425213
 RSN); 00425313
 CALL CSRIRP (B(1,1), N*P*KELEMENT_SIZE, CSR_FORWARD, 00426113
 KELEMENT_SIZE, 00426213
 (P-1)*KELEMENT_SIZE, 00426313
 50, 00426413
 RC, 00426513
 RSN); 00426613
 DO I = 1 TO M; 00427413
 DO J = 1 TO P; 00427513
 C(I,J) = 0; 00427613
 DO K = 1 TO N; 00427713
 C(I,J) = C(I,J) + A(I,K) * B(K,J); 00427813
 END; 00427913
 END; 00428013
 END; 00428113
 00428213
 CALL CSRRRP (A(1,1), M*N*KELEMENT_SIZE, 00428313
 RC, 00428513
 RSN); 00428613
 CALL CSRRRP (B(1,1), N*P*KELEMENT_SIZE, 00429413
 RC, 00429613
 RSN); 00429713
 00430513
 END BPGPLI; 01080024

* *
* *
* JCL TO COMPILE AND LINKEDIT. *

PL/I example

86 z/OS: z/OS MVS Callable Services for HLL

* *
* *
* *

//PLIJOB JOB 00010007
//* 00041001
//* PL/I Compile and Linkedit 00042001
//* 00043001
//* Change all CRTPLNx to CRTPLNy 00044001
//* 00045001
//GO EXEC PLIXCL,PARM.PLI='MACRO' 00050000
//PLI.SYSLIB DD DSN=REFPAT.DECLARE.SET,DISP=SHR
//PLI.SYSIN DD DSN=REFPAT.SAMPLE.PROG(PLI),DISP=SHR 00060008
//LKED.SYSLMOD DD DSN=REFPAT.USER.LOAD,UNIT=3380,VOL=SER=RSMPAK, 00070000
// DISP=SHR 00080000
//LKED.SYSIN DD * 00090000
 INCLUDE IN(CSRIRP,CSRRRP) 00100001
 NAME BPGPLI(R) 00110008
/* 00120000
//* 00121001
//* SYS1.CSSLIB is source of CSR stubs 00130001
//* 00190000
//LKED.IN DD DSN=SYS1.CSSLIB,DISP=SHR 00200000
//PLIJOB JOB 00010007

* *
* *
* JCL TO EXECUTE. *
* *
* *
* *

//PLIRUN JOB MSGLEVEL=(1,1),TIME=1440 00010000
//* 00011001
//* EXECUTE A PL/I TESTCASE - CHANGE NAME ON NEXT LINE 00012001
//* 00013001
//GO EXEC PGM=CRTPLN3 00020000
//STEPLIB DD DSN=REFPAT.USER.LOAD,DISP=SHR, 00030000
// UNIT=3380,VOL=SER=VM2TSO 00040000
// DD DSN=CEE.SCEERUN,DISP=SHR 0
//SYSABEND DD SYSOUT=* 00070000
//SYSLOUT DD SYSOUT=* 00080000
//SYSPRINT DD SYSOUT=* 00090000

PL/I example

Chapter 8. Reference pattern services coding examples 87

PL/I example

88 z/OS: z/OS MVS Callable Services for HLL

Part 3. Global resource serialization latch manager
services

© Copyright IBM Corp. 1994, 2023 89

90 z/OS: z/OS MVS Callable Services for HLL

Chapter 9. Using the latch manager services

To use global resource serialization latch manager services, you issue CALLs from high level language
programs. Each service requires a set of parameters coded in a specific order on the CALL statement.

This topic describes the CALL statements that invoke latch manager services. Each description includes
a syntax diagram, parameter descriptions, and return and reason code explanations with recommended
actions. Return and reason codes are shown in hexadecimal and decimal, along with the associated
equate symbol.

This topic contains the following subtopics:

• “ISGLCRT — Create a latch set” on page 91
• “ISGLOBT — Obtain a latch” on page 95
• “ISGLREL — Release a latch” on page 98
• “ISGLPRG — Purge a requestor from a latch set” on page 101
• “ISGLPBA — Purge a group of requestors from a group of latch sets” on page 102

For information about the basic function of the latch manager, how to plan to use the latch manager, and
how to use the latch manager callable services, see the serialization topic in z/OS MVS Programming:
Authorized Assembler Services Guide.

Syntax and linkage conventions for latch manager callable services
The latch manager callable services have the following general calling syntax:

CALL routine_name(parameters)

Some specific calling formats for languages that can invoke the latch manager callable services are:
C

routine_name (parm1,parm2,...return_code)
COBOL

CALL “routine_name” USING parm1,parm2,...return_code
FORTRAN

CALL routine_name (parm1,parm2,...return_code)
PL/I

CALL routine_name (parm1,parm2,...return_code)
REXX

ADDRESS LU62 “routine_name parm1 parm2...return_code”

IBM provides files, called interface definition files (IDFs), that define variables and values for the
parameters used with latch manager services. IBM provides IDFs for some of the listed languages. See
the serialization topic in z/OS MVS Programming: Authorized Assembler Services Guide for information
about the IDFs that are available on MVS.

ISGLCRT — Create a latch set
Call the Latch_Create service to create a set of latches. Your application should call Latch_Create during
application initialization, and specify a number of latches that is sufficient to serialize all the resources
that the application requires. Programs that run as part of the application can call the following related
services:
ISGLOBT

Requests exclusive or shared ownership of a latch.

ISGLCRT callable service

© Copyright IBM Corp. 1994, 2023 91

ISGLREL
Releases ownership of an owned latch or a pending request to obtain a latch.

ISGLPRG
Purges all granted and pending requests for a particular requestor within a specific latch set.

In the following description of Latch_Create, constants defined in the latch manager IDFs are followed by
their numeric equivalents; you may specify either when coding calls to Latch_Create.

Write the call as shown on the syntax diagram. You must code all parameters on the CALL statement in
the order shown.

Assign values to the following parameters:

• number_of_latches
• latch_set_name
• create_option

Latch_Create returns values in the following parameters:

• latch_set_token
• return_code

CALL statement Parameters

CALL ISGLCRT

(number_of_latches
,latch_set_name
,create_option
,latch_set_token
,return_code)

The parameters are explained as follows:
number_of_latches

Specifies a fullword integer that indicates the number of latches to be created.
,latch_set_name

Specifies a 48-byte area that contains the name of the latch set. The latch set name must be unique
within the current address space. The latch set name can be any value up to 48 characters, but the
first character must not be binary zeros or an EBCDIC blank. If the latch set name is less than 48
characters, it must be padded on the right with blanks.

IBM recommends that you use a standard naming convention for the latch set name. To avoid using a
name that IBM uses, do not begin the latch set name with the character string SYS. It is a good idea
to select a latch set name that is readable in output from the DISPLAY GRS command and interactive
problem control system (IPCS). Avoid '@', '$', and '#' because those characters do not always display
consistently.

,create_option
Specifies a fullword integer that must have one of the following values:

• ISGLCRT_PRIVATE (or a value of 0)
• ISGLCRT_PRIVATE + ISGLCRT_LOWSTGUSAGE (or a value of 2)
• ISGLCRT_PRIVATE + ISGLCRT_DEADLOCKDET1 (or a value of 64)
• ISGLCRT_PRIVATE + ISGLCRT_DEADLOCKDET2 (or a value of 128)
• ISGLCRT_PRIVATE + ISGLCRT_DEADLOCKDET1 + ISGLCRT_LOWSTGUSAGE (or a value of 66)
• ISGLCRT_PRIVATE + ISGLCRT_DEADLOCKDET2 + ISGLCRT_LOWSTGUSAGE (or a value of 130)

If the creating address space is constrained by private storage, use the ISGLCRT_LOWSTGUSAGE
option. ISGLCRT_LOWSTGUSAGE reduces storage usage at the cost of performance. IBM suggests

ISGLCRT callable service

92 z/OS: z/OS MVS Callable Services for HLL

that this option is only used if there is a known or possible storage constraint issue. See "Specifying
the Number of Latches in a Latch Set" in z/OS MVS Programming: Authorized Assembler Services Guide
for a description of the amount of storage that can be consumed by a latch set.

If you want to have the latch obtain services detect some simple latch deadlock situations, consider
using the ISGLCRT_DEADLOCKDET1 and ISGLCRT_DEADLOCKDET2 options. For performance
reasons, latch deadlock detection is not exhaustive. It can detect some simple deadlock situations.

When ISGLCRT_PRIVATE + ISGLCRT_DEADLOCKDET1 is specified, it can detect the following
deadlock situations:

• The work unit requests exclusive ownership of a latch that the work unit already owns exclusively.
• The work unit requests shared ownership of a latch that the work unit already owns exclusively.

When ISGLCRT_PRIVATE + ISGLCRT_DEADLOCKDET2 is specified, it can detect all the deadlock
situations listed under ISGLCRT_PRIVATE + ISGLCRT_DEADLOCKDET1, and it can also detect if the
work unit holding a SHARED latch requests exclusive use of the same latch.

Because ISGLCRT_DEADLOCKDET2 provides the best deadlock detection, IBM suggests that you use
ISGLCRT_DEADLOCKDET1 in cases where it can be used and use ISGLCRT_DEADLOCKDET2 in all
cases where there are not many SHARED latch holders.

Note:

1. The unit of work context of the requester is captured at latch obtain time. The system does not
know if the application passes responsibility for releasing the latch to another unit of work. To
prevent false detection, deadlock detection can not be used if latches are used in such a way that
responsibility for releasing the latch is passed between the obtainer and the releaser.

2. Deadlock detection can be safely used by SRBs, if all the obtained latches are released by the SRB
work unit before the unit of work completes. There is a possibility of false deadlock hits otherwise.

3. Deadlock detection is not performed if the latches are obtained conditionally using the
ISGLOBT_ASYNC_ECB option in ISGLOBT.

,latch_set_token
Specifies an 8-byte area to contain the latch set token returned by the Latch_Create service. The
latch set token uniquely identifies the latch set. Programs must specify this value on calls to the
Latch_Obtain, Latch_Release, and Latch_Purge services.

,return_code
A fullword integer to contain the return code from the Latch_Create service.

ABEND codes
The caller might encounter abend code X'9C6' for certain errors. See z/OS MVS System Codes for
explanations and responses.

Return codes
When the Latch_Create service returns control to your program, return_code contains a hexadecimal
return code. The following table identifies return codes in hexadecimal and decimal (in parentheses), the
equate symbol associated with each return code, the meaning of each return code, and a recommended
action:

Table 7. ISGLCRT Return Codes

Return code and Equate symbol Meaning and Action

00
(0)
ISGLCRT_SUCCESS

Meaning: The Latch_Create service completed successfully.

Action: None required.

ISGLCRT callable service

Chapter 9. Using the latch manager services 93

Table 7. ISGLCRT Return Codes (continued)

Return code and Equate symbol Meaning and Action

04
(4)
ISGLCRT_DUPLICATE_NAME

Meaning: The specified latch_set_name already exists, and is associated with a latch
set that was created by a program running in the current primary address space. The
latch manager does not create a new latch set.

Action: To create a new latch set, specify a unique name on the latch_set_name
parameter, then call the Latch_Create service again. Otherwise, continue processing
with the returned latch set token.

10
(16)
ISGLCRT_NO_STORAGE

Meaning: Environmental error. Not enough storage was available to contain the
requested number of latches. The latch manager does not create a new latch set.

Action: Specify a smaller value on the number_of_latches parameter.

Examples of calls to latch manager services
The following is an example of how to call all the latch manager services in C language:

/***/
/* C Example */
/***/
#pragma linkage(setsup, OS)
#pragma linkage(setprob, OS)
#include <ISGLMC.H> /* Include C language IDF */

main()
{
 const int numberOfLatches = 16; /* in this example we create 16
 latches */
 ISGLM_LSNM_type latchSetName
 = "EXAMPLE.ONE_LATCH_SET_NAME ";
 /* set up 48-byte latch set name */
 ISGLM_LSTK_type latchSetToken; /* latch set token - output from
 create and input to obtain,
 release, and purge */
 int returnCode = 0; /* return code from services */

 const int latchNumber = 6; /* in this example we obtain latch
 six */
 ISGLM_LRID_type requestorID = "123";/* requestor ID - output from
 obtain and input to purge */
 int ECB = 0; /* ECB used for latch obtain
 service */
 ISGLM_EADDR_type ECBaddress = &ECB;/* pointer to ECB */
 ISGLM_LTK_type latchToken; /* latch token - output from
 obtain and input to release */
 union {
 double alignment; /* force double word alignment */
 ISGLM_WA_type area; /* set up work area */
 } work;

 setsup(); /* set supervisor state PSW */

/***/
/* create a latch set with 16 latches */
/***/

 isglcrt(numberOfLatches
 ,latchSetName
 ,ISGLCRT_PRIVATE
 ,&latchSetToken;
 ,&returnCode);

/***/
/* obtain latch */
/***/

 isglobt(latchSetToken
 ,latchNumber
 ,requestorID
 ,ISGLOBT_SYNC /* suspend until granted */
 ,ISGLOBT_EXCLUSIVE /* access option (exclusive) */
 ,&ECBaddress /* required, but not used */
 ,&latchToken /* identifies request */

ISGLCRT callable service

94 z/OS: z/OS MVS Callable Services for HLL

 ,&work.area
 ,&returnCode);

/***/
/* release latch */
/***/

 isglrel(latchSetToken
 ,latchToken
 ,ISGLREL_UNCOND /* ABEND if latch not owned */
 ,&workarea
 ,&returnCode);

/***/
/* purge requestor from latch set */
/***/

 isglprg(latchSetToken
 ,requestorID
 ,&returnCode);

 setprob(); /* set problem state PSW */
}
**
* SETSUP subroutine
**
SETSUP CSECT
SETSUP AMODE 31
SETSUP RMODE ANY
 SAVE (14,12) save regs
 SAC 0 ensure primary mode
 LR 12,15 establish addressability
 USING SETSUP,12
 MODESET MODE=SUP set supervisor state
 RETURN (14,12),RC=0 restore caller's regs and return
 END SETSUP
**
* SETPROB subroutine
**
SETPROB CSECT
SETPROB AMODE 31
SETPROB RMODE ANY
 SAVE (14,12) save regs
 LR 12,15 establish addressability
 USING SETPROB,12
 MODESET MODE=PROB set problem state
 RETURN (14,12),RC=0 restore caller's regs and return
 END SETPROB

ISGLOBT — Obtain a latch
Call the Latch_Obtain service to request exclusive or shared ownership of a latch. When a requestor owns
a particular latch, the requestor can use the resource associated with that latch. The following callable
services are related to Latch_Obtain:
ISGLCRT

Creates a latch set that an application can use to serialize resources.
ISGLREL

Releases ownership of an owned latch or a pending request to obtain a latch.
ISGLPRG

Purges all granted and pending requests for a particular requestor within a specific latch set.

In the following description of Latch_Obtain:

• The term requestor describes a task or SRB routine that calls the Latch_Obtain service to request
ownership of a latch.

• Constants defined in the latch manager IDFs are followed by their numeric equivalents; you may specify
either when coding calls to Latch_Obtain. For example, “ISGLOBT_COND (value of 1)” indicates the
constant ISGLOBT_COND and its associated value, 1.

Write the call as shown on the syntax diagram. You must code all parameters on the CALL statement in
the order shown.

ISGLOBT callable service

Chapter 9. Using the latch manager services 95

Assign values to the following parameters:

• latch_set_token
• latch_number
• requestor_ID
• obtain_option
• access_option
• ECB_address

Latch_Obtain returns values in the following parameters:

• latch_set_token
• return_code

Latch_Obtain uses the following parameter for temporary storage:

• work_area

CALL statement Parameters

CALL ISGLOBT

(latch_set_token
,latch_number
,requestor_ID
,obtain_option
,access_option
,ECB_address
,latch_token
,work_area
,return_code)

The parameters are explained as follows:
latch_set_token

Specifies an 8-byte area that contains the latch_set_token that the Latch_Create service returned
earlier when it created the latch set.

,latch_number
Specifies a fullword integer that contains the number of the latch to be obtained. The latch_number
must be in the range from 0 to the total number of latches in the associated latch set minus one.

,requestor_ID
Specifies an 8-byte area that contains a value that identifies the caller of the Latch_Obtain service.
The requestor_ID can be any value except all binary zeros.

Recovery routines can purge all granted and pending requests for a particular requestor (identified
by a requestor_id) within a specific latch set. When specifying the requestor_ID on Latch_Obtain,
consider which latches would be purged if the Latch_Purge service were to be called with the
specified requestor_ID. For more information about the Latch_Purge service, see “ISGLPRG — Purge a
requestor from a latch set” on page 101.

,obtain_option
A fullword integer that specifies how the system is to handle the Latch_Obtain request if the latch
manager cannot immediately grant ownership of the latch to the requestor:
ISGLOBT_SYNC (value of 0)

The system processes the request synchronously. The system suspends the requestor. When
the latch manager eventually grants ownership of the latch to the requestor, the system returns
control to the requestor.

ISGLOBT callable service

96 z/OS: z/OS MVS Callable Services for HLL

ISGLOBT_COND (value of 1)
The system processes the request conditionally. The system returns control to the requestor with
a return code of ISGLOBT_CONTENTION (value of 4). The latch manager does not queue the
request to obtain the latch.

ISGLOBT_ASYNC_ECB (value of 2)
The system processes the request asynchronously. The system returns control to the requestor
with a return code of ISGLOBT_CONTENTION (value of 4). When the latch manager eventually
grants ownership of the latch to the requestor, the system posts the ECB pointed to by the value
specified on the ECB_address parameter.

When you specify this option, the ECB_address parameter must contain the address of an
initialized ECB that is addressable from the home address space (HASN).

,access_option
A fullword or character string that specifies the access required:

• ISGLOBT_EXCLUSIVE (value of 0) - Exclusive (write) access
• ISGLOBT_SHARED (value of 1) - Shared (read) access

,ECB_address
Specifies a fullword that contains the address of an ECB. If you specify an obtain_option of
ISGLOBT_SYNC (value of 0) or ISGLOBT_COND (value of 1) on the call to Latch_Obtain, the
ECB_address field must be valid (though its contents are ignored). IBM recommends that an address
of 0 be used when no ECB is to be processed.

If you specify an obtain_option of ISGLOBT_ASYNC_ECB (value of 2) and the system returns a return
code of ISGLOBT_CONTENTION (value of 4) to the caller, the system posts the ECB pointed to by the
value specified on the ECB_address parameter when the latch manager grants ownership of the latch
to the requestor.

,latch_token
Specifies an 8-byte area to contain the latch token returned by the Latch_Obtain service. You must
provide this value as a parameter on a call to the Latch_Release service to release the latch.

,work_area
Specifies a 256-byte work area that provides temporary storage for the Latch_Obtain service. The
work area should begin on a doubleword boundary to optimize performance. The work area must be in
the same storage key as the caller of Latch_Obtain.

,return_code
Specifies a fullword integer that is to contain the return code from the Latch_Obtain service.

ABEND codes
The caller might encounter abend code X'9C6' for certain errors. See z/OS MVS System Codes for
explanations and responses.

Return codes
When the Latch_Obtain service returns control to your program, return_code contains a hexadecimal
return code. The following table identifies return codes in hexadecimal and decimal (in parentheses), the
equate symbol associated with each return code, the meaning of each return code, and a recommended
action:

Table 8. ISGLOBT Return Codes

Return code and Equate Symbol Meaning and Action

00
(0)
ISGLOBT_SUCCESS

Meaning: The Latch_Obtain service completed successfully.

Action: None.

ISGLOBT callable service

Chapter 9. Using the latch manager services 97

Table 8. ISGLOBT Return Codes (continued)

Return code and Equate Symbol Meaning and Action

04
(4)
ISGLOBT_CONTENTION

Meaning: A requestor called Latch_Obtain with an obtain_option of
ISGLOBT_COND (value of 1) or ISGLOBT_ASYNC_ECB (value of 2). The latch
is not immediately available.

Action: If the requestor specified an obtain_option of ISGLOBT_COND (value
of 1), no response is required. If the requestor specified an obtain_option of
ISGLOBT_ASYNC_ECB (value of 2), and the latch is still required, wait on the
ECB to be posted when the latch manager grants ownership of the latch to the
requestor.

Example
See “Examples of calls to latch manager services” on page 94 for an example of how to call Latch_Obtain
in C language.

ISGLREL — Release a latch
Call the Latch_Release service to release ownership of an owned latch or a pending request to obtain
a latch. Requestors should call Latch_Release when the use of a resource associated with a latch is no
longer required. The following callable services are related to Latch_Release:
ISGLCRT

Creates a latch set that an application can use to serialize resources.
ISGLOBT

Requests exclusive or shared control of a latch.
ISGLPRG

Purges all granted and pending requests for a particular requestor within a specific latch set.

In the following description of Latch_Release:

• The term requestor describes a program that calls the Latch_Release service to release ownership of an
owned latch or a pending request to obtain a latch.

• Constants defined in the latch manager IDFs are followed by their numeric equivalents; you may specify
either when coding calls to Latch_Obtain. For example, “ISGLREL_COND (value of 1)” indicates the
constant ISGLREL_COND and its associated value, 1.

Write the CALL as shown on the syntax diagram, coding all parameters in the specified order.

Assign values to the following parameters:

• latch_set_token
• latch_token
• release_option

Latch_Release returns a value in the following parameter:

• return_code

Latch_Release uses the following parameter for temporary storage:

• work_area

ISGLREL callable service

98 z/OS: z/OS MVS Callable Services for HLL

CALL statement Parameters

CALL ISGLREL

(latch_set_token
,latch_token
,release_option
,work_area
,return_code)

The parameters are explained as follows:
latch_set_token

Specifies an 8-byte area that contains the latch set token returned to the caller of the Latch_Create
service. The latch set token identifies the latch set that contains the latch to be released.

,latch_token
Specifies an 8-byte area that contains the latch token returned to the caller of the Latch_Obtain
service. The latch token identifies the request to be released.

,release_option
Specifies a fullword integer that tells the latch manager what to do when the requestor either no
longer owns the latch to be released or still has a pending request to obtain the latch to be released:
ISGLREL_UNCOND (value of 0)

Abend the requestor:

• If a requestor originally specified an obtain_option of ISGLOBT_SYNC (value of 0) when
obtaining the latch, the latch manager does not release the latch. The system abends the caller
of Latch_Release with abend X'9C6', reason code xxxx0009.

• If a requestor originally specified an obtain_option of ISGLOBT_ASYNC_ECB (value of 2) when
obtaining the latch, the latch manager does not release the latch. The system abends the caller
of Latch_Release with abend X'9C6', reason code xxxx0007.

• If the latch manager does not find a previous Latch_Obtain request for the specified latch, the
system abends the caller of Latch_Release with abend X'9C6', reason code xxxx000A.

ISGLREL_COND (value of 1)
Return control to the requestor:

• If a requestor originally specified an obtain_option of ISGLOBT_ASYNC_ECB (value of 2)
when obtaining the latch, the latch manager releases the request for ownership of the
latch. The system returns control to the caller of Latch_Release with a return code of
ISGLREL_NOT_OWNED_ECB_REQUEST (value of 4).

• If a requestor originally specified an obtain_option of ISGLOBT_SYNC (value of 0) when
obtaining the latch, the latch manager does not release the request for ownership of the
latch. The system returns control to the caller of Latch_Release with a return code of
ISGLREL_STILL_SUSPENDED (value of 8).

• If the latch manager does not find a previous Latch_Obtain request for the specified
latch, the system returns control to the caller of Latch_Release with a return code of
ISGLREL_INCORRECT_LATCH_TOKEN (value of 12).

,work_area
Specifies a 256-byte work area that provides temporary storage for the Latch_Release service. The
work area should begin on a doubleword boundary to optimize performance. The work area must be in
the same storage key as the caller of Latch_Release.

,return_code
Specifies a fullword integer that is to contain the return code from the Latch_Release service.

ISGLREL callable service

Chapter 9. Using the latch manager services 99

ABEND codes
The caller might encounter abend code X'9C6' for certain errors. See z/OS MVS System Codes for
explanations and responses.

Return codes
When the Latch_Release service returns control to your program, return_code contains a hexadecimal
return code. The following table identifies return codes in hexadecimal and decimal (in parentheses), the
equate symbol associated with each return code, the meaning of each return code, and a recommended
action:

Table 9. ISGLREL Return Codes

Return code and Equate Symbol Meaning and Action

00
(0)
ISGLREL_SUCCESS

Meaning: The Latch_Release service completed successfully.
The caller released ownership of the specified latch request.

Action: None.

04
(4)
ISGLREL_NOT_OWNED_ECB_REQUEST

Meaning: The requestor that originally called the Latch_Obtain
service is still expecting the system to post an ECB (to
indicate that the requestor has obtained the latch). The call
to the Latch_Release service specified a release_option of
ISGLREL_COND (value of 1). The latch manager does not
post the ECB at the address specified on the original call to
Latch_Obtain. The latch manager releases the latch.

Action: Validate the integrity of the resource associated with
the latch (the requestor might have used the resource without
waiting on the ECB). If the resource is undamaged, no action is
necessary (a requestor routine may have been in the process of
cancelling the request to obtain the latch).

08
(8)
ISGLREL_STILL_SUSPENDED

Meaning: Program error. The request specified a correct latch
token, but the program that originally requested the latch is still
suspended and waiting to obtain the latch.

The latch requestor originally specified an obtain_option of
ISGLOBT_SYNC on the call to the Latch_Obtain service. The
call to the Latch_Release service specified a release_option
of ISGLREL_COND (value of 1). The latch manager does not
release the latch. The latch requestor remains suspended.

Action:

• Wait for the latch requestor to obtain the latch and receive
control back from the system; then call the Latch_Release
service again, or

• End the program that originally requested the latch.

0C
(12)
ISGLREL_INCORRECT_LATCH_TOKEN

Meaning: The latch manager could not find a granted or pending
request associated with the value on the latch token parameter.
The latch manager does not release a latch.

This return code does not indicate an error if a routine calls
Latch_Release to ensure that a latch is released. For example, if
an error occurs when a requestor calls the Latch_Obtain service,
the requestor's recovery routine might call Latch_Release to
ensure that the requested latch is released. If the error
prevented the requestor from obtaining the latch, the recovery
routine receives this return code.

Action: If the return code is not expected, validate that the
latch token is the same latch token returned to the caller of
Latch_Obtain.

Example
See “Examples of calls to latch manager services” on page 94 for an example of how to call
Latch_Release in C language.

ISGLREL callable service

100 z/OS: z/OS MVS Callable Services for HLL

ISGLPRG — Purge a requestor from a latch set
Call the Latch_Purge service to purge all granted and pending requests for a particular requestor within a
specific latch set. Recovery routines should call Latch_Purge when one or more errors prevent requestors
from releasing latches. The following callable services are related to Latch_Purge:
ISGLCRT

Creates a latch set that an application can use to serialize resources.
ISGLOBT

Requests exclusive or shared control of a latch.
ISGLREL

Releases control of an owned latch or a pending request to obtain a latch.

In the following description of Latch_Purge, constants defined in the latch manager IDFs are followed by
their numeric equivalents; you may specify either when coding calls to Latch_Purge.

Write the CALL as shown on the syntax diagram. You must code all parameters on the CALL statement in
the order shown.

Assign values to the following parameters:

• latch_set_token
• requestor_ID

Latch_Purge returns a value in the return_code parameter.

CALL statement Parameters

CALL ISGLPRG

(latch_set_token
,requestor_ID
,return_code)

The parameters are explained as follows:
latch_set_token

Specifies an 8-byte area that contains the latch_set_token previously returned by the Latch_Create
service. The latch set token identifies the latch set from which latch requests are to be purged.

,requestor_ID
Specifies an 8-byte area that contains the requestor_ID originally specified on one or more previous
calls to the Latch_Obtain service. The Latch_Purge service is to release all Latch_Obtain requests that
specify this requestor_ID.

,return_code
A fullword integer that contains the return code from the Latch_Purge service.

ABEND codes
The caller might encounter abend code X'9C6' for certain errors. See z/OS MVS System Codes for
explanations and responses.

Return codes
When the Latch_Purge service returns control to your program, return_code contains a hexadecimal
return code. The following table identifies return codes in hexadecimal and decimal (in paretheses), the
equate symbol associated with each return code, the meaning of each return code, and a recommended
action:

ISGLPRG callable service

Chapter 9. Using the latch manager services 101

Table 10. ISGLPRG Return Codes

Return code and Equate Symbol Meaning and Action

00
(0)
ISGLPRG_SUCCESS

Meaning: The Latch_Purge service completed successfully.

Action: None.

04
(4)
ISGLPRG_DAMAGE_DETECTED

Meaning: Program error. While purging all requests for a particular requestor
from a latch set, the latch manager found incorrect data in one or more
latches. The latch manager tries to purge the latches that contain incorrect
data, but the damage might prevent the latch manager from purging those
latches. The latch manager purges the remaining latches (those with correct
data) for the specified requestor.

Action: Take a dump and check for a storage overlay. If your application can
continue without the resources serialized by the damaged latches, no action
is required.

Example
See “Examples of calls to latch manager services” on page 94 for an example of how to call Latch_Purge
in C language.

ISGLPBA — Purge a group of requestors from a group of latch sets
Call the Latch_Purge_by_Address_Space service to purge all granted and pending requests for a group
of requestors for a group of latch sets in the same address space. To effectively use this service, your
latch_set_names and your requestor_IDs should be defined such that they have a common portion and
a unique portion. Groups of latch sets can then be formed by masking off the unique portion of the
latch_set_name, and groups of latch requests in a latch set can then be formed by masking off the unique
portion of the requestor_ID. Masking off the unique portion of the requestor_ID allows a single purge
request to handle multiple latch sets and multiple requests in a latch set. Recovery routines should call
Latch_Purge_by_Address_Space when one or more errors prevent requestors from releasing latches.

The following callable services are related to Latch_Purge_by_Address_Space:
ISGLCRT

Creates a latch set that an application can use to serialize resources.
ISGLOBT

Requests exclusive or shared control of a latch.
ISGLREL

Releases control of an owned latch or a pending request to obtain a latch.
ISGLPRG

Purges all granted and pending requests for a particular requestor within a specific latch set.

In the following description of Latch_Purge_by_Address_Space, equate symbols defined in the
ISGLMASM macro are followed by their numeric equivalents; you may specify either when coding calls to
Latch_Purge_by_Address_Space.

Write the CALL as shown on the syntax diagram. You must code all parameters on the CALL statement in
the order shown.

Assign values to the following parameters:

• latch_set_token
• requestor_ID
• requestor_ID_mask
• latch_set_name
• latch_set_name_mask

Latch_Purge_by_Address_Space returns a value in the return_code parameter.

ISGLPBA callable service

102 z/OS: z/OS MVS Callable Services for HLL

CALL statement Parameters

CALL ISGLPBA

(latch_set_token
,requestor_ID
,requestor_ID_mask
,latch_set_name
,latch_set_name_mask
,return_code)

The parameters are explained as follows:
latch_set_token

Specifies an 8-byte area that contains the latch_set_token previously returned by the Latch_Create
service or a value of zero. If the value is not zero, the latch_set_token identifies the latch set from
which latch requests are to be purged. If the latch_set_token is set to zero, a group of latch sets,
determined by the latch_set_name and latch_set_name_mask, will have their latch requests purged.

,requestor_id
Specifies an 8-byte area that contains a portion of the requestor_ID originally specified on one or
more previous calls to the Latch_Obtain service. This operand will be compared to the result of
logically ANDing each requestor_ID in the latch set with the requestor_ID_mask. Make sure that any
corresponding bits that are zero in the requestor_ID_mask are also zero in this field, otherwise no
ID matches will occur. Each requestor_ID that has a name match will have its Latch_Obtain requests
released.

,requestor_id_mask
Specifies an 8-byte area that contains the requestor_ID_mask that will be logically ANDed to each
requestor_ID in the latch set and then compared to the requestor_ID operand. Each requestor_ID that
has a name match will have its Latch_Obtain requests released.

,latch_set_name
Specifies a 48-byte area that contains the portion of the latch_set_name that will be compared to the
result of logically ANDing the latch_set_name_mask with each latch set name in the primary address
space. Make sure that any corresponding bits that are zero in the latch_set_name_mask are also zero
in this field, otherwise no name matches will occur. Each latch set that has a name match will have its
Latch_Obtain requests released. If the latch_set_token operand is non-zero this operand is ignored.

,latch_set_name_mask
Specifies a 48-byte area that contains the mask that will be logically ANDed to each of the latch
set names in the primary address apace and then compared to the latch_set_name operand. Each
latch set that has a name match will have its Latch_Obtain requests released. If the latch_set_token
operand is non-zero this operand is ignored.

,return_code
A fullwprd integer that contains the return code from the Latch_Purge_By_Address_Space service.

ABEND codes
The caller might encounter abend code X'9C6' for certain errors. See z/OS MVS System Codes for
explanations and responses.

Return codes
When the Latch_Purge_by_Address_Space service returns control to your program, the return_code
contains a hexadecimal return code. The following table identifies return codes in hexadecimal and
decimal (in parentheses), the equate symbol associated with each return code, the meaning of each
return code, and a recommended action:

ISGLPBA callable service

Chapter 9. Using the latch manager services 103

Table 11. ISGLPBA Return Codes

Return code and Equate Symbol Meaning and Action

00
(0)
ISGLPRG_SUCCESS

Meaning: The Latch_Purge_by_Address_Space service completed
successfully.

Action: None.

04
(4)
ISGLPRG_DAMAGE_DETECTED

Meaning: Program error. While purging all requests for a particular requestor
from a latch set, the latch manager found incorrect data in one or more
latches. The latch manager tries to purge the latches that contain incorrect
data, but the damage might prevent the latch manager from purging those
latches. The latch manager purges the remaining latches (those with correct
data) for the specified requestor.

Action: Take a dump and check for a storage overlay. If your application can
continue without the resources serialized by the damaged latches, no action
is required.

ISGLPBA callable service

104 z/OS: z/OS MVS Callable Services for HLL

Part 4. Resource recovery services (RRS)

© Copyright IBM Corp. 1994, 2023 105

106 z/OS: z/OS MVS Callable Services for HLL

Chapter 10. Using protected resources

Many computer resources are so critical to a company's work that the integrity of these resources must
be guaranteed. If changes to the data in the resources are corrupted by a hardware or software failure,
human error, or a catastrophe, the computer must be able to restore the data. These critical resources are
called protected resources or, sometimes, recoverable resources.

The system, when requested, can coordinate changes to one or more protected resources so that all
changes are made or no changes are made. Resources that the system can protect are, for example:

• A hierarchical database
• A relational database
• A product-specific resource

Resource recovery is the protection of the resources. Resource recovery consists of the protocols and
program interfaces that allow an application program to make consistent changes to multiple protected
resources.

Resource recovery programs
Three programs work together to protect resources:

• Application program: The application program accesses protected resources and requests changes to
the resources.

• Resource manager: A resource manager is an authorized program that controls and manages access
to a resource. A resource manager provides interfaces that allow the application program to read and
change a protected resource. The resource manager also takes actions that commit or back out changes
to a resource it manages.

Often an application changes more than one protected resource, so that more than one resource
manager is involved.

A resource manager may be an IBM product, part of an IBM product, or a product from another vendor.
A resource manager can be:

– A database manager, such as DB2®

– A program, such as IMS/ESA® Transaction Manager, that accepts work from an end user or another
system and manages that work

Note: The resource manager in resource recovery is different from an RTM resource manager, which is
related to the operating system's recovery termination management (RTM) and runs during termination
processing.

• Sync-point manager: The sync-point manager coordinates changes to protected resources, so that all
changes are made or no changes are made. The z/OS sync-point manager is recoverable resource
management services (RRMS). Three MVS components provide RRMS function; because resource
recovery services (RRS) provides the sync-point services, most technical information uses RRS rather
than RRMS.

If your resources are distributed, so that they are on multiple systems, the communication resource
manager on one system will coordinate the changes. Each communication resource manager works with
RRS on its system.

RRS can enable resource recovery on a single system or, with APPC/MVS, on multiple systems.

The application program, resource manager, and sync-point manager use a two-phase commit protocol to
protect resources.

© Copyright IBM Corp. 1994, 2023 107

Two-phase commit protocol
The two-phase commit protocol is a set of actions used to make sure that an application program makes
all changes to a collection of resources or makes no changes to the collection. The protocol makes sure of
the all-or-nothing changes even if the system, RRS, or the resource manager fails.

The phases of the protocol are:

• Phase 1: In the first phase, each resource manager must be prepared to either commit or backout the
changes. They prepare for the commit and tell RRS either YES, the change can be made, or NO, the
change cannot be made.

First, RRS decides the results of the YES or NO responses from the resource managers. If the decision is
YES to commit the changes, RRS hardens the decision, meaning that it stores the decision in an RRS log.

Once a commit decision is hardened, the application changes are considered committed. If there is a
failure after this point, the resource manager will make the changes during restart. Before this point, a
failure causes the resource manager to back out the changes during restart.

• Phase 2: In the second phase, the resource managers commit or back out the changes.

Resource recovery process
For a look at the resource recovery process, think of a person who requests an automated teller
machine (ATM) to transfer money from a savings account to a checking account. The application program
receives the person's input from the ATM. Each account is in a different database. Each database has
its own resource manager. The sync-point manager is RRS. Figure 11 on page 108 shows how the ATM
application, resource managers, and RRS work together

Figure 11. ATM Transaction

The actions required to process the ATM transaction are:

1. The ATM user requests transfer of money from a savings account to a checking account.
2. The ATM application program receives the ATM input.

Figure 12 on page 109 shows, for the same transaction, the sequence of the following actions, with
time moving from left to right, in the two-phase commit protocol RRS uses to commit the changes.
The top line in the figure shows the two phases of the protocol described in “Two-phase commit
protocol” on page 108.

108 z/OS: z/OS MVS Callable Services for HLL

3. The ATM application requests the savings resource manager to subtract the money from the savings
database. For this step, the application uses the resource manager's application programming
interface (API).

4. The ATM application requests the checking resource manager to add the money to the checking
database. The application uses this resource manager's API.

5. The ATM application issues a call to RRS to commit the database changes.
6. RRS asks the resource managers to prepare for the changes.
7. The resource managers indicate whether or not they can make the changes, by voting YES or NO. In

Figure 12 on page 109, both resource managers vote YES.
8. In response, RRS notifies the resource managers to commit the changes, that is, to make the changes

permanently in the databases.
9. The resource managers complete the commit and return OK to RRS.

10. RRS gives a return code to the application program, indicating that all changes were made in the
databases.

Figure 12. Two-Phase Commit Actions

If the ATM user decides not to transfer the money and presses a NO selection, the application requests
backout, instead of commit, in step 6. In this case, the changes are backed out and are not actually made
in any database. See Figure 13 on page 109.

Figure 13. Backout — Application Request

Chapter 10. Using protected resources 109

Or if a resource manager cannot make the change to its database, the resource manager votes NO during
prepare. If any resource manager votes NO, all of the changes are backed out. See Figure 14 on page 110.

Figure 14. Backout — Resource Manager Votes NO

Requesting resource protection and recovery
To request resource protection, your application program must use resource managers that work with
RRS to protect resources. The code in your application should do the following:

1. Request one or more accesses to resources for reads, writes, or both.
2. If all of the changes are to be made, request commit by issuing a call to the Application_Commit_UR

service.
3. If none of the changes are to be made, request backout by issuing a call to the

Application_Backout_UR service.

For details about the calls, see “Application_Backout_UR (SRRBACK)” on page 111 and
“Application_Commit_UR (SRRCMIT)” on page 114.

Using distributed resource recovery
The databases for a work request may be distributed, residing on more than one system. In this case, the
application program initiating the work uses a distributed communications manager, such as APPC/MVS,
to request changes by an application program on another system. The database resource managers,
communication resource managers, and RRS components work together to make or not make all changes
of both application programs. Figure 15 on page 110 illustrates distributed resource recovery.

Figure 15. Transaction — Distributed Resource Recovery

110 z/OS: z/OS MVS Callable Services for HLL

Application_Backout_UR (SRRBACK)
Call the Application_Backout_UR service to indicate that the changes for the unit of recovery (UR) are
not to be made. A UR represents the application's changes to resources since the last commit or backout
or, for the first UR, since the beginning of the application. In response to the call, RRS requests that the
resource managers return their resources to the values they had before the UR was processed.

An application might need to issue a call to the Application_Backout_UR service if:

• An APPC/MVS call returns a TAKE_BACKOUT return code. For example, a CI send_data call to a
communications manager could return TAKE_BACKOUT.

• A resource manager call returns a return code that indicates that a resource manager directly backed
out its resource. This situation can occur if the resource manager does not have the capability to return
a TAKE_BACKOUT code.

• A communications resource manager call returns a return code that indicates that a backout must be
done, such as a return code of COM_RESOURCE_FAILURE_NO_RETRY from a CI call.

Description

Environment
The requirements for the caller are:

Requirement Details

Minimum authorization: Problem state, any PSW key

Dispatchable unit mode: Task

Cross memory mode: Any PASN, any HASN, any SASN

AMODE: 24- or 31-bit

ASC mode: Primary

Interrupt status: Enabled for I/O and external interrupts

Locks: No locks held

Control parameters: Control parameters must be in the primary address space and
addressable by the caller.

Linkage: Standard MVS linkage conventions are used.

Programming requirements
The two methods described here can be used to access the callable service.

• Linkedit the stub routine ATRSCSS with the program that uses the service. ATRSCSS resides in
SYS1.CSSLIB.

• Code the MVS LOAD macro within a program that uses the service to obtain the entry point address of
the service. Use that address to call the service.

Additional language-specific statements may be necessary so that compilers can provide the proper
assembler interface. Other programming notations, such as variable declarations, are also language-
dependent.

SYS1.CSSLIB contains stubs for all of MVS's callable services including RRS. Other program products like
DB2 and IMS also provide libraries that contain stubs for their versions of SRRBACK and SRRCMIT.

Because other program products like DB2 and IMS provide their own stubs for SRRBACK or SRRCMIT, you
must make sure your program uses the correct stub. You need to take particular care when recompiling
and linkediting any application that uses these services. When you linkedit, make sure that the data sets
in the syslib concatenation are in the right order. For example, if you want a DB2 application to use the

Application_Backout_UR

Chapter 10. Using protected resources 111

RRS callable service SRRBACK or SRRCMIT, you must ensure that SYS1.CSSLIB precedes the data sets
with the stubs that DB2 provides for SRRBACK or SRRCMIT.

If you inadvertently cause your program to use SRRCMIT for RRS when it expects SRRCMIT for another
program product like IMS, the application does not run correctly, and your program receives an error
return code from the call to SRRCMIT.

For examples of the JCL link edit statements used with high-level languages, see Chapter 4, “Window
services coding examples,” on page 37 or Chapter 8, “Reference pattern services coding examples,” on
page 75.

High level language (HLL) definitions
The high level language (HLL) definitions for the callable service are:

HLL Definition Description

ATRSASM 390 Assembler declarations

ATRSC C/390 declarations

ATRSCOB COBOL 390 declarations

ATRSPAS Pascal 390 declarations

ATRSPLI PL/I 390 declarations

Assembler: If you are an Assembler language caller running in AMODE 24, either use a BASSM instruction
in place of the CALL or specify a LINKINST=BASSM parameter on the CALL macro. For example:

CALL SRRBACK(RETCODE),LINKINST=BASSM

COBOL: The return/reason code names and abend code names in ATRSCOB are truncated at 30
characters.

PL/I: The return/reason code names and abend code names in ATRSPLI are truncated at 31 characters.

Restrictions
The state of the UR must be in-reset or in-flight. A successful call creates a new UR that is in-reset.

The UR cannot be in local transaction mode.

Input register information
Before issuing the call, the caller does not have to place any information into any register unless using it in
register notation for the parameter, or using it as a base register.

Output register information
When control returns to the caller, the GPRs contain:
Register

Contents
0-1

Used as work registers by the system
2-13

Unchanged
14

Used as a work register by the system
15

Return code

When control returns to the caller, the ARs contain:

Application_Backout_UR

112 z/OS: z/OS MVS Callable Services for HLL

Register
Contents

0-1
Used as work registers by the system

2-13
Unchanged

14-15
Used as work registers by the system

Some callers depend on register contents remaining the same before and after issuing a call. If the
system changes the contents of registers on which the caller depends, the caller must save them before
calling the service, and restore them after the system returns control.

Performance implications
None.

Syntax
Write the call as shown in the syntax diagram. You must code the parameters in the CALL statement as
shown.

CALL statement Parameters

CALL SRRBACK

(return_code)

Parameters
The parameters are explained as follows:
return_code

Returned parameter

• Character Set: N/A
• Length: 4 bytes

Contains the return code from the Application_Backout_UR service.

ABEND codes
The call might result in an abend X'5C4' with a reason code of X'00150000' through X'00150010'. See
z/OS MVS System Codes for the explanations and actions.

If your application ends abnormally during sync-point processing, the condition is called an asynchronous
abend, and you might need to see the programmer at your installation responsible for managing RRS.
Under information about working with application programs, z/OS MVS Programming: Resource Recovery
contains additional details about asynchronous abends.

Issuing SETRRS CANCEL for non-resource manager programs that use the synch-point service results in
an abend X'058'. When RRS restarts, transactions that were in progress are resolved.

Return codes
When the service returns control to your program, GPR 15 and return_code contain a hexadecimal return
code, shown in the following table. If you need help with a return code, see the programmer at your
installation responsible for managing RRS. Under information about working with application programs,
z/OS MVS Programming: Resource Recovery contains additional details about these return codes.

Application_Backout_UR

Chapter 10. Using protected resources 113

Hexadecimal
Return Code

Decimal Return
Code

Meaning and Action

0 0 Code: RR_OK

Meaning: Successful completion. The resource managers returned their resources to
the values they had before the UR was processed.

Action: None.

12D 301 Code: RR_BACKED_OUT_OUTCOME_PENDING

Meaning: Environmental error. The backout was not completed, for one of the
following reasons:

• RRS requested that the resource managers back out the changes to the resources.
However, the state of one or more of the resources is not known.

• RRS is not active.
• The resource manager fails with an incomplete protected interest in the UR, or RRS

fails before the UR is complete.

Action: The action by an application depends on the system environment. Some
possible actions are:

• Display a warning message to the end user.
• Write an exception entry into an output log.
• Abnormally end the application because the resource manager will not allow any

further changes to the resource until the situation is resolved.

12E 302 Code: RR_BACKED_OUT_OUTCOME_MIXED

Meaning: Environmental error. RRS requested that the resource managers back out
the changes to the resources. However, one or more resources were changed.

Action: Same as the action for return code 12D (301).

Example
In the pseudocode example, the application issues a call to request that RRS back out a UR.

⋮
CALL SRRBACK(RETCODE)
⋮

Application_Commit_UR (SRRCMIT)
Call the Application_Commit_UR service to indicate that the changes for the unit of recovery (UR) are to
be made permanent. A UR represents the application's changes to resources since the last commit or
backout or, for the first UR, since the beginning of the application. In response to the call, RRS requests
that the resource managers make the changes permanent.

Certain resource managers, such as a communications manager, can issue a TAKE_COMMIT return code to
an application that has requested changes to resources. In response to the TAKE_COMMIT code from the
resource manager, the application should request the changes to the resources:

• If all of the change requests are accepted, call the Application_Commit_UR service again.
• If any of the change requests are not accepted. call the Application_Backout_UR service to back out the

changes.

Description

Environment
The requirements for the caller are:

Requirement Details

Minimum authorization: Problem state, any PSW key

Application_Commit_UR

114 z/OS: z/OS MVS Callable Services for HLL

Requirement Details

Dispatchable unit mode: Task

Cross memory mode: Any PASN, any HASN, any SASN

AMODE: 24- or 31-bit

ASC mode: Primary

Interrupt status: Enabled for I/O and external interrupts

Locks: No locks held

Control parameters: Control parameters must be in the primary address space and
addressable by the caller.

Linkage: Standard MVS linkage conventions are used.

Programming requirements
The two methods described here can be used to access the callable service.

• Linkedit the stub routine ATRSCSS with the program that uses the service. ATRSCSS resides in
SYS1.CSSLIB.

• Code the MVS LOAD macro within a program that uses the service to obtain the entry point address of
the service. Use that address to call the service.

Additional language-specific statements may be necessary so that compilers can provide the proper
assembler interface. Other programming notations, such as variable declarations, are also language-
dependent.

SYS1.CSSLIB contains stubs for all of MVS's callable services including RRS. Other program products like
DB2 and IMS also provide libraries that contain stubs for their versions of SRRBACK and SRRCMIT.

Because other program products like DB2 and IMS provide their own stubs for SRRBACK or SRRCMIT, you
must make sure your program uses the correct stub. You need to take particular care when recompiling
and linkediting any application that uses these services. When you linkedit, make sure that the data sets
in the syslib concatenation are in the right order. For example, if you want a DB2 application to use the
RRS callable service SRRBACK or SRRCMIT, you must ensure that SYS1.CSSLIB precedes the data sets
with the stubs that DB2 provides for SRRBACK or SRRCMIT.

If you inadvertently cause your program to use SRRCMIT for RRS when it expects SRRCMIT for another
program product like IMS, the application does not run correctly, and your program receives an error
return code from the call to SRRCMIT.

For examples of the JCL link edit statements for high-level languages, see Chapter 4, “Window services
coding examples,” on page 37 or Chapter 8, “Reference pattern services coding examples,” on page 75.

High level language (HLL) definitions
The high level language (HLL) definitions for the callable service are:

HLL Definition Description

ATRSASM 390 Assembler declarations

ATRSC C/390 declarations

ATRSCOB COBOL 390 declarations

ATRSPAS Pascal 390 declarations

ATRSPLI PL/I 390 declarations

Assembler: If you are an Assembler language caller running in AMODE 24, either use a BASSM instruction
in place of the CALL or specify a LINKINST=BASSM parameter on the CALL macro. For example:

Application_Commit_UR

Chapter 10. Using protected resources 115

CALL SRRCMIT(RETCODE),LINKINST=BASSM

COBOL: The return/reason code names and abend code names in ATRSCOB are truncated at 30
characters.

PL/I: The return/reason code names and abend code names in ATRSPLI are truncated at 31 characters.

Restrictions
The state of the UR that represents the changes must be in-reset or in-flight.

The UR cannot be in local transaction mode.

Input register information
Before issuing the call, the caller does not have to place any information into any register unless using it in
register notation for the parameter, or using it as a base register.

Output register information
When control returns to the caller, the GPRs contain:
Register

Contents
0-1

Used as work registers by the system
2-13

Unchanged
14

Used as a work register by the system
15

Return code

When control returns to the caller, the ARs contain:
Register

Contents
0-1

Used as work registers by the system
2-13

Unchanged
14-15

Used as work registers by the system

Some callers depend on register contents remaining the same before and after issuing a call. If the
system changes the contents of registers on which the caller depends, the caller must save them before
calling the service, and restore them after the system returns control.

Performance implications
None.

Syntax
Write the call as shown in the syntax diagram. You must code the parameter in the CALL statement as
shown.

Application_Commit_UR

116 z/OS: z/OS MVS Callable Services for HLL

CALL statement Parameters

CALL SRRCMIT

(return_code)

Parameters
The parameters are explained as follows:
return_code

Returned parameter

• Type: Integer
• Length: 4 bytes

Contains the return code from the Application_Commit_UR service.

ABEND codes
The call might result in an abend X'5C4' with a reason code of X'00160000' through X'00160012'. See
z/OS MVS System Codes for the explanations and actions.

If your application ends abnormally during sync-point processing, the condition is called an asynchronous
abend, and you might need to see the programmer at your installation responsible for managing RRS.
Under information about working with application programs, z/OS MVS Programming: Resource Recovery
contains additional details about asynchronous abends.

Issuing SETRRS CANCEL for non-resource manager programs that use the synch-point service results in
an abend X'058'. When RRS restarts, transactions that were in progress are resolved.

Return codes
When the service returns control to your program, GPR 15 and return_code contain a hexadecimal return
code, shown in the following table. If you need help with a return code, see the programmer at your
installation responsible for managing RRS. Under information about working with application programs,
z/OS MVS Programming: Resource Recovery contains additional details about these return codes.

Hexadecimal
Return Code

Decimal Return
Code

Meaning and Action

0 0 Code: RR_OK

Meaning: Successful completion. The changes to all protected resources have been
made permanent.

Action: None.

65 101 Code: RR_COMMITTED_OUTCOME_PENDING

Meaning: Environmental error. The commit was not completed:

• RRS requested that the resource managers make the changes to the resources
permanent. However, the state of one or more of the resources is not known.

Action: The action by an application depends on the system environment. Some
possible actions are:

• Display a warning message to the end user.
• Write an exception entry into an output log.
• Abnormally end the application because the resource manager will not allow any

further changes to the resource until the situation is resolved.

Application_Commit_UR

Chapter 10. Using protected resources 117

Hexadecimal
Return Code

Decimal Return
Code

Meaning and Action

66 102 Code: RR_COMMITTED_OUTCOME_MIXED

Meaning: Environmental error. RRS requested that the resource managers make the
changes to the resources permanent. One or more resources were changed, but one
or more were not changed.

Action: Same as the action for return code 65 (101).

C8 200 Code: RR_PROGRAM_STATE_CHECK

Meaning: Environmental error. The commit failed. The resource managers did not
make the changes to the resources because one of the following occurred:

• A resource on the same system as the application is not in the proper state for a
commit.

• A protected conversation is not in the required state: send, send pending, defer
receive, defer allocate, sync_point, sync_point send, sync_point deallocate.

• A protected conversation is in send state. The communications manager started
sending the basic conversation logical record, but did not finish sending it.

Action: Initiate an action by a resource manager to get its resource to a committable
state, then call Application_Commit_UR again. For example, if the application has
allocated a protected conversation through APPPC/MVS, and the conversation is in
receive state, the application gets this return code. It then must use APPC/MVS
services to change the conversation to send state before issuing the commit request
again.

12C 300 Code: RR_BACKED_OUT

Meaning: Environmental error. The commit failed. The resource managers backed
out the changes, returning the resources to the values they had before the UR was
processed.

Action: Same as the action for return code 65 (101).

12D 301 Code: RR_BACKED_OUT_OUTCOME_PENDING

Meaning: Environmental error. The commit failed for one of the following reasons:

• RRS requested that the resource managers back out the changes to the resources.
However, the state of one or more of the resources is not known.

• RRS is not active.

Action: Same as the action for return code 65 (101).

12E 302 Code: RR_BACKED_OUT_OUTCOME_MIXED

Meaning: Environmental error. The commit failed. RRS requested that the resource
managers back out the changes to the resources. One or more resources were backed
out, but one or more were changed.

Action: Same as the action for return code 65 (101).

Example
In the pseudocode example, the application issues a call to request that RRS commit a UR.

⋮
CALL SRRCMIT(RETCODE)
⋮

Additional callable services
Additional callable services that an authorized resource manager can use to request resource recovery
services can be found in z/OS MVS Programming: Resource Recovery.

Application_Commit_UR

118 z/OS: z/OS MVS Callable Services for HLL

Part 5. CEA TSO/E address space services

© Copyright IBM Corp. 1994, 2023 119

120 z/OS: z/OS MVS Callable Services for HLL

Chapter 11. Introduction to CEA TSO/E address space
services

The z/OS CEA TSO/E address space manager provides services to programmatically start and manage
TSO/E address spaces and provides a communications mechanism for use between the caller and the
programs running in these managed address spaces.

CEA TSO/E address space services allow callers to:

• Start a new TSO/E address space.
• End a TSO/E address space started by CEA.
• Send an attention interrupt to a TSO/E address space started by CEA.
• Obtain information about a TSO/E address space started by CEA.
• Obtain information about all the TSO/E address spaces that CEA started for an application.
• Ping a TSO/E address space that was started by CEA to prevent the address space from ending because

it has been idle too long.

Two versions of TSO/E Address Space Services are available: Version 1 and Version 2.
Version 1 TSOASMGR services

Version 1 TSOASMGR services allow a calling application to create sessions on only the system on
which the function was invoked (the local system). Version 1 exploiters of TSO/E Address Space
Services use msgsnd() and msgrcv() functions to directly receive data to and from the z/OS UNIX
queue.

Version 2 TSOASMGR services
Version 2 TSOASMGR services allow a calling application to create and log in to a TSO/E address
space on a different system in the sysplex (a remote system). With the Version 2 request structures,
two new CEA provided APIs, CEAmsgsnd and CEAmsgrcv, are used to perform message send and
message receive. Callers using the new APIs use the CEA connection handle.

CEA TSO/E address space manager components
The CEA TSO/E address space manager includes the common event adapter (CEA) component of z/OS.
The CEA component provides the framework and manages the resources for the TSO/E address spaces.
Table 12 on page 121 describes the components that are included in the CEA TSO/E address space
manager.

Table 12. CEA TSO/E address space manager components

Component Description

CEA address space The CEA TSO/E address space manager is integrated into the CEA address
space infrastructure. The function is started automatically when CEA is
started.

Attention : If the CEA address space ends, all the TSO/E sessions that are
created by CEA also end. Callers are not notified that the CEA address space
is ended. Instead, when a caller attempts to invoke the CEA TSO/E address
space services or use the z/OS UNIX message queue, the request fails.

© Copyright IBM Corp. 1994, 2023 121

Table 12. CEA TSO/E address space manager components (continued)

Component Description

Session table When the CEA TSO/E address space manager starts a new TSO/E address
space, the attributes of the address space and the resources that are
obtained are stored in an internal session table. The entry exists for the life of
the session and is removed when the TSO/E address space ends.

To display the contents of the session table, use the MODIFY
CEA,DIAG,SESSTABLE command. For more information about the
command, see the topic about displaying the CEA TSO/E address space
information in z/OS MVS System Commands.

z/OS UNIX message
queue

The CEA TSO/E address space manager creates and manages a z/OS UNIX
message queue, which is used to facilitate communication between the caller
and the TSO/E address space. For more information about the z/OS UNIX
message queue, see “Communicating with programs running in the TSO/E
address spaces” on page 124.

CEATsoRequest API The CEA TSO/E address space manager provides the CEATsoRequest API,
which is a 64-bit C-language-based API that callers can use to request TSO/E
address space services. Use this API with Version 1 TSOASMGR services. For
more information about the API, see Chapter 12, “Using CEA TSO/E address
space services,” on page 129.

CEAmsgsnd API The CEA TSO/E address space manager provides the CEAmsgsnd API, which
is a 64-bit C-language-based API that callers can use to request TSO/E
address space services. Use this API with Version 2 TSOASMGR services. For
more information about the API, see Chapter 12, “Using CEA TSO/E address
space services,” on page 129.

CEAmsgrcv API The CEA TSO/E address space manager provides the CEAmsgrcv API, which is
a 64-bit C-language-based API that callers can use to request TSO/E address
space services. Use this API with Version 2 TSOASMGR services. For more
information about the API, see Chapter 12, “Using CEA TSO/E address space
services,” on page 129.

System prerequisites for the CEA TSO/E address space services
Table 13 on page 122 describes the system prerequisites for using the CEA TSO/E address space
services.

Table 13. System prerequisites

Prerequisite Description

CEA must be active. The CEA TSO/E address space manager runs in the CEA address
space, which is started automatically during z/OS initialization. If
your installation stopped CEA, restart it. Otherwise, the services
are not enabled.

To determine whether the CEA address space is active, enter the
following z/OS system console command:

D A,CEA

122 z/OS: z/OS MVS Callable Services for HLL

Table 13. System prerequisites (continued)

Prerequisite Description

The TRUSTED attribute must be
assigned to the CEA started task.

To allow the CEA TSO/E address space manager to access or
create any resource that it needs, the CEA started task requires
the TRUSTED(YES) attribute to be set on the RDEFINE STARTED
CEA.** definition.

If the TRUSTED attribute is not assigned to the CEA started task,
the CEA TSO/E address space manager services might not be
operational. For example, the services cannot create or access
z/OS UNIX message queues.

For more information about the RACF® TRUSTED attribute, see the
topic on associating started procedures and jobs with user IDs in
z/OS Security Server RACF System Programmer's Guide, and the
topic on using started procedures in z/OS Security Server RACF
Security Administrator's Guide.

The CEA address space must be
started in full function mode.

Because the CEATsoRequest API requires z/OS UNIX System
Services, CEA must be started in full function mode. For
information about starting CEA in full function mode, see the topic
about customizing CEA in z/OS Planning for Installation.

The external security manager
(ESM) must have sysplex-wide
scope.

To create address spaces on other systems in the sysplex, ensure
that the security identities of the caller are the same on each
system. Your installation must ensure that the REALM class
contains a SAFDFLT profile with an application name. In a RACF
system, issue a command similar to the following command:

RDEFINE REALM SAFDFLT APPLDATA('racf.ceatsoasmgr')

Callers must be authorized
to SAF resource profile
CEA.CEATSO.TSOREQUEST.

To access the CEATsoRequest API, callers must be
authorized by their security product to SAF resource profile
CEA.CEATSO.TSOREQUEST in the SERVAUTH class.

Ensure that callers are authorized to
the following SAF resource profiles
to allow them to send data to
systemname:

CEA.CEATSO.FLOW.systemname

To flow data between different systems in the sysplex, ensure that
the caller is authorized by the external security manager (ESM).
Because the security database is sysplex wide in scope, CEA can
check for both local and remote permissions on the system that
initiated the request. For example, to flow data between System A
and System B, the following profiles must permit CEA:

• CEA.CEATSO.FLOW.SYSTEMA
• CEA.CEATSO.FLOW.SYSTEMB

Users must be authorized to the
appropriate resources.

The user ID of the user for whom the caller is requesting TSO/E
address space services must be authorized to use TSO/E, OMVS,
and any other resources the address space requires.

Working with TSO/E address spaces started by CEA
By default, the CEA TSO/E address space manager can create a maximum of 10 concurrent address
spaces for a single user, and can create a maximum of 50 concurrent TSO/E address spaces. These
settings are configurable through the MAXSESSIONS and MAXSESSPERUSER operands provided for
the TSOASMGR statement in the CEAPRMxx parmlib member. For more information, see z/OS MVS
Initialization and Tuning Reference.

You can use the same processes that you use to work with other TSO/E address spaces when working
with the TSO/E address spaces that are created by the CEA TSO/E address space manager. For example,

Chapter 11. Introduction to CEA TSO/E address space services 123

you can issue the D TS z/OS console command to display information about TSO/E address spaces,
or you can issue the C u=userid,A=asid console command to cancel a TSO/E address space. For
the display command, the TSO/E address spaces will appear in the list, indistinguishable from the other
TSO/E address spaces. Note that TSO/E sessions started by CEA do not add to the count for the total
maximum sessions for VTAM®.

You can also display information about these TSO/E address spaces using SDSF, a REXX EXEC, or a CLIST.
Note that the application identifier that was specified when the TSO/E session was started is displayed
where you would typically expect to see a terminal ID.

For example, if the CEA TSO/E address space manager starts a TSO/E session for the z/OSMF ISPF task,
which has an application identifier equal to IZUIS, and you issue the REXX EXEC depicted in Figure 16 on
page 124, you will obtain the results depicted in Figure 17 on page 124:

/* REXX */
trace all
myapp = sysvar('systermid')
say myapp
exit 0

Figure 16. Sample REXX EXEC

Figure 17. Example illustrating that the REXX SYSTERMID is the same as the z/OSMF ISPF application
identifier

The following rules apply when working with remote TSO/E address spaces:

• When CEA sends data to a queue, it is sent to the remote queue.
• When CEA retrieves data, it is retrieved from the queue on the same system as the caller. This rule

applies to all callers.

It is possible for callers to use the new Version 2 APIs without first creating the TSO/E address space on a
remote system. In this situation, processing can determine that the TSO/E session is on the same system
and will create only a single queue. To use the new APIs in this way, however, the caller must invoke the
CEATSORequest () with a Version 2 CEATsoRequestStruct_s. Set the systemname field to either blank or
the local system name.

Communicating with programs running in the TSO/E address spaces
A z/OS UNIX message queue is the mechanism the CEA TSO/E address space manager uses for allowing
communications between the caller and TSO/E, ISPF, and other programs running in the TSO/E address
space. To communicate with the TSO/E address space, callers must read data from and write data to the
message queue.

124 z/OS: z/OS MVS Callable Services for HLL

The CEA TSO/E address space manager creates a z/OS UNIX message queue for each TSO/E address
space when the TSO/E address space is started, and anchors the message queue in the session table for
the duration of the session. The CEA TSO/E address space manager deletes the message queue when the
TSO/E address space ends.

Messages that typically are written to a 3270-type terminal are translated to UTF-8, converted to a JSON
format, and written to the z/OS UNIX message queue along with identifying header information and a
message type identifier. For a list of the message type identifiers, see Table 14 on page 125.

Table 14. Message type identifiers

Message Type ID Description

1 Control data for the client.

2 TSO/E data for the client.

3 ISPF data for the client.

4 thru 32768 Reserved for IBM.

32769 Control TSO/E data from the client.

32770 TSO/E data from the client.

32771 ISPF data from the client.

32772 thru 65535 Reserved for IBM.

65536 and above Available for use by applications.

For information about the JSON format used for TSO/E messages, see “ JSON format for TSO/E
messages” on page 125. For the JSON format used for ISPF messages, see the topic about JSON data
structures and variables used to communicate between ISPF and a client in z/OS ISPF Services Guide.

JSON format for TSO/E messages
TSO/E messages are written to the z/OS UNIX message queue using message type identifiers 2 and
32770 and are formatted as follows:

{“message-type”:{“VERSION”:“JSON-version",“data-type”:“data-value”}}

where:
message-type

Keyword that identifies the type of TSO/E message. Table 15 on page 125 lists and describes the
message types that can be used for message type identifiers 2 and 32770.

Table 15. Message types

Message Type Description Message Type ID

TSO MESSAGE Indicates that the system has created data or
a message to be displayed on the client. The
caller should read the message and display it
accordingly.

2

TSO PROMPT Indicates that the system requires a response
from the client.

2

TSO RESPONSE Indicates that a response was created by the
client in response to a prompt. Callers should
use this keyword when writing a response to the
message queue.

32770

Chapter 11. Introduction to CEA TSO/E address space services 125

JSON-version
A four-digit number that identifies the JSON version used to format the message.

data-type
Keyword that describes the type of data included in the data-value variable. Table 16 on page 126
lists and describes the data types that can be used for each TSO/E message type.

Table 16. Data types

Data Type Description Message Type

DATA Indicates that the data included in the data-value
variable is either a message from the system or a
response from the client. For this data type, the
data-value variable is a character string that can
contain up to 32,767 bytes.

TSO MESSAGE and TSO
RESPONSE

HIDDEN Indicates whether the client should hide or mask
the response. For this data type, the data-value
variable is a Boolean that can have the value
of either TRUE or FALSE. When TRUE, this tells
the client to hide or mask the response as it is
entered. Otherwise, the response will display as
it is entered.

TSO PROMPT

ACTION Indicates that the caller would like to interrupt
or end a process that is in progress. For this
data type, specify ATTN as the value for the data-
value variable.

Callers should use the CEATsoRequest API to
issue the CeaTsoAttn request type before using a
message to issue an attention interrupt. Use this
data type only if the CeaTsoAttn request fails.

TSO RESPONSE

Sample TSO/E messages written to the z/OS UNIX message queue
Figure 18 on page 126 provides an example that illustrates how TSO/E messages appear on the z/OS
UNIX message queue.

Note: The message type identifiers are not part of the JSON structure. They are included for illustration
purposes only.

2 {"TSO MESSAGE":{"VERSION":"0100","DATA":"IKJ56455I
IBMUSER LOGON IN PROGRESS AT 03:46:24 ON OCTOBER 12, 2011"}}
2 {"TSO MESSAGE":{"VERSION":"0100","DATA":"IKJ56951I NO BROADCAST MESSAGES
2 {"TSO MESSAGE":{"VERSION":"0100","DATA":"READY "}}
2 {"TSO PROMPT":{"VERSION":"0100","HIDDEN":"FALSE"}}
32770 {"TSO RESPONSE":{"VERSION":"0100","DATA":"TIME"}}
2 {"TSO MESSAGE":{"VERSION":"0100","DATA":"IKJ56650I TIME-03:46:50 AM.
CPU-00:00:00 SERVICE-775140 SESSION-00:00:26 OCTOBER 12,2011"}}
2 {"TSO MESSAGE":{"VERSION":"0100","DATA":"READY "}}
2 {"TSO PROMPT":{"VERSION":"0100","HIDDEN":"FALSE"}}
32770 {"TSO RESPONSE":{"VERSION":"0100","DATA":"ALLOC DA"}}
2 {"TSO MESSAGE":{"VERSION":"0100","DATA":"IKJ56700A ENTER DATA SET NAME
OR * - "}}
2 {"TSO PROMPT":{"VERSION":"0100","HIDDEN":"FALSE"}}
32770 {"TSO RESPONSE":{"VERSION":"0100","DATA":"'sys1.brodcast'"}}
2 {"TSO MESSAGE":{"VERSION":"0100","DATA":"IKJ56225I DATA SET SYS1.BRODCAST
ALREADY IN USE, TRY LATER+"}}
2 {"TSO MESSAGE":{"VERSION":"0100","DATA":"IKJ56225I DATA SET IS ALLOCATED
TO ANOTHER JOB OR USER"}}
2 {"TSO MESSAGE":{"VERSION":"0100","DATA":"READY "}}
2 {"TSO PROMPT":{"VERSION":"0100","HIDDEN":"FALSE"}}
32770 {"TSO RESPONSE":{"VERSION":"0100","DATA":"LOGOFF"}}

Figure 18. Sample TSO/E messages written to the queue

126 z/OS: z/OS MVS Callable Services for HLL

Reconnecting to CEA TSO/E address spaces
When a user requests to end a TSO/E session created by CEA, if the caller has not set the abnormal logoff
flag (CEATSO_ABLOGOFF) or the no reconnect flag (CEATSO_NORECONN), the CEA TSO/E address space
manager can intercept that request and place the session in a dormant state instead of ending it.

A dormant TSO/E session is a session that has been deactivated for communication through its message
queue but remains available at a TSO/E READY prompt for a period of time so that the user can reconnect
to it. Reconnecting to a dormant session is faster and uses fewer resources than constructing a new
session because the session resources are retained and reused when the user reconnects to the session.

To enable the CEA reconnect feature, which is disabled by default, specify non-zero values for the
RECONSESSIONS and RECONTIME statements in the TSOASMGR parmlib statement in the CEAPRMxx
parmlib member. The RECONSESSIONS statement indicates how many dormant sessions can be created
for each user, and the RECONTIME statement indicates the amount of time a dormant session remains a
candidate for reconnection.

Important: Only Version 1 sessions honor this setting in the CEAPRMxx member. Version 2 sessions do
not support the ability to reconnect. If you plan to allow the creation of version 2 remote sessions in the
sysplex, you must modify the CEAPRMxx member to turn off the reconnection capability.

The CEA TSO/E address space manager can create a maximum of three dormant sessions per user and
can keep a dormant session available for reconnection for a maximum of 23 hours, 59 minutes, and 59
seconds. The settings you specify for the TSOASMGR parmlib statement affect all of the TSO/E sessions
that are managed by the CEA TSO/E address space manager. For more information about the TSOASMGR
parmlib statement, see the topic about the CEAPRMxx parmlib member in z/OS MVS Initialization and
Tuning Reference.

When the CEA reconnect feature is enabled, to reconnect to a dormant session, the user must do the
following:

• Request to start a new TSO/E session before the specified RECONTIME expires. After the RECONTIME
expires, the session remains in a dormant state until CEA ends it; however, the session is no longer a
candidate for reconnection.

• Use the same security credentials and logon parameters that were used for the dormant session.

If no dormant sessions are available that satisfy these requirements, the CEA TSO/E address space
manager will create a new address space for the user.

Dormant TSO/E sessions do not interfere with the maximum number of sessions allowed. That is, if a user
tries to create a new session and the number of active and dormant sessions equal the maximum allowed,
the CEA TSO/E address space manager will end a dormant session and create a new session for the user.

Idle time versus RECONTIME
Each dormant TSO/E session has an idle application time, which is not adjustable, and a reconnect
time (RECONTIME). The idle time cannot exceed 15 minutes. Otherwise, the CEA TSO/E address space
manager will end the session regardless of reconnect time. To prevent your dormant sessions from ending
because of idle time, issue a ping request at least once every 15 minutes, which informs CEA that all of
the sessions for your application are still active. For more information, see “ CeaTsoPing - Sending a ping
on behalf of an application” on page 137.

TSO/E LOGON RECONNECT operand versus CEA reconnect
The TSO/E LOGON command is not supported for CEA-managed TSO/E sessions, and the capability
provided by the TSO/E LOGON RECONNECT operand is different from the CEA reconnect feature. For
more information about the TSO/E LOGON RECONNECT operand, see the topic about LOGON command
operands in z/OS TSO/E Command Reference.

Chapter 11. Introduction to CEA TSO/E address space services 127

128 z/OS: z/OS MVS Callable Services for HLL

Chapter 12. Using CEA TSO/E address space services

To use CEA TSO/E address space services, you issue CALLs from high-level language programs that invoke
the CEATsoRequest API. The API is a 64-bit C-language based interface that the CEA TSO/E address
space manager uses to receive requests from callers and to determine what action to take to process the
request.

The CEATsoRequest API supports the following request types:

• CeaTsoStart. Start a TSO/E address space.
• CeaTsoAttn. Send an attention interrupt to a TSO/E address space started by CEA.
• CeaTsoEnd. End a TSO/E address space started by CEA.
• CeaTsoPing. Ping a TSO/E address space that was started by CEA to prevent the address space from

ending because it has been idle too long.
• CeaTsoQuery. Obtain information about a specific TSO/E address space started by CEA.
• CeaTsoQueryApp. Obtain information about all the TSO/E address spaces that CEA started for an

application.

For more details about the request types, see “Understanding the request types” on page 134.

Invoking the CEATsoRequest API
The format to use to call the CEATsoRequest API follows:

#include <ceaytsor.h>
#include <ceaxrdef.h>

int32_t CEATsoRequest(CEATsoRequestStruct_t* RequestStruct,
 CEATsoQueryStruct_t* QueryStruct,
 CEATsoError_t* ErrorStruct)

The call format is the same for each request type. The only difference is the fields that are required for
each structure. For a description of each parameter and all the possible fields that can be included in each
structure, see “Parameters” on page 129. For a list of the fields that are required for each request type,
see “Understanding the request types” on page 134.

The CEATsoRequest API is used as a dynamically loaded library. The file ceasapit.x, which exists in /usr/
lib, contains the sidedeck needed to link your program to the DLL. The contents of the file are depicted in
Figure 19 on page 129.

IMPORT CODE64,'ceasapit.dll','CEATsoRequest'

Figure 19. Contents included in the ceasapit.x file

To compile your programs, the following header files are required: ceaytsor.h and ceaxrdef.h. The header
files are stored in partitioned data set SYS1.SIEAHDRV. The contents of the header files are provided in
“CEAYTSOR header file” on page 162 and “CEAXRDEF header file” on page 165.

Parameters
RequestStruct

Pointer to the CEATsoRequestStruct structure. The layout of the CEATsoRequestStruct structure
follows:

struct CEATsoRequestStruct_s {
 char ceatso_eyecatcher[8];

© Copyright IBM Corp. 1994, 2023 129

 uint32_t ceatso_version;
 uint32_t ceatso_requesttype;
 char ceatso_userid[8];
 uint32_t ceatso_asid;
 char ceatso_logonproc[8];
 char ceatso_command[80];
 uint16_t ceatso_numqueryreq;
 uint16_t ceatso_numqueryrslt;
 uint32_t ceatso_duration;
 uint32_t ceatso_msgqueueid;
 uint16_t ceatso_charset;
 uint16_t ceatso_codepage;
 uint16_t ceatso_screenrows;
 uint16_t ceatso_screencols;
 char ceatso_account[40];
 char ceatso_group[8];
 char ceatso_region[7];
 char ceatso_instance[1];
 char ceatso_apptag[8];
 char ceatso_stoken[8];
 uint32_t ceatso_ascbaddr;
 uint16_t ceatso_flags;
 uint16_t ceatso_index;
 char ceatso_systemname[8];
 CEAconn_t ceatso_connhandle;
 char rsvd1[64];
};
typedef struct CEATsoRequestStruct_s CEATsoRequestStruct_t;

The fields in the CEATsoRequestStruct structure are explained as follows:

ceatso_eyecatcher
Eye catcher. Specify ‘CEAYTSOR’.

ceatso_version
Structure version number.

ceatso_requesttype
Type of request. Specify one of the following values:

• CeaTsoStart
• CeaTsoAttn
• CeaTsoEnd
• CeaTsoPing
• CeaTsoQuery
• CeaTsoQueryApp

For more details about each request type, see “Understanding the request types” on page 134.

ceatso_userid
User ID of the authenticated user for which the TSO/E address space was created.

ceatso_asid
The address space ID (ASID) for the TSO/E address space.

ceatso_logonproc
Name of the TSO/E logon procedure to use to log onto the TSO/E address space.

ceatso_command
Unused.

ceatso_numqueryreq
Maximum number of sessions to query.

ceatso_numqueryrslt
Number of sessions found that satisfy the query.

ceatso_duration
Unused.

130 z/OS: z/OS MVS Callable Services for HLL

ceatso_msgqueueid
The ID of the z/OS UNIX message queue that is used for communications between the caller and
the TSO/E session.

ceatso_charset
Character set to use for the caller’s TSO/E address space. This value is used by the applications
running in the TSO/E address space to convert messages and responses from UTF-8 to EBCDIC.
The default character set, which is 697 decimal, will be used if zero is specified as the value.

ceatso_codepage
Codepage to use for the caller’s TSO/E address space. This value is used by the applications
running in the TSO/E address space to convert messages and responses from UTF-8 to EBCDIC.
The default codepage, which is 1047 decimal, will be used if zero is specified as the value.

ceatso_screenrows
Number of rows to be displayed on the screen. The default number of rows, which is 24, will be
used if zero is specified as the value.

ceatso_screencols
Number of columns to be displayed on the screen. The default number of columns, which is 80,
will be used if zero is specified as the value.

ceatso_account
TSO/E account number.

ceatso_group
TSO/E group name.

ceatso_region
Region size used for the TSO/E address space.

ceatso_instance
Number of active TSO/E address spaces that were started by CEA for the corresponding user ID.
In the session table, this value is stored with the oldest TSO/E session entry created for the user.

ceatso_apptag
Identifies the application that is responsible for creating the TSO/E address space.

ceatso_stoken
A token that uniquely identifies the TSO/E address space.

ceatso_ascbaddr
Address of the address space control block that was created for the TSO/E address space.

ceatso_flags
When ending a TSO/E session, you can set the following flags:

• CEATSO_ABLOGOFF (0x8000). If this flag is set, the CANCEL command will be issued to end
the TSO/E session regardless of whether the CEA reconnect feature is enabled. Otherwise, the
LOGOFF command will be issued or the TSO/E session will be placed in a dormant state as a
candidate for reconnection.

• CEATSO_NORECONN (0x4000). If this flag is set, the CEA TSO/E address space manager will
end the TSO/E session even if the CEA reconnect feature is enabled. That is, if the client allows
users to set this flag, users can force the CEA TSO/E address space manager to end a TSO/E
session even if your installation has enabled the reconnect feature. For more information about
the reconnect feature, see “Reconnecting to CEA TSO/E address spaces” on page 127.

When starting a TSO/E session, the CEA TSO/E address space manager sets the
CEATSO_RECONNECTD (0x2000) flag if the user was connected to a dormant TSO/E session
instead of a new session.

ceatso_index
The index value, STOKEN, and ASID together identify the TSO/E address space to the CEA TSO/E
address space services.

ceatso_systemname
The system name.

Chapter 12. Using CEA TSO/E address space services 131

ceatso_connhandle
The connection handle.

rsvd1
Reserved for future use.

QueryStruct
Pointer to the CEATsoQueryStruct structure. This structure is used to return query results for the
CeaTsoQuery and CeaTsoQueryApp request types. The layout of the CEATsoQueryStruct structure
follows:

struct CEATsoQueryStruct_s{
 char ceatsoq_eyecatcher[8];
 uint32_t ceatsoq_version;
 uint32_t ceatsoq_requesttype;
 char ceatsoq_userid[8];
 uint32_t ceatsoq_asid;
 char ceatsoq_logonproc[8];
 char ceatsoq_command[80];
 uint16_t ceatsoq_numqueryreq;
 uint16_t ceatsoq_numqueryrslt;
 uint32_t ceatsoq_duration;
 uint32_t ceatsoq_msgqueueid;
 uint16_t ceatsoq_charset;
 uint16_t ceatsoq_codepage;
 uint16_t ceatsoq_screenrows;
 uint16_t ceatsoq_screencols;
 char ceatsoq_account[40];
 char ceatsoq_group[8];
 char ceatsoq_region[7];
 char ceatsoq_instance[1];
 char ceatsoq_apptag[8];
 char ceatsoq_stoken[8];
 uint32_t ceatsoq_ascbaddr;
 uint16_t ceatsoq_flags;
 uint16_t ceatsoq_index;
 char rsvd1[8];
};
typedef struct CEATsoQueryStruct_s CEATsoQueryStruct_t;

The fields in the CEATsoQueryStruct structure are explained as follows:

ceatso_eyecatcher
Eye catcher. The value is ‘CEAYTSOQ’.

ceatso_version
Structure version number.

ceatso_requesttype
Type of request. The CeaTsoQueryStruct returns results for the CeaTsoQuery and
CeaTsoQueryApp request types. For more details about each request type, see “Understanding
the request types” on page 134.

ceatso_userid
User ID of the authenticated user for which the TSO/E address space was created.

ceatso_asid
The address space ID (ASID) for the TSO/E address space.

ceatso_logonproc
Name of the TSO/E logon procedure to use to log onto the TSO/E address space.

ceatso_command
Unused.

ceatso_numqueryreq
Maximum number of sessions to query.

ceatso_numqueryrslt
Number of sessions found that satisfy the query.

ceatso_duration
Unused.

132 z/OS: z/OS MVS Callable Services for HLL

ceatso_msgqueueid
The ID of the z/OS UNIX message queue that is used for communications between the caller and
the TSO/E session.

ceatso_charset
Character set to use for the caller’s TSO/E address space. This value is used by the applications
running in the TSO/E address space to convert messages and responses from UTF-8 to EBCDIC.
The default character set, which is 697 decimal, will be used if zero is specified as the value.

ceatso_codepage
Codepage to use for the caller’s TSO/E address space. This value is used by the applications
running in the TSO/E address space to convert messages and responses from UTF-8 to EBCDIC.
The default codepage, which is 1047 decimal, will be used if zero is specified as the value.

ceatso_screenrows
Number of rows to be displayed on the screen. The default number of rows, which is 24, will be
used if zero is specified as the value.

ceatso_screencols
Number of columns to be displayed on the screen. The default number of columns, which is 80,
will be used if zero is specified as the value.

ceatso_account
TSO/E account number.

ceatso_group
TSO/E group name.

ceatso_region
Region size used for the TSO/E address space.

ceatso_instance
Number of active TSO/E address spaces that were started by CEA for the corresponding user ID.
In the session table, this value is stored with the oldest TSO/E session entry created for the user.

ceatso_apptag
Identifies the application that is responsible for creating the TSO/E address space.

ceatso_stoken
A token that uniquely identifies the TSO/E address space.

ceatso_ascbaddr
Address of the address space control block that was created for the TSO/E address space.

ceatso_flags
When ending a TSO/E session, you can set the following flags:

• CEATSO_ABLOGOFF (0x8000). If this flag is set, the CANCEL command will be issued to end
the TSO/E session regardless of whether the CEA reconnect feature is enabled. Otherwise, the
LOGOFF command will be issued or the TSO/E session will be placed in a dormant state as a
candidate for reconnection.

• CEATSO_NORECONN (0x4000). If this flag is set, the CEA TSO/E address space manager will
end the TSO/E session even if the CEA reconnect feature is enabled. That is, if the client allows
users to set this flag, users can force the CEA TSO/E address space manager to end a TSO/E
session even if your installation has enabled the reconnect feature. For more information about
the reconnect feature, see “Reconnecting to CEA TSO/E address spaces” on page 127.

When starting a TSO/E session, the CEA TSO/E address space manager sets the
CEATSO_RECONNECTD (0x2000) flag if the user was connected to a dormant TSO/E session
instead of a new session.

ceatso_index
The index value, STOKEN, and ASID together identify the TSO/E address space to the CEA TSO/E
address space services.

rsvd1
Reserved for future use.

Chapter 12. Using CEA TSO/E address space services 133

ErrorStruct

Pointer to the CEATsoErrorStruct structure. This structure contains information about the results of
the request. The layout of the CEATsoErrorStruct structure follows:

struct CEATsoError_s {
 char eyeCatcher[8];
 uint32_t version;
 int32_t returnCode;
 uint32_t reasonCode;
 CEATsoDiag_t diag;
};
typedef struct CEATsoError_s CEATsoError_t;

The fields in the CEATsoErrorStruct structure are explained as follows:

eyeCatcher
Eye catcher. Specify ‘CEAIERRO’.

version
Structure version number.

returnCode
Return code. For more information about return codes, see “Return codes” on page 148.

reasonCode
Reason code. For more information about reason codes, see “Reason codes” on page 149.

diag
Diagnostic codes, which are mapped by a CEATsoDiag_t structure. This structure can contain up
to four diagnostic codes that provide more details about the failure. For more information about
diagnostic codes, see “Diagnostic codes” on page 158.

Requirements for callers
To send requests to the API, the environment of the caller must satisfy the following requirements:

• Minimum authorization: Problem state
• Dispatchable unit mode: Task
• Cross memory mode: PASN=HASN=SASN
• AMODE: 64-bit
• ASC mode: Primary
• Interrupt status: Enabled for I/O and external interrupts
• Locks: No locks held
• Linkage: Uses standard C linkage conventions
• Library path (LIBPATH): Must be set to include /usr/lib

Understanding the request types
This section describes the request types that are provided by the CEATsoRequest API. For a description of
the API, including the call format and parameters, see “Invoking the CEATsoRequest API” on page 129.

CeaTsoStart - Starting a new TSO/E session
Use the CeaTsoStart request type to start a new TSO/E address space or to reconnect to a dormant TSO/E
session. When you start a new TSO/E address space, a z/OS UNIX message queue is also created to
enable communication between the caller and the TSO/E address space. When you reconnect to a TSO/E
session, the existing message queue is reused.

The TSO/E address space is started or reconnected to using the security environment of the caller. If there
is task-level security, it is used for the address space. Otherwise, the address space security environment

134 z/OS: z/OS MVS Callable Services for HLL

is used. The user tokens (UTOKENs) from both environments are saved and are used to verify subsequent
requests.

Table 17 on page 135 lists the input callers must provide for each structure used for this request type and
the output that will be provided. No other fields in the structures are used. The value for the unused fields
is indeterminate. For more details about the fields listed for each structure, see “Parameters” on page
129.

Table 17. Input and output for each structure used for the CeaTsoStart request type

Structure Required Input Output

CeaTsoRequestStruct • eyecatcher
• ceatso_version
• ceatso_requesttype
• ceatso_logonproc
• ceatso_charset
• ceatso_codepage
• ceatso_screenrows
• ceatso_screencols
• ceatso_account
• ceatso_group
• ceatso_region
• ceatso_apptag

If the return code is
CEASUCCESS, the following fields
are returned:

• ceatso_userid
• ceatso_asid
• ceatso_msgqueueid
• ceatso_stoken
• ceatso_index
• ceatso_flags. The value is

tsor_reconnected if the CEA
TSO/E address space manager
connected the user to a
dormant TSO/E session.

CeaTsoQueryStruct Not used for this request type. Not used for this request type.

CeaTsoErrorStruct • eyeCatcher
• version

• returnCode
• reasonCode
• diag

CeaTsoAttn - Sending an attention interrupt to a TSO/E session
Use the CeaTsoAttn request type to send an attention interrupt to a TSO/E address space started by
CEA. An attention interrupt allows you to interrupt or end a process that is taking place. This request
type is useful if the client is stuck at a prompt or if you submitted a request to which the system is not
responding.

To perform this request, the CEA TSO/E address space manager extracts the caller's security UTOKEN
from the caller's environment and uses it when needed.

Table 18 on page 136 lists the input callers must provide for each structure used for this request type and
the output that will be provided. No other fields in the structures are used. The value for the unused fields
is indeterminate. For more details about the fields listed for each structure, see “Parameters” on page
129.

Note: Create the CEATsoRequest structure with the system name of the session to which you want to
send an attention interrupt. This will send an ATTN to the session on that system with the corresponding
connection handle.

Chapter 12. Using CEA TSO/E address space services 135

Table 18. Input and output for each structure used for the CeaTsoAttn request type

Structure Required Input Output

CeaTsoRequestStruct • eyecatcher
• ceatso_version
• ceatso_requesttype
• ceatso_asid
• ceatso_apptag
• ceatso_stoken
• ceatso_index

None

CeaTsoQueryStruct Not used for this request type. Not used for this request type.

CeaTsoErrorStruct • eyeCatcher
• version

• returnCode
• reasonCode
• diag

CeaTsoEnd - Ending a TSO/E session
Use the CeaTsoEnd request type to end a TSO/E address space started by CEA or to place the session into
a dormant state. When you end a TSO/E address space, all of the associated resources are returned to the
system, including the z/OS UNIX message queue that was used for communicating with the session.

If the CEA reconnect feature is enabled and the caller has not set the CEATSO_ABLOGOFF flag (0x8000)
or the CEATSO_NORECONN flag (0x4000), the CEA TSO/E address space manager will intercept the
CeaTsoEnd request and place the TSO/E session in a dormant state instead of ending it. In this case,
some of the session resources are retained and reused when the user reconnects to the session. For more
information about the reconnect feature, see “Reconnecting to CEA TSO/E address spaces” on page 127.

To perform the CeaTsoEnd request, the CEA TSO/E address space manager extracts the caller's security
UTOKEN from the caller's environment and uses it when needed.

Table 19 on page 137 lists the input callers must provide for each structure used for this request type and
the output that will be provided. No other fields in the structures are used. The value for the unused fields
is indeterminate. For more details about the fields listed for each structure, see “Parameters” on page
129.

Note: Create the CEATsoRequest structure with the name of the system to end. Code Version 2 in the
version field of the request structure (CEATsoRequestStruct_s). The session that is associated with the
connection handle will end.

136 z/OS: z/OS MVS Callable Services for HLL

Table 19. Input and output for each structure used for the CeaTsoEnd request type

Structure Required Input Output

CeaTsoRequestStruct • eyecatcher
• ceatso_version
• ceatso_requesttype
• ceatso_asid
• ceatso_apptag
• ceatso_stoken
• ceatso_index

Optional input:

• ceatso_flags

None

CeaTsoQueryStruct Not used for this request type. Not used for this request type.

CeaTsoErrorStruct • eyeCatcher
• version

• returnCode
• reasonCode
• diag

CeaTsoPing - Sending a ping on behalf of an application
Each TSO/E session has an idle application time that the CEA TSO/E address space manager uses to
determine if the application that is associated with the session is active. If the idle application time is
15 minutes, the application is considered to be inactive. In which case, the CEA TSO/E address space
manager ends all the CEA-managed TSO/E sessions for that application that have the same application
identifier.

To prevent TSO/E sessions from ending because of idle application time, callers can use the CeaTsoPing
request type to issue a ping request at least once every 15 minutes. Doing so informs CEA that the
application is still active, and causes the CEA TSO/E address space manager to reset the idle application
time for all the CEA-managed TSO/E sessions that have the same application identifier.

To perform this request, the CEA TSO/E address space manager extracts the caller's security UTOKEN
from the caller's environment and uses it when needed.

Table 20 on page 138 lists the input callers must provide for each structure used for this request type and
the output that will be provided. No other fields in the structures are used. The value for the unused fields
is indeterminate. For more details about the fields listed for each structure, see “Parameters” on page
129.

Note: Create the CEATsoREquest structure with the name of the system to ping. Use a Version 2 level
of the request structure. CEA will ping the sessions with that system name and ping the corresponding
sessions on the local system. You cannot use a wildcard for the system name to globally ping all systems
everywhere. You must ping each remote system explicitly.

Chapter 12. Using CEA TSO/E address space services 137

Table 20. Input and output for each structure used for the CeaTsoPing request type

Structure Required Input Output

CeaTsoRequestStruct • eyecatcher
• ceatso_version
• ceatso_requesttype
• ceatso_asid
• ceatso_apptag
• ceatso_stoken
• ceatso_index

None

CeaTsoQueryStruct Not used for this request type. Not used for this request type.

CeaTsoErrorStruct • eyeCatcher
• version

• returnCode
• reasonCode
• diag

CeaTsoQuery - Querying the TSO/E address spaces
Use the CeaTsoQuery request type to obtain information from the CEA TSO/E address space manager
about a TSO/E address space started by CEA. Two levels of the request structure, Version 1 and Version 2,
are supported.

To perform this request, the CEA TSO/E address space manager extracts the caller's security UTOKEN
from the caller's environment and uses it when needed.

Table 21 on page 138 lists the input that callers must provide for each structure that is used for Version 1
of this request type and the output that is provided. No other fields in the structures are used. The value
for the unused fields is indeterminate. For more details about the fields that are listed for each structure,
see “Parameters” on page 129.

Table 21. Input and output for each structure that is used for Version 1 of the CeaTsoQuery request type

Structure, Version 1 Required Input Output

CeaTsoRequestStruct • eyecatcher
• ceatso_version

Note: The version of this
structure must match that of
CeaTsoQueryStruct. Otherwise,
the request will fail.

• ceatso_requesttype
• ceatso_asid
• ceatso_apptag
• ceatso_stoken
• ceatso_index

None

138 z/OS: z/OS MVS Callable Services for HLL

Table 21. Input and output for each structure that is used for Version 1 of the CeaTsoQuery request type
(continued)

Structure, Version 1 Required Input Output

CeaTsoQueryStruct • eyecatcher
• ceatsoq_version

Note: The version of
this structure must match
that of CeaTsoRequestStruct.
Otherwise, the request will fail.

If the return code is
CEASUCCESS, the following fields
are returned:

• ceatsoq_userid
• ceatsoq_asid
• ceatsoq_logonproc
• ceatsoq_msgqueueid
• ceatsoq_charset
• ceatsoq_codepage
• ceatsoq_screenrows
• ceatsoq_screencols
• ceatsoq_account
• ceatsoq_group
• ceatsoq_region
• ceatsoq_apptag
• ceatsoq_stoken
• ceatsoq_index

CeaTsoErrorStruct • eyeCatcher
• version

• returnCode
• reasonCode
• diag

Table 22 on page 140 lists the input that callers must provide for each structure that is used for Version 2
of this request type and the output that is provided. No other fields in the structures are used. The value
for the unused fields is indeterminate. For more details about the fields that are listed for each structure,
see “Parameters” on page 129.

Chapter 12. Using CEA TSO/E address space services 139

Table 22. Input and output for each structure that is used for Version 2 of the CeaTsoQuery request type

Structure, Version 2 Required Input Output

CeaTsoRequestStruct • eyecatcher
• ceatso_version

Note: The version of this
structure must match that of
CeaTsoQueryStruct. Otherwise,
the request will fail.

• ceatso_requesttype
• ceatso_connhandle
• ceatsor_flags

Note: This field must be
cleared.

• ceatsor_systemname

Note: This field must be
cleared.

None

CeaTsoQueryStruct • eyecatcher
• ceatsoq_version

Note: The version of
this structure must match
that of CeaTsoRequestStruct.
Otherwise, the request will fail.

If the return code is
CEASUCCESS, the following fields
are returned:

• ceatsoq_userid
• ceatsoq_asid

Note: This is the address
space identifier of the address
space that was created on the
system that is indicated by
ceatso_systemname.

• ceatsoq_logonproc
• ceatsoq_charset
• ceatsoq_codepage
• ceatsoq_screenrows
• ceatsoq_screencols
• ceatsoq_account
• ceatsoq_group
• ceatsoq_region
• ceatsoq_apptag
• ceatsoq_stoken
• ceatsoq_index
• ceatsoq_systemname

Note: This is the system on
which the session or address
space was created.

• ceatsoq_connhandle

140 z/OS: z/OS MVS Callable Services for HLL

Table 22. Input and output for each structure that is used for Version 2 of the CeaTsoQuery request type
(continued)

Structure, Version 2 Required Input Output

CeaTsoErrorStruct • eyeCatcher
• version

• returnCode
• reasonCode
• diag

CeaTsoQueryApp - Querying TSO/E sessions by application
Use the CeaTsoQueryApp request type to obtain information from the CEA TSO/E address space manager
about all the TSO/E address spaces that CEA started that are associated with a specific application
identifier. Two levels of the request structure, Version 1 and Version 2, are supported.

To perform this request, the CEA TSO/E address space manager extracts the caller's security UTOKEN
from the caller's environment and uses it when needed.

Table 23 on page 141 lists the input that callers must provide for each structure that is used for Version 1
of this request type and the output that is provided. No other fields in the structures are used. The value
for the unused fields is indeterminate. For more details about the fields that are listed for each structure,
see “Parameters” on page 129.

Attention: It is the caller's responsibility to free the storage that is associated with the query
structures that are returned.

Table 23. Input and output for each structure used for Version 1 of the CeaTsoQueryApp request type

Structure, Version 1 Required Input Output

CeaTsoRequestStruct • eyecatcher
• ceatso_version
• ceatso_requesttype
• ceatso_numqueryreq
• ceatso_apptag

If the return code is
CEASUCCESS, the following field
is returned:

• ceatso_numqueryrslt

Chapter 12. Using CEA TSO/E address space services 141

Table 23. Input and output for each structure used for Version 1 of the CeaTsoQueryApp request type
(continued)

Structure, Version 1 Required Input Output

CeaTsoQueryStruct None If the return code is
CEASUCCESS, an array of query
structures are allocated and the
following fields are returned for
each:

• eyecatcher
• ceatsoq_version
• ceatsoq_userid
• ceatsoq_asid
• ceatsoq_logonproc
• ceatsoq_msgqueueid
• ceatsoq_charset
• ceatsoq_codepage
• ceatsoq_screenrows
• ceatsoq_screencols
• ceatsoq_account
• ceatsoq_group
• ceatsoq_region
• ceatsoq_apptag
• ceatsoq_stoken
• ceatsoq_index

CeaTsoErrorStruct • eyeCatcher
• version

• returnCode
• reasonCode
• diag

Table 24 on page 142 lists the input that callers must provide for each structure that is used for Version 2
of this request type and the output that is provided. No other fields in the structures are used. The value
for the unused fields is indeterminate. For more details about the fields that are listed for each structure,
see “Parameters” on page 129.

Attention: It is the caller's responsibility to free the storage that is associated with the query
structures that are returned.

Table 24. Input and output for each structure used for Version 2 of the CeaTsoQueryApp request type

Structure, Version 2 Required Input Output

CeaTsoRequestStruct • eyecatcher
• ceatso_version
• ceatso_requesttype
• ceatso_numqueryreq
• ceatso_flags
• ceatso_systemname
• ceatso_apptag

If the return code is
CEASUCCESS, the following field
is returned:

• ceatso_numqueryrslt

142 z/OS: z/OS MVS Callable Services for HLL

Table 24. Input and output for each structure used for Version 2 of the CeaTsoQueryApp request type
(continued)

Structure, Version 2 Required Input Output

CeaTsoQueryStruct None If the return code is
CEASUCCESS, an array of query
structures are allocated and the
following fields are returned for
each:

• eyecatcher
• ceatsoq_version
• ceatsoq_userid
• ceatsoq_asid
• ceatsoq_logonproc
• ceatsoq_charset
• ceatsoq_codepage
• ceatsoq_screenrows
• ceatsoq_screencols
• ceatsoq_account
• ceatsoq_group
• ceatsoq_region
• ceatsoq_apptag
• ceatsoq_stoken
• ceatsoq_index
• ceatsoq_connhandle
• ceatsoq_systemname

CeaTsoErrorStruct • eyeCatcher
• version

• returnCode
• reasonCode
• diag

Invoking the CEAmsgsnd API
This API provides the caller with the ability to send data to the TSO/E address space that was created with
a prior CEATsoRequest(requettype=start) invocation.

To enable easy conversion from the msgsnd operation to CEA processing, the new CEAmsgsnd API uses
many of the same parameters.

Int msgsnd(int msqid, const void *msgp, size_t msgsz, int msgflg);

The format to use to call the CEAmsgsnd API follows:

int32_t CEAmsgsnd(CEAconn_t *connecthandle,
 CEAmsgopt_t *options,
 const void *msgp,
 size_t msgsz,
 int msgflg,
 CEATsoError_t *ceaerro);

Chapter 12. Using CEA TSO/E address space services 143

This API is intended to be used to send information to the TSO/E address space that is associated with
the connection handle. If an existing application is to be converted to use this API, it is intended to be
used in place of msgsnd with minor modifications as described in the parameters descriptions.

Parameters
connecthandle

Pointer to a connection handle which is returned by the CEATsoRequest(requesttype=Start) that
created the TSO/E address space. This is the handle to the session to which data will be sent. This
opaque object requires no manipulation by the caller.

Direction: Input

options
Pointer to the option structure which is constructed by the caller and used to guide specific behaviors
for CEA in performance of the API function. This structure, although required, is reserved by IBM and
is not used. It is expected that the structure is provided and completely initialized to zeros.

Direction: Input

msgp
Pointer to the structure which is the buffer where the message to be sent is to be placed. This buffer
structure is the same format as required by the msgsnd() function. The caller must allocate storage for
this structure.

Direction: Input

msgsz
The value is the size of the buffer to which the sent data is placed.

Direction: Input

msgflg
The message flag field contains the value of flags as defined by z/OS UNIX services. It is used by the
message services in the same manner as the msgsnd() operation.

Direction: Input

ceaerro
Pointer to the structure which contains the results of the call to the services. It is expected that the
caller:

• Allocates the storage for this structure
• Sets the eyecatcher
• Sets the version

The ceaerro parameter can return z/OS UNIX errno and errnojrs. Definitions of the #defines for these
values are in the header file ceaytsor.h.

Direction: Input/Output

Requirements for callers
To send requests to the API, the environment of the caller must satisfy the following requirements, which
are the same as those for CEATsoRequest().

• Minimum authorization: Problem state
• Dispatchable unit mode: Task
• Cross memory mode: PASN=HASN=SASN
• AMODE: 64-bit
• ASC mode: Primary
• Interrupt status: Enabled for I/O and external interrupts

144 z/OS: z/OS MVS Callable Services for HLL

• Locks: No locks held
• Linkage: Uses standard C linkage conventions
• Library path (LIBPATH): Must be set to include /usr/lib

Restrictions
None defined.

Examples
SYS1.SAMPLIB(CEASAMP)

Invoking the CEAmsgrcv API
This API provides the caller with the ability to receive data from the TSO/E address space created with a
prior CEATsoRequest(requettype=start) invocation. A companion API, CEAmsgsnd, is added to allow the
caller to send data to that address space.

To enable easy conversion from the msgrcv operation to CEA processing, the new CEAmsgrcv API uses
many of the same parameters.

The format to use to call the CEAmsgrcv API follows:

int32_t CEAmsgrcv(CEAconn_t *connecthandle,
 CEAmsgopt_t *options,
 void *msgp,
 size_t msgsz,
 long int msgtype,
 int msgflg,
 CEATsoError_t *ceaerro);

This API retrieves messages from the TSO/E address space that is associated with the connection handle.
If an existing application is to be converted to use this API, the API can be used in place of msgrcv with
minor modifications as described in the parameter descriptions.

Parameters
connecthandle

Pointer to the connection handle which is returned by the CEATsoRequest(requesttype=Start) that
created the TSO/E address space the caller would like to receive data from. This is an opaque object
that requires no manipulation by the caller.

Direction: Input

options
Pointer to the option structure which is constructed by the caller and used to guide specific behaviors
for CEA in performance of the receive function. This structure, although required, is reserved, but not
used. It is expected that the structure is provided and completely initialized to zeros.

Direction: Input

msgp
Pointer to the structure which is the buffer where the message to be returned is to be placed. This
buffer structure is the same format as required by the function msgrcv(). The caller must allocate
storage for this structure.

Direction: Input/Output

msgsz
This value is the size of the buffer where the data from the operation is to be placed.

Direction: Input

Chapter 12. Using CEA TSO/E address space services 145

msgtype
This value is the type of message that the caller would like the function to retrieve and place into the
buffer provided.

Direction: Input

msgflg
The message flag field contains the value of flags as defined by the existing services. It is used by the
message services in the same manner as required by the msgrcv operation.

Direction: Input

ceaerro
Pointer to the structure that contains the results of the call to the services. It is expected that the
caller:

• Allocates the storage for this structure
• Sets the eyecatcher
• Sets the version

The ceaerro parameter can return z/OS UNIX errno and errnojrs. Definitions of the #defines for these
values are in the header file ceaytsor.h.

Direction: Input/Output

Requirements for callers
To send requests to the API, the environment of the caller must satisfy the following requirements, which
are the same as those for CEATsoRequest().

• Minimum authorization: Problem state
• Dispatchable unit mode: Task
• Cross memory mode: PASN=HASN=SASN
• AMODE: 64-bit
• ASC mode: Primary
• Interrupt status: Enabled for I/O and external interrupts
• Locks: No locks held
• Linkage: Uses standard C linkage conventions
• Library path (LIBPATH): Must be set to include /usr/lib

Restrictions
None defined.

Examples
SYS1.SAMPLIB(CEASAMP)

Invoking the CEAWSNDT API
This API is used by callers running in a TSO/E address space that was created by a caller using the
TSOASMgr services. That is, this address space must have been started by a CEATSORequest() invocation.

To enable easy conversion from the msgsnd operation to CEA processing, the new CEAWSNDT API uses
many of the same parameters.

Int msgsnd(int msqid, const void *msgp, size_t msgsz, int msgflg);

146 z/OS: z/OS MVS Callable Services for HLL

The format to use to call the CEAWSNDT API follows:

int32_t CEAWSNDT(
 CEAmsgopt_t **options,
 const void **msgp,
 int msgsz,
 int msgflg,
 CEATsoError_t **ceaerro);

This API is intended to be used to send information in JSON format to the TSO/E address space that
is associated with the connection handle. If an existing application is to be converted to use this API,
it is intended to be used in place of msgsnd with minor modifications as described in the parameter
descriptions.

Parameters
options

Pointer to pointer to the option structure which is constructed by the caller and used to guide specific
behaviors for CEA in performance of the API function. This structure, although required, is reserved,
but not used. It is expected that the structure is provided and completely initialized to zeros.

Direction: Input

msgp
Pointer to pointer to the structure which is the buffer where the message to be sent is to be placed.
This buffer structure is the same format as required by the msgsnd() function. The caller must allocate
storage for this structure.

Direction: Input

msgsz
The size of the buffer where the data for the operation is to be placed.

Direction: Input

msgflg
The message flag field contains the value of flags as defined by z/OS UNIX services. It is used by the
message services in the same manner as required by the msgsnd() operation.

Direction: Input

ceaerro
Pointer to pointer of the structure that contains the results of the call to the services. It is expected
that the caller:

• Allocates the storage for this structure
• Sets the eyecatcher
• Sets the version

The ceaerro parameter can return z/OS UNIX errno and errnojrs. Definitions of the #defines for these
values are in the header file ceaytsor.h.

Direction: Input/Output

Requirements for callers
To send requests to the API, the environment of the caller must satisfy the following requirements.

• Minimum authorization: Problem
• Dispatchable unit mode: Task
• Cross memory mode: PASN=HASN=SASN
• AMODE: 31-bit
• ASC mode: Primary

Chapter 12. Using CEA TSO/E address space services 147

• Interrupt status: Enabled for I/O and external interrupts
• Locks: No locks held
• Linkage: SYS1.CSSLIB(CEACSS)

Restrictions
None defined.

Examples
SYS1.SAMPLIB(CEAWAPI)

Return, reason, and diagnostic codes
When the CEATsoRequest API returns control to your program, the CEATsoErrorStruct structure contains
the return, reason, and diagnostic codes that you can use to identify more information about any errors
that occurred.

The codes the API returns are described in the following sections:

• “Return codes” on page 148
• “Reason codes” on page 149
• “Diagnostic codes” on page 158

Return codes
Table 25 on page 148 lists and describes the return codes that are typically returned after the
CEATsoRequest API processes a request.

Table 25. Return codes

Hexadecimal Return
Code Equate Symbol, Meaning, and Action

FFFFFFFF Equate symbol: CEAFAILURE

Meaning: One or more errors occurred during CEATSOREQUEST processing.

Action: Check the reason and diagnostic codes to obtain additional
information, and correct any errors.

FFFFFFFE Equate symbol: CEA_ENVIRONMENTAL_ERROR

Meaning: The requested API is not available on this system.

Action: Contact system programmer to find the system with the correct level
of TSO Address space manager services.

148 z/OS: z/OS MVS Callable Services for HLL

Table 25. Return codes (continued)

Hexadecimal Return
Code Equate Symbol, Meaning, and Action

00000000 Equate symbol: CEASUCCESS

Meaning: No errors occurred during CEATSOREQUEST processing. The
meaning of a CEASUCCESS return code for each request type follows:

• CeaTsoStart. A new TSO/E address space was started, or the user was
connected to a dormant TSO/E session. The caller can now read from and
write to the z/OS UNIX message queue.

• CeaTsoAttn. The attention interrupt request was sent to the specified
TSO/E address space.

• CeaTsoEnd. The specified TSO/E address space was ended or placed into
a dormant state. If the session was ended, all associated resources were
returned to the system. Otherwise, the resources were retained so that they
can be reused when the user reconnects to the session.

• CeaTsoPing. The ping request was performed, and the timestamp for the
specified TSO/E session was updated.

• CeaTsoQuery. The query completed with no errors.
• CeaTsoQueryApp. The query by application completed with no errors. An

array of query structures were allocated and populated with information
about the sessions.

Action: None.

00000004 Equate symbol: CEAWARNING

Meaning: One or more warnings occurred during CEATSOREQUEST
processing.

Action: Check the reason and diagnostic codes to obtain additional
information, and correct any errors.

Reason codes
Table 26 on page 149 lists and describes the reason codes that are typically returned after the
CEATsoRequest API processes a request. Additional reason codes might also be returned from services
that obtained an unexpected error. Those reason codes are not listed in the table.

Table 26. Reason codes

Hexadecimal Reason
Code Equate Symbol, Meaning, and Action

0452x Equate symbol: UNIXSDDFailure

Meaning: z/OS UNIX service to set the dub default value has failed. As a
result, the message queues that are constructed on remote systems cannot
be created in the correct security context. CEA cannot process remote
TSOASMgr requests.

Action: Internal Error. Determine why the z/OS UNIX service has failed. CEA
ctraces the errno, errnojr in the dump. Reg 2 also contains the ret code, reg3
has the rsn code.

Chapter 12. Using CEA TSO/E address space services 149

Table 26. Reason codes (continued)

Hexadecimal Reason
Code Equate Symbol, Meaning, and Action

0453x Equate symbol: BadConnHandle

Meaning: An attempt was made to use an unrecognized connection handle.
Either the eyecather or length is not valid.

Action: Internal Error. This is a version mismatch problem with the
connection handle or a bad pointer problem with the caller.

0454x Equate symbol: BadASAElement

Meaning: The element on the work queue is not as expected.

Action: Internal Error. Contact IBM Support

0455x Equate symbol: BadCurrentElement

Meaning: The element on the work queue is not as expected.

Action: Internal Error. Contact IBM Support.

0456x Equate symbol: AlreadyFree

Meaning: Storage block was freed for a second time.

Action: Internal Error. Contact IBM Support.

0457 Equate symbol: QueuePermissionErr

Meaning: z/OS UNIX found permission errors with queues

Action: Internal Error. Contact IBM Support.

118 Equate symbol: CEANOTYETIMPLEMENTED

Meaning: The requested function is not available on this system.

Action: Contact the system programmer to find a system with the correct
level of TSO Address space manager services.

34C Equate symbol: CEAOBJECTTYPEBADVERSION

Meaning: The version of the parameter structure is not supported.

Action: Reissue the API with the correct version.

1000 Equate symbol: CEATSOMSGQSERVICEFAILED

Meaning: Error occurred during CEATSOREQUEST processing: z/OS UNIX
message queue processing failed.

Action: Ensure that the CEA started task is TRUSTED. For more information
about the RACF TRUSTED attribute, see the topic on associating started
procedures and jobs with user IDs in z/OS Security Server RACF System
Programmer's Guide, and the topic on using started procedures in z/OS
Security Server RACF Security Administrator's Guide.

150 z/OS: z/OS MVS Callable Services for HLL

Table 26. Reason codes (continued)

Hexadecimal Reason
Code Equate Symbol, Meaning, and Action

1001 Equate symbol: CEATSONOUSERIDFOUND

Meaning: Error occurred during CEATSOREQUEST processing: An input user
ID value was expected, but not received.

Action: Specify a user ID.

1002 Equate symbol: CEATSOMATCHMISSING

Meaning: Error occurred during CEATSOREQUEST processing: A user ID was
expected, but not found in the session table.

Action: Ensure that the user ID, STOKEN, and index specified are valid.

1003 Equate symbol: CEATSOSTOKENMISSING

Meaning: Error occurred during CEATSOREQUEST processing: An input
STOKEN value was expected, but not received.

Action: Specify a STOKEN.

1004 Equate symbol: CEATSOINDEXOUTOFRANGE

Meaning: Error occurred during CEATSOREQUEST processing: Input table
index is too big or too small for the session table.

Action: Specify a valid index. The index for the TSO/E address space should
be between 1 and 2000.

1005 Equate symbol: CEATSOStartFAILED

Meaning: Error occurred during CEATSOREQUEST processing: CEA could not
create a TSO/E address space.

Action: Ensure that sufficient system resources are available to create the
TSO/E address space, and verify that the user is authorized to create address
spaces.

1006 Equate symbol: CEATSOATTNFAILED

Meaning: Error occurred during CEATSOREQUEST processing: CEA could not
issue a TSO/E attention interrupt.

Action: Check the diagnostic codes to obtain additional information, and
correct any errors.

1007 Equate symbol: CEATSOENDFAILED

Meaning: Error occurred during CEATSOREQUEST processing: CEA could not
end a TSO/E address space.

Action: Check the diagnostic codes to obtain additional information, and
correct any errors.

Chapter 12. Using CEA TSO/E address space services 151

Table 26. Reason codes (continued)

Hexadecimal Reason
Code Equate Symbol, Meaning, and Action

1008 Equate symbol: CEATSOQUERYFAILED

Meaning: Error occurred during CEATSOREQUEST processing: An attempt to
query the session table failed.

Action: Ensure that the input values you specified are valid. If the input
values are valid, check the diagnostic codes to obtain additional information.
Correct any errors.

1009 Equate symbol: CEATSOQUERYAPPFAILED

Meaning: Error occurred during CEATSOREQUEST processing: An attempt to
query the session table for the TSO/E sessions that are associated with a
specific application failed.

Action: Ensure that the application identifier you specified is valid. If the
application identifier is valid, check the diagnostic codes to obtain additional
information. Correct any errors.

100A Equate symbol: CEATSOPINGFAILED

Meaning: Error occurred during CEATSOREQUEST processing: Ping
processing failed. Typically, this error occurs when the ping request is not
issued from the security environment where the TSO/E address space was
started or the user is not authorized to the application identified when the
TSO/E address space was created.

Note that the TSO/E address space is started or reconnected to using the
security environment of the caller. If there is task-level security, it is used
for the address space. Otherwise, the address space security environment is
used. The user tokens (UTOKENs) from both environments are saved and are
used to verify subsequent requests.

Action: Issue the ping request from the security environment that was used
when the TSO/E address space was started, and ensure that the user is
authorized to the application specified when the address space was created.

100B Equate symbol: CEATSOENDSENDLOGOFFFAILED

Meaning: Error occurred during CEATSOREQUEST processing: The CANCEL
command was issued to end the TSO/E address space because the LOGOFF
command failed.

Action: None.

100C Equate symbol: CEATSOBadAmode

Meaning: Error occurred during CEATSOREQUEST processing: The call was
invoked in the wrong AMODE. AMODE 64 is required.

Action: Invoke the API in AMODE 64.

100D Equate symbol: CEATSODisabled

Meaning: Error occurred during CEATSOREQUEST processing: The
dispatchable unit is not enabled.

Action: Ensure that the dispatchable unit is enabled.

152 z/OS: z/OS MVS Callable Services for HLL

Table 26. Reason codes (continued)

Hexadecimal Reason
Code Equate Symbol, Meaning, and Action

100E Equate symbol: CEATSONotTaskMode

Meaning: Error occurred during CEATSOREQUEST processing: The
CEATsoRequest API was not invoked under task mode. The dispatchable unit
mode must be task.

Action: Ensure that the dispatchable unit is a task.

100F Equate symbol: CEATSOFRRSet

Meaning: Error occurred during CEATSOREQUEST processing: The
CEATsoRequest API was invoked under a functional recovery routine (FRR).
No FRRs are allowed.

Action: Ensure that no FRRs are invoked in your environment.

1010 Equate symbol: CEATSOLocked

Meaning: Error occurred during CEATSOREQUEST processing: The caller is
holding a system lock. No system locks are allowed.

Action: Release the lock.

1011 Equate symbol: CEATSOXMMode

Meaning: Error occurred during CEATSOREQUEST processing: The
CEATsoRequest API was invoked while running cross memory mode, which
is not allowed. The API must be invoked in primary mode.

Action: Invoke the API in primary mode.

1013 Equate symbol: CEATsoReqStructFieldBad

Meaning: Error occurred during CEATSOREQUEST processing: Input provided
for a field in the CEATsoRequestStruct structure is not valid.

Action: To identify the field that is not valid, see the diagnostic codes.

1014 Equate symbol: CEATsoBadQueryEyecatcher

Meaning: Error occurred during CEATSOREQUEST processing: The eye
catcher specified for the query structure is not valid. The expected value is
CEAYTSOQ.

Action: Specify CEAYTSOQ as the value for the eye catcher field.

1015 Equate symbol: CEATsoBadQueryVersion

Meaning: Error occurred during CEATSOREQUEST processing: The version
specified for the query structure is not valid.

Action: Specify a valid version number. The version numbers allowed are
specified in the ceaytsor.h header file.

1016 Equate symbol: CEABadCommRequest

Meaning: Communications server called w/bad request.

Action: Internal error.

Chapter 12. Using CEA TSO/E address space services 153

Table 26. Reason codes (continued)

Hexadecimal Reason
Code Equate Symbol, Meaning, and Action

1017 Equate symbol: CEABADBRANCHFORCOMMSRVR

Meaning: Bad branch abend for non-owned request to server

Action: Internal error.

1018 Equate symbol: CEACOMMServerABENDED

Meaning: Communications queue task error

Action: Internal error.

101A Equate symbol: CEAXCFSENDPROBLEM

Meaning: Unable to use XCF services

Action: Verify that XCF services are available in the sysplex between the two
systems involved in the call.

101B Equate symbol: CEANOTARGETSYSTEM

Meaning: Unable to find system requested.

Action: Specify your request with the correct name of the target system and
try again.

101c Equate symbol: CEAXCFFAILURE

Meaning: Failure with XCF services

Action: XCF services are unavailable. Consult your installation.

101D Equate symbol: CEAMSGTYPEERROR

Meaning: Message received with unknown type

Action: Internal error.

101E Equate symbol: CEAXCFRECVPROBLEM

Meaning: Unexpected receive failure return code on XCF receive.

Action: Internal error. Check the CEA CTRACE. Determine the status of XCF
services.

101F Equate symbol: CEAXCFRCVNONE

Meaning: No messages received from XCF

Action: Retry the request. It is possible the target system is no longer there.
Receive returncode and reasoncodes are in diag1 and diag2 respectively.

1020 Equate symbol: CEAXCFRCVFAILURE

Meaning: Unusual failure with XCF Receive

Action: Determine the status of XCF services.

154 z/OS: z/OS MVS Callable Services for HLL

Table 26. Reason codes (continued)

Hexadecimal Reason
Code Equate Symbol, Meaning, and Action

1021 Equate symbol: CEAXCFTIMEOUT

Meaning: XCF timed out waiting on response

Action: Diag1 has the response code 1 from XCF

1022 Equate symbol: CEAXCFDOWNLEVEL

Meaning: XCF down level response

Action: Diag1 has response code 1 from XCF; Diag2 has response code 2
from XCF

1023 Equate symbol: CEANOTARGET

Meaning: No target system for XCF request

Action: Most likely cause is the system is not online, or CEAXCF server is
not running on that system. Diag1 has response code 1 from XCF; Diag2 has
response code 2 from XCF.

1024 Equate symbol: CEAXCFUNEXPECTED

Meaning: Unexpected XCF condition

Action: Diag1 has response code 1 from XCF; Diag2 has response code 2
from XCF

1025 Equate symbol: CEANOREMOTEAUTH

Meaning: No Authority to launcher on remote system.

Action: Check security sessions of the caller. Diag1 has RACF RC1; Diag2 has
SAF RC; Diag2 has SAF RSN code

1026 Equate symbol: CEAGETSECURITYOBJECFAILED

Meaning: Cannot get local security object

Action: Diag1 has RACF RC1; Diag2 has SAF RC; Diag2 has SAF RSN code

1027 Equate symbol: CEAREMOTEREQUESTNOTACCEPTED

Meaning: Request not recognized for remote processing

Action: The requested action can not be performed on the target (remote)
system, adjust the application accordingly.

1028 Equate symbol: CEABADLAUNCHREQUEST

Meaning: Internal PC request code not recognized.

Action: Internal error.

1029 Equate symbol: CEATSOBadRequestVersion

Meaning: Expected V2 request, not V1.

Action: Specify the request again with the correct version.

Chapter 12. Using CEA TSO/E address space services 155

Table 26. Reason codes (continued)

Hexadecimal Reason
Code Equate Symbol, Meaning, and Action

102A Equate symbol: CEAUNIXSERVICEFAILED

Meaning: z/OS UNIX service failed.

Action: , check diag1 and diag2 for the z/OS UNIX errno and errnoJr.

102B Equate symbol: CEATSOMSGSENDFAILED

Meaning: Problems with the ENQ environment.

Action: Diag1 indicated ENQ or DEQ; Diag2 indicates method returncode

102C Equate symbol: CEASESSIONLOOKUPFAILED

Meaning: User is not known to TSOASMGR

Action: Specify the request with a known user.

102D Equate symbol: CEASESSIONQUERYFAILED

Meaning: User is not known to the TSOASMGR.

Action: Specify the request with a known user.

102E Equate symbol: CEANOREMOTEID

Meaning: Unable to create remote security identity. The userid is not known
on that system.

Action: Diag1 has RACF rc; diag2 SAF RC; diag2 SAF rsn

102F Reserved

1030 Equate symbol: CEASENDBADENV

Meaning: Recovery entered for CEAsndmsg

Action: Internal error.

1031 Equate symbol: CEAXCFSEND2PROBLEM

Meaning: Unable to send a msgsnd() to remote

Action: Check for other trace entries in the CEA CTRACE.

1032 Equate symbol: CEAXCFRECV2PROBLEM

Meaning: Unable to send a msgrcv() to remote

Action: Check for other trace entries in the CEA CTRACE

1033 Reserved

1034 Equate symbol: CEATSOWRAPPERERROR

Meaning: Recovery entered for wrapper modules for TSO

Action: Internal error.

156 z/OS: z/OS MVS Callable Services for HLL

Table 26. Reason codes (continued)

Hexadecimal Reason
Code Equate Symbol, Meaning, and Action

1035 Equate symbol: CEABADCONNHANDLE

Meaning: Connection handle bad and unusable.

Action: Specify request with a good connection handle.

1036 Equate symbol: CEABADCALLER

Meaning: Send service was called in an incorrect state.

Action: Internal error

1037 Equate symbol: CEANODATAINTBUFF

Meaning: Internal buffer error in CEA’s XCF Communication task.

Action: Internal error

1038 Equate symbol: CEANOANSAREA

Meaning: Internal buffer error in answer area in the COMM task.

Action: Internal error.

1039 Equate symbol: CEABADLOCALSECURITYID

Meaning: The security identifier for the security database on this system is
not available.

Action: This most likely is due to the SAFDFLT profile in the REALM class
not be appropriately established. See sample security setup JCL CEASEC
member. Consult Security administrator for proper setup for your installation.

103A Equate symbol: CEATARGETSECBAD

Meaning: The security identifier for the security database on the remote
system is not available.

Action: This most likely is due to the SAFDFLT profile in the REALM class
not be appropriately established. See sample security setup JCL CEASEC
member. Consult Security administrator for proper setup for your installation.

103B Equate symbol: CEASECMISMATCH

Meaning: The system has determined that the security database being
used is not the same on both systems involved in the remote TSOASMGR
conversation.

Action: You are not able to create a session on the remote system. Please
consult your security administrator if you believe this is in error.

103c Equate symbol: CEABADMSGOPTIONS

Meaning: The data structure has been filled out incorrectly. For the initial
release of the structure, it should be zero filled.

Chapter 12. Using CEA TSO/E address space services 157

Table 26. Reason codes (continued)

Hexadecimal Reason
Code Equate Symbol, Meaning, and Action

103D Equate symbol: CEARCVBADENV

Meaning: Recovery entered for the CEArcvmsg() execution.

Action: Internal Error.

103E Equate symbol: CEAXCFSEND3PROBLEM

Meaning: CEA Unable to send a message to itself on another system.

Action: Internal Error. Contact IBM Support.

103F Equate symbol: CEATSOBADQUERYRESULT

Meaning: When requesting a QUERY or QUERYAPP request, the version
numbers of the TSORequest parameter and the QueryResult parameter
must be the same. A version 2 TSORequest structure must use a version 2
QueryResult structure.

Action: Adjust caller code.

1040 Equate symbol: CEAFAILDELETE

Meaning: Unable to delete the user ACEE on cleanup

Action: Internal Error. Contact IBM Support.

1041 Equate symbol: UNIXUNDUBFAIL

Meaning: Unable to undub the UNIX environment to change security
environment.

Action: Internal Error. Contact IBM Support.

Diagnostic codes
Table 27 on page 159 lists and describes the diagnostic codes that are typically returned after the
CEATsoRequest API processes a request. Additional diagnostic codes might also be returned from
services that obtained an unexpected error. Those diagnostic codes are not listed in the table.

158 z/OS: z/OS MVS Callable Services for HLL

Table 27. Diagnostic code

Hexadecimal
Diagnostic Code Equate Symbol and Meaning

04 Equate symbol: kCEATsoBadRacRouteExtr

Meaning: The TSO/E address space was not started because an error
occurred while trying to authenticate the caller. The CEA TSO/E address space
service could not complete one of the following actions:

• Extract the security identity of the caller.
• Log the caller into TSO/E.
• Authorize the caller to a required resource.

The following fields are returned in the CEATsoErrorStruct structure:

• diag2 contains the SAF return code from RACRoute returned in R15.
• diag3 contains the RACF or installation return code from the SAF parameter

list.
• diag4 contains the RACF or installation exit reason code from the SAF

parameter list.

Note that a value is not always returned in diag2, diag3, and diag4.

05 Equate symbol: kCEATsoBadRacRouteCreate

Meaning: An error was encountered when requesting verification of the newly
created security identity.

The following fields are returned in the CEATsoErrorStruct structure:

• diag2 contains the SAF return code from RACRoute returned in R15.
• diag3 contains the RACF or installation return code from the SAF parameter

list.
• diag4 contains the RACF or installation exit reason code from the SAF

parameter list.

0A Equate symbol: kCEATsoBadAddSession

Meaning: Unable to create a new TSO/E address space.

The return code received from the TSO/E session is provided in the diag2
field of the CEATsoErrorStruct structure. If the value in the diag2 field is 15,
this indicates that the CEA TSO/E address space manager has created the
maximum number of TSO/E sessions allowed. In that case, a message is also
written to the z/OS console indicating that the session limit has been reached
and user requests cannot be processed.

0B Equate symbol: kCEATsoBadQuerySession

Meaning: Unable to query the attributes of TSO/E sessions that are
associated with a specific application.

The return code received from the method is provided in the diag2 field of the
CEATsoErrorStruct structure.

Chapter 12. Using CEA TSO/E address space services 159

Table 27. Diagnostic code (continued)

Hexadecimal
Diagnostic Code Equate Symbol and Meaning

0C Equate symbol: kCEATsoBadASCBStoken

Meaning: Unable to issue an attention interrupt or query the session table for
information about the TSO/E address space because the STOKEN could not
be found.

0D Equate symbol: kCEATsoBadSessIndex

Meaning: The value provided in the ceatso_index field in the
CeaTsoRequestStruct is zero, which is not valid. The index must be greater
than or equal to one.

0F Equate symbol: kCEATsoBadLOGONMGCRE

Meaning: The MGCRE service used to issue the start command to start a
TSO/E address space failed.

The register where MGCRE returned its return code is provided in the diag2
field of the CEATsoErrorStruct structure. In this case, the value in the diag2
field is R15 (register 15).

10 Equate symbol: SESS_SESSIONNOLONGERINTABLE

Meaning: The TSO/E session no longer exists in the session table.

11 Equate symbol: kCEATsoBadSessENQreq

Meaning: Unable to acquire the ENQ on the session table.

The return code received from the method is provided in the diag2 field of the
CEATsoErrorStruct structure.

13 Equate symbol: kCEATsoBadSessUpdateLastRef

Meaning: The ping request failed because the CEA TSO/E address space
manager was unable to update the last reference timestamp for that session.

The return code received from the method is provided in the diag2 field of the
CEATsoErrorStruct structure.

14 Equate symbol: kCEATsoBadQuerySessionForApptag

Meaning: Unable to query the session table for the specified application
identifier because an error occurred.

The return code received from the method is provided in the diag2 field of the
CEATsoErrorStruct structure.

15 Equate symbol: kCEATsoBadNumEntries

Meaning: The number of entries found that match the query exceeds the
maximum number of sessions that can be queried or exceeds the number of
entries the query structure can accommodate.

The number of entries found is provided in the diag2 field of the
CEATsoErrorStruct structure.

160 z/OS: z/OS MVS Callable Services for HLL

Table 27. Diagnostic code (continued)

Hexadecimal
Diagnostic Code Equate Symbol and Meaning

17/23 Equate symbol: kCEATsoBadAppTag

Meaning:

18 Equate symbol: kCEATsoBadResmgrAdd

Meaning: Unable to set the end of memory resource manager; an ABEND
dump was taken.

19 Equate symbol: kCEATsoBadQueryAllSessions

Meaning: Unable to perform a query of all TSO/E sessions in the session
table. You must search for a specific TSO/E session, or search for TSO/E
sessions that are associated with a specific application identifier.

The return code received from the method is provided in the diag2 field of the
CEATsoErrorStruct structure.

1A Equate symbol: kCEATsoBadApptag

Meaning: The value contained in the application identifier field is not valid.

1B Equate symbol: kCEATsoBaduserid

Meaning: The value contained in the user ID field is not valid.

1C Equate symbol: kCEATsoBadlogonproc

Meaning: The value contained in the logon procedure field is not valid.

1F Equate symbol: kCEATsoBadscreenrows

Meaning: The number of screen rows specified is out of range. The minimum
number of screen rows is 24, and the maximum is 204.

20 Equate symbol: kCEATsoBadscreencols

Meaning: The number of screen columns specified is out of range. The
minimum number of screen columns is 80, and the maximum is 160.

21 Equate symbol: kCEATsoBadaccount

Meaning: The value contained in the account field is not valid.

22 Equate symbol: kCEATsoBadgroup

Meaning: The value contained in the TSO/E group name field is not valid.

23 Equate symbol: kCEATsoBadregion

Meaning: The value contained in the TSO/E region size field is not valid.

26 Equate symbol: kCEATsoBadCharsetCodepage

Meaning: The value contained in the codepage field is not valid because no
match was found in the Coded Character Set Identifiers (CCSID) table.

Chapter 12. Using CEA TSO/E address space services 161

Table 27. Diagnostic code (continued)

Hexadecimal
Diagnostic Code Equate Symbol and Meaning

27 Equate symbol: kCEATsoBadregionsize

Meaning: The value contained in the region size field is not valid because it
exceeds the maximum allowable region size of 2,096,128.

28/40 Equate symbol: kCEATsoBadSystemnamechars

Meaning:

29/41 Equate symbol: kCEATsoFlagsForQuery

Meaning:

CEAYTSOR header file
For the C programmer, include file ceaytsor.h defines the structures, functions, and macros used for the
CEATsoRequest API. The header file is stored in partitioned data set SYS1.SIEAHDRV, and contains the
following information.

#ifndef __ceaytsor__
#define __ceaytsor__

/****** START OF SPECIFICATIONS **************************************
*
* DESCRIPTIVE NAME: CEA TsoRequest structures
*
* ACRONYM: CEAYTSOR
*
* STRUCT NAME: None
*
* LABEL PREFIX: None
*
* COMPONENT ID: Common Event Adpater (CEA)
*
****** END OF SPECIFICATIONS ***/

/***PROPRIETARY_STATEMENT**/
/* */
/* */
/* LICENSED MATERIALS - PROPERTY OF IBM */
/* COPYRIGHT IBM CORP. 2011, 2012 */
/* */
/* STATUS= HBB7770 */
/* */
/***END_OF_PROPRIETARY_STATEMENT*************************************/
/* */
/*01* EXTERNAL CLASSIFICATION: PI */
/*01* END OF EXTERNAL CLASSIFICATION: */
/* */
/***/

/* $Id: ieac1as2.ide, ieapr, osnp_v1r13.5 1.9 12/01/24 17:16:48 $ */

/**
 * FUNCTION:
 *
 *
 * This header file defines the structures, functions
 * and macros used for CEATsoRequest() API.
 *
 * This support requires the setting of _XOPEN_SOURCE_EXTENDED
 *
 * RESTRICTIONS:
 * None
 *
 * CHANGE-ACTIVITY:

162 z/OS: z/OS MVS Callable Services for HLL

 *
****END OF SPECIFICATIONS***/

/**
 Constants
**/
#define CEATSOREQUEST_CURRENTVERSION 1
#define CEATSOQUERY_CURRENTVERSION 1
#define CEATSOERROR_CURRENTVERSION 1
#define CEATSODIAG_CURRENTVERSION 1
#define CEATSOREQUEST_EYECATCHER "CEAYTSOR"
#define CEATSOQUERY_EYECATCHER "CEAYTSOQ"
#define CEATSOERROR_EYECATCHER "CEAIERRO"

/**
 CONSTANTS ceatso_requesttype;
 These are the request types used in the CEATsoRequest structure
**/
#define CeaTsoStart 1
#define CeaTsoEnd 2
#define CeaTsoQuery 3
#define CeaTsoAttn 4
#define CeaTsoPing 5
#define CeaTsoQueryApp 6

/**
 CONSTANTS ceatso_flags
 These are the flag values used in the CEATsoRequest structure
**/
#define CEATSO_ABLOGOFF 0x8000 // Use Cancel to end the TSO session
#define CEATSO_NOREUSE 0x4000 // Do not reconnect an existing session

/**
 CEATsoRequestStruct_t

 eyeCatcher - "CEAYTSOR"
 version - CEATSOQUERY_CURRENTVERSION
 request - request - uses CeaTso* constants

**/

struct CEATsoRequestStruct_s {
 char ceatso_eyecatcher[8]; /* eye catcher: CEAYTSOR */
 uint32_t ceatso_version; /* version number */
 uint32_t ceatso_requesttype; /* which type request */
 char ceatso_userid[8]; /* tso id */
 uint32_t ceatso_asid; /* tso asid */
 char ceatso_logonproc[8]; /* logon proc name */
 char ceatso_command[80]; /* unused */
 uint16_t ceatso_numqueryreq; /* caller num max query */
 uint16_t ceatso_numqueryrslt; /* actual num query */
 uint32_t ceatso_duration; /* unused */
 uint32_t ceatso_msgqueueid; /* msg queue id */
 uint16_t ceatso_charset; /* callers character set */
 uint16_t ceatso_codepage; /* callers code page */
 uint16_t ceatso_screenrows; /* screen rows */
 uint16_t ceatso_screencols; /* screen cols */
 char ceatso_account[40]; /* tso account number */
 char ceatso_group[8]; /* tso group name */
 char ceatso_region[7]; /* tso region size */
 char ceatso_instance[1]; /* tso instance number */
 char ceatso_apptag[8]; /* identity of caller */
 char ceatso_stoken[8]; /* tso asid stoken */
 uint32_t ceatso_ascbaddr; /* tso ascb address */
 uint16_t ceatso_flags; /* tso request flags */
 uint16_t ceatso_index; /* tso session index */
 char rsvd1[8]; /* reserved space */
 };
typedef struct CEATsoRequestStruct_s CEATsoRequestStruct_t;

/**
 CEATsoQueryStruct_t*

 This structure is used to return Query results for the CEATsoRequesst
 CeaTsoQuery

 eyeCatcher - "CEAYTSOQ"
 version - 1

**/
struct CEATsoQueryStruct_s{ /* query results */
 char ceatsoq_eyecatcher[8]; /* eye catcher: CEAYTSOQ */

Chapter 12. Using CEA TSO/E address space services 163

 uint32_t ceatsoq_version; /* version number */
 uint32_t ceatsoq_requesttype; /* which type request */
 char ceatsoq_userid[8]; /* tso id */
 uint32_t ceatsoq_asid; /* tso asid */
 char ceatsoq_logonproc[8]; /* logon proc name */
 char ceatsoq_command[80]; /* tso command */
 uint16_t ceatsoq_numqueryreq; /* caller num max query */
 uint16_t ceatsoq_numqueryrslt; /* actual num query */
 uint32_t ceatsoq_duration; /* duration */
 uint32_t ceatsoq_msgqueueid; /* msg queue id */
 uint16_t ceatsoq_charset; /* callers character set */
 uint16_t ceatsoq_codepage; /* callers code page */
 uint16_t ceatsoq_screenrows; /* screen rows */
 uint16_t ceatsoq_screencols; /* screen cols */
 char ceatsoq_account[40]; /* tso account number */
 char ceatsoq_group[8]; /* tso group name */
 char ceatsoq_region[7]; /* tso region size */
 char ceatsoq_instance[1]; /* tso instance number */
 char ceatsoq_apptag[8]; /* identity of caller */
 char ceatsoq_stoken[8]; /* tso asid stoken */
 uint32_t ceatsoq_ascbaddr; /* tso ascb address */
 uint16_t ceatsoq_flags; /* tso request flags */
 uint16_t ceatsoq_index; /* tso session index */
 char rsvd1[8]; /*reserved space */
};
typedef struct CEATsoQueryStruct_s CEATsoQueryStruct_t;

/**
 CEATsoDiag_t

 version - version of CEADiag_t
 flags - diagnostic flags
 offset - offset point to additional information
 rsvd - reserved for future use
 diag1 - Used to hold return codes
 diag2 - from system REXX scripts
 diag3 - or other things outside of
 diag4 - CEA control
 rsvd2 - reserved for future use
 messageArea - Contains any output messages relating to error codes

* This structure is part of CEAError, doesn't get its own eyecatcher
**/

struct CEATsoDiag_s {
 uint8_t version;
 uint8_t flags1;
 uint16_t offset;
 uint8_t diagid;
 char rsvd[3];
 uint32_t diag1;
 uint32_t diag2;
 uint32_t diag3;
 uint32_t diag4;
 char rsvd2[16];
 char messageArea[256];
 char rsvd3[256];
 };
typedef struct CEATsoDiag_s CEATsoDiag_t;

/**
 CEAError_t

 eyeCatcher - "CEAIERRO"
 version - version of CEAError_t
 returnCode - function return code - duplicate of function return value
 reasonCode - further explanation of a return code.
 diag - further explanation of a reason code.
**/

struct CEATsoError_s {
 char eyeCatcher[8];
 uint32_t version;
 int32_t returnCode;
 uint32_t reasonCode;
 CEATsoDiag_t diag;
 };
typedef struct CEATsoError_s CEATsoError_t;

/**
 Function prototype CEATsoRequest
**/

164 z/OS: z/OS MVS Callable Services for HLL

#ifdef __cplusplus
extern "C" {
#endif
int32_t CEATsoRequest(CEATsoRequestStruct_t*,
 CEATsoQueryStruct_t*,
 CEATsoError_t*);
#ifdef __cplusplus
 }
#endif

/**
 Diag Values

 These are the possible values that can be retruned in the Diag1
 field in the CEAError_t Diag structure returned from the
 CEATsoRequest API

 Note: Some duplication of codes exist but codes are unique per API
 Request Type
**/

#define kCEATsoBadRacRouteExtr 0X0004 //0004
#define kCEATsoBadRacRouteCreate 0X0005 //0005
#define kCEATsoBadAddSession 0X000A //0010
#define kCEATsoBadQuerySession 0X000B //0011
#define kCEATsoBadASCBStoken 0X000C //0012
#define kCEATsoBadSessIndex 0X000D //0013
#define kCEATsoBadRemoveSessEntry 0X000E //0014
#define kCEATsoBadLogonMGCRE 0X000F //0015
#define kCEATsoSessionNotFound 0X0010 //0016
#define kCEATsoBadSessENQreq 0X0011 //0017
#define kCEATsoBadSessDEQreq 0X0012 //0018
#define kCEATsoBadSessUpdateLR 0X0013 //0019
#define kCEATsoBadQuerySessApptag 0X0014 //0020
#define kCEATsoBadNumEntries 0X0015 //0021
#define kCEATsoBadMsgQDelete 0X0016 //0022
#define kCEATsoBadAppTag 0X0017 //0023
#define KCEATsoBadWiComCreate 0X0017 //0023
#define KCEATsoBadResmgrAdd 0X0018 //0024
#define kCEATsoBadQueryAllSessions 0X0019 //0025
#define kCEATsoBadApptag 0X001A //0026
#define kCEATsoBaduserid 0X001B //0027
#define kCEATsoBadlogonproc 0X001C //0028
#define kCEATsoBadcharset 0X001D //0029
#define kCEATsoBadcodepage 0X001E //0030
#define kCEATsoBadscreenrows 0X001F //0031
#define kCEATsoBadscreencols 0X0020 //0032
#define kCEATsoBadaccount 0X0021 //0033
#define kCEATsoBadgroup 0X0022 //0034
#define kCEATsoBadregion 0X0023 //0035
#define kCEATsoBadQueryEyecatcher 0X0024 //0036
#define kCEATsoBadQueryVersion 0X0025 //0037
#define kCEATsoBadCharsetCodepage 0X0026 //0038
#define kCEATsoBadregionsize 0X0027 //0039

#endif /* __ceaytsor__ */

CEAXRDEF header file
For the C programmer, include file ceaxrdef.h defines the return codes and reason codes that are
associated with the CEA TSO/E address space manager services. The header file is stored in partitioned
data set SYS1.SIEAHDRV, and contains the following information.

#ifndef __ceaxrdef__
#define __ceaxrdef__

/****** START OF SPECIFICATIONS *******************************
 *
 * DESCRIPTIVE NAME: CEA reason code definitions
 *
 * ACRONYM: CEAXRDEF
 *
 * STRUCT NAME: None
 *
 * LABEL PREFIX: None
 *

Chapter 12. Using CEA TSO/E address space services 165

 * COMPONENT ID: Common Event Adpater (CEA)
 *
 **/

/* $Id: ieac1as2.ide, ieapr, osnp_v1r13.5 1.9 12/01/24 17:16:48 $ */

/***PROPRIETARY_STATEMENT**/
/* */
/* */
/* LICENSED MATERIALS - PROPERTY OF IBM */
/* COPYRIGHT IBM CORP. 2011, 2012 */
/* */
/* STATUS= HBB7770 */
/* */
/***END_OF_PROPRIETARY_STATEMENT*************************************/
/* */
/*01* EXTERNAL CLASSIFICATION: PI */
/*01* END OF EXTERNAL CLASSIFICATION: */
/* */
/**/

/**
 * ceaxrdef.h header file
 * ----------
 * This header file defines the reason codes associated with
 * the Common Event Adapter (a.k.a. CEAS) client code.
 *
 *
 * CHANGE-ACTIVITY:
 *
****END OF SPECIFICATIONS***/

// Completion Codes
#define CEASUCCESS 0
#define CEAFAILURE -1
#define CEAWARNING 4

// Reason Codes
#define CEAUNAVAIL 0x100 //256
#define CEADUPLICATENAME 0x101 //257
#define CEANOCONNAUTH 0x102 //258
#define CEANOACCESS 0x103 //259
#define CEABADPID 0x104 //260
#define CEABADHANDLE 0x105 //261
#define CEADUPESUB 0x106 //262
#define CEADUPHANDLER 0x107 //263
#define CEANOSUBSCRIBE 0x108 //264
#define CEANOMATCH 0x109 //265
#define CEASMALLBUFF 0x10A //266
#define CEANODATA 0x10B //267
#define CEADATATRUNC 0x10C //268 //returned on warning
#define CEAEVENTSMISSED 0x10D //269 //returned on warning
#define CEANOSUBAUTH 0x10E //270
#define CEABADPROTOCOL 0x10F //271
#define CEACOMMFAILURE 0x110 //272
#define CEASYSTEMFAILURE 0x111 //273
#define CEAINVALIDCLIENT 0x112 //274
#define CEASOFTWAREFAILURE 0x113 //275
#define CEABADHANDLEPTR 0x114 //276
#define CEASECURITYFAILURE 0x115 //277
#define CEAINVALIDCOMMAND 0x116 //278
#define CEAMAXCLIENTSCONNECTED 0x117 //279
#define CEANOTYETIMPLEMENTED 0x118 //280
#define CEABADREGVERSION 0x119 //281
#define CEAENFFAILURE 0x11A //282
#define CEADYNEXFAILURE 0x11B //283
#define CEAEVENTSLOSTTRUNC 0x11C //284
#define CEAUSSSHUTDOWN 0x011D //285
#define CEANOENFEXITRTN 0x011E //286
#define CEASYSOPFORCEUNSUBSCRIBE 0x011F //287
#define CEASYSOPFORCEDISCONNECT 0x0120 //288
#define CEAFORCEMINMODE 0x0121 //289
#define CEAUSSNOTACTIVE 0x0122 //290
#define CEAMAXWTOSUBSCRIBED 0x0123 //291
#define CEAMAXEVENTSSUB 0x0124 //292
#define CEAMAXXSUBECONNECTED 0x0125 //293
#define CEAMAXPGMSUBSCRIBED 0x0126 //294

#define CEANONAME 0x0200 //512
#define CEAINVALIDPARM 0x0201 //513
#define CEABADCONNVERSION 0x0202 //514
#define CEANOTRECOGNIZED 0x0203 //515

166 z/OS: z/OS MVS Callable Services for HLL

#define CEANOTYPE 0x0204 //516
#define CEABADENFCODE 0x0205 //517
#define CEABADRETVERSION 0x0206 //518
#define CEABADEVENTVERSION 0x0207 //519
#define CEAINVALIDFORM 0x0208 //520
#define CEAINVALIDMODE 0x0209 //521
#define CEAHANDLERNOTFOUND 0x020A //522
#define CEAHANDLERNOTREENT 0x020B //523
#define CEAINVALIDHANDLER 0x020C //524
#define CEACONNECTNOTDEFSEC 0x020D //525
#define CEAEVENTNOTDEFSEC 0x020E //526
#define CEABADCLIENTNAME 0x020F //527
#define CEAINVALIDMSGID 0x0210 //528
#define CEABADADDRESS 0X0211 //529
#define CEAEVENTNOTALPHANUM 0x0212 //530
#define CEAEVENTHASBLANKS 0x0213 //531
#define CEAMAXTHRUPUTREACHED 0x0214 //532
#define CEABADQMASK 0x0215 //533
#define CEABADBITCOMPARE 0x0216 //534
#define CEAMAXENFX 0x0217 //535
#define CEAREJECTENFX 0x0218 //536
#define CEATYPEENFXNOTSUPPORTED 0x0219 //537

#define CEAREQUESTNOTRECOGNIZED 0x0300 //768
#define CEAREQUESTNOTIMPLEMENTED 0x0301 //769
#define CEAPROPERTYSTRUCTBADPTR 0x0302 //770
#define CEAPROPERTYSTRUCTBADEYE 0x0303 //771
#define CEAPROPERTYSTRUCTBADVERSION 0x0304 //772
#define CEAPROPERTYBADRESOURCE 0x0305 //773
#define CEAPROPERTYNOMATCH 0x0306 //774
#define CEAPROPERTYSTRUCTEMPTY 0x0307 //775
#define CEAENVBAD 0x0308 //776
#define CEAFILTERSTRUCTBADEYE 0x0309 //777
#define CEAFILTERSTRUCTBADVERSION 0x030A //778
#define CEAFILTERBADRESOURCE 0x030B //779
#define CEAFILTERNOMATCH 0x030C //780
#define CEABADPARMPTR 0x030D //781
#define CEABADSSISUBSYSTEM 0x030E //782
#define CEABADSSICALL 0x030F //783
#define CEANOSSI 0x0310 //784
#define CEABADSSIENV 0x0311 //785
#define CEAENVBADSSI 0x0312 //786
#define CEANOFILTFORVERBOSE 0x0313 //787
#define CEAUNABLETOALLOCATE 0x0314 //788
#define CEANOTJOBSTERSEELEMENT 0x0315 //789
#define CEAJOBCHAINBROKEN 0x0316 //790
#define CEABADDATENV 0x0317 //791
#define CEASYSOUTCHAINBROKEN 0x0318 //792
#define CEANOTSYSOUTHDRELEMENT 0x0319 //793
#define CEABADFREEPTR 0x031A //794
#define CEABADFREEBLK 0x031B //795
#define CEABADFREEENV 0x031C //796
#define CEAUNABLETOFREE 0x031D //797
#define CEABADIEFQRY 0x031E //798
#define CEASSCHAINBROKEN 0x031F //799
#define CEAENVBADJSQY 0x0320 //800
#define CEABADFILTEROPER 0x0321 //801
#define CEABADS54SUBSYSTEM 0x0322 //802
#define CEABADS54CALL 0x0323 //803
#define CEANOS54 0x0324 //804
#define CEABADS54ENV 0x0325 //805
#define CEAENVBADS54 0x0326 //806
#define CEABADS54STOR 0x0327 //807
#define CEATIMEOUTMAXIMUMEXCEEDED 0x0328 //808
#define CEANEEDSYSOUTFILTER 0x0329 //809
#define CEABUFFERTOOLARGE 0x032A //810
#define CEACCMDSDIAGRCSET 0x032B //811
#define CEACCMDSAXREXXRCSET 0x032C //812
#define CEANOINSTRAUTH 0x032D //813
#define CEATOOMUCHDATA 0x032E //814
#define CEAFILTERNOTSUPPORTED 0x032F //815
#define CEAPRIMARYTYPEMISMATCH 0x0330 //816
#define CEABADSUBSYSTEM 0x0331 //817
#define CEAUNABLETOALLOCATE2 0x0332 //818
#define CEABADBUFFER 0x0333 //819
#define CEATIMEOUTLESSTHANMINIMUM 0x0334 //820
#define CEACMDSSYNTAXERROR 0x0335 //821
#define CEACMDSHALTERROR 0x0336 //822
#define CEACMDSUNINITERROR 0x0337 //823
#define CEAFILTERBADCOMBO 0x0338 //824
#define CEACMDSTIMEDOUT 0x0339 //825
#define CEAALLREQBLOCKSINUSE 0x033A //826

Chapter 12. Using CEA TSO/E address space services 167

#define CEAIPRQCLIENTABENDED 0x033B //827
#define CEAIPRQARGSCANNOTACCESS 0x033C //828
#define CEAPLISTCANNOTACCESS 0x033D //829
#define CEAIPRQSERVERABENDED 0X033E //830
#define CEANOTACTIVE 0X033F //831
#define CEABADIPRQSERVERRC 0X0340 //832
#define CEAMEMORYALLOCATION 0X0341 //833
#define CEASDDIREMPTY 0x0342 //834
#define CEAADDFAILED 0x0343 //835
#define CEAINCIDENTSTRUCTBADEYE 0x0344 //836
#define CEAINCIDENTSTRUCTBADVERSION 0x0345 //837
#define CEAERRORSTRUCTBADEYE 0x0346 //838
#define CEAERRORSTRUCTBADVERSION 0x0347 //839
#define CEAINCINAMESTRUCTBADEYE 0x0348 //840
#define CEABADBRANCHFORIPCSSRVR 0x0349 //841
#define CEABADENVFORMAR 0x034A //842
#define CEAOBJECTTYPEBADEYE 0x034B //843
#define CEAOBJECTTYPEBADVERSION 0x034C //844
#define CEAPROBNOTYPEBADEYE 0x034D //845
#define CEAPROBNOTYPEBADVERSION 0x034E //846
#define CEAMAXINSTANCENOSUPPORT 0x034F //847
#define CEAPDWKEYSTRUCTBADEYE 0x0350 //848
#define CEADIAGSTRUCTBADVERSION 0x0351 //849
#define CEADAEDSNNOTAVAILABLE 0X0352 //850
#define CEACANTFINDCOUNTRYCODE 0x0353 //851
#define CEACANTFINDBRANCHCODE 0x0354 //852
#define CEABADPARMLIST 0x0355 //853
#define CEABADPARM 0x0356 //854
#define CEAGENPREPAREDDSNFAIL 0x0357 //855
#define CEAREXXENVERROR 0x0358 //856
#define CEAAXREXXERROR 0x0359 //857
#define CEAINTERNALBUFFEROVERRUN 0X035A //858
#define CEABADTIMEOUTPTR 0x035B //859
#define CEABADOUTPUTBUFFERPTR 0x035C //860
#define CEABADOUTPUTBUFFERLENPTR 0x035D //861
#define CEABADERRORPTR 0x035E //862
#define CEARECOVERYFAILURE 0x035F //863
#define CEABADACRO 0x0360 //864
#define CEABADVER 0x0361 //865
#define CEADMPINCIDENTNOTFOUND 0x0362 //866
#define CEAINVALIDINCIDENTKEY 0x0363 //867
#define CEABADERRO 0x0364 //868
#define CEASYSREXXNOTACTIVE 0x0365 //869
#define CEASYSREXXBADENVIRONMENT 0X0366 //870
#define CEAEXECTIMEOUT 0X0367 //871
#define CEASYSREXXOVERLOADED 0X0368 //872
#define CEADATABADEYE 0X0369 //873
#define CEADATABADVERSION 0X036A //874
#define CEASYSDUMPBADEYE 0X036B //875
#define CEASYSDUMPBADVERSION 0X036C //876
#define CEAINCIDENTSTRUCTBADTYPE 0X036D //877
#define CEAMIGLIBNOTAPFAUTH 0X036E //878
#define CEANOSAFOPERLOGSNAP 0X036F //879
#define CEALOGGERNOTAVAIL 0X0370 //880
#define CEABADALLOCNEW 0X0371 //881
#define CEATERSEBADALLOC1 0X0372 //882
#define CEABADIXGCONN 0X0373 //883
#define CEABADIXGBRWSESTART 0X0374 //884
#define CEABADIXGBRWSEREAD 0X0375 //885
#define CEANOSNAPSHOT 0X0376 //886
#define CEAPDWBOBJECTNOTFOUND 0X0377 //887
#define CEAPDWBDIAGDATAEMPTY 0X0378 //888
#define CEAWRONGIBMPMRFORMAT 0X0379 //889
#define CEABADLEVELOFPREPARATION 0X037A //890
#define CEADAESYMPTOMNOTVALID 0X037B //891
#define CEADAESYMPTOMNOTFOUND 0X037C //892
#define CEAIPCSENQERROR 0X037D //893
#define CEASDDIROPENERROR 0X037E //894
#define CEAXMLINITFAILURE 0X037F //895
#define CEAXMLPARSEFAILURE 0X0380 //896
#define CEAXMLTERMFAILURE 0X0381 //897
#define CEAXMLTAGSTOODEEP 0X0382 //898
#define CEAXMLPARMSBADEYE 0X0383 //899
#define CEADATASPACEBADPTR 0X0384 //900
#define CEAPREPAREOBJINUSE 0X0385 //901
#define CEAPREPAREENQERR 0X0386 //902
#define CEACKSTBADREQ 0X0387 //903
#define CEACKSTBUFLEN 0X0388 //904
#define CEACKSTIGGCSICALLABEND 0X0389 //905
#define CEACKSTBADCONTROLBLOCK 0X038A //906
#define CEACKSTINVALIDSIZETYPE 0X038B //907
#define CEACKSTINVALIDALLOCVALUE 0X038C //908

168 z/OS: z/OS MVS Callable Services for HLL

#define CEACKSTINVALIDIGGCSIENTRY 0X038D //909
#define CEACKSTIGGCSICALLFAIL 0X038E //910
#define CEACKSTUCBSCANFAIL 0X038F //911
#define CEACKSTUCBSCANABND 0X0390 //912

#define CEASETINCIFSELBADEYE 0X0393 //915
#define CEASETINCIFSELBADVERSION 0X0394 //916
#define CEASETINCIFVALBADEYE 0X0395 //917
#define CEASETINCIFVALBADVERSION 0X0396 //918
#define CEASETINCIFVALDATATRUNC 0X0397 //919
#define CEAMIGRATEDDATASETS 0X0398 //920
#define CEAMIGRATEDDATASETSWHSMERR 0X0399 //921

#define CEATSOMSGQSERVICEFAILED 0X1000 //4096
#define CEATSONOUSERIDFOUND 0X1001 //4097
#define CEATSOMATCHMISSING 0X1002 //4098
#define CEATSOSTOKENMISSING 0X1003 //4099
#define CEATSOINDEXOUTOFRANGE 0X1004 //4100
#define CEATSOStartFAILED 0X1005 //4101
#define CEATSOATTNFAILED 0X1006 //4102
#define CEATSOENDFAILED 0X1007 //4103
#define CEATSOQUERYFAILED 0X1008 //4104
#define CEATSOQUERYAPPFAILED 0X1009 //4105
#define CEATSOPINGFAILED 0X100A //4106
#define CEATSOENDSENDLOGOFFFAILED 0X100B //4107
#define CEATSOBADAMODE 0X100C //4108
#define CEATSODISABLED 0X100D //4109
#define CEATSONOTTASKMODE 0X100E //4110
#define CEATSOFRRSET 0X100F //4111
#define CEATSOLOCKED 0X1010 //4112
#define CEATSOXMMODE 0X1011 //4113
#define CEATSOSESSTBLDSPFAILED 0X1012 //4114
#define CEATSOREQSTRUCTFIELDBAD 0X1013 //4115
#define CEATSOBADQUERYEYECATCHER 0X1014 //4116
#define CEATSOBADQUERYVERSION 0X1015 //4117
#endif /* __ceaxrdef__ */

Programming example
The following example shows how to invoke the CEATsoRequest API from a C program. For a sample
compile job that you can use to compile this sample program, see “Sample compile job” on page 183.

/***/
/* */
/* CEASAMPT.c Sample code to demonstrate the */
/* CEATsoRequest() API for CEA HBB7780 */
/* CEA TSO ADDRESS SPACE MANAGER */
/* */
/* */
/* Classification: Unclassified */
/* */
/* Copyright: (C) Copyright IBM Corp. 2011, 2012 */
/* Liscensed Materials - Property of IBM */
/* */
/* */
/* Change History: */
/* $1.0 20110314 CYL: Initial Version */
/* $1.1 20111015 PDA2: Sample Program */
/* */
/***/

#define _XOPEN_SOURCE
#define _POSIX1_SOURCE 2

#define SESS_SESSIONNOLONGERINTABLE 16
#define SESS_MATCHMISSING 11
#define SESS_INDEXOUTOFRANGE 13
#define kMaximumSessions 50

#include <stdio.h>
#include <stdlib.h>
#include <stdint.h>
#include <string.h>
#include <errno.h>

Chapter 12. Using CEA TSO/E address space services 169

#include <env.h>
#include <iconv.h>
#include <sys/msg.h>
#include <sys/types.h>
#include <time.h>

#include "ceaytsor.h"
#include "ceaxrdef.h"

void init_expected_values(void);
void init_ceatso_struct(void);
void print_request_struct(void);
void print_query_struct(void);
void print_error_struct(void);
int send_message(void);
int check_message(int, int);
int verify_messages(int, int);
int verify_attn_messages(int, int);
void save_required_members(void);
void init_required_members(void);
void set_required_members(void);

#define NUMVARS 56

struct message_queue_s {
 long int message_type;
 char message_text[200];
} ;
typedef struct message_queue_s message_queue_t;

int error_counter; /* Total errors */

CEATsoRequestStruct_t ceatso_request;
CEATsoQueryStruct_t ceatso_query;
CEATsoError_t ceatso_error;

char userid[8];
uint32_t asid;
char apptag[8];
uint32_t ascbaddr;
int index_value; /* Save index value */
char stoken[8]; /* Stoken buffer */
char *stoken_ptr; /* Stoken pointer */
char *ptr;

message_queue_t message_queue;
int message_id;
size_t message_size;
char message_text[200];
int wait_seconds; /* Msg receive time */
int sleep_time;

char *tso_cmd_ptr;
char tso_cmd[80] =
 "{\"TSO RESPONSE\":{\"VERSION\":\"0100\",\"DATA\":\"ALLOC DA\"}}";

int32_t expected_rc;
uint32_t expected_rsn;
uint32_t expected_diag1;
uint32_t expected_diag2;
uint32_t expected_diag3;
uint32_t expected_diag4;
uint32_t reason_mask;
int CeaTsoSamp1(void);

int main() {
 int rc; /* Return code */

 CeaTsoSamp1(); /* Invoke the sample code */

 return 0;

}

/***/
/** **/
/** Routine to initialize the expected return code, **/
/** reason code and diag codes. **/
/** **/
/***/
void init_expected_values(void) {

170 z/OS: z/OS MVS Callable Services for HLL

 expected_rc = CEASUCCESS;
 expected_rsn = 0;
 expected_diag1 = 0;
 expected_diag2 = 0;
 expected_diag3 = 0;
 expected_diag4 = 0;

 return;

}

/***/
/** **/
/** Routine to initialize the CEA TSO request structure **/
/** query structure and error strucure for API call **/
/** **/
/***/
void init_ceatso_struct(void) {

 /* Initialize CEA TSO Request structure for CEATsoRequest() */
 memset(&ceatso_request, '\0', sizeof(CEATsoRequestStruct_t));

 strcpy(ceatso_request.ceatso_eyecatcher, CEATSOREQUEST_EYECATCHER);

 ceatso_request.ceatso_version = CEATSOREQUEST_CURRENTVERSION;

 ceatso_request.ceatso_requesttype = 0;

/*
 ceatso_request.ceatso_asid = 0;
*/

 strcpy(ceatso_request.ceatso_userid, "IBMUSER ");

 strcpy(ceatso_request.ceatso_logonproc, "OMVS0803");

 memset(&ceatso_request.ceatso_command, ' ', 80);

/*
 ceatso_request.ceatso_numqueryreq = 12;

 ceatso_request.ceatso_numqueryrslt = 12;

 ceatso_request.ceatso_duration = 0;

 ceatso_request.ceatso_msgqueueid = 0;
*/

 ceatso_request.ceatso_charset = 697;

 ceatso_request.ceatso_codepage = 1047;

 ceatso_request.ceatso_screenrows = 24;

 ceatso_request.ceatso_screencols = 80;

 memset(ceatso_request.ceatso_account, '0', 40);

 memset(ceatso_request.ceatso_group, ' ', 8);

 strcpy(ceatso_request.ceatso_region, "2000000");

/*
 memset(ceatso_request.ceatso_instance, ' ', 1);
*/

 strcpy(ceatso_request.ceatso_apptag, "IZUIS ");

 ceatso_request.ceatso_flags = CEATSO_ABLOGOFF;

/*
 memset(ceatso_request.ceatso_stoken, 0xFF, 8);

 ceatso_request.ceatso_ascbaddr = 0;

 ceatso_request.ceatso_index = 0;
*/

Chapter 12. Using CEA TSO/E address space services 171

 /* Initialize the CEA TSO Query structure for CEATsoRequest() */
 memset(&ceatso_query, '\0', sizeof(CEATsoQueryStruct_t));

 strcpy(ceatso_query.ceatsoq_eyecatcher, CEATSOQUERY_EYECATCHER);

 memset(&ceatso_request.ceatso_command, ' ', 40);

 /* Initialize the CEA TSO Error structure for CEATsoRequest() */
 memset(&ceatso_error, 0x00, sizeof(CEATsoError_t));

 strcpy(ceatso_error.eyeCatcher, CEAINCT_EYE_CEAIERRO);

 ceatso_error.version = CEAIERRO_CURRENTVERSION;

 return;

}

/***/
/** **/
/** Routine to print out the CEATsoRequest structure **/
/** used by CEATsoRequest() API. **/
/** **/
/***/
void print_request_struct(void) {
 int i;

 printf("\n\n\nCEATsoRequest structure\n\n");

 printf("sizeof(CEATsoRequestStruct_t) = %d\n\n",
 sizeof(CEATsoRequestStruct_t));

 printf("CeaTsoRequest Eyecatcher = ");

 ptr = ceatso_request.ceatso_eyecatcher;
 for (i = 1; i <= 8; i++)
 printf("%C", *ptr++);
 printf("\n");

 printf("CeaTsoRequest Version = %d\n",
 ceatso_request.ceatso_version);

 printf("CeaTsoRequest Requesttype = %d\n",
 ceatso_request.ceatso_requesttype);

 printf("CeaTsoRequest Userid = ");

 ptr = ceatso_request.ceatso_userid;
 for (i = 1; i <= 8; i++)
 printf("%C", *ptr++);
 printf("\n");

 printf("CeaTsoRequest Asid = %X\n",
 ceatso_request.ceatso_asid);

 printf("CeaTsoRequest LogonProc = ");

 ptr = ceatso_request.ceatso_logonproc;
 for (i = 1; i <= 8; i++)
 printf("%C", *ptr++);
 printf("\n");

 printf("CeaTsoRequest Command = ");

 ptr = ceatso_request.ceatso_command;
 for (i = 1; i <= 40; i++)
 printf("%C", *ptr++);
 printf("\n");

 printf("CeaTsoRequest Numqueryreq = %d\n",
 ceatso_request.ceatso_numqueryreq);

 printf("CeaTsoRequest Numqueryrslt = %d\n",
 ceatso_request.ceatso_numqueryrslt);

 printf("CeaTsoRequest Duration = %d\n",
 ceatso_request.ceatso_duration);

 printf("CeaTsoRequest Msgqueueid = %d\n",

172 z/OS: z/OS MVS Callable Services for HLL

 ceatso_request.ceatso_msgqueueid);

 printf("CeaTsoRequest Charset = %d\n",
 ceatso_request.ceatso_charset);

 printf("CeaTsoRequest Codepage = %d\n",
 ceatso_request.ceatso_codepage);

 printf("CeaTsoRequest Screenrows = %d\n",
 ceatso_request.ceatso_screenrows);

 printf("CeaTsoRequest Screencols = %d\n",
 ceatso_request.ceatso_screencols);

 printf("CeaTsoRequest Account = ");

 ptr = ceatso_request.ceatso_account + 32;
 for (i = 1; i < 8; i++)
 printf("%C", *ptr++);
 printf("\n");

 printf("CeaTsoRequest Group = ");

 ptr = ceatso_request.ceatso_group;
 for (i = 1; i <= 8; i++)
 printf("%C", *ptr++);
 printf("\n");

 printf("CeaTsoRequest Region = ");

 ptr = ceatso_request.ceatso_region;
 for (i = 1; i <= 7; i++)
 printf("%C", *ptr++);
 printf("\n");

 ptr = ceatso_request.ceatso_instance;
 printf("CeaTsoRequest Instance = %C\n", *ptr);

 printf("CeaTsoRequest Apptag = ");

 ptr = ceatso_request.ceatso_apptag;
 for (i = 1; i <= 8; i++)
 printf("%C", *ptr++);
 printf("\n");

 printf("CeaTsoRequest Stoken = ");

 stoken_ptr = ceatso_request.ceatso_stoken;
 for (i = 1; i <= 8; i++)
 printf("%X ", *stoken_ptr++);
 printf("\n");

 printf("CeaTsoRequest ASCBaddr = %8X\n",
 ceatso_request.ceatso_ascbaddr);

 printf("CeaTsoRequest Flags = %d\n",
 ceatso_request.ceatso_flags);

 printf("CeaTsoRequest Index = %d\n",
 ceatso_request.ceatso_index);

 printf("\n");

 return;

}

/***/
/** **/
/** Routine to print out the CEATsoQuery structure **/
/** used by CEATsoRequest() API. **/
/** **/
/***/
void print_query_struct(void) {
 int i;

 printf("\n\n\nCEATsoQuery structure\n\n");

 printf("sizeof(CEATsoQueryStruct_t) = %d\n\n",
 sizeof(CEATsoQueryStruct_t));

Chapter 12. Using CEA TSO/E address space services 173

 printf("CeaTsoQuery Eyecatcher = ");

 ptr = ceatso_query.ceatsoq_eyecatcher;
 for (i = 1; i <= 8; i++)
 printf("%C", *ptr++);
 printf("\n");

 printf("CeaTsoQuery Version = %d\n",
 ceatso_query.ceatsoq_version);

 printf("CeaTsoQuery Requesttype = %d\n",
 ceatso_query.ceatsoq_requesttype);

 printf("CeaTsoQuery Userid = ");

 ptr = ceatso_query.ceatsoq_userid;
 for (i = 1; i <= 8; i++)
 printf("%C", *ptr++);
 printf("\n");

 printf("CeaTsoQuery Asid = %X\n",
 ceatso_query.ceatsoq_asid);

 printf("CeaTsoQuery LogonProc = ");

 ptr = ceatso_query.ceatsoq_logonproc;
 for (i = 1; i <= 8; i++)
 printf("%C", *ptr++);
 printf("\n");

 printf("CeaTsoQuery Command = ");

 ptr = ceatso_query.ceatsoq_command;
 for (i = 1; i <= 40; i++)
 printf("%C", *ptr++);
 printf("\n");

 printf("CeaTsoQuery Numqueryreq = %d\n",
 ceatso_query.ceatsoq_numqueryreq);

 printf("CeaTsoQuery Numqueryrslt = %d\n",
 ceatso_query.ceatsoq_numqueryrslt);

 printf("CeaTsoQuery Duration = %d\n",
 ceatso_query.ceatsoq_duration);

 printf("CeaTsoQuery Msgqueueid = %d\n",
 ceatso_query.ceatsoq_msgqueueid);

 printf("CeaTsoQuery Charset = %d\n",
 ceatso_query.ceatsoq_charset);

 printf("CeaTsoQuery Codepage = %d\n",
 ceatso_query.ceatsoq_codepage);

 printf("CeaTsoQuery Screenrows = %d\n",
 ceatso_query.ceatsoq_screenrows);

 printf("CeaTsoQuery Screencols = %d\n",
 ceatso_query.ceatsoq_screencols);

 printf("CeaTsoQuery Account = ");

 ptr = ceatso_query.ceatsoq_account + 32;
 for (i = 1; i < 8; i++)
 printf("%C", *ptr++);
 printf("\n");

 printf("CeaTsoQuery Group = ");

 ptr = ceatso_query.ceatsoq_group;
 for (i = 1; i <= 8; i++)
 printf("%C", *ptr++);
 printf("\n");

 printf("CeaTsoQuery Region = ");

 ptr = ceatso_query.ceatsoq_region;
 for (i = 1; i <= 7; i++)
 printf("%C", *ptr++);
 printf("\n");

174 z/OS: z/OS MVS Callable Services for HLL

 ptr = ceatso_query.ceatsoq_instance;
 printf("CeaTsoQuery Instance = %C\n", *ptr);

 printf("CeaTsoQuery Apptag = ");

 ptr = ceatso_query.ceatsoq_apptag;
 for (i = 1; i <= 8; i++)
 printf("%C", *ptr++);
 printf("\n");

 printf("CeaTsoQuery Stoken = ");

 stoken_ptr = ceatso_query.ceatsoq_stoken;
 for (i = 1; i < 9; i++)
 printf("%X ", *stoken_ptr++);
 printf("\n");

 printf("CeaTsoQuery ASCBaddr = %8X\n",
 ceatso_query.ceatsoq_ascbaddr);

 printf("CeaTsoQuery Flags = %d\n",
 ceatso_query.ceatsoq_flags);

 printf("CeaTsoQuery Index = %d\n",
 ceatso_query.ceatsoq_index);

 printf("\n");

 return;

}

/***/
/** **/
/** Routine to print out the CEATsoError structure **/
/** used by CEATsoRequest() API. **/
/** **/
/***/
void print_error_struct(void) {
 int i;

 printf("\n\n\nCEATsoError structure\n\n");

 printf("sizeof(CEATsoError_t) = %d\n\n",
 sizeof(CEATsoError_t));

 printf("CEAError Eyecatcher = ");

 ptr = ceatso_error.eyeCatcher;
 for (i = 1; i <= 8; i++)
 printf("%C", *ptr++);
 printf("\n");

 printf("CEAError Version = %8d\n",
 ceatso_error.version);

 printf("CEAError ReturnCode(hex) = %8X\n",
 ceatso_error.returnCode);

 printf("CEAError ReasonCode(hex) = %8X\n",
 ceatso_error.reasonCode);

 printf("CEAError Diag.diag1(hex) = %8X\n",
 ceatso_error.diag.diag1);

 printf("CEAError Diag.diag2(hex) = %8X\n",
 ceatso_error.diag.diag2);

 printf("CEAError Diag.diag3(hex) = %8X\n",
 ceatso_error.diag.diag3);

 printf("CEAError Diag.diag4(hex) = %8X\n",
 ceatso_error.diag.diag4);

 printf("\n");

 return;

}

/***/

Chapter 12. Using CEA TSO/E address space services 175

/** **/
/** Verify messages **/
/** **/
/***/
int verify_messages(int message_id, int wait_seconds) {
 int rc;
 char *string1;
 char *string2;
 char *string3;
 char *string4;
 char *string5;
 char *string6;

 if (ceatso_request.ceatso_requesttype == CeaTsoStart) {
 rc = check_message(message_id, wait_seconds);
 string1 = "LOGON IN PROGRESS";
 if (rc != 0 || strstr(message_text, string1) == NULL) {
 printf(" Failed to receive %s message.\n\n\n", string1);
 return 99;
 }

 rc = check_message(message_id, wait_seconds);
 string2 = "NO BROADCAST MESSAGES";
 if (rc != 0 || strstr(message_text, string2) == NULL) {
 printf(" Failed to receive %s.\n\n\n", string2);
 return 99;
 }

 rc = check_message(message_id, wait_seconds);
 string3 = "READY ";
 if (rc != 0 || strstr(message_text, string3) == NULL) {
 printf(" Failed to receive %s prompt.\n\n\n", string3);
 return 99;
 }

 rc = check_message(message_id, wait_seconds);
 string4 = "HIDDEN";
 string5 = "FALSE";
 if (rc != 0 ||
 strstr(message_text, string4) == NULL ||
 strstr(message_text, string5) == NULL) {
 printf(" Failed to receive %s : %s message.\n\n\n",
 string4, string5);
 return 99;
 }
 }

 if (ceatso_request.ceatso_requesttype == CeaTsoAttn) {
 rc = check_message(message_id, wait_seconds);
 string6 = "ENTER DATA SET NAME OR * -";
 if (rc != 0 ||
 strstr(message_text, string6) == NULL) {
 printf(" Failed to receive %s message.\n\n\n", string6);
 return 99;
 }

 rc = check_message(message_id, wait_seconds);
 string4 = "HIDDEN";
 string5 = "FALSE";
 if (rc != 0 ||
 strstr(message_text, string4) == NULL ||
 strstr(message_text, string5) == NULL) {
 printf(" Failed to receive %s : %s message.\n\n\n",
 string4, string5);
 return 99;
 }
 }

 return 0;

}

/***/
/** **/
/** Verify messages after Attn **/
/** **/
/***/
int verify_attn_messages(int message_id, int wait_seconds) {

176 z/OS: z/OS MVS Callable Services for HLL

 int rc;
 char *string1;
 char *string2;
 char *string3;

 rc = check_message(message_id, wait_seconds);
 string1 = "READY ";
 if (rc != 0 || strstr(message_text, string1) == NULL) {
 printf(" Failed to receive %s prompt after Attn.\n\n\n",
 string1);
 return 99;
 }

 rc = check_message(message_id, wait_seconds);
 string2 = "HIDDEN";
 string3 = "FALSE";
 if (rc != 0 ||
 strstr(message_text, string2) == NULL ||
 strstr(message_text, string3) == NULL) {
 printf(" Failed to receive %s : %s message.\n\n\n",
 string2, string3);
 return 99;
 }

 return 0;

}

/***/
/** **/
/** Check message text **/
/** **/
/***/
int check_message(int message_id, int wait_seconds) {
 int rc;
 size_t iconv_rc;
 ssize_t msg_rc;
 iconv_t cd;
 char *input_ptr;
 char *output_ptr;
 size_t input_msgsize;
 size_t output_msgsize;
 time_t wait_time;
 time_t start_time;
 time_t receive_time;

 message_size = sizeof(message_queue_t) - sizeof(long int);

 memset(&message_text, '\0', message_size);

 time(&start_time);

 /* -6 should include 2 and 3 */
 message_queue.message_type = (long int)-6;

 sleep_time = 2;
 msg_rc = 0;

 /* Must include IPC_NOWAIT flag, otherwise could hang */
 /* the program execution when no msg sending back. */
 do {
 msg_rc = msgrcv(message_id, &message_queue, message_size,
 message_queue.message_type, MSG_NOERROR | IPC_NOWAIT);
 sleep(sleep_time);
 wait_time = time(&receive_time) - start_time;
 } while (wait_time <= wait_seconds && msg_rc <= 0);

 if (msg_rc == -1) {
 printf("\n\nReceive message failed with\n");
 printf(" msg_rc = %d ", msg_rc);
 printf(" Wait time = %d seconds\n", wait_time);
 printf(" Errno = %X", errno);
 printf(" Errno_Jr = %X\n\n", __errno2());
 return 99;
 }
 else
 printf(" Received Message in %d seconds.\n",
 wait_time);

 if ((rc = setenv("_ICONV_UCS2", "D", 1)) != 0) {

Chapter 12. Using CEA TSO/E address space services 177

 printf("\n setenv() failed with ");
 printf(" rc = %d ", rc);
 printf(" Errno = %X ", errno);
 printf(" Errno_Jr = %X\n\n", __errno2());
 return rc;
 }

 if ((cd = iconv_open("IBM-1047", "UTF-8")) == (iconv_t)-1) {
 printf(" iconv_open() failed with ");
 printf(" Errno = %X ", errno);
 printf(" Errno_Jr = %X\n\n", __errno2());
 return 99;
 }

 input_ptr = message_queue.message_text;
 output_ptr = message_text;

 input_msgsize = msg_rc;
 output_msgsize = msg_rc;

 if ((iconv_rc = iconv(cd, &input_ptr, &input_msgsize, &output_ptr,
 &output_msgsize)) == (size_t)-1) {
 printf(" iconv() failed with ");
 printf(" rc = %d ", iconv_rc);
 printf(" Errno = %X ", errno);
 printf(" Errno_Jr = %X\n\n", __errno2());
 return 99;
 }

 if ((rc = iconv_close(cd)) == -1) {
 printf(" iconv_close() failed with ");
 printf(" rc = %d ", rc);
 printf(" Errno = %X ", errno);
 printf(" Errno_Jr = %X\n\n", __errno2());
 return rc;
 }

 printf(" Reveived Message Type: %2d\n",
 message_queue.message_type);
 printf(" Reveived Message Length: %d\n", strlen(message_text));
 printf(" Received Message Text: \n");
 printf(" %s\n", message_text);
 printf("\n");

 return 0;

}

/***/
/** **/
/** Send TSO command and check the proper message received **/
/** **/
/***/
int send_message(void) {
 int rc;
 size_t iconv_rc;
 iconv_t cd;
 size_t input_msgsize;
 size_t output_msgsize;
 char *input_ptr;
 char *output_ptr;

 message_size = sizeof(message_queue_t) - sizeof(long int);
 memset(&message_queue.message_text, '\0', message_size);
 memset(&message_text, '\0', message_size);

 strcpy(message_text, tso_cmd);

 if ((cd = iconv_open("UTF-8", "IBM-1047")) == (iconv_t)-1) {
 printf(" iconv_open() failed with ");
 printf(" Errno = %X ", errno);
 printf(" Errno_Jr = %X\n\n", __errno2());
 return 99;
 }

 input_ptr = message_text;
 output_ptr = message_queue.message_text;

 input_msgsize = strlen(message_text);
 output_msgsize = input_msgsize;

178 z/OS: z/OS MVS Callable Services for HLL

 if ((iconv_rc = iconv(cd, &input_ptr, &input_msgsize, &output_ptr,
 &output_msgsize)) == (size_t)-1) {
 printf(" iconv() failed with ");
 printf(" rc = %d ", iconv_rc);
 printf(" Errno = %X ", errno);
 printf(" Errno_Jr = %X\n\n", __errno2());
 return 99;
 }

 if ((rc = iconv_close(cd)) == -1) {
 printf(" iconv_close() failed with ");
 printf(" rc = %d ", rc);
 printf(" Errno = %X ", errno);
 printf(" Errno_Jr = %X\n\n", __errno2());
 return rc;
 }

 message_queue.message_type = (long int)7;
 message_size = strlen(message_queue.message_text);

 rc = msgsnd(message_id, &message_queue, message_size, 0);

 return rc;

}

/***/
/** **/
/** Save some required members of request structure **/
/** for ATTN and END process **/
/** **/
/***/
void save_required_members(void) {
 int i;

/* Not required input for End
 if (ceatso_request.ceatso_requesttype == CeaTsoEnd) {
 strcpy(userid, ceatso_request.ceatso_userid);
 strcpy(apptag, ceatso_request.ceatso_apptag);
 }

 if (ceatso_request.ceatso_requesttype == CeaTsoAttn)
 asid = ceatso_request.ceatso_asid;
*/

 asid = ceatso_request.ceatso_asid;

 stoken_ptr = stoken;
 ptr = ceatso_request.ceatso_stoken;
 for (i = 1; i < 9; i++)
 *stoken_ptr++ = *ptr++;

 ascbaddr = ceatso_request.ceatso_ascbaddr;

 index_value = ceatso_request.ceatso_index;

/*
 printf("\nSave the following value:\n");
*/

/* Not required input for End
 if (ceatso_request.ceatso_requesttype == CeaTsoEnd) {
 printf(" userid = ");

 ptr = userid;
 for (i = 1; i <= 8; i++)
 printf("%C", *ptr++);
 printf("\n");

 printf(" apptag = ");

 ptr = apptag;
 for (i = 1; i <= 8; i++)
 printf("%C", *ptr++);
 printf("\n");
 }
*/

/*

Chapter 12. Using CEA TSO/E address space services 179

 printf(" asid = %X\n", asid);

 ptr = ceatso_request.ceatso_stoken;
 printf(" stoken = ");
 for (i = 1; i < 9; i++)
 printf("%X ", *ptr++);
 printf("\n");

 printf(" ascdaddr = %X\n", ascbaddr);

 printf(" index_value = %X\n", index_value);

 printf("\n");
*/

 return;

}

/***/
/** **/
/** Initialize some required members of request structure **/
/** for ATTN and END process **/
/** **/
/***/
void init_required_members(void) {
 int i;

 memset(ceatso_request.ceatso_eyecatcher, 'F', 8);

 ceatso_request.ceatso_version = 0;

 if (ceatso_request.ceatso_requesttype == CeaTsoAttn)
 ceatso_request.ceatso_asid = 0;

/*
 if (ceatso_request.ceatso_requesttype == CeaTsoEnd) {
 memset(ceatso_request.ceatso_userid, 'F', 8);
 memset(ceatso_request.ceatso_apptag, 'F', 8);
 }
*/

 memset(ceatso_request.ceatso_stoken, 0xFF, 8);

 ceatso_request.ceatso_ascbaddr = 0;

 ceatso_request.ceatso_index = 0;

 /* Initialize the CEA TSO Error structure for CEATsoRequest() */
 memset(&ceatso_error, 0x00, sizeof(CEATsoError_t));

 return;

}

/***/
/** **/
/** Set some required members of request structure back **/
/** to the original value for ATTN and END process **/
/** **/
/***/
void set_required_members(void) {
 int i;

 strcpy(ceatso_request.ceatso_eyecatcher, CEATSOREQUEST_EYECATCHER);

 ceatso_request.ceatso_version = CEATSOREQUEST_CURRENTVERSION;

/*
 if (ceatso_request.ceatso_requesttype == CeaTsoEnd) {
 strcpy(ceatso_request.ceatso_userid, userid);
 strcpy(ceatso_request.ceatso_apptag, apptag);
 }
*/

 if (ceatso_request.ceatso_requesttype == CeaTsoAttn)
 ceatso_request.ceatso_asid = asid;

 stoken_ptr = stoken;

180 z/OS: z/OS MVS Callable Services for HLL

 ptr = ceatso_request.ceatso_stoken;
 for (i = 1; i < 9; i++)
 *ptr++ = *stoken_ptr++;

 ceatso_request.ceatso_ascbaddr = ascbaddr;

 ceatso_request.ceatso_index = index_value;

 /* Initialize the CEA TSO Error structure for CEATsoRequest() */
 memset(&ceatso_error, 0x00, sizeof(CEATsoError_t));
 strcpy(ceatso_error.eyeCatcher, CEAINCT_EYE_CEAIERRO);
 ceatso_error.version = CEAIERRO_CURRENTVERSION;

 return;

}

/***/
/** **/
/** CeaTsoSamp1: Sample code to invoke CEATsoRequest() to start **/
/** a CEA TSo Session send it an Attn interrupt the end the TSO **/
/** session. **/
/** **/
/** Results are returned in the error structure **/
/** **/
/***/
int CeaTsoSamp1() {
 int i;
 int rc;

 printf("==\n");
 printf("== Start CeaTsoRequest() Example ==\n");
 printf("==\n");
 printf("\n");

 printf("CEATSORequest() Start session.\n\n");
 init_ceatso_struct();
 init_expected_values();
 ceatso_request.ceatso_requesttype = CeaTsoStart;

 CEATsoRequest(&ceatso_request, &ceatso_query, &ceatso_error);

 if (ceatso_error.returnCode == expected_rc &&
 ceatso_error.reasonCode == expected_rsn &&
 ceatso_error.diag.diag1 == expected_diag1 &&
 ceatso_error.diag.diag2 == expected_diag2 &&
 ceatso_error.diag.diag3 == expected_diag3 &&
 ceatso_error.diag.diag4 == expected_diag4)
 printf(" Verifying logon messages.\n\n");
 else {
 error_counter = error_counter + 1;
 printf("CEATsoRequest() Start session failed.\n\n\n");
 print_error_struct();
 print_request_struct();
 printf("\nVariation %d failed.\n\n\n", variation_id);
 printf("\n\n");
 return error_counter;
 }

 wait_seconds = 8;
 message_id = ceatso_request.ceatso_msgqueueid;
 rc = verify_messages(message_id, wait_seconds);

 if (rc == 0)
 printf("\nCEATsoRequest() Start seesion successful.\n\n");
 else {
 error_counter = error_counter + 1;
 printf("CEATsoRequest() Start failed to receive the message ");
 printf("with rc = %d.\n\n\n", rc);
 printf("\nVariation %d failed.\n\n\n", variation_id);
 printf("\n\n");
 return error_counter;
 }

 save_required_members();

Chapter 12. Using CEA TSO/E address space services 181

 ceatso_request.ceatso_requesttype = CeaTsoAttn;

 rc = send_message();

 if (rc == 0) {
 printf("\n\nSend TSO Command Successful.\n\n");
 printf(" Send Message Type: %2d\n",
 message_queue.message_type);
 printf(" Send Message Length: %d\n",
 strlen(message_queue.message_text));
 printf("\n");
 }
 else {
 printf("\nSend message failed with ");
 printf(" rc = %d ", rc);
 printf(" Errno = %X ", errno);
 printf(" Errno_Jr = %X\n\n", __errno2());
 error_counter = error_counter + 1;
 printf("\nVariation %d failed.\n\n\n", variation_id);
 printf("\n");
 return error_counter;
 }

 rc = verify_messages(message_id, wait_seconds);

 if (rc == 0)
 printf("\n\nCEATsoRequest() Attn starts.\n\n");
 else {
 error_counter = error_counter + 1;
 printf("\nVariation %d failed.\n\n\n", variation_id);
 printf("\n\n");
 return error_counter;
 }

 ceatso_request.ceatso_requesttype = CeaTsoAttn;
 set_required_members();
 init_expected_values();
 strcpy(ceatso_request.ceatso_eyecatcher, CEATSOREQUEST_EYECATCHER);

 CEATsoRequest(&ceatso_request, &ceatso_query, &ceatso_error);

 if (ceatso_error.returnCode == expected_rc &&
 ceatso_error.reasonCode == expected_rsn &&
 ceatso_error.diag.diag1 == expected_diag1 &&
 ceatso_error.diag.diag2 == expected_diag2 &&
 ceatso_error.diag.diag3 == expected_diag3 &&
 ceatso_error.diag.diag4 == expected_diag4)
 printf(" Verifying messages after Attn.\n\n");
 else {
 error_counter = error_counter + 1;
 printf("CEATsoRequest() Attn failed.\n\n");
 print_error_struct();
 print_request_struct();
 printf("\nVariation %d failed.\n\n\n", variation_id);
 return error_counter;
 }

 rc = verify_attn_messages(message_id, wait_seconds);

 if (rc == 0)
 printf("\nCEATsoRequest() Attn successful.\n\n");
 else {
 error_counter = error_counter + 1;
 printf("CEATsoRequest() Attn failed.\n\n");
 print_error_struct();
 print_request_struct();
 printf("\nVariation %d failed.\n\n\n", variation_id);
 return error_counter;
 }

 printf("\n\nCEATsoRequest() End starts.\n");
 set_required_members();
 init_expected_values();
 ceatso_request.ceatso_requesttype = CeaTsoEnd;

 CEATsoRequest(&ceatso_request, &ceatso_query, &ceatso_error);

182 z/OS: z/OS MVS Callable Services for HLL

 if (ceatso_error.returnCode == expected_rc &&
 ceatso_error.reasonCode == expected_rsn &&
 ceatso_error.diag.diag1 == expected_diag1 &&
 ceatso_error.diag.diag2 == expected_diag2 &&
 ceatso_error.diag.diag3 == expected_diag3 &&
 ceatso_error.diag.diag4 == expected_diag4)
 printf("\n\n\nCEATsoRequest() End session successful.\n");
 else {
 error_counter = error_counter + 1;
 printf("\n\nCEATsoRequest() End session failed.\n\n");
 print_request_struct();
 print_error_struct();
 printf("\nVariation %d failed.\n\n\n", variation_id);
 return error_counter;
 }

 if (ceatso_error.returnCode == CEASUCCESS)
 printf("\n\n\nVariation %d succeeded.\n\n\n\n", variation_id);
 else {
 error_counter = error_counter + 1;
 printf("\n\n\nVariation %d failed.\n\n\n\n", variation_id);
 }

 printf("==\n");
 printf("== Finished Start CeaTsoRequest() Example \n");
 printf("==\n");
 printf("\n\n\n\n");

 return error_counter;

}

Sample compile job
For C programmers, you can use the following sample compile job to compile the sample program. For
more details about the sample program, see “Programming example” on page 169.

/* rexx */
/* c89/cc/c++ */
/* dbx needs -g or -Wc,debug */
/* list\(./\) */
/* export _C89_STEPS='-1' enable all steps, inc prelinker */
/* export _C89_TMPS ='-3' prelinker will write composite .p file*/

'c89 -oceasamt -v -g -Wc,LP64,SHOW,SO,AGGR,XREF,NOOFF,NOOPT,EXP,LIST\(./\)
SSCOMM,DLL,STA,''LANGLVL(EXTENDED)'',WARN64
 -Wl,LP64,map,xref
 ceasampt.c ceasapit.x

'
'ls -gatlrE ceasamt.* ceasamt'

Chapter 12. Using CEA TSO/E address space services 183

184 z/OS: z/OS MVS Callable Services for HLL

Part 6. zEnterprise Data Compression (zEDC)

© Copyright IBM Corp. 1994, 2023 185

186 z/OS: z/OS MVS Callable Services for HLL

Chapter 13. Overview and planning of zEnterprise
Data Compression (zEDC)

In today's z/OS environment, many installations want to compress certain types of data to occupy less
space while its not in use, and then restore the data when necessary. Using zEnterprise Data Compression
(zEDC) to compress data might help to reduce CPU cost and elapsed time of data compression compared
to traditional software-based compression services, such as CSRCESRV and CSRCMPSC. zEDC can also
lower the cost of applications using host-based compression that are currently running on z/OS.

zEDC supports the DEFLATE compression data format, which compresses data using the following
algorithms, defined by RFC 1951:

• LZ77

– Replaces repeated string with length, back pointer pairs.
– Points back up to 32K.

• Huffman coding

– Variable length encoding of characters.
– Minimize bit length of stream of characters by assigning shorter codes to frequent characters.
– Data and length, back pointer pairs are Huffman encoded.

For more details, check IETF standard RFC 1951 (tools.ietf.org/html/rfc1951).

For help getting started, and access to a variety of technical resources about Integrated Accelerator for
zEDC, see Integrated Accelerator for zEDC (www.ibm.com/support/z-content-solutions/compression/).

Requirements for zEnterprise Data Compression
zEDC requires the following:

© Copyright IBM Corp. 1994, 2023 187

http://tools.ietf.org/html/rfc1951
https://www.ibm.com/support/z-content-solutions/compression/

• z/OS V2R1 (or later) operating system.
• One of the following:

– IBM® z15™, or later, with the Integrated Accelerator for zEDC
– IBM zEnterprise EC12 CPC (with GA2 level microcode) or zBC12 CPC, or later, with the zEDC Express

feature.
• zEDC software feature enabled in an IFAPRDxx parmlib member.
• Adequate 64-bit real storage configured to this z/OS image.

Planning for zEnterprise Data Compression
zEDC is established by launching either an unauthorized or authorized interface:

• Unauthorized interface for zEDC:

– zlib for zEDC:

- zlib is an OpenSource data compression library supporting the DEFLATE compressed data format.
- The zlib compression library provides in-memory compression and decompression functions,

including integrity checks of the uncompressed data. For additional information, see zlib
Compression Library (zlib.net).

• System z authorized interfaces for zEDC:

– Requires supervisor state and supports task and SRB mode.
– Allows application buffers to be directly read by and written to by compression accelerator hardware,

allowing the application to avoid a data move, but also adding complexity to managing I/O buffers.
– Operates on independent requests:

- A deflate request produces a full DEFLATE block.
- An inflate request consumes a full DELFATE block.

– Provides software inflate capability to maintain data access when System z compression accelerator
hardware is not available.

• Additional method with the option to use zEDC:

– SMF compression. Use the COMPRESS and PERMFIX keywords in the SMFPRMxx parmlib member
to compress data before writing to a log stream. For additional information, see z/OS MVS System
Management Facilities (SMF) and z/OS MVS Initialization and Tuning Reference.

Table 28. Comparison table between unauthorized and System z authorized interfaces for zEDC

Options Unauthorized interfaces for zEDC
System z authorized interfaces for
zEDC

Language C Any language that can call OS callable
services

Data streaming zlib-style data streams supported. Data
can be broken up across requests
as needed, but has to be within the
minimum input buffer limit.

Each request is independent and
handled as a single DEFLATE block.
Inflate requests must receive single
complete DEFLATE block.

Buffer management Data move to device driver managed
buffer (IBM z14 and lower) or data
compressed directly using the buffer in
the application (IBM z15 and higher).

Application buffer directly used by
System z hardware.

Co-existence support Both inflate and deflate are completed
in software when hardware is not
available.

Inflate completed in software when
hardware is not available.

188 z/OS: z/OS MVS Callable Services for HLL

http://zlib.net
http://zlib.net

Table 28. Comparison table between unauthorized and System z authorized interfaces for zEDC (continued)

Options Unauthorized interfaces for zEDC
System z authorized interfaces for
zEDC

Authorization Controlled by SAF-protected
FACILITY class resource
FPZ.ACCELERATOR.COMPRESSION
(IBM z14 and lower).

Supervisor state.

Chapter 13. Overview and planning of zEnterprise Data Compression (zEDC) 189

190 z/OS: z/OS MVS Callable Services for HLL

Chapter 14. Application interfaces for zEnterprise
Data Compression

This topic describes the following interfaces, considerations, and samples for zEnterprise Data
Compression (zEDC):

• Invoking unauthorized interface for zEDC:

– “zlib for zEnterprise Data Compression” on page 191
• Invoking System z authorized interfaces for zEDC:

– “System z authorized compression services” on page 197

- “FPZ4RZV - Rendezvous compression service” on page 197
- “FPZ4PRB — Probe device availability compression service” on page 200
- “FPZ4RMR - Memory registration compression service” on page 202
- “FPZ4DMR - Deregister memory compression service” on page 204
- “FPZ4ABC — Submit compression request” on page 206
- “FPZ4URZ - Unrendezvous compression request” on page 211

Invoking unauthorized interfaces for zEnterprise Data
Compression

zlib for zEnterprise Data Compression
The zlib data compression library provides in-memory compression and decompression functions,
including integrity checks of the uncompressed data. A modified version of the zlib compression library
is used by zEDC. The IBM-provided zlib compatible C library provides a set of wrapper functions that
use zEDC compression when appropriate and when zEDC is not appropriate, software-based compression
services are used.

The zlib wrapper functions use the following criteria to determine if zEDC can be used for compression:

• The system requirements for zEDC have been met. See “Requirements for zEnterprise Data
Compression” on page 187 for the details.

• For a deflate stream, the parameters specified on deflateInit2() are supported by zEDC. For an inflate
stream, all the parameters specified on inflateInit2() are supported. See “Standard zlib functions” on
page 192 for the details.

• Because there are overhead costs when communicating with the hardware, on the first call to deflate or
inflate a data stream, the provided input is checked to ensure that it is sufficiently large enough to make
it worthwhile to use zEDC. If the data stream is large enough, zEDC is used. If the data stream is small,
it might cost more to compress the data stream with zEDC so software-based compression services are
used. Note: This check is only performed on the first call to deflate or inflate a data stream.

If any of these criteria are not met, the zlib wrapper function calls the standard zlib functions to process
the data stream in software.

Once zEDC is used as the compression mechanism (for example, after the first call to inflate or deflate the
data stream is completed), you cannot change the compression method to software-based compression
services. At the same time, if software-based compression services are used as the compression
mechanism (for example, after the first call to inflate or deflate the data stream is completed), you cannot
change the compression method to zEDC.

© Copyright IBM Corp. 1994, 2023 191

Note: Once a data stream starts using zEDC for compression, if a function is called that cannot be
supported by zEDC or the zEDC hardware becomes unavailable, the unsupported function returns an error
return code.

Standard zlib functions
The following table contains the standard zlib functions and whether they are supported using zEDC:

Table 29. Standard zlib functions and whether they are supported using zEDC

zlib function zEDC-supported Details

zlibVersion Supported. Returns '1.2.11-zEDC'

deflateInit Supported.

deflate All flush modes are
supported.

If the input buffer size is smaller than the minimum threshold
for zEDC on the first call to deflate (compress) a data stream,
the data stream is compressed using traditional software-based
compression.

deflateEnd Supported.

inflateInit Supported.

inflate Supported if the flush
mode is one of the
following:

• z_no_flush
• z_sync_flush
• z_finish

If either the input buffer size is smaller than a minimum threshold
for zEDC or the flush mode is z_block or z_trees on the first
call to inflate (decompress) a data stream, the data stream is
decompressed using traditional software-based decompression.

On subsequent calls to inflate a data stream, if the flush mode is
z_block or z_trees and the stream is using zEDC decompression,
Z_STREAM_ERROR is returned

inflateEnd Supported.

deflateInit2 Support is based on
the input parameters.

Input parameters:
level

This option is ignored for zEDC and does not affect the software
or zEDC compression decision.

This option is supported for zlib software compression.

method
Must be Z_DEFLATED.

windowBits
Must be -15 for raw deflate, 15 for zlib header and trailer, or 31
for gzip header and trailer. For all other windowBits values, the
data stream uses traditional software-based compression.

memLevel
This option is ignored for zEDC and does not affect the software
or zEDC compression decision.

This option is supported for zlib software compression.

strategy
Use Z_DEFAULT_STRATEGY or Z_FIXED for zEDC. All other
options use traditional software-based compression.

deflateGetDiction
ary

Not supported for
zEDC.

Returns Z_STREAM_ERROR if the stream is using zEDC.

192 z/OS: z/OS MVS Callable Services for HLL

Table 29. Standard zlib functions and whether they are supported using zEDC (continued)

zlib function zEDC-supported Details

deflateSetDiction
ary

Supported. This option is supported for zEDC when called before the first
deflate call for the data stream and is not supported after the first
call to deflate.

deflateCopy Supported.

deflateReset Supported.

deflateResetKeep Not supported for
zEDC.

Returns Z_STREAM_ERROR if the stream is using zEDC.

deflateParams Support is based on
the input parameters.

Input parameters:
Level

This option is ignored for zEDC.
Strategy

Use Z_DEFAULT_STRATEGY or Z_FIXED for zEDC. All other
options use traditional software-based compression.

deflateTune Supported. This option only applies to traditional software-based compression.
zEDC accepts the call, but none of the parameters apply to zEDC.

deflateBound Supported.

deflatePending Supported.

deflatePrime Not supported for
zEDC.

Returns Z_STREAM_ERROR if the stream is using zEDC.

deflateSetHeader Supported.

inflateInit2 Supported.

inflateGetDictiona
ry

Not supported for
zEDC.

Returns Z_STREAM_ERROR if the stream is using zEDC.

inflateSetDictiona
ry

Supported if called
immediately after a
call to inflate the data
stream that returns
Z_NEED_DICT.

Otherwise, Z_STREAM_ERROR is returned if the data stream is
attempting to use zEDC decompression.

InflateSync Supported.

inflateSyncPoint Not supported for
zEDC.

Returns Z_STREAM_ERROR if the stream is using zEDC.

inflateCodesUsed Not supported for
zEDC.

Returns Z_STREAM_ERROR if the stream is using zEDC.

inflateCopy Supported.

inflateReset Supported.

inflatateReset2 Supported.

inflatePrime Not supported for
zEDC.

Returns Z_STREAM_ERROR if the stream is using zEDC
decompression.

inflateMark Not supported for
zEDC.

Returns Z_STREAM_ERROR if the stream is using zEDC
decompression.

inflateGetHeader Supported.

Chapter 14. Application interfaces for zEnterprise Data Compression 193

Table 29. Standard zlib functions and whether they are supported using zEDC (continued)

zlib function zEDC-supported Details

inflateBackInit Not supported for
zEDC.

InflateBackInit forces stream to software-based compression.

inflateBack Not supported for
zEDC.

inflateValidate Not supported for
zEDC.

Returns Z_STREAM_ERROR if the stream is using zEDC.

zlibCompileFlags Supported.

compress Supported.

compress2 Supported. Level is ignored if using zEDC.

compressBound Supported.

uncompress Supported.

uncompress2 Supported.

gz* routines Not supported for
zEDC.

Uses software-based compression for inflate and deflate functions.

checksum
functions

Not supported for
zEDC.

Checksum functions calculate the checksum values using software-
based compression services.

IBM-provided zlib compatible C library
The IBM-provided zlib compatible C library provides the following query functions in addition to the
standard zlib functions:
deflateHwAvail(buflen)

Determines if the compression accelerator is available for a deflate operation. The input parameter
buflen is an integer that represents the input buffer size of the first deflate request. The function
returns an integer with a value of 1 if the compression accelerator will be used for the deflate
operation or a value of 0 if software will be used instead.

inflateHwAvail(buflen)
Determines if the compression accelerator is available for an inflate operation. The input parameter
buflen is an integer that represents the input buffer size of the first inflate request. The function
returns an integer with a value of 1 if the compression accelerator will be used for this inflate
operation or a value of 0 if software will be used instead.

hwCheck(strm)
Determines if a zlib stream is using the compression accelerator or software compression. The input
parameter strm is a pointer to a zlib z_stream structure to check. The function returns an integer
with a value of 0 if the stream has gone to the compression accelerator, a value of 1 if the stream
is pending to go to the compression accelerator, but still could fall back to software compression, a
value of 2 if the stream has gone to software compression, or Z_STREAM_ERROR if the stream has not
been initialized correctly.

Running zlib
To compress data with zEDC, your installation must meet the system requirements. See “Requirements
for zEnterprise Data Compression” on page 187 for the system requirements for zEDC.

To use the IBM-provided zlib compatible C library for data compression or data expansion services, follow
these steps:

1. Link or re-link applications to use the IBM-provided zlib.

194 z/OS: z/OS MVS Callable Services for HLL

The IBM-provided zlib is an archive file in the z/OS UNIX System Services file system and can be
statically or dynamically linked into your applications. The paths for the zlib archive file and the zlib
header files are:
Path for the zlib archive file:

/lib/libzz.a
Path for 31-bit non-xplink dynamic library files:

/lib/libzz.so
/lib/libzz.x

Path for 31-bit xplink dynamic library files:
/lib/libzzX.so
/lib/libzzX.x

Path for 64-bit dynamic library files:
/lib/libzz64.so
/lib/libzz64.x

Path for the zlib header files:
/usr/include/

Note: When a new IBM service is provided for zlib, all applications that statically or dynamically link
zlib must re-link in order to use the updated IBM-provided zlib and take advantage of the new function.

2. Provide System Authorization Facility (SAF) Access:

• Access to zEDC Express is protected by the SAF FACILITY resource class for installations running
IBM zEnterprise z14 and below processors (IBM zEnterprise z15 and above processor will no longer
have this requirement): FPZ.ACCELERATOR.COMPRESSION.

• Give READ access to FPZ.ACCELERATOR.COMPRESSION to the identity of the address space that the
zlib task will run in.

Note: The access check is performed during the first call in a given task. The results of that first check
are cached for the duration of the task.

3. Use the z/OS UNIX environmental variable, _HZC_COMPRESSION_METHOD, to control if zEDC is used
for data compression.

Note: If the value of software is set, software-based compression services are used. All other values
result in the default behavior of attempting to use zEDC for data compression.

4. Ensure that adequately sized input buffers are available. If the input buffer size falls below the
minimum threshold, data compression occurs using zlib software compression and not zEDC.

Note: IBM zEnterprise z15 and above processor thresholds will no longer be tunable through parmlib.
The IQPPRMxx will still be allowed in the configuration, but the values will no longer be accepted.

The environment variables _HZC_DEFLATE_THRESHOLD and _HZC_INFLATE_THRESHOLD can also be
used to control the threshold for going to zEDC. The valid values are in the range 1-9999999.

For example:

_HZC_DEFLATE_THRESHOLD=1 would force all deflate requests with an initial input size of 1 byte or
larger to use zEDC.

This threshold can be controlled at a system level using the PARMLIB member
IQPPRM<varname>xx</varname>.

5. Use the z/OS UNIX environmental variable, _HZC_CHECKSUM_METHOD, to control if SIMD
acceleration is used in checksum verification.

Note: If the value of software is set, software-based checksum verification is used. All other values
result in the default behavior, which means if hardware supported SIMD, then SIMD acceleration is
used.

Chapter 14. Application interfaces for zEnterprise Data Compression 195

6. Allocate the correct amount of storage for I/O buffers. The zEDC requests generated by zlib use
predefined I/O buffer pools. The size of these I/O buffer pools can be set using PARMLIB member
IQPPRMxx.

Note: For IBM z15 and above processors these buffers are no longer applicable. The IQPPRMxx will
still be allowed in the configuration, but the values will no longer be accepted.

When zlib is statically linked into an application that runs on software or hardware that is not compatible
with zEDC, zlib uses the following compression and decompression:

Table 30. Compression and decompression with zlib

Hardware level z/OS level zEDC Express Description

zEC12 (with GA2 level
microcode)

z/OS V2R1 Active zEDC is used for both data compression and
decompression.

zEC12 (with GA2 level
microcode)

z/OS V2R1 Not Active Requirements are not met for zEDC. When
zEDC Express is not available, traditional
software zlib is used for compression and
decompression.

Pre-zEC12 (with GA2
level microcode)

z/OS V2R1 or
pre-z/OS
V2R1

N/A Requirements are not met for zEDC. When
zEDC Express is not available, traditional
software zlib is used for compression and
decompression.

zEDC error handling:

• If a System z compression accelerator is unavailable, data compression requests transfer to another
System z compression accelerator configured to the same partition. These request transfers are
transparent to the application.

• If all System z compression accelerators are unavailable, an error message is sent to the application.

Invoking System z authorized interfaces for zEnterprise Data
Compression

This topic describes how to invoke System z authorized interfaces for zEnterprise Data Compression by:

• “System z authorized compression services” on page 197

– “FPZ4RZV - Rendezvous compression service” on page 197
– “FPZ4PRB — Probe device availability compression service” on page 200
– “FPZ4RMR - Memory registration compression service” on page 202
– “FPZ4DMR - Deregister memory compression service” on page 204
– “FPZ4ABC — Submit compression request” on page 206
– “FPZ4URZ - Unrendezvous compression request” on page 211

To compress data with zEDC, your installation must meet the system requirements. See “Requirements
for zEnterprise Data Compression” on page 187 for the system requirements for zEDC.

All z/OS exploitation of zEDC handles mixed hardware and software levels. Compatibility APAR OA41245
provides software decompression for installations running with z/OS V1R13 or V1R12. The same software
decompression is also provided for installations running z/OS V2R1 on pre-IBM zEnterprise EC12 (with
GA2 level microcode). This allows access to compressed data on all combinations of environments.

196 z/OS: z/OS MVS Callable Services for HLL

Table 31. Compression and decompression with System z authorized interfaces for zEDC

Hardware level z/OS level zEDC Express Description

zEC12 (with GA2 level
microcode)

z/OS V2R1 Active zEDC is used for both data compression and
decompression.

zEC12 (with GA2 level
microcode)

z/OS V2R1 Not Active Requirements are not met for zEDC.
Software-based decompression services for
zEDC Express compressed data are used
because zEDC Express compression is not
available.

Pre-zEC12 (with GA2
level microcode)

z/OS V2R1 N/A Requirements are not met for zEDC.
Software-based decompression services for
zEDC Express compressed data are used
because zEDC Express compression is not
available.

Pre-zEC12 (with GA2
level microcode)

Pre-z/OS
V2R1

N/A Requirements are not met for zEDC.
Software-based decompression services for
zEDC Express compressed data are used
because zEDC Express compression is not
available. Note: APAR OA41245 is required
to use the software-based decompression
services.

System z authorized compression services
The following compression services are available when using System z authorized interfaces for zEDC:

• “FPZ4RZV - Rendezvous compression service” on page 197
• “FPZ4PRB — Probe device availability compression service” on page 200
• “FPZ4RMR - Memory registration compression service” on page 202
• “FPZ4DMR - Deregister memory compression service” on page 204
• “FPZ4ABC — Submit compression request” on page 206
• “FPZ4URZ - Unrendezvous compression request” on page 211

FPZ4RZV - Rendezvous compression service
Description

The FPZ4RZV service performs the required setup and initialization of the compression services for an
exploiter. The scope is the address space of the application and it is valid for the life of the Cross Memory
Resource Owner (CMRO) task.

Notes:

1. A maximum of 255 rendezvous tokens are supported per each address space. This allows multiple
applications to exploit the compression driver so each can maintain their own rendezvous scope.

2. All 64-bit storage is obtained with the MEMLIMIT=NO option.

Table 32. Environment for the FPZ4RZV service

Environmental factor Requirement

Minimum authorization: Supervisor State with Key 0

Dispatchable unit mode: Task

FPZ4RZV

Chapter 14. Application interfaces for zEnterprise Data Compression 197

Table 32. Environment for the FPZ4RZV service (continued)

Environmental factor Requirement

Cross memory mode: PASN=HASN=SASN

AMODE: 64-bit

Interrupt status: Enabled for I/O and external interrupts

Locks: No locks held

Table 33. Parameters for the FPZ4RZV service

Name Type
Input/
Output Description

ApplicationId Fixed(3
2)

Input The application type to use. 0x01 is the application type
for zEDC.

FPZ4RZV_options Bit(64) Input Options for the FPZ4RZV service:
SoftwareInflate (X'80000000 00000000')

Allows compression requests to fall back to
software inflation when no compression devices are
available.

EnableABCScatter (X'40000000 00000000')
Allows compression requests to use the FPZ4ABC
compression service to submit work with scatter/
gather lists.

FailOnNoDevices (X'20000000 00000000')
If specified, compression requests fail when
no compression devices are available. If
FailOnNoDevices is not specified, a valid
rendezvous token is returned even if no
compression devices are currently available. This
returned rendezvous token is used for all other
services.

PlusOne (X'08000000 00000000')
If specified, compression requests will only use
zEDC Express Adapters with the February 26, 2014
Firmware MCL release, or later.

RmrEntriesExact (X'04000000 00000000')
If specified, the rmr_entries parameter represents
the maximum number of outstanding memory
registrations for this rendezvous. If this limit is
exceeded, the FPZ4RMR service may fail the
request.

userid Char(8) Input An eight character EBCDIC string identifying the user.

rmr_entries Fixed(3
2)

Input The estimated number of FPZ4RMR compression
service calls to be performed that helps to size the
tables used until the maximum number of registrations
is reached. This is an optional parameter. The value of
the rmr_entries parameter can be anywhere between 1
and 64K. The default is 128.

Define rmr_entries as integer data of length 32.

FPZ4RZV

198 z/OS: z/OS MVS Callable Services for HLL

Table 33. Parameters for the FPZ4RZV service (continued)

Name Type
Input/
Output Description

Rendezvous token Char(1
6)

Output This is the token that must be passed to all FPZ
services.

Return code Fixed(3
1)

Output The return code for the service.

Reason code Fixed(3
2)

Output The reason code for the service.

Table 34. Return and reason codes for the FPZ4RZV service

Hexadecimal return
code Reason code Meaning and action

00 0000 Meaning: The call completed successfully.

Action: None.

04 0000 Meaning: No zEDC devices are available. zEDC support is active
so it is possible that zEDC devices might become available in the
future.

Action: If zEDC devices are available to this system, perform
diagnostics to determine the reason for the failure.

04 0102 Meaning: No zEDC devices are available because the system
requirements for zEDC were not met. See “Requirements for
zEnterprise Data Compression” on page 187 for the details. A
'thin' rendezvous was created.

Action: None.

08 0000 Meaning: No zEDC devices are available because the system
requirements for zEDC were not met. This is the result of
RvzFailOnNoDev being ON or SoftwareInflate being OFF when
on downlevel hardware or software. See “Requirements for
zEnterprise Data Compression” on page 187 for the details. No
rendezvous token is returned.

Action: None.

0C 0201 Meaning: Invalid parameter combination.

Action: Check the calling program for a probable coding error.
Correct the program and rerun it.

0C 0207 Meaning: The calling environment is invalid.

Action: Check the calling program for a probable coding error.
Correct the program and rerun it.

0C 0210 Meaning: rmr_entries specified an invalid value.

Action: Check the calling program for a probable coding error.
Correct the program and rerun it.

FPZ4RZV

Chapter 14. Application interfaces for zEnterprise Data Compression 199

Table 34. Return and reason codes for the FPZ4RZV service (continued)

Hexadecimal return
code Reason code Meaning and action

0C 0226 Meaning: Invalid application specified.

Action: Check the calling program for a probable coding error.
Correct the program and rerun it.

10 0301 Meaning: An internal error caused recovery to be entered.

Action: Search problem reporting databases for a fix for the
problem. If no fix exists, contact the IBM Support Center.

10 0303 Meaning: The maximum number of rendezvous tokens have been
reached for the address space.

Action: Determine if the calling program is at fault because of a
coding error. If there is no coding error, another program might
be consuming all the rendezvous tokens for the address space.
Search problem reporting databases for a fix for the problem. If
no fix exists, contact the IBM Support Center.

10 030B Meaning: The CMRO task is ending.

Action: None, since the address space is ending. This reason
code should be accounted for in your code scenarios.

10 030C Meaning: Too many latch sets requested.

Action: Search problem reporting databases for a fix for the
problem. If no fix exists, contact the IBM Support Center.

FPZ4PRB — Probe device availability compression service
Description

The FPZ4PRB service checks for the required hardware and software needed for zEDC. This service
returns successful if they are available to the system. See “Requirements for zEnterprise Data
Compression” on page 187 for the details.

Table 35. Environment for the FPZ4PRB service

Environmental factor Requirement

Minimum authorization: Supervisor State with Key 0

Dispatchable unit mode: Task or SRB

Cross memory mode: PASN=HASN=SASN

AMODE: 64-bit

Interrupt status: Enabled for I/O and external interrupts

Locks: No locks held

FPZ4PRB

200 z/OS: z/OS MVS Callable Services for HLL

Table 36. Parameters for the FPZ4PRB service

Name Type
Input/
Output Description

ApplicationId Fixed(3
2)

Input The application type to use. 0x01 is the application type
for zEDC.

FPZ4PRB_options Bit(64) Input Options for the FPZ4PRB service:
PlusOne (X'80000000 00000000')

If specified, only zEDC Express Adapters with the
March 31, 2014 Firmware MCL release, or later, will
be honored. The value returned in NumDevices will
only indicate this subset of devices.

Note: This option is not applicable when running on
z15 and above.

PRBHasSync(X'40000000)
If specified, the service will return with a return
code of zero in the event that zEDC is running on a
z15.

NumDevices Fixed(3
2)

Output The number of devices available for this application.

Return code Fixed(3
1)

Output The return code for the service.

Reason code Fixed(3
2)

Output The reason code for the service.

Table 37. Return and Reason Codes for the FPZ4PRB service

Hexadecimal
Return Code Reason Code Meaning and Action

00 0000 Meaning: Devices are available.

Action: None.

00 00 Meaning: Compression is available.

Action: None.

08 0900 Meaning: The z/OS software level is not correct for zEDC. See
“Requirements for zEnterprise Data Compression” on page 187
for the details.

Action: None.

08 0901 Meaning: The hardware level is not correct for zEDC.See
“Requirements for zEnterprise Data Compression” on page 187
for the details.

Action: None.

08 0902 Meaning: No zEDC devices are available. The hardware is at the
correct level, but no zEDC devices were available.

Action: If zEDC devices are available to this system, perform
diagnostics to determine the reason for the failure.

FPZ4PRB

Chapter 14. Application interfaces for zEnterprise Data Compression 201

Table 37. Return and Reason Codes for the FPZ4PRB service (continued)

Hexadecimal
Return Code Reason Code Meaning and Action

08 0903 Meaning: zEDC devices were available during this IPL at some
point, but there are no zEDC devices available now.

Action: Perform diagnostics to determine the reason for the
failure.

FPZ4RMR - Memory registration compression service
Description

The FPZ4RMR service registers a segment of memory for use by zEDC. The result is that this storage
becomes fixed. The data area passed to FPZ4RMR must be page-aligned, and the size must be a multiple
of a page boundary.

Note: This is not compatible with existing page fix services. This storage is eligible to be used for I/O as a
result of this service.

Table 38. Environment for the FPZ4RMR service

Environmental factor Requirement

Minimum authorization: Supervisor State with Key 0

Dispatchable unit mode: Task or SRB

Cross memory mode: PASN=HASN=SASN

AMODE: 64-bit

Interrupt status: Enabled for I/O and external interrupts

Locks: No locks held

Table 39. Parameters for the FPZ4RMR service

Name Type
Input/
Output Description

ApplicationId Fixed(3
2)

Input The application type to use. 0x01 is the application type
for zEDC.

FPZ4RMR_options Bit(64) Input There are no supported options for the FPZ4RMR
service.

Rendezvous token Char(1
6)

Input The rendezvous token.

Data@ Ptr(64) Input The address of the data area to register.

Note: Large page frames must be in fixed storage.

DataLen Fixed(6
4)

Input The length of the data area to register.

Reserved Fixed(3
2)

Input Reserved. Must be 0.

DataKey Fixed(8
)

Input The key of the data area to register. The format of this
parameter is 0xk0, where k represents the key of the
data area.

FPZ4RMR

202 z/OS: z/OS MVS Callable Services for HLL

Table 39. Parameters for the FPZ4RMR service (continued)

Name Type
Input/
Output Description

RMR Token Char(8) Output The region memory registration token associated with
this data area. This token needs to be passed to the
FPZ4ABC service when this data area is used as input
or output.

Return code Fixed(3
1)

Output The return code for the service.

Reason code Fixed(3
2)

Output The reason code for the service.

Table 40. Return and Reason Codes for the FPZ4RMR service

Hexadecimal
Return Code Reason Code Meaning and Action

00 0000 Meaning: The call completed successfully.

Action: None.

08 0000 Meaning: Memory can not be registered because of lack of
hardware support.

Action: None.

08 0900 Meaning: Incorrect software level for zEnterprise data
compression accelerator support.

Action: None.

0C 0207 Meaning: The calling environment is invalid.

Action: Determine if the calling program is at fault because of a
coding error.

0C 0208 Meaning: An invalid rendezvous token was passed.

Action: Check that the application successfully called the
FPZ4RZV service.

0C 021D Meaning: The supplied region was not CONTROL(AUTH).

Action: Determine if the calling program is at fault because of a
coding error.

0C 021E Meaning: The supplied region address is incorrect. It might not
have been page-aligned.

Action: Search problem reporting databases for a fix for the
problem. If no fix exists, contact the IBM Support Center.

0C 021F Meaning: The region length is invalid. It is possible that it is not a
multiple of page size.

Action: Determine if the calling program is at fault because of a
coding error.

FPZ4RMR

Chapter 14. Application interfaces for zEnterprise Data Compression 203

Table 40. Return and Reason Codes for the FPZ4RMR service (continued)

Hexadecimal
Return Code Reason Code Meaning and Action

0C 0220 Meaning: There is a region key mismatch.

Action: Determine if the calling program is at fault because of a
coding error.

0C 0226 Meaning: An invalid application ID was encountered.

Action: Determine if the calling program is at fault because of a
coding error.

0C 0227 Meaning: Rendezvous was not created with data space support.

Action: Determine if the calling program is at fault because of a
coding error.

10 0301 Meaning: An internal error has occurred.

Action: Determine if the calling program is at fault because of a
coding error.

10 0304 Meaning: Compression services were not initialized. Rendezvous
was not called.

Action: Check that the application successfully called the
FPZ4RZV service.

10 0305 Meaning: Capacity has been reached for memory registrations.

Action: Determine if the calling program is at fault because of a
coding error.

10 0306 Meaning: There is not enough DMA memory available.

Action: Determine if the calling program is at fault because of a
coding error.

10 030D Meaning: Missing latch set token.

Action: Determine if the calling program is at fault because of a
coding error.

FPZ4DMR - Deregister memory compression service
Description

The FPZ4DMR service unregisters a segment of memory for use by zEDC Express. The result is that this
storage becomes unfixed.

Table 41. Environment for the FPZ4DMR service

Environmental factor Requirement

Minimum authorization: Supervisor State

Dispatchable unit mode: Task or SRB

Cross memory mode: PASN=HASN=SASN

AMODE: 64-bit

FPZ4DMR

204 z/OS: z/OS MVS Callable Services for HLL

Table 41. Environment for the FPZ4DMR service (continued)

Environmental factor Requirement

Interrupt status: Enabled for I/O and external interrupts

Locks: No locks held

Table 42. Parameters for the FPZ4DMR service

Name Type
Input/
Output Description

ApplicationId Fixed(3
2)

Input The application type to use. 0x01 is the application type
for zEDC.

FPZ4DMR_options Bit(64) Input There are no supported options for the FPZ4DMR
service.

Rendezvous token Char(1
6)

Input The rendezvous token.

RMR token Char(8) Input The region memory registration (RMR) token associated
with this data area to be unregistered.

Return code Fixed(3
1)

Output The return code for the service.

Reason code Fixed(3
2)

Output The reason code for the service.

Table 43. Return and Reason Codes for the FPZ4DMR service

Hexadecimal
Return Code Reason Code Meaning and Action

00 0000 Meaning: The call completed successfully.

Action: None.

08 0900 Meaning: Incorrect software level for zEnterprise data
compression accelerator support.

Action: None.

0C 0207 Meaning: The calling environment is invalid.

Action: Determine if the calling program is at fault because of a
coding error.

0C 0208 Meaning: An invalid rendezvous token was passed.

Action: Check that the application successfully called the
FPZ4RZV service.

0C 0209 Meaning: An invalid RMR token was provided.

Action: Determine if the calling program is at fault because of a
coding error.

10 0301 Meaning: An internal error has caused recovery to be entered.

Action: Search problem reporting databases for a fix for the
problem. If no fix exists, contact the IBM Support Center.

FPZ4DMR

Chapter 14. Application interfaces for zEnterprise Data Compression 205

Table 43. Return and Reason Codes for the FPZ4DMR service (continued)

Hexadecimal
Return Code Reason Code Meaning and Action

10 0304 Meaning: Compression services were not initialized. Rendezvous
was not called.

Action: Check that the application successfully called the
FPZ4RZV service.

10 030D Meaning: Missing latch set token.

Action: Determine if the calling program is at fault because of a
coding error.

FPZ4ABC — Submit compression request
Description

The FPZ4ABC service submits a single autonomous compression request for one or more DEFLATE
blocks. The input and output buffers can be either direct buffers or scatter/gather lists. The maximum size
of a request for FPZ4ABC is 1 MB.

Table 44. Environment for the FPZ4ABC service

Environmental factor Requirement

Minimum authorization: Supervisor State with Key 0

Dispatchable unit mode: Task or SRB

Cross memory mode: PASN=HASN=SASN

AMODE: 64-bit

Interrupt status: Enabled for I/O and external interrupts

Locks: No locks held

Table 45. Parameters for the FPZ4ABC service

Name Type
Input/
Output Description

ApplicationId Fixed(3
2)

Input The application type to use. 0x01 is the application type
for zEDC.

FPZ4ABC_options Bit(64) Input Options for the FPZ4ABC service:
Inflate (X'80000000 00000000')

When ON, specifies that this is an inflation request.
Input Scatter List (X'40000000 00000000')

When ON, the area pointed to by input@ is a
scatter/gather list.

Output Scatter List (X'20000000 00000000')
When ON, the area pointed to by output@ is a
scatter/gather list.

AbcSyncRequest(X'10000000 ..)
When ON, this is the synchronous request.

Rendezvous token Char(1
6)

Input The rendezvous token.

FPZ4ABC

206 z/OS: z/OS MVS Callable Services for HLL

Table 45. Parameters for the FPZ4ABC service (continued)

Name Type
Input/
Output Description

Input@ Ptr(64) Input The address of the input area or input scatter/gather
list.

Output@ Ptr(64) Input The address of the output area or output scatter/gather
list.

Input@RMR Token Char(8) Input The region memory registration (RMR) token for the
input area or area pointed to by the input scatter/gather
list.

Output@RMR Token Char(8) Input The region memory registration (RMR) token for the
output area or area pointed to by the output scatter/
gather list.

InputLen Fixed(6
4)

Input The length of the area pointed to by Input@. In the
event that a scatter/gather list was provided using
Input@, the total length of the areas provided by the
scatter/gather areas must be provided.

OutputLen Fixed(6
4)

Input The length of the area pointed to by Output@. In the
event that a scatter/gather list was provided using
Output@, the total length of the areas provided by the
scatter/gather areas must be provided.

GeneratedOutputLen Fixed(6
4)

Output This length describes how much output was generated
and stored in either the Output@ or the scatter/gather
list specified by Output@. This length spans across
scatter/gather entries.

Return code Fixed(3
1)

Output The return code for the service.

Reason code Fixed(3
2)

Output The reason code for the service.

The FPZ4ABC service allows for the input and output areas to span several non-contiguous areas. The
header of the FPZ4ABC list is immediately followed by the list entries. Note: All entries in the scatter/
gather list must be associated with the same RMR token.

Scatter/gather lists have alignment rules and every entry in the scatter/gather list is checked for the
following conditions:

• The start of the first buffer in the list can be on any byte boundary.
• The end of the first buffer must be on the required byte boundary.
• The start / end of the intermediate buffers must be on the required byte boundary.
• The start of the last buffer must be on the required byte boundary.
• The end of the last buffer can be on any boundary.

All required boundaries are on 128-byte alignment. A maximum of 8 scatter/gather entries are allowed.

FPZ4ABC

Chapter 14. Application interfaces for zEnterprise Data Compression 207

Table 46. Header elements in the FPZ4ABC-generated list

Name Type Description

Of Entries Fixed(32) The number of entries in the list.

Version Fixed(8) The version associated with the list.

Reserved Char(3) Reserved space.

Table 47. Entries elements in the FPZ4ABC-generated list

Name Type Description

Address Fixed(64) The address into the area mapped by the region memory
registration (RMR) token.

Length Fixed(32) The length of the area, starting at address, to use.

Reserved Fixed(32) Reserved space.

Table 48. Return and Reason Codes for the FPZ4ABC service

Hexadecimal
Return Code Reason Code Meaning and Action

00 0000 Meaning: The call completed successfully.

Action: None.

04 2000 Meaning: No zEDC devices are available. Inflate is completed in
software when hardware is not available.

Action: None.

08 0000 Meaning: No zEDC devices are available.

Action: If zEDC devices are available to this system, perform
diagnostics to determine the reason for the failure.

0C 0202 Meaning: One of the buffers had a length of 0, or the first word of
a length was non-zero, or one of the buffers has a length greater
than 1 MB.

Action: Check the calling program for a probable coding error.
Correct the program and rerun it.

FPZ4ABC

208 z/OS: z/OS MVS Callable Services for HLL

Table 48. Return and Reason Codes for the FPZ4ABC service (continued)

Hexadecimal
Return Code Reason Code Meaning and Action

0C 0203 Meaning: A failure occurred while accessing one of the provided
scatter/gather buffers.

Action: Check the calling program for a probable coding error.
Correct the program and rerun it.

0C 0206 Meaning: The output area was not large enough to complete the
request.

Action: Check the calling program for a probable coding error.
Correct the program and rerun it.

0C 0207 Meaning: The calling environment is invalid. The caller is either
Problem State, non-zero key, or in XMEM mode.

Action: Check the calling program for a probable coding error.
Correct the program and rerun it.

0C 0208 Meaning: The rendezvous token is invalid.

Action: Check the calling program for a probable coding error.
Correct the program and rerun it.

0C 0209 Meaning: The region memory registration (RMR) token is invalid.

Action: Check the calling program for a probable coding error.
Correct the program and rerun it.

0C 0221 Meaning: The header of the FPZ4ABC-generated list was not
formed correctly.

Action: Check the calling program for a probable coding error.
Correct the program and rerun it.

0C 0222 Meaning: Either zero or a number greater than the maximum
supported was specified for the number of entries in the
FPZ4ABC-generated list.

Action: Check the calling program for a probable coding error.
Correct the program and rerun it.

0C 0223 Meaning: A buffer in the scatter/gather list was not aligned
properly.

Action: Check the calling program for a probable coding error.
Correct the program and rerun it.

0C 0224 Meaning: The total length of the buffers in the scatter/gather list
does not match the length in the parmlist.

Action: Check the calling program for a probable coding error.
Correct the program and rerun it.

0C 0225 Meaning: Scatter/gather was requested, but it was not enabled
for this rendezvous token.

Action: Check the calling program for a probable coding error.
Correct the program and rerun it.

FPZ4ABC

Chapter 14. Application interfaces for zEnterprise Data Compression 209

Table 48. Return and Reason Codes for the FPZ4ABC service (continued)

Hexadecimal
Return Code Reason Code Meaning and Action

0C 1202 Meaning: An address range is not contained in the region denoted
by the region memory registration (RMR) token.

Action: Check the calling program for a probable coding error.
Correct the program and rerun it.

0C 1203 Meaning: An unsupported operation was requested.

Action: Check the calling program for a probable coding error.
Correct the program and rerun it.

0C 1205 Meaning: An inflate request failed because of malformed data.

Action: Check the calling program for a probable coding error.
Correct the program and rerun it.

0C 2101 Meaning: An inflate request failed in software mode due to
malformed input data.

Action: Check the calling program for a probable coding error.
Correct the program and rerun it.

0C 2102 Meaning: Not enough space in the output buffer to process the
request in software mode.

Action: Check the calling program for a probable coding error.
Correct the program and rerun it.

10 0301 Meaning: An internal component error occurred.

Action: Search problem reporting databases for a fix for the
problem. If no fix exists, contact the IBM Support Center.

10 0304 Meaning: A rendezvous has not yet occurred for this address
space.

Action: Check that the application successfully called the
FPZ4RZV service.

10 1203 Meaning: There are no zEDC devices available and either the
request was a deflate request or software inflate was not
enabled.

Action: Check the calling program for a probable coding error.
Correct the program and rerun it.

10 1301 Meaning: The request failed unexpectedly for an unknown
reason.

Action: Search problem reporting databases for a fix for the
problem. If no fix exists, contact the IBM Support Center.

10 030D Meaning: Missing latch set token.

Action: Determine if the calling program is at fault because of a
coding error.

FPZ4ABC

210 z/OS: z/OS MVS Callable Services for HLL

FPZ4URZ - Unrendezvous compression request
Description

The FPZ4URZ service removes the address space level information related to zEDC Express compression
services. Any outstanding memory registrations are unregistered.

Table 49. Environment for the FPZ4URZ service

Environmental factor Requirement

Minimum authorization: Supervisor State

Dispatchable unit mode: Task

Cross memory mode: PASN=HASN=SASN

AMODE: 64-bit

Interrupt status: Enabled for I/O and external interrupts

Locks: No locks held

Table 50. Parameters for the FPZ4URZ service

Name Type
Input/
Output Description

ApplicationId Fixed(3
2)

Input The application type to use. 0x01 is the application type
for zEDC.

FPZ4URZ_options Bit(64) Input There are no supported options for the FPZ4URZ
service.

Rendezvous token Char(1
6)

Input The rendezvous token.

Return code Fixed(3
1)

Output The return code for the service.

Reason code Fixed(3
2)

Output The reason code for the service.

Table 51. Return and Reason Codes for the FPZ4URZ service

Hexadecimal
Return Code Reason Code Meaning and Action

00 0000 Meaning: The call completed successfully.

Action: None.

0C 0207 Meaning: The calling environment is invalid. The caller is either
Problem State, non-zero key, or in XMEM mode.

Action: Check the calling program for a probable coding error.
Correct the program and rerun it.

0C 0208 Meaning: An invalid rendezvous token was passed.

Action: Check the calling program for a probable coding error.
Correct the program and rerun it.

FPZ4URZ

Chapter 14. Application interfaces for zEnterprise Data Compression 211

Table 51. Return and Reason Codes for the FPZ4URZ service (continued)

Hexadecimal
Return Code Reason Code Meaning and Action

10 0301 Meaning: An internal error has caused recovery to be entered.

Action: Search problem reporting databases for a fix for the
problem. If no fix exists, contact the IBM Support Center.

10 0304 Meaning: Compression services were not initialized.

Action: Check the calling program for a probable coding error.
Correct the program and rerun it.

10 030D Meaning: Missing latch set token.

Action: Determine if the calling program is at fault because of a
coding error.

Usage example of a System z authorized service
The following example uses the authorized services to perform compression using zEDC Express. Note: If
zEDC Express adapters are not available, data is written to the destination uncompressed.

The FPZ4PRB service is called intermittently after the FPZ4ABC service returns to the application with a
return code that indicates that all zEDC devices have left the configuration.

Call FPZ4RZV(AppId, RzvOptions, RzvUserId, RzvToken, RetCode, RsnCode) /* Rendezvous
with the compression
 device
driver (once per address
 space) */

If RetCode = RcNoDevices Then /* If no
devices available */
 NoDevices = ON /* Indicate no
devices */

Call FPZ4RMR(AppId, RmrOptions, RzvToken, InBuffer@, InBufferLen, 0, InBufKey, InRmrToken,
 RetCode, RsnCode) /* Register the
input buffer */
Call FPZ4RMR(AppId, RmrOptions, RzvToken, OutBuffer@, OutBufferLen, 0, OutBufKey, OutRmrToken,
 RetCode, RsnCode) /* Register the
output buffer for
 compressed
data */

Do Until End of Data
 Read next block of data into InBuffer@

 If NoDevices = ON Then /* If no
devices available */
 Call FPZ4PRB(AppId, Options, NumDevices, RetCode, RsnCode) /* Probe for
new devices */

 If RetCode = RcOk Then /* If devices
now available */
 NoDevices = OFF /* Indicate we
have devices */
 Else /* Else no
devices */
 Write InBuffer /* Processed
uncompressed data */

 If NoDevices = OFF Then /* If devices
available */
 Call FPZ4ABC(RzvToken,
 InBuffer@, InBufferLen, InRmrToken,
 OutBuffer@, OutBufferLen, OutRmrToken,
 RetCode, RsnCode) /* Perform
compression */

 If RetCode = RcOk Then /* If data was
compressed */
 Write OutBuffer /* Process
compressed data */
 Else If RetCode = RcNoDevices Then /* If no
devices available */

FPZ4URZ

212 z/OS: z/OS MVS Callable Services for HLL

 NoDevices = ON /* Indicate no
devices */
 Write InBuffer /* Process
uncompressed data */
End Loop

Call FPZ4DMR(AppId, DmrOptions, RzvToken, InRmrToken, RetCode, RsnCode)
Call FPZ4DMR(AppId, DmrOptions, RzvToken, OutRmrToken, RetCode, RsnCode)

FPZ4URZ

Chapter 14. Application interfaces for zEnterprise Data Compression 213

FPZ4URZ

214 z/OS: z/OS MVS Callable Services for HLL

Chapter 15. Troubleshooting for zEDC

This topic explains troubleshooting techniques for zEDC.

RMF provides the following data for the System z accelerator device:

• Load current partition is putting on device
• Compression and decompression request rate and throughput
• Achieved compression ratio

See z/OS Resource Measurement Facility User's Guide for the available options to specify on your Monitor I
session for reporting on the System z compression accelerator.

© Copyright IBM Corp. 1994, 2023 215

216 z/OS: z/OS MVS Callable Services for HLL

Part 7. Other callable services

© Copyright IBM Corp. 1994, 2023 217

218 z/OS: z/OS MVS Callable Services for HLL

Chapter 16. IEAAFFN — Assign processor affinity for
encryption or decryption

Call IEAAFFN when the only function performed by your program is to encrypt or decrypt data. Encryption
and decryption take place on processors that have Integrated Cryptographic Features (ICRFs) associated
with them. IEAAFFN assigns a program affinity to processors with an ICRF; that is, IEAAFFN makes sure
the system runs your program on a processor that has an ICRF associated with it.

You do not have to use the IEAAFFN service to ensure the system runs a program on a processor with
an ICRF; the system ensures that automatically. However, you can avoid some of the system overhead
involved in the selection process by using the IEAAFFN service. IBM recommends that you use the service
in programs whose only function is encryption or decryption.

Note: When you use this service to either establish or remove processor affinity for a program, the
program permanently loses any processor affinity that the system programmer assigned to it in the
SCHEDxx member of SYS1.PARMLIB.

Code the CALL following the syntax of the high level language you are using and specifying all parameters
in the order shown.

CALL statement Parameters

CALL IEAAFFN

(feature
,operation_type
,return_code)

The parameters are explained as follows:
feature

Specifies the feature required by your program. Specify CRYPTO to indicate an ICRF.

Define feature as character data of length 10. Pad the string on the right with 4 blanks.

,operation_type
Specifies the type of action you want to take. The types are:
GRANT

Establish affinity for the program to processors with an ICRF.
REMOVE

Remove affinity for the program to processors with an ICRF.

Note: After you issue a REMOVE request, the program has no processor affinity; it can run on any
processor.

Define operation_type as character data of length 6. If you specify GRANT, pad the string on the right
with 1 blank.

,return_code
When IEAAFFN completes, return_code contains the return code from the service. The return code
value is also in register 15.

Define return_code as integer data of length 4. The return codes are explained under “Return codes”
on page 220.

IEAAFFN

© Copyright IBM Corp. 1994, 2023 219

Restrictions and limitations
Use the IEAAFFN service to request affinity to processors with an ICRF only for sections of a program that
require an ICRF and not other features, such as a Vector Facility.

Requirements
Requirement Details

Authorization: Supervisor state or Problem state, any PSW key

Dispatchable unit mode: Task

Cross memory mode: You can be either in cross memory mode or not

AMODE: 24- or 31-bit

ASC mode: Primary

Interrupt status: Enabled for I/O and external interrupts

Locks: None held

Control parameters: Must be in the primary address space

Return codes
When IEAAFFN returns control to your program, return_code and register 15 contain a return code. The
following table identifies the return codes in hexadecimal and decimal (in parentheses), tells what each
means, and recommends an action that you should take.

Table 52. IEAAFFN Return Codes

Return code Meaning and Action

00000000 (0) Meaning: The operation was successful.

Action: None required.

00000004 (4) Meaning: The program already had processor affinity assigned to it by the system programmer. The
system replaces that affinity with the affinity you requested in this service.

Action: None required.

0000000C (12) Meaning: Your program was not running in task mode.

Action: This service is not available to SRB mode programs. See the FEATURE= option on the
SCHEDULE macro for the use of this function in SRB mode.

00000010 (16) Meaning: The feature you specified was not a valid feature.

Action: Specify a valid feature name.

00000014 (20) Meaning: The operation type you specified was not valid.

Action: Specify a valid operation type.

00000018 (24) Meaning: The feature you specified is not installed on any of the processors in the system.

Action: To the system programmer: See that the program runs on a system with the feature installed.

0000001C (28) Meaning: A system error has occurred.

Action: To the system programmer: The error is recorded in LOGREC. Look for a record with a
subcomponent of “IEAAFFN CSS”; then call your IBM Support Center.

IEAAFFN

220 z/OS: z/OS MVS Callable Services for HLL

Chapter 17. CSRL16J/CSRLJ1 — Transfer control with
all registers intact

The CSRL16J/CSRLJ1 service allows you to transfer control with all registers intact running under the
same request block (RB) as the calling program. The CSRL16J/CSRLJ1 service will transfer control with
the contents of all 16 registers intact. When you transfer control to the other routine, use the CSRL16J/
CSRLJ1 service to:

• Define the entry characteristics and register contents for the target routine.
• Optionally free dynamic storage associated with the calling program.

When the service is successful, control transfers to the target routine. After the target routine runs, it can
transfer control to any program running under the same request block (RB), including the calling program.

The CSRL16J/CSRLJ1 service returns control to the calling program only when it cannot transfer control
successfully to the target because of an error.

Defining the entry characteristics of the target routine
Specify the entry characteristics for the target in data area L16J/L16J1, which forms the parameter list
passed from the calling program to CSRL16J/CSRLJ1. Use the CSRYL16J mapping macro to see the
format of the L16J/L16J1 parameter lists. To build the L16J/L16J1 parameter list, first initialize the
parameter list with zeroes and then fill in the desired fields. This ensures that all fields requiring zeroes
are correct. You can specify the following characteristics for the target in L16J/L16J1 (defined in mapping
macro CSRYL16J):

• The version of the parameter list, 0 when building L16J in field L16JVERSION, 1 when building L16J1 in
field L16J1VERSION.

• Length of the L16J/L16J1 parameter list, L16JLENGTH/L16J1LENGTH field.
• For L16J, contents of the general purpose registers (GPRs) 0-15, L16JGRS field.
• For L16J1, contents of the 64-bit general registers 0-15, L16J1G64RS field.
• Contents of the access registers (ARs) 0-15, L16JARS/L16J1ARS field.
• PSW information for the target routine, for L16J the 8-byte ESA/390 PSW field L16JPSW, for L16J1 the

16-byte z/Architecture PSW field L16J1PSWE.

– PSW address and AMODE (AMODE 64 can be identified only if using L16J1)
– PSW ASC mode - primary or AR
– PSW program mask
– PSW condition code

Authorized callers, (callers in supervisor state, with PSW key 0-7, or with a PKM that allows any key 0-7)
can specify:

– PSW state - problem or supervisor
– PSW key.

For unauthorized callers, the system uses the PSW state and key of the calling program for the target
routine.

See Principles of Operation for more information about the contents of the PSW.
• Bit indicating whether or not you want to specify the contents of the access registers (ARs) for the target

routine. This is the L16JPROCESSARS/L16J1PROCESSARS bit.

Set the bit on if you want to specify the contents of the ARs. If you set the bit off, the system determines
the contents of the ARs.

CSRL16J

© Copyright IBM Corp. 1994, 2023 221

If the bit is set on when CSRL16J/CSRLJ1 passes control to the target routine, the access registers
(ARs) contain:
Register

Contents
0-15

Specified by the caller

If the bit is set off when CSRL16J/CSRLJ1 passes control to the target routine, the access registers
(ARs) contain:
Register

Contents
0-1

Do not contain any information for use by the routine
2-13

The contents are the same as they were when the caller issued the CSRL16J service.
14-15

Do not contain any information for use by the routine

Freeing dynamic storage associated with the caller
If the calling program has a dynamic storage area associated with it, you can specify that some or all of
this storage area be freed before CSRL16J transfers control to the target. In the L16J/L16J1 parameter
list defined in mapping macro CSRYL16J, specify:

• The subpool of the area that you want the system to free. L16JSUBPOOL/L16J1SUBPOOL field.
• The length, in bytes, of the dynamic storage area you want the system to free. L16JLENGTHTOFREE/

L16J1LENGTHTOFREE field.
• The address of the dynamic storage area you want the system to free. L16JAREATOFREE/

L16J1AREATOFREE field.

Make sure that the address is on a double-word boundary. Otherwise the service ends with an abend
code X'978'. See z/OS MVS System Codes for information on abend code X'978'.

The system frees the storage only when the CSRL16J/CSRLJ1 service is successful.

Programming requirements
These are the requirements:

• The calling program must be in 31-bit addressing mode.
• Before you use the CSRL16J service, you must build a parameter list, L16J, to pass to the service.

Before you use the CSRLJ1 service, you must build a parameter list, L16J1, to pass to the service. The
parameter list includes the entry characteristics and environment for the target.

If you are coding in C/370, you can include the CSRLJC macro to provide declarations in the calling
program for the L16J/L16J1 parameter area and return codes.

If you are coding in PL/I, you can include the CSRLJPLI macro to provide declarations for the return
codes only. See Figure 20 on page 225 for the CSRLJPLI macro. Use the data area, mapped by the
CSRYL16J mapping macro, as a model for the structure of your parameter list when coding in PL/I.

CSRLJC provides the following declarations for use in your C/370 program:

/***
 * Type Definitions for User Specified Parameters *
 ***/

/* Type for user supplied L16J */
typedef struct ??<
 int Version; /* Must be 0 */

CSRL16J

222 z/OS: z/OS MVS Callable Services for HLL

 int Length; /* Initialize to CSRL16J_LENGTH */
 int SubPool; /* Subpool of storage to be freed */
 union ??<
 char GRs??(64??); /* General registers */
 int GR??(16??); /* General register 0-15 */
 ??> u1;
 union ??<
 char ARs??(64??); /* Access registers */
 int AR??(16??); /* Access register 0-15 */
 ??> u2;
 union ??<
 char PSW??(8??); /* PSW: the processing will use the address,
 AMODE, ASC mode, CC, and program mask. For a
 supervisor state or PKM 0-7 or key 0-7
 caller, it will use the state and key from
 the PSW. Otherwise, it will set to caller
 key and state. */
 struct ??<
 int PSWByte0to3 : 32; /* First 4 bytes */
 union ??<
 void *PSWAddr; /* Address and AMODE */
 struct ??<
 int PSWAmode : 1; /* AMODE */
 int Rsvd0 : 31;
 ??> s2;
 ??> u4;
 ??> s1;
 ??> u3;
 union ??<
 struct ??<
 int Flags : 8; /* Flags */
 int Rsvd0 : 24; /* Reserved */
 ??> s3;
 struct ??<
 int ProcessARs : 1; /* If on, ARs will be processed. Otherwise
 not. If not processed, ARs 0, 1, 14, and 15 are
 unpredictable. ARs 2-13 are taken from the values
 present when the service is entered. */
 int Rsvd0 : 31; /* Reserved */
 ??> s4;
 ??> u5;

 void *AreaToFree; /* Address of area to free. If this is non-0
 then the area will be freed using the subpool
 specified in L16J.Subpool. This can be used
 to free the caller’s entire dynamic area if
 so desired. When this option is specified, it
 is necessary that the area begin on a
 doubleword boundary. */
 int LengthToFree; /* Length of area to free, in bytes. */
 char Rsvd??(8??); /* Reserved */
??> L16J;

/* Type for user supplied L16J1 */
typedef struct ??<
 int Version; /* Must be 1 */
 int Length; /* Initialize to CSRL16J1_LENGTH */
 int SubPool; /* Subpool of storage to be freed */
 char Rsvd1??(64??); /* Reserved. Must be zeroes. @l1C*/
 union ??<
 char ARs??(64??); /* Access registers */
 int AR??(16??); /* Access register 0-15 */
 ??> u2;
 char Rsvd2??(8??); /* Reserved. Must be zeroes. @l1C*/
 union ??<
 struct ??<
 int Flags : 8; /* Flags */
 int Rsvd0 : 24; /* Reserved. Must be zeroes. */
 ??> s3;
 struct ??<
 int ProcessARs : 1; /* If on, ARs will be processed. Otherwise
 not. If not processed, ARs 0, 1, 14, and 15 are
 unpredictable. ARs 2-13 are taken from the values
 present when the service is entered. */
 int Rsvd0 : 31; /* Reserved */
 ??> s4;
 ??> u5;
 void *AreaToFree; /* Address of area to free. If this is non-0
 then the area will be freed using the subpool
 specified in L16J.SubPool. This can be used
 to free the caller's entire dynamic area if
 so desired. When this option is specified, it

CSRL16J

Chapter 17. CSRL16J/CSRLJ1 — Transfer control with all registers intact 223

 is necessary that the area begin on a
 doubleword boundary. */
 int LengthToFree; /* Length of area to free, in bytes. */
 union ??<
 char G64Rs??(128??); /* 64-bit GPRs 0-15 @L1A*/
 double G64R??(16??); /* General register 0-15 @L1A*/
 ??> u1;
 union ??<
 char PSWE??(16??); /* z/Architecture PSW:
 the processing will use the address,
 AMODE, ASC mode, CC, and program mask. For a
 supervisor state or PKM 0-7 or key 0-7
 caller, it will use the state and key from
 the PSW. Otherwise, it will set to caller
 key and state. @L1A*/
 struct ??<
 int PSWEByte0to3 : 32; /* First 4 bytes */
 union ??<
 int PSWEByte4to7 : 32; /* Second 4 bytes */
 struct ??<
 int PSWEAmode : 1; /* AMODE */
 int Rsvd0 : 31;
 ??> s2;
 ??> u4;
 char PSWEADDR??(8??); /* 8-byte instruction address */
 ??> s1;
 ??> u3;
??> L16J1;
/***
 * Fixed Service Parameter and Return Code Defines *
 ***/

#define CSRL16J_LENGTH 168 /* Length of L16J */

#define CSRL16J1_LENGTH 304 /* Length of L16J1 @L1A*/

/* Service Return Codes */
#define CSRL16J_OK 0
#define CSRL16J_BAD_VERSION 4
#define CSRL16J_BAD_AMODE 8
#define CSRL16J_BAD_RESERVED 12
#define CSRL16J_BAD_LENGTH 16
#define CSRL16J_BAD_PSW 24

/* Service Return Codes */
#define CSRLJ1_OK 0 /* @L1A*/
#define CSRLJ1_BAD_VERSION 4 /* @L1A*/
#define CSRLJ1_BAD_AMODE 8 /* @L1A*/
#define CSRLJ1_BAD_RESERVED 12 /* @L1A*/
#define CSRLJ1_BAD_LENGTH 16 /* @L1A*/
#define CSRLJ1_BAD_PSW 24 /* @L1A*/
#define CSRLJ1_NOT_ZARCHITECTURE 28 /* @L1A*/
#define CSRLJ1_NOT_ESAME 28 /* @L1A*/

/***
 * Function Prototypes for Service Routines *
 ***/

extern void csrl16j(
 L16J *__L16J, /* Input - User supplied L16J block */
 int *__RC); /* Output - Return code */

extern void csrlj1(
 L16J1 *__L16J1, /* Input - User supplied L16J1 block */
 int *__RC); /* Output - Return code @L1A*/

/***

#endif

CSRLJPLI provides the following declarations for use in your PL/I program:

CSRL16J

224 z/OS: z/OS MVS Callable Services for HLL

 /**
 * Constants for Fixed Return Codes *
 **/

 /* Load 16 and Jump Service Return Codes */

 %DCL CSRL16J_OK FIXED;
 %CSRL16J_OK = 0;

 %DCL CSRL16J_BAD_VERSION FIXED;
 %CSRL16J_BAD_VERSION = 4;

 %DCL CSRL16J_BAD_AMODE FIXED;
 %CSRL16J_BAD_AMODE = 8;

 %DCL CSRL16J_BAD_RESERVED FIXED;
 %CSRL16J_BAD_RESERVED = 12;

 %DCL CSRL16J_BAD_LENGTH FIXED;
 %CSRL16J_BAD_LENGTH = 16;

 %DCL CSRL16J_BAD_PSW FIXED;
 %CSRL16J_BAD_PSW = 24;

 %DCL CSRLJ1_OK FIXED; /* @L1A*/
 %CSRLJ1_OK = 0; /* @L1A*/

 %DCL CSRLJ1_BAD_VERSION FIXED; /* @L1A*/
 %CSRLJ1_BAD_VERSION = 4; /* @L1A*/

 %DCL CSRLJ1_BAD_AMODE FIXED; /* @L1A*/
 %CSRLJ1_BAD_AMODE = 8; /* @L1A*/

 %DCL CSRLJ1_BAD_RESERVED FIXED; /* @L1A*/
 %CSRLJ1_BAD_RESERVED = 12; /* @L1A*/

 %DCL CSRLJ1_BAD_LENGTH FIXED; /* @L1A*/
 %CSRLJ1_BAD_LENGTH = 16; /* @L1A*/

 %DCL CSRLJ1_BAD_PSW FIXED; /* @L1A*/
 %CSRLJ1_BAD_PSW = 24; /* @L1A*/

 %DCL CSRLJ1_NOT_ZARCHITECTURE FIXED; /* @L1A*/
 %CSRLJ1_NOT_ZARCHITECTURE = 28; /* @L1A*/
 %DCL CSRLJ1_NOT_ESAME FIXED; /* @L1A*/
 %CSRLJ1_NOT_ESAME = 28; /* @L1A*/

 /**
 * Service Entry Declarations *
 **/

 DCL CSRL16J ENTRY
 (CHAR(168), /* Input - L16J */
 FIXED BIN(31)) /* Output - Return code */
 OPTIONS(INTER ASSEMBLER);

 DCL CSRLJ1 ENTRY
 (CHAR(304), /* Input - L16J1 */
 FIXED BIN(31)) /* Output - Return code */
 OPTIONS(INTER ASSEMBLER); /* @L1A*/

 /* End of Load 16 and Jump Service Declares */

Figure 20. CSRLJPLI declarations for return codes for PL/I

Restrictions
None.

Performance implications
None.

CSRL16J

Chapter 17. CSRL16J/CSRLJ1 — Transfer control with all registers intact 225

Syntax diagram
Code the invocation following the syntax of the language you are using. Specify parameters in the order
shown.

C/370 syntax
Code Parameters

csrl16j

(&L16J
,&return_code)

csrl1j1 (&L16J1
,&return_code)

PL/I syntax
Code Parameters

CALL CSRL16J

(L16J
,return_code)

CALL CSRLJ1

(L16J1
,return_code)

Parameters
The parameters are explained as follows:
L16J/L16J1

Specifies a parameter list that the service uses to define the entry characteristics and environment for
the target.

return_code
When the service completes, return_code contains the return code.

Return codes
If the CSRL16J/CSRLJ1 service returns control to the caller, an error has occurred and the service was
unable to transfer control to the target routine. In this case, the return code is always nonzero. When the
service successfully transfers control to the target routine, the return code is zero.

Return codes from the CSRL16J/CSRLJ1 service are as follows:

Table 53. CSRL16J/CSRLJ1 Return Codes

Return Code
(hexadecimal)

Meaning and Action

00 Meaning: Successful completion. The calling program will never see this return code because it
indicates that the target routine received control.

Action: None.

CSRL16J

226 z/OS: z/OS MVS Callable Services for HLL

Table 53. CSRL16J/CSRLJ1 Return Codes (continued)

Return Code
(hexadecimal)

Meaning and Action

04 Meaning: The value specified in the L16JVERSION/L16J1VERSION field of the L16J/L16J1 data area
was not a zero or one. The L16JVERSION/L16J1VERSION field must contain a value of zero or one. One
indicates that CSRLJ1 is being called even if CSRL16J is identified.

Action: When you build the L16J/L16J1 data area, first zero the entire L16J/L16J1 data area and then
fill in the required fields. This process ensures that all fields that must contain zeroes are correct. Fill in
L16J1VERSION as needed.

08 Meaning: The calling program was not in 31-bit addressing mode, which is required.

Action: Make sure the calling program is in 31-bit addressing mode.

0C Meaning: One of the fields in the L16J/L16J1 data area that is reserved for IBM use contained a
nonzero value. Any field reserved for IBM use must contain a value of zero.

Action: When you build the L16J/L16J1 data area, first zero the entire L16J/L16J1 data area and then
fill in the required fields. This process ensures that all fields that must contain zeroes are correct

10 Meaning: The value specified in field L16JLENGTH/L16J1LENGTH in the L16J/L16J1 data area was less
than the actual length of the L16J.

Action: Make sure that the value in the L16JLENGTH/L16J1LENGTH field reflects the actual length of
the L16J/L16J1 data area.

18 Meaning: The PSW provided in field L16JPSW/L16J1PSWE of the L16J/L16J1 data area specified an
incorrect ASC mode.

Action: In the L16JPSW/L16J1PSWE field, specify either primary or AR ASC mode.

Example
The following example, coded in C/370 uses CSRL16J to transfer control to a C/370 program. The target
routine executes in the mode and with the register contents specified by the calling program in the L16J
parameter list.

This example performs the following operations:

• Fills in L16J parameter list with PSW and execution mode data.
• Calls an assembler routine to obtain the current register contents of registers 0 through 13 and copies

them to the L16J parameter list.
• Defines the contents of registers 14 and 15 for the target routine.
• Issues setjmp to allow return from the target routine.
• Invokes the C/370 function L16JPrg through CSRL16J.
• CSRL16J issues longjmp to return to caller and complete processing.

To use this example, you must also use the assembler program following the C/370 example.

C/370 example program
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <setjmp.h>
#include "CSRLJC.H"

#define FALSE 0
#define TRUE 1

/* REG0TO13 is the assembler assist routine (below) to extract
 registers 0 through 13, for C/370 addressability */
#pragma linkage(REG0TO13,OS)

int rcode;
int i;
unsigned int regs??(14??); /* Register save area */

CSRL16J

Chapter 17. CSRL16J/CSRLJ1 — Transfer control with all registers intact 227

jmp_buf JumpBuffer; /* Buffer for setjmp/longjmp */
L16J L16JParmArea; /* L16J parameter list structure */

/* Function prototype for function to be called via L16J */
void L16JPrg();

/* Invoke a C/370 function via L16J Callable Services */
main()
{
 /* Start by initializing the entire L16J parameter list */
 memset(&L16JParmArea,'\0',sizeof(L16J));

 /* The following fields were implicitly initialized to zero
 by the preceding statement:
 L16JParmArea.Version
 L16JParmArea.SubPool
 L16JParmArea.AreaToFree
 L16JParmArea.LengthToFree
 These field do not need to be explicitly set unless a value
 other than zero is required */

 /* Place parameter list length size into parameter list */
 L16JParmArea.Length = sizeof(L16J);

 /* Create a Problem State/Key 8 PSW */
 L16JParmArea.u3.s1.PSWByte0to3 = 0x078D1000;
 L16JParmArea.u3.s1.u4.PSWAddr = (void *) &L16JPrg;

 /* Mode data */
 L16JParmArea.u3.s1.u4.s2.PSWAmode = 1;
 L16JParmArea.u5.s4.ProcessARs = 1;

 /* Call assembler assist routine to obtain current register
 values */
 REG0TO13(®s);

 /* Place register values into parameter list */
 for (i=0;i<14;i++)
 L16JParmArea.u1.GR??(i??)= regs??(i??);

 /* Register 14 is not being used in this linkage, but we
 have set it to zero for this example */
 L16JParmArea.u1.GRAddr??(14??) = 0;

 /* Set register 15 for entry to routine */
 L16JParmArea.u1.GRAddr??(15??) = (void *) &L16JPrg;

 printf("L16JC - Call L16J to invoke L16JPrg\n");

 /* Use setjmp to allow return to this point in program. If
 setjmp is being called for the first time, invoke L16JPrg
 via L16J Callable Services. If returning from longjmp,
 skip call to L16J services and complete processing. */
 if (!setjmp(JumpBuffer))
 {
 csrl16j (&L16JParmArea,&rcode);

 /* Demonstrate use of L16J C/370 declares */
 switch (rcode)
 {
 /* Select on a particular return code value */
 case CSRL16J_BAD_PSW:
 printf("L16JC - L16J unsuccessful, bad PSW\n");
 break;
 /* Default error processing */
 default:
 printf("L16JC - L16J unsuccessful, RC = %d\n",rcode);
 break;
 }
 }
 printf("L16JC - Returned from L16JPrg\n");
}

/* The routine below receives control via L16J Callable Services.
 control is passed back to main via longjmp. */
void L16JPrg(void)
{
 printf("L16JC - L16JPrg got control\n");
 longjmp(JumpBuffer,1);
}

CSRL16J

228 z/OS: z/OS MVS Callable Services for HLL

Assembler program for use with the C/370 example
To use this example you must assemble the following program and linkedit it with the C/370 program.

SR0T013 CSECT
SR0T013 AMODE 31
SR0T013 RMODE ANY
*
* Assembler assist routine to save contents of registers 0 through 13
* to the area pointed to by register 1.
*
REG0TO13 DS 0H
 ENTRY REG0TO13
* Get address of the save area
 L 15,0(,1)
* Save registers 0 to 13
 STM 0,13,0(15)
* Return to the caller
 BR 14
 END SR0TO13

CSRL16J

Chapter 17. CSRL16J/CSRLJ1 — Transfer control with all registers intact 229

CSRL16J

230 z/OS: z/OS MVS Callable Services for HLL

Chapter 18. CSRSI — System information service

Use the CSRSI service to retrieve system information. You can request information about the machine
itself, the logical partition (LPAR) in which the machine is running, or the virtual machine hypervisor (VM)
under which the system is running. The returned information is mapped by DSECTs in macro CSRSIIDF
(for assembler language callers) or structures in header file CSRSIC (for C language callers).

The information available depends upon the availability of the Store System Information (STSI)
instruction. When the STSI instruction is not available (which would be indicated by receiving the
return code 4 (equate symbol CSRSI_STSINOTAVAILABLE), only the SI00PCCACPID, SI00PCCACPUA,
and SI00PCCACAFM fields within the returned infoarea are valid. When the STSI instruction is available,
the validity of the returned infoarea depends upon the system:

• If the system is running neither under LPAR nor VM, then only the CSRSI_Request_V1CPC_Machine
data are valid.

• If the system is running under a logical partition (LPAR), then both the CSRSI_Request_V1CPC_Machine
data and CSRSI_Request_V2CPC_LPAR data are valid.

• If the system is running under a virtual machine hypervisor (VM), then all of the data
(CSRSI_Request_V1CPC_Machine, CSRSI_Request_V2CPC_LPAR, and CSRSI_Request_V3CPC_VM) are
valid.

You can request any or all of the information regardless of your system, and validity bits will indicate
which returned areas are valid.

Description

Environment
The requirements for the caller are:

Requirement Details

Minimum authorization: Problem state, key 8–15

Dispatchable unit mode: Task or SRB

Cross memory mode: Any PASN, any HASN, any SASN

AMODE: 24- or 31-bit when using the CALL CSRSI form (or csrsi in C), 31-bit
when using an alternate form

ASC mode: Primary

Interrupt status: Enabled or disabled for I/O and external interrupts

Locks: The caller may hold a LOCAL lock, the CMS lock, or the CPU lock but
is not required to hold any locks.

Programming requirements
The caller should include the CSRSIIDF macro to map the returned information and to provide equates for
the service.

Restrictions
None.

System information service (CSRSI)

© Copyright IBM Corp. 1994, 2023 231

Input register information
The caller is not required by the system to set up any registers.

Output register information
When control returns to the caller, the GPRs contain:
Register

Contents
0-1

Used as work registers by the system
2-13

Unchanged
14-15

Used as work registers by the system

Syntax
CALL statement Parameters

CALL CSRSI,

(Request
,Infoarealen
,Infoarea
,Returncode)

In C: the syntax is similar. You can use either of the following techniques to invoke the service:

1. CSRSI (Request,...Returncode);

• When you use this technique, you must link edit your program with a linkage-assist routine (also called a
stub) in SYS1.CSSLIB.

2. CSRSI_byaddr (Request,...Returncode);

• This second technique requires AMODE=31, and, before you issue the CALL, you must verify that the
CSRSI service is available (in the CVT, both CVTOSEXT and CVTCSRSI bits are set on).

In Assembler: Link edit your program with a linkage-assist routine (also called a stub) in SYS1.CSSLIB
unless you use either of the following techniques as an alternative to CALL CSRSI:

1. LOAD EP=CSRSI
 Save the entry point address
 ...
 Put the saved entry point address into R15
 Issue CALL (15),...

2. L 15,X'10' Get CVT
 L 15,X'220'(,15)
 L 15,X'30'(,15) Get address of CSRSI
 CALL (15),(...)

• Both of these techniques require AMODE=31. If you use the second technique, before you issue the
CALL, you must verify that the CSRSI service is available (in the CVT, both CVTOSEXT and CVTCSRSI bits
are set on).

Parameters
Request

Supplied parameter:

System information service (CSRSI)

232 z/OS: z/OS MVS Callable Services for HLL

• Type: Integer
• Length: Full word

Request identifies the type of system information to be returned. The field must contain a value that
represents one or more of the possible request types. You add the values to create the full word. Do
not specify a request more than once. The possible requests, and their meanings, are:

CSRSI_Request_V1CPC_Machine
The system is to return information about the machine.

CSRSI_Request_V2CPC_LPAR
The system is to return information about the logical partition (LPAR).

CSRSI_Request_V3CPC_VM
The system is to return information about the virtual machine (VM).

,Infoarealen
Supplied parameter:

• Type: Integer
• Range: X'1040', X'2040', X'3040', X'4040'
• Length: Full word

Infoarealen specifies the length of the infoarea parameter.

,Infoarea
Returned parameter:

• Type: Character
• Length: X'1040', X'2040', X'3040', X'4040' bytes

Infoarea is to contain the retrieved system information. (Infoarealen specifies the length of the
provided area.) The infoarea must be of the proper length to hold the requested information. This
length depends on the value of the Request parameter.

• When the Request parameter is CSRSI_Request_V1CPC_Machine, the returned infoarea is mapped
by SIV1 and the infoarealen parameter must be X'2040'.

• When the Request parameter is CSRSI_Request_V1CPC_Machine plus
CSRSI_Request_V2CPC_LPAR, the returned infoarea is mapped by SIV1V2 and the infoarealen
parameter must be X'3040'.

• When the Request parameter is CSRSI_Request_V1CPC_Machine plus
CSRSI_Request_V2CPC_LPAR plus CSRSI_Request_V3CPC_VM, the returned infoarea is mapped
by SIV1V2V3 and the infoarealen parameter must be X'4040'.

• When the Request parameter is CSRSI_Request_V1CPC_Machine plus CSRSI_Request_V3CPC_VM,
the returned infoarea is mapped by SIV1V3 and the infoarealen parameter must be X'3040'.

• When the Request parameter is CSRSI_Request_V2CPC_LPAR, the returned infoarea is mapped by
SIV2 and the infoarealen parameter must be X'1040'.

• When the Request parameter is CSRSI_Request_V2CPC_LPAR plus CSRSI_Request_V3CPC_VM, the
returned infoarea is mapped by SIV2V3 and the infoarealen parameter must be X'2040'.

• When the Request parameter is CSRSI_Request_V3CPC_VM, the returned infoarea is mapped by
SIV3 and the infoarealen parameter must be X'1040'.

,Returncode
Returned parameter:

• Type: Integer
• Length: Full word

Returncode contains the return code from the CSRSI service.

System information service (CSRSI)

Chapter 18. CSRSI — System information service 233

Return codes
When the CSRSI service returns control to the caller, Returncode contains the return code. To obtain the
equates for the return codes:

• If you are coding in assembler, include mapping macro CSRSIIDF, described in z/OS MVS Data Areas in
the z/OS Internet library (www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosInternetLibrary).

• If you are coding in C, use include file CSRSIC.

The following table describes the return codes, shown in decimal.

Return Code and Equate Symbol Meaning and Action

00
(0)
CSRSI_SUCCESS

Meaning: The CSRSI service completed successfully. All information
requested was returned.

Action: Check the si00validityflags field to determine the validity of each
returned area.

04
(4)
CSRSI_STSINOTAVAILABLE

Meaning: The CSRSI service completed successfully, but since the
Store System Information (STSI) instruction was not available, only the
SI00PCCACPID, SI00PCCACPUA, and SI00PCCACAFM fields are valid.

Action: None required.

08
(8)
CSRSI_SERVICENOTAVAILABLE

Meaning: Environmental error: The CSRSI service is not available on this
system.

Action: Avoid calling the CSRSI service unless running on a system on which
it is available.

12
(C)
CSRSI_BADREQUEST

Meaning: User error: The request parameter did not specify a
word formed from any combination of CSRSI_Request_V1CPC_Machine,
CSRSI_Request_V2CPC_LPAR, and CSRSI_Request_V3CPC_VM.

Action: Correct the parameter.

16
(10)
CSRSI_BADINFOAREALEN

Meaning: User error: The Infoarealen parameter did not match the length of
the area required to return the requested information.

Action: Correct the parameter.

20
(14)
CSRSI_BADLOCK

Meaning: User error: The service was called while holding a system lock
other than CPU, LOCAL/CML, or CMS.

Action: Avoid calling in this environment.

CSRSIC C/370 header file
For the C programmer, include file CSRSIC provides equates for return codes and data constants, such as
Register service request types. To use CSRSIC, copy the file from SYS1.SAMPLIB to the appropriate local
C library. Here are the contents of the file:

#ifndef __CSRSI

#define __CSRSI

/***
 * Type Definitions for User Specified Parameters *
 ***/

/* Type for Request operand of CSRSI */
typedef int CSRSIRequest;

/* Type for InfoAreaLen operand of CSRSI */
typedef int CSRSIInfoAreaLen;

/* Type for Return Code */
typedef int CSRSIReturnCode;

/***

System information service (CSRSI)

234 z/OS: z/OS MVS Callable Services for HLL

https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosInternetLibrary

 * Function Prototypes for Service Routines *
 ***/

#ifdef __cplusplus
 extern "OS" ??<
#else
 #pragma linkage(CSRSI_calltype,OS)
#endif
typedef void CSRSI_calltype(
 CSRSIRequest __REQUEST, /* Input - request type */
 CSRSIInfoAreaLen __INFOAREALEN, /* Input - length of infoarea */
 void *__INFOAREA, /* Input - info area */
 CSRSIReturnCode *__RC); /* Output - return code */

extern CSRSI_calltype csrsi;

#ifdef __cplusplus
 ??>
#endif

#ifndef __cplusplus
#define csrsi_byaddr(Request, Flen, Fptr, Rcptr) \
??< \
 struct CSRSI_PSA* CSRSI_pagezero = 0; \
 CSRSI_pagezero->CSRSI_cvt->CSRSI_cvtcsrt->CSRSI_addr \
 (Request,Flen,Fptr,Rcptr); \
??>;
#endif
 ??
>;

struct CSRSI_CSRT ??<
 unsigned char CSRSI_csrt_filler1 ??(48??);
 CSRSI_calltype* CSRSI_addr;

 struct CSRSI_CVT ??<
 unsigned char CSRSI_cvt_filler1 ??(116??);
 struct ??<
 int CSRSI_cvtdcb_rsvd1 : 4; /* Not needed */
 int CSRSI_cvtosext : 1; /* If on, indicates that the
 CVTOSLVL fields are valid */
 int CSRSI_cvtdcb_rsvd2 : 3; /* Not needed */
 ??> CSRSI_cvtdcb;
 unsigned char CSRSI_cvt_filler2 ??(427??);
 struct CSRSI_CSRT * CSRSI_cvtcsrt;
 unsigned char CSRSI_cvt_filler3 ??(716??);
 unsigned char CSRSI_cvtoslv0;
 unsigned char CSRSI_cvtoslv1;
 unsigned char CSRSI_cvtoslv2;
 unsigned char CSRSI_cvtoslv3;
 struct ??<
 int CSRSI_cvtcsrsi : 1; /* If on, indicates that the
 CSRSI service is available */
 int CSRSI_cvtoslv1_rsvd1 : 7; /* Not needed */
 ??> CSRSI_cvtoslv4;
 unsigned char CSRSI_cvt_filler4 ??(11??); /* */
??>;

struct CSRSI_PSA ??<
 char CSRSI_psa_filler??(16??);
 struct CSRSI_CVT* CSRSI_cvt;
??>;

/* End of CSRSI Header */

#endif

/***/
/* si11v1 represents the output for a V1 CPC when general CPC */
/* information is requested */
/***/

typedef struct ??<
 unsigned char _filler1??(32??); /* Reserved */
 unsigned char si11v1cpcmanufacturer??(16??); /*
 The 16-character (0-9
 or uppercase A-Z) EBCDIC name
 of the manufacturer of the V1
 CPC. The name is

System information service (CSRSI)

Chapter 18. CSRSI — System information service 235

 left-justified with trailing
 blank characters if necessary.
 */
 unsigned char si11v1cpctype??(4??); /* The 4-character (0-9) EBCDIC
 type identifier of the V1 CPC.
 */
 unsigned char _filler2??(12??); /* Reserved */

 unsigned char si11v1cpcmodel??(16??); /* The 16-character (0-9 or
 uppercase A-Z) EBCDIC model
 identifier of the V1 CPC. The
 identifier is left-justified
 with trailing blank characters
 if necessary. */
 unsigned char si11v1cpcsequencecode??(16??); /*
 The 16-character (0-9
 or uppercase A-Z) EBCDIC
 sequence code of the V1 CPC.
 The sequence code is
 right-justified with leading
 EBCDIC zeroes if necessary.
 */
 unsigned char si11v1cpcplantofmanufacture??(4??); /* The 4-character
 (0-9 or uppercase A-Z) EBCDIC
 plant code that identifies the
 plant of manufacture for the
 V1 CPC. The plant code is
 left-justified with trailing
 blank characters if necessary.
 */
 unsigned char _filler3??(3996??); /* Reserved */
??> si11v1;

/***/
/* si22v1 represents the output for a V1 CPC when information */
/* is requested about the set of CPUs */
/***/

typedef struct ??<
 unsigned char _filler1??(32??); /* Reserved */
 unsigned char si22v1cpucapability??(4??); /*
 An unsigned binary integer
 that specifies the capability
 of one of the CPUs contained
 in the V1 CPC. It is used as
 an indication of the
 capability of the CPU relative
 to the capability of other CPU
 models. */
 unsigned int si22v1totalcpucount : 16; /* A 2-byte
 unsigned integer
 that specifies the
 total number of CPUs contained
 in the V1 CPC. This number
 includes all CPUs in the
 configured state, the standby
 state, and the reserved state.
 */

 unsigned int si22v1configuredcpucount : 16; /* A 2-byte
 unsigned binary
 integer that specifies
 the total number of CPUs that
 are in the configured state. A
 CPU is in the configured state
 when it is described in the
 V1-CPC configuration
 definition and is available to
 be used to execute programs.
 */
 unsigned int si22v1standbycpucount : 16; /* A 2-byte
 unsigned integer
 that specifies the
 total number of CPUs that are
 in the standby state. A CPU is
 in the standby state when it
 is described in the V1-CPC
 configuration definition, is
 not available to be used to
 execute programs, but can be
 used to execute programs by
 issuing instructions to place

System information service (CSRSI)

236 z/OS: z/OS MVS Callable Services for HLL

 it in the configured state.
 */
 unsigned int si22v1reservedcpucount : 16; /* A 2-byte
 unsigned binary
 integer that specifies
 the total number of CPUs that
 are in the reserved state. A
 CPU is in the reserved state
 when it is described in the
 V1-CPC configuration
 definition, is not available
 to be used to execute
 programs, and cannot be made
 available to be used to
 execute programs by issuing
 instructions to place it in
 the configured state, but it
 may be possible to place it in
 the standby or configured
 state through manually
 initiated actions */
 struct ??<
 unsigned char _si22v1mpcpucapaf??(2??); /* Each individual
 adjustment factor. */
 unsigned char _filler2??(4050??);
 ??> si22v1mpcpucapafs;
??> si22v1;

#define si22v1mpcpucapaf si22v1mpcpucapafs._si22v1mpcpucapaf

/***/
/* si22v2 represents the output for a V2 CPC when information */
/* is requested about the set of CPUs */
/***/
 typedef struct ??<
 unsigned char _filler1??(32??); /* Reserved */
 unsigned int si22v2cpcnumber : 16; /* A 2-byte
 unsigned integer
 which is the number of
 this V2 CPC. This number
 distinguishes this V2 CPC from
 all other V2 CPCs provided by
 the same logical-partition
 hypervisor */
 unsigned char _filler2; /* Reserved */
 struct ??<
 unsigned int _si22v2lcpudedicated : 1; /*
 When one, indicates that
 one or more of the logical
 CPUs for this V2 CPC are
 provided using V1 CPUs that
 are dedicated to this V2 CPC
 and are not used to provide
 logical CPUs for any other V2
 CPCs. The number of logical
 CPUs that are provided using
 dedicated V1 CPUs is specified
 by the dedicated-LCPU-count
 value. When zero, bit 0
 indicates that none of the
 logical CPUs for this V2 CPC
 are provided using V1 CPUs
 that are dedicated to this V2
 CPC. */
 unsigned int _si22v2lcpushared : 1; /*
 When one, indicates that
 or more of the logical CPUs
 for this V2 CPC are provided
 using V1 CPUs that can be used
 to provide logical CPUs for
 other V2 CPCs. The number of
 logical CPUs that are provided
 using shared V1 CPUs is
 specified by the
 shared-LCPU-count value. When
 zero, it indicates that none
 of the logical CPUs for this
 V2 CPC are provided using
 shared V1 CPUs. */

System information service (CSRSI)

Chapter 18. CSRSI — System information service 237

 unsigned int _si22v2lcpuulimit : 1; /*
 Utilization limit. When one,
 indicates that the amount of
 use of the V1-CPC CPUs that
 are used to provide the
 logical CPUs for this V2 CPC
 is limited. When zero, it
 indicates that the amount of
 use of the V1-CPC CPUs that
 are used to provide the
 logical CPUs for this V2 CPC
 is unlimited. */
 unsigned int _filler3 : 5; /* Reserved
 */
 ??> si22v2lcpuc; /* Characteristics */
 unsigned int si22v2totallcpucount : 16; /*
 A 2-byte unsigned
 integer that specifies the
 total number of logical CPUs
 that are provided for this V2
 CPC. This number includes all
 of the logical CPUs that are
 in the configured state, the
 standby state, and the
 reserved state. */
 unsigned int si22v2configuredlcpucount : 16; /*
 A 2-byte unsigned
 binary integer that specifies
 the total number of logical
 CPUs for this V2 CPC that are
 in the configured state. A
 logical CPU is in the
 configured state when it is
 described in the V2-CPC
 configuration definition and
 is available to be used to
 execute programs. */
 unsigned int si22v2standbylcpucount : 16; /*
 A 2-byte unsigned
 binary integer that specifies
 the total number of logical
 CPUs that are in the standby
 state. A logical CPU is in the
 standby state when it is
 described in the V2-CPC
 configuration definition, is
 not available to be used to
 execute programs, but can be
 used to execute programs by
 issuing instructions to place
 it in the configured state.
 */

 unsigned int si22v2reservedlcpucount : 16; /*
 A 2-byte unsigned
 binary integer that specifies
 the total number of logical
 CPUs that are in the reserved
 state. A logical CPU is in the
 reserved state when it is
 described in the V2-CPC
 configuration definition, is
 not available to be used to
 execute programs, and cannot
 be made available to be used
 to execute programs by issuing
 instructions to place it in
 the configured state, but it
 may be possible to place it in
 the standby or configured
 state through manually
 initiated actions */
 unsigned char si22v2cpcname??(16??); /*
 The 8-character EBCDIC name of
 this V2 CPC. The name is
 left-justified with trailing
 blank characters if necessary.
 */
 unsigned char si22v2cpccapabilityaf??(4??); /* Capability Adjustment
 Factor (CAF). An unsigned
 binary integer of 1000 or
 less. The adjustment factor

System information service (CSRSI)

238 z/OS: z/OS MVS Callable Services for HLL

 specifies the amount of the
 V1-CPC capability that is
 allowed to be used for this V2
 CPC by the logical-partition
 hypervisor. The fraction of
 V1-CPC capability is
 determined by dividing the CAF
 value by 1000. */
 unsigned char _filler4??(16??); /* Reserved */
 unsigned int si22v2dedicatedlcpucount : 16; /*
 A 2-byte unsigned
 binary integer that specifies
 the number of configured-state
 logical CPUs for this V2 CPC
 that are provided using
 dedicated V1 CPUs. (See the
 description of bit
 si22v2lcpudedicated.) */

 unsigned int si22v2sharedlcpucount : 16; /*
 A 2-byte unsigned
 integer that specifies the
 number of configured-state
 logical CPUs for this V2 CPC
 that are provided using shared
 V1 CPUs. (See the description
 of bit si22v2lcpushared.)
 */
 unsigned char _filler5??(4012??); /* Reserved */
 ??> si22v2;

#define si22v2lcpudedicated si22v2lcpuc._si22v2lcpudedicated
#define si22v2lcpushared si22v2lcpuc._si22v2lcpushared
#define si22v2lcpuulimit si22v2lcpuc._si22v2lcpuulimit

/***/
/* si22v3db is a description block that comprises part of the */
/* si22v3 data. */
/***/

typedef struct ??<
 unsigned char _filler1??(4??); /* Reserved */
 unsigned int si22v3dbtotallcpucount : 16; /*
 A 2-byte unsigned
 binary integer that specifies
 the total number of logical
 CPUs that are provided for
 this V3 CPC. This number
 includes all of the logical
 CPUs that are in the
 configured state, the standby
 state, and the reserved state.
 */
 unsigned int si22v3dbconfiguredlcpucount : 16; /*
 A 2-byte unsigned
 binary integer that specifies
 the number of logical CPUs for
 this V3 CPC that are in the
 configured state. A logical
 CPU is in the configured state
 when it is described in the
 V3-CPC configuration
 definition and is available to
 be used to execute programs.
 */

 unsigned int si22v3dbstandbylcpucount : 16; /*
 A 2-byte unsigned
 binary integer that specifies
 the number of logical CPUs for
 this V3 CPC that are in the
 standby state. A logical CPU
 is in the standby state when
 it is described in the V3-CPC
 configuration definition, is
 not available to be used to
 execute programs, but can be
 used to execute programs by
 issuing instructions to place
 it in the configured state.
 */
 unsigned int si22v3dbreservedlcpucount : 16; /*

System information service (CSRSI)

Chapter 18. CSRSI — System information service 239

 A 2-byte unsigned
 binary integer that specifies
 the number of logical CPUs for
 this V3 CPC that are in the
 reserved state. A logical CPU
 is in the reserved state when
 it is described in the V2-CPC
 configuration definition, is
 not available to be used to
 execute programs, and cannot
 be made available to be used
 to execute programs by issuing
 instructions to place it in
 the configured state, but it
 may be possible to place it in
 the standby or configured
 state through manually
 initiated actions */
 unsigned char si22v3dbcpcname??(8??); /* The 8-character EBCDIC name
 of this V3 CPC. The name is
 left-justified with trailing
 blank characters if necessary.
 */
 unsigned char si22v3dbcpccaf??(4??); /* A 4-byte unsigned binary
 integer that specifies an
 adjustment factor. The
 adjustment factor specifies
 the amount of the V1-CPC or
 V2-CPC capability that is
 allowed to be used for this V3
 CPC by the
 virtual-machine-hypervisor
 program. */

 unsigned char si22v3dbvmhpidentifier??(16??); /* The 16-character
 EBCDIC identifier of the
 virtual-machine-hypervisor
 program that provides this V3
 CPC. (This identifier may
 include qualifiers such as
 version number and release
 level). The identifier is
 left-justified with trailing
 blank characters if necessary.
 */
 unsigned char _filler2??(24??); /* Reserved */
??> si22v3db;
/***/
/* si22v3 represents the output for a V3 CPC when information */
/* is requested about the set of CPUs */
/***/

typedef struct ??<
 unsigned char _filler1??(28??); /* Reserved */
 unsigned char _filler2??(3??); /* Reserved */
 struct ??<
 unsigned int _filler3 : 4; /* Reserved
 */
 unsigned int _si22v3dbcount : 4; /*
 Description Block Count. A
 4-bit unsigned binary integer
 that indicates the number (up
 to 8) of V3-CPC description
 blocks that are stored in the
 si22v3dbe array. */
 ??> si22v3dbcountfield; /* */
 si22v3db si22v3dbe??(8??); /* Array of entries. Only the number
 indicated by si22v3dbcount
 are valid */
 unsigned char _filler5??(3552??); /* Reserved */
??> si22v3;

#define si22v3dbcount si22v3dbcountfield._si22v3dbcount

/***/
/* SI00 represents the "starter" information. This structure is */
/* part of the information returned on every CSRSI request. */
/***/

typedef struct ??<
 char si00cpcvariety; /* SI00CPCVariety_V1CPC_MACHINE,

System information service (CSRSI)

240 z/OS: z/OS MVS Callable Services for HLL

 SI00CPCVariety_V2CPC_LPAR, or
 SI00CPCVariety_V3CPC_VM */
 struct ??<
 int _si00validsi11v1 : 1; /* si11v1 was requested and
 the information returned is valid
 */
 int _si00validsi22v1 : 1; /* si22v2 was requested and
 the information returned is valid
 */
 int _si00validsi22v2 : 1; /* si22v2 was requested and
 the information returned is valid
 */
 int _si00validsi22v3 : 1; /* si22v3 was requested and
 the information returned is valid
 */
 int _filler1 : 4; /* Reserved */
 ??> si00validityflags;
 unsigned char _filler2??(2??); /* Reserved */
 unsigned char si00pccacpid??(12??); /* PCCACPID value for this CPU
 */
 unsigned char si00pccacpua??(2??); /* PCCACPUA value for this CPU
 */
 unsigned char si00pccacafm??(2??); /* PCCACAFM value for this CPU
 */
 unsigned char _filler3??(4??); /* Reserved */
 unsigned char si00lastupdatetimestamp??(8??); /* Time of last STSI
 update, via STCK */
 unsigned char _filler4??(32??); /* Reserved */
 ??> si00;

#define si00validsi11v1 si00validityflags._si00validsi11v1
#define si00validsi22v1 si00validityflags._si00validsi22v1
#define si00validsi22v2 si00validityflags._si00validsi22v2
#define si00validsi22v3 si00validityflags._si00validsi22v3

/***/
/* siv1 represents the information returned when V1CPC_MACHINE */
/* data is requested */
/***/

typedef struct ??<
 si00 siv1si00; /* Area mapped by
 struct si00 */
 si11v1 siv1si11v1; /* Area
 mapped by struct si11v1 */
 si22v1 siv1si22v1; /* Area
 mapped by struct si22v1 */
??> siv1;

/***/
/* siv1v2 represents the information returned when V1CPC_MACHINE */
/* data and V2CPC_LPAR data is requested */
/***/

typedef struct ??<
 si00 siv1v2si00; /* Area mapped by
 by struct si00 */
 si11v1 siv1v2si11v1; /* Area
 mapped by struct si11v1 */
 si22v1 siv1v2si22v1; /* Area
 mapped by struct si22v2 */
 si22v2 siv1v2si22v2; /* Area
 mapped by struct si22v2 */
??> siv1v2;

/***/
/* siv1v2v3 represents the information returned when V1CPC_MACHINE */
/* data, V2CPC_LPAR data and V3CPC_VM data is requested */
/***/

 typedef struct ??<
 si00 siv1v2v3si00; /* Area
 mapped by struct si00 */
 si11v1 siv1v2v3si11v1; /* Area
 mapped by struct si11v1 */
 si22v1 siv1v2v3si22v1; /* Area
 mapped by struct si22v1 */
 si22v2 siv1v2v3si22v2; /* Area
 mapped by struct si22v2 */
 si22v3 siv1v2v3si22v3; /* Area
 mapped by struct si22v3 */

System information service (CSRSI)

Chapter 18. CSRSI — System information service 241

 ??> siv1v2v3;

/***/
/* siv1v3 represents the information returned when V1CPC_MACHINE */
/* data and V3CPC_VM data is requested */
/***/

typedef struct ??<
 si00 siv1v3si00; /* Area mapped
 by struct si00 */
 si11v1 siv1v3si11v1; /* Area
 mapped by struct si11v1 */
 si22v1 siv1v3si22v1; /* Area
 mapped by struct si22v1 */
 si22v3 siv1v3si22v3; /* Area
 mapped by struct si22v3 */
??> siv1v3;

/***/
/* siv2 represents the information returned when V2CPC_LPAR */
/* data is requested */
/***/

typedef struct ??<
 si00 siv2si00; /* Area mapped by
 struct si00 */
 si22v2 siv2si22v2; /* Area
 mapped by struct si22v2 */
??> siv2;

/***/
/* siv2v3 represents the information returned when V2CPC_LPAR */
/* and V3CPC_VM data is requested */
/***/

typedef struct ??<
 si00 siv2v3si00; /* Area mapped
 by struct si00 */
 si22v2 siv2v3si22v2; /* Area
 mapped by struct si22v2 */
 si22v3 siv2v3si22v3; /* Area
 mapped by struct si22v3 */
??> siv2v3;

/***/
/* siv3 represents the information returned when V3CPC_VM */
/* data is requested */
/***/

typedef struct ??<
 si00 siv3si00; /* Area mapped by
 struct si00 */
 si22v3 siv3si22v3; /* Area
 mapped by struct si22v3 */
??> siv3;

/**/
 * Fixed Service Parameter and Return Code Defines *
 ***/

/* SI00 Constants */

#define SI00CPCVARIETY_V1CPC_MACHINE 1
#define SI00CPCVARIETY_V2CPC_LPAR 2
#define SI00CPCVARIETY_V3CPC_VM 3

/* CSRSI Constants */

#define CSRSI_REQUEST_V1CPC_MACHINE 1
#define CSRSI_REQUEST_V2CPC_LPAR 2
#define CSRSI_REQUEST_V3CPC_VM 4

/* CSRSI Return codes */

#define CSRSI_SUCCESS 0
#define CSRSI_STSINOTAVAILABLE 4
#define CSRSI_SERVICENOTAVAILABLE 8
#define CSRSI_BADREQUEST 12
#define CSRSI_BADINFOAREALEN 16
#define CSRSI_BADLOCK 20

System information service (CSRSI)

242 z/OS: z/OS MVS Callable Services for HLL

Part 8. Base Control Program internal interface
(BCPii) services

© Copyright IBM Corp. 1994, 2023 243

244 z/OS: z/OS MVS Callable Services for HLL

Chapter 19. Base Control Program internal interface
(BCPii)

IBM provides support within z/OS that allows authorized applications to query, change, and perform
operational procedures against the installed System z hardware base through a set of application program
interfaces. These applications can access the System z hardware that the application is running on
and extend their reach to other System z processors within the attached process control (Hardware
Management Console) network.

Using the Base Control Program internal interface (BCPii), an authorized z/OS application can perform the
following actions:

• Obtain the System z topology of the current interconnected Central Processor Complexes (CPCs) as well
as the images, capacity records, activation profiles, and user-defined image group, group profile and
LPAR Capacity group defined on a particular CPC.

• Query CPC, image (LPAR), capacity record, activation profile, user-defined image group, group profile
and LPAR Capacity group information.

• Set various configuration values related to CPC, image and activation profiles.
• Issue commands against CPCs, images (LPARs), and user-defined image groups to perform minor or

even significant hardware- and software-related functions.
• Listen for various hardware and software events that might take place on various CPCs and images

throughout the HMC-connected network.

Communication to the Support Element (SE) / Hardware Management Console (HMC) using BCPii is
done completely within the base operating system and therefore does not require communication
on an IP network (intranet) for connectivity, providing complete isolation of your System z hardware
communication from any other network traffic within the intranet/internet.

Calls using the BCPii Application Programming Interfaces (APIs) can be made from the C, the REXX, or the
assembler programming languages. See “Syntax, linkage and programming considerations” on page 259
for an explanation of how the APIs are called and see the explanation of each service for the syntax for
each of the BCPii APIs.

BCPii setup and installation
Before an installation begins to issue BCPii APIs, a series of setup and installation steps must be
performed. A summary of these steps follows. For additional details on each of these steps, see the
supporting documentation that explains how each of these steps is accomplished:

1. Configure the local Support Element (SE) to support BCPii:

a. Check the levels of hardware that BCPii supports
b. Set up BCPii firmware security
c. Grant permission to BCPii requests

i) For z13 and lower CPCs, enable cross-partition authority for each image (LPAR) that you want to
grant BCPii access

ii) For z14 and higher CPCs, set the BCPii security settings using the System Details task (CPC
permission) and/or Change LPAR Security task (Image/LPAR permission).

d. Define an uppercase BCPii SNMP community name on the SE.

See “Setting up connectivity to the support element” on page 246 for details.
2. Authorize an application to use BCPii, including authority to specific resources (such as CPCs, images

and capacity records):

© Copyright IBM Corp. 1994, 2023 245

a. Check that the BCPii application is program-authorized.
b. Check that the BCPii application has general authority to use BCPii.
c. Authorize the BCPii application to access the particular resource that requires BCPii service.
d. Define an uppercase BCPii SNMP community name in the security product for each CPC as it was

defined on the SE. Use the APPLDATA field with the CPC profile definition to associate a BCPii SNMP
community name with a particular CPC.

These steps enable communication to the local CPC and allows the BCPii address space to initialize.
See “Setting up authority to use BCPii” on page 251 for details.

3. Configure the BCPii address space. See “BCPii configuration considerations” on page 254 for details.
4. If the caller is running in a z/OS UNIX System Services environment, set up the notification mechanism

to allow hardware and software events to be propagated to the z/OS UNIX application. See “Setting up
event notification for BCPii z/OS UNIX applications” on page 255 for details.

5. If the installation allows TSO/E users to have access to the BCPii APIs using REXX, see “Setting up an
environment to run BCPii TSO/E REXX execs” on page 257.

After you have activated the BCPii address space, you need to know how to control the address space.
See “BCPii startup and shutdown” on page 257 for details.

Figure 21 on page 246 shows the steps needed to setup and install BCPii.

Figure 21. BCPii setup and installation steps

Setting up connectivity to the support element
BCPii uses a low-level operating system connection to establish communication between an authorized
application running on a z/OS image (LPAR) and the Support Element (SE) associated with the Central
Processor Complex (CPC) that contains this z/OS image. You must configure the support element to
permit these BCPii communications if BCPii services are required to be available by your installation.

Note: In order to customize the API settings controls on the SE, your userid must have administrator
rights to access these panels.

246 z/OS: z/OS MVS Callable Services for HLL

Levels of hardware that BCPii supports
The HWIBCPii address space, which supports the issuing of BCPii APIs from a z/OS image, will run on
any hardware that supports a level of the z/OS operating system in which BCPii is included. However,
there will be some reduced BCPii functionality when a BCPii request targets a system that is not
running on a zEnterprise® machine. The BCPii restrictions increase the further downlevel the hardware
is from a zEnterprise machine. To run with the fewest functionality restrictions possible, make sure the
recommended microcode levels are installed for that SE, HMC and LPAR hardware.

BCPii applications might need to perform hardware or software functions on CPCs other than the CPC on
which the application is running. Such requests can be targeted to other System z® hardware at a lower
or higher hardware level than the local CPC, provided that these hardware levels are supported to coexist
with the local CPC level.

Note: IBM z15™ (HMC Version 2.15.0) supports n-2 system levels only (IBM z13® and IBM z14®). IBM
z14 (HMC Version 2.14.1) is the last level to support four generations of systems (n through n-4).

These and other details can be found in the Hardware Management Console Operations Guide for each
specific Z version. These documents are found in the Library section of the IBM Resource Link® home
page (www.ibm.com/servers/resourcelink).

The HWICMD / HWICMD2 services are only allowed to be targeted to at least a System z9® hardware
level running on a particular microcode level. BCPii rejects the targeting of this service to any System z
hardware level earlier than System z9. See “HWICMD / HWICMD2 — Issue a BCPii hardware management
command” on page 271 for further information.

The HWIREST service is only allowed to be targeted to at least an IBM z15. See “HWIREST — Issue
RESTlike requests to the SE” on page 375 for details regarding the specific minimum microcode level
requirements.

Consult Table 54 on page 247 to determine the minimum level of microcode required to run BCPii on a
specific hardware level.

Table 54. Minimum BCPii microcode levels by SE hardware level

SE hardware level Minimum microcode level

IBM System z9 Driver 67 MCL 258 in the G40965 (SE-SYSTEM) EC stream

IBM System z10® Driver 79 MCL 163 in the N24409 (SE-SYSTEM) EC stream

IBM zEnterprise 196 MCL 220 in the N29802 (SE-SYSTEM) EC stream

IBM zEnterprise EC12 Any level

IBM z13 GA2 MCL 315 in the P00339 (SE-SYSTEM) EC stream

IBM z14 MCL 059 in the P42601 (SE-SYSTEM) EC stream

IBM z14 GA2 MCL 219 in the P41414 (SE-SYSTEM) EC stream

IBM z15 and higher Any level

Consult Table 55 on page 247 to determine the minimum level of microcode required to run BCPii on a
specific HMC level.

Table 55. Minimum BCPii microcode levels by HMC level

HMC level Minimum microcode level

IBM System z9 Driver 67 MCL 158 in the G40969 (HMC-SYSTEM) EC stream

IBM System z10 Driver 79 MCL 034 in the N24415 (HMC-SYSTEM) EC stream

IBM zEnterprise 196 Any level

IBM zEnterprise EC12 Any level

Chapter 19. Base Control Program internal interface (BCPii) 247

http://www.ibm.com/servers/resourcelink
http://www.ibm.com/servers/resourcelink

Consult Table 56 on page 248 to determine the minimum level of microcode required to run BCPii on a
specific LPAR level.

Table 56. Minimum BCPii microcode levels by LPAR level

LPAR level Minimum microcode level

IBM System z9 Driver 67 MCL 008 in the G40954 (LPAR) EC stream

IBM System z10 Driver 79 MCL 002 in the N24404 (LPAR) EC stream

IBM zEnterprise 196 Any level

IBM zEnterprise EC12 Any level

Each version of hardware has subtle or sometimes significant changes in the way information is displayed
and saved in the support element. The examples serve as a guide only to where the actual definitions that
need to be modified are located within the support element configuration windows.

Enable BCPii communications on the support element
It is necessary to grant authority on the support element (SE) to allow the support element to accept
BCPii APIs flowing from the user application through the HWIBCPII address space.

The methodology to enable the firmware to accept and target BCPii API requests varies, depending on
whether the CPC is lower than a z14 or if it is z14 or higher.

Note: This setting must be selected on the local SE associated with the CPC of the image that the
z/OS BCPii application is running on. It must also be selected for any other system for which BCPii
communication is required.

Firmware security settings on CPCs lower than z14
For all CPC levels lower than a z14, it is necessary to enable cross partition authority for all images
(LPARs) that want to use BCPii or want to be the target of BCPii requests. To change this setting, perform
the following steps on the HMC:

1. Select the CPC that is required.
2. Open Single Object Operations.
3. Open the CPC Operational Customization task list.
4. Highlight the CPC icon.
5. Open the Change LPAR Security task, and the Change Logical Partition Security window displays.
6. Check the cross-partition authority checkbox for each image (LPAR) that you want to grant BCPii

access. At a minimum, the image (LPAR) the BCPii address space is running needs to have this
authority activated.

7. Select Save and Change.

Firmware security settings on z14 and higher CPCs
Starting with the z14 machine, BCPii firmware security has been greatly enhanced to allow much more
robust and granular controls of BCPii authority to both the CPC and LPARs. It is now possible to control
which LPARs can access CPC attributes and commands through BCPii as well as which LPARs can access
other LPARs through BCPii. The cross partition authority checkbox no longer provides the security
control to allow BCPii requests. On the HMC or SE, use the instructions below to configure the desired
security controls for the target CPC or LPARs.

Migrating from a pre-z14 to a z14 and higher machine
If you are migrating from a pre-z14 machine to a z14 or higher machine, the firmware will auto-migrate
your settings so that the same security capabilities are in place on the z14 in the new BCPii security
settings as your had using the cross partition authority checkbox on the pre-z14 machine. Once the
migration is complete, it is important to review these migrated security settings, and to make changes as

248 z/OS: z/OS MVS Callable Services for HLL

necessary to refine the authority to be as granular as your installation needs. See “Manual BCPii firmware
security configuration” on page 249.

Manual BCPii firmware security configuration
If you are manually updating your BCPii firmware security settings, there are a number of permissions
that can be granted or denied. These include:

• which LPARs can issue BCPii requests
• which LPARs are allowed to access CPC attributes and commands, and
• which LPARs are allowed to access other LPAR's attributes and commands.

Setting BCPii firmware security access to the CPC

1. From the HMC or SE, select System(s) Management, select the CPC and then the System Details task.
2. Select the Security tab.
3. Check the Enable the system to receive commands from partitions checkbox and select the All

partitions radio button to allow the CPC to receive commands (BCPii requests) from any BCPii enabled
partition or limit which partitions can issue BCPii requests by clicking the Selected partitions radio
button and specifying the specific list of LPARs to be granted this authority.

4. Click OK.

Setting BCPii firmware security access for each LPAR

1. Open Change LPAR Security from the CPC Operational Customization task.
2. For each image (LPAR) that your want to grant BCPii access:

a. Click the current BCPii enablement level in the BCPii Permissions column. The Configure BCPii
Permission panel will be displayed.

b. Check the checkbox for Enable the partition to send commands to grant authority for this LPAR to
send BCPii requests to other CPCs and LPARs.

Note: This checkbox must be enabled for BCPii address space to be active on this LPAR.
c. Check the Enable the partition to receive commands from other partitions check box and select the

All partitions radio button to grant permission to all partitions on all CPCs to target this LPAR with
BCPii requests or limit which partitions can issue BCPii requests by clicking the Selected Partitions
radio button and specifying the specific list of LPARs to be granted this authority. Click OK.

d. When Change LPAR Security displays, update the BCPii permission by choosing Save and Change,
Change Running System or Save to Profiles.

BCPii permissions can also be set via the Image Activation Profile when multiple LPARs need to be
configured. See zSystem Hardware Management Console Security and zEnterprise System Processor
Resource/Systems Manager Planning Guide as well as the Help panels from the HMC or SE for more
information.

See the HMC book and Support Element Operations Guide for more information regarding changing the
support element settings. For z14 and higher machines, see IBM Documentation (www.ibm.com/docs/en/
zos) for more details.

Failure to set the security control access properly on the local SE associated with the image of z/OS that
is running BCPii results in a severe BCPii address space initialization failure. You cannot start the address
space and will receive communications error X'101' with a reason code of X'D4'. Failure to set this up
properly on remote SEs to which you want to connect results in the same return code and reason code on
the HWICONN service call.

Note: Make the same updates to all CPCs that you want BCPii to communicate with and not just the CPC
from which the BCPii application is going to run on.

Chapter 19. Base Control Program internal interface (BCPii) 249

https://www.ibm.com/docs/en/zos
https://www.ibm.com/docs/en/zos

Define the BCPii community name on the support element
BCPii uses an SNMP community name to provide a level of security between the z/OS image that is
executing the BCPii service and the support element itself.

An SNMP community is a logical relationship between an SNMP agent and an SNMP manager. The
community has a name, and all members of a community have the same access privileges: they are either
read-only (members can view configuration and performance information) or read-write (members can
view configuration and performance information, and also change the configuration).

To add the BCPii community name definition to the SE configuration, perform the following steps on the
HMC:

1. Select the CPC that is required.
2. Open Single Object Operations.
3. Select Tasks Index in the navigation panel.
4. Select Customize API Settings task from the tasks list.

Figure 22. Tasks index
5. Select Enable.
6. Consider checking the "Allow capacity change API requests" checkbox on a z10 or higher operation

system if the installation is to allow a BCPii application to perform temporary capacity upgrades.
7. Make sure that the SNMP agent parameters are blank.
8. Add a BCPii community name. Click on Add. When a window is prompted, fill in the following fields:

Name
The actual SNMP community name. This value is a 1– to 16–character alphanumeric field. Only
uppercase letters and numbers are allowed. Because of restrictions with the security products
on z/OS, the BCPii SNMP community name must not contain any lowercase characters. See
“Community name defined in the security product for each CPC” on page 253 for more information
about the SNMP community name.

Address
For BCPii, this address (sometimes referred to as a loop-back address) must be 127.0.0.1.

250 z/OS: z/OS MVS Callable Services for HLL

Network mask/Prefix
255.255.255.255

Access Type
Read/write

9. Save the changes.

Figure 23. Customize API settings

See System z9 Support Element Operations Guide and System z10 Support Element Operations Guide for
more information regarding changing the support element settings.

Failure to set this properly on the local SE associated with the image of z/OS that is running BCPii results
in a severe BCPii failure and you cannot start the address space. Message HWI022I might be issued if the
community name defined on the support element for the local CPC does not match the definition in the
security product for the local CPC. See “Community name defined in the security product for each CPC”
on page 253 for more information.

Note: Make the same updates to all CPCs that you want BCPii to communicate with.

Setting up authority to use BCPii
Given the nature of the BCPii APIs and the capabilities of a BCPii application to potentially modify vital
hardware resources, a number of authority validations are performed for each BCPii requestor. A BCPii
application needs to have program authority, general security product authority to be able to issue BCPii
commands, authority to the particular resource that the application is trying to access, and a community
name defined in the security product for each CPC to which communication is required.

Chapter 19. Base Control Program internal interface (BCPii) 251

Program authority
BCPii applications must be program-authorized, meaning that one of the following must be true of the
application:

• Running in supervisor state.
• Running in an authorized key with PSW key mask (PKM) between 0 and 7.
• Residing in an APF-authorized library.

General security product authority
A BCPii application needs to have general authority to use BCPii. The profile HWI.APPLNAME.HWISERV
in the FACILITY resource class controls which applications can use BCPii services. The security
administrator must give at least read authority to this resource, in addition to granting authority to
any specific resource that the application is attempting to access. In addition, BCPii requires that the
FACILITY class to be RACLIST-specified. The RACF syntax is as follows:

RDEFINE FACILITY HWI.APPLNAME.HWISERV UACC(NONE)
PERMIT HWI.APPLNAME.HWISERV CLASS(FACILITY) ID(userid) ACCESS(READ)
SETROPTS RACLIST(FACILITY) REFRESH

This RACF example allows user JOE to use BCPii services in general:

RDEFINE FACILITY HWI.APPLNAME.HWISERV UACC(NONE)
PERMIT HWI.APPLNAME.HWISERV CLASS(FACILITY) ID(JOE) ACCESS(READ)
SETROPTS RACLIST(FACILITY) REFRESH

Generic definitions may be created instead of specific users if the installation does not have specific
definitions for every user.

This RACF example defines user IDs BCPII and HWISTART to the security product:

ADDUSER BCPII DFLTGRP(SYS1)
RDEFINE STARTED BCPII.** STDATA(USER(BCPII) GROUP(SYS1))
ADDUSER HWISTART DFLTGRP(SYS1)
RDEFINE STARTED HWISTART.** STDATA(USER(BCPII) GROUP(SYS1))
SETROPTS RACLIST(STARTED) REFRESH

Authority to the particular resource
A BCPii application needs to have authority to the particular resource that it is trying to access. That
particular resource can be the CPC itself, an image (LPAR) on a particular CPC, or a particular capacity
record on a particular CPC. BCPii needs a profile defined in the FACILITY resource class that represents
the target of the particular BCPii request. The profile name required to be defined depends on the type of
the particular resource required.

Request Type FACILITY Class Profile Required

CPC HWI.TARGET.netid.nau where netid.nau represents the 3– to 17–
character SNA name of the particular CPC.

Image HWI.TARGET.netid.nau.imagename where netid.nau represents the 3–
to 17–character SNA name of the particular CPC and imagename
represents the 1– to 8-character LPAR name.

Capacity record HWI.CAPREC.netid.nau.caprec where netid.nau represents the 3– to
17–character SNA name of the particular CPC and caprec represents
an 8–character capacity record name.

Activation profiles HWI.TARGET.netid.nau where netid.nau represents the 3– to 17–
character SNA name of the particular CPC the activation profile is
defined.

252 z/OS: z/OS MVS Callable Services for HLL

Request Type FACILITY Class Profile Required

User-defined image groups HWI.TARGET.netid.nau where netid.nau represents the 3– to 17–
character SNA name of the particular CPC the user-defined image group
is defined.

Group profile HWI.TARGET.netid.nau where netid.nau represents the 3– to 17–
character SNA name of the particular CPC the group profile is defined.

LPAR Capacity Group HWI.TARGET.netid.nau where netid.nau represents the 3– to 17–
character SNA name of the particular CPC the LPAR Capacity group is
defined.

Note: For compatibility with security products, BCPii automatically transforms the following names to all
uppercase characters: CPC names (including the local CPC name represented by '*'), image names, and
capacity record names specified on the HWICONN service.

The access level required for the particular profile depends on the service that the BCPii application
attempts to issue. See the BCPii API documentation in this chapter for specifics regarding the minimum
access level required for each BCPii API service. The RACF syntax is as follows:

RDEFINE FACILITY HWI.TARGET.netid.nau UACC(NONE) APPLDATA('uppercasecommunityname’)
PERMIT HWI.TARGET.netid.nau CLASS(FACILITY) ID(userid) ACCESS(READ)
SETROPTS RACLIST(FACILITY) REFRESH

where netid.nau represents the 3 to 17 character SNA name of the CPC.

This RACF example allows user JOE to have Connect, Event, List, and Query access to CPC NET1.CPC001,
using community name XYZ123. See “Community name defined in the security product for each CPC” on
page 253 for more details.

RDEFINE FACILITY HWI.TARGET.NET1.CPC001 UACC(NONE) APPLDATA(‘XYZ123’)
PERMIT HWI.TARGET.NET1.CPC001 CLASS(FACILITY) ID(JOE) ACCESS(READ)
SETROPTS RACLIST(FACILITY) REFRESH

This RACF example grants user JOE with Command, Connect, Event, List, Query, and Set access to any
image (LPAR) on NET1.CPC001:

RDEFINE FACILITY HWI.TARGET.NET1.CPC001.* UACC(NONE)
PERMIT HWI.TARGET.NET1.CPC001.* CLASS(FACILITY) ID(JOE) ACCESS(ALTER)
SETROPTS RACLIST(FACILITY) REFRESH

Community name defined in the security product for each CPC
BCPii uses an SNMP community name to provide a minimal level of security between the z/OS image
executing the BCPii service and the support element itself.

An SNMP community name is associated with a particular CPC. The same SNMP community name that
was defined in the support element configuration for a particular CPC also must be defined in the security
product for each CPC to which communication is required. This community name definition is extracted
from the security product by BCPii and propagated to the support element. The support element validates
that the community name passed by BCPii is correct before proceeding with the request. See Define the
BCPii community name on the Support Element for information about how to define the community name
on the SE or how to obtain the already-defined name.

To define the BCPii community name in the security product, use the APPLDATA field with the CPC profile
definition to associate a community name with a particular CPC. The RACF syntax is as follows:

RALTER FACILITY HWI.TARGET.netid.nau APPLDATA('uppercasecommunityname’)
SETROPTS RACLIST(FACILITY) REFRESH

where netid.nau represents the 3 to 17 character SNA name of the CPC.

Chapter 19. Base Control Program internal interface (BCPii) 253

The APPLDATA field for the BCPii community name contains a 1– to 16–character alphanumeric field.
Only uppercase letters and numbers are allowed. Because of restrictions with the security products on
z/OS, the BCPii SNMP community name must not contain any lowercase characters.

This RACF example assigns a BCPii community name of XYZ123 to an existing CPC definition for CPC
name NET1.CPC001:

RALTER FACILITY HWI.TARGET.NET1.CPC001 APPLDATA(‘XYZ123’)
SETROPTS RACLIST(FACILITY) REFRESH

Note: A community name definition must be defined for at least the local CPC. Otherwise, BCPii cannot
continue with initialization of its address space and BCPii services are not available. This is accompanied
by message HWI022I.

BCPii configuration considerations
The BCPii address space is the bridge between a z/OS application and the support element. The address
space can perform the following steps:

• Manage all application connections.
• Builds and receive all internal communication requests to the SE.
• Provide an infrastructure for storage required by callers and by the transport communicating with the

SE.
• Provide diagnostic capabilities to help with BCPii problem determination.
• Provide security authentication of requests.

The BCPii address space is mandatory for any BCPii API request. The system attempts to start the
HWIBCPii address space during IPL.

BCPii requires the high-level-qualifier.SCEERUN2 and high-level-qualifier.SCEERUN data sets to be in the
link list concatenation. IBM specifies these data sets in the default link list members (PROGxx) in z/OS
1.10 and higher. BCPii also requires the high-level-qualifier.SCEERUN2 and high-level-qualifier.SCEERUN
data sets to be APF authorized. Failure to have these two data sets in the link list or APF authorized
results in BCPii not being able to be started, accompanied by error message HWI009I that indicates that
BCPii could not load a required Language Environment part.

BCPii also includes a parmlib member into SYS1.PARMLIB for default CTRACE settings (CTIHWI00) when
BCPii initializes. See z/OS MVS Diagnosis: Tools and Service Aids for further information regarding CTRACE
settings in BCPii.

BCPii writes SMF record 106 (X'6A') for certain API invocations. An SMFPRMxx parmlib member must be
configured and activated in order to capture these records. See “SMF recording in BCPii” on page 258 or
z/OS MVS System Management Facilities (SMF) for more information about how BCPii uses SMF.

Considerations for Language Environment runtime options
z/OS BCPii uses z/OS Language Environment® (LE) to fulfill an API request from the caller. It creates an
environment that usually does not conflict with an installation's default runtime option settings. However,
specifying the NONOVR attribute to customize the LE runtime options, either via the CEEPRMxx parmlib
member or via the SETCEE command, can result in incompatible settings that can lead to incorrect
behavior by BCPii, including an abend when BCPii initializes and attempts to open the SYSOUT data set.

When you specify the NONOVR attribute for a runtime option, that runtime option cannot be overridden
later, including by a later specification in the same parmlib member or by a subsequent SETCEE
command.

BCPii requires the following LE runtime options and will attempt to override them:

TRAP(ON,NOSPIE)
POSIX(OFF)
ALL31(ON)

254 z/OS: z/OS MVS Callable Services for HLL

STACK(,,ANY)
DYNDUMP(*USERID,NODYNAMIC,TDUMP)
MSGFILE(SYSOUT,,,,ENQ)
TERMTHDACT(UADUMP,,256)

Specifying the NONOVR attribute for any of these options can result in the following error message when
BCPii starts and attempts to override the options that can no longer be overridden:
CEE3768I The system default for the run-time option option could not be overridden.

IBM recommends that you not specify the NONOVR attribute for these options in order to allow BCPii's
SYSOUT initialization to complete successfully and, in general, to allow BCPii to behave properly.

Dynamic modification of CPC names
An installation that implements a dynamic CPC name change on a CPC, which either has BCPii active on
one or more of its z/OS images or is a CPC that is targeted by other images on remote CPCs in the HMC
network must review the following considerations before performing the name change.

BCPii provides support for changing the name of a CPC with ACTIVE images. When a CPC name change is
detected, BCPii takes the following actions:

• Invalidates outstanding connections to the affected CPC. In the case of HWIREST interface, invalidate
any stored URI and target name information associated with that CPC.

• Issues an ENF 68 event to inform interested parties of the name change (hardware event
HWIENF68_HWEVENT_NAMECHG)

• Reconnects to the local CPC (if the local CPC name is changed). In the case of HWIREST interface, the
applications should reissue the CPC Lists request to obtain the new URI and target name information.

Applications that target the CPC using the old name get a return code indicating that the connection is
no longer valid (for instance, HWI_CONNECT_TOKEN_INV or HWI_TARGET_CPC_CHANGED).Applications
that take advantage of the HWIREST interface will receive an HTTP Status 504 with Reason Code 1,
implying the SE was unable to connect to the specified target name.

BCPii applications that have registered for communication errors may also receive a permanent
communication error before the name change event (HWIENF68_HWCOMMERROR_PERM). This is a
normal condition considering that a reboot of the SE is required to change the CPC name.

Users of BCPii should also be aware that the duration of time for a Support Element to complete
processing a CPC name change can be very long. After a name change, applications might want to
invoke the HWICONN service to connect to the CPC that has the new name. An application that attempts
to communicate with a CPC that has just changed its name needs to handle this delay. Attempting to
communicate prior to the SE completing its reboot can result in various BCPii communication errors.

It is necessary to review the security definitions for HWI.TARGET.netid.nau,
HWI.TARGET.netid.nau.imagename, and HWI.CAPREC.netid.nau.caprecname profiles whenever a CPC
name change is implemented to ensure that the proper security configuration is in effect. Review any
profiles that might need to be modified before the name change takes place. Ensure any additions and
changes to security profiles are made before the CPC name actually being changed, or security failures
could immediately occur. See “Setting up authority to use BCPii” on page 251 for general information on
configuring the appropriate security definitions.

Setting up event notification for BCPii z/OS UNIX applications
Applications running in a started procedure, batch, TSO or other non z/OS UNIX environment can use the
HWIEVENT service and provide their own ENF exit that receives control when the application-requested
events occur on the target CPC or image.

Applications running in a z/OS UNIX environment do not have normal ENF exit processing capabilities
available and cannot readily listen for ENF signals. The Common Event Adapter (CEA) address space
allows z/OS UNIX applications to be able to receive such event notifications. BCPii provides several
services that use the CEA functionality to deliver these same events to z/OS UNIX callers. See the

Chapter 19. Base Control Program internal interface (BCPii) 255

documentation for the z/OS UNIX-only services of BCPii (“HWIBeginEventDelivery — Begin delivery
of BCPii event notifications” on page 439, “HWIEndEventDelivery — End delivery of BCPii event
notifications” on page 443, “HWIManageEvents — Manage the list of BCPii events” on page 446, and
“HWIGetEvent — Retrieve outstanding BCPii event notifications” on page 451) for details about the
services a z/OS UNIX application can use to receive event notification.

The use of the CEA address space by BCPii requires some minor CEA setup before z/OS UNIX-only
services of BCPii can work properly.

CEA address space setup
The Common Event Adapter (CEA) address space must be active to allow the z/OS UNIX-only services of
BCPii to operate. CEA has two modes of operation: minimum or full-function mode. If the z/OS UNIX-only
services of BCPii are required to be available, CEA must be running in full-function mode. To activate
full-function mode, a set of security product definitions are required. See z/OS Planning for Installation for
more information about how to configure Common Event Adapter for full-function mode.

CEA, like BCPii, starts as part of a system IPL. It can be stopped and restarted as well. See z/OS Planning
for Installation for more information.

CEA ENF security configuration
A z/OS UNIX BCPii application must be granted authority to listen to ENF68 events. With the CEA ENF
controls, it is also possible to fine-tune which BCPii events a user is allowed to listen to.

This RACF example gives generic authority to the user id associated with a z/OS UNIX application
authority to listen to any BCPii event:

AU user_id OMVS(Uid(n))
SETROPTS GENERIC(SERVAUTH)
RDEFINE SERVAUTH CEA.CONNECT UACC(NONE)
RDEFINE SERVAUTH CEA.SUBSCRIBE.ENF_0068* UACC(NONE)
PERMIT CEA.CONNECT CLASS(SERVAUTH) ID(user_id) ACCESS(READ)
PERMIT CEA.SUBSCRIBE.ENF_0068* CLASS(SERVAUTH) ID(user_id) ACCESS(READ)
SETROPTS RACLIST(SERVAUTH) REFRESH

To give specific authority to only certain BCPii events, use the event qualifier as part of the profile
name. The event qualifier maps to the event mask for ENF68 in the ENFREQ documentation in z/OS
MVS Programming: Authorized Assembler Services Reference EDT-IXG. Hardware events are in the form
‘03xx00yy’ where xx is the event source (‘01’x = CPC, and ‘02’x =image) and yy denotes the particular
event.

This RACF example allows user JOE authority to only receive events related to CPC command responses
(CmdResp = ‘01’x):

AU JOE OMVS(Uid(5))
RDEFINE SERVAUTH CEA.CONNECT UACC(NONE)
RDEFINE SERVAUTH CEA.SUBSCRIBE.ENF_006803010001 UACC(NONE)
PERMIT CEA.CONNECT CLASS(SERVAUTH) ID(JOE) ACCESS(READ)
PERMIT CEA.SUBSCRIBE.ENF_006803010001 CLASS(SERVAUTH) ID(JOE) ACCESS(READ)
SETROPTS RACLIST(SERVAUTH) REFRESH

Setting up access to BCPii REXX execs
This topic describes how to set up access to run BCPii REXX execs in the System REXX environment and in
the TSO/E REXX environment.

Setting up access to the HWIREXX helper program
BCPii provides the HWIREXX helper application to allow easier execution of a BCPii REXX exec in the
System REXX environment. (See “Executing a BCPii REXX exec in the System REXX environment” on page
262 for more information.)

256 z/OS: z/OS MVS Callable Services for HLL

In order to run a BCPii System REXX exec using the HWIREXX helper program, you must have at
least READ authority to the HWI.HWIREXX.execname resource in the FACILITY class, where execname
specifies a 1- to 8-character name of the System REXX exec that you want to be executed by the
HWIREXX helper program. BCPii also requires that the FACILITY class be RACLIST-specified. The
following example shows the RACF commands to accomplish this:

RDEFINE FACILITY HWI.HWIREXX.execname UACC(NONE)
PERMIT HWI.HWIREXX.execname CLASS(FACILITY) ID(userid) ACCESS(READ)
SETROPTS RACLIST(FACILITY) REFRESH

Setting up an environment to run BCPii TSO/E REXX execs
In order to allow REXX execs running under TSO/E to use BCPii, BCPii must specifically be granted the
authority to run under TSO/E and the proper host command environment must exist.

Setting up access for BCPii TSO/E REXX Execs
The TSO/E environment is an unauthorized program environment. BCPii normally requires its APIs to be
invoked from a program-authorized application. An installation may choose to allow BCPii APIs to be run
under TSO/E REXX by making a configuration update to the "TSO/E Commands and Programs" parmlib
member (IKJTSOxx). The program HWIC1TRX must be added to the list of APF-authorized programs that
may be called through the TSO Service Facility (AUTHTSF).

The following example shows the syntax required to add BCPii to this list:

AUTHTSF NAMES(HWIC1TRX)

To activate this change on a live system, issue the SET command: SET IKJTSO=xx; where xx is the
two-character suffix of the IKJTSOxx parmlib member where the update was made.

Once this change is activated, the TSO/E user still requires SAF authorization to the correct BCPii profiles
in order to successfully perform the desired BCPii operations.

Host command environment considerations
When setting up the environment for REXX execs using BCPii running under TSO/E or ISPF, be sure
to check that you are not using a customized copy of the IBM-supplied host command environment
modules, IRXTSPRM or IRXISPRM. If your installation is using its own copies of these modules, review
and update as appropriate to add the following statements to ensure that the BCPii host command
environment can be found.

SUBCOMTB_NEXT_SYSCALL DS 0C
SUBCOMTB_ENTRY_BCPII EQU *
SUBCOMTB_NAME_BCPII DC CL8'BCPII ' /* Name is BCPII */
SUBCOMTB_ROUTINE_BCPII DC CL8'HWIM1RTI' /* Routine is HWIM1RTI */
SUBCOMTB_TOKEN_BCPII DC CL16' '
SUBCOMTB_NEXT_BCPII DS 0C

Note: Modules can be in LPALIB or any data set loaded as part of the LPA extension (LPALSTxx, fixed LPA
(IEAFIXxx), MLPA (IEALPAxx), dynamic LPA via the SETPROG LPA,ADD command.)

BCPii startup and shutdown
The BCPii address space normally does not need to be started or shut down. BCPii initialization occurs
during system IPL. If the configuration is correct, no further action is required. The address space remains
active and ready to handle BCPii requests.

BCPii address space does not start up at IPL
If the HWIBCPii address space is not active after an IPL has been done, look for HWI* messages in the
system log. Most of the time, these messages pinpoint the reason for the failure of BCPii to become
active.

Chapter 19. Base Control Program internal interface (BCPii) 257

In most cases, the address space did not start for one of two main reasons:

1. The support element that controls the CPC that contains the image of z/OS on which BCPii is being
started has the improper configuration. Make sure all the steps have been followed in “Setting up
connectivity to the support element” on page 246.

2. The community name of the local CPC is either not defined in the security product or contains an
incorrect value. This is accompanied by message HWI022I (when the value defined in the security
product is incorrect). See “Community name defined in the security product for each CPC” on page
253 for detailed information.

When these problems have been corrected, restart the BCPii address space. See “Restarting the
HWIBCPii address space” on page 258 for more information.

Ending the HWIBCPii address space
The application of certain kinds of code maintenance or other unusual circumstances might require that
the BCPii address space be stopped. To stop the BCPii address space, issue the STOP command for the
BCPii address space: P HWIBCPII. In most cases, the address space ends normally. BCPii services are no
longer available until the address space is restarted. See z/OS MVS Initialization and Tuning Reference for
more information about the STOP HWIBCPII command.

If the STOP command fails to completely bring down the BCPii address space, you can issue the CANCEL
command: C HWIBCPII. The address space then ends in a similar way to the STOP command. See z/OS
MVS Initialization and Tuning Reference for more information about the CANCEL command.

If the CANCEL command still fails to completely bring down the BCPii, you can issue the FORCE command
as a last resort: FORCE HWIBCPII. See z/OS MVS Initialization and Tuning Reference for more information
about the FORCE command.

BCPii issues an ENF 68 broadcast to notify interested ENF listeners that BCPii services are no longer
available. See z/OS MVS Programming: Authorized Assembler Services Reference EDT-IXG for more
information regarding this ENF signal.

Restarting the HWIBCPii address space
After the BCPii address space has ended, it can be restarted. A procedure supplied by IBM in
SYS1.PROCLIB allows the BCPii address space to be restarted. Issue the S HWISTART command to
restart the HWIBCPii address space. When message HWI001I appears, BCPii is now active and all BCPii
requests may resume. However, all prior connections are no longer valid, and applications will need to
re-establish these connections in order to resume their current BCPii activity. See z/OS MVS Initialization
and Tuning Reference for more information about the START HWISTART command.

BCPii issues an ENF 68 broadcast when the address space has completely initialized to notify interested
ENF listeners that BCPii services are now available. See z/OS MVS Programming: Authorized Assembler
Services Reference EDT-IXG for more information regarding this ENF signal.

SMF recording in BCPii
BCPii automatically writes SMF records for all HWISET / HWISET2, and HWICMD / HWICMD2 requests
that complete with a return code of zero and HWIREST requests that modify a resource or perform a
command like operation that return with successful HTTP status.

In order for SMF to keep these records, it is necessary to activate recording of SMF record type 106
(X'6A') on the system. You can do this in either of the following ways:

• Create or modify an SMFPRMxx parmlib member and specify SYS(TYPE(106)) to capture all type
106 records, or SYS(TYPE(106(1))) to only capture those records written by HWISET / HWISET2 /
HWIREST that modify or SYS(TYPE(106(2))) to only capture those records written by HWICMD /
HWICMD2 / HWIREST command like operations. Then, activate the parmlib member by issuing the
SET SMF=xx command.

• Dynamically add recording of type 106 records by issuing the SETSMF command.

258 z/OS: z/OS MVS Callable Services for HLL

Once activated, any successful, accepted by the SE, operation that was specified in the SMFPRMxx
parmlib member will be recorded in SMF.

When you want to review the records, you must dump them using either the SMF data set dump program
(IFASMFDP) or the SMF logstream dump program (IFASMFDL), depending on whether your installation
uses data set recording or logstream recording for SMF records. You can find a sample invocation of each
of these programs in the first step of the IBM-supplied HWI6AFMT job in SYS1.SAMPLIB.

After dumping the records, you can analyze them using either of the following methods:

• Use the IBM-supplied HWI6AFMT sample reporting job

IBM provides a sample report using the DFSORT ICETOOL. By using simple JCL, you can create reports
of the BCPii SMF data. The HWI6AFMT job requires the companion HWIRPTMP sample job to make
the ICETOOL program aware of structure and formatting for the BCPii SMF data. You can copy and
customize the HWI6AFMT job to report on the desired data.

• Sort and format the records manually

You might choose to write your own program to report on the type 106 records. The records are mapped
by the HWISMF6A mapping macro found in SYS1.MACLIB.

For more information, see Record type 106 (X'6A') — BCPii activity in z/OS MVS System Management
Facilities (SMF).

BCPii callable services
You can use base control program internal interface (BCPii) services to connect an authorized z/OS
application to System z configuration resources (such as CPC, image, capacity record, or activation profile
data) and to allow that application to potentially modify these resources.

To use base control program internal interface (BCPii) services, issue calls from high level language
programs. Each service requires a set of parameters coded in a specific order on the CALL statement.

This topic describes the CALL statements that invoke BCPii services. Each description includes a syntax
diagram, parameter descriptions, return and reason code explanations with recommended actions.
Return and reason codes are shown in hexadecimal and decimal with the associated equate symbols.

This topic contains the following subtopics:

• “Syntax, linkage and programming considerations” on page 259
• “HWICMD / HWICMD2 — Issue a BCPii hardware management command” on page 271
• “HWICONN — Establish a BCPii connection” on page 295
• “HWIDISC — Release a BCPii connection” on page 308
• “HWIEVENT — Register or unregister for BCPii events” on page 315
• “HWILIST — Retrieve HMC and BCPii configuration-related information” on page 328
• “HWIQUERY — BCPii retrieval of SE/HMC-managed attributes” on page 344
• “HWIREST — Issue RESTlike requests to the SE” on page 375
• “HWISET/HWISET2 — BCPii set single or multiple SE/HMC-managed attributes” on page 392
• “HWIBeginEventDelivery — Begin delivery of BCPii event notifications” on page 439
• “HWIEndEventDelivery — End delivery of BCPii event notifications” on page 443
• “HWIManageEvents — Manage the list of BCPii events” on page 446
• “HWIGetEvent — Retrieve outstanding BCPii event notifications” on page 451

Syntax, linkage and programming considerations
Programming language definitions are provided in the following languages:

Chapter 19. Base Control Program internal interface (BCPii) 259

• In C (HWICIC) in data set SYS1.SIEAHDRV.H. Miscellaneous C constants are defined in HWIZHAPI in the
same data set.

• In REXX (HWICIREX) in data set SYS1.MACLIB. Miscellaneous REXX constants are defined in
HWIC2REX in the same data set.

Note:

1. If the REXX exec is running under System REXX using the TSO=YES environment, these include
files may be read in at the time of execution by the REXX exec. A simple programming example
that reads the values into the REXX exec through the use of the EXECIO function is provided in the
IBM-supplied REXX samples. See “Programming Examples” on page 271 for further information.

2. If the REXX exec is running under System REXX using the TSO=NO environment, the definitions in
these include files may be copied into the REXX exec.

• In assembler (HWICIASM) in data set SYS1.MACLIB. Miscellaneous assembler constants are defined in
HWIC2ASM in the same data set.

Calling formats
Some specific calling formats for languages that can invoke the BCPii callable services are:
C

BCPii_service_name (return_code,parm1,parm2, ...)
HWIREST(parm1,parm2)

REXX
ADDRESS BCPii “BCPii_service_name return_code parm1 parm2 ...”
ADDRESS BCPii “HWIREST parm1 parm2”

Assembler Call macro
CALL BCPii_service_name,(return_code,parm1,parm2, ...),VLIST
CALL HWIREST,(parm1,parm2),VLIST

BCPii connection scope
With the exception of HWIREST, all BCPii services have a concept of a connection. BCPii limits access to
active BCPii connections. BCPii will not allow a program to use a previously established BCPii connection
unless it is running in the proper environment. BCPii associates a connection with either an address space
or a task, depending on the execution environment of the connector. It then uses this association (affinity)
to determine if the connection is allowed to be used on subsequent requests.

Connections with address space affinity
The BCPii connections created by a C program, an assembler program, or a System REXX exec are
associated with an address space.

• For C and assembler programs, BCPii creates an affinity between the connection and the address space
that initiated the connection (via the HWICONN service).

• For a System REXX exec, BCPii creates an affinity between the connection and the address space that
initiated the execution of the REXX exec (via the AXREXX authorized service call).

BCPii allows any task running in the same address space to use these connections on subsequent BCPii
API calls. In addition, the connection remains active until the address space terminates.

Connections with task affinity
The BCPii connections created by a REXX exec running in either a TSO/E or ISV-provided REXX
environment are associated with the task that initiated the execution of the REXX exec.

260 z/OS: z/OS MVS Callable Services for HLL

BCPii only allows the task that initiated the connection (via the HWICONN service) to access this
connection on subsequent BCPii API calls. In addition, the connection only remains active until the task
terminates.

Linkage considerations
There are two ways for a compiled BCPii application (non-REXX) to find BCPii callable services:

• Use the linkable stub routine HWICSS from SYS1.CSSLIB to link-edit your object code.
• Use the LOAD macro to find the address of the BCPii callable service at run time and then CALL the

service.

REXX programming considerations
BCPii supports REXX execs being executed from the System REXX, TSO/E REXX, and independent
software vendor (ISV) REXX programming environments. Each REXX environment is unique:

• System REXX supports all BCPii APIs and provides the capability to write sophisticated BCPii
applications by utilizing REXX and other programming languages as part of a single application.

Note:

– To use the HWIEVENT and HWICMD / HWICMD2 services, a non-REXX adjunct helper program is
needed to call z/OS system services to prepare for events and to coordinate with an event exit. See
“Programming Examples” on page 271 for detailed information.

– The System REXX "MODIFY AXR" command is supported only for HWIREST. For all other APIs, see
“Executing a BCPii REXX exec in the System REXX environment” on page 262.

• TSO/E REXX execs are easy to execute from a TSO user. This environment supports all the BCPii APIs,
except HWIEVENT and HWICMD / HWICMD2.

• ISV-provided REXX environments provide different features, depending on which ISV product is being
used. These environments support all the BCPii APIs, except HWIEVENT and HWICMD / HWICMD2.

The following table identifies the z/OS BCPii APIs supported in the three REXX environments:

Table 57. BCPii APIs supported in the REXX environment

BCPii APIs
System REXX
environment

TSO/E REXX
environment

ISV-provided REXX
environment

HWICONN X X X

HWIDISC X X X

HWILIST X X X

HWIQUERY X X X

HWISET / HWISET2 X X X

HWIEVENT X

HWICMD / HWICMD2 X

HWIREST X X X

The syntax of the BCPii REXX execs are identical in all three REXX environments. Therefore, a BCPii
REXX exec written to be used in one REXX environment can be run in another REXX environment without
change.

Chapter 19. Base Control Program internal interface (BCPii) 261

Executing a BCPii REXX exec in the System REXX environment
BCPii supports the invocation of its APIs from the System REXX programming environment. Execs running
in this environment are APF-authorized. A user may choose either of the following methods to have their
exec run under System REXX:

• Invoke the authorized HWIREXX helper program for basic requests.
• Use the AXREXX macro from an authorized program for more customized requests.

The dataset where the REXX exec is to be run must be specified using the REXXLIB keyword in the AXRxx
parmlib member, and users of this program must have the proper authority to run programs residing in
LINKLIB.

BCPii REXX programming restrictions for the System REXX environment
Only the HWIREST API is supported for invocation from a REXX exec which has been started via the
MODIFY AXR command. Any attempt to run any of the other BCPii API's from this environment results in a
return code of HWI_REXXInvalidExecutionEnv.

Using the HWIREXX interface
For basic REXX execs, BCPii API calls can be run easily from the System REXX programming environment
using the supplied HWIREXX helper program, without the need to code an assembler program with
an AXREXX macro invocation. IBM provides sample invocation JCL for HWIREXX in SAMPLIB member
HWIXMRJL.

The HWIREXX interface provides some of the most common AXREXX macro keywords as input
parameters. Table 58 on page 262lists the supported keywords.

Table 58. HWIREXX keywords

HWIREXX keyword
Required/
Optional Default value

AXREXX macro
parameter equivalent

NAME=xxx; where xxx is a 1-8 character
exec name to be executed.

Required N/A NAME

DSN=xxx.xxx.xxx; where xxx.xxx.xxx is a
1-44 character PDS data set name where
the REXX exec output is directed.

Note: The data set may be pre-allocated
prior to execution of the exec. If the data
set is not pre-allocated, the data set is
allocated by System REXX. In either case,
the output from the REXX exec is contained
in a member name within the data set that
matches the specified HWIREXX NAME.

Optional NO_ REXXOUTDSN REXXOUTDSN

TSO=<Y/N>; where 'Y' means to run in the
TSO host command environment, and 'N'
means to run in the standard MVS host
environment.

Optional N TSO

SYNC=<Y/N>; where 'Y' means the request
is synchronous, and 'N' means the request
is asynchronous.

Optional Y SYNC

TIMELIM=<Y/N>; where 'Y' means that a
time limit is applied, and 'N' means that no
time limit is applied.

Optional Y TIMELIMIT

262 z/OS: z/OS MVS Callable Services for HLL

Table 58. HWIREXX keywords (continued)

HWIREXX keyword
Required/
Optional Default value

AXREXX macro
parameter equivalent

TIME=xxx; where xxx is a number value
between 1 and 21474536 that represents
the number of seconds to allow the exec to
run.

Optional System default value TIMEINT

See the JCL example HWIXMRJL shipped in SAMPLIB for more information on the invocation of the
HWIREXX helper program.

If additional AXREXX macro parameters are required (other than the AXREXX macro parameters listed in
Table 58 on page 262) to properly establish the System REXX environment, an explicit invocation of the
AXREXX macro is required. See “Using the AXREXX macro” on page 264 for detailed information.

Return codes from the HWIREXX service

Table 59. Return codes from the HWIREXX service

HWIREXX return code
(in decimal) Meaning and action

0 Meaning: BCPii processed the REXX host command successfully.

Action: Consult the BCPii return code on the BCPii service call to determine
the final result of the request.

100 Meaning: Program error. Caller's JCL string has a syntax error.

Action: Check for a probable coding error and correct the problem. See “Using
the HWIREXX interface” on page 262 for detailed information.

101 Meaning: Program error. A required parameter is not found.

Action: Check for a probable coding error and correct the problem.

102 Meaning: Program error. No input parameters were specified.

Action: Check for a probable coding error and correct the problem.

103 Meaning: Program error. A parameter keyword was provided that is not
supported by HWIREXX.

Action: Check for a probable coding error and correct the problem. HWIREXX
supports these keywords only: NAME, DSN, TSO, SYNC, TIMELIM, and TIME
(which correspond to the AXREXX macro parameters: NAME, REXXOUTDSN,
TSO, SYNC, TIMELIMIT, and TIMEINT, respectively.)

104 Meaning: Program error. Duplicate parameter keys are specified.

Action: Check for a probable coding error and correct the problem.

105 Meaning: Program error. A keyword may only consist of alphanumeric
characters.

Action: Check for a probable coding error and correct the problem.

106 Meaning: Program error. Parameter values may only consist of alphanumeric
characters and periods (.).

Action: Check for a probable coding error and correct the problem.

Chapter 19. Base Control Program internal interface (BCPii) 263

Table 59. Return codes from the HWIREXX service (continued)

HWIREXX return code
(in decimal) Meaning and action

107 Meaning: Program error. The TSO parameter must be Y or N.

Action: Check for a probable coding error and correct the problem.

108 Meaning: Program error. The SYNC parameter must be Y or N.

Action: Check for a probable coding error and correct the problem.

109 Meaning: Program error. The TIMELIM parameter must be Y or N.

Action: Check for a probable coding error and correct the problem.

110 Meaning: Program error. A parameter value is too long. Name values are
limited to 8 characters; data set names are limited to forty-four (44)
characters; the TSO value is one character; the SYNC value is one character;
the TIMELIM value is one character; and the TIME value is limited to 8
characters.

Action: Check for a probable coding error. Reduce the length to the
appropriate size based on the specified parameter.

111 Meaning: Program error. Blank character is not allowed in the JCL string.

Action: Check for a probable coding error and correct the problem.

112 Meaning: Setup error. The caller does not have the correct SAF authorization
to run the HWIREXX program.

Action: The security administrator needs to give the user at least READ
authority to the HWI.HWIREXX.execname resource in the FACILITY class. See
“Setting up access to the HWIREXX helper program” on page 256 for more
information.

2049 - 4111 Meaning: Reason code returned from AXREXX.

Action: See the AXREXX macro in z/OS MVS Programming: Authorized
Assembler Services Reference ALE-DYN.

4095 Meaning: System error. An unexpected error is detected. The system rejects
the service call.

Action: Search the problem reporting data bases for a fix for the problem. If
no fix exists, contact the IBM Support Center.

Using the AXREXX macro
If HWIREXX does not provide the options for your REXX exec requires, you can run your REXX exec using
the AXREXX macro from the System REXX programming environment.

For example, an assembler program running in supervisor state, PKM 0-7, or APF-authorized can invoke
the AXREXX macro to execute a REXX exec as follows:

AXREXX REQUEST=EXECUTE,
 NAME=execname, <--- 8-character name of REXX exec
 TSO=NO, <--- Runs in a standard MVS host command environment
 REXXARGS=rexxargs, <--- Input/output parmeters mapped by AXRARGLST
 REXXOUTDSN=outdsn, <--- Specify output data set
 REXXOUTMEMNAME=memname, <--- Specify output member name
 RETCODE=retcode, <--- R15 as a result of REXX exec
 RSNCODE=rsncode, <--- R10 as a result of REXX exec

264 z/OS: z/OS MVS Callable Services for HLL

 TIMELIMIT=[YES,NO], <--- Do you want the REXX exec to timeout?
 TIMEINT=numofsecs <--- If TIMELIMIT=YES, how much time to wait?

After the invocation of the AXREXX macro, the REXX exec gets control and the input parameters are
passed to the REXX exec. If any output is generated from the exec, it is directed to the specified output
data set and member name. Lastly, the return code and reason code are returned.

For a complete description of the AXREXX macro and its usage, see z/OS MVS Programming: Authorized
Assembler Services Guide and z/OS MVS Programming: Authorized Assembler Services Reference ALE-DYN.
For a BCPii example showing the invocation of the AXREXX macro, see SAMPLIB member HWIXMRA1.

Executing a BCPii REXX exec in the TSO/E REXX environment
BCPii supports the invocation of its APIs from the TSO/E REXX programming environment, as long as
the installation has allowed BCPii to be available from the TSO/E environment. See “Setting up an
environment to run BCPii TSO/E REXX execs” on page 257 for information on setting up BCPii to run in a
TSO/E REXX environment.

BCPii APIs can be run from REXX execs under TSO/E in the following ways:

• TSO/E foreground:

– Issue the exec from the TSO/E READY mode, or
– ISPF by using the TSO EXECUTE command.

See z/OS TSO/E REXX User's Guide for the syntax of the EXECUTE command.
• TSO/E background:

– Issue the exec from JCL, specifying IKJEFT01 as the program name on the JCL EXEC statement. See
z/OS TSO/E REXX Reference for more information about running REXX execs using IKJEFT01.

BCPii REXX programming restrictions for the TSO/E environment
The following are not supported in BCPii REXX execs running in the TSO/E environment:

• HWICMD / HWICMD2
• HWIEVENT
• HWI_LIST_EVENTS for the BCPii HWILIST service

Executing a BCPii REXX exec in an ISV-provided REXX environment
BCPii supports the invocation of its APIs from ISV-provided REXX programming environments, provided
that the REXX execs running in this environment are program-authorized.

Because BCPii support is not native to ISV-provided REXX environments, the BCPii host command
environment must first be enabled. To accomplish this, the BCPii REXX exec must first invoke the
BCPii-provided hwihost function to enable the BCPii host command environment prior to any BCPii API
invocation using "address bcpii".

Note: It is also recommended (but not required) that you invoke the hwihost function to disable the BCPii
host environment when it is no longer needed by the BCPii REXX exec.

To enable the BCPii host command environment, add the following statement to your BCPii REXX exec:

RC = hwihost("ON")

To disable the BCPii host command environment, add the following statement to your BCPii REXX exec:

RC = hwihost("OFF")

Invocations of the hwihost function in an exec running in either the System REXX or TSO/E REXX
programming environments are ignored, and the resulting return code is always zero. This ensures
compatibility of REXX execs running in any REXX programming environment on z/OS.

Chapter 19. Base Control Program internal interface (BCPii) 265

BCPii REXX programming restrictions for an ISV-provided REXX environment
The following are not supported in BCPii REXX execs running in an ISV-provided REXX environment:

• HWICMD / HWICMD2
• HWIEVENT
• HWI_LIST_EVENTS for the BCPii HWILIST service

REXX Programming tips
When programming a BCPii application using REXX, see the specific REXX programming considerations
for each individual BCPii callable service for all necessary interface distinctions. Users of the BCPii REXX
interface should be aware of the following:

• All parameters passed on BCPii REXX service calls must be REXX variables. Literals are not supported
(for example, a variable name which has been assigned the value of a ListType should be specified on
the call instead of the value itself).

• Variable names specified on BCPii REXX service calls are limited to 40 characters in length.
• Output variables specified on BCPii REXX service calls may be initialized or un-initialized. On input, the

value of output variables are not verified. Output variables are initialized and set by BCPii.
• If the value of an input variable is incompatible with the parameter type required on a particular BCPii

REXX service call, an error is flagged. See the REXX programming considerations for each BCPii callable
service for the specific interface distinctions.

• The DiagArea call for each BCPii REXX service, excluding HWIREST, is returned using stem variables in
the form: x.Diag_Index, x.Diag_Key, x.Diag_Actual, x.Diag_Expected, x.Diag_CommErr and x.Diag_Text
(where x is the name of the stem variable specified on the parameter list). If no DiagArea information is
filled in by BCPii, the value of the DiagArea stem-variable on return is all blanks.

• Stem variables utilized by BCPii have hard-coded stem variable tail values which usually correspond to
the documented parameter name. For example, the QueryParm. stem must be prepared in REXX with
the exact stem variable "ATTRIBUTEIDENTIFIER".

• The stem and compound variables utilized by BCPii have hard-coded variable tail names. Per REXX
rules, compound symbols permit the substitution of variables within its name when they are referenced.
To prevent unexpected changes to the stem variables passed into BCPii APIs, IBM does not recommend
REXX applications use variable names that are the same as stem tail names documented by BCPii.
The re-use of the variable names may result in BCPii service failures caused by missing or incorrect
parameters.

See TSO/E REXX Reference for more information about how Stem and Compound variables are used:

– Compound Symbols in z/OS TSO/E REXX Reference
– Stems in z/OS TSO/E REXX Reference

• The ConnectToken parameter returned on the HWICONN call and passed as input on all subsequent
services, excluding HWIREST, contains non-displayable characters. Ensure that this ConnectToken is
untouched by the REXX exec, thereby allowing subsequent BCPii services to read the value correctly.

• For System REXX execs only: Consider the length of time necessary to run your BCPii REXX exec. BCPii
applications are interacting with the CPC's support element. Therefore, BCPii REXX execs may take
longer to run than other REXX execs. To avoid having your BCPii REXX application end prematurely,
even when the amount of time calculated is reasonable to complete your BCPii REXX exec, consider
using the TIMELIMIT and TIMEINT keywords on the AXREXX service call. The default TIMELIMIT=YES,
TIMEINT=SYSTEM causes the REXX exec to stop running after a predetermined amount of time. The
TIMEINT value may be increased to give the REXX exec additional time to complete its execution before
being timed out by the system. In certain circumstances, it may be necessary to specify TIMELIMIT=NO
to prevent the REXX exec from timing out. This option should be used with caution as System REXX has
a finite number of system-wide regions where the System REXX execs are executed. If TIMELIMIT=NO
is specified unnecessarily, this could eventually lead to a constrained System REXX environment.

266 z/OS: z/OS MVS Callable Services for HLL

• BCPii connections created under System REXX can be used by any program running in the address
space of the connector (Address space affinity). BCPii connections created under the TSO/E or ISV-
provided REXX environments can only be used by the same task as the connector (Task affinity). See
“BCPii connection scope” on page 260 for detailed information.

• BCPii requires all callers to be program-authorized. REXX execs in the zFS cannot run as APF-authorized
when invoked from the shell. Therefore, any calls to BCPii services from REXX execs in this environment
will result in a HWI_AUTH_FAILURE return code or in the case of HWIREST, the services will return
HTTP Status 403 and the appropriate reason code.

• The built-in REXX RC variable contains the return code from the REXX BCPii host command. This
return code indicates BCPii's acceptance of the supplied REXX BCPii host command. The return codes
returned in the RC variable are generally unique to the REXX environment. In contrast, the BCPii service
return code, the variable supplied on the service call itself, excluding HWIREST, is only filled in if the RC
variable has a value of HWI_OK (0) or HWI_REXXParmSyntaxError (1). Possible return codes returned
by BCPii in the RC variable are:

Return codes from a REXX BCPii host command
Table 60. Return codes from a REXX BCPii host command

REXX RC returned from a BCPii host
command (in decimal) Meaning and action

0 HWI_OK Meaning: BCPii processed the REXX host command successfully.

Action: Consult the BCPii return code on the BCPii service call to
determine the final result of the request.

1 HWI_REXXParmSyntaxError Meaning: Program error. The REXX BCPii host command has detected
that the format of the parameters is not in the proper form to be
accepted by BCPii.

Action: Check for a probable coding error. See the BCPii return code
on the BCPii service call to determine the reason for the syntax error.
See the REXX programming considerations of the BCPii service to
see the exact calling specifications. Compare the BCPii REXX service
call attempted with service call examples in the supplied BCPii REXX
programming sample found in SYS1.SAMPLIB. See the DiagArea for
further diagnostic information.

2 HWI_REXXUnsupportedService Meaning: Program error. An unknown BCPii service name was
specified on the BCPii REXX host command.

Action: Check for a probable coding error. Specify a valid BCPii
service name (for example, HWICONN, HWILIST, and so on).

3 HWI_REXXInvalidNumofParms Meaning: Program error. The number of parameters specified on the
BCPii REXX host command for the service name specified does not
match the number of parameters expected.

Action: Check for a probable coding error. See the REXX
programming considerations of the BCPii service to see the exact
calling specifications. Compare the BCPii REXX service call attempted
with service call examples found in the supplied BCPii REXX
programming sample found in SYS1.SAMPLIB.

Chapter 19. Base Control Program internal interface (BCPii) 267

Table 60. Return codes from a REXX BCPii host command (continued)

REXX RC returned from a BCPii host
command (in decimal) Meaning and action

4 HWI_REXXStemVarRequired Meaning: Program error. The BCPii REXX service specified on the
BCPii REXX host command is missing one or more required stem
variables in the positional parameter list.

Action: Check for a probable coding error. See the REXX
programming considerations of the BCPii service to see the exact
calling specifications. A stem variable parameter must specify a “.”
following the variable name (for example, “var.”). Also, compare
the BCPii REXX service call attempted with service call examples
found in the supplied BCPii REXX programming sample found in
SYS1.SAMPLIB.

5 HWI_REXXParmNameTooLong Meaning: Program error. One or more variables specified on the BCPii
REXX service call on the BCPii REXX host command is greater than
the BCPii maximum REXX variable length (40).

Action: Check for a probable coding error. Reduce the variable name
lengths on the BCPii REXX service call to be 40 characters or less in
length.

6 HWI_REXXInvalidHostEnv Meaning: System error. BCPii detected an unexpected error. The
system rejects the service call.

Action: Search problem reporting data bases for a fix for the problem.
If no fix exists, contact the IBM Support Center.

7 HWI_REXXInvokerNotFound Meaning: Program error. The address space issuing the AXREXX
invocation is no longer running. No new BCPii connections are
allowed.

Action: Determine the reason that the AXREXX-invoking address
space terminated prior to the termination of the REXX exec. Correct
the situation and start again.

8 HWI_REXXInvalidExecutionEnv Meaning: Program error. BCPii does not support the BCPii host
command running in the current execution environment.

If the current execution environment is System REXX, it may mean
that an attempt was made to issue a BCPii host command from an
exec that was started using the MODIFY AXR command.

If the current execution environment is either TSO/E or ISV-provided
REXX, it may mean that the requested service was not supported in
this environment.

Action: Run the BCPii host command from a supported environment.

9 HWI_REXXUnSupportedListType Meaning: Program error. BCPii does not support the specified
ListType on the BCPii HWILIST service in the current execution
environment.

Action: Correct the specified ListType value or try this request again
in a valid execution environment (for example, the System REXX
environment).

268 z/OS: z/OS MVS Callable Services for HLL

Table 60. Return codes from a REXX BCPii host command (continued)

REXX RC returned from a BCPii host
command (in decimal) Meaning and action

10
HWI_hwihost_MissingRequiredParm

Meaning: Program Error. The HWIREST request parameter is missing
one or both of the required stem variables: HTTPMethod or URI

Action: Ensure the HWIREST request parameter includes HTTP
Method and URI stem variables. For more information, please refer to
BCPii's guides on submitting requests through the HWIREST service.

11 HWI_hwihost_InvalidParmValue Meaning: Program Error. The value of a request parameter is not in a
valid format. For example, the variable value is a string instead of an
integer.

Action: Ensure the values passed in are of the appropriate type.

12 HWI_hwihost_ParmValTooLong Meaning: Program Error. The length of a provided value exceeds
the maximum length supported for that request parameter stem
variable. For example, the supplied URI had a length greater than
the supported 2048 characters.

Action: Ensure the values passed do not exceed the maximum
length. For more information, please refer to BCPii's guides on
submitting requests through the HWIREST service.

32 HWI_REXXInternalSystemError Meaning: System error. BCPii detected an unexpected error while
invoking REXX services. The system rejects the service call.

Action: A symptom record has been written to LOGREC to record
the problem. Search problem reporting data bases for a fix for the
problem. If no fix exists, contact the IBM Support Center.

4095 HWI_Unexpected_Error Meaning: System error. BCPii detected an unexpected error. The
system rejects the service call.

Action: A symptom record has been written to LOGREC to record
the problem. Search problem reporting data bases for a fix for the
problem. If no fix exists, contact the IBM Support Center.

REXX return codes from the BCPii hwihost function
Table 61. REXX return codes from the BCPii hwihost function. The following return codes apply only to callers
running their BCPii REXX execs in an ISV-provided REXX environment.

REXX RC returned by the BCPii hwihost
function

Meaning and action

1 HWI_hwihost_ParmSyntaxError Meaning: Program Error. The specified argument is not
"ON" or "OFF".

Action: Check for a probable coding error. Try this request
again with an argument of "ON" or "OFF".

Chapter 19. Base Control Program internal interface (BCPii) 269

Table 61. REXX return codes from the BCPii hwihost function. The following return codes apply only to callers
running their BCPii REXX execs in an ISV-provided REXX environment. (continued)

REXX RC returned by the BCPii hwihost
function

Meaning and action

2 HWI_hwihost_InternalSystemError Meaning: System error. BCPii detected an unexpected error
while invoking TSO/E REXX services. The system rejects the
service call.

Action: A symptom record has been written to LOGREC to
record the problem. Search problem reporting data bases
for a fix for the problem. If no fix exists, contact the IBM
Support Center.

Sample REXX exec
Here is a sample REXX exec using BCPii calls that lists the names of all of the interconnected CPCs and
then attempts to connect to each one of them:

/* REXX */
ListType = HWI_LIST_CPCS;
Address BCPII “HWILIST Retcode ConnectToken ListType AnswerArea.
DiagArea.”

If RC = 0 & retcode = 0 Then
 Do
 ConnectType = HWI_CPC
 Do i = 1 To AnswerArea.0
 Say “CPC” i “:” AnswerArea.i

 InConnectToken = 0
 Address BCPII “HWICONN Retcode InConnectToken OutConnectToken
 ConnectType AnswerArea.i DiagArea.”
 If RC = 0 & retcode = 0 Then
 Say “Connected to CPC “AnswerArea.i”.”
 End
 End

For REXX execs running in an ISV-provided environment, make sure to add the following line prior to the
first address BCPii statement:

RC = hwihost("ON")

Assembler programming considerations
Callers must also use the following linkage conventions:

• Register 1 must contain the address of a parameter list that is a list of consecutive words, each
containing the address of a parameter to be passed. The last word in this list must have a 1 in the
high-order (sign) bit.

• Register 13 must contain the address of an 18-word save area.
• Register 14 must contain the return address.
• Register 15 must contain the entry point address of the service being called.
• If the caller is running in AR ASC mode, access registers 1, 13, 14, and 15 must all be set to zero.

On return from the service, general and access registers 2 through 14 are restored (registers 0, 1 and 15
are not restored).

270 z/OS: z/OS MVS Callable Services for HLL

Programming Examples
BCPii provides sample programs to aid in the creation of BCPii applications in both C and REXX
programming languages. The samples are shipped in SYS1.SAMPLIB. For HWIREST samples, see IBM /
zOS-BCPii (github.com/IBM/zOS-BCPii).

HWIXMCS1 (Metal C programming language) provides an example of how to use all of the BCPii APIs
and how to construct a simple BCPii application. HWIXMCX1 (Metal C programming language) provides
a simple example of how a BCPii Event Notification Facility (ENF) exit could be coded to field various
BCPii-registered events.

HWIXMRS1 (REXX programming language) provides an example of how to use the most common BCPii
APIs. It can easily be invoked in the System REXX environment by utilizing the IBM-provided HWIREXX
program using the provided sample JCL HWIXMRJL.

Another REXX sample (HWIXMRS2) is provided to show how a REXX application can utilize the
HWIEVENT and HWICMD APIs. It is invoked using an AXREXX macro invocation in the sample assembler
"helper" program (HWIXMRA1). This second sample can utilize the Metal C ENF exit HWIXMCX1.

HWICMD / HWICMD2 — Issue a BCPii hardware management
command

Call the HWICMD / HWICMD2 service to perform a command against an HMC-managed object that is
associated with central processor complexes (CPCs) and CPC images (LPARs). User-defined image groups
can also be used to target multiple images with a single command.

BCPii commands, because of the very nature of what they are attempting to do, can take a significant
amount of time to complete. To prevent applications from being tied up for an excessive amount of time
while waiting for the command to complete, HWICMD / HWICMD2 returns to the caller either when the
command has been accepted by the target support element (SE) or when the command was found to
contain errors. The actual completion of the command can be determined by consulting the final return
code returned in the BCPii command response event.

To receive this BCPii command response event, an application must have registered for the
Hwi_Event_CmdResp event before the HWICMD / HWICMD2 invocation. Registration for this or any event
is accomplished by calling the HWIEVENT service, or for z/OS UNIX callers, by calling HwiManageEvents.
The HWIEVENT service requires a user-supplied Event Notification Facility (ENF) exit.

When the command completes, BCPii signals the ENF to notify registered applications that a command
response has been received. For non-z/OS UNIX callers, the ENF exit specified receives control and the
command response event returned data contains the final return code of the request. For z/OS UNIX
callers, the HwiGetEvent service can be used to receive the event notification and to determine the final
return code of the HWICMD / HWICMD2 service.

BCPii provides two command services: HWICMD and HWICMD2. These services provide identical
functions, but differ in the handling of the input command parameters. HWICMD2 allows for the
specification of different versions of parameter lists to the service while HWICMD does not. See the
rest of this section for more specifics on how the input parameter lists differ.

Description

Environment
The requirements for the callers are:

Requirement Details

Minimum authorization: One of the following: PKM allowing key 0-7, supervisor state, or
APF-authorized

Dispatchable unit mode: Task

HWICMD

Chapter 19. Base Control Program internal interface (BCPii) 271

https://github.com/IBM/zOS-BCPii
https://github.com/IBM/zOS-BCPii

Requirement Details

Cross memory mode: Any PASN, any HASN, any SASN

AMODE: 31-bit

ASC mode: Primary or access register (AR)

Interrupt status: Enabled for I/O and external interrupts

Locks: No locks held

Control parameters: Control parameters must be in the primary address space and
addressable by the caller

Linkage: Standard MVS linkage conventions are used

Console setup: The main console on the HMC must be activated in order for the
operating system commands to be sent successfully. To activate the
main console, use the vary command: v cn(*),activate.

Programming requirements
See “Syntax, linkage and programming considerations” on page 259 for details about how to call BCPii
services in the various programming languages.

The microcode level that supports the command service call of BCPii is required to be installed on the
target CPC. See the HWI_CMD_NOT_SUPPORT_WARNING return code in “HWICONN — Establish a BCPii
connection” on page 295 for more information.

See “HWICMD / HWICMD2” on page 695 for the summary table of the BCPii command types and the
objects that can be targeted for each command.

REXX programming considerations for the HWICMD / HWICMD2 service
All information for the HWICMD / HWICMD2 service applies for REXX requests except:

• A stem variable (for example, CmdParm.) replaces CmdParm_ptr.
• The CmdParm structure names in Table 64 on page 277 are used as the dot-qualified names in the

CmdParm stem variable. The following are exceptions:

– On the HWI_CMD_POWER_CONTROL, HWI_CMD_TEMPCAP, and
HWI_CMD_SYSPLEX_TIME_SET_STP_CONFIG commands, XML replaces XML_ptr and XML_Size is
ignored.

– On the HWI_CMD_SYSRESET_IPLT command, IPL_Token replaces IPL_Token_Ptr and IPL_Token_Len
is ignored.

• REXX allows HWICMD or HWICMD2 to be invoked. However the CmdParmVersion cannot be specified if
HWICMD2 is used.

• REXX allows 4 or 5 digit load addresses to be specified.

Restrictions
• BCPii does not allow any command to be targeted to a CPC that is earlier than a z9 platform.
• BCPii does not allow command to be issued from within a BCPii ENF exit routine.
• BCPii does not allow any command to be issued from a REXX exec running in a TSO/E or ISV-provided

REXX environment.

Authorization
The client application must have access to consult the local CPC. This is granted by allowing the
application at least read access to the SAF-protected FACILITY class resource HWI.APPLNAME.HWISERV.

HWICMD

272 z/OS: z/OS MVS Callable Services for HLL

The client application must have at least control access to the following SAF-protected FACILITY class
resource profiles:

• HWI.TARGET.netid.nau for a ConnectToken that represents a CPC connection or an image group
connection.

• HWI.TARGET.netid.nau.imagename for a ConnectToken that represents an image connection.
• HWI.TARGET.netid.nau.imagename for all individual images within the image group for a ConnectToken

that represents a user-defined image group.

Note: BCPii requires the FACILITY class to be RACLIST-specified.

SMF recording
Requests that complete with a return code of zero will have SMF type 106 (X'6A') records written if the
installation has activated recording of this record type in its active configuration.

Syntax
Write the call as shown in the syntax diagram. You must code all parameters in the order shown.

Table 62. HWICMD syntax

Non-REXX parameters REXX parameters

 CALL HWICMD(
 ReturnCode,
 ConnectToken,
 CmdType,
 CmdParm_Ptr,
 DiagArea);

address bcpii "hwicmd
ReturnCode
ConnectToken
CmdType
CmdParm.
DiagArea."

Table 63. HWICMD2 syntax

Non-REXX parameters REXX parameters

 CALL HWICMD2(
 ReturnCode,
 ConnectToken,
 CmdType,
 CmdParm_Ptr,
 CmdParmVersion,
 DiagArea);

address bcpii "hwicmd2
ReturnCode
ConnectToken
CmdType
CmdParm.

DiagArea."

Parameters
The parameters are explained as follows:
ReturnCode

Returned parameter

• Type: Integer (non-REXX), character representation of an integer (REXX)
• Length: 4 bytes (non-REXX)

ReturnCode contains the return code from the service.

ConnectToken
Supplied parameter

• Type: Character string
• Length: 16 bytes

HWICMD

Chapter 19. Base Control Program internal interface (BCPii) 273

ConnectToken specifies the connect token that this command is executed against. A ConnectToken
represents a logical connection between the application and a CPC or an image, and is returned as an
output parameter on the HWICONN service call.

A ConnectToken representing a user-defined image group may also be specified. In this case, the
command will be executed on all members in the group, and not just on a single image.

The ConnectToken specified must have originated from a HWICONN service call that was issued from
the same address space as this service call.

CmdType
Supplied parameter

• Type: Integer (non-REXX), character representation of an integer (REXX)
• Length: 4 bytes (non-REXX)

CmdType specifies the type of the requested command.

See the following publications for more information about how the various commands operate, what
inputs are required, and what outputs are expected:

• IBM z SNMP Application Programming Interfaces (SB10-7171-06)
• System z10 and eServer™ zSeries Application Programming Interfaces (SB10-7030-09)
• System z9 and eServer zSeries Application Programming Interfaces (SB10-7030-08)
• zEnterprise System Support Element Operations Guide (SC28-6896-02)
• System z10 Support Element Operations Guide (SC28-6858-02)
• System z9 Support Element Operations Guide (SC28-6858-01)

Constant in Hexadecimal (Decimal) Equate
Symbol Description

1

(1)

HWI_CMD_ACTIVATE

Activate request to start target systems with the default activation profile name
(HWI_APROF) associated with a CPC or an image.

Note: The input connection token represents a CPC connection, an image connection, or
an image group connection. This command cannot be issued specifying a connect token
that represents either the local CPC or the local image.

2

(2)

HWI_CMD_DEACTIVATE

Deactivate request to close down target systems.

Note: The input connection token represents a CPC connection, an image connection, or
an image group connection. This command cannot be issued specifying a connect token
that represents either the local CPC or the local image.

3

(3)

HWI_CMD_HWMSG

Hardware messages request.

Note: The input connection token must only represent a CPC connection.

4

(4)

HWI_CMD_CBU

Capacity backup CPC feature operation.

Note: The input connection token must only represent a CPC connection.

5

(5)

HWI_CMD_OOCOD

On/Off capacity on demand request.

Note: The input connection token must only represent a CPC connection.

6

(6)

HWI_CMD_PROFILE

Access CPC activation profiles.

Note: The input connection token must only represent a CPC connection.

7

(7)

HWI_CMD_RESERVE

Set exclusive CPC control.

Note: The input connection token must only represent a CPC connection.

HWICMD

274 z/OS: z/OS MVS Callable Services for HLL

Constant in Hexadecimal (Decimal) Equate
Symbol Description

8

(8)

HWI_CMD_SYSRESET

System reset request for target systems. See Cmdtype HWI_CMD_SYSRESET_IPLT for the
latest version of the Sysreset command.

Note: The input connection token must only represent an image connection or an image
group connection. This command cannot be issued specifying a connect token that
represents the local image.

9

(9)

HWI_CMD_START

Start request for all CPs on target systems.

Note: The input connection token must only represent an image connection or an image
group connection. This command cannot be issued specifying a connect token that
represents the local image.

A

(10)

HWI_CMD_STOP

Stop request for all CPs on target systems.

Note: The input connection token must only represent an image connection or an image
group connection. This command cannot be issued specifying a connect token that
represents the local image.

B

(11)

HWI_CMD_PSWRESTART

Restart request for one CP on target system. The first CP that is found to be in the correct
state is reset.

Note: The input connection token must only represent an image connection or an image
group connection. This command cannot be issued specifying a connect token that
represents the local image.

C

(12)

HWI_CMD_OSCMD

Send operating system command request.

Note: The input connection token must only represent an image connection.

D

(13)

HWI_CMD_LOAD

Load request to IPL target operating systems.

Note:

• The input connection token must only represent an image connection or an image group
connection.

• This command cannot be issued specifying a connect token that represents the local
image.

• This CmdType can be invoked using two different input structures pointed by the
specified CmdParm_Ptr.

– To specify a 4-digit load address, use HWICMD or HWICMD2 with CmdParmVersion
= Hwi_ParmListVers_1. The HWI_CMD_LOAD_PARM mapping must be used.

– To specify a 5-digit load address, use HWICMD2 with CmdParmVersion =
Hwi_ParmListVers_2. The HWI_CMD2_LOAD_PARM mapping must be used.

Consult the IBM-supplied included files for further details.

E

(14)

HWI_CMD_TEMPCAP

Addition or removal of temporary capacity.

Note: The input connection token must only represent a CPC connection.

For more information see Writing XML for use with the temporary
capacity SNMP APIs (www-01.ibm.com/servers/resourcelink/lib03011.nsf/pages/
zCoDXMLforCoDCommands?OpenDocument).

F

(15)

HWI_CMD_SYSRESET_IPLT

System reset request for target systems with IPL token correlation. This is an enhanced
version of HWI_CMD_SYSRESET.

Note: The input connection token must only represent an image connection.

10

(16)

HWI_CMD_ACTIVATE _WITH_ACTPROF

Activate request to start target systems using a supplied activation profile name. This is an
enhanced version of the HWI_CMD_ACTIVATE command.

Note: The input connection token must only represent a CPC connection or an image
connection.

11

(17)

HWI_CMD_POWER_CONTROL

Control the power usage characteristics.

Note: The input connection token must only represent a CPC connection.

HWICMD

Chapter 19. Base Control Program internal interface (BCPii) 275

https://www-01.ibm.com/servers/resourcelink/lib03011.nsf/pages/zCoDXMLforCoDCommands?OpenDocument
https://www-01.ibm.com/servers/resourcelink/lib03011.nsf/pages/zCoDXMLforCoDCommands?OpenDocument
https://www-01.ibm.com/servers/resourcelink/lib03011.nsf/pages/zCoDXMLforCoDCommands?OpenDocument

Constant in Hexadecimal (Decimal) Equate
Symbol Description

12

(18)

HWI_CMD_SCSI_LOAD

SCSI Load from FCP (Fibre Channel Protocol for SCSI) attached SCSI (Small Computer
System Interface) disks.

Note:

• The input connection token must only represent an image connection or an image group
connection.

• This CmdType can be invoked using two different input structures pointed by the
specified CmdParm_Ptr.

– To specify a 4-digit load address, use HWICMD or HWICMD2 with CmdParmVersion
= Hwi_ParmListVers_1. The HWI_CMD_SCSICMD_PARM mapping must be used.

– To specify a 5-digit load address, use HWICMD2 with CmdParmVersion =
Hwi_ParmListVers_2. The HWI_CMD2_SCSICMD_PARM mapping must be used.

Consult the IBM-supplied included files for further details.

13

(19)

HWI_CMD_SCSI_DUMP

SCSI Dump to FCP (Fibre Channel Protocol for SCSI) attached SCSI (Small Computer
System Interface) disks.

Note:

• The input connection token must only represent an image connection.
• This CmdType can be invoked using two different input structures pointed by the

specified CmdParm_Ptr.

– To specify a 4-digit load address, use HWICMD or HWICMD2 with CmdParmVersion
= Hwi_ParmListVers_1. The HWI_CMD_SCSICMD_PARM mapping must be used.

– To specify a 5-digit load address, use HWICMD2 with CmdParmVersion =
Hwi_ParmListVers_2. The HWI_CMD2_SCSICMD_PARM mapping must be used.

Consult the IBM-supplied included files for further details.

14

(20)

HWI_CMD_SYSPLEX_TIME _SWAP_CTS

In a configured STP-only coordinated timing network (CTN), one CPC has the role of
current time server (CTS). If the CTN has both a preferred time server and a backup time
server configured, either one can be the CTS. This command swaps the role of CTS from
preferred time server to backup time server or vice versa. The target system must be the
system that will become the CTS.

Note: The input connection token must only represent a CPC connection.

15

(21)

HWI_CMD_SYSPLEX_TIME _SET_STP_CONFIG

This command sets the configuration for an STP-only coordinated timing network (CTN).
The target system must be the system that will become the current time server (CTS).

Note: The input connection token must only represent a CPC connection.

16

(22)

HWI_CMD_SYSPLEX_TIME
_CHANGE_STP_ONLY_CTN

This command, sent to the defined CPC with the role of current time server (CTS) in an
STP-only coordinated timing network (CTN), changes the STP_ID portion of the CTN ID for
the entire STP-only CTN.

Note: The input connection token must only represent a CPC connection.

17

(23)

HWI_CMD_SYSPLEX_TIME
_JOIN_STP_ONLY_CTN

This command allows a CPC to join an STP-only coordinated timing network (CTN). The
target system cannot be the current time server. If the CPC is already participating in an
STP-only CTN, it will be removed from that CTN and joined to the specified one. If the CPC
has an ETR ID, it will be removed.

Note: The input connection token must only represent a CPC connection.

Attention: Use extreme caution when issuing this command. Joining the STP-
only CTN may result in a disabled wait state for all images that are in a parallel
sysplex on the target CPC.

18

(24)

HWI_CMD_SYSPLEX_TIME
_LEAVE_STP_ONLY_CTN

This command removes a CPC from an STP-only coordinated timing network (CTN). The
target system cannot be the current time server.

Note: The input connection token must only represent a CPC connection.

Attention: Use extreme caution when issuing this command. Leaving the STP-
only CTN may result in a disabled wait state for all images that are in a parallel
sysplex on the target CPC.

HWICMD

276 z/OS: z/OS MVS Callable Services for HLL

CmdParm_Ptr (non-REXX)
CmdParm. (REXX)

Supplied parameter

• Type: Pointer (non-REXX), stem variable (REXX)
• Length: 4 bytes (non-REXX)

Non-REXX:
CmdParm_Ptr specifies the address of the command parameter that contains a structure of the
input parameters for the requested command.

Take the following action according to the different conditions:

• For all optional parameters, callers are required to initialize the parameters to zero for BCPii to
interpret them as null parameters unless otherwise specified.

• For commands with one or more required parameters and also with one or more optional
parameters, callers are required to initialize each optional parameters to zero if they require
BCPii to take the default action for that parameter.

• For commands that have only optional parameters, callers can initialize the CmdParm_Ptr to
zero if they require BCPii to take the default action for all parameters.

• For commands that have no parameters, the CmdParm_Ptr is ignored.
• All string type parameters are required to be padded with trailing blanks unless otherwise
specified.

• For commands that target image groups, the parameters specified in the CmdParm must be
appropriate for all the images in the image group.

REXX:
CmdParm stem contains compound (stem) variables which represent input parameters for the
requested command. The tail names of the stem variable are constants which must match the
parameter names in Table 64 on page 277.

For optional parameters that are not initialized, BCPii interprets them as null parameters.

Table 64. Structure pointed to by CmdParm_Ptr (non-REXX); CmdParm stem variable (REXX)

CmdType :
HWI_CMD_

CmdParm (non-REXX) Parameters in Structure (non-
REXX) / Tail name constant
of the user-defined CmdParm
stem (REXX)

Parameter Values

ACTIVATE HWI_CMD_ACT_PARM ForceType A 4-byte integer (optional, the default is
FORCE):

• 1 – means Force YES (HWI_CMD_FORCE)
• 2 – means Force NO (HWI_CMD_NOFORCE)

Note: Only a ForceType of HWI_CMD_FORCE
will result in a successful activation of the
target CPC or image if the target CPC or image
is already active.

DEACTIVATE HWI_CMD_DEACT_PARM ForceType A 4-byte integer (optional, the default is
FORCE):

• 1 – means Force YES (HWI_CMD_FORCE)
• 2 – means Force NO (HWI_CMD_NOFORCE)

HWMSG HWI_CMD_HWMSG_PARM HWMSGType A 4-byte integer (required):

• 1 – means REFRESH
(HWI_CMD_HWMSG_REFRESH)

• 2 – means DELETE
(HWI_CMD_HWMSG_DELETE)

HWICMD

Chapter 19. Base Control Program internal interface (BCPii) 277

Table 64. Structure pointed to by CmdParm_Ptr (non-REXX); CmdParm stem variable (REXX) (continued)

CmdType :
HWI_CMD_

CmdParm (non-REXX) Parameters in Structure (non-
REXX) / Tail name constant
of the user-defined CmdParm
stem (REXX)

Parameter Values

HWMSGTimestamp A null-terminated character string, up to
32 characters long. Required only for
HWMSGType = HWI_CMD_HWMSG_DELETE.

The timestamp specified must be an exact
match of a timestamp returned on a
HWMSGType = HWI_CMD_HWMSG_REFRESH
request. An example of a timestamp:
'08-20-2010 11:01: 23:145'.

To delete a message, first run an
HWI_CMD_HWMSG_REFRESH request to
obtain the full timestamp and then issue
the HWI_CMD_HWMSG_DELETE request,
specifying the timestamp.

CBU HWI_CMD_CBU_PARM CBUType A 4-byte integer (required):

• 1 – means ACTIVATE (HWI_CMD_ACT)
• 2 – means UNDO (HWI_CMD_UNDO)

ActivateType A 4-byte integer (required only for CBUType =
HWI_CMD_ACT):

• 1 – means REAL CBU (HWI_CMD_REAL)
• 2 – means TEST CBU (HWI_CMD_TEST)

OOCOD HWI_CMD_OOCOD_PARM OOCODType A 4-byte integer (required):

• 1 – means ACTIVATE (HWI_CMD_ACT)
• 2 – means UNDO (HWI_CMD_UNDO)

OrderNumber Required for OOCODType = HWI_CMD_ACT

An 8-character string representing the order
number of the On/Off Capacity on Demand
(On/Off CoD) record to be activated.

Note: The order number can be retrieved
using the Hwi_RecID attribute via the
HWIQUERY service.

PROFILE HWI_CMD_PROFILE_PARM ProfileType A 4-byte integer (required):

• 1 – means IMPORT (HWI_CMD_PROFILE_
IMPORT)

• 2 – means EXPORT
(HWI_CMD_PROFILE_EXPORT)

AreaNumber A 2-byte integer area number is required and
must be in the range of 1 to 4.

RESERVE HWI_CMD_RESERVE_PARM ReserveType A 4-byte integer (required):

• 1 – means ADD (HWI_CMD_RESERVE_
ADD)

• 2 – means DELETE
(HWI_CMD_RESERVE_DELETE)

ApplName An 8-character application name (required)
padded with trailing blanks.

SYSRESET HWI_CMD_SYSRESET_PARM ResetType A 4-byte integer (required):

• 1 – means NORMAL
(HWI_CMD_RESET_NORMAL)

• 2 – means CLEAR
(HWI_CMD_RESET_CLEAR)

HWICMD

278 z/OS: z/OS MVS Callable Services for HLL

Table 64. Structure pointed to by CmdParm_Ptr (non-REXX); CmdParm stem variable (REXX) (continued)

CmdType :
HWI_CMD_

CmdParm (non-REXX) Parameters in Structure (non-
REXX) / Tail name constant
of the user-defined CmdParm
stem (REXX)

Parameter Values

ForceType A 4-byte integer (optional, the default is
FORCE):

• 1 – means Force YES (HWI_CMD_FORCE)
• 2 – means Force NO (HWI_CMD_NOFORCE)

Note: Only a ForceType of HWI_CMD_FORCE
will result in a successful sysreset of the
target CPC or image if the target CPC or image
is already active.

START 0 N/A N/A

STOP 0 N/A N/A

PSWRESTART 0 N/A N/A

OSCMD HWI_CMD_OSCMD_PARM PriorityType A 4-byte integer (required):

• 1 – means Priority (HWI_CMD_PRIORITY)
• 2 – means Non-Priority

(HWI_CMD_NONPRIORITY)

Note: For WTOR replies targeting a z/OS
image, a PriorityType of Non-Priority may
need to be specified to allow z/OS to
receive the reply command.

OSCMDString A 126-null-terminated character operating
system command string (required).

LOAD HWI_CMD_LOAD_PARM LoadAddr A 4-character string consisting only of
hexadecimal characters identifying the device
address to be used when performing the load
(optional).

LoadParm An 8-character string as determined by the
operating system being loaded (optional).

ForceType A 4-byte integer (optional, the default is
FORCE):

• 1 – means Force YES (HWI_CMD_FORCE)
• 2 – means Force NO (HWI_CMD_NOFORCE)

Note: Only a ForceType of HWI_CMD_FORCE
will result in a successful load of the target
CPC or image if the target CPC or image is
already active.

HWI_CMD2_LOAD_PARM LoadAddr A 5-character string consisting only of
hexadecimal characters identifying the device
address to be used when performing the load
(optional).

LoadParm An 8-character string as determined by the
operating system being loaded (optional).

* A 3-byte character string of any value to force
proper boundary alignment.

HWICMD

Chapter 19. Base Control Program internal interface (BCPii) 279

Table 64. Structure pointed to by CmdParm_Ptr (non-REXX); CmdParm stem variable (REXX) (continued)

CmdType :
HWI_CMD_

CmdParm (non-REXX) Parameters in Structure (non-
REXX) / Tail name constant
of the user-defined CmdParm
stem (REXX)

Parameter Values

ForceType A 4-byte integer (optional, the default is
FORCE):

• 1 – means Force YES (HWI_CMD_FORCE)
• 2 – means Force NO (HWI_CMD_NOFORCE)

Note: Only a ForceType of HWI_CMD_FORCE
will result in a successful load of the target
CPC or image if the target CPC or image is
already active.

TEMPCAP HWI_CMD_TEMPCAP_Parm TEMPCAPType A 4-byte integer (required):

• 1 – means Add (HWI_CMD_TEMPCAP_ADD)
• 2 – means Remove

(HWI_CMD_TEMPCAP_REMOVE)

For more information see Writing
XML for use with the temporary
capacity SNMP APIs (www-01.ibm.com/
servers/resourcelink/lib03011.nsf/pages/
zCoDXMLforCoDCommands?OpenDocument).

XML_Ptr (non-REXX) A character string pointer that points
to the address of the XML information
that illustrates the markup used to
perform activation of the temporary capacity
(required).

XML (REXX) XML information that illustrates the markup
used to perform activation of the temporary
capacity (required).

XML_Size (non-REXX) A 4-byte integer (required).

Length in bytes of the XML that the XML_Ptr
points to.

SYSRESET

_IPLT

HWI_CMD_SYSRESET

_IPLT_PARM

ResetType A 4–byte integer (required):

• 1 – means NORMAL
(HWI_CMD_RESET_NORMAL)

• 2 – means CLEAR
(HWI_CMD_RESET_CLEAR)

ForceType A 4-byte integer (optional, the default is
FORCE):

• 1 – means Force YES (HWI_CMD_FORCE)
• 2 – means Force NO (HWI_CMD_NOFORCE)

Note: Only a ForceType of HWI_CMD_FORCE
will result in a successful sysreset of the
target CPC or image if the target CPC or image
is already active.

IPL_Token_Ptr (non-REXX) A character string pointer that specifies the
address of the IPL token used to correlate
a SYSRESET with other outstanding HMC-
related activities. This ensures that this
SYSRESET is operating with the same IPL
instance as when the IPL_Token was retrieved
(required).

HWICMD

280 z/OS: z/OS MVS Callable Services for HLL

https://www-01.ibm.com/servers/resourcelink/lib03011.nsf/pages/zCoDXMLforCoDCommands?OpenDocument
https://www-01.ibm.com/servers/resourcelink/lib03011.nsf/pages/zCoDXMLforCoDCommands?OpenDocument
https://www-01.ibm.com/servers/resourcelink/lib03011.nsf/pages/zCoDXMLforCoDCommands?OpenDocument
https://www-01.ibm.com/servers/resourcelink/lib03011.nsf/pages/zCoDXMLforCoDCommands?OpenDocument
https://www-01.ibm.com/servers/resourcelink/lib03011.nsf/pages/zCoDXMLforCoDCommands?OpenDocument

Table 64. Structure pointed to by CmdParm_Ptr (non-REXX); CmdParm stem variable (REXX) (continued)

CmdType :
HWI_CMD_

CmdParm (non-REXX) Parameters in Structure (non-
REXX) / Tail name constant
of the user-defined CmdParm
stem (REXX)

Parameter Values

IPL_Token (REXX) IPL token used to correlate a SYSRESET with
other outstanding HMC-related activities. This
ensures that this SYSRESET is operating with
the same IPL instance as when the IPL_Token
was retrieved (required).

IPL_Token_Len (non-REXX) A 4-byte integer (required).

Length in bytes of the IPL token to which the
IPL_Token_Ptr points.

ACTIVATE_
WITH

_ACTPROF

HWI_CMD_ACT_WITH_
ACTPROF_PARM

ActProfName A 16–character activation profile name
padded with trailing blanks (required).

ForceType A 4-byte integer (optional, the default is
FORCE):

• 1 – means Force YES (HWI_CMD_FORCE)
• 2 – means Force NO (HWI_CMD_NOFORCE)

Note: Only a ForceType of HWI_CMD_FORCE
will result in a successful activation of the
target CPC or image if the target CPC or image
is already active.

POWER

_CONTROL

HWI_CMD_POWER

_CONTROL_PARM

XML_Ptr (non-REXX) A character string pointer that points to the
address of the XML fragment describing the
power characteristics to be applied to the CPC
specified by the connect token (required).

XML (REXX) XML fragment describing the power
characteristics to be applied to the CPC
specified by the connection token (required).

XML_Size (non-REXX) A 4-byte integer (required).

Length in bytes of the XML that the XML_Ptr
points to.

SCSI_LOAD HWI_CMD_SCSICMD

_LOAD_PARM

LoadAddr A 4-character string (optional) consisting
only of hexadecimal characters (0-9, A-F)
identifying the device address to be used
when performing the SCSI load. Defaults to
value last used when previous SCSI Load was
performed.

LoadParm An 8-character string (optional) as
determined by the operating system being
loaded. Defaults to value last used when
previous SCSI Load was performed.

WW_Portname A 16-character string (optional) identifying
the World Wide Port Name to be used when
performing a SCSI Load. Defaults to value
last used when previous SCSI Load was
performed. The character string must be
comprised of hexadecimal values only (0-9,
A-F).

LU_Num A 16-character string (optional) identifying
the logical unit number (LUN) to be used
when performing the SCSI Load. Defaults to
value last used when previous SCSI Load
was performed. The character string must be
comprised of hexadecimal values only (0-9,
A-F).

HWICMD

Chapter 19. Base Control Program internal interface (BCPii) 281

Table 64. Structure pointed to by CmdParm_Ptr (non-REXX); CmdParm stem variable (REXX) (continued)

CmdType :
HWI_CMD_

CmdParm (non-REXX) Parameters in Structure (non-
REXX) / Tail name constant
of the user-defined CmdParm
stem (REXX)

Parameter Values

Boot_Pgm_Selector A 4-byte integer (optional) identifying the
boot program selector to be used for the
SCSI Load. Defaults to value last used when
previous SCSI Load was performed.

Opsys_Loadparm A 256-character string (optional) representing
the operating system-specific load
parameters to be used for the SCSI Load.
Defaults to value last used when previous
SCSI Load was performed.

* A 3-byte character string of any value to force
proper boundary alignment.

Bootrec_Blk_Addr A 16-character string (optional) representing
the boot record logical block address to be
used for the SCSI Load. Defaults to value
last used when previous SCSI Load was
performed. The character string must be
comprised of hexadecimal values only (0-9,
A-F).

ForceType A 4-byte integer (optional, the default is
FORCE):

• 1 – means Force YES (HWI_CMD_FORCE)
• 2 – means Force NO (HWI_CMD_NOFORCE)

Note: Only a ForceType of HWI_CMD_FORCE
will result in a successful load of the target
CPC or image if the target CPC or image is
already active.

HWI_CMD_SCSICMD2

_LOAD_PARM

LoadAddr A 5-character string (optional) consisting
only of hexadecimal characters (0-9, A-F)
identifying the device address to be used
when performing the SCSI load. Defaults to
value last used when previous SCSI Load was
performed.

LoadParm An 8-character string (optional) as
determined by the operating system being
loaded. Defaults to value last used when
previous SCSI Load was performed.

WW_Portname A 16-character string (optional) identifying
the World Wide Port Name to be used when
performing a SCSI Load. Defaults to value
last used when previous SCSI Load was
performed. The character string must be
comprised of hexadecimal values only (0-9,
A-F).

LU_Num A 16-character string (optional) identifying
the logical unit number (LUN) to be used
when performing the SCSI Load. Defaults to
value last used when previous SCSI Load
was performed. The character string must be
comprised of hexadecimal values only (0-9,
A-F).

* A 3-byte character string of any value to force
proper boundary alignment.

Boot_Pgm_Selector A 4-byte integer (optional) identifying the
boot program selector to be used for the
SCSI Load. Defaults to value last used when
previous SCSI Load was performed.

HWICMD

282 z/OS: z/OS MVS Callable Services for HLL

Table 64. Structure pointed to by CmdParm_Ptr (non-REXX); CmdParm stem variable (REXX) (continued)

CmdType :
HWI_CMD_

CmdParm (non-REXX) Parameters in Structure (non-
REXX) / Tail name constant
of the user-defined CmdParm
stem (REXX)

Parameter Values

Opsys_Loadparm A 256-character string (optional) representing
the operating system-specific load
parameters to be used for the SCSI Load.
Defaults to value last used when previous
SCSI Load was performed.

Note: If less than 256 bytes, a null terminator
signifies the end of the string.

* A 3-byte character string of any value to force
proper boundary alignment.

Bootrec_Blk_Addr A 16-character string (optional) representing
the boot record logical block address to be
used for the SCSI Load. Defaults to value
last used when previous SCSI Load was
performed. The character string must be
comprised of hexadecimal values only (0-9,
A-F).

ForceType A 4-byte integer (optional, the default is
FORCE):

• 1 – means Force YES (HWI_CMD_FORCE)
• 2 – means Force NO (HWI_CMD_NOFORCE)

Note: Only a ForceType of HWI_CMD_FORCE
will result in a successful load of the target
CPC or image if the target CPC or image is
already active.

SCSI_DUMP HWI_CMD_SCSICMD

_DUMP_PARM

LoadAddr A 4-character string (optional) consisting
only of hexadecimal characters (0-9, A-F)
identifying the device address to be used
when performing the SCSI Dump. Defaults to
value last used when previous SCSI Dump
was performed.

LoadParm An 8-character string (optional) used when
performing the SCSI dump. Defaults to value
last used when previous SCSI Dump was
performed.

WW_Portname A 16-character string (optional) identifying
the World Wide Port Name to be used when
performing a SCSI Dump. Defaults to value
last used when previous SCSI Dump was
performed. The character string must be
comprised of hexadecimal values only (0-9,
A-F).

LU_Num A 16-character string (optional) identifying
the logical unit number (LUN) to be used
when performing the SCSI Dump. Defaults
to value last used when previous SCSI Load
was performed. The character string must be
comprised of hexadecimal values only (0-9,
A-F).

Boot_Pgm_Selector A 4-byte integer (optional) identifying the
boot program selector to be used for the
SCSI Dump. Defaults to value last used when
previous SCSI Load was performed.

HWICMD

Chapter 19. Base Control Program internal interface (BCPii) 283

Table 64. Structure pointed to by CmdParm_Ptr (non-REXX); CmdParm stem variable (REXX) (continued)

CmdType :
HWI_CMD_

CmdParm (non-REXX) Parameters in Structure (non-
REXX) / Tail name constant
of the user-defined CmdParm
stem (REXX)

Parameter Values

Opsys_Loadparm A 256-character string (optional) representing
the operating system-specific load
parameters to be used for the SCSI Dump.
Defaults to value last used when previous
SCSI Dump was performed.

Note: If less than 256 bytes, a null terminator
signifies the end of the string.

* A 3- byte character string of any value to force
proper boundary alignment.

Bootrec_Blk_Addr A 16-character string (optional) representing
the boot record logical block address to be
used for the SCSI Dump. Defaults to value
last used when previous SCSI Dump was
performed. The character string must be
comprised of hexadecimal values only (0-9,
A-F).

ForceType A 4-byte integer (optional, the default is
FORCE):

• 1 – means Force YES (HWI_CMD_FORCE)
• 2 – means Force NO (HWI_CMD_NOFORCE)

Currently, either ForceType value will cause
the same result. The target image will be
dumped in either case. IBM recommends that
an application omit this parameter.

HWI_CMD_SCSICMD2

_DUMP_PARM

LoadAddr A 5-character string (optional) consisting
only of hexadecimal characters (0-9, A-F)
identifying the device address to be used
when performing the SCSI Dump. Defaults to
value last used when previous SCSI Dump
was performed.

LoadParm An 8-character string (optional) used when
performing the SCSI dump. Defaults to value
last used when previous SCSI Dump was
performed.

WW_Portname A 16-character string (optional) identifying
the World Wide Port Name to be used when
performing a SCSI Dump. Defaults to value
last used when previous SCSI Dump was
performed. The character string must be
comprised of hexadecimal values only (0-9,
A-F).

LU_Num A 16-character string (optional) identifying
the logical unit number (LUN) to be used
when performing the SCSI Dump. Defaults
to value last used when previous SCSI Load
was performed. The character string must be
comprised of hexadecimal values only (0-9,
A-F).

* A 3- byte character string of any value to force
proper boundary alignment.

Boot_Pgm_Selector A 4-byte integer (optional) identifying the
boot program selector to be used for the
SCSI Dump. Defaults to value last used when
previous SCSI Load was performed.

HWICMD

284 z/OS: z/OS MVS Callable Services for HLL

Table 64. Structure pointed to by CmdParm_Ptr (non-REXX); CmdParm stem variable (REXX) (continued)

CmdType :
HWI_CMD_

CmdParm (non-REXX) Parameters in Structure (non-
REXX) / Tail name constant
of the user-defined CmdParm
stem (REXX)

Parameter Values

Opsys_Loadparm A 256-character string (optional) representing
the operating system-specific load
parameters to be used for the SCSI Dump.
Defaults to value last used when previous
SCSI Dump was performed.

Note: If less than 256 bytes, a null terminator
signifies the end of the string.

* A 3- byte character string of any value to force
proper boundary alignment.

Bootrec_Blk_Addr A 16-character string (optional) representing
the boot record logical block address to be
used for the SCSI Dump. Defaults to value
last used when previous SCSI Dump was
performed. The character string must be
comprised of hexadecimal values only (0-9,
A-F).

ForceType A 4-byte integer (optional, the default is
FORCE):

• 1 – means Force YES (HWI_CMD_FORCE)
• 2 – means Force NO (HWI_CMD_NOFORCE)

Note: Only a ForceType of HWI_CMD_FORCE
will result in a successful load of the target
CPC or image if the target CPC or image is
already active.

SYSPLEX_TIME
_SWAP_CTS

HWI_CMD_SYSPLXTIME_SWAP
_CTS_PARM

STP_ID An 8-character non-terminated string
(required) representing the current STP
identifier associated with this CPC.

SYSPLEX_TIME
_SET_STP
_CONFIG

HWI_CMD_SYSPLXTIME_SET
_STP_CONFIG_PARM

STP_ID An 8-character non-terminated string
(required) representing the current STP
identifier associated with this CPC.

ForceType A 4-byte integer (required):

• 1 – means Force YES (HWI_CMD_FORCE)
• 2 – means Force NO (HWI_CMD_NOFORCE)

XML_Ptr (non-REXX) A character string pointer (required) points to
the address of the XML fragment describing
the configuration for the STP-only CTN.

XML (REXX) XML fragment describing the configuration for
the STP-only CTN. (required)

XML_Size (non-REXX) A 4-byte integer (required).

Length in bytes of the XML that the XML_Ptr
points to.

SYSPLEX_TIME
_CHANGE_STP
_ONLY_CTN

HWI_CMD_SYSPLXTIME_CHG
_STPONLYCTN_PARM

STP_ID An 8-character non-terminated string
(required) representing the desired STP
identifier for the CPC and all CPCs that are
members of the same STP-only CTN.

SYSPLEX_TIME
_JOIN_STP
_ONLY_CTN

HWI_CMD_SYSPLXTIME_JOIN
_STPONLYCTN_PARM

STP_ID An 8-character non-terminated string
(required) representing the current STP
identifier for the CPC.

SYSPLEX_TIME
_LEAVE_STP
_ONLY_CTN

0 N/A N/A

HWICMD

Chapter 19. Base Control Program internal interface (BCPii) 285

CmdParmVersion (HWICMD2 only - non-REXX)
Supplied parameter.

• Type: Integer.
• Length: 4 bytes.

CmdParmVersion specifies the version of the CmdParm structure to be used, which allows multiple
mappings of data to be specified to a particular command. See CmdType under “Parameters” on page
273 for specifications regarding the use of this parameter. If CmdParmVersion is not mentioned for a
particular CmdType, the value must be set to Hwi_ParmListVers_1.

DiagArea (non-REXX)
DiagArea. (REXX)

Returned parameter.

• Type: Character string (non-REXX), stem variable (REXX).
• Length: 32 bytes (non-REXX).

DiagArea contains diagnostic data to help determine the cause of a failure from the service. For many
return codes, the DiagArea can contain further information to help determine the cause of the failure.
See the descriptions of different return codes for a partial list of data returned in this area.

Note: For all environmental errors (with return code X'F00' and higher), the DiagArea might not be
filled in, and the data returned in the area should be ignored.

Field Name (non-
REXX) / Tail
name constant of
the user-defined
DiagArea stem
(REXX)

Field Type (non-REXX) Description

Diag_Index 32-bit integer The array index to the parameter field that causes the error.

Diag_Key 32-bit integer The constant value represents the field that causes the error.

Diag_Actual 32-bit integer The incorrect actual value that is specified.

Diag_Expected 32-bit integer The expected value to be used.

Diag_CommErr 32-bit integer The returned code that is returned from the console application API
or the BCPii transport layer.

Diag_Text Character (12) Additional diagnostic information in text format.

See Appendix A, “BCPii communication error reason codes,” on page 693 for a partial list of the
descriptive communication transport error return codes and suggested actions.

ABEND codes
If BCPii is unable to properly access the user-supplied parameter list, the call might result in an abend
X'042' with reason code X'0001yyyy' for HWICMD or X'0008yyyy' for HWICMD2 for one of the following
reasons:

Table 65. Reasons for abend X'042', RC X'0001yyyy' for HWICMD or X'0008yyyy' for HWICMD2 for

yyyy Reason

0000 The parameters passed by the caller are not in the primary address space.

0001 The parameters passed by the caller are not accessible.

0002 The number of parameters passed by the caller is not correct.

For other severe BCPii errors encountered during the call, an abend X'042' with a different reason code
may result. See z/OS MVS System Codes for additional information.

HWICMD

286 z/OS: z/OS MVS Callable Services for HLL

Return codes
When the service returns control to the caller, GPR 15 and the ReturnCode contain a hexadecimal return
code.

Return Code in Hexadecimal
Equate Symbol

Return Code in
Decimal Equate
Symbol Meaning and Action

0

HWI_OK

0

HWI_OK

Meaning: The command has been accepted by
the support element. An SMF record has been
written.

Action: Determine the final command
completion result by consulting the return
code value found in the data returned by
the command response event. This ENF event
is signaled if the application has already
registered to receive this event (HWIEVENT or
HwiManageEvents service).

100

HWI_CONNECT_TOKEN_INV

256

HWI_CONNECT_TOKEN
_INV

Meaning: Program error. The specified connect
token is not valid. This return code indicates that
one of the following conditions has occurred:

• The connect token does not exist. A previous
HWICONN service call has never returned the
value specified on OutConnectToken.

• The connect token does not represent an
active connection. The connection specified
might have already been disconnected using
the HWIDISC service call.

• The connect token is not associated with
the caller’s address space. The ConnectToken
specified is associated with a different address
space than the caller of this service call.

Action: Check for probable coding error.

101

HWI_COMMUNICATION_ERROR

257

HWI_COMMUNICATIO
N_ERROR

Meaning: A communication error is detected.
The hardware management console application
API (HWMCA) or the BCPii transport layer has
returned with a failing return code.

Action: See the DiagArea for further diagnostic
information. The Diag_CommErr indicates the
return code that is returned from HWMCA APIs
or the BCPii transport layer.

HWMCA API and BCPii transport return
codes are provided in Appendix A, “BCPii
communication error reason codes,” on page
693.

102

HWI_DIAGAREA_INV

258

HWI_DIAGAREA_INV

Meaning: Program error. The DiagArea is not
accessible.

Action: Check for probable coding error. Verify
that the specified DiagArea is defined as a 32-
byte character field.

HWICMD

Chapter 19. Base Control Program internal interface (BCPii) 287

Return Code in Hexadecimal
Equate Symbol

Return Code in
Decimal Equate
Symbol Meaning and Action

103

HWI_CONNECT_TOKEN_INACTIVE

259

HWI_CONNECT_TOKEN
_INACTIVE

Meaning: The specified connect token is
no longer valid. The connection has been
disconnected or it is in the progress of being
disconnected.

Action: Check for probable coding error. Verify
that the specified connect token is still active.
If connectivity to the targeted CPC connection
no longer exists, all connections associated with
that CPC will no longer have a connect token
that can be used.

104

HWI_TARGET_CPC_CHANGED

260

HWI_TARGET_CPC_CH
ANGED

Meaning: The CPC name represented by the
specified token is valid but does not represent
the same physical machine that was targeted by
the initial HWICONN call. All connections that
were established prior to the name change can
no longer be used.

Action: The application should cease using this
connect token. If the application intends to
target the CPC using the name represented
by the specified connect token, it must first
reconnect to the CPC before issuing any BCPii
service call.

HWICMD

288 z/OS: z/OS MVS Callable Services for HLL

Return Code in Hexadecimal
Equate Symbol

Return Code in
Decimal Equate
Symbol Meaning and Action

602

HWI_CMDTYPE_INV

1538

HWI_CMDTYPE_INV

Meaning: Program error. The requested
CMDTYPE specified in the call is not valid. The
system rejects the service call. This return code
indicates that one of the following conditions
has occurred:

• The CmdType specified is not in the
acceptable value range of possible command
types. The Diag_Text indicates this error with
the text of 'Invalid Cmd'.

• The CmdType specified applies only to
CPC connections, but the ConnectToken
specified represents an image connection. The
Diag_Text indicate this error with the text of
'Mismatch'.

• The CmdType specified applies only to image
connections, but the ConnectToken specified
represents a CPC connection. The Diag_Text
indicates this error with the text of 'Mismatch'.

• The CmdType specified applies only to image
connections, but the ConnectToken specified
represents an image group connection. The
Diag_Text will indicate this error with the text
of ‘Mismatch'.

Action: Check for probable coding error. Verify
that the specified CmdType is in the acceptable
value range. See the CmdType parameter
section to verify that the specified connect token
is applied for the requested command. See the
DiagArea for further diagnostic information.

603

HWI_CMDPARM_INV

1539

HWI_CMDPARM_INV

Meaning: Program error. This return code
indicates that one of the following conditions
has occurred:

• Required parameters are missing.
• One or more parameters specified are not

valid.

Action: Check for probable coding error. See the
DiagArea for additional diagnostic information.
The Diag_Index specifies the value of the
CmdType parameter. The Diag_Text specifies
the name of the parameter in the CmdParm
structure. Note that the name might be
abbreviated because of the limited size of the
Diag_Text field.

HWICMD

Chapter 19. Base Control Program internal interface (BCPii) 289

Return Code in Hexadecimal
Equate Symbol

Return Code in
Decimal Equate
Symbol Meaning and Action

604

HWI_CMD_TARGET_DEST_NOT_AL
LOWED

1560

HWI_CMD_TARGET_DE
ST_NOT_ALLOWED

Meaning: Program error. Certain commands are
not allowed to be targeted to the same CPC and
image on which the BCPii application is currently
running. Such commands can cause the local
system to be inoperable. Commands that cannot
target the local CPC are:

• Hwi_Cmd_Activate
• Hwi_Cmd_Activate_With_Actprof
• Hwi_Cmd_Deactivate

Commands that cannot target the local image
include:

• Hwi_Cmd_Activate_With_Actprof
• Hwi_Cmd_Sysreset_IPLT

Commands that cannot target the local image
(by itself or as a member of a user-defined
image group) are:

• Hwi_Cmd_Activate
• Hwi_Cmd_Deactivate
• Hwi_Cmd_Load
• Hwi_Cmd_PswRestart
• Hwi_Cmd_Start
• Hwi_Cmd_Stop
• Hwi_Cmd_Sysreset
• Hwi_Cmd_SCSI_Load
• Hwi_Cmd_SCSI_Dump

Action: BCPii does not allow this command to be
executed against the local CPC or local image.
Validate the name of the target represented
by the input connection token. If the target
is correct, the command can only be issued
from another CPC for a CPC-related command,
or from another image for an image-related
command.

If the ConnectToken represents a user-defined
image group, verify that the group does not
contain the local image where this command is
executing.

HWICMD

290 z/OS: z/OS MVS Callable Services for HLL

Return Code in Hexadecimal
Equate Symbol

Return Code in
Decimal Equate
Symbol Meaning and Action

605

HWI_CMDPARM_INACCESSIBLE

1561

HWI_CMDPARM_INAC
CESSIBLE

Meaning: Program error. The CmdParm data
area cannot be accessed. This return code
indicates that one of the following conditions
has occurred:

• The CmdParm data area is either partially or
completely not accessible by the application,
or BCPii, or both.

• The CmdParm data area can be too small.

Action: Check for probable coding error. Validate
that the CmdParm_Ptr points to a data area
where the CmdParm is and that the data area
is accessible.

606

HWI_CMDTYPE_NOT_SUPPORTED

1562

HWI_CMDTYPE_NOT_S
UPPORTED

Meaning: The targeted hardware of the HWICMD
request does not recognize the type of command
being requested.

Action: Verify that the targeted hardware is at a
level that supports the type of command being
issued.

607

HWI_CMD_NOT_SUPPORTED

1563

HWI_CMD_NOT_SUPP
ORTED

Meaning: HWICMD is not supported with the
current microcode level (MCL) installed on the
target CPC, or the target CPC is at a lower
hardware level than HWICMD supports (BCPii
requires the target of an HWICMD to be at least
at the z9 hardware level). The warning return
code, HWI_CMD_NOT_SUPPORTED_WARNING,
should have been returned on the previous
HWICONN service call when the requested
connect token was created to establish a
connection to the CPC. See the return code
section in “HWICONN — Establish a BCPii
connection” on page 295 for more information.

Action: Install the MCL that supports
HWICMD on the target CPC or refrain
from issuing HWICMD with a target older
than the z9 hardware level. See the
HWI_CMD_NOT_SUPPORTED_WARNING return
code in the HWICONN section for the microcode
level/engineering change (MCL/EC) that is
required for HWICMD service call.

608

HWI_CMD_IMAGE_GROUP_IS_EM
PTY

1564

HWI_CMD_IMAGE_GR
OUP_IS_EMPTY

Meaning: Command did not execute because
the connect token represents an image group
that contains no images.

Action: Ensure that the correct connect token
was specified on the HWICMD request. If so,
check with the SE/HMC engineer to determine
the members that are in the group.

HWICMD

Chapter 19. Base Control Program internal interface (BCPii) 291

Return Code in Hexadecimal
Equate Symbol

Return Code in
Decimal Equate
Symbol Meaning and Action

609

HWI_CMDPARMVERSION_INV

1565

HWI_CMDPARMVERSI
ON_INV

Meaning: Program error. The requested
CmdParmVersion specified in the call is not in
the acceptable value range for the specified
command.

Note: This return code applies to only
HWICMD2.

Action: Check for probable error. Verify that the
specified CmdParmVersion is not zero or is in the
acceptable value range. If no CmdParmVersion
is specified for the particular command, the
value must be set to Hwi_ParmListVers_1. See
the CmdType documentation prior for a list of
acceptable values for the specified command.

F00

HWI_NOT_AVAILABLE

3840

HWI_NOT_AVAILABLE

Meaning: BCPii services are not available, and
the system rejects the service request.

Action: Notify the system programmer to start
the BCPii address space and try the request
again. See “Restarting the HWIBCPii address
space” on page 258 about how to start the BCPii
address space.

Programs can also listen to ENF68 to determine
when BCPii services are available. See z/OS MVS
Programming: Authorized Assembler Services
Reference EDT-IXG for how to listen for BCPii
activation messages.

F01

HWI_AUTH_FAILURE

3841

HWI_AUTH_FAILURE

Meaning: The caller is PKM8-15 problem state
and the program does not reside in an APF-
authorized library.

Action: Check the calling program for a probable
coding error.

HWICMD

292 z/OS: z/OS MVS Callable Services for HLL

Return Code in Hexadecimal
Equate Symbol

Return Code in
Decimal Equate
Symbol Meaning and Action

F02

HWI_NO_SAF_AUTH

3842

HWI_NO_SAF_AUTH

Meaning: The user does not have correct SAF
authorization for the request.

Action: Check for probable error. Consider one
or more of the following possible actions:

• Define read access authorization to
the FACILITY class resource profile
HWI.APPLNAME.HWISERV.

• Define control access authorization to
the FACILITY class resource profile
HWI.TARGET.netid.nau for a CPC or image
group connection.

• Define control access authorization to
the FACILITY class resource profile
HWI.TARGET.netid.nau.imagename for an
image connection.

• Define CONTROL access authorization
to the FACILITY class resource profile
HWI.TARGET.netid.nau.imagename for each
image within the target image group for an
image group connection. Note: It is possible
that an application may have the proper
authority to all images in a user-defined
image group returned on a prior HWILIST
invocation, yet still receive this error return
code. This could be because HWILIST will
only return image names that the user has
the proper authority to view. In this case,
it will be necessary to contact the HMC/SE
administrator to find out if there are other
image names contained in the user-defined
image group that were not returned on the
HWILIST invocation. Once these names have
been acquired, the security administrator may
be contacted to give CONTROL or higher
access to these additional image names.

• Ensure that the referenced Facility Class
Profile is RACLIST-specified.

F03

HWI_INTERRUPT_STATUS_INV

3843

HWI_INTERRUPT_STAT
US_INV

Meaning: The calling program is disabled. The
system rejects this service request.

Action: Check the calling program for a probable
coding error.

F04

HWI_MODE_INV

3844

HWI_MODE_INV

Meaning: The calling program is not in task
mode. The system rejects this service request.

Action: Check the calling program for a probable
error.

HWICMD

Chapter 19. Base Control Program internal interface (BCPii) 293

Return Code in Hexadecimal
Equate Symbol

Return Code in
Decimal Equate
Symbol Meaning and Action

F05

HWI_LOCKS_HELD

3845

HWI_LOCKS_HELD

Meaning: The calling program is holding one
or more locks. The system rejects this service
request.

Action: Check the calling program for a probable
coding error.

F06

HWI_UNSUPPORTED_RELEASE

3846

HWI_UNSUPPORTED_
RELEASE

Meaning: The system level does not support this
service. The system rejects this service request.

Action: Remove the calling program from the
system, and install it on a system that supports
BCPii services. Then run the calling program
again.

F07

HWI_UNSUPPORTED_ENVIRONME
NT

3847

HWI_UNSUPPORTED_E
NVIRONMENT

Meaning: The system does not support
execution of the service from the current
environment (for example, calling a BCPii service
from within a BCPii ENF exit routine).

Action: Issue the BCPii service from a different
execution environment.

FFF

HWI_UNEXPECTED_ERROR

4095

HWI_UNEXPECTED_ER
ROR

Meaning: System error. The service that was
called encountered an unexpected error. The
system rejects the service call.

Action: In many cases, BCPii has taken an
abend to gather further diagnostic information.
Search problem reporting data bases for a fix
for the problem. If no fix exists, contact the IBM
Support Center.

Example
In the pseudocode example, the caller issues a call to activate an activation profile.

.

.
CmdType = HWI_CMD_ACTIVATE;
HWI_CmdTypeParm.ForceType = HWI_CMD_Force;
CmdParm_Ptr = addr(HWI_CmdTypeParm);
CALL HWICMD (ReturnCode, ConnectToken, CmdType,
 CmdParm_Ptr, DiagArea)
.
.

To issue the exact same command using HWICMD2, use the following pseudocode example:

CmdType = HWI_CMD_ACTIVATE;
HWI_CmdTypeParm.ForceType = HWI_CMD_Force;
CmdParmVersion = 1;
CmdParm_Ptr = addr(HWI_CmdTypeParm);
CALL HWICMD2 (ReturnCode, ConnectToken, CmdType,
 CmdParm_Ptr, CmdParmVersion, DiagArea);

A REXX programming example for the HWICMD service:

HWICMD

294 z/OS: z/OS MVS Callable Services for HLL

Note: The command parm field names must exactly match the field names in the command parm
structure declarations.

myCmdType = HWI_CMD_OSCMD /* oscmd */
myCmdParm.PriorityType = Hwi_CMD_Priority
myCmdParm.OSCMDString = 'd a,l'
address bcpii
 "hwicmd RetCode myImgConnectToken myCmdType myCmdParm. myDiag."

If (RC <> 0) | (Retcode <> 0) Then
 Do
 Say 'Service failed with REXX RC = 'RC' and API Retcode = 'Retcode'.'
 If (RC=Hwi_REXXParmSyntaxError | Retcode<>0) Then
 Do
 Say ’ Diag_index=’ myDiag.DIAG_INDEX
 Say ’ Diag_key=’ myDiag.DIAG_KEY
 Say ’ Diag_actual=’ myDiag.DIAG_ACTUAL
 Say ’ Diag_expected=’ myDiag.DIAG_EXPECTED
 Say ’ Diag_commerr=’ myDiag.DIAG_COMMERR
 Say ’ Diag_text=’ myDiag.DIAG_TEXT
 End
 End

HWICONN — Establish a BCPii connection
Call the HWICONN service to establish a logical connection between the application and a central
processor complex (CPC), a CPC image (LPAR), a capacity record, different types of activation profiles,
a user-defined image group, a group profile or an LPAR Capacity group. This facilitates subsequent
services to perform operations that are related to that CPC, image, capacity record, activation profile, a
user-defined image group, a group profile or an LPAR Capacity group.

BCPii limits the total number of system-wide connections from all BCPii users to be no more than 5000
simultaneous connections.

Note: A connection remains active until one of the following occurs:

• A Disconnect service call (HWIDISC) has been invoked.
• A parent connection has been disconnected.
• A loss of connectivity to the associated CPC has been detected by BCPii.
• The address space of the caller has terminated.
• The current task of the caller has terminated if the connection has task affinity (TSO/E REXX or ISV-

provided REXX execution environments).
• The BCPii address space has terminated.

Under normal circumstances, a connection remains active indefinitely. Since there are a finite number of
total BCPii connections available in the entire system, a BCPii application should disconnect any BCPii
connection it no longer needs.

Note: BCPii requires the FACILITY class to be RACLIST-specified. BCPii also automatically transforms the
following to all uppercase characters when building the profile names passed to the security product:
CPC, image, and caprec values pointed to by the ConnectTypeValue_Ptr.

Description

Environment
The requirements for the callers are:

Requirement Details

Minimum authorization: One of the following: PKM allowing key 0-7, supervisor state, or
APF-Authorized

Dispatchable unit mode: Task

HWICONN

Chapter 19. Base Control Program internal interface (BCPii) 295

Requirement Details

Cross memory mode: Any PASN, any HASN, any SASN

AMODE: 31-bit

ASC mode: Primary or access register (AR)

Interrupt status: Enabled for I/O and external interrupts

Locks: No locks held

Control parameters: Control parameters must be in the primary address space and
addressable by the caller

Linkage: Standard MVS linkage conventions are used

Programming requirements
See “Syntax, linkage and programming considerations” on page 259 for details about how to call BCPii
services in the various programming languages.

REXX programming considerations for the HWICONN service
All information for the HWICONN service applies for REXX requests except:

• ConnectTypeValue replaces ConnectTypeValue_Ptr.

Restrictions
BCPii does not allow HWICONN to be issued from within a BCPii ENF exit routine.

Authorization
The client application must have access to consult the local CPC. This is granted by allowing the
application at least read access to the SAF-protected FACILITY class resource HWI.APPLNAME.HWISERV.

The client application must also have at least one of the following access:

• Read access to the SAF-protected FACILITY class resource HWI.TARGET.netid.nau for HWI_CPC,
HWI_RESET_ACTPROF, HWI_IMAGE_ACTPROF, HWI_LOAD_ACTPROF, HWI_IMAGE_GROUP,
HWI_GROUP_PROFILE or HWI_LPAR_GROUP connections.

• Read access to the SAF-protected FACILITY class resource HWI.TARGET.netid.nau.imagename for
HWI_IMAGE connections.

• Read access to the SAF-protected FACILITY class resource HWI.CAPREC.netid.nau.caprecid for
HWI_CAPREC connections.

Note: BCPii requires the FACILITY class to be RACLIST-specified.

Syntax
Write the call as shown in the syntax diagram. You must code all parameters in the order shown.

Non-REXX parameters REXX parameters

 CALL HWICONN(
 ReturnCode,
 InConnectToken,
 OutConnectToken,
 ConnectType,
 ConnectTypeValue_Ptr,
 DiagArea);

address bcpii “hwiconn
ReturnCode
InConnectToken
OutConnectToken
ConnectType
ConnectTypeValue
DiagArea.”

HWICONN

296 z/OS: z/OS MVS Callable Services for HLL

Parameters
The parameters are explained as follows:
ReturnCode

Returned parameter

• Type: Integer (non-REXX), character representation of an integer (REXX)
• Length: 4 bytes (non-REXX)

ReturnCode contains the return code from the service.

InConnectToken
Supplied parameter

• Type: Character string
• Length: 16 bytes

InConnectToken represents a connect token that was returned by a previous HWICONN HWI_CPC
invocation. For image, capacity record, activation profile, user-defined image group, group profile, and
LPAR Capacity group connections.

In most cases, the ConnectToken specified must have originated from a HWICONN service call that
was issued from the same address space as this service call. For BCPii REXX execs running under
TSO/E or ISV-provided REXX environments, the ConnectToken specified must have originated from a
HWICONN service call that was issued from the same task as this service call.

InConnectToken is not relevant to a connect type of HWI_CPC, and either must be left uninitialized or
initializated to HWI_NULL_CONNECTTOKEN constant.

OutConnectToken
Returned parameter

• Type: Character string
• Length: 16 bytes

OutConnectToken returns a connect token that uniquely represents a connection to BCPii. This
parameter can be used as input on subsequent BCPii invocations to identify which connection the
service wants to communicate.

A connect token returned for an HWI_CPC connection can be specified on subsequent services to
perform operations against this particular CPC, or on a subsequent HWICONN as the InConnectToken
parameter when attempting a connection to a particular image (LPAR), capacity record (CAPREC),
activation profile, group profiles or an LPAR Capacity group.

Likewise, a connect token returned for an HWI_IMAGE or HWI_CAPREC connection can be specified
on subsequent services to perform operations against this particular image (LPAR) or capacity record
(CAPREC) respectively.

A connect token returned for an HWI_RESET_ACTPROF, HWI_IMAGE_ACTPROF, or
HWI_LOAD_ACTPROF connection can be specified on subsequent HWIQUERY or HWISET / HWISET2
service calls to query or set specific values associated with the specified Reset, image, or Load
activation profile respectively.

A connection token returned for an HWI_IMAGE_GROUP can be specified on a subsequent
HWIQUERY service call to query values associated with the group profile, on a subsequent HWICMD
service call to issue commands to all members in the image group, or on a subsequent HWILIST
service call to list the images in the image group.

A connect token returned for an HWI_GROUP_PROFILE connection can be specified on subsequent
HWIQUERY or HWISET / HWISET2 service calls to query or set specific values associated with the
specified group profile respectively.

HWICONN

Chapter 19. Base Control Program internal interface (BCPii) 297

A connect token returned for an HWI_LPAR_GROUP connection can be specified on subsequent
HWIQUERY or HWISET / HWISET2 service calls to query or set specific values associated with the
specified LPAR Group profile respectively.

ConnectType
Supplied parameter

• Type: Integer (non-REXX), character representation of an integer (REXX)
• Length: 4 bytes (non-REXX)

ConnectType specifies the type of connection to be established.

Constant in Hexadecimal (Decimal)
Equate Symbol Description

1

(1)

HWI_CPC

Requests to establish a connection to a target CPC that the application is to communicate
with.

2

(2)

HWI_IMAGE

Requests to establish a connection to an image of a CPC that the application is to
communicate with. The input connection token must represent an active CPC connection.

3

(3)

HWI_CAPREC

Requests to establish a connection to a capacity record of a CPC that the application is to
communicate with. The input connection token must represent an active CPC connection.

4

(4)

HWI_RESET_ACTPROF

Requests to establish a connection to a reset activation profile associated with a particular
CPC. The input connection token must represent an active CPC connection.

5

(5)

HWI_IMAGE_ACTPROF

Requests to establish a connection to an image activation profile associated with a particular
CPC. The input connection token must represent an active CPC connection.

6

(6)

HWI_LOAD_ACTPROF

Requests to establish a connection to a load activation profile associated with a particular
CPC. The input connection token must represent an active CPC connection.

7

(7)

HWI_IMAGE_GROUP

Requests to establish a connection to a user-defined image group on a particular CPC. The
input connection token must represent an active CPC connection.

Note: This ConnectType is only available when targeting a z10 or higher CPC.

8

(8)

HWI_GROUP_PROFILE

Requests to establish a connection to a group profile on a particular CPC. The input connection
token must represent an active CPC connection.

9

(9)

HWI_LPAR_GROUP

Requests to establish a connection to an LPAR capacity group on a particular CPC. The input
connection token must represent an active CPC connection.

Note: This ConnectType is only available when targeting a z14 GA2 or higher CPC.

ConnectTypeValue_Ptr (non-REXX)
ConnectTypeValue (REXX)

Supplied parameter

• Type: Pointer (non-REXX), character (REXX)
• Length: 4 bytes (non-REXX)

HWICONN

298 z/OS: z/OS MVS Callable Services for HLL

Non-REXX:
ConnectTypeValue_Ptr specifies the address of the name of the requested target to be connected
to. The type of connection determines the value required.

REXX:
ConnectTypeValue is the name of the requested target to be connected to. The type of connection
determines the value required.

Connect Types Values to be specified

HWI_CPC • A 17-character network address (sometimes referred to as the SNA address) that uniquely
represents a CPC in the attached process control network. The network address should
be in the form of a 1- through 8-character network identifier (netid), followed by a period,
and then followed by a 1- through 8-character network addressable unit (NAU) name. The
network address should be padded with trailing blanks if the total string length of the
network address is less than 17 characters.

Note: Both the netid and NAU name must consist of alphanumeric characters (0-9, A-Z).

Example: net1.cpc01
• An ‘*’ is a special value that can also be specified with this ConnectType. If specified, this

allows the application to connect to the local host CPC without having to know the network
address of the local host CPC (netid.nau).

Note: An HWILIST HWI_LIST_CPCS operation returns a list of CPCs available to be connected
to in the form of netid.nau.

HWI_IMAGE An 8-character image name padded with trailing blanks.

Note: The LPAR name is a 1- through 8-alphanumeric (0-9, A-Z,a-z) character name that must
have an alphabetic first character. Special characters ($, #, @), although currently allowed, are
being reserved for future use. See PR/SM Planning Guide for details.

HWI_CAPREC An 8-character capacity record (CAPREC) name padded with trailing blanks.

Note: The CAPREC name is a 1- to 8-alphanumeric (0-9, A-Z, a-z) character name.

HWI_RESET_ACTPROF A 16–character alphanumeric (0-9, A-Z,a-z) reset activation profile name padded with trailing
blanks.

HWI_IMAGE_ACTPROF A 16–character alphanumeric (0-9, A-Z,a-z) image activation profile name padded with trailing
blanks.

HWI_LOAD_ACTPROF A 16–character alphanumeric (0-9, A-Z,a-z) load activation profile name padded with trailing
blanks.

HWI_IMAGE_GROUP A 30 character null-terminated image group name.

HWI_GROUP_PROFILE An 8-character alphanumeric (0-9, A-Z, a-z) group profile name padded with trailing blanks.

HWI_LPAR_GROUP An 8-character alphanumeric (0-9, A-Z, a-z) LPAR capacity group name padded with trailing
blanks.

DiagArea (non-REXX)
DiagArea. (REXX)

Returned parameter

• Type: Character string (non-REXX), stem variable (REXX)
• Length: 32 bytes (non-REXX)

DiagArea contains diagnostic data to help determine the cause of a failure from the service. For many
return codes, the DiagArea can contain further information to help determine the cause of the failure.
See the descriptions of different return codes for a partial list of data returned in this area.

Note: For all environmental errors (with return code X'F00' and higher), the DiagArea might not be
filled in, and the data returned in the area should be ignored.

HWICONN

Chapter 19. Base Control Program internal interface (BCPii) 299

Field Name (non-
REXX) / Tail
name constant of
the user-defined
DiagArea stem
(REXX)

Field Type (non-REXX) Description

Diag_Index 32-bit integer The array index to the parameter field that causes the error.

Diag_Key 32-bit integer The constant value represents the field that causes the error.

Diag_Actual 32-bit integer The incorrect actual value that is specified.

Diag_Expected 32-bit integer The expected value to be used.

Diag_CommErr 32-bit integer The returned code that is returned from the console application API
or the BCPii transport layer.

Diag_Text Character (12) Additional diagnostic information in text format.

See Appendix A, “BCPii communication error reason codes,” on page 693 for a partial list of the
descriptive communication transport error return codes and suggested actions.

ABEND codes
If BCPii is unable to properly access the user-supplied parameter list, the call might result in an abend
X'042' with a reason code of X'0002yyyy' because of one of the following reasons:

Table 66. Reasons for abend X'042', RC X'0002yyyy'

yyyy Reason

0000 The parameters passed by the caller are not in the primary address space.

0001 The parameters passed by the caller are not accessible.

0002 The number of parameters passed by the caller is not correct.

For other severe BCPii errors encountered during the call, an abend X'042' with a different reason code
may result. See z/OS MVS System Codes for additional information.

Return codes
Return Code in Hexadecimal
Equate Symbol

Return Code in Decimal Equate
Symbol Meaning and Action

0

HWI_OK

0

HWI_OK

Meaning: Successful completion.

Action: None.

HWICONN

300 z/OS: z/OS MVS Callable Services for HLL

Return Code in Hexadecimal
Equate Symbol

Return Code in Decimal Equate
Symbol Meaning and Action

4

HWI_CMD_NOT_SUPPORTED_WA
RNING

4

HWI_CMD_NOT_SUPPORTED_WA
RNING

Meaning: Successful completion.
This warning return code is
informational.

The target CPC being connected
to has a microcode level (MCL)
that does not support HWICMD,
or the target CPC is at a lower
hardware level than HWICMD
supports (BCPii requires the
target of an HWICMD to be
at least at the z9 hardware
level). If a subsequent HWICMD
is issued with this returned
connect token, the call will be
rejected with a return code of
HWI_CMD_NOT_SUPPORTED.

Action: Install the MCL/EC that
supports HWICMD for the target
CPC. The required MCL/EC are
G40965.133 for a z9 CPC, and
F85906.116 for a z10 CPC.

HWICONN

Chapter 19. Base Control Program internal interface (BCPii) 301

Return Code in Hexadecimal
Equate Symbol

Return Code in Decimal Equate
Symbol Meaning and Action

100

HWI_CONNECT_TOKEN_INV

256

HWI_CONNECT_TOKEN_INV

Meaning: Program error. The
specified input connection token
is not valid. This return
code indicates that one of
the following conditions has
occurred:

• The input connection token
does not exist. A previous
HWICONN service call has
never returned the value
specified on OutConnectToken.

• The input connection token
does not represent an active
connection. The connection
specified might have already
been disconnected by the
HWIDISC service call, or have
been implicitly disconnected
by BCPii because of loss of
connectivity with the target
CPC.

• The input connection token
is not associated with the
address space of the caller.
The InConnectToken specified
is associated with a different
address space than the caller
of this service call.

Action: Check for probable
coding error.

101

HWI_COMMUNICATION_ERROR

257

HWI_COMMUNICATION_ERROR

Meaning: A communication error
is detected. The hardware
management console application
API (HWMCA) or the BCPii
transport layer has returned with
a failing return code.

Action: See the DiagArea for
further diagnostic information.
The Diag_CommErr indicates the
return code that is returned
from HWMCA APIs or the BCPii
transport layer.

HWMCA API and BCPii
transport return codes are
provided in Appendix A, “BCPii
communication error reason
codes,” on page 693.

HWICONN

302 z/OS: z/OS MVS Callable Services for HLL

Return Code in Hexadecimal
Equate Symbol

Return Code in Decimal Equate
Symbol Meaning and Action

102

HWI_DIAGAREA_INV

258

HWI_DIAGAREA_INV

Meaning: Program error. The
DiagArea is not accessible.

Action: Check for probable
coding error. Verify that the
specified DiagArea is defined as
a 32-byte character field.

103

HWI_CONNECT_TOKEN_INACTIV
E

259

HWI_CONNECT_TOKEN_INACTIV
E

Meaning: The specified connect
token is no longer valid.
The connection has been
disconnected or it is in the
progress of being disconnected.

Action: Check for probable
coding error. Verify that the
specified connect token is still
active. If connectivity to the
targeted CPC connection no
longer exists, all connections
associated with that CPC will no
longer have a connect token that
can be used.

104

HWI_TARGET_CPC_CHANGED

260

HWI_TARGET_CPC_CHANGED

Meaning: The CPC name
represented by the specified
token is valid but does not
represent the same physical
machine that was targeted
by the initial HWICONN call.
All connections that were
established prior to the name
change can no longer be used.

Action: The application should
cease using this connect token.
If the application intends to
target the CPC using the name
represented by the specified
connect token, it must first
reconnect to the CPC before
issuing any BCPii service call.

201

HWI_CONNTYPE_INV

513

HWI_CONNTYPE_INV

Meaning: Program error. The
connection type specified in the
call is not valid. The system
rejects the service call.

Action: Check for probable
coding error. Validate that the
conntype value passed to the
service is one of the accepted
values.

HWICONN

Chapter 19. Base Control Program internal interface (BCPii) 303

Return Code in Hexadecimal
Equate Symbol

Return Code in Decimal Equate
Symbol Meaning and Action

202

HWI_CONNTYPE_VALUE_INV

514

HWI_CONNTYPE_VALUE_INV

Meaning: Program error. This
return code indicates that one
of the following conditions has
occurred:

1. The connection name
specified in the call is
not valid. The specified
connection name is not
syntactically valid, it does not
exist, or it is currently not
available. The system rejects
the service call.

2. When targeting a z14 or
higher CPC, the BCPii
request does not have proper
permission granted by the SE
for the target object.

Action: Check for probable
coding error. Verify that the
connection name is syntactically
correct, valid in the current
HMC configuration, and currently
available. If the target CPC/LPAR
is a z14 or higher, verify that the
proper BCPii firmware security
has been granted to allow this
BCPii application to access the
CPC/LPAR.

203

HWI_CONNTYPE_VALUE_
INACCESSIBLE

515

HWI_CONNTYPE_VALUE_
INACCESSIBLE

Meaning: Program error. The
connection type value data area
is either partially or completely
inaccessible by the application,
or the Base Control Program
internal interface (BCPii) address
space, or both.

Action: Check for probable
coding error. Verify that the
ConnectTypeValue_Ptr points to
a data area where the connect
type value is, and make sure that
the data area is accessible.

HWICONN

304 z/OS: z/OS MVS Callable Services for HLL

Return Code in Hexadecimal
Equate Symbol

Return Code in Decimal Equate
Symbol Meaning and Action

204

HWI_MAX_CONNECTIONS_REAC
HED

516

HWI_MAX_CONNECTIONS_REAC
HED

Meaning: The number of
connections has reached the
maximum number of system-
wide connections (5000) that
BCPii permits, or BCPii has run
out of system resources to satisfy
the HWICONN request, or both.

Action: Disconnect connections
that are no longer needed, and
try the request again.

205

HWI_CONNTYPE_NOT_SUPPORT
ED

517

HWI_CONNTYPE_NOT_SUPPORT
ED

Meaning: The targeted hardware
of the HWICONN request does
not support the connect type
specified.

Action: Verify that the targeted
hardware supports the type of
request being made.

F00

HWI_NOT_AVAILABLE

3840

HWI_NOT_AVAILABLE

Meaning: BCPii services are not
available, and the system rejects
the service request.

Action: Notify the system
programmer to start the BCPii
address space and try the
request again. See “Restarting
the HWIBCPii address space” on
page 258 about how to start the
BCPii address space.

Programs can also listen to
ENF68 to determine when BCPii
services are available. See z/OS
MVS Programming: Authorized
Assembler Services Reference
EDT-IXG for how to listen for
BCPii activation messages.

F01

HWI_AUTH_FAILURE

3841

HWI_AUTH_FAILURE

Meaning: The caller is PKM8-15
problem state and the program
does not reside in an APF-
authorized library.

Action: Check the calling
program for a probable coding
error.

HWICONN

Chapter 19. Base Control Program internal interface (BCPii) 305

Return Code in Hexadecimal
Equate Symbol

Return Code in Decimal Equate
Symbol Meaning and Action

F02

HWI_NO_SAF_AUTH

3842

HWI_NO_SAF_AUTH

Meaning: The user does not have
correct SAF authorization for the
request.

Action: Check for probable error.
Consider one or more of the
following possible actions:

• Define read access
authorization to the FACILITY
class resource profile
HWI.APPLNAME.HWISERV.

• Define read access
authorization to the FACILITY
class resource profile
HWI.TARGET.netid.nau for a
CPC, activation profile, image
group connection, group
profile, or LPAR Capacity group
connection.

• Define read access
authorization to the FACILITY
class resource profile
HWI.TARGET.netid.nau.imagen
ame for an image connection.

• Define read access
authorization to the FACILITY
class resource profile
HWI.CAPREC.netid.nau.capreci
d for a capacity record
connection.

• Ensure that the referenced
Facility Class Profiles are
RACLIST-specified.

• For CPC connections only:
The SNMP community name
specified in the security
product (SAF) for a particular
target CPC does not match
the SNMP community name
defined in the support element
of the target CPC. See
“Community name defined
in the security product for
each CPC” on page 253 for
further information regarding
community name setup.

HWICONN

306 z/OS: z/OS MVS Callable Services for HLL

Return Code in Hexadecimal
Equate Symbol

Return Code in Decimal Equate
Symbol Meaning and Action

F03

HWI_INTERRUPT_STATUS_INV

3843

HWI_INTERRUPT_STATUS_INV

Meaning: The calling program is
disabled. The system rejects this
service request.

Action: Check the calling
program for a probable coding
error.

F04

HWI_MODE_INV

3844

HWI_MODE_INV

Meaning: The calling program is
not in task mode. The system
rejects this service request.

Action: Check the calling
program for a probable error.

F05

HWI_LOCKS_HELD

3845

HWI_LOCKS_HELD

Meaning: The calling program
is holding one or more locks.
The system rejects this service
request.

Action: Check the calling
program for a probable coding
error.

F06

HWI_UNSUPPORTED_RELEASE

3846

HWI_UNSUPPORTED_RELEASE

Meaning: The system level
does not support this service.
The system rejects this service
request.

Action: Remove the calling
program from the system, and
install it on a system that
supports BCPii services. Then run
the calling program again.

F07

HWI_UNSUPPORTED_ENVIRON
MENT

3847

HWI_UNSUPPORTED_ENVIRON
MENT

Meaning: The system does not
support execution of the service
from the current environment (for
example, calling a BCPii service
from within a BCPii ENF exit
routine).

Action: Issue the BCPii service
from a different execution
environment.

FFF

HWI_UNEXPECTED_ERROR

4095

HWI_UNEXPECTED_ERROR

Meaning: System error. The
service that was called
encountered an unexpected
error. The system rejects the
service call.

Action: Search problem reporting
data bases for a fix for the
problem. If no fix exists, contact
the IBM Support Center.

HWICONN

Chapter 19. Base Control Program internal interface (BCPii) 307

Example
In the pseudocode example, the application attempts to establish a connection between the application
and the target CPC.

.

.
InConnectToken = 16blanks;
ConnectType = HWI_CPC;
ConnectTypeValue_Ptr = Addr(ConnectTypeValue);
ConnectTypeValue = ‘CPCPLEX1.CPC01’;
CALL HWICONN (ReturnCode, InConnectToken, OutConnectToken,
 ConnectType, ConnectTypeValue_Ptr, DiagArea)
(After the call, OutConnectToken contains a token that can be used on all
subsequent calls to perform CPC functions against the ‘CPCPLEX1.CPC01’ CPC
including connecting to images, capacity records, and activation profiles
residing on the CPC.)
.
.

A REXX programming example for the HWICONN service:

myConnectType = HWI_CPC /* CPC connect type */
myConnectTypeValue = 'IBM390xx.H123 ' /* 17-char CPC name */

address bcpii
 "hwiconn Retcode myInConnectToken myOutConnectToken myConnectType
 myConnectTypeValue myDiag."

If (RC <> 0) | (Retcode <> 0) Then
 Do
 Say 'Service failed with REXX RC = 'RC' and API Retcode = 'Retcode'.'
 If (RC=Hwi_REXXParmSyntaxError | Retcode<>0) Then
 Do
 Say ’ Diag_index=’ myDiag.DIAG_INDEX
 Say ’ Diag_key=’ myDiag.DIAG_KEY
 Say ’ Diag_actual=’ myDiag.DIAG_ACTUAL
 Say ’ Diag_expected=’ myDiag.DIAG_EXPECTED
 Say ’ Diag_commerr=’ myDiag.DIAG_COMMERR
 Say ’ Diag_text=’ myDiag.DIAG_TEXT
 End
 End

HWIDISC — Release a BCPii connection
Call the HWIDISC service to release the logical connection between the application and the identified
CPC, image, capacity record, different types of activation profiles, user-defined imagegroup, group profile
or LPAR Capacity group. If the connect token represents a CPC, any subordinate image, capacity record,
activation profile, user-defined image group, group profile or LPAR Capacity group connection associated
with the same CPC connection is also released.

Description

Environment
The requirements for the callers are:

Requirement Details

Minimum authorization: One of the following: PKM allowing key 0-7, supervisor state, or
APF-Authorized

Dispatchable unit mode: Task

Cross memory mode: Any PASN, any HASN, any SASN

AMODE: 31-bit

ASC mode: Primary or access register (AR)

HWIDISC

308 z/OS: z/OS MVS Callable Services for HLL

Requirement Details

Interrupt status: Enabled for I/O and external interrupts

Locks: No locks held

Control parameters: Control parameters must be in the primary address space and
addressable by the caller

Linkage: Standard MVS linkage conventions are used

Programming requirements
See “Syntax, linkage and programming considerations” on page 259 for details about how to call BCPii
services in the various programming languages.

REXX programming considerations for the HWIDISC service
All information for the HWIDISC service applies for REXX requests except:

• In the System REXX environment, BCPii connections are associated with the address space that issued
the AXREXX macro service call. When this address space terminates, BCPii will implicitly disconnect the
connection.

• In the TSO/E and ISV-provided REXX environments, BCPii connections are associated with the current
running task. When this task terminates, BCPii will implicitly disconnect the connection.

Restrictions
BCPii does not allow HWIDISC to be issued from within a BCPii ENF exit routine.

Authorization
The client application must have access to consult the local CPC. This is granted by allowing the
application at least read access to the SAF-protected FACILITY class resource HWI.APPLNAME.HWISERV.

The client application must also have at least read access to the following class resources:

• The SAF-protected FACILITY class resource HWI.TARGET.netid.nau for HWI_CPC,
HWI_RESET_ACTPROF, HWI_IMAGE_ACTPROF, HWI_LOAD_ACTPROF, HWI_IMAGE_GROUP,
HWI_GROUP_PROFILE or HWI_LPAR_GROUP connections.

• The SAF-protected FACILITY class resource HWI.TARGET.netid.nau.imagename for HWI_IMAGE
connections.

• The SAF-protected FACILITY class resource HWI.CAPREC.netid.nau.caprecid for HWI_CAPREC
connections.

Note: BCPii requires the FACILITY class to be RACLIST-specified.

Syntax
Write the call as shown in the syntax diagram. You must code all parameters in the order shown.

Non-REXX parameters REXX parameters

 CALL HWIDISC(
 ReturnCode,
 ConnectToken,
 DiagArea);

address bcpii “hwidisc
ReturnCode
ConnectToken
DiagArea.”

Parameters
The parameters are explained as follows:

HWIDISC

Chapter 19. Base Control Program internal interface (BCPii) 309

ReturnCode
Returned parameter

• Type: Integer (non-REXX), character representation of an integer (REXX)
• Length: 4 bytes (non-REXX)

ReturnCode contains the return code from the service.

ConnectToken
Supplied parameter

• Type: Character string
• Length: 16 bytes

ConnectToken specifies the logical connection to be released. A ConnectToken represents a logical
connection between the application and a CPC, image, capacity record, activation profile, or user-
defined image group, group profile or LPAR Capacity group and is returned as an output parameter on
the HWICONN service call.

In most cases, the ConnectToken specified must have originated from a HWICONN service call that
was issued from the same address space as this service call. For BCPii REXX execs running under the
TSO/E or ISV-provided REXX environments, the ConnectToken specified must have originated from a
HWICONN service call that was issued from the same task.

DiagArea (non-REXX)
DiagArea. (REXX)

Returned parameter

• Type: Character string (non-REXX), stem variable (REXX)
• Length: 32 bytes (non-REXX)

DiagArea contains diagnostic data to help determine the cause of a failure from the service. For many
return codes, the DiagArea can contain further information to help determine the cause of the failure.
See the descriptions of different return codes for a partial list of data returned in this area.

Note: For all environmental errors (with return code X'F00' and higher), the DiagArea might not be
filled in, and the data returned in the area should be ignored.

Field Name (non-
REXX) / Tail
name constant of
the user-defined
DiagArea stem
(REXX)

Field Type (non-REXX) Description

Diag_Index 32-bit integer The array index to the parameter field that causes the error.

Diag_Key 32-bit integer The constant value represents the field that causes the error.

Diag_Actual 32-bit integer The incorrect actual value specified.

Diag_Expected 32-bit integer The expected value to be used.

Diag_CommErr 32-bit integer The returned code that is returned from the console application API
or the BCPii transport layer.

Diag_Text Character (12) Additional diagnostic information in text format.

See Appendix A, “BCPii communication error reason codes,” on page 693 for a partial list of the
descriptive communication transport error return codes and suggested actions.

ABEND codes
If BCPii is unable to properly access the user-supplied parameter list, the call might result in an abend
X'042' with a reason code of X'0003yyyy' because of one of the following reasons:

HWIDISC

310 z/OS: z/OS MVS Callable Services for HLL

Table 67. Reasons for abend X'042', RC X'0003yyyy'

yyyy Reason

0000 The parameters passed by the caller are not in the primary address space.

0001 The parameters passed by the caller are not accessible.

0002 The number of parameters passed by the caller is not correct.

For other severe BCPii errors encountered during the call, an abend X'042' with a different reason code
may result. See z/OS MVS System Codes for additional information.

Return codes
When the service returns control to the caller, GPR 15 and ReturnCode contain a hexadecimal return
code.

Return Code in Hexadecimal
Equate Symbol

Return Code in Hexadecimal
Equate Symbol Meaning and Action

0

HWI_OK

0

HWI_OK

Meaning: Successful completion.

Action: None.

100

HWI_CONNECT_TOKEN_INV

256

HWI_CONNECT_TOKEN_INV

Meaning: Program error. The
specified connect token is not
valid. This return code indicates
that one of the following
conditions has occurred:

• The input connection token
does not exist. A previous
HWICONN service call has
never returned the value
specified on OutConnectToken.

• The connect token does
not represent an active
connection. The connection
specified might have already
been disconnected using the
HWIDISC service call.

• The connect token is not
associated with the address
space of the caller. The
ConnectToken specified is
associated with a different
address space than the caller
of this service call.

Action: Check for probable
coding error.

HWIDISC

Chapter 19. Base Control Program internal interface (BCPii) 311

Return Code in Hexadecimal
Equate Symbol

Return Code in Hexadecimal
Equate Symbol Meaning and Action

101

HWI_COMMUNICATION_ERROR

257

HWI_COMMUNICATION_ERROR

Meaning: A communication error
is detected. The hardware
management console application
API (HWMCA) or the BCPii
transport layer has returned with
a failing return code.

Action: See the DiagArea for
further diagnostic information.
The Diag_CommErr indicates the
return code that is returned
from HWMCA APIs or the BCPii
transport layer.

HWMCA API and BCPii
transport return codes are
provided in Appendix A, “BCPii
communication error reason
codes,” on page 693.

102

HWI_DIAGAREA_INV

258

HWI_DIAGAREA_INV

Meaning: Program error. The
DiagArea is not accessible.

Action: Check for probable
coding error. Verify that the
specified DiagArea is defined as
a 32-byte character field.

901

HWI_DISC_INPROGRESS

2305

HWI_DISC_INPROGRESS

Meaning: Another Disconnect
request is already in progress.
This request is redundant.

Action: None.

F00

HWI_NOT_AVAILABLE

3840

HWI_NOT_AVAILABLE

Meaning: BCPii services are not
available, and the system rejects
the service request.

Action: Notify the system
programmer to start the BCPii
address space and try the
request again. See “Restarting
the HWIBCPii address space” on
page 258 about how to start the
BCPii address space.

Programs can also listen to
ENF68 to determine when BCPii
services are available. See z/OS
MVS Programming: Authorized
Assembler Services Reference
EDT-IXG for how to listen for
BCPii activation messages.

HWIDISC

312 z/OS: z/OS MVS Callable Services for HLL

Return Code in Hexadecimal
Equate Symbol

Return Code in Hexadecimal
Equate Symbol Meaning and Action

F01

HWI_AUTH_FAILURE

3841

HWI_AUTH_FAILURE

Meaning: The caller is PKM8-15
problem state and the program
does not reside in an APF-
authorized library.

Action: Check the calling
program for a probable coding
error.

F02

HWI_NO_SAF_AUTH

3842

HWI_NO_SAF_AUTH

Meaning: The user does not have
correct SAF authorization for the
request.

Action: Check for probable error.
Consider one or more of the
following possible actions:

• Define read access
authorization to the FACILITY
class resource profile
HWI.APPLNAME.HWISERV.

• Define read access
authorization to the FACILITY
class resource profile
HWI.TARGET.netid.nau for a
CPC, activation profile, image
group, group profile or LPAR
Capacity group connection.

• Define read access
authorization to the FACILITY
class resource profile
HWI.TARGET.netid.nau.imagen
ame for an image connection.

• Define read access
authorization to the FACILITY
class resource profile
HWI.CAPREC.netid.nau.capreci
d for a capacity record
connection.

• Ensure that the referenced
Facility Class Profiles are
RACLIST-specified.

F03

HWI_INTERRUPT_STATUS_INV

3843

HWI_INTERRUPT_STATUS_INV

Meaning: The calling program is
disabled. The system rejects this
service request.

Action: Check the calling
program for a probable coding
error.

HWIDISC

Chapter 19. Base Control Program internal interface (BCPii) 313

Return Code in Hexadecimal
Equate Symbol

Return Code in Hexadecimal
Equate Symbol Meaning and Action

F04

HWI_MODE_INV

3844

HWI_MODE_INV

Meaning: The calling program is
not in task mode. The system
rejects this service request.

Action: Check the calling
program for a probable error.

F05

HWI_LOCKS_HELD

3845

HWI_LOCKS_HELD

Meaning: The calling program
is holding one or more locks.
The system rejects this service
request.

Action: Check the calling
program for a probable coding
error.

F06

HWI_UNSUPPORTED_RELEASE

3846

HWI_UNSUPPORTED_RELEASE

Meaning: The system level
does not support this service.
The system rejects this service
request.

Action: Remove the calling
program from the system, and
install it on a system that
supports BCPii services. Then run
the calling program again.

F07

HWI_UNSUPPORTED_ENVIRON
MENT

3847

HWI_UNSUPPORTED_ENVIRON
MENT

Meaning: The system does not
support execution of the service
from the current environment (for
example, calling a BCPii service
from within a BCPii ENF exit
routine).

Action: Issue the BCPii service
from a different execution
environment.

FFF

HWI_UNEXPECTED_ERROR

4095

HWI_UNEXPECTED_ERROR

Meaning: System error. The
service that was called
encountered an unexpected
error. The system rejects the
service call.

Action: Search problem reporting
data bases for a fix for the
problem. If no fix exists, contact
the IBM Support Center.

Example
In the pseudocode example, the caller issues a call to release a connection between the application and a
CPC.

.

.
CALL HWIDISC (ReturnCode, ConnectToken, DiagArea)

HWIDISC

314 z/OS: z/OS MVS Callable Services for HLL

.

.

A REXX programming example for the HWIDISC service:

address bcpii
 "hwidisc Retcode myConnectToken myDiag."

If (RC <> 0) | (Retcode <> 0) Then
 Do
 Say 'Service failed with REXX RC = 'RC' and API Retcode = 'Retcode'.'
 If (RC=Hwi_REXXParmSyntaxError | Retcode<>0) Then
 Do
 Say ’ Diag_index=’ myDiag.DIAG_INDEX
 Say ’ Diag_key=’ myDiag.DIAG_KEY
 Say ’ Diag_actual=’ myDiag.DIAG_ACTUAL
 Say ’ Diag_expected=’ myDiag.DIAG_EXPECTED
 Say ’ Diag_commerr=’ myDiag.DIAG_COMMERR
 Say ’ Diag_text=’ myDiag.DIAG_TEXT
 End
 End

HWIEVENT — Register or unregister for BCPii events
Call the HWIEVENT service for the following purposes:

1. Register an application and its connection to receive notification of:

• One or more hardware or software events occurring on the connected CPC or image.
• Communication errors between BCPii and the connected CPC or image.

2. Delete the registration for one or more previously registered events.

Monitoring events occurring on a particular CPC or image
For hardware and software events, an application can register with BCPii to be notified when an event
occurs for the targeted CPC or image. Under the covers, BCPii communicates the registration request with
the support element (SE) of the targeted CPC or image if necessary and also registers the user-provided
exit with the Event Notification Facility (ENF). When the event occurs on the targeted CPC or image, BCPii
receives notification and signals the appropriate ENF68. The user's exit receives control with data unique
for the event that just occurred. The data mapping for these different events can be found in the public
interface files shipped with BCPii (HWICIC for the C programming language, HWICIREX for the REXX
programming language, and HWICIASM for the assembler programming language). BCPii also provides a
sample of an ENF event exit in SYS1.SAMPLIB (HWIXMCX1) that can be a good starting point for coding a
BCPii ENF exit.

Note: BCPii user-defined image groups are a powerful way to issue commands to all members of a group
simultaneously. Commands targeted to a user-defined image group will result in one image command
response event being generated for each image in the image group. If event notification is desired for an
image in an image group, register the image for the command response event to enable delivery of the
event to the BCPii ENF exit.

Monitoring operating system message events (Hwi_Event_OpSysMsg)
Your application can monitor all operating system messages appearing on a z/OS console by using the
HWIEVENT service to register for the EventIDs parameter value Hwi_Event_OpSysMsg.

For the majority of messages issued on the image being monitored, a single BCPii operating system
message event will contain the entire message in the returned event data (HWIENF68 data mapping).

For messages that are larger than approximately 3000 bytes, it is possible that the operating system
message is longer than the architected maximum buffer size allowed by the communications protocol
used by both the z/OS consoles component and BCPii to communicate with the support element. As a
result, BCPii delivers these single large messages in multiple operating system message events. Each of
these operating system message events representing a single large message will have the same values in

HWIEVENT

Chapter 19. Base Control Program internal interface (BCPii) 315

the HWIENF68 data mapping for the msgId, msgDate, and msgTime fields. An application can determine
that all of the operating system message events have been delivered for the single large message by
consulting the msgId of a subsequent message event. If it has changed from the previous msgId, the
operating system message event represents a new operating system message.

Monitoring communication availability between BCPii and the CPC
While not common, BCPii may occasionally experience communication delays or interruptions of service
between itself and the targeted CPC and its associated support element. BCPii provides a mechanism
through its BCPii communication error class of events to detect these interruptions and to allow an
application to know when these interruptions of service have been resolved.

BCPii keeps a heartbeat between itself and each CPC where its applications desire connectivity. If BCPii
fails to receive its regular heartbeat from an SE associated with a CPC, BCPii attempts a communication
flow to this SE. If the SE responds successfully to this communication attempt by BCPii, BCPii signals a
temporary communication error, (ENF QUAL value 02010001), meaning that the reason for the heartbeat
not being received is not known, but the communication path between BCPii and the SE seems to be
operational at this time. During the past few minutes, one or more events may have been lost.

If the SE does not respond to the BCPii communication attempt, BCPii assumes that there is a serious
communication problem and signals a permanent communication error, (ENF QUAL value 02010002). At
this point, no HWIEVENT or HWICMD API requests to this CPC are processed by BCPii and no event
delivery take place for events registered on this CPC and its images. BCPii closes its internal connections
with the CPC and cleans up resources associated with command processing and event delivery to and
from this CPC.

BCPii then regularly attempts to restart its command processing and event delivery connections to this
CPC. When this connection to the CPC has been re-established, BCPii signals a communication available
event, (ENF QUAL value 02010003). At this point, applications currently having valid connections to this
CPC and its images are allowed to use the HWIEVENT and HWICMD APIs to the CPC and its images.
Receipt of events originating from the CPC and its images commence once again.

An application may choose to register for these communication availability events via the HWIEVENT
ADD service (EventIDs parameter value Hwi_Event_HwCommError), or it may choose to use the ENFREQ
LISTEN macro to listen for these events apart from any specific BCPii connection.

Monitoring the status of the BCPii address space
An application can monitor the status of the BCPii address space itself by using the ENFREQ LISTEN
service and specifying the appropriate QUAL values to monitor when the BCPii address space becomes
active and when it terminates:

• BCPii signals an ENF68 with a QUAL value of 01000002 when the BCPii address space becomes active.
• BCPii signals an ENF68 with a QUAL value of 01000001 when the BCPii address space becomes

unavailable.

While it is possible to use the HWIEVENT service to allow an application to register for the
Hwi_Event_BCPiiStatus event, this is not a recommended way to monitor initialization or termination
of the BCPii address space. When the BCPii address space terminates, BCPii asynchronously asks the
system to delete all ENF registrations made on behalf of applications that have issued HWIEVENT Add
requests. If the deletion of the ENF registration occurs prior to the BCPii address space termination, the
ENF exit will no longer receive control when BCPii signals that it is down.

Description

Environment
The requirements for the callers are:

HWIEVENT

316 z/OS: z/OS MVS Callable Services for HLL

Requirement Details

Minimum authorization: One of the following: PKM allowing key 0-7, supervisor state, or
APF-Authorized

Dispatchable unit mode: Task

Cross memory mode: Any PASN, any HASN, any SASN

AMODE: 31-bit

ASC mode: Primary or access register (AR)

Interrupt status: Enabled for I/O and external interrupts

Locks: No locks held

Control parameters: Control parameters must be in the primary address space and
addressable by the caller

Linkage: Standard MVS linkage conventions are used

Programming requirements
See “Syntax, linkage and programming considerations” on page 259 for details about how to call BCPii
services in the various programming languages. For programming language C, see “Restrictions” on page
317.

See “HWIEVENT” on page 697 for the summary table of the BCPii HWIEVENT types and the objects that
can be registered or unregistered for each event.

REXX programming considerations for the HWIEVENT service
All information for the HWIEVENT service applies for REXX requests except:

• EventIDs is a 32-element stem-variable representing all of the event bits as defined in the HWICIREX
include file.

• Because the Event Notification Facility (ENF) does not support REXX exits, the caller must provide the
address of a non-REXX ENF exit routine.

• The EventExitAddr must be specified as the 8-character representation of a 4-byte hexadecimal value.

Restrictions
• This service is not used by C language callers running in a z/OS UNIX System Services environment. See

“HWIManageEvents — Manage the list of BCPii events” on page 446.
• BCPii does not allow HWIEVENT to be issued from within a BCPii ENF exit routine.
• BCPii does not allow HWIEVENT to be issued from a REXX exec running in the TSO/E or ISV-provided

REXX environments.

Authorization
The client application must have access to consult the local CPC. This is granted by allowing the
application at least read access to the SAF-protected FACILITY class resource HWI.APPLNAME.HWISERV.

The client application must have at least read access to the SAF-protected FACILITY
class resource HWI.TARGET.netid.nau for a ConnectToken representing a CPC connection, or
HWI.TARGET.netid.nau.imagename for ConnectToken representing an image connection.

Note: BCPii requires the FACILITY class to be RACLIST-specified.

Syntax
Write the call as shown in the syntax diagram. You must code all parameters in the order shown.

HWIEVENT

Chapter 19. Base Control Program internal interface (BCPii) 317

Non-REXX parameters REXX parameters

 CALL HWIEVENT(
 ReturnCode,
 ConnectToken,
 EventAction,
 EventIDs,
 EventExitMode,
 EventExitAddr,
 EventExitParm,
 DiagArea);

address bcpii “hwievent
ReturnCode
ConnectToken
EventAction
EventIDs.
EventExitMode
EventExitAddr
EventExitParm
DiagArea.”

Parameters
The parameters are explained as follows:
ReturnCode

Returned parameter

• Type: Integer (non-REXX), character representation of an integer (REXX)
• Length: 4 bytes (non-REXX)

ReturnCode contains the return code from the service.

ConnectToken
Supplied parameter

• Type: Character string
• Length: 16 bytes

ConnectToken represents a logical connection between the application and a CPC or image. The
ConnectToken is an output parameter on the HWICONN service call.

The ConnectToken specified must have originated from a HWICONN service call that was issued from
the same address space as this service call.

EventAction
Supplied parameter

• Type: Integer (non-REXX), character representation of an integer (REXX)
• Length: 4 bytes (non-REXX)

EventAction specifies the type of action for the service.

Constant in Hexadecimal (Decimal)
Equate Symbol Description

1

(1)

HWI_EVENT_ADD

Registers to be notified when the requested events occur.

2

(2)

HWI_EVENT_DELETE

Deletes the registration for notification.

EventIDs (non-REXX)
EventIDs. (REXX)

Supplied parameter

• Type: Integer (non-REXX), stem variable (REXX)
• Length: 128 bits (16 bytes) (non-REXX)

EventIDs specifies the events to be added or deleted.

HWIEVENT

318 z/OS: z/OS MVS Callable Services for HLL

Non-REXX:
Each event is a 1-bit field from bit position 97 to 128 in this data area. If the bit is on, the service
performs the EventAction operation for the event on the requested connection.

REXX:
Each event is represented by an IBM-supplied EventIDs tail label or tail value constant. If the
value is on, the service performs the EventAction operation for the event on the requested
connection.

It is recommended to use the IBM-supplied EventIDs tail labels defined in HWICIREX.

Note: A single connection may not register for a particular event more than once.

The following event IDs or tail labels can be specified:

EventIDs (non-REXX) / tail
label for EventIDs stem
(REXX)

Bit position in
structure specified on
EventIDs (non-REXX)

Tail value constant
of the user-defined

EventIDs stem (REXX)
Description

Hwi_EventID_EyeCatcher 1-96 N/A Control block identifier.

Note: HWI_EVENTID_TEXT can be used to initialize
this field.

Hwi_Event_CmdResp 97 1 Requests to add or delete the registration for
notification of the command response events.

Note: The input connection token represents a CPC
connection or an image connection.

Hwi_Event_StatusChg 98 2 Requests to add or delete the registration for
notification of the status change events.

Note: The input connection token represents a CPC
connection or an image connection.

Hwi_Event_NameChg 99 3 Requests to add or delete the registration for
notification of the object name change events.

Note: The input connection token represents a CPC
connection or an image connection.

Hwi_Event_ActProfChg 100 4 Requests to add or delete the registration for
notification of the change events for the activation
profile name.

Note: The input connection token represents a CPC
connection or an image connection.

Hwi_Event_ObjCreate 101 5 Requests to add or delete the registration for
notification of the object created events.

Note: The input connection token represents a CPC
connection or an image connection.

Hwi_Event_ObjDestroy 102 6 Requests to add or delete the registration for
notification of the object destroyed (deleted) events.

Note: The input connection token represents a CPC
connection or an image connection.

Hwi_Event_ObjException 103 7 Requests to add or delete the registration for
notification of the exception state events.

Note: The input connection token represents a CPC
connection or an image connection.

Hwi_Event_ApplStarted 104 8 Requests to add or delete the registration for
notification of the console application started events.

Note: The input connection token must only represent
a CPC connection.

HWIEVENT

Chapter 19. Base Control Program internal interface (BCPii) 319

EventIDs (non-REXX) / tail
label for EventIDs stem
(REXX)

Bit position in
structure specified on
EventIDs (non-REXX)

Tail value constant
of the user-defined

EventIDs stem (REXX)
Description

Hwi_Event_ApplEnded 105 9 Requests to add or delete the registration for
notification of the console application ended events.

Note: The input connection token must only represent
a CPC connection.

Hwi_Event_HwMsg 106 10 Requests to add or delete the registration for
notification of the hardware message events.

Note: The input connection token must only represent
a CPC connection.

Hwi_Event_HwMsgDel 107 11 Requests to add or delete the registration for
notification of the hardware message deletion events.

Note: The input connection token must only represent
a CPC connection.

Hwi_Event_SecurityEvent 108 12 Requests to add or delete the registration for
notification of the support element (SE) console
security events.

Note: The input connection token must only represent
a CPC connection.

Hwi_Event_CapacityChg 109 13 Requests to add or delete the registration for
notification of the capacity change events.

Note: The input connection token must only represent
a CPC connection.

Hwi_Event_CapacityRecord 110 14 Requests to add or delete the registration for
notification of the capacity record change events.

Note: The input connection token must only represent
a CPC connection.

Hwi_Event_OpSysMsg 111 15 Requests to add or delete the registration for
notification of the operating system message events.

Note: The input connection token must only represent
an image connection.

Hwi_Event_HwCommError 112 16 Requests to add or delete the registration for
notification of the hardware communication error
events.

Note: The input connection token must only represent
a CPC connection.

Hwi_Event_BCPIIStatus 113 17 Requests to add or delete the registration for
notification of BCPii status change events.

Note: This method is not recommended for
determining if the BCPii address space becomes
available or unavailable. See the description of the
HWIEVENT service for more information.

Hwi_Event_DisabledWait 114 18 Requests to add or delete the registration for
notification of disabled wait events.

Note: The input connection token must only represent
an image connection.

Hwi_Event_PowerChange 115 19 Requests to add or delete the registration for
notification of any power characteristics change
events.

Note: The input connection token must represent a
CPC connection.

Hwi_Event_Reserved 116-128 N/A Reserved, must be initialized to binary zeros.

HWIEVENT

320 z/OS: z/OS MVS Callable Services for HLL

EventExitMode
Supplied parameter

• Type: Integer (non-REXX), character representation of an integer (REXX)
• Length: 4 bytes (non-REXX)

EventExitMode specifies the type of the exit mode for the service.

Constant in Hexadecimal (Decimal)
Equate Symbol Description

1

(1)

HWI_EVENT_TASK

The base control program internal interface gives control in task mode to an ENF listen-exit
routine as specified on the EventExitAddr parameter. Task mode ENF exits must reside in
common storage.

At present, only one value is allowed for this parameter. In the future, IBM might choose to allow
additional values to be specified.

EventExitAddr
Supplied parameter

• Type: Pointer (non-REXX), character representation of a pointer (REXX)
• Length: 4 bytes (non-REXX), 8 characters (REXX)

EventExitAddr specifies the address of an ENF listen-exit routine that receives control when the
requested event occurs. The application is responsible for writing this ENF exit routine, as described
in the ENFREQ documentation for ENF 68 found in z/OS MVS Programming: Authorized Assembler
Services Reference EDT-IXG. For further information regarding the coding of ENF exits, see the
"Listening for System Events" chapter in the z/OS MVS Programming: Authorized Assembler Services
Guide.

EventExitParm
Supplied parameter

• Type: Pointer or integer (non-REXX), character representation of a pointer or integer (REXX)
• Length: 4 bytes (non-REXX), up to 8 numeric characters (REXX)

EventExitParm specifies an optional value to be passed to the ENF listen-exit when invoked, as
described in the ENFREQ documentation for ENF 68 found in z/OS MVS Programming: Authorized
Assembler Services Reference EDT-IXG.

DiagArea (non-REXX)
DiagArea. (REXX)

Returned parameter

• Type: Character string (non-REXX), stem variable (REXX)
• Length: 32 bytes (non-REXX)

DiagArea contains diagnostic data to help determine the cause of a failure from the service. For many
return codes, the DiagArea can contain further information to help determine the cause of the failure.
See the descriptions of different return codes for a partial list of data returned in this area.

Note: For all environmental errors (with return code X'F00' and higher), the DiagArea might not be
filled in, and the data returned in the area should be ignored.

Field Name (non-
REXX) / Tail
name constant of
the user-defined
DiagArea stem
(REXX)

Field Type (non-REXX) Description

Diag_Index 32-bit integer The array index to the parameter field that causes the error.

Diag_Key 32-bit integer The constant value represents the field that causes the error.

HWIEVENT

Chapter 19. Base Control Program internal interface (BCPii) 321

Field Name (non-
REXX) / Tail
name constant of
the user-defined
DiagArea stem
(REXX)

Field Type (non-REXX) Description

Diag_Actual 32-bit integer The incorrect actual value specified.

Diag_Expected 32-bit integer The expected value to be used.

Diag_CommErr 32-bit integer The return code that is returned from the console application API or
the BCPii transport layer.

Diag_Text Character (12) Additional diagnostic information in text format.

See Appendix A, “BCPii communication error reason codes,” on page 693 for a partial list of the
descriptive communication transport error return codes and suggested actions.

ABEND codes
If BCPii is unable to properly access the user-supplied parameter list, the call might result in an abend
X'042' with a reason code of X'0004yyyy' because of one of the following reasons:

Table 68. Reasons for abend X'042', RC X'0004yyyy'

yyyy Reason

0000 The parameters passed by the caller are not in the primary address space.

0001 The parameters passed by the caller are not accessible.

0002 The number of parameters passed by the caller is not correct.

For other severe BCPii errors encountered during the call, an abend X'042' with a different reason code
may result. See z/OS MVS System Codes for additional information.

Return codes
When the service returns control to the caller, GPR 15 and ReturnCode contain a hexadecimal return
code.

Return Code in Hexadecimal
Equate Symbol

Return Code in Decimal Equate
Symbol Meaning and Action

0

HWI_OK

0

HWI_OK

Meaning: Successful completion.

Action: None.

HWIEVENT

322 z/OS: z/OS MVS Callable Services for HLL

Return Code in Hexadecimal
Equate Symbol

Return Code in Decimal Equate
Symbol Meaning and Action

100

HWI_CONNECT_TOKEN_INV

256

HWI_CONNECT_TOKEN_INV

Meaning: Program error. The
specified connect token is not
valid. This return code indicates
that one of the following
conditions has occurred:

• The connect token does not
exist. A previous HWICONN
service call has never returned
the value specified on
OutConnectToken.

• The connect token does not
represent an active connection.
The connection specified
might have already been
disconnected by the HWIDISC
service call.

• The connect token is not
associated with the address
space of the caller. The
ConnectToken specified is
associated with a different
address space than the caller
of this service call.

Action: Check for probable
coding error.

101

HWI_COMMUNICATION_ERROR

257

HWI_COMMUNICATION_ERROR

Meaning: A communication error
is detected. The hardware
management console application
API (HWMCA) or the BCPii
transport layer has returned with
a failing return code.

Action: See the DiagArea for
further diagnostic information.
The Diag_CommErr indicates the
return code that is returned
from HWMCA APIs or the BCPii
transport layer. BCPiis CTRACE
might provide further diagnostic
information if the problem can
not easily be resolved. See
z/OS MVS System Commands for
further information about starting
and stopping CTRACE.

HWMCA API and BCPii
transport return codes are
provided in Appendix A, “BCPii
communication error reason
codes,” on page 693.

HWIEVENT

Chapter 19. Base Control Program internal interface (BCPii) 323

Return Code in Hexadecimal
Equate Symbol

Return Code in Decimal Equate
Symbol Meaning and Action

102

HWI_DIAGAREA_INV

258

HWI_DIAGAREA_INV

Meaning: Program error. The
DiagArea is not accessible.

Action: Check for probable
coding error. Verify that the
specified DiagArea is defined as
a 32-byte character field.

103

HWI_CONNECT_TOKEN_INACTIV
E

259

HWI_CONNECT_TOKEN_INACTIV
E

Meaning: The specified connect
token is no longer valid.
The connection has been
disconnected, or it is in the
progress of being disconnected.

Action: Check for probable
coding error. Verify that the
specified connect token is still
active. If connectivity to the
targeted CPC connection no
longer exists, all connections
associated with that CPC will no
longer have a connect token that
can be used.

104

HWI_TARGET_CPC_CHANGED

260

HWI_TARGET_CPC_CHANGED

Meaning: The CPC name
represented by the specified
token is valid but does not
represent the same physical
machine that was targeted
by the initial HWICONN call.
All connections that were
established prior to the name
change can no longer be used.

Action: The application should
cease using this connect token.
If the application intends to
target the CPC using the name
represented by the specified
connect token, it must first
reconnect to the CPC before
issuing any BCPii service call.

701

HWI_EVENT_EXITMODE_INV

1793

HWI_EVENT_EXITMODE_INV

Meaning: Program error. The
requested EventExitMode on the
call is not valid. The system
rejects the service call.

Action: Check for probable
coding error.

HWIEVENT

324 z/OS: z/OS MVS Callable Services for HLL

Return Code in Hexadecimal
Equate Symbol

Return Code in Decimal Equate
Symbol Meaning and Action

702

HWI_EVENT_EXITADDR_INV

1794

HWI_EVENT_EXITADDR_INV

Meaning: Program error. The
requested EventExitAddr on the
call is not valid. The system
rejects the service call.

Action: Check for probable
coding error.

703

HWI_EVENT_ACTION_INV

1795

HWI_EVENT_ACTION_INV

Meaning: Program error. The
requested EventAction on the call
is not valid. The system rejects
the service call.

Action: Check for probable
coding error.

704

HWI_EVENT_IDS_INV

1796

HWI_EVENT_IDS_INV

Meaning: Program error. The
requested EventIDs on the call
is not valid. The system rejects
the service call. This return code
indicates one of the following
conditions has occurred:

• The first 12 bytes of
the EventIDs parameter is
not equal to the expected
Eyecatcher of HWIEVENTBLCK
(non-REXX only).

• The reserved area of the
EventIDs parameter contains a
non-zero value.

• The EventIDs specified applies
only to a CPC connection,
but the ConnectToken specified
represents an image or
capacity record connection.

• The EventIDs specified applies
only to image connections,
but the ConnectToken specified
represents a CPC or capacity
record connection.

• A request which specified
an EventAction of
HWI_EVENT_DELETE also
specified EventIDs of one
or more events that were
not registered on a previous
HWIEVENT EventAction =
HWI_EVENT_ADD request for
the connection.

Action: Check for probable
coding error.

HWIEVENT

Chapter 19. Base Control Program internal interface (BCPii) 325

Return Code in Hexadecimal
Equate Symbol

Return Code in Decimal Equate
Symbol Meaning and Action

F00

HWI_NOT_AVAILABLE

3840

HWI_NOT_AVAILABLE

Meaning: BCPii is not available,
and the system rejects the
service request.

Action: Notify the system
programmer to start the BCPii
address space and try the
request again. See “Restarting
the HWIBCPii address space” on
page 258 about how to start the
BCPii address space.

Programs can also listen to
ENF68 to determine when BCPii
services are available. See z/OS
MVS Programming: Authorized
Assembler Services Reference
EDT-IXG for how to listen for
BCPii activation messages.

F01

HWI_AUTH_FAILURE

3841

HWI_AUTH_FAILURE

Meaning: The caller is PKM8-15
problem state and the program
does not reside in an APF-
authorized library.

Action: Check the calling
program for a probable coding
error.

F02

HWI_NO_SAF_AUTH

3842

HWI_NO_SAF_AUTH

Meaning: The user does not have
correct SAF authorization for the
request.

Action: Check for probable error.
Consider one or more of the
following possible actions:

• Define read access
authorization to the FACILITY
class resource profile
HWI.APPLNAME.HWISERV.

• Define read access
authorization to the FACILITY
class resource profile
HWI.TARGET.netid.nau for CPC
connection.

• Define read access
authorization to the FACILITY
class resource profile
HWI.TARGET.netid.nau.imagen
ame for an image connection.

• Ensure that the referenced
FACILITY class profiles are
RACLIST-specified.

HWIEVENT

326 z/OS: z/OS MVS Callable Services for HLL

Return Code in Hexadecimal
Equate Symbol

Return Code in Decimal Equate
Symbol Meaning and Action

F03

HWI_INTERRUPT_STATUS_INV

3843

HWI_INTERRUPT_STATUS_INV

Meaning: The calling program is
disabled. The system rejects this
service request.

Action: Check the calling
program for a probable coding
error.

F04

HWI_MODE_INV

3844

HWI_MODE_INV

Meaning: The calling program is
not in task mode. The system
rejects this service request.

Action: Check the calling
program for a probable error.

F05

HWI_LOCKS_HELD

3845

HWI_LOCKS_HELD

Meaning: The calling program
is holding one or more locks.
The system rejects this service
request.

Action: Check the calling
program for a probable coding
error.

F06

HWI_UNSUPPORTED_RELEASE

3846

HWI_UNSUPPORTED_RELEASE

Meaning: The system level
does not support this service.
The system rejects this service
request.

Action: Remove the calling
program from the system, and
install it on a system that
supports BCPii services. Then run
the calling program again.

F07

HWI_UNSUPPORTED_ENVIRON
MENT

3847

HWI_UNSUPPORTED_ENVIRON
MENT

Meaning: The system does not
support execution of the service
from the current environment (for
example, calling a BCPii service
from within a BCPii ENF exit
routine).

Action: Issue the BCPii service
from a different execution
environment.

FFF

HWI_UNEXPECTED_ERROR

4095

HWI_UNEXPECTED_ERROR

Meaning: System error. The
service that was called
encountered an unexpected
error. The system rejects the
service call.

Action: Search problem reporting
data bases for a fix for the
problem. If no fix exists, contact
the IBM Support Center.

HWIEVENT

Chapter 19. Base Control Program internal interface (BCPii) 327

Example
In the pseudocode example, the caller issues a call to register to be notified when the command response
events and status change events occur.

Declare (ReturnCode, EventAction, EventExitMode) Fixed(31);
Declare ConnectToken Isa(HWI_CONNTOKEN_TYPE):
Declare EventIDs Isa(HWI_EVENTIDS_TYPE):
Declare (EventExitAddr, EventExitParm) Ptr(31);
Declare DiagArea Isa(HWI_DIAGAREA_TYPE);
Declare EventExit Entry External;

EventAction = HWI_EVENT_ADD;
Hwi_EventID_EyeCatcher = HWI_EVENTID_TEXT;
Hwi_Event_CmdResp = on;
Hwi_Event_StatusChg = on;
Hwi_Event_Reserved = 0;
EventExitMode = HWI_EVENT_TASK;
EventExitAddr = ADDR(EventExit);
EventExitParm = 0;

CALL HWIEVENT (ReturnCode, ConnectToken, EventAction, EventIDs,
 EventExitMode, EventExitAddr, EventExitParm, DiagArea);

A REXX programming example for the HWIEVENT service:

myAction = HWI_EVENT_ADD
myEventIDs. = 0 /*Initialize all EventIds to 0 */
myEventIDs.Hwi_Event_CmdResp = 1
myEventIDs.Hwi_Event_StatusChg = 1
myEventIDs.Hwi_Event_ActProfChg = 1

myMode = HWI_EVENT_TASK
myEventExitAddr = 0F123456 /* char rep of 4 byte hex address */
myEventExitParm = 0

address bcpii
"hwievent RetCode myConnectToken myEventAction myEventIDs. myEventExitMode
 myEventExitAddr myEventExitParm myDiag."

If (RC <> 0) | (Retcode <> 0) Then
 Do
 Say 'Service failed with REXX RC = 'RC' and API Retcode = 'Retcode'.'
 If (RC=Hwi_REXXParmSyntaxError | Retcode<>0) Then
 Do
 Say ’ Diag_index=’ myDiag.DIAG_INDEX
 Say ’ Diag_key=’ myDiag.DIAG_KEY
 Say ’ Diag_actual=’ myDiag.DIAG_ACTUAL
 Say ’ Diag_expected=’ myDiag.DIAG_EXPECTED
 Say ’ Diag_commerr=’ myDiag.DIAG_COMMERR
 Say ’ Diag_text=’ myDiag.DIAG_TEXT
 End
 End

HWILIST — Retrieve HMC and BCPii configuration-related
information

Call the HWILIST service to retrieve hardware management console (HMC) and BCPii configuration-
related information. Depending on which information is requested, the data returned by this service can
be used on subsequent BCPii service calls to take the following actions:

• Connect to a central processor complex (CPC), image (LPAR), capacity record (CAPREC), reset activation
profile, image activation profile, load activation profile, group profile or LPAR Capacity group using the
HWICONN API.

• Register for the proper events (HWIEVENT) using the HWIEVENT API.
• Connect to the local CPC or image.
• Connect to a user-defined image group.

Note: A returned CPC name does not guarantee that an application will be able to connect to that
particular resource using the HWICONN API. Connecting to a CPC involves setup issues such as setting up

HWILIST

328 z/OS: z/OS MVS Callable Services for HLL

connectivity to a support element and defining the necessary BCPii community name on both the support
element and the security product. For more information about the steps that need to be completed before
connectivity to a particular CPC is complete, see “Setting up connectivity to the support element” on page
246 and “Community name defined in the security product for each CPC” on page 253.

Description

Environment
The requirements for the callers are:

Requirement Details

Minimum authorization: One of the following: PKM allowing key 0-7, supervisor state, or
APF-Authorized

Dispatchable unit mode: Task

Cross memory mode: Any PASN, any HASN, any SASN

AMODE: 31-bit

ASC mode: Primary or access register (AR)

Interrupt status: Enabled for I/O and external interrupts

Locks: No locks held

Control parameters: Control parameters must be in the primary address space and
addressable by the caller

Linkage: Standard MVS linkage conventions are used

Programming requirements
See “Syntax, linkage and programming considerations” on page 259 for details about how to call BCPii
services in the various programming languages.

REXX programming considerations for the HWILIST service
All information for the HWILIST service applies for REXX requests except:

• An answer area stem variable (for example, AnswerArea) replaces AnswerArea_Ptr.
• AnswerArea.0 replaces NumOfDataItemsReturned.
• AnswerArea.i will contain the i-th list value on return. For a list type of HWI_LIST_EVENTS, AnswerArea.i

will contain the i-th event bit value on return.
• AnswerAreaLen is not returned.

Restrictions
BCPii does not allow HWILIST to be issued from within a BCPii ENF exit routine.

BCPii does not allow HWILIST with a ListType of HWI_LIST_EVENTS to be issued by a REXX exec running
in the TSO/E REXX or ISV-provided REXX environments.

Authorization
The client application must have access to consult the local CPC. This is granted by allowing the
application at least read access to the SAF-protected FACILITY class resource HWI.APPLNAME.HWISERV.

For a ListType of HWI_LIST_CPCS, when BCPii is creating the list of CPC network addresses, only
those CPC network addresses that the application has at least read access to are listed. The
HWI.TARGET.netid.nau FACILITY class resource is consulted to determine this.

HWILIST

Chapter 19. Base Control Program internal interface (BCPii) 329

For a ListType of HWI_LIST_IMAGES, when BCPii is creating the list of image (LPAR) names and if the
input ConnectToken represents a CPC or Image Group connection , only those image names that the
application has at least read access to are listed. The HWI.TARGET.netid.nau.imagename FACILITY class
resource is consulted to determine this.

If the input ConnectToken represents an LPAR capacity group connection, all image names
associated with the group will be listed (provided the Application has at least read access to the
HWI.TARGET.netid.nau FACILITY class resource for the CPC where the group is defined).

For a ListType of HWI_LIST_CAPRECS, when BCPii is creating the list of capacity records,
only those capacity records that the application has at least read access to are listed. The
HWI.CAPREC.netid.nau.caprecid FACILITY class resource is consulted to determine this.

For a ListType of HWI_LIST_EVENTS, an application must have at least read access to the SAF-protected
FACILITY class resource HWI.TARGET.netid.nau for a CPC connection; or at least read access to the
SAF-protected FACILITY class resource HWI.TARGET.netid.nau.imagename for an image connection.

For a ListType of HWI_LIST_LOCALCPC, an application must have at least read access to the
HWI.TARGET.netid.nau FACILITY class resource profile where netid.nau represents the local CPC network
address.

For a ListType of HWI_LIST_LOCALIMAGE, an application must have at least read access to the
HWI.TARGET.netid.nau.imagename FACILITY class resource profile where netid.nau represents the local
CPC network address and imagename represents the local image (LPAR) name.

For a ListType of HWI_LIST_RESET_ACTPROF, HWI_LIST_IMAGE_ACTPROF, or
HWI_LIST_LOAD_ACTPROF, when BCPii is creating the list of activation profiles names and if the input
ConnectToken represents a CPC connection, an application needs to have at least read access to the
HWI.TARGET.netid.nau FACILITY class resource for the CPC to which the activation profiles apply.

For a ListType of HWI_LIST_IMAGE_ACTPROF, if the input ConnectToken represents a group profile
connection, all image activation profile names associated with the corresponding group profile will be
listed (provided the Application has at least read access to the HWI.TARGET.netid.nau FACILITY class
resource for the CPC to which the group profile applies).

For a ListType of HWI_LIST_IMAGEGROUPS, an application must have at least read access to the
HWI.TARGET.netid.nau FACILITY class resource for the CPC on which image groups may be defined.

For a ListType of HWI_LIST_GROUP_PROFILES, when BCPii is creating the list of group profile names, an
application needs to have at least read access to the HWI.TARGET.netid.nau FACILITY class resource for
the CPC to which the group profiles apply.

For a ListType of HWI_LIST_LPAR_GROUPS, an application must have at least read access to the
HWI.TARGET.netid.nau FACILITY class resource for the CPC to which the LPAR Capacity groups apply.

Note: BCPii requires the FACILITY class to be RACLIST-specified.

Syntax
Write the call as shown in the syntax diagram. You must code all parameters in the order shown.

Non-REXX parameters REXX parameters

 CALL HWILIST(
 ReturnCode,
 ConnectToken,
 ListType,
 NumOfDataItemsReturned,
 AnswerArea_Ptr,
 AnswerAreaLen,
 DiagArea);

address bcpii “hwilist
ReturnCode
ConnectToken
ListType

AnswerArea.

DiagArea.”

Parameters
The parameters are explained as follows:

HWILIST

330 z/OS: z/OS MVS Callable Services for HLL

ReturnCode
Returned parameter

• Type: Integer (non-REXX), character representation of an integer (REXX)
• Length: 4 bytes (non-REXX)

ReturnCode contains the return code from the service.

ConnectToken
Supplied parameter

• Type: Character string
• Length: 16 bytes

ConnectToken represents a logical connection between the application and a CPC, image, or other
entity. The ConnectToken is an output parameter on the HWICONN service call.

In most cases, the ConnectToken specified must have originated from a HWICONN service call that
was issued from the same address space as this service call. For BCPii REXX execs running under
TSO/E or ISV-provided REXX environments, the ConnectToken specified must have originated from a
HWICONN service call that was issued from the same task.

If the ListType is HWI_LIST_CPCS, HWI_LIST_LOCALCPC, or HWI_LIST_LOCALIMAGE, this parameter
is not relevant and is ignored.

If the ListType is HWI_LIST_IMAGES, this request must either be directed to a specific CPC, one of its
defined LPAR Capacity groups or to a specific user-defined image group. Therefore, a connect token
that represents an active CPC, LPAR Capacity group, or user-defined image group connection must be
specified.

If the ListType is HWI_LIST_CAPRECS, any of the activation profile (APROF) list types,
HWI_LIST_IMAGEGROUPS, HWI_LIST_GROUP_PROFILES, or HWI_LIST_LPAR_GROUPS, this request
must be directed to a specific CPC. Therefore, a connect token that represents an already active HWI
CPC connection must be specified.

If the ListType is HWI_LIST_IMAGE_ACTPROF, this request must be directed to a specific group
profile. Therefore, a connect token that represents an already active HWI group profile connection
must be specified.

For a ListType of HWI_LIST_EVENTS, the connect token must represent an already active HWI CPC or
image connection, depending on which events are to be listed. If a list of CPC events is required, the
connect token must represent an active CPC connection. Likewise, if a list of image events is required,
the connect token must represent an active image connection.

ListType
Supplied parameter

• Type: Integer (non-REXX), character representation of an integer (REXX)
• Length: 4 bytes (non-REXX)

ListType specifies the type of request for the service.

Constant in Hexadecimal (Decimal) Equate
Symbol Description

1

(1)

HWI_LIST_CPCS

Requests a list of CPCs that can be accessed.

2

(2)

HWI_LIST_IMAGES

Requests a list of image names.The specified connection token can represent a CPC,
user defined image group, or an LPAR Capacity group connection.

Note: This ListType for LPAR Capacity group (HWI_LPAR_GROUP) connection is only
available when targeting a z14 GA2 or higher CPC.

HWILIST

Chapter 19. Base Control Program internal interface (BCPii) 331

Constant in Hexadecimal (Decimal) Equate
Symbol Description

3

(3)

HWI_LIST_EVENTS

Requests a list of previously subscribed events.

Note: This ListType is not supported for REXX execs running in the TSO/E or ISV-
provided REXX environments.

4

(4)

HWI_LIST_CAPRECS

Requests a list of capacity record ID names that can be accessed.

5

(5)

HWI_LIST_LOCALCPC

Requests the name of the local CPC on which the caller is currently executing.

6

(6)

HWI_LIST_LOCALIMAGE

Requests the name of the local image (LPAR) on which the HWILIST caller is currently
executing.

7

(7)

HWI_LIST_RESET_ACTPROF

Requests a list of the currently defined reset activation profiles.

8

(8)

HWI_LIST_IMAGE_ACTPROF

Requests a list of the currently defined image activation profiles. The specified
connection token can represent a CPC connection token or a group profile connection
token.

Note: This ListType for group profile (HWI_GROUP_PROFILE) connection is only
available when targeting a z14 GA2 or higher CPC.

9

(9)

HWI_LIST_LOAD_ACTPROF

Requests a list of the currently defined load activation profiles.

A

(10)

HWI_LIST_IMAGEGROUPS

Requests a list of the currently defined user-defined image groups.

Note: This ListType is only available when targeting a z10 or higher CPC.

B

(11)

HWI_LIST_GROUP_PROFILES

Requests a list of the currently defined group profiles.

C

(12)

HWI_LIST_LPAR_GROUPS

Requests a list of the currently defined LPAR Capacity groups.

Note: This ListType is only available when targeting a z14 GA2 or higher CPC.

NumofDataItemsReturned (non-REXX)
Returned parameter

• Type: Integer
• Length: 4 bytes

NumofDataItemsReturned contains the number of data items returned in the answer area.

AnswerArea_Ptr (non-REXX)
AnswerArea. (REXX)

Supplied parameter

• Type: Pointer (non-REXX), stem variable (REXX)
• Length: 4 bytes (non-REXX)

HWILIST

332 z/OS: z/OS MVS Callable Services for HLL

Non-REXX:
AnswerArea_Ptr specifies the address of the answer area where the requested data is returned.

REXX:
A list of the requested objects is returned in an array form of x.n; where x is the user-defined
AnswerArea stem variable and n is the n-th element in the stem array.

The AnswerArea.0 stem variable counter holds the number of items returned.

The ListType specified determines the format of the returned data.

ListType Data to be returned (non-REXX) Data to be returned (REXX)

HWI_LIST_CPCS A string comprised of a list of blank-
separated concatenated 17-character CPC
network addresses. Each network address is
in the form of a 1- through 8-character netid,
followed by a period, and followed by a 1-
through 8-character network addressable unit
(NAU) name. The network address is padded
with trailing blanks if the total string length of
the network address is less than 17 characters.

Example: net1.cpc01.

A stem array list of CPC network addresses.

Each network address is in the form of a 1-
through 8-character netid, followed by a period,
and followed by a 1- through 8-character
network addressable unit (NAU) name.

Example: net1.cpc01.

HWI_LIST_IMAGES A string comprised of a list of blank-separated
concatenated 8-character image names padded
with trailing blanks.

A stem array list of image names.

HWI_LIST_EVENTS A 128-bit string. The first 96 bits (12 bytes)
is an eye-catcher value of HWIEVENTBLCK.
The last 32 bits represents events already
registered for notification. These events were
registered by previous HWIEVENT ADD service
calls. The returned event indicators are
specific to the ConnectToken specified. These
indicators are mapped by the type structure
HWI_EVENTIDS_TYPE from the BCPii services
interface declaration file. If a particular
indicator is on, that event is active for this
connection.

A stem array list of Boolean values of
the EventIDs, which are represented by the
EventIDs tail labels defined in HWICIREX.

For example, if x is the answerarea stem
variable, the returned Boolean data indicates
the event registration status.

x.Hwi_Event_CmdResp = 1 (on)
x.Hwi_Event_StatusChg = 0 (off)
 :
 :
x.Hwi_Event_PowerChange = 0 (off)

Note: This ListType is not supported for REXX
execs running in the TSO/E or ISV-provided
REXX environments.

HWI_LIST_CAPRECS A string comprised of a list of blank-separated
concatenated 8-character CAPREC names
padded with trailing blanks.

A stem array list of CAPREC names.

HWI_LIST_LOCALCPC A 17–character string representing the CPC
network address of the local CPC. The network
address is in the form of a 1- to 8-character
netid, followed by a period, followed by a 1-
to 8-character network addressable unit (NAU)
name. The network address is padded with
trailing blanks.

The CPC network address of the local CPC is
returned in the first and only element in the
stem array.

The network address is in the form of a 1-
through 8-character netid, followed by a period,
and followed by a 1- through 8-character
network addressable unit (NAU) name.

HWI_LIST_LOCALIMAGE An 8–character string representing the image
name of the local image (LPAR) padded with
trailing blanks.

The image name of the local image (LPAR) is
returned in the first and only element in the
stem array.

HWI_LIST_RESET_ACTPROF A string comprised of a list of concatenated 16–
character reset activation profile names padded
with trailing blanks.

A stem array list of reset activation profile
names.

HWI_LIST_IMAGE_ACTPROF A string comprised of a list of concatenated
16–character image activation profile names
padded with trailing blanks.

A stem array list of image activation profile
names.

HWILIST

Chapter 19. Base Control Program internal interface (BCPii) 333

ListType Data to be returned (non-REXX) Data to be returned (REXX)

HWI_LIST_LOAD_ACTPROF A string comprised of a list of concatenated 16–
character load activation profile names padded
with trailing blanks.

A stem array list of load activation profile
names.

HWI_LIST_IMAGEGROUPS A null-terminated string of null-separated user-
defined image group names.

A stem array list of user-defined image group
names.

HWI_LIST_GROUP_PROFILES A string comprised of a list of concatenated
8-character alphanumeric group profile names
padded with trailing blanks.

A stem array list of group profile names.

HWI_LIST_LPAR_GROUPS A string comprised of a list of concatenated
8-character alphanumeric LPAR Capacity group
names padded with trailing blanks.

A stem array list of LPAR Capacity Group names.

AnswerAreaLen (non-REXX)
Supplied parameter

• Type: Integer
• Length: 4 bytes

AnswerAreaLen specifies the length in bytes of the AnswerArea pointed to by the AnswerArea_Ptr.
The amount of storage required by the application at the AnswerArea_Ptr location depends primarily
on two factors:

1. The ListType specified
2. The number of data items expected to be returned

For example, if a ListType of HWI_LIST_CPCS is specified and the current HMC LAN has 7 CPCs
connected to it, at least 17 bytes x 7 CPCs + the number of blank spaces among the CPCs = 119 + 6 =
125 bytes of data are required for the AnswerArea.

DiagArea (non-REXX)
DiagArea. (REXX)

Returned parameter

• Type: Character string (non-REXX), stem variable (REXX)
• Length: 32 bytes (non-REXX)

DiagArea contains diagnostic data to help determine the cause of a failure from the service. For many
return codes, the DiagArea can contain further information to help determine the cause of the failure.
See the descriptions of different return codes for a partial list of data returned in this area.

Note: For all environmental errors (with return code X'F00' and higher), the DiagArea might not be
filled in, and the data returned in the area should be ignored.

Field Name (non-
REXX) / Tail
name constant of
the user-defined
DiagArea stem
(REXX)

Field Type (non-REXX) Description

Diag_Index 32-bit integer The array index to the parameter field that causes the error.

Diag_Key 32-bit integer The constant value represents the field that causes the error.

Diag_Actual 32-bit integer The incorrect actual value specified.

Diag_Expected 32-bit integer The expected value to be used.

Diag_CommErr 32-bit integer The returned code that is returned from the console application API
or the BCPii transport layer.

Diag_Text Character (12) Additional diagnostic information in text format.

HWILIST

334 z/OS: z/OS MVS Callable Services for HLL

See Appendix A, “BCPii communication error reason codes,” on page 693 for a partial list of the
descriptive communication transport error return codes and suggested actions.

ABEND codes
If BCPii is unable to properly access the user-supplied parameter list, the call might result in an abend
X'042' with a reason code of X'0005yyyy' because of one of the following reasons:

Table 69. Reasons for abend X'042', RC X'0005yyyy'

yyyy Reason

0000 The parameters passed by the caller are not in the primary address space.

0001 The parameters passed by the caller are not accessible.

0002 The number of parameters passed by the caller is not correct.

For other severe BCPii errors encountered during the call, an abend X'042' with a different reason code
may result. See z/OS MVS System Codes for additional information.

Return codes
When the service returns control to the caller, GPR 15 and ReturnCode contain a hexadecimal return
code.

Return Code in Hexadecimal
Equate Symbol

Return Code in Decimal Equate
Symbol Meaning and Action

0

HWI_OK

0

HWI_OK

Meaning: Successful completion.

Action: None.

100

HWI_CONNECT_TOKEN_INV

256

HWI_CONNECT_TOKEN_INV

Meaning: Program error. The
specified connect token is not
valid. This return code indicates
one of the following conditions
has occurred:

• The connect token does not
exist. A previous HWICONN
service call has never returned
the value specified on
OutConnectToken.

• The connect token does
not represent an active
connection. The connection
specified might have already
been disconnected using the
HWIDISC service call.

• The connect token is not
associated with the address
space of the caller. The
ConnectToken specified is
associated with a different
address space than the caller
of this service call.

Action: Check for probable
coding error.

HWILIST

Chapter 19. Base Control Program internal interface (BCPii) 335

Return Code in Hexadecimal
Equate Symbol

Return Code in Decimal Equate
Symbol Meaning and Action

101

HWI_COMMUNICATION_ERROR

257

HWI_COMMUNICATION_ERROR

Meaning: A communication error
is detected. The hardware
management console application
API (HWMCA) or the BCPii
transport layer has returned with
a failing return code.

Action: See the DiagArea for
further diagnostic information.
The Diag_CommErr indicates the
return code that is returned
from HWMCA APIs or the BCPii
transport layer.

HWMCA API and BCPii
transport return codes are
provided in Appendix A, “BCPii
communication error reason
codes,” on page 693.

102

HWI_DIAGAREA_INV

258

HWI_DIAGAREA_INV

Meaning: Program error. The
DiagArea is not accessible.

Action: Check for probable
coding error. Verify the specified
DiagArea is defined as a 32-byte
character field.

103

HWI_CONNECT_TOKEN_INACTIV
E

259

HWI_CONNECT_TOKEN_INACTIV
E

Meaning: The specified connect
token is no longer valid.
The connection has been
disconnected, or it is in the
progress of being disconnected.

Action: Check for probable
coding error. Verify that the
specified connect token is still
active. If connectivity to the
targeted CPC connection no
longer exists, all connections
associated with that CPC will no
longer have a connect token that
can be used.

HWILIST

336 z/OS: z/OS MVS Callable Services for HLL

Return Code in Hexadecimal
Equate Symbol

Return Code in Decimal Equate
Symbol Meaning and Action

104

HWI_TARGET_CPC_CHANGED

260

HWI_TARGET_CPC_CHANGED

Meaning: The CPC name
represented by the specified
token is valid but does not
represent the same physical
machine that was targeted
by the initial HWICONN call.
All connections that were
established prior to the name
change can no longer be used.

Action: The application should
cease using this connect token.
If the application intends to
target the CPC using the name
represented by the specified
connect token, it must first
reconnect to the CPC before
issuing any BCPii service call.

HWILIST

Chapter 19. Base Control Program internal interface (BCPii) 337

Return Code in Hexadecimal
Equate Symbol

Return Code in Decimal Equate
Symbol Meaning and Action

301

HWI_LISTTYPE_INV

769

HWI_LISTTYPE_INV

Meaning: Program error. The
requested LISTTYPE specified
in the call is not valid. The
system rejects the service call.
This return code indicates one
of the following conditions has
occurred:

• The ListType specified is not in
the acceptable value range of
possible list types.

• The ListType specified
is incompatible with the
InConnectToken specified. For
example:

– The ListType specified
applies only to CPC
connections, but the
ConnectToken specified
represents an image
connection.

– The ListType specified
applies only to image
connections, but the
ConnectToken specified
represents a CPC
connection.

• For ListType
HWI_LIST_EVENTS, the
ConnectToken must not
represent a capacity record
because capacity record events
do not have events directly
associated with capacity
records connections. Capacity-
related events are associated
with a CPC connection.

Action: Check for probable
coding error. Validate that the
ListType specified is in the
valid range of possible values,
and that the ListType specified
is permitted for the specified
connection type.

HWILIST

338 z/OS: z/OS MVS Callable Services for HLL

Return Code in Hexadecimal
Equate Symbol

Return Code in Decimal Equate
Symbol Meaning and Action

302

HWI_DATA_EXCEEDED

770

HWI_DATA_EXCEEDED

Meaning: Program error. The
amount of returned data
exceeded the size of the answer
area. No data or only partial data
is returned.

Action: Check for probable
coding error. See the DiagArea for
further diagnostic information.
The Diag_Actual indicates the
application-specified length. The
Diag_Expected indicates the size
required for the AnswerArea.

303

HWI_ANSWERAREA_INACCESSI
BLE

771

HWI_ANSWERAREA_INACCESSI
BLE

Meaning: Program error. The
answer area data area is
either partially or completely
inaccessible by the application
and the Base Control Program
internal interface (BCPii) address
space.

Action: Check for probable
coding error. Verify that the
AnswerArea_Ptr points to a data
area where the answer area is
and make sure the data area is
accessible.

304

HWI_LIST_NODATA_RETURNED

772

HWI_LIST_NODATA_RETURNED

Meaning: There is no data to be
returned or the caller does not
have enough access to display
the listed values.

Action: Check for probable
coding error. Verify that proper
access is granted for the request.

305

HWI_LISTTYPE_NOT_SUPPORTE
D

773

HWI_LISTTYPE_NOT_SUPPORTE
D

Meaning: The targeted hardware
of the HWILIST request does not
support the request attempted
by the program.

Action: Verify that the targeted
hardware supports the type of
request being made.

HWILIST

Chapter 19. Base Control Program internal interface (BCPii) 339

Return Code in Hexadecimal
Equate Symbol

Return Code in Decimal Equate
Symbol Meaning and Action

F00

HWI_NOT_AVAILABLE

3840

HWI_NOT_AVAILABLE

Meaning: BCPii services are not
available, and the system rejects
the service request.

Action: Notify the system
programmer to start the BCPii
address space and try the
request again. See “Restarting
the HWIBCPii address space” on
page 258 about how to start the
BCPii address space.

Programs can also listen to
ENF68 to determine when BCPii
services are available. See z/OS
MVS Programming: Authorized
Assembler Services Reference
EDT-IXG for how to listen for
BCPii activation messages.

F01

HWI_AUTH_FAILURE

3841

HWI_AUTH_FAILURE

Meaning: The caller is PKM8-15
problem state and the program
does not reside in an APF-
authorized library.

Action: Check the calling
program for a probable coding
error.

HWILIST

340 z/OS: z/OS MVS Callable Services for HLL

Return Code in Hexadecimal
Equate Symbol

Return Code in Decimal Equate
Symbol Meaning and Action

F02

HWI_NO_SAF_AUTH

3842

HWI_NO_SAF_AUTH

Meaning: The user does not have
correct SAF authorization for the
request.

Action: Check for probable error.
Consider one or more of the
following possible actions:

• Define read access
authorization to the FACILITY
class resource profile
HWI.APPLNAME.HWISERV.

• For a ListType of
HWI_LIST_IMAGES, if the
ConnectToken represents an
LPAR Capacity group
connection, define read access
authorization to the FACILITY
class resource profile
HWI.TARGET.nedit.nau. For
other connection types, define
read access authorization to
the FACILITY class resource
profile
HWI.TARGET.netid.nau.imagen
ame.

• Define read access
authorization to the FACILITY
class resource profile
HWI.CAPREC.netid.nau.caprec
for HWI_LIST_CAPRECS
ListType.

• For a ListType of
HWI_LIST_EVENTS, define
read access authorization to
the FACILITY class resource
profile HWI.TARGET.netid.nau
for a CPC connection, and
HWI.TARGET.netid.nau.imagen
ame for an image connection.

• For a ListType of
HWI_LIST_LOCALCPC, define
read access authorization to
the FACILITY class resource
profile HWI.TARGET.netid.nau
where netid.nau represents the
local CPC network address.

HWILIST

Chapter 19. Base Control Program internal interface (BCPii) 341

Return Code in Hexadecimal
Equate Symbol

Return Code in Decimal Equate
Symbol Meaning and Action

F02

HWI_NO_SAF_AUTH (continued)

3842

HWI_NO_SAF_AUTH

• For a ListType of
HWI_LIST_LOCALIMAGE,
define read access
authorization to the FACILITY
class resource profile
HWI.TARGET.netid.nau.imagen
ame where netid.nau
represents the local CPC
network address and
imagename represents the
local image (LPAR) name.

• For the ListType of
HWI_LIST_RESET_ACTPROF,
HWI_LIST_IMAGE_ACTPROF,
HWI_LIST_LOAD_ACTPROF,
HWI_LIST_IMAGEGROUPS,
HWI_LIST_GROUP_PROFILES
or HWI_LIST_LPAR_GROUPS
define read access
authorization to the FACILITY
class resource profile
HWI.TARGET.netid.nau for the
CPC where the activation
profiles, image groups, group
profiles or LPAR Capacity
groups to be listed are defined.

• Ensure that the referenced
facility class profiles are
RACLIST-specified.

F03

HWI_INTERRUPT_STATUS_INV

3843

HWI_INTERRUPT_STATUS_INV

Meaning: The calling program is
disabled. The system rejects this
service request.

Action: Check the calling
program for a probable coding
error.

F04

HWI_MODE_INV

3844

HWI_MODE_INV

Meaning: The calling program is
not in task mode. The system
rejects this service request.

Action: Check the calling
program for a probable error.

F05

HWI_LOCKS_HELD

3845

HWI_LOCKS_HELD

Meaning: The calling program
is holding one or more locks.
The system rejects this service
request.

Action: Check the calling
program for a probable coding
error.

HWILIST

342 z/OS: z/OS MVS Callable Services for HLL

Return Code in Hexadecimal
Equate Symbol

Return Code in Decimal Equate
Symbol Meaning and Action

F06

HWI_UNSUPPORTED_RELEASE

3846

HWI_UNSUPPORTED_RELEASE

Meaning: The system level
does not support this service.
The system rejects this service
request.

Action: Remove the calling
program from the system, and
install it on a system that
supports BCPii services. Then run
the calling program again.

F07

HWI_UNSUPPORTED_ENVIRON
MENT

3847

HWI_UNSUPPORTED_ENVIRON
MENT

Meaning: The system does not
support execution of the service
from the current environment (for
example, calling a BCPii service
from within a BCPii ENF exit
routine).

Action: Issue the BCPii service
from a different execution
environment.

FFF

HWI_UNEXPECTED_ERROR

4095

HWI_UNEXPECTED_ERROR

Meaning: System error. The
service that was called
encountered an unexpected
error. The system rejects the
service call.

Action: Search problem reporting
data bases for a fix for the
problem. If no fix exists, contact
the IBM Support Center.

Example
In the pseudocode example, the caller issues a call to retrieve a list CPCs that can be accessed.

.

.
ListType = HWI_LIST_CPCS;
AnswerArea_Ptr = addr(AnswerArea);
AnswerAreaLen = 125;
CALL HWILIST (ReturnCode, ConnectToken, ListType, NumofDataItemsReturned.
 AnswerArea_Ptr, AnswerAreaLen, DiagArea)
.
.

A REXX programming example for the HWILIST service:

myListType = HWI_LIST_IMAGES

address bcpii
 "hwilist RetCode myConnectToken myListType myAnswerArea. myDiag."

If (RC <> 0) | (Retcode <> 0) Then
 Do
 Say 'Service failed with REXX RC = 'RC' and API Retcode = 'Retcode'.'
 If (RC=Hwi_REXXParmSyntaxError | Retcode<>0) Then
 Do
 Say ’ Diag_index=’ myDiag.DIAG_INDEX
 Say ’ Diag_key=’ myDiag.DIAG_KEY

HWILIST

Chapter 19. Base Control Program internal interface (BCPii) 343

 Say ’ Diag_actual=’ myDiag.DIAG_ACTUAL
 Say ’ Diag_expected=’ myDiag.DIAG_EXPECTED
 Say ’ Diag_commerr=’ myDiag.DIAG_COMMERR
 Say ’ Diag_text=’ myDiag.DIAG_TEXT
 End
Else
 Do
 Say 'Number of items returned = 'myAnswerArea.0 /* Count of items returned */

 If myAnswerArea.0 > 0 Then
 Do n=1 to myAnswerArea.0
 Say 'Image #'n' = 'myAnswerArea.n
 End
 End

HWIQUERY — BCPii retrieval of SE/HMC-managed attributes
Call the HWIQUERY service to retrieve information about objects managed by the support element (SE)
or hardware management console (HMC) related with central processor complexes (CPCs), CPC images
(LPARs), capacity records, different types of activation profiles, user-defined image groups, group profiles
or LPAR Capacity groups.

For some connection types (HWI_CPC and HWI_IMAGE in particular), grouping multiple attributes
together into a single HWIQUERY service call may result in significantly reduced waiting times rather
than querying the same number of attributes one at a time. Whenever possible, an application should
consolidate its HWIQUERY service calls to query multiple attributes using the same query request.

Description

Environment
The requirements for the callers are:

Requirement Details

Minimum authorization: One of the following: PKM allowing key 0-7, supervisor state, or
APF-Authorized

Dispatchable unit mode: Task

Cross memory mode: Any PASN, any HASN, any SASN

AMODE: 31-bit

ASC mode: Primary or access register (AR)

Interrupt status: Enabled for I/O and external interrupts

Locks: No locks held

Control parameters: Control parameters must be in the primary address space and
addressable by the caller

Linkage: Standard MVS linkage conventions are used

Programming requirements
See “Syntax, linkage and programming considerations” on page 259 for details about how to call BCPii
services in the various programming languages.

See “HWIQUERY and HWISET / HWISET2 attributes” on page 699 for the summary table of the BCPii
HWIQUERY and HWISET / HWISET2 attributes and the objects that can be targeted for each function.

REXX programming considerations for the HWIQUERY service
All information for the HWIQUERY service applies for REXX requests except:

HWIQUERY

344 z/OS: z/OS MVS Callable Services for HLL

• A query parameter stem variable (for example, QueryParm) replaces QueryParm_Ptr.

– QueryParm.0 replaces NumOfAttributes. QueryParm.0 is required to specify the number of attributes
to be queried. The maximum number of attributes allowed is 64.

– QueryParm.n.ATTRIBUTEIDENTIFIER must contain the n-th attribute identifier to be returned.
– QueryParm.n.ATTRIBUTEVALUE will contain the n-th attribute value on return.

• AttributeValue_Ptr is replaced with AttributeValue.
• AttributeValueLen is not used.
• AttributeValueLenReturned is not used.
• For the PSW (HWI_PSWS) attribute:

– QueryParm.n.ATTRIBUTEVALUE.0 will contain the number of PSWs returned (j).
– QueryParm.n.ATTRIBUTEVALUE.m.CPUID will contain the m-th CPU identifier.
– QueryParm.n.ATTRIBUTEVALUE.m.PSW will contain the m-th PSW.

• For the supported processor power savings mode (HWI_SUPPPPOWERMODE) attribute:

– QueryParm.n.ATTRIBUTEVALUE.0 will contain the number of supported power savings modes
returned (m).

– QueryParm.n.ATTRIBUTEVALUE.m.PSMODE will contain the m-th supported power savings mode.
• For the list of IP addresses (HWI_LIST_IP_ADDRESSES) attribute:

– QueryParm.n.ATTRIBUTEVALUE.0 will contain the number of IP addresses returned (j).
– QueryParm.n.ATTRIBUTEVALUE.m.IPADDR will contain the m-th IP address.

Restrictions
BCPii does not allow HWIQUERY to be issued from within a BCPii ENF exit routine.

Code page consideration
All returned data from the Support Element is in ASCII format. BCPii attempts to translate and return
the data in EBCDIC. Due to the nature of EBCDIC-to-ASCII and ASCII-to-EBCDIC conversions, certain
irregularities exist in the conversion tables. These conversion irregularities, including characters like ¢, !,
[,] and |, will not translate correctly. BCPii users of the HWIQUERY service should be aware that these
characters may not be correct in the returned data.

Authorization
The client application must have access to consult the local CPC. This is granted by allowing the
application at least read access to the SAF-protected FACILITY class resource HWI.APPLNAME.HWISERV.

Client application must have at least read access to the SAF-protected FACILITY class
HWI.TARGET.netid.nau for any CPC, activation profile, user-defined image group, group profile
or LPAR Capacity group queries, or HWI.TARGET.netid.nau.imagename for image queries, or
HWI.CAPREC.netid.nau.caprecid for capacity record queries.

Note: BCPii requires the FACILITY class to be RACLIST-specified.

Syntax
Write the call as shown in the syntax diagram. You must code all parameters in the order shown.

HWIQUERY

Chapter 19. Base Control Program internal interface (BCPii) 345

Non-REXX parameters REXX parameters

 CALL HWIQUERY(
 ReturnCode,
 ConnectToken,
 QueryParm_Ptr,
 NumOfAttributes,
 DiagArea);

address bcpii “hwiquery
ReturnCode
ConnectToken
QueryParm.

DiagArea.”

Parameters
The parameters are explained as follows:
ReturnCode

Returned parameter

• Type: Integer (non-REXX), character representation of an integer (REXX)
• Length: 4 bytes (non-REXX)

ReturnCode contains the return code from the service.

ConnectToken
Supplied parameter

• Type: Character string
• Length: 16 bytes

ConnectToken represents a logical connection between the application and a CPC, image, capacity
record, activation profile, or user-defined image group. The ConnectToken is an output parameter on
the HWICONN service call.

In most cases, the ConnectToken specified must have originated from a HWICONN service call that
was issued from the same address space as this service call. For BCPii REXX execs running under the
TSO/E or ISV-provided REXX environments, the ConnectToken specified must have originated from a
HWICONN service call that was issued from the same task.

QueryParm_Ptr (non-REXX)
QueryParm. (REXX)

Supplied parameter

• Type: Pointer (non-REXX), stem variable (REXX)
• Length: 4 bytes (non-REXX)

Non-REXX:
QueryParm_Ptr specifies the address of a user-defined query structure that contains a list of
one or more requested attributes to be queried, in the following form: attribute that is required,
address of where returned value is to be stored, the length of the storage available to HWIQUERY
to store the returned value, and the actual length of the data that will be returned in the data area.

The size of the data area pointed to by this parameter must be 16 bytes multiplied by the
NumOfAttributes parameter. For example, if NumofAttributes is 4, the data area pointed to by this
parameter must be at least 64 bytes long (16 x 4).

The storage area that contains each attribute in the QueryParm is shown in the following table:

Field name Field type

AttributeIdentifier 32-bit unsigned integer

AttributeValue_Ptr Pointer

AttributeValueLen 32-bit unsigned integer

AttributeValueLenReturned 32-bit unsigned integer

HWIQUERY

346 z/OS: z/OS MVS Callable Services for HLL

This table is mapped by the data structure Hwi_QueryParm_Type in the data mappings provided
for the various programming languages supported. See “Syntax, linkage and programming
considerations” on page 259 for more information.

If all of the data can be written into the data area (the AttributeValueLen is greater than or equal
to the actual data returned), the AttributeValueLenReturned field contains the actual length of the
data written in the storage specified at address AttributeValue_Ptr.

The AttributeValueLenReturned is only used as an output parameter. Any value contained in the
field when HWIQUERY is called is ignored.

REXX:
QueryParm is a compound (stem) variable which contains one or more requested attributes to be
queried and returned.

The compound (stem) variable is specified as follows (where x is the user-defined QueryParm
stem variable and n is the n-th attribute for the request):

• x.0 specifies the number of attributes to be queried. The maximum number of attributes
allowed is 64. (Supplied parameter)

• x.n.ATTRIBUTEIDENTIFIER specifies the requested attribute. Set this variable to one of the
query attribute constants defined in HWICIREX. (Supplied parameter)

• x.n.ATTRIBUTEVALUE is the data value to be returned for most attributes. (Returned parameter)
• Some single attributes can return multiple objects in a formatted structure. For those attributes,

x.n.ATTRIBUTEVALUE.0 (Returned parameter) is the total number of returned objects. See the
following query attribute table for the following attributes that are in a different format. These
attributes include: HWI_SUPPPPOWERMODE, HWI_LIST_IP_ADDRESSES, and HWI_PSWS.

The following table lists the valid query attribute identifiers. For more information about these
attributes, see the following publications:

• IBM z SNMP Application Programming Interfaces (SB10-7171-06)
• System z10 and eServer zSeries Application Programming Interfaces (SB10-7030-09)
• System z9 and eServer zSeries Application Programming Interfaces (SB10-7030-08)
• Publication appropriate to the level of hardware that the HWIQUERY is targeted

Table 70. Valid query attribute identifiers

Constant in hexadecimal
(Decimal)
Equate symbol

Description

1

(1)

HWI_NAME

Requests to retrieve the name that represents the ConnectToken parameter to the service.

Note: The input connection token must represent a CPC connection, an image connection, a reset activation profile connection,
an image activation profile connection, a load activation profile connection, an image group connection , a group profile or an
LPAR Capacity group connection.

2

(2)

HWI_ERRSTAT

Requests to retrieve whether the status is acceptable.

Note: The input connection token must represent a CPC connection an image connection, or an image group connection.

3

(3)

HWI_BUSYSTAT

Requests to retrieve whether the status is busy.

Note: The input connection token must represent a CPC connection an image connection, or an image group connection.

4

(4)

HWI_MSGSTAT

Requests to retrieve whether hardware messages are present.

Note: The input connection token must represent a CPC connection or an image connection.

5

(5)

HWI_OPERSTAT

Requests to retrieve the current status.

Note: The input connection token represents a CPC connection or an image connection.

HWIQUERY

Chapter 19. Base Control Program internal interface (BCPii) 347

Table 70. Valid query attribute identifiers (continued)

Constant in hexadecimal
(Decimal)
Equate symbol

Description

6

(6)

HWI_ACCSTAT

Requests to retrieve the acceptable status values.

Note: The input connection token represents a CPC connection or an image connection.

7

(7)

HWI_APROF

Requests to retrieve the next activation reset profile name.

Note: The input connection token must represent a CPC connection or an image connection.

8

(8)

HWI_LUAPROF

Requests to retrieve the last used activation profile.

Note: The input connection token must represent a CPC connection or an image connection.

9

(9)

HWI_OBJTYPE

Requests to retrieve the object type.

Input connection
token represents Returns
CPC HWMCA_CPC_OBJECT
CPC image HWMCA_CPC_IMAGE_OBJECT
Capacity record HWMCA_CAPACITY_RECORD
Reset activation profile HWMCA_ACT_PROFILE_RESET
Image activation profile HWMCA_ACT_PROFILE_IMAGE
Load activation profile HWMCA_ACT_PROFILE_LOAD
Image Group HWMCA_CPC_IMAGE_USER_GROUP
Group profile HWCMA_ACT_PROFILE_GROUP
LPAR Capacity group HWCMA_LPAR_GROUP

Note: The input connection token must represent a CPC connection, an image connection, a capacity record connection, a
reset activation profile connection, an image activation profile connection, a load activation profile connection, an image group
connection, a group profile connection, or an LPAR Capacity group connection.

A

(10)

HWI_IMLMODE

Requests to retrieve the initial machine load (IML) mode (LPAR).

Note: The input connection token must only represent a CPC connection or an image connection.

B-16

(11–22)

RESERVED

Reserved for attributes that are common to CPC and image connections unless otherwise noted.

17

(23)

HWI_IPADDR

Requests to retrieve the internet address (IPv4 format).

Note: The input connection token must only represent a CPC connection.

18

(24)

HWI_SNAADDR

Requests to retrieve the SNA address (netid.nau).

Note: The input connection token must only represent a CPC connection.

19

(25)

HWI_MMODEL

Requests to retrieve the machine model.

Note: The input connection token must only represent a CPC connection.

1A

(26)

HWI_MTYPE

Requests to retrieve the machine type.

Note: The input connection token must only represent a CPC connection.

1B

(27)

HWI_MSERIAL

Requests to retrieve the machine serial.

Note: The input connection token must only represent a CPC connection.

1C

(28)

HWI_CPCSERIAL

Requests to retrieve the CPC serial number.

Note: The input connection token must only represent a CPC connection.

HWIQUERY

348 z/OS: z/OS MVS Callable Services for HLL

Table 70. Valid query attribute identifiers (continued)

Constant in hexadecimal
(Decimal)
Equate symbol

Description

1D

(29)

HWI_CPCID

Requests to retrieve the CPC identifier.

Note: The input connection token must only represent a CPC connection.

1E

(30)

HWI_RESERVEID

Requests to retrieve the name of the application that is holding the reserve (if any).

Note: The input connection token must only represent a CPC connection.

1F

(31)

HWI_SVCEREQD

Requests to retrieve the service required.

Note: The input connection token must only represent a CPC connection.

20

(32)

HWI_CBUINSTD

Requests to retrieve the CBU installed.

Note: The input connection token must only represent a CPC connection.

21

(33)

HWI_CBUENABLD

Requests to retrieve the CBU enabled.

Note: The input connection token must only represent a CPC connection.

22

(34)

HWI_CBUACTIVE

Requests to retrieve the CBU activated.

Note: The input connection token must only represent a CPC connection.

23

(35)

HWI_CBUACTDT

Requests to retrieve the CBU activation date.

Note: The input connection token must only represent a CPC connection.

24

(36)

HWI_CBUEXPDT

Requests to retrieve the CBU expiration date.

Note: The input connection token must only represent a CPC connection.

25

(37)

HWI_CBUTESTAR

Requests to retrieve the CBU tests left (test activations remaining).

Note: The input connection token must only represent a CPC connection.

26

(38)

HWI_CBUREALAV

Requests to retrieve the CBU real activation available.

Note: The input connection token must only represent a CPC connection.

27

(39)

HWI_PRUNTYPE

Requests to retrieve the processor running time type.

Note: The input connection token must only represent a CPC connection or a reset activation profile connection.

28

(40)

HWI_PRUNTIME

Requests to retrieve the processor running time.

Note: The input connection token must only represent a CPC connection or a reset activation profile connection.

29

(41)

HWI_PRUNTSEW

Requests to retrieve the processor running time slice end wait processing.

Note: The input connection token must only represent a CPC connection or a reset activation profile connection.

This attribute is only available when targeting a z13 GA2 or lower CPC.

2A

(42)

HWI_OOCINST

Requests to retrieve the on and off capacity on demand installed.

Note: The input connection token must only represent a CPC connection.

HWIQUERY

Chapter 19. Base Control Program internal interface (BCPii) 349

Table 70. Valid query attribute identifiers (continued)

Constant in hexadecimal
(Decimal)
Equate symbol

Description

2B

(43)

HWI_OOCACT

Requests to retrieve the on and off capacity on demand currently activated.

Note: The input connection token must only represent a CPC connection.

2C

(44)

HWI_OOCENAB

Requests to retrieve the on and off capacity on demand enabled.

Note: The input connection token must only represent a CPC connection.

2D

(45)

HWI_OOCADT

Requests to retrieve the on and off capacity on demand activation date.

Note: The input connection token must only represent a CPC connection.

2E

(46)

HWI_PCPCSWM

Requests to retrieve the permanent CPC software model. This attribute is only available when targeting a z10 or higher CPC.

Note: The input connection token must only represent a CPC connection.

2F

(47)

HWI_PPBPSWM

Requests to retrieve the permanent plus billable processor software model. This attribute is only available when targeting a
z10 or higher CPC.

Note: The input connection token must only represent a CPC connection.

30

(48)

HWI_PPTPSWM

Requests to retrieve the permanent plus (all) temporary processor software model. This attribute is only available when
targeting a z10 or higher CPC.

Note: The input connection token must only represent a CPC connection.

31

(49)

HWI_PCPCMSU

Requests to retrieve the permanent CPC millions of service units (MSU) value. This attribute is only available when targeting a
z10 or higher CPC.

Note: The input connection token must only represent a CPC connection.

32

(50)

HWI_PPBPMSU

Requests to retrieve the permanent plus billable processor MSU value. This attribute is only available when targeting a z10 or
higher CPC.

Note: The input connection token must only represent a CPC connection.

33

(51)

HWI_PPTPMSU

Requests to retrieve the permanent plus (all) temporary processor MSU value. This attribute is only available when targeting a
z10 or higher CPC.

Note: The input connection token must only represent a CPC connection.

34

(52)

HWI_NUMGPP

Requests to retrieve the number of general purpose processors. This attribute is only available when targeting a z10 or higher
CPC.

Note: The input connection token must only represent a CPC connection.

35

(53)

HWI_NUMSAP

Requests to retrieve the number of service assist processors. This attribute is only available when targeting a z10 or higher
CPC.

Note: The input connection token must only represent a CPC connection.

36

(54)

HWI_NUMIFAP

Requests to retrieve the number of the integrated facility for applications (IFA) processors. This attribute is only available
when targeting a z10 or higher CPC.

Note: The input connection token must only represent a CPC connection.

37

(55)

HWI_NUMIFLP

Requests to retrieve the number of the integrated facility for Linux (IFL) processors. This attribute is only available when
targeting a z10 or higher CPC.

Note: The input connection token must only represent a CPC connection.

38

(56)

HWI_NUMICFP

Requests to retrieve the number of the internal coupling facility (ICF) processors. This attribute is only available when
targeting a z10 or higher CPC.

Note: The input connection token must only represent a CPC connection.

HWIQUERY

350 z/OS: z/OS MVS Callable Services for HLL

Table 70. Valid query attribute identifiers (continued)

Constant in hexadecimal
(Decimal)
Equate symbol

Description

39

(57)

HWI_NUMIIPP

Requests to retrieve the number of integrated information processors (IIP). This attribute is only available when targeting a
z10 or higher CPC.

Note: The input connection token must only represent a CPC connection.

3A

(58)

HWI_NUMFLTYP

Requests to retrieve the number of defective (faulty) processors. This attribute is only available when targeting a z10 or higher
CPC.

Note: The input connection token must only represent a CPC connection.

3B

(59)

HWI_NUMSPARE

Requests to retrieve the number of spare processors. This attribute is only available when targeting a z10 or higher CPC.

Note: The input connection token must only represent a CPC connection.

3C

(60)

HWI_NUMPENDP

Requests to retrieve the number of pending (activation) processors. This attribute is only available when targeting a z10 or
higher CPC.

Note: The input connection token must only represent a CPC connection.

3D

(61)

HWI_CAPCHGALLWD

Requests to determine if activate/deactivate of capacity are permitted. This attribute is only available when targeting a z10 or
higher CPC.

Note: The input connection token must only represent a CPC connection.

3E

(62)

HWI_DGRSTAT

Requests to retrieve degraded status.

Note: The input connection token must only represent a CPC connection.

3F

(63)

HWI_CURRPPOWERMODE

Requests to retrieve the current processor power savings mode active on the targeted CPC. This attribute is only available
when targeting zEnterprise and higher CPC levels, up to and including the z14 level. Power saving capabilities are not
supported on the z15. In addition, z13 and earlier levels require the Power saving feature which is only available if the
Automate management enablement feature is installed.

For more details about the power saving function, see IBM Z Hardware Management Console Web Services API.

Note: The input connection token must only represent a CPC connection.

40

(64)

HWI_SUPPPPOWERMODE

Requests to retrieve the supported processor power savings modes available on the targeted CPC. This attribute is only
available when targeting zEnterprise and higher CPC levels, up to and including the z14 level. Power saving capabilities are
not supported on the z15. In addition, z13 and earlier levels require the Power saving feature which is only available if the
Automate management enablement feature is installed.

For more details about the power saving function, see IBM Z Hardware Management Console Web Services API.

Non-REXX:
The returned data is mapped as follows:

Field Name Field Type
--------------- -----------
Number of 32-bit integer
supported
powersave modes

For each supported powersave mode, the following is returned:

Powersave mode 32-bit integer value

Note: The query parameter for this attribute must specify a data area large enough to contain all of the structure (that is,
32 bits + 32 bits per supported powersave mode returned). For example, if there are 2 supported powersave modes on
the targeted CPC, then the structure must be at least 32 + (32 x 2) = 96 bits (12 bytes).

REXX:
The returned data is mapped as follows (where x is the user-defined QueryParm stem, n is the n-th requested attribute
and m is the m-th returned powersave mode value):

• x.n.ATTRIBUTEVALUE.0 is the number of supported powersave modes (m).

• x.n.ATTRIBUTEVALUE.m.PSMODE is the m-th powersave mode value.

Note: The input connection token must only represent a CPC connection.

41

(65)

HWI_STPCONFIG

Requests to retrieve the Server Timer Protocol (STP) configuration data.

Note: The input connect token must only represent a CPC connection.

HWIQUERY

Chapter 19. Base Control Program internal interface (BCPii) 351

Table 70. Valid query attribute identifiers (continued)

Constant in hexadecimal
(Decimal)
Equate symbol

Description

42

(66)

HWI_NUMPGPP

Requests to retrieve the number of pending general purpose processors.

Note: The input connect token must only represent a CPC connection.

43

(67)

HWI_NUMPSAP

Requests to retrieve the number of pending service assist processors.

Note: The input connect token must only represent a CPC connection.

44

(68)

HWI_NUMPAAP

Requests to retrieve the number of pending Application Assist Processor (AAP) processors.

Note: The input connect token must only represent a CPC connection.

45

(69)

HWI_NUMPIFLP

Requests to retrieve the number of pending Integrated Facility for Linux (IFL) processors.

Note: The input connect token must only represent a CPC connection.

46

(70)

HWI_NUMPICFP

Requests to retrieve the number of pending Internal Coupling Facility (ICF) processors.

Note: The input connect token must only represent a CPC connection.

47

(71)

HWI_NUMPIIPP

Requests to retrieve the number of pending Integrated Information (IIP) processors.

Note: The input connect token must only represent a CPC connection.

48

(72)

HWI_POWERMODEALLOWED

Requests to retrieve the processor power savings mode allowed. This attribute is only available when zEnterprise and higher
CPC levels, up to and including the z14 level. Power saving capabilities are not supported on the z15. In addition, z13 and
earlier levels require the Power saving feature which is only available if the Automate management enablement feature is
installed.

For more details about the power saving function, see IBM Z Hardware Management Console Web Services API.

HWMCA_TRUE
The processor currently allows switching to power savings mode.

HWMCA_FALSE
The processor currently does not allow switching to power savings mode.

Note: The input connection token must only represent a CPC connection.

49

(73)

HWI_VERSION

Requests to retrieve the CPC version number.

Note: The input connection token must only represent a CPC connection.

4A

(74)

HWI_EC_MCL_INFO

Requests to retrieve an XML string that describes the Engineering Change (EC) and Microcode Level (MCL) levels.

Note: The input connection token must only represent a CPC connection.

Attention: The data returned by the support element can be quite large. Consider using a larger data area when
requesting this attribute.

HWIQUERY

352 z/OS: z/OS MVS Callable Services for HLL

Table 70. Valid query attribute identifiers (continued)

Constant in hexadecimal
(Decimal)
Equate symbol

Description

4B

(75)

HWI_LIST_IP_ADDRESSES

Requests to retrieve all the IP addresses (in either IPv4 or IPv6 format, or both) used for the targeted CPC.

Non-REXX:
The returned data is mapped as follows:

Field Name Field Type
---------- -----------
Number of IP addresses 32-bit unsigned integer
IP address value 39-character value padded
 with blanks

Note: The query parameter for this attribute must specify a data area large enough to contain all of the structure (that is,
a 4-byte length field plus a 39-byte field for each IP address returned). For example, if there are 3 IP addresses returned,
the AttributeValueLen specified for this attribute must be at least (4 + (39 x 3)) = 121 bytes.

REXX:
The returned data is mapped as follows (where x is the user-defined QueryParm stem, n is the n-th requested attribute
and m is the m-th returned IP address value):

• x.n.ATTRIBUTEVALUE.0 is the number of IP addresses (m).

• x.n.ATTRIBUTEVALUE.m.IPADDR is the m-th IP address value.

Note: The input connection token must only represent a CPC connection.

4C

(76)

HWI_AUTO_SWITCH_ENABL
ED

Requests to retrieve a value used to determine if automatic switching between primary and alternate support elements is
enabled.

A 4-byte integer type value is returned:

HWMCA_TRUE
Automatic switching is enabled.

HWMCA_FALSE
Automatic switching is disabled.

Note: The input connection token must only represent a CPC connection.

4D-68

(77-104)

RESERVED

Reserved for CPC attributes unless otherwise noted.

69

(105)

HWI_CPCNAME

Requests to retrieve the parent (CPC) name.

Note: The input connection token must only represent an image connection.

6A

(106)

HWI_OSNAME

Requests to retrieve the SW operating system name.

The values returned on the HWI_OSNAME attribute are not owned by z/OS BCPii and are subject to change. The possible
values returned by the various operating systems at the time of this publication include:

HWI_OSTYPE value: MVS
The HWI_OSNAME value returned is the SYSNAME parameter as defined in IEASYSxx parmlib member for the targeted
image.

HWI_OSTYPE value: VM
The HWI_OSNAME value returned is the system identifier or system name as defined in the SYSTMID field in the SYSCM
(System Common Area) control block.

HWI_OSTYPE value: LINUX
The HWI_OSNAME value returned is N/A.

HWI_OSTYPE value: VSE
The HWI_OSNAME value returned is the VSE system name.

HWI_OSTYPE value: Z TPF EE
The HWI_OSNAME value returned is the id value representing the targeted image's CPU designation in the z/TPF
complex.

HWI_OSTYPE value: CFCC

The HWI_OSNAME value returned is the Coupling Facility name.

HWI_OSTYPE value: SSC

The HWI_OSNAME value returned is the system name defined in the Control Program Identification.

Note: The input connection token must only represent an image connection.

HWIQUERY

Chapter 19. Base Control Program internal interface (BCPii) 353

Table 70. Valid query attribute identifiers (continued)

Constant in hexadecimal
(Decimal)
Equate symbol

Description

6B

(107)

HWI_OSTYPE

Requests to retrieve the SW operating system type.

The values returned on the HWI_OSTYPE attribute are not owned by z/OS BCPii and are subject to change. Possible values
include MVS, VM, LINUX, VSE, and Z TPF EE, CFCC, and SSC (formerly zACI).

Note: The input connection token must only represent an image connection.

6C

(108)

HWI_OSLEVEL

Requests to retrieve the SW operating system level.

The values returned on the HWI_OSLEVEL attribute are not owned by z/OS BCPii and are subject to change. The possible
values returned by the various operating systems at the time of this publication include:

HWI_OSTYPE value: MVS
The HWI_OSLEVEL value is mapped by the CVTOSLVL field of the CVT control block.

HWI_OSTYPE value: VM
The HWI_OSLEVEL value is mapped as follows:

• 4-bit release #

• 4-bit modification level

• 8-bit version #

• 16-bit service level

• 8-bit MVS guest count

• 8-bit LINUX guest count

• 8-bit VSE guest count

• 8-bit Solaris guest count

HWI_OSTYPE value: LINUX
The HWI_OSLEVEL value is mapped as follows, in hexadecimal:

• 40 bits N/A

• 8-bit major kernel revision

• 8-bit major release

• 8-bit minor release

HWI_OSTYPE value: VSE
The HWI_OSLEVEL value is mapped as follows:

• 32-bit VSE/AF release level

• 32-bit latest service level (if available)

HWI_OSTYPE value: Z TPF EE
The HWI_OSLEVEL value is mapped as follows:

• 16-bit version #

• 8-bit PUT level

HWI_OSTYPE value: CFCC

The HWI_OSLEVEL value is mapped as follows:

• 2 byte release level

• 2 byte service level

• 1 byte dynamic dispatch setting

• remaining 3 bytes unused

HWIQUERY

354 z/OS: z/OS MVS Callable Services for HLL

Table 70. Valid query attribute identifiers (continued)

Constant in hexadecimal
(Decimal)
Equate symbol

Description

6C

(108)

HWI_OSLEVEL

continued

HWI_OSTYPE value: SSC

The HWI_OSLEVEL is an 8 byte hexadecimal system-level in this format:

0x<ab><cc><dd><eeee><ff><gg><hh> where:

• <a> 1 byte, Bit 0 indicates hypervisor use.

• 1 digit that indicates the distribution as follows:

– 0 Generic Linux

– 1 Red Hat Enterprise Linux

– 2 SUSE Linux Enterprise

– 3 Canonical Ubuntu

– 4 Fedora

– 5 openSUSE Leap

– 6 Debian GNU/Linux

– 7 Red Hat Enterprise Linux CoreOS

• <cc> 2 digits for a distribution-specific encoding of the major version of the distribution.

• <dd> 2 digits for a distribution-specific encoding of the minor version of the distribution.

• <eeee> 4 digits for the patch level of the distribution.

• <ff> 2 digits for the major version of the kernel.

• <gg> 2 digits for the minor version of the kernel.

• <hh> 2 digits for the stable version of the kernel.

Examples of

6C

(108)

HWI_OSLEVEL

continued

Examples:

For MVS, FFFFFFFFEF7F0000 implies that the target is running z/OS V1R13 because the CVTZOS_V1R13 bit is the last
supported release flag that is on.

For VM, 4005100200320000 implies that the target is running z/VM Release 4, Modification Level 0, Version 5, Service Level
1002, MVS guest count 0, Linux guest count 32, VSE guest count 0, and Solaris guest count 0.

For LINUX, 0000000000020620 implies that the target is running z/LINUX major kernel revision 2, major release 6, and minor
release 32.

For VSE, 0830000000000000 implies that the target is running at the VSE/AF 8.3 release level and no service level is
available.

For Z TPF EE, 0101070000000000 implies that the target is running z/TPF version 1.1, PUT level 7.

Note: The input connection token must represent an image connection.

6D

(109)

HWI_SYSPLEX

Requests to retrieve the SW sysplex name (z/OS only).

Note: The input connection token must only represent an image connection.

6E

(110)

HWI_CLUSTER

Requests to retrieve the LPAR cluster name.

Note: The input connection token must only represent an image connection.

6F

(111)

HWI_PARTITIONID

Requests to retrieve the partition ID. If the connection token represents an image connection, the image partition ID is
returned; if the connection token represents an image activation profile connection, the image activation profile partition ID is
returned. The image partition ID is only retrievable when the partition has been activated.

Note: The input connection token must only represent an image connection or an image activation profile connection.

70

(112)

HWI_DEFCAP

Requests to retrieve the current defined capacity.

Note: The input connection token must only represent an image connection or an image activation profile connection.

71

(113)

HWI_SGPIPW

Requests to retrieve the shared general processor initial processing weight (SGPIPW).

Note: The input connection token must only represent an image connection or an image activation profile connection.

72

(114)

HWI_SGPIPWCAP

Requests to retrieve the SGPIPW to be capped or not capped.

Note: The input connection token must only represent an image connection or an image activation profile connection.

HWIQUERY

Chapter 19. Base Control Program internal interface (BCPii) 355

Table 70. Valid query attribute identifiers (continued)

Constant in hexadecimal
(Decimal)
Equate symbol

Description

73

(115)

HWI_SGPPWMIN

Requests to retrieve the minimum SGPPW value.

Note: The input connection token must only represent an image connection or an image activation profile connection.

74

(116)

HWI_SGPPWMAX

Requests to retrieve the maximum SGPPW value.

Note: The input connection token must only represent an image connection or an image activation profile connection.

75

(117)

HWI_SGPPW

Requests to retrieve the current SGPPW value.

Note: The input connection token must only represent an image connection.

76

(118)

HWI_SGPPWCAP

Requests to retrieve the SGPPW to be capped or not capped.

Note: The input connection token must only represent an image connection.

77

(119)

HWI_WLM

Requests to retrieve whether WLM is allowed to change processing weight-related attributes.

Note: The input connection token must only represent an image connection or an image activation profile connection.

78

(120)

HWI_IFAIPW

Requests to retrieve the integrated facility for applications initial processing weight (IFAIPW).

Note: The input connection token must only represent an image connection or an image activation profile connection.

79

(121)

HWI_IFAIPWCAP

Requests to retrieve the IFAIPW to be capped or not capped.

Note: The input connection token must only represent an image connection or an image activation profile connection.

7A

(122)

HWI_IFAPWMIN

Requests to retrieve the minimum IFAPW value.

Note: The input connection token must only represent an image connection or an image activation profile connection.

7B

(123)

HWI_IFAPWMAX

Requests to retrieve the maximum IFAPW value.

Note: The input connection token must only represent an image connection or an image activation profile connection.

7C

(124)

HWI_IFAPW

Requests to retrieve the current IFAPW value.

Note: The input connection token must only represent an image connection.

7D

(125)

HWI_IFAPWCAP

Requests to retrieve the IFAPW to be currently capped or not capped.

Note: The input connection token must only represent an image connection.

7E

(126)

HWI_IFLIPW

Requests to retrieve the integrated facility for Linux initial processing weight.

Note: The input connection token must only represent an image connection or an image activation profile connection.

7F

(127)

HWI_IFLIPWCAP

Requests to retrieve the IFLIPW to be capped or not capped.

Note: The input connection token must only represent an image connection or an image activation profile connection.

80

(128)

HWI_IFLPWMIN

Requests to retrieve the minimum IFLPW value.

Note: The input connection token must only represent an image connection or an image activation profile connection.

HWIQUERY

356 z/OS: z/OS MVS Callable Services for HLL

Table 70. Valid query attribute identifiers (continued)

Constant in hexadecimal
(Decimal)
Equate symbol

Description

81

(129)

HWI_IFLPWMAX

Requests to retrieve the maximum IFLPW value.

Note: The input connection token must only represent an image connection or an image activation profile connection.

82

(130)

HWI_IFLPW

Requests to retrieve current IFLPW value.

Note: The input connection token must only represent an image connection.

83

(131)

HWI_IFLPWCAP

Requests to retrieve the IFLPW to be capped or not capped.

Note: The input connection token must only represent an image connection.

84

(132)

HWI_ICFIPW

Requests to retrieve the internal coupling facility initial processing weight (ICFIPW).

Note: The input connection token must only represent an image connection (Coupling Facility images only) or an image
activation profile connection.

85

(133)

HWI_ICFIPWCAP

Requests to retrieve the ICFIPW be capped or not capped.

Note: The input connection token must only represent an image connection (Coupling Facility images only) or an image
activation profile connection.

86

(134)

HWI_ICFPWMIN

Requests to retrieve the minimum ICFPW value.

Note: The input connection token must only represent an image connection (Coupling Facility images only) or an image
activation profile connection.

87

(135)

HWI_ICFPWMAX

Requests to retrieve the maximum ICFPW value.

Note: The input connection token must only represent an image connection (Coupling Facility images only) or an image
activation profile connection.

88

(136)

HWI_ICFPW

Requests to retrieve the current ICFPW value.

Note: The input connection token must only represent an image connection (Coupling Facility images only).

89

(137)

HWI_ICFPWCAP

Requests to retrieve the ICFPW to be capped or not capped.

Note: The input connection token must only represent an image connection (Coupling Facility images only).

8A

(138)

HWI_IIPIPW

Requests to retrieve the integrated information processors initial processing weight (IIPIPW).

Note: The input connection token must only represent an image connection or an image activation profile connection.

8B

(139)

HWI_IIPIPWCAP

Requests to retrieve the IIPIPW be capped or not capped.

Note: The input connection token must only represent an image connection or an image activation profile connection.

8C

(140)

HWI_IIPPWMIN

Requests to retrieve the minimum IIPPW value.

Note: The input connection token must only represent an image connection or an image activation profile connection.

8D

(141)

HWI_IIPPWMAX

Requests to retrieve the maximum IIPPW value.

Note: The input connection token must only represent an image connection or an image activation profile connection.

8E

(142)

HWI_IIPPW

Requests to retrieve the current IIPPW value.

Note: The input connection token must only represent an image connection.

HWIQUERY

Chapter 19. Base Control Program internal interface (BCPii) 357

Table 70. Valid query attribute identifiers (continued)

Constant in hexadecimal
(Decimal)
Equate symbol

Description

8F

(143)

HWI_IIPPWCAP

Requests to retrieve the IIPPW to be capped or not capped.

Note: The input connection token must only represent an image connection.

90

(144)

HWI_IPLTOKEN

Requests to retrieve the IPL token associated with the current IPL of the image targeted.

Note: The input connection token must only represent an image connection.

91

(145)

HWI_PSWS

Requests to retrieve the program status word (PSW) for each of the central processors (CP) associated with this image.

Non-REXX:
The returned data is mapped as follows:

Field Name Field Type
--------------- -----------
Number of CPs 32-bit unsigned integer

For each CP, the following is returned:
CPUID 32-bit unsigned integer
PSW 128-bit unsigned integer

Note: The query parameter for this attribute must specify a data area large enough to contain all of the above structure
(that is 32 bits + 160 bits per CP). For example, if there are 4 CPs on the targeted image, the AttributeValueLen specified
for this attribute must be 32 + (160 x 4) = 672 bits (84 bytes).

REXX:
The returned data is mapped as follows (where x is the user-defined QueryParm stem, n is the n-th requested attribute
and m is the m-th returned CPUID or PSW value):

• x.n.ATTRIBUTEVALUE.0 is the number of CPs (m).

• x.n.ATTRIBUTEVALUE.m.CPUID is the m-th CPUID value.

• x.n.ATTRIBUTEVALUE.m.PSW is the m-th PSW value.

Note: The input connection token must represent an image connection.

92

(146)

HWI_GROUP_PROFILE_CAPA
CITY

• For group profile connection (the input ConnectToken represents a group profile connection), requests to retrieve the
workload unit capacity for a group profile.

• For LPAR Capacity group connection (the input ConnectToken represents an LPAR Capacity group connection), requests to
retrieve the dynamic workload unit capacity for an LPAR Capacity group. This attribute for this connection type is supported
on z14 GA2 or higher CPC.

• For image connection (the input ConnectToken represents an image connection), requests to retrieve the dynamic workload
unit capacity for a group of images in which the target image is a member. This attribute for this connection type requires
that the target image be on a z196 (zEnterprise) or higher CPC and is a member of an LPAR Capacity group. If these
requirements are not met, the HWI_QUERY_ATTRIBUTE_NOT_SUPPORTED '406'x return code will be returned.

93

(147)

HWI_LAST_USED_LOADADDR

Requests to retrieve the load address that was used when the image was last loaded. This attribute is only available when
targeting an image residing on a z196 or later CPC.

Note: The input connection token must represent an image connection.

94

(148)

HWI_LAST_USED_LOADPAR
M

Requests to retrieve the load parameters that were used when the image was last loaded. This attribute is only available when
targeting an image residing on a z196 or later CPC.

Note: The input connection token must represent an image connection.

95

(149)

HWI_ABSCAP

Request to retrieve whether absolute capping is enabled for general purpose processors. This attribute is only available when
targeting a ZEC12 GA2 or higher CPC.

Note: The input connection token must only represent an image or an image activation profile connection.

96

(150)

HWI_ABSCAPVAL

Requests to retrieve the maximum general purpose processor consumption for the target image. This attribute is only available
when targeting a ZEC12 GA2 or higher CPC.

Note: The input connection token must only represent an image or an image activation profile connection.

97

(151)

HWI_IFAABSCAP

Requests to retrieve whether absolute capping is enabled for AAP processors. This attribute is only available when targeting a
ZEC12 GA2 or higher CPC.

Note: The input connection token must only represent an image or an image activation profile connection.

HWIQUERY

358 z/OS: z/OS MVS Callable Services for HLL

Table 70. Valid query attribute identifiers (continued)

Constant in hexadecimal
(Decimal)
Equate symbol

Description

98

(152)

HWI_IFAABSCAPVAL

Requests to retrieve the maximum AAP processor consumption for the target image. This attribute is only available when
targeting a ZEC12 GA2 or higher CPC.

Note: The input connection token must only represent an image or an image activation profile connection.

99

(153)

HWI_IFLABSCAP

Requests to retrieve whether absolute capping is enabled for IFL processors. This attribute is only available when targeting a
ZEC12 GA2 or higher CPC.

Note: The input connection token must only represent an image or an image activation profile connection.

9A

(154)

HWI_IFLABSCAPVAL

Requests to retrieve the maximum IFL processor consumption for the target image. This attribute is only available when
targeting a ZEC12 GA2 or higher CPC.

Note: The input connection token must only represent an image or an image activation profile connection.

9B

(155)

HWI_ICFABSCAP

Requests to retrieve whether absolute capping is enabled for IFC processors. This attribute is only available when targeting a
ZEC12 GA2 or higher CPC.

Note: The input connection token must only represent an image or an image activation profile connection.

9C

(156)

HWI_ICFABSCAPVAL

Requests to retrieve the maximum IFC processor consumption for the target image. This attribute is only available when
targeting a ZEC12 GA2 or higher CPC.

Note: The input connection token must only represent an image or an image activation profile connection.

9D

(157)

HWI_IIPABSCAP

Requests to retrieve whether absolute capping is enabled for IIP processors. This attribute is only available when targeting a
ZEC12 GA2 or higher CPC.

Note: The input connection token must only represent an image or an image activation profile connection.

9E

(158)

HWI_IIPABSCAPVAL

Requests to retrieve the maximum IIP processor consumption for the target image. This attribute is only available when
targeting a ZEC12 GA2 or higher CPC.

Note: The input connection token must only represent an image or an image activation profile connection.

9F

(159)

HWI_GROUP_PROF_ABSCAP

• For group profile connection (the input ConnectToken represents a group profile connection), requests to retrieve whether
absolute capping is enabled for general purpose processors for a group profile.

• For LPAR Capacity group connection (the input ConnectToken represents an LPAR group connection), requests to retrieve
whether the dynamic absolute capping is enabled for general purpose processors for an LPAR Capacity group. This attribute
is only available when targeting a z14 GA2 or higher CPC.

• For image connection (the input ConnectToken represents an image connection), requests to retrieve whether the dynamic
absolute capping is enabled for general purpose processors for a group of images in which the target image is a member.
This attribute is only available when targeting a z13 GA2 or higher CPC.

A0

(160)

HWI_GROUP_PROF_ABSCAP
VAL

• For group profile connection (the input ConnectToken represents a group profile connection), requests to retrieve the
maximum general-purpose processor consumption for a group profile.

• For LPAR Capacity group connection (the input ConnectToken represents an LPAR group connection), requests to retrieve
the dynamic maximum general-purpose processor consumption for an LPAR Capacity group. This attribute is only available
when targeting a z14 GA2 or higher CPC.

• For image connection (the input ConnectToken represents an image connection), requests to retrieve the dynamic
maximum general-purpose processor consumption for a group of images in which the target image is a member. This
attribute is only available when targeting a z13 GA2 or higher CPC.

A1

(161)

HWI_GROUP_PROF_ICFABSC
AP

• For group profile connection (the input ConnectToken represents a group profile connection), requests to retrieve whether
the absolute capping is enabled for ICF processors for a group profile.

• For LPAR Capacity group connection (the input ConnectToken represents an LPAR group connection), requests to retrieve
whether the dynamic absolute capping is enabled for ICF processors for an LPAR Capacity group. This attribute is only
available when targeting a z14 GA2 or higher CPC.

• For image connection (the input ConnectToken represents an image connection), requests to retrieve whether the dynamic
absolute capping is enabled for ICF processors for a group of images in which the target image is a member. This attribute is
only available when targeting a z13 GA2 or higher CPC.

A2

(162)

HWI_GROUP_PROF_ICFABSC
APVAL

• For group profile connection (the input ConnectToken represents a group profile connection), requests to retrieve the
maximum ICF processor consumption for a group profile.

• For LPAR Capacity group connection (the input ConnectToken represents an LPAR group connection), requests to retrieve
the dynamic maximum ICF processor consumption for an LPAR Capacity group. This attribute is only available when
targeting a z14 GA2 or higher CPC.

• For image connection (the input ConnectToken represents an image connection), requests to retrieve the dynamic
maximum ICF processor consumption for a group of images in which the target image is a member. This attribute is
only available when targeting a z13 GA2 or higher CPC.

HWIQUERY

Chapter 19. Base Control Program internal interface (BCPii) 359

Table 70. Valid query attribute identifiers (continued)

Constant in hexadecimal
(Decimal)
Equate symbol

Description

A3

(163)

HWI_GROUP_PROF_IFLABSC
AP

• For group profile connection (the input ConnectToken represents a group profile connection), requests to retrieve whether
the absolute capping is enabled for IFL processors for a group profile.

• For LPAR Capacity group connection (the input ConnectToken represents an LPAR group connection), requests to retrieve
whether the dynamic absolute capping is enabled for IFL processors for an LPAR Capacity group. This attribute is only
available when targeting a z14 GA2 or higher CPC.

• For image connection (the input ConnectToken represents an image connection), requests to retrieve whether the dynamic
absolute capping is enabled for IFL processors for a group of images in which the target image is a member. This attribute is
only available when targeting a z13 GA2 or higher CPC.

A4

(164)

HWI_GROUP_PROF_IFLABSC
APVAL

• For group profile connection (the input ConnectToken represents a group profile connection), requests to retrieve the
maximum IFL processor consumption for a group profile.

• For LPAR Capacity group connection (the input ConnectToken represents an LPAR group connection), requests to retrieve
the maximum IFL processor consumption for an LPAR Capacity group. This attribute is only available when targeting a z14
GA2 or higher CPC.

• For image connection (the input ConnectToken represents an image connection), requests to retrieve the dynamic
maximum IFL processor consumption for a group of images in which the target image is a member. This attribute is only
available when targeting a z13 GA2 or higher CPC.

A5

(165)

HWI_GROUP_PROF_IIPABSC
AP

• For group profile connection (the input ConnectToken represents a group profile connection), requests to retrieve whether
the absolute capping is enabled for IIP processors for a group profile.

• For LPAR Capacity group connection (the input ConnectToken represents an LPAR group connection), requests to retrieve
whether the dynamic absolute capping is enabled for IIP processors for an LPAR Capacity group. This attribute is only
available when targeting a z14 GA2 or higher CPC.

• For image connection (the input ConnectToken represents an image connection), requests to retrieve whether the dynamic
absolute capping is enabled for IIP processors for a group of images in which the target image is a member. This attribute is
only available when targeting a z13 GA2 or higher CPC.

A6

(166)

HWI_GROUP_PROF_IIPABSC
APVAL

• For group profile connection (the input ConnectToken represents a group profile connection), requests to retrieve the
maximum IIP processor consumption for a group profile.

• For LPAR Capacity group connection (the input ConnectToken represents an LPAR group connection), requests to retrieve
the dynamic maximum IIP processor consumption for an LPAR Capacity group. This attribute is only available when
targeting a z14 GA2 or higher CPC.

• For image connection (the input ConnectToken represents an image connection), requests to retrieve the dynamic
maximum IIP processor consumption for a group of images in which the target image is a member. This attribute is only
available when targeting a z13 GA2 or higher CPC.

A7-B6

(167-182)

RESERVED

Additional attributes and reserved numbers for attributes that are for image connections only.

B7

(183)

HWI_RECID

Requests to retrieve the record ID.

Note: The input connection token must only represent a capacity record connection.

B8

(184)

HWI_RECTYPE

Requests to retrieve the record type.

Note: The input connection token must only represent a capacity record connection.

B9

(185)

HWI_ACTSTAT

Requests to retrieve the record activation status.

Note: The input connection token must only represent a capacity record connection.

BA

(186)

HWI_ACTDATE

Requests to retrieve the record activation date.

Note: The input connection token must only represent a capacity record connection.

BB

(187)

HWI_EXPDATE

Requests to retrieve the record expiration date.

Note: The input connection token must only represent a capacity record connection.

BC

(188)

HWI_ACTEXP

Requests to retrieve the record activation expiration date.

Note: The input connection token must only represent a capacity record connection.

HWIQUERY

360 z/OS: z/OS MVS Callable Services for HLL

Table 70. Valid query attribute identifiers (continued)

Constant in hexadecimal
(Decimal)
Equate symbol

Description

BD

(189)

HWI_MAXRADS

Requests to retrieve the maximum real activation days.

Note: The input connection token must only represent a capacity record connection.

BE

(190)

HWI_MAXTADS

Requests to retrieve the maximum test activation days.

Note: The input connection token must only represent a capacity record connection.

BF

(191)

HWI_REMRADS

Requests to retrieve the remaining real activation days.

Note: The input connection token must only represent a capacity record connection.

C0

(192)

HWI_REMTADS

Requests to retrieve the remaining test activation days.

Note: The input connection token must only represent a capacity record connection.

C1

(193)

HWI_OOCODREC

Request to retrieve all aspects of a capacity record in XML format.

Note: The input connection token must only represent a capacity record connection.

C3-C8

(195-200)

RESERVED

Reserved for capacity record attributes.

C9

(201)

HWI_IOCDS

Requests to retrieve the IOCDS.

Note: The input connection token must represent a reset activation profile.

CA

(202)

HWI_IPL_ADDRESS

Requests to retrieve the IPL address.

Note: The input connection token must represent an image activation profile or a load activation profile.

CB

(203)

HWI_IPL_PARM

Requests to retrieve the IPL parameter.

Note: The input connection token must represent an image activation profile or a load activation profile.

CC

(204)

HWI_IPL_TYPE

Requests to retrieve the IPL type for the activation profile.

Note: The input connection token must represent an image activation profile or a load activation profile.

CD

(205)

HWI_WW_PORTNAME

Requests to retrieve the worldwide port name for the activation profile.

Note: The input connection token must represent an image activation profile or a load activation profile.

CE

(206)

HWI_BOOT_PGM_SELECTOR

Requests to retrieve the boot program selector for the activation profile.

Note: The input connection token must represent an image activation profile or a load activation profile.

CF

(207)

HWI_LU_NUM

Requests to retrieve the logical unit number value for the activation profile.

Note: The input connection token must represent an image activation profile or a load activation profile.

D0

(208)

HWI_BOOTREC_BLK_ADDR

Requests to retrieve the boot record logical block address for the activation profile.

Note: The input connection token must represent an image activation profile or a load activation profile.

HWIQUERY

Chapter 19. Base Control Program internal interface (BCPii) 361

Table 70. Valid query attribute identifiers (continued)

Constant in hexadecimal
(Decimal)
Equate symbol

Description

D1

(209)

HWI_OPSYS_LOADPARM

Requests to retrieve the operating system specific load parameter.

Note: The input connection token must represent an image activation profile or a load activation profile.

D2

(210)

HWI_GROUP_PROF_NAME

Requests to retrieve the name of the group capacity profile that is to be used for the CPC image or image object activated with
this profile.

Note: The input connection token must represent an image activation profile.

D3

(211)

HWI_LOAD_AT_ACTIVATION

Requests to retrieve the indicator if the CPC image object activated with this profile should be loaded (IPLed) at the end of the
activation.

Note: The input connection token must represent an image activation profile.

D4

(212)

HWI_CENTRAL_STOR

Requests to retrieve the initial amount of central storage (in megabytes) to be used for the CPC image object activated with
this profile.

Note: The input connection token must represent an image activation profile.

D5

(213)

HWI_RES_CENTRAL_STOR

Requests to retrieve the reserved amount of central storage (in megabytes) to be used for the CPC image object activated with
this profile.

Note: The input connection token must represent an image activation profile.

D6

(214)

HWI_EXPANDED_STOR

Requests to retrieve the initial amount of expanded storage (in megabytes) to be used for the CPC image object activated with
this profile.

Note: The input connection token must represent an image activation profile.

D7

(215)

HWI_RES_EXPANDED_STOR

Requests to retrieve the reserved amount of expanded storage (in megabytes) to be used for the CPC image object activated
with this profile.

Note: The input connection token must represent an image activation profile.

D8

(216)

HWI_NUM_GPP

Requests to retrieve the number of dedicated general purpose processors to be used for the CPC image object activated with
this profile.

Note: The input connection token must represent an image activation profile.

D9

(217)

HWI_NUM_RESGPP

Requests to retrieve the number of reserved dedicated general purpose processors to be used for the CPC image object
activated with this profile.

Note: The input connection token must represent an image activation profile.

DA

(218)

HWI_NUM_IFA

Requests to retrieve the number of dedicated integrated facility for applications (IFA) processors to be used for the CPC image
object activated with this profile.

Note: The input connection token must represent an image activation profile.

DB

(219)

HWI_NUM_RESIFA

Requests to retrieve the number of reserved dedicated integrated facility for applications (IFA) processors to be used for the
CPC image object activated with this profile.

Note: The input connection token must represent an image activation profile.

DC

(220)

HWI_NUM_IFL

Requests to retrieve the number of dedicated integrated facility for Linux (IFL) processors to be used for the CPC image object
activated with this profile.

Note: The input connection token must represent an image activation profile.

DD

(221)

HWI_NUM_RESIFL

Requests to retrieve the number of reserved dedicated integrated facility for Linux (IFL) processors to be used for the CPC
image object activated with this profile.

Note: The input connection token must represent an image activation profile.

DE

(222)

HWI_NUM_ICF

Requests to retrieve the number of dedicated internal coupling facility (ICF) processors to be used for the CPC image object
activated with this profile.

Note: The input connection token must represent an image activation profile.

HWIQUERY

362 z/OS: z/OS MVS Callable Services for HLL

Table 70. Valid query attribute identifiers (continued)

Constant in hexadecimal
(Decimal)
Equate symbol

Description

DF

(223)

HWI_NUM_RESICF

Requests to retrieve the number of reserved dedicated internal coupling facility (ICF) processors to be used for the CPC image
object activated with this profile.

Note: The input connection token must represent an image activation profile.

E0

(224)

HWI_NUM_ZIIP

Requests to retrieve the number of dedicated System z Integrated Information Processors (zIIPs) to be used for the CPC
image object activated with this profile.

Note: The input connection token must represent an image activation profile.

E1

(225)

HWI_NUM_RESZIIP

Requests to retrieve the number of reserved dedicated System z Integrated Information Processors (zIIPs) to be used for the
CPC image object activated with this profile.

Note: The input connection token must represent an image activation profile.

E2

(226)

HWI_NUM_SHARED_GPP

Requests to retrieve the number of shared general purpose processors to be used for the CPC image object activated with this
profile.

Note: The input connection token must represent an image activation profile.

E3

(227)

HWI_NUM_RES_SHARED_GP
P

Requests to retrieve the number of reserved shared general purpose processors to be used for the CPC image object activated
with this profile.

Note: The input connection token must represent an image activation profile.

E4

(228)

HWI_NUM_SHARED_IFA

Requests to retrieve the number of shared integrated facility for applications (IFA) processors to be used for the CPC image
object activated with this profile.

Note: The input connection token must represent an image activation profile.

E5

(229)

HWI_NUM_RES_SHARED_IF
A

Requests to retrieve the number of reserved shared integrated facility for applications (IFA) processors to be used for the CPC
image object activated with this profile.

Note: The input connection token must represent an image activation profile.

E6

(230)

HWI_NUM_SHARED_IFL

Requests to retrieve the number of shared integrated facility for Linux (IFL) processors to be used for the CPC image object
activated with this profile.

Note: The input connection token must represent an image activation profile.

E7

(231)

HWI_NUM_RES_SHARED_IF
L

Requests to retrieve the number of reserved shared integrated facility for Linux (IFL) processors to be used for the CPC image
object activated with this profile.

Note: The input connection token must represent an image activation profile.

E8

(232)

HWI_NUM_SHARED_ICF

Requests to retrieve the number of shared internal coupling facility (ICF) processors to be used for the CPC image object
activated with this profile.

Note: The input connection token must represent an image activation profile.

E9

(233)

HWI_NUM_RES_SHARED_IC
F

Requests to retrieve the number of reserved shared internal coupling facility (ICF) processors to be used for the CPC image
object activated with this profile.

Note: The input connection token must represent an image activation profile.

EA

(234)

HWI_NUM_SHARED_ZIIP

Requests to retrieve the number of shared System z Integrated Information Processors (zIIPs) to be used for the CPC image
object activated with this profile.

Note: The input connection token must represent an image activation profile.

EB

(235)

HWI_NUM_RES_SHARED_ZII
P

Requests to retrieve the number of reserved shared System z Integrated Information Processors (zIIPs) to be used for the CPC
image object activated with this profile.

Note: The input connection token must represent an image activation profile.

HWIQUERY

Chapter 19. Base Control Program internal interface (BCPii) 363

Table 70. Valid query attribute identifiers (continued)

Constant in hexadecimal
(Decimal)
Equate symbol

Description

EC

(236)

HWI_BASIC_CPU_AUTH

_COUNT_CNTL

Requests to retrieve the enablement value of the Basic CPU counter facility for the CPC image. This attribute is only available
when targeting a z10 or higher CPC.

Note: The input connection token must represent an image activation profile.

ED

(237)

HWI_PROBSTATE_CPU_AUT
H

_COUNT_CNTL

Requests to retrieve the enablement value of the Problem state CPU counter facility for the CPC image. This attribute is only
available when targeting a z10 or higher CPC.

Note: The input connection token must represent an image activation profile.

EE

(238)

HWI_CRYPTOACTIVITY_CPU

_AUTH_COUNT_CNTL

Requests to retrieve the enablement value of the crypto activity CPU counter facility for the CPC image. This attribute is only
available when targeting a z10 or higher CPC.

Note: The input connection token must represent an image activation profile.

EF

(239)

HWI_EXTENDED_CPU_AUTH

_COUNT_CNTL

Requests to retrieve the enablement value of the extended CPU counter facility for the CPC image. This attribute is only
available when targeting a z10 or higher CPC.

Note: The input connection token must represent an image activation profile.

F0

(240)

HWI_COPROCESSOR_CPU

_AUTH_COUNT_CNTL

Requests to retrieve the enablement value of the coprocessor group CPU counter facility for the CPC image. This attribute is
only available when targeting a z10 or z196 CPC.

Note: The input connection token must represent an image activation profile.

F1

(241)

HWI_BASIC_CPU_SAMPLING

_AUTH_CNTL

Requests to retrieve the enablement value of the basic CP CPU sampling facility for the CPC image. This attribute is only
available when targeting a z10 or higher CPC.

Note: The input connection token must represent an image activation profile.

F2

(242)

HWI_APROF_STORE_STATUS

Requests to retrieve the store status function value. This attribute is only available when targeting a z10 or higher CPC.

Note: The input connection token must represent a load activation profile.

F3

(243)

HWI_APROF_LOADTYPE

Requests to retrieve the type of load being requested. This attribute is only available when targeting a z10 or higher CPC.

Note: The input connection token must represent a load activation profile.

F4

(244)

HWI_PROFILE_DESCRIPTIO
N

Requests to retrieve the activation profile description. This attribute is only available when targeting a z10 or higher CPC.

Note: The input connection token must represent an image activation profile, reset activation profile, load activation profile or
group profile.

F5

(245)

HWI_PROFILE_PARTITION

_ID

Requests to retrieve the partition identifier for the activation profile. This attribute is only available when targeting a z10 or
higher CPC.

Note: The input connection token must represent an image activation profile.

F6

(246)

HWI_OPERATING_MODE

Requests to retrieve the operating mode value for the activation profile. This attribute is only available when targeting a z10 or
higher CPC.

Note: The input connection token must represent an image activation profile.

F7

(247)

HWI_CLOCK_TYPE

Requests to retrieve the clock type assignment (time source setting) for the activation profile. This attribute is only available
when targeting a z10 or higher CPC.

Note: The input connection token must represent an image activation profile.

HWIQUERY

364 z/OS: z/OS MVS Callable Services for HLL

Table 70. Valid query attribute identifiers (continued)

Constant in hexadecimal
(Decimal)
Equate symbol

Description

F8

(248)

HWI_TIME_OFFSET_DAYS

Requests to retrieve the time offset days (the number of days currently set as the offset from the external time source's time
of day) for the activation profile. This attribute is only available when targeting a z10 or higher CPC.

Note: The input connection token must represent an image activation profile.

F9

(249)

HWI_TIME_OFFSET_HOURS

Requests to retrieve the time offset hours (the number of hours currently set as the offset from the external time source's time
of day) for the activation profile. This attribute is only available when targeting a z10 or higher CPC.

Note: The input connection token must represent an image activation profile.

FA

(250)

HWI_TIME_OFFSET

_MINUTES

Requests to retrieve the time offset minutes (the number of minutes currently set as the offset from the external time source's
time of day) for the activation profile. This attribute is only available when targeting a z10 or higher CPC.

Note: The input connection token must represent an image activation profile.

FB

(251)

HWI_TIME_OFFSET

_INCREASE

Requests to retrieve the time offset increase or decrease value for the activation profile. The time offset, as specified in days,
hours, and minutes, is increased or decreased from GMT. TRUE means that the time offset is east of GMT. FALSE means that
the time offset is west of GMT. This attribute is only available when targeting a z10 or higher CPC.

Note: The input connection token must represent an image activation profile.

FC

(252)

HWI_LICCC_VALIDATION

_ENABLED

Requests to retrieve whether the activation profile must conform to the current Licensed Internal Code Configuration Control
(LICCC) configuration. This attribute is only available when targeting a zEnterprise or higher CPC.

Note: The input connection token must represent an image activation profile.

FD

(253)

HWI_GLOBAL

_PERFORMANCE

_DATA_CONTROL

Requests to retrieve whether the logical partition can be used to view the processing unit activity data for all other LPARs
activated on the same CPC. This attribute is only available when targeting a z10 or higher CPC.

Note: The input connection token must represent an image activation profile.

FE

(254)

HWI_IO_CONFIGURATION

_CONTROL

Requests to retrieve whether the logical partition can be used to read and write any Input/Output Configuration Data Set
(IOCDS) in the configuration. This attribute is only available when targeting a z10 or higher CPC.

Note: The input connection token must represent an image activation profile.

FF

(255)

HWI_CROSS_PARTITION

_AUTHORITY

Requests to retrieve whether the logical partition can be used to issue control program instructions that reset or deactivate
other LPARs. This attribute is only available when targeting a z10 or higher CPC.

Note: The input connection token must represent an image activation profile.

100

(256)

HWI_LOGICAL_PARTITION

_ISOLATION

Requests to retrieve whether reconfigurable channel paths assigned to the logical partition are reserved for its exclusive use.
This attribute is only available when targeting a z10 or higher CPC.

Note: The input connection token must represent an image activation profile.

101-109

(257–265)

RESERVED

Reserved for activation profile attributes.

NumOfAttributes (non-REXX)
Supplied parameter

• Type: Integer
• Length: 4 bytes

NumOfAttributes specifies the number of attributes to be queried. The maximum number of attributes
allowed is 64.

HWIQUERY

Chapter 19. Base Control Program internal interface (BCPii) 365

DiagArea (non-REXX)
DiagArea. (REXX)

Returned parameter

• Type: Character string (non-REXX), stem variable (REXX)
• Length: 32 bytes (non-REXX)

DiagArea contains diagnostic data to help determine the cause of a failure from the service. For many
return codes, the DiagArea can contain further information to help determine the cause of the failure.
See the descriptions of different return codes for a partial list of data returned in this area.

Note: For all environmental errors (with return code X'F00' and higher), the DiagArea might not be
filled in, and the data returned in the area should be ignored.

Field Name (non-
REXX) / Tail
name constant of
the user-defined
DiagArea stem
(REXX)

Field Type (non-REXX) Description

Diag_Index 32-bit integer The array index to the parameter field that causes the error.

Diag_Key 32-bit integer The constant value represents the field that causes the error.

Diag_Actual 32-bit integer The incorrect actual value specified.

Diag_Expected 32-bit integer The expected value to be used.

Diag_CommErr 32-bit integer The returned code that is returned from the console application API
or the BCPii transport layer.

Diag_Text Character (12) Additional diagnostic information in text format.

See Appendix A, “BCPii communication error reason codes,” on page 693 for a partial list of the
descriptive communication transport error return codes and suggested actions.

ABEND codes
If BCPii is unable to properly access the user-supplied parameter list, the call might result in an abend
X'042' with a reason code of X'0006yyyy' because of one of the following reasons:

Table 71. Reasons for abend X'042', RC X'0006yyyy'

yyyy Reason

0000 The parameters passed by the caller are not in the primary address space.

0001 The parameters passed by the caller are not accessible.

0002 The number of parameters passed by the caller is not correct.

For other severe BCPii errors encountered during the call, an abend X'042' with a different reason code
may result. See z/OS MVS System Codes for additional information.

Return codes
When the service returns control to the caller, GPR 15 and ReturnCode contain a hexadecimal return
code.

Return Code in Hexadecimal
Equate Symbol

Return Code in Decimal Equate
Symbol Meaning and Action

0

HWI_OK

0

HWI_OK

Meaning: Successful completion.

Action: None.

HWIQUERY

366 z/OS: z/OS MVS Callable Services for HLL

Return Code in Hexadecimal
Equate Symbol

Return Code in Decimal Equate
Symbol Meaning and Action

100

HWI_CONNECT_TOKEN_INV

256

HWI_CONNECT_TOKEN_INV

Meaning: Program error. The
specified connect token is not valid.
This return code indicates that
one of the following conditions has
occurred:

• The connect token does not exist.
A previous HWICONN service call
has never returned the value
specified on OutConnectToken.

• The connect token does not
represent an active connection.
The connection specified might
have already been disconnected
using the HWIDISC service call.

• The connect token is not
associated with the address
space of the caller. The
ConnectToken specified is
associated with a different
address space than the caller of
this service call.

Action: Check for probable coding
error.

101

HWI_COMMUNICATION_ERROR

257

HWI_COMMUNICATION_ERROR

Meaning: A communication error
is detected. The hardware
management console application
API (HWMCA) or the BCPii
transport layer has returned with a
failing return code.

Action: See the DiagArea for
further diagnostic information. The
Diag_CommErr indicates the return
code that is returned from HWMCA
APIs or the BCPii transport layer.
In some cases, the Diag_Index and
Diag_Key may contain additional
details.

HWMCA API and BCPii transport
return codes are provided in
Appendix A, “BCPii communication
error reason codes,” on page 693.

102

HWI_DIAGAREA_INV

258

HWI_DIAGAREA_INV

Meaning: Program error. The
DiagArea is not accessible.

Action: Check for probable coding
error. Verify that the specified
DiagArea is defined as a 32-byte
character field.

HWIQUERY

Chapter 19. Base Control Program internal interface (BCPii) 367

Return Code in Hexadecimal
Equate Symbol

Return Code in Decimal Equate
Symbol Meaning and Action

103

HWI_CONNECT_TOKEN_INACTIVE

259

HWI_CONNECT_TOKEN_INACTIVE

Meaning: The specified connect
token is no longer valid. The
connection has been disconnected
or it is in the progress of being
disconnected.

Action: Check for probable coding
error. Verify that the specified
connect token is still active. If
connectivity to the targeted CPC
connection no longer exists, all
connections associated with that
CPC will no longer have a connect
token that can be used.

104 HWI_TARGET_CPC_CHANGED 260 HWI_TARGET_CPC_CHANGED Meaning: The CPC name
represented by the specified token
is valid but does not represent the
same physical machine that was
targeted by the initial HWICONN
call. All connections that were
established prior to the name
change can no longer be used.

Action: The application should
cease using this connect token. If
the application intends to target the
CPC using the name represented by
the specified connect token, it must
first reconnect to the CPC before
issuing any BCPii service call.

HWIQUERY

368 z/OS: z/OS MVS Callable Services for HLL

Return Code in Hexadecimal
Equate Symbol

Return Code in Decimal Equate
Symbol Meaning and Action

401

HWI_QUERYPARM_ATTRIB_INV

1025

HWI_QUERYPARM_ATTRIB_INV

Meaning: Program error. One of
the requested attribute identifiers
in the QueryParm is not valid. The
system rejects the service call.
This return code indicates that
one of the following conditions has
occurred:

• The Query attribute identifier
specified is not in the acceptable
value range of possible attributes.

• The specified Query attribute
identifier has been provided
with an incompatible connection
type. For example, the
attribute identifier applies only
to CPC connections, but
the ConnectToken specified
represents an image connection,
a capacity record connection,
or any of the activation profile
connections.

Action: Check for probable coding
error. Validate that the Query
attribute specified is in the valid
range of possible values. Validate
that the Query attribute specified
is permitted for the specified
connection type.

See the DiagArea for further
diagnostic information:

• The Diag_Index field specifies
the index of the element in the
attribute array that is in error.

• The Diag_Key contains the
attribute identifier specified.

• The Diag_Text contains “Invalid
Attr” if the attribute is one whose
value cannot be queried. If the
attribute cannot be queried for
the specified connection type, the
Diag_Text contains “Mismatch.”

HWIQUERY

Chapter 19. Base Control Program internal interface (BCPii) 369

Return Code in Hexadecimal
Equate Symbol

Return Code in Decimal Equate
Symbol Meaning and Action

402

HWI_QUERYPARM_INACCESSIBLE

1026

HWI_QUERYPARM_INACCESSIBLE

Meaning: Program error. The
QueryParm data area is either
partially or completely inaccessible
by the application, the Base Control
Program internal interface (BCPii)
address space, or both.

Action: Check for probable coding
error. Consider the following
possibilities:

• The QueryParm length could be
too small. The size of QueryParm
must be at least the product of
the NumofAttributes parameter
and the length of the data area
mapping for each attribute (16
bytes).

• The NumofAttributes value can
be larger than the number of
parameters actually passed.

403

HWI_QUERYPARM_ATTRIBRETADD
R

_INACCESSIBLE

1027

HWI_QUERYPARM_ATTRIBRETADD
R

_INACCESSIBLE

Meaning: Program error. Storage
that is pointed to by one or more
of the attribute value pointers in
the QueryParm is not accessible by
the application. The system is not
able to return data for this attribute
identifier. Partial data might have
already been returned.

Action: Check for probable coding
error. See the DiagArea for
further diagnostic information. The
Diag_Index field specifies the
array index that contained the
inaccessible AttributeValuePtr. The
Diag_Key contains the erroneous
attribute identifier.

HWIQUERY

370 z/OS: z/OS MVS Callable Services for HLL

Return Code in Hexadecimal
Equate Symbol

Return Code in Decimal Equate
Symbol Meaning and Action

404

HWI_QUERYPARM_ATTRIB_LENGT
H_INV

1028

HWI_QUERYPARM_ATTRIB_LENGT
H_INV

Meaning: Program error. One of the
attribute lengths specified is too
small. There is not enough space to
contain all of the returned data for
this particular attribute. The system
returns partial data, filling in the
attribute data area for the length
specified.

Action: Check for probable coding
error. See the DiagArea for
further diagnostic information.
The Diag_Index field specifies
the array index which contained
the partially filled-in value. The
Diag_Key is the attribute identifier
constant that causes the error.
The Diag_Actual indicates the
application-specified length. The
Diag_Expected indicates the size
required for the returned data.

405

HWI_QUERY_NUMOFATTRIB_INV

1029

HWI_QUERY_NUMOFATTRIB_INV

Meaning: Program error. The
NumOfAttributes specified on
the call is not valid. The
NumOfAttributes value must be in
the range of 1 to 64.

Action: Check for probable error.
Verify that the NumOfAttributes
specified is greater than zero and
less than or equal to 64.

406

HWI_QUERY_ATTRIBUTE_NOT_SU
PPORTED

1030

HWI_QUERY_ATTRIBUTE_NOT_SU
PPORTED

Meaning: The targeted hardware of
the HWIQUERY request does not
recognize the attribute attempted
to be retrieved.

Action: Verify that the targeted
hardware is at a level that supports
the type of attribute being queried.

407

HWI_QUERY_TARGET_DEACTIVATE
D

1031

HWI_QUERY_TARGET_DEACTIVATE
D

Meaning: A query attribute could
not be retrieved because the
targeted object is deactivated.

Action: Verify that the targeted
object is activated. Activate the
object before attempting to retrieve
this same attribute again.

HWIQUERY

Chapter 19. Base Control Program internal interface (BCPii) 371

Return Code in Hexadecimal
Equate Symbol

Return Code in Decimal Equate
Symbol Meaning and Action

408

HWI_QUERY_ATTRIB_TEMP_NOT_
AVAILABLE

1032

HWI_QUERY_ATTRIB_TEMP_NOT_
AVAILABLE

Meaning: One or more query
attributes could not be retrieved
because the support element (SE)
is temporarily unavailable.

Action: Try this request again at a
later time. If the problem persists,
contact the IBM Support Center.

409

HWI_QUERY_ATTRIB_NOT_AVAILA
BLE

1033

HWI_QUERY_ATTRIB_NOT_AVAILA
BLE

Meaning: One or more query
attributes could not be retrieved
due to one of the following:

1. If retrieving one of the absolute
capping value attributes, its
absolute capping type is not
currently enabled.

For example, if the
HWI_ABSCAPVAL attribute is
requested, the HWI_ABSCAP
attribute must be set to
HWMCA_TRUE.

2. The returned value from the
Support Element for one of
the requested attributes is not
valid or in the expected value
type. The Diag_Text in the
DiagArea may contain additional
diagnostic information.

Action: If an absolute capping
value is requested, verify that its
absolute capping type is enabled.
If the absolute capping type
is currently enabled, search the
problem reporting databases for a
fix for the problem. If no fix exists,
contact the IBM Support Center.

HWIQUERY

372 z/OS: z/OS MVS Callable Services for HLL

Return Code in Hexadecimal
Equate Symbol

Return Code in Decimal Equate
Symbol Meaning and Action

F00

HWI_NOT_AVAILABLE

3840

HWI_NOT_AVAILABLE

Meaning: BCPii services are not
available, and the system rejects
the service request.

Action: Notify the system
programmer to start the BCPii
address space and try the
request again. See “Restarting the
HWIBCPii address space” on page
258 about how to start the BCPii
address space.

Programs can also listen to
ENF68 to determine when BCPii
services are available. See z/OS
MVS Programming: Authorized
Assembler Services Reference EDT-
IXG for how to listen for BCPii
activation messages.

F01

HWI_AUTH_FAILURE

3841

HWI_AUTH_FAILURE

Meaning: The caller is PKM8-15
problem state and the program
does not reside in an APF-
authorized library.

Action: Check the calling program
for a probable coding error.

F02

HWI_NO_SAF_AUTH

3842

HWI_NO_SAF_AUTH

Meaning: The user does not have
correct SAF authorization for the
request.

Action: Check for probable error.
Consider one or more of the
following possible actions:

• Define read access authorization
to the FACILITY class resource
profile HWI.TARGET.netid.nau for
CPC, activation profile, user-
defined image group connections,
group profile or LPAR Capacity
group connection.

• Define read access authorization
to the FACILITY class resource
profile
HWI.TARGET.netid.nau.imagenam
e for an image connections.

• Define read access
authorization to the FACILITY
class resource profile
HWI.CAPREC.netid.nau.caprecid
for a capacity record connection.

• Ensure that the referenced facility
class profile is RACLIST-specified.

HWIQUERY

Chapter 19. Base Control Program internal interface (BCPii) 373

Return Code in Hexadecimal
Equate Symbol

Return Code in Decimal Equate
Symbol Meaning and Action

F03

HWI_INTERRUPT_STATUS_INV

3843

HWI_INTERRUPT_STATUS_INV

Meaning: The calling program is
disabled. The system rejects this
service request.

Action: Check the calling program
for a probable coding error.

F04

HWI_MODE_INV

3844

HWI_MODE_INV

Meaning: The calling program is not
in task mode. The system rejects
this service request.

Action: Check the calling program
for a probable error.

F05

HWI_LOCKS_HELD

3845

HWI_LOCKS_HELD

Meaning: The calling program is
holding one or more locks. The
system rejects this service request.

Action: Check the calling program
for a probable coding error.

F06

HWI_UNSUPPORTED_RELEASE

3846

HWI_UNSUPPORTED_RELEASE

Meaning: The system level does
not support this service. The
system rejects this service request.

Action: Remove the calling program
from the system, and install it
on a system that supports BCPii
services. Then run the calling
program again.

F07

HWI_UNSUPPORTED_ENVIRONME
NT

3847

HWI_UNSUPPORTED_ENVIRONME
NT

Meaning: The system does not
support execution of the service
from the current environment (for
example, calling a BCPii service
from within a BCPii ENF exit
routine).

Action: Issue the BCPii service
from a different execution
environment.

FFF

HWI_UNEXPECTED_ERROR

4095

HWI_UNEXPECTED_ERROR

Meaning: System error. The service
that was called encountered an
unexpected error. The system
rejects the service call.

Action: Search problem reporting
data bases for a fix for the problem.
If no fix exists, contact the IBM
Support Center.

Example
In the pseudocode example, the caller issues a call to retrieve the CPC name and the Current CPC status
of a CPC:

HWIQUERY

374 z/OS: z/OS MVS Callable Services for HLL

.
QueryParm_Ptr = ADDR(QueryParm);
NumberOfAttributes = 2;
QueryParm(1).AttributeIdentifier = HWI_NAME;
QueryParm(1).AttributeValue_Ptr = Addr(Value1);
QueryParm(1).AttributeValueLen = length of value1;
QueryParm(2).AttributeIdentifier = HWI_OPERSTAT;
QueryParm(2).AttributeValue_Ptr = Addr(Value2);
QueryParm(2).AttributeValueLen = 4;
CALL HWIQUERY (ReturnCode, ConnectToken, QueryParm_Ptr,
 NumOfAttributes, DiagArea)
.
.

A REXX programming example for the HWIQUERY service:

myQueryParm.0 = 4 /* Set number of attributes */
myQueryParm.n.ATTRIBUTEIDENTIFIER = HWI_NAME
myQueryParm.n.ATTRIBUTEIDENTIFIER = HWI_LUAPROF
myQueryParm.n.ATTRIBUTEIDENTIFIER = HWI_MSERIAL
myQueryParm.n.ATTRIBUTEIDENTIFIER = HWI_IPADDR

address bcpii "hwiquery RetCode myConnectToken myQueryParm. myDiag."

If (RC <> 0) | (Retcode <> 0) Then
 Do
 Say 'Service failed with REXX RC = 'RC' and API Retcode = 'Retcode'.'
 If (RC=Hwi_REXXParmSyntaxError | Retcode<>0) Then
 Do
 Say ’ Diag_index=’ myDiag.DIAG_INDEX
 Say ’ Diag_key=’ myDiag.DIAG_KEY
 Say ’ Diag_actual=’ myDiag.DIAG_ACTUAL
 Say ’ Diag_expected=’ myDiag.DIAG_EXPECTED
 Say ’ Diag_commerr=’ myDiag.DIAG_COMMERR
 Say ’ Diag_text=’ myDiag.DIAG_TEXT
 End
Else
 Do n=1 to myQueryParm.0
 Say ' myQueryParm.'n'.ATTRIBUTEVALUE = 'myQueryParm.n.ATTRIBUTEVALUE
 End

HWIREST — Issue RESTlike requests to the SE
Call the HWIREST service to issue REST API operations. The requests will continue to be sent as an SCLP
packet over the current internal transport network to the local support element (SE).

For details regarding the supported REST API operations, see the Supported objects and operations
section of Appendix A, Base Control Program internal interface (BCPii) in Hardware Management Console
Web Services API on Resource Link. Go to Resource Link home page (www.ibm.com/servers/resourcelink)
and click Library on the navigation bar.

Description

Environment
The requirements for the callers are:

Requirement Details

Minimum authorization: One of the following: PKM allowing key 0-7, supervisor state, or
APF-authorized

Dispatchable unit mode: Task

Cross memory mode: Any PASN, any HASN, any SASN

AMODE: 31-bit

ASC mode: Primary or access register (AR)

Interrupt status: Enabled for I/O and external interrupts

HWIREST

Chapter 19. Base Control Program internal interface (BCPii) 375

http://www.ibm.com/servers/resourcelink

Requirement Details

Locks: No locks held

Control parameters: Control parameters must be in the primary address space and
addressable by the caller

Linkage: Standard MVS linkage conventions are used

Console setup: The main console on the HMC must be activated in order for the
operating system commands to be sent successfully. To activate the
main console, use the vary command: v cn(*),activate.

Programming requirements
An application taking advantage of this service is expected to begin by issuing the List CPC Objects
(see Note) operation to obtain the URI and targeting information for the CPC(s) it will interact with. For
operation details, see "List CPC Objects operation" in "Chapter 11. Core IBM Z resources in Hardware
Management Console Web Services API" on Resource Link home page under the "Library" section.

Note: List CPC Objects is the only REST API operation that does not require targeting information and will
always be directed to the local SE.

The response for this request will contain an array of CPC objects. Each CPC object will include it's
corresponding URI, value of the "object-uri" property, and targeting information, value of the "target-
name" property. All subsequent HWIREST requests will build or re-use that information when interacting
with one or more of the specific CPC's.

If your application is only interested in interacting with the LOCAL CPC, it will issue List CPC Objects and
search the response body for the CPC entity that contains "local" as the value for the "location" property
(see first step in Figure 24 on page 376). Alternatively, if your application knows the name of the CPC, it
can issue List CPC Objects and take advantage of the supported query parm to filter the response to only
return CPC's with a specific name pattern. (see first step in Figure 25 on page 377).

Similar List operations are available for other types of resources—LPARs, Capacity Records, Activations
Profiles—that your application may want to interact with.

Figure 24. Retrieve LPAR GPP weight for the LOCAL LPAR

HWIREST

376 z/OS: z/OS MVS Callable Services for HLL

http://www.ibm.com/servers/resourcelink/

Figure 25. Retrieve LPAR GPP weight when the CPC and LPAR name are known

In the case of an asynchronous operation (Figure 26 on page 377), the application should re-use the
targetingt information from the originating asynchronous request.

Figure 26. POLLing result of an asynchronous operation

See “Syntax, linkage and programming considerations” on page 259 for details about how to call BCPii
services in the various programming languages.

Restrictions
• This BCPii interface requires the SE and HMC associated with the local and target CPC to be at a

minimum IBM Z15 hardware level. In addition, the minimum BCPii microcode level applied to the
corresponding SE and HMC must be:
SE 2.15.0

MCL P46598.370, Bundle S38
HMC 2.15.0

MCL P46686.001, Bundle H25

HWIREST

Chapter 19. Base Control Program internal interface (BCPii) 377

• BCPii does not allow HWIREST to be issued from within a BCPii ENF exit routine.
• Currently, only the BCPii application that issued an asynchronous REST API operation will have the

information to POLL for it's result ("job-uri"), so BCPii applications should continue to use the existing
HWIEVENT service and ENF exit to learn of other types of CPC and LPAR events.

Authorization
Given the nature of the BCPii API and the capabilities of a BCPii application to potentially modify vital
hardware resources, a number of authority validations are performed for each BCPii requestor. A BCPii
application needs to have program authority, general security product authority to be able to issue BCPii
commands, authority to the particular resource that the application is trying to access, and a community
name defined in the security product for each CPC to which communication is required.

Authority to the particular resource accessed by HWIREST
The main difference between HWIREST and the other API's is how the identity of the resource is
obtained. Unlike the other API's which have the concept of a connection token to uniquely identify the
resource, for HWIREST, BCPii uses the content of the URI and targeting information to determine the
identity of the resource. That identity is used to build a SAF profile, which is used to authorize the request
and, in the case of a LIST request, the identity of each returned entity is also used to determine if it
should be included in the response body. A BCPii application issuing the HWIREST API needs to have the
appropriate authority to the particular resource that it is trying to access.

For details regarding the FACILITY Class Profile required for each REST API operation, see the "Supported
objects and operations" section of Appendix A, Base Control Program internal interface (BCPii) in
Hardware Management Console Web Services API on Resource Link. Go to Resource Link home page
(www.ibm.com/servers/resourcelink) and click Library on the navigation bar.

SMF recording
The HWIREST API calls that issue a POST or PUT or DELETE and complete with an HTTP status in the 200
range will have SMF type 106 (X'6A') records written if the installation has activated recording of this
record type in its active configuration.

For more information, see Record type 106 (X'6A') — BCPii activity in z/OS MVS System Management
Facilities (SMF).

ABEND codes
If BCPii is unable to properly access the user-supplied parameter list, the call might result in an abend
X'042' with a reason code of X'0009yyyy' for HWIREST for one of the following reasons:

Table 72. Reasons for abend X'042', RC X'0009yyyy' for HWIREST

yyyy Reason

0003 The parameters passed by the caller are not in the primary address space.

0004 The parameters passed by the caller are not accessible.

0005 The number of parameters passed by the caller is not correct.

0006 The response parameter passed in by the caller is not addressable.

0007 The parameters passed in by the caller are not addressable.

For other severe BCPii errors encountered during the call, an abend X'042' with a different reason code
may result. See z/OS MVS System Codes for additional information.

HWIREST

378 z/OS: z/OS MVS Callable Services for HLL

http://www.ibm.com/servers/resourcelink
http://www.ibm.com/servers/resourcelink

Non-REXX interface parms

Syntax
Write the call as shown in the syntax diagram.

CALL HWIREST(requestParmPtr, responseParmPtr);

Table 73. Non-REXX parameters

Non-REXX parameters

 CALL HWIREST(
 requestParmPtr,
 responseParmPtr);

Parameters
The parameters are explained as follows:

requestParmPtr
Supplied parameter

• Type: Pointer
• Length: 4 bytes

requestParmPtr specifies the address of a pre-defined structure, in the form specified by Table 74 on
page 379, and contains the values associated with the REST API operation. The contents of this table
are mapped by data structure REQUEST_PARM_TYPE in the data mappings provided for the various
programming languages supported. For more information, see “Syntax, linkage and programming
considerations” on page 259.

Table 74. RequestParmPtr parameter. RequestParmPtr field table

Field Field Type Field Description

httpMethod 4 byte unsigned
integer

A REQUIRED field, correspond to the HTTP Method
entity for the specific REST API operation.

Supported values are:

1 (decimal)/HWI_REST_POST(constant) for HTTP
POST Method

2 (decimal)/HWI_REST_GET(constant) for HTTP GET
Method

3 (decimal)/HWI_REST_PUT(constant) for HTTP PUT
Method

4 (decimal)/HWI_REST_DELETE(constant) for HTTP
DELETE Method

uri 4 byte Pointer,
address of
character string

A REQUIRED field, the contents of the string
correspond to the URI entity defined by the specific
REST API operation and must be in the character set
specified by the encoding field.

uriLen 4 byte unsigned
integer

Length of the URI string specified, maximum is 2048
bytes.

HWIREST

Chapter 19. Base Control Program internal interface (BCPii) 379

Table 74. RequestParmPtr parameter. RequestParmPtr field table (continued)

Field Field Type Field Description

targetName 4 byte Pointer,
address of
character string

A REQUIRED field for all but List CPC Object
operation.

The contents of the string corresponds to the
X-API-Target-Name request header in Hardware
Management Console Web Services API. If provided,
must be in the character set specified by the
encoding field.

This field represents the routing information
associated with the operation and is also used to
verify that the user ID initiating the operation has the
required authority for the resource the operation is
targeting.

See Appendix A, Base Control Program internal
interface (BCPii) in Hardware Management Console
Web Services API on Resource Link for further
details regarding the specific profile required in the
FACILITY resource class. Go to Resource Link home
page (www.ibm.com/servers/resourcelink) and click
Library on the navigation bar.

Note: Set to NULL if target name is not provided

targetNameLen 4 byte unsigned
integer

Length of the target name string specified.

requestBody 4 byte Pointer,
address of
character string

An optional field, the contents of the string
represent a valid JSON body and must be in the
character set specified by the encoding field. This
field corresponds to the request body entity in
Hardware Management Console Web Services API
on Resource Link. Go to Resource Link home
page (www.ibm.com/servers/resourcelink) and click
Library on the navigation bar.

Note: Set to NULL if a request body is not provided.

requestBodyLen 4 byte unsigned
integer

Length of the request body if one is provided.
Maximum is 64KB.

clientCorrelator 4 byte Pointer,
address of
character string

An optional field, the contents of the string
correspond to the X-Client-Correlator request
header in Hardware Management Console Web
Services API on Resource Link. Go to Resource Link
home page (www.ibm.com/servers/resourcelink) and
click Library on the navigation bar. If provided, must
be in the character set specified by the encoding
field.

Note: Set to NULL if client correlator is not provided.

clientCorrelatorLen 4 byte unsigned
integer

Length of the client correlator string if one is
provided. Maximum is 64 bytes.

HWIREST

380 z/OS: z/OS MVS Callable Services for HLL

http://www.ibm.com/servers/resourcelink
http://www.ibm.com/servers/resourcelink
http://www.ibm.com/servers/resourcelink
http://www.ibm.com/servers/resourcelink
http://www.ibm.com/servers/resourcelink
http://www.ibm.com/servers/resourcelink

Table 74. RequestParmPtr parameter. RequestParmPtr field table (continued)

Field Field Type Field Description

encoding 4 byte unsigned
integer

Represents the character set being used for all the
data associated with this REST API operation. This
means that the URI, headers, and any request body
data will use the specified character set. It also
means that the response headers and the response
body data will use this character set.

Supported values are:

1 (decimal)/HWI_ENCODING_UTF8(constant) for
UTF-8

2 (decimal)/HWI_ENCODING_IBM1047(constant)
for IBM-1047

Default, if initialized to 0, is IBM-1047.

requestTimeout 4 byte unsigned
integer

Represents the amount of time the request, once it
has reached the SE, is limited to. The total time of the
request, including BCPii processing, maybe slightly
longer.

The 4 byte unsigned integer represents the time in
milliseconds.

• valid range is from 0 - 0x005265C0 (90 minutes)
• if the value is > 0, but < 5 seconds, a default of 5

seconds will be used
• if the value is > 90 minutes, the default of 90

minutes will be used

Default, if initialized to 0, is 60 minutes.

responseParmPtr

• Type: Pointer
• Length: 4 bytes

responseParmPtr specifies the address of a pre-defined structure in the form specified by Table
75 on page 382. On input, the structure contains the addresses and lengths associated with the
pre-allocated response data areas that will be filled in with the resulting response content. The
contents of Table 75 on page 382 are mapped by data structure RESPONSE_PARM_TYPE in the
data mappings provided for the various programming languages supported. For more information, see
“Syntax, linkage and programming considerations” on page 259

HWIREST

Chapter 19. Base Control Program internal interface (BCPii) 381

Table 75. ResponseParmPtr parameter. ResponseParmPtr field table

Field Field Type Field Description

responseDate 4 byte Pointer,
address of
character string

An optional field that points to a pre-allocated
data area for the resulting Date response header
in Hardware Management Console Web Services
API on Resource Link. Go to Resource Link home
page (www.ibm.com/servers/resourcelink) and click
Library on the navigation bar.

If the application does not want this information
returned, the pointer should be set to NULL.

Note: Will not be set if an error occurred prior to SE
processing.

responseDateLen 4 byte unsigned
integer

Size of the pre-allocated, 29 byte, data area pointed
to by the responseDate pointer.

On return from the service, this field will be updated
with the actual size of the content.

requestId 4 byte Pointer,
address of
character string

An optional field that points to a pre-allocated data
area for the resulting X-Request-Id response header
in in Hardware Management Console Web Services
API on Resource Link. Go to Resource Link home
page (www.ibm.com/servers/resourcelink) and click
Library on the navigation bar.

If the application does not want this information
returned, the pointer should be set to NULL.

Note: Will not be set if an error occurred prior to SE
processing.

requestIdLen 4 byte unsigned
integer

Size of the pre-allocated, 64 byte, data area that is
pointed to by the requestId pointer.

On return from the service, this field will be updated
with the actual size of the content.

location 4 byte Pointer,
address of
character string

An optional field that points to a pre-allocated data
area for the resulting Location response header
in Hardware Management Console Web Services
API on Resource Link. Go to Resource Link home
page (www.ibm.com/servers/resourcelink) and click
Library on the navigation bar.

If the application does not want this information
returned, the pointer should be set to NULL.

locationLen 4 byte unsigned
integer

Size of the pre-allocated, 2048 byte, data area
pointed to by the location pointer.

On return from the servicer, this field will be updated
with the actual size of the content.

HWIREST

382 z/OS: z/OS MVS Callable Services for HLL

http://www.ibm.com/servers/resourcelink
http://www.ibm.com/servers/resourcelink
http://www.ibm.com/servers/resourcelink
http://www.ibm.com/servers/resourcelink
http://www.ibm.com/servers/resourcelink
http://www.ibm.com/servers/resourcelink

Table 75. ResponseParmPtr parameter. ResponseParmPtr field table (continued)

Field Field Type Field Description

responseBody 4 byte Pointer,
address of
character string

A REQUIRED field that points to a pre-allocated
data area for the resulting response body in
Hardware Management Console Web Services API
on Resource Link. Go to Resource Link home
page (www.ibm.com/servers/resourcelink) and click
Library on the navigation bar.

On failure, HTTP Status Codes 4xx or 5xx, the
response body may contain a valid JSON object with
further information regarding the error.

responseBodyLen 4 byte unsigned
integer

Size of the pre-allocated, minimum 500 bytes,
data area pointed to by the responseBody pointer.
Maximum is 15MB.

On return from the service, this field will be updated
with the actual size of the content.

HTTPStatus 4 byte unsigned
integer

HTTP Status Codes. Corresponds to the HTTP Status
in Hardware Management Console Web Services
API on Resource Link. Go to Resource Link home
page (www.ibm.com/servers/resourcelink) and click
Library on the navigation bar.

Additional information may be provided in the
response body for failed operations that result in the
HTTP Status Codes 4xx or 5xx.

reasonCode 4 byte Integer Corresponds to the reason field in an error response
body in Hardware Management Console Web Services
API on Resource Link. Go to Resource Link home
page (www.ibm.com/servers/resourcelink) and click
Library on the navigation bar.

The reason code for failed operations provides
additional information associated with the failed
HTTP Status Code.

Example

bool getCPCInfo()
{
 static const int defaultLen2K = 2048;
 static const int defaultLen = 256;
 static const int defaultLen15MB = 15728640;

 bool listSuccess = false;

 REQUEST_PARM_TYPE request;
 RESPONSE_PARM_TYPE response;

 char *uri = (char *)malloc(defaultLen2K);
 char *responseBody = (char *)malloc(defaultLen15MB);
 char *responseDate = (char *)malloc(defaultLen);
 char *requestId = (char *)malloc(defaultLen);

 memset(&request, 0, sizeof(REQUEST_PARM_TYPE));
 memset(&response, 0, sizeof(RESPONSE_PARM_TYPE));

HWIREST

Chapter 19. Base Control Program internal interface (BCPii) 383

http://www.ibm.com/servers/resourcelink
http://www.ibm.com/servers/resourcelink
http://www.ibm.com/servers/resourcelink
http://www.ibm.com/servers/resourcelink
http://www.ibm.com/servers/resourcelink
http://www.ibm.com/servers/resourcelink

 /* Issue a CPC LIST request to obtain the uri
 and target name associated with CPC named
 T115

 GET /api/cpcs?name=<CPCname>

 NOTE: CPC LIST is the only request that does
 not require a target name value because it
 will automatically be sent to the local SE
 */
 memset(uri, 0, defaultLen2K);
 strcpy(uri, "/api/cpcs?name=T115");

 /* initialize all the required input data for the request */
 request.uri = uri;
 request.uriLen = strlen(uri);
 request.httpMethod = HWI_REST_GET;
 request.requestTimeout = 0x00002688;

 /* initialize the response structure with
 the address and length of the pre-allocated
 data areas

 when the service returns, the data areas
 will contain the response value for that
 specific field and the data area length
 will be updated to reflect the length of
 that value
 */
 memset(responseBody, 0, defaultLen15MB);
 memset(responseDate, 0, defaultLen);
 memset(requestId, 0, defaultLen);
 response.responseBody = responseBody;
 response.responseBodyLen = defaultLen15MB;
 response.responseDate = responseDate;
 response.responseDateLen = defaultLen;
 response.requestId = requestId;
 response.requestIdLen = defaultLen;

 hwirest(
 &request,
 &response);

 /* An httpStatus in the 200 range indicates the request was successful
 NOTE: A success does not mean the cpc info was returned,
 the response body may contain an empty cpcs array because
 the SE was not able to match the CPC name or the user ID was
 not authorized to that CPC
 */
 if ((response.httpStatus > 199 && response.httpStatus < 300) &&
 response.responseBodyLen > 0)
 {
 /* Parse the response JSON text. */
 if (parse_json_text((char *)response.responseBody))
 {
 HWTJ_HANDLE_TYPE arrayhandle;
 HWTJ_HANDLE_TYPE arrayentry;
 int entryNum = 0;

 arrayhandle = find_array(0, "cpcs");
 if (arrayhandle != NULL)
 {
 entryNum = getnumberOfEntries(arrayhandle);
 if (entryNum == 1)
 {
 arrayentry = getArrayEntry(arrayhandle, 0);
 CPCuri = find_string(arrayentry, "object-uri");
 CPCtargetName = find_string(arrayentry, "target-name");

 if (CPCuri != NULL && CPCtargetName != NULL)
 {
 printf("CPCuri:%s\n", CPCuri);
 printf("CPCtargetName:%s\n", CPCtargetName);

HWIREST

384 z/OS: z/OS MVS Callable Services for HLL

 listSuccess = true;
 }
 }
 else
 {
 printf("empty cpcs array returned\n");
 }
 }
 else
 {
 printf("cpc array not found\n");
 }
 }
 } else {
 traceFailureResponse(&response);
 }

 free(uri);
 free(responseBody);
 free(responseDate);
 free(requestId);

 return listSuccess;
}

void traceFailureResponse(RESPONSE_PARM_TYPE *pParm)
{
 int isBCPiiError = 0;
 if (pParm->httpStatus < 200 || pParm->httpStatus > 299)
 {
 printf("*>>\n");
 printf("*>>REQUEST failed \n");

 if (pParm->responseBodyLen > 0)
 {
 printf("* >responseBodyLen: %d (dec) %X (hex)\n",
 pParm->responseBodyLen, pParm->responseBodyLen);

 if (parse_json_text((char *)pParm->responseBody))
 {
 HWTJ_HANDLE_TYPE arrayentry;
 char *errorMsg;

 isBCPiiError = find_boolvalue(0, "bcpii-error");

 if (isBCPiiError == 0)
 {
 printf("bcpii-error is false\n");
 } else if (isBCPiiError == 1) {
 printf("bcpii-error is true\n");
 } else {
 printf("bcpii-error not found\n");
 }

 errorMsg = find_string(0, "message");
 if (errorMsg != NULL)
 {
 printf("error: %s\n", errorMsg);
 }
 }
 }

 /* In the case of BCPii flagging the error, if that occurred
 when processing the SE response, then some of the
 other response fields may contain content to tie the
 'failed' response back to the SE
 */
 printTextStr(pParm->requestIdLen, (char *)pParm->requestId, "requestId",
 (char **)&pParm->requestId);
 printTextStr(pParm->locationLen, (char *)pParm->location, "location",
 (char **)&pParm->location);
 printTextStr(pParm->responseDateLen, (char *)pParm->responseDate, "responseDate",
 (char **)&pParm->responseDate);
 }

HWIREST

Chapter 19. Base Control Program internal interface (BCPii) 385

 else
 {
 printf("error logic, request was good but inside traceFailureResponse\n");
 }
}

REXX interface parms

Syntax
Write the call as shown in the syntax diagram. You must code all parameters in the order shown.

address bcpii "hwirest requestParm, responseParm."

Table 76. REXX parameters

REXX parameters

address bcpii “hwirest requestParm. responseParm.”

Parameters
• All parameters passed on BCPii REXX service calls must be REXX variables. Literals are not supported

(for example, a variable name which has been assigned the value of a /api/cpcs/{cpc-id}/logical-
partitions should be specified on the call instead of the value itself).

• Variable names, (for example, requestParm and responseParm), specified on BCPii REXX service calls,
are limited to 40 characters in length.

• Stem variables utilized by BCPii have hard-coded stem variable tail values which correspond the
documented stem variable tail names in Table 77 on page 387 and Table 78 on page 389. For example,
to set the URI value for the request, the requestParm. stem must be prepared in REXX with the exact
stem tail variable "URI":

requestParm.URI = "/api/cpcs/{cpc-id}/logical-partitions"

The parameters are explained as follows:

requestParm.
Supplied parameter

• compound (stem) variable

The requestParm content reflects the values associated with the operation that is being issued. It is
initialized in the form of x.<stem variable tail> where the stem variable tail is defined by Table 77 on
page 387 and x is the name of the stem variable specified on the parameter list. If the value of an
input variable is incompatible with the stem variable tail type required, an error is flagged. Any stem
variable tails that are not applicable to the request, or ones that should use the default value, should
be left uninitialized. If the requestParm stem variable is being reused for multiple operations, it is
recommended to use the DROP keyword

DROP requestParm.

to unassign variables before each HWIREST call.

HWIREST

386 z/OS: z/OS MVS Callable Services for HLL

Table 77. RequestParm stem tail variables. RequestParm stem tail variables

Stem tail variable Stem tail
variable type

Stem tail variable description

httpMethod integer A REQUIRED field, corresponds to the HTTP Method
entity for the specific REST API operation.

Supported values are:

1 (decimal)/HWI_REST_POST(constant) for HTTP
POST Method

2 (decimal)/HWI_REST_GET(constant) for HTTP GET
Method

3 (decimal)/HWI_REST_PUT(constant) for HTTP PUT
Method

4 (decimal)/HWI_REST_DELETE(constant) for HTTP
DELETE Method

uri string A REQUIRED field, the contents correspond to the
URI entity as defined by the specific REST API
operation and must be in the character set specified
by the encoding field.

Maximum 2048 bytes.

targetName string A REQUIRED field for all but List CPC Object
operation.

This field corresponds to the X-API-Target-Name
request header in Hardware Management Console
Web Services API.

This field represents the routing information
associated with the operation and is also used to
verify that the user ID initiating the operation has the
required authority for the resource the operation is
targeting.

See Appendix A, Base Control Program internal
interface (BCPii) in Hardware Management Console
Web Services API on Resource Link for further
details regarding the specific profile required in the
FACILITY resource class. Go to Resource Link home
page (www.ibm.com/servers/resourcelink) and click
Library on the navigation bar.

If provided, must be in the character set specified by
the encoding field.

Note: Leave uninitialized if a value is not available.

HWIREST

Chapter 19. Base Control Program internal interface (BCPii) 387

http://www.ibm.com/servers/resourcelink
http://www.ibm.com/servers/resourcelink

Table 77. RequestParm stem tail variables. RequestParm stem tail variables (continued)

Stem tail variable Stem tail
variable type

Stem tail variable description

requestBody string An optional character string representing a valid
JSON body. This field corresponds to the request
body entity in Hardware Management Console Web
Services API on Resource Link. Go to Resource Link
home page (www.ibm.com/servers/resourcelink) and
click Library on the navigation bar.

If provided, must be in the character set specified by
the encoding field.

System REXX/ISV REXX:

Maximum supported is 64KB.

TSO/E REXX:

Maximum supported is 32767 bytes.

Note: Leave uninitialized if a value is not available.

clientCorrelator string An optional field corresponding to the X-Client-
Correlator request header in Hardware Management
Console Web Services API on Resource Link. Go to
Resource Link home page (www.ibm.com/servers/
resourcelink) and click Library on the navigation bar.

If provided, must be in the character set specified by
the encoding field. Maximum supported is 64 bytes.

Note: Leave uninitialized if a value is not available.

encoding integer An optional field that represents the character set
being used for all the data associated with this REST
API operation. This means that the URI, headers,
and any request body data will use the specified
character set. It also means that the response
headers and the response body data will use this
character set.

Supported values are:

1 (decimal)/HWI_ENCODING_UTF8(constant) for
UTF-8

2 (decimal)/HWI_ENCODING_IBM1047(constant)
for IBM-1047

Default, if not specified or initalized to 0, is
IBM-1047.

HWIREST

388 z/OS: z/OS MVS Callable Services for HLL

http://www.ibm.com/servers/resourcelink
http://www.ibm.com/servers/resourcelink
http://www.ibm.com/servers/resourcelink
http://www.ibm.com/servers/resourcelink

Table 77. RequestParm stem tail variables. RequestParm stem tail variables (continued)

Stem tail variable Stem tail
variable type

Stem tail variable description

requestTimeout integer An optional field that represents the amount of time
the request, once it has reached the SE, is limited
to. The total time of the request, including BCPii
processing, maybe slightly longer.

The 4 byte integer represents the time in
milliseconds.

• valid range is from 0 - 0x005265C0 (90 minutes)
• if the value is > 0, but < 5 seconds, a default of 5

seconds will be used
• if the value is > 90 minutes, the default of 90

minutes will be used

Default, if not specified or initialized to 0, is 60
minutes.

responseParm.
Returned parameter

• compound (stem) variable

The responseParm content reflects the result of the operation issued. It is returned using stem
variables in the form of x.<stem variable tail> where the stem variable tail is defined by Table 78 on
page 389 and x is the name of the stem variable specified on the parameter list. The responseParm
stem variable should be left uninitialized and will be set by BCPii. If the responseParm stem variable is
being reused for multiple operations, it is recommended to use the DROP keyword

DROP responseParm.

to unassign variables before each HWIREST call. For more information, see DROP in z/OS TSO/E REXX
Reference.

Table 78. ResponseParm stem variables. ResponseParm stem variables

Stem variable Stem variable
type

Stem variable description

responseDate string Corresponds to the Date response header in
Hardware Management Console Web Services API
on Resource Link. Go to Resource Link home
page (www.ibm.com/servers/resourcelink) and click
Library on the navigation bar.

Note: Will not be set if an error occurred prior to SE
processing.

requestId string Corresponds to the X-Request-Id response header
in Hardware Management Console Web Services
API on Resource Link. Go to Resource Link home
page (www.ibm.com/servers/resourcelink) and click
Library on the navigation bar.

Note: Will not be set if an error occurred prior to SE
processing.

HWIREST

Chapter 19. Base Control Program internal interface (BCPii) 389

http://www.ibm.com/servers/resourcelink
http://www.ibm.com/servers/resourcelink
http://www.ibm.com/servers/resourcelink
http://www.ibm.com/servers/resourcelink

Table 78. ResponseParm stem variables. ResponseParm stem variables (continued)

Stem variable Stem variable
type

Stem variable description

location string Corresponds to the Location response header in
Hardware Management Console Web Services API
on Resource Link. Go to Resource Link home
page (www.ibm.com/servers/resourcelink) and click
Library on the navigation bar.

responseBody string Corresponds to the response body entity in
Hardware Management Console Web Services API
on Resource Link. Go to Resource Link home
page (www.ibm.com/servers/resourcelink) and click
Library on the navigation bar.

On failure, HTTP Status Codes 4xx or 5xx, the
response body may contain a valid JSON object with
further information regarding the error.

Note: The response body size for the REXX interface
is limited to maximum 2.5 MB. Consider using C or
ASM if the returned response body exceeds 2.5 MB.

HTTPStatus Integer HTTP Status Codes. Corresponds to the HTTP Status
in Hardware Management Console Web Services
API on Resource Link. Go to Resource Link home
page (www.ibm.com/servers/resourcelink) and click
Library on the navigation bar.

Additional information may be provided in the
response body for failed operations that result in
HTTP Status Codes 4xx or 5xx.

reasonCode Integer Corresponds to the reason field in an error response
body in Hardware Management Console Web Services
API on Resource Link. Go to Resource Link home
page (www.ibm.com/servers/resourcelink) and click
Library on the navigation bar.

Provides additional information associated with
failed operations.

Example

drop userRequest.
drop userResponse.

/* Every application needs to start off by issuing a LIST CPCs
 to obtain URI and target name information for the specific
 CPC that will be interacted with.
 The following LIST CPCs request is tailored to return information
 for a CPC with the name T115.

 NOTE: A LIST CPCs is the only request that does not require a TARGETNAME
value.
*/
userRequest.HTTPMETHOD = HWI_REST_GET
userRequest.URI = '/api/cpcs?name=T115'
userRequest.CLIENTCORRELATOR = 'restSample'
userRequest.ENCODING = HWI_ENCODING_IBM1047
userRequest.REQUESTTIMEOUT = 0 /* use default of 60 minutes */

HWIREST

390 z/OS: z/OS MVS Callable Services for HLL

http://www.ibm.com/servers/resourcelink
http://www.ibm.com/servers/resourcelink
http://www.ibm.com/servers/resourcelink
http://www.ibm.com/servers/resourcelink
http://www.ibm.com/servers/resourcelink
http://www.ibm.com/servers/resourcelink
http://www.ibm.com/servers/resourcelink
http://www.ibm.com/servers/resourcelink

Address BCPII "HWIREST userRequest. userResponse."

/* For non-zero REXX RC, still continue to inspect the
 response parm stem variable for additional error
 details that may have been provide.
*/
say 'Rexx RC: ('||RC||')'
say 'HTTP Status: ('||userResponse.httpstatus||')'
successIndex = INDEX(userResponse.httpstatus, '2')

/* If the HTTP Status was in the 200 range then
 display the values expected on success, otherwise
 isolate the error information.
*/
if successIndex = 1 then
 do /* SE responded successfully */
 say 'SE DateTime: ('||userResponse.responsedate||')'
 say 'SE requestId: (' || userResponse.requestId || ')'

 if userResponse.httpstatusNum = '201' Then
 say 'Location Response: (' || userResponse.location || ')'

 /* NOTE: A success does not mean the cpc info was returned,
 the response body may contain an empty cpcs array because
 the SE was not able to match the CPC name or the user ID was
 not authorized to that CPC
 */
 if userResponse.responsebody <> '' Then
 do /* response body */
 say 'Response Body: (' || userResponse.responsebody || ')'
 emptyCPCResponse = '{"cpcs":[]}'
 CPCInfoResponse = userResponse.responsebody
 emptyCPCArray = INDEX(CPCInfoResponse, emptyCPCResponse)
 if emptyCPCArray > 0 | CPCInfoResponse = '' Then
 do
 say 'fatalError ** failed to get CPC info **'
 return 0
 end

 /* Parse the response to obtain the uri
 and target name associated with CPC,
 which will be used to query storage info
 */
 call JSON_parseJson CPCInfoResponse

 CPCuri = JSON_findValue(0,"object-uri", HWTJ_STRING_TYPE)
 if CPCuri = '' then
 do
 say 'fatalError ** failed to get CPC uri**'
 return 0
 end

 CPCtargetName = JSON_findValue(0,"target-name", HWTJ_STRING_TYPE)
 if CPCtargetName = '' then
 do
 say 'fatalError ** failed to get CPC target name**'
 return 0
 end
 end /* response body */
 end /* SE responded successfully */
else
 do /* error path */
 say 'Reason Code: ('||userResponse.reasoncode||')'

 if userResponse.responsedate <> '' then
 say 'DateTime: ('||userResponse.responsedate||')'

 if userResponse.requestId <> '' Then
 say 'requestId: (' || userResponse.requestId || ')'

 if response.responsebody <> '' Then
 do /* response body */
 say 'responseBody: ('||userResponse.responsebody||')'
 call JSON_parseJson userResponse.responsebody

 if RESULT <> 0 then
 say 'failed to parse response'
 else
 do
 bcpiiErr=JSON_findValue(0, "bcpii-error", HWTJ_BOOLEAN_TYPE)
 if bcpiiErr = 'true' then

HWIREST

Chapter 19. Base Control Program internal interface (BCPii) 391

 say '*** BCPii generated error message:'
 else
 say '*** SE generated error message:'

 errmessage=JSON_findValue(0,"message", HWTJ_STRING_TYPE)
 say '('||errmessage||')'
 say
 say 'Complete Response Body: (' || userResponse.responsebody || ')'
 end /* err */
 end /* response body */
 end /* error path */

HWISET/HWISET2 — BCPii set single or multiple SE/HMC-
managed attributes

Call the HWISET service to change or set a single hardware attribute associated with a Central Processor
Complex (CPC), CPC image (LPAR), activation profile, group profile or LPAR Capacity group.

Call the HWISET2 service to change or set one or more hardware attributes associated with a single
Central Processor Complex (CPC). These attributes can be associated with the CPC, one or more CPC
images (LPARs) or LPAR Capacity groups on the same CPC or any activation profile type or group profile on
the same CPC.

• When targeting a CPC at the z13 GA2 level or later, all attributes are either set or all are unchanged after
the HWISET2 call. If one or more attributes are not able to be set, all the attributes will be rolled back to
the state prior to the HWISET2 call.

• When targeting a CPC at the z13 GA1 level or earlier and one or more attributes are not able to be
set, the HWISET2 request results in a return code of HWI_SET2_PARTIAL_UPDATE. Prior to calling
the HWISET2 service, it is good practice to call the HWIQUERY service to retrieve and save the
current values of the attributes to be set. Applications can then take the appropriate action when the
HWISET2 request results in the HWI_SET2_PARTIAL_UPDATE return code. See the description of the
HWI_SET2_PARTIAL_UPDATE return code for more information.

Description

Environment
The requirements for the callers are:

Requirement Details

Minimum authorization: One of the following: PKM allowing key 0-7, supervisor state, or
APF-authorized

Dispatchable unit mode: Task

Cross memory mode: Any PASN, any HASN, any SASN

AMODE: 31-bit

ASC mode: Primary or access register (AR)

Interrupt status: Enabled for I/O and external interrupts

Locks: No locks held

Control parameters: Control parameters must be in the primary address space and
addressable by the caller

Linkage: Standard MVS linkage conventions are used

Programming requirements
See “Syntax, linkage and programming considerations” on page 259 for details about how to call BCPii
services in the various programming languages.

HWISET/HWISET2

392 z/OS: z/OS MVS Callable Services for HLL

See “HWIQUERY and HWISET / HWISET2 attributes” on page 699 for the summary table of the BCPii
HWIQUERY and HWISET / HWISET2 attributes and the objects that can be targeted for each function.

REXX programming considerations for the HWISET / HWISET2 service
All information for the HWISET service applies for REXX requests except:

• SetTypeValue replaces SetTypeValue_Ptr. The actual value to be set, represented in character form, is
passed instead of a pointer.

• The SetTypeValueLen input parm is not used.

All information for the HWISET2 service applies for REXX requests except:

• A set parameter stem variable (for example, SetParm) replaces SetParm_Ptr.
• SetParm.0 replaces NumOfAttributes. SetParm.0 is required to specify the number of attributes to be

set. The valid range for the SetParm.0 value is 1 - 9.
• SetParm.n.SET2_CTOKEN replaces the Set2_Ctoken field in the structure pointed to by SetParm_Ptr. It

must contain the ConnectionToken representing the nth attribute to be set.
• SetParm.n.SET2_SETTYPE replaces the Set2_Settype field in the structure pointed to by SetParm_Ptr.

It must contain the SetType value of the nth attribute to be set. See the SetType parameter for details
on the value choices, which can be specified.

• SetParm.n.SET2_SETVALUE replaces the Set2_SetValue_Ptr field in the structure pointed to by
SetParm_Ptr. It must contain the value to be set. See the SetTypeValue parameter for details on the
type of data to be set.

Restrictions
BCPii does not allow HWISET or HWISET2 to be issued from within a BCPii ENF exit routine.

Code page consideration
All input data to be set via the HWISET or HWISET2 service will be translated from EBCIDIC to ASCII
which is required by the SE. Due to the nature of EBCDIC-to-ASCII and ASCII-to-EBCDIC conversions,
certain irregularities exist in the conversion tables. These conversion irregularities, including characters
like ¢, !, [,] and |, will not translate correctly and therefore should be used with extreme caution.

Authorization
The client application must have at least read access to the SAF-protected FACILITY class resource
HWI.APPLNAME.HWISERV. This class resource grants the application access to consult to the local CPC.

In addition, the client application must have at least update access to the SAF-protected FACILITY
class resource profile HWI.TARGET.netid.nau for setting CPC-related values, activation profile-related
values, group profile values, or LPAR Capacity group values. If setting image-related values, the client
application must have at least update access to the SAF-protected FACILITY class resource profile
HWI.TARGET.netid.nau.imagename.

Note: BCPii requires the FACILITY class to be RACLIST-specified.

SMF recording
Requests that complete with a return code of zero will have SMF type 106 (X'6A') records written if the
installation has activated recording of this record type in its active configuration.

Syntax
Write the call as shown in the syntax diagram. You must code all parameters in the order shown.

HWISET/HWISET2

Chapter 19. Base Control Program internal interface (BCPii) 393

Table 79. HWISET syntax

Non-REXX parameters REXX parameters

 CALL HWISET(
 ReturnCode,
 ConnectToken,
 SetType,
 SetTypeValue_Ptr
 SetTypeValueLen,
 DiagArea);

address bcpii “hwiset
ReturnCode
ConnectToken
SetType
SetTypeValue

DiagArea.”

Table 80. HWISET2 syntax

Non-REXX parameters REXX parameters

 CALL HWISET2(
 ReturnCode,
 ConnectToken,
 SetParm_Ptr,
 NumofAttributes,
 DiagArea);

address bcpii “hwiset2
ReturnCode
ConnectToken
SetParm.

DiagArea.”

Parameters
The parameters are explained as follows:
ReturnCode

Returned parameter

• Type: Integer (non-REXX), character representation of an integer (REXX)
• Length: 4 bytes (non-REXX)

ReturnCode contains the return code from the service.

ConnectToken
Supplied parameter

• Type: Character string
• Length: 16 bytes

For the HWISET service, the ConnectToken represents a logical connection between the application
and a CPC, image, activation profile, group profile and LPAR Capacity group. For the HWISET2
service, the ConnectToken must represent a logical connection between the application and a CPC.
ConnectToken is an output parameter on the HWICONN service call.

In most cases, the ConnectToken specified must have originated from a HWICONN service call that
was issued from the same address space as this service call. For BCPii REXX execs running under the
TSO/E or ISV-provided REXX environments, the ConnectToken specified must have originated from a
HWICONN service call that was issued from the same task.

SetType (HWISET only)
Supplied parameter

• Type: Integer (non-REXX), character representation of an integer (REXX)
• Length: 4 bytes (non-REXX)

SetType specifies the type of set request.

The following table is the list of valid set types. See the following documentation for more information:

• IBM z SNMP Application Programming Interfaces (SB10-7171-06)
• System z10 and eServer zSeries Application Programming Interfaces (SB10-7030-09)
• System z9 and eServer zSeries Application Programming Interfaces (SB10-7030-08)

HWISET/HWISET2

394 z/OS: z/OS MVS Callable Services for HLL

• Publication appropriate to the level of hardware that the HWISET / HWISET2 is targeted.

Constant in: Hexadecimal, (Decimal), Equate
symbol Description

6

(6)

HWI_ACCSTAT

Requests to change or set the acceptable CPC status
values.

Note: The input connection token represents a CPC
connection or an image connection.

7

(7)

HWI_APROF

Requests to change or set the next activation reset
profile name.

Note: The input connection token represents a CPC
connection or an image connection.

27

(39)

HWI_PRUNTYPE

Requests to change or set the processor running time
type.

Note: The input connection token represents a CPC
connection or a reset activation profile connection.

28

(40)

HWI_PRUNTIME

Requests to change or set the processor running time
type.

Note: The input connection token must only represent a
CPC connection or a reset activation profile connection.

29

(41)

HWI_PRUNTSEW

Requests to change or set the processor running time
slice end wait processing.

Note: The input connection token must only represent a
CPC connection or a reset activation profile connection.

This attribute is only available when targeting a z13 GA2
or lower CPC.

70

(112)

HWI_DEFCAP

Requests to change or set the current defined capacity.

Note: The input connection token must only represent
an image connection or an image activation profile
connection.

71

(113)

HWI_SGPIPW

Requests to change or set the shared general processor
initial processing weight (SGPIPW).

Note: The input connection token must only represent
an image connection or an image activation profile
connection.

72

(114)

HWI_SGPIPWCAP

Requests to change or set the SGPIPW to be capped or
not capped.

Note: The input connection token must only represent
an image connection or an image activation profile
connection.

73

(115)

HWI_SGPPWMIN

Requests to change or set the minimum SGPPW value.

Note: The input connection token must only represent
an image connection or an image activation profile
connection.

HWISET/HWISET2

Chapter 19. Base Control Program internal interface (BCPii) 395

Constant in: Hexadecimal, (Decimal), Equate
symbol Description

74

(116)

HWI_SGPPWMAX

Requests to change or set the maximum SGPPW value.

Note: The input connection token must only represent
an image connection or an image activation profile
connection.

77

(119)

HWI_WLM

Requests to change or set whether WLM is allowed to
change SGPPW values.

Note: The input connection token must only represent
an image connection or an image activation profile
connection.

78

(120)

HWI_IFAIPW

Requests to change or set the integrated facility for
applications initial processing weight (IFAIPW).

Note: The input connection token must only represent
an image connection or an image activation profile
connection.

79

(121)

HWI_IFAIPWCAP

Requests to change or set the IFAIPW to be capped or
not capped.

Note: The input connection token must only represent
an image connection or an image activation profile
connection.

7A

(122)

HWI_IFAPWMIN

Requests to change or set the minimum IFAPW value.

Note: The input connection token must only represent
an image connection or an image activation profile
connection.

7B

(123)

HWI_IFAPWMAX

Requests to change or set the maximum IFAPW value.

Note: The input connection token must only represent
an image connection or an image activation profile
connection.

7E

(126)

HWI_IFLIPW

Requests to change or set the integrated facility for
Linux initial processing weight (IFLIPW).

Note: The input connection token must only represent
an image connection or an image activation profile
connection.

7F

(127)

HWI_IFLIPWCAP

Requests to change or set the IFLIPW to be capped or
not capped.

Note: The input connection token must only represent
an image connection or an image activation profile
connection.

80

(128)

HWI_IFLPWMIN

Requests to change or set the minimum IFLPW value.

Note: The input connection token must only represent
an image connection or an image activation profile
connection.

HWISET/HWISET2

396 z/OS: z/OS MVS Callable Services for HLL

Constant in: Hexadecimal, (Decimal), Equate
symbol Description

81

(129)

HWI_IFLPWMAX

Requests to change or set the maximum IFLPW value.

Note: The input connection token must only represent
an image connection or an image activation profile
connection.

84

(132)

HWI_ICFIPW

Requests to change or set the internal coupling facility
initial processing weight (ICFIPW).

Note: The input connection token must only represent
an image connection or an image activation profile
connection.

85

(133)

HWI_ICFIPWCAP

Requests to change or set the ICFIPW be capped or not
capped.

Note: The input connection token must only represent
an image connection or an image activation profile
connection.

86

(134)

HWI_ICFPWMIN

Requests to change or set the minimum ICFPW value.

Note: The input connection token must only represent
an image connection or an image activation profile
connection.

87

(135)

HWI_ICFPWMAX

Requests to change or set the maximum ICFPW value.

Note: The input connection token must only represent
an image connection or an image activation profile
connection.

8A

(138)

HWI_IIPIPW

Requests to change or set the integrated information
processors initial processing weight (IIPIPW).

Note: The input connection token must only represent
an image connection or an image activation profile
connection.

8B

(139)

HWI_IIPIPWCAP

Requests to change or set the IIPIPW be capped or not
capped.

Note: The input connection token must only represent
an image connection or an image activation profile
connection.

8C

(140)

HWI_IIPPWMIN

Requests to change or set the minimum IIPPW value.

Note: The input connection token must only represent
an image connection or an image activation profile
connection.

8D

(141)

HWI_IIPPWMAX

Requests to change or set the maximum IIPPW value.

Note: The input connection token must only represent
an image connection or an image activation profile
connection.

HWISET/HWISET2

Chapter 19. Base Control Program internal interface (BCPii) 397

Constant in: Hexadecimal, (Decimal), Equate
symbol Description

92

(146)

HWI_GROUP_PROFILE_CAPACITY

• For group profile connection (the input ConnectToken
represents a group profile connection), requests to
change or set the workload unit capacity for a group
profile.

• For LPAR Capacity group connection (the input
ConnectToken represents an LPAR Capacity group
connection), requests to change or set the dynamic
workload unit capacity for an LPAR Capacity group.
This attribute for this connection type is supported on
z14 GA2 or higher CPC.

• For image connection (the input ConnectToken
represents an image connection), requests to change
or set the dynamic workload unit capacity for a group
of images in which the target image is a member.
This attribute for this connection type requires that
the target image be on a z196 (zEnterprise) or higher
CPC and is a member of an LPAR Capacity group.
If these requirements are not met, the request will
fail with RC=X'101(HWI_COMMUNICATION_ERROR),
with the DiagCommErr value set to X'15'
(HWMCA_DE_SNMP_ERROR).

Note: The capacity value is changed until the image is
activated again. HWI_GROUP_PROFILE_CAPACITY is
not persistent across activations.

95

(149)

HWI_ABSCAP

Request to change or set whether absolute capping is
enabled for general purpose processors. This attribute
is only available when targeting a ZEC12 GA2 or higher
CPC.

Note: The input connection token must only represent
an image or an image activation profile connection. This
attribute must be enabled prior to setting the absolute
capping value using attribute HWI_ABSCAPVAL.

96

(150)

HWI_ABSCAPVAL

Requests to change or set the maximum general
purpose processor consumption for the target image.
This attribute is only available when targeting a ZEC12
GA2 or higher CPC.

Note: The input connection token must only represent
an image or an image activation profile connection.

97

(151)

HWI_IFAABSCAP

Requests to change or set whether absolute capping
is enabled for AAP processors. This attribute is only
available when targeting a ZEC12 GA2 or higher CPC.

Note: The input connection token must only represent
an image or an image activation profile connection. This
attribute must be enabled prior to setting the absolute
capping value using attribute HWI_IFAABSCAPVAL.

HWISET/HWISET2

398 z/OS: z/OS MVS Callable Services for HLL

Constant in: Hexadecimal, (Decimal), Equate
symbol Description

98

(152)

HWI_IFAABSCAPVAL

Requests to change or set the maximum AAP processor
consumption for the target image. This attribute is only
available when targeting a ZEC12 GA2 or higher CPC.

Note: The input connection token must only represent
an image or an image activation profile connection.

99

(153)

HWI_IFLABSCAP

Requests to change or set whether absolute capping
is enabled for IFL processors. This attribute is only
available when targeting a ZEC12 GA2 or higher CPC.

Note: The input connection token must only represent
an image or an image activation profile connection. This
attribute must be enabled prior to setting the absolute
capping value using attribute HWI_IFLABSCAPVAL.

9A

(154)

HWI_IFLABSCAPVAL

Requests to change or set the maximum IFL processor
consumption for the target image. This attribute is only
available when targeting a ZEC12 GA2 or higher CPC.

Note: The input connection token must only represent
an image or an image activation profile connection.

9B

(155)

HWI_ICFABSCAP

Requests to change or set whether absolute capping
is enabled for IFC processors. This attribute is only
available when targeting a ZEC12 GA2 or higher CPC.

Note: The input connection token must only represent
an image or an image activation profile connection. This
attribute must be enabled before setting the absolute
capping value using attribute HWI_ICFABSCAPVAL.

9C

(156)

HWI_ICFABSCAPVAL

Requests to change or set the maximum IFC processor
consumption for the target image. This attribute is only
available when targeting a ZEC12 GA2 or higher CPC.

Note: The input connection token must only represent
an image or an image activation profile connection.

9D

(157)

HWI_IIPABSCAP

Requests to change or set whether absolute capping
is enabled for IIP processors. This attribute is only
available when targeting a ZEC12 GA2 or higher CPC.

Note: The input connection token must only represent
an image or an image activation profile connection. This
attribute must be enabled before setting the absolute
capping value using attribute HWI_IIPABSCAPVAL.

9E

(158)

HWI_IIPABSCAPVAL

Requests to change or set the maximum IIP processor
consumption for the target image. This attribute is only
available when targeting a ZEC12 GA2 or higher CPC.

Note: The input connection token must only represent
an image or an image activation profile connection.

HWISET/HWISET2

Chapter 19. Base Control Program internal interface (BCPii) 399

Constant in: Hexadecimal, (Decimal), Equate
symbol Description

9F

(159)

HWI_GROUP_PROF_ABSCAP

• For group profile connection (the input ConnectToken
represents a group profile connection), requests to
change or set whether group absolute capping is
enabled for general purpose processors for a group
profile.

• For LPAR Capacity group connection (the input
ConnectToken represents an LPAR group connection),
requests to dynamically change or set whether group
absolute capping is enabled for general purpose
processors for an LPAR Capacity group. This attribute
for this connection type is only available when
targeting a z14 GA2 or higher CPC.

• For image connection (the input ConnectToken
represents an image connection), requests to
dynamically change or set whether group absolute
capping is enabled for general-purpose processors for
a LPAR capacity group in which the target image is a
member. This attribute for this connection type is only
available when targeting a z13 GA2 or higher CPC.

Note: This attribute must be enabled prior to setting
the group absolute capping value using attribute
HWI_GROUP_PROF_ABSCAPVAL.

A0

(160)

HWI_GROUP_PROF_ABSCAPVAL

• For group profile connection (the input ConnectToken
represents a group profile connection), requests
to change or set the maximum general-purpose
processor consumption for a group profile.

• For LPAR Capacity group connection (the input
ConnectToken represents an LPAR group connection),
requests to dynamically change or set the maximum
general-purpose processor consumption for an LPAR
Capacity group. This attribute for this connection type
is only available when targeting a z14 GA2 or higher
CPC.

• For image connection (the input ConnectToken
represents an image connection), requests to
dynamically change or set the maximum general-
purpose processor consumption for an LPAR Capacity
group in which the target image is a member. This
attribute is only available when targeting a z13 GA2 or
higher CPC.

HWISET/HWISET2

400 z/OS: z/OS MVS Callable Services for HLL

Constant in: Hexadecimal, (Decimal), Equate
symbol Description

A1

(161)

HWI_GROUP_PROF_ICFABSCAP

• For group profile connection (the input ConnectToken
represents a group profile connection), requests to
change or set whether group absolute capping is
enabled for ICF processors for a group profile.

• For LPAR Capacity group connection (the input
ConnectToken represents an LPAR group connection),
requests to dynamically change or set whether group
absolute capping is enabled for ICF processor for
an LPAR Capacity group. This attribute for this
connection type is only available when targeting a z14
GA2 or higher CPC.

• For image connection (the input ConnectToken
represents an image connection), requests to
dynamically change or set whether group absolute
capping is enabled for ICF processors for an LPAR
Capacity group in which the target image is a member.

Note: This attribute must be enabled prior to setting
the group absolute capping value using attribute
HWI_GROUP_PROF_ICFABSCAPVAL.

A2

(162)

HWI_GROUP_PROF_ICFABSCAPVAL

• For group profile connection (the input ConnectToken
represents a group profile connection), requests
to change or set the maximum ICF processor
consumption for a group profile.

• For LPAR Capacity group connection (the input
ConnectToken represents an LPAR group connection),
requests to dynamically change or set the maximum
ICF processor consumption for an LPAR Capacity
group. This attribute for this connection type is only
available when targeting a z14 GA2 or higher CPC.

• For image connection (the input ConnectToken
represents an image connection), requests to
dynamically change or set the maximum ICF
processor consumption for an LPAR capacity group in
which the target image is a member. This attribute for
this connection type is only available when targeting a
z13 GA2 or higher CPC.

HWISET/HWISET2

Chapter 19. Base Control Program internal interface (BCPii) 401

Constant in: Hexadecimal, (Decimal), Equate
symbol Description

A3

(163)

HWI_GROUP_PROF_IFLABSCAP

• For group profile connection (the input ConnectToken
represents a group profile connection), requests to
change or set whether group absolute capping is
enabled for IFL processors for a group profile.

• For LPAR Capacity group connection (the input
ConnectToken represents an LPAR group connection),
requests to dynamically change or set whether group
absolute capping is enabled for IFL processors for
an LPAR Capacity group. This attribute for this
connection type is supported on z14 GA2 or higher
CPC.

• For image connection (the input ConnectToken
represents an image connection), requests to
dynamically change or set whether group absolute
capping is enabled for IFL processors for an LPAR
Capacity group in which the target image is a member.
This attribute for this connection type is only available
when targeting a z13 GA2 or higher CPC.

Note: This attribute must be enabled prior to setting
the group absolute capping value using attribute
HWI_GROUP_PROF_IFLABSCAPVAL.

A4

(164)

HWI_GROUP_PROF_IFLABSCAPVAL

• For group profile connection (the input ConnectToken
represents a group profile connection), requests
to change or set the maximum IFL processor
consumption for a group profile.

• For LPAR Capacity group connection (the input
ConnectToken represents an LPAR group connection),
requests to change or set the maximum IFL processor
consumption for an LPAR Capacity group. This
attribute for this connection type is only available
when targeting a z14 GA2 or higher CPC.

• For image connection (the input ConnectToken
represents an image connection), requests to
dynamically change or set the maximum IFL
processor consumption for an LPAR Capacity group in
which the target image is a member. This attribute for
this connection type is only available when targeting a
z13 GA2 or higher CPC.

HWISET/HWISET2

402 z/OS: z/OS MVS Callable Services for HLL

Constant in: Hexadecimal, (Decimal), Equate
symbol Description

A5

(165)

HWI_GROUP_PROF_IIPABSCAP

• For group profile connection (the input ConnectToken
represents a group profile connection), requests to
change or set whether group absolute capping is
enabled for IIP processors for a group profile.

• For LPAR Capacity group connection (the input
ConnectToken represents an LPAR group connection),
requests to dynamically change or set whether group
absolute capping is enabled for IIP processors for
an LPAR Capacity group. This attribute for this
connection type is only available when targeting a z14
GA2 or higher CPC.

• For image connection (the input ConnectToken
represents an image connection), requests to
dynamically changeor set whether group absolute
capping is enabled for IIP processors for an LPAR
Capacity group in which the target image is a member.
This attribute for this connection type is only available
when targeting a z13 GA2 or higher CPC.

Note: This attribute must be enabled prior to setting
the group absolute capping value using attribute
HWI_GROUP_PROF_IIPABSCAPVAL.

A6

(166)

HWI_GROUP_PROF_IIPABSCAPVAL

• For group profile connection (the input ConnectToken
represents a group profile connection), requests
to change or set the maximum IIP processor
consumption for a group profile.

• For LPAR Capacity group connection (the input
ConnectToken represents an LPAR group connection),
requests to dynamically change or set the maximum
IIP processor consumption for an LPAR Capacity
group. This attribute for this connection type is only
available when targeting a z14 GA2 or higher CPC.

• For image connection (the input ConnectToken
represents an image connection), requests to
dynamically change or set the maximum IIP
processor consumption for an LPAR Capacity group
in which the target is a member. This attribute for this
connection type is only available when targeting a z13
GA2 or higher CPC.

C9

(201)

HWI_IOCDS

Requests to change or set the IOCDS.

Note: The input connection token must represent a
reset activation profile.

CA

(202)

HWI_IPL_ADDRESS

Requests to change or set the IPL address.

Note: The input connection token must represent an
image activation profile or a load activation profile.

HWISET/HWISET2

Chapter 19. Base Control Program internal interface (BCPii) 403

Constant in: Hexadecimal, (Decimal), Equate
symbol Description

CB

(203)

HWI_IPL_PARM

Requests to change or set the IPL parameter.

Note: The input connection token must represent an
image activation profile or a load activation profile.

CC

(204)

HWI_IPL_TYPE

Requests to change or set the IPL type for the activation
profile.

Note: The input connection token must represent an
image activation profile or a load activation profile.

CD

(205)

HWI_WW_PORTNAME

Requests to change or set the worldwide port name for
the activation profile.

Note: The input connection token must represent an
image activation profile or a load activation profile.

CE

(206)

HWI_BOOT_PGM_SELECTOR

Requests to change or set the boot program selector for
the activation profile.

Note: The input connection token must represent an
image activation profile or a load activation profile.

CF

(207)

HWI_LU_NUM

Requests to change or set the logical unit number value
for the activation profile.

Note: The input connection token must represent an
image activation profile or a load activation profile.

D0

(208)

HWI_BOOTREC_BLK_ADDR

Requests to change or set the boot record logical block
address for the activation profile.

Note: The input connection token must represent an
image activation profile or a load activation profile.

D1

(209)

HWI_OPSYS_LOADPARM

Requests to change or set the operating system specific
load parameter.

Note: The input connection token must represent an
image activation profile or a load activation profile.

D2

(210)

HWI_GROUP_PROF_NAME

Requests to change or set the name of the group
capacity profile that is to be used for the CPC image
or image object activated with this profile.

Note: The input connection token must only represent
an image connection or an image activation profile
connection.

D3

(211)

HWI_LOAD_AT_ACTIVATION

Requests to change or set the indicator if the CPC image
object activated with this profile should be loaded
(IPLed) at the end of the activation.

Note: The input connection token must represent an
image activation profile.

HWISET/HWISET2

404 z/OS: z/OS MVS Callable Services for HLL

Constant in: Hexadecimal, (Decimal), Equate
symbol Description

D4

(212)

HWI_CENTRAL_STOR

Requests to change or set the initial amount of central
storage (in megabytes) to be used for the CPC image
object activated with this profile.

Note: The input connection token must represent an
image activation profile.

D5

(213)

HWI_RES_CENTRAL_STOR

Requests to change or set the reserved amount of
central storage (in megabytes) to be used for the CPC
image object activated with this profile.

Note: The input connection token must represent an
image activation profile.

D6

(214)

HWI_EXPANDED_STOR

Requests to change or set the initial amount of
expanded storage (in megabytes) to be used for the
CPC image object activated with this profile.

Note: The input connection token must represent an
image activation profile.

D7

(215)

HWI_RES_EXPANDED_STOR

Requests to change or set the reserved amount of
expanded storage (in megabytes) to be used for the
CPC image object activated with this profile.

Note: The input connection token must represent an
image activation profile.

D8

(216)

HWI_NUM_GPP

Requests to change or set the number of dedicated
general purpose processors to be used for the CPC
image object activated with this profile.

Note: The input connection token must represent an
image activation profile.

D9

(217)

HWI_NUM_RESGPP

Requests to change or set the number of reserved
dedicated general purpose processors to be used for
the CPC image object activated with this profile.

Note: The input connection token must represent an
image activation profile.

DA

(218)

HWI_NUM_IFA

Requests to change or set the number of dedicated
integrated facility for applications (IFA) processors to
be used for the CPC image object activated with this
profile.

Note: The input connection token must represent an
image activation profile.

DB

(219)

HWI_NUM_RESIFA

Requests to change or set the number of reserved
dedicated integrated facility for applications (IFA)
processors to be used for the CPC image object
activated with this profile.

Note: The input connection token must represent an
image activation profile.

HWISET/HWISET2

Chapter 19. Base Control Program internal interface (BCPii) 405

Constant in: Hexadecimal, (Decimal), Equate
symbol Description

DC

(220)

HWI_NUM_IFL

Requests to change or set the number of dedicated
integrated facility for Linux (IFL) processors to be used
for the CPC image object activated with this profile.

Note: The input connection token must represent an
image activation profile.

DD

(221)

HWI_NUM_RESIFL

Requests to change or set the number of reserved
dedicated integrated facility for Linux (IFL) processors
to be used for the CPC image object activated with this
profile.

Note: The input connection token must represent an
image activation profile.

DE

(222)

HWI_NUM_ICF

Requests to change or set the number of dedicated
internal coupling facility (ICF) processors to be used for
the CPC image object activated with this profile.

Note: The input connection token must represent an
image activation profile.

DF

(223)

HWI_NUM_RESICF

Requests to change or set the number of reserved
dedicated internal coupling facility (ICF) processors to
be used for the CPC image object activated with this
profile.

Note: The input connection token must represent an
image activation profile.

E0

(224)

HWI_NUM_ZIIP

Requests to change or set the number of dedicated
System z Integrated Information Processors (zIIPs) to
be used for the CPC image object activated with this
profile.

Note: The input connection token must represent an
image activation profile.

E1

(225)

HWI_NUM_RESZIIP

Requests to change or set the number of reserved
dedicated System z Integrated Information Processors
(zIIPs) to be used for the CPC image object activated
with this profile.

Note: The input connection token must represent an
image activation profile.

E2

(226)

HWI_NUM_SHARED_GPP

Requests to change or set the number of shared general
purpose processors to be used for the CPC image object
activated with this profile.

Note: The input connection token must represent an
image activation profile.

E3

(227)

HWI_NUM_RES_SHARED

_GPP

Requests to change or set the number of reserved
shared general purpose processors to be used for the
CPC image object activated with this profile.

Note: The input connection token must represent an
image activation profile.

HWISET/HWISET2

406 z/OS: z/OS MVS Callable Services for HLL

Constant in: Hexadecimal, (Decimal), Equate
symbol Description

E4

(228)

HWI_NUM_SHARED_IFA

Requests to change or set the number of shared
integrated facility for applications (IFA) processors to
be used for the CPC image object activated with this
profile.

Note: The input connection token must represent an
image activation profile.

E5

(229)

HWI_NUM_RES_SHARED_IFA

Requests to change or set the number of reserved
shared integrated facility for applications (IFA)
processors to be used for the CPC image object
activated with this profile.

Note: The input connection token must represent an
image activation profile.

E6

(230)

HWI_NUM_SHARED_IFL

Requests to change or set the number of shared
integrated facility for Linux (IFL) processors to be used
for the CPC image object activated with this profile.

Note: The input connection token must represent an
image activation profile.

E7

(231)

HWI_NUM_RES_SHARED_IFL

Requests to change or set the number of reserved
shared integrated facility for Linux (IFL) processors to
be used for the CPC image object activated with this
profile.

Note: The input connection token must represent an
image activation profile.

E8

(232)

HWI_NUM_SHARED_ICF

Requests to change or set the number of shared
internal coupling facility (ICF) processors to be used for
the CPC image object activated with this profile.

Note: The input connection token must represent an
image activation profile.

E9

(233)

HWI_NUM_RES_SHARED

_ICF

Requests to change or set the number of reserved
shared internal coupling facility (ICF) processors to
be used for the CPC image object activated with this
profile.

Note: The input connection token must represent an
image activation profile.

EA

(234)

HWI_NUM_SHARED_ZIIP

Requests to change or set the number of shared System
z Integrated Information Processors (zIIPs) to be used
for the CPC image object activated with this profile.

Note: The input connection token must represent an
image activation profile.

HWISET/HWISET2

Chapter 19. Base Control Program internal interface (BCPii) 407

Constant in: Hexadecimal, (Decimal), Equate
symbol Description

EB

(235)

HWI_NUM_RES_SHARED

_ZIIP

Requests to change or set the number of reserved
shared System z Integrated Information Processors
(zIIPs) to be used for the CPC image object activated
with this profile.

Note: The input connection token must represent an
image activation profile.

EC

(236)

HWI_BASIC_CPU_AUTH

_COUNT_CNTL

Requests to change or set the enablement value of
the basic CPU counter facility for the CPC image
object activated with this profile. This attribute is only
available when targeting a z10 or higher CPC.

Note: The input connection token must represent an
image activation profile.

ED

(237)

HWI_PROBSTATE_CPU

_AUTH_COUNT_CNTL

Requests to change or set the enablement value of the
Problem state CPU counter facility for the CPC image
object activated with this profile. This attribute is only
available when targeting a z10 or higher CPC.

Note: The input connection token must represent an
image activation profile.

EE

(238)

HWI_CRYPTOACTIVITY_CPU

_AUTH_COUNT_CNTL

Requests to change of set the enablement value of the
crypto activity CPU counter facility for the CPC image
object activated with this profile. This attribute is only
available when targeting a z10 or higher CPC.

Note: The input connection token must represent an
image activation profile.

EF

(239)

HWI_EXTENDED_CPU

_AUTH_COUNT_CNTL

Requests to change or set the enablement value of
the extended CPU counter facility for the CPC image
object activated with this profile. This attribute is only
available when targeting a z10 or higher CPC.

Note: The input connection token must represent an
image activation profile.

F0

(240)

HWI_COPROCESSOR_CPU

_AUTH_COUNT_CNTL

Requests to change or set the enablement value of
the coprocessor group CPU counter facility for the CPC
image object activated with this profile. This attribute is
only available when targeting a z10 or higher CPC.

Note: The input connection token must represent an
image activation profile.

F1

(241)

HWI_BASIC_CPU_SAMPLING

_AUTH_CNTL

Requests to change or set the enablement value of
the basic CP CPU sampling facility for the CPC image
object activated with this profile. This attribute is only
available when targeting a z10 or higher CPC.

Note: The input connection token must represent an
image activation profile.

HWISET/HWISET2

408 z/OS: z/OS MVS Callable Services for HLL

Constant in: Hexadecimal, (Decimal), Equate
symbol Description

F2

(242)

HWI_APROF_STORE_STATUS

Requests to change or set the store status function
value. This value is only valid if HWI_APROF_LOADTYPE
is set to normal. This attribute is only available when
targeting a z10 or higher CPC.

Note: The input connection token must represent a load
activation profile.

F3

(243)

HWI_APROF_LOADTYPE

Requests to change or set the type of load being
requested. This attribute is only available when
targeting a z10 or higher CPC.

Note: The input connection token must represent a load
activation profile.

F4

(244)

HWI_PROFILE_DESCRIPTION

Requests to change or set the activation profile
description. This attribute is only available when
targeting a z10 or higher CPC.

Note: The input connection token must represent an
image activation profile, reset activation profile, load
activation profile or group profile.

F5

(245)

HWI_PROFILE_PARTITION_ID

Requests to change or set the partition identifier for the
activation profile. This attribute is only available when
targeting a z10 or higher CPC.

Note: The input connection token must represent an
image activation profile.

F6

(246)

HWI_OPERATING_MODE

Requests to change or set the operating mode value
for the activation profile. This attribute is only available
when targeting a z10 or higher CPC.

Note: The input connection token must represent an
image activation profile.

F7

(247)

HWI_CLOCK_TYPE

Requests to change or set the clock type assignment
(time source setting) for the activation profile. This
attribute is only available when targeting a z10 or higher
CPC.

Note: The input connection token must represent an
image activation profile.

F8

(248)

HWI_TIME_OFFSET_DAYS

Requests to change or set the time offset days (the
number of days currently set as the offset from the
external time source's time of day) for the activation
profile. This attribute is only available when targeting a
z10 or higher CPC.

Note: The input connection token must represent an
image activation profile.

HWISET/HWISET2

Chapter 19. Base Control Program internal interface (BCPii) 409

Constant in: Hexadecimal, (Decimal), Equate
symbol Description

F9

(249)

HWI_TIME_OFFSET_HOURS

Requests to change or set the time offset hours (the
number of hours currently set as the offset from the
external time source's time of day) for the activation
profile. This attribute is only available when targeting a
z10 or higher CPC.

Note: The input connection token must represent an
image activation profile.

FA

(250)

HWI_TIME_OFFSET_MINUTES

Requests to change or set the time offset minutes (the
number of minutes currently set as the offset from the
external time source's time of day) for the activation
profile. This attribute is only available when targeting a
z10 or higher CPC.

Note: The input connection token must represent an
image activation profile.

FB

(251)

HWI_TIME_OFFSET_INCREASE

Requests to change or set the time offset increase
or decrease value for the activation profile. The time
offset, as specified in days, hours, and minutes, is
increased or decreased from GMT. TRUE means that the
time offset is east of GMT. FALSE means that the time
offset is west of GMT. This attribute is only available
when targeting a z10 or higher CPC.

Note: The input connection token must represent an
image activation profile.

FC

(252)

HWI_LICCC_VALIDATION

_ENABLED

Requests to change or set whether the activation
profile must conform to the current Licensed Internal
Code Configuration Control (LICCC) configuration. This
attribute is only available when targeting a zEnterprise
or higher CPC.

Note: The input connection token must represent an
image activation profile.

FD

(253)

HWI_GLOBAL_PERFORMANCE

_DATA_CONTROL

Requests to change or set whether the logical partition
can be used to view the processing unit activity data
for all other LPARs activated on the same CPC. This
attribute is only available when targeting a z10 or higher
CPC.

Note: The input connection token must represent an
image activation profile.

FE

(254)

HWI_IO_CONFIGURATION

_CONTROL

Requests to change or set whether the logical partition
can be used to read and write any Input/Output
Configuration Data Set (IOCDS) in the configuration.
This attribute is only available when targeting a z10 or
higher CPC.

Note: The input connection token must represent an
image activation profile.

HWISET/HWISET2

410 z/OS: z/OS MVS Callable Services for HLL

Constant in: Hexadecimal, (Decimal), Equate
symbol Description

100

(256)

HWI_LOGICAL_PARTITION

_ISOLATION

Requests to change or set whether reconfigurable
channel paths assigned to the logical partition are
reserved for its exclusive use. This attribute is only
available when targeting a z10 or higher CPC.

Note: The input connection token must represent an
image activation profile.

101-109

(257–264)

RESERVED

Reserved for activation profile attributes.

SetTypeValue_Ptr (HWISET only - non-REXX)
SetTypeValue (HWISET only - REXX)

Supplied parameter

• Type: Pointer (non-REXX), character or character representation of an integer (REXX)
• Length: 4 bytes (non-REXX)

Non-REXX:
SetTypeValue_Ptr specifies the address of the value to be set or changed. Some SetType
requests allow a null value to be set. If a null value is desired, the SetTypeValue_Ptr value
must be zero.

REXX:
SetTypeValue specifies the value to be set or changed. Some SetType requests allow a null
value to be set. If a null value is desired, SetTypeValue should be set to null ("").

The particular SetType determines what data value must be specified. See the following chart as well
as the following documentation for more information:

• IBM z SNMP Application Programming Interfaces (SB10-7171-06)
• System z10 and eServer zSeries Application Programming Interfaces (SB10-7030-09)
• System z9 and eServer zSeries Application Programming Interfaces (SB10-7030-08)

HWISET/HWISET2

Chapter 19. Base Control Program internal interface (BCPii) 411

SetType values in hexadecimal, (decimal), and
equate symbol Values to be specified

6

(6)

HWI_ACCSTAT

A 4-byte integer type value.

For CPC connections, bit values can be set to:

• HWMCA_STATUS_OPERATING
• HWMCA_STATUS_NOT_OPERATING
• HWMCA_STATUS_NO_POWER
• HWMCA_STATUS_EXCEPTIONS
• HWMCA_STATUS_STATUS_CHECK
• HWMCA_STATUS_SERVICE
• HWMCA_STATUS_LINKNOTACTIVE
• HWMCA_STATUS_POWERSAVE
• HWMCA_STATUS_SERVICE_REQ
• HWMCA_STATUS_DEGRADED

For image connections, bit values can be set to:

• HWMCA_STATUS_OPERATING
• HWMCA_STATUS_NOT_OPERATING
• HWMCA_STATUS_NOT_ACTIVATED
• HWMCA_STATUS_EXCEPTIONS
• HWMCA_STATUS_STATUS_CHECK
• HWMCA_STATUS POWERSAVE

7

(7)

HWI_APROF

A 16-character activation profile name padded with
trailing blanks.

27

(39)

HWI_PRUNTYPE

A 4-byte integer type value.
HWMCA_DETERMINED_SYSTEM

The processor running is dynamically determined
by the system.

HWMCA_DETERMINED_USER
The processor running time is set to a constant
value.

28

(40)

HWI_PRUNTIME

A 4-byte integer type value.

A value between 1 to 100 for the user defined
processor running time.

Note: This value can only be set if the processor
running time type (HWI_PRUNTYPE) is set to
HWMCA_DETERMINED_USER.

HWISET/HWISET2

412 z/OS: z/OS MVS Callable Services for HLL

SetType values in hexadecimal, (decimal), and
equate symbol Values to be specified

29

(41)

HWI_PRUNTSEW

A 4-byte integer type value.
HWMCA_TRUE

Indicates that an image should lose its share of
running time when it enters a wait state.

HWMCA_FALSE
Indicates that an image should not lose its share
of running time when it enters a wait state.

Note: This value can only be set if the processor
running time type (HWI_PRUNTYPE) is set to
HWMCA_DETERMINED_USER.

This attribute is only available when targeting a z13
GA2 or lower CPC.

70

(112)

HWI_DEFCAP

A 4-byte integer type value.

A value represents the amount of defined capacity
specified for the logical partition. A value of 0
indicates that no defined capacity is specified for the
logical partition.

71

(113)

HWI_SGPIPW

A 4-byte integer type value.

A value from 1 - 999 defines the relative amount of
shared general purpose processor resources allocated
to the CPC image object.

A value of 0 indicates that CPC image does not
represent a logical partition or the CPC image does
not represent a logical partition with at least one not
dedicated general purpose processor.

Note: The setting of this attribute is only valid for CPC
image objects that represent a logical partition with at
least one not dedicated general purpose processor.

72

(114)

HWI_SGPIPWCAP

A 4-byte integer type value. This indicates that the
initial general purpose processor processing weight for
the CPC image object is capped or not capped.

HWMCA_TRUE
Capped

HWMCA_FALSE
Not capped

HWISET/HWISET2

Chapter 19. Base Control Program internal interface (BCPii) 413

SetType values in hexadecimal, (decimal), and
equate symbol Values to be specified

73

(115)

HWI_SGPPWMIN

A 4-byte integer type value.

A value from 1 - 999 and less than or equal to
the initial processing weight defines the minimum
relative amount of shared general purpose processor
resources allocated to the CPC image object.

A value of 0 indicates that CPC image does not
represent a logical partition or the CPC image does
not represent a logical partition with at least one not
dedicated general purpose processor.

Note: The setting of this attribute is only valid for CPC
image objects that represent a logical partition with at
least one not dedicated general purpose processor.

74

(116)

HWI_SGPPWMAX

A 4-byte integer type value.

A value from 1 - 999 and greater than or equal to
the initial processing weight defines the maximum
relative amount of shared general purpose processor
resources allocated to the CPC image object.

A value of 0 indicates that CPC image does not
represent a logical partition or the CPC image does
not represent a logical partition with at least one not
dedicated general purpose processor.

Note: The setting of this attribute is only valid for CPC
image objects that represent a logical partition with at
least one not dedicated general purpose processor.

77

(119)

HWI_WLM

A 4-byte integer type value.

This indicates whether the Workload Manager
is allowed to change processor weight-related
attributes.

• HWMCA_TRUE
• HWMCA_FALSE

HWI_WLM must be set to HWMCA_TRUE before any
of the settings for the specialized IFA, IFL, ICF, or IIP
engines can be modified.

HWISET/HWISET2

414 z/OS: z/OS MVS Callable Services for HLL

SetType values in hexadecimal, (decimal), and
equate symbol Values to be specified

78

(120)

HWI_IFAIPW

A 4-byte integer type value.

A value from 1 - 999 defines the relative amount
of shared integrated facility for applications (IFA)
processor resources allocated to the CPC image
object.

A value of 0 indicates that CPC image does not
represent a logical partition or the CPC image does
not represent a logical partition with at least one
not dedicated integrated facility for applications (IFA)
processor.

Note: The setting of this attribute is only valid for
CPC image objects that represent a logical partition
with at least one not dedicated integrated facility for
applications (IFA) processor.

79

(121)

HWI_IFAIPWCAP

A 4-byte integer type value. This indicates whether
the initial processing weight for integrated facility for
applications (IFA) processors is a limit or a target.

HWMCA_TRUE
Capped

HWMCA_FALSE
Not capped

7A

(122)

HWI_IFAPWMIN

A 4-byte integer type value.

A value from 1 - 999 defines the minimum relative
amount of shared integrated facility for applications
(IFA) processor resources allocated to the CPC image
object.

A value of 0 indicates that CPC image does not
represent a logical partition or the CPC image does
not represent a logical partition with at least one
not dedicated integrated facility for applications (IFA)
processor.

Note: The setting of this attribute is only valid for
CPC image objects that represent a logical partition
with at least one not dedicated integrated facility for
applications (IFA) processor.

HWISET/HWISET2

Chapter 19. Base Control Program internal interface (BCPii) 415

SetType values in hexadecimal, (decimal), and
equate symbol Values to be specified

7B

(123)

HWI_IFAPWMAX

A 4-byte integer type value.

A value from 1 - 999 defines the maximum relative
amount of shared integrated facility for applications
(IFA) processor resources allocated to the CPC image
object.

A value of 0 indicates that CPC image does not
represent a logical partition or the CPC image does
not represent a logical partition with at least one
not dedicated integrated facility for applications (IFA)
processor.

Note: The setting of this attribute is only valid for
CPC image objects that represent a logical partition
with at least one not dedicated integrated facility for
applications (IFA) processor.

7E

(126)

HWI_IFLIPW

A 4-byte integer type value.

A value from 1 - 999 defines the relative amount
of shared integrated facility for Linux (IFL) processor
resources allocated to the CPC image object.

A value of 0 indicates that CPC image does not
represent a logical partition or the CPC image does
not represent a logical partition with at least one not
dedicated integrated facility for Linux (IFL) processor.

Note: The setting of this attribute is only valid for CPC
image objects that represent a logical partition with
at least one not dedicated integrated facility for Linux
(IFL) processor.

7F

(127)

HWI_IFLIPWCAP

A 4-byte integer type value. This indicates whether the
initial processing weight for integrated facility for Linux
(IFL) processors is a limit or a target.

HWMCA_TRUE
Capped

HWMCA_FALSE
Not capped

80

(128)

HWI_IFLPWMIN

A 4-byte integer type value.

A value from 1 - 999 defines the minimum relative
amount of shared integrated facility for Linux (IFL)
processor resources allocated to the CPC image
object.

A value of 0 indicates that CPC image does not
represent a logical partition or the CPC image does
not represent a logical partition with at least one not
dedicated integrated facility for Linux (IFL) processor.

Note: The setting of this attribute is only valid for CPC
image objects that represent a logical partition with
at least one not dedicated integrated facility for Linux
(IFL) processor.

HWISET/HWISET2

416 z/OS: z/OS MVS Callable Services for HLL

SetType values in hexadecimal, (decimal), and
equate symbol Values to be specified

81

(129)

HWI_IFLPWMAX

A 4-byte integer type value.

A value from 1 - 999 defines the maximum relative
amount of shared integrated facility for Linux (IFL)
processor resources allocated to the CPC image
object.

A value of 0 indicates that CPC image does not
represent a logical partition or the CPC image does
not represent a logical partition with at least one not
dedicated integrated facility for Linux (IFL) processor.

Note: The setting of this attribute is only valid for CPC
image objects that represent a logical partition with
at least one not dedicated integrated facility for Linux
(IFL) processor.

84

(132)

HWI_ICFIPW

A 4-byte integer type value.

A value from 1 - 999 defines the relative amount
of shared internal coupling facility (ICF) processor
resources allocated to the CPC image object.

A value of 0 indicates that CPC image does not
represent a logical partition or the CPC image does
not represent a logical partition with at least one not
dedicated internal coupling facility (ICF) processor.

Note: The setting of this attribute is only valid for CPC
image objects that represent a logical partition with at
least one not dedicated internal coupling facility (ICF)
processor.

85

(133)

HWI_ICFIPWCAP

A 4-byte integer type value. This indicates whether the
initial processing weight for internal coupling facility
(ICF) processors is a limit or a target.

HWMCA_TRUE
Capped

HWMCA_FALSE
Not capped

86

(134)

HWI_ICFPWMIN

A 4-byte integer type value.

A value from 1 - 999 defines the minimum relative
amount of shared internal coupling facility (ICF)
processor resources allocated to the CPC image
object.

A value of 0 indicates that CPC image does not
represent a logical partition or the CPC image does
not represent a logical partition with at least one not
dedicated internal coupling facility (ICF) processor.

Note: The setting of this attribute is only valid for CPC
image objects that represent a logical partition with at
least one not dedicated internal coupling facility (ICF)
processor.

HWISET/HWISET2

Chapter 19. Base Control Program internal interface (BCPii) 417

SetType values in hexadecimal, (decimal), and
equate symbol Values to be specified

87

(135)

HWI_ICFPWMAX

A 4-byte integer type value.

A value from 1 - 999 defines the maximum relative
amount of shared internal coupling facility (ICF)
processor resources allocated to the CPC image
object.

A value of 0 indicates that CPC image does not
represent a logical partition or the CPC image does
not represent a logical partition with at least one not
dedicated internal coupling facility (ICF) processor.

Note: The setting of this attribute is only valid for CPC
image objects that represent a logical partition with at
least one not dedicated internal coupling facility (ICF)
processor.

8A

(138)

HWI_IIPIPW

A 4-byte integer type value.

A value from 1 - 999 defines the relative amount
of shared integrated information processors (IIP)
resources allocated to the CPC image object.

A value of 0 indicates that CPC image does not
represent a logical partition or the CPC image does
not represent a logical partition with at least one not
dedicated integrated information processor (IIP).

Note: The setting of this attribute is only valid for
CPC image objects that represent a logical partition
with at least one not dedicated integrated information
processor (IIP).

8B

(139)

HWI_IIPIPWCAP

A 4-byte integer type value. This indicates whether
the initial processing weight for integrated information
processors (IIP) is a limit or a target.

HWMCA_TRUE
Capped

HWMCA_FALSE
Not capped

8C

(140)

HWI_IIPPWMIN

A 4-byte integer type value.

A value from 1 - 999 defines the minimum relative
amount of shared integrated information processors
(IIP) resources allocated to the CPC image object.

A value of 0 indicates that CPC image does not
represent a logical partition or the CPC image does
not represent a logical partition with at least one not
dedicated integrated information processor (IIP).

Note: The setting of this attribute is only valid for
CPC image objects that represent a logical partition
with at least one not dedicated integrated information
processor (IIP).

HWISET/HWISET2

418 z/OS: z/OS MVS Callable Services for HLL

SetType values in hexadecimal, (decimal), and
equate symbol Values to be specified

8D

(141)

HWI_IIPPWMAX

A 4-byte integer type value.

A value from 1 - 999 defines the maximum relative
amount of shared integrated information processors
(IIP) resources allocated to the CPC image object.

A value of 0 indicates that CPC image does not
represent a logical partition or the CPC image does
not represent a logical partition with at least one not
dedicated integrated information processor (IIP).

Note: The setting of this attribute is only valid for
CPC image objects that represent a logical partition
with at least one not dedicated integrated information
processor (IIP).

92

(146)

HWI_GROUP_PROFILE_CAPACITY

A 4-byte integer value to represent the workload
unit capacity for the group profile associated with an
image.

95

(149)

HWI_ABSCAP

A 4-byte integer type value. This indicates if absolute
capping is in effect for the general purpose processor
type.

HWMCA_TRUE
Enabled

HWMCA_FALSE
Disabled

96

(150)

HWI_ABSCAPVAL

A character string representing the absolute capping
value to be set for general purpose processors.

The format is generally xxx.yy where xxx is between 0
and 255 and yy is between 00 and 99.

For more details and the most current information
regarding the format of this data, see IBM Z SNMP
Application Programming Interfaces (www.ibm.com/
support/pages/node/6018616).

97

(151)

HWI_IFAABSCAP

A 4-byte integer type value. This indicates if absolute
capping is in effect for the AAP processor type.

HWMCA_TRUE
Enabled

HWMCA_FALSE
Disabled

98

(152)

HWI_IFAABSCAPVAL

A character string representing the absolute capping
value to be set for AAP processors.

The format is generally xxx.yy where xxx is between 0
and 255 and yy is between 00 and 99.

For more details and the most current information
regarding the format of this data, see IBM Z SNMP
Application Programming Interfaces (www.ibm.com/
support/pages/node/6018616).

HWISET/HWISET2

Chapter 19. Base Control Program internal interface (BCPii) 419

https://www.ibm.com/support/pages/node/6018616
https://www.ibm.com/support/pages/node/6018616
https://www.ibm.com/support/pages/node/6018616
https://www.ibm.com/support/pages/node/6018616
https://www.ibm.com/support/pages/node/6018616
https://www.ibm.com/support/pages/node/6018616

SetType values in hexadecimal, (decimal), and
equate symbol Values to be specified

99

(153)

HWI_IFLABSCAP

A 4-byte integer type value. This indicates if absolute
capping is in effect for the IFL processors.

HWMCA_TRUE
Enabled

HWMCA_FALSE
Disabled

9A

(154)

HWI_IFLABSCAPVAL

A character string representing the absolute capping
value to be set for IFL processors.

The format is generally xxx.yy where xxx is between 0
and 255 and yy is between 00 and 99.

For more details and the most current information
regarding the format of this data, see IBM Z SNMP
Application Programming Interfaces (www.ibm.com/
support/pages/node/6018616).

9B

(155)

HWI_ICFABSCAP

A 4-byte integer type value. This indicates if absolute
capping is in effect for the ICF processors.

HWMCA_TRUE
Enabled

HWMCA_FALSE
Disabled

9C

(156)

HWI_ICFABSCAPVAL

A character string representing the absolute capping
value to be set for ICF processors.

The format is generally xxx.yy where xxx is between 0
and 255 and yy is between 00 and 99.

For more details and the most current information
regarding the format of this data, see IBM Z SNMP
Application Programming Interfaces (www.ibm.com/
support/pages/node/6018616).

9D

(157)

HWI_IIPABSCAP

A 4-byte integer type value. This indicates if absolute
capping is in effect for the IIP processors.

HWMCA_TRUE
Enabled

HWMCA_FALSE
Disabled

9E

(158)

HWI_IIPABSCAPVAL

A character string representing the absolute capping
value to be set for IIP processors.

The format is generally xxx.yy where xxx is between 0
and 255 and yy is between 00 and 99.

For more details and the most current information
regarding the format of this data, see IBM Z SNMP
Application Programming Interfaces (www.ibm.com/
support/pages/node/6018616).

HWISET/HWISET2

420 z/OS: z/OS MVS Callable Services for HLL

https://www.ibm.com/support/pages/node/6018616
https://www.ibm.com/support/pages/node/6018616
https://www.ibm.com/support/pages/node/6018616
https://www.ibm.com/support/pages/node/6018616
https://www.ibm.com/support/pages/node/6018616
https://www.ibm.com/support/pages/node/6018616
https://www.ibm.com/support/pages/node/6018616
https://www.ibm.com/support/pages/node/6018616
https://www.ibm.com/support/pages/node/6018616

SetType values in hexadecimal, (decimal), and
equate symbol Values to be specified

9F

(159)

HWI_GROUP_PROF_ABSCAP

A 4-byte integer type value. This indicates if group
absolute capping is in effect for the general-purpose
processor type.

HWMCA_TRUE
Enabled

HWMCA_FALSE
Disabled

A0

(160)

HWI_GROUP_PROF_ABSCAPVAL

A character string representing the group absolute
capping value to be set for general-purpose
processors.

The format is generally xxx.yy where xxx is between 0
and 255 and yy is between 00 and 99.

A1

(161)

HWI_GROUP_PROF_ICFABSCAP

A 4-byte integer type value. This indicates if group
absolute capping is in effect for the ICF processor
type.

HWMCA_TRUE
Enabled

HWMCA_FALSE
Disabled

A2

(162)

HWI_GROUP_PROF_ICFABSCAPVAL

A character string representing the group absolute
capping value to be set for ICF processors.

The format is generally xxx.yy where xxx is between 0
and 255 and yy is between 00 and 99.

A3

(163)

HWI_GROUP_PROF_IFLABSCAP

A 4-byte integer type value. This indicates if group
absolute capping is in effect for the IFL processor
type.

HWMCA_TRUE
Enabled

HWMCA_FALSE
Disabled

A4

(164)

HWI_GROUP_PROF_IFLABSCAPVAL

A character string representing the group absolute
capping value to be set for IFL processors.

The format is generally xxx.yy where xxx is between 0
and 255 and yy is between 00 and 99.

A5

(165)

HWI_GROUP_PROF_IIPABSCAP

A 4-byte integer type value. This indicates if group
absolute capping is in effect for the IIP processor
type.

HWMCA_TRUE
Enabled

HWMCA_FALSE
Disabled

HWISET/HWISET2

Chapter 19. Base Control Program internal interface (BCPii) 421

SetType values in hexadecimal, (decimal), and
equate symbol Values to be specified

A6

(166)

HWI_GROUP_PROF_IIPABSCAPVAL

A character string representing the group absolute
capping value to be set for IIP processors.

The format is generally xxx.yy where xxx is between 0
and 255 and yy is between 00 and 99.

C9

(201)

HWI_IOCDS

A character string representing the IOCDS.

A value of an empty string indicates that the reset
activation profile will use the currently active IOCDS.

CA

(202)

HWI_IPL_ADDRESS

A character string representing the IPL address.

Note: A value of an empty string indicates that the
image activation profile uses the next IPL address set
by HCD.

CB

(203)

HWI_IPL_PARM

A character string representing the IPL parameter.

Note: A value of an empty string indicates that the
image activation profile uses the next IPL parameter
set by HCD.

CC

(204)

HWI_IPL_TYPE

A 4-byte integer type value.
HWMCA_IPLTYPE_STANDARD

Indicates that the image activation profile is used
to perform a standard load.

HWMCA_IPLTYPE_SCSI
Indicates that the image activation profile is used
to perform a SCSI load.

HWMCA_IPLTYPE_SCSIDUMP
Indicates that the image activation profile is used
to perform a SCSI dump.

CD

(205)

HWI_WW_PORTNAME

A character string representing the worldwide port
name.

CE

(206)

HWI_BOOT_PGM_SELECTOR

A 4-byte integer type value representing the boot
program selector value.

CF

(207)

HWI_LU_NUM

A character string representing the logical unit
number.

D0

(208)

HWI_BOOTREC_BLK_ADDR

A character string representing the boot record logical
block address.

HWISET/HWISET2

422 z/OS: z/OS MVS Callable Services for HLL

SetType values in hexadecimal, (decimal), and
equate symbol Values to be specified

D1

(209)

HWI_OPSYS_LOADPARM

A character string representing the operating system
specific load parameters.

D2

(210)

HWI_GROUP_PROF_NAME

A character string that represents the name of a group
capacity profile.

D3

(211)

HWI_LOAD_AT_ACTIVATION

A 4-byte integer type value.

This indicates whether a load should be done at the
end of activation.

• HWMCA_TRUE
• HWMCA_FALSE

D4

(212)

HWI_CENTRAL_STOR

A 4-byte integer type value to represent the initial
amount of central storage (in megabytes) to be used
for the CPC image.

D5

(213)

HWI_RES_CENTRAL_STOR

A 4-byte integer type value to represent the reserved
amount of central storage (in megabytes) to be used
for the CPC image.

D6

(214)

HWI_EXPANDED_STOR

A 4-byte integer type value to represent the initial
amount of expanded storage (in megabytes) to be
used for the CPC image.

D7

(215)

HWI_RES_EXPANDED_STOR

A 4-byte integer type value to represent the reserved
amount of expanded storage (in megabytes) to be
used for the CPC image.

D8

(216)

HWI_NUM_GPP

A 4-byte integer type value to represent the number of
dedicated general purpose processors to be used for
the CPC image.

D9

(217)

HWI_NUM_RESGPP

A 4-byte integer type value to represent the number of
reserved dedicated general purpose processors to be
used for the CPC image.

DA

(218)

HWI_NUM_IFA

A 4-byte integer value to represent the number of
dedicated integrated facility for applications (IFA)
processors to be used for the CPC image.

HWISET/HWISET2

Chapter 19. Base Control Program internal interface (BCPii) 423

SetType values in hexadecimal, (decimal), and
equate symbol Values to be specified

DB

(219)

HWI_NUM_RESIFA

A 4-byte integer value to represent the number of
reserved dedicated integrated facility for applications
(IFA) processors to be used for the CPC image.

DC

(220)

HWI_NUM_IFL

A 4-byte integer value to represent the number of
dedicated integrated facility for Linux (IFL) processors
to be used for the CPC image.

DD

(221)

HWI_NUM_RESIFL

A 4-byte integer value to represent the number of
reserved dedicated integrated facility for Linux (IFL)
processors to be used for the CPC image.

DE

(222)

HWI_NUM_ICF

A 4-byte integer value to represent the number of
dedicated internal coupling facility (ICF) processors to
be used for the CPC image.

DF

(223)

HWI_NUM_RESICF

A 4-byte integer value to represent the number of
reserved dedicated internal coupling facility (ICF)
processors to be used for the CPC image.

E0

(224)

HWI_NUM_ZIIP

A 4-byte integer value to represent the number
of dedicated System z Integrated Information
Processors (zIIPs) to be used for the CPC image.

E1

(225)

HWI_NUM_RESZIIP

A 4-byte integer value to represent the number of
reserved dedicated System z Integrated Information
Processors (zIIPs) to be used for the CPC image.

E2

(226)

HWI_NUM_SHARED_GPP

A 4-byte integer type value to represent the number of
shared general purpose processors to be used for the
CPC image.

E3

(227)

HWI_NUM_RES_SHARED_GPP

A 4-byte integer type value to represent the number
of reserved shared general purpose processors to be
used for the CPC image.

E4

(228)

HWI_NUM_SHARED_IFA

A 4-byte integer value to represent the number
of shared integrated facility for applications (IFA)
processors to be used for the CPC image.

E5

(229)

HWI_NUM_RES_SHARED_IFA

A 4-byte integer value to represent the number of
reserved shared integrated facility for applications
(IFA) processors to be used for the CPC image.

HWISET/HWISET2

424 z/OS: z/OS MVS Callable Services for HLL

SetType values in hexadecimal, (decimal), and
equate symbol Values to be specified

E6

(230)

HWI_NUM_SHARED_IFL

A 4-byte integer value to represent the number of
shared integrated facility for Linux (IFL) processors to
be used for the CPC image.

E7

(231)

HWI_NUM_RES_SHARED_IFL

A 4-byte integer value to represent the number of
reserved shared integrated facility for Linux (IFL)
processors to be used for the CPC image.

E8

(232)

HWI_NUM_SHARED_ICF

A 4-byte integer value to represent the number of
shared internal coupling facility (ICF) processors to be
used for the CPC image.

E9

(233)

HWI_NUM_RES_SHARED_ICF

A 4-byte integer value to represent the number
of reserved shared internal coupling facility (ICF)
processors to be used for the CPC image.

EA

(234)

HWI_NUM_SHARED_ZIIP

A 4-byte integer value to represent the number of
shared System z Integrated Information Processors
(zIIPs) to be used for the CPC image.

EB

(235)

HWI_NUM_RES_SHARED_ZIIP

A 4-byte integer value to represent the number of
reserved shared System z Integrated Information
Processors (zIIPs) to be used for the CPC image.

EC

(236)

HWI_BASIC_CPU_AUTH_COUNT_CNTL

A 4-byte integer type value. This attribute is only
available when targeting a z10 or higher CPC.
HWMCA_TRUE

The authorization control is enabled.
HWMCA_FALSE

The authorization control is disabled.

ED

(237)

HWI_PROBSTATE_CPU_AUTH_COUNT

_CNTL

A 4-byte integer type value. This attribute is only
available when targeting a z10 or higher CPC.
HWMCA_TRUE

The authorization control is enabled.
HWMCA_FALSE

The authorization control is disabled.

EE

(238)

HWI_CRYPTOACTIVITY_CPU_AUTH

_COUNT_CNTL

A 4-byte integer type value. This attribute is only
available when targeting a z10 or higher CPC.
HWMCA_TRUE

The authorization control is enabled.
HWMCA_FALSE

The authorization control is disabled.

HWISET/HWISET2

Chapter 19. Base Control Program internal interface (BCPii) 425

SetType values in hexadecimal, (decimal), and
equate symbol Values to be specified

EF

(239)

HWI_EXTENDED_CPU_AUTH_COUNT

_CNTL

A 4-byte integer type value. This attribute is only
available when targeting a z10 or higher CPC.
HWMCA_TRUE

The authorization control is enabled.
HWMCA_FALSE

The authorization control is disabled.

F0

(240)

HWI_COPROCESSOR_CPU_AUTH

_COUNT_CNTL

A 4-byte integer type value. This attribute is only
available when targeting a z10 or higher CPC.
HWMCA_TRUE

The authorization control is enabled.
HWMCA_FALSE

The authorization control is disabled.

F1

(241)

HWI_BASIC_CPU_SAMPLING_AUTH

_CNTL

A 4-byte integer type value. This attribute is only
available when targeting a z10 or higher CPC.
HWMCA_TRUE

The authorization control is enabled.
HWMCA_FALSE

The authorization control is disabled.

F2

(242)

HWI_APROF_STORE_STATUS

A 4-byte integer type value. This attribute is only
available when targeting a z10 or higher CPC.
HWMCA_TRUE

Store status is selected. Only allowed
if HWI_APROF_LOADTYPE is set to
HWMCA_LOADTYPE_NORMAL.

HWMCA_FALSE
Store status is not selected.

F3

(243)

HWI_APROF_LOADTYPE

A 4-byte integer type value. This attribute is only
available when targeting a z10 or higher CPC.
HWMCA_LOADTYPE_NORMAL

The Loadtype is set to normal.
HWMCA_LOADTYPE_CLEAR

The Loadtype is set to clear.

F4

(244)

HWI_PROFILE_DESCRIPTION

A 50-character activation profile description. This
attribute is only available when targeting a z10 or
higher CPC.

F5

(245)

HWI_PROFILE_PARTITION_ID

A 4-byte integer type decimal value ranging from 0 to
63. This attribute is only available when targeting a
z10 or higher CPC.

HWISET/HWISET2

426 z/OS: z/OS MVS Callable Services for HLL

SetType values in hexadecimal, (decimal), and
equate symbol Values to be specified

F6

(246)

HWI_OPERATING_MODE

A 4-byte integer type value. This attribute is only
available when targeting a z10 or higher CPC.

• HWMCA_GENERAL_OPERATING_MODE
• HWMCA_ESA390_OPERATING_MODE
• HWMCA_ESA390TPF_OPERATING_MODE
• HWMCA_CF_OPERATING_MODE
• HWMCA_LINUX_OPERATING_MODE
• HWMCA_FMEX_OPERATING_MODE
• HWMCA_HMEX_OPERATING_MODE
• HWMCA_HMAS_OPERATING_MODE
• HWMCA_ZVM_OPERATING_MODE

F7

(247)

HWI_CLOCK_TYPE

A 4-byte integer type value. This attribute is only
available when targeting a z10 or higher CPC.

• HWMCA_CLOCK_TYPE_STANDARD
• HWMCA_CLOCK_TYPE_LPAR

F8

(248)

HWI_TIME_OFFSET_DAYS

A 4-byte integer type decimal value ranging from 0 -
999. This attribute is only available when targeting a
z10 or higher CPC.

F9

(249)

HWI_TIME_OFFSET_HOURS

A 4-byte integer type decimal value ranging from 0 -
23. This attribute is only available when targeting a
z10 or higher CPC.

FA

(250)

HWI_TIME_OFFSET_MINUTES

A 4-byte integer type decimal value. Possible values
are 0, 15, 30 or 45. This attribute is only available
when targeting a z10 or higher CPC.

FB

(251)

HWI_TIME_OFFSET_INCREASE

A 4-byte integer type value. This attribute is only
available when targeting a z10 or higher CPC.
HWMCA_TRUE

The local time zone is east of GMT.
HWMCA_FALSE

The local time zone is west of GMT.

FC

(252)

HWI_LICCC_VALIDATION_ENABLED

A 4-byte integer type value. This attribute is only
available when targeting a zEnterprise or higher CPC.
HWMCA_TRUE

Activation profile must conform to the current
LICCC configuration.

HWMCA_FALSE
Activation profile is not required to conform to the
current LICCC configuration.

HWISET/HWISET2

Chapter 19. Base Control Program internal interface (BCPii) 427

SetType values in hexadecimal, (decimal), and
equate symbol Values to be specified

FD

(253)

HWI_GLOBAL_PERFORMANCE

_DATA_CONTROL

A 4-byte integer type value. This attribute is only
available when targeting a z10 or higher CPC.
HWMCA_TRUE

Global performance data control is enabled.
HWMCA_FALSE

Global performance data control is disabled.

FE

(254)

HWI_IO_CONFIGURATION

_CONTROL

A 4-byte integer type value. This attribute is only
available when targeting a z10 or higher CPC.
HWMCA_TRUE

I/O configuration control is enabled.
HWMCA_FALSE

I/O configuration control is disabled.

100

(256)

HWI_LOGICAL_PARTITION

_ISOLATION

A 4-byte integer type value. This attribute is only
available when targeting a z10 or higher CPC.
HWMCA_TRUE

Logical partition isolation control is enabled.
HWMCA_FALSE

Logical partition isolation control is disabled.

SetTypeValueLen (HWISET only - non-REXX)
Supplied parameter

• Type: Integer
• Length: 4 bytes

SetTypeValueLen specifies the length in bytes of the SetTypeValue pointed to by the
SetTypeValue_Ptr parameter. Some SetType requests allow a null value to be set. If a null value
is desired, the SetTypeValueLen value must be zero.

SetParm_Ptr (HWISET2 only - non-REXX)
SetParm (HWISET2 only - REXX)

Supplied parameter

• Type: Pointer (non-REXX), stem variable (REXX)
• Length: 4 bytes (non-REXX)

Non-REXX:
SetParm_Ptr specifies the address of a user-defined set structure that contains a list of one or
more requested attributes to be set in the following form:

• Connection token representing the attribute to be set.
• The SetType attribute to be set.
• The address of the value to be set.
• The length of the value.

The size of the data area pointed to by this parameter must be the size of the data structure
mapping a single SetParm multiplied by the NumOfAttributes parameter. For example, if the
NumOfAttributes is 4, the data area pointed to by this parameter must be 112 bytes (28 x 4).

The storage area that contains each attribute in the SetParm is shown in the following table:

HWISET/HWISET2

428 z/OS: z/OS MVS Callable Services for HLL

Table 81. Parameters of the (SetParm) structure pointed by the SetParm_Ptr

Field Name Field Type Description

Set2_Ctoken 16-character ConnectToken Set2_Ctoken specifies a ConnectToken that is either
be the same value as the HWISET2 ConnectToken
parameter (if setting a CPC attribute), or a
ConnectToken representing an image or activation
profile on the same CPC as the ConnectToken
parameter.

Set2_Settype 32-bit signed integer Set2_Settype specifies the attribute to be set. See
the SetType parameter for details on the value
choices which can be specified.

Set2_SetValue_Ptr Pointer Set2_SetValue_Ptr specifies the address of
the value to be set or changed. See the
SetTypeValue_Ptr parameter for details on the
value ranges that can be specified for each attribute.

Set2_SetValueLen 32-bit signed integer Set2_SetValueLen specifies the length in bytes of
the SetValue pointed to by the Set2_SetValue_Ptr
field above. See the SetTypeValueLen parameter
for more details.

This table is mapped by the data structure Hwi_Set2_SetParm_Type in the data mappings
provided for the various programming languages supported. See “Syntax” on page 393 for more
information.

REXX:

SetParm is a compound (stem) variable which contains one or more requested attributes to be
set. The stem variable is specified as follows (where x is the user-defined SetParm stem variable
and n is the n-th attribute for the request):

• x.0 specifies the number of attributes to be set. The maximum number of attributes allowed is 9
per invocation (Supplied parameter).

• x.n.SET2_CTOKEN specifies a ConnectToken that is either the same value as the HWISET2
ConnectToken parameter (if setting a CPC attribute), or a ConnectToken representing an image
or activation profile on the same CPC as the ConnectToken parameter.

• x.n.SET2_SETTYPE specifies the attribute to be set. See the SetType parameter for details on
the value choices which can be specified.

• x.n.SET2_SETVALUE specifies the value to be set. See the SetTypeValue_Ptr parameter for
details on the value ranges that can be specified for each attribute.

NumofAttributes (HWISET2 only - non-REXX)
Supplied parameter

• Type: Integer
• Length: 4 bytes

NumofAttributes specifies the number of attributes to be set. The valid value range is 1 - 9.

DiagArea (non-REXX)
DiagArea. (REXX)

Returned parameter

• Type: Character string (non-REXX), stem variable (REXX)
• Length: 32 bytes (non-REXX)

DiagArea contains diagnostic data to help determine the cause of a failure from the service. For
many return codes, the DiagArea can contain further information to help determine the cause of the
failure. See the descriptions of different return codes for a partial list of data returned in this area.

Note: For all environmental errors (with return code X'F00' and higher), the DiagArea might not be
filled in, and the data returned in the area should be ignored.

HWISET/HWISET2

Chapter 19. Base Control Program internal interface (BCPii) 429

Field Name
(non-REXX) /
Tail name
constant of the
user-defined
DiagArea stem
(REXX)

Field Type (non-REXX) Description

Diag_Index 32-bit integer The array index to the parameter field that causes the
error.

Diag_Key 32-bit integer The constant value represents the field that causes
the error.

Diag_Actual 32-bit integer The incorrect actual value specified.

Diag_Expected 32-bit integer The expected value to be used.

Diag_CommErr 32-bit integer The returned code that is returned from the Console
Application API or the BCPii transport layer.

Diag_Text Character (12) Reserved.

See Appendix A, “BCPii communication error reason codes,” on page 693 for a partial list of the
descriptive communication transport error return codes and suggested actions.

ABEND codes
If BCPii is unable to properly access the user-supplied parameter list, the call might result in an abend
X'042' with a reason code of X'0007yyyy' for HWISET or X'0009yyyy' for HWISET2 for one of the following
reasons:

Table 82. Reasons for abend X'042', RC X'0007yyyy' for HWISET or X'0009yyyy' for HWISET2

yyyy Reason

0000 The parameters passed by the caller are not in the primary address space.

0001 The parameters passed by the caller are not accessible.

0002 The number of parameters passed by the caller is not correct.

For other severe BCPii errors encountered during the call, an abend X'042' with a different reason code
may result. See z/OS MVS System Codes for additional information.

Return codes
When the service returns control to the caller, GPR 15 and ReturnCode contain a hexadecimal return
code.

Hexadecimal return code
Equate symbol Decimal return code Equate

symbol Meaning and action

0
HWI_OK

0
HWI_OK

Meaning: Successful completion.
An SMF record has been written.

Action: None.

HWISET/HWISET2

430 z/OS: z/OS MVS Callable Services for HLL

Hexadecimal return code
Equate symbol Decimal return code Equate

symbol Meaning and action

100
HWI_CONNECT_TOKEN_INV

256
HWI_CONNECT_TOKEN_INV

Meaning: Program error. The
specified connect token is not
valid. This return code indicates
one of the following conditions
has occurred:

• The connect token does not
exist. A previous HWICONN
service call has never returned
the value specified on
OutConnectToken.

• The connect token does
not represent an active
connection. The connection
specified might have already
been disconnected using the
HWIDISC service call.

• The connect token is not
associated with the address
space of the caller. The
ConnectToken specified is
associated with a different
address space than the caller
of this service call.

Action: Check for probable
coding error.

101
HWI_COMMUNICATION_ERROR

257
HWI_COMMUNICATION_ERROR

Meaning: A communication error
is detected. The Hardware
Management Console application
API (HWMCA) or the BCPii
Transport layer has returned with
a failing return code.

Action: Check for probable
coding error. See the DiagArea for
further diagnostic information.
The Diag_CommErr indicates the
return code that is returned
from HWMCA APIs or the BCPii
Transport layer.

HWMCA API and BCPii
transport return codes are
provided in Appendix A, “BCPii
communication error reason
codes,” on page 693.

HWISET/HWISET2

Chapter 19. Base Control Program internal interface (BCPii) 431

Hexadecimal return code
Equate symbol Decimal return code Equate

symbol Meaning and action

102
HWI_DIAGAREA_INV

258
HWI_DIAGAREA_INV

Meaning: Program error. The
DiagArea is not accessible.

Action: Check for probable
coding error. Verify the specified
DiagArea is defined as a 32-byte
character field.

103
HWI_CONNECT_TOKEN_INACTIV
E

259
HWI_CONNECT_TOKEN_INACTIV
E

Meaning: The specified connect
token is no longer valid.
The connection has been
disconnected or it is in the
progress of being disconnected.

Action: Check for probable
coding error. Verify that the
specified connect token is still
active. If connectivity to the
targeted CPC connection no
longer exists, all connections
associated with that CPC will no
longer have a connect token that
can be used.

104
HWI_TARGET_CPC_CHANGED

260
HWI_TARGET_CPC_CHANGED

Meaning: The CPC name
represented by the specified
token is valid but does not
represent the same physical
machine that was targeted
by the initial HWICONN call.
All connections that were
established prior to the name
change can no longer be used.

Action: The application should
cease using this connect token.
If the application intends to
target the CPC using the name
represented by the specified
connect token, it must first
reconnect to the CPC before
issuing any BCPii service call.

105
HWI_CONNECT_TOKEN_TYPE_I
NV

261
HWI_CONNECT_TOKEN_TYPE_I
NV

Meaning: The specified connect
token does not represent a CPC
connection.

Action: Check for probable
coding error. Verify that
the specified connect token
represents a CPC connection.

HWISET/HWISET2

432 z/OS: z/OS MVS Callable Services for HLL

Hexadecimal return code
Equate symbol Decimal return code Equate

symbol Meaning and action

501
HWI_SETTYPE_INV

1281
HWI_SETTYPE_INV

Meaning: Program error. The
requested SetType specified in
the call is not valid for the
ConnectToken specified. The
system rejects the service call.
This return code indicates one
of the following conditions has
occurred:

• The SetType specified is not in
the acceptable value range of
attributes that can be set.

• The specified SetType has been
provided with an incompatible
connection type. For example,
the attribute identifier applies
only to CPC connections,
but the ConnectToken
specified represents an image
connection, or any of the
activation profile connections.

Action: Check for probable
coding error. Validate that the
SetType specified is in the valid
range of possible values. Validate
that the SetType specified is
permitted for the specified
connection type.

See the DiagArea for further
diagnostic information.

• The Diag_Key contains the
value of the attribute in
question.

• The Diag_Text contain “Bad
Set Attr” if the value of the
attribute cannot be set; the
Diag_Text contains “Mismatch”
if the attribute cannot be set for
the specified connection type.

502
HWI_SETTYPE_VALUE_INV

1282
HWI_SETTYPE_VALUE_INV

Meaning: Program error. The
requested SetTypeValue to be
set or changed is not valid. The
system rejects the service call.

Action: Check for probable
coding error. Validate that the
value to which an attribute is
being set is appropriate for that
attribute.

HWISET/HWISET2

Chapter 19. Base Control Program internal interface (BCPii) 433

Hexadecimal return code
Equate symbol Decimal return code Equate

symbol Meaning and action

503
HWI_SETTYPE_VALUE_LEN_INV

1283
HWI_SETTYPE_VALUE_LEN_INV

Meaning: Program error. The
SetTypeValueLen specified
is not valid. The
SetTypeValueLen must be
equal to or greater than the
minimum required length for the
set type value.

Action: Check for probable
coding error. Validate that the
SetTypeValueLen specified is
equal to or greater than the
minimum required length for the
set type value.

Note: If the application is
setting the value to null for
a request that allows a null
SetTypeValue, ensure that
both the SetTypeValueLen and
SetTypeValue_Ptr parameters
are set to zero.

504

HWI_SETTYPE_VALUE
_INACCESSIBLE

1284

HWI_SETTYPE_VALUE
_INACCESSIBLE

Meaning: Program error. The
set type value data area is
either partially or completely
inaccessible by the application,
or BCPii, or both.

Action: Check for probable
coding error. Verify the
SetTypeValue_Ptr points to a
data area where the set type
value is, and make sure that the
data area is accessible.

506
HWI_SET_ATTRIBUTE_NOT_SUP
PORTED

1286
HWI_SET_ATTRIBUTE_NOT_SUP
PORTED

Meaning: The targeted hardware
of the HWISET / HWISET2
request does not recognize
the attribute that the user is
attempting to set.

Action: Verify that the targeted
hardware is at a level that
supports the type of attribute
being set.

HWISET/HWISET2

434 z/OS: z/OS MVS Callable Services for HLL

Hexadecimal return code
Equate symbol Decimal return code Equate

symbol Meaning and action

507
HWI_SET2_SETPARM_INACCESS
IBLE

1287
HWI_SET2_SETPARM_INACCESS
IBLE

Meaning: Program error. The
SetParm data area is
either partially or completely
inaccessible by the application,
the Base Control Program
internal interface (BCPii) address
space, or both.

Action: Check for probable
coding error. Consider the
following possibilities:

• The SetParm length could
be too small. The size of
the SetParm must be at
least the product of the
NumofAttributes parameter
and the length of the data area
mapping for each attribute.

• The NumofAttributes value
can be larger than the number
of parameters actually passed.

508
HWI_SET2_NUMOFATTRIB_INV

1288
HWI_SET2_NUMOFATTRIB_INV

Meaning: Program error. The
NumofAttributes specified on
the call is not valid. The
NumofAttributes value must
be in the range of 1 to 9.

Action: Check for probable
coding error. Verify that the
NumofAttributes specified is
greater than zero and less than or
equal to 9.

509
HWI_SET2_CONNECT_TOKEN_I
NV

1289
HWI_SET2_CONNECT_TOKEN_I
NV

Meaning: Program error. The
ConnectToken specified in
one of the SetParms is
not valid for the specified
ConnectToken parameter. Each
SetParm ConnectToken must be
either the CPC ConnectToken on
the HWISET2 call or a child of
this CPC ConnectToken.

Action: Check for probable
coding error. Verify that
all SetParm ConnectToken
parameters are either the
CPC ConnectToken specified on
the HWISET2 ConnectToken
parameter or are children of that
CPC connection.

HWISET/HWISET2

Chapter 19. Base Control Program internal interface (BCPii) 435

Hexadecimal return code
Equate symbol Decimal return code Equate

symbol Meaning and action

50A
HWI_SET2_PARTIAL_UPDATE

1290
HWI_SET2_PARTIAL_UPDATE

Meaning: Program or system
error. One or more of the
specified attributes were not set.
This only applies to hardware
levels z13 GA1 and lower.

Action: Attempt to roll back
the SET request by setting all
the requested attributes back to
the original values, or attempt
to retry the set of the unset
attributes. Prior to calling the
HWISET2 service, it is good
practice to call the HWIQUERY
service to retrieve and save the
current values of the attributes
to be set. BCPii applications
can use these original values to
compare with the values after
the HWISET2 call has completed
to determine which attributes
have not been set and take the
appropriate action. The contents
of the DiagArea can also be
used to learn some diagnostic
information about the first failing
attribute.

F00
HWI_NOT_AVAILABLE

3840
HWI_NOT_AVAILABLE

Meaning: HWI is not available,
and the system rejects the
service request.

Action: Start HWI and try the
request again.

F01
HWI_AUTH_FAILURE

3801
HWI_AUTH_FAILURE

Meaning: The caller is PKM8-15
problem state.

Action: Check the calling
program for a probable coding
error.

HWISET/HWISET2

436 z/OS: z/OS MVS Callable Services for HLL

Hexadecimal return code
Equate symbol Decimal return code Equate

symbol Meaning and action

F02
HWI_NO_SAF_AUTH

3802
HWI_NO_SAF_AUTH

Meaning: The user does not have
correct SAF authorization for the
request.

Action: Check for probable error.
Consider one or more of the
following possible actions:

• Define read access
authorization to the FACILITY
class resource profile
HWI.APPLNAME.HWISERV.

• Define update access
authorization to the FACILITY
class resource profile
HWI.TARGET.netid.nau for a
CPC connection, activation
profile connection, group
profile connectin, or LPAR
Capacity group connection.

• Define update access
authorization to the FACILITY
class resource profile
HWI.TARGET.netid.nau.imagen
ame for an image connection.

• Ensure that the referenced
Facility Class Profile is
RACLIST-specified.

F03
HWI_INTERRUPT_STATUS_INV

3803
HWI_INTERRUPT_STATUS_INV

Meaning: The calling program is
disabled. The system rejects this
service request.

Action: Check the calling
program for a probable coding
error.

F04
HWI_MODE_INV

3804
HWI_MODE_INV

Meaning: The calling program
is not in Task mode, which is
the required mode. The system
rejects this service request.

Action: Check the calling
program for a probable error.

F05
HWI_LOCKS_HELD

3805
HWI_LOCKS_HELD

Meaning: The calling program
is holding one or more locks.
The system rejects this service
request.

Action: Check the calling
program for a probable coding
error.

HWISET/HWISET2

Chapter 19. Base Control Program internal interface (BCPii) 437

Hexadecimal return code
Equate symbol Decimal return code Equate

symbol Meaning and action

F06
HWI_UNSUPPORTED_RELEASE

3806
HWI_UNSUPPORTED_RELEASE

Meaning: The system level
does not support this service.
The system rejects this service
request.

Action: Remove the calling
program from the system, and
install it on a system that
supports HWI. Then rerun the
calling program.

F07
HWI_UNSUPPORTED_ENVIRON
MENT

3807
HWI_UNSUPPORTED_ENVIRON
MENT

Meaning: The system does not
support execution of the service
from the current environment (for
example, calling a BCPii service
from within a BCPii ENF exit
routine).

Action: Issue the BCPii service
from a different execution
environment.

FFF
HWI_UNEXPECTED_ERROR

4095
HWI_UNEXPECTED_ERROR

Meaning: System error. The
service that was called
encountered an unexpected
error. The system rejects the
service call.

Action: Search problem reporting
databases for a fix for the
problem. If no fix exists, contact
the IBM Support Center. In many
cases, a dump has been taken
by BCPii to attempt the collection
of the necessary information to
diagnose the error. If so, provide
this dump to the IBM support
team.

Example
In the following pseudocode example, the caller issues a call to change or set the CPC status for a CPC.

.

.
SetType = HWI_ACCSTAT;
SetTypeValue = HWMCA_STATUS_OPERATING;
SetTypeValue_Ptr = addr(SetTypeValue);
SetTypeValueLen = Length(SetTypeValue);
CALL HWISET (ReturnCode, ConnectToken, SetType, SetTypeValue_Ptr,
 SetTypeValueLen, DiagArea)
.
.

The following example uses the HWISET2 service to set two attributes at the same time (one attribute on
one image and one attribute on another image):

HWISET/HWISET2

438 z/OS: z/OS MVS Callable Services for HLL

SetParm_Ptr = ADDR(SetParm);
NumOfAttributes = 2;
SetParm(1).Set2_Ctoken = Image1CToken;
SetParm(1).Set2_SetType = HWI_DEFCAP;
SetParm(1).Set2_SetValue_Ptr = ADDR(DefCapValue1);
SetParm(1).Set2_SetValue_Len = length of DefCapValue1;
SetParm(2).Set2_Ctoken = Image2CToken;
SetParm(2).Set2_SetType = HWI_DEFCAP;
SetParm(2).Set2_SetValue_Ptr = ADDR(DefCapValue2);
SetParm(2).Set2_SetValue_Len = length of DefCapValue2;
CALL HWISET2 (ReturnCode, CPCConnectToken, SetParm_Ptr,
 NumofAttributes, DiagArea);

A REXX programming example for the HWISET service:

mySetType = HWI_ACCSTAT /* AccStat attribute */
mySetTypeValue = HWMCA_STATUS_EXCEPTIONS

address bcpii
 "hwiset RetCode myConnectToken mySetType mySetTypeValue myDiag."

If (RC <> 0) | (Retcode <> 0) Then
 Do
 Say 'Service failed with REXX RC = 'RC' and API Retcode = 'Retcode'.'
 If (RC=Hwi_REXXParmSyntaxError | Retcode<>0) Then
 Do
 Say ’ Diag_index=’ myDiag.DIAG_INDEX
 Say ’ Diag_key=’ myDiag.DIAG_KEY
 Say ’ Diag_actual=’ myDiag.DIAG_ACTUAL
 Say ’ Diag_expected=’ myDiag.DIAG_EXPECTED
 Say ’ Diag_commerr=’ myDiag.DIAG_COMMERR
 Say ’ Diag_text=’ myDiag.DIAG_TEXT
 End
 End

To code an HWISET2 invocation in REXX, use the following example as a starting point:

SetParm.1.SET2_SETTYPE = HWI_IIPPWMIN
SetParm.1.SET2_SETVALUE = 1 + current_IIPPWMIN_Value
SetParm.1.SET2_CTOKEN = ActProfConnectToken

SetParm.2.SET2_SETTYPE = HWI_IIPPWMAX
SetParm.2.SET2_SETVALUE = 1 + current_IIPPWMAX_Value
SetParm.2.SET2_CTOKEN = ActProfConnectToken
SetParm.0 = 2

address bcpii "hwiset2 RetCode myCPC_ConnectToken SetParm. myDiag."

/* Similar error checking as in the previous HWISET example */

HWIBeginEventDelivery — Begin delivery of BCPii event
notifications

Call the HWIBeginEventDelivery service to allow a C application running in the z/OS UNIX System
Services environment to begin delivery of event notifications. This service must be issued before the
HWIManageEvents service.

Description

Environment
The requirements for the callers are:

Requirement Details

Minimum authorization: None

Dispatchable unit mode: Task

Cross memory mode: PASN=HASN=SASN

HWIBeginEventDelivery

Chapter 19. Base Control Program internal interface (BCPii) 439

Requirement Details

AMODE: 31-bit

ASC mode: Primary

Interrupt status: Enabled for I/O and external interrupts

Locks: No locks held

Control parameters: Control parameters must be in the primary address space and
addressable by the caller

Linkage: Standard C linkage conventions are used

Programming requirements
The file hwicmuss.x contains the sidedeck needed to link the program to the DLL.

z/OS UNIX C language callers must include the header file HWICIC.

Restrictions
None.

Authorization
Read access to the SAF profile CEA.CONNECT in the SERVAUTH class is required.

Syntax
Write the call as shown on the syntax diagram. You must code all parameters in the order shown.

CALL statement Parameters

int HWIBeginEventDelivery (
*DiagArea

,ConnectToken

,**DeliveryToken
)

Parameters
The parameters are explained as follows:
*DiagArea

Returned parameter

• Type: character string
• Length: 32 bytes

*DiagArea contains diagnostic data to help determine the cause of a failure from the service. For many
return codes, the *DiagArea can contain further information to help determine the cause of the failure.
See the descriptions of different return codes for a partial list of data returned in this area.

Note: For all environmental errors (with return code X'F00' and higher), the *DiagArea might not be
filled in, and the data returned in the area should be ignored.

Field Name Field Type Description

Diag_Index 32-bit integer The array index to the parameter field that causes the error.

Diag_Key 32-bit integer The constant value represents the field that causes the error.

HWIBeginEventDelivery

440 z/OS: z/OS MVS Callable Services for HLL

Field Name Field Type Description

Diag_Actual 32-bit integer The incorrect actual value specified.

Diag_Expected 32-bit integer The expected value to be used.

Diag_CommErr 32-bit integer The returned code from the failing operation.

Diag_Text Character (12) Additional diagnostic information in text format.

See Appendix A, “BCPii communication error reason codes,” on page 693 for a partial list of the
descriptive communication transport error return codes and suggested actions.

ConnectToken
Supplied parameter

• Type: character string
• Length: 16 bytes

ConnectToken specifies the value returned from an HWICONN service call.

**DeliveryToken
Returned parameter

• Type: character string
• Length: 8 bytes

**DeliveryToken specifies the variable to contain the address of the token that represents the event
notification connection on future service calls.

ABEND codes
None.

Return codes
When the service completes, one of the following values is returned to the caller:

Return Code in Hexadecimal
Equate Symbol

Return Code in Decimal Equate
Symbol Meaning and Action

00000000

HWIUSS_RC_OK

0

HWIUSS_RC_OK

Meaning: Successful completion.

Action: None.

00001001

HWIUSS_RC_UNAVAILABLE

4097

HWIUSS_RC_UNAVAILABLE

Meaning: This error is returned
for one of the following
reasons, which is written to
the diag_commerr field of the
DiagArea:

• CEA (Common Event Adapter)
communication is unavailable.
(reason x'100')

• Write access to a socket is
denied. (reason x'103')

• Services are failing in the CEA
Server. (reason x'111')

Action: The request is rejected.
Confirm that the CEA address
space has been started and try
the request again.

HWIBeginEventDelivery

Chapter 19. Base Control Program internal interface (BCPii) 441

Return Code in Hexadecimal
Equate Symbol

Return Code in Decimal Equate
Symbol Meaning and Action

00001002

HWIUSS_RC_NO_AUTH

4098

HWIUSS_RC_NO_AUTH

Meaning: The program is not
authorized to access CEA
services.

Action: The request is rejected.
Determine if the program needs
access to CEA services. If so,
grant the required access to the
proper resources and try this
request again. See “Setting up
event notification for BCPii z/OS
UNIX applications” on page 255
for further information.

00001003

HWIUSS_RC_MAX_CLIENTS

4099

HWIUSS_RC_MAX_CLIENTS

Meaning: The maximum number
of CEA clients has been reached.

Action: The request is rejected.
Determine if other CEA clients
can be stopped. If so, try this
request again.

00001007

HWIUSS_RC_SAF_NOTDEF_CON
NECT

4101

HWIUSS_RC_SAF_NOTDEF_CON
NECT

Meaning: The SAF profile
CEA.CONNECT is not defined.

Action: The request is rejected.
Add the CEA.CONNECT profile to
the SERVAUTH class and try this
request again.

00001008

HWIUSS_RC_COMM_FAILURE

4102

HWIUSS_RC_COMM_FAILURE

Meaning: An error occurred in
z/OS UNIX socket processing.

Action: The request is rejected.
Verify that the file system is
properly configured for z/OS
UNIX sockets and try this request
again.

00001009

HWIUSS_RC_CEA_INTERNAL_ER
ROR

4103

HWIUSS_RC_CEA_INTERNAL_ER
ROR

Meaning: An internal CEA
processing error has occurred.

Action: The request is rejected.
Consult the DiagArea for the
details about this error. If the
error persists, contact the IBM
Support Center.

0000100A

HWIUSS_RC_INPUT_PTR_IS_NU
LL

4106

HWIUSS_RC_INPUT_PTR_IS_NU
LL

Meaning: A null input pointer was
found.

Action: The request is rejected.
Pass a valid pointer to the API
and try this request again.

HWIBeginEventDelivery

442 z/OS: z/OS MVS Callable Services for HLL

Return Code in Hexadecimal
Equate Symbol

Return Code in Decimal Equate
Symbol Meaning and Action

0FFFFFFF

HWIUSS_RC_UNEXPECTED_ERR
OR

268435455

HWIUSS_RC_UNEXPECTED_ERR
OR

Meaning: An unexpected error
has occurred.

Action: The request is rejected.
Consult the DiagArea for more
specifics regarding the error.
Search problem reporting data
bases for a fix for the problem.
If no fix exists, contact the IBM
Support Center.

Example
In the C code example, the caller issues a call to register for event delivery.

HWI_CONNTOKEN_TYPE hwitoken;
HWI_DIAGAREA_TYPE DiagArea;
HWI_DELIVERYTOKEN_TYPE *DeliveryToken;
int localRC;

localRC = HWIBeginEventDelivery(&DiagArea, hwitoken, DeliveryToken)

HWIEndEventDelivery — End delivery of BCPii event notifications
Call the HWIEndEventDelivery service to allow a C application running in the z/OS UNIX System Services
environment to end delivery of event notifications. This service unregisters the registration made by the
HWIBeginEventDelivery service.

Description

Environment
The requirements for the callers are:

Requirement Details

Minimum authorization: None

Dispatchable unit mode: Task

Cross memory mode: PASN=HASN=SASN

AMODE: 31-bit

ASC mode: Primary

Interrupt status: Enabled for I/O and external interrupts

Locks: No locks held

Control parameters: Control parameters must be in the primary address space and
addressable by the caller

Linkage: Standard C linkage conventions are used

Programming requirements
The file hwicmuss.x contains the sidedeck needed to link the program to the DLL.

z/OS UNIX C language callers must include the header file HWICIC.

HWIEndEventDelivery

Chapter 19. Base Control Program internal interface (BCPii) 443

Restrictions
None.

Authorization
Read access to the SAF profile CEA.CONNECT in the SERVAUTH class is required.

Syntax
Write the call as shown on the syntax diagram. You must code all parameters in the order shown.

CALL statement Parameters

int HWIEndEventDelivery (
*DiagArea

,*DeliveryToken
)

Parameters
The parameters are explained as follows:
*DiagArea

Returned parameter

• Type: character string
• Length: 32 bytes

*DiagArea contains diagnostic data to help determine the cause of a failure from the service. For many
return codes, the *DiagArea can contain further information to help determine the cause of the failure.
See the descriptions of different return codes for a partial list of data returned in this area.

Note: For all environmental errors (with return code X'F00' and higher), the *DiagArea might not be
filled in, and the data returned in the area should be ignored.

Field Name Field Type Description

Diag_Index 32-bit integer The array index to the parameter field that causes the error.

Diag_Key 32-bit integer The constant value represents the field that causes the error.

Diag_Actual 32-bit integer The incorrect actual value specified.

Diag_Expected 32-bit integer The expected value to be used.

Diag_CommErr 32-bit integer The returned code from the failing operation.

Diag_Text Character (12) Additional diagnostic information in text format.

See Appendix A, “BCPii communication error reason codes,” on page 693 for a partial list of the
descriptive communication transport error return codes and suggested actions.

*DeliveryToken
Supplied parameter

• Type: character string
• Length: 8 bytes

DeliveryToken specifies the event notification connection created by a previous
HWIBeginEventDelivery call.

ABEND codes
None.

HWIEndEventDelivery

444 z/OS: z/OS MVS Callable Services for HLL

Return codes
When the service completes, one of the following values is returned to the caller:

Return Code in Hexadecimal
Equate Symbol

Return Code in Decimal Equate
Symbol Meaning and Action

00000000

HWIUSS_RC_OK

0

HWIUSS_RC_OK

Meaning: Successful completion.

Action: None.

00001001

HWIUSS_RC_UNAVAILABLE

4097

HWIUSS_RC_UNAVAILABLE

Meaning: This error is returned
for one of the following
reasons, which is written to
the diag_commerr field of the
DiagArea:

• CEA (Common Event Adapter)
communication is unavailable.
(reason x'100')

• Write access to a socket is
denied. (reason x'103')

• Services are failing in the CEA
Server. (reason x'111')

Action: The request is rejected.
Confirm that the CEA address
space has been started and try
the request again.

00001004

HWIUSS_RC_BAD_DELIVERYTOK
EN

4100

HWIUSS_RC_BAD_DELIVERYTOK
EN

Meaning: The provided delivery
token is not valid.

Action: The request is rejected.
This is a probable coding error.

00001008

HWIUSS_RC_COMM_FAILURE

4104

HWIUSS_RC_COMM_FAILURE

Meaning: An error occurred in
z/OS UNIX socket processing.

Action: The request is rejected.
Verify that the file system is
properly configured for z/OS
UNIX sockets and try this request
again.

00001009

HWIUSS_RC_CEA_INTERNAL_ER
ROR

4105

HWIUSS_RC_CEA_INTERNAL_ER
ROR

Meaning: An internal CEA
processing error has occurred.

Action: The request is rejected.
Consult the DiagArea for the
details about this error. If the
error persists, contact the IBM
Support Center.

0000100A

HWIUSS_RC_INPUT_PTR_IS_NU
LL

4106

HWIUSS_RC_INPUT_PTR_IS_NU
LL

Meaning: A null input pointer was
found.

Action: The request is rejected.
Pass a valid pointer to the API
and try this request again.

HWIEndEventDelivery

Chapter 19. Base Control Program internal interface (BCPii) 445

Return Code in Hexadecimal
Equate Symbol

Return Code in Decimal Equate
Symbol Meaning and Action

0FFFFFFF

HWIUSS_RC_UNEXPECTED_ERR
OR

268435455

HWIUSS_RC_UNEXPECTED_ERR
OR

Meaning: An unexpected error
has occurred.

Action: The request is rejected.
Consult the DiagArea for more
specifics regarding the error.
Search problem reporting data
bases for a fix for the problem.
If no fix exists, contact the IBM
Support Center.

Example
In the C code example, the caller issues a call to unregister for event delivery.

HWI_DIAGAREA_TYPE DiagArea;
HWI_DELIVERYTOKEN_TYPE *DeliveryToken;
int localRC;

localRC = HWIEndEventDelivery(&DiagArea, DeliveryToken)

HWIManageEvents — Manage the list of BCPii events
Call the HWIManageEvents service to allow a C application running in the z/OS UNIX System
Services environment to manage the list of events for which the application is to be notified. The
HWIBeginEventDelivery service must have been called before the HWIManageEvents service being called
because the appropriate delivery token returned from the HWIBeginEventDelivery service is required as
input.

Description

Environment
The requirements for the callers are:

Requirement Details

Minimum authorization: One of the following: PKM allowing key 0-7, supervisor state, or
APF-Authorized

Dispatchable unit mode: Task

Cross memory mode: Any PASN, any HASN, any SASN

AMODE: 31-bit

ASC mode: Primary

Interrupt status: Enabled for I/O and external interrupts

Locks: No locks held

Control parameters: Control parameters must be in the primary address space and
addressable by the caller

Linkage: Standard C linkage conventions are used

Programming requirements
The file hwicmuss.x contains the sidedeck needed to link the program to the DLL.

HWIManageEvents

446 z/OS: z/OS MVS Callable Services for HLL

z/OS UNIX C language callers must include the header file HWICIC.

Restrictions
None.

Authorization
The client application must have access to consult the local CPC. This is granted by allowing the
application at least read access to the SAF-protected FACILITY class resource HWI.APPLNAME.HWISERV.

Read access is required to the profile CEA.SUBSCRIBE.ENF_0068qqqqqqqq in the SERVAUTH class,
where qqqqqqqq is the specific hexadecimal event qualifier pattern. See the ENF 68 documentation
contained in the ENFREQ chapter of z/OS MVS Programming: Authorized Assembler Services Reference
EDT-IXG for further information about how to specify this event qualifier.

The client application must have at least read access to the SAF-protected FACILITY
class resource HWI.TARGET.netid.nau for a ConnectToken representing a CPC connection, or
HWI.TARGET.netid.nau.imagename for a ConnectToken representing an image connection.

Note: BCPii requires the FACILITY class to be RACLIST-specified.

Syntax
Write the call as shown on the syntax diagram. You must code all parameters in the order shown.

CALL statement Parameters

int HWIManageEvents (
*DiagArea

,*DeliveryToken

,ConnectToken

,EventAction

,EventIDs
)

Parameters
The parameters are explained as follows:
*DiagArea

Returned parameter

• Type: character string
• Length: 32 bytes

*DiagArea contains diagnostic data to help determine the cause of a failure from the service. For many
return codes, the *DiagArea can contain further information to help determine the cause of the failure.
See the descriptions of different return codes for a partial list of data returned in this area.

Note: For all environmental errors (with return code X'F00' and higher), the *DiagArea might not be
filled in, and the data returned in the area should be ignored.

Field Name Field Type Description

Diag_Index 32-bit integer The array index to the parameter field that causes the error.

Diag_Key 32-bit integer The constant value represents the field that causes the error.

Diag_Actual 32-bit integer The incorrect actual value specified.

Diag_Expected 32-bit integer The expected value to be used.

HWIManageEvents

Chapter 19. Base Control Program internal interface (BCPii) 447

Field Name Field Type Description

Diag_CommErr 32-bit integer The returned code from the failing operation.

Diag_Text Character (12) Additional diagnostic information in text format.

See Appendix A, “BCPii communication error reason codes,” on page 693 for a partial list of the
descriptive communication transport error return codes and suggested actions.

*DeliveryToken
Supplied parameter

• Type: character string
• Length: 8 bytes

*DeliveryToken specifies the event notification connection, as returned by a previous
HWIBeginEventDelivery call.

ConnectToken
Supplied parameter

• Type: character string
• Length: 16 bytes

ConnectToken specifies a logical connection between the application and a CPC or an image. The
ConnectToken is an output parameter on the HWICONN service call.

The ConnectToken specified must have originated from a HWICONN service call that was issued from
the same address space as this service call.

EventAction
Supplied parameter

• Type: integer
• Length: 4 bytes

EventAction specifies the type of action for the service. See the EventAction parameter of “HWIEVENT
— Register or unregister for BCPii events” on page 315 for the exact syntax.

EventIDs
Supplied parameter

• Type: integer
• Length: 128 bit (16 bytes)

EventIDs specifies the events to be added or deleted. See the EventIDs parameter of “HWIEVENT —
Register or unregister for BCPii events” on page 315 for the exact syntax.

IBM recommends that an application should at least add the Hwi_Event_BCPIIStatus event if other
events are going to be added by the application. The only way to listen for BCPii events in the z/OS
UNIX System Services environment is to issue a blocking call to the HwiGetEvent service. If BCPii
stops and the Hwi_Event_BCPIIStatus has not been added, the application has no way of knowing of
this termination and may hang indefinitely. By at least listening to this event, an application can be
aware of BCPii terminations and take the appropriate action.

ABEND codes
If BCPii is unable to properly access the user-supplied parameter list, the call might result in an abend
X'042' with a reason code of X'0004yyyy' because of one of the following reasons:

Table 83. Reasons for abend X'042', RC X'0004yyyy'

yyyy Reason

0000 The parameters passed by the caller are not in the primary address space.

HWIManageEvents

448 z/OS: z/OS MVS Callable Services for HLL

Table 83. Reasons for abend X'042', RC X'0004yyyy' (continued)

yyyy Reason

0001 The parameters passed by the caller are not accessible.

0002 The number of parameters passed by the caller is not correct.

For other severe BCPii errors encountered during the call, an abend X'042' with a different reason code
may result. See z/OS MVS System Codes for additional information.

Return codes
When the service completes, one of the following values is returned to the caller:

Return Code in Hexadecimal
Equate Symbol

Return Code in Decimal Equate
Symbol Meaning and Action

00000000

HWIUSS_RC_OK

0

HWIUSS_RC_OK

Meaning: Successful completion.

Action: None.

00001000

HWIUSS_RC_HWIEVENT_FAILUR
E

4096

HWIUSS_RC_HWIEVENT_FAILUR
E

Meaning: The resultant
HWIEVENT service call failed.

Action: The request is rejected.
The DiagArea contains the failure
data. Search problem reporting
data bases for a fix for the
problem. If no fix exists, contact
the IBM Support Center.

00001001

HWIUSS_RC_UNAVAILABLE

4097

HWIUSS_RC_UNAVAILABLE

Meaning: This error is returned
for one of the following
reasons, which is written to
the diag_commerr field of the
DiagArea:

• CEA (Common Event Adapter)
communication is unavailable.
(reason x'100')

• Write access to a socket is
denied. (reason x'103')

• Services are failing in the CEA
Server. (reason x'111')

Action: The request is rejected.
Confirm that the CEA address
space has been started and try
the request again.

HWIManageEvents

Chapter 19. Base Control Program internal interface (BCPii) 449

Return Code in Hexadecimal
Equate Symbol

Return Code in Decimal Equate
Symbol Meaning and Action

00001002

HWIUSS_RC_NO_AUTH

4098

HWIUSS_RC_NO_AUTH

Meaning: This error is returned
for one of the following
reasons, which is written to
the diag_commerr field of the
DiagArea:

• The program is not authorized
to access CEA services. (reason
x'102')

• The program is not authorized
to monitor the requested event.
(reason x'10E')

Action: The request is rejected.
Determine whether the program
needs access to CEA services. If
so, grant the required access to
the proper resources and try this
request again. See “Setting up
event notification for BCPii z/OS
UNIX applications” on page 255
for further information.

00001004

HWIUSS_RC_BAD_DELIVERYTOK
EN

4100

HWIUSS_RC_BAD_DELIVERYTOK
EN

Meaning: The provided delivery
token is not valid.

Action: The request is rejected.
This is a probable coding error.

00001006

HWIUSS_RC_SAF_NOTDEF_EVEN
T

4102

HWIUSS_RC_SAF_NOTDEF_EVEN
T

Meaning: The SAF profile
CEA.SUBSCRIBE.ENF_0068* is
not defined.

Action: The request is
rejected. Add the proper
CEA.SUBSCRIBE.ENF_0068*
profile to the SERVAUTH class
and try this request again.

00001008

HWIUSS_RC_COMM_FAILURE

4104

HWIUSS_RC_COMM_FAILURE

Meaning: An error occurred in
z/OS UNIX socket processing.

Action: The request is rejected.
Verify that the file system is
properly configured for z/OS
UNIX sockets and try this request
again.

00001009

HWIUSS_RC_CEA_INTERNAL_ER
ROR

4105

HWIUSS_RC_CEA_INTERNAL_ER
ROR

Meaning: An internal CEA
processing error has occurred.

Action: The request is rejected.
Consult the DiagArea for the
details about this error. If the
error persists, contact the IBM
Support Center.

HWIManageEvents

450 z/OS: z/OS MVS Callable Services for HLL

Return Code in Hexadecimal
Equate Symbol

Return Code in Decimal Equate
Symbol Meaning and Action

0000100A

HWIUSS_RC_INPUT_PTR_IS_NU
LL

4106

HWIUSS_RC_INPUT_PTR_IS_NU
LL

Meaning: A null input pointer was
found.

Action: The request is rejected.
Pass a valid pointer to the API
and try this request again.

0FFFFFFF

HWIUSS_RC_UNEXPECTED_ERR
OR

268435455

HWIUSS_RC_UNEXPECTED_ERR
OR

Meaning: An unexpected error
has occurred.

Action: The request is rejected.
Search problem reporting data
bases for a fix for the problem.
If no fix exists, contact the IBM
Support Center.

Example
In the C code example, the caller issues a call to register to be notified when the command response
events and status change events occur.

HWI_DIAGAREA_TYPE DiagArea;
HWI_DELIVERYTOKEN_TYPE *DeliveryToken;
HWI_CONNTOKEN_TYPE ConnectToken;
HWI_EVENTIDS_TYPE EventIDs;
int localRC;

memset ((void*)&eventIDs, 0x00, sizeof (eventIDs));
memcpy (eventIDs.Hwi_EventID_EyeCatcher
 ,HWI_EVENTID_TEXT
 ,sizeof (eventIDs.Hwi_EventID_EyeCatcher));
EventIDs.Hwi_Event_CmdResp = 1;
EventIDs.Hwi_Event_StatusChg = 1;
localRC = HWIManageEvents(&DiagArea, DeliveryToken, ConnectToken,
 HWI_EVENT_ADD, EventIDs)

HWIGetEvent — Retrieve outstanding BCPii event notifications
Call the HWIGetEvent service to allow a C application running in the z/OS UNIX System Services
environment to retrieve outstanding BCPii event notifications.

Description

Environment
The requirements for the callers are:

Requirement Details

Minimum authorization: None

Dispatchable unit mode: Task

Cross memory mode: PASN=HASN=SASN

AMODE: 31-bit

ASC mode: Primary

Interrupt status: Enabled for I/O and external interrupts

Locks: No locks held

HWIGetEvent

Chapter 19. Base Control Program internal interface (BCPii) 451

Requirement Details

Control parameters: Control parameters must be in the primary address space and
addressable by the caller

Linkage: Standard C linkage conventions are used

Programming requirements
The file hwicmuss.x contains the sidedeck needed to link the program to the DLL.

z/OS UNIX C language callers must include the header file HWICIC.

Restrictions
None.

Authorization
None.

Syntax
Write the call as shown on the syntax diagram. You must code all parameters in the order shown.

CALL statement Parameters

int HWIGetEvent (
*DiagArea

,*DeliveryToken

,*Buffer

,BufferSize

,Timeout

,*BytesNeeded
)

Parameters
The parameters are explained as follows:
*DiagArea

Returned parameter

• Type: character string
• Length: 32 bytes

*DiagArea contains diagnostic data to help determine the cause of a failure from the service. For many
return codes, the *DiagArea can contain further information to help determine the cause of the failure.
See the descriptions of different return codes for a partial list of data returned in this area.

Note: For all environmental errors (with return code X'F00' and higher), the *DiagArea might not be
filled in, and the data returned in the area should be ignored.

Field Name Field Type Description

Diag_Index 32-bit integer The array index to the parameter field that causes the error.

Diag_Key 32-bit integer The constant value represents the field that causes the error.

Diag_Actual 32-bit integer The incorrect actual value specified.

Diag_Expected 32-bit integer The expected value to be used.

HWIGetEvent

452 z/OS: z/OS MVS Callable Services for HLL

Field Name Field Type Description

Diag_CommErr 32-bit integer The returned code from the failing operation.

Diag_Text Character (12) Additional diagnostic information in text format.

See Appendix A, “BCPii communication error reason codes,” on page 693 for a partial list of the
descriptive communication transport error return codes and suggested actions.

*DeliveryToken
Supplied parameter

• Type: character string
• Length: 8 bytes

*DeliveryToken specifies the event notification connection, as returned by a previous
HWIBeginEventDelivery call.

*Buffer
Supplied parameter

• Type: character string
• Length: up to 4096 bytes

*Buffer specifies the address of the storage where the ENF68 event data is to be returned. This data is
mapped by the HWIENF68 structure in the HWICIC header file.

BufferSize
Supplied parameter

• Type: integer
• Length: 4 bytes

BufferSize specifies the size of the *Buffer storage area.

Constant HWIUSS_MAX_GETBUFFER_SIZE can be used to allocate a buffer large enough to hold the
maximum size of ENF68 data returned.

Timeout
Supplied parameter

• Type: integer
• Length: 4 bytes

Timeout specifies the amount of time, in seconds, for which the service should wait for an event to
occur.

Constant in Hexadecimal Equate Symbol Description

0

HWIUSS_TIMEOUT_NOWAIT

Do not wait for an event to occur if one is not
ready for delivery.

FFFFFFFF

HWIUSS_TIMEOUT_INFINITE

Do not return until an event has occurred.

Any other non-negative number Wait for the specified number of seconds.

Note: If the Hwi_Event_BCPIIStatus event is not registered by the application and the BCPii address
space goes down, this service will not be completed if HWIUSS_TIMEOUT_INFINITE was specified.
If a numeric value was specified, the service will wake up but neither event data nor indicator
that BCPii is not available will be returned. IBM recommends that an application specifies the
Hwi_Event_BCPIIStatus event on the HwiManageEvents service call if the HwiGetEvent service is

HWIGetEvent

Chapter 19. Base Control Program internal interface (BCPii) 453

used. When the HwiGetEvent service returns control to the application, an inspection of which event
was received will allow the application to react appropriately when BCPii stops.

*BytesNeeded
Returned parameter

• Type: integer
• Length: 4 bytes

*BytesNeeded specifies the variable to contain the number of bytes used in the output buffer to
contain the returned event data. If the buffer is not large enough to contain all the event data, this
variable contains the amount of storage required to receive all the event data.

ABEND codes
None.

Return codes
When the service completes, one of the following values is returned to the caller:

Return Code in Hexadecimal
Equate Symbol

Return Code in Decimal Equate
Symbol Meaning and Action

00000000

HWIUSS_RC_OK

0

HWIUSS_RC_OK

Meaning: Successful completion.

Action: None.

00000001

HWIUSS_RC_PARTIAL_DATA

1

HWIUSS_RC_PARTIAL_DATA

Meaning: The provided buffer
was not large enough to contain
all the event data.

Action: The request is
successful. To receive all the
event data, buffer the size of
which is at least BytesNeeded
must be provided.

00000002

HWIUSS_RC_EVENTS_LOST

2

HWIUSS_RC_EVENTS_LOST

Meaning: At least one event
was not returned because the
program has not been retrieving
events timely.

Action: The request is
successful. To receive all events,
the program must make this
service call more often or reduce
the number of events requested.

00000003

HWIUSS_RC_TIMEOUT

3

HWIUSS_RC_TIMEOUT

Meaning: No events have
occurred in the requested time
interval.

Action: The request is
successful.

HWIGetEvent

454 z/OS: z/OS MVS Callable Services for HLL

Return Code in Hexadecimal
Equate Symbol

Return Code in Decimal Equate
Symbol Meaning and Action

00001001

HWIUSS_RC_UNAVAILABLE

4097

HWIUSS_RC_UNAVAILABLE

Meaning: This error is returned
for one of the following
reasons, which is written to
the diag_commerr field of the
DiagArea:

• CEA (Common Event Adapter)
communication is unavailable.
(reason x'100')

• Write access to a socket is
denied. (reason x'103')

• Services are failing in the CEA
Server. (reason x'111')

Action: The request is rejected.
Confirm that the CEA address
space has been started and try
the request again.

00001004

HWIUSS_RC_BAD_DELIVERYTOK
EN

4100

HWIUSS_RC_BAD_DELIVERYTOK
EN

Meaning: The provided delivery
token is not valid.

Action: The request is rejected.
This is a probable coding error.

00001005

HWIUSS_RC_SMALL_BUFFER

4101

HWIUSS_RC_SMALL_BUFFER

Meaning: The provided buffer is
not large enough to contain the
event data.

Action: The request is rejected.
This is a probable coding error.
Provide a larger buffer and try the
request again.

00001008

HWIUSS_RC_COMM_FAILURE

4104

HWIUSS_RC_COMM_FAILURE

Meaning: An error occurred in
z/OS UNIX socket processing.

Action: The request is rejected.
Verify that the file system is
properly configured for z/OS
UNIX sockets and try this request
again.

00001009

HWIUSS_RC_CEA_INTERNAL_ER
ROR

4105

HWIUSS_RC_CEA_INTERNAL_ER
ROR

Meaning: An internal CEA
processing error has occurred.

Action: The request is rejected.
Consult the DiagArea for the
details about this error. If the
error persists, contact the IBM
Support Center.

HWIGetEvent

Chapter 19. Base Control Program internal interface (BCPii) 455

Return Code in Hexadecimal
Equate Symbol

Return Code in Decimal Equate
Symbol Meaning and Action

0000100A

HWIUSS_RC_INPUT_PTR_IS_NU
LL

4106

HWIUSS_RC_INPUT_PTR_IS_NU
LL

Meaning: A null input pointer was
found.

Action: The request is rejected.
Pass a valid pointer to the API
and try this request again.

0FFFFFFF

HWIUSS_RC_UNEXPECTED_ERR
OR

268435455

HWIUSS_RC_UNEXPECTED_ERR
OR

Meaning: An unexpected error
has occurred.

Action: The request is rejected.
Search problem reporting data
bases for a fix for the problem.
If no fix exists, contact the IBM
Support Center.

Example
In the C code example, the caller issues a call to retrieve any outstanding event data, waiting forever until
an event occurs.

HWI_DIAGAREA_TYPE DiagArea;
HWI_DELIVERYTOKEN_TYPE DeliveryToken;
char *Buffer[HWIUSS_MAX_GETBUFFER_SIZE];
int BufSize = HWIUSS_MAX_GETBUFFER_SIZE;
int Timeout = HWIUSS_TIMEOUT_INFINITE;
int BytesReturned;
int localRC;

localRC = HWIGetEvent(&DiagArea, DeliveryToken, &Buffer, BufSize,
 Timeout, &BytesReturned)

HWIGetEvent

456 z/OS: z/OS MVS Callable Services for HLL

Part 9. z/OS client web enablement toolkit
The z/OS client web enablement toolkit provides a set of application programming interfaces (APIs) to
enable traditional, native z/OS programs to participate in modern web services applications.

Introduction to the z/OS client web enablement toolkit
You can use web application APIs to create a client/server application using a request-response protocol
that can link a client residing anywhere in the world with any web server. Many web applications have
evolved to a simpler programming model based on representational state transfer (REST). Governed by a
set of architectural constraints, RESTful applications can be much easier to develop, enabling the creation
of elegant and secure web applications. RESTful applications typically use the ubiquitous Hypertext
Transfer Protocol (HTTP) as the means of communication and either JavaScript Object Notation (JSON)
or Extensible Markup Language (XML) as the format of data exchange between the client and server
programs.

Applications running in traditional z/OS environments can play the client role of a RESTful web application
and initiate a request to a web server residing on z/OS or any other platform that supports web
applications. The z/OS client web enablement toolkit provides the following components to enable these
applications to more easily participate in the client/server realm:

• A z/OS JSON parser to parse JSON text coming from any source, build new JSON, or add to existing
JSON text, as described in Chapter 20, “The z/OS JSON parser,” on page 459

• A z/OS HTTP/HTTPS protocol enabler that uses interfaces similar to other industry-standard APIs, as
described in Chapter 21, “The z/OS HTTP/HTTPS protocol enabler,” on page 567

While the primary focus of the toolkit is to enable traditional z/OS programs running in environments
where these types of services are not as readily available (as compared to a z/OS UNIX or Java™ Virtual
Machine (JVM) environment), the services can be run from virtually any environment on a z/OS system.
Programs running as a batch job, as a started procedure, or running in almost any address space on a z/OS
system can use the toolkit APIs in a similar manner to any standard z/OS APIs provided by the operating
system. Furthermore, programs can invoke these APIs in the programming language of choice; the toolkit
fully supports C/C++, COBOL, PL/I, REXX and high-level assembler languages.

© Copyright IBM Corp. 1994, 2023 457

458 z/OS: z/OS MVS Callable Services for HLL

Chapter 20. The z/OS JSON parser
The JSON parser portion of the z/OS client web enablement toolkit provides a generic, native z/OS
JavaScript Object Notation (JSON) parser for z/OS applications.

JSON is a text-based open standard designed for human-readable data interchange. It is derived from
the JavaScript scripting language for representing simple data structures and associative arrays, called
objects. It is language-independent, with parsers available for many languages. JSON is described in
https://www.json.org/. The official Internet media type for JSON is application/json. The JSON
format is often used for serializing and transmitting structured data over a network connection. It is
primarily used to transmit data between a server and web application, serving as an alternative to XML.
JSON data representation is becoming more pervasive across the industry due to its simplicity and ease
of use.

Both JSON and XML are recommended formats for the representation of a request/response body when
programming an application following the principles of REST. The XML System Services component of
z/OS (z/OS XML) provides a system-level XML parser that is integrated with the base z/OS operating
system. (For more information, refer to z/OS XML System Services User's Guide and Reference.) It is
intended for use by system components, middleware, and applications that need a simple, efficient XML
parsing solution. Likewise, the z/OS JSON parser provided with the z/OS client web enablement toolkit
is an equivalent system-level, general-purpose JSON parser that is integrated with the z/OS operating
system and that works in any native z/OS environment.

JSON basics
The designation of JSON as a great data exchange format lies in its innate simplicity. There are only a few
types of data (string, number, boolean, null, array, and object) and its data structures mirror many of the
modern programming languages. Many resources are available for you to consult on the Internet to help
you gain a basic understanding of the easy-to-use syntax.

An important JSON concept to understand is the idea of an object entry. Within an object, there can be
one or more unordered object entries. Each entry consists of a name/value pair. The name, represented
by a string enclosed in double quotation marks, identifies the value portion of the pair. The value can be
any valid JSON data type.

Figure 27 on page 459 shows an example of JSON text.

{
 "firstName": "Steve",
 "lastName": "Jones",
 "age": 46,
 "address": {
 "streetAddress": "123 Anywhere Ave",
 "city": "Poughkeepsie",
 "state": "NY",
 "postalCode": "12601",
 "country": "USA"
 },
 "phone": [
 {
 "type": "mobile",
 "number": "914 555 5555"
 },
 {
 "type": "home",
 "number": "845 555 1234"
 }
]
 }

Figure 27. Example of JSON text

In Figure 27 on page 459, "firstName", "lastName", "age", "address", and "phone" are all
names of object entries in the main (root) object of the JSON text. The values assigned to the

© Copyright IBM Corp. 1994, 2023 459

https://www.json.org/

"firstName", "lastName", and "age" object entries are all simple data types (string, string, and
number, respectively). The named entries "address" and "phone", however, contain a more complex
data type as their values. The "address" entry nests additional address details within another object,
which contains the portions of an address. The "phone" entry contains an array made up of two array
entries. Array entries differ from object entries in that arrays contain only a value (of any JSON data
type). In this case, the array values are two objects, each of which group specific types of phone numbers
together.

Comments in JSON text

In addition to the well recognized data types, the z/OS JSON parser also tolerates single and multi-line
comments defined by the JSON5 Data Interchange Format extension to JSON (https://spec.json5.org/
#comments). Comments can be either single line or multi-line as shown in the following examples:

//single line comment starts with a double-solidus and ends with a line terminator
//the supported line terminator character is a Line Feed<LF>:
//IBM-1047 -> hex 15
//UTF-8 -> hex 0A

Figure 28. Example of JSON single line comment

/* multi-line comment on a single line, uses a solidus + asterisk form */

Figure 29. Example of JSON multi-line comment on one line

/* multi-line comments start with solidus + asterisk,
 and can span arbitrarily-many lines,
 until ended with an asterisk + solidus like this */

Figure 30. Example of JSON multi-line comment

Comments themselves are allowed to surround and, depending on the style, can even be placed in
between the name and the value. However, comments can not be embedded inside either the name or
value, and nested comments are not supported.

In the following example, comments are indicated in bold:

/***** Testing All *******************************
 * All attributes are tested inside their *
 * condition and displayed with send/log *
 * message. All modifiable attributes are then *
 * modified within their own condition def *
 * then standard actions *
 **/
{
/******** Testing CompletionCode ***************/
 "condition" : " String(CompletionCode) = '()' "
 ,"actions" :
 [
 {
 "action" : "sendMessage" //first action
 ,"message": /*CC? */" 'CompletionCode: '||String(CompletionCode)"
 }
]
}

Figure 31. Example of comments on JSON data

Elements of the z/OS JSON parser
The z/OS JSON parser is organized into several types of services:

• Initialize and terminate: The purpose of these services is to prepare the memory space required by
the z/OS JSON parser or to free it after parser services are no longer needed. The memory allocation
created by the initialize service is known as a parser instance.

460 z/OS: z/OS MVS Callable Services for HLL

https://spec.json5.org/#comments
https://spec.json5.org/#comments

• Options: By default, the z/OS JSON parser will tolerate single and multi-line comments as defined
by the JSON5 specification. This service allows the application to indicate if the z/OS JSON parser
should expect comments in the input JSON text, which may result in better performance results for
commented JSON text compared to using the auto detect default setting. The application can also use
this service to indicate to the z/OS JSON parser that comments should continue to be rejected as not
valid syntax.

• Codepage: These services allow the application to indicate to the JSON parser whether their input
JSON data is encoded in EBCDIC (codepage 1047) or in UTF-8.

• Parse: The parse service performs the following functions:

– Assigns a particular JSON text to a previously created parser instance
– Checks the JSON text input for syntax errors
– Creates an internal representation of the JSON text in the parser instance memory, allowing

subsequent parse functions to execute quickly. The internal representation created does not store
any information related to the comments that may have been found in the JSON text.

• Traverse: These services are designed for applications that might not know the content of the JSON
text they are parsing. By using these services, a program can easily traverse the JSON text input,
one construct at a time, to discover what data was passed to it. For example, by using a recursive
programming methodology, a few simple routines can easily and efficiently traverse the entire stream of
data. See “z/OS JSON parser programming examples” on page 467 for examples provided by the toolkit
in SYS1.SAMPLIB.

• Search: A program might need to find a particular name in a name/value pair that identifies a particular
entry of interest. By using the search service and specifying the appropriate search scope, the handle
of the matching entry is returned. The handle can then be used on subsequent services to get the
information at that location. When retrieving the value portion of the entry, the application must use the
HWTJ* API specific to the type of the value being retrieved. The application can use the HWTJGST API
to identify the value if it is not known.

• Create, delete and serialize: Beyond just reading JSON text created elsewhere and parsing through it,
a program might need to modify JSON text. The create service provides the ability to create new JSON
text, add entries into existing JSON text, or insert JSON text from another source into the middle of
existing JSON text. The delete service provides the ability to delete JSON text.

When the program is done modifying the JSON text, it can then use the serialize service to build the
JSON text and place it into a buffer in preparation for sending it to some program over a network or
saving it in a local data store. The resulting JSON text will be absent of any comments that may have
been present in the original and of any surplus white space.

The general usage of the z/OS JSON parser services in an application follows this order:

1. Create a parser instance and obtain the parser handle (HWTJINIT).
2. Optionally set the encoding (HWTJSENC) and comment toleration (HWTJOPTS) preferences.
3. Associate JSON text with the parser instance (HWTJPARS), which create an internal representation of

the data for fast access by subsequent services, or create new JSON text from scratch (HWTJCREN).
4. Traverse to discover the contents of the JSON text, or search to find a particular name in a name/value

pair (HWTJSRCH), or add or insert new entries into the existing JSON text (HWTJCREN), or some
combination of all of these services.

5. Build the new JSON text if any text was added (HWTJSERI).
6. Free storage used by the parser services (HWTJTERM).

Availability of the z/OS JSON parser
The z/OS JSON parser contained the z/OS client web enablement toolkit is available to virtually any
address space. The toolkit is enabled as part of z/OS initialization during IPL time. A message is written to
the syslog, which regards the status of the toolkit. Success or failure of toolkit initialization can be found
by locating any HWT-prefixed syslog messages, which are issued during IPL.

Chapter 20. The z/OS JSON parser 461

Syntax, linkage, and programming considerations
The z/OS JSON parser is available to almost any program running in any address space. Almost all z/OS
execution environments are supported as well as a wide variety of programming languages.

Programming interface files provided by the JSON parser
Table 84 on page 462 lists the programming interface files provided by the z/OS JSON parser.

Table 84. JSON parser programming interface

Programming language Programming interface file

C / C++ Include file HWTJIC provided in SYS1.SIEAHDRV.H and under z/OS UNIX /usr/include
directory as hwtjic.h

COBOL Copybook file HWTJICOB provided in SYS1.MACLIB

PL/I Include file HWTJIPLI provided in SYS1.MACLIB

Assembler Include file HWTJIASM provided in SYS1.MACLIB

REXX See “HWTCONST — Initialize predefined variables (REXX)” on page 469 on how to
access all the toolkit constants in REXX

Calling formats

Table 85 on page 462 lists specific calling formats for languages that can invoke the z/OS JSON parser
callable services.

Table 85. Calling formats for the z/OS JSON parser callable services

Programming language Calling format

C / C++ Parser_service_name (return_code,parm1,parm2,…) where the
Parser_service_name is all lower case

COBOL CALL Parser-service-name USING return_code,parm1,parm2,…

PL/I CALL Parser_service_name (return_code,parm1,parm2,…)

Assembler CALL Parser_service_name (return_code,parm1,parm2,…),VLIST

REXX ADDRESS HWTJSON "Parser_service_name return_code parm1 parm2…"

Linkage considerations

There are three ways for a compiled application to find the z/OS JSON parser callable services:
Linkage stub method

(Recommended) Use the linkable stub routine HWTJCSS from SYS1.CSSLIB to link edit your object
code. If you attempt to run the parser on a previous release of z/OS that does not support
the z/OS JSON parser, this method results in the service call receiving a return code of X'F03'
(HWTJ_UNSUPPORTED_RELEASE).

Load method
Use the LOAD macro to find the address of the z/OS JSON parsing callable service at run time and
then CALL the service. If you attempt to run the parser on a previous release of z/OS that does not
support the z/OS JSON parser, this method results in the LOAD macro failing to find the requested
service.

462 z/OS: z/OS MVS Callable Services for HLL

Direct linkage method
Code the linkage to the z/OS parser services directly. This can be done if the program first confirms
that the level of z/OS contains the toolkit. The following example shows the assembler linkage:

L R14,CVTCSRT-CVT(R14,0)
L R14,84(R14,0)
L R15,4*HWT_SERV_xxxxx(R14,0)
LR R14,R0
BR R15

In the example, xxxxx represents the last five letters of the service you want to call. This requires that
the HWTJKASM assembler macro be included. If you attempt to run the parser on a previous release
of z/OS that does not support the z/OS JSON parser, this method results in the application receiving
an abend X'019'.

Linkage considerations for high-level language programming

Callers must ensure that the proper linkage is made to the JSON parsing services. The supplied IDF files
for the various high-level languages contain the necessary definitions that ensure that the parameter list
passed to the JSON parser has the high-order bit turned on for the last parameter. For example, for C, the
linkage must be specified as OS linkage, such as:

#pragma linkage(HWTJxxxx_CALLTYPE,OS)

For PL/I, the entry declaration should have the following options defined:

OPTIONS(LINKAGE(SYSTEM))

Linkage considerations for assembler language programming

Callers must also use the following linkage conventions:

• Register 1 must contain the address of a parameter list that is a list of consecutive words, each
containing the address of a parameter to be passed. The last word in this list must have a 1 in the
high-order (sign) bit.

• Register 13 must contain the address of an 18-word save area.
• Register 14 must contain the return address.
• Register 15 must contain the entry point address of the service being called.
• If the caller is running in AR ASC mode, access registers 1, 13, 14, and 15 must all be set to zero.
• On return from the service, general and access registers 2 - 14 are restored (registers 0, 1 and 15 are

not restored).

General programming considerations

Codepage considerations
Input data into the JSON parser may either be in EBCDIC encoding (codepage 1047) or in UTF-8. Any
JSON text received by the application in another encoding format must first be converted to one of
these supported formats before it can be input to the parser instance via either parse (HWTJPARS) or
create (HWTJCREN) service calls.

Recovery considerations
The z/OS JSON parser runs in the address space of the application. In addition, all the storage
needed by the parser is obtained in the application’s address space. Because every application has
its own programming environment, it is impossible for the parser to predict the recovery environment
required by the application; therefore, the parser does not provide its own recovery. It is imperative
that a robust application provide recovery to catch any abnormal ends to parser execution.

Chapter 20. The z/OS JSON parser 463

When the parser is attempting to access application-provided parameters and those parameters
are either inaccessible, point to an inaccessible location, or specify a length that goes beyond the
available storage that is obtained by the application, an ABEND occurs and the recovery of the
application (if established) receives control. To allow for easier debugging of the problem, when the
parser is about to access any application-specified values, the returnCode parameter is pre-filled
with the HWTJ_INACCESSIBLE_PARM return code and the diagArea reasonDesc value is pre-filled
with the specifics of which parameter the z/OS JSON parser is attempting to access. If the parser
abnormally ends with an S0C4 ABEND code due to an inaccessible parameter, the recovery routine
can consult the returnCode and diagArea values in the callers dynamic storage at the time of the
ABEND and see which parameter the parser could not process.

Lastly, if the application catches any abnormal ends (abends) during the z/OS JSON parser execution,
subsequent parser calls using the same parser handle can fail with an HWTJ_PARSERHANDLE_INUSE
return code. See the action description for this return code for a list of options a program can take
when encountering this condition.

REXX Programming Considerations
The toolkit provides a REXX host command environment, HWTJSON, to allow REXX applications to parse
and modify JSON strings, as well as search within a JSON string. REXX applications running in TSO/E,
System REXX, z/OS UNIX, or ISV-provided REXX environments are supported.

• To initialize the HWTJSON host command environment in your REXX exec, it can be necessary to invoke
the hwtcalls function at the beginning of your application: call hwtcalls on. After this invocation,
both the ADDRESS HWTHTTP and ADDRESS HWTJSON host commands will direct API calls to the
toolkit.

• To declare all toolkit constants in your REXX exec, use the HWTCONST service as documented in
“HWTCONST — Initialize predefined variables (REXX)” on page 469.

Note: There is no REXX IDF (include file) provided by the toolkit.
• The toolkit services allocate task associated resources, which are released at task termination and the

termination API calls.
• Handles are not shared among multiple tasks, which can restrict some reentrant REXX environments.
• JSON parser handles can be updated by any of the JSON parser services. The content of these variables

should not be modified in any way by the application.
• Verify that all variables have proper content and are exposed if set outside of procedures.
• Variable names specified on toolkit REXX service calls are limited to 40 characters in length.
• REXX does not have unlimited variable content size. In general, a single variable cannot contain more

than 16 MB of content. This limits the amount of data that can be sent and received in the JSON parser.
If the data required is greater than 16 MB for any of these cases, consider to use one of the high-level
languages, which are supported by the toolkit (C/C++, COBOL, PL/I or Assembler).

• The built-in REXX RC variable contains the return code from the REXX HWTJSON host command. This
return code indicates the toolkit's acceptance of the supplied REXX HWTJSON host command. The
return codes returned in the RC variable are generally unique to the REXX environment. In contrast, the
JSON service return code, the variable supplied on the service call itself, is only completed if the RC
variable has a value of HWTJ_OK (0) or HWT_REXXParmSyntaxError (1). Possible return codes returned
by the toolkit in the RC variable are listed in Table 86 on page 465.

• The DiagArea for each REXX service call is returned by using stem variables in the form:
x.HWTJ_ReasonCode, and x.HWTJ_ReasonDesc where x is the name of the stem variable specified on
the parameter list. If no DiagArea information is completed by the toolkit, the value of the DiagArea
stem-variable on return is all blanks or nulls.

Table 86 on page 465 lists the host command return codes for the REXX environment.

464 z/OS: z/OS MVS Callable Services for HLL

Table 86. Host return codes for REXX

Host return code Meaning and action

0 Meaning: REXX toolkit host command successful.

Action: Consult the toolkit return code on the service call to
determine the final result of the request.

1
HWT_REXXParmSyntaxError

Meaning: REXX toolkit host command detects the parameter
format is not in the proper form to be accepted.

Action: Check for a probable coding error.

• See the return code on the toolkit service call to determine
the reason for the syntax error.

• See the REXX programming considerations of the toolkit
service to see the exact calling specifications.

• Compare the toolkit REXX service call attempted with
service call examples in the supplied toolkit REXX
programming sample found in SYS1.SAMPLIB.

• The DiagArea might contain additional diagnostic
information.

2
HWT_REXXUnsupportedService

Meaning: Program error. An unknown toolkit service name
was specified on the toolkit REXX host command.

Action: Check for a probable coding error. Specify a valid
toolkit service name. For example, HWTJPARS.

3
HWT_REXXInvalidNumOfParms

Meaning: Program error. The number of parameters specified
on the toolkit REXX host command for the service name
specified does not match the number of parameters
expected.

Action: Check for a probable coding error. See the REXX
programming considerations of the toolkit service to see the
exact calling specifications. Compare the toolkit REXX service
call attempted with service call examples in the supplied
toolkit REXX programming sample found in SYS1.SAMPLIB.

4
HWT_REXXStemVarRequired

Meaning: Program error. The toolkit REXX service specified
on the toolkit REXX host command is missing one or more
required stem variables in the positional parameter list.

Action: Check for a probable coding error. See the REXX
programming considerations of the toolkit service to see the
exact calling specifications. A stem variable parameter must
specify a period (.) following the variable name (for example,
var.). Also, compare the toolkit REXX service call attempted
with service call examples found in the supplied toolkit REXX
programming sample found in SYS1.SAMPLIB.

5
HWT_REXXParmNameTooLong

Meaning: Program error. One or more variables specified
on the toolkit REXX service call on the toolkit REXX host
command is greater than the toolkit maximum REXX variable
length (40).

Action: Check for a probable coding error. Reduce the
variable name lengths on the toolkit REXX service call to be
40 characters or less in length

Chapter 20. The z/OS JSON parser 465

Table 86. Host return codes for REXX (continued)

Host return code Meaning and action

6
HWT_REXXInvalidHostEnv

Meaning: System error. The toolkit detected an unexpected
error. The system rejects the service call.

Action: Search problem reporting databases for a fix for the
problem. If no fix exists, contact the IBM Support Center.

7
HWT_REXXNoStorageForVar

Meaning: System error. Insufficient storage is detected
by a SET request from the REXX variable access routine
(IRXEXCOM). The system rejects the service call.

Action: Ensure that there is sufficient storage available for the
toolkit to set REXX variables. If the problem persists, search
problem reporting databases for a fix for the problem. If no fix
exists, contact the IBM Support Center.

8
HWT_REXXirxexcom1

Meaning: System error. The REXX variable access routine
(IRXEXCOM) used by the toolkit detected an invalid entry
condition. This error can be caused by invoking the toolkit
REXX host command from a non-REXX application.

Action: Ensure to invoke the toolkit REXX host command from
a valid REXX exec. If the problem persists, search problem
reporting databases for a fix for the problem. If no fix exists,
contact the IBM Support Center.

9
HWT_REXXirxexcom28

Meaning: System error. The REXX variable access routine
(IRXEXCOM) detected a language processor environment is
missing. This error can be caused by invoking the toolkit from
an invalid REXX environment.

Action: Ensure that REXX applications invoke the specified
toolkit service in a proper REXX environment. TSO/E, System
REXX, z/OS UNIX, or ISV-provided REXX environments are
supported. If the problem persists, search problem reporting
databases for a fix for the problem. If no fix exists, contact the
IBM Support Center.

11
HWT_REXXNoStorage

Meaning: System error. The toolkit could not obtain sufficient
storage to satisfy the request.

Action: Ensure there is sufficient memory available for
REXX command processing. If the problem persists, search
problem reporting databases for a fix for the problem. If no fix
exists, contact the IBM Support Center.

13
HWT_REXXInvalidVariable

Meaning: Program error. The toolkit detected one of the
variables passed in the parameter list is an invalid REXX
variable name.

Action: Check for a probable coding error. Verify that all
variables passed in the parameter list for the specified service
have valid names. See the REXX programming considerations
and parameters sections for reference.

466 z/OS: z/OS MVS Callable Services for HLL

Table 86. Host return codes for REXX (continued)

Host return code Meaning and action

14
HWT_REXXDataTooLongForVar

Meaning: Program error. The REXX variable cannot contain
more than 16 megabytes of data.

Action: Check for a possible coding error. If the application
requires more than 16 megabytes of data, consider using
another supported language.

32
HWT_REXXUnexpectedError

Meaning: System error. An unexpected error is detected. The
system rejects the service call.

Action: A symptom record has been written to LOGREC to
record the problem. Search problem reporting databases for
a fix for the problem. If no fix exists, contact the IBM Support
Center.

z/OS JSON parser programming examples
The z/OS JSON parser provides a sample program in many of the supported programming languages
to aid in the creation of applications that use the parser functions. Each sample contains examples
of how to use almost all of the JSON parser services available in the toolkit. The samples are
shipped in SYS1.SAMPLIB. Table 87 on page 467 lists the sample files for each programming language.
Additional samples can also be found on the external z/OS client web enablement toolkit github (https://
github.com/IBM/zOS-Client-Web-Enablement-Toolkit).

Table 87. JSON parser programming sample files

Programming language Name of sample in SYS1.SAMPLIB

C / C++ HWTJXC1, HWTJXC2

COBOL HWTJXCB1, HWTJXCB2

PL/I HWTJXPI1

REXX HWTJXRX1, HWTJXRX2, HWTJXRX3

z/OS JSON parser callable services
The z/OS JSON parser callable services are grouped under the following categories.

Initialization and termination services
Initialization and termination services deal with the creation and termination of JSON parser instances.

The z/OS JSON parser callable services in this category are:

• “HWTJINIT — Initialize a parser instance” on page 527
• “HWTJTERM — Terminate a parser instance” on page 561

Codepage services
The z/OS JSON parser callable services in this category are:

• “HWTJGENC — Get JSON encoding” on page 498
• “HWTJSENC — Set JSON encoding” on page 543

Usage notes: After an HWTJINIT to obtain a parser handle, and prior to invoking HWTJPARS
(or HWTJCREN), no data encoding will be in effect for the JSON parser instance associated with
the handle. This could be demonstrated with a call to HWTJGENC, which would return the value

Chapter 20. The z/OS JSON parser 467

https://github.com/IBM/zOS-Client-Web-Enablement-Toolkit
https://github.com/IBM/zOS-Client-Web-Enablement-Toolkit

HWTJ_ENCODING_UNKNOWN. Following a successful first HWTJPARS (or HWTJCREN), an encoding is said
to be in effect; it remains so until HWTJTERM is invoked to terminate the JSON parser instance. To
discourage the comingling of data with different encodings, any attempt to use HWTJSENC to change an
encoding currently in effect is considered a usage error and is failed.

An application may choose to invoke HWTJSENC to assert that the text they supply is encoded as
either HWTJ_ENCODING_EBCDIC or HWTJ_ENCODING_UTF8. During HWTJPARS, the JSON parser will
discover the text's encoding; if the discovered type does not agree with that asserted by the application,
HWTJPARS processing will fail immediately (with diagnostics indicating the encoding mismatch). This
usage of HWTJSENC is optional; if the application has not asserted an encoding, HWTJPARS processing
asserts the finding from its discovery, and proceeds. Following successful parse completion, the
application can use HWTJGENC to learn the discovered encoding type, if necessary.

Parse service
The parse service loads a selected JSON text stream into a particular JSON parser instance.

The z/OS JSON parser callable service in this category is:

• “HWTJPARS — Parse a JSON string” on page 536

Traversal (auto-discovery) parsing services
The purpose of the traversal services is to traverse (discover) the contents of the supplied JSON
text in a methodical manner. Typically, these services take a supplied parser handle and either an
entryValueHandle or objectValueHandle parameter (returned by previous invocations of various
JSON parser API calls) that points to a specific location within the JSON text.

Note: Throughout the documentation of the z/OS JSON parsing services, the word entry is used in the
context of a JSON entry. When referring to an object, an entry represents a JSON name or value pair,
where the name is a string enclosed in double quotation marks and the value can be specified as any valid
JSON type. When referring to an array, an entry represents a value. The value can be any valid JSON type.
An object or array can have one or more JSON entries. Multiple entries are separated by commas.

The z/OS JSON parser callable services in this category are:

• “HWTJGAEN — Get array entry” on page 490
• “HWTJGBOV — Get boolean value” on page 494
• “HWTJGJST — Get JSON type” on page 502
• “HWTJGNUE — Get number of entries” on page 507
• “HWTJGNUV — Get number value (non-REXX)” on page 511
• “HWTJGOEN — Get object entry” on page 517
• “HWTJGVAL — Get value” on page 522

Search service
The search service searches for a particular "name" in the JSON text.

The z/OS JSON parser callable service in this category is:

• “HWTJSRCH — Search” on page 553

JSON text creation methods
All of the other methods deal with existing JSON text that an application can process and analyze.
However, there is also a need to be able to build JSON text.

Creation methods:

There are two ways to create JSON text using the z/OS web enablement toolkit:

468 z/OS: z/OS MVS Callable Services for HLL

• Create JSON text "from scratch."
• Insert additional JSON text at a particular insertion point.

The toolkit also allows for the JSON text to be added using two different methods:

• Adding one entry at a time: By using the provided input parameters, the create service creates
syntactically valid JSON text.

• Adding previously defined JSON text: The create service first parses the supplied JSON text to verify
that the inserted JSON text contains no syntax errors. Then, the insertion point is validated to ensure
that the supplied JSON text can logically be inserted at that point. This merges two JSON text streams
into one larger text stream.

Deletion method:

It is possible to delete entries from a given JSON text using the z/OS web enablement toolkit.

The new JSON text stream which reflects the modifications can be obtained using the serialize service.

The HWTJSERI service builds the JSON text associated with the specified parser instance by combining
the existing JSON text (if any) and any newly added OR DELETED objects or entries.

The z/OS JSON parser callable services in this category are:

• “HWTJCREN — Create JSON entry” on page 470
• “HWTJDEL — Delete a JSON entry” on page 482
• “HWTJSERI — Serialize (build) JSON text” on page 547

Comment toleration related service
By default, the z/OS JSON parser will tolerate single and multi-line comments defined in the JSON5
specification.. However the application may want to alter this behavior to either fine tune the parser to
always expect comments, or to reject comments as not valid syntax.

The z/OS JSON parser callable service in this category is HWTJOPTS - set z/OS JSON parser options.

Usage Note: The comment toleration preference can only be altered after an HWTJINIT is issued to
obtain a parser handle, and must be done prior to invoking HWTJPARS or, when creating a new JSON text,
the first invocation of HWTJCREN.

HWTCONST — Initialize predefined variables (REXX)
Call the HWTCONST service to initialize predefined variables in the current REXX variable pool.

Description
This service sets the variables with names prefixed for HWTJ corresponding to the interface definition for
the JSON toolkit. This service is helpful when using symbolic names in checking for specific return codes
or when specifying constant values in the application. The variable HWT_CONSTANTS is set to a list of the
interface variable names, which is useful on a procedure expose statement to make the variables visible
to a procedure.

Note: This service also sets the variables for the z/OS HTTP Enabler (HWTH-prefixed) as well. If the REXX
application utilizes both the HTTP and JSON parser portions of the toolkit, it is only necessary to call
HWTCONST once to initialize all the variables.

Syntax
Write the call as shown in the following syntax diagram. You must code all parameters in the order shown.

HWTCONST

Chapter 20. The z/OS JSON parser 469

REXX parameters

address hwtjson "hwtconst",
 "ReturnCode",
 "DiagArea."

Parameters
The parameters are explained as follows:

ReturnCode
Returned parameter.

• Type: Character string

Contains the return code from the service.
DiagArea.

Returned parameter.

• Type: Stem variable

Return codes
When the service returns control to the caller, GPR 15 and the returnCode parameter contain a
hexadecimal return code, as listed in “HWTCONST — Initialize predefined variables (REXX)” on page
469.

Table 88. Return codes for the HWTCONST service

Hexadecimal return code
Equate symbol

Decimal return code
Equate symbol Meaning and action

0
HWTJ_OK

0
HWTJ_OK

Meaning: Successful completion.

Action: None.

HWTJCREN — Create JSON entry
Call the HWTJCREN service to create or insert new JSON text.

Description
The HWTJCREN service creates or inserts new JSON text into the specified parser instance.

The presence of JSON5-style commentary content among the arguments passed to this service
is conditionally tolerated for the following values of EntryValueType only HWTJ_ARRAYVALUETYPE,
HWTJ_OBJECTVALUETYPE, and HWTJ_JSONTEXTVALUETYPE.

If the EntryValueType is not in this list, or comment toleration has been explicitly disabled by HWTJOPTS,
the presence of commentary will result in an error. See EntryValueType for further details.

Environment
The requirements for the caller are:

Requirement Details

Minimum authorization: Supervisor state or problem state, any PSW key.

Dispatchable unit mode: Task or SRB.

Cross memory mode: Any PASN, any HASN, any SASN.

HWTJCREN

470 z/OS: z/OS MVS Callable Services for HLL

Requirement Details

AMODE: 31 bit.

ASC mode: Primary or access register (AR).

Interrupt status: Enabled for I/O and external interrupts.

Locks: No locks held.

Control parameters: Control parameters must be in the primary address space and
addressable by the caller.

Linkage: Standard MVS linkage conventions are used.

Programming requirements
See “Syntax, linkage, and programming considerations” on page 462 for details about how to call the
z/OS JSON parser services in the various supported programming languages.

REXX programming considerations for the HWTJCREN service
All information for the HWTJCREN service applies for REXX requests except:

• EntryName replaces EntryNameAddr and EntryNameLen
• EntryValue replaces EntryValueAddr and EntryValueLen

Syntax
Write the call as shown in the following syntax diagram. You must code all parameters in the order shown.

Non-REXX parameters REXX parameters

CALL HWTJCREN(
 ReturnCode,
 ParserHandle,
 ObjectHandle,

 EntryNameAddr,
 EntryNameLen,
 EntryValueType,

 EntryValueAddr,
 EntryValueLen,
 NewEntryValueHandle,
 DiagArea);

address hwjson "hwtjcren",
 "ReturnCode",
 "ParserHandle",
 "ObjectHandle",
 "EntryName",

 "EntryValueType",
 "EntryValue",

 "NewEntryValueHandle",
 "DiagArea."

Parameters
The parameters are explained as follows:

ReturnCode
Returned parameter.

• Type: Integer (non-REXX), character representation of an integer (REXX)
• Length: 4 bytes (non-REXX)

Contains the return code from the service.
ParserHandle

Supplied parameter.

• Type: Character string
• Length: 12 bytes (non-REXX)

Specifies the JSON parser instance to be used.

HWTJCREN

Chapter 20. The z/OS JSON parser 471

ObjectHandle
Supplied parameter.

• Type: Integer (non-REXX), character representation of an integer (REXX)
• Length: 4 bytes (non-REXX)

Specifies an object handle representing a particular JSON object (object or array object) that indicates
where the JSON text is to be added (that is, defines the insertion point). The objectHandle value
is either zero for the root object or an entry value handle (entryValueHandle) whose JSON type is
HWTJ_OBJECT_TYPE or HWTJ_ARRAY_TYPE.

Because JSON does not allow for the ordering of object entries, a new entry will always be added after
the current last entry.

If a new JSON text stream is being built, you must specify an objectHandle of zero. This service
detects that the root object does not exist and will automatically create it. This service adds an entry
to the root object.

Note: With a new JSON text stream, it is not possible for this service to create an object entry
consisting of an empty name string ("": value), that is, an entryNameAddr and entryNameLen of
zero. If you want to have an object entry with an empty name string as the first object entry, take the
following actions:

1. Create the stand-alone root object ({}) by calling the HWTJCREN service and specifying an
entryNameAddr, entryNameValue, entryValueAddr, and entryValueLen of zero, and an
entryValueType of HWTJ_OBJECTVALUETYPE.

2. Create an entry within the root object by issuing a second HWTJCREN call and specifying
an entryNameAddr and entryNameValue of zero, the wanted entryValueType, and an
appropriate value.

If you specify an objectHandle of zero and there is existing JSON text that is already parsed within
the parser instance, the new text is added as an entry to the root object.

EntryName (REXX)
Supplied parameter.

• Type: Character string

Specifies the REXX variable, which contains the name for the entry to be added. Set this variable to a
null string if entryname is not applicable for the request.

Note: The supplied entry name must encoded in either EBCDIC (codepage 1047) or UTF-8. Its
encoding must be consistent with that of other data input to the JSON parser instance.

EntryNameAddr (non-REXX)
Supplied parameter.

• Type: Pointer
• Length: 4 bytes

Specifies the address of a buffer that contains the name string associated with the entry to be created.
This parameter is required if the objectHandle parameter specifies a normal object (JSON type is
HWJT_OBJECT_TYPE). This parameter must be zero if the objectHandle parameter specifies an
array object (JSON type is HWJT_ARRAY_TYPE), since array entries have no name.

If the specified objectHandle parameter is zero (that is, adding text to the root object) and
there is no existing JSON text already parsed within the parser instance, a new JSON text
stream is built. In this case, entryNameAddr must be zero if the entryValueType is either
HWTJ_JSONTEXTVALUETYPE or HWTJ_OBJECTVALUETYPE (create a null root object).

Note:

• In the case where a parameter is expected to be set to zero, the application is still expected to pass
in a valid parameter variable, however, the value that parameter contains should be zero or blank.

HWTJCREN

472 z/OS: z/OS MVS Callable Services for HLL

See Example 1 and Example 2 for code snippets which illustrate how to set EntryNameAddr
parameter to zero.

• The supplied entry name must encoded in either EBCDIC (codepage 1047) or UTF-8. Its encoding
must be consistent with that of other data input to the JSON parser instance.

EntryNameLen (non-REXX)
Supplied parameter.

• Type: Integer
• Length: 4 bytes

Specifies the length of the "name" string to be added at the location specified by entryNameAddr.
This parameter is required if the objectHandle parameter specifies a normal object (JSON type
is HWJT_OBJECT_TYPE). This parameter must be zero if the objectHandle parameter specifies an
array object (JSON type is HWJT_ARRAY_TYPE), since array entries have no name.

If the specified objectHandle parameter is zero (that is, adding text to the root object) and
there is no existing JSON text already parsed within the parser instance, a new JSON text
stream is built. In this case, entryNameLen must be zero if the entryValueType is either
HWTJ_JSONTEXTVALUETYPE or HWTJ_OBJECTVALUETYPE (create a null root object).

EntryValueType
Supplied parameter.

• Type: Integer (non-REXX), character representation of an integer (REXX)
• Length: 4 bytes (non-REXX)

Specifies a constant value that indicates the data type of the value to be added. Valid values are:
HWTJ_OBJECTVALUETYPE

The value to be added is an object. Single and multi-line JSON5 style comments are allowed in the
content inside the '{}'.

HWTJ_ARRAYVALUETYPE
The value to be added is an array. Single and multi-line JSON5 style comments are allowed when
the array element value is a JSON Object, for example, "Array":[{},{},{}]. In the case of a
JSON Object entry value, the comments are allowed in the content inside the '{}'.

HWTJ_STRINGVALUETYPE
The value to be added is a string.

HWTJ_NUMVALUETYPE
The value to be added is a number.

HWTJ_TRUEVALUETYPE
The value to be added is a boolean value of TRUE.

HWTJ_FALSEVALUETYPE
The value to be added is a boolean value of FALSE.

HWTJ_NULLVALUETYPE
The value to be added is a NULL type.

HWTJ_JSONTEXTVALUETYPE
The value to be added is another JSON text stream. Single and multi-line JSON5 style comments
are allowed outside and inside of the '{}'. For example:

/* I am a JSON TEXT VALUE with comments */
{ /*** comment1 *****************************/
 "message1": "JSON is great" //comment 2
,"message2": "but it can be a lot sometimes" /* comment 3 */
}
/* comment 4 after the json object */

If entryValueType is HWTJ_STRINGVALUETYPE, HWTJ_NUMVALUETYPE, or
HWTJ_JSONTEXTVALUETYPE, the entryValueAddr and entryValueLen parameters must specify

HWTJCREN

Chapter 20. The z/OS JSON parser 473

the actual value in the "name":value pair. If the entryValueType is not one of these three values,
entryValueAddr and entryValueLen must be set to zero.

Note: In the case where a parameter is expected to be set to zero, the application is still expected
to pass in a valid parameter variable, however, the value that parameter contains should be zero or
blank. See Example 1 and Example 2 for code snippets which illustrate how to set EntryNameAddr
parameter to zero.

EntryValue (REXX)
Supplied parameter.

• Type: Character string

Specifies the REXX variable, which contains the value of the entry to be added. Set this variable to a
null string if entryvalue is not applicable for the request.

EntryValueAddr (non-REXX)
Supplied parameter.

• Type: Pointer
• Length: 4 bytes

Specifies the address of a buffer that contains the value to be added. This is
only valid if entryValueType is HWTJ_STRINGVALUETYPE, HWTJ_NUMVALUETYPE, or
HWTJ_JSONTEXTVALUETYPE. For all other entryValueType values, specify zero.

Notes:

1. In the case where a parameter is expected to be set to zero, the application is still expected
to pass in a valid parameter variable, however, the value that parameter contains should be
zero or blank. See Example 1 and Example 2 for code snippets which illustrate how to set
EntryNameAddr parameter to zero.

2. If the entryValueType is HWTJ_JSONTEXTVALUETYPE, the parser maintains a binding to the
buffer specified by this parameter even after the call to the HWTJCREN service completes. The
buffer must not be freed or reused until the caller has completed all parsing functions associated
with this JSON text string.

3. All entryValueType values must be encoded in EBCDIC (codepage 1047) or UTF-8. Their
encoding must be consistent with that of other data input to the JSON parser instance. If no
encoding is currently in effect (the entry being created is the first data input to the JSON parser
instance, and no encoding has been asserted via HWTJSENC), the parser instance will attempt to
discover the encoding of the value data, defaulting to EBCDIC when necessary. User assertion of
encoding prior to entry creation is recommended, to ensure that the entry value data is properly
handled.

EntryValueLen (non-REXX)
Supplied parameter.

• Type: Integer
• Length: 4 bytes

Specifies the length of the value to be added at the location specified by the
entryValueAddr parameter. This is only valid if entryValueType is HWTJ_STRINGVALUETYPE,
HWTJ_NUMVALUETYPE, or HWTJ_JSONTEXTVALUETYPE. For all other entryValueType values,
specify zero.

NewEntryValueHandle
Returned parameter.

• Type: Integer (non-REXX), character representation of an integer (REXX)
• Length: 4 bytes (non-REXX)

The handle that represents the new object entry that was created.

HWTJCREN

474 z/OS: z/OS MVS Callable Services for HLL

Note: If entryValueType is either HWTJ_OBJECTVALUETYPE or HWTJ_ARRAYVALUETYPE, the
returned handle should be treated as an object handle (objectHandle) on subsequent requests,
since the entry value is an object.

DiagArea (non-REXX)
DiagArea. (REXX)

Returned parameter.

• Type: Character string (non-REXX), stem variable (REXX)
• Length: 132 bytes (non-REXX)

A storage area provided by the caller that might contain additional diagnostic information related to
the service call. It consists of a 4-byte integer reason code field and a 128-byte character string error
text field.

ABEND codes
If the toolkit is unable to properly access the user-supplied parameter list, the call might result in a
X'04D' ABEND with a reason code of X'0001yyyy' for one of the following reasons:
yyyy

Reason
0000

The parameters passed by the caller are not in the primary address space.
0001

The number of parameters passed by the caller is incorrect.

Return codes
When the service returns control to the caller, GPR 15 and the returnCode parameter contain a
hexadecimal return code, as listed in Table 89 on page 475.

Table 89. Return codes for the HWTJCREN service

Hexadecimal return code
Equate symbol

Decimal return code
Equate symbol Meaning and action

0
HWTJ_OK

0
HWTJ_OK

Meaning: Successful completion.

Action: None.

101
HWTJ_PARSERHANDLE_INV

257
HWTJ_PARSERHANDLE_INV

Meaning: Program error. The
parserHandle parameter specified on
the service call is not a valid parser
handle (one that was returned by the
HWTJINIT service).

Action: Check for a probable coding error.

HWTJCREN

Chapter 20. The z/OS JSON parser 475

Table 89. Return codes for the HWTJCREN service (continued)

Hexadecimal return code
Equate symbol

Decimal return code
Equate symbol Meaning and action

102
HWTJ_PARSERHANDLE_INUSE

258
HWTJ_PARSERHANDLE_INUSE

Meaning: Program error. Two possible
reasons can result in this return code:

1. The parser handle is being used by
another caller. Only one outstanding
z/OS JSON parser service can use the
same parser handle.

2. A previous service request using this
parser handle resulted in an ABEND,
and the parser instance was unable
to indicate that its use of the parser
handle has completed.

Action: Check for a probable coding error.

1. While all z/OS JSON parser service
calls are synchronous (blocking), if
more than one task, process, or
thread is running simultaneously and
using the same parser handle, only
one is allowed access. Change the
application such that only one thread
attempts to use the same parser
handle at a time.

2. If the application detected an
ABEND while the z/OS JSON parser
was invoked, the parser instance
associated with the parser handle
could be permanently locked. To
release the storage associated with
the parser work area, issue the
HWTJTERM service call with a
forceOption of HWTJ_NOFORCE.
If this fails with the same return
code, issue another HWTJTERM
service call with a forceOption of
HWTJ_FORCE.

103
HWTJ_INACCESSIBLE_PARM

259
HWTJ_INACCESSIBLE_PARM

Meaning: Program error. The application
passed an input or output parameter
which was inaccessible by the parser. See
“General programming considerations”
on page 463 for details about z/OS JSON
parser recovery processing.

Action: Check for a probable coding
error. Likely, the recovery of the caller
detected this return code as a result
of the parser abnormally ending with
a X'0C4' system ABEND. Check the
diagArea for an explanation as to
which parameter was attempting to
be accessed when the parser service
calls abnormally ended. See “General
programming considerations” on page
463 for details about actions to consider
for this return code.

HWTJCREN

476 z/OS: z/OS MVS Callable Services for HLL

Table 89. Return codes for the HWTJCREN service (continued)

Hexadecimal return code
Equate symbol

Decimal return code
Equate symbol Meaning and action

104
HWTJ_HANDLE_INV

260
HWTJ_HANDLE_INV

Meaning: Program error. The value
specified for the objectHandle
parameter is not valid.

Action: Check for a probable coding error.
(For example, uninitialized handle or a
reference to a deleted entry.) Only pass
one of the following values:

• An object handle or entry value handle
on the objOrEntryHandle parameter
that was returned by a prior z/OS JSON
parser service call.

• A value of zero for the root object.

105
HWTJ_HANDLE_TYPE_ERROR

261
HWTJ_HANDLE_TYPE_ERROR

Meaning: Program error. The specified
objectHandle does not represent
an object or array object (JSON
type of HWTJ_OBJECT_TYPE or
HWTJ_ARRAY_TYPE).

Action: Check for a probable coding
error. Correct the mismatched handle
and specify an objectHandle value that
represents an object handle or array
object handle.

108
HWTJ_WORKAREA_TOO_SMALL

264
HWTJ_WORKAREA_TOO_SMALL

Meaning: Program error. The work
area (which contains the internal
representation of the entire JSON text,
including the JSON constructs, which
the HWTJCREN service attempted to
add) is not large enough to satisfy this
HWTJCREN request. The parser requires
a work area that is larger than the
maxParserWorkAreaSize value that
was specified on the HWTJINIT service.

Action: Check for a probable coding
error. IBM recommends specifying a
maxParserWorkAreaSize value of 0
(unlimited work area size available to the
parser). If the application cannot specify
this value, then modify the invocation of
the HWTJINIT service to specify a larger
maxParserWorkAreaSize value based
on the recommendations given in the
ReasonDesc section of the diagArea
and in the description of the HWTJINIT
maxParserWorkAreaSize parameter.

HWTJCREN

Chapter 20. The z/OS JSON parser 477

Table 89. Return codes for the HWTJCREN service (continued)

Hexadecimal return code
Equate symbol

Decimal return code
Equate symbol Meaning and action

109
HWTJ_PARSE_ERROR

265
HWTJ_PARSE_ERROR

Meaning: Supplied JSON text error.
The JSON text passed by the
caller to the HWTJCREN service
contains a syntax error. The specified
entryValueAddr points to a buffer
containing JSON text to be added to
the parser instance (entryValueType is
HWTJ_JSONTEXTVALUETYPE). However,
the supplied JSON text has one or more
syntax errors.

Note: This error can also be generated
if the specified JSONTextLen value is
greater than the actual length of the JSON
text and there are non-null characters
after the JSON text.

Action: Check the diagArea for a
complete explanation of the error. The
reasonCode portion of the diagArea
pinpoints the reason for the parse failure,
while the ReasonDesc portion points to
the exact location in the supplied JSON
text where the parser detected a JSON
syntax error.

10B
HWTJ_CANNOT_OBTAIN_WORKAREA

267
HWTJ_CANNOT_OBTAIN_WORKAREA

Meaning: System error. The Storage
Obtain service could not obtain the
work area storage as required by the
z/OS JSON parser during the HWTJCREN
service call.

Action: Consult the diagArea for the
Storage Obtain failure return code and
additional information found in the
ReasonDesc section. Check to see if
there is sufficient memory available
in order for the parser to obtain the
necessary amount of work area. If
the problem persists, search problem
reporting databases for a fix for the
problem. If no fix exists, contact the IBM
Support Center.

201
HWTJ_JCREN_ENTRYNAMEADDR_INV

513
HWTJ_JCREN_ENTRYNAMEADDR_INV

Meaning: Program error. The caller
specified a value of zero for the
address of the entry name buffer
when the specified objectHandle
was of type HWTJ_OBJECT_TYPE or
specified a nonzero value when the
specified objectHandle was of type
HWTJ_ARRAY_TYPE.

Action: Check for a probable coding
error. Specify the actual address of
the buffer containing the entry name
to be added if the objectHandle is
of type HWTJ_OBJECT_TYPE. Specify
zero if the objectHandle is of type
HWTJ_ARRAY_TYPE.

Note: Specifying a bad entry name buffer
address other than zero can result in
the parser terminating with an X’0C4’
system ABEND. See the description of the
HWTJ_INACCESSIBLE_PARM return code
for more information.

HWTJCREN

478 z/OS: z/OS MVS Callable Services for HLL

Table 89. Return codes for the HWTJCREN service (continued)

Hexadecimal return code
Equate symbol

Decimal return code
Equate symbol Meaning and action

202
HWTJ_JCREN_ENTRYNAMELEN_INV

514
HWTJ_JCREN_ENTRYNAMELEN_INV

Meaning: Program error. The caller
specified a value of zero as the
length of the entry name buffer
when the specified objectHandle
was of type HWTJ_OBJECT_TYPE or
specified a nonzero value when the
specified objectHandle was of type
HWTJ_ARRAY_TYPE.

Action: Check for a probable coding
error. Specify the actual length of the
entry name buffer if the objectHandle
is of type HWTJ_OBJECT_TYPE. Specify
zero if the objectHandle is of type
HWTJ_ARRAY_TYPE.

Note: Specifying a bad entry name buffer
length other than zero can result in
the parser terminating with a X'0C4'
system ABEND. See the description of the
HWTJ_INACCESSIBLE_PARM return code
for more information.

203
HWTJ_JCREN_ENTRYVALUEADDR_INV

515
HWTJ_JCREN_ENTRYVALUEADDR_INV

Meaning: Program error. The caller
specified one of the following values:

• A value of zero for the address
of the entry value buffer when
the specified entryValueType
was HWTJ_STRINGVALUETYPE,
HWTJ_NUMVALUETYPE,
HWTJ_JSONTEXTVALUETYPE

• A nonzero value for the address
of the entry value buffer when
the specified entryValueType
was HWTJ_OBJECTVALUETYPE,
HWTJ_ARRAYVALUETYPE,
HWTJ_TRUEVALUETYPE,
HWTJ_FALSEVALUETYPE, or
HWTJ_NULLVALUETYPE

Action: Check for a probable coding error.
Specify the correct value based on the
selected entryValueType. The parser
enforces a zero value for this parameter
whenever a value is specified that is
incompatible with the entry value type
the caller is trying to create.

Note: Specifying a bad entry value buffer
address other than zero may result in
the parser terminating with a X'0C4'
system ABEND. See the description of the
HWTJ_INACCESSIBLE_PARM return code
for more information.

HWTJCREN

Chapter 20. The z/OS JSON parser 479

Table 89. Return codes for the HWTJCREN service (continued)

Hexadecimal return code
Equate symbol

Decimal return code
Equate symbol Meaning and action

204
HWTJ_JCREN_ENTRYVALUELEN_INV

516
HWTJ_JCREN_ENTRYVALUELEN_INV

Meaning: Program error. The caller
specified one of the following values:

• A value of zero for the length
of the entry value buffer when
the specified entryValueType
was HWTJ_STRINGVALUETYPE,
HWTJ_NUMVALUETYPE,
HWTJ_JSONTEXTVALUETYPE

• A nonzero value for the length
of the entry value buffer when
the specified entryValueType
was HWTJ_OBJECTVALUETYPE,
HWTJ_ARRAYVALUETYPE,
HWTJ_TRUEVALUETYPE,
HWTJ_FALSEVALUETYPE, or
HWTJ_NULLVALUETYPE

Action: Check for a probable coding error.
Specify the correct value based on the
selected entryValueType.

Note: Specifying a bad entry value buffer
length other than zero may result in
the parser terminating with a X'0C4'
system ABEND. See the description of the
HWTJ_INACCESSIBLE_PARM return code
for more information.

205
HWTJ_JCREN_ENTRYVALUETYPE_INV

517
HWTJ_JCREN_ENTRYVALUETYPE_INV

Meaning: Program error. The caller
specified an invalid entryValueType
parameter.

Action: Check for a probable coding error.
Change the entryValueType to one of the
valid values.

206
HWTJ_JCREN_ENTRYNAME_INV

518
HWTJ_JCREN_ENTRYNAME_INV

Meaning: Program error. The caller
specified an entry name, which contains
a syntax error. (This is a valid return
code for all types of the objectHandle
parameter except HWTJ_ARRAY_TYPE.)

Action: Check for a probable coding error.
Consult Introducing JSON (json.org) or
other JSON specifications to determine
the correct syntax of a string or number
value in a name or value pair.

Note: The z/OS JSON parser adds the
beginning and ending double quotation
marks to all entry names. Any quotation
marks contained in the entry name is
flagged with this error.

HWTJCREN

480 z/OS: z/OS MVS Callable Services for HLL

http://json.org

Table 89. Return codes for the HWTJCREN service (continued)

Hexadecimal return code
Equate symbol

Decimal return code
Equate symbol Meaning and action

207
HWTJ_JCREN_ENTRYVALUE_INV

519
HWTJ_JCREN_ENTRYVALUE_INV

Meaning: Program error. The caller
specified an entry value, which contains
a syntax error. (This is a valid return
code for entryValueType parameter
values HWTJ_STRINGVALUETYPE and
HWTJ_NUMVALUETYPE.)

Action: Check for a probable coding error.
Consult Introducing JSON (json.org) or
other JSON specifications to determine
the correct syntax of a string or number
value in a name or value pair.

Note: The z/OS JSON parser adds the
beginning and ending double quotation
marks to all entry values with a type of
HWTJ_STRINGVALUETYPE. Any quotation
marks contained in the entry value buffer
is flagged with this error.

F01
HWTJ_INTERRUPT_STATUS_INV

3841
HWTJ_INTERRUPT_STATUS_INV

Meaning: Program error. The calling
program is disabled. The system rejects
the service request.

Action: Check the calling program for a
probable coding error.

F02
HWTJ_LOCKS_HELD

3842
HWTJ_LOCKS_HELD

Meaning: Program error. The calling
program is holding one or more locks. The
system rejects the service request.

Action: Check the calling program for a
probable coding error.

F03
HWTJ_UNSUPPORTED_RELEASE

3843
HWTJ_UNSUPPORTED_RELEASE

Meaning: The operating system level
does not support this service. The system
rejects the service request.

Action: Remove the calling program from
this system, install it on a system that
supports z/OS JSON parser services, and
run the calling program again.

FFF
HWTJ_UNEXPECTED_ERROR

4095
HWTJ_UNEXPECTED_ERROR

Meaning: System error. The service
encountered an unexpected error. The
system rejects the service call.

Action: Search problem reporting
databases for a fix for the problem. If no
fix exists, contact the IBM Support Center.

Examples
Example 1: C code adding an object into an array

Part of C code that illustrates how to add an object into an array. See SYS1.SAMPLIB(HWTJXC1) for full
sample.

 /* Declare a handle to hold the resulting employee object. */
 HWTJ_HANDLE_TYPE new_employee_handle;

 /* HWTJCREN requires a name address of 0 in this case. */
 char *entryNameAddr = 0;

 /* This call to HWTJCREN inserts the JSON data for the "Hank Hacker"
 * employee entry directly into the employee array. The

HWTJCREN

Chapter 20. The z/OS JSON parser 481

http://json.org

 * employee-array-handle parameter specifies the "insertion point" -- the
 * object/array that will contain this entry. The entryValueType
 * parameter specifies the format of the incoming data. In this case,
 * HWTJ_JSONTEXTVALUETYPE is specified because the data to be inserted is
 * valid JSON text. Note that the original JSON string is not modified by
 * HWTJCREN. The serialize service (HWTJSERI) can be used to obtain a new
 * JSON text string which will include the new "Hank Hacker" array element
 */
 hwtjcren(&return_code,
 parser_instance,
 employee_array, /* handle to the insertion point (input) */
 (char *)&entryNameAddr, /* name of the object (input)*/
 0, /* length of the name (input) */
 HWTJ_JSONTEXTVALUETYPE, /* type of data to be inserted (input) */
 (char *)&new_employee_json, /* JSON text string address (input) */
 strlen(new_employee_json), /* JSON text string length (input) */
 &new_employee_handle, /* handle to the new entry (output) */
 &diag_area);

Example 2: REXX code adding an object into an array

Part of REXX code that illustrates how to add an object into an array. See SYS1.SAMPLIB(HWTJXRX1) for
full sample.

/***/
/* Insert the input json body "all at once" as a new array element. Since it */
/* is not a name:value pair (rather, an update to the value of the array), we */
/* supply an empty newEntryName (in contrast with the next insert, to come). */
/**/
 newEntryName = ''
 newEntryValue = newEmployeeJsonText

 ReturnCode = -1
 DiagArea. = ''
 address hwtjson "hwtjcren ",
 "ReturnCode ",
 "parserHandle ",
 "employeeArrayHandle ",
 "newEntryName ",
 "HWTJ_JSONTEXTVALUETYPE ",
 "newEntryValue ",
 "handleOut ",
 "DiagArea."

HWTJDEL — Delete a JSON entry
Call the HWTJDEL service to delete content from a JSON text.

Description
The HWTJDEL service deletes a name:value pair from a JSON object or a value from a JSON array.
HWTJDEL accepts as input a handle representing the JSON value to be deleted, and a handle
representing the containing JSON object or JSON array. The value handle can represent any of the
following JSON types:

• number or string
• Literals true, false, or null
• JSON object or JSON array

There are several ways to obtain the handles required to delete a given JSON value, depending on the
type of value being deleted. See “Examples” on page 486 at the end of this service for pseudo-code
examples.

Environment
The requirements for the caller are:

HWTJDEL

482 z/OS: z/OS MVS Callable Services for HLL

Requirement Details

Minimum authorization: Supervisor state or problem state, any PSW key.

Dispatchable unit mode: Task or SRB.

Cross memory mode: Any PASN, any HASN, any SASN.

AMODE: 31 bit.

ASC mode: Primary or access register (AR).

Interrupt status: Enabled for I/O and external interrupts.

Locks: No locks held.

Control parameters: Control parameters must be in the primary address space and
addressable by the caller.

Linkage: Standard MVS linkage conventions are used.

Programming requirements
See “Syntax, linkage, and programming considerations” on page 462 for details about how to call the
z/OS JSON parser services in the various supported programming languages.

REXX programming considerations for the HWTJDEL service
All information for the HWTJDEL service applies for REXX requests.

Syntax
Write the call as shown in the following syntax diagram. You must code all parameters in the order shown.

Non-REXX parameters REXX parameters

CALL HWTJDEL(
 ReturnCode,
 ParserHandle,
 ObjectHandle,
 EntryValueHandle,
 DiagArea);

address hwjson "hwtjdel",
 "ReturnCode",
 "ParserHandle",
 "ObjectHandle",
 "EntryValueHandle",
 "DiagArea."

Parameters
The parameters are explained as follows:

ReturnCode
Returned parameter.

• Type: Integer (non-REXX), character representation of an integer (REXX)
• Length: 4 bytes (non-REXX)

Contains the return code from the service.
ParserHandle

Supplied parameter.

• Type: Character string
• Length: 12 bytes (non-REXX)

Specifies the JSON parser instance to be used.
ObjectHandle

Supplied parameter.

HWTJDEL

Chapter 20. The z/OS JSON parser 483

• Type: Integer (non-REXX), character representation of an integer (REXX)
• Length: 4 bytes (non-REXX)

Specifies an object handle representing a particular JSON object (object or array object) that contains
the object or array entry to be deleted. The objectHandle value is either zero for the root
object or an entry value handle (entryValueHandle) whose JSON type is HWTJ_OBJECT_TYPE
or HWTJ_ARRAY_TYPE.

EntryValueHandle
Supplied parameter.

• Type: Integer (non-REXX), character representation of an integer (REXX)
• Length: 4 bytes (non-REXX)

Specifies a handle representing a particular entry to be deleted. The entry value handle must
represent an entry contained within the JSON object or JSON array represented by ObjectHandle.
If ObjectHandle represents a JSON object, EntryValueHandle must represent a member of the
object. If ObjectHandle represents a JSON array, EntryValueHandle must represent an element
of the array.

DiagArea (non-REXX)
DiagArea. (REXX)

Returned parameter.

• Type: Character string (non-REXX), stem variable (REXX)
• Length: 132 bytes (non-REXX)

A storage area provided by the caller that might contain additional diagnostic information related to
the service call. It consists of a 4-byte integer reason code field and a 128-byte character string error
text field.

ABEND codes
If the toolkit is unable to properly access the user-supplied parameter list, the call might result in a
X'04D' ABEND with a reason code of X'000Eyyyy' for one of the following reasons:
yyyy

Reason
0000

The parameters passed by the caller are not in the primary address space.
0001

The number of parameters passed by the caller is incorrect.

Return codes
Table 90. Return codes for the HWTJDEL service

Hexadecimal return code
Equate symbol

Decimal return code
Equate symbol Meaning and action

0
HWTJ_OK

0
HWTJ_OK

Meaning: Successful completion.

Action: None.

101
HWTJ_PARSERHANDLE_INV

257
HWTJ_PARSERHANDLE_INV

Meaning: Program error. The
parserHandle parameter specified on
the service call is not a valid parser
handle (one that was returned by the
HWTJINIT service).

Action: Check for a probable coding error.

HWTJDEL

484 z/OS: z/OS MVS Callable Services for HLL

Table 90. Return codes for the HWTJDEL service (continued)

Hexadecimal return code
Equate symbol

Decimal return code
Equate symbol Meaning and action

102
HWTJ_PARSERHANDLE_INUSE

258
HWTJ_PARSERHANDLE_INUSE

Meaning: Program error. Two possible
reasons can result in this return code:

1. The parser handle is being used by
another caller. Only one outstanding
z/OS JSON parser service can use the
same parser handle.

2. A previous service request using this
parser handle resulted in an ABEND,
and the parser instance was unable
to indicate that its use of the parser
handle has completed.

Action: Check for a probable coding error.

1. While all z/OS JSON parser service
calls are synchronous (blocking), if
more than one task, process, or
thread is running simultaneously and
using the same parser handle, only
one is allowed access. Change the
application such that only one thread
attempts to use the same parser
handle at a time.

2. If the application detected an
ABEND while the z/OS JSON parser
was invoked, the parser instance
associated with the parser handle
could be permanently locked. To
release the storage associated with
the parser work area, issue the
HWTJTERM service call with a
forceOption of HWTJ_NOFORCE.
If this fails with the same return
code, issue another HWTJTERM
service call with a forceOption of
HWTJ_FORCE.

103
HWTJ_INACCESSIBLE_PARM

259
HWTJ_INACCESSIBLE_PARM

Meaning: Program error. The application
passed an input or output parameter
which was inaccessible by the parser. See
“General programming considerations”
on page 463 for details about z/OS JSON
parser recovery processing.

Action: Check for a probable coding
error. Likely, the recovery of the caller
detected this return code as a result
of the parser abnormally ending with
a X'0C4' system ABEND. Check the
diagArea for an explanation as to
which parameter was attempting to
be accessed when the parser service
calls abnormally ended. See “General
programming considerations” on page
463 for details about actions to consider
for this return code.

104
HWTJ_HANDLE_INV

260
HWTJ_HANDLE_INV

Meaning: Program error. The value
specified for the objectHandle or
entryValueHandle parameter is not
valid.

Action: Check for a probable coding error.
(For example, uninitialized handle or a
reference to a deleted entry.)

HWTJDEL

Chapter 20. The z/OS JSON parser 485

Table 90. Return codes for the HWTJDEL service (continued)

Hexadecimal return code
Equate symbol

Decimal return code
Equate symbol Meaning and action

105
HWTJ_HANDLE_TYPE_ERROR

261
HWTJ_HANDLE_TYPE_ERROR

Meaning: Program error. The specified
objectHandle does not represent
an object or array object (JSON
type of HWTJ_OBJECT_TYPE or
HWTJ_ARRAY_TYPE).

Action: Check for a probable coding error.
Specify a handle that represents a JSON
object or JSON array.

901
HWTJ_JDEL_ENTRY_NOTE_FOUND

2305
HWTJ_JDEL_ENTRY_NOTE_FOUND

Meaning: Program error. The specified
entryValueHandle does not represent
an entry contained within the object
specified by objectHandle

Action: Check for a probable coding error.

F01
HWTJ_INTERRUPT_STATUS_INV

3841
HWTJ_INTERRUPT_STATUS_INV

Meaning: Program error. The calling
program is disabled. The system rejects
the service request.

Action: Check the calling program for a
probable coding error.

F02
HWTJ_LOCKS_HELD

3842
HWTJ_LOCKS_HELD

Meaning: Program error. The calling
program is holding one or more locks. The
system rejects the service request.

Action: Check the calling program for a
probable coding error.

F03
HWTJ_UNSUPPORTED_RELEASE

3843
HWTJ_UNSUPPORTED_RELEASE

Meaning: The operating system level
does not support this service. The system
rejects the service request.

Action: Remove the calling program from
this system, install it on a system that
supports z/OS JSON parser services, and
run the calling program again.

FFF
HWTJ_UNEXPECTED_ERROR

4095
HWTJ_UNEXPECTED_ERROR

Meaning: System error. The service
encountered an unexpected error. The
system rejects the service call.

Action: Search problem reporting
databases for a fix for the problem. If no
fix exists, contact the IBM Support Center.

Examples
The following pseudo-code examples demonstrate several uses of HWTJDEL.

Example 1:

Given the following JSON text:

{
 "foo":{
 "mood":"happy",
 "color":"red",
 "bling":"baz"
 },
 "bar":["bag", 3, true]
}

HWTJDEL

486 z/OS: z/OS MVS Callable Services for HLL

To delete the "mood" entry from the "foo" object, first call HWTJSRCH to obtain a handle to the "foo"
object.

objectName = "foo"
rootObject = 0 /* search the root object */
startingHandle = 0 /* start with the first member */

HWTJSRCH (
 returnCode,
 parserHandle,
 HWTJ_SEARCHTYPE_GLOBAL,
 objectName,
 length(objectName),
 rootObject,
 startingHandle,
 targetObjectHandle,
 DiagArea
);

The output handle (targetObjectHandle) can then be used on a subsequent call to HWTJSRCH to find
the "mood" entry.

entryName = "mood"

HWTJSRCH (
 returnCode,
 parserHandle,
 HWTJ_SEARCHTYPE_OBJECT,
 entryName,
 length(entryName),
 targetObjectHandle,
 startingHandle,
 targetEntryHandle,
 diagArea
);

Having obtained the required targetObjectHandle and targetEntryHandle, a call to HWTJDEL
would look similar to this:

HWTJDEL(
 returnCode,
 parserHandle,
 targetObjectHandle,
 targetEntryHandle,
 diagArea
);

A subsequent call to HWTJSERI would return a JSON text string reflecting the delete operation.

{
 "foo":{
 "color":"red",
 "bling":"baz"
 },
 "bar":["bag", 3, true]
}

Example 2:

Deleting an element from a JSON array would require a slightly different sequence of operations.

Given the following JSON text:

{
 "bar":["bag", 3, true, {"a": "somewhere"}],
 "bling": "blam",

HWTJDEL

Chapter 20. The z/OS JSON parser 487

 "pi": 3.14159
}

To delete the fourth entry (the object with a single entry named "a") from the "bar" array , first call
HWTJSRCH to obtain a handle to the "bar" array.

arrayName = "bar"
rootObject = 0 /* Search the root */
startingHandle = 0 /* Start at the first member */
targetArrayHandle = 0

HWTJSRCH (
 returnCode,
 parserHandle,
 HWTJ_SEARCHTYPE_GLOBAL,
 arrayName,
 length(arrayName),
 rootObject,
 startHandle,
 targetArrayHandle,
 DiagArea
);

The output handle (targetArrayHandle) can then be used on a subsequent call to HWTJGAEN to
retrieve a handle to the fourth array value.

entryIndex = 3 /* Note that array entries are zero-indexed */

HWTJGAEN (
 returnCode,
 parserHandle,
 targetArrayHandle,
 entryIndex,
 targetEntryHandle,
 diagArea
);

Having obtained the required targetArrayHandle and targetEntryHandle, a call to HWTJDEL
would look similar to this:

HWTJDEL(
 returnCode,
 parserHandle,
 targetArrayHandle,
 targetEntryHandle,
 diagArea
);

A subsequent call to the HWTJSERI service would return a JSON text string reflecting the delete
operation.

{
 "bar":["bag", 3, true],
 "bling": "blam",
 "pi": 3.14159
}

HWTJDEL

488 z/OS: z/OS MVS Callable Services for HLL

HWTJESCT — Encode or decode escape sequences (REXX)
Call the HWTJESCT service to encode or decode escape sequences in a JSON text stream.

Description
This service is a simple utility program, which transforms non-conforming JSON text (not properly
escaped) into conforming JSON text (encode). This service can also be used to non-escape conforming
JSON text into text, which can be easily read or displayed (decode).

Note: This service currently supports only EBCDIC (codepage 1047) data input.

Syntax
Write the call as shown in the following syntax diagram. You must code all parameters in the order shown.

REXX parameters

address hwtjson "hwtjesct",
 "ReturnCode",
 "RequestType",
 "EnOrDeSource",
 "EnOrDeTarget",
 "DiagArea."

Parameters
The parameters are explained as follows:

ReturnCode
Returned parameter.

• Type: Character string

Contains the return code from the service.
RequestType

Supplied parameter.

• Type: Character string

A REXX variable that contains the request type. The request type can be set by either the
HWTJ_ENCODE or the HWTJ_DECODE string.

EnOrDeSource
Supplied parameter.

• Type: Character string

A REXX variable that identifies the string to encode or decode.
EnOrDeTarget

Returned parameter.

• Type: Character string

A REXX variable that the service sets to the encoded or decoded JSON text.
DiagArea.

Returned parameter.

• Type: Stem variable

HWTJESCT

Chapter 20. The z/OS JSON parser 489

Return codes
When the service returns control to the caller, GPR 15 and the returnCode parameter contain a
hexadecimal return code, as listed in “HWTJESCT — Encode or decode escape sequences (REXX)” on
page 489.

Table 91. Return codes for the HWTJESCT service

Hexadecimal return code
Equate symbol

Decimal return code
Equate symbol Meaning and action

0
HWTJ_OK

0
HWTJ_OK

Meaning: Successful completion.

Action: None.

HWTJGAEN — Get array entry
Call the HWTJGAEN service to obtain a handle for an array entry.

Description
The HWTJGAEN service returns the handle of a particular array entry (entryValueHandle) as specified
by the index of that array entry (arrayEntryIndex). The returned handle is used on subsequent calls to
service calls to inquire about the value of this particular array entry.

Environment
The requirements for the caller are:

Requirement Details

Minimum authorization: Supervisor state or problem state, any PSW key.

Dispatchable unit mode: Task or SRB.

Cross memory mode: Any PASN, any HASN, any SASN.

AMODE: 31-bit.

ASC mode: Primary or access register (AR).

Interrupt status: Enabled for I/O and external interrupts.

Locks: No locks held.

Control parameters: Control parameters must be in the primary address space and
addressable by the caller.

Linkage: Standard MVS linkage conventions are used.

Programming requirements
See “Syntax, linkage, and programming considerations” on page 462 for details about how to call the
z/OS JSON parser services in the various supported programming languages.

REXX programming considerations for the HWTJGAEN service
All information for the HWTJGAEN service applies for REXX requests.

Syntax
Write the call as shown in the following syntax diagram. You must code all parameters in the order shown.

HWTJGAEN

490 z/OS: z/OS MVS Callable Services for HLL

Non-REXX parameters REXX parameters

CALL HWTJGAEN(
 ReturnCode,
 ParserHandle,
 ObjectHandle,
 ArrayEntryIndex,
 EntryValueHandle,
 DiagArea);

address hwtjson "hwtjgaen",
 "ReturnCode",
 "ParserHandle",
 "ObjectHandle",
 "ArrayEntryIndex",
 "EntryValueHandle",
 "DiagArea."

Parameters
The parameters are explained as follows:

ReturnCode
Returned parameter.

• Type: Integer (non-REXX), character representation of an integer (REXX)
• Length: 4 bytes (non-REXX)

Contains the return code from the service.
ParserHandle

Supplied parameter.

• Type: Character string
• Length: 12 bytes (non-REXX)

Specifies the JSON parser instance to be used.
ObjectHandle

Supplied parameter.

• Type:Integer (non-REXX), character representation of an integer (REXX)
• Length: 4 bytes (non-REXX)

Specifies a particular JSON array object. The objectHandle must have a JSON type of
HWTJ_ARRAY_TYPE.

ArrayEntryIndex
Supplied parameter.

• Type: Integer (non-REXX), character representation of an integer (REXX)
• Length: 4 bytes (non-REXX)

Specifies the index of the nth entry of the array object specified by objectHandle.

Note: This is a zero-origin index, meaning that the first entry in the array has an index of zero; the nth

entry has an index of (n − 1).

EntryValueHandle
Returned parameter.

• Type: Integer (non-REXX), character representation of an integer (REXX)
• Length: 4 bytes (non-REXX)

The handle representing the particular entry value selected in the JSON array object.
DiagArea (non-REXX)
DiagArea. (REXX)

Returned parameter.

• Type: Character string (non-REXX), stem variable (REXX)
• Length: 132 bytes (non-REXX)

HWTJGAEN

Chapter 20. The z/OS JSON parser 491

A storage area provided by the caller that may contain additional diagnostic information related to the
service call. It consists of a 4-byte integer reason code field and a 128-byte character string error text
field.

ABEND codes
If the toolkit is unable to properly access the user-supplied parameter list, the call might result in a
X'04D' ABEND with a reason code of X'0002yyyy' for one of the following reasons:
yyyy

Reason
0000

The parameters passed by the caller are not in the primary address space.
0001

The number of parameters passed by the caller is incorrect.

Return codes
When the service returns control to the caller, GPR 15 and the returnCode parameter contain a
hexadecimal return code, as listed in Table 92 on page 492.

Table 92. Return codes for the HWTJGAEN service

Hexadecimal return code
Equate symbol

Decimal return code
Equate symbol Meaning and action

0
HWTJ_OK

0
HWTJ_OK

Meaning: Successful completion.

Action: None.

101
HWTJ_PARSERHANDLE_INV

257
HWTJ_PARSERHANDLE_INV

Meaning: Program error. The
parserHandle parameter specified on
the service call is not a valid parser
handle (one that was returned by the
HWTJINIT service).

Action: Check for a probable coding error.

HWTJGAEN

492 z/OS: z/OS MVS Callable Services for HLL

Table 92. Return codes for the HWTJGAEN service (continued)

Hexadecimal return code
Equate symbol

Decimal return code
Equate symbol Meaning and action

102
HWTJ_PARSERHANDLE_INUSE

258
HWTJ_PARSERHANDLE_INUSE

Meaning: Program error. Two possible
reasons can result in this return code:

1. The parser handle is being used by
another caller. Only one outstanding
z/OS JSON parser service can use the
same parser handle.

2. A previous service request using this
parser handle resulted in an ABEND,
and the parser instance was unable
to indicate that its use of the parser
handle has completed.

Action: Check for a probable coding error.

1. While all z/OS JSON parser service
calls are synchronous (blocking), if
more than one task, process, or
thread is running simultaneously and
using the same parser handle, only
one will be allowed access. Change
the application such that only one
thread attempts to use the same
parser handle at a time.

2. If the application detected an
ABEND while the z/OS JSON parser
was invoked, the parser instance
associated with the parser handle
could be permanently locked. To
release the storage associated with
the parser work area, issue the
HWTJTERM service call with a
forceOption of HWTJ_NOFORCE.
If this fails with the same return
code, issue another HWTJTERM
service call with a forceOption of
HWTJ_FORCE.

103
HWTJ_INACCESSIBLE_PARM

259
HWTJ_INACCESSIBLE_PARM

Meaning: Program error. The application
passed an input or output parameter
which was inaccessible by the parser. See
“General programming considerations”
on page 463 for details about z/OS JSON
parser recovery processing.

Action: Check for a probable coding error.
Likely, the recovery of the caller detected
this return code as a result of the parser
abnormally ending with a X'0C4' system
ABEND. Check the diagArea for an
explanation as to which parameter was
attempting to be accessed when the
parser service call abnormally ended. See
“General programming considerations”
on page 463 for details about actions to
consider for this return code.

104
HWTJ_HANDLE_INV

260
HWTJ_HANDLE_INV

Meaning: Program error. The value
specified for the objectHandle
parameter is not valid.

Action: Check for a probable coding error.
(For example, uninitialized handle or a
reference to a deleted entry.) Only pass
an objectHandle parameter that was
returned by a prior z/OS JSON parser
service call.

HWTJGAEN

Chapter 20. The z/OS JSON parser 493

Table 92. Return codes for the HWTJGAEN service (continued)

Hexadecimal return code
Equate symbol

Decimal return code
Equate symbol Meaning and action

105
HWTJ_HANDLE_TYPE_ERROR

261
HWTJ_HANDLE_TYPE_ERROR

Meaning: Program error. The specified
objectHandle does not represent
an array object (JSON type of
HWTJ_ARRAY_TYPE).

Action: Check for a probable coding
error. Correct the mismatched handle
and specify an objectHandle value that
represents an array handle.

107
HWTJ_INDEX_OUT_OF_BOUNDS

262
HWTJ_INDEX_OUT_OF_BOUNDS

Meaning: Program error. The index value
specified by the arrayEntryIndex
parameter is greater than the number of
entries in the array.

Action: Check for a probable coding error.

• Issue the HWTJGNUE (Get number of
entries) service to determine the upper
bound for the number of array entries.

• Remember that the number of entries
returned is the actual count of entries,
but accessing a particular entry uses
zero-origin indexing. To iterate through
all the elements, the application must
start at the first entry (index 0) up to
the number of entries, minus 1.

F01
HWTJ_INTERRUPT_STATUS_INV

3841
HWTJ_INTERRUPT_STATUS_INV

Meaning: Program error. The calling
program is disabled. The system rejects
the service request.

Action: Check the calling program for a
probable coding error.

F02
HWTJ_LOCKS_HELD

3842
HWTJ_LOCKS_HELD

Meaning: Program error. The calling
program is holding one or more locks. The
system rejects the service request.

Action: Check the calling program for a
probable coding error.

F03
HWTJ_UNSUPPORTED_RELEASE

3843
HWTJ_UNSUPPORTED_RELEASE

Meaning: The operating system level
does not support this service. The system
rejects the service request.

Action: Remove the calling program from
this system, install it on a system that
supports z/OS JSON parser services, and
run the calling program again.

FFF
HWTJ_UNEXPECTED_ERROR

4095
HWTJ_UNEXPECTED_ERROR

Meaning: System error. The service
encountered an unexpected error. The
system rejects the service call.

Action: Search problem reporting
databases for a fix for the problem. If no
fix exists, contact the IBM Support Center.

HWTJGBOV — Get boolean value
Call the HWTJGBOV service to obtain the boolean value of an entry.

Description
The HWTJGBOV service returns the boolean value of the entry, which is associated with a specified entry
handle (entryValueHandle).

HWTJGBOV

494 z/OS: z/OS MVS Callable Services for HLL

Environment
The requirements for the caller are:

Requirement Details

Minimum authorization: Supervisor state or problem state, any PSW key.

Dispatchable unit mode: Task or SRB.

Cross memory mode: Any PASN, any HASN, any SASN.

AMODE: 31 bit.

ASC mode: Primary or access register (AR).

Interrupt status: Enabled for I/O and external interrupts.

Locks: No locks held.

Control parameters: Control parameters must be in the primary address space and
addressable by the caller.

Linkage: Standard MVS linkage conventions are used.

Programming requirements
See “Syntax, linkage, and programming considerations” on page 462 for details about how to call the
z/OS JSON parser services in the various supported programming languages.

REXX programming considerations for the HWTJGBOV service
All information for the HWTJGBOV service applies for REXX requests.

Syntax
Write the call as shown in the following syntax diagram. You must code all parameters in the order shown.

Non-REXX parameters REXX parameters

CALL HWTJGBOV(
 ReturnCode,
 ParserHandle,
 EntryValueHandle,
 BooleanValue
 DiagArea);

address hwtjson "hwtjgbov",
 "ReturnCode",
 "ParserHandle",
 "EntryValueHandle",
 "BooleanValue",
 "DiagArea."

Parameters
The parameters are explained as follows:

ReturnCode
Returned parameter.

• Type: Integer (non-REXX), character representation of an integer (REXX)
• Length: 4 bytes (non-REXX)

Contains the return code from the service.
ParserHandle

Supplied parameter.

• Type: Character string
• Length: 12 bytes (non-REXX)

Specifies the JSON parser instance to be used.

HWTJGBOV

Chapter 20. The z/OS JSON parser 495

EntryValueHandle
Supplied parameter.

• Type: Integer (non-REXX), character representation of an integer (REXX)
• Length: 4 bytes (non-REXX)

Specifies a handle representing a particular entry in a JSON object that has a JSON type of boolean.
BooleanValue

Returned parameter.

• Type: Integer (non-REXX), character representation of an integer (REXX)
• Length: 1 byte (non-REXX)

A value contains one of the following values: HWTJ_true or HWTJ_false. Constants are provided in
the associated interface definition file (IDF).

DiagArea (non-REXX)
DiagArea. (REXX)

Returned parameter.

• Type: Character string (non-REXX), stem variable (REXX)
• Length: 132 bytes (non-REXX)

A storage area provided by the caller that might contain additional diagnostic information related to
the service call. It consists of a 4-byte integer reason code field and a 128-byte character string error
text field.

ABEND codes
If the toolkit is unable to properly access the user-supplied parameter list, the call might result in a
X'04D' ABEND with a reason code of X'0003yyyy' for one of the following reasons:
yyyy

Reason
0000

The parameters passed by the caller are not in the primary address space.
0001

The number of parameters passed by the caller is incorrect.

Return codes
When the service returns control to the caller, GPR 15 and the returnCode parameter contain a
hexadecimal return code, as listed in Table 93 on page 496.

Table 93. Return codes for the HWTJGBOV service

Hexadecimal return code
Equate symbol

Decimal return code
Equate symbol Meaning and action

0
HWTJ_OK

0
HWTJ_OK

Meaning: Successful completion.

Action: None.

101
HWTJ_PARSERHANDLE_INV

257
HWTJ_PARSERHANDLE_INV

Meaning: Program error. The
parserHandle parameter specified on
the service call is not a valid parser
handle (one that was returned by the
HWTJINIT service).

Action: Check for a probable coding error.

HWTJGBOV

496 z/OS: z/OS MVS Callable Services for HLL

Table 93. Return codes for the HWTJGBOV service (continued)

Hexadecimal return code
Equate symbol

Decimal return code
Equate symbol Meaning and action

102
HWTJ_PARSERHANDLE_INUSE

258
HWTJ_PARSERHANDLE_INUSE

Meaning: Program error. Two possible
reasons can result in this return code:

1. The parser handle is being used by
another caller. Only one outstanding
z/OS JSON parser service can use the
same parser handle.

2. A previous service request using this
parser handle resulted in an ABEND,
and the parser instance was unable
to indicate that its use of the parser
handle has completed.

Action: Check for a probable coding error.

1. While all z/OS JSON parser service
calls are synchronous (blocking), if
more than one task, process, or
thread is running simultaneously and
using the same parser handle, only
one is allowed access. Change the
application such that only one thread
attempts to use the same parser
handle at a time.

2. If the application detected an
ABEND while the z/OS JSON parser
was invoked, the parser instance
associated with the parser handle
could be permanently locked. To
release the storage associated with
the parser work area, issue the
HWTJTERM service call with a
forceOption of HWTJ_NOFORCE.
If this fails with the same return
code, issue another HWTJTERM
service call with a forceOption of
HWTJ_FORCE.

103
HWTJ_INACCESSIBLE_PARM

259
HWTJ_INACCESSIBLE_PARM

Meaning: Program error. The application
passed an input or output parameter
which was inaccessible by the parser. See
“General programming considerations”
on page 463 for details about z/OS JSON
parser recovery processing.

Action: Check for a probable coding
error. Likely, the recovery of the caller
detected this return code as a result
of the parser abnormally ending with
a X'0C4' system ABEND. Check the
diagArea for an explanation as to
which parameter was attempting to
be accessed when the parser service
calls abnormally ended. See “General
programming considerations” on page
463 for details about actions to consider
for this return code.

104
HWTJ_HANDLE_INV

260
HWTJ_HANDLE_INV

Meaning: Program error. The value
specified for the objectHandle
parameter is not valid.

Action: Check for a probable coding error.
(For example, uninitialized handle or a
reference to a deleted entry.) Only pass
an objectHandle parameter that was
returned by a prior z/OS JSON parser
service call.

HWTJGBOV

Chapter 20. The z/OS JSON parser 497

Table 93. Return codes for the HWTJGBOV service (continued)

Hexadecimal return code
Equate symbol

Decimal return code
Equate symbol Meaning and action

105
HWTJ_HANDLE_TYPE_ERROR

261
HWTJ_HANDLE_TYPE_ERROR

Meaning: Program error. The specified
entryValueHandle does not represent
an entry value with a JSON data type of
HWTJ_BOOLEAN_TYPE.

Action: Check for a probable coding
error. Correct the mismatched handle and
specify an entryValueHandle value
that represents a boolean entry value
handle.

F01
HWTJ_INTERRUPT_STATUS_INV

3841
HWTJ_INTERRUPT_STATUS_INV

Meaning: Program error. The calling
program is disabled. The system rejects
the service request.

Action: Check the calling program for a
probable coding error.

F02
HWTJ_LOCKS_HELD

3842
HWTJ_LOCKS_HELD

Meaning: Program error. The calling
program is holding one or more locks. The
system rejects the service request.

Action: Check the calling program for a
probable coding error.

F03
HWTJ_UNSUPPORTED_RELEASE

3843
HWTJ_UNSUPPORTED_RELEASE

Meaning: The operating system level
does not support this service. The system
rejects the service request.

Action: Remove the calling program from
this system, install it on a system that
supports z/OS JSON parser services, and
run the calling program again.

FFF
HWTJ_UNEXPECTED_ERROR

4095
HWTJ_UNEXPECTED_ERROR

Meaning: System error. The service
encountered an unexpected error. The
system rejects the service call.

Action: Search problem reporting
databases for a fix for the problem. If no
fix exists, contact the IBM Support Center.

HWTJGENC — Get JSON encoding
Call the HWTJGENC service to determine which encoding type is in effect for a JSON parser instance.

Description
This service returns one of the values { HWTJ_ENCODING_UNKNOWN, HWTJ_ENCODING_EBCDIC,
HWTJ_ENCODING_UTF8 } which reflects what the user may have asserted to the JSON parser (using
HWTJSENC), or what the JSON parser instance has discovered from its processing of input data.

Environment
The requirements for the caller are:

Requirement Details

Minimum authorization: Supervisor state or problem state, any PSW key.

Dispatchable unit mode: Task or SRB.

Cross memory mode: Any PASN, any HASN, any SASN.

AMODE: 31 bit.

HWTJGENC

498 z/OS: z/OS MVS Callable Services for HLL

Requirement Details

ASC mode: Primary or access register (AR).

Interrupt status: Enabled for I/O and external interrupts.

Locks: No locks held.

Control parameters: Control parameters must be in the primary address space and
addressable by the caller.

Linkage: Standard MVS linkage conventions are used.

Programming requirements
See “Syntax, linkage, and programming considerations” on page 462 for details about how to call the
z/OS JSON parser services in the various supported programming languages.

REXX programming considerations for the HWTJGENC service.

All information for the HWTJGENC service applies for REXX requests.

Syntax
Write the call as shown in the following syntax diagram. You must code all parameters in the order shown.

Non-REXX parameters REXX parameters

CALL HWTJGENC(
 ReturnCode,
 ParserHandle,
 Encoding,
 DiagArea);

address hwtjson "hwtjgenc",
 "ReturnCode",
 "ParserHandle",
 "Encoding",
 "DiagArea."

Parameters
The parameters are explained as follows:

ReturnCode
Returned parameter.

• Type: Integer (non-REXX), character representation of an integer (REXX)
• Length: 4 bytes (non-REXX)

Contains the return code from the service.
ParserHandle

Supplied parameter.

• Type: Character string
• Length: 12 bytes (non-REXX)

Specifies the JSON parser instance to be used.
Encoding

Returned parameter.

• Type: Integer (non-REXX), character representation of an integer (REXX)
• Length: 4 bytes (non-REXX)

Contains the value of any encoding type which may be in effect for the JSON parser instance
represented by the input parser handle. Constants for the possible values are defined in the supplied
interface definition files (IDFs).

HWTJGENC

Chapter 20. The z/OS JSON parser 499

DiagArea (non-REXX)
DiagArea. (REXX)

Returned parameter.

• Type: Character string (non-REXX), stem variable (REXX)
• Length: 132 bytes (non-REXX)

A storage area provided by the caller that might contain additional diagnostic information related to
the service call. It consists of a 4-byte integer reason code field and a 128-byte character string error
text field.

Abend codes
If the toolkit is unable to properly access the user-supplied parameter list, the call might result in a
X'04D' ABEND with a reason code of X'0010yyyy' for one of the following reasons:
yyyy

Reason
0000

The parameters passed by the caller are not in the primary address space.
0001

The number of parameters passed by the caller is incorrect.

Return codes
When the service returns control to the caller, GPR 15 and the returnCode parameter contain a
hexadecimal return code, as listed in “HWTJESCT — Encode or decode escape sequences (REXX)” on
page 489.

Table 94. Return codes for the HWTJGENC service

Hexadecimal return code
Equate symbol

Decimal return code
Equate symbol Meaning and action

0
HWTJ_OK

0
HWTJ_OK

Meaning: Successful completion.

Action: None.

101
HWTJ_PARSERHANDLE_INV

257
HWTJ_PARSERHANDLE_INV

Meaning: Program error. The
parserHandle parameter specified on
the service call is not a valid parser
handle (one that was returned by the
HWTJINIT service).

Action: Check for a probable coding error.

HWTJGENC

500 z/OS: z/OS MVS Callable Services for HLL

Table 94. Return codes for the HWTJGENC service (continued)

Hexadecimal return code
Equate symbol

Decimal return code
Equate symbol Meaning and action

102
HWTJ_PARSERHANDLE_INUSE

258
HWTJ_PARSERHANDLE_INUSE

Meaning: Program error. Two possible
reasons can result in this return code:

1. The parser handle is being used by
another caller. Only one outstanding
z/OS JSON parser service can use the
same parser handle.

2. A previous service request using this
parser handle resulted in an ABEND,
and the parser instance was unable
to indicate that its use of the parser
handle has completed.

Action: Check for a probable coding error.

1. While all z/OS JSON parser service
calls are synchronous (blocking), if
more than one task, process, or
thread is running simultaneously and
using the same parser handle, only
one is allowed access. Change the
application such that only one thread
attempts to use the same parser
handle at a time.

2. If the application detected an
ABEND while the z/OS JSON parser
was invoked, the parser instance
associated with the parser handle
could be permanently locked. To
release the storage associated with
the parser work area, issue the
HWTJTERM service call with a
forceOption of HWTJ_NOFORCE.
If this fails with the same return
code, issue another HWTJTERM
service call with a forceOption of
HWTJ_FORCE.

103
HWTJ_INACCESSIBLE_PARM

259
HWTJ_INACCESSIBLE_PARM

Meaning: Program error. The application
passed an input or output parameter
which was inaccessible by the parser. See
“General programming considerations”
on page 463 for details about z/OS JSON
parser recovery processing.

Action: Check for a probable coding
error. Likely, the recovery of the caller
detected this return code as a result
of the parser abnormally ending with
a X'0C4' system ABEND. Check the
diagArea for an explanation as to
which parameter was attempting to
be accessed when the parser service
calls abnormally ended. See “General
programming considerations” on page
463 for details about actions to consider
for this return code.

F01
HWTJ_INTERRUPT_STATUS_INV

3841
HWTJ_INTERRUPT_STATUS_INV

Meaning: Program error. The calling
program is disabled. The system rejects
the service request.

Action: Check the calling program for a
probable coding error.

HWTJGENC

Chapter 20. The z/OS JSON parser 501

Table 94. Return codes for the HWTJGENC service (continued)

Hexadecimal return code
Equate symbol

Decimal return code
Equate symbol Meaning and action

F02
HWTJ_LOCKS_HELD

3842
HWTJ_LOCKS_HELD

Meaning: Program error. The calling
program is holding one or more locks. The
system rejects the service request.

Action: Check the calling program for a
probable coding error.

F03
HWTJ_UNSUPPORTED_RELEASE

3843
HWTJ_UNSUPPORTED_RELEASE

Meaning: The operating system level
does not support this service. The system
rejects the service request.

Action: Remove the calling program from
this system, install it on a system that
supports z/OS JSON parser services, and
run the calling program again.

FFF
HWTJ_UNEXPECTED_ERROR

4095
HWTJ_UNEXPECTED_ERROR

Meaning: System error. The service
encountered an unexpected error. The
system rejects the service call.

Action: Search problem reporting
databases for a fix for the problem. If no
fix exists, contact the IBM Support Center.

HWTJGJST — Get JSON type
Call the HWTJGJST service to obtain the JSON data type of an entry or object.

Description
The HWTJGJST service returns the type of JSON data which is associated with the specified entry object
or entry handle (objOrEntryValueHandle). This value can then be used by subsequent parse methods
to take specific action based on the type of the data.

Example: If the objOrEntryValueHandle represents an object (JSONType = HWTJ_OBJECT_TYPE),
the HWTJGNUE (Get number of entries) parse method can be used to determine the number of entries
in the object. If the objOrEntryValueHandle represents a string (JSONType = HWTJ_STRING_TYPE),
the HWTJGVAL (Get value) parse method can be used to get the actual string text.

Environment
The requirements for the caller are:

Requirement Details

Minimum authorization: Supervisor state or problem state, any PSW key.

Dispatchable unit mode: Task or SRB.

Cross memory mode: Any PASN, any HASN, any SASN.

AMODE: 31 bit.

ASC mode: Primary or access register (AR).

Interrupt status: Enabled for I/O and external interrupts.

Locks: No locks held.

Control parameters: Control parameters must be in the primary address space and
addressable by the caller.

Linkage: Standard MVS linkage conventions are used.

HWTJGJST

502 z/OS: z/OS MVS Callable Services for HLL

Programming requirements
See “Syntax, linkage, and programming considerations” on page 462 for details about how to call the
z/OS JSON parser services in the various supported programming languages.

REXX programming considerations for the HWTJGJST service
All information for the HWTJGJST service applies for REXX requests.

Syntax
Write the call as shown in the following syntax diagram. You must code all parameters in the order shown.

Non-REXX parameters REXX parameters

CALL HWTJGJST(
 ReturnCode,
 ParserHandle,
 ObjOrEntryValueHandle,
 JSONType,
 DiagArea);

address hwtjson "hwtjgjst",
 "ReturnCode",
 "ParserHandle",
 "ObjOrEntryValueHandle",
 "JSONType",
 "DiagArea."

Parameters
The parameters are explained as follows:

ReturnCode
Returned parameter.

• Type: Integer (non-REXX), character representation of an integer (REXX)
• Length: 4 bytes (non-REXX)

Contains the return code from the service.
ParserHandle

Supplied parameter.

• Type: Character string
• Length: 12 bytes (non-REXX)

Specifies the JSON parser instance to be used.
ObjOrEntryValueHandle

Supplied parameter.

• Type: Integer (non-REXX), character representation of an integer (REXX)
• Length: 4 bytes (non-REXX)

Specifies a handle representing either a JSON object or a JSON entry value. A JSON entry is a
particular JSON name or value pair.

JSONType
Returned parameter.

• Type: Integer (non-REXX), character representation of an integer (REXX)
• Length: 4 bytes (non-REXX)

A value representing the type of data of the item represented by the objOrEntryValueHandle
parameter. Constants for the type values are defined in the supplied interface definition files (IDFs).
For REXX, consult one of the other high-level language IDFs for a list of possible values.

DiagArea (non-REXX)
DiagArea. (REXX)

Returned parameter.

HWTJGJST

Chapter 20. The z/OS JSON parser 503

• Type: Character string (non-REXX), stem variable (REXX)
• Length: 132 bytes (non-REXX)

A storage area provided by the caller that might contain additional diagnostic information related to
the service call. It consists of a 4-byte integer reason code field and a 128-byte character string error
text field.

ABEND codes
If the toolkit is unable to properly access the user-supplied parameter list, the call might result in a
X'04D' ABEND with a reason code of X'0004yyyy' for one of the following reasons:
yyyy

Reason
0000

The parameters passed by the caller are not in the primary address space.
0001

The number of parameters passed by the caller is incorrect.

Return codes
When the service returns control to the caller, GPR 15 and the returnCode parameter contain a
hexadecimal return code, as listed in Table 95 on page 504.

Table 95. Return codes for the HWTJGJST service

Hexadecimal return code
Equate symbol

Decimal return code
Equate symbol Meaning and action

0
HWTJ_OK

0
HWTJ_OK

Meaning: Successful completion.

Action: None.

101
HWTJ_PARSERHANDLE_INV

257
HWTJ_PARSERHANDLE_INV

Meaning: Program error. The
parserHandle parameter specified on
the service call is not a valid parser
handle (one that was returned by the
HWTJINIT service).

Action: Check for a probable coding error.

HWTJGJST

504 z/OS: z/OS MVS Callable Services for HLL

Table 95. Return codes for the HWTJGJST service (continued)

Hexadecimal return code
Equate symbol

Decimal return code
Equate symbol Meaning and action

102
HWTJ_PARSERHANDLE_INUSE

258
HWTJ_PARSERHANDLE_INUSE

Meaning: Program error. Two possible
reasons can result in this return code:

1. The parser handle is being used by
another caller. Only one outstanding
z/OS JSON parser service can use the
same parser handle.

2. A previous service request using this
parser handle resulted in an ABEND,
and the parser instance was unable
to indicate that its use of the parser
handle has completed.

Action: Check for a probable coding error.

1. While all z/OS JSON parser service
calls are synchronous (blocking), if
more than one task, process, or
thread is running simultaneously and
using the same parser handle, only
one is allowed access. Change the
application such that only one thread
attempts to use the same parser
handle at a time.

2. If the application detected an
ABEND while the z/OS JSON parser
was invoked, the parser instance
associated with the parser handle
could be permanently locked. To
release the storage associated with
the parser work area, issue the
HWTJTERM service call with a
forceOption of HWTJ_NOFORCE.
If this fails with the same return
code, issue another HWTJTERM
service call with a forceOption of
HWTJ_FORCE.

103
HWTJ_INACCESSIBLE_PARM

259
HWTJ_INACCESSIBLE_PARM

Meaning: Program error. The application
passed an input or output parameter
which was inaccessible by the parser. See
“General programming considerations”
on page 463 for details about z/OS JSON
parser recovery processing.

Action: Check for a probable coding
error. Likely, the recovery of the caller
detected this return code as a result
of the parser abnormally ending with
a X'0C4' system ABEND. Check the
diagArea for an explanation as to
which parameter was attempting to
be accessed when the parser service
calls abnormally ended. See “General
programming considerations” on page
463 for details about actions to consider
for this return code.

HWTJGJST

Chapter 20. The z/OS JSON parser 505

Table 95. Return codes for the HWTJGJST service (continued)

Hexadecimal return code
Equate symbol

Decimal return code
Equate symbol Meaning and action

104
HWTJ_HANDLE_INV

260
HWTJ_HANDLE_INV

Meaning: Program error. The
value specified for the
objOrEntryValueHandle parameter is
not valid.

Action: Check for a probable coding
error. (For example, uninitialized handle
or a reference to a deleted entry.) Pass
either of the following values in the
objOrEntryValueHandle parameter:

• An object value handle or entry value
handle that was returned by a prior
z/OS JSON parser service call

• A zero for the root object

F01
HWTJ_INTERRUPT_STATUS_INV

3841
HWTJ_INTERRUPT_STATUS_INV

Meaning: Program error. The calling
program is disabled. The system rejects
the service request.

Action: Check the calling program for a
probable coding error.

F02
HWTJ_LOCKS_HELD

3842
HWTJ_LOCKS_HELD

Meaning: Program error. The calling
program is holding one or more locks. The
system rejects the service request.

Action: Check the calling program for a
probable coding error.

F03
HWTJ_UNSUPPORTED_RELEASE

3843
HWTJ_UNSUPPORTED_RELEASE

Meaning: The operating system level
does not support this service. The system
rejects the service request.

Action: Remove the calling program from
this system, install it on a system that
supports z/OS JSON parser services, and
run the calling program again.

FFF
HWTJ_UNEXPECTED_ERROR

4095
HWTJ_UNEXPECTED_ERROR

Meaning: System error. The service
encountered an unexpected error. The
system rejects the service call.

Action: Search problem reporting
databases for a fix for the problem. If no
fix exists, contact the IBM Support Center.

HWTCONST — Initialize predefined variables (REXX)
Call the HWTCONST service to initialize predefined variables in the current REXX variable pool.

Description
This service sets the variables with names prefixed for HWTJ corresponding to the interface definition for
the JSON toolkit. This service is helpful when using symbolic names in checking for specific return codes
or when specifying constant values in the application. The variable HWT_CONSTANTS is set to a list of the
interface variable names, which is useful on a procedure expose statement to make the variables visible
to a procedure.

Note: This service also sets the variables for the z/OS HTTP Enabler (HWTH-prefixed) as well. If the REXX
application utilizes both the HTTP and JSON parser portions of the toolkit, it is only necessary to call
HWTCONST once to initialize all the variables.

HWTCONST

506 z/OS: z/OS MVS Callable Services for HLL

Syntax
Write the call as shown in the following syntax diagram. You must code all parameters in the order shown.

REXX parameters

address hwtjson "hwtconst",
 "ReturnCode",
 "DiagArea."

Parameters
The parameters are explained as follows:

ReturnCode
Returned parameter.

• Type: Character string

Contains the return code from the service.
DiagArea.

Returned parameter.

• Type: Stem variable

Return codes
When the service returns control to the caller, GPR 15 and the returnCode parameter contain a
hexadecimal return code, as listed in “HWTCONST — Initialize predefined variables (REXX)” on page
469.

Table 96. Return codes for the HWTCONST service

Hexadecimal return code
Equate symbol

Decimal return code
Equate symbol Meaning and action

0
HWTJ_OK

0
HWTJ_OK

Meaning: Successful completion.

Action: None.

HWTJGNUE — Get number of entries
Call the HWTJGNUE service to obtain the number of entries (name or value pairs) associated with an
object.

Description
The HWTJGNUE service returns the number of entries (name or value pairs) associated with the object
represented by the specified object handle (objectHandle). The returned value is typically used on
subsequent calls as a loop control to traverse all of the object elements.

Environment
The requirements for the caller are:

Requirement Details

Minimum authorization: Supervisor state or problem state, any PSW key.

Dispatchable unit mode: Task or SRB.

Cross memory mode: Any PASN, any HASN, any SASN.

HWTJGNUE

Chapter 20. The z/OS JSON parser 507

Requirement Details

AMODE: 31 bit.

ASC mode: Primary or access register (AR).

Interrupt status: Enabled for I/O and external interrupts.

Locks: No locks held.

Control parameters: Control parameters must be in the primary address space and
addressable by the caller.

Linkage: Standard MVS linkage conventions are used.

Programming requirements
See “Syntax, linkage, and programming considerations” on page 462 for details about how to call the
z/OS JSON parser services in the various supported programming languages.

REXX programming considerations for the HWTJGNUE service
All information for the HWTJGNUE service applies for REXX requests.

Syntax
Write the call as shown in the following syntax diagram. You must code all parameters in the order shown.

Non-REXX parameters REXX parameters

CALL HWTJGNUE(
 ReturnCode,
 ParserHandle,
 ObjectHandle,
 NumOfEntries,
 DiagArea);

address hwtjson "hwtjgnue",
 "ReturnCode",
 "ParserHandle",
 "ObjectHandle",
 "NumOfEntries",
 "DiagArea."

Parameters
The parameters are explained as follows:

ReturnCode
Returned parameter.

• Type: Integer (non-REXX), character representation of an integer (REXX)
• Length: 4 bytes (non-REXX)

Contains the return code from the service.
ParserHandle

Supplied parameter.

• Type: Character string
• Length: 12 bytes (non-REXX)

Specifies the JSON parser instance to be used.
ObjectHandle

Supplied parameter.

• Type: Integer (non-REXX), character representation of an integer (REXX)
• Length: 4 bytes (non-REXX)

HWTJGNUE

508 z/OS: z/OS MVS Callable Services for HLL

Specifies a handle representing a particular JSON object (object or array object). The objectHandle
value can be 0 (zero) for the root object or an entry value handle (entryValueHandle) whose JSON
type is HWTJ_OBJECT_TYPE or HWTJ_ARRAY_TYPE.

NumOfEntries
Returned parameter.

• Type: Integer (non-REXX), character representation of an integer (REXX)
• Length: 4 bytes (non-REXX)

A value represents the number of entries found in the object or array represented by the
objectHandle parameter.

DiagArea (non-REXX)
DiagArea. (REXX)

Returned parameter.

• Type: Character string
• Length: 132 bytes (non-REXX)

A storage area provided by the caller that might contain additional diagnostic information related to
the service call. It consists of a 4-byte integer reason code field and a 128-byte character string error
text field.

ABEND codes
If the toolkit is unable to properly access the user-supplied parameter list, the call might result in a
X'04D' ABEND with a reason code of X'0005yyyy' for one of the following reasons:
yyyy

Reason
0000

The parameters passed by the caller are not in the primary address space.
0001

The number of parameters passed by the caller is incorrect.

Return codes
When the service returns control to the caller, GPR 15 and the returnCode parameter contain a
hexadecimal return code, as listed in Table 97 on page 509.

Table 97. Return codes for the HWTJGNUE service

Hexadecimal return code
Equate symbol

Decimal return code
Equate symbol Meaning and action

0
HWTJ_OK

0
HWTJ_OK

Meaning: Successful completion.

Action: None.

101
HWTJ_PARSERHANDLE_INV

257
HWTJ_PARSERHANDLE_INV

Meaning:Program error. The
parserHandle parameter specified on
the service call is not a valid parser
handle (one that was returned by the
HWTJINIT service).

Action: Check for a probable coding error.

HWTJGNUE

Chapter 20. The z/OS JSON parser 509

Table 97. Return codes for the HWTJGNUE service (continued)

Hexadecimal return code
Equate symbol

Decimal return code
Equate symbol Meaning and action

102
HWTJ_PARSERHANDLE_INUSE

258
HWTJ_PARSERHANDLE_INUSE

Meaning: Program error. Two possible
reasons can result in this return code:

1. The parser handle is being used by
another caller. Only one outstanding
z/OS JSON parser service can use the
same parser handle.

2. A previous service request using this
parser handle resulted in an ABEND,
and the parser instance was unable
to indicate that its use of the parser
handle has completed.

Action: Check for a probable coding error.

1. While all z/OS JSON parser service
calls are synchronous (blocking), if
more than one task, process, or
thread is running simultaneously and
using the same parser handle, only
one is allowed access. Change the
application such that only one thread
attempts to use the same parser
handle at a time.

2. If the application detected an
ABEND while the z/OS JSON parser
was invoked, the parser instance
associated with the parser handle
could be permanently locked. To
release the storage associated with
the parser work area, issue the
HWTJTERM service call with a
forceOption of HWTJ_NOFORCE.
If this fails with the same return
code, issue another HWTJTERM
service call with a forceOption of
HWTJ_FORCE.

103
HWTJ_INACCESSIBLE_PARM

259
HWTJ_INACCESSIBLE_PARM

Meaning: Program error. The application
passed an input or output parameter
which was inaccessible by the parser. See
“General programming considerations”
on page 463 for details about z/OS JSON
parser recovery processing.

Action: Check for a probable coding
error. Likely, the recovery of the caller
detected this return code as a result
of the parser abnormally ending with
a X'0C4' system ABEND. Check the
diagArea for an explanation as to
which parameter was attempting to
be accessed when the parser service
calls abnormally ended. See “General
programming considerations” on page
463 for details about actions to consider
for this return code.

HWTJGNUE

510 z/OS: z/OS MVS Callable Services for HLL

Table 97. Return codes for the HWTJGNUE service (continued)

Hexadecimal return code
Equate symbol

Decimal return code
Equate symbol Meaning and action

104
HWTJ_HANDLE_INV

260
HWTJ_HANDLE_INV

Meaning: Program error. The value
specified for the objectHandle
parameter is not valid.

Action: Check for a probable coding
error. (For example, uninitialized handle
or a reference to a deleted entry.) Pass
either of the following values in the
objectHandle parameter:

• An object handle or entry value handle
that was returned by a prior z/OS JSON
parser service call

• A zero for the root object

105
HWTJ_HANDLE_TYPE_ERROR

261
HWTJ_HANDLE_TYPE_ERROR

Meaning: Program error. The specified
objectHandle does not represent
an entry value with a JSON data
type of either HWTJ_OBJECT_TYPE or
HWTJ_ARRAY_TYPE.

Action: Check for a probable coding
error. Correct the mismatched handle
and specify an objectHandle value that
represents either an object handle or an
array handle.

F01
HWTJ_INTERRUPT_STATUS_INV

3841
HWTJ_INTERRUPT_STATUS_INV

Meaning: Program error. The calling
program is disabled. The system rejects
the service request.

Action: Check the calling program for a
probable coding error.

F02
HWTJ_LOCKS_HELD

3842
HWTJ_LOCKS_HELD

Meaning: Program error. The calling
program is holding one or more locks. The
system rejects the service request.

Action: Check the calling program for a
probable coding error.

F03
HWTJ_UNSUPPORTED_RELEASE

3843
HWTJ_UNSUPPORTED_RELEASE

Meaning: The operating system level
does not support this service. The system
rejects the service request.

Action: Remove the calling program from
this system, install it on a system that
supports z/OS JSON parser services, and
run the calling program again.

FFF
HWTJ_UNEXPECTED_ERROR

4095
HWTJ_UNEXPECTED_ERROR

Meaning: System error. The service
encountered an unexpected error. The
system rejects the service call.

Action: Search problem reporting
databases for a fix for the problem. If no
fix exists, contact the IBM Support Center.

HWTJGNUV — Get number value (non-REXX)
Call the HWTJGNUV service to obtain the binary representation of a JSON number.

Description
The HWTJGNUV service returns the binary representation of a JSON number. The service returns
a number in integer or floating-point format, based on the actual character-based number value
represented by the specified entry value handle (entryValueHandle). This service may only be called

HWTJGNUV

Chapter 20. The z/OS JSON parser 511

when the JSON type for the entryValueHandle is HWTJ_NUMBER_TYPE. Consider using HWTJGVAL if
no data conversion of a number is required.

If the value contains a decimal point or the scientific notation indicator (e or E), the service converts
the value to a floating-point number. Conversely, if the value contains neither a decimal point nor the
scientific notation indicator, the service converts the value to an integer number.

Note: Users of the z/OS web enablement toolkit that employ COBOL as their primary language, are
currently unable to use the HWTJGNUV callable service to retrieve a compatible binary value for
JSON number values that contain a decimal point, or that specify exponential (E-notation) forms. The
HWTJGNUV service is designed to return a 4- or 8-byte binary form of a real (floating point) JSON
number in the IEEE754 floating point format, and this standard format is not compatible with the
Hexadecimal Floating Point used by COBOL on z.

If your JSON body is encoded in IBM-1047, you may be able to use the COBOL function NUMVAL against
the string value of the JSON number. This value may be obtained using HWTJGVAL for the numeric-type
field or array element. If your JSON body is encoded in UTF-8, the value returned from HWTJGVAL may
require code-page conversion to IBM-1047 (or other EBCDIC code page) for COBOL's NUMVAL function
to be useful.

Underflow conditions: Converting a floating-point number may result in a number that is too small
to be arithmetically represented in the buffer length as specified by the valueBufferLen (precision)
parameter. This is known as an underflow condition, and this service will return a value of zero in this
case. If this is not an acceptable outcome for the application and the valueBufferLen value can be
increased, the application should increase the valueBufferLen value and reissue the request.

As with any floating-point number handling, use caution when performing floating-point conversions on
certain types of data, such as currency values, as unexpected results may occur.

Environment
The requirements for the caller are:

Requirement Details

Minimum authorization: Supervisor state or problem state, any PSW key.

Dispatchable unit mode: Task or SRB.

Cross memory mode: Any PASN, any HASN, any SASN.

AMODE: 31-bit.

ASC mode: Primary or access register (AR).

Interrupt status: Enabled for I/O and external interrupts.

Locks: No locks held.

Control parameters: Control parameters must be in the primary address space and
addressable by the caller.

Linkage: Standard MVS linkage conventions are used.

Programming requirements
See “Syntax, linkage, and programming considerations” on page 462 for details about how to call the
z/OS JSON parser services in the various supported programming languages.

Syntax
Write the call as shown in the following syntax diagram. You must code all parameters on the CALL
statement in the order shown.

HWTJGNUV

512 z/OS: z/OS MVS Callable Services for HLL

Parameters

CALL HWTJGNUV(
 ReturnCode,
 ParserHandle,
 EntryValueHandle,
 ValueBufferAddr,
 ValueBufferLen,
 ValueDescriptor,
 DiagArea);

Parameters
The parameters are explained as follows:

ReturnCode
Returned parameter

• Type: Integer
• Length: 4 bytes

Contains the return code from the service.
ParserHandle

Supplied parameter

• Type: Character string
• Length: 12 bytes

Specifies the JSON parser instance to be used.
EntryValueHandle

Supplied parameter

• Type: Integer
• Length: 4 bytes

Specifies a handle representing an entry in a JSON object that has a JSON type of NUMBER.
ValueBufferAddr

Supplied parameter

• Type: Pointer
• Length: 4 bytes

Specifies the address of an 8-byte buffer where this service will store the converted number. After the
service completes, the buffer contains the numeric binary representation of the number represented
by the specified entryValueHandle parameter. The valueDescriptor parameter will indicate the
format of the binary data pointed to by this parameter. The value could be a positive or negative
8-byte integer or an 8-byte floating-point number in IEEE binary floating-point format.

ValueBufferLen
Supplied parameter

• Type: Integer
• Length: 4 bytes

Specifies the length (precision) of the buffer as specified by the valueBufferAddr parameter. The
length specified here will determine the precision of the number returned by the service. The valid
values are:
4

The service will return either a 4-byte signed integer or a 4-byte IEEE floating-point number.
8

The service will return either an 8-byte signed integer or an 8-byte IEEE floating-point number.

HWTJGNUV

Chapter 20. The z/OS JSON parser 513

ValueDescriptor
Returned parameter

• Type: Integer
• Length: 4 bytes

A constant that indicates the format of the number being returned. Possible values include integer
and floating point.

DiagArea
Returned parameter

• Type: Character string
• Length: 132 bytes

A storage area provided by the caller that may contain additional diagnostic information related to the
service call. It consists of a 4-byte integer reason code field and a 128-byte character string error text
field.

ABEND codes
If the toolkit is unable to properly access the user-supplied parameter list, the call might result in a
X'04D' ABEND with a reason code of X'000Dyyyy' for one of the following reasons:
yyyy

Reason
0000

The parameters passed by the caller are not in the primary address space.
0001

The number of parameters passed by the caller is incorrect.

Return codes
When the service returns control to the caller, GPR 15 and the returnCode parameter contain a
hexadecimal return code, as listed in Table 98 on page 514.

Table 98. Return codes for the HWTJGNUV service

Hexadecimal return code
Equate symbol

Decimal return code
Equate symbol Meaning and action

0
HWTJ_OK

0
HWTJ_OK

Meaning: Successful completion.

Action: None.

101
HWTJ_PARSERHANDLE_INV

257
HWTJ_PARSERHANDLE_INV

Meaning: Program error. The
parserHandle parameter specified on
the service call is not a valid parser
handle (one that was returned by the
HWTJINIT service).

Action: Check for a probable coding error.

HWTJGNUV

514 z/OS: z/OS MVS Callable Services for HLL

Table 98. Return codes for the HWTJGNUV service (continued)

Hexadecimal return code
Equate symbol

Decimal return code
Equate symbol Meaning and action

102
HWTJ_PARSERHANDLE_INUSE

258
HWTJ_PARSERHANDLE_INUSE

Meaning: Program error. Two possible
reasons can result in this return code:

1. The parser handle is being used by
another caller. Only one outstanding
z/OS JSON parser service can use the
same parser handle.

2. A previous service request using this
parser handle resulted in an ABEND,
and the parser instance was unable
to indicate that its use of the parser
handle has completed.

Action: Check for a probable coding error.

1. While all z/OS JSON parser service
calls are synchronous (blocking), if
more than one task, process, or
thread is running simultaneously and
using the same parser handle, only
one will be allowed access. Change
the application such that only one
thread attempts to use the same
parser handle at a time.

2. If the application detected an
ABEND while the z/OS JSON parser
was invoked, the parser instance
associated with the parser handle
could be permanently locked. To
release the storage associated with
the parser work area, issue the
HWTJTERM service call with a
forceOption of HWTJ_NOFORCE.
If this fails with the same return
code, issue another HWTJTERM
service call with a forceOption of
HWTJ_FORCE.

103
HWTJ_INACCESSIBLE_PARM

259
HWTJ_INACCESSIBLE_PARM

Meaning: Program error. The application
passed an input or output parameter
which was inaccessible by the parser. See
“General programming considerations”
on page 463 for details about z/OS JSON
parser recovery processing.

Action: Check for a probable coding error.
Likely, the recovery of the caller detected
this return code as a result of the parser
abnormally ending with a X'0C4' system
ABEND. Check the diagArea for an
explanation as to which parameter was
attempting to be accessed when the
parser service call abnormally ended. See
“General programming considerations”
on page 463 for details about actions to
consider for this return code.

104
HWTJ_HANDLE_INV

260
HWTJ_HANDLE_INV

Meaning: Program error. The value
specified for the entryValueHandle
parameter is not valid.

Action: Check for a probable coding error.
(For example, uninitialized handle or a
reference to a deleted entry.) Only pass
an entryValueHandle parameter that
was returned by a prior z/OS JSON parser
service call.

HWTJGNUV

Chapter 20. The z/OS JSON parser 515

Table 98. Return codes for the HWTJGNUV service (continued)

Hexadecimal return code
Equate symbol

Decimal return code
Equate symbol Meaning and action

105
HWTJ_HANDLE_TYPE_ERROR

261
HWTJ_HANDLE_TYPE_ERROR

Meaning: Program error. The specified
entryValueHandle does not represent
an entry value with a JSON data type of
HWTJ_NUMBER_TYPE.

Action: Check for a probable coding
error. Correct the mismatched handle and
specify an entryValueHandle value
that represents a number entry value
handle.

801
HWTJ_JGNUV_VALBUFFADDR_INV

2049
HWTJ_JGNUV_VALBUFFADDR_INV

Meaning: Program error. The caller
specified a value of zero as the address
of the valueBufferAddr parameter.

Action: Check for a probable coding error.
Specify the actual address of the buffer
where the returned converted binary
representation of the JSON number is to
be written.

Note: Specifying a bad buffer address
other than zero may result in the
parser terminating with a X'0C4' system
ABEND. See the description of the
HWTJ_INACCESSIBLE_PARM return code
for more information.

802
HWTJ_JGNUV_VALBUFFLEN_INV

2050
HWTJ_JGNUV_VALBUFFLEN_INV

Meaning: Program error. The caller
specified an invalid value for the length
of the output buffer.

Action: Check for a probable coding
error. Validate that the specified
valueBufferLen value is one of
the allowed values according to the
description of the valueBufferLen
parameter.

Note: Specifying a bad buffer length
other than zero may result in the
parser terminating with a X'0C4' system
ABEND. See the description of the
HWTJ_INACCESSIBLE_PARM return code
for more information.

803
HWTJ_JGNUV_NUM_OUT_OF_RANGE

2051
HWTJ_JGNUV_NUM_OUT_OF_RANGE

Meaning: The number cannot be
converted. The attempt to convert the
number to a binary representation results
in an overflow condition (positive or
negative).

Action: If a valueBufferLen of 4
was specified, consider increasing the
valueBufferLen to 8 and retrying the
service. If 8 was already specified, the
number is too large for the HWTJGNUV
service to convert. Consider issuing
HWTJGVAL to obtain the character
representation of the number.

F01
HWTJ_INTERRUPT_STATUS_INV

3841
HWTJ_INTERRUPT_STATUS_INV

Meaning: Program error. The calling
program is disabled. The system rejects
the service request.

Action: Check the calling program for a
probable coding error.

HWTJGNUV

516 z/OS: z/OS MVS Callable Services for HLL

Table 98. Return codes for the HWTJGNUV service (continued)

Hexadecimal return code
Equate symbol

Decimal return code
Equate symbol Meaning and action

F02
HWTJ_LOCKS_HELD

3842
HWTJ_LOCKS_HELD

Meaning: Program error. The calling
program is holding one or more locks. The
system rejects the service request.

Action: Check the calling program for a
probable coding error.

F03
HWTJ_UNSUPPORTED_RELEASE

3843
HWTJ_UNSUPPORTED_RELEASE

Meaning: The operating system level
does not support this service. The system
rejects the service request.

Action: Remove the calling program from
this system, install it on a system that
supports z/OS JSON parser services, and
run the calling program again.

FFF
HWTJ_UNEXPECTED_ERROR

4095
HWTJ_UNEXPECTED_ERROR

Meaning: System error. The service
encountered an unexpected error. The
system rejects the service call.

Action: Search problem reporting
databases for a fix for the problem. If no
fix exists, contact the IBM Support Center.

HWTJGOEN — Get object entry
Call the HWTJGOEN service to obtain the address of the name portion and the entry value handle for an
object entry.

Description
The HWTJGOEN service returns two items which are associated with the specified object handle
(objectHandle) and object entry index (objectEntryIndex):

1. The address of the name portion of this entry (within the previously supplied JSON text)
2. The entryValueHandle of this entry, which can be used on subsequent service calls to inquire about

the value of this particular object entry

Environment
The requirements for the caller are:

Requirement Details

Minimum authorization: Supervisor state or problem state, any PSW key.

Dispatchable unit mode: Task or SRB.

Cross memory mode: Any PASN, any HASN, any SASN.

AMODE: 31 bit.

ASC mode: Primary or access register (AR).

Interrupt status: Enabled for I/O and external interrupts.

Locks: No locks held.

Control parameters: Control parameters must be in the primary address space and
addressable by the caller.

Linkage: Standard MVS linkage conventions are used.

HWTJGOEN

Chapter 20. The z/OS JSON parser 517

Programming requirements
See “Syntax, linkage, and programming considerations” on page 462 for details about how to call the
z/OS JSON parser services in the various supported programming languages.

REXX programming considerations for the HWTJGOEN service
All information for the HWTJGOEN service applies for REXX requests except:

• EntryName replaces EntryNameBufferAddr and EntryNameBufferLen
• ActualNameLenReturned is not used

Syntax
Write the call as shown in the following syntax diagram. You must code all parameters in the order shown.

Non-REXX parameters REXX parameters

CALL HWTJGOEN(
 ReturnCode,
 ParserHandle,
 ObjectHandle,
 ObjectEntryIndex,

 EntryNameBufferAddr,
 EntryNameBufferLen,
 EntryValueHandle,
 ActualNameLenReturned,
 DiagArea);

address hwtjson "hwtjgoen",
 "ReturnCode",
 "ParserHandle",
 "ObjectHandle",
 "ObjectEntryIndex",
 "EntryName",

 "EntryValueHandle",

 "DiagArea."

Parameters
The parameters are explained as follows:

ReturnCode
Returned parameter.

• Type: Integer (non-REXX), character representation of an integer (REXX)
• Length: 4 bytes (non-REXX)

Contains the return code from the service.
ParserHandle

Supplied parameter.

• Type: Character string
• Length: 12 bytes (non-REXX)

Specifies the JSON parser instance to be used.
ObjectHandle

Supplied parameter.

• Type: Integer (non-REXX), character representation of an integer (REXX)
• Length: 4 bytes (non-REXX)

Specifies a handle which represents a particular JSON object. The objectHandle value can be
0 (zero) for the root object or an entry value handle (entryValueHandle) whose JSON type is
HWTJ_OBJECT_TYPE.

ObjectEntryIndex
Supplied parameter.

• Type: Integer (non-REXX), character representation of an integer (REXX)
• Length: 4 bytes (non-REXX)

HWTJGOEN

518 z/OS: z/OS MVS Callable Services for HLL

Specifies the index of the nth entry of the object specified by objectHandle.

Note: This is a zero-origin index, meaning that the first entry in the object has an index of zero; the nth

entry has an index of (n − 1).

EntryName (REXX)
Returned parameter.

• Type: Character string

Contains the returned EntryName of the JSON object entry.
EntryNameBufferAddr (non-REXX)

Supplied parameter.

• Type: Pointer
• Length: 4 bytes

Specifies the address of a buffer provided to hold the returned entry name of the JSON object entry.

Note: The returned entry name data will be in the encoding currently in effect for the JSON parser
instance.

EntryNameBufferLen (non-REXX)
Supplied parameter.

• Type: Integer
• Length: 4 bytes

Specifies the length of the buffer provided as specified by the entryNameBufferAddr parameter.
EntryValueHandle

Returned parameter.

• Type: Integer (non-REXX), character representation of an integer (REXX)
• Length: 4 bytes (non-REXX)

A handle representing the particular entry value selected in the JSON object.
ActualNameLenReturned (non-REXX)

Returned parameter.

• Type: Integer
• Length: 4 bytes

The actual length of the returned entry name (in bytes). If the size of the provided buffer is not large
enough to contain the entry name (returnCode =HWTJ_BUFFER_TOO_SMALL), this returned value
can be used to reissue the service with the proper buffer size.

DiagArea (non-REXX)
DiagArea. (REXX)

Returned parameter.

• Type: Character string (non-REXX), stem variable (REXX)
• Length: 132 bytes (non-REXX)

A storage area provided by the caller that might contain additional diagnostic information related to
the service call. It consists of a 4-byte integer reason code field and a 128-byte character string error
text field.

ABEND codes
If the toolkit is unable to properly access the user-supplied parameter list, the call might result in a
X'04D' ABEND with a reason code of X'0006yyyy' for one of the following reasons:
yyyy

Reason

HWTJGOEN

Chapter 20. The z/OS JSON parser 519

0000
The parameters passed by the caller are not in the primary address space.

0001
The number of parameters passed by the caller is incorrect.

Return codes
When the service returns control to the caller, GPR 15 and the returnCode parameter contain a
hexadecimal return code, as listed in Table 99 on page 520.

Table 99. Return codes for the HWTJGOEN service

Hexadecimal return code
Equate symbol

Decimal return code
Equate symbol Meaning and action

0
HWTJ_OK

0
HWTJ_OK

Meaning: Successful completion.

Action: None.

101
HWTJ_PARSERHANDLE_INV

257
HWTJ_PARSERHANDLE_INV

Meaning:Program error. The
parserHandle parameter specified on
the service call is not a valid parser
handle (one that was returned by the
HWTJINIT service).

Action: Check for a probable coding error.

102
HWTJ_PARSERHANDLE_INUSE

258
HWTJ_PARSERHANDLE_INUSE

Meaning:Program error. Two possible
reasons can result in this return code:

1. The parser handle is being used by
another caller. Only one outstanding
z/OS JSON parser service can use the
same parser handle.

2. A previous service request using this
parser handle resulted in an ABEND,
and the parser instance was unable
to indicate that its use of the parser
handle has completed.

Action: Check for a probable coding error.

1. While all z/OS JSON parser service
calls are synchronous (blocking), if
more than one task, process, or
thread is running simultaneously and
using the same parser handle, only
one is allowed access. Change the
application such that only one thread
attempts to use the same parser
handle at a time.

2. If the application detected an
ABEND while the z/OS JSON parser
was invoked, the parser instance
associated with the parser handle
could be permanently locked. To
release the storage associated with
the parser work area, issue the
HWTJTERM service call with a
forceOption of HWTJ_NOFORCE.
If this fails with the same return
code, issue another HWTJTERM
service call with a forceOption of
HWTJ_FORCE.

HWTJGOEN

520 z/OS: z/OS MVS Callable Services for HLL

Table 99. Return codes for the HWTJGOEN service (continued)

Hexadecimal return code
Equate symbol

Decimal return code
Equate symbol Meaning and action

103
HWTJ_INACCESSIBLE_PARM

259
HWTJ_INACCESSIBLE_PARM

Meaning: Program error. The application
passed an input or output parameter
which was inaccessible by the parser. See
“General programming considerations”
on page 463 for details about z/OS JSON
parser recovery processing.

Action: Check for a probable coding
error. Likely, the recovery of the caller
detected this return code as a result
of the parser abnormally ending with
a X'0C4' system ABEND. Check the
diagArea for an explanation as to
which parameter was attempting to
be accessed when the parser service
calls abnormally ended. See “General
programming considerations” on page
463 for details about actions to consider
for this return code.

104
HWTJ_HANDLE_INV

260
HWTJ_HANDLE_INV

Meaning: Program error. The value
specified for the objectHandle
parameter is not valid.

Action: Check for a probable coding
error. (For example, uninitialized handle
or a reference to a deleted entry.) Pass
either of the following values in the
objectHandle parameter:

• An object handle or entry value handle
that was returned by a prior z/OS JSON
parser service call

• A zero for the root object

105
HWTJ_HANDLE_TYPE_ERROR

261
HWTJ_HANDLE_TYPE_ERROR

Meaning: Program error. The specified
objectHandle does not represent an
object with a JSON data type of
HWTJ_OBJECT_TYPE.

Action: Check for a probable coding
error. Correct the mismatched handle
and specify an objectHandle value that
represents an object (non-array object)
handle.

106
HWTJ_BUFFER_TOO_SMALL

262
HWTJ_BUFFER_TOO_SMALL

Meaning: Program error. The buffer
provided for the entry name is not
large enough to contain the entire name.
The value of the entryNameBufferLen
parameter is too small.

Action: Check for a probable coding error.
Examine the actualNameLenReturned
parameter to determine the required
size for the entry name. Then, increase
the size of the buffer specified
by the entryNameBufferAddr and
entryNameBufferLen parameters and
reissue the service call.

HWTJGOEN

Chapter 20. The z/OS JSON parser 521

Table 99. Return codes for the HWTJGOEN service (continued)

Hexadecimal return code
Equate symbol

Decimal return code
Equate symbol Meaning and action

107
HWTJ_INDEX_OUT_OF_BOUNDS

263
HWTJ_INDEX_OUT_OF_BOUNDS

Meaning: Program error. The index value
specified by the objectEntryIndex
parameter is greater than the number of
entries in the object.

Action: Check for a probable coding error.

• Issue the HWTJGNUE (Get number of
entries) service to determine the upper
bound for the number of object entries.

• Remember that the number of entries
returned is the actual count of entries,
but accessing a particular entry uses
zero-origin indexing. To iterate through
all the elements, the application must
start at the first entry (index 0) up to
the number of entries minus 1.

F01
HWTJ_INTERRUPT_STATUS_INV

3841
HWTJ_INTERRUPT_STATUS_INV

Meaning: Program error. The calling
program is disabled. The system rejects
the service request.

Action: Check the calling program for a
probable coding error.

F02
HWTJ_LOCKS_HELD

3842
HWTJ_LOCKS_HELD

Meaning: Program error. The calling
program is holding one or more locks. The
system rejects the service request.

Action: Check the calling program for a
probable coding error.

F03
HWTJ_UNSUPPORTED_RELEASE

3843
HWTJ_UNSUPPORTED_RELEASE

Meaning: The operating system level
does not support this service. The system
rejects the service request.

Action: Remove the calling program from
this system, install it on a system that
supports z/OS JSON parser services, and
run the calling program again.

FFF
HWTJ_UNEXPECTED_ERROR

4095
HWTJ_UNEXPECTED_ERROR

Meaning: System error. The service
encountered an unexpected error. The
system rejects the service call.

Action: Search problem reporting
databases for a fix for the problem. If no
fix exists, contact the IBM Support Center.

HWTJGVAL — Get value
Call the HWTJGVAL service to obtain the location of a string or number within the JSON text.

Description
The HWTJGVAL service returns the exact location in the JSON source text of a string or number
associated with the specified entry value handle (entryValueHandle). This service might be called
whenever the JSON type for the entryValueHandle is either a string or numeric type.

Note: If the JSON type for the entryValueHandle is numeric and the binary representation (rather than
the character representation) of the number is preferred, consider using the HWTJGNUV (get numeric
value) service.

HWTJGVAL

522 z/OS: z/OS MVS Callable Services for HLL

Environment
The requirements for the caller are:

Requirement Details

Minimum authorization: Supervisor state or problem state, any PSW key.

Dispatchable unit mode: Task or SRB.

Cross memory mode: Any PASN, any HASN, any SASN.

AMODE: 31 bit.

ASC mode: Primary or access register (AR).

Interrupt status: Enabled for I/O and external interrupts.

Locks: No locks held.

Control parameters: Control parameters must be in the primary address space and
addressable by the caller.

Linkage: Standard MVS linkage conventions are used.

Programming requirements
See “Syntax, linkage, and programming considerations” on page 462 for details about how to call the
z/OS JSON parser services in the various supported programming languages.

REXX programming considerations for the HWTJGVAL service
All information for the HWTJGVAL service applies for REXX requests except:

• Value replaces ValueLocationAddr and ValueLen

Syntax
Write the call as shown in the following syntax diagram. You must code all parameters in the order shown.

Non-REXX parameters REXX parameters

CALL HWTJGVAL(
 ReturnCode,
 ParserHandle,
 EntryValueHandle,

 ValueLocationAddr,
 ValueLen,
 DiagArea);

address hwtjson "hwtjgval",
 "ReturnCode",
 "ParserHandle",
 "EntryValueHandle",
 "Value",

 "DiagArea."

Parameters
The parameters are explained as follows:

ReturnCode
Returned parameter.

• Type: Integer (non-REXX), character representation of an integer (REXX)
• Length: 4 bytes (non-REXX)

Contains the return code from the service.
ParserHandle

Supplied parameter.

• Type: Character string

HWTJGVAL

Chapter 20. The z/OS JSON parser 523

• Length: 12 bytes (non-REXX)

Specifies the JSON parser instance to be used.
EntryValueHandle

Supplied parameter.

• Type: Integer (non-REXX), character representation of an integer (REXX)
• Length: 4 bytes (non-REXX)

Specifies a handle representing an entry in a JSON object that has a JSON type of STRING or
NUMBER.

Value (REXX)
Returned parameter.

• Type: Character string

The name of a REXX variable that the service sets to the entry value represented by the
EntryValueHandle.

Note: The encoding type of the JSON text value returned by HWTJGVAL will be that which is currently
in effect for the JSON parser instance.

ValueLocationAddr (non-REXX)
Returned parameter.

• Type: Pointer
• Length: 4 bytes

The address of the location in the source JSON text where the value represented by
entryValueHandle resides.

ValueLen (non-REXX)
Returned parameter.

• Type: Integer
• Length: 4 bytes

The length (in bytes) of the wanted value referenced by the valueLocationAddr parameter.
DiagArea (non-REXX)
DiagArea. (REXX)

Returned parameter.

• Type: Character string (non-REXX), stem variable (REXX)
• Length: 132 bytes (non-REXX)

A storage area provided by the caller that might contain additional diagnostic information related to
the service call. It consists of a 4-byte integer reason code field and a 128-byte character string error
text field.

ABEND codes
If the toolkit is unable to properly access the user-supplied parameter list, the call might result in a
X'04D' ABEND with a reason code of X'0007yyyy' for one of the following reasons:
yyyy

Reason
0000

The parameters passed by the caller are not in the primary address space.
0001

The number of parameters passed by the caller is incorrect.

HWTJGVAL

524 z/OS: z/OS MVS Callable Services for HLL

Return codes
When the service returns control to the caller, GPR 15 and the returnCode parameter contain a
hexadecimal return code, as listed in Table 100 on page 525.

Table 100. Return codes for the HWTJGVAL service

Hexadecimal return code
Equate symbol

Decimal return code
Equate symbol Meaning and action

0
HWTJ_OK

0
HWTJ_OK

Meaning: Successful completion.

Action: None.

101
HWTJ_PARSERHANDLE_INV

257
HWTJ_PARSERHANDLE_INV

Meaning: Program error. The
parserHandle parameter specified on
the service call is not a valid parser
handle (one that was returned by the
HWTJINIT service).

Action: Check for a probable coding error.

102
HWTJ_PARSERHANDLE_INUSE

258
HWTJ_PARSERHANDLE_INUSE

Meaning: Program error. Two possible
reasons can result in this return code:

1. The parser handle is being used by
another caller. Only one outstanding
z/OS JSON parser service can use the
same parser handle.

2. A previous service request using this
parser handle resulted in an ABEND,
and the parser instance was unable
to indicate that its use of the parser
handle has completed.

Action: Check for a probable coding error.

1. While all z/OS JSON parser service
calls are synchronous (blocking), if
more than one task, process, or
thread is running simultaneously and
using the same parser handle, only
one is allowed access. Change the
application such that only one thread
attempts to use the same parser
handle at a time.

2. If the application detected an
ABEND while the z/OS JSON parser
was invoked, the parser instance
associated with the parser handle
could be permanently locked. To
release the storage associated with
the parser work area, issue the
HWTJTERM service call with a
forceOption of HWTJ_NOFORCE.
If this fails with the same return
code, issue another HWTJTERM
service call with a forceOption of
HWTJ_FORCE.

HWTJGVAL

Chapter 20. The z/OS JSON parser 525

Table 100. Return codes for the HWTJGVAL service (continued)

Hexadecimal return code
Equate symbol

Decimal return code
Equate symbol Meaning and action

103
HWTJ_INACCESSIBLE_PARM

259
HWTJ_INACCESSIBLE_PARM

Meaning: Program error. The application
passed an input or output parameter
which was inaccessible by the parser. See
“General programming considerations”
on page 463 for details about z/OS JSON
parser recovery processing.

Action: Check for a probable coding
error. Likely, the recovery of the caller
detected this return code as a result
of the parser abnormally ending with
a X'0C4' system ABEND. Check the
diagArea for an explanation as to
which parameter was attempting to
be accessed when the parser service
calls abnormally ended. See “General
programming considerations” on page
463 for details about actions to consider
for this return code.

104
HWTJ_HANDLE_INV

260
HWTJ_HANDLE_INV

Meaning: Program error. The value
specified for the entryValueHandle
parameter is not valid.

Action: Check for a probable coding error.
(For example, uninitialized handle or a
reference to a deleted entry.) Only pass
an entryValueHandle parameter that
was returned by a prior z/OS JSON parser
service call.

105
HWTJ_HANDLE_TYPE_ERROR

261
HWTJ_HANDLE_TYPE_ERROR

Meaning: Program error. The specified
entryValueHandle does not represent
an entry value with a JSON
data type of HWTJ_STRING_TYPE or
HWTJ_NUMBER_TYPE.

Action: Check for a probable coding
error. Correct the mismatched handle and
specify an entryValueHandle value
that represents either a string or number
entry value handle.

F01
HWTJ_INTERRUPT_STATUS_INV

3841
HWTJ_INTERRUPT_STATUS_INV

Meaning: Program error. The calling
program is disabled. The system rejects
the service request.

Action: Check the calling program for a
probable coding error.

F02
HWTJ_LOCKS_HELD

3842
HWTJ_LOCKS_HELD

Meaning: Program error. The calling
program is holding one or more locks. The
system rejects the service request.

Action: Check the calling program for a
probable coding error.

F03
HWTJ_UNSUPPORTED_RELEASE

3843
HWTJ_UNSUPPORTED_RELEASE

Meaning: The operating system level
does not support this service. The system
rejects the service request.

Action: Remove the calling program from
this system, install it on a system that
supports z/OS JSON parser services, and
run the calling program again.

HWTJGVAL

526 z/OS: z/OS MVS Callable Services for HLL

Table 100. Return codes for the HWTJGVAL service (continued)

Hexadecimal return code
Equate symbol

Decimal return code
Equate symbol Meaning and action

FFF
HWTJ_UNEXPECTED_ERROR

4095
HWTJ_UNEXPECTED_ERROR

Meaning: System error. The service
encountered an unexpected error. The
system rejects the service call.

Action: Search problem reporting
databases for a fix for the problem. If no
fix exists, contact the IBM Support Center.

HWTJINIT — Initialize a parser instance
Call the HWTJINIT service to prepare to parse a JSON text stream.

Description
This service must be invoked before any other z/OS JSON parsing service contained in the toolkit. The
service prepares the memory space required by the z/OS JSON parser in the callers address space. The
memory allocation created by HWTJINIT is known as a parser instance. If you need your program to
parse more than one JSON data stream simultaneously, you can create more than one parser instance
by invoking HWTJINIT as many times as necessary (once for each data stream). This allows the parser to
track multiple JSON streams at the same time. The caller distinguishes one JSON stream from another by
a unique JSON parser handle returned from each HWTJINIT call.

Environment
The requirements for the caller are:

Requirement Details

Minimum authorization: Supervisor state or problem state, any PSW key.

Dispatchable unit mode: Task or SRB.

Cross memory mode: Any PASN, any HASN, any SASN.

AMODE: 31 bit.

ASC mode: Primary or access register (AR).

Interrupt status: Enabled for I/O and external interrupts.

Locks: No locks held.

Control parameters: Control parameters must be in the primary address space and
addressable by the caller.

Linkage: Standard MVS linkage conventions are used.

Programming requirements
See “Syntax, linkage, and programming considerations” on page 462 for details about how to call the
z/OS JSON parser services in the various supported programming languages.

REXX programming considerations for the HWTJINIT service
All information for the HWTJINIT service applies for REXX requests except:

• MaxParserWorkAreaSize is not used

HWTJINIT

Chapter 20. The z/OS JSON parser 527

Syntax
Write the call as shown in the following syntax diagram. You must code all parameters in the order shown.

Non-REXX parameters REXX parameters

CALL HWTJINIT(
 ReturnCode,
 MaxParserWorkAreaSize,
 ParserHandle,
 DiagArea);

address hwtjson "hwtjinit",
 "ReturnCode",

 "ParserHandle",
 "DiagArea."

Parameters
The parameters are explained as follows:

ReturnCode
Returned parameter.

• Type: Integer (non-REXX), character representation of an integer (REXX)
• Length: 4 bytes (non-REXX)

Contains the return code from the service.
MaxParserWorkAreaSize (non-REXX)

Supplied parameter.

• Type: Integer
• Length: 4 bytes

Specifies the maximum amount of storage, in bytes, that the parser can consume during parser
functions. This allows the application to optionally set an upper threshold for the amount of storage
the parser can consume in addition to the storage explicitly allocated by the callers application.

• A value of zero (recommended) specifies no limit to the work area size; the parser can use as much
storage as necessary to successfully parse or create JSON text.

• A nonzero value does not necessarily cause the parser to obtain the specified amount of storage
when the JSON instance is initialized, but allows the parser to consume up to the specified amount
of memory in the users memory area. If the specified value is less than the minimum amount
required for the parser to operate, a return code of HWTJ_WARNING is returned and the diagArea
parameter contains amount of storage obtained, which also serves as the maximum area the parser
is able to use. The diagArea parameter also contains the amount of overhead storage required
by the parser, which can be useful when calculating an appropriate value to specify. Consider the
following formula as a rough estimate to determine the value to specify:

maxParserWorkAreaSize = (number of name/value pairs in the JSON text × 30) +
 (total length, in bytes, of all "names", string values and
 number values added to the JSON text via the HWTJCREN service) +
 overhead storage

ParserHandle
Returned parameter.

• Type: Character string
• Length: 12 bytes (non-REXX)

A value generated by the parser that represents a handle to be used on all subsequent JSON parser
services for this parser instance. This instance contains all of the data structures and storage areas
required for the JSON parsing services to run efficiently. The REXX variable is updated by this service.

DiagArea (non-REXX)
DiagArea. (REXX)

Returned parameter.

HWTJINIT

528 z/OS: z/OS MVS Callable Services for HLL

• Type: Character string (non-REXX), stem variable (REXX)
• Length: 132 bytes (non-REXX)

A storage area provided by the caller that may contain additional diagnostic information related to the
service call. It consists of a 4-byte integer reason code field and a 128-byte character string error text
field.

ABEND codes
If the toolkit is unable to properly access the user-supplied parameter list, the call might result in a
X'04D' ABEND with a reason code of X'0008yyyy' for one of the following reasons:
yyyy

Reason
0000

The parameters passed by the caller are not in the primary address space.
0001

The number of parameters passed by the caller is incorrect.

Return codes
When the service returns control to the caller, GPR 15 and the returnCode parameter contain a
hexadecimal return code, as listed in Table 101 on page 529.

Table 101. Return codes for the HWTJINIT service

Hexadecimal return code
Equate symbol

Decimal return code
Equate symbol Meaning and action

0
HWTJ_OK

0
HWTJ_OK

Meaning: Successful completion.

Action: None.

4
HWTJ_WARNING

4
HWTJ_WARNING

Meaning: Warning. The
maxParserWorkAreaSize value
specified by the caller is smaller than
the minimum required by the z/OS JSON
parser.

Action: The system creates the minimum
size workarea (larger than the user-
specified value) and informs the caller of
the actual size in the reasonDesc field of
the diagArea. Modify future invocations
of the HWTJINIT service to specify a
larger maxParserWorkAreaSize value
based on the recommendation provided
in the reasonDesc field.

HWTJINIT

Chapter 20. The z/OS JSON parser 529

Table 101. Return codes for the HWTJINIT service (continued)

Hexadecimal return code
Equate symbol

Decimal return code
Equate symbol Meaning and action

103
HWTJ_INACCESSIBLE_PARM

259
HWTJ_INACCESSIBLE_PARM

Meaning: Program error. The application
passed an input or output parameter
which was inaccessible by the parser. See
“General programming considerations”
on page 463 for details about z/OS JSON
parser recovery processing.

Action: Check for a probable coding
error. Likely, the recovery of the caller
detected this return code as a result
of the parser abnormally ending with
a 0C4 system ABEND. Check the
diagArea for an explanation as to
which parameter was attempting to
be accessed when the parser service
calls abnormally ended. See “General
programming considerations” on page
463 for details about actions to consider
for this return code.

10B
HWTJ_CANNOT_OBTAIN_WORKAREA

267
HWTJ_CANNOT_OBTAIN_WORKAREA

Meaning: System error. The Storage
Obtain service could not obtain the work
area storage as required by the z/OS
JSON parser during the HWTJINIT service
call.

Action: Consult the diagArea for the
Storage Obtain failure return code and
additional information found in the
ReasonDesc section. Check to see if
there is sufficient memory available
in order for the parser to obtain the
necessary amount of work area. If
the problem persists, search problem
reporting databases for a fix for the
problem. If no fix exists, contact the IBM
Support Center.

F01
HWTJ_INTERRUPT_STATUS_INV

3841
HWTJ_INTERRUPT_STATUS_INV

Meaning: Program error. The calling
program is disabled. The system rejects
the service request.

Action: Check the calling program for a
probable coding error.

F02
HWTJ_LOCKS_HELD

3842
HWTJ_LOCKS_HELD

Meaning: Program error. The calling
program is holding one or more locks. The
system rejects the service request.

Action: Check the calling program for a
probable coding error.

F03
HWTJ_UNSUPPORTED_RELEASE

3843
HWTJ_UNSUPPORTED_RELEASE

Meaning: The operating system level
does not support this service. The system
rejects the service request.

Action: Remove the calling program from
this system, install it on a system that
supports z/OS JSON parser services, and
run the calling program again.

FFF
HWTJ_UNEXPECTED_ERROR

4095
HWTJ_UNEXPECTED_ERROR

Meaning: System error. The service
encountered an unexpected error. The
system rejects the service call.

Action: Search problem reporting
databases for a fix for the problem. If no
fix exists, contact the IBM Support Center.

HWTJINIT

530 z/OS: z/OS MVS Callable Services for HLL

HWTJOPTS — Set parser options
Call the HWTJOPTS service to set options related to the JSON text that will be encountered by the z/OS
JSON parser.

Description
This service allows the application to set various behavior preferences for the z/OS JSON parser. The
preference currently supported is associated with toleration of single and multi-line comments defined
by the JSON5 Data Interchange Format extension to JSON (https://spec.json5.org/#comments). By
default, the z/OS JSON parser will tolerate the comments, however the application can choose to
specify HWTJ_TOLERATE_CMT_OFF, to indicate the parser should comply with the JSON specification
and classify any comments encountered as not a valid syntax. Alternatively, the application can choose
to specify HWTJ_TOLERATE_CMT_ON to indicate to the z/OS JSON parser that it should prime its parsing
algorithm to expect comments in the JSON text. See the description of the various option types for further
information regarding possible performance implications.

This service, if invoked, needs to be invoked prior to the first successful "parse". The first parse
is accomplished by either using HWTJPARS or, if authoring new JSON text, with the invocation of
HWTJCREN.

Environment
The requirements for the caller are:

Requirement Details

Minimum authorization: Supervisor state or problem state, any PSW key.

Dispatchable unit mode: Task or SRB.

Cross memory mode: Any PASN, any HASN, any SASN.

AMODE: 31 bit.

ASC mode: Primary or access register (AR).

Interrupt status: Enabled for I/O and external interrupts.

Locks: No locks held.

Control parameters: Control parameters must be in the primary address space and
addressable by the caller.

Linkage: Standard MVS linkage conventions are used.

Programming requirements
See “Syntax, linkage, and programming considerations” on page 462 for details about how to call the
z/OS JSON parser services in the various supported programming languages.

REXX programming considerations for the HWTJOPTS service
All information for the HWTJOPTS service applies for REXX requests.

Syntax
Write the call as shown in the following syntax diagram. You must code all parameters in the order shown.

HWTJOPTS

Chapter 20. The z/OS JSON parser 531

https://spec.json5.org/#comments

Non-REXX parameters REXX parameters

CALL HWTJOPTS(
 ReturnCode,
 ParserHandle,
 OptionType,
 DiagArea);

address hwtjson "hwtjopts",
 "ReturnCode",
 "ParserHandle",
 "OptionType",
 "DiagArea."

Parameters
The parameters are explained as follows:

ReturnCode
Returned parameter.

• Type: Integer (non-REXX), character representation of an integer (REXX)
• Length: 4 bytes (non-REXX)

Contains the return code from the service.
ParserHandle

Returned parameter.

• Type: Character string
• Length:12 bytes (non-REXX)

Specifies the JSON parser instance to be used.

OptionType
Supplied parameter.

• Type: Integer (non-REXX), character representation of an integer (REXX)
• Length: 4 bytes (non-REXX)

Specifies a constant value that indicates the option which is to take effect for the JSON parser
instance represented by the input parser handle.

If not set, by default the z/OS JSON parser will tolerate single and multi-line comments defined by the
JSON5 Data Interchange Format extension to JSON.

Regardless of the comment related option chosen, the application will not be able to retrieve or
access any comments that maybe encountered in the JSON text. Any JSON output produced using
HWTJSERI will be void of any comments that may have been present in the original content.

Examples of supported JSON5 single and multi-line comments:

//single line comment starts with a double-solidus and ends with a line terminator
//the supported line terminator character is a Line Feed<LF>:
//IBM-1047 -> hex 15
//UTF-8 -> hex 0A

Figure 32. Example of JSON single line comment

/* multi-line comment on a single line, uses a solidus + asterisk form */

Figure 33. Example of JSON multi-line comment on one line

/* multi-line comments start with solidus + asterisk,
 and can span arbitrarily-many lines,
 until ended with an asterisk + solidus like this */

Figure 34. Example of JSON multi-line comment

HWTJOPTS

532 z/OS: z/OS MVS Callable Services for HLL

/**
 * This is another multi-line comment *
 * that creates a flower box shape. *
 **/

Figure 35. Example of JSON multi-line comment

In the following example, comments are indicated in bold:

/***** Testing All *******************************
 * All attributes are tested inside their *
 * condition and displayed with send/log *
 * message. All modifiable attributes are then *
 * modified within their own condition def *
 * then standard actions *
 **/
{
/******** Testing CompletionCode ***************/
 "condition" : " String(CompletionCode) = '()' "
 ,"actions" :
 [
 {
 "action" : "sendMessage" //first action
 ,"message": /*CC? */" 'CompletionCode: '||String(CompletionCode)"
 }
]
}

Figure 36. Example of comments on JSON data

This default setting is recommended when the input is either always uncommented JSON or a
combination of commented and uncommented JSON. This setting and HWTJ_TOLERATE_CMT_OFF
will deliver optimum performance for uncommented JSON text. In general, parsing performance for
commented JSON text will always be slower compared to uncommented JSON, however it can be
optimized by including a comment as early in your data as possible. For example:

line 1 /* This JSON contains a policy definition */ <- first comment
line 2 {
line 3 "action" : "sendMessage" //first action
line 4 ,"message": " 'CompletionCode: '||String(CompletionCode)"
line 5 }

Figure 37. Commented JSON Example 1

line 1 {
line 2 "action" : "sendMessage" //first action <- first comment
line 3 ,"message": " 'CompletionCode: '||String(CompletionCode)"
line 4 }

Figure 38. Commented JSON Example 2

line 1 {
line 2 "action" : "sendMessage"
line 3 ,"message": " 'CompletionCode: '||String(CompletionCode)"
line 4 } /* The above was an action */ <- first comment

Figure 39. Commented JSON Example 3

Of the three JSON examples shown, Figure 37 on page 533 will have the best performance because
the parser will detect it should tolerate comments when it reads the very first line, on par with setting
HWTJ_TOLERATE_CMT_ON. The Figure 39 on page 533 will have the worst performance because the
parser will not be aware it needs to tolerate comments until the very end of the text and will need to
re-parse the whole text body, resulting in two full parses.

Valid values for this parameter are:
HWTJ_TOLERATE_CMT_OFF

The z/OS JSON parser should comply with the JSON specification and classify any JSON5 single
and multi-line style comments encountered as invalid syntax.

HWTJOPTS

Chapter 20. The z/OS JSON parser 533

HWTJ_TOLERATE_CMT_ON
The z/OS JSON parser should be primed to expect to encounter single and multi-line comments
during parse, HWTJPARS API, and creation, HWTJCREN API, of JSON text. Parsing performance
for commented JSON text is slower compared to uncommented JSON. This option is only
recommended for content that will contain comments. Uncommented JSON text will also
experience a performance penalty when the parser is primed to parse commented JSON text.

DiagArea (non-REXX)
DiagArea. (REXX)

Returned parameter.

• Type: Character string (non-REXX), stem variable (REXX)
• Length: 136 bytes (non-REXX)

A storage area provided by the caller that might contain additional diagnostic information related to
the service call. It consists of a 4-byte integer reason code field and a 128-byte character string error
text field.

ABEND codes
If the toolkit is unable to properly access the user-supplied parameter list, the call might result in a
X'04D' ABEND with a reason code of X'0008yyyy' for one of the following reasons:
yyyy

Reason
0000

The parameters passed by the caller are not in the primary address space.
0001

The number of parameters passed by the caller is incorrect.

Return codes
When the service returns control to the caller, GPR 15 and the returnCode parameter contain a
hexadecimal return code, as listed in .

Table 102. Return codes for the HWTJOPTS service

Hexadecimal return code
Equate symbol

Decimal return code
Equate symbol Meaning and action

0
HWTJ_OK

0
HWTJ_OK

Meaning: Successful completion.

Action: None.

101
HWTJ_PARSERHANDLE_INV

257
HWTJ_PARSERHANDLE_INV

Meaning: Program error. The
parserHandle parameter specified on
the service call is not a valid parser
handle (one that was returned by the
HWTJINIT service).

Action: Check for a probable coding error.

HWTJOPTS

534 z/OS: z/OS MVS Callable Services for HLL

Table 102. Return codes for the HWTJOPTS service (continued)

Hexadecimal return code
Equate symbol

Decimal return code
Equate symbol Meaning and action

102
HWTJ_PARSERHANDLE_INUSE

258
HWTJ_PARSERHANDLE_INUSE

Meaning: Program error. Two possible
reasons can result in this return code:

1. The parser handle is being used by
another caller. Only one outstanding
z/OS JSON parser service can use the
same parser handle.

2. A previous service request using this
parser handle resulted in an ABEND,
and the parser instance was unable
to indicate that its use of the parser
handle has completed.

Action: Check for a probable coding error.

1. While all z/OS JSON parser service
calls are synchronous (blocking), if
more than one task, process, or
thread is running simultaneously and
using the same parser handle, only
one is allowed access. Change the
application such that only one thread
attempts to use the same parser
handle at a time.

2. If the application detected an
ABEND while the z/OS JSON parser
was invoked, the parser instance
associated with the parser handle
could be permanently locked. To
release the storage associated with
the parser work area, issue the
HWTJTERM service call with a
forceOption of HWTJ_NOFORCE.
If this fails with the same return
code, issue another HWTJTERM
service call with a forceOption of
HWTJ_FORCE.

103
HWTJ_INACCESSIBLE_PARM

259
HWTJ_INACCESSIBLE_PARM

Meaning: Program error. The application
passed an input or output parameter
which was inaccessible by the parser. See
“General programming considerations”
on page 463 for details about z/OS JSON
parser recovery processing.

Action: Check for a probable coding
error. Likely, the recovery of the caller
detected this return code as a result
of the parser abnormally ending with
a X'0C4' system ABEND. Check the
diagArea for an explanation as to
which parameter was attempting to
be accessed when the parser service
calls abnormally ended. See “General
programming considerations” on page
463 for details about actions to consider
for this return code.

B01
HWTJ_JOPTS_OPTION_INV

2817
HWTJ_JOPTS_OPTION_INV

Meaning: Program error. The application
did not pass a valid optionType
parameter.

Action: Check for a probable coding error.
Change the optionType passed in to one
of the valid value.

HWTJOPTS

Chapter 20. The z/OS JSON parser 535

Table 102. Return codes for the HWTJOPTS service (continued)

Hexadecimal return code
Equate symbol

Decimal return code
Equate symbol Meaning and action

B02
HWTJ_JOPTS_CMNT_NOT_ALLOWED

2818
HWTJ_JOPTS_CMNT_NOT_ALLOWED

Meaning: One or more of the options in
effect may not be changed.

Action: Check for a probable usage
error. If a comment toleration option
is already in effect for the parser
instance represented by the parse handle,
HWTJOPTS may not be invoked to alter it.

F01
HWTJ_INTERRUPT_STATUS_INV

3841
HWTJ_INTERRUPT_STATUS_INV

Meaning: Program error. The calling
program is disabled. The system rejects
the service request.

Action: Check the calling program for a
probable coding error.

F02
HWTJ_LOCKS_HELD

3842
HWTJ_LOCKS_HELD

Meaning: Program error. The calling
program is holding one or more locks. The
system rejects the service request.

Action: Check the calling program for a
probable coding error.

F03
HWTJ_UNSUPPORTED_RELEASE

3843
HWTJ_UNSUPPORTED_RELEASE

Meaning: The operating system level
does not support this service. The system
rejects the service request.

Action: Remove the calling program from
this system, install it on a system that
supports z/OS JSON parser services, and
run the calling program again.

FFF
HWTJ_UNEXPECTED_ERROR

4095
HWTJ_UNEXPECTED_ERROR

Meaning: System error. The service
encountered an unexpected error. The
system rejects the service call.

Action: Search problem reporting
databases for a fix for the problem. If no
fix exists, contact the IBM Support Center.

HWTJPARS — Parse a JSON string
Call this service to assign JSON text to a parser instance, validate its syntax, and create an internal
representation of it in the parser’s memory.

Description
The HWTJPARS service performs the following functions:

1. It assigns the JSON text specified by the caller to a previously created parser instance. All prior JSON
text associated with this JSON parser instance, if any, is disassociated with the instance.

2. It checks the JSON text input to ensure that the text conforms to the JSON syntax standards.
See Introducing JSON (json.org) for a description of what comprises valid JSON text and JSON5
standard comment sections for details of supported single and multi-line comment syntax. The
parsers comment toleration behavior depends on the value specified in HWTJOPTS. Any errors or
deviations from the published syntax standards are flagged as a parse error, and the caller is notified
of both the kind of syntax error and the location in the JSON text input buffer where the reported
error exists. The JSON text input may either be in EBCDIC encoding (codepage 1047) or in UTF-8.
Users may, optionally, assert one of these encodings prior to invoking HWTJPARS, via the HWTJSENC
service. In the absence of any such assertion, the HWTJPARS service will attempt to discover the
encoding type. Either thru assertion or discovery, the encoding type in effect may be surfaced at any
point subsequent to HWTJPARS via the HWTJGENC service.

HWTJPARS

536 z/OS: z/OS MVS Callable Services for HLL

http://json.org

3. It creates an internal representation of the JSON text in the parser instance memory, allowing
subsequent parse functions to be executed quickly. (The parser creates this internal representation of
the JSON text in a DOM-like tree structure.)

Note: Reissuing the HWTJPARS service using the same parser handle as a prior HWTJPARS invocation
will cause the parser instance to be reinitialized. All data saved in the internal representation of the
JSON text, which is used by the parser for easy traversal by the other methods, must be regenerated. In
addition, the new HWTJPARS invocation causes all previous handles returned by the parser for objects or
entries to be invalidated. The encoding type and any setting specified via HWTJOPTS that was in effect
for the prior JSON text will be applied when HWTJPARS is reissued with an existing parse handle. If
the subsequent JSON text to be parsed has a different encoding type or requires a different comment
toleration setting than what was specified using HWTJOPTS, use the HWTJINIT service to create a new
JSON parse instance and invoke HWTJPARS and other services with the new handle.

Environment
The requirements for the caller are:

Requirement Details

Minimum authorization: Supervisor state or problem state, any PSW key.

Dispatchable unit mode: Task or SRB.

Cross memory mode: Any PASN, any HASN, any SASN.

AMODE: 31 bit.

ASC mode: Primary or access register (AR).

Interrupt status: Enabled for I/O and external interrupts.

Locks: No locks held.

Control parameters: Control parameters must be in the primary address space and
addressable by the caller.

Linkage: Standard MVS linkage conventions are used.

Programming requirements
See “Syntax, linkage, and programming considerations” on page 462 for details about how to call the
z/OS JSON parser services in the various supported programming languages.

REXX programming considerations for the HWTJPARS service
All information for the HWTPARS service applies for REXX requests except:

• JSONText replaces JSONTextAddr and JSONTextLen

Syntax
Write the call as shown in the following syntax diagram. You must code all parameters in the order shown.

Non-REXX parameters REXX parameters

CALL HWTJPARS(
 ReturnCode,
 ParserHandle,

 JSONTextAddr,
 JSONTextLen,
 DiagArea);

address hwtjson "hwtjpars",
 "ReturnCode",
 "ParserHandle",
 "JSONText",

 "DiagArea."

HWTJPARS

Chapter 20. The z/OS JSON parser 537

Parameters
The parameters are explained as follows:

ReturnCode
Returned parameter.

• Type: Integer (non-REXX), character representation of an integer (REXX)
• Length: 4 bytes (non-REXX)

Contains the return code from the service.
ParserHandle

Supplied parameter.

• Type: Character string
• Length: 12 bytes (non-REXX)

Specifies the JSON parser instance associated with the supplied JSON text indicated by the
JSONTextAddr parameter.

JSONText (REXX)
Supplied parameter.

• Type: Character string

Specifies the REXX variable that contains the JSON string to be parsed.
JSONTextAddr (non-REXX)

Supplied parameter.

• Type: Pointer
• Length: 4 bytes

Specifies the address of the actual buffer storage location of the JSON text to be parsed and
associated with a previously initialized parser instance.

Notes:

1. The parser maintains a binding to the buffer specified by this parameter even after the service call
to the HWTJPARS service completes. This buffer must not be freed or reused until the caller has
completed all parsing functions associated with this JSON text string.

2. The JSON text supplied in the buffer may either be in EBCDIC (codepage 1047) or in UTF-8.

JSONTextLen (non-REXX)
Supplied parameter.

• Type: Integer
• Length: 4 bytes

Specifies the length of the JSON text buffer pointed to by the JSONTextAddr parameter.

Note: The parser does not validate whether the specified length matches the length of the actual
JSON text. The parser continues to parse the input up to the specified length. If the JSON text is
shorter than the specified length, the parser generates a parse error if any non-null characters are
encountered after the end of the JSON text. If the JSON text is longer than the specified length, the
parser generates the appropriate parser error.

DiagArea (non-REXX)
DiagArea. (REXX)

Returned parameter.

• Type: Character string (non-REXX), stem variable (REXX)
• Length: 132 bytes (non-REXX)

HWTJPARS

538 z/OS: z/OS MVS Callable Services for HLL

A storage area provided by the caller that might contain additional diagnostic information related to
the service call. It consists of a 4-byte integer reason code field and a 128-byte character string error
text field.

ABEND codes
If the toolkit is unable to properly access the user-supplied parameter list, the call might result in a
X'04D' ABEND with a reason code of X'0009yyyy' for one of the following reasons:
yyyy

Reason
0000

The parameters passed by the caller are not in the primary address space.
0001

The number of parameters passed by the caller is incorrect.

Return codes
When the service returns control to the caller, GPR 15 and the returnCode parameter contain a
hexadecimal return code, as listed in Table 103 on page 539.

Table 103. Return codes for the HWTJPARS service

Hexadecimal return code
Equate symbol

Decimal return code
Equate symbol Meaning and action

0
HWTJ_OK

0
HWTJ_OK

Meaning: Successful completion.

Action: None.

101
HWTJ_PARSERHANDLE_INV

257
HWTJ_PARSERHANDLE_INV

Meaning: Program error. The
parserHandle parameter specified on
the service call is not a valid parser
handle (one that was returned by the
HWTJINIT service).

Action: Check for a probable coding error.

HWTJPARS

Chapter 20. The z/OS JSON parser 539

Table 103. Return codes for the HWTJPARS service (continued)

Hexadecimal return code
Equate symbol

Decimal return code
Equate symbol Meaning and action

102
HWTJ_PARSERHANDLE_INUSE

258
HWTJ_PARSERHANDLE_INUSE

Meaning: Program error. Two possible
reasons can result in this return code:

1. The parser handle is being used by
another caller. Only one outstanding
z/OS JSON parser service can use the
same parser handle.

2. A previous service request using this
parser handle resulted in an ABEND,
and the parser instance was unable
to indicate that its use of the parser
handle has completed.

Action: Check for a probable coding error.

1. While all z/OS JSON parser service
calls are synchronous (blocking), if
more than one task, process, or
thread is running simultaneously and
using the same parser handle, only
one is allowed access. Change the
application such that only one thread
attempts to use the same parser
handle at a time.

2. If the application detected an
ABEND while the z/OS JSON parser
was invoked, the parser instance
associated with the parser handle
could be permanently locked. To
release the storage associated with
the parser work area, issue the
HWTJTERM service call with a
forceOption of HWTJ_NOFORCE.
If this fails with the same return
code, issue another HWTJTERM
service call with a forceOption of
HWTJ_FORCE.

103
HWTJ_INACCESSIBLE_PARM

259
HWTJ_INACCESSIBLE_PARM

Meaning: Program error. The application
passed an input or output parameter,
which was inaccessible by the parser. See
“General programming considerations”
on page 463 for details about z/OS JSON
parser recovery processing.

Action: Check for a probable coding
error. Likely, the recovery of the caller
detected this return code as a result
of the parser abnormally ending with
a X'0C4' system ABEND. Check the
diagArea for an explanation as to
which parameter was attempting to
be accessed when the parser service
calls abnormally ended. See “General
programming considerations” on page
463 for details about actions to consider
for this return code.

HWTJPARS

540 z/OS: z/OS MVS Callable Services for HLL

Table 103. Return codes for the HWTJPARS service (continued)

Hexadecimal return code
Equate symbol

Decimal return code
Equate symbol Meaning and action

108
HWTJ_WORKAREA_TOO_SMALL

260
HWTJ_WORKAREA_TOO_SMALL

Meaning: Program error. The amount of
JSON text to parse requires a larger
work area than the size specified by the
maxParserWorkAreaSize parameter
on the HWTJINIT service.

Action: Check for a probable coding
error. IBM recommends specifying a
maxParserWorkAreaSize value of 0
(unlimited work area size available to the
parser). If the application cannot specify
this value, then modify the invocation of
the HWTJINIT service to specify a larger
maxParserWorkAreaSize value based
on the recommendations given in the
ReasonDesc section of the diagArea
and in the description of the HWTJINIT
maxParserWorkAreaSize parameter.

109
HWTJ_PARSE_ERROR

261
HWTJ_PARSE_ERROR

Meaning: Supplied JSON text error. The
JSON text passed by the caller to the
HWTJPARS service contains a syntax or
encoding error.

Note: This error might also be generated
if the specified JSONTextLen value is
greater than the actual length of the JSON
text and there are non-null (white space)
characters after the JSON text.

Action: Check the diagArea for a
complete explanation of the error. The
reasonCode portion of the diagArea
pinpoints the reason for the parse failure,
while the ReasonDesc portion points to
the exact location in the supplied JSON
text in cases when the parser detects a
JSON syntax error.

10B
HWTJ_CANNOT_OBTAIN_WORKAREA

267
HWTJ_CANNOT_OBTAIN_WORKAREA

Meaning: System error. The Storage
Obtain service could not obtain the
work area storage as required by the
z/OS JSON parser during the HWTJPARS
service call.

Action: Consult the diagArea for the
Storage Obtain failure return code and
additional information found in the
ReasonDesc section. Check to see if
there is sufficient memory available
in order for the parser to obtain the
necessary amount of work area. If
the problem persists, search problem
reporting databases for a fix for the
problem. If no fix exists, contact the IBM
Support Center.

HWTJPARS

Chapter 20. The z/OS JSON parser 541

Table 103. Return codes for the HWTJPARS service (continued)

Hexadecimal return code
Equate symbol

Decimal return code
Equate symbol Meaning and action

401
HWTJ_JPARS_JSONTEXTADDR_INV

1025
HWTJ_JPARS_JSONTEXTADDR_INV

Meaning: Program error. The caller
specified a value of zero for the address
of the JSON text buffer.

Action: Check for a probable coding error.
Specify the actual address of the JSON
text buffer.

Note: Specifying a bad JSON buffer
address other than zero might result in
the parser terminating with a X'0C4'
system ABEND. See the description of the
HWTJ_INACCESSIBLE_PARM return code
for more information.

402
HWTJ_JPARS_JSONTEXTLEN_INV

1026
HWTJ_JPARS_JSONTEXTLEN_INV

Meaning: Program error. The caller
specified a value of zero for the length of
the JSON text buffer.

Action: Check for a probable coding error.
Specify the actual length of the JSON text
buffer.

Note: Specifying a bad JSON buffer
length other than zero might result in
the parser terminating with a X'0C4'
system ABEND. See the description of the
HWTJ_INACCESSIBLE_PARM return code
for more information.

403
HWTJ_JPARS_WORKAREA_ERROR

1027
HWTJ_JPARS_WORKAREA_ERROR

Meaning: System error. The z/OS JSON
parser will sometimes need to issue
system services to increase or decrease
the amount of work area storage in
order to properly build an internal
representation of the JSON text data.
When an error occurs while obtaining or
releasing this storage, the parser cannot
proceed.

Action: Consult the diagArea for the
return code of the failing Storage
Obtain or Release service and additional
information in the ReasonDesc section.
Check to see if there is sufficient memory
available in order for the application to
obtain the necessary amount of work area
storage. If the problem persists, search
problem reporting databases for a fix for
the problem. If no fix exists, contact the
IBM Support Center.

F01
HWTJ_INTERRUPT_STATUS_INV

3841
HWTJ_INTERRUPT_STATUS_INV

Meaning: Program error. The calling
program is disabled. The system rejects
the service request.

Action: Check the calling program for a
probable coding error.

F02
HWTJ_LOCKS_HELD

3842
HWTJ_LOCKS_HELD

Meaning: Program error. The calling
program is holding one or more locks. The
system rejects the service request.

Action: Check the calling program for a
probable coding error.

HWTJPARS

542 z/OS: z/OS MVS Callable Services for HLL

Table 103. Return codes for the HWTJPARS service (continued)

Hexadecimal return code
Equate symbol

Decimal return code
Equate symbol Meaning and action

F03
HWTJ_UNSUPPORTED_RELEASE

3843
HWTJ_UNSUPPORTED_RELEASE

Meaning: The operating system level
does not support this service. The system
rejects the service request.

Action: Remove the calling program from
this system, install it on a system that
supports z/OS JSON parser services, and
run the calling program again.

FFF
HWTJ_UNEXPECTED_ERROR

4095
HWTJ_UNEXPECTED_ERROR

Meaning: System error. The service
encountered an unexpected error. The
system rejects the service call.

Action: Search problem reporting
databases for a fix for the problem. If no
fix exists, contact the IBM Support Center.

HWTJSENC — Set JSON encoding
Call the HWTJSENC service to assert an encoding type for JSON data which will be used by a JSON parser
instance.

Description
This service asserts the encoding type of the JSON text data which is to be input to an HWTJPARS
or HWTJCREN invocation. It is optional in parsing scenarios, as the HWTJPARS service will attempt to
discover the encoding type of the input text data. Parse will fail if the asserted encoding type does not
match the discovered one, so asserting a value can be thought of as a safeguard (instructing HWTJPARS
to corroborate the JSON text data's expected encoding). In scenarios of building JSON text anew using
HWTJCREN, HWTJSENC should be invoked prior to any HWTJCREN usage, to ensure the intended
outcome.

The commingling of data with differing encodings is not supported, and the JSON parser instance
attempts to prevent it by disallowing HWTJSENC invocations once an encoding type is in effect. An
encoding type takes effect for a given JSON parser instance following a first successful HWTJPARS
or HWTJCREN invocation, and remains in effect for the JSON parser instance until such time as the
HWTJTERM service is invoked to terminate the instance.

Environment
The requirements for the caller are:

Requirement Details

Minimum authorization: Supervisor state or problem state, any PSW key.

Dispatchable unit mode: Task or SRB.

Cross memory mode: Any PASN, any HASN, any SASN.

AMODE: 31 bit.

ASC mode: Primary or access register (AR).

Interrupt status: Enabled for I/O and external interrupts.

Locks: No locks held.

Control parameters: Control parameters must be in the primary address space and
addressable by the caller.

Linkage: Standard MVS linkage conventions are used.

HWTJSENC

Chapter 20. The z/OS JSON parser 543

Programming requirements
See “Syntax, linkage, and programming considerations” on page 462 for details about how to call the
z/OS JSON parser services in the various supported programming languages.

REXX programming considerations for the HWTJSENC service.

All information for the HWTJSENC service applies for REXX requests.

Syntax
Write the call as shown in the following syntax diagram. You must code all parameters in the order shown.

Non-REXX parameters REXX parameters

CALL HWTJSENC(
 ReturnCode,
 ParserHandle,
 Encoding,
 DiagArea);

address hwtjson "hwtjsenc",
 "ReturnCode",
 "ParserHandle",
 "Encoding",
 "DiagArea."

Parameters
The parameters are explained as follows:

ReturnCode
Returned parameter.

• Type: Integer (non-REXX), character representation of an integer (REXX)
• Length: 4 bytes (non-REXX)

Contains the return code from the service.
ParserHandle

Supplied parameter.

• Type: Character string
• Length: 12 bytes (non-REXX)

Specifies the JSON parser instance to be used.
Encoding

Supplied parameter.

• Type: Integer (non-REXX), character representation of an integer (REXX)
• Length: 4 bytes (non-REXX)

Contains the value of any encoding type which is to take effect for the JSON parser instance
represented by the input parser handle. Constants for the possible values are defined in the supplied
interface definition files (IDFs).

DiagArea (non-REXX)
DiagArea. (REXX)

Returned parameter.

• Type: Character string (non-REXX), stem variable (REXX)
• Length: 136 bytes (non-REXX)

A storage area provided by the caller that might contain additional diagnostic information related to
the service call. It consists of a 4-byte integer reason code field and a 128-byte character string error
text field.

HWTJSENC

544 z/OS: z/OS MVS Callable Services for HLL

Abend codes
If the toolkit is unable to properly access the user-supplied parameter list, the call might result in a
X'04D' ABEND with a reason code of X'000Fyyyy' for one of the following reasons:
yyyy

Reason
0000

The parameters passed by the caller are not in the primary address space.
0001

The number of parameters passed by the caller is incorrect.

Return codes
When the service returns control to the caller, GPR 15 and the returnCode parameter contain a
hexadecimal return code, as listed in “HWTJESCT — Encode or decode escape sequences (REXX)” on
page 489.

Table 104. Return codes for the HWTJSENC service

Hexadecimal return code
Equate symbol

Decimal return code
Equate symbol Meaning and action

0
HWTJ_OK

0
HWTJ_OK

Meaning: Successful completion.

Action: None.

101
HWTJ_PARSERHANDLE_INV

257
HWTJ_PARSERHANDLE_INV

Meaning: Program error. The
parserHandle parameter specified on
the service call is not a valid parser
handle (one that was returned by the
HWTJINIT service).

Action: Check for a probable coding error.

HWTJSENC

Chapter 20. The z/OS JSON parser 545

Table 104. Return codes for the HWTJSENC service (continued)

Hexadecimal return code
Equate symbol

Decimal return code
Equate symbol Meaning and action

102
HWTJ_PARSERHANDLE_INUSE

258
HWTJ_PARSERHANDLE_INUSE

Meaning: Program error. Two possible
reasons can result in this return code:

1. The parser handle is being used by
another caller. Only one outstanding
z/OS JSON parser service can use the
same parser handle.

2. A previous service request using this
parser handle resulted in an ABEND,
and the parser instance was unable
to indicate that its use of the parser
handle has completed.

Action: Check for a probable coding error.

1. While all z/OS JSON parser service
calls are synchronous (blocking), if
more than one task, process, or
thread is running simultaneously and
using the same parser handle, only
one is allowed access. Change the
application such that only one thread
attempts to use the same parser
handle at a time.

2. If the application detected an
ABEND while the z/OS JSON parser
was invoked, the parser instance
associated with the parser handle
could be permanently locked. To
release the storage associated with
the parser work area, issue the
HWTJTERM service call with a
forceOption of HWTJ_NOFORCE.
If this fails with the same return
code, issue another HWTJTERM
service call with a forceOption of
HWTJ_FORCE.

103
HWTJ_INACCESSIBLE_PARM

259
HWTJ_INACCESSIBLE_PARM

Meaning: Program error. The application
passed an input or output parameter
which was inaccessible by the parser. See
“General programming considerations”
on page 463 for details about z/OS JSON
parser recovery processing.

Action: Check for a probable coding
error. Likely, the recovery of the caller
detected this return code as a result
of the parser abnormally ending with
a X'0C4' system ABEND. Check the
diagArea for an explanation as to
which parameter was attempting to
be accessed when the parser service
calls abnormally ended. See “General
programming considerations” on page
463 for details about actions to consider
for this return code.

A01
HWTJ_JSENC_TYPE_INV

2561
HWTJ_JSENC_TYPE_INV

Meaning: Program error. The specified
encoding is not one of the supported
types.

Action: Check for a probable coding error.
See the supplied interface definition files
for possible values.

HWTJSENC

546 z/OS: z/OS MVS Callable Services for HLL

Table 104. Return codes for the HWTJSENC service (continued)

Hexadecimal return code
Equate symbol

Decimal return code
Equate symbol Meaning and action

A02
HWTJ_JSENC_NOT_ALLOWED

2562
HWTJ_JSENC_NOT_ALLOWED

Meaning: The encoding type in effect may
not be changed.

Action: Check for a probable usage error.
If an encoding is already in effect for the
parser instance represented by the parse
handle, HWTJSENC need not be invoked.

F01
HWTJ_INTERRUPT_STATUS_INV

3841
HWTJ_INTERRUPT_STATUS_INV

Meaning: Program error. The calling
program is disabled. The system rejects
the service request.

Action: Check the calling program for a
probable coding error.

F02
HWTJ_LOCKS_HELD

3842
HWTJ_LOCKS_HELD

Meaning: Program error. The calling
program is holding one or more locks. The
system rejects the service request.

Action: Check the calling program for a
probable coding error.

F03
HWTJ_UNSUPPORTED_RELEASE

3843
HWTJ_UNSUPPORTED_RELEASE

Meaning: The operating system level
does not support this service. The system
rejects the service request.

Action: Remove the calling program from
this system, install it on a system that
supports z/OS JSON parser services, and
run the calling program again.

FFF
HWTJ_UNEXPECTED_ERROR

4095
HWTJ_UNEXPECTED_ERROR

Meaning: System error. The service
encountered an unexpected error. The
system rejects the service call.

Action: Search problem reporting
databases for a fix for the problem. If no
fix exists, contact the IBM Support Center.

HWTJSERI — Serialize (build) JSON text
Call the HWTJSERI service to build the JSON text associated with a parser instance.

Description
The HWTJSERI service builds the JSON text associated with the specified parser instance by combining
the existing JSON text (if any) and any newly added objects or entries. The resulting content will exclude
any single and multi-line JSON5 style comments that may have been present in the original JSON text
provided to the parser instance.

The serialize service can be invoked any time that the application needs to have the complete JSON text
representation associated with the parser instance. For example, the application might need to generate
the JSON text in the following cases:

• The application needs to send the modified JSON text back to the partner application in the client/
server web application model.

• The application needs to store the JSON text into a local data store for later use.
• The application has already created JSON text (using the HWTJCREN service) and needs to perform

a search (HWTJSRCH service) with a searchType of HWTJ_SEARCHTYPE_GLOBAL to search through
all existing and new JSON text. (A search with a searchType of HWTJ_SEARCHTYPE_GLOBAL cannot
search through entries created by the HWTJCREN service.) In this case, a serialize request would be
issued and the JSON text output would be used as input to the parse service (HWTJPARS). The newly
parsed JSON text could then be searched globally (albeit with new handles).

HWTJSERI

Chapter 20. The z/OS JSON parser 547

• The application received commented JSON text as input and requires a version of the JSON text with all
comments removed.

The encoding type of the JSON text output produced by HWTJSERI will be that which is currently in effect
for the JSON parser instance.

The serialization service will provide unformatted JSON. If the JSON text is in IBM-1047 encoding, the
application can take advantage of the pretty print utility to format the text. The utility is shipped as
HWTJSPRT in SYS1.SAMPLIB data set and as jsonprint in the z/OS Unix samples directory.

Example
Consider the following sample invocation in USS where parserOutput.json contains the serialized output
returned by HWTJSERI:

/* REXX */
call syscalls 'ON'
inputFile = ‘parserOutput.json'
outputFile = ‘pretty.json’

call bpxwunix '/samples/jsonprint’ inputFile ‘>’ outputFile

return

Environment
The requirements for the caller are:

Requirement Details

Minimum authorization: Supervisor state or problem state, any PSW key.

Dispatchable unit mode: Task or SRB.

Cross memory mode: Any PASN, any HASN, any SASN.

AMODE: 31 bit.

ASC mode: Primary or access register (AR).

Interrupt status: Enabled for I/O and external interrupts.

Locks: No locks held.

Control parameters: Control parameters must be in the primary address space and
addressable by the caller.

Linkage: Standard MVS linkage conventions are used.

Programming requirements
See “Syntax, linkage, and programming considerations” on page 462 for details about how to call the
z/OS JSON parser services in the various supported programming languages.

REXX programming considerations for the HWTSERI service
All information for the HWTJSERI service applies for REXX requests except:

• NewJSONText replaces NewJSONTextBufferAddr and NewJSONTextBufferLen
• ActualJSONTextLen is not used

Syntax
Write the call as shown in the following syntax diagram. You must code all parameters in the order shown.

HWTJSERI

548 z/OS: z/OS MVS Callable Services for HLL

Non-REXX parameters REXX parameters

CALL HWTJSERI(
 ReturnCode,
 ParserHandle,

 NewJSONTextBufferAddr,
 NewJSONTextBufferLen,
 ActualJSONTextLen,
 DiagArea);

address hwtjson "hwtjseri",
 "ReturnCode",
 "ParserHandle",
 "NewJSONText",

 "DiagArea."

Parameters
The parameters are explained as follows:

ReturnCode
Returned parameter.

• Type: Integer (non-REXX), character representation of an integer (REXX)
• Length: 4 bytes (non-REXX)

Contains the return code from the service.
ParserHandle

Supplied parameter.

• Type: Character string
• Length: 12 bytes (non-REXX)

Specifies the JSON parser instance to be used.
NewJSONText (REXX)

Returned parameter.

• Type: Character string

REXX variable that contains the JSON text returned which is associated with the specified
parserHandle.

NewJSONTextBufferAddr (non-REXX)
Supplied parameter.

• Type: Pointer
• Length: 4 bytes

Specifies the address of a buffer where the JSON text associated with the specified parserHandle is
to be written.

NewJSONTextBufferLen (non-REXX)
Supplied parameter.

• Type: Integer
• Length: 4 bytes

Specifies the length of the output buffer pointed to by the newJSONTextBufferAddr parameter.
ActualJSONTextLen (non-REXX)

Returned parameter.

• Type: Integer
• Length: 4 bytes

The actual length of the returned JSON text (in bytes). If the size of the buffer specified by the
newJSONTextBufferLen parameter is not large enough to contain the entire JSON text, a return
code of HWTJ_BUFFER_TOO_SMALL is returned. The application can then reissue the HWTJSERI
request after the proper buffer size has been obtained.

HWTJSERI

Chapter 20. The z/OS JSON parser 549

DiagArea (non-REXX)
DiagArea. (REXX)

Returned parameter.

• Type: Character string (non-REXX), stem variable (REXX)
• Length: 132 bytes (non-REXX)

A storage area provided by the caller that may contain additional diagnostic information related to the
service call. It consists of a 4-byte integer reason code field and a 128-byte character string error text
field.

ABEND codes
If the toolkit is unable to properly access the user-supplied parameter list, the call might result in a
X'04D' ABEND with a reason code of X'000Ayyyy' for one of the following reasons:
yyyy

Reason
0000

The parameters passed by the caller are not in the primary address space.
0001

The number of parameters passed by the caller is incorrect.

Return codes
When the service returns control to the caller, GPR 15 and the returnCode parameter contain a
hexadecimal return code, as listed in Table 105 on page 550.

Table 105. Return codes for the HWTJSERI service

Hexadecimal return code
Equate symbol

Decimal return code
Equate symbol Meaning and action

0
HWTJ_OK

0
HWTJ_OK

Meaning: Successful completion.

Action: None.

101
HWTJ_PARSERHANDLE_INV

257
HWTJ_PARSERHANDLE_INV

Meaning: Program error. The
parserHandle parameter specified on
the service call is not a valid parser
handle (one that was returned by the
HWTJINIT service).

Action: Check for a probable coding error.

HWTJSERI

550 z/OS: z/OS MVS Callable Services for HLL

Table 105. Return codes for the HWTJSERI service (continued)

Hexadecimal return code
Equate symbol

Decimal return code
Equate symbol Meaning and action

102
HWTJ_PARSERHANDLE_INUSE

258
HWTJ_PARSERHANDLE_INUSE

Meaning: Program error. Two possible
reasons can result in this return code:

1. The parser handle is being used by
another caller. Only one outstanding
z/OS JSON parser service can use the
same parser handle.

2. A previous service request using this
parser handle resulted in an ABEND,
and the parser instance was unable
to indicate that its use of the parser
handle has completed.

Action: Check for a probable coding error.

1. While all z/OS JSON parser service
calls are synchronous (blocking), if
more than one task, process, or
thread is running simultaneously and
using the same parser handle, only
one is allowed access. Change the
application such that only one thread
attempts to use the same parser
handle at a time.

2. If the application detected an
ABEND while the z/OS JSON parser
was invoked, the parser instance
associated with the parser handle
could be permanently locked. To
release the storage associated with
the parser work area, issue the
HWTJTERM service call with a
forceOption of HWTJ_NOFORCE.
If this fails with the same return
code, issue another HWTJTERM
service call with a forceOption of
HWTJ_FORCE.

103
HWTJ_INACCESSIBLE_PARM

259
HWTJ_INACCESSIBLE_PARM

Meaning: Program error. The application
passed an input or output parameter
which was inaccessible by the parser. See
“General programming considerations”
on page 463 for details about z/OS JSON
parser recovery processing.

Action: Check for a probable coding
error. Likely, the recovery of the caller
detected this return code as a result
of the parser abnormally ending with
a X'0C4' system ABEND. Check the
diagArea for an explanation as to
which parameter was attempting to
be accessed when the parser service
calls abnormally ended. See “General
programming considerations” on page
463 for details about actions to consider
for this return code.

HWTJSERI

Chapter 20. The z/OS JSON parser 551

Table 105. Return codes for the HWTJSERI service (continued)

Hexadecimal return code
Equate symbol

Decimal return code
Equate symbol Meaning and action

106
HWTJ_BUFFER_TOO_SMALL

260
HWTJ_BUFFER_TOO_SMALL

Meaning: Program error. The buffer
provided for the new JSON text is not
large enough to contain the generated
text. The value specified for the
newJSONTextBufferLen parameter is
too small.

Action: Check for a probable coding
error. Examine the value returned in
the actualJSONTextLen parameter to
determine the necessary size for the
JSON text buffer. Increase the size of
the JSON text buffer, specify the larger
size on the newJSONTextBufferLen
parameter, and reissue the HWTJSERI
request.

10A
HWTJ_ROOT_OBJECT_MISSING

266
HWTJ_ROOT_OBJECT_MISSING

Meaning: Program error. There is no
JSON text to serialize.

Action: Check for a probable coding error.
Invoke the parse service (HWTJPARS)
or the create service (HWTJCREN) to
associate JSON text with the specified
parser instance before invoking the
HWTJSERI service to regenerate the
JSON text.

501
HWTJ_JSERI_NEWJTXTBUFFADDR_INV

1281
HWTJ_JSERI_NEWJTXTBUFFADDR_INV

Meaning: Program error. The caller
specified a value of zero for the address
of the newJSONTextBufferAddr
parameter.

Action: Check for a probable coding error.
Specify the actual address of the buffer
to which the JSON text output is to be
written.

Note: Specifying a bad address for
the JSON text output buffer that is
other than zero may result in the
parser terminating with a X'0C4'system
ABEND. See the description of the
HWTJ_INACCESSIBLE_PARM return code
for more information.

502
HWTJ_JSERI_NEWJTXTBUFFLEN_INV

1282
HWTJ_JSERI_NEWJTXTBUFFLEN_INV

Meaning: Program error. The caller
specified a value of zero for the length of
the new JSON text output buffer.

Action: Check for a probable coding error.
Specify the actual length of the JSON text
output buffer.

Note: Specifying a bad length for the
JSON text output buffer that is other
than zero may result in the parser
terminating with a X'0C4' system
ABEND. See the description of the
HWTJ_INACCESSIBLE_PARM return code
for more information.

F01
HWTJ_INTERRUPT_STATUS_INV

3841
HWTJ_INTERRUPT_STATUS_INV

Meaning: Program error. The calling
program is disabled. The system rejects
the service request.

Action: Check the calling program for a
probable coding error.

HWTJSERI

552 z/OS: z/OS MVS Callable Services for HLL

Table 105. Return codes for the HWTJSERI service (continued)

Hexadecimal return code
Equate symbol

Decimal return code
Equate symbol Meaning and action

F02
HWTJ_LOCKS_HELD

3842
HWTJ_LOCKS_HELD

Meaning: Program error. The calling
program is holding one or more locks. The
system rejects the service request.

Action: Check the calling program for a
probable coding error.

F03
HWTJ_UNSUPPORTED_RELEASE

3843
HWTJ_UNSUPPORTED_RELEASE

Meaning: The operating system level
does not support this service. The system
rejects the service request.

Action: Remove the calling program from
this system, install it on a system that
supports z/OS JSON parser services, and
run the calling program again.

FFF
HWTJ_UNEXPECTED_ERROR

4095
HWTJ_UNEXPECTED_ERROR

Meaning: System error. The service
encountered an unexpected error. The
system rejects the service call.

Action: Search problem reporting
databases for a fix for the problem. If no
fix exists, contact the IBM Support Center.

HWTJSRCH — Search
Call the HWTJSRCH service to search for a particular name string.

JSON text is organized by name or value pairs in the form "string":value, where "string" is a
descriptor of the value, and where value can be a string in double quotation marks, a number, a boolean
value (true, false), a null value, an object, or an array. These structures can be nested.

It is often useful to quickly search for a particular name string in the JSON text. If a string is found, the
traversal methods may then be useful to traverse items contained within the found object entry or in
subordinate objects.

Description
The HWTJSRCH service searches for a particular "name" string within the entire JSON text or within a
specific object. The starting point for the search can be either from the beginning of the text or from a
specified handle start point.

Notes:

1. JSON array entries are simply a sequence of comma-separated values of any data type. As array
entries do not have a "name" string, they cannot be searched by the HWTJSRCH service; however, the
name of the array object itself can be searched, and nested objects with "name" strings within the
specified array.

2. A global search can be used for searching through JSON text read by the parse service (HWTJPARS).
Any text added to the string via the create service (HWTJCREN) cannot be searched globally, but might
be searched with an object-scoped search.

3. The search string provided to HWTJSRCH should be in the same encoding as that which is currently
in effect for the JSON parser instance (the same encoding as that of the data input(s) to the JSON
parser).

4. The depth of the search can be restricted (see HWTJ_SEARCHTYPE_SHALLOW, and “Examples” on
page 561, below).

Environment
The requirements for the caller are:

HWTJSRCH

Chapter 20. The z/OS JSON parser 553

Requirement Details

Minimum authorization: Supervisor state or problem state, any PSW key.

Dispatchable unit mode: Task or SRB.

Cross memory mode: Any PASN, any HASN, any SASN.

AMODE: 31 bit.

ASC mode: Primary or access register (AR).

Interrupt status: Enabled for I/O and external interrupts.

Locks: No locks held.

Control parameters: Control parameters must be in the primary address space and
addressable by the caller.

Linkage: Standard MVS linkage conventions are used.

Programming requirements
See “Syntax, linkage, and programming considerations” on page 462 for details about how to call the
z/OS JSON parser services in the various supported programming languages.

REXX programming considerations for the HWTJSRCH service
All information for the HWTJSRCH service applies for REXX requests except:

• SearchString replaces SearchStringAddr and SearchStringLen

Syntax
Write the call as shown in the following syntax diagram. You must code all parameters in the order shown.

Non-REXX parameters REXX parameters

CALL HWTJSRCH(
 ReturnCode,
 ParserHandle,
 SearchType,

 SearchStringAddr,
 SearchStringLen,
 ObjectHandle,
 StartingHandle,
 SearchResultHandle,
 DiagArea);

address hwtjson "hwtjsrch",
 "ReturnCode",
 "ParserHandle",
 "SearchType",
 "SearchString",

 "ObjectHandle",
 "StartingHandle",
 "SearchResultHandle",
 "DiagArea."

Parameters
The parameters are explained as follows:

ReturnCode
Returned parameter.

• Type: Integer (non-REXX), character representation of an integer (REXX)
• Length: 4 bytes (non-REXX)

Contains the return code from the service.
ParserHandle

Supplied parameter.

• Type: Character string

HWTJSRCH

554 z/OS: z/OS MVS Callable Services for HLL

• Length: 12 bytes (non-REXX)

Specifies the JSON parser instance to be used.
SearchType

Supplied parameter.

• Type: Integer (non-REXX), character representation of an integer (REXX)
• Length: 4 bytes (non-REXX)

Specifies the scope of the search. Valid values are:
HWTJ_SEARCHTYPE_GLOBAL

Search the JSON text, starting at (but not including) the entry represented by the
startingHandle parameter, for the first "name" that exactly matches the SearchString for
REXX or the string pointed to by the SearchStringAddr parameter for non-REXX. The search is
object-ignorant, meaning that there is no scoping of the search to be within the object specified by
the startingHandle parameter. The search ends when either the search string is found or the
end of the JSON text is reached, whichever occurs first.

HWTJ_SEARCHTYPE_OBJECT
Search the JSON text, starting at (but not including) the entry represented by the
startingHandle parameter, for the first "name" within the object specified by the
objectHandle parameter that exactly matches the SearchString for REXX or the string pointed
to by the SearchStringAddr parameter for non-REXX. The search ends when either the search
string is found or the end of the object is reached, whichever occurs first.

HWTJ_SEARCHTYPE_SHALLOW
Like HWTJ_SEARCHTYPE_OBJECT, but with limited depth of search, a shallow search will not
consider content within any nested object(s) of that object which defines the scope of the search.
Arrays may not be shallow searched, and starting handles should not reference content within
nested objects.

SearchString (REXX)
Supplied parameter.

• Type: Character string

Specifies the REXX variable that contains the search string name to be searched.
SearchStringAddr (non-REXX)

Supplied parameter.

• Type: Pointer
• Length: 4 bytes

Specifies the address of the location of the name string that the parser should attempt to locate within
the JSON text.

Note: To search for an empty name string (""), specify a searchStringAddr value of zero. (In this
case, the value of searchStringLen must also be zero).

SearchStringLen (non-REXX)
Supplied parameter.

• Type: Integer
• Length: 4 bytes

Specifies the length (in bytes) of the search string pointed to by the searchStringAddr parameter.

Note: To search for an empty name string (""), specify a searchStringLen value of zero. (In this
case, the value of searchStringAddr must also be zero).

ObjectHandle
Supplied parameter.

• Type: Integer (non-REXX), character representation of an integer (REXX)

HWTJSRCH

Chapter 20. The z/OS JSON parser 555

• Length: 4 bytes (non-REXX)

Specifies a handle representing a particular JSON object (object or array object) at which to start the
search. An objectHandle is either a value of zero for the root object, or an entryValueHandle
whose JSON type is HWJT_OBJECT_TYPE or HWTJ_ARRAY_TYPE. This parameter must be specified
for a searchType of HWTJ_SEARCHTYPE_OBJECT and must be set to zero for a searchType of
HWTJ_SEARCHTYPE_GLOBAL.

StartingHandle
Supplied parameter.

• Type: Integer (non-REXX), character representation of an integer (REXX)
• Length: 4 bytes (non-REXX)

Specifies any handle value returned by a prior parser service call, or a value of zero.

If the searchType is HWTJ_SEARCHTYPE_GLOBAL, the search starts at (but not including, unless the
value is zero) the specified handle within the JSON text.

If the searchType is HWTJ_SEARCHTYPE_OBJECT, the search starts at (but not including, unless the
value is zero) the specified handle, if the startingHandle is either within the object specified by
objectHandle or the startingHandle is zero (start searching at the beginning of the object).

If multiple instances of the same name string occur within the search scope, the
searchResultHandle that is returned on one invocation of the search service can be used as the
startingHandle for the next invocation.

SearchResultHandle
Returned parameter.

• Type: Integer (non-REXX), character representation of an integer (REXX)
• Length: 4 bytes (non-REXX)

The returned handle that represents the next instance of the search string found after the specified
starting point.

DiagArea (non-REXX)
DiagArea. (REXX)

Returned parameter.

• Type: Character string (non-REXX), stem variable (REXX)
• Length: 132 bytes (non-REXX)

A storage area provided by the caller that may contain additional diagnostic information related to the
service call. It consists of a 4-byte integer reason code field and a 128-byte character string error text
field.

If the string is not found, a "not found" return code is returned. If there are multiple strings with the
same name string value, only the first is returned. The caller can issue another search request to find the
next instance of this name string.

ABEND codes
If the toolkit is unable to properly access the user-supplied parameter list, the call might result in a
X'04D' ABEND with a reason code of X'000Byyyy' for one of the following reasons:
yyyy

Reason
0000

The parameters passed by the caller are not in the primary address space.
0001

The number of parameters passed by the caller is incorrect.

HWTJSRCH

556 z/OS: z/OS MVS Callable Services for HLL

Return codes
When the service returns control to the caller, GPR 15 and the returnCode parameter contain a
hexadecimal return code, as listed in Table 106 on page 557.

Table 106. Return codes for the HWTJSRCH service

Hexadecimal return code
Equate symbol

Decimal return code
Equate symbol Meaning and action

0
HWTJ_OK

0
HWTJ_OK

Meaning: Successful completion.

Action: None.

101
HWTJ_PARSERHANDLE_INV

257
HWTJ_PARSERHANDLE_INV

Meaning: Program error. The
parserHandle parameter specified on
the service call is not a valid parser
handle (one that was returned by the
HWTJINIT service).

Action: Check for a probable coding error.

102
HWTJ_PARSERHANDLE_INUSE

258
HWTJ_PARSERHANDLE_INUSE

Meaning: Program error. Two possible
reasons can result in this return code:

1. The parser handle is being used by
another caller. Only one outstanding
z/OS JSON parser service can use the
same parser handle.

2. A previous service request using this
parser handle resulted in an ABEND,
and the parser instance was unable
to indicate that its use of the parser
handle has completed.

Action: Check for a probable coding error.

1. While all z/OS JSON parser service
calls are synchronous (blocking), if
more than one task, process, or
thread is running simultaneously and
using the same parser handle, only
one is allowed access. Change the
application such that only one thread
attempts to use the same parser
handle at a time.

2. If the application detected an
ABEND while the z/OS JSON parser
was invoked, the parser instance
associated with the parser handle
might be permanently locked. To
release the storage associated with
the parser work area, issue the
HWTJTERM service call with a
forceOption of HWTJ_NOFORCE.
If this fails with the same return
code, issue another HWTJTERM
service call with a forceOption of
HWTJ_FORCE.

HWTJSRCH

Chapter 20. The z/OS JSON parser 557

Table 106. Return codes for the HWTJSRCH service (continued)

Hexadecimal return code
Equate symbol

Decimal return code
Equate symbol Meaning and action

103
HWTJ_INACCESSIBLE_PARM

259
HWTJ_INACCESSIBLE_PARM

Meaning: Program error. The application
passed an input or output parameter
which was inaccessible by the parser. See
“General programming considerations”
on page 463 for details about z/OS JSON
parser recovery processing.

Action: Check for a probable coding
error. Likely, the recovery of the caller
detected this return code as a result
of the parser abnormally ending with
a X'0C4' system ABEND. Check the
diagArea for an explanation as to
which parameter was attempting to
be accessed when the parser service
calls abnormally ended. See “General
programming considerations” on page
463 for details about actions to consider
for this return code.

104
HWTJ_HANDLE_INV

260
HWTJ_HANDLE_INV

Meaning: Program error. The value
specified for the objectHandle
parameter is not valid, or a
nonzero value objectHandle value
was specified for a searchType of
HWTJ_SEARCHTYPE_GLOBAL.

Action: Check for a probable coding error
(for example, uninitialized handle or a
reference to a deleted entry).

If the searchType is
HWTJ_SEARCHTYPE_OBJECT, then pass
either:

• An object handle or entry value handle
on the objOrEntryHandle parameter
that was returned on a prior z/OS JSON
parser service call

• A value of zero for the root object

If the searchType is
HWTJ_SEARCHTYPE_GLOBAL, specify a
value of zero for the objectHandle
parameter.

105
HWTJ_HANDLE_TYPE_ERROR

261
HWTJ_HANDLE_TYPE_ERROR

Meaning: Program error. The specified
objectHandle does not represent
an object or array object (JSON
data type of HWTJ_OBJECT_TYPE or
HWTJ_ARRAY_TYPE).

Action: Check for coding or usage
error. For object searches, correct the
mismatched handle and specify an
objectHandle value that represents an
object or array. For shallow searches,
correct the mismatched handle and
specify an objectHandle value (for
example, shallow search may not be
performed on an array).

HWTJSRCH

558 z/OS: z/OS MVS Callable Services for HLL

Table 106. Return codes for the HWTJSRCH service (continued)

Hexadecimal return code
Equate symbol

Decimal return code
Equate symbol Meaning and action

10A
HWTJ_ROOT_OBJECT_MISSING

266
HWTJ_ROOT_OBJECT_MISSING

Meaning: Program error. There is no
JSON text to search.

Action: Check for a probable coding error.
Invoke the parse service (HWTJPARS) to
associate JSON text with the specified
parser instance before invoking the
search service (HWTJSRCH).

601
HWTJ_JSRCH_SEARCHTYPE_INV

1537
HWTJ_JSRCH_SEARCHTYPE_INV

Meaning: Program error. The caller
specified an invalid searchType.

Action: Check for a probable coding
error. The caller should change the
searchType value to one of the valid
values.

602
HWTJ_JSRCH_SRCHSTRADDR_INV

1538
HWTJ_JSRCH_SRCHSTRADDR_INV

Meaning: Program error. The caller
specified a value of zero for the address
of the search string buffer.

Action: Check for a probable coding error.
Specify the actual address of the buffer
containing the search string.

Note: Specifying a bad search string
buffer address other than zero may result
in the parser terminating with a X'0C4'
system ABEND. See the description of the
HWTJ_INACCESSIBLE_PARM return code
for more information.

603
HWTJ_JSRCH_SRCHSTRLEN_INV

1539
HWTJ_JSRCH_SRCHSTRLEN_INV

Meaning: Program error. The caller
specified a value of zero for the length of
the search string buffer.

Action: Check for a probable coding error.
Specify the actual length of the search
string buffer.

Note: Specifying a bad search string
buffer length other than zero may result
in the parser terminating with a X'0C4'
system ABEND. See the description of the
HWTJ_INACCESSIBLE_PARM return code
for more information.

604
HWTJ_JSRCH_SRCHSTR_NOT_FOUND

1540
HWTJ_JSRCH_SRCHSTR_NOT_FOUND

Meaning: The name string was not
found in the search scope specified
by the caller. If the searchType was
HWTJ_SEARCHTYPE_GLOBAL, the name
string was not found anywhere from
the startingHandle to the end of
the JSON text. If the searchType was
HWTJ_SEARCHTYPE_OBJECT, the name
string was not found anywhere in the
object specified by objectHandle (from
the startingHandle to the end of the
object).

Action: Check for a probable coding
error. If the string was supposed to
be found, verify that the searchType,
startingHandle, and objectHandle
(if applicable) are specified correctly. If all
of these values are correct and the name
string still cannot be found, verify that the
JSON text being parsed actually contains
the name string that the caller specified.

HWTJSRCH

Chapter 20. The z/OS JSON parser 559

Table 106. Return codes for the HWTJSRCH service (continued)

Hexadecimal return code
Equate symbol

Decimal return code
Equate symbol Meaning and action

605
HWTJ_JSRCH_STARTINGHANDLE_INV

1541
HWTJ_JSRCH_STARTINGHANDLE_INV

Meaning: Program error. The specified
startingHandle value is not valid for
one of the following reasons:

• The caller specified a bad handle value
that was not returned by a prior z/OS
JSON parser service call.

• If the searchType is
HWTJ_SEARCHTYPE_OBJECT, the
startingHandle value is either not
zero or not the value of a valid handle
within the object specified by the
objectHandle parameter.

• If the searchType is
HWTJ_SEARCHTYPE_SHALLOW, the
startingHandle value is either not
zero or not the value of a direct
child of the object specified by the
objectHandle parameter.

Action: Check for a coding or usage
error. Validate that the startingHandle
parameter contains either a zero or
a valid handle. If the searchType
is HWTJ_SEARCHTYPE_OBJECT, verify
that the startingHandle is within
the object specified by the
objectHandle parameter. If the type is
HWTJ_SEARCHTYPE_SHALLOW, verify that
the startingHandle designates one of
the direct children of the object specified
by the objectHandle parameter (see
Example 1: Shallow Search of “Examples”
on page 561 below).

F01
HWTJ_INTERRUPT_STATUS_INV

3841
HWTJ_INTERRUPT_STATUS_INV

Meaning: Program error. The calling
program is disabled. The system rejects
the service request.

Action: Check the calling program for a
probable coding error.

F02
HWTJ_LOCKS_HELD

3842
HWTJ_LOCKS_HELD

Meaning: Program error. The calling
program is holding one or more locks. The
system rejects the service request.

Action: Check the calling program for a
probable coding error.

F03
HWTJ_UNSUPPORTED_RELEASE

3843
HWTJ_UNSUPPORTED_RELEASE

Meaning: The operating system level
does not support this service. The system
rejects the service request.

Action: Remove the calling program from
this system, install it on a system that
supports z/OS JSON parser services, and
run the calling program again.

FFF
HWTJ_UNEXPECTED_ERROR

4095
HWTJ_UNEXPECTED_ERROR

Meaning: System error. The service
encountered an unexpected error. The
system rejects the service call.

Action: Search problem reporting
databases for a fix for the problem. If no
fix exists, contact the IBM Support Center.

HWTJSRCH

560 z/OS: z/OS MVS Callable Services for HLL

Examples
Example 1: Shallow Search

Consider the following JSON text example to clarify the terms descendants and direct children, and the
distinction between them:

{
 "a": "A1",
 "b": {
 "c": "C1",
 "d": {
 "c": "C2",
 "e": "E1",
 "f": "F1"
 },
 "e": "E2"
 },
 "c": "C3"

}

The descendants of the root object are: a (with value A1), b (object), c (with value C1), d (object), c (with
value C2), e (with value E1), f (with value F1), e (with value E2), and c (with value C3).

The direct children of the root object are: a (with value A1), b (object), and c (with value C3).

A search of type HWTJ_SEARCHTYPE_OBJECT for "a", under the root object, yields the handle of object
entry a (with value A1), as would a search of type HWTJ_SEARCHTYPE_SHALLOW.

A search of type HWTJ_SEARCHTYPE_OBJECT for "c", under the root object, yields the handle of object
entry c (with value C1), whereas a search of type HWTJ_SEARCHTYPE_SHALLOW for "c", under the root
object, yields the handle of c (with value C3).

A search of type HWTJ_SEARCHTYPE_OBJECT for "d", "e", or "f", under the root object, yields
the handle of d (object), e (with value E1), or f (with value F1), respectively, whereas a
search of type HWTJ_SEARCHTYPE_SHALLOW for d, e, or f, under the root object, yields a
HWTJ_JSRCH_SRCHSTR_NOT_FOUND return code form HWTJSRCH in each case.

HWTJTERM — Terminate a parser instance
Call the HWTJTERM service to clean up resources obtained by a previous HWTJINIT invocation.

Description
When the services of a z/OS JSON parser instance are no longer needed, this service cleans up the
resources in use by that parser instance. If this service is not invoked, the memory space allocated by the
initialization and other parser services is allocated and ineligible for use by the application, and remains
allocated until the job step task of the address space terminates.

Environment
The requirements for the caller are:

Requirement Details

Minimum authorization: Supervisor state or problem state, any PSW key.

Dispatchable unit mode: Task or SRB.

Cross memory mode: Any PASN, any HASN, any SASN.

AMODE: 31 bit.

ASC mode: Primary or access register (AR).

Interrupt status: Enabled for I/O and external interrupts.

HWTJTERM

Chapter 20. The z/OS JSON parser 561

Requirement Details

Locks: No locks held.

Control parameters: Control parameters must be in the primary address space and
addressable by the caller.

Linkage: Standard MVS linkage conventions are used.

Programming requirements
See “Syntax, linkage, and programming considerations” on page 462 for details about how to call the
z/OS JSON parser services in the various supported programming languages.

REXX programming considerations for the HWTJTERM service
All information for the HWTJTERM service applies for REXX requests except:

• ForceOption is not used

Syntax
Write the call as shown in the following syntax diagram. You must code all parameters in the order shown.

Non-REXX parameters REXX parameters

CALL HWTJTERM(
 ReturnCode,
 ParserHandle,
 ForceOption,
 DiagArea);

address hwtjson "hwtjterm",
 "ReturnCode",
 "ParserHandle",

 "DiagArea."

Parameters
The parameters are explained as follows:

ReturnCode
Returned parameter.

• Type: Integer (non-REXX), character representation of an integer (REXX)
• Length: 4 bytes (non-REXX)

Contains the return code from the service.
ParserHandle

Supplied parameter.

• Type: Character string
• Length: 12 bytes (non-REXX)

Specifies the JSON parser instance to be cleaned up. The parserHandle value was returned on a
previous HWTJINIT service call for the particular JSON parser instance.

ForceOption (non-REXX)
Supplied parameter.

• Type: Integer
• Length: 4 bytes

Controls the behavior of the HWTJTERM service. Sometimes a parser instance can be stuck in an
in-use state and cannot be terminated successfully. The in-use state can occur if a prior z/OS JSON
parser service call resulted in an ABEND condition. This option allows the caller to force the parser
instance to terminate. The valid values are:

HWTJTERM

562 z/OS: z/OS MVS Callable Services for HLL

HWTJ_NOFORCE
(Recommended) Terminates the parser instance and invalidates its parser handle only if the parser
instance is not in an in-use state.

HWTJ_FORCE
Unconditionally terminates the parser instance and invalidates its parser handle, regardless of the
in-use status of the parser instance.

Attention: Only use the HWTJ_FORCE option under the following conditions:

• No other threads in the address space are using this parser instance
• Multiple attempts to terminate the parser instance have resulted in a return code of
HWTJ_PARSERHANDLE_INUSE.

DiagArea (non-REXX)
DiagArea. (REXX)

Returned parameter.

• Type: Character string (non-REXX), stem variable (REXX)
• Length: 132 bytes (non-REXX)

A storage area provided by the caller that might contain additional diagnostic information related to
the service call. It consists of a 4-byte integer reason code field and a 128-byte character string error
text field.

ABEND codes
If the toolkit is unable to properly access the user-supplied parameter list, the call might result in a
X'04D' ABEND with a reason code of X'000Cyyyy' for one of the following reasons:
yyyy

Reason
0000

The parameters passed by the caller are not in the primary address space.
0001

The number of parameters passed by the caller is incorrect.

Return codes
When the service returns control to the caller, GPR 15 and the returnCode parameter contain a
hexadecimal return code, as listed in Table 107 on page 563.

Table 107. Return codes for the HWTJTERM service

Hexadecimal return code
Equate symbol

Decimal return code
Equate symbol Meaning and action

0
HWTJ_OK

0
HWTJ_OK

Meaning: Successful completion.

Action: None.

101
HWTJ_PARSERHANDLE_INV

257
HWTJ_PARSERHANDLE_INV

Meaning: Program error. The specified
parserHandle parameter is not a valid
parser handle (that is, one that was
returned by the HWTJINIT service).

Action: Check for a probable coding error.

HWTJTERM

Chapter 20. The z/OS JSON parser 563

Table 107. Return codes for the HWTJTERM service (continued)

Hexadecimal return code
Equate symbol

Decimal return code
Equate symbol Meaning and action

102
HWTJ_PARSERHANDLE_INUSE

258
HWTJ_PARSERHANDLE_INUSE

Meaning: Program error. Two possible
reasons can result in this return code:

1. The parser handle is being used by
another caller. Only one outstanding
z/OS JSON parser service can use the
same parser handle.

2. A previous service request using this
parser handle resulted in an ABEND,
and the parser instance was unable
to indicate that its use of the parser
handle has completed.

Action: Check for a probable coding error.

1. While all z/OS JSON parser service
calls are synchronous (blocking), if
more than one task, process, or
thread is running simultaneously and
using the same parser handle, only
one is allowed access. Change the
application such that only one thread
attempts to use the same parser
handle at a time.

2. If the application detected an
ABEND while the z/OS JSON parser
was invoked, the parser instance
associated with the parser handle
could be permanently locked. To
release the storage associated with
the parser work area, issue the
HWTJTERM service call with a
forceOption of HWTJ_NOFORCE.
If this fails with the same return
code, issue another HWTJTERM
service call with a forceOption of
HWTJ_FORCE.

103
HWTJ_INACCESSIBLE_PARM

259
HWTJ_INACCESSIBLE_PARM

Meaning: Program error. The application
passed an input or output parameter
which was inaccessible by the parser. See
“General programming considerations”
on page 463 for details about z/OS JSON
parser recovery processing.

Action: Check for a probable coding
error. Likely, the recovery of the caller
detected this return code as a result
of the parser abnormally ending with
a X'0C4' system ABEND. Check the
diagArea for an explanation as to
which parameter was attempting to
be accessed when the parser service
calls abnormally ended. See “General
programming considerations” on page
463 for details about actions to consider
for this return code.

HWTJTERM

564 z/OS: z/OS MVS Callable Services for HLL

Table 107. Return codes for the HWTJTERM service (continued)

Hexadecimal return code
Equate symbol

Decimal return code
Equate symbol Meaning and action

701
HWTJ_JTERM_CANNOT_FREE_WORKA

1793
HWTJ_JTERM_CANNOT_FREE_WORKA

Meaning: System error. The Storage
Release service could not release the
work area storage as requested by the
z/OS JSON parser.

Action: Consult the diagArea for the
Storage Release failure return code
and additional information found in the
ReasonDesc section. If the problem
persists, search problem reporting
databases for a fix for the problem. If no
fix exists, contact the IBM Support Center.

702
HWTJ_JTERM_FORCEOPTION_INV

1794
HWTJ_JTERM_FORCEOPTION_INV

Meaning: Program error. The caller
specified an invalid forceOption value.

Action: Check for a probable coding
error. The caller should change the
forceOption value to one of the valid
values, as described in “Parameters” on
page 562.

F01
HWTJ_INTERRUPT_STATUS_INV

3841
HWTJ_INTERRUPT_STATUS_INV

Meaning: Program error. The calling
program is disabled. The system rejects
the service request.

Action: Check the calling program for a
probable coding error.

F02
HWTJ_LOCKS_HELD

3842
HWTJ_LOCKS_HELD

Meaning: Program error. The calling
program is holding one or more locks. The
system rejects the service request.

Action: Check the calling program for a
probable coding error.

F03
HWTJ_UNSUPPORTED_RELEASE

3843
HWTJ_UNSUPPORTED_RELEASE

Meaning: The operating system level
does not support this service. The system
rejects the service request.

Action: Remove the calling program from
this system, install it on a system that
supports z/OS JSON parser services, and
run the calling program again.

FFF
HWTJ_UNEXPECTED_ERROR

4095
HWTJ_UNEXPECTED_ERROR

Meaning: System error. The service
encountered an unexpected error. The
system rejects the service call.

Action: Search problem reporting
databases for a fix for the problem. If no
fix exists, contact the IBM Support Center.

HWTJTERM

Chapter 20. The z/OS JSON parser 565

HWTJTERM

566 z/OS: z/OS MVS Callable Services for HLL

Chapter 21. The z/OS HTTP/HTTPS protocol enabler
The HTTP/HTTPS protocol enabler portion of the z/OS client web enablement toolkit allows z/OS
applications running in traditional environments to more easily participate as a web services client
application.

Developers of new and existing z/OS applications can "webify" their applications using an industry
standard API model of communicating with a web server. The enabler is a lightweight API that
implements portions of the Hypertext Transfer Protocol 1.1 (HTTP/1.1), as specified by RFC 7230
(tools.ietf.org/html/rfc7230), RFC 7231 (tools.ietf.org/html/rfc7231), RFC 6265 (tools.ietf.org/html/
rfc6265), and others. The toolkit also provides support for HTTP Secure (HTTPS), which layers HTTP
over the Secure Sockets Layer (SSL) / Transport Layer Security (TLS) protocols to provide secure
communications of standard HTTP requests over an open communications network.

HTTP/HTTPS enabler basics
The HTTP/HTTPS enabler portion of the toolkit encompasses two major aspects of a web services
application:

• The connection to a server
• The request made to that server along with the response it returns

Connections
A toolkit connection is simply the network socket (pipeline) created between a client and server
application for the purpose of exchanging information. A connection employs TCP sockets connecting
an application to a remote IP address and port from an optionally-specified local IP address and port.
This connection can either be established directly from a local IP address to the remote IP address,
or can utilize a proxy server (an intermediary gateway that serves as a method of providing enhanced
security and privacy controls). You can choose a standard socket connection or a secure connection
that utilizes the SSL/TLS protocol. (See “Security considerations” on page 572.)

A connection must be established prior to any request being sent to the server. Once established,
a connection can be dropped due to a variety of factors. The toolkit will attempt to automatically
reconnect to resume communications if it detects that the connection has been dropped.

An application may explicitly disconnect a connection. A successful disconnection causes all SSL and
socket resources to be released.

Requests
In toolkit terms, a request is simply an HTTP request sent over a previously established connection.
The toolkit provides some flexibility in the creation and usage of requests. Requests are not tightly
coupled to a particular connection. Instead, a created request can be used with one or more
connections. In addition, multiple requests can be created and kept in memory, each of which uses
the same connection.

Requests can be specified with numerous options to customize the HTTP processing to the
application’s preferences. A request method is selected along with the URI path name of the resource
to be targeted by the HTTP method. There are additional options to control the operation of the HTTP
request. The following options are supported:

• Basic HTTP client authentication
• URI redirection (forwarding of HTTP requests from one URI to another)
• HTTP cookie management (a mechanism for the toolkit’s cookie engine to maintain stateful

information sent by the server on behalf of the client, which then can be sent back to the server on
subsequent requests)

• Use of specific HTTP request headers

© Copyright IBM Corp. 1994, 2023 567

http://tools.ietf.org/html/rfc7230
http://tools.ietf.org/html/rfc7230
http://tools.ietf.org/html/rfc7231
http://tools.ietf.org/html/rfc6265
http://tools.ietf.org/html/rfc6265

After a request is configured, it can be sent to the server by temporarily coupling itself with an existing
connection on the send request call. Two configurable callback routines (user exits) can be set up to
handle the response coming back from the server:

• A routine to receive control for each response header that is received
• A routine to receive control when a response body is present

The toolkit provides services that allow easy access to sockets, System SSL, and HTTP/HTTPS
functionality. To accomplish this, the toolkit makes available to applications a set of services with a similar
interface as the easy-to-use, open-source libcurl programming interface. Applications do not have to deal
with most of the intricacies of socket, SSL, or HTTP programming. The toolkit takes care of many of these
nuances, allowing application programs to have a higher level of abstraction.

Elements of the z/OS HTTP/HTTPS enabler
The z/OS HTTP enabler is organized into five types of services:

• Initialize, reset, and terminate: The purpose of these services is to prepare the memory space
required by the z/OS HTTP enabler, to reset the space in preparation for reuse by a subsequent
connection or request, or to free the space after these services are no longer needed. The memory
allocation created by the initialize service is known as a connection or request instance, depending on
the type of instance being created.

• Set options: This service prepares a connection or request instance with the desired configuration
options. A user invokes this service multiple times, once for each option to be set. When all of the
options have been set for the connection or request instance, the connect or send request service can
be called to perform the respective operation, as specified by the various options that have been set.

• Connect and disconnect: These services are for connection instances and are used to establish or to
disconnect a socket connection (pipeline) between the client and the server. If SSL/TLS use has been
configured, these services will handle all SSL interactions to bring up or tear down the SSL connection.
Once a connection has been created, it can then be used by the send request service to flow an HTTP
request to the server connected.

• Send request: This service couples a request with a connection. A previously initialized and configured
HTTP request is sent over a previously initialized and configured connection. The HTTP response from
the server can be handled through the use of the HTTP response header and HTTP response body
callback (exit) routines.

• Set link list service: This is a utility service that creates a linked list of data objects of the same type.
This linked list data type is required by any option which expects a variable number of items to be
associated with that attribute (as described in the following example). A toolkit application will first
create the link list (the HWTH_SLST_NEW function) to add the first item to the linked list. Additional
items can be added (the HWTH_SLST_APPEND function) or the entire linked list can be deleted (the
HWTH_SLST_FREE function).

Example: An application using the toolkit has the option to directly send particular HTTP headers
(HWTH_OPT_HTTPHEADERS) to the server. Because it is reasonable that the application would want to
specify more than one HTTP header to send, this option requires the headers to be in SLST format. The
application will first create the linked list (SLST) specifying the first HTTP request header to be added
to the request. If more request headers are needed, it will append those to the end of the previously
created SLST. When all of the request headers are added, it will issue the HWTHSET API to set this
option to the newly created SLST. The result is that the HWTH_OPT_HTTPHEADERS option is set to all of
the headers specified by the linked list.

The general usage of the z/OS HTTP enabler services in an application follows this general order:

1. Create a connection instance, which returns a connection handle. (HWTHINIT)
2. Set the necessary connection options, such as URI of the server, SSL options, and so on, associated

with this connection instance. (HWTHSET)
3. Connect to the server. (HWTHCONN)

568 z/OS: z/OS MVS Callable Services for HLL

4. Create a request instance, which returns a request handle. (HWTHINIT)
5. Set the necessary request options, such as the request type, server resource, HTTP response callback

exits, and so on, associated with this request instance. (HWTHSET)
6. Send the previously defined request over the previously defined connection. If configured by the

application, HTTP response routines are called during this service call to process the response data.
(HWTHRQST)

7. Disconnect the previous connection. (HWTHDISC)
8. Free the work area associated with the request. (HWTHTERM)
9. Free the work area associated with the connection. (HWTHTERM)

Availability of the z/OS HTTP/HTTPS enabler
The z/OS HTTP enabler contained the z/OS client web enablement toolkit is available to almost any
address space. The toolkit is enabled as part of z/OS initialization during IPL time. A message is written
to the syslog regarding the status of the toolkit. Success or failure of toolkit initialization can be found by
finding any HWT-prefixed syslog messages issued during IPL.

Syntax, linkage, and programming considerations
The z/OS HTTP enabler is available to many programs running in various address spaces. Many z/OS
execution environments are supported, as well as various programming languages.

Programming interface files provided by the HTTP enabler
Table 108 on page 569 lists the programming interface files provided by the z/OS HTTP enabler.

Table 108. HTTP enabler

Programming language Programming interface file

C / C++ Include file HWTHIC provided in SYS1.SIEAHDRV.H and under z/OS UNIX /usr/include
directory as hwthic.h

COBOL Copybook file HWTHICOB provided in SYS1.MACLIB

PL/I Include file HWTHIPLI provided in SYS1.MACLIB

Assembler Include file HWTHIASM provided in SYS1.MACLIB

REXX See “HWTCONST — Initialize predefined variables (REXX)” on page 587 on how to
access all the toolkit constants in REXX

Calling formats

Table 109 on page 569 lists specific calling formats for languages that can invoke the z/OS HTTP enabler
callable services.

Table 109. Calling formats for the z/OS HTTP enabler callable services

Programming language Calling format

C / C++ HTTPenabler_service_name (return_code,parm1,parm2,…)

COBOL CALL HTTPenabler-service-name USING return_code,parm1,parm2,…

PL/I CALL HTTPenabler_service_name (return_code,parm1,parm2,…)

Assembler CALL HTTPenabler_service_name (return_code,parm1,parm2,…),VLIST

REXX ADDRESS HWTHTTP "HTTPenabler_service_name return_code parm1 parm2…"

Chapter 21. The z/OS HTTP/HTTPS protocol enabler 569

Linkage considerations

There are two ways for a compiled application to find the z/OS HTTP enabler callable services:
Linkage stub method

(Recommended) Use the linkable stub routine HWTHCSS from SYS1.CSSLIB to link edits your object
code. If you attempt to run the z/OS web enablement toolkit on a previous release of z/OS that does
not support the z/OS HTTP enabler, this method results in the service call receiving a return code of
X'F06' (HWTH_UNSUPPORTED_RELEASE).

Direct linkage method
Code the linkage to the z/OS HTTP enabler services directly. This can be done if the program first
confirms that the level of z/OS contains the toolkit. The following example shows the assembler
linkage:

L R14,CVTCSRT-CVT(R14,0)
L R14,88(R14,0)
L R15,4*HWT_SERV_xxxxx(R14,0)
LR R14,R0
LR R0,R13
BR R15

In the example, xxxxx represents the last five letters of the service you want to call. This requires that
the HWTHKASM assembler macro be included. If you attempt to run the HTTP enabler on a previous
release of z/OS that does not support the HTTP enabler, this method results in the application
receiving an abend X'019'.

Linkage considerations for high-level language programming

Callers must ensure that the proper linkage is made to the HTTP enabler services. The supplied IDF files
for the various high-level languages contain the necessary definitions that ensure that the parameter list
passed to the HTTP enabler has the high-order bit turned on for the last parameter. For example, for C,
the linkage must be specified as OS linkage, such as:

#pragma linkage(HWTHxxxx_CALLTYPE,OS)

For PL/I, the entry declaration should have the following options defined:

OPTIONS(LINKAGE(SYSTEM))

Linkage considerations for assembler language programming

Callers must also use the following linkage conventions:

• Register 1 must contain the address of a parameter list that is a list of consecutive words, each
containing the address of a parameter to be passed. The last word in this list must have a 1 in the
high-order (sign) bit.

• Register 13 must contain the address of an 18-word save area.
• Register 14 must contain the return address.
• Register 15 must contain the entry point address of the service being called.
• If the caller is running in AR ASC mode, access registers 1, 13, 14, and 15 must all be set to zero.
• On return from the service, general and access registers 2 - 14 are restored (registers 0, 1 and 15 are

not restored).

570 z/OS: z/OS MVS Callable Services for HLL

Compilation consideration
The z/OS HTTP enabler provides one or more sample programs in most of the supported languages to
aid in the creation of applications that use the toolkit functions. Refer to the sample JCLs in the prolog
section of the sample of your language choice for the recommended compiler and linking options. See
“z/OS HTTP enabler programming examples” on page 581 for details about the sample programs.

Code page consideration

All input data into the HTTP enabler, except for body data, is assumed to be in EBCDIC encoding (code
page 1047) before making any z/OS HTTP enabler service call. The toolkit translates any required
data to meet any RFC code page standards when sending or receiving HTTP header data. Data
specified in the request body or received in the response body is treated as-is unless the application
requests the toolkit to translate from EBCDIC to ASCII or vice versa (see the documentation for
HWTH_OPT_TRANSLATE_REQBODY and HWTH_OPT_TRANSLATE_RESPBODY later). Other than these
options, the toolkit makes no attempt to translate this data into any format. It is the responsibility of
the application to translate the data in either body into the correct encoding.

Environmental considerations

The following environmental considerations apply:

OMVS segment required: The toolkit uses TCP/IP sockets and Cryptographic Services System SSL
services. Because both TCP/IP sockets and the SSL services require a z/OS UNIX (POSIX) environment,
the HTTP enabler runs with a Language Environment (LE) POSIX(ON) environment. A POSIX(ON)
environment requires the user ID associated with the address space using the HTTP enabler services
to have an OMVS segment defined and associated with it. See the appropriate security product
documentation, as applicable to your installation, for instructions on how to define an OMVS segment
to a user. Failure to properly define the OMVS segment for the user invoking the HTTP enabler will likely
result in an HWTH_ENVIRONMENTAL_ERROR return code.

z/OS UNIX limit of processes with a POSIX(ON) environment and its effect on concurrent
connections: z/OS UNIX limits the number of concurrent POSIX(ON) environments that can be defined
to a single address space. Since each HTTP enabler connection attempts to initialize a new POSIX(ON)
environment (because of the environmental requirements listed earlier), each connection gets implicitly
dubbed by LE. (Dub means to make a z/OS address space known to z/OS UNIX System Services. Once
dubbed, an address space is considered to be a process.) If multiple connections are wanted from the
same application (address space), a consideration of the dubbing configuration for the address space in
which the HTTP enabler is running may be necessary.

The dubbing behavior that z/OS UNIX takes is customizable by using the z/OS UNIX set dub default
service (BPX1SDD or BPX4SDD). If the dub default for the address space is set to DUBPROCESS, this
allows concurrent subtasks to each have their own POSIX(ON) environment and, thereby, allow multiple
connections from within the same address space, provided that each subtask has at most one connection.

z/OS Language Environment Heap runtime option considerations: The toolkit obeys the current LE
Runtime HEAP option for storage management. Applications can customize the HEAP storage option for
their execution environment as needed. IBM does not recommend using a primary heap size that is
smaller than 32K. Applications which make multiple requests per connection, or long running applications
where multiple connections and requests are being made, may benefit from a larger PRIMARY HEAP size.
These applications should either:

1. set their PRIMARY HEAP size to allow plenty of room for the largest anticipated messages, or
2. specify the FREE option on HEAP, so that LE will release unused heap extent storage once there are no

longer references to it.

For details, see z/OS Language Environment Customization.

Chapter 21. The z/OS HTTP/HTTPS protocol enabler 571

z/OS Language Environment Runtime Environment REUSE (RTEREUS) option consideration: COBOL
applications running in Information Management System (IMS) should not use the RTEREUS(ON) runtime
option. For details, see RTEREUS runtime option in z/OS Language Environment Customization.

Security considerations

There are several aspects of security to consider at both the connection level and the request level.

Connection security: Considerations for connection security include:
TCP/IP stack and security product control

A toolkit application connecting to a server is limited by security profiles and definitions that are
already in effect on the system where the application resides. Powerful controls, such as z/OS
Communications Server NetAccess, in conjunction with security profiles defined using the SERVAUTH
class, can be used to control network access authority, TCP/IP stack access authority, port access
authority, and more. These security definitions can be configured to be as granular as required by
an installation. See z/OS Communications Server: IP Configuration Guide and z/OS Communications
Server: IP Configuration Reference for more information.

SSL/TLS connections
Before connecting to a HTTP server, the toolkit consults values of the HWTH_OPT_URI,
HWTH_OPT_USE_SSL and HWTH_OPT_PORT user-specified options to decide whether the toolkit
application expects a HTTP or HTTPS connection. Whenever the value of HWTH_OPT_URI begins with
an explicit scheme prefix (either 'http://' or 'https://'), the scheme is honored; otherwise, the toolkit
attempts an HTTPS connection when either HWTH_OPT_USE_SSL option is set to HWTH_SSL_USE or
HWTH_OPT_PORT is set to 443 (the default port for HTTPS). See “HTTP/HTTPS enabler options and
values” on page 634 for more information.

There are two ways that a toolkit application can acquire a SSL/TLS connection: Application
Transparent Transport Layer Security (AT-TLS) initiated or Application initiated.

Application Transparent Transport Layer Security (AT-TLS) initiated
Connections can be secured by an AT-TLS policy without requiring applications to initiate
connection security. The processing that enables this security depends on whether you use a
proxy (HWTH_OPT_PROXY) to connect to your HTTPS destination (HWTH_OPT_URI).
HTTPS direct (no proxy)

When directly configuring toolkit connections to an HTTPS server (HWTH_OPT_URI), the AT-
TLS administrator has two options for providing transparent security:

1. Map the connection to an enabled policy
2. Map to an 'application-controlling' policy

Each type of policy must specify an AT-TLS keyring that is suitable for use with the HTTPS
server. There is an important difference between the two policy types:

An 'application-controlling' policy defers the TLS handshake allowing the toolkit the
flexibility to use its own toolkit options (HWTH_OPT_SSLKEY and others), or the AT-TLS
keyring (from the mapped policy), for the TLS handshake.
An enabled policy attempts the handshake immediately, using the AT-TLS keyring. This
is usually the desired behavior, unless the toolkit application chose to specify its own
keyring options (HWTH_OPT_SSLKEY and others), in which case the connection fails with a
communications error.

HTTPS via proxy

When configuring toolkit connections that use a proxy (HWTH_OPT_PROXY) to reach an HTTPS
destination server (HWTH_OPT_URI), the AT-TLS administrator must map the proxy connection
to an 'application-controlled' policy. This policy must include an AT-TLS keyring that is suitable
for use with any HTTPS destination (HWTH_OPT_URI) to which the proxy will connect.

572 z/OS: z/OS MVS Callable Services for HLL

Unlike the direct HTTPS connection case, it is not possible to develop AT-TLS rules that select
a policy based on the destination (HWTH_OPT_URI and/or HWTH_OPT_PORT). However, the
other policy selection criteria (user name, job name, local IP, and local port) are still useful for
associating a proxy connection with an appropriate keyring.

For more information, see “Using the toolkit with AT-TLS” on page 582.

Application initiated
If requested by the application, the toolkit creates an SSL/TLS connection instead of a standard
socket connection. These protocols provide data privacy and integrity, including server and client
authentication, that is based on public key certificates. The toolkit uses z/OS System SSL services
(part of the z/OS Cryptographic Services base component) to facilitate these SSL/TLS connections.
(The term SSL is used throughout this publication to describe both the SSL and TLS protocols.)
The certificate store configuration required by System SSL must be set up before making an SSL
connection. The toolkit supports certificates stored in a key database file, a RACF key ring, or as a
z/OS PKCS #11 token.

Note: The previous two security approaches are mutually exclusive. Applications must only use one
of the approaches for their connections. When both are detected, the toolkit will fail the HWTHCONN
request with a return code of HWTH_COMMUNICATION_ERROR.

Proxy security
The toolkit implicitly supports basic client authentication to an authenticating proxy,
that packages a user ID and password into a format specified by RFC 1945
(tools.ietf.org/html/rfc1945). The HWTH_OPT_PROXYAUTH, HWTH_OPT_PROXYAUTH_USERNAME and
HWTH_OPT_PROXYAUTH_PASSWORD settable options can be used to have the toolkit automatically
create the necessary HTTP header. See “Using an authenticating proxy server” on page 574.

Request security: While an HTTP request flows over a secure SSL/TLS connection, the payload of the
HTTP request is private between the client and the server. HTTP provides additional protocols to allow a
user to authenticate with the server. In many cases, these additional authentication methods flow over
an SSL connection exclusively to make sure that the security credentials are flowed from the client to the
server in a private manner.

The toolkit implicitly supports basic client authentication, which packages a user ID and
password in a format specified by RFC 1945 (tools.ietf.org/html/rfc1945). The HWTH_OPT_HTTPAUTH,
HWTH_OPT_USERNAME, and HWTH_OPT_PASSWORD settable options can be used to have the toolkit
automatically create the necessary HTTP header.

Additional authentication schemes can be used explicitly by providing the specific HTTP headers and
data. Authentication cookies can sometimes be used as a method by web servers to know whether the
user is logged in or not, and the account with which they are logged in.

Using a proxy server
Client applications using the z/OS web enablement toolkit (toolkit) in a controlled network
environment are often required to communicate with the outside world via a proxy server. Preparing
a toolkit application to use an HTTP proxy server is designed to be as simple as setting the
HWTH_OPT_PROXY and HWTH_OPT_PROXYPORT options on the initialized connection handle. However,
your HTTP proxy server may require Basic authentication. In this case, the HWTH_OPT_PROXYAUTH,
HWTH_OPT_PROXYAUTH_USERNAME, and HWTH_OPT_PROXYAUTH_PASSWORD additional toolkit options
are required. See “Using an authenticating proxy server” on page 574.

Connecting to HTTPS via a proxy: Client applications connecting outside an internal network will likely
be required to communicate using the secure form of HTTP, known as HTTPS. The toolkit provides
two methods to establish HTTPS security by either using toolkit options or by relying on Application-
Transparent Transport Level Security (AT-TLS).

The choice of these two methods depends on the value of the settable toolkit option
HWTH_OPT_USE_SSL. A setting of HWTH_SSL_USE instructs the toolkit to use its own options to perform
the TLS handshake to secure the end-to-end HTTPS connection. A setting of HWTH_SSL_NONE instructs
the toolkit to depend on AT-TLS for that handshake.

Chapter 21. The z/OS HTTP/HTTPS protocol enabler 573

http://tools.ietf.org/html/rfc1945
http://tools.ietf.org/html/rfc1945
http://tools.ietf.org/html/rfc1945

A proxy connection that maps to an AT-TLS policy type of 'application-controlled' allows either of these
approaches to be used successfully through the same proxy server.

Using an authenticating proxy server
The toolkit supports the type of proxy that requires its own Basic authentication, commonly known as an
"authenticating proxy." This type of proxy typically resides inside an enterprise firewall and requires each
client request to include a Proxy-Authorization message header. Without this special request header, the
proxy server returns a client error status code of 407 Proxy-Authentication-Required.

If the header is supplied with the request message, and the contents of the header satisfy the
authenticating proxy, the request proceeds as expected. However, if the attached header does not satisfy
the proxy, or something else is wrong upstream from the proxy, the request may fail with another client
error status code of 407 or with another 4xx (client) or 5xx (server) error.

Note: The formal specification of the 407 Proxy Authentication Required client error can be found in RFC
7235 (tools.ietf.org/html/rfc7235). This specification allows a client application to retry using a modified
authentication header after a 407 client error occurs. The toolkit does not attempt to automate this
dynamic retry process. However, the toolkit provides enough diagnostic information to reliably identify a
407 client error so that a more dynamic response is possible.

See the following suggested approaches about using an authenticating proxy with the toolkit and the
important differences between the HTTP and HTTPS destination servers.
How to avoid the 407 error with the toolkit

To avoid the 407 error, the toolkit user needs to correctly set the HWTH_OPT_PROXYAUTH,
HWTH_OPT_PROXYAUTH_USERNAME, HWTH_OPT_PROXYAUTH_PASSWORD options on their connection.
For more information about options, see “HTTP/HTTPS enabler options and values” on page 634.
Once these options are set, a call to either the HWTHCONN or HWTHRQST callable service will build and
attach a corresponding header to the message when required. For an HTTPS server connection, the
HWTHCONN service attaches the new header once to open a tunnel through the proxy. For an HTTP
server connection, the HWTHRQST service attaches the header every time the request is made.

What to do if your specified options do not work
If the toolkit user specifies the options but still gets a client error, such as 407, 404, or 401, the
diagnosis depends on whether the server type is HTTP or HTTPS. Failing HTTP requests will return
from HWTHRQST after calling the header and body exits. Failing HTTPS connection attempts will return
the HWTH_COMMUNICATION_ERROR from HWTHCONN, with up to 128 bytes of descriptive information
in the diagnostics area. For persistent 407 errors to HTTPS, it may be useful to connect to a plain
HTTP destination through the same proxy, so that the complete error description in the response body
is available to your response body exit.

How HTTP and HTTPS are handled differently
As previously described, a 407 client error raised by an authenticating proxy is seen by a toolkit
application at different times, and depends on whether the connection's destination URI is an HTTP or
HTTPS server.
For an HTTPS destination server, HWTHCONN uses the PROXYAUTH options to open a tunnel to the
destination server. For an HTTP destination server, every call to HWTHRQST uses the PROXYAUTH
options, for the life of the connection.

What it means to use a tunnel through a proxy
When a toolkit application is connecting to an HTTPS server through a proxy, the HWTHCONN service
immediately asks the proxy server to open a direct connection to the HWTH_OPT_URI destination
server.

Note: If the proxy requires authentication, it is required during connect processing so that any 407
client error to an HTTPS server will occur at this point.

When the proxy server agrees to open a direct connection, it also agrees to ignore all traffic over the
connection, effectively routing it through an internal tunnel.

574 z/OS: z/OS MVS Callable Services for HLL

http://tools.ietf.org/html/rfc7235
http://tools.ietf.org/html/rfc7235

What a handshake is
A handshake is a sequence of operations that establishes a secure connection so that all data passing
between two endpoints is encrypted. When you first open a tunnel, it is not yet secure. The first data
to flow through a new tunnel must be a special message, called a Client-Hello, that initiates the TLS
handshake with the server. If the security negotiations of the handshake succeed, the end-to-end
HTTPS connection is immediately ready for secure traffic. Otherwise, the connection is closed and the
tunnel collapses before any traffic can flow.

What to do if the authenticating proxy refuses to open a tunnel
If the proxy server refuses to open the tunnel for any reason, including a 407 Proxy Authentication
Required client error, HWTHCONN capture the details and fails immediately with a communications
error. Therefore, when you are using an authenticating proxy to reach an HTTPS destination, it is
always a call to the HWTHCONN service that causes a 407 client error.

Why HTTP through a proxy does not do a handshake
HTTP connections do not require a handshake because HTTP is not a secure protocol. When the
HWTHCONN service is called to connect to HTTP through a proxy it has no immediate need to connect
to the destination server, so it only connects to the proxy. Connecting to the proxy does not require
proxy authentication, nor a valid destination URI, therefore HWTHCONN can not report a 407 Proxy-
Authentication Required client error. Only an actual attempt to use the proxy, such as occurs with
each HWTHRQST, can encounter a 407 client error. Therefore, for HTTP destinations, any 407 client
error will only result from a call to the HWTHRQST service.

Using the toolkit with AT-TLS
For more details on using the toolkit with AT-TLS see “AT-TLS usage overview” on page 582.

Large data body considerations
Under some circumstances, applications require a large data body to be sent on a single request or
received on a corresponding response. In these cases, you can supply a streaming send exit that can be
used to provide the request body as an ordered sequence of contiguous pieces of data whose number,
size, and location are completely at the discretion of the exit. Similarly and independently, applications
that expect a very large response body can supply a streaming receive exit to accept the response body as
an ordered sequence of contiguous pieces of data of unpredictable number and size.

Although exact limits on request or response body size depend on the particular characteristics of the
invocation environment, most general purpose HTTP requests or responses involve data bodies whose
sizes are compatible with the limits of the non-streaming methodology of sending and receiving data.
For those applications whose requests invariably involve very large and or non-batchable data bodies,
streaming send and receive support may address their needs.

Problem determination considerations

Problem determination in a client/server web services application can be challenging. Here are a few
debugging options that can aid in the debugging of your application:

Diagnostic area (diagArea): Each HTTP toolkit API requires the application to specify the diagArea
parameter, a diagnostic output area that contains additional information that can be useful when a service
fails with a nonzero return code or even in certain cases when the return code is zero. The diagArea
includes three pieces of information: HWTH_Service, HWTH_ReasonCode, and HWTH_ReasonDesc.
HWTH_Service

A 4-byte constant value that indicates which internal service invoked by the toolkit detected the
possible error. To determine which service, consult the first two bytes of this field and locate that
value in the defined service constants provided in the IDFs (include files).

Note: The last two bytes are for IBM and can be provided to IBM Support, if necessary.

Chapter 21. The z/OS HTTP/HTTPS protocol enabler 575

HWTH_ReasonCode
A specific error code returned by the internal service identified by HWTH_Service. This can be useful
in determining the reason why a particular service failed.

HWTH_ReasonDesc
A 128-character field that contains a more detailed description of the problem. In many cases, this
information is sufficient to determine the cause of the problem. In some cases, additional information
is also provided here that you can provide to IBM Support if you cannot determine the problem after
using the other problem determination techniques described here.

Verbose option: The HTTP enabler provides the option to get more information related to
communications and data exchanged between the application and the web server by enabling the
HWTH_OPT_VERBOSE option (setting this option to HWTH_VERBOSE_ON or HWTH_VERBOSE_UNREDACTED
value using the HWTHSET service). Typically, you would use the verbose option during application
debugging, then turn it off when the application is in production. You can also select the destination
of these trace messages.

If you want to direct these messages to the application's standard output, no further action is necessary.
The verbose option may have limitations in some environments and may produce excessive output on
your application's standard output. If you want to direct the messages to a particular data set or file,
you can use the HWTHSET service to set the HWTH_OPT_VERBOSE_OUTPUT option. For more information
about the HWTH_OPT_VERBOSE_OUTPUT option, see “HTTP/HTTPS enabler options and values” on page
634. In many cases, these messages can help you quickly determine the root cause of a web application
problem.

SSL/TLS Security: When an application sets HWTH_OPT_USE_SSL option to HWTH_SSL_USE, the
application chooses to control the client side of HTTPS security. In this case, a number of related HTTP
enabler options come into play:

• Some settings are required (HWTH_OPT_SSLKEY, HWTH_OPT_SSLKEYTYPE, etc.).
• Other settings override System SSL defaults to satisfy server requirements (HWTH_OPT_SSLVERSION,
HWTH_OPT_SSLCIPHERSPECS, etc.).

• One setting triggers System SSL to capture detailed diagnostic output (HWTH_OPT_SSLTRACE).

Because System SSL is exclusively responsible for z/OS connection security, all users (including the HTTP
enabler) are subject to any change in its behavior. Usually, when a connection begins failing, after working
for a long time, it is due to some change in the server's requirements. For instance, a server may choose
to begin requiring a stricter security level, or some stronger cipher specification. In those cases, the
required application changes involve setting an option or two, fixing the client application across all z/OS
releases.

In rare circumstances, an origin server might disallow a client connection from a new z/OS release, while
earlier z/OS releases continue to connect without error. If this occurs, and your application does not
already override the System SSL default cipherspecs using HWTH_OPT_SSLCIPHERSPECS, setting that
option to a suitable 4-character cipherspec may provide a backward-compatible circumvention.

SOCKAPI interface: z/OS Communication Server provides a SOCKAPI CTRACE option, provided by
TCP/IP, which can be used by application programmers to debug problems in their applications. The
SOCKAPI option captures trace information that is related to the socket API calls that an application
might issue. The SOCKAPI option is intended for use by TCP/IP support and provides information for
debugging problems in the TCP/IP socket layer, z/OS UNIX System Services, or the TCP/IP stack. See
z/OS Communications Server: IP Diagnosis Guide for more information about this problem determination
methodology.

Recovery considerations

The z/OS HTTP enabler runs in the address space of the application. In addition, all the storage needed
by the HTTP enabler is obtained in the application’s address space. Because every application has its
own programming environment, it is impossible for the HTTP enabler to predict the recovery environment
required by the application.

576 z/OS: z/OS MVS Callable Services for HLL

The HTTP enabler provides a simple ESTAE recovery mechanism that provides a minimal recovery
scheme for many environments from which the toolkit could be used. Programs that run under an FRR
cannot avail themselves of the HTTP enabler recovery. Furthermore, the recovery provided by the HTTP
enabler does not catch all errors. Therefore, it is imperative that a robust application provides its own
recovery to catch any abnormal ends during toolkit execution.

When the HTTP enabler attempts to access application-provided parameters and those parameters
are either inaccessible, point to an inaccessible location, or specify a length that goes beyond the
available storage obtained by the application, an abend occurs. In many cases, the recovery of the
toolkit catches the error and returns normally to the application with the returnCode parameter set to
HWTH_INACCESSIBLE_PARM and the reasonDesc value in the diagArea set to the name of the bad
parameter. There are some cases where parameter checking must occur outside of the HTTP enabler
recovery environment. In these cases, the returnCode parameter is set to the error return code. If the
toolkit abnormally ends, the application’s recovery can consult the returnCode and diagArea values in
the callers dynamic storage at the time of the abend and determine which parameter the toolkit could not
process.

Note: Language Environment (LE) callers can see an LE-specific abend code other than 0C4. Under
certain circumstances, the LE message, CEE3501S The module xxxxxxxx was not found, can
appear in standard output, where xxxxxxxx is the application program’s LE condition handler. The calling
LE program still receives control with the failing toolkit return code and diagArea information.

Redirection considerations
The HTTP enabler supports automatic redirection (URL/URI forwarding) of requests from one location to
another based on the HTTP specifications, as documented in the various RFC publications.

Cross-domain and non-cross-domain redirection: Redirecting a request can be as simple as reissuing
an HTTP request to a resource on the same domain but with a different path (non-cross-domain
redirection), or can be more involved by establishing a new connection to another domain and then
reissuing the HTTP request to that new domain location (cross-domain redirection). The application can
choose to allow or disallow cross-domain redirection by using the HWTH_OPT_XDOMAIN_REDIRECTS set
option.

To be considered as a non-cross-domain redirect, the HTTP enabler requires an exact match
between an original URI's authority and its redirected URI's authority. For example, a redirect from
http://example.com to http://www.example.com is treated as a cross-domain redirect and a
successful redirection would require the HWTH_OPT_XDOMAIN_REDIRECTS option to have been set to
HWTH_XDOMAIN_REDIRS_ALLOWED.

Redirection protocol change: A particular HTTP scheme (protocol) can sometimes be requested by a
server when it notifies the client of the new redirect location. The application can choose what protocol
changes are allowed by using the HWTH_OPT_REDIRECT_PROTOCOLS set option.

Number of redirect attempts: The HTTP standard allows for the (potentially unlimited) "nesting" of
redirects. An application can limit the depth of redirect processing that the toolkit may attempt by setting
the HWTH_OPT_MAX_REDIRECTS option to a value. If no value is specified, the toolkit defaults to a
maximum of five attempts on a given request.

General redirect behavior—some technical details: There are a number of valid redirect status response
codes that can be sent from the server back to the client. The response to these status codes is dictated,
usually, by the various RFCs that deal with HTTP redirect processing. The toolkit automatically processes
redirects (to unburden the application), whenever it is safe to do so. If the original request used an unsafe
HTTP method (POST, PUT, DELETE, PATCH), then toolkit does not automatically process the HTTP request
in order to protect the application. Table 110 on page 578 describes how the toolkit handles each of the
HTTP redirection status response codes (3xx), in accordance with current industry standards.

Chapter 21. The z/OS HTTP/HTTPS protocol enabler 577

Table 110. Toolkit handling of HTTP redirection status response codes

Received HTTP status response codes Toolkit behavior

• 300 Multiple Choices
• 307 Temporary Redirect

The toolkit attempts to redirect the request to the location
specified in the Location response header if and only if the
application specifies a HWTH_OPT_REQUESTMETHOD value of
HWTH_HTTP_REQUEST_GET or HWTH_HTTP_REQUEST_HEAD,
provided the other redirect options set by the application
allow the toolkit to redirect the request.

For other methods or if the Location header is not specified,
the request is not redirected. In this case, the response
header callback routine is driven for each response header
along with the status response code. The application can
choose to issue a subsequent request.

• 301 Moved Permanently
• 302 Found
• 303 See Other

The toolkit automatically redirects the request,
provided the other options set by the application
allow the toolkit to redirect the request. If the
application specifies a HWTH_OPT_REQUESTMETHOD value of
HWTH_HTTP_REQUEST_GET or HWTH_HTTP_REQUEST_HEAD,
the redirect is identical to the initial request, except to
the new target. However, if the HWTH_OPT_REQUESTMETHOD
value is anything other than HWTH_HTTP_REQUEST_GET
and HWTH_HTTP_REQUEST_HEAD, the toolkit follows the
industry de facto client behavior and downgrades the request
to HWTH_HTTP_REQUEST_GET. Under no circumstances
will an unsafe HWTH_OPT_REQUESTMETHOD value of
HWTH_HTTP_REQUEST_POST, HWTH_HTTP_REQUEST_PUT,
or HWTH_HTTP_REQUEST_DELETE be forwarded with the
request method unchanged.

REXX Programming Considerations
The toolkit provides a REXX host command environment, HWTHTTP, to allow REXX applications to
easily direct their requests to the HTTP enabler using an easy-to-use, made-for-REXX interface. REXX
applications running in TSO/E, System REXX, z/OS UNIX, or ISV-provided REXX environments are
supported.

• To initialize the HWTHTTP host command environment in your REXX exec, it may be necessary to
invoke the hwtcalls function at the beginning of your application: call hwtcalls on. After this
invocation, both the ADDRESS HWTHTTP and ADDRESS HWTJSON host commands will direct API calls
to the toolkit.

• To declare all toolkit constants in your REXX exec, use the HWTCONST service as documented in
“HWTCONST — Initialize predefined variables (REXX)” on page 587. There is no REXX IDF (include file)
provided by the toolkit.

• The toolkit services allocate task associated resources, which are released at task termination and the
termination API calls.

• Handles are not shared among multiple tasks, which can restrict some reentrant REXX environments.
• HTTP handles can be updated by any of the HTTP services. The content of these variables should not be
modified in any way by the application.

• Verify that all variables have proper content and are exposed if set outside of procedures.
• Variable names specified on toolkit REXX service calls are limited to 40 characters in length.
• REXX does not have unlimited variable content size. In general, a single variable cannot contain more

than 16 MB of content. This limits the amount of data that can be sent and received in the HTTP request

578 z/OS: z/OS MVS Callable Services for HLL

and response bodies. If the data required is greater than 16 MB for any of these cases, consider to use
one of the high-level languages, which are supported by the toolkit (C/C++, COBOL, PL/I or Assembler).

• Programs running in any REXX environment that is also a z/OS UNIX process should code
CALL SYSCALLS 'SIGOFF' in the REXX exec before invoking any HTTP toolkit service (HWTH*
services) to turn off MVS signaling. Failure to do this in the REXX exec can result in an
HWTH_ENVIRONMENTAL_ERROR (X'F05') return code from the service.

• The built-in REXX RC variable contains the return code from the REXX HWTHTTP host command. This
return code indicates the acceptance of the supplied REXX HWTHTTP host command. The return codes
returned in the RC variable are generally unique to the REXX environment. In contrast, the HTTP service
return code, the variable supplied on the service call itself, is only completed if the RC variable has a
value of HWTH_OK (0) or HWT_REXXParmSyntaxError (1).

• The DiagArea for each REXX service call is returned by using stem variables in the form:
x.HWTH_service, x.HWTH_reasonCode, and x.HWTH_reasonDesc, where x is the name of the stem
variable that is specified on the parameter list. If no DiagArea information is completed by the toolkit,
the value of the DiagArea stem-variable on return is blank or null.

Table 111 on page 579 lists the host command return codes for the REXX environment.

Table 111. Host return codes for REXX

Host return code Meaning and action

0 Meaning: REXX toolkit host command successful.

Action: Consult the toolkit return code on the service call to
determine the final result of the request.

1
HWT_REXXParmSyntaxError

Meaning: REXX toolkit host command detects the parameter
format is not in the proper form to be accepted.

Action: Check for a probable coding error.

• See the return code on the toolkit service call to determine
the reason for the syntax error.

• See the REXX programming considerations of the toolkit
service to see the exact calling specifications.

• Compare the toolkit REXX service call attempted with
service call examples in the supplied toolkit REXX
programming sample found in SYS1.SAMPLIB.

• The DiagArea might contain additional diagnostic
information.

2
HWT_REXXUnsupportedService

Meaning: Program error. An unknown toolkit service name
was specified on the toolkit REXX host command.

Action:Check for a probable coding error. Specify a valid
toolkit service name. For example, HWTHCONN.

3
HWT_REXXInvalidNumOfParms

Meaning: Program error. The number of parameters specified
on the toolkit REXX host command for the service name
specified does not match the number of parameters
expected.

Action:Check for a probable coding error. See the REXX
programming considerations of the toolkit service to see the
exact calling specifications. Compare the toolkit REXX service
call attempted with service call examples in the supplied
toolkit REXX programming sample found in SYS1.SAMPLIB.

Chapter 21. The z/OS HTTP/HTTPS protocol enabler 579

Table 111. Host return codes for REXX (continued)

Host return code Meaning and action

4
HWT_REXXStemVarRequired

Meaning: Program error. The toolkit REXX service specified
on the toolkit REXX host command is missing one or more
required stem variables in the positional parameter list.

Action:Check for a probable coding error. See the REXX
programming considerations of the toolkit service to see the
exact calling specifications. A stem variable parameter must
specify a period (.) following the variable name (for example,
var.). Also, compare the toolkit REXX service call attempted
with service call examples found in the supplied toolkit REXX
programming sample found in SYS1.SAMPLIB.

5
HWT_REXXParmNameTooLong

Meaning: Program error. One or more variables specified
on the toolkit REXX service call on the toolkit REXX host
command is greater than the toolkit maximum REXX variable
length (40).

Action: Check for a probable coding error. Reduce the
variable name lengths on the toolkit REXX service call to be
40 characters or less in length

6
HWT_REXXInvalidHostEnv

Meaning: System error. The toolkit detected an unexpected
error. The system rejects the service call.

Action: Search problem reporting databases for a fix for the
problem. If no fix exists, contact the IBM Support Center.

7
HWT_REXXNoStorageForVar

Meaning: System error. Insufficient storage is detected
by a SET request from the REXX variable access routine
(IRXEXCOM). The system rejects the service call.

Action: Ensure that there is sufficient storage available for the
toolkit to set REXX variables. If the problem persists, search
problem reporting databases for a fix for the problem. If no fix
exists, contact the IBM Support Center.

8
HWT_REXXirxexcom1

Meaning: System error. The REXX variable access routine
(IRXEXCOM) used by the toolkit detected an invalid entry
condition. This error can be caused by invoking the toolkit
REXX host command from a non-REXX application.

Action: Ensure to invoke the toolkit REXX host command from
a valid REXX exec. If the problem persists, search problem
reporting databases for a fix for the problem. If no fix exists,
contact the IBM Support Center.

9
HWT_REXXirxexcom28

Meaning: System error. The REXX variable access routine
(IRXEXCOM) detected a language processor environment is
missing. This error can be caused by invoking the toolkit from
an invalid REXX environment.

Action: Ensure that REXX applications invoke the specified
toolkit service in a proper REXX environment. TSO/E, System
REXX, z/OS UNIX, or ISV-provided REXX environments are
supported. If the problem persists, search problem reporting
databases for a fix for the problem. If no fix exists, contact the
IBM Support Center.

580 z/OS: z/OS MVS Callable Services for HLL

Table 111. Host return codes for REXX (continued)

Host return code Meaning and action

11
HWT_REXXNoStorage

Meaning: System error. The toolkit could not obtain sufficient
storage to satisfy the request.

Action: Ensure there is sufficient memory available for
REXX command processing. If the problem persists, search
problem reporting databases for a fix for the problem. If no fix
exists, contact the IBM Support Center.

13
HWT_REXXInvalidVariable

Meaning: Program error. The toolkit detected one of the
variables passed in the parameter list is an invalid REXX
variable name.

Action: Check for a probable coding error. Verify that all
variables passed in the parameter list for the specified service
have valid names. See the REXX programming considerations
and parameters sections for reference.

14
HWT_REXXDataTooLongForVar

Meaning: Program error. The REXX variable cannot contain
more than 16 megabytes of data.

Action: Check for a possible coding error. If the application
requires more than 16 megabytes of data, consider using
another supported language.

32
HWT_REXXUnexpectedError

Meaning: System error. An unexpected error is detected. The
system rejects the service call.

Action: A symptom record has been written to LOGREC to
record the problem. Search problem reporting databases for
a fix for the problem. If no fix exists, contact the IBM Support
Center.

Using the REXX APIs in a z/OS UNIX Environment
Programs running in any REXX environment that accesses z/OS UNIX from their address space must
turn off MVS signaling by coding CALL SYSCALLS "SIGOFF" in the REXX exec before invoking
any HTTP toolkit service (HWTH* services). Failure to do this in your REXX exec can result in an
HWTH_ENVIRONMENTAL_ERROR (X'F05') return code from the service.

z/OS HTTP enabler programming examples

The z/OS HTTP enabler provides a sample program in all supported programming languages to aid
in the creation of applications that use the toolkit functions. Each sample contains examples of how
to use almost all of the HTTP enabler services available in the toolkit. The samples are shipped in
SYS1.SAMPLIB. Table 112 on page 581 lists the sample files for each programming language.

Table 112. z/OS HTTP enabler programming sample files

Programming language Name of sample in SYS1.SAMPLIB

C / C++ HWTHXC1, HWTHXC2

COBOL HWTHXCB1, HWTHXCB2

PL / I HWTHXPI1

REXX HWTHXRX1

Chapter 21. The z/OS HTTP/HTTPS protocol enabler 581

AT-TLS usage overview

Using the toolkit with AT-TLS
This describes the basic understanding of what AT-TLS does and how it works. It will help you understand
how the toolkit exploits its capability to transparently secure HTTPS communications.

AT-TLS explained
The AT-TLS policy agent (PAGENT) is software that resides directly in the TCPIP stack, observing every
IP socket connection made using that stack. The PAGENT decides how to intervene in the processing of
a given connection attempt by comparing several possible attributes of that connection attempt to a set
of rules. These rules determine which policy the PAGENT will apply, if any, to that connection attempt.
For a complete description of these rules, see TTLSRule of the AT-TLS policy statements section in z/OS
Communications Server: IP Configuration Reference.

Each of these rules can specify several attributes of a connection that it intends to map, including:

inbound vs. outbound
local IP address
local IP port
destination IP address
destination IP port
user identity
job name

Note: Toolkit connections are exclusively outbound.

The address and port selectors support named groups, port ranges, and the name selectors support a
trailing asterisk wildcard. Each rule also specifies an internal priority that is used when rules overlap.

Collections of these rules form a map between an arbitrary connection attempt and, at most, one AT-TLS
policy defined to handle that attempt. If no AT-TLS rules match a connection attempt, then no AT-TLS
policy will apply. When two or more rules match the same connection attempt, then the rule with
the highest internal priority applies. If the priorities are the same on overlapping rules, then the first,
alphabetical ordered rule applies.

By carefully crafting these rules, a network administrator is able to control all the network security that is
required by a wide range of diverse connection types. This includes the outbound connections to HTTPS
servers made by the toolkit client.

How to enable the toolkit to use AT-TLS
When you accept the default setting of HWTH_OPT_USE_SSL (HWTH_SSL_NONE), your toolkit
application delegates all HTTPS security responsibilities to AT-TLS. This includes both direct
connections and proxy (tunnel) connections.

Note: By definition, an HTTP proxy connection is not secured by TLS. To control access to an HTTP proxy,
a network administrator may utilize an authenticating proxy that accepts Basic authentication. For more
information, see “Using an authenticating proxy server” on page 574.

AT-TLS example scenarios for network administrators
This is a high level overview for network administrators who want to configure AT-TLS to work correctly
with the toolkit. A few example scenarios are described, ranging from no security to full security.

Unsecured connections to an internal address
A network administrator may determine that some outbound connections should never be secured by
AT-TLS. To accomplish this goal, they might choose not to map the connections to any policy at all,
but this is risky. Some new rule, intended to map connections being made from a new and different
application, could inadvertently map their connection to an incompatible policy. It is advisable to
define one or more rules to AT-TLS that affirmatively map insecure connections to an AT-TLS disabled

582 z/OS: z/OS MVS Callable Services for HLL

policy. A disabled policy guarantees that AT-TLS will never secure the connection. See “AT-TLS policy
types” on page 583.

Always secured direct HTTPS connections sharing a common AT-TLS policy
A network administrator may want all direct HTTPS (port 443) outbound connections, such as those
made by the toolkit, to be secured transparently by AT-TLS. In that case, the administrator may define
a general rule that selects outbound connections based, in part, on the destination port being 443,
or other agreed-to port number, that also specifies an AT-TLS enabling policy. An enabling policy will
try to transparently establish security immediately using its own keyring. See “AT-TLS policy types” on
page 583.
This approach works very well when all users can share a common keyring, such as a virtual
CERTAUTH or SITE keyring, without having to provide a personal certificate for mutual authentication.

Always secured direct HTTPS connections with some server specific policies
A network administrator may want to apply specific AT-TLS policies to specific HTTPS server
connections. In that case, the administrator might define several rules where each rule would select
a different subset of possible HTTPS connections based, in part, on both port 443 and the server
specific IP address(es). Each such rule would then map its subset of possible connections to a server
specific AT-TLS enabling policy. See “AT-TLS policy types” on page 583.

Note: If the selections made by some general rule overlap with the selections made by a server
specific rule, the decision comes down to the internal priority of each rule; the higher priority wins.

Application secured connections
A network administrator may also determine that an outbound connection should provide the client
application with the option for AT-TLS to secure the connection at some point after the connection
is made. To do this, the administrator may choose to define a rule that maps the connections to an
AT-TLS 'application-controlling' policy and then supply that policy with a keyring that is suitable to
secure any expected HTTPS connections that it will map to. One use case for this type of policy is
the configuration of a proxy connection that may be used to connect to an HTTPS server. If using a
proxy this way, a keyring must be specified that is appropriate for all the HTTPS servers that will be
contacted via that proxy.

Always use a proxy
A network administrator may want all outbound HTTPS connections, including those made via a proxy
server, to be secured by AT-TLS. This is generally possible with the latest toolkit updates, but some
server specific policy mapping options, presented in the previous scenarios, are not possible when a
proxy is involved. This difference is due to AT-TLS only applying its rules to the proxy connection and
never observing the proxy connecting elsewhere. It is strictly the proxy's responsibility to control the
connection that it makes on a client's behalf.
A toolkit proxy connection is a perfect use case for an AT-TLS 'application-controlling' policy. When
the toolkit connects to an HTTP proxy and that proxy connection is mapped to an AT-TLS 'application-
controlling' policy, the toolkit has options for securing any HTTPS tunnel connection it might open
via that proxy. The toolkit can either request that AT-TLS secure the tunnel connection, or the toolkit
can secure the connection with its own options (HWTH_OPT_SSLKEY and others, if specified). On the
other hand, if the proxy is used to communicate with an HTTP server, where any attempt to secure the
connection would be a protocol error, no keyring or handshake is involved.
Network administrators who hope to control the security of HTTPS tunnels through their proxy can
map the proxy connection to an AT-TLS 'application-controlling' policy and supply the policy with a
keyring that is suitable for any HTTPS server that the proxy is intended to serve up to the client.

AT-TLS policy types
Whenever AT-TLS is active, its policies might affect any outbound connection that the toolkit makes. To
inter-operate with AT-TLS the toolkit must be able to detect and assess these policies when they are
applied. The toolkit uses a special system call (ioctl())to detect whether an AT-TLS policy was applied
to a connection. The toolkit uses this query on every direct connection it makes, looking for the possible
presence of an AT-TLS policy.

Chapter 21. The z/OS HTTP/HTTPS protocol enabler 583

Table 113. AT-TLS policy types

Policy status Meaning Note

OFF AT-TLS is not active on this connection's TCPIP stack. “1” on page
584

NO_POLICY AT-TLS is active, but did not map this connection to a policy. “1” on page 584

DISABLED AT-TLS mapped this connection to a policy incapable of
securing it.

“1” on page 584

ENABLED AT-TLS mapped this connection to a policy that already
secured it.

“2” on page 584

APPLCNTRL AT-TLS mapped this connection to a policy that did not yet
secure it, but that should be capable of securing it when
asked.

“3” on page 584

Table notes:

1. Any HTTPS security for the connection must be provided by the toolkit using HWTH_SSL_USE and
toolkit SSL options (HWTH_OPT_SSLKEY and others). No transparent AT-TLS security is possible
with this policy status and any connections that require AT-TLS security will necessarily fail with a
communications error. If the user is connecting to an HTTP server, no security is required.

2. HTTPS security for this connection has already been established by AT-TLS and the details of the
security have been written to the verbose trace output, if that option was selected. If the toolkit
user specified HWTH_OPT_USE_SSL as HWTH_SSL_USE, then the connection will be closed and the
security conflict will be reported as a communications error.

3. No security has been established for this connection. If the user is connecting to an HTTPS server,
the means of securing the HTTPS connection depends on the value of the HWTH_OPT_USE_SSL
toolkit option. A setting of HWTH_SSL_NONE instructs the toolkit to request security from AT-TLS.
A setting of HWTH_SSL_USE instructs the toolkit to use its own options (HWTH_OPT_SSLKEY and
others) to secure the connection. If the user is connecting to an HTTP server, no security is required.

How to tell if an AT-TLS policy was applied
If verbose tracing is enabled (see HWTH_OPT_VERBOSE of “Options for connections” on page 634),
you can see whether or not the connection was mapped to an AT-TLS policy. If the connection was
mapped, the trace includes the name of the TTLSRule that selected the connection and the type of
policy the connection maps to. Also, if the policy is ENABLED, meaning the connection is already
secure, the trace will include additional details of the current security of the connection, including TLS
level, negotiated cipherspec, and FIPS140 status.

Important: AT-TLS policy configuration errors may first appear to be toolkit problems. If AT-TLS maps a
toolkit connection to a faulty or inadequate AT-TLS policy, (especially a faulty ENABLED policy), the query
operation intended to detect AT-TLS may fail.

In these cases, the toolkit will be able to report the apparent symptom, including the errno and errno2
results from the system call, directly in the diagnostic area's reason description and in the verbose trace,
if enabled. The toolkit will not be able to report the name of the offending AT-TLS TTLSRule. The errno2
value should be decoded with the bpxmtext utility to get a more detailed description of the failure.

In any cases where AT-TLS behavior is implicated in a problem, or suspected, it is highly advisable to
employ the sophisticated diagnostic and trace capabilities built directly into TCPIP and AT-TLS to aid with
the problem analysis.

584 z/OS: z/OS MVS Callable Services for HLL

Server identity
Verify the server identity in the case of a secure connection.

In the case of a secure connection (HTTPS, for example, HTTP over TLS), the toolkit will verify that
the URI provided for the target host matches the Server Identity that was presented in the server's
certificate. This verification is always done in the case of a secure connection, regardless of whether the
connection is being secured by AT-TLS or System SSL (HWTH_OPT_USE_SSL = HWTH_SSL_USE). This is in
compliance with Sections 4.3.4 (https Certificate Verification) and 4.3.5 (IP-ID Reference Identity) of RFC
9110 , and Section 3.1 (Server Identity) of RFC 2818.

All supported URI formats will be verified:

• DNS hostname - www.example.com
• IP address - IPv4, 192.0.2.0
• IP address - IPv6, [2001:db8:3333:4444::8888]

This verification also applies to any permitted cross-domain redirects during an HWTHRQST API
invocation.

If a server supplies a legacy certificate which does not contain a subjectAltName extension, or the
certificate does not accurately reflect the expected server's identity, either the server certificate will
need to be re-issued with the update, or the application may be modified to take advantage of the
HWTH_OPT_CERT_CHECK option. For legacy certificates, HWTH_CERT_CHECK_SAN_CN_DNS may be
used to allow CN checking for DNS names; otherwise HWTH_CERT_CHECK_WARN may be used to convert
the ERROR return code to a WARNING return code. However, even in the latter case, the application will
need to be updated to accept an RC=4 (WARNING) with corresponding DiagArea reason code value in the
range of '19'x to '1B'x from both HWTHCONN and HWTHRQST.

Sample HWTHCONN RC and DiagArea content due to this type of failure:

• RC = 262 (106 hex)
• DiagArea.HWTH_service = 380004x
• DiagArea.HWTH_reasonCode = `19`x
• DiagArea.HWTH_reasonDesc = "checkServerCert: Certificate not valid for DNS name"

HWTH_OPT_CERT_CHECK may be reset throughout the usage of a connection. When the option is set
following an HWTHCONN, it will only apply to future cross-domain redirects made from the connection.
It will not apply retroactively to the existing connection, so requests made will continue to be affected by
the original setting when the connection was made. For example:

• An application may set HWTH_OPT_CERT_CHECK to HWTH_CERT_CHECK_SAN_CN_DNS when initially
connecting to a legacy server to allow the connection and any subsequent requests to succeed
with RC=0 for that server, and then change it to HWTH_CERT_CHECK_SAN_ONLY to require any cross-
domain redirects made to other legacy servers to fail.

• An application may set HWTH_OPT_CERT_CHECK to HWTH_CERT_CHECK_WARN to allow HWTHCONN
to convert a failure for that server to a warning, and then change it to HWTH_CERT_CHECK_SAN_ONLY
to require cross-domain redirects made to other servers to fail if the server identity does not match. In
this case, HWTHRQST will continue to return RC=4 for requests made on that connection, except when
a cross-domain redirect fails to match its server identity and HWTHRQST fails with RC=262/'106'x.

Verification rules
The following table explains the rules for successful verification:

Chapter 21. The z/OS HTTP/HTTPS protocol enabler 585

https://www.rfc-editor.org/rfc/rfc9110.html#section-4.3.4
https://www.rfc-editor.org/rfc/rfc9110.html#section-4.3.5
https://www.rfc-editor.org/rfc/rfc9110.html#section-4.3.5
https://www.rfc-editor.org/rfc/rfc2818

RFC 9110 verification rules:

For host names:

• dnsName entries that are found within the subjectAltName extension of the certificate must be
used for verification against the target identity

• the use of a wildcard character '*' is allowed within the certificate - see DNS name wildcard rules
• matching is case-insensitive, for example, WWW.Example.Com would match www.example.com

For IPv4 and IPv6 addresses:

• ipAddress entries that are found within the subjectAltName extension of the certificate must be
used for verification against the target identity

For more information regarding DNS name verification, see Section 6.4 of RFC 6125.

RFC 2818 and RFC 6125 verification rules:

For host names:

• dnsName entries that are found within the subjectAltName extension of the certificate must be
used for verification against the target identity

• if no dnsName entries are found in the subjectAltName or the subjectAltName extension does not
exist, the CN (Common Name) field in the Subject field of the certificate must be used

• the use of a wildcard character '*' is allowed within the certificate - see DNS name wildcard rules
• multiple CN fields within the Subject field of the certificate are not allowed for verification

purposes
• matching is case-insensitive, for example, WWW.Example.Com would match www.example.com

For IPv4 and IPv6 addresses:

• ipAddress entries that are found within the subjectAltName extension of the certificate must be
used for verification against the target identity

DNS name wildcard rules:

• The wildcard character may only match contents of a single label, for example, *.example.com may
match a.example.com but not a.b.example.com

• The wildcard character may only match contents of the left-most label, so *.a.example.com is
allowed, but a.*.example.com is not

• The label containing the wildcard must be followed by at least two labels, so *.example.com is
allowed, but *.com is not; however, example.com is allowed because no wildcard is used

• The wildcard character may match part or none of a label:

– b*.example.com matches b.example.com and bar.example.com but not abc.example.com
– *oo.example.com matches oo.example.com and foo.example.com but not book.example.com
– b*z.example.com matches bz.example.com and biz.example.com but not bar.example.com or

fuzz.example.com
• Only one wildcard character is allowed within the label, so a*c.example.com is allowed but

b.example.com is not

z/OS HTTP/HTTPS callable services
The z/OS HTTP enabler callable services are grouped under the following categories.

586 z/OS: z/OS MVS Callable Services for HLL

https://www.rfc-editor.org/rfc/rfc6125.html

Initialization, reset, and termination services
Initialization, reset, and termination services deal with the creation and termination of HTTP enabler
connection instances and request instances.

The HTTP enabler callable services in this category are:

• “HWTHINIT — Initialize an HTTP connection or request” on page 601
• “HWTHRSET — Reset an HTTP connection or request” on page 611
• “HWTHTERM — Terminate an HTTP connection or request” on page 629

Set options service
The set options service sets the options that are needed for a connection instance or request instance.
The options are set one at a time. Thus, an application may call this service multiple times to set the
connection options and to set the request options.

The HTTP enabler callable service in this category is:

• “HWTHSET — Set HTTP connection or request options” on page 616

Connect and disconnect services
The connect service attempts to connect to an HTTP server using all of the attributes associated with
a connection handle, as previously set by the set options service. The disconnect service attempts to
disconnect a connection previously created by the connect service.

The HTTP enabler callable services in this category are:

• “HWTHCONN — Connect to an HTTP server” on page 588
• “HWTHDISC — Disconnect from an HTTP server” on page 594

Send request service
The send request service sends an HTTP request to an HTTP server using a connection that was created
by the connect service, and processes the response from the server.

The HTTP enabler callable service in this category is:

• “HWTHRQST — Send a request to an HTTP server” on page 605

Set link list service
The set link list service creates, appends, or frees a linked list, which is used to allow certain HTTP
enabler option values to be represented by more than one data item.

The HTTP enabler callable service in this category is:

• “HWTHSLST — Linked list append service” on page 623

HWTCONST — Initialize predefined variables (REXX)
Call the HWTCONST service to initialize predefined variables in the current REXX variable pool.

Description
This service sets the variables with names prefixed for HWTH corresponding to the interface definition for
the HTTP toolkit. This service is helpful when using symbolic names in checking for specific return codes
or when specifying constant values in the application. The variable HWT_CONSTANTS is set to a list of the
interface variable names, which is useful on a procedure expose statement to make the variables visible
to a procedure.

HWTCONST

Chapter 21. The z/OS HTTP/HTTPS protocol enabler 587

Note: This service also sets the variables for the z/OS JSON parser (HWTJ-prefixed) as well. If the REXX
application utilizes both the HTTP and JSON parser portions of the toolkit, it is only necessary to call
HWTCONST once to initialize all the variables.

Syntax
Write the call as shown in the following syntax diagram. You must code all parameters on the CALL
statement in the order shown.

REXX parameters

address hwthttp "hwtconst",
 "ReturnCode",
 "DiagArea."

Parameters
The parameters are explained as follows:

ReturnCode
Returned parameter.

• Type: Character string

Contains the return code from the service.
DiagArea.

Returned parameter.

• Type: Stem variable

Return codes
When the service returns control to the caller, GPR 15 and the returnCode parameter contain a
hexadecimal return code, as listed in the Table 114 on page 588.

Table 114. Return codes for the HWTCONST service

Hexadecimal return code
Equate symbol

Decimal return code
Equate symbol Meaning and action

0
HWTH_OK

0
HWTH_OK

Meaning: Successful completion.

Action: None.

HWTHCONN — Connect to an HTTP server
Call the HWTHCONN service to connect to an HTTP server.

Description
The HWTHCONN service attempts to connect to an HTTP server using all of the attributes, which are
associated with the supplied connection handle, as previously set by one or more calls to the HWTHSET
(set options) service.

In the case of a secure connection (HTTPS, for example, HTTP over TLS), the HWTHCONN service will
verify that the URI provided for the target host matches the server identity that was presented in the
server's certificate. If the verification is unable to find the server’s identity within the provided server
certificate, HWTHCONN will return an ERROR (RC=262/'106'x). The application may choose to take
advantage of the HWTH_OPT_CERT_CHECK connection option to tune the checking performed and the
return code severity in response to a verification failure. The DiagArea parameter will contain additional

HWTHCONN

588 z/OS: z/OS MVS Callable Services for HLL

information when an ERROR or WARNING is returned. For more information about what verification is
performed, see “Server identity” on page 585.

If the connection is successful (RC=0 or RC=4), this connection is eligible to issue HTTP/HTTPS requests
using the HWTHRQST service.

Environment
The requirements for the caller are:

Requirement Details

Minimum authorization: Supervisor state or problem state, any PSW key (except key 0).

Dispatchable unit mode: Task.

Cross memory mode: PASN = HASN = SASN.

AMODE: 31-bit.

ASC mode: Primary or access register (AR).

Interrupt status: Enabled for I/O and external interrupts.

Locks: No locks held.

Control parameters: Control parameters must be in the primary address space and
addressable by the caller.

Linkage: Standard MVS linkage conventions are used.

Programming requirements
See “Syntax, linkage, and programming considerations” on page 569 for details about how to call the
z/OS HTTP/HTTPS enabler services in the various supported programming languages.

REXX programming considerations for the HWTHCONN service
All information for the HWTHCONN service applies for REXX requests.

Syntax
Write the call as shown in the following syntax diagram. You must code all parameters in the order shown.

Non-REXX parameters REXX parameters

CALL HWTHCONN(
 ReturnCode,
 ConnectionHandle,
 DiagArea);

address hwthttp "hwthconn",
 "ReturnCode",
 "ConnectionHandle",
 "DiagArea."

Parameters
The parameters are explained as follows:

ReturnCode
Returned parameter:

• Type: Integer (non-REXX), character representation of an integer (REXX)
• Length: 4 bytes (non-REXX)

Contains the return code from the service.

HWTHCONN

Chapter 21. The z/OS HTTP/HTTPS protocol enabler 589

ConnectionHandle
Supplied parameter:

• Type: Character string
• Length: 12 bytes

A value that was previously returned by an HWTHINIT call that specified a handleType of
HWTH_HANDLETYPE_CONNECTION. The connection associated with this handle should have set the
minimum number of connection options using the HWTHSET service before invoking the HWTHCONN
service.

DiagArea (non-REXX)
DiagArea. (REXX)

Returned parameter

• Type: Character string (non-REXX), stem variable (REXX)
• Length: 136 bytes (non-REXX)

A storage area provided by the caller that can contain additional diagnostic information which is
related to the service call. It consists of a 4-byte integer reason code field, a 4-byte integer service
number field, and a 128-byte character string error text field.

ABEND codes
If the toolkit is unable to properly access the user-supplied parameter list, the call can result in a X'04D'
ABEND with a reason code of X'1001yyyy' for one of the following reasons:
yyyy

Reason
0000

The parameters passed by the caller are not in the primary address space.
0001

The number of parameters passed by the caller is incorrect.

Return codes
When the service returns control to the caller, GPR 15 and the returnCode parameter contain a
hexadecimal return code, as listed in Table 115 on page 590.

Table 115. Return codes for the HWTHCONN service

Hexadecimal return code
Equate symbol Decimal return code Equate symbol Meaning and action

0
HWTH_OK

0
HWTH_OK

Meaning: Successful completion.

Action: None.

4
HWTH_WARNING

4
HWTH_WARNING

Meaning: Possible error. The connect
request was processed successfully, but
detected a condition that should be
reported back to the application.

Action: Consult the DiagArea for a
detailed explanation of this return code.
Modify the application, as necessary.

101
HWTH_HANDLE_INV

257
HWTH_HANDLE_INV

Meaning: Program error. The value of the
connectionHandle parameter that was
specified on the service call is not a valid
connect or request handle (one that was
returned by the HWTHINIT service).

Action: Check the calling program for a
probable coding error.

HWTHCONN

590 z/OS: z/OS MVS Callable Services for HLL

Table 115. Return codes for the HWTHCONN service (continued)

Hexadecimal return code
Equate symbol Decimal return code Equate symbol Meaning and action

102
HWTH_HANDLE_INUSE

258
HWTH_HANDLE_INUSE

Meaning: Program error. This return code
results from one of the following reasons:

• The specified handle is being used by
another caller. Only one outstanding
z/OS HTTP enabler service can use the
same handle.

• A previous caller using this handle
that is abnormally ended during an
z/OS HTTP enabler service call and
the toolkit was unable to indicate that
its use of the supplied handle has
completed.

Action: Check the calling program for a
probable coding error.

• While all z/OS HTTP Enabler service
calls are synchronous (blocking), if
more than one task, process, or thread
is running simultaneously and using
the same handle, only one is allowed
access. Change the application so that
only one thread attempts to use the
same handle at the same time.

• If the application detected an abend
while the z/OS HTTP enabler was
invoked, the connection or request
instance associated with the handle
might be permanently locked. To
release the storage associated with the
handle work area, issue an HWTHTERM
service call with a forceOption
of HWTH_NOFORCE. If this fails with
the same return code, issue another
HWTHTERM service call with a
forceOption of HWTH_FORCE.

103
HWTH_HANDLETYPE_INVALID

259
HWTH_HANDLETYPE_INVALID

Meaning: Program error. The application
specified a request handle for the
connectionHandle parameter.

Action: Check the calling program
for a probably coding error. Specify
a valid connection handle for the
connectionHandle parameter.

HWTHCONN

Chapter 21. The z/OS HTTP/HTTPS protocol enabler 591

Table 115. Return codes for the HWTHCONN service (continued)

Hexadecimal return code
Equate symbol Decimal return code Equate symbol Meaning and action

104
HWTH_INACCESSIBLE_PARM

260
HWTH_INACCESSIBLE_PARM

Meaning: Program error. The application
passed an input or output parameter
which was inaccessible by the toolkit.
See the programming considerations
in “Syntax, linkage, and programming
considerations” on page 569 for details
about z/OS HTTP enabler recovery
processing.

Action: Check for a probable coding
error. Likely, the recovery of the caller
detected this return code as a result of
the toolkit abnormally ending with a 0C4
system ABEND. Check the diagArea for
an explanation as to which parameter
was attempting to be accessed when the
toolkit service calls abnormally ended.
See the programming considerations
in “Syntax, linkage, and programming
considerations” on page 569 for details
about actions to consider for this return
code.

106
HWTH_COMMUNICATION_ERROR

262
HWTH_COMMUNICATION_ERROR

Meaning: A communication error has
been detected. One or more of the
following problems has occurred:

• A failure in the communication with the
web server

• An error in an underlying sockets or
SSL/TLS service call

• An error in obtaining the necessary
system resources to process the
connect.

Action: Check the diagArea for further
diagnostic information. The toolkit uses
many internal services, including sockets,
SSL, and other calls when processing
an HTTP API service call. If one of
these internal services fails because
of an error in communications with
the targeted server or because of an
internal environmental condition, the
error is reported in the diagnostic area.
This information can be useful to the
application programmer but, in many
cases, it is for the use of IBM Support.
If one of these errors occurs, clean
up the environment, check for possible
communication configuration problems,
and reissue the request. If the problem
persists, contact the IBM Support Center.

501
HWTH_HCONN_CONNECT_INV

1281
HWTH_HCONN_CONNECT_INV

Meaning: Program error. One of the
following errors occurred:

• The caller did not specify the
required minimum parameters before
connecting.

• The caller specified incompatible or
incomplete connection parameters.

Action: Check the calling program for
a probable coding error. The diagArea
should contain a detailed message
explaining the problem.

HWTHCONN

592 z/OS: z/OS MVS Callable Services for HLL

Table 115. Return codes for the HWTHCONN service (continued)

Hexadecimal return code
Equate symbol Decimal return code Equate symbol Meaning and action

F01
HWTH_INTERRUPT_STATUS_INV

3841
HWTH_INTERRUPT_STATUS_INV

Meaning: Program error. The calling
program is disabled. The system rejects
the service request.

Action: Check the calling program for a
probable coding error.

F02
HWTH_LOCKS_HELD

3842
HWTH_LOCKS_HELD

Meaning: Program error. The calling
program is holding one or more locks. The
system rejects the service request.

Action: Check the calling program for a
probable coding error.

F03
HWTH_MODE_INV

3843
HWTH_MODE_INV

Meaning: Program error. The calling
program is running in a mode other
than task, non-cross-memory mode. The
system rejects the service request.

Action: Check the calling program for a
probable coding error.

F04
HWTH_AUTHLEVEL_INV

3844
HWTH_AUTHLEVEL_INV

Meaning: Program error. The calling
program is running in key 0. The toolkit
uses z/OS UNIX services, which do not
permit key 0 callers. The system rejects
the service request.

Action: Check the calling program for a
probable coding error.

F05
HWTH_ENVIRONMENTAL_ERROR

3845
HWTH_ENVIRONMENTAL_ERROR

Meaning: Language Environment (LE)
could not create the proper environment
for the request. This could occur for a
number of reasons, the most likely of
which are:

• The POSIX(ON) runtime option was
not set (LE callers).

• A POSIX(ON) environment was already
established in the same address
space, possibly because an HTTP
connection was already established
(non-LE callers). If the dubbing default
is not set to DUBPROCESS, the
limit is one POSIX(ON) environment
per address space. If the dubbing
default is set to DUBPROCESS, each
thread in the address space can
have its own POSIX(ON) environment,
allowing for multiple connections.
See “Environmental considerations” on
page 571 for more information.

Action:

• For LE callers, verify that the
POSIX(ON) runtime option has been
enabled for the application.

• For non-LE callers, verify the dubbing
options selected for the address
space and ensure that multiple
POSIX(ON) runtime environments
are not being requested. See
“Environmental considerations” on
page 571 for more information about
how to enable this functionality.

HWTHCONN

Chapter 21. The z/OS HTTP/HTTPS protocol enabler 593

Table 115. Return codes for the HWTHCONN service (continued)

Hexadecimal return code
Equate symbol Decimal return code Equate symbol Meaning and action

F06
HWTH_UNSUPPORTED_RELEASE

3846
HWTH_UNSUPPORTED_RELEASE

Meaning: The system level does not
support this service. The system rejects
the service request.

Action: Remove the calling program from
the system, and install it on a system that
supports the z/OS HTTP enabler services.
Then, run the program again.

FFF
HWTH_UNEXPECTED_ERROR

4095
HWTH_UNEXPECTED_ERROR

Meaning: System error. The service
encountered an unexpected error. The
system rejects the service call.

Action: Search problem reporting
databases for a fix for the problem. If no
fix exists, contact the IBM Support Center.

HWTHDISC — Disconnect from an HTTP server
Call the HWTHDISC service to disconnect from an HTTP server.

Description
The HWTHDISC service attempts to disconnect a connection created by the HWTHCONN service.

If the operation is successful, the connection is disconnected from the web server (all socket and SSL/TLS
connections will be terminated), but all attributes associated with the connection handle remain intact.
This allows subsequent HWTHCONN service calls to make minimal or no changes to the options for this
connection, should a similar connection be desired in the future.

If the specified connection handle is not currently connected to a web server or has already been
disconnected, the disconnect request ends with a successful (HWTH_OK) return code.

Environment
The requirements for the caller are:

Requirement Details

Minimum authorization: Supervisor state or problem state, any PSW key (except key 0).

Dispatchable unit mode: Task.

Cross memory mode: PASN = HASN = SASN.

AMODE: 31-bit.

ASC mode: Primary or access register (AR).

Interrupt status: Enabled for I/O and external interrupts.

Locks: No locks held.

Control parameters: Control parameters must be in the primary address space and
addressable by the caller.

Linkage: Standard MVS linkage conventions are used.

Programming requirements
See “Syntax, linkage, and programming considerations” on page 569 for details about how to call the
z/OS HTTP/HTTPS enabler services in the various supported programming languages.

HWTHDISC

594 z/OS: z/OS MVS Callable Services for HLL

REXX programming considerations for the HWTHDISC service
All information for the HWTHDISC service applies for REXX requests.

Syntax
Write the call as shown in the following syntax diagram. You must code all parameters in the order shown.

Non-REXX parameters REXX parameters

 CALL HWTHDISC(
 ReturnCode,
 ConnectionHandle,
 DiagArea);

address hwthttp "hwthdisc",
 "ReturnCode",
 "ConnectionHandle",
 "DiagArea."

Parameters
The parameters are explained as follows:

ReturnCode
Returned parameter

• Type: Integer (non-REXX), character representation of an integer (REXX)
• Length: 4 bytes (non-REXX)

Contains the return code from the service.
ConnectionHandle

Supplied parameter

• Type: Character string
• Length: 12 bytes

A value that was previously returned by an HWTHINIT call that specified a handleType of
HWTH_HANDLETYPE_CONNECTION.

DiagArea (non-REXX)
DiagArea. (REXX)

Returned parameter

• Type: Character string (non-REXX), stem variable (REXX)
• Length: 136 bytes (non-REXX)

A storage area provided by the caller that may contain additional diagnostic information related to the
service call. It consists of a 4-byte integer reason code field, a 4-byte integer service number field,
and a 128-byte character string error text field.

ABEND codes
If the toolkit is unable to properly access the user-supplied parameter list, the call might result in a
X'04D' ABEND with a reason code of X'1002yyyy' for one of the following reasons:
yyyy

Reason
0000

The parameters passed by the caller are not in the primary address space.
0001

The number of parameters passed by the caller is incorrect.

HWTHDISC

Chapter 21. The z/OS HTTP/HTTPS protocol enabler 595

Return codes
When the service returns control to the caller, GPR 15 and the returnCode parameter contain a
hexadecimal return code, as listed in Table 116 on page 596.

Table 116. Return codes for the HWTHDISC service

Hexadecimal return code
Equate symbol

Decimal return code
Equate symbol Meaning and action

0
HWTH_OK

0
HWTH_OK

Meaning: Successful completion.

Action: None.

4
HWTH_WARNING

4
HWTH_WARNING

Meaning: Possible error. The connect request
was processed successfully, but detected a
condition that should be reported back to the
application.

Action: Consult the DiagArea for a detailed
explanation of this return code. Modify the
application, as necessary.

101
HWTH_HANDLE_INV

257
HWTH_HANDLE_INV

Meaning: Program error. The value of the
connectionHandle parameter that was
specified on the service call is not a valid
connect or request handle (one that was
returned by the HWTHINIT service).

Action: Check the calling program for a
probable coding error.

HWTHDISC

596 z/OS: z/OS MVS Callable Services for HLL

Table 116. Return codes for the HWTHDISC service (continued)

Hexadecimal return code
Equate symbol

Decimal return code
Equate symbol Meaning and action

102
HWTH_HANDLE_INUSE

258
HWTH_HANDLE_INUSE

Meaning: Program error. This return code
results from one of the following reasons:

• The specified handle is being used by
another caller. Only one outstanding z/OS
HTTP enabler service can use the same
handle.

• A previous caller using this handle
abnormally ended during an z/OS HTTP
enabler service call and the toolkit was
unable to indicate that its use of the supplied
handle has completed.

Action: Check the calling program for a
probable coding error.

• While all z/OS HTTP Enabler service calls
are synchronous (blocking), if more than
one task, process, or thread is running
simultaneously and using the same handle,
only one will be allowed access. Change the
application so that only one thread attempts
to use the same handle at the same time.

• If the application detected an abend
while the z/OS HTTP enabler was
invoked, the connection or request instance
associated with the handle might be
permanently locked. To release the storage
associated with the handle work area,
issue an HWTHTERM service call with a
forceOption of HWTH_NOFORCE. If this
fails with the same return code, issue
another HWTHTERM service call with a
forceOption of HWTH_FORCE.

103
HWTH_HANDLETYPE_INV
ALID

259
HWTH_HANDLETYPE_INV
ALID

Meaning: Program error. The application
specified a request handle for the
connectionHandle parameter.

Action: Check the calling program
for a probably coding error. Specify
a valid connection handle for the
connectionHandle parameter.

HWTHDISC

Chapter 21. The z/OS HTTP/HTTPS protocol enabler 597

Table 116. Return codes for the HWTHDISC service (continued)

Hexadecimal return code
Equate symbol

Decimal return code
Equate symbol Meaning and action

104
HWTH_INACCESSIBLE_PA
RM

260
HWTH_INACCESSIBLE_PA
RM

Meaning: Program error. The application
passed an input or output parameter
which was inaccessible by the toolkit. See
the programming considerations in “Syntax,
linkage, and programming considerations” on
page 569 for details about z/OS HTTP enabler
recovery processing.

Action: Check for a probable coding error.
Likely, the recovery of the caller detected
this return code as a result of the toolkit
abnormally ending with a 0C4 system ABEND.
Check the diagArea for an explanation
as to which parameter was attempting to
be accessed when the toolkit service call
abnormally ended. See the programming
considerations in “Syntax, linkage, and
programming considerations” on page 569 for
details about actions to consider for this return
code.

106
HWTH_COMMUNICATION
_ERROR

262
HWTH_COMMUNICATION
_ERROR

Meaning: A communication error has been
detected. One or more of the following
problems has occurred:

• A failure in the communication with the web
server

• An error in an underlying sockets or SSL/TLS
service call

• An error in obtaining the necessary system
resources to process the disconnect

Action: Check the diagArea for further
diagnostic information. The toolkit uses many
internal services, including sockets, SSL, and
other calls when processing an HTTP API
service call. If one of these internal services
fails because of an error in communications
with the targeted server or because of an
internal environmental condition, the error
is reported in the diagnostic area. This
information can be useful to the application
programmer but, in many cases, it is for
the use of IBM Support. If one of these
errors occurs, clean up the environment, check
for possible communication configuration
problems, and reissue the request. If the
problem persists, contact the IBM Support
Center.

HWTHDISC

598 z/OS: z/OS MVS Callable Services for HLL

Table 116. Return codes for the HWTHDISC service (continued)

Hexadecimal return code
Equate symbol

Decimal return code
Equate symbol Meaning and action

109
HWTH_CONNECTION_NO
T_ACTIVE

265
HWTH_CONNECTION_NO
T_ACTIVE

Meaning: Program error. The HWTHDISC
service cannot be issued for a connection that
has not been made active by the HWTHCONN
service.

Action: Probable coding error. Only issue the
HWTHDISC service call for connections that
have been successfully connected using the
HWTHCONN service.

F01
HWTH_INTERRUPT_STAT
US_INV

3841 Meaning: Program error. The calling program
is disabled. The system rejects the service
request.

Action: Check the calling program for a
probable coding error.

F02
HWTH_LOCKS_HELD

3842
HWTH_LOCKS_HELD

Meaning: Program error. The calling program
is holding one or more locks. The system
rejects the service request.

Action: Check the calling program for a
probable coding error.

F03
HWTH_MODE_INV

3843
HWTH_MODE_INV

Meaning: Program error. The calling program
is running in a mode other than task, non-
cross-memory mode. The system rejects the
service request.

Action: Check the calling program for a
probable coding error.

F04
HWTH_AUTHLEVEL_INV

3844
HWTH_AUTHLEVEL_INV

Meaning: Program error. The calling program
is running in key 0. The toolkit uses z/OS UNIX
services which do not permit key 0 callers. The
system rejects the service request.

Action: Check the calling program for a
probable coding error.

HWTHDISC

Chapter 21. The z/OS HTTP/HTTPS protocol enabler 599

Table 116. Return codes for the HWTHDISC service (continued)

Hexadecimal return code
Equate symbol

Decimal return code
Equate symbol Meaning and action

F05
HWTH_ENVIRONMENTAL
_ERROR

3845
HWTH_ENVIRONMENTAL
_ERROR

Meaning: Language Environment (LE) could
not create the proper environment for the
request. This could occur for a number of
reasons, the most likely of which are:

• The POSIX(ON) runtime option was not set
(LE callers).

• A POSIX(ON) environment was already
established in the same address space,
possibly because an HTTP connection
was already established (non-LE callers).
If the dubbing default is not set to
DUBPROCESS, the limit is one POSIX(ON)
environment per address space. If the
dubbing default is set to DUBPROCESS, each
thread in the address space can have its
own POSIX(ON) environment, allowing for
multiple connections. See “Environmental
considerations” on page 571 for more
information.

Action:

• For LE callers, verify that the POSIX(ON)
runtime option has been enabled for the
application.

• For non-LE callers, verify the dubbing
options selected for the address space and
ensure that multiple POSIX(ON) runtime
environments are not being requested. See
“Environmental considerations” on page 571
for more information about how to enable
this functionality.

F06
HWTH_UNSUPPORTED_R
ELEASE

3846
HWTH_UNSUPPORTED_R
ELEASE

Meaning: The system level does not support
this service. The system rejects the service
request.

Action: Remove the calling program from the
system, and install it on a system that supports
the z/OS HTTP enabler services. Then, run the
program again.

FFF
HWTH_UNEXPECTED_ERR
OR

4095
HWTH_UNEXPECTED_ERR
OR

Meaning: System error. The service
encountered an unexpected error. The system
rejects the service call.

Action: Search problem reporting databases
for a fix for the problem. If no fix exists,
contact the IBM Support Center.

HWTHDISC

600 z/OS: z/OS MVS Callable Services for HLL

HWTHINIT — Initialize an HTTP connection or request
Call the HWTHINIT service to initialize a connection with a web server or prepare to issue an HTTP
request.

Description
The HWTHINIT service prepares to establish a connection with a remote web server or to prepare to issue
an HTTP request. This service must be invoked before any other z/OS HTTP/HTTPS enabler service in
the toolkit. The service prepares the memory space in the callers address space as required by either a
z/OS HTTP enabler connection or a z/OS HTTP enabler request. Based on the specified handleType, the
service returns either a connection handle or a request handle. If initializing a connection, a connection
handle is passed back to the application, which can be used on subsequent services that reference this
connection. Likewise, if initializing a request, a request handle is passed back to the application, which
can be used on subsequent services that reference this request.

Multiple connections and requests can be established for a single address space. See "z/OS UNIX limit
of processes with a POSIX(ON) environment and its effect on concurrent connections" in “Environmental
considerations” on page 571 for a discussion about the limitations on concurrent connections within a
single address space.

Environment
The requirements for the caller are:

Requirement Details

Minimum authorization: Supervisor state or problem state, any PSW key (except key 0).

Dispatchable unit mode: Task.

Cross memory mode: PASN = HASN = SASN.

AMODE: 31 bit.

ASC mode: Primary or access register (AR).

Interrupt status: Enabled for I/O and external interrupts.

Locks: No locks held.

Control parameters: Control parameters must be in the primary address space and
addressable by the caller.

Linkage: Standard MVS linkage conventions are used.

Programming requirements
See “Syntax, linkage, and programming considerations” on page 569 for details about how to call the
z/OS HTTP/HTTPS enabler services in the various supported programming languages.

REXX programming considerations for the HWTHINIT service
All information for the HWTHINIT service applies for REXX requests.

Syntax
Write the call as shown in the following syntax diagram. You must code all parameters in the order shown.

HWTHINIT

Chapter 21. The z/OS HTTP/HTTPS protocol enabler 601

Non-REXX parameters REXX parameters

CALL HWTHINIT(
 ReturnCode,
 HandleType,
 ConnOrReqHandle,
 DiagArea);

address hwthttp "hwthinit",
 "ReturnCode",
 "HandleType",
 "ConnOrReqHandle",
 "DiagArea."

Parameters
The parameters are explained as follows:

ReturnCode
Returned parameter

• Type: Integer (non-REXX), character representation of an integer (REXX)
• Length: 4 bytes (non-REXX)

Contains the return code from the service.
HandleType

Supplied parameter

• Type: Integer (non-REXX), character representation of an integer (REXX)
• Length: 4 bytes (non-REXX)

Specifies the type of handle to be initialized, from one of the following values:
HWTH_HANDLETYPE_CONNECTION

Initialize a connection to be used to connect to an HTTP server.
HWTH_HANDLETYPE_HTTPREQUEST

Initialize a request to be used to send HTTP requests to a web server.
ConnOrReqHandle

Returned parameter.

• Type: Character string
• Length: 12 bytes

Specifies a value generated by the toolkit representing a handle to be used on all subsequent
HTTP enabler services for this connection or request instance. This instance contains all of the data
structures and storage areas needed for the HTTP enabler services to run efficiently.

DiagArea (non-REXX)
DiagArea. (REXX)

Returned parameter.

• Type: Character string (non-REXX), stem variable (REXX)
• Length: 136 bytes (non-REXX)

A storage area, which is provided by the caller might contain additional diagnostic information related
to the service call. It consists of a 4-byte integer reason code field, a 4-byte integer service number
field, and a 128-byte character string error text field.

ABEND codes
If the toolkit is unable to properly access the user-supplied parameter list, the call might result in a
X'04D' ABEND with a reason code of X'1003yyyy' for one of the following reasons:
yyyy

Reason
0000

The parameters passed by the caller are not in the primary address space.

HWTHINIT

602 z/OS: z/OS MVS Callable Services for HLL

0001
The number of parameters passed by the caller is incorrect.

Return codes
When the service returns control to the caller, GPR 15 and the returnCode parameter contain a
hexadecimal return code, as listed in Table 117 on page 603.

Table 117. Return codes for the HWTHINIT service

Hexadecimal return code
Equate symbol

Decimal return code
Equate symbol Meaning and action

0
HWTH_OK

0
HWTH_OK

Meaning: Successful completion.

Action: None.

103
HWTH_HANDLETYPE_INV

259
HWTH_HANDLETYPE_INV

Meaning: Program error. The application
specified an invalid value for the
handleType parameter.

Action: Check the calling program for a
probable coding error. The caller should
change the handleType to one of
the valid values. See the IBM-supplied
include files for the possible constant
values that you can supply for this
parameter.

104
HWTH_INACCESSIBLE_PARM

260
HWTH_INACCESSIBLE_PARM

Meaning: Program error. The application
passed an input or output parameter,
which was inaccessible by the toolkit.
See the programming considerations
in “Syntax, linkage, and programming
considerations” on page 569 for details
about z/OS HTTP enabler recovery
processing.

Action: Check for a probable coding
error. Likely, the recovery of the caller
detected this return code as a result of
the toolkit abnormally ending with a 0C4
system ABEND. Check the diagArea for
an explanation as to which parameter
was attempting to be accessed when the
toolkit service calls abnormally ended.
See the programming considerations
in “Syntax, linkage, and programming
considerations” on page 569 for details
about actions to consider for this return
code.

105
HWTH_CANNOT_OBTAIN_WORKAREA

261
HWTH_CANNOT_OBTAIN_WORKAREA

Meaning: System error. The STORAGE
OBTAIN service might not obtain the work
area storage needed by the z/OS HTTP
enabler during the HWTHINIT service
call.

Action: Consult the diagArea for the
return code from the STORAGE OBTAIN
service and additional information found
in the HWTH_ReasonDesc section.
Ensure there is sufficient memory
available for the toolkit to obtain the
amount needed for the work area. If
the problem persists, search problem
reporting databases for a fix for the
problem. If no fix exists, contact the IBM
Support Center.

HWTHINIT

Chapter 21. The z/OS HTTP/HTTPS protocol enabler 603

Table 117. Return codes for the HWTHINIT service (continued)

Hexadecimal return code
Equate symbol

Decimal return code
Equate symbol Meaning and action

F01
HWTH_INTERRUPT_STATUS_INV

3841
HWTH_INTERRUPT_STATUS_INV

Meaning: Program error. The calling
program is disabled. The system rejects
the service request.

Action: Check the calling program for a
probable coding error.

F02
HWTH_LOCKS_HELD

3842
HWTH_LOCKS_HELD

Meaning: Program error. The calling
program is holding one or more locks. The
system rejects the service request.

Action: Check the calling program for a
probable coding error.

F03
HWTH_MODE_INV

3843
HWTH_MODE_INV

Meaning: Program error. The calling
program is running in a mode other
than task, non-cross-memory mode. The
system rejects the service request.

Action: Check the calling program for a
probable coding error.

F04
HWTH_AUTHLEVEL_INV

3844
HWTH_AUTHLEVEL_INV

Meaning: Program error. The calling
program is running in key 0. The toolkit
uses z/OS UNIX services, which do not
permit key 0 callers. The system rejects
the service request.

Action: Check the calling program for a
probable coding error.

F05
HWTH_ENVIRONMENTAL_ERROR

3845
HWTH_ENVIRONMENTAL_ERROR

Meaning: Program error. The calling
program is associated with a user ID that
does not have an OMVS segment defined,
or the proper z/OS UNIX environment is
not available to this program. The system
rejects the service request.

Action: Ensure that the user ID under
which this program is executing has an
OMVS segment defined and that z/OS
UNIX has been initialized.

F06
HWTH_UNSUPPORTED_RELEASE

3846
HWTH_UNSUPPORTED_RELEASE

Meaning: The system level does not
support this service. The system rejects
the service request.

Action: Remove the calling program from
the system, and install it on a system that
supports the z/OS HTTP enabler services.
Then, run the program again.

FFF
HWTH_UNEXPECTED_ERROR

4095
HWTH_UNEXPECTED_ERROR

Meaning: System error. The service
encountered an unexpected error. The
system rejects the service call.

Action: Search problem reporting
databases for a fix for the problem. If no
fix exists, contact the IBM Support Center.

HWTHINIT

604 z/OS: z/OS MVS Callable Services for HLL

HWTHRQST — Send a request to an HTTP server
Call the HWTHRQST service to send a request to an HTTP server.

Description
The HWTHRQST service sends an HTTP request represented by a request handle using a connection
represented by the connection handle. When the server sends the response, the service processes the
response and invoke the appropriate response callback (exit) routines, if specified. (See “Receiving data
from a server (non-REXX)” on page 652 for more information.)

Upon completion of the service, the text in the returned diagArea parameter contains the HTTP status
value of the request or other information about the result of the request.

If the HWTHRQST request results in a cross-domain redirect to a secure connection (HTTPS), the
HWTHRQST service will verify that the URI for the target of the redirect matches the server identity
that was presented in the server's certificate. If the verification is unable to find the server’s identity
within the provided server certificate, HWTHRQST will return an ERROR (RC=262/'106'x). The application
may choose to take advantage of the HWTH_OPT_CERT_CHECK connection option to tune the checking
performed and the return code severity in response to a verification failure. The DiagArea parameter will
contain additional information when an ERROR or WARNING is returned. For more information about what
verification is performed, see “Server identity” on page 585.

Environment
The requirements for the caller are:

Requirement Details

Minimum authorization: Supervisor state or problem state, any PSW key (except key 0).

Dispatchable unit mode: Task.

Cross memory mode: PASN = HASN = SASN.

AMODE: 31 bit.

ASC mode: Primary or access register (AR).

Interrupt status: Enabled for I/O and external interrupts.

Locks: No locks held.

Control parameters: Control parameters must be in the primary address space and
addressable by the caller.

Linkage: Standard MVS linkage conventions are used.

Programming requirements
See “Syntax, linkage, and programming considerations” on page 569 for details about how to call the
z/OS HTTP/HTTPS enabler services in the various supported programming languages.

REXX programming considerations for the HWTHRQST service
All information for the HWTHRQST service applies for REXX requests except:

• The StatusCode and ReasonCode parameters are returned for REXX callers. These parameter
descriptions are listed below for further explanation.

Syntax
Write the call as shown in the following syntax diagram. You must code all parameters in the order shown.

HWTHRQST

Chapter 21. The z/OS HTTP/HTTPS protocol enabler 605

Non-REXX parameters REXX parameters

CALL HWTHRQST (
 ReturnCode,
 ConnectionHandle,
 RequestHandle,

 DiagArea);

address hwthttp "hwthrqst",
 "ReturnCode",
 "ConnectionHandle",
 "RequestHandle",
 "StatusCode",
 "ReasonCode",
 "DiagArea."

Parameters
The parameters are explained as follows:

ReturnCode
Returned parameter.

• Type: Integer (non-REXX), character representation of an integer (REXX)
• Length: 4 bytes (non-REXX)

Contains the return code from the service.
ConnectionHandle

Supplied parameter.

• Type: Character string
• Length: 12 bytes

A handle value that was previously returned by an HWTHINIT call that specified a handleType of
HWTH_HANDLETYPE_CONNECTION.

RequestHandle
Supplied parameter.

• Type: Character string
• Length: 12 bytes

A handle value that was previously returned by an HWTHINIT call that specified a handleType of
HWTH_HANDLETYPE_HTTPREQUEST.

StatusCode (REXX)
Returned parameter.

• Type: Character representation of an integer.

The name of a REXX variable that is set to the HTTP status code.

Note: In the case when a HWTH_WARNING return code is returned and the
DiagArea.HWTH_ReasonCode field indicates that it is a redirect, this StatusCode may contain
irrelevant information.

ReasonCode (REXX)
Returned parameter.

• Type: Character string

The name of a REXX variable that is set to the HTTP reason code.

Note: In the case when a HWTH_WARNING return code is returned and the
DiagArea.HWTH_ReasonCode field indicates that it is a redirect, this ReasonCode might contain
irrelevant information.

DiagArea (non-REXX)
DiagArea. (REXX)

Returned parameter.

• Type: Character string (non-REXX), stem variable (REXX)

HWTHRQST

606 z/OS: z/OS MVS Callable Services for HLL

• Length: 136 bytes (non-REXX)

A storage area which is provided by the caller might contain additional diagnostic information related
to the service call. It consists of a 4-byte integer reason code field, a 4-byte integer service number
field, and a 128-byte character string error text field.

ABEND codes
If the toolkit is unable to properly access the user-supplied parameter list, the call might result in a
X'04D' ABEND with a reason code of X'1004yyyy' for one of the following reasons:
yyyy

Reason
0000

The parameters passed by the caller are not in the primary address space.
0001

The number of parameters passed by the caller is incorrect.

Return codes
When the service returns control to the caller, GPR 15 and the returnCode parameter contain a
hexadecimal return code, as listed in Table 118 on page 607.

Table 118. Return codes for the HWTHRQST service

Hexadecimal return code
Equate symbol

Decimal return code
Equate symbol Meaning and action

0
HWTH_OK

0
HWTH_OK

Meaning: Successful completion.

Action: None.

4
HWTH_WARNING

4
HWTH_WARNING

Meaning: Possible error. The send
request successfully received a response
from the server, but detected a condition
that should be reported back to the
application. For instance, HWTHRQST
returns this return code if the toolkit
followed one or more redirects, or if the
response header callback routine aborted
further processing.

Action: Consult the diagArea for a
detailed explanation of this return code.
Modify the application, as necessary.

101
HWTH_HANDLE_INV

257
HWTH_HANDLE_INV

Meaning: Program error. Either
the connectionHandle or the
requestHandle parameter that was
specified on the service call is not a valid
connect or request handle (one that was
returned by the HWTHINIT service).

Action: Check the calling program for a
probable coding error.

HWTHRQST

Chapter 21. The z/OS HTTP/HTTPS protocol enabler 607

Table 118. Return codes for the HWTHRQST service (continued)

Hexadecimal return code
Equate symbol

Decimal return code
Equate symbol Meaning and action

102
HWTH_HANDLE_INUSE

258
HWTH_HANDLE_INUSE

Meaning: Program error. This return code
results from one of the following reasons:

• The specified handle is being used by
another caller. Only one outstanding
z/OS HTTP enabler service can use the
same handle.

• A previous caller using this handle
that is abnormally ended during an
z/OS HTTP enabler service call and
the toolkit was unable to indicate that
its use of the supplied handle has
completed.

Action: Check the calling program for a
probable coding error.

• While all z/OS HTTP Enabler service
calls are synchronous (blocking), if
more than one task, process, or thread
is running simultaneously and using
the same handle, only one is allowed
access. Change the application so that
only one thread attempts to use the
same handle at the same time.

• If the application detected an abend
while the z/OS HTTP enabler was
invoked, the connection or request
instance associated with the handle
might be permanently locked. To
release the storage associated with the
handle work area, issue an HWTHTERM
service call with a forceOption
of HWTH_NOFORCE. If this fails with
the same return code, issue another
HWTHTERM service call with a
forceOption of HWTH_FORCE.

103
HWTH_HANDLETYPE_INV

259
HWTH_HANDLETYPE_INV

Meaning: Program error. The application
either specified a request handle for
the connectionHandle parameter, or
it specified a connection handle for the
requestHandle parameter.

Action: Check the calling program for
a probable coding error. The diagArea
indicates which handle parameter has the
mismatch.

HWTHRQST

608 z/OS: z/OS MVS Callable Services for HLL

Table 118. Return codes for the HWTHRQST service (continued)

Hexadecimal return code
Equate symbol

Decimal return code
Equate symbol Meaning and action

104
HWTH_INACCESSIBLE_PARM

260
HWTH_INACCESSIBLE_PARM

Meaning: Program error. The application
passed an input or output parameter,
which was inaccessible by the toolkit.
See the programming considerations
in “Syntax, linkage, and programming
considerations” on page 569 for details
about z/OS HTTP enabler recovery
processing.

Action: Check for a probable coding
error. Likely, the recovery of the caller
detected this return code as a result of
the toolkit abnormally ending with a 0C4
system ABEND. Check the diagArea for
an explanation as to which parameter
was attempting to be accessed when the
toolkit service calls abnormally ended.
See the programming considerations
in “Syntax, linkage, and programming
considerations” on page 569 for details
about actions to consider for this return
code.

106
HWTH_COMMUNICATION_ERROR

262
HWTH_COMMUNICATION_ERROR

Meaning: A communication error has
been detected. One or more of the
following problems has occurred:

• A failure in the communication with the
web server

• An error in an underlying sockets or
SSL/TLS service call

• An error processing the HTTP request
or the response coming back from the
web server

• An error in the translation of the data
into the proper code page

• An error in obtaining the necessary
system resources to process the
request.

Action: Check the diagArea for further
diagnostic information. The toolkit uses
many internal services, including sockets,
SSL, and other calls when processing
an HTTP API service call. If one of
these internal services fails because
of an error in communications with
the targeted server or because of an
internal environmental condition, the
error is reported in the diagnostic area.
This information can be useful to the
application programmer but, in many
cases, it is for the use of IBM Support.
If one of these errors occurs, clean
up the environment, check for possible
communication configuration problems,
and reissue the request. If the problem
persists, contact the IBM Support Center.

HWTHRQST

Chapter 21. The z/OS HTTP/HTTPS protocol enabler 609

Table 118. Return codes for the HWTHRQST service (continued)

Hexadecimal return code
Equate symbol

Decimal return code
Equate symbol Meaning and action

109
HWTH_CONNECTION_NOT_ACTIVE

265
HWTH_CONNECTION_NOT_ACTIVE

Meaning: Program error. The HWTHRQST
service cannot be issued for a connection
that has not been made active by the
HWTHCONN service.

Action: Probable coding error. Issue
the HWTHCONN service to activate the
connection specified on the HWTHRQST
service call prior to the actual HWTHRQST
call.

601
HWTH_HRQST_REQUEST_INV

1537
HWTH_HRQST_REQUEST_INV

Meaning: Program error. One of the
following errors occurred:

• The caller did not specify the required
minimum parameters before issuing
the send request.

• The caller specified incompatible or
incomplete request parameters.

Action: Check the calling program for
a probable coding error. The diagArea
should contain a detailed message
explaining the problem.

F01
HWTH_INTERRUPT_STATUS_INV

3841
HWTH_INTERRUPT_STATUS_INV

Meaning: Program error. The calling
program is disabled. The system rejects
the service request.

Action: Check the calling program for a
probable coding error.

F02
HWTH_LOCKS_HELD

3842
HWTH_LOCKS_HELD

Meaning: Program error. The calling
program is holding one or more locks. The
system rejects the service request.

Action: Check the calling program for a
probable coding error.

F03
HWTH_MODE_INV

3843
HWTH_MODE_INV

Meaning: Program error. The calling
program is running in a mode other
than task, non-cross-memory mode. The
system rejects the service request.

Action: Check the calling program for a
probable coding error.

F04
HWTH_AUTHLEVEL_INV

3844
HWTH_AUTHLEVEL_INV

Meaning: Program error. The calling
program is running in key 0. The toolkit
uses z/OS UNIX services which do not
permit key 0 callers. The system rejects
the service request.

Action: Check the calling program for a
probable coding error.

HWTHRQST

610 z/OS: z/OS MVS Callable Services for HLL

Table 118. Return codes for the HWTHRQST service (continued)

Hexadecimal return code
Equate symbol

Decimal return code
Equate symbol Meaning and action

F05
HWTH_ENVIRONMENTAL_ERROR

3845
HWTH_ENVIRONMENTAL_ERROR

Meaning: Language Environment (LE)
could not create the proper environment
for the request. This could occur for a
number of reasons, the most likely of
which are:

• The POSIX(ON) runtime option was
not set (LE callers).

• A POSIX(ON) environment was already
established in the same address
space, possibly because an HTTP
connection was already established
(non-LE callers). If the dubbing default
is not set to DUBPROCESS, the
limit is one POSIX(ON) environment
per address space. If the dubbing
default is set to DUBPROCESS, each
thread in the address space can
have its own POSIX(ON) environment,
allowing for multiple connections.
See “Environmental considerations” on
page 571 for more information.

Action:

• For LE callers, verify that the
POSIX(ON) runtime option has been
enabled for the application.

• For non-LE callers, verify the dubbing
options selected for the address
space and ensure that multiple
POSIX(ON) runtime environments
are not being requested. See
“Environmental considerations” on
page 571 for more information about
how to enable this functionality.

F06
HWTH_UNSUPPORTED_RELEASE

3846
HWTH_UNSUPPORTED_RELEASE

Meaning: The system level does not
support this service. The system rejects
the service request.

Action: Remove the calling program from
the system, and install it on a system that
supports the z/OS HTTP enabler services.
Then, run the program again.

FFF
HWTH_UNEXPECTED_ERROR

4095
HWTH_UNEXPECTED_ERROR

Meaning: System error. The service
encountered an unexpected error. The
system rejects the service call.

Action: Search problem reporting
databases for a fix for the problem. If no
fix exists, contact the IBM Support Center.

HWTHRSET — Reset an HTTP connection or request
Call the HWTHRSET service to reset an HTTP connection or request.

Description
The HWTHRSET service returns a connection or a request back to the same state as when the HWTHINIT
service was initially invoked.

HWTHRSET

Chapter 21. The z/OS HTTP/HTTPS protocol enabler 611

• If you specify a connection handle, the connection is disconnected, if necessary, and all options that are
previously set for this connection handle are undone. New HWTHSET calls can now be made to set new
connection options. No changes are made to any request handle.

• If you specify a request handle, all options which are previously set for this request handle are undone.
New HWTHSET calls can now be made to set new request options. No changes are made to any
connection handle.

Environment
The requirements for the caller are:

Requirement Details

Minimum authorization: Supervisor state or problem state, any PSW key (except key 0).

Dispatchable unit mode: Task.

Cross memory mode: PASN = HASN = SASN.

AMODE: 31 bit.

ASC mode: Primary or access register (AR).

Interrupt status: Enabled for I/O and external interrupts.

Locks: No locks held.

Control parameters: Control parameters must be in the primary address space and
addressable by the caller.

Linkage: Standard MVS linkage conventions are used.

Programming requirements
See “Syntax, linkage, and programming considerations” on page 569 for details about how to call the
z/OS HTTP/HTTPS enabler services in the various supported programming languages.

REXX programming considerations for the HWTHRSET service
All information for the HWTHRSET service applies for REXX requests.

Syntax
Write the call as shown in the following syntax diagram. You must code all parameters in the order shown.

Non-REXX parameters REXX parameters

CALL HWTHRSET (
 ReturnCode,
 ConnOrReqHandle,
 DiagArea);

address hwthttp "hwthrset",
 "ReturnCode",
 "ConnOrReqHandle",
 "DiagArea."

Parameters
The parameters are explained as follows:

ReturnCode
Returned parameter.

• Type: Integer (non-REXX), character representation of an integer (REXX)
• Length: 4 bytes (non-REXX)

Contains the return code from the service.

HWTHRSET

612 z/OS: z/OS MVS Callable Services for HLL

ConnOrReqHandle
Supplied parameter.

• Type: Character string
• Length: 12 bytes

Either a connection handle or a request handle that was previously returned by an HWTHINIT call.
The REXX variable is updated by this service.

diagArea (non-REXX)
DiagArea. (REXX)

Returned parameter.

• Type: Character string (non-REXX), stem variable (REXX)
• Length: 136 bytes (non-REXX)

A storage area provided by the caller that might contain additional diagnostic information related to
the service call. It consists of a 4-byte integer reason code field, a 4-byte integer service number field,
and a 128-byte character string error text field.

ABEND codes
If the toolkit is unable to properly access the user-supplied parameter list, the call might result in a
X'04D' ABEND with a reason code of X'1005yyyy' for one of the following reasons:
yyyy

Reason
0000

The parameters passed by the caller are not in the primary address space.
0001

The number of parameters passed by the caller is incorrect.

Return codes
When the service returns control to the caller, GPR 15 and the returnCode parameter contain a
hexadecimal return code, as listed in Table 119 on page 613.

Table 119. Return codes for the HWTHRSET service

Hexadecimal return code
Equate symbol

Decimal return code
Equate symbol Meaning and action

0
HWTH_OK

0
HWTH_OK

Meaning: Successful completion.

Action: None.

4
HWTH_WARNING

4
HWTH_WARNING

Meaning: Possible error. The connect
request was processed successfully, but
detected a condition that should be
reported back to the application.

Action: Consult the diagArea for a
detailed explanation of this return code.
Modify the application, as necessary.

101
HWTH_HANDLE_INV

257
HWTH_HANDLE_INV

Meaning: Program error. The value of the
connOrReqHandle parameter that was
specified on the service call is not a valid
connect or request handle (one that was
returned by the HWTHINIT service).

Action: Check the calling program for a
probable coding error.

HWTHRSET

Chapter 21. The z/OS HTTP/HTTPS protocol enabler 613

Table 119. Return codes for the HWTHRSET service (continued)

Hexadecimal return code
Equate symbol

Decimal return code
Equate symbol Meaning and action

102
HWTH_HANDLE_INUSE

258
HWTH_HANDLE_INUSE

Meaning: Program error. This return code
results from one of the following reasons:

• The specified handle is being used by
another caller. Only one outstanding
z/OS HTTP enabler service can use the
same handle.

• A previous caller using this handle
abnormally ended during an z/OS HTTP
enabler service call and the toolkit was
unable to indicate that its use of the
supplied handle has completed.

Action: Check the calling program for a
probable coding error.

• While all z/OS HTTP Enabler service
calls are synchronous (blocking), if
more than one task, process, or thread
is running simultaneously and using the
same handle, only one will be allowed
access. Change the application so that
only one thread attempts to use the
same handle at the same time.

• If the application detected an abend
while the z/OS HTTP enabler was
invoked, the connection or request
instance associated with the handle
might be permanently locked. To
release the storage associated with the
handle work area, issue an HWTHTERM
service call with a forceOption
of HWTH_NOFORCE. If this fails with
the same return code, issue another
HWTHTERM service call with a
forceOption of HWTH_FORCE.

104
HWTH_INACCESSIBLE_PARM

260
HWTH_INACCESSIBLE_PARM

Meaning: Program error. The application
passed an input or output parameter
which was inaccessible by the toolkit.
See the programming considerations
in “Syntax, linkage, and programming
considerations” on page 569 for details
about z/OS HTTP enabler recovery
processing.

Action: Check for a probable coding
error. Likely, the recovery of the caller
detected this return code as a result of
the toolkit abnormally ending with a 0C4
system ABEND. Check the diagArea for
an explanation as to which parameter
was attempting to be accessed when
the toolkit service call abnormally ended.
See the programming considerations
in “Syntax, linkage, and programming
considerations” on page 569 for details
about actions to consider for this return
code.

HWTHRSET

614 z/OS: z/OS MVS Callable Services for HLL

Table 119. Return codes for the HWTHRSET service (continued)

Hexadecimal return code
Equate symbol

Decimal return code
Equate symbol Meaning and action

106
HWTH_COMMUNICATION_ERROR

262
HWTH_COMMUNICATION_ERROR

Meaning: A communication error has
been detected. One or more of the
following problems has occurred:

• A failure in the communication with the
web server

• An error in an underlying sockets or
SSL/TLS service call

• An error processing the HTTP request
or response coming back from the web
server

• An error in the translation of the data
into the proper codepage

• An error in obtaining the necessary
system resources to process the
disconnect

Action: Check the diagArea for further
diagnostic information. The toolkit uses
many internal services, including sockets,
SSL, and other calls when processing
an HTTP API service call. If one of
these internal services fails because
of an error in communications with
the targeted server or because of an
internal environmental condition, the
error is reported in the diagnostic area.
This information can be useful to the
application programmer but, in many
cases, it is for the use of IBM Support.
If one of these errors occurs, clean
up the environment, check for possible
communication configuration problems,
and reissue the request. If the problem
persists, contact the IBM Support Center.

108
HWTH_CANNOT_FREE_WORKAREA

264
HWTH_CANNOT_FREE_WORKAREA

Meaning: System error. The STORAGE
RELEASE service could not release the
work area storage or part of the work area
storage, as requested by the z/OS HTTP
enabler.

Action: Consult the diagArea for
the STORAGE RELEASE return code
and for additional information found
in the HWTH_ReasonDesc section. If
the problem persists, search problem
reporting databases for a fix for the
problem. If no fix exists, contact the IBM
Support Center.

F01
HWTH_INTERRUPT_STATUS_INV

3841
HWTH_INTERRUPT_STATUS_INV

Meaning: Program error. The calling
program is disabled. The system rejects
the service request.

Action: Check the calling program for a
probable coding error.

F02
HWTH_LOCKS_HELD

3842
HWTH_LOCKS_HELD

Meaning: Program error. The calling
program is holding one or more locks. The
system rejects the service request.

Action: Check the calling program for a
probable coding error.

HWTHRSET

Chapter 21. The z/OS HTTP/HTTPS protocol enabler 615

Table 119. Return codes for the HWTHRSET service (continued)

Hexadecimal return code
Equate symbol

Decimal return code
Equate symbol Meaning and action

F03
HWTH_MODE_INV

3843
HWTH_MODE_INV

Meaning: Program error. The calling
program is running in a mode other
than task, non-cross-memory mode. The
system rejects the service request.

Action: Check the calling program for a
probable coding error.

F04
HWTH_AUTHLEVEL_INV

3844
HWTH_AUTHLEVEL_INV

Meaning: Program error. The calling
program is running in key 0. The toolkit
uses z/OS UNIX services which do not
permit key 0 callers. The system rejects
the service request.

Action: Check the calling program for a
probable coding error.

F06
HWTH_UNSUPPORTED_RELEASE

3846
HWTH_UNSUPPORTED_RELEASE

Meaning: The system level does not
support this service. The system rejects
the service request.

Action: Remove the calling program from
the system, and install it on a system that
supports the z/OS HTTP enabler services.
Then, run the program again.

FFF
HWTH_UNEXPECTED_ERROR

4095
HWTH_UNEXPECTED_ERROR

Meaning: System error. The service
encountered an unexpected error. The
system rejects the service call.

Action: Search problem reporting
databases for a fix for the problem. If no
fix exists, contact the IBM Support Center.

HWTHSET — Set HTTP connection or request options
Call the HWTHSET service to set HTTP connection or request options.

Description
The HWTHSET service sets the necessary options required for a connection or a request. The options are
set one at a time; a single HWTHSET service call sets one connection option or one request option. An
application will likely call HWTHSET multiple times to set all the necessary connection options, and again
for a request to set all the necessary request options.

Connection options for a connection handle must be set before calling the HWTHCONN service for this
handle. Set service calls for a connection that occur after the connection has been established will
generally have no effect until the connection handle has been disconnected and reconnected.

Note: The HWTH_OPT_COOKIETYPE HWTH_OPT_VERBOSE, HWTH_OPT_VERBOSE_OUTPUT,
HWTH_OPT_COOKIE_INPUT_BUFFER and HWTH_OPT_COOKIE_OUTPUT_BUFFER, and
HWTH_OPT_CERT_CHECK options can be set at anytime.

Request options for a request handle must be completely set before calling the HWTHRQST service for
this handle.

Note: It is possible to reset an individual option to its original state when the connection or request
handle was first created by the HWTHINIT service by using the HWTHSET service. For non-REXX callers,
if both optionValueAddr and optionValueLen are set to zero, the option is reset. For REXX callers, if the
optionValue is set to null, the option is reset.

HWTHSET

616 z/OS: z/OS MVS Callable Services for HLL

Environment
The requirements for the caller are:

Requirement Details

Minimum authorization: Supervisor state or problem state, any PSW key (except key 0).

Dispatchable unit mode: Task.

Cross memory mode: PASN = HASN = SASN.

AMODE: 31 bit.

ASC mode: Primary or access register (AR).

Interrupt status: Enabled for I/O and external interrupts.

Locks: No locks held.

Control parameters: Control parameters must be in the primary address space and
addressable by the caller.

Linkage: Standard MVS linkage conventions are used.

Programming requirements
See “Syntax, linkage, and programming considerations” on page 569 for details about how to call the
z/OS HTTP/HTTPS enabler services in the various supported programming languages.

REXX programming considerations for the HWTHSET service
All information for the HWTHSET service applies for REXX requests, except:

• OptionValue replaces OptionValueAddr and OptionValueLen.
• The following options are not supported for REXX:

HWTH_OPT_RESPONSEHDR_EXIT
HWTH_OPT_RESPONSEBODY_EXIT
HWTH_OPT_STREAM_SEND_EXIT
HWTH_OPT_STREAM_RECEIVE_EXIT
HWTH_OPT_REQUESTBODY_USERDATA

• HWTH_OPT_RESPONSEHDR_USERDATA and HWTH_OPT_RESPONSEBODY_USERDATA options have a
different meaning than for the other languages supported by the toolkit. See these option descriptions
in the section “HTTP/HTTPS enabler options and values” on page 634 for further information.

Syntax
Write the call as shown in the following syntax diagram. You must code all parameters in the order shown.

Non-REXX parameters REXX parameters

 CALL HWTHSET (
 ReturnCode,
 ConnOrReqHandle,
 Option,

 OptionValueAddr,
 OptionValueLen,
 DiagArea);

address hwthttp "hwthset",
 "ReturnCode",
 "ConnOrReqHandle",
 "Option",
 "OptionValue",

 "DiagArea."

Parameters
The parameters are explained as follows:

HWTHSET

Chapter 21. The z/OS HTTP/HTTPS protocol enabler 617

ReturnCode
Returned parameter.

• Type: Integer (non-REXX), character representation of an integer (REXX)
• Length: 4 bytes (non-REXX)

Contains the return code from the service.
ConnOrReqHandle

Supplied parameter.

• Type: Character string
• Length: 12 bytes (non-REXX)

Either a connection handle or a request handle that was previously returned by a call to the
HWTHINIT service.

Option
Supplied parameter.

• Type: Integer (non-REXX), character representation of an integer (REXX)
• Length: 4 bytes (non-REXX)

Specifies the option to be set. See “HTTP/HTTPS enabler options and values” on page 634 for a list
of valid options and their descriptions. The values of the options are defined in the IBM-supplied files.

OptionValue (REXX)
Supplied parameter.

• Type: Character string.
• Specifies the REXX variable which contains the option value being set.
• See “HTTP/HTTPS enabler options and values” on page 634 for a list of valid options and their

descriptions.

OptionValueAddr (non-REXX)
Supplied parameter.

• Type: Pointer
• Length: 4 bytes
• Specifies the address of the option value to be set. Generally, the value should be in the exact form

that the server would expect to receive.

Note: If the option is an address itself or is an SLST, this parameter specifies the address of an
address or the address of the SLST handle. Unless otherwise noted, the toolkit copies the contents
of the buffer pointed to by this address into the toolkit’s work area. The application can modify
the buffer contents after the service call has completed without adversely affecting the toolkit’s set
value.

OptionValueLen (non-REXX)
Supplied parameter.

• Type: Integer
• Length: 4 bytes

Specifies the length of the data pointed to by optionValueAddr. If the specified option is a constant
value, the optionValueLen must be the length (in bytes) of the constant value, as specified in the
IBM-supplied file. If the specified option is an address or an SLST, the optionValueLen must be 4.

DiagArea (non-REXX)
DiagArea. (REXX)

Returned parameter.

• Type: Character string (non-REXX), stem variable (REXX)
• Length: 136 bytes (non-REXX)

HWTHSET

618 z/OS: z/OS MVS Callable Services for HLL

A storage area provided by the caller that might contain additional diagnostic information related to
the service call. It consists of a 4-byte integer reason code field, a 4-byte integer service number field,
and a 128-byte character string error text field.

ABEND codes
If the toolkit is unable to properly access the user-supplied parameter list, the call might result in a
X'04D' ABEND with a reason code of X'1006yyyy' for one of the following reasons:
yyyy

Reason
0000

The parameters passed by the caller are not in the primary address space.
0001

The number of parameters passed by the caller is incorrect.

Return codes
When the service returns control to the caller, GPR 15 and the returnCode parameter contain a
hexadecimal return code, as listed in Table 120 on page 619.

Table 120. Return codes for the HWTHSET service

Hexadecimal return code
Equate symbol

Decimal return code
Equate symbol Meaning and action

0
HWTH_OK

0
HWTH_OK

Meaning: Successful completion.

Action: None.

101
HWTH_HANDLE_INV

257
HWTH_HANDLE_INV

Meaning: Program error. The value of the
connOrReqHandle parameter that was
specified on the service call is not a valid
connect or request handle (one that was
returned by the HWTHINIT service).

Action: Check the calling program for a
probable coding error.

HWTHSET

Chapter 21. The z/OS HTTP/HTTPS protocol enabler 619

Table 120. Return codes for the HWTHSET service (continued)

Hexadecimal return code
Equate symbol

Decimal return code
Equate symbol Meaning and action

102
HWTH_HANDLE_INUSE

258
HWTH_HANDLE_INUSE

Meaning: Program error. This return code
results from one of the following reasons:

• The specified handle is being used by
another caller. Only one outstanding
z/OS HTTP enabler service can use the
same handle.

• A previous caller using this handle
abnormally ended during an z/OS HTTP
enabler service call and the toolkit was
unable to indicate that its use of the
supplied handle has completed.

Action: Check the calling program for a
probable coding error.

• While all z/OS HTTP Enabler service
calls are synchronous (blocking), if
more than one task, process, or thread
is running simultaneously and using
the same handle, only one is allowed
access. Change the application so that
only one thread attempts to use the
same handle at the same time.

• If the application detected an abend
while the z/OS HTTP enabler was
invoked, the connection or request
instance associated with the handle
might be permanently locked. To
release the storage associated with the
handle work area, issue an HWTHTERM
service call with a forceOption
of HWTH_NOFORCE. If this fails with
the same return code, issue another
HWTHTERM service call with a
forceOption of HWTH_FORCE.

104
HWTH_INACCESSIBLE_PARM

260
HWTH_INACCESSIBLE_PARM

Meaning: Program error. The application
passed an input or output parameter
which was inaccessible by the toolkit.
See the programming considerations
in “Syntax, linkage, and programming
considerations” on page 569 for details
about z/OS HTTP enabler recovery
processing.

Action: Check for a probable coding
error. Likely, the recovery of the caller
detected this return code as a result of
the toolkit abnormally ending with a 0C4
system ABEND. Check the diagArea for
an explanation as to which parameter
was attempting to be accessed when
the toolkit service call abnormally ended.
See the programming considerations
in “Syntax, linkage, and programming
considerations” on page 569 for details
about actions to consider for this return
code.

HWTHSET

620 z/OS: z/OS MVS Callable Services for HLL

Table 120. Return codes for the HWTHSET service (continued)

Hexadecimal return code
Equate symbol

Decimal return code
Equate symbol Meaning and action

107
HWTH_CANNOT_INCREASE_WORKAREA

261
HWTH_CANNOT_INCREASE_WORKAREA

Meaning: System error. The STORAGE
OBTAIN service could not obtain
additional work area storage, as required
by the z/OS HTTP enabler during the
HWTHSET service call.

Action: Consult the diagArea for the
return code and additional information
found in the HWTH_ReasonDesc section.
Ensure that there is sufficient memory
available in order for the toolkit to obtain
the necessary amount of work area
storage. If the problem persists, search
problem reporting databases for a fix for
the problem. If no fix exists, contact the
IBM Support Center.

108
HWTH_CANNOT_FREE_WORKAREA

262
HWTH_CANNOT_FREE_WORKAREA

Meaning: System error. The STORAGE
RELEASE service could not release the
work area storage or part of the work area
storage, as requested by the z/OS HTTP
enabler.

Action: Consult the diagArea for
the STORAGE RELEASE return code
and for additional information found
in the HWTH_ReasonDesc section. If
the problem persists, search problem
reporting databases for a fix for the
problem. If no fix exists, contact the IBM
Support Center.

201
HWTH_HSET_OPTIONVALADDR_INV

513
HWTH_HSET_OPTIONVALADDR_INV

Meaning: Program error. The specified
optionValueAddr was zero, but the
optionValueLen was non-zero.

Action: Check the calling program for a
probable coding error.

202
HWTH_HSET_OPTIONVALLEN_INV

514
HWTH_HSET_OPTIONVALLEN_INV

Meaning: Program error. The specified
optionValueLen was zero, but the
optionValueAddr was non-zero.

Action: Check the calling program for a
probable coding error.

203
HWTH_HSET_OPTION_INV

515
HWTH_HSET_OPTION_INV

Meaning: Program error. The caller
specified an invalid option parameter,
or the option parameter did not match
the handle type associated with the
connOrReqHandle parameter.

Action: Check the calling program for a
probable coding error. The caller should
change the option value to one of the
possible valid values and verify that the
option is valid for the type of handle being
specified. See the IBM-supplied include
files for the valid constant values that can
be supplied for this parameter.

HWTHSET

Chapter 21. The z/OS HTTP/HTTPS protocol enabler 621

Table 120. Return codes for the HWTHSET service (continued)

Hexadecimal return code
Equate symbol

Decimal return code
Equate symbol Meaning and action

204
HWTH_HSET_OPTIONVALUE_INV

516
HWTH_HSET_OPTIONVALUE_INV

Meaning: Program error. The caller
specified an invalid option value (the
value pointed to by optionValueAddr).

Action: Check the calling program for
a probable coding error. Each option is
different. Some options have constants
defined in the IBM-supplied include
files that contain the range of possible
values. Other options are character
data that have certain rules which
are enforced. Still others expect an
address or an SLST. The diagArea will
generally provide a specific reason why
the toolkit did not accept the value that
was specified. See “HTTP/HTTPS enabler
options and values” on page 634 for
more information.

205
HWTH_HSET_CONN_ALREADY_ACTIVE

517
HWTH_HSET_CONN_ALREADY_ACTIVE

Meaning: Program error. The specified
connect option is not allowed when the
connection associated with the connect
handle has already been established.
Most connection options may not be
set after the HWTHCONN service has
successfully completed.

Action: Check the calling program for
a probable coding error. Change the
program to set this particular option prior
to the HWTHCONN invocation for this
connection.

F01
HWTH_INTERRUPT_STATUS_INV

3841
HWTH_INTERRUPT_STATUS_INV

Meaning: Program error. The calling
program is disabled. The system rejects
the service request.

Action: Check the calling program for a
probable coding error.

F02
HWTH_LOCKS_HELD

3842
HWTH_LOCKS_HELD

Meaning: Program error. The calling
program is holding one or more locks. The
system rejects the service request.

Action: Check the calling program for a
probable coding error.

F03
HWTH_MODE_INV

3843
HWTH_MODE_INV

Meaning: Program error. The calling
program is running in a mode other
than task, non-cross-memory mode. The
system rejects the service request.

Action: Check the calling program for a
probable coding error.

F04
HWTH_AUTHLEVEL_INV

3844
HWTH_AUTHLEVEL_INV

Meaning: Program error. The calling
program is running in key 0. The toolkit
uses z/OS UNIX services which do not
permit key 0 callers. The system rejects
the service request.

Action: Check the calling program for a
probable coding error.

HWTHSET

622 z/OS: z/OS MVS Callable Services for HLL

Table 120. Return codes for the HWTHSET service (continued)

Hexadecimal return code
Equate symbol

Decimal return code
Equate symbol Meaning and action

F06
HWTH_UNSUPPORTED_RELEASE

3846
HWTH_UNSUPPORTED_RELEASE

Meaning: The system level does not
support this service. The system rejects
the service request.

Action: Remove the calling program from
the system, and install it on a system that
supports the z/OS HTTP enabler services.
Then, run the program again.

FFF
HWTH_UNEXPECTED_ERROR

4095
HWTH_UNEXPECTED_ERROR

Meaning: System error. The service
encountered an unexpected error. The
system rejects the service call.

Action: Search problem reporting
databases for a fix for the problem. If no
fix exists, contact the IBM Support Center.

HWTHSLST — Linked list append service
Call the HWTHSLST service to create, append, or free a linked list of option values.

Description
The HWTHSLST service creates a linked list, appends to it, or frees an existing linked list. The linked list
created by this service (called an SLST) is used to allow certain HTTP enabler toolkit option values to be
represented by more than one data item. For example, the HWTH_OPT_HTTPHEADERS parameter takes an
SLST as its input value, a set of one or more HTTP headers.

An application first creates an SLST, which creates the initial data structure and appends the first data
item in a single service call. Subsequent calls to this service can append more data items to the existing
SLST. The SLST can then be used as input to certain designated options. (See “HTTP/HTTPS enabler
options and values” on page 634 to determine which options take an SLST as input). When the SLST is
no longer needed, it can be freed.

Environment
The requirements for the caller are:

Requirement Details

Minimum authorization: Supervisor state or problem state, any PSW key (except key 0).

Dispatchable unit mode: Task.

Cross memory mode: PASN = HASN = SASN.

AMODE: 31 bit.

ASC mode: Primary or access register (AR).

Interrupt status: Enabled for I/O and external interrupts.

Locks: No locks held.

Control parameters: Control parameters must be in the primary address space and
addressable by the caller.

Linkage: Standard MVS linkage conventions are used.

HWTHSLST

Chapter 21. The z/OS HTTP/HTTPS protocol enabler 623

Programming requirements
See “Syntax, linkage, and programming considerations” on page 569 for details about how to call the
z/OS HTTP/HTTPS enabler services in the various supported programming languages.

REXX programming considerations for the HWTHSLST service
All information for the HWTHSLST service applies for REXX requests except:

• String replaces StringAddr and StringLen.

Syntax
Write the call as shown in the following syntax diagram. You must code all parameters in the order shown.

Non-REXX parameters REXX parameters

CALL HWTHSLST (
 ReturnCode,
 RequestHandle,
 Function,
 sList,
 StringAddr,
 StringLen,

 DiagArea);

address hwthttp "hwthslst",
 "ReturnCode",
 "RequestHandle",
 "Function",
 "sList",

 "String",
 "DiagArea."

Parameters
The parameters are explained as follows:

ReturnCode
Returned parameter.

• Type: Integer (non-REXX), character representation of an integer (REXX)
• Length: 4 bytes (non-REXX)

Contains the return code from the service.
RequestHandle

Supplied parameter.

• Type: Character string
• Length: 12 bytes

A handle value that was previously returned by a call to the HWTHINIT service that specified a
handleType of HWTH_HANDLETYPE_HTTPREQUEST.

Function
Supplied parameter.

• Type: Integer (non-REXX), character representation of an integer (REXX)
• Length: 4 bytes (non-REXX)

Specifies the requested operation. Valid values are:
HWTH_SLST_NEW

Create a new linked list, create the first element, and return an sList handle that can be used on
subsequent HWTHSLST, HWTH_SLST_APPEND, and HWTH_SLST_FREE invocations.

HWTH_SLST_APPEND
Append a new linked list element to the specified sList.

HWTH_SLST_FREE
Delete a linked list.

HWTHSLST

624 z/OS: z/OS MVS Callable Services for HLL

sList
Supplied and returned parameter.

• Type: Integer (non-REXX), variable that identifies the sList (REXX).
• Length: 4 bytes (non-REXX)

Specifies the handle of the linked list that is to be created, modified, or deleted.

• When function is non-REXX.
• When function is HWTH_SLST_NEW. This value must be zero upon input. The new sList handle is

returned upon output.
• When function is HWTH_SLST_APPEND or HWTH_SLST_FREE, you must supply a valid sList

handle on the service call.

StringAddr (non-REXX)
Supplied parameter.

• Type: Pointer
• Length: 4 bytes
• Specifies the address of the character string to be added to the end of the linked list chain.

– When function is HWTH_SLST_NEW or HWTH_SLST_APPEND, specify a valid address.
– When function is HWTH_SLST_FREE, specify zero.

StringLen (non-REXX)
Supplied parameter.

• Type: Integer
• Length: 4 bytes

Specifies the length of the data pointed to by stringAddr.

• When function is HWTH_SLST_NEW or HWTH_SLST_APPEND, specify a valid length.
• When function is HWTH_SLST_FREE, specify zero.

String (REXX)
Supplied Parameter.

• Type: Character string

Specifies the name of a REXX variable that contains the HTTP header to be added to the sList. This
argument is required for each function but is not used on HWTH_SLST_FREE.

DiagArea (non-REXX)
DiagArea. (REXX)

Returned parameter.

• Type: Character string (non-REXX), stem variable (REXX)
• Length: 136 bytes (non-REXX)

A storage area provided by the caller that might contain additional diagnostic information related to
the service call. It consists of a 4-byte integer reason code field, a 4-byte integer service number field,
and a 128-byte character string error text field.

ABEND codes
If the toolkit is unable to properly access the user-supplied parameter list, the call might result in a
X'04D' ABEND with a reason code of X'1007yyyy' for one of the following reasons:
yyyy

Reason
0000

The parameters passed by the caller are not in the primary address space.

HWTHSLST

Chapter 21. The z/OS HTTP/HTTPS protocol enabler 625

0001
The number of parameters passed by the caller is incorrect.

Return codes
When the service returns control to the caller, GPR 15 and the returnCode parameter contain a
hexadecimal return code, as listed in Table 121 on page 626.

Table 121. Return codes for the HWTHSLST service

Hexadecimal return code
Equate symbol

Decimal return code
Equate symbol Meaning and action

0
HWTH_OK

0
HWTH_OK

Meaning: Successful completion.

Action: None.

101
HWTH_HANDLE_INV

257
HWTH_HANDLE_INV

Meaning: Program error. The value of
the requestHandle parameter that was
specified on the service call is not a valid
request handle (one that was returned by
the HWTHINIT service).

Action: Check the calling program for a
probable coding error.

102
HWTH_HANDLE_INUSE

258
HWTH_HANDLE_INUSE

Meaning: Program error. This return code
results from one of the following reasons:

• The specified handle is being used by
another caller. Only one outstanding
z/OS HTTP enabler service can use the
same handle.

• A previous caller using this handle
abnormally ended during an z/OS HTTP
enabler service call and the toolkit was
unable to indicate that its use of the
supplied handle has completed.

Action: Check the calling program for a
probable coding error.

• While all z/OS HTTP Enabler service
calls are synchronous (blocking), if
more than one task, process, or thread
is running simultaneously and using
the same handle, only one is allowed
access. Change the application so that
only one thread attempts to use the
same handle at the same time.

• If the application detected an abend
while the z/OS HTTP enabler was
invoked, the connection or request
instance associated with the handle
might be permanently locked. To
release the storage associated with the
handle work area, issue an HWTHTERM
service call with a forceOption
of HWTH_NOFORCE. If this fails with
the same return code, issue another
HWTHTERM service call with a
forceOption of HWTH_FORCE.

103
HWTH_HANDLETYPE_INV

259
HWTH_HANDLETYPE_INV

Meaning: The application specified
a connection handle for the
requestHandle parameter.

Action: Check for a probable coding error.
Change the specified handle to be a
request handle instead of a connection
handle.

HWTHSLST

626 z/OS: z/OS MVS Callable Services for HLL

Table 121. Return codes for the HWTHSLST service (continued)

Hexadecimal return code
Equate symbol

Decimal return code
Equate symbol Meaning and action

104
HWTH_INACCESSIBLE_PARM

260
HWTH_INACCESSIBLE_PARM

Meaning: Program error. The application
passed an input or output parameter,
which was inaccessible by the toolkit.
See the programming considerations
in “Syntax, linkage, and programming
considerations” on page 569 for details
about z/OS HTTP enabler recovery
processing.

Action: Check for a probable coding
error. Likely, the recovery of the caller
detected this return code as a result of
the toolkit abnormally ending with a 0C4
system ABEND. Check the diagArea for
an explanation as to which parameter
was attempting to be accessed when the
toolkit service calls abnormally ended.
See the programming considerations
in “Syntax, linkage, and programming
considerations” on page 569 for details
about actions to consider for this return
code.

107
HWTH_CANNOT_INCREASE_WORKAREA

261
HWTH_CANNOT_INCREASE_WORKAREA

Meaning: System error. The STORAGE
OBTAIN service could not obtain
additional work area storage, as required
by the z/OS HTTP enabler during the
HWTHSLST service call.

Action: Consult the diagArea for the
return code and additional information
found in the HWTH_ReasonDesc section.
Ensure that there is sufficient memory
available in order for the toolkit to obtain
the necessary amount of work area
storage. If the problem persists, search
problem reporting databases for a fix for
the problem. If no fix exists, contact the
IBM Support Center.

108
HWTH_CANNOT_FREE_WORKAREA

262
HWTH_CANNOT_FREE_WORKAREA

Meaning: System error. The STORAGE
RELEASE service could not release the
work area storage or part of the work area
storage, as requested by the z/OS HTTP
enabler.

Action: Consult the diagArea for
the STORAGE RELEASE return code
and for additional information found
in the HWTH_ReasonDesc section. If
the problem persists, search problem
reporting databases for a fix for the
problem. If no fix exists, contact the IBM
Support Center.

HWTHSLST

Chapter 21. The z/OS HTTP/HTTPS protocol enabler 627

Table 121. Return codes for the HWTHSLST service (continued)

Hexadecimal return code
Equate symbol

Decimal return code
Equate symbol Meaning and action

301
HWTH_SLST_SLIST_INV

769
HWTH_SLST_SLIST_INV

Meaning: Program error. The sList
parameter specified on the service
call is not a valid SLST. If the
function is HWTH_SLST_NEW, the supplied
sList was a nonzero value. If the
function is either HWTH_SLST_APPEND or
HWTH_SLST_FREE, the supplied sList is
not a valid SLST handle that was returned
from a previous HWTHSLST call with
function = HWTH_SLST_NEW.

Action: Check the calling program for a
probable coding error.

302
HWTH_HSLST_FUNCTION_INV

770
HWTH_HSLST_FUNCTION_INV

Meaning: Program error. The specified
function is not one of the valid function
types.

Action: Check the calling program for a
probable coding error. The caller should
change the function value to one
of the possible valid values. See the
IBM-supplied include files for the valid
constant values that can be supplied for
this parameter.

303
HWTH_HSLST_STRINGLEN_INV

771
HWTH_HSLST_STRINGLEN_INV

Meaning: Program error. If function
is either HWTH_SLST_NEW or
HWTH_SLST_APPEND, the specified
stringLen parameter was zero. If
function is HWTH_SLST_FREE, the
specified stringLen was nonzero.

Action: Check the calling program for a
probable coding error.

304
HWTH_HSLST_STRINGADDR_INV

772
HWTH_HSLST_STRINGADDR_INV

Meaning: Program error. If function
is either HWTH_SLST_NEW or
HWTH_SLST_APPEND, the specified
stringAddr parameter was zero. If
function is HWTH_SLST_FREE, the
specified stringAddr was nonzero.

Action: Check the calling program for a
probable coding error.

F01
HWTH_INTERRUPT_STATUS_INV

3841
HWTH_INTERRUPT_STATUS_INV

Meaning: Program error. The calling
program is disabled. The system rejects
the service request.

Action: Check the calling program for a
probable coding error.

F02
HWTH_LOCKS_HELD

3842
HWTH_LOCKS_HELD

Meaning: Program error. The calling
program is holding one or more locks. The
system rejects the service request.

Action: Check the calling program for a
probable coding error.

F03
HWTH_MODE_INV

3843
HWTH_MODE_INV

Meaning: Program error. The calling
program is running in a mode other
than task, non-cross-memory mode. The
system rejects the service request.

Action: Check the calling program for a
probable coding error.

HWTHSLST

628 z/OS: z/OS MVS Callable Services for HLL

Table 121. Return codes for the HWTHSLST service (continued)

Hexadecimal return code
Equate symbol

Decimal return code
Equate symbol Meaning and action

F04
HWTH_AUTHLEVEL_INV

3844
HWTH_AUTHLEVEL_INV

Meaning: Program error. The calling
program is running in key 0. The toolkit
uses z/OS UNIX services which do not
permit key 0 callers. The system rejects
the service request.

Action: Check the calling program for a
probable coding error.

F06
HWTH_UNSUPPORTED_RELEASE

3846
HWTH_UNSUPPORTED_RELEASE

Meaning: The system level does not
support this service. The system rejects
the service request.

Action: Remove the calling program from
the system, and install it on a system that
supports the z/OS HTTP enabler services.
Then, run the program again.

FFF
HWTH_UNEXPECTED_ERROR

4095
HWTH_UNEXPECTED_ERROR

Meaning: System error. The service
encountered an unexpected error. The
system rejects the service call.

Action: Search problem reporting
databases for a fix for the problem. If no
fix exists, contact the IBM Support Center.

HWTHTERM — Terminate an HTTP connection or request
Call the HWTHTERM service to terminate an HTTP connection or request.

Description
The HWTHTERM service cleans up the resources that were obtained by a previous call to the HWTHINIT
service (including the entire work area) and invalidates its handle. If you do not invoke this service,
the storage allocated by the HWTHINIT service and other HTTP enabler services remain allocated and
ineligible to be used by the application, and remains allocated until the address space terminates.

Environment
The requirements for the caller are:

Requirement Details

Minimum authorization: Supervisor state or problem state, any PSW key (except key 0).

Dispatchable unit mode: Task.

Cross memory mode: PASN = HASN = SASN.

AMODE: 31 bit.

ASC mode: Primary or access register (AR).

Interrupt status: Enabled for I/O and external interrupts.

Locks: No locks held.

Control parameters: Control parameters must be in the primary address space and
addressable by the caller.

Linkage: Standard MVS linkage conventions are used.

HWTHTERM

Chapter 21. The z/OS HTTP/HTTPS protocol enabler 629

Programming requirements
See “Syntax, linkage, and programming considerations” on page 569 for details about how to call the
z/OS HTTP/HTTPS enabler services in the various supported programming languages.

REXX programming considerations for the HWTHTERM service
All information for the HWTHTERM service applies for REXX requests.

Syntax
Write the call as shown in the following syntax diagram. You must code all parameters in the order shown.

Non-REXX parameters REXX parameters

CALL HWTHTERM(
 ReturnCode,
 ConnOrReqHandle,
 ForceOption,
 DiagArea);

address hwthttp "hwthterm",
 "ReturnCode",
 "ConnOrReqHandle",
 "ForceOption",
 "DiagArea."

Parameters
The parameters are explained as follows:

ReturnCode
Returned parameter.

• Type: Integer (non-REXX), character representation of an integer (REXX)
• Length: 4 bytes (non-REXX)

Contains the return code from the service.
ConnOrReqHandle

Supplied parameter.

• Type: Character string
• Length: 12 bytes

Either a connection handle or a request handle that was previously returned by a call to the
HWTHINIT service.

ForceOption
Supplied parameter.

• Type: Integer (Non-REXX), character representation of an integer (REXX)
• Length: 4 bytes (non-REXX)

Controls the behavior of the HWTHTERM service. Sometimes a handle representing a connection or
request can be stuck in an in-use state and cannot be terminated successfully. The in-use state can
occur if a prior z/OS HTTP enabler service call resulted in an ABEND condition. This option allows the
caller to force the connection or request instance to terminate.

The valid values are:
HWTH_NOFORCE

(Recommended) Terminates the specified connection or request and invalidates its associated
handle only if the connection or request is not currently in an in-use state.

HWTH_FORCE
Unconditionally terminates the specified connection or request and invalidates its associated
handle, regardless of the in-use status of the connection or request.

Attention: Use the HWTH_FORCE option only under both the following conditions:

HWTHTERM

630 z/OS: z/OS MVS Callable Services for HLL

• No other threads in the address space are using this connection or request.
• Multiple attempts to terminate the connection or request have resulted in a return code

of HWTH_HANDLE_INUSE.

DiagArea (non-REXX)
DiagArea. (REXX)

Returned parameter.

• Type: Character string (non-REXX), stem variable (REXX)
• Length: 136 bytes (non-REXX)

A storage area provided by the caller that might contain additional diagnostic information related to
the service call. It consists of a 4-byte integer reason code field, a 4-byte integer service number field,
and a 128-byte character string error text field.

ABEND codes
If the toolkit is unable to properly access the user-supplied parameter list, the call might result in a
X'04D' ABEND with a reason code of X'1008yyyy' for one of the following reasons:
yyyy

Reason
0000

The parameters passed by the caller are not in the primary address space.
0001

The number of parameters passed by the caller is incorrect.

Return codes
When the service returns control to the caller, GPR 15 and the returnCode parameter contain a
hexadecimal return code, as listed in Table 122 on page 631.

Table 122. Return codes for the HWTHTERM service

Hexadecimal return code
Equate symbol

Decimal return code
Equate symbol Meaning and action

0
HWTH_OK

0
HWTH_OK

Meaning: Successful completion.

Action: None.

4
HWTH_WARNING

4
HWTH_WARNING

Meaning: Possible error. The connect
request was processed successfully, but
detected a condition that should be
reported back to the application.

Action: Consult the diagArea for a
detailed explanation of this return code.
Modify the application, as necessary.

101
HWTH_HANDLE_INV

257
HWTH_HANDLE_INV

Meaning: Program error. The value of the
connOrReqHandle parameter that was
specified on the service call is not a valid
connect or request handle (one that was
returned by the HWTHINIT service).

Action: Check the calling program for a
probable coding error.

HWTHTERM

Chapter 21. The z/OS HTTP/HTTPS protocol enabler 631

Table 122. Return codes for the HWTHTERM service (continued)

Hexadecimal return code
Equate symbol

Decimal return code
Equate symbol Meaning and action

102
HWTH_HANDLE_INUSE

258
HWTH_HANDLE_INUSE

Meaning: Program error. This return code
results from one of the following reasons:

• The specified handle is being used by
another caller. Only one outstanding
z/OS HTTP enabler service can use the
same handle.

• A previous caller using this handle
abnormally ended during an z/OS HTTP
enabler service call and the toolkit was
unable to indicate that its use of the
supplied handle has completed.

Action: Check the calling program for a
probable coding error.

• While all z/OS HTTP Enabler service
calls are synchronous (blocking), if
more than one task, process, or thread
is running simultaneously and using
the same handle, only one is allowed
access. Change the application so that
only one thread attempts to use the
same handle at the same time.

• If the application detected an abend
while the z/OS HTTP enabler was
invoked, the connection or request
instance associated with the handle
might be permanently locked. To
release the storage associated with the
handle work area, issue an HWTHTERM
service call with a forceOption
of HWTH_NOFORCE. If this fails with
the same return code, issue another
HWTHTERM service call with a
forceOption of HWTH_FORCE.

104
HWTH_INACCESSIBLE_PARM

260
HWTH_INACCESSIBLE_PARM

Meaning: Program error. The application
passed an input or output parameter
which was inaccessible by the toolkit.
See the programming considerations
in “Syntax, linkage, and programming
considerations” on page 569 for details
about z/OS HTTP enabler recovery
processing.

Action: Check for a probable coding
error. Likely, the recovery of the caller
detected this return code as a result of
the toolkit abnormally ending with a 0C4
system ABEND. Check the diagArea for
an explanation as to which parameter
was attempting to be accessed when the
toolkit service calls abnormally ended.
See the programming considerations
in “Syntax, linkage, and programming
considerations” on page 569 for details
about actions to consider for this return
code.

HWTHTERM

632 z/OS: z/OS MVS Callable Services for HLL

Table 122. Return codes for the HWTHTERM service (continued)

Hexadecimal return code
Equate symbol

Decimal return code
Equate symbol Meaning and action

108
HWTH_CANNOT_FREE_WORKAREA

264
HWTH_CANNOT_FREE_WORKAREA

Meaning: System error. The STORAGE
RELEASE service could not release the
work area storage or part of the work area
storage, as requested by the z/OS HTTP
enabler.

Action: Consult the diagArea for
the STORAGE RELEASE return code
and for additional information found
in the HWTH_ReasonDesc section. If
the problem persists, search problem
reporting databases for a fix for the
problem. If no fix exists, contact the IBM
Support Center.

401
HWTH_HTERM_FORCEOPTION_INV

1025
HWTH_HTERM_FORCEOPTION_INV

Meaning: Program error. The caller
specified an invalid forceOption.

Action: Check the calling program for a
probable coding error. The caller should
change the forceOption value to one
of the possible valid values. See the IBM-
supplied include files for the possible
constant values that can be supplied for
this parameter.

F01
HWTH_INTERRUPT_STATUS_INV

3841
HWTH_INTERRUPT_STATUS_INV

Meaning: Program error. The calling
program is disabled. The system rejects
the service request.

Action: Check the calling program for a
probable coding error.

F02
HWTH_LOCKS_HELD

3842
HWTH_LOCKS_HELD

Meaning: Program error. The calling
program is holding one or more locks. The
system rejects the service request.

Action: Check the calling program for a
probable coding error.

F03
HWTH_MODE_INV

3843
HWTH_MODE_INV

Meaning: Program error. The calling
program is running in a mode other
than task, non-cross-memory mode. The
system rejects the service request.

Action: Check the calling program for a
probable coding error.

F04
HWTH_AUTHLEVEL_INV

3844
HWTH_AUTHLEVEL_INV

Meaning: Program error. The calling
program is running in key 0. The toolkit
uses z/OS UNIX services, which do not
permit key 0 callers. The system rejects
the service request.

Action: Check the calling program for a
probable coding error.

HWTHTERM

Chapter 21. The z/OS HTTP/HTTPS protocol enabler 633

Table 122. Return codes for the HWTHTERM service (continued)

Hexadecimal return code
Equate symbol

Decimal return code
Equate symbol Meaning and action

F05
HWTH_ENVIRONMENTAL_ERROR

3845
HWTH_ENVIRONMENTAL_ERROR

Meaning: Language Environment (LE)
could not create the proper environment
for the request. This could occur for a
number of reasons, the most likely of
which are:

• The POSIX(ON) runtime option was
not set (LE callers).

• A POSIX(ON) environment was already
established in the same address
space, possibly because an HTTP
connection was already established
(non-LE callers). If the dubbing default
is not set to DUBPROCESS, the
limit is one POSIX(ON) environment
per address space. If the dubbing
default is set to DUBPROCESS, each
thread in the address space can
have its own POSIX(ON) environment,
allowing for multiple connections.
See “Environmental considerations” on
page 571 for more information.

Action:

• For LE callers, verify that the
POSIX(ON) runtime option has been
enabled for the application.

• For non-LE callers, verify the dubbing
options selected for the address
space and ensure that multiple
POSIX(ON) runtime environments
are not being requested. See
“Environmental considerations” on
page 571 for more information about
how to enable this functionality.

F06
HWTH_UNSUPPORTED_RELEASE

3846
HWTH_UNSUPPORTED_RELEASE

Meaning: The system level does not
support this service. The system rejects
the service request.

Action: Remove the calling program from
the system, and install it on a system that
supports the z/OS HTTP enabler services.
Then, run the program again.

FFF
HWTH_UNEXPECTED_ERROR

4095
HWTH_UNEXPECTED_ERROR

Meaning: System error. The service
encountered an unexpected error. The
system rejects the service call.

Action: Search problem reporting
databases for a fix for the problem. If no
fix exists, contact the IBM Support Center.

HTTP/HTTPS enabler options and values
The HTTP/HTTPS enabler portion of the z/OS web enablement toolkit allows many customizable options
to determine how the toolkit should process a request.

Options for connections
Options can be set, one at a time, by using the HWTHSET service. (See “HWTHSET — Set HTTP connection
or request options” on page 616.)

HTTP enabler options

634 z/OS: z/OS MVS Callable Services for HLL

HWTH_OPT_URI
The Uniform Resource Identifier (URI). This supplied buffer is the target location of the connection.
This option is required for a connection.

Valid values are either an IPv4 or IPv6 address, or a hostname. Optionally, the hostname might be
prefixed with the HTTP scheme (http://) or the HTTPS scheme (https://). Neither of the formats
should be suffixed by a port specification. Instead the application should use the HWTH_OPT_PORT
option to specify the port. In technical terms, specify only the authority portion of the URI, minus the
port .

http://192.168.0.1
http://[2001:1890:1112:1::20]
http://www.example.com

When the URI value is provided in a hostname format in combination with the HWTH_OPT_USE_SSL
= HWTH_SSL_USE, an automatic SNI extension is included during the connection negotiations. To
enable an SNI extension, when the connection is secured by AT-TLS, see the ClientHandshakeSNI
parameter of TTLSConnectionAdvancedParms statement in z/OS Communications Server: IP
Configuration Reference.

Note: The toolkit accepts single-byte EBCDIC character data for the value of the URI option. The use
of multibyte character encodings (such as UTF-8 and UTF-16) is not supported. For more information,
see “Code page consideration” on page 393.

The toolkit indirectly supports Internationalized Domain Name (IDN). To specify a host name that
contains Unicode characters, you must first apply the Punycode algorithm to covert the host name
to an ASCII representation. (The Punycode algorithm converts each Unicode character outside of
the US-ASCII character set to an encoded ASCII representation). After the entire host name string
has been encoded as an ASCII sequence, it is necessary to convert to EBCDIC before passing in the
HWTH_OPT_URI set option, since the toolkit expects all input data to be in EBCDIC.

HWTH_OPT_CERT_CHECK
An optional 4-byte integer value that tunes the level of checking performed and the return code
severity in response a verification failure when checking the server’s identity within the server
certificate. This option may be used to allow connections and redirects to a server that supplies a
legacy certificate which does not contain a subjectAltName extension, or a certificate that does not
accurately reflect the server identity.

The value for this option may be reset throughout the usage of the connection, for example, after
HWTHCONN but before HWTHRQST, or between two consecutive HWTHRQSTs.

For more information about what verification is performed, see “Server identity” on page 585.

Valid values are:

HWTH_CERT_CHECK_SAN_ONLY

Verifies server identity in accordance with best practices defined by RFC 9110 sections 4.3.4 and
4.3.5. Only applicable subjectAltName extension entries (dnsName for DNS names and ipAddress
for IP addresses) are used for server identification.

If the certificate provided by the server does NOT contain values that match the provided target
identity, fails HWTHCONN and/or HWTHRQST with return code value of 262 decimal/'106'x.

HWTH_CERT_CHECK_SAN_CN_DNS

Verifies server identity in accordance with best practices defined by RFC 2818 section 3.1, which
also permits legacy server certificates that are missing subjectAltName extension fields for DNS
Names, and instead uses the Common Name (CN) field in the Subject for server identification in
those cases.

If the certificate provided by the server does NOT contain values that match the provided target
identity, fails HWTHCONN and/or HWTHRQST with return code value of 262 decimal/'106'x.

HTTP enabler options

Chapter 21. The z/OS HTTP/HTTPS protocol enabler 635

https://www.rfc-editor.org/rfc/rfc9110.html
https://www.rfc-editor.org/rfc/rfc9110.html
https://www.rfc-editor.org/rfc/rfc2818.html

HWTH_CERT_CHECK_WARN
Uses rules described under HWTH_CERT_CHECK_SAN_ONLY for certificate verification.

If the certificate provided by the server does not contain values that match the provided target
identity, completes HWTHCONN and/or HWTHRQST with return code value of 4. Once HWTHCONN
and/or HWTHRQST have received a WARNING due to a certificate verification failure, the WARNING
will continue to be returned for all subsequent HWTHRQSTs to reflect the fact that one or
more server identity errors were already encountered during an initial HWTHCONN or preceding
HWTHRQST even in the case where the subsequent HWTHRQST did not experience the error.

The default value is HWTH_CERT_CHECK_SAN_ONLY.

HWTH_OPT_VERBOSE
A 4-byte integer optionally used to turn on verbose messaging to aid in the understanding of
application logic or debugging of network configuration problems. Valid values are:
HWTH_VERBOSE_OFF

The toolkit produces no additional trace messages. Analysis of application results rely on the
returnCode and diagArea values from the toolkit or other tracing outside of the toolkit.

HWTH_VERBOSE_ON
The toolkit produces redacted trace messages and directs them to the standard output for the
application environment, unless directed elsewhere by the HWTH_OPT_VERBOSE_OUTPUT option.

Values associated with the following headers will be visible:

Headers

Accept

Accept-Charset

Accept-Encoding

Accept-Language

Accept-Ranges

Access-Control-Allow-Credentials

Access-Control-Allow-Headers

Access-Control-Allow-Methods

Access-Control-Allow-Origin

Access-Control-Expose-Headers

Access-Control-Max-Age

Access-Control-Request-Headers

Access-Control-Request-Method

Age

Allow

Cache-Control

Connection

Content-Encoding

Content-Language

Content-Length

Content-Location

HTTP enabler options

636 z/OS: z/OS MVS Callable Services for HLL

Headers

Content-Range

Content-Type

Date

ETag

Expect

Expires

From

Host

Last-Modified

MIME-Version

Max-Forwards

Origin

Pragma

Proxy-Authenticate

Range

Referer

Retry-After

Server

TE

Trailer

Transfer-Encoding

Upgrade

User-Agent

Vary

Via

WWW-Authenticate

Warning

HWTH_VERBOSE_UNREDACTED
The toolkit produces trace messages and directs them to the standard output for the application
environment, unless directed elsewhere by the HWTH_OPT_VERBOSE_OUTPUT option.

Default: HWTH_VERBOSE_OFF

HWTH_OPT_SSLTRACE
A fully qualified zFS file location for System SSL trace output. When specified, the trace environment
variable GSK_TRACE is set to 255 (0xFF) and the variable GSK_TRACE_FILE is set to the user
specified location passed in for this option. See Capturing trace data through environment variables
in z/OS Cryptographic Services System SSL Programming for further details regarding usage of % in
the file name for automatic inclusion of the process id and usage of gsktrace to format the resulting
output.

HTTP enabler options

Chapter 21. The z/OS HTTP/HTTPS protocol enabler 637

Note: This option is only applicable when HWTH_SSL_USE is specified for HWTH_OPT_USE_SSL
option. See “AT-TLS usage overview” on page 582 for tracing options when AT-TLS is in effect.

HWTH_OPT_VERBOSE_OUTPUT
An optional 1- 8 character name of a valid DD (data definition) statement that specifies where trace
debugging messages are to be routed. The toolkit only uses this option if the HWTH_OPT_VERBOSE
option has been set to HWTH_VERBOSE_ON or HWTH_VERBOSE_UNREDACTED. The DD statement can
specify one of the following destinations:

• A pre-allocated, traditional z/OS data set with the following recommended attributes:

– Physical sequential (DSORG=PS)
– Unblocked variable or undefined record format (RECFM=V or RECFM=U)
– Unspecified (or zero-valued) block size and record length, so that the default values will be set

when the DD is opened
– Expandable (nonzero primary and secondary extents)
– Disposition of OLD (DISP=OLD), or NEW (DISP=NEW) if allocated in a DD statement in the same

JCL job step that includes the EXEC for your toolkit application
• A zFS file.

The toolkit automatically wraps the trace messages in the output data set or file when all available
space has been consumed. When the wrap occurs, the toolkit clears the destination file or data set,
and then writes an informational record that includes the time the wrap occurred.

For REXX only, dynamic allocation is not supported in System REXX using the TSO=NO option. If your
REXX exec runs in System REXX environment and HWTH_OPT_VERBOSE_OUTPUT is desired, you must
use the TSO=YES option.

Default: None. (Debugging messages are directed to the application's standard output.)

General options
Communication (socket) options

HWTH_OPT_PORT
An optional 4-byte integer indicating the remote port number to which to connect, instead of the
default HTTP or HTTPS port.

HWTH_OPT_IPSTACK
An optional 1- 8 character local z/OS TCP/IP stack name to be used when communicating to the
specified host name.

HWTH_OPT_LOCALIPADDR
An optional outgoing IP address from which the connection is to originate. This value should be in
the same form as the HWTH_OPT_URI value for connections.

HWTH_OPT_LOCALPORT
An optional 4-byte integer indicating the outgoing port number from which the connection is to
originate.

HWTH_OPT_SNDTIMEOUTVAL
An optional 4-byte integer to set a particular timeout value, in seconds, for the connection for
outgoing requests.

Valid range: 1 - 2,678,400® seconds.

HWTH_OPT_RCVTIMEOUTVAL
An optional 4-byte integer to set a particular timeout value, in seconds, for the connection for
incoming responses.

Valid range: 1 - 2,678,400 seconds.

HTTP enabler options

638 z/OS: z/OS MVS Callable Services for HLL

Redirect options
HWTH_OPT_MAX_REDIRECTS

An optional 4-byte integer value that specifies the maximum number of redirects to follow (on a
given request). If zero, redirects are not allowed by the application.

Valid range: 0 - 50

Default: 5

HWTH_OPT_XDOMAIN_REDIRECTS
An optional 4-byte integer value that specifies the cross-domain redirect behavior. This option is
only effective when HWTH_OPT_MAX_REDIRECTS has a value greater than zero. Valid values are:
HWTH_XDOMAIN_REDIRS_NOTALLOWED

The toolkit will attempt to follow a redirect if the redirect targets the current domain of the
connection associated with the request.

HWTH_XDOMAIN_REDIRS_ALLOWED
The toolkit attempts to follow a redirect even if the domain of the redirect is different from the
current domain of the connection associated with the request.

Default: HWTH_XDOMAIN_REDIRS_NOTALLOWED

HWTH_OPT_REDIRECT_PROTOCOLS
An optional 4-byte integer value that specifies which additional protocols are allowed in the
event that a redirect is received. Unlike many other options, calls to the set service that
specify this option are cumulative. Multiple protocols can be specified by calling the set
service multiple times, specifying one protocol at a time. This option is only effective when
HWTH_OPT_MAX_REDIRECTS has a value greater than zero. Valid values are:
HWTH_REDIRECT_NOPROTCHANGE

Do not allow users to change protocols during a redirect. Effectively, this clears all prior set
calls for this option and removes the default HWTH_REDIRECT_HTTPS as a valid redirect
protocol.

HWTH_REDIRECT_HTTPS
Allow redirects to use the HTTPS protocol (SSL/TLS), even when the HWTH_OPT_USE_SSL
value is set to HWTH_SSL_NONE. A protocol-changing redirect requiring a secure connection
can occur only if either valid configuration information (such as HWTH_OPT_SSLKEYTYPE and
other SSL support options) has been previously set by the application, or the connection has
been transparently secured by AT-TLS.

HWTH_REDIRECT_HTTP
Allow redirects to use the HTTP protocol (non-SSL/TLS), even when the HWTH_OPT_USE_SSL
value is set to HWTH_SSL_USE.

Note: Use this value carefully, as an SSL/TLS session can be downgraded to HTTP if this value
is selected and a redirect to an HTTP host is requested.

HWTH_REDIRECT_NOHTTPS
Allow the user to override the default behavior of the toolkit and not allow redirects to use the
HTTPS protocol.

Default: HWTH_REDIRECT_HTTPS

SSL/TLS support options
HWTH_OPT_USE_SSL

An optional 4-byte integer value that determines how SSL/TLS can be used to secure the
connection. Valid values are:
HWTH_SSL_NONE

The application does not want to explicitly specify any SSL/TLS security configuration details
to z/OS System SSL on the initial connection. This value should be selected when one of the
following is true:

HTTP enabler options

Chapter 21. The z/OS HTTP/HTTPS protocol enabler 639

• The HTTP protocol is the only protocol.
• An HTTPS connection must be secured by AT-TLS.

Note: If redirects are enabled (and allowed), additional SSL/TLS configuration may be
specified. In particular, a redirect to HTTPS will require either AT-TLS intervention or user
supplied SSL/TLS options. For more information, see the HWTH_OPT_MAX_REDIRECTS option
to enable redirects and the HWTH_OPT_REDIRECT_PROTOCOLS option to allow HTTPS.

HWTH_SSL_USE
The application wants to explicitly specify the SSL/TLS security configuration details to
z/OS System SSL on the initial connection. This value should be selected only when the
applications requires an HTTPS connection and there is no AT-TLS enabled policy for this
connection that would upgrade the connection automatically. If this option is specified,
and there is an AT-TLS enabled policy for this connection, the request will fail with an
HWTH_COMMUNICATION_ERROR.

Note: SSL/TLS will always be used when connecting to the user-specified URI.
A redirect URI could use the HTTP protocol only if redirects have been
enabled (see the HWTH_OPT_MAX_REDIRECTS option for more information) and the
HWTH_OPT_REDIRECT_PROTOCOLS option allows HTTP.

Default: HWTH_SSL_NONE

HWTH_OPT_SSLVERSION
An optional 4-byte integer value that sets one or more SSL versions to be supported by this HTTP
request. Unlike many other options, calls to the set service that specify this option are cumulative.
Multiple versions can be specified by calling the set service multiple times, setting one SSL version
at a time. Valid values are:
HWTH_SSLVERSION_TLSv13

Support TLS version 1.3.
HWTH_SSLVERSION_TLSv12

Support TLS version 1.2.
HWTH_SSLVERSION_TLSv11

Support TLS version 1.1.
HWTH_SSLVERSION_TLSv1

Support TLS version 1.0.
HWTH_SSLVERSION_SSLv3

Support SSL version 3.0. This is not recommended.
HWTH_SSLVERSION_DEFAULT

SSL is to be used but no security versions are sent on the request. The default SSL versions as
determined by z/OS is sent. This option can also be used to reset all SSL version values after
disconnecting, before reusing an existing connection handle.

Default: HWTH_SSLVERSION_DEFAULT

HWTH_OPT_SSLKEYTYPE
An optional 4-byte integer value that specifies the type of keystore to be used for HTTPS requests.
This option is required when HWTH_OPT_USE_SSL is set to HWTH_SSL_USE. Valid values are:
HWTH_SSLKEYTYPE_KEYDBFILE

Use a key database file.
HWTH_SSLKEYTYPE_KEYRINGNAME

Use a SAF key ring name or a PKCS #11 token.
HWTH_OPT_SSLKEY

An optional buffer that specifies the name of the keystore to be used. This option is required when
HWTH_OPT_USE_SSL is set to HWTH_SSL_USE. The value that you specify depends on the value of
HWTH_OPT_SSLKEYTYPE, as follows:

HTTP enabler options

640 z/OS: z/OS MVS Callable Services for HLL

When HWTH_OPT_SSLKEYTYPE is... The valid value for HWTH_OPT_SSLKEY is...

HWTH_SSLKEYTYPE_KEYDBFILE The path and file name of the key database file.

HWTH_SSLKEYTYPE_KEYRINGNAME One of the following:

• A SAF key ring name, in the form userid/keyring
• A PKCS #11 token, in the form *TOKEN*/token_name

HWTH_OPT_SSLKEYSTASHFILE
Specifies the path and file name of the password stash file created by the System SSL
gskkyman utility. This option is required when HWTH_OPT_USE_SSL is set to HWTH_SSL_USE and
HWTH_SSLKEYTYPE is HWTH_SSLKEYTYPE_KEYDBFILE.

HWTH_OPT_SSLCLIENTAUTHLABEL
An optional label that represents a client certificate. If SSL client authentication is requested
by the server, this option allows you to specify a client certificate other than the default client
certificate to be used in the SSL handshake.

HWTH_OPT_SSLCIPHERSPECS
An optional string value that represents the specification of the cipher suites to be used by System
SSL. This option is set to make System SSL aware of an alternate cipher set other than the default
set to be used for the connection.

The value string must use only 4-character cipher suite definitions and should be ordered by
preference of use. Valid values will always have a length that is an even multiple of 4 characters
because every cipher specification must be provided in its full 4-character form. The toolkit
does not validate the contents of the string. An example of a valid value for this option is
003500380039002F00320033.

This option requires the HWTH_OPT_USE_SSL option to be set to HWTH_SSL_USE, indicating that
SSL-related parameters supplied by the application, rather than an AT-TLS policy, must be used in
establishing the secure connection.

See z/OS Cryptographic Services System SSL Programming for more details.

Note: When a secure connection is established, the set of ciphers offered by the client to the
server helps determine how data will be encrypted and decrypted.

System SSL allows an application to replace the default cipher set with an alternate specification.
That specification is a string which concatenates 1 or more of these cipher suite definitions
(without delimiters).

Ciphers are identified by 2-character or 4-character cipher suite definitions. Every 2-character
definition has a corresponding 4-character equivalent (the reverse is not true).

Proxy options
For more information about using a proxy with the toolkit, see “Using a proxy server” on page 573 in
“Syntax, linkage, and programming considerations” on page 569.
HWTH_OPT_PROXY

An optional buffer that specifies the HTTP proxy to use. This value should be in the same form as
the HWTH_OPT_URI value for connections.

HWTH_OPT_PROXYPORT
An optional 4-byte integer indicating the proxy port to which to connect. The option is required if
you specify the HWTH_OPT_PROXY.

HWTH_OPT_PROXYAUTH
An optional 4-byte integer value that specifies the proxy authentication type to be used for all
proxy requests on this connection. Valid values are:
HWTH_PROXYAUTH_NONE

No proxy authorization is used.

HTTP enabler options

Chapter 21. The z/OS HTTP/HTTPS protocol enabler 641

HWTH_PROXYAUTH_BASIC
Use basic proxy authentication. The user name and password, as specify by the
HWTH_OPT_PROXYAUTH_USERNAME and HWTH_OPT_PROXYAUTH_PASSWORD options, are
processed and sent to the proxy as prescribed by the Basic authentication format. See RFC
7617 (tools.ietf.org/html/rfc7617).

HWTH_OPT_PROXYAUTH_USERNAME
An optional buffer that contains the user name to be used as part of authorizing to a proxy that
requires Basic authentication. This option is used in combination with the HWTH_OPT_PROXYAUTH
and HWTH_OPT_PROXYAUTH_PASSWORD options, and is required when HWTH_OPT_PROXYAUTH is
set to HWTH_PROXYAUTH_BASIC.

HWTH_OPT_PROXYAUTH_PASSWORD
An optional buffer that contains the password to be used as part of authorizing to a proxy that
requires Basic authentication. This option is used in combination with the HWTH_OPT_PROXYAUTH
and HWTH_OPT_PROXYAUTH_USERNAME options, and is required when HWTH_OPT_PROXYAUTH is
set to HWTH_PROXYAUTH_BASIC.

Cookie options
HWTH_OPT_COOKIETYPE

An optional 4-byte integer value that specifies the cookie store engine behavior to be used.
Unlike other options, this option takes effect immediately, even after the connection has been
established. Valid values are:
HWTH_COOKIETYPE_NONE

Turns off cookie support.

• Cookies set with the HWTH_OPT_COOKIE request option or cookies that are sent in the
"Cookie" header as part of the HWTH_OPT_HTTPHEADERS option will be passed to the server,
but will not be retained for future use.

• If the toolkit cookie engine had been enabled previously, all cookies in the in-memory cookie
store is deleted.

Non-REXX:

All cookies received in "Set-Cookie" response headers will be passed to the response header
processor as specified by HWTH_OPT_RESPONSEHDR_EXIT, but will not be retained for future
use by the toolkit.

REXX:

All cookies received in "Set-Cookie" response headers will be passed to the application in the
REXX stem specified by the HWTH_OPT_RESPONSEHDR_USERDATA option.

HWTH_COOKIETYPE_SESSION
Causes the toolkit cookie engine to activate and to start saving and sending session cookies
for this connection. The cookies will be only available to the application while the connection
is active and will not persist after the connection has ended.

• On each subsequent request, all eligible cookies that match the criteria specified by the
cookie is propagated to the server. (An eligible cookie means a cookie that passes the
expiration, domain, path, and secure filters).

• The HWTH_OPT_COOKIE request option sends any user-specified cookies in addition to any
eligible cookies sent by the cookie engine, but will they not be retained by the engine.

• All cookies received in response headers will automatically be added as session cookies for
this connection.

• If the application provides its own "Cookie" header as part of the HWTH_OPT_HTTPHEADERS
option, this header is used and the cookie engine will not send any eligible cookies. In this
case, all cookies specified by the HWTH_OPT_COOKIE request option is also ignored.

• The session cookies can be primed from an input cookie buffer by using the set services with
the HWT_OPT_COOKIE_INPUT_BUFFER option.

HTTP enabler options

642 z/OS: z/OS MVS Callable Services for HLL

http://tools.ietf.org/html/rfc7617
http://tools.ietf.org/html/rfc7617

HWTH_COOKIETYPE_PERSIST
Causes the toolkit to start saving persistent cookies for this connection. If the
HWTH_OPT_COOKIE_OUTPUT_BUFFER option has been set, the cookies are written
to the application’s output cookie buffer during connection disconnect processing. If
HWTH_OPT_COOKIE_OUTPUT_BUFFER has not been set, this cookie type has the same
behavior as HWTH_COOKIETYPE_SESSION.

• On each subsequent request, all eligible cookies that match the criteria specified by the
cookie is propagated to the server. (An eligible cookie means a cookie that passes the
expiration, domain, path, and secure filters).

• The HWTH_OPT_COOKIE request option sends any user-specified cookies in addition to any
eligible cookies sent by the cookie engine, but they are not retained by the engine.

• All cookies received in response headers is automatically added as persistent cookies for
this connection.

• If the application provides its own "Cookie" header as part of the HWTH_OPT_HTTPHEADERS
option, this header is used and the cookie engine will not send any eligible cookies. In this
case, all cookies specified by the HWTH_OPT_COOKIE request option is also ignored.

• The persistent cookies can be primed from an input cookie buffer by using the set services
with the HWTH_OPT_COOKIE_INPUT_BUFFER option.

HWTH_OPT_COOKIE_INPUT_BUFFER
Optionally specifies a buffer containing a saved copy of the toolkit’s cookie data store (cookie
jar). This buffer can be used to prime the toolkit’s cookie store for a new connection. (A previous
connection with a HWTH_OPT_COOKIETYPE of HWTH_COOKIETYPE_PERSIST was disconnected,
resulting in the toolkit writing its cookie store to a user-provided buffer, as specified by
HWTH_OPT_COOKIE_OUTPUT_BUFFER).

• If you specify the same address for this option as for HWTH_OPT_COOKIE_OUTPUT_BUFFER
and the HWTH_OPT_COOKIETYPE is set to HWTH_COOKIETYPE_PERSIST, the input buffer is
overlaid.

• This parameter is ignored if HWTH_OPT_COOKIETYPE is set to HWTH_COOKIETYPE_NONE.
• If you are setting this option using the REXX API, the options specify the REXX variable

containing prior output from a cookie output buffer.

HWTH_OPT_COOKIE_OUTPUT_BUFFER
Optionally specifies a buffer for cookies to be saved when a connection is disconnected and the
HWTH_OPT_COOKIETYPE is set to HWTH_COOKIETYPE_PERSIST.

• If you specify the same address for this option as for HWTH_OPT_COOKIE_INPUT_BUFFER
and the HWTH_OPT_COOKIETYPE is set to HWTH_COOKIETYPE_PERSIST, the input buffer is
overlaid.

• This parameter is ignored if HWTH_OPT_COOKIETYPE is not set to
HWTH_COOKIETYPE_PERSIST.

• If you are setting this option using the REXX API, the option specifies a REXX variable where the
cookies are returned after a disconnect.

Guideline: The output buffer (cookie jar) specified here must be large enough to hold the
cookies plus the metadata information about each cookie that is maintained by the cookie engine.
Depending on how many cookies you plan to receive from the server (current maximum is 100),
use the following formula to compute the size needed for the output buffer:

number_of_cookies × (average_cookie_data_size + 1K)

For instance, if the application is to hold 100 cookies with a maximum cookie size of 4 K bytes per
cookie, the length of the output buffer would be: 100 × (4 K + 1 K) = 500K

HTTP enabler options

Chapter 21. The z/OS HTTP/HTTPS protocol enabler 643

Options for requests
Options can be set, one at a time, by using the HWTHSET service. (See “HWTHSET — Set HTTP connection
or request options” on page 616).

HWTH_OPT_URI
The Uniform Resource Identifier (URI). This supplied buffer is the target location of the target
resource of the request. This option is optional for a request.

The name or resource (URN path portion) of the URI. The query and fragment portions of a URI may
also be present.

Examples:

/systems/z/
/over/here?name=abc#frag1

HWTH_OPT_REQUESTMETHOD
A required 4-byte integer specifying the wanted HTTP create, read, update, and delete (CRUD)
request methods. Valid values are:
HWTH_HTTP_REQUEST_POST

Use the POST method.
HWTH_HTTP_REQUEST_GET

Use the GET method.
HWTH_HTTP_REQUEST_PUT

Use the PUT method.
HWTH_HTTP_REQUEST_DELETE

Use the DELETE method.
HWTH_HTTP_REQUEST_HEAD

Use the HEAD method.
HWTH_HTTP_REQUEST_PATCH

Use the PATCH method.
HWTH_HTTP_REQUEST_OPTIONS

Use the OPTIONS method.
HWTH_OPT_HTTP_VERSION

An optional 4-byte integer specifying the wanted HTTP version. Valid values are:
HWTH_HTTP_VERSION_NONE

The toolkit chooses the default value (currently, HTTP/1.1).
HWTH_HTTP_VERSION_1_0

Use HTTP/1.0.
HWTH_HTTP_VERSION_1_1

Use HTTP/1.1.
HWTH_OPT_HTTPHEADERS

An optional 4-byte sList handle, as returned by the HWTHSLST service, which contains a linked list
of HTTP request headers. These headers are sent as-is, without any modification by the toolkit. If a
header is specified that the toolkit might add by default (for instance, Host or Cookie), these headers
take precedence.

Note: The HTTP headers specified in the sList must not be terminated by a carriage return, line feed
(CRLF), as the toolkit automatically terminates each of the headers with a CRLF.

HWTH_OPT_REQUESTBODY
This is useful mainly on an HTTP PUT, PATCH, or POST operation.

This option is mutually-exclusive with the HWTH_OPT_STREAM_SEND_EXIT option. If this option is set
to a non-zero value, HWTH_OPT_STREAM_SEND_EXIT must be zero.

HTTP enabler options

644 z/OS: z/OS MVS Callable Services for HLL

Non-REXX:

An optional 4-byte pointer to a single request body data buffer.

REXX:

A REXX variable name that contains the request body.

Notes:

1. Because the size of a request body could be substantial, the toolkit does not copy the buffer
contents into the toolkit’s work area. Therefore, any manipulation of the buffer data pointed to by
this address after this option has been set and before the HWTHRQST service is called could yield
undesired results.

2. If the data to be sent on the HTTP request cannot be contained in a single contiguous buffer,
consider setting the HWTH_OPT_STREAM_SEND_EXIT option and write code in this exit to stream
the data to the server piece by piece.

HWTH_OPT_STREAM_SEND_EXIT
An optional 4-byte address of a program to receive control when the HWTHRQST service is invoked
to identify the data to be sent to the server. This exit will be called repeatedly until the exit has
indicated that all data has been sent. This option is useful when the request body size is not known
or is substantial. See “Streaming send exit” on page 651 for more information about how this (exit)
routine operates.

This option is mutually-exclusive with the HWTH_OPT_REQUESTBODY option. If this option is set to a
non-zero value, the HWTH_OPT_REQUESTBODY option must be set to zero.

HWTH_OPT_REQUESTBODY_USERDATA
An optional 4-byte address of a user buffer to be passed into the streaming send exit. This can
serve as a communication mechanism for the application to specify that the streaming send exit is to
behave in a certain manner when it receives control for this particular request. For instance, it may be
used for maintaining timing information to track the efficiency of the ongoing send request.

The exit will receive this value as part of the input parameters (the progress descriptor’s user data
field) the first time the streaming send exit receives control.

HWTH_OPT_TRANSLATE_REQBODY
An optional 4-byte integer value that specifies the codepage translation behavior to be performed on
a request body. Valid values are:
HWTH_XLATE_REQBODY_NONE

The toolkit will not translate the request body and send it as-is to the server.
HWTH_XLATE_REQBODY_E2A

The toolkit attempts to translate the application-provided request body from EBCDIC (code page
1047) to ASCII (code page ISO8859-1).

HTTP authorization options
HWTH_OPT_HTTPAUTH

An optional 4-byte integer value that specifies the HTTP authentication level to be used on this
request. Valid values are:
HWTH_HTTPAUTH_NONE

No HTTP authorization is to be built by the toolkit.
HWTH_HTTPAUTH_BASIC

Use HTTP basic client authentication. The user and password, as specified by the
HWTH_OPT_USERNAME and HWTH_OPT_PASSWORD options, is sent in the clear in the
prescribed basic client authentication format.

Note: This option is only recommended for an HTTPS connection.

HWTH_OPT_USERNAME
An optional buffer which contains the user name to be used as part of various authentication
protocols (such as basic client authentication), used with the HWTH_OPT_HTTPAUTH and

HTTP enabler options

Chapter 21. The z/OS HTTP/HTTPS protocol enabler 645

HWTH_OPT_PASSWORD options. This option is required when HWTH_OPT_HTTPAUTH is set to
HWTH_HTTPAUTH_BASIC.

HWTH_OPT_PASSWORD
An optional buffer which contains the password to be used as part of various authentication
protocols (such as basic client authentication), used with the HWTH_OPT_HTTPAUTH and
HWTH_OPT_USERNAME options. This option is required when HWTH_OPT_HTTPAUTH is set to
HWTH_HTTPAUTH_BASIC.

Response options
HWTH_OPT_RESPONSEHDR_EXIT (non-REXX)

An optional 4-byte address of a program to receive control once for each response header
received by the application. See “Receiving data from a server (non-REXX)” on page 652 for
more information about how these callback (exit) routines operate.

HWTH_OPT_RESPONSEHDR_USERDATA

Non-REXX:

An optional buffer of user data to be passed into the response header exit when it receives
control. This can serve as a communication mechanism for the application to specify that the
response header exit is to behave in a certain manner when it receives control for the response
that is associated with this request.

REXX:

An optional buffer of a REXX API variable where response headers are returned. If the variable is
not a stem, the variable name is appended with the values similar to: var0, var1, var1.1,… If the
variable is the name of the stem:

• stem.0 contains the number of the returned headers.
• stem.n, where n is a number from 1-stem.0, contains the header name.
• stem.n.1 contains the header value.

HWTH_OPT_RESPONSEBODY_EXIT (non-REXX)
An optional 4-byte address of a program to receive control when the response body is received.
See “Receiving data from a server (non-REXX)” on page 652 for more information about how
these callback (exit) routines operate.

This option is mutually-exclusive with the HWTH_OPT_STREAM_RECEIVE_EXIT option. If this
option is set to a non-zero value, the HWTH_OPT_STREAM_RECEIVE_EXIT option must be set to
zero.

HWTH_OPT_STREAM_RECEIVE_EXIT
An optional 4-byte address of a program to receive control when the HWTHRQST service is
invoked to accept the response body data returned from the server. This exit will be called
repeatedly until the exit is notified that all data has been received. See “Response body
processing options” on page 653 for more information about how this (exit) routine operates.

This option is mutually-exclusive with the HWTH_OPT_RESPONSEBODY_EXIT option. If this option
is set to a non-zero value, the HWTH_OPT_RESPONSEBODY_EXIT option must be set to zero. For
more information, see “Large data body considerations” on page 575.

HWTH_OPT_RESPONSEBODY_USERDATA

Non-REXX:

An optional buffer of user data to be passed into the response body exit or streaming receive exit
when it receives control. This can serve as a communication mechanism for the application to
specify that the exit is to behave in a certain manner when it receives control for the response
associated with this request.

REXX:

The name of the REXX variable to contain the response body.

HTTP enabler options

646 z/OS: z/OS MVS Callable Services for HLL

HWTH_OPT_TRANSLATE_RESPBODY
An optional 4-byte integer value that specifies the codepage translation behavior to perform on a
response body. Valid values are:
HWTH_XLATE_RESPBODY_NONE

The toolkit will not translate the response body received from the server.
HWTH_XLATE_RESPBODY_A2E

The toolkit attempts to translate the response body received from the server from ASCII (code
page ISO8859-1) to EBCDIC (code page 1047).

Cookie options
HWTH_OPT_COOKIE

An optional buffer containing one or more cookies to be explicitly specified in an HTTP request.
The format of the value string should be name=contents, where name is the cookie name and
contents is the value of the cookie. You can specify more than one cookie by separating each with
a semicolon (;).

This option can work in conjunction with the cookie engine enabled
(that is, with HWTH_OPT_COOKIETYPE set to HWTH_COOKIETYPE_SESSION or
HWTH_COOKIETYPE_PERSIST). If enabled, any cookies specified by this option appear first in
the list of cookies to be sent to the server, followed by any eligible cookies found by the cookie
engine.

This option is ignored if the application has provided an explicit Cookie header as part of the
HWTH_OPT_HTTPHEADERS option.

Capturing trace data through environment variables
The values for HWTH_OPT_VERBOSE, HWTH_OPT_VERBOSE_OUTPUT and HWTH_OPT_SSLTRACE
connection handle options can be altered at runtime using environment variables with corresponding
names. The value of the runtime environment variable, if valid, will take precedence over any
value specified for that option using the HWTHSET service. A valid value for the integer option
HWTH_OPT_VERBOSE is a string that matches the name of the value.

Override values that are not valid are ignored, and should not cause new errors. Specifically, any override
that would cause its corresponding HWTHSET to fail is ignored, and any original application settings are
preserved. An overridden DD name for HWTH_OPT_VERBOSE_OUTPUT that is not found at run time is
ignored. An overridden path name for HWTH_OPT_SSLTRACE is always passed to SystemSSL unchanged.
SystemSSL tolerates bad values but specifying bad paths may signal access violations.

For example, if a REXX application sets verbose to off using HWTHSET:

address hwthttp hwthset ReturnCode SessionHandle HWTH_OPT_VERBOSE HWTH_VERBOSE_OFF DiagArea

The user executing the application, can set the HWTH_OPT_VERBOSE environment variable to
HWTH_VERBOSE_ON to override the application setting and enable tracing.

Applications executed from z/OS UNIX operation environment
If the application is running in a Language Environment (LE) POSIX(ON) environment, then the user can
set the HWTH_OPT_VERBOSE and HWTH_OPT_SSLTRACE override environment variables using the z/OS
UNIX export command. See Exporting variables in z/OS UNIX System Services User's Guide.

export HWTH_OPT_VERBOSE=HWTH_VERBOSE_UNREDACTED
export HWTH_OPT_SSLTRACE=/user/hwth/gskssl.trc
/usr/bin/mypgm parm1 parm2 parm3

Setting of the HWTH_OPT_VERBOSE_OUTPUT requires extra consideration. For the override value of
HWTH_OPT_VERBOSE_OUTPUT to take effect, the program must run in the same address space that the
output DD is allocated in. The following is an example of a REXX wrapper that performs the DD allocation
and calls the passed in toolkit application.

HTTP enabler options

Chapter 21. The z/OS HTTP/HTTPS protocol enabler 647

Example:

wrapper.rexx

/* REXX */
parse arg prms
say "parms are:"||prms

diag='/tmp/'userid()'/diag'
call bpxwunix 'mkdir -p $(dirname' diag');rm -f' diag '2>/dev/null;touch' diag
if bpxwdyn("alloc fi(ggdd) path('"diag"') msg(2) reuse")<>0 then exit 1

say "Trace location setup:"||diag

call environment '_BPX_SHAREAS','MUST'
call environment 'HWTH_OPT_VERBOSE','HWTH_VERBOSE_UNREDACTED'
call environment 'HWTH_OPT_VERBOSE_OUTPUT',ggdd
rv=bpxwunix(prms)
call bpxwdyn 'free fi('ggdd')'
exit rv

usage

wrapper.rexx /usr/bin/mypgm parm1 parm2 parm3

The above wrapper can also be invoked for a REXX application running in z/OS UNIX.

Applications executed from a batch job
If an LE application is invoked using BPXBATCH, the options depend on how BPXBATCH is used. If
BPXBATCH invokes a shell (with the SH option) either a sequence of export statements can be added
before the program is invoked or the values may be picked up from the caller's shell profile. If BPXBATCH
uses the PGM option, the //STDENV DD is useful.

The following example demonstrates the BPXBATCH PGM option:

 //TESTJOB JOB ...
 //STEP1 EXEC PGM=BPXBATCH
 //STDPARM DD *
 PGM /usr/bin/mypgm parm1 parm2 parm3
 /*
 //STDENV DD*
 HWTH_OPT_SSLTRACE=/tmp/foo.%trc
 HWTH_OPT_VERBOSE=HWTH_VERBOSE_UNREDACTED
 /*

See BPXBATCH for general information and Passing environment variables to BPXBATCH in z/OS UNIX
System Services User's Guide for details on how overrides can be specified.

If the application is NOT running in a LE POSIX(ON) environment, then the user can set the above
environment variables using the CEEOPTS DD statement. See Using the CEEOPTS DD statement in z/OS
Language Environment Programming Guide.

Examples:

Example 1:

The following job step calls the REXX sample program SYS1.SAMPLIB(HWTHXRX1) from TSO/E. The

//CEEOPTS DD is used to override the application's settings of two options:

HWTH_OPT_VERBOSE
HWTH_OPT_VERBOSE_OUTPUT

These overrides result in trace output being directed into a new dataset named MYHLQ.TESTOUT.SAMP.

 //*--

HTTP enabler options

648 z/OS: z/OS MVS Callable Services for HLL

 //* USING IKJEFT1A TO SUBMIT THE EXEC IN THE TSO ENVIRONMENT
 //*--
 //REXXSTEP EXEC PGM=IKJEFT1A,DYNAMNBR=30,REGION=0M,TIME=9999
 //SYSEXEC DD DSN=SYS1.SAMPLIB,DISP=SHR
 //SYSTSIN DD *
 %HWTHXRX1
 /*
 //MYOVRDS DD DSN=MYHLQ.TESTOUT.SAMP,DISP=(NEW,CATLG,DELETE),
 // UNIT=SYSDA,RECFM=U,SPACE=(TRK,(1,1))
 //CEEOPTS DD *
 ENVAR(
 'HWTH_OPT_VERBOSE=HWTH_VERBOSE_ON',
 'HWTH_OPT_VERBOSE_OUTPUT=MYOVRDS'
)
 /*
 //SYSTSPRT DD SYSOUT=A

HTTP enabler options

Chapter 21. The z/OS HTTP/HTTPS protocol enabler 649

Example 2:

The following job step also calls the REXX sample program, but in this case the -V option is passed to the
sample on the command line. This instructs the sample to use HWTHSET to set HWTH_OPT_VERBOSE to
HWTH_VERBOSE_ON.

In this example, the CEEOPTS overrides cause unredacted trace output to be directed into a new file in

/tmp.

 //*--
 //* USING IKJEFT1A TO SUBMIT THE EXEC IN THE TSO ENVIRONMENT
 //*--
 //REXXSTEP EXEC PGM=IKJEFT1A,DYNAMNBR=30,REGION=0M,TIME=9999
 //SYSEXEC DD DSN=SYS1.SAMPLIB,DISP=SHR
 //CEEOPTS DD *
 ENVAR(
 'HWTH_OPT_VERBOSE=HWTH_VERBOSE_UNREDACTED',
 'HWTH_OPT_VERBOSE_OUTPUT=MYPATHDD'
)
 /*
 //MYPATHDD DD PATH='/tmp/testout.samp',
 // PATHOPTS=(OWRONLY,OCREAT,OTRUNC),
 // PATHMODE=(SIRUSR,SIWUSR,SIRGRP,SIWGRP)
 //SYSTSIN DD *
 %HWTHXRX1 -V
 /*
 //SYSTSPRT DD SYSOUT=A

Applications executed from a TSO/E operation environment
Similar to a batch job, an application running in a TSO/E environment can set the above environment
variables using the CEEOPTS DD statement.

In the following example, CEEOPTS points to a sequential data set with the following content:

ENVAR(“HWTH_OPT_VERBOSE=HWTH_VERBOSE_UNREDACTED”,
 “HWTH_OPT_VERBOSE_OUTPUT=GGDD”,
 “HWTH_OPT_SSLTRACE=/tmp/hwt/gskssl1.trc”)

A user in a TSO/E environment would first allocate the verbose output DD name and CEEOPTS prior to
calling the REXX application:

alloc ddname(GGDD) path('/tmp/hwt/mystuff.trace') shr
alloc ddname(CEEOPTS) da('hwt.ibmuser.tracing.config')
ex 'hwt.test.rexx(myexec)'

See Using the CEEOPTS DD statement in z/OS Language Environment Programming Guide.

See Using runtime options in z/OS Language Environment Programming Guide for further details regarding
setting runtime options.

For information about supported runtime options HWTH_OPT_VERBOSE, HWTH_OPT_VERBOSE_OUTPUT
and HWTH_OPT_SSLTRACE, see “Options for connections” on page 634.

Sending data to a server (non-REXX)
There are two methods to send data to an HTTP server. The size of the data being sent and the complexity
of writing a callback routine can be factors in determining which approach is most suitable for the toolkit
application.

• For small pieces of data that can easily fit into a single contiguous buffer, the use of the
HWTH_OPT_REQUESTBODY option is generally the best choice.

Sending data to a server (non-REXX)

650 z/OS: z/OS MVS Callable Services for HLL

• For large pieces or unpredictable amounts of data that might not easily fit into a single contiguous
buffer, data that is spread across multiple buffers, or data that is generated in real-time (streamed), the
streaming send exit might be a better choice.

Buffer with the HWTH_OPT_REQUESTBODY option
For this method, the application populates a buffer with the desired request body, gets the 4-byte
address of this buffer, and sets the HWTH_OPT_REQUESTBODY option with this address value. When the
HWTHRQST service is invoked, the buffer is sent as the request body.

Streaming send exit
The toolkit provides a mechanism for an application to provide a streaming send exit to allow a large
request body to be sent to an HTTP server. Using this method, the toolkit can send a virtually unlimited
amount of data to the application (up to 9 exabytes) through the staging of the request body using
multiple buffers and multiple invocations of the exit. The parameter list specifications for the streaming
send exit routine are described in the IBM-supplied include files, as listed in “Programming interface
files provided by the HTTP enabler” on page 569. For additional implementation details, see “Usage
considerations for the toolkit callback routines” on page 655.

You specify the streaming send exit by setting the HWTH_OPT_STREAM_SEND_EXIT option using the
HWTHSET service. The service calls the exit repeatedly until the exit indicates that the entire request
body has been sent or the exit indicates that the toolkit should terminate the send request.

The input parameters are explained as follows:

1. A 4-byte address that points to a progress descriptor area that is owned and maintained by the
toolkit for the purpose of providing context information which may be useful to the exit. The progress
descriptor area contains:

a. An address pointing to the request URI and its length to identify the request to the streaming exit
b. Two 8-byte, unsigned integers that act as running counts for the number of data chunks sent and

the total number of bytes sent
c. A 4-byte address pointing to a user area for the exit to use as needed
d. A 4-byte address pointing to a area to indicate the status of the response from the server

Note: The toolkit clears the user data field initially on the first call to the exit unless the
HWTH_OPT_REQUESTBODY_USERDATA option has been set, in which case the field is primed with
the user-supplied option value. Thereafter, the toolkit neither reads nor writes the field, and any data
area attached by the exit shall be owned and managed by the exit.

2. A 4-byte integer used by the exit and the toolkit to convey the current state of the request. For
instance, the exit may set the HWTH_STREAM_SEND_EOD state to inform the toolkit that the entire
request body has been sent or the HWTH_STREAM_SEND_ABORT state to inform the toolkit that it
should terminate the send request. The toolkit may also set the HWTH_STREAM_SEND_ERROR state to
inform the exit that an unexpected send error has occurred, so that the exit can react appropriately.

Notes:

• The exit may set the HWTH_STREAM_SEND_EOD state at the same time that it supplies the final data
of the request body, or it may elect to wait and set the HWTH_STREAM_SEND_EOD state on the next
callback that follows.

• The HWTH_STREAM_SEND_COMPLETE and HWTH_STREAM_SEND_ERROR states are specified by the
toolkit to inform the exit that there are no subsequent callbacks to the exit for the current request.

• The initial state is set by the toolkit as HWTH_STREAM_SEND_CONTINUE.
• The toolkit treats any unsupported state value as a fatal error and results in a final callback with the

state of HWTH_STREAM_SEND_ERROR.
3. A 4-byte address that points to an array of data descriptors to describe an ordered list of contiguous

data areas that comprise the next payload of the request body data to be sent to the remote HTTP

Sending data to a server (non-REXX)

Chapter 21. The z/OS HTTP/HTTPS protocol enabler 651

server. Each array entry consists of a 4-byte address pointing to the start of the piece of request body
being described and a 4-byte signed integer to indicate the size, in bytes, of the piece of data.

Notes:

• The array of data descriptors is owned and maintained by the exit. An empty array (an array whose
first element is zero) or an array containing one or more nonsensical elements (descriptions with null
addresses or negative lengths) while in HWTH_STREAM_SEND_CONTINUE state are treated as fatal
errors.

• To prevent any inadvertent duplication of sent data, the data descriptor array that is supplied to a
successful streamed send operation is set to zeros. The toolkit makes no further assumptions about
descriptor array persistence or reuse (on subsequent interactions). It assumes only that the array
and the data areas that its elements describe persist for the full duration of time until the toolkit
next returns control to the exit. The stream send exit must not provide reference to any storage area
whose volatility compromises this assumption.

• A request body of a size not exceeding 9 exabytes may be conveyed using repetitive interactions.
On any given interaction, the exit is free to specify any number and size (or sizes) of next pieces of
request body data, subject only to the inherent limitations of the data descriptor type (that is, no
piece can exceed 2 gigabytes).

4. A 4-byte integer to contain the number of elements in the data descriptor array.

Additional streaming send exit details
• If the application supplies a <Content-Length: NN> header on a request that has a streaming send

exit in effect, the toolkit does not use chunked encoding to send the NN bytes of request body content.
This would be appropriate in cases where the body recipient does not support such an encoding.

• If the application supplies both <Content-Length: NN> and <Transfer-Encoding: Chunked>
headers on a request, thereby violating the HTTP protocol, the toolkit treats the request as invalid.

• If the application supplies no <Content-Length: NN> header on a request that has a streaming send
exit in effect, the toolkit sends a streamed request body to the receiving endpoint via chunked encoding.
To comply with the HTTP protocol, a <Transfer-Encoding: Chunked> header must accompany the
request. If the application fails to supply this header, the toolkit supplies one on its behalf.

Receiving data from a server (non-REXX)
A response from an HTTP server is comprised of two pieces: the response headers and the response
buffer. The toolkit allows an application to be informed of all response headers sent from the HTTP
server through the use of the response header callback (exit) routine. In addition, the toolkit gives the
application a choice of two different methods to receive the response body. The size of the data being
received and the complexity of writing a streaming callback routine can be factors in determining which
approach is most suitable for the toolkit application.

• For small pieces of data that can easily fit in a single contiguous buffer, the use of the response body
callback (exit) routine is generally the best choice.

Note: In the non-streaming case, the contents of a response body are only guaranteed to remain
available in storage while the exit is running. If you need to manipulate the contents of a response body,
outside the scope of the response body exit, you must copy the data to your own storage before the exit
returns.

• For large pieces or unpredictable amounts of data that might not easily fit in a single contiguous buffer,
data that is spread across multiple buffers, or data that is generated in real-time (streamed), the
streaming receive exit might be the better choice.

Note: For response bodies that are larger than available storage (memory), you must employ the
streaming response body exit (option HWTH_OPT_STREAM_RECEIVE_EXIT).

The exact parameter list specifications for the callback exit routines are described in the IBM-supplied
include files, as listed in “Programming interface files provided by the HTTP enabler” on page 569. For

Receiving data from a server (non-REXX)

652 z/OS: z/OS MVS Callable Services for HLL

additional implementation details, see “Usage considerations for the toolkit callback routines” on page
655.

• Processing response headers with the response header callback routine
• Response body processing options
• Usage considerations for the toolkit callback routines

Processing response headers with the response header callback routine
Whenever an application would like to know about all the response headers coming back from a given
response, the application can set the HWTH_OPT_RESPONSEHDR_EXIT option to the address of a routine
to process the headers. The callback routine is driven once for every response header, regardless of the
overall status value sent back in the response. The status line of the response, the response header
name, response header value, response header user data, and exit flags are passed as parameters to the
callback routine. In addition, exit flags can be sent to the callback routine to indicate that a problem was
detected during the processing of a particular response header before invoking the callback routine. The
callback routine can react to these exit flags or ignore them. The callback routine also has the option
to specify a return code back to the toolkit to indicate whether to continue processing the response
(HWTH_RESP_EXIT_RC_OK) or to terminate further processing (HWTH_RESP_EXIT_RC_ABORT).

The response header callback routine (exit) normally gets driven one or more times (one for each
response header) before the response body callback routine gets control (if data was sent from the
server in the body). If the data returned from the server uses the chunked encoding transfer method and
includes trailers, the header exit is driven once for each trailer, with an additional indicator set in the exit
flags to indicate that this particular header is, in fact, a trailer.

Response body processing options
The toolkit provides the following options to process the response body:

• Response body callback (exit) routine
• Streaming receive exit

Response body callback (exit) routine
Whenever an application would like to know about the response body coming back from a given response,
the application can set the HWTH_OPT_RESPONSEBODY_EXIT option to the address of a routine to
process the body. The callback routine is driven once per request, regardless of the status value sent back
in the response. The status line of the response, the response body, and response body user data are
passed as parameters to the callback routine.

Under certain circumstances, the response body callback routine can be called with a response body
having a length of zero. The programming of this callback routine should accommodate this possible
condition.

The HTTP enabler supports the chunked encoding data transfer method (Transfer-Encoding:
chunked). The toolkit automatically dechunks data that the server sent in chunk-encoded form. The
response body data is presented to the exit as a contiguous whole with no trace of the encoding used in
transfer. Any (optional) trailers detected at end of response are presented sequentially to the response
header exit before the response body is presented to the response body exit.

Note: Any (optional) chunk extensions incorporated by the server into the chunk encoding are ignored by
the HTTP enabler.

Streaming receive exit
The toolkit provides a mechanism for an application to provide a streaming receive exit to allow for a large
response body to be received from an HTTP server. Using this method, the toolkit can receive a virtually
unlimited amount of data to the application (up to 9 exabytes) through the staged receive of the response
body using multiple buffers and multiple invocations of the exit.

Receiving data from a server (non-REXX)

Chapter 21. The z/OS HTTP/HTTPS protocol enabler 653

You specify the stream receive exit by setting the HWTH_OPT_STREAM_RECEIVE_EXIT option using the
HWTHSET service. The exit is called repeatedly until the entire response body has been conveyed by the
toolkit to the exit, or the exit indicates that the toolkit should terminate the receive request.

The input parameters are as follows:

1. A 4-byte address pointing to a progress descriptor area that is owned and maintained by the toolkit for
the purpose of providing context information which may be useful to the exit. This area contains:

a. The address and length of the request URI, which identifies the request to the streaming exit
b. Two 8-byte, unsigned integers, which act as running counts for the total number of bytes received

and the number of chunks encountered
c. A 4-byte address that points to a user area for the exit to use as necessary
d. A 4-byte address that points to an area to indicate the status of the response from the server

Note: The toolkit clears the user data field initially on the first call to the exit unless the
HWTH_OPT_REQUESTBODY_USERDATA option has been set, in which case the field is primed with
the user-supplied option value. Thereafter, the toolkit neither reads nor writes the field, and any data
area attached by the exit shall be owned and managed by the exit.

2. A 4-byte integer used by the exit and the toolkit to convey the current state of the request. For
instance, the toolkit may set the HWTH_STREAM_RECEIVE_EOD state to inform the exit that the
entire response body has been supplied to the exit or the HWTH_STREAM_RECEIVE_ERROR state to
inform the exit that an unexpected (fatal) receive error has occurred. Similarly, the exit itself may set
HWTH_STREAM_RECEIVE_ABORT to indicate that the toolkit should terminate the receive request.

Notes:

• On all but the initial callback, the exit examines the input state parameter for any
HWTH_STREAM_RECEIVE_EOD indication by the toolkit that the response body has been completely
conveyed. When this state is detected, the stream receive exit is recommended to set the
HWTH_STREAM_RECEIVE_COMPLETE state to inform the toolkit as a final acknowledgment that the
completed response body has been accepted.

• The states of HWTH_STREAM_RECEIVE_COMPLETE and HWTH_STREAM_RECEIVE_ERROR are
specified by the toolkit to inform the exit that there are no subsequent callbacks to the exit for
the current request.

• The initial state is set by the toolkit as HWTH_STREAM_RECEIVE_CONTINUE.
• Any unsupported state value detected by the toolkit will be treated as a fatal error and it will result in

a final callback with the state of HWTH_STREAM_RECEIVE_ERROR.
3. A 4-byte address pointing to an array of data descriptors whose elements describe writable buffers

supplied by and owned by the exit. This is called the supply list. Response body data returned by the
server is written in order, directly to the buffers described by the current supply list.

The exit may specify a supply list describing the same list of buffers on each callback, or may change
the supply list at any time. The exit has complete flexibility to determine the number, size (or sizes),
and location (or locations) of supply list buffers on a given callback. Not all data written to the supply
list buffers is of interest to the exit, however. The exit must consult the return list parameter (described
later, under parameter number “5” on page 654) to properly consume the returned data.

Note: The toolkit assumes that the supply list and the buffers its elements describe persist for the
full duration of time until the toolkit next returns control to the exit. The stream receive exit must not
provide reference to any storage area whose volatility compromises this assumption.

4. A 4-byte integer to contain the number of elements in the data descriptor array of the supply list.
5. A 4-byte address that points to an array of data descriptors whose elements describe areas of

response body data written within buffers described by the supply list from the previous callback.
This list is called the return list.

Owned and maintained by the toolkit, the return list uses the same type of descriptor elements to
describe the locations and sizes of actual response body data (as opposed to possible metadata
fragments that may be interleaved with actual body data pieces as artifacts of chunked encoding).

Receiving data from a server (non-REXX)

654 z/OS: z/OS MVS Callable Services for HLL

That is, rather than performing a costly dechunking of chunk-encoded data that involves extensive
shifting and recopying, the toolkit decodes the data, effectively hiding any metadata and describing
only the actual body data pieces in the return list. In cases where the response body was not chunk-
encoded, the return list resembles the supply list (as there is no metadata to exclude). The exit should
consume all pieces of data described by the return list, in order, and must not modify or delete the list
itself.

6. A 4-byte integer to contain the number of elements in the data descriptor array of the return list.

Usage considerations for the toolkit callback routines
• The callback routines must use standard z/OS linkage when receiving control from the toolkit (See

“Linkage considerations for high-level language programming” on page 570 or “Linkage considerations
for assembler language programming” on page 570 for the callback routine linkage requirements.
Those instructions describe the same linkage requirements that these exits must follow). Failure to
implement the proper entry and exit linkage in the callback routine could result in ABENDs from within
the toolkit or cause the HWTHRQST service call to hang.

• Use care to ensure that these exits to not take excessive time when processing the responses.
Excessive processing time could cause the socket connection to time out or for the HWTHRQST service
to hang for an undesired amount of time.

• Samples for some of these callback routines are provided in the sample code as specified in “z/OS HTTP
enabler programming examples” on page 581.

Note: In the case of a non-streaming request, the contents of any response body are only available while
the exit is running. To manipulate the body's contents outside the exit, you must copy the body data to
your own storage before the exit returns.

Receiving data from a server (non-REXX)

Chapter 21. The z/OS HTTP/HTTPS protocol enabler 655

Receiving data from a server (non-REXX)

656 z/OS: z/OS MVS Callable Services for HLL

Part 10. SMF Services

In addition to the callable services described in the following topics, you can find information about other
SMF programming interfaces in z/OS MVS System Management Facilities (SMF).

© Copyright IBM Corp. 1994, 2023 657

658 z/OS: z/OS MVS Callable Services for HLL

Chapter 22. SMF real-time interface
SMF provides an application programming interface (API) that offers real-time access to SMF in-memory
resources.

The following callable services support real-time access to SMF records:

• “IFAMCON — Connect to an SMF in-memory resource” on page 659
• “IFAMGET — Obtain data from an SMF in-memory resource” on page 665
• “IFAMDSC — Disconnect from an SMF in-memory resource” on page 662
• “IFAMQRY — Query SMF in-memory resources” on page 669

The following steps describe the expected calling sequence:

1. Optional: Call the IFAMQRY service to determine which SMF in-memory resources are available to the
application.

2. Call the IFAMCON service to connect to an in-memory resource.
3. Call the IFAMGET service in a loop to collect SMF records that are already in the in-memory resource

or that are being recorded in real time.
4. Call the IFAMDSC service to disconnect from the in-memory resource and clean up resources.

For more information, see the topic on using the SMF real-time interface in z/OS MVS System Management
Facilities (SMF).

IFAMCON — Connect to an SMF in-memory resource
Call the IFAMCON service to connect to an SMF in-memory resource.

Description
The IFAMCON service connects to SMF for in-memory data capture. The service establishes an
environment to call the IFAMGET service to obtain SMF data from an in-memory resource. The caller
must provide the target in-memory resource to access.

Notes:

• An active connection to an in-memory resource does not prevent the SET SMF=xx command from
removing that resource from the configuration. No new data will be recorded to that resource; however,
the resource is not removed from the configuration until the last connection disconnects. You can use
the DISPLAY SMF,M command to display the connections to in-memory resources.

• An active connection prevents the SET SMF=xx command from changing the in-memory resource
definition, such as changes to the TYPE or RESSIZMAX parameters.

• The system supports a maximum of 8 connections per in-memory resource, with a maximum of 128
connections per system.

Environment
The requirements for the caller are:

Requirement Details

Minimum authorization: Problem state, PSW key 8-15

Dispatchable unit mode: Task

Cross memory mode: PASN = HASN = SASN

AMODE: 64-bit

IFAMCON

© Copyright IBM Corp. 1994, 2023 659

Requirement Details

ASC mode: Primary

Interrupt status: Enabled for I/O and external interrupts.

Locks: No locks held.

Programming requirements
The caller must include the IFAZSYSP macro to get a mapping of the query parameter block. The caller
should include the IFARCINM macro to get equate symbols for the return and reason codes.

Authorization
The caller requires READ access to the SAF resource protecting the in-memory resource to which the
caller wants to connect.

Restrictions
None.

Syntax
Write the call as shown in the following syntax diagram. You must code all parameters on the CALL
statement in the order shown.

Call IFAMCON,(
 ConParmBlock,
 rc,
 rsn);

In assembler, it is recommended that you link edit your program with a linkage-assist routine (also called
a stub) in SYS1.CSSLIB.

An alternative method can be used to invoke IFAMCON:

 LLGT 15,16(0,0) Get CVT
 LLGT 15,196(,15)
 L 15,376(,15)
 LLGT 15,180(,15)
 L 15,4(,15) Load address of IFAMCON
 CALL (15),(ConParmBlock,rc,rsn)

The calling program should invoke SYSSTATE AMODE64(YES) before calling the service.

Parameters
The parameters are explained as follows:

ConParmBlock
Supplied parameter that identifies a connection parameter block.

Type: Connection parameter block

The connection parameter block has the following format and is mapped by the IFAZSYSP macro in
SYS1.MACLIB:

Decimal
offset

Length Type Field Description

0 4 EBCDIC ID ID with value of CNPB

IFAMCON

660 z/OS: z/OS MVS Callable Services for HLL

Decimal
offset

Length Type Field Description

4 2 binary Length Total length of the parameter
block

6 1 binary Unused Unused; must be zero

7 1 binary Version Parameter block version number
(X'01')

8 4 binary Reserved Reserved; must be zero

12 2 binary Name length Length of the name of the in-
memory resource

14 26 EBCDIC Name Name of the in-memory resource,
padded with blanks

40 16 binary Reserved Reserved; must be zero

56 16 binary Token Output token for access to the
IFAMGET service

72 34 binary Reserved Reserved; must be zero

rc
Returned parameter that identifies the return code from the service.

Type: 4-byte integer

rsn
Returned parameter that identifies the reason code from the service.

Type: 4-byte integer

ABEND codes
IFAMCON might abnormally end with system completion code X'353'. See z/OS MVS System Codes for an
explanation and programmer response.

Related services
“IFAMDSC — Disconnect from an SMF in-memory resource” on page 662

Return and reason codes
When the service returns control to the caller, the rc parameter contains a hexadecimal return code and
the rsn parameter contains a hexadecimal reason code, as listed in Table 123 on page 661. The return
code and reason code symbols are mapped by the IFARCINM macro.

Table 123. Return and reason codes for the IFAMCON service

Return code
Equate symbol

Reason code
Equate symbol Meaning and action

X'00'
IFAINMRetCodeOK

X'0000'
IFAINMRsnCodeOK

Meaning: Successful completion.

Action: None.

IFAMCON

Chapter 22. SMF real-time interface 661

Table 123. Return and reason codes for the IFAMCON service (continued)

Return code
Equate symbol

Reason code
Equate symbol Meaning and action

X'08'
IFAINMRetCodeError

X'0801'
IFAINMBadMode

Meaning: The caller is running in an incorrect mode for one or
more of the following reasons:

• The caller is not running in task mode.
• The caller is in cross-memory mode.
• The caller is holding a lock.

Action: Change the program to run under a task in PASN =
HASN mode with no locks held.

X'08'
IFAINMRetCodeError

X'0802'
IFAINMBadParmlist

Meaning: The parameter block is not accessible or has an
incorrect format.

Action: Correct the program to pass a valid parameter block.

X'08'
IFAINMRetCodeError

X'0803'
IFAINMNoConnections

Meaning: There are no available connections.

Action: Determine the cause for the lack of connections.

X'08'
IFAINMRetCodeError

X'0805'
IFAINMUnSupported

Meaning: The caller is attempting to pass unsupported options
in the parameter block.

Action: Initialize all unused fields in the parameter block to
zero.

X'08'
IFAINMRetCodeError

X'0807'
IFAINMNoSuchResource

Meaning: The specified in-memory resource either does not
exist or the caller does not have access to it.

Action: Correct the resource name or ensure that the caller has
access to the resource.

X'0C'
IFAINMRetCodeEnvErr

X'0C02'
IFAINMSMFNotActive

Meaning: SMF is not active.

Action: None.

X'10'
IFAINMRetCodeFatal

Not applicable Meaning: Internal error.

Action: Contact the IBM Support Center.

IFAMDSC — Disconnect from an SMF in-memory resource
Call the IFAMDSC service to disconnect from an SMF in-memory resource.

Description
The IFAMDSC service disconnects from an SMF in-memory resource when the calling program no longer
needs to request any more data via the IFAMGET service.

Environment
The requirements for the caller are:

Requirement Details

Minimum authorization: Problem state, PSW key 8-15

Dispatchable unit mode: Task

Cross memory mode: PASN = HASN = SASN

AMODE: 64-bit

ASC mode: Primary

Interrupt status: Enabled for I/O and external interrupts.

IFAMDSC

662 z/OS: z/OS MVS Callable Services for HLL

Requirement Details

Locks: No locks held.

Programming requirements
A prior successful call to the IFAMCON service is required.

Authorization
None.

Restrictions
The disconnect request must be issued from the same address space as the connect request.

Syntax
Write the call as shown in the following syntax diagram. You must code all parameters on the CALL
statement in the order shown.

Call IFAMDSC,(
 DscParmBlock,
 rc,
 rsn);

In assembler, it is recommended that you link edit your program with a linkage-assist routine (also called
a stub) in SYS1.CSSLIB.

An alternative method can be used to invoke IFAMDSC:

 LLGT 15,16(0,0) Get CVT
 LLGT 15,196(,15)
 L 15,376(,15)
 LLGT 15,180(,15)
 L 15,12(,15) Load address of IFAMDSC
 CALL (15),(DscParmBlock,rc,rsn)

The calling program should invoke SYSSTATE AMODE64(YES) before calling the service.

Parameters
The parameters are explained as follows:

DscParmBlock
Supplied parameter that identifies a disconnect parameter block.

Type: Disconnect parameter block

The disconnect parameter block has the following format and is mapped by the IFAZSYSP macro in
SYS1.MACLIB:

Decimal
offset

Length Type Field Description

0 4 EBCDIC ID ID with value of DSPB

4 2 binary Length Total length of the parameter
block

6 1 binary Unused Unused; must be zero

IFAMDSC

Chapter 22. SMF real-time interface 663

Decimal
offset

Length Type Field Description

7 1 binary Version Parameter block version number
(X'01')

8 16 Token Token provided by the IFAMCON
service

rc
Returned parameter that identifies the return code from the service.

Type: 4-byte integer

rsn
Returned parameter that identifies the reason code from the service.

Type: 4-byte integer

ABEND codes
IFAMDSC might abnormally end with system completion code X'353'. See z/OS MVS System Codes for an
explanation and programmer response.

Related services
• “IFAMCON — Connect to an SMF in-memory resource” on page 659
• “IFAMGET — Obtain data from an SMF in-memory resource” on page 665

Return and reason codes
When the service returns control to the caller, the rc parameter contains a hexadecimal return code and
the rsn parameter contains a hexadecimal reason code, as listed in Table 124 on page 664. The return
code and reason code symbols are mapped by the IFARCINM macro.

Table 124. Return and reason codes for the IFAMDSC service

Return code
Equate symbol

Reason code
Equate symbol Meaning and action

X'00'
IFAINMRetCodeOK

X'0000'
IFAINMRsnCodeOK

Meaning: Successful completion.

Action: None.

X'04'
IFAINMRetCodeWarn

X'0405'
IFAINMGetInProgDsc

Meaning: There is currently a GET call in progress for this
connection. The active GET call has been notified of the
disconnection attempt.

Action: Wait for the GET call to return before issuing another
disconnect request.

X'04'
IFAINMRetCodeWarn

X'0407'
IFAINMDscInProgDsc

Meaning: There is currently a DISCONNECT call in progress for
this connection.

Action: None.

X'08'
IFAINMRetCodeError

X'0801'
IFAINMBadMode

Meaning: The caller is running in an incorrect mode for one or
more of the following reasons:

• The caller is not running in task mode.
• The caller is in cross-memory mode.
• The caller is holding a lock.

Action: Change the program to run under a task in PASN =
HASN mode with no locks held.

IFAMDSC

664 z/OS: z/OS MVS Callable Services for HLL

Table 124. Return and reason codes for the IFAMDSC service (continued)

Return code
Equate symbol

Reason code
Equate symbol Meaning and action

X'08'
IFAINMRetCodeError

X'0802'
IFAINMBadParmlist

Meaning: The parameter block is not accessible or has an
incorrect format.

Action: Correct the program to pass a valid parameter block.

X'08'
IFAINMRetCodeError

X'0804'
IFAINMBadConToken

Meaning: The caller is attempting to pass an invalid token in the
parameter block.

Action: Correct the program to provide the correct token that
was returned on the IFAMCON call.

X'08'
IFAINMRetCodeError

X'0805'
IFAINMUnSupported

Meaning: The caller is attempting to pass unsupported options
in the parameter block.

Action: Initialize all unused fields in the parameter block to
zero.

X'0C'
IFAINMRetCodeEnvErr

X'0C02'
IFAINMSMFNotActive

Meaning: SMF is not active.

Action: None.

X'0C'
IFAINMRetCodeEnvErr

X'0C03'
IFAINMObtainFailure

Meaning: SMF is unable to obtain storage to generate in-
memory data in response to this request.

Action: None.

X'10'
IFAINMRetCodeFatal

Not applicable Meaning: Internal error.

Action: Contact the IBM Support Center.

IFAMGET — Obtain data from an SMF in-memory resource
Call the IFAMGET service to obtain data from an SMF in-memory resource.

Description
The IFAMGET service provides access to SMF data as it is being recorded to an in-memory resource.
Depending on the requested input parameters, the service can return one or more records into the
caller-provided output buffer. The service can optionally immediately return to the caller when there are
no records currently being recorded to the in-memory resource, or it can wait for a new record to be
recorded before returning. Refer to “Parameters” on page 666 for more information about the service.

Environment
The requirements for the caller are:

Requirement Details

Minimum authorization: Problem state, PSW key 8-15

Dispatchable unit mode: Task or SRB

Cross memory mode: PASN = HASN = SASN

AMODE: 64-bit

ASC mode: Primary

Interrupt status: Enabled for I/O and external interrupts

Locks: No locks held

IFAMGET

Chapter 22. SMF real-time interface 665

Programming requirements
The caller-provided output buffer must be at least 32,768 bytes long. IFAMGET may return one or more
contiguous records into this buffer. Programs that consume the data in the buffer must be coded to use
the first 2 bytes of each record as the length of the record.

Authorization
None.

Restrictions
None.

Syntax
Write the call as shown in the following syntax diagram. You must code all parameters on the CALL
statement in the order shown.

Call IFAMGET,(
 GetParmBlock,
 rc,
 rsn);

In assembler, it is recommended that you link edit your program with a linkage-assist routine (also called
a stub) in SYS1.CSSLIB.

An alternative method can be used to invoke IFAMGET:

 LLGT 15,16(0,0) Get CVT
 LLGT 15,196(,15)
 L 15,376(,15)
 LLGT 15,180(,15)
 L 15,8(,15) Load address of IFAMGET
 CALL (15),(GetParmBlock,rc,rsn)

The calling program should invoke SYSSTATE AMODE64(YES) before calling the service.

Parameters
The parameters are explained as follows:

GetParmBlock
Supplied parameter that identifies a get parameter block.

Type: Get parameter block

The get parameter block has the following format and is mapped by the IFAZSYSP macro in
SYS1.MACLIB:

Decimal
offset

Length Type Field Description

0 4 EBCDIC ID ID with value of GTPB

4 2 binary Length Total length of the get parameter
block

6 1 binary Unused Unused; must be zero

7 1 binary Version Parameter block version number
(X'01')

IFAMGET

666 z/OS: z/OS MVS Callable Services for HLL

Decimal
offset

Length Type Field Description

8 4 binary Flags The following flags are supported:
Value

Meaning
X'80'

Return multiple records in a
single call.

X'40'
Reserved; must be zero.

X'20'
Return to the caller
immediately when an SMF30
subtype 5 record is returned.

X'10'
If no record is available,
return immediately to the
caller.

12 4 binary Reserved Reserved; must be zero

16 16 binary Token Token provided by the IFAMCON
service

32 4 binary Buffer length Length of the caller-provided
output buffer

Requirement: The buffer length
must be 32,768 bytes or larger.

36 16 binary Reserved Reserved; must be zero

52 4 binary Returned length Length of the data returned in the
output buffer

56 8 binary Buffer address Pointer to the caller-provided
output buffer that is to hold the
returned SMF records

rc
Returned parameter that identifies the return code from the service.

Direction: Output

Type: 4-byte integer

rsn
Returned parameter that identifies the reason code from the service.

Direction: Output

Type: 4-byte integer

ABEND codes
IFAMGET might abnormally end with system completion code X'353'. See z/OS MVS System Codes for an
explanation and programmer response.

IFAMGET

Chapter 22. SMF real-time interface 667

Related services
• “IFAMCON — Connect to an SMF in-memory resource” on page 659
• “IFAMDSC — Disconnect from an SMF in-memory resource” on page 662

Return and reason codes
When the service returns control to the caller, the rc parameter contains a hexadecimal return code and
the rsn parameter contains a hexadecimal reason code, as listed in Table 125 on page 668. The return
code and reason code symbols are mapped by the IFARCINM macro.

Table 125. Return and reason codes for the IFAMGET service

Return code
Equate symbol

Reason code
Equate symbol Meaning and action

X'00'
IFAINMRetCodeOK

X'0000'
IFAINMRsnCodeOK

Meaning: Successful completion.

Action: None.

X'04'
IFAINMRetCodeWarn

X'0401'
IFAINMMissedData

Meaning: Records were skipped due to buffer re-use—
that is, wrapping of the data in the in-memory resource.
In this case, the output buffer might not contain a valid
record.

Action: The cursor is re-synched to the newest data on
the next GET call. The application must be able to handle
the missing data condition.

X'04'
IFAINMRetCodeWarn

X'0402'
IFAINMNoMoreData

Meaning: No records are available due to the removal of
the in-memory resource from the configuration. In this
case, the output buffer does not contain a valid record.

Action: The caller should disconnect from the resource.

X'04'
IFAINMRetCodeWarn

X'0403'
IFAINMNoMoreDataTmp

Meaning: No records are available for this non-blocking
request. In this case, the output buffer does not contain a
valid record.

Action: The caller can reinvoke the IFAMGET service to
check for new records.

X'04'
IFAINMRetCodeWarn

X'0404'
IFAINMGetInProgGet

Meaning: A GET call is in progress for this connection.

Action: Wait for the active GET call to complete before
issuing another GET call.

X'04'
IFAINMRetCodeWarn

X'0406'
IFAINMDscInProgGet

Meaning: The caller attempted a GET call while a
DISCONNECT call was in progress for this connection.
When the active DISCONNECT call completes, the
connection will no longer be active.

Action: Reestablish a connection if you wish to perform a
GET call.

X'04'
IFAINMRetCodeWarn

X'0408'
IFAINMGetForcedOut

Meaning: A request was made to disconnect an active
connection while a GET call was in progress. The GET call
ends, and subsequent GET calls cannot be issued for this
connection.

Action: Reestablish a connection if you wish to perform a
GET call.

X'08'
IFAINMRetCodeError

X'0801'
IFAINMBadMode

Meaning: The caller is running in an incorrect mode for
one or more of the following reasons:

• The caller is in cross-memory mode.
• The caller is holding a lock.

Action: Change the program to run under a task or SRB in
PASN = HASN mode with no locks held.

IFAMGET

668 z/OS: z/OS MVS Callable Services for HLL

Table 125. Return and reason codes for the IFAMGET service (continued)

Return code
Equate symbol

Reason code
Equate symbol Meaning and action

X'08'
IFAINMRetCodeError

X'0802'
IFAINMBadParmlist

Meaning: The parameter block is not accessible or has
an incorrect format.

Action: Correct the program to pass a valid parameter
block.

X'08'
IFAINMRetCodeError

X'0804'
IFAINMBadConToken

Meaning: The caller is attempting to pass an invalid
token in the parameter block.

Action: Correct the program to provide the correct token
that was returned on the IFAMCON call.

X'08'
IFAINMRetCodeError

X'0805'
IFAINMUnSupported

Meaning: The caller is attempting to pass unsupported
options in the parameter block.

Action: Initialize all unused fields in the parameter block
to zero.

X'08'
IFAINMRetCodeError

X'0806'
IFAINMNotEnoughSpace

Meaning: There is not enough space in the output buffer
to hold the returned record.

Action: Call the IFAMGET service with an output buffer
that is large enough to contain the record.

X'0C'
IFAINMRetCodeEnvErr

X'0C02'
IFAINMSMFNotActive

Meaning: SMF is not active.

Action: None.

X'10'
IFAINMRetCodeFatal

Not applicable Meaning: Internal error.

Action: Contact the IBM Support Center.

IFAMQRY — Query SMF in-memory resources
Call the IFAMQRY service to query the SMF in-memory resources that are available to the application.

Description
Your application can call the IFAMQRY service to determine which SMF in-memory resources are
available. Only those in-memory resources that are available to this caller, as determined by SAF, are
returned.

Note: The returned data represents point-in-time information that is subject to change because of
configuration changes before a call to IFAMCON is made. Results are determined based on the caller's
access to the data.

Environment
The requirements for the caller are:

Requirement Details

Minimum authorization: Problem state, PSW key 8-15

Dispatchable unit mode: Task

Cross memory mode: PASN = HASN = SASN

AMODE: 64-bit

ASC mode: Primary

Interrupt status: Enabled for I/O and external interrupts

Locks: No locks held

IFAMQRY

Chapter 22. SMF real-time interface 669

Programming requirements
The caller must include the IFAZSYSP macro to get a mapping of the query parameter block. The caller
should include the IFARCINM macro to get equate symbols for the return and reason codes.

Authorization
None.

Restrictions
None.

Syntax
Write the call as shown in the following syntax diagram. You must code all parameters on the CALL
statement in the order shown.

Call IFAMQRY,(
 QryParmBlock,
 rc,
 rsn);

In assembler, it is recommended that you link edit your program with a linkage-assist routine (also called
a stub) in SYS1.CSSLIB.

An alternative method can be used to invoke IFAMQRY:

 LLGT 15,16(0,0) Get CVT
 LLGT 15,196(,15)
 L 15,376(,15)
 LLGT 15,180(,15)
 L 15,20(,15) Load address of IFAMQRY
 CALL (15),(QryParmBlock,rc,rsn)

The calling program should invoke SYSSTATE AMODE64(YES) before calling the service.

Parameters
The parameters are explained as follows:

QryParmBlock
Supplied parameter that identifies a query parameter block.

Type: Query parameter block

The query parameter block has the following format and is mapped by the IFAZSYSP macro in
SYS1.MACLIB:

Decimal
offset

Length Type Field Description

0 4 EBCDIC ID ID with value of QRPB

4 2 binary Length Total length of the query parameter block

6 1 binary Unused Unused; must be zero

7 1 binary Version Parameter block version number (X'01')

IFAMQRY

670 z/OS: z/OS MVS Callable Services for HLL

Decimal
offset

Length Type Field Description

8 2 binary Flags The following flags are supported:
Value

Meaning
1

Request return of extended record types.
When on, the output area will be mapped
by QrPbX_InMemResource_Ext

2 - 15
Unused, must be zero

8 4 binary Unused Unused; must be zero

10 2 binary Unused Unused; must be zero

12 4 binary Returned IMRs Number of returned in-memory resources

16 4 binary Buffer size Size of the output buffer that is to contain
the information for the returned in-memory
resources

20 4 binary Unused Unused; must be zero

24 8 binary Buffer address Address of the output buffer that is to contain
the information for the returned in-memory
resources

Each in-memory resource returned in the output buffer (pointed to by the address in the buffer
address field) has the following format when extended record types are not requested:

Decimal
offset

Length Type Field Description

0 2 binary Name length Length of the name

2 26 EBCDIC Name Name of the in-memory resource,
padded with blanks

28 32 binary Types Bit mask (0 - 255 bit array)
of SMF record types that are
available from this in-memory
resource

60 8 binary Reserved Reserved

Each in-memory resource returned in the output buffer (pointed to by the address in the buffer
address field) has the following format when extended record types are requested:

Decimal
offset

Length Type Field Description

0 2 binary Name length Length of the name

2 26 EBCDIC Name Name of the in-memory resource,
padded with blanks

28 4 binary * Reserved for alignment

IFAMQRY

Chapter 22. SMF real-time interface 671

Decimal
offset

Length Type Field Description

32 256 binary Types Bit mask (0 - 2047 bit array)
of SMF record types that are
available from this in-memory
resource

rc
Returned parameter that identifies the return code from the service.

Type: 4-byte integer

rsn
Returned parameter that identifies the reason code from the service.

Type: 4-byte integer

ABEND codes
IFAMQRY might abnormally end with system completion code X'353'. See z/OS MVS System Codes for an
explanation and programmer response.

Related services
• “IFAMCON — Connect to an SMF in-memory resource” on page 659
• “IFAMGET — Obtain data from an SMF in-memory resource” on page 665
• “IFAMDSC — Disconnect from an SMF in-memory resource” on page 662

Return and reason codes
When the service returns control to the caller, the rc parameter contains a hexadecimal return code and
the rsn parameter contains a hexadecimal reason code, as listed in Table 126 on page 672. The return
code and reason code symbols are mapped by the IFARCINM macro.

Table 126. Return and reason codes for the IFAMQRY service

Return code
Equate symbol

Reason code
Equate symbol Meaning and action

X'00'
IFAINMRetCodeOK

X'0000'
IFAINMRsnCodeOK

Meaning: Successful completion.

Action: None.

X'08'
IFAINMRetCodeError

X'0801'
IFAINMBadMode

Meaning: The caller is running in an incorrect mode for
one or more of the following reasons:

• The caller is not running in task mode.
• The caller is in cross-memory mode.
• The caller is holding a lock.

Action: Change the program to run under a task in PASN
= HASN mode with no locks held.

X'08'
IFAINMRetCodeError

X'0802'
IFAINMBadParmlist

Meaning: The parameter block is not accessible or has
an incorrect format.

Action: Correct the program to pass a valid parameter
block.

X'08'
IFAINMRetCodeError

X'0805'
IFAINMUnSupported

Meaning: The caller is attempting to pass unsupported
options in the parameter block.

Action: Initialize all unused fields in the parameter block
to zero.

IFAMQRY

672 z/OS: z/OS MVS Callable Services for HLL

Table 126. Return and reason codes for the IFAMQRY service (continued)

Return code
Equate symbol

Reason code
Equate symbol Meaning and action

X'08'
IFAINMRetCodeError

X'0808'
IFAINMNotEnoughQrySp

Meaning: There is not enough space in the output buffer
to hold all of the in-memory resources available to the
caller.

Action: Call the IFAMQRY service with an output buffer
that is large enough to contain the data.

X'0C'
IFAINMRetCodeEnvErr

X'0C02'
IFAINMSMFNotActive

Meaning: SMF is not active.

Action: None.

X'0C'
IFAINMRetCodeEnvErr

X'0C03'
IFAINMObtainFailure

Meaning: The system was unable to obtain storage to
generate in-memory data in response to a request.

Action: None.

X'10'
IFAINMRetCodeFatal

Not applicable Meaning: Internal error.

Action: Contact the IBM Support Center.

IFAMQRY

Chapter 22. SMF real-time interface 673

IFAMQRY

674 z/OS: z/OS MVS Callable Services for HLL

Part 11. Cloud Data Access (CDA) Services

The z/OS DFSMSdfp Cloud Data Access (CDA) component provides an environment that other z/OS
products may utilize in communicating with Cloud Object Storage.

© Copyright IBM Corp. 1994, 2023 675

676 z/OS: z/OS MVS Callable Services for HLL

Chapter 23. Introduction to DFSMSdfp Cloud Data
Access (CDA)

Cloud object storage provides a method to access data via RESTful APIs. Different cloud object storage
providers utilize different methods for authentication as well as different specifics when using REST APIs
for object actions like READ or STORE. Additionally, a user's cloud credentials for a specific cloud object
storage provider should be stored securely so that they do not have to enter the credentials every time
you communicate with the cloud.

The z/OS DFSMSdfp CDA component is intended to facilitate access to cloud object storage for other
z/OS applications. It provides an ISPF Panel application to help with cloud credential storage. It also
provides a set of APIs for z/OS programs to invoke, allowing for cloud provider agnostic interaction with
the Cloud. The z/OS program does not have to worry about the details of how the object is retrieved, only
that an object is retrieved. CDA uses provider json files that describe the details on how to interact with a
particular cloud object server. Sample provider files are available for common providers, but they may be
modified for your particular environment.

© Copyright IBM Corp. 1994, 2023 677

678 z/OS: z/OS MVS Callable Services for HLL

Chapter 24. Cloud Data Access configuration

Some configuration needs to be performed before using a program that utilizes the Cloud Data Access
services. The RACF (or equivalent) userid associated with the environment using a program that uses CDA
services must have an OMVS segment with a home directory defined. A gdk/ directory must be created in
the user's home directory (referred to as ~/gdk/). Permissions for the ~/gdk/ directory should be set so
that only the user has read and write authority to the files and directories within.

System administrator configuration quick-start
This quick-start guide shows a high-level view of the steps needed to set up and use Cloud Data Access
services:

1. Configure the CSFKEYS general resource class to protect the keylabels for the encryption keys:

a. The CSFKEYS general resource class must be active and RACLISTed.
b. The ICSF segment of the CSFKEYS class profile CSF-PROTECTED-KEY-TOKEN (or its generic

equivalent) must contain SYMCPACFWRAP(YES).
c. The user's ID must have READ access to the CSF-PROTECTED-KEY-TOKEN profile (or its generic

equivalent).
d. Define a profile for CSFKEYS resources beginning with GDK.** with a universal access (UACC) of

NONE along with ICSF(SYMPACFWRAP(YES) SYMCPACFRET(YES)).
e. The user's ID must have READ access to the new CSFKEYS profile for resources beginning with

GDK.<userid>.** along with ICSF(SYMPACFWRAP(YES)SYMCPACFRET(YES)).
f. The security administrator or person who will be entering the cloud provider keys must have

UPDATE access to the new CSFKEYS profile for resources beginning with GDK.<userid>.**

Example of z/OS Security Server RACF commands for keylabel protection:

 /* Define a generic label with UACC(NONE) so default access is NONE */
RDEFINE CSFKEYS GDK.** UACC(NONE) ICSF(SYMCPACFWRAP(YES) SYMCPACFRET(YES))

 /* Define a generic label specific to the CDAUSER */
RDEFINE CSFKEYS GDK.CDAUSER.** UACC(NONE) ICSF(SYMCPACFWRAP(YES)
SYMCPACFRET(YES))

 /* Permit the CDAUSER to their keylabels */
PERMIT GDK.CDAUSER.** CLASS(CSFKEYS) ID(CDAUSER) ACCESS(UPDATE)

SETROPTS RACLIST(CSFKEYS) CLASSACT(CSFKEYS) REFRESH

2. Ensure access to the required ICSF entry points. The user must have at least READ authority to the
following CSFSERV Class resources:

• CSFKGN
• CSFRNGL
• CSFKRD
• CSFKRC2
• CSFOWH

3. CDA uses HTTPS connections with the remote Cloud Object Storage server. The System SSL
processing performed may require some setup. For more information, see RACF CSFSERV resource
requirements in z/OS Cryptographic Services System SSL Programming.

4. Configure CDA for system general use:

a. Copy IBMCOS.json from /usr/lpp/dfsms/gdk/samples/providers/ to /usr/lpp/dfsms/gdk/providers/
(see Note in “Provider file” on page 684). Permissions should be set to 644.

© Copyright IBM Corp. 1994, 2023 679

b. Rename IBMCOS.json to any name of 20 character or less, keeping the .json suffix.
c. Modify the <provider>.json file to suit the Cloud Object Storage server that you will use. This

information should come from the administrator of the Cloud Object Storage server. For more
details on individual key/value pairs, see “Provider file” on page 684.

d. Change the host value to be the URL for the cloud provider server.
e. Change the port value if necessary.
f. Change the region value if necessary.

g. Change the sslCipher value if the cloud provider server uses other SSL Ciphers.
5. Configure a RACF key ring for the cloud object store for z/OS as a client for the TLS/SSL traffic. You may

create a virtual key ring. For more information, see RACF and key rings in z/OS Security Server RACF
Security Administrator's Guide.

a. Obtain the Root CA certificate of the target cloud object server. For example, using a browser, enter
the cloud server URL, and click on the lock icon to download the Root CA certificate to a local PC,
followed by transfer of the certificate to a data set on z/OS.

Make sure you trust the Root CA.
b. Use RACDCERT ADD to add the Root CA certificate of the cloud provider server under CERTAUTH so

that it is considered to be in the virtual key ring of CERTAUTH.
c. Ensure that users of the CDA services have READ access to the virtual key ring where the

certificates are stored. Only secure (HTTPS) connections are supported.
d. If the virtual key ring name is not *AUTH*/*, then update the value of the provider file sslKey to be

the name of the virtual key ring used.

Example of z/OS Security Server RACF commands to set up virtual key ring for the cloud object store
client:

 /* Define the following profile in the FACILITY class if it does
 not exist yet. */
RDEFINE FACILITY IRR.DIGTCERT.LISTRING UACC(READ)
 /* Add the Root CA certificate of the remote Cloud Server under CERTAUTH.
 It is stored in the HLQ.ROOTCA.CLOUD data set. */
RACDCERT CERTAUTH +
 ADD('HLQ.ROOTCA.CLOUD') +
 WITHLABEL('CLOUD') TRUST
 /* Refresh */
SETROPTS RACLIST (DIGTCERT) REFRESH
 /* Make sure the certificate was added correctly */
RACDCERT CERTAUTH LIST(LABEL(‘CLOUD'))

6. CDA Authorization Panels: Ensure that SYS1.DFQPLIB is part of the ISPPLIB concatenation or that the
following members in SYS1.DFQPLIB, are added to an ISPPLIB library:

• GDKAPPOP
• GDKAUTHK
• GDKAUTHL
• GDKAUTHP
• GDKMAINP
• GDKOBJAC
• GDKOBJAL

A RACF (or equivalent) profile should be created to ensure only authorized users have access to these
members.

7. Users of CDA services require OMVS home directories.

a. The users RACF ID must have an OMVS segment defining the home directory.

680 z/OS: z/OS MVS Callable Services for HLL

User configuration quick-start
1. Configure CDA for the user's environment:

a. Create ~/gdk/ in the user's UNIX home directory. Change the permissions to 700.
b. Create ~/gdk/providers/ in the user's UNIX home directory. Change the permissions to 700.
c. Copy /usr/lpp/dfsms/gdk/samples/gdkkeyf.json to ~/gdk/gdkkeyf.json . Change the permissions to

600.
d. The user may have a local config file in their ~/gdk/ directory. Copy /usr/lpp/dfsms/gdk/samples/

gdkconfig.json to ~/gdk/config.json . Change the permissions to 600.
e. The user may have a local provider file in their ~/gdk/providers/ directory if they want to use

a modified provider definition. Copy /usr/lpp/dfsms/gdk/providers/*.jsonto ~/gdk/providers/ and
change the permissions to 600.

2. Use the CDA authorization panel to store the user's cloud credentials. For a detailed description and
walkthrough, see Chapter 26, “Cloud Data Access cloud credential storage,” on page 689.

EX 'SYS1.SAXREXEC(GDKAUTHP)'

a. Enter the number of the cloud provider you are entering the credentials for.
b. Enter O on the Option prompt to open the Credential Entry Panel.
c. Enter the Access Key (or userID) for the cloud object storage server.
d. Enter the Secret Access Key (or password) for the cloud object storage server.
e. Enter S on the Option prompt to save the credentials.

Chapter 24. Cloud Data Access configuration 681

682 z/OS: z/OS MVS Callable Services for HLL

Chapter 25. Cloud Data Access files

DFSMSdfp CDA utilizes these files during its processing:
key file

Contains the encrypted cloud credentials for the user.
config file

Contains some configuration used during the saving of the cloud credentials.
provider file

Contains configuration specific to a specific Cloud Object Store provider.

Key file
The cloud credentials to be used will be stored in a key file named gdkkeyf.json in the ~/gdk/directory.
Before using the Cloud Data Access authorization panel described in Chapter 26, “Cloud Data Access
cloud credential storage,” on page 689, the /usr/lpp/dfsms/gdk/samples/gdkkeyf.json file should be
copied to the user's ~/gdk/ directory. If a security administrator is using the z/OS Cloud Data Access
authorization utility to store the cloud credentials on behalf of the user, then the security administrator
should also have read/write permission to the ~/gdk/gdkkeyf.json file.

Config file
The config file contains some configuration key:value pairs that the CDA services may use during
processing. However, some programs that use the CDA services may request that the config file not
be used during processing.

The system administrator may copy the sample config file from /usr/lpp/dfsms/gdk/samples/
gdkconfig.json to /usr/lpp/dfsms/gdk/config.json. If not explicitly told to not read the config file, the CDA
services will first look in the user's directory for a config file (~/gdk/config.json), and if not found, it will
look in the CDA global directory /usr/lpp/dfsms/gdk/config.json.

A user may want to copy the /usr/lpp/dfsms/gdk/samples/gdkconfig.json file to their home directory
~/gdk/config.json so it can be modified for additional logging or debugging of processing.

Possible key:value pairs:
log-level

During CDA services processing different levels of logging are allowed:
ERROR

Default:Only Error messages are logged.
WARNING

Warning messages and above are logged.
NOTICE

Notice messages and above are logged.
INFO

Informational messages and above are logged.
DEBUG

Flow and processing messages are logged.
NONE

No logging is performed by the CDA services.
web-toolkit-logging

Request logging from the z/OS Client Web Enablement Toolkit.

© Copyright IBM Corp. 1994, 2023 683

true
Log messages

false
Do not log messages.

translation
Whether to request conversion of text data during READ or WRITE.
true

Convert EBCDIC to ASCII on WRITE to Cloud or ASCII to EBCDIC on READ from Cloud.
Default: false

Do not convert data.
allow-no-CEX

If no Crypto Express card is available on the system, then the user accepts the reduced security of
having the encryption keys stored in the clear in the ICSF CKDS.

true

Default: false

Provider file
The specifics of how CDA services should interact with a cloud object storage provider are detailed in a
provider file. Each cloud object storage provider that will be used on the system should be placed in a
different provider file. Each provider file has a .json suffix, and is stored in either the users home directory
(~/gdk/providers/), or in the CDA default location /usr/lpp/dfsms/gdk/providers/. CDA services will first
examine the user's ~/gdk/providers/directory for a provider file ending in .json. If it no ~/gdk/providers/
directory is found, then/usr/lpp/dfsms/gdk/providers/ will be searched for the provider file. The maximum
length of the provider name is 20 characters, not including the .json suffix. The provider names are case
sensitive, so the name passed to the CDA program must match the name found in the gdk/providers
directory.

The system administrator may modify and place provider files for the cloud object storage providers that
can be used into the /usr/lpp/dfsms/gdk/providers/ directory. The permissions of these files should be
read only for end users (rw-r--r-- or chmod 644).

Note:

The files in the /usr/lpp/dfsms/gdk/providers directory are intended to be default versions tailored
specifically to your cloud object storage provider. Users may copy the tailored version to their personal
directory if they want to make modifications.

Many sites copy the ZFS that contains /usr/lpp/dfsms/gdk/providers across to each system in the sysplex,
thus losing any tailored files placed in /usr/lpp/dfsms/gdk/providers. To avoid this,you may create a
ZFS data set and mount it to the /usr/lpp/dfsms/gdk/providers directory, placing the specifics in the
SYS1.PARMLIB(BPXPRMxx) member so it is automatically mounted during IPL.

Sample provider files may be found in /usr/lpp/dfsms/gdk/samples/providers/.
IBMCOS.json

Describes an IBM cloud object storage provider.
S3CLOUD.json

Describes an AWS S3 cloud object storage provider.

A provider file is a JSON object. The provider file should be modified for the particular cloud object
storage provider available to the z/OS LPAR. Usually only the host and region need to be modified, and
possibly others depending on the needs of the environment.
name

Descriptive name for this cloud provider (not used by CDA service).

684 z/OS: z/OS MVS Callable Services for HLL

host
URI for the cloud object storage provider.

region
Region identifier such as us-west-1.

port
HTTPS port number used (if not default 443).

httpMechanism
Must be set to HTTPS.

sendTimeout
Optional: Length of time in seconds for send request to timeout.

receive Timeout
Optional: Length of time in seconds for a receive to timeout.

IPStack
Optional: Name of alternate z/OS IP Stack to use in HTTP communication.

sslVersion
Type of SSL to use:

• TLSV10
• TLSV11
• TSLV12

sslCiphers
Override the SSL ciphers to be used in the communication (not required unless the HTTPS connection
uses other than the default). For more information, see Cipher suite definitions in z/OS Cryptographic
Services System SSL Programming.

sslKey
Override the default virtual key ring name of *AUTH*/*.

encode
Optional: What type of URL-encoding to use.
special

Use AWS URL-encoding for object names.
encodeUrlChars

Characters in the object name that should be URL-encoded by CDA.
errorUrlChars

Characters in the object name that should result in a failure, if specified.

Note: The backslash character is a special JSON character, and must be escaped by a backslash
character if you want to specify it.

authentication
model: AWS4

Use AWS4 authentication model when communicating with the cloud object storage provider.
supportedOperations

Array of operations objects. name is one of { GETOBJECT, GETLARGEOBJECT, WRITEOBJECT,
WRITELARGEOBJECT, LISTOBJECT, DELETEOBJECT }.
name

GETOBJECT
apiEndpoint

How to build URL for request.

<HOST><GDK_OBJECT_NAME>

Chapter 25. Cloud Data Access files 685

httpMethod

{ GET, PUT, POST, DELETE, HEAD }

multipartChunksize
The size of each chunk in bytes to request when retrieving an object in a GETLARGEOBJECT
operation.

actions
An array of operation objects that describe how to perform a multi-step request such as
GETLARGEOBJECT, or WRITELARGEOBJECT.

requestParameters
JSON object describing parameters on the request.
mechanism

Details about how to build parts of request.
HEADER

Specifics about what headers need to be included (can be multiple).
MESSAGE_BODY

Request body content.
descriptor

How to build the mechanism.

• "some data" passed as-is unless <text> is found such as DATE_ISO_8601.
• <GDK_DATA>

The data passed into CDA services.

contentType
How to set content type for HTTP request.

• text/plain
• application/xml
• application/octet-stream

responseResults
Allows definition of how to parse the response body from a LISTOBJECT request.

A GETLARGEOBJECT operation is optional, but extends the functionality described by a GETOBJECT
operation. It is expected to be made up of a name key:value pair, and an actions array. The actions array
must have the following objects:

name: getSize - Description on how to retrieve the size of a single Cloud Object.

name: data - Description how to retrieve the data.

The data action may have an optional multipartChunksize: "number" that overrides the default 8MB size
for each retrieve that is used to retrieve the entire cloud object.

A WRITELARGEOBJECT operation is optional, but extends the functionality described by a WRITEOBJECT
operation. It is expected to be made up of a name: WRITELARGEOBJECT pair and an actions array. The
actions array consists of the following objects.
name: "init"

Optional: Describes the action to take to initialize a multipart upload sequence.
name: "data"

Required: Describes the action to upload a part of the data to be sent. The chunk size for each part is
8MB, except for the last.

name: "complete"
Optional: Describes the action to complete a multipart upload sequence.

686 z/OS: z/OS MVS Callable Services for HLL

name: "error"
Optional: Describes the action needed to abort a multipart upload so that individual parts do not take
up space when an error occurred, and the multipart upload was unable to complete successfully.

CDA uses some variables during its processing. Many of the variables can be specified in the provider file.
The variable name and description, along with how it is used, is described in Table 127 on page 687.

Table 127. DFSMSdfp CDA variables

CDA Variable Name Description

GDK_DATA Data for operation (varies depending on dataLocationType).

GDK_DATA_LEN Length of data in buffer for WRITE type operations.

DATE_ISO_8601 GMT current timestamp in ISO 8601 format.

AZURE_ACCOUNT Account name from saved Cloud Credentials.

DATE_GMT GMT current timestamp.

GDK_OBJECT_NAME The remote object name is referenced as a whole (bucket name and object
name).

GDK_BUCKET Bucket portion of the GDK_OBJECT_NAME (first forward slash through
second forward slash).

GDK_OBJECT_PART Object name portion of GDK_OBJECT_NAME (all text following second
forward slash).

GDK_PART Part number from a multipart upload.

GDK_GMT_UNIX_TIME GMT current timestamp in number of seconds since January 1, 1970.

GDK_JWT_EXP JWT Expiration time calculated from the GDK_GMT_UNIX_TIME + JWT_
JWT_duration value from provider file.

HOST Host value from Provider file "host" key.

PARAMETER_SET Used internally by DFSMSdfp CDA for collecting requestParameters from the
provider file.

UPLOADID Used internally by DFSMSdfp CDA for tracking the Upload ID during a Multi-
Part upload.

GDK_ETAG Used internally by DFSMSdfp CDA for tracking the returned eTag during a
Multi-Part upload.

GDK_PREFIX Used during a LIST request to specify the prefix of objects to return.

GDK_DELIMITER Used during a LIST request to specify the delimiter that is used to identify
objects.

GDK_LENGTH Used during a GETLARGEOBJECT request to hold the total amount of data
needed to be retrieved.

CLIENT_ID Used during OAUTH_2 authentication and pulled from the Credentials file.
Usually equivalent to the client_email.

ACCESS_TOKEN Returned Access Token resulting from authenticating with the cloud server.

Chapter 25. Cloud Data Access files 687

688 z/OS: z/OS MVS Callable Services for HLL

Chapter 26. Cloud Data Access cloud credential
storage

For the CDA services to perform its communication with the cloud object storage server, it needs to use
the cloud credentials of the user. Additionally, programs using the CDA services do not want to ask the
user to enter the cloud credentials every time they use the CDA services. Therefore, the cloud credentials
need to be available to the CDA services in a secure format.

The cloud credentials that will be used by the program, when executed by the user, are entered using
the z/OS Cloud Data Access authorization utility. The cloud credentials are encrypted using a random key
that is stored in the IBM Cryptographic Service Facility (ICSF) CKDS. The encrypted cloud credentials are
written to the user's gdkkeyf.json file in the ~/gdk/ directory.

The encryption key is stored in ICSF under a keylabel of the form GDK.<userid>.<provider>.Annnn .
Where <userid> is the SAF userID for the user and <provider> is the cloud provider that the cloud
credentials are associated with. A suffix, Annnnn, where nnnnn is a 5 digit number used internally by
CDA, is appended. The keylabel is protected by the CSFKEYS general resource class, which must have
SYMCPACFWRAP(YES) in the ICSF segment. The userID must have READ access to the keylabel profile.

GDK.<userid>.*

If a security administrator is using the z/OS Cloud Data Access authorization utility to store the cloud
credentials on the behalf of the user, then the security administrator should also have read/write
permission to the ~/gdk/gdkkeyf.json file.

Note:

To ensure the highest level of security of the encryption key, the system should have a crypto express card
installed so that the encryption key stored in the ICSF CKDS is wrapped by the master key of the crypto
express card.

If no card is available, the config sample file may be copied from /usr/lpp/dfsms/gdk/samples/
gdkconfig.json and placed in the user's home directory as ~/gdk/config.json . The key:value pair of
"allow-no-CEX":true can be added to the config.jsonfile to indicate that the user accepts the reduced
security of the encrypted cloud credentials when no crypto xxpress card is available for use. When no
crypto express card is available, and the "allow-no-CEX":true key:value pair exists, this indicates that the
user accepts the data encryption key for the encrypted cloud credentials being stored in the clear in the
ICSF Cryptographic Key Data Set (CKDS).

Ensure that the security administrator or user who will be entering the cloud provider keys has sufficient
authority to write to the user's gdkkeyf.json file (~/gdk/gdkkeyf.json) and UPDATE permission to the
CSFKEYS profile for resources beginning with GDK.<userid>.* .

The process of saving the cloud credentials entails encrypting the cloud credentials using ICSF services.
For more information on CCA and ICSF entry points, see z/OS Cryptographic Services ICSF Administrator's
Guide.

The user must have at least READ authority to the following CSFSERV class resources:

• CSFKGN
• CSFRNGL
• CSFKRD
• CSFKRC2
• CSFOWH

The CDA authorization utility may be invoked from the ISPF Command Shell using the following
command:

© Copyright IBM Corp. 1994, 2023 689

EX 'SYS1.SAXREXEC(GDKAUTHP)'

Figure 40. Invoking the Cloud Data Access authorization utility from the ISPF command shell

This will start a CDA panel where the cloud credentials will be encrypted and saved.

1. The cloud provider names, ending in .json, are read from the user's ~/gdk/providers/directory and
displayed, without .json. If there is no ~/gdk/providers/ directory, then the default /usr/lpp/dfsms/gdk/
providers/ directory will be used.

2. Enter the RACF (or equivalent) userID that will be using the CDA cloud object utility into the UserID
field under Encryption Parameters.

3. Select the cloud provider associated with the key pair being added by entering the associated number
under Select Cloud Provider. The currently chosen provider will be displayed in Provider under
Encryption Parameters.

4. If this key pair is intended to be used with a specific bucket, enter / followed by the bucket name in
Resource under Encryption Parameters. Otherwise, simply enter a / to indicate that this key pair is
valid for any bucket associated with this cloud provider.

Generally, the keys for accessing objects in specific buckets are associated with the / resource. Keys
for accessing objects in specific buckets that require different credentials can be added and associated
with that /bucket_name. CDA services will attempt to utilize specific keys tied to buckets before
utilizing the generic key for the provider.

Note: Only 1 generic key is used per provider. If a second generic key is entered, it will overwrite the
first.

5. If this key pair is intended to be used as the alternate credentials by a user of the CDA APIs, enter Y for
Alt Creds.

6. Enter O for Option to continue to the next panel.

690 z/OS: z/OS MVS Callable Services for HLL

Figure 41. Cloud Data Access authorization utility Options Menu
7. Enter the Key and Secret key values into the associated fields under Authorization Parameters and

then press Enter. The characters are not echoed to the screen and are displayed as * after hitting
enter.

8. Enter S on the top Option line to encrypt and save the key pair.

Note:

The first time this panel is executed, the user may receive the following warning messages:

ERROR: getpwnam() error: EDC5121I Invalid argument.
ERROR: getpwnam() error: EDC5129I No such file or directory.

This behavior is expected because the UserID field has not yet been populated. Once the UserID field is at
least specified once, the warning messages will no longer be displayed.

When entering alternate credentials, the keylabel is additionally appended with .ALT, and an
informational line of entering alternate credentials is displayed.

Figure 42. Cloud Data Access authorization utility entering alternate credentials

Error conditions
If an error occurs during the saving of the cloud credentials, an error message will be written indicating
that it was unable to store the cloud credentials indicating the IBM Cryptographic Service Facility (ICSF)
API that encountered the error along with the return code and reason code returned by the service. For
more information, see ICSF and cryptographic coprocessor return and reason codes in z/OS Cryptographic
Services ICSF Application Programmer's Guide.

Chapter 26. Cloud Data Access cloud credential storage 691

Table 128. ICSF reason codes

ICSF reason code Description

0BFB Received when the ICSF segment of the CSFKEYS class does not have
SYMCPACFWRAP(YES).

3E80 Permission to the required CSFSERV Class is not READ or better.

3E84 Received when the RACF userid does not have permission to the necessary
keylabel in the CSFKEYS class needed to store the encryption key for the
encrypted cloud credentials.

271C Received when the ICSF keylabel can't be found. Usually the keylabel was
mistakenly deleted from the ICSF CKDS. The Cloud Credentials must be saved
again.

692 z/OS: z/OS MVS Callable Services for HLL

Appendix A. BCPii communication error reason codes

All BCPii API invocations can experience a communication failure when communicating between the
BCPii address space and the support element of the targeted Central Processor Complex (CPC). The
calling program receives the HWI_COMMUNICATION_ERROR (101 hexadecimal, 257 decimal) return
code when this occurs. One of the output parameters from each service is a Diagnostic Area (referred
to as the DiagArea). For the HWI_COMMUNICATION_ERROR return code, the Diag_Commerr field in
the DiagArea contains a more descriptive return code from the BCPii communications transport to help
pinpoint the cause of the failure.

The following table provides a partial list of the descriptive communication transport error return codes,
along with a suggested action to take.

Return code, in hexadecimal
(in decimal) Description / suggested action

0-63 (0-99) These return codes are documented in Appendix C (API Return Codes)
in IBM z SNMP Application Programming Interfaces (SB10-7171-06).

For a Diag_Commerr value of X’15’ (21 decimal), this may signify a
possible busy condition on the targeted SE. An application may choose
to retry the request. Persistent failures with this return code should be
reported to the IBM Support Center.

For a Diag_Commerr value of X’4A’ (74 decimal), the z14 or higher
CPC rejected communication from BCPii because the BCPii firmware
security settings have not been granted BCPii access to the target CPC
or LPAR.

64-76 (100-118) An internal error has likely occurred inside the BCPii transport code.
Contact the IBM Support Center.

77 (119) The BCPii transport rejected the particular request. Activate CTRACE
with CTRACE option “ALL” and reissue the request. If the request failed
again, turn off CTRACE, collect the SVCDUMP, and contact the IBM
Support Center.

78-81 (120-129) An internal error has likely occurred inside the BCPii transport code.
Contact the IBM Support Center.

82 (130) The support element fails to return the required information needed for
BCPii address space to come up.

Action:

1. If this error occurs during BCPii initialization, restart BCPii manually
(S HWISTART)

2. If restarting BCPii manually fails, issue the following to re-drive the
SE recovery process to return the required information:

a. Issue the command VARY CN(*),ACTIVATE from Operating
System Messages

b. Issue a command (any command) from Operating System
Messages

c. Manually restart BCPII (S HWISTART)
3. If the above suggested actions still fail, IPL is required to restart

BCPii.

BCPii Communication Error Reason Codes

© Copyright IBM Corp. 1994, 2023 693

Return code, in hexadecimal
(in decimal) Description / suggested action

83-CF (131-207) An internal error has likely occurred inside the BCPii transport code.
Contact the IBM Support Center.

D0 (208) The support element rejected the particular request. This could occur
for any number of reasons including: the SE is busy, the SE is rebooting,
etc. Consider retrying the request one or more times. If the problem
persists, activate CTRACE with CTRACE option “ALL” and reissue the
request. Then turn off CTRACE, collect the SVCDUMP, and contact the
IBM Support Center.

D1-D3 (209-211) An internal error has likely occurred inside the BCPii transport code.
Contact the IBM Support Center.

D4 (212) The support element rejected communication from BCPii, likely for one
of the following reasons:

• If targeting a z13 or lower CPC, the Cross partition authority was not
granted on this support element.

• If targeting a z14 or higher CPC, the SEND BCPii permission was not
granted to the LPAR on this support element.

E0 (224) No response was received from the support element, after waiting for
a considerable amount of time. BCPii times out the request. Check if
connectivity to the support element is still there.

Greater than E0 (>224) An internal error has likely occurred inside the BCPii transport code.
Contact the IBM Support Center.

BCPii Communication Error Reason Codes

694 z/OS: z/OS MVS Callable Services for HLL

Appendix B. BCPii summary tables

The following summary tables show the objects that can be targeted for the BCPii functions:

• “HWIQUERY and HWISET / HWISET2 attributes” on page 699
• “HWICMD / HWICMD2” on page 695
• “HWIEVENT” on page 697

For complete details of the BCPii APIs, see Chapter 19, “Base Control Program internal interface (BCPii),”
on page 245.

BCPii configuration considerations
The BCPii address space is the bridge between a z/OS application and the support element. The address
space can perform the following steps:

• Manage all application connections.
• Builds and receive all internal communication requests to the SE.
• Provide an infrastructure for storage required by callers and by the transport communicating with the

SE.
• Provide diagnostic capabilities to help with BCPii problem determination.
• Provide security authentication of requests.

The BCPii address space is mandatory for any BCPii API request. The system attempts to start the
HWIBCPii address space during IPL.

BCPii requires the high-level-qualifier.SCEERUN2 and high-level-qualifier.SCEERUN data sets to be in the
link list concatenation. IBM specifies these data sets in the default link list members (PROGxx) in z/OS
1.10 and higher. BCPii also requires the high-level-qualifier.SCEERUN2 and high-level-qualifier.SCEERUN
data sets to be APF authorized. Failure to have these two data sets in the link list or APF authorized
results in BCPii not being able to be started, accompanied by error message HWI009I that indicates that
BCPii could not load a required Language Environment part.

BCPii also includes a parmlib member into SYS1.PARMLIB for default CTRACE settings (CTIHWI00) when
BCPii initializes. See z/OS MVS Diagnosis: Tools and Service Aids for further information regarding CTRACE
settings in BCPii.

BCPii writes SMF record 106 (X'6A') for certain API invocations. An SMFPRMxx parmlib member must be
configured and activated in order to capture these records. See “SMF recording in BCPii” on page 258 or
z/OS MVS System Management Facilities (SMF) for more information about how BCPii uses SMF.

HWICMD / HWICMD2
This table shows the BCPii HWICMD and HWICMD2 types and the objects that can be targeted for each
command.

Table 129. HWICMD types

Command type / Constant with
hexadecimal and (decimal) values Description Starting z/OS release CPC Image

User-
defined
Image
Group

HWI_CMD_ACTIVATE

1 (1)

Activate target object • CPC and image: V1R10
• User-defined image

group: V1R13

X X X

HWICMD attributes

© Copyright IBM Corp. 1994, 2023 695

Table 129. HWICMD types (continued)

Command type / Constant with
hexadecimal and (decimal) values Description Starting z/OS release CPC Image

User-
defined
Image
Group

HWI_CMD_DEACTIVATE

2 (2)

Deactivate target object • CPC and image: V1R10
• User-defined image

group: V1R13

X X X

HWI_CMD_HWMSG

3 (3)

Resend all hardware messages or
delete one hardware message

V1R10 X

HWI_CMD_CBU

4 (4)

Activate or deactivate capacity
backup

V1R10 X

HWI_CMD_OOCOD

5 (5)

Activate or deactivate On/Off
Capacity on Demand

V1R10 X

HWI_CMD_PROFILE

6 (6)

Import or export activation
profiles

V1R10 X

HWI_CMD_RESERVE

7 (7)

Add or delete a reserve for an
application

V1R10 X

HWI_CMD_SYSRESET

8 (8)

Reset target object • Image: V1R10
• User-defined image

group: V1R13

X X

HWI_CMD_START

9 (9)

Start all CPs on target object • Image: V1R10
• User-defined image

group: V1R13

X X

HWI_CMD_STOP

A (10)

Stop all CPs on target object • Image: V1R10
• User-defined image

group: V1R13

X X

HWI_CMD_PSWRESTART

B (11)

Restart one CP • Image: V1R10
• User-defined image

group: V1R13

X X

HWI_CMD_OSCMD

C (12)

Issue an operating system
command

V1R10 X

HWI_CMD_LOAD

D (13)

IPL operating system or systems • Image: V1R10
• User-defined image

group: V1R13

X X

HWI_CMD_TEMPCAP

E (14)

Add or remove temporary
capacity.

For more information see
Writing XML for use with
the temporary capacity SNMP
APIs (www-01.ibm.com/servers/
resourcelink/lib03011.nsf/pages/
zCoDXMLforCoDCommands?
OpenDocument).

V1R10 X

HWI_CMD_SYSRESET_IPLT

F (15)

Reset an image if the IPL token
matches the specified IPLT

V1R11 X

HWI_CMD_ACTIVATE _WITH_ACTPROF

10 (16)

Activate using the specified
activation profile

V1R11 X X

HWICMD attributes

696 z/OS: z/OS MVS Callable Services for HLL

https://www-01.ibm.com/servers/resourcelink/lib03011.nsf/pages/zCoDXMLforCoDCommands?OpenDocument
https://www-01.ibm.com/servers/resourcelink/lib03011.nsf/pages/zCoDXMLforCoDCommands?OpenDocument
https://www-01.ibm.com/servers/resourcelink/lib03011.nsf/pages/zCoDXMLforCoDCommands?OpenDocument
https://www-01.ibm.com/servers/resourcelink/lib03011.nsf/pages/zCoDXMLforCoDCommands?OpenDocument
https://www-01.ibm.com/servers/resourcelink/lib03011.nsf/pages/zCoDXMLforCoDCommands?OpenDocument
https://www-01.ibm.com/servers/resourcelink/lib03011.nsf/pages/zCoDXMLforCoDCommands?OpenDocument

Table 129. HWICMD types (continued)

Command type / Constant with
hexadecimal and (decimal) values Description Starting z/OS release CPC Image

User-
defined
Image
Group

HWI_CMD_POWER_CONTROL

11 (17)

Specify power control
characteristics

V1R10 X

HWI_CMD_SCSI_LOAD

12 (18)

IPL Linux operating system or
systems

• Image: V1R12
• User-defined image

group: V1R13

X X

HWI_CMD_SCSI_DUMP

13 (19)

Dump a Linux operating system V1R12 X

HWI_CMD_SYSPLEX_TIME _SWAP_CTS

14 (20)

Swap the role of current time
server (CTS) in a configured STP-
only coordinated timing network
(CTN) from preferred time server
to backup time server or vice
versa

V1R13 X

HWI_CMD_SYSPLEX_TIME
_SET_STP_CONFIG

15 (21)

Set the configuration for an STP-
only coordinated timing network
(CTN)

V1R13 X

HWI_CMD_SYSPLEX_TIME
_CHANGE_STP_ONLY_CTN

16 (22)

Change the STP_ID portion of the
CTN ID for an entire STP-only
coordinated timing network (CTN)

V1R13 X

HWI_CMD_SYSPLEX_TIME
_JOIN_STP_ONLY_CTN

17 (23)

Allow a CPC to join an STP-only
coordinated timing network (CTN)

V1R13 X

HWI_CMD_SYSPLEX_TIME
_LEAVE_STP_ONLY_CTN

18 (24)

Remove a CPC from an STP-only
coordinated timing network (CTN)

V1R13 X

HWIEVENT
This table shows the BCPii HWIEVENT types and the objects that can be registered or unregistered for
each event.

Table 130. HWIEVENT types

Event ID / Bit position in structure specified
(non-REXX)

Description Starting z/OS
release

CPC Image

Hwi_Event_CmdResp

97

Notice of command completion from
the SE

V1R10 X X

Hwi_Event_StatusChg

98

Object status change V1R10 X X

Hwi_Event_NameChg

99

Object name change V1R10 X X

Hwi_Event_ActProfChg

100

Object has changed associated
activation profile

V1R10 X X

HWIEVENT attributes

Appendix B. BCPii summary tables 697

Table 130. HWIEVENT types (continued)

Event ID / Bit position in structure specified
(non-REXX)

Description Starting z/OS
release

CPC Image

Hwi_Event_ObjCreate

101

New object has been defined V1R10 X X

Hwi_Event_ObjDestroy

102

Object has been undefined V1R10 X X

Hwi_Event_ObjException

103

Object has entered into or out of an
exception state

V1R10 X X

Hwi_Event_ApplStarted

104

Console application has started V1R10 X

Hwi_Event_ApplEnded

105

Console application is ending V1R10 X

Hwi_Event_HwMsg

106

Hardware message associated has
been issued

V1R10 X

Hwi_Event_HwMsgDel

107

Hardware message has been deleted V1R10 X

Hwi_Event_SecurityEvent

108

Security event has been logged V1R10 X

Hwi_Event_CapacityChg

109

Processing capacity has changed in
some manner

V1R10 X

Hwi_Event_CapacityRecord

110

A change has occurred to a temporary
capacity record

V1R10 X

Hwi_Event_OpSysMsg

111

Operating system message has been
issued

V1R10 X

Hwi_Event_HwCommError

112

Hardware communication error
received

V1R10 X

Hwi_Event_BCPIIStatus

113

BCPii address space has stopped or
started

V1R10 X

Hwi_Event_DisabledWait

114

An image has entered a disabled wait
state

V1R10 X

Hwi_Event_PowerChange

115

Power characteristic or
characteristics have changed

V1R10 X

HWIEVENT attributes

698 z/OS: z/OS MVS Callable Services for HLL

HWIQUERY and HWISET / HWISET2 attributes
This table shows the BCPii HWIQUERY and HWISET / HWISET2 attributes and the objects that can be
targeted for each function. Note: The HWMCA attribute suffix refers to the 'HWMCA Object Attribute ID
suffix' documented in IBM z SNMP Application Programming Interfaces (SB10-7171-06).

Table 131. HWIQUERY and HWISET / HWISET2 attributes

Attribute
constant
equate
symbol
with
hexadeci
mal and
(decimal)
values Description

Startin
g z/OS
release

Settabl
e using
HWISE

T or
HWISE

T2 CPC Image
CapRe

c
Reset
AProf

Image
AProf

Load
AProf

User-
define

d
Image
Group

Group
profile

LPAR
Capaci
ty
group

HWMCA
attribute
suffix

HWI_NAM
E

1 (1)

Name V1R10 X X X X X X X X 1.0

HWI_ERRS
TAT

2 (2)

Status error (Y/N) V1R10 X X X 7.0

HWI_BUS
YSTAT

3 (3)

Busy status (Y/N) V1R10 X X X 8.0

HWI_MSG
STAT

4 (4)

Messages present
(Y/N)

V1R10 X X 9.0

HWI_OPER
STAT

5 (5)

Current status V1R10 X X 10.0

HWI_ACCS
TAT

6 (6)

Acceptable status
values

V1R10 X X X 11.0

HWI_APR
OF

7 (7)

Next reset
activation profile
name

V1R10 X X X 13.0

HWI_LUAP
ROF

8 (8)

Last used
activation profile
name

V1R10 X X 14.0

HWI_OBJT
YPE

9 (9)

Object type V1R10 X X X X X X X X X 22.0

HWI_IML
MODE

A (10)

IML mode V1R10 X X 12.0

HWI_IPAD
DR

17 (23)

Internet address
(IPv4 format)

V1R10 X 15.0

HWI_SNA
ADDR

18 (24)

SNA address
(netid.nau)

V1R10 X 16.0

HWI_MMO
DEL

19 (25)

Machine model V1R10 X 17.0

HWI_MTY
PE

1A (26)

Machine type V1R10 X 18.0

HWIQUERY and HWISET attributes

Appendix B. BCPii summary tables 699

Table 131. HWIQUERY and HWISET / HWISET2 attributes (continued)

Attribute
constant
equate
symbol
with
hexadeci
mal and
(decimal)
values Description

Startin
g z/OS
release

Settabl
e using
HWISE

T or
HWISE

T2 CPC Image
CapRe

c
Reset
AProf

Image
AProf

Load
AProf

User-
define

d
Image
Group

Group
profile

LPAR
Capaci
ty
group

HWMCA
attribute
suffix

HWI_MSE
RIAL

1B (27)

Machine serial V1R10 X 19.0

HWI_CPCS
ERIAL

1C (28)

CPC serial number V1R10 X 20.0

HWI_CPCI
D

1D (29)

CPC identifier V1R10 X 21.0

HWI_RESE
RVEID

1E (30)

Name of
application holding
reserve

V1R10 X 44.0

HWI_SVCE
REQD

1F (31)

Service required
(Y/N)

V1R10 X 46.0

HWI_CBUI
NSTD

20 (32)

CBU installed (Y/N) V1R10 X 32.0

HWI_CBUE
NABLD

21 (33)

CBU enabled (Y/N) V1R10 X 48.0

HWI_CBU
ACTIVE

22 (34)

CBU activated
(Y/N)

V1R10 X 33.0

HWI_CBU
ACTDT

23 (35)

CBU activation date V1R10 X 34.0

HWI_CBUE
XPDT

24 (36)

CBU expiration
date

V1R10 X 35.0

HWI_CBUT
ESTAR

25 (37)

CBU test
activations
remaining

V1R10 X 36.0

HWI_CBU
REALAV

26 (38)

Real CBU activation
available (Y/N)

V1R10 X 37.0

HWI_PRU
NTYPE

27 (39)

Processor running
time type

V1R10 X X X 78.0

HWI_PRU
NTIME

28 (40)

Processor running
time

V1R10 X X X 79.0

HWI_PRU
NTSEW

29 (41)

Processor loses its
running time slice
when in wait state
(Y/N)

V1R10 X X X 80.0

HWIQUERY and HWISET attributes

700 z/OS: z/OS MVS Callable Services for HLL

Table 131. HWIQUERY and HWISET / HWISET2 attributes (continued)

Attribute
constant
equate
symbol
with
hexadeci
mal and
(decimal)
values Description

Startin
g z/OS
release

Settabl
e using
HWISE

T or
HWISE

T2 CPC Image
CapRe

c
Reset
AProf

Image
AProf

Load
AProf

User-
define

d
Image
Group

Group
profile

LPAR
Capaci
ty
group

HWMCA
attribute
suffix

HWI_OOCI
NST

2A (42)

On/Off on Demand
installed (Y/N)

V1R10 X 87.0

HWI_OOC
ACT

2B (43)

On/Off on Demand
activated (Y/N)

V1R10 X 88.0

HWI_OOC
ENAB

2C (44)

On/Off on Demand
enabled (Y/N)

V1R10 X 89.0

HWI_OOC
ADT

2D (45)

On/Off on Demand
activation date

V1R10 X 90.0

HWI_PCPC
SWM

2E (46)

Permanent CPC
software model

V1R10 X 120.0

HWI_PPBP
SWM

2F (47)

Permanent plus
billable processor
software model

V1R10 X 121.0

HWI_PPTP
SWM

30 (48)

Permanent plus
(all) temporary
processor software
model

V1R10 X 122.0

HWI_PCPC
MSU

31 (49)

CPC millions of
service units (MSU)
value

V1R10 X 123.0

HWI_PPBP
MSU

32 (50)

Permanent plus
billable processor
MSU value

V1R10 X 124.0

HWI_PPTP
MSU

33 (51)

Permanent plus
(all) temporary
processor MSU
value

V1R10 X 125.0

HWI_NUM
GPP

34 (52)

Number of
general purpose
processors

V1R10 X 126.0

HWI_NUM
SAP

35 (53)

Number of service
assist processors

V1R10 X 127.0

HWI_NUM
IFAP

36 (54)

Number of
integrated facility
for applications
(IFA) processors

V1R10 X 128.0

HWI_NUM
IFLP

37 (55)

Number of
integrated facility
for Linux (IFL)
processors

V1R10 X 129.0

HWI_NUM
ICFP

38 (56)

Number of internal
coupling facility
(ICF) processors

V1R10 X 130.0

HWIQUERY and HWISET attributes

Appendix B. BCPii summary tables 701

Table 131. HWIQUERY and HWISET / HWISET2 attributes (continued)

Attribute
constant
equate
symbol
with
hexadeci
mal and
(decimal)
values Description

Startin
g z/OS
release

Settabl
e using
HWISE

T or
HWISE

T2 CPC Image
CapRe

c
Reset
AProf

Image
AProf

Load
AProf

User-
define

d
Image
Group

Group
profile

LPAR
Capaci
ty
group

HWMCA
attribute
suffix

HWI_NUM
IIPP

39 (57)

Number of
integrated
information (IIP)
processors

V1R10 X 131.0

HWI_NUM
FLTYP

3A (58)

Number of
defective (faulty)
processors

V1R10 X 132.0

HWI_NUM
SPARE

3B (59)

Number of spare
processors

V1R10 X 133.0

HWI_NUM
PENDP

3C (60)

Number of pending
(activation)
processors

V1R10 X 134.0

HWI_
CAPCHGAL
LWD

3D (61)

Allow temporary
capacity change
(Y/N)

V1R10 X 149.0

HWI_DGR
STAT

3E (62)

Degraded status V1R10 X 47.0

HWI_
CURRPPO
WERMODE

3F (63)

Current processor
power savings
mode activated

V1R10 X 190.0

HWI_
SUPPPPO
WERMODE

40 (64)

Supported
processor power
savings modes
available

V1R10 X 191.0

HWI_STPC
ONFIG

41 (65)

Server Timer
Protocol (STP)
configuration data

V1R12 X 165.0

HWI_NUM
PGPP

42 (66)

Number of pending
general purpose
processors

V1R12 X 175.0

HWI_NUM
PSAP

43 (67)

Number of pending
service assist
processors

V1R12 X 176.0

HWI_NUM
PAAP

44 (68)

Number of pending
Application Assist
(AAP) processors

V1R12 X 177.0

HWI_NUM
PIFLP

45 (69)

Number of pending
Integrated Facility
for Linux (IFL)
processors

V1R12 X 178.0

HWI_NUM
PICFP

46 (70)

Number of pending
Internal Coupling
Facility (ICF)
processors

V1R12 X 179.0

HWIQUERY and HWISET attributes

702 z/OS: z/OS MVS Callable Services for HLL

Table 131. HWIQUERY and HWISET / HWISET2 attributes (continued)

Attribute
constant
equate
symbol
with
hexadeci
mal and
(decimal)
values Description

Startin
g z/OS
release

Settabl
e using
HWISE

T or
HWISE

T2 CPC Image
CapRe

c
Reset
AProf

Image
AProf

Load
AProf

User-
define

d
Image
Group

Group
profile

LPAR
Capaci
ty
group

HWMCA
attribute
suffix

HWI_NUM
PIIPP

47 (71)

Number of
pending Integrated
Information (IIP)
processors

V1R12 X 180.0

HWI_
POWERMO
DE
ALLOWED

48 (72)

Processor power
savings mode
allowed (Y/N)

V1R10 X 193.0

HWI_VERS
ION

49 (73)

CPC version
number

V1R13 X 151.0

HWI_EC_
MCL_INFO

4A (74)

XML string
that describes
the Engineering
Change (EC) and
Microcode Level
(MCL) levels

V1R13 X 162.0

HWI_LIST
_
IP_ADDRE
SSES

4B (75)

All the IP
addresses (in
IPv4 and/or IPv6
format)

V1R13 X 161.0

HWI_AUT
O_SWITCH
_
ENABLED

4C (76)

Automatic
switching between
primary and
alternate support
elements enabled
(Y/N)

V1R13 X 163.0

HWI_CPCN
AME

69 (105)

Parent (CPC) name V1R10 X 2.0

HWI_OSN
AME

6A (106)

Operating system
name

V1R10 X 3.0

HWI_OSTY
PE

6B (107)

SW operating
system type (CFCC,
MVS, VM, LINUX,
VSE, Z TPF EE)

V1R10 X 4.0

HWI_OSLE
VEL

6C (108)

SW operating
system level

V1R10 X 5.0

HWI_SYSP
LEX

6D (109)

SW sysplex name V1R10 X 6.0

HWI_CLUS
TER

6E (110)

LPAR cluster name V1R10 X 49.0

HWI_PART
ITIONID

6F (111)

Partition ID V1R10 X X 51.0

HWIQUERY and HWISET attributes

Appendix B. BCPii summary tables 703

Table 131. HWIQUERY and HWISET / HWISET2 attributes (continued)

Attribute
constant
equate
symbol
with
hexadeci
mal and
(decimal)
values Description

Startin
g z/OS
release

Settabl
e using
HWISE

T or
HWISE

T2 CPC Image
CapRe

c
Reset
AProf

Image
AProf

Load
AProf

User-
define

d
Image
Group

Group
profile

LPAR
Capaci
ty
group

HWMCA
attribute
suffix

HWI_DEFC
AP

70 (112)

Current defined V1R10 X X X 43.0

HWI_SGPI
PW

71 (113)

Shared general
processor initial
processing weight

V1R10 X X X 30.0

HWI_SGPI
PWCAP

72 (114)

SGPIPW capped
(Y/N)

V1R10 X X X 31.0

HWI_SGPP
WMIN

73 (115)

Minimum SGPPW
value

V1R10 X X X 38.0

HWI_SGPP
WMAX

74 (116)

Maximum SGPPW
value

V1R10 X X X 39.0

HWI_SGPP
W

75 (117)

Current SGPPW
value

V1R10 X 41.0

HWI_SGPP
WCAP

76 (118)

SGPPW capped
(Y/N)

V1R10 X 42.0

HWI_WLM

77 (119)

WLM allowed to
change processing
weight related
attributes (Y/N)

V1R10 X X X 40.0

HWI_IFAI
PW

78 (120)

Integrated facility
for applications
initial processing
weight

V1R10 X X X 60.0

HWI_IFAI
PWCAP

79 (121)

IFAIPW capped
(Y/N)

V1R10 X X X 61.0

HWI_IFAP
WMIN

7A (122)

Minimum IFAPW
value

V1R10 X X X 62.0

HWI_IFAP
WMAX

7B (123)

Maximum IFAPW
value

V1R10 X X X 63.0

HWI_IFAP
W

7C (124)

Current IFAPW
value

V1R10 X 64.0

HWI_IFAP
WCAP

7D (125)

IFAPW capped
(Y/N)

V1R10 X 65.0

HWI_IFLIP
W

7E (126)

Integrated facility
for Linux initial
processing weight

V1R10 X X X 66.0

HWIQUERY and HWISET attributes

704 z/OS: z/OS MVS Callable Services for HLL

Table 131. HWIQUERY and HWISET / HWISET2 attributes (continued)

Attribute
constant
equate
symbol
with
hexadeci
mal and
(decimal)
values Description

Startin
g z/OS
release

Settabl
e using
HWISE

T or
HWISE

T2 CPC Image
CapRe

c
Reset
AProf

Image
AProf

Load
AProf

User-
define

d
Image
Group

Group
profile

LPAR
Capaci
ty
group

HWMCA
attribute
suffix

HWI_IFLIP
WCAP

7F (127)

IFLIPW capped
(Y/N)

V1R10 X X X 67.0

HWI_IFLP
WMIN

80 (128)

Minimum IFLPW
value

V1R10 X X X 68.0

HWI_IFLP
WMAX

81 (129)

Maximum IFLPW
value

V1R10 X X X 69.0

HWI_IFLP
W

82 (130)

Current IFLPW
value

V1R10 X 70.0

HWI_IFLP
WCAP

83 (131)

IFLPW capped
(Y/N)

V1R10 X 71.0

HWI_ICFI
PW

84 (132)

Internal coupling
facility initial
processing weight

V1R10 X X X 72.0

HWI_ICFI
PWCAP

85 (133)

ICFIPW capped
(Y/N)

V1R10 X X X 73.0

HWI_ICFP
WMIN

86 (134)

Minimum ICFPW
value

V1R10 X X X 74.0

HWI_ICFP
WMAX

87 (135)

Maximum ICFPW
value

V1R10 X X X 75.0

HWI_ICFP
W

88 (136)

Current ICFPW
value

V1R10 X 76.0

HWI_ICFP
WCAP

89 (137)

ICFPW capped
(Y/N)

V1R10 X 77.0

HWI_IIPIP
W

8A (138)

Integrated
information
processors initial
processing weight

V1R10 X X X 81.0

HWI_IIPIP
WCAP

8B (139)

IIPIPW capped
(Y/N)

V1R10 X X X 82.0

HWI_IIPP
WMIN

8C (140)

Minimum IIPPW
value

V1R10 X X X 83.0

HWI_IIPP
WMAX

8D (141)

Maximum IIPPW
value

V1R10 X X X 84.0

HWIQUERY and HWISET attributes

Appendix B. BCPii summary tables 705

Table 131. HWIQUERY and HWISET / HWISET2 attributes (continued)

Attribute
constant
equate
symbol
with
hexadeci
mal and
(decimal)
values Description

Startin
g z/OS
release

Settabl
e using
HWISE

T or
HWISE

T2 CPC Image
CapRe

c
Reset
AProf

Image
AProf

Load
AProf

User-
define

d
Image
Group

Group
profile

LPAR
Capaci
ty
group

HWMCA
attribute
suffix

HWI_IIPP
W

8E (142)

Current IIPPW
value

V1R10 X 85.0

HWI_IIPP
WCAP

8F (143)

IIPPW capped
(Y/N)

V1R10 X 86.0

HWI_IPLT
OKEN

90 (144)

IPL token
associated with the
current IPL of the
image

V1R11 X 164.0

HWI_PSW
S

91 (145)

PSW for each CP
associated with the
image

V1R11 X 150.0

HWI_GRO
UP_
PROFILE_
CAPACITY

92 (146)

Workload unit for
the group profile
associated with an
image

V1R13 X X X X 1

HWI_LAST
USED
LOADADD
R

93 (147)

Last-used load
address

V1R13 X 201.0

HWI_LAST
USED
LOADPAR
M

94 (148)

Last-used load
parameters

V1R13 X 202.0

HWI_ABS
CAP

95 (149)

Absolute capping
enablement (GPP)
(Y/N)

V2R1 X X X 217.0

HWI_ABS
CAPVAL

96 (150)

Absolute capping
value (GPP)

V2R1 X X X 218.0

HWI_IFAA
BSCAP

97 (151)

Absolute capping
enablement (AAP)
(Y/N)

V2R1 X X X 219.0

HWI_IFAA
BSCAPVAL

98 (152)

Absolute capping
value (AAP)

V2R1 X X X 220.0

HWI_IFLA
BSCAP

99 (153)

Absolute capping
enablement (IFL)
(Y/N)

V2R1 X X X 221.0

HWI_IFLA
BSCAPVAL

9A (154)

Absolute capping
value (IFL)

V2R1 X X X 222.0

1 The HWMCA attribute suffix is 92.0 for Group profile connection and it is 192.0 for other applicable connections

HWIQUERY and HWISET attributes

706 z/OS: z/OS MVS Callable Services for HLL

Table 131. HWIQUERY and HWISET / HWISET2 attributes (continued)

Attribute
constant
equate
symbol
with
hexadeci
mal and
(decimal)
values Description

Startin
g z/OS
release

Settabl
e using
HWISE

T or
HWISE

T2 CPC Image
CapRe

c
Reset
AProf

Image
AProf

Load
AProf

User-
define

d
Image
Group

Group
profile

LPAR
Capaci
ty
group

HWMCA
attribute
suffix

HWI_ICFA
BSCAP

9B (155)

Absolute capping
enablement (ICF)
(Y/N)

V2R1 X X X 223.0

HWI_ICFA
BSCAPVAL

9C (156)

Absolute capping
value (ICF)

V2R1 X X X 224.0

HWI_IIPA
BSCAP

9D (157)

Absolute capping
enablement (IIP)
(Y/N)

V2R1 X X X 225.0

HWI_IIPA
BSCAPVAL

9E (158)

Absolute capping
value (IIP)

V2R1 X X X 226.0

HWI_GRO
UP_PROF
_ABSCAP

9F (159)

Absolute capping
enablement (GPP)
(Y/N)

V2R3 X X X X 227.0

HWI_GRO
UP_PROF
_ABSCAPV
AL

A0 (160)

Absolute capping
value (GPP)

V2R3 X X X X 228.0

HWI_GRO
UP_PROF
_ICFABSC
AP

A1 (161)

Absolute capping
enablement (ICF)
(Y/N)

V2R3 X X X X 229.0

HWI_GRO
UP_PROF
_ICFABSC
APVAL

A2 (162)

Absolute capping
value (ICF)

V2R3 X X X X 230.0

HWI_GRO
UP_PROF
_IFLABSC
AP

A3 (163)

Absolute capping
enablement (IFL)
(Y/N)

V2R3 X X X X 231.0

HWI_GRO
UP_PROF
_IFLABSC
APVAL

A4 (164)

Absolute capping
value (IFL)

V2R3 X X X X 232.0

HWI_GRO
UP_PROF
_IIPABSC
AP

A5 (165)

Absolute capping
enablement (IIP)
(Y/N)

V2R3 X X X X 233.0

HWI_GRO
UP_PROF
_IIPABSC
APVAL

A6 (166)

Absolute capping
value (IIP)

V2R3 X X X X 234.0

HWIQUERY and HWISET attributes

Appendix B. BCPii summary tables 707

Table 131. HWIQUERY and HWISET / HWISET2 attributes (continued)

Attribute
constant
equate
symbol
with
hexadeci
mal and
(decimal)
values Description

Startin
g z/OS
release

Settabl
e using
HWISE

T or
HWISE

T2 CPC Image
CapRe

c
Reset
AProf

Image
AProf

Load
AProf

User-
define

d
Image
Group

Group
profile

LPAR
Capaci
ty
group

HWMCA
attribute
suffix

HWI_RECI
D

B7 (183)

Record ID V1R10 X 135.0

HWI_RECT
YPE

B8 (184)

Record type V1R10 X 136.0

HWI_ACTS
TAT

B9 (185)

Record activation
status

V1R10 X 137.0

HWI_ACT
DATE

BA (186)

Record activation
date

V1R10 X 138.0

HWI_EXPD
ATE

BB (187)

Record expiration
date

V1R10 X 139.0

HWI_ACTE
XP

BC (188)

Record activation
expiration date

V1R10 X 140.0

HWI_MAX
RADS

BD (189)

Maximum real
activation days

V1R10 X 141.0

HWI_MAX
TADS

BE (190)

Maximum test
activation days

V1R10 X 142.0

HWI_REM
RADS

BF (191)

Remaining real
activation days

V1R10 X 143.0

HWI_REM
TADS

C0 (192)

Remaining test
activation days

V1R10 X 144.0

HWI_OOC
ODREC

C1 (193)

Capacity record in
XML format

V1R10 X N/A

HWI_IOCD
S

C9 (201)

IOCDS V1R11 X X 27.0

HWI_IPL_
ADDRESS

CA (202)

IPL address V1R11 X X X 28.0

HWI_IPL_
PARM

CB (203)

IPL parameter V1R11 X X X 29.0

HWI_IPL_
TYPE

CC (204)

IPL type V1R11 X X X 52.0

HWIQUERY and HWISET attributes

708 z/OS: z/OS MVS Callable Services for HLL

Table 131. HWIQUERY and HWISET / HWISET2 attributes (continued)

Attribute
constant
equate
symbol
with
hexadeci
mal and
(decimal)
values Description

Startin
g z/OS
release

Settabl
e using
HWISE

T or
HWISE

T2 CPC Image
CapRe

c
Reset
AProf

Image
AProf

Load
AProf

User-
define

d
Image
Group

Group
profile

LPAR
Capaci
ty
group

HWMCA
attribute
suffix

HWI_WW_
PORTNAM
E

CD (205)

Worldwide port
name

V1R11 X X X 53.0

HWI_BOO
T_PGM_
SELECTOR

CE (206)

Boot program
selector

V1R11 X X X 54.0

HWI_LU_N
UM

CF (207)

Logical unit number
value

V1R11 X X X 55.0

HWI_BOO
TREC_
BLK_ADDR

D0 (208)

Boot record logical
block address

V1R11 X X X 56.0

HWI_OPSY
S_
LOADPAR
M

D1 (209)

Operating system
specific load
parameter

V1R11 X X X 57.0

HWI_GRO
UP_PROF_
NAME

D2 (210)

Name of group
profile to be used
for image

V1R11 X X X 93.0

HWI_LOAD
AT
ACTIVATIO
N

D3 (211)

Image loaded
(IPLed) after
activation (Y/N)

V1R11 X X 94.0

HWI_CENT
RAL_
STOR

D4 (212)

Initial amount of
central storage (in
MB) for image

V1R11 X X 95.0

HWI_RES_
CENTRAL_
STOR

D5 (213)

Reserved amount
of central storage
(in MB) for image

V1R11 X X 96.0

HWI_EXPA
NDED_
STOR

D6 (214)

Initial amount of
expanded storage
(in MB) for image

V1R11 X X 97.0

HWI_RES_
EXPANDED
_STOR

D7 (215)

Reserved amount
of expanded
storage (in MB) for
image

V1R11 X X 98.0

HWI_NUM
_GPP

D8 (216)

Number of
dedicated
general purpose
processors for
image

V1R11 X X 99.0

HWIQUERY and HWISET attributes

Appendix B. BCPii summary tables 709

Table 131. HWIQUERY and HWISET / HWISET2 attributes (continued)

Attribute
constant
equate
symbol
with
hexadeci
mal and
(decimal)
values Description

Startin
g z/OS
release

Settabl
e using
HWISE

T or
HWISE

T2 CPC Image
CapRe

c
Reset
AProf

Image
AProf

Load
AProf

User-
define

d
Image
Group

Group
profile

LPAR
Capaci
ty
group

HWMCA
attribute
suffix

HWI_NUM
_RESGPP

D9 (217)

Number of
reserved dedicated
general purpose
processors for
image

V1R11 X X 100.0

HWI_NUM
_IFA

DA (218)

Number of
dedicated
integrated facility
for applications
(IFA) processors
for image

V1R11 X X 101.0

HWI_NUM
_RESIFA

DB (219)

Number of
reserved dedicated
integrated facility
for applications
(IFA) processors
for image

V1R11 X X 102.0

HWI_NUM
_IFL

DC (220)

Number of
dedicated
integrated facility
for Linux (IFL)
processors for
image

V1R11 X X 103.0

HWI_NUM
_RESIFL

DD (221)

Number of
reserved dedicated
integrated facility
for Linux (IFL)
processors for
image

V1R11 X X 104.0

HWI_NUM
_ICF

DE (222)

Number of
dedicated internal
coupling facility
(ICF) processors
for image

V1R11 X X 105.0

HWI_NUM
_RESICF

DF (223)

Number of
reserved dedicated
internal coupling
facility (ICF)
processors for
image

V1R11 X X 106.0

HWI_NUM
_ZIIP

E0 (224)

Number of
dedicated System
z integration
information
processors (zIIPs)
for image

V1R11 X X 107.0

HWI_NUM
_RESZIIP

E1 (225)

Number of
reserved dedicated
System z
integration
information
processors (zIIPs)
for image

V1R11 X X 108.0

HWI_NUM
SHARED
GPP

E2 (226)

Number of shared
general purpose
processors for
image

V1R11 X X 109.0

HWIQUERY and HWISET attributes

710 z/OS: z/OS MVS Callable Services for HLL

Table 131. HWIQUERY and HWISET / HWISET2 attributes (continued)

Attribute
constant
equate
symbol
with
hexadeci
mal and
(decimal)
values Description

Startin
g z/OS
release

Settabl
e using
HWISE

T or
HWISE

T2 CPC Image
CapRe

c
Reset
AProf

Image
AProf

Load
AProf

User-
define

d
Image
Group

Group
profile

LPAR
Capaci
ty
group

HWMCA
attribute
suffix

HWI_NUM
RES
SHARED_G
PP

E3 (227)

Number of
reserved shared
general purpose
processors for
image

V1R11 X X 110.0

HWI_NUM
_
SHARED_I
FA

E4 (228)

Number of shared
integrated facility
for applications
(IFA) processors
for image

V1R11 X X 111.0

HWI_NUM
RES
SHARED_I
FA

E5 (229)

Number of
reserved shared
integrated facility
for applications
(IFA) processors
for image

V1R11 X X 112.0

HWI_NUM
_
SHARED_I
FL

E6 (230)

Number of shared
integrated facility
for Linux (IFL)
processors for
image

V1R11 X X 113.0

HWI_NUM
RES
SHARED_I
FL

E7 (231)

Number of
reserved shared
integrated facility
for Linux (IFL)
processors for
image

V1R11 X X 114.0

HWI_NUM
_
SHARED_I
CF

E8 (232)

Number of shared
internal coupling
facility (ICF)
processors for
image

V1R11 X X 115.0

HWI_NUM
RES
SHARED_I
CF

E9 (233)

Number of
reserved shared
internal coupling
facility (ICF)
processors for
image

V1R11 X X 116.0

HWI_NUM
_
SHARED_Z
IIP

EA (234)

Number of
shared System
z integrated
information
processors (zIIPs)
for image

V1R11 X X 117.0

HWI_NUM
RES
SHARED_Z
IIP

EB (235)

Number of
reserved shared
System z
integrated
information
processors (zIIPs)
for image

V1R11 X X 118.0

HWI_BASI
C_CPU_
AUTH_CO
UNT_CNTL

EC (236)

Basic CPU counter
facility for the
image enabled
(Y/N)

V1R12 X X 168.0

HWIQUERY and HWISET attributes

Appendix B. BCPii summary tables 711

Table 131. HWIQUERY and HWISET / HWISET2 attributes (continued)

Attribute
constant
equate
symbol
with
hexadeci
mal and
(decimal)
values Description

Startin
g z/OS
release

Settabl
e using
HWISE

T or
HWISE

T2 CPC Image
CapRe

c
Reset
AProf

Image
AProf

Load
AProf

User-
define

d
Image
Group

Group
profile

LPAR
Capaci
ty
group

HWMCA
attribute
suffix

HWI_PRO
BSTATE_
CPU_
AUTH_
COUNT_CN
TL

ED (237)

Problem state CPU
counter facility for
the image enabled
(Y/N)

V1R12 X X 169.0

HWI_
CRYPTOAC
TIVITY_
CPU_
AUTH_CO
UNT_
CNTL

EE (238)

Crypto activity CPU
counter facility for
the image enabled
(Y/N)

V1R12 X X 170.0

HWI_EXTE
NDED_
CPU_AUTH
COUNT
CNTL

EF (239)

Extended CPU
counter facility for
the image enabled
(Y/N)

V1R12 X X 171.0

HWI_COPR
OCESSOR_
CPU_AUTH
_ COUNT_
CNTL

F0 (240)

Coprocessor group
CPU counter facility
for the image
enabled (Y/N)

V1R12 X X 172.0

HWI_BASI
C_CPU_
SAMPLING
_
AUTH_CNT
L

F1 (241)

Basic CP CPU
sampling facility for
the image enabled
(Y/N)

V1R12 X X 173.0

HWI_APR
OF_STORE
_ STATUS

F2 (242)

Store status
selected (Y/N)

V1R11 X X 166.0

HWI_APR
OF_
LOADTYPE

F3 (243)

Type of load
requested

V1R11 X X X X 167.0

HWI_PRO
FILE_
DESCRIPT
ION

F4 (244)

Activation profile
description

V1R13 X X X X X 2 203.0

HWI_PRO
FILE_
PARTITIO
N_ID

F5 (245)

Partition identifier
for AProf

V1R13 X X 51.0

2 HWI_PROFILE_DESCRIPTION is NOT settable for LPAR Capacity Group

HWIQUERY and HWISET attributes

712 z/OS: z/OS MVS Callable Services for HLL

Table 131. HWIQUERY and HWISET / HWISET2 attributes (continued)

Attribute
constant
equate
symbol
with
hexadeci
mal and
(decimal)
values Description

Startin
g z/OS
release

Settabl
e using
HWISE

T or
HWISE

T2 CPC Image
CapRe

c
Reset
AProf

Image
AProf

Load
AProf

User-
define

d
Image
Group

Group
profile

LPAR
Capaci
ty
group

HWMCA
attribute
suffix

HWI_OPER
ATING_
MODE

F6 (246)

Operating mode
value for AProf

V1R13 X X 204.0

HWI_CLOC
K_TYPE

F7 (247)

Clock type
assignment (time
source setting)

V1R13 X X 205.0

HWI_TIME
OFFSET
DAYS

F8 (248)

Number of days
currently set
as offset from
external time
source's TOD

V1R13 X X 206.0

HWI_TIME
OFFSET
HOURS

F9 (249)

Number of hours
currently set
as offset from
external time
source's TOD

V1R13 X X 207.0

HWI_TIME
OFFSET
MINUTES

FA (250)

Number of minutes
currently set
as offset from
external time
source's TOD

V1R13 X X 208.0

HWI_TIME
OFFSET
INCREASE

FB (251)

Local time zone:
TRUE means east
of GMT; FALSE
means west of GMT

V1R13 X X 209.0

HWI_LICC
C_
VALIDATIO
N_
ENABLED

FC (252)

Activation profile
must conform to
the current LICCC
configuration (Y/N)

V1R13 X X 210.0

HWI_GLOB
AL_
PERFORM
ANCE_
DATA_CON
TROL

FD (253)

LPAR can be used
to view processing
unit activity data
for all other LPARs
on the same CPC
(Y/N)

V1R13 X X 211.0

HWI_IO_
CONFIGUR
ATION_
CONTROL

FE (254)

LPAR can be used
to read and write
any IOCDS (Y/N)

V1R13 X X 212.0

HWI_CROS
S_
PARTITIO
N_
AUTHORIT
Y

FF (255)

LPAR can be
used to issue
instructions that
reset or deactivate
other LPARs (Y/N)

V1R13 X 213.0

HWIQUERY and HWISET attributes

Appendix B. BCPii summary tables 713

Table 131. HWIQUERY and HWISET / HWISET2 attributes (continued)

Attribute
constant
equate
symbol
with
hexadeci
mal and
(decimal)
values Description

Startin
g z/OS
release

Settabl
e using
HWISE

T or
HWISE

T2 CPC Image
CapRe

c
Reset
AProf

Image
AProf

Load
AProf

User-
define

d
Image
Group

Group
profile

LPAR
Capaci
ty
group

HWMCA
attribute
suffix

HWI_LOGI
CAL_
PARTITIO
N_
ISOLATIO
N

100 (256)

Re-configurable
channel paths
assigned to LPAR
are reserved for its
exclusive use (Y/N)

V1R13 X X 214.0

HWIREST attributes
For a full list of supported HWIREST operations, see Appendix A, Base Control Program internal interface
(BCPii) in Hardware Management Console Web Services API on Resource Link. Go to Resource Link home
page (www.ibm.com/servers/resourcelink) and click Library on the navigation bar.

HWIREST attributes

714 z/OS: z/OS MVS Callable Services for HLL

http://www.ibm.com/servers/resourcelink
http://www.ibm.com/servers/resourcelink

Appendix C. General use C/C++ header files

C/C++ header files are shipped in z/OS V2R3 SYS1.SAMPLIB. These header files are analogous to
traditional z/OS MVS mapping macros and are provided for general use. The following table lists the
members and describes the interface. Descriptions of the data areas referenced can be found in z/OS
MVS Data Areas in the z/OS Internet library (www.ibm.com/servers/resourcelink/svc00100.nsf/pages/
zosInternetLibrary).

Member Description

BLSCADPL Describes same dara areas as assembler macro BLSABDPL. Depends on
BLSCDESC.

BLSCADSY Describes same data areas as assembler macro BLSADSY.

BLSCCBSP Describes same data areas as assembler macro BLSACBSP. Depends on
BLSCDESC.

BLSCDESC Describes same data areas as assembler macros BLSRDATC, BLSRDATS,
BLSRDATT, BLSRESSY, and BLSRSASY. Many of the other members require that
this header file be included before they are included.

BLSCDRPX Describes same data areas as assembler macro BLSRDRPX. Depends on
BLSCDESC.

BLSCNAMP Describes same data areas as assembler macro BLSRNAMP. Depends on
BLSCDESC.

BLSCPCQE Describes same data areas as assembler macro BLSRPCQE. Depends on
BLSCDESC.

BLSCPPR2 Describes same data areas as assembler macro BLSUPPR2.

BLSCPWHS Describes same data areas as assembler macro BLSRPWHS. Depends on
BLSCDESC.

BLSCXMSP Describes same data areas as assembler macro BLSRXMSP. Depends on
BLSCDESC.

BLSCXSSP Describes same data areas as assembler macro BLSRXSSP. Depends on
BLSCDESC.

C/C++ header files

© Copyright IBM Corp. 1994, 2023 715

https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosInternetLibrary
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosInternetLibrary

C/C++ header files

716 z/OS: z/OS MVS Callable Services for HLL

Appendix D. Accessibility

Accessible publications for this product are offered through IBM Documentation (www.ibm.com/docs/en/
zos).

If you experience difficulty with the accessibility of any z/OS information, send a detailed message to
the Contact the z/OS team web page (www.ibm.com/systems/campaignmail/z/zos/contact_z) or use the
following mailing address.

IBM Corporation
Attention: MHVRCFS Reader Comments
Department H6MA, Building 707
2455 South Road
Poughkeepsie, NY 12601-5400
United States

© Copyright IBM Corp. 1994, 2023 717

https://www.ibm.com/docs/en/zos
https://www.ibm.com/docs/en/zos
http://www.ibm.com/systems/campaignmail/z/zos/contact_z

718 z/OS: z/OS MVS Callable Services for HLL

Notices

This information was developed for products and services that are offered in the USA or elsewhere.

IBM may not offer the products, services, or features discussed in this document in other countries.
Consult your local IBM representative for information on the products and services currently available in
your area. Any reference to an IBM product, program, or service is not intended to state or imply that
only that IBM product, program, or service may be used. Any functionally equivalent product, program, or
service that does not infringe any IBM intellectual property right may be used instead. However, it is the
user's responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this
document. The furnishing of this document does not grant you any license to these patents. You can
send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive, MD-NC119
Armonk, NY 10504-1785
United States of America

For license inquiries regarding double-byte character set (DBCS) information, contact the IBM Intellectual
Property Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan Ltd.
19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of
express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically
made to the information herein; these changes will be incorporated in new editions of the publication.
IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

This information could include missing, incorrect, or broken hyperlinks. Hyperlinks are maintained in
only the HTML plug-in output for IBM Documentation. Use of hyperlinks in other output formats of this
information is at your own risk.

Any references in this information to non-IBM websites are provided for convenience only and do not in
any manner serve as an endorsement of those websites. The materials at those websites are not part of
the materials for this IBM product and use of those websites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the
exchange of information between independently created programs and other programs (including this
one) and (ii) the mutual use of the information which has been exchanged, should contact:

IBM Corporation
Site Counsel
2455 South Road

© Copyright IBM Corp. 1994, 2023 719

Poughkeepsie, NY 12601-5400
USA

Such information may be available, subject to appropriate terms and conditions, including in some cases,
payment of a fee.

The licensed program described in this document and all licensed material available for it are provided by
IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement or any
equivalent agreement between us.

Any performance data contained herein was determined in a controlled environment. Therefore, the
results obtained in other operating environments may vary significantly. Some measurements may have
been made on development-level systems and there is no guarantee that these measurements will be
the same on generally available systems. Furthermore, some measurements may have been estimated
through extrapolation. Actual results may vary. Users of this document should verify the applicable data
for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of those products, their
published announcements or other publicly available sources. IBM has not tested those products and
cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM
products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of
those products.

All statements regarding IBM's future direction or intent are subject to change or withdrawal without
notice, and represent goals and objectives only.

This information contains examples of data and reports used in daily business operations. To illustrate
them as completely as possible, the examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to the names and addresses used by an
actual business enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs
in any form without payment to IBM, for the purposes of developing, using, marketing or distributing
application programs conforming to the application programming interface for the operating platform
for which the sample programs are written. These examples have not been thoroughly tested under
all conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these
programs. The sample programs are provided "AS IS", without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

Terms and conditions for product documentation
Permissions for the use of these publications are granted subject to the following terms and conditions.

Applicability
These terms and conditions are in addition to any terms of use for the IBM website.

Personal use
You may reproduce these publications for your personal, noncommercial use provided that all proprietary
notices are preserved. You may not distribute, display or make derivative work of these publications, or
any portion thereof, without the express consent of IBM.

Commercial use
You may reproduce, distribute and display these publications solely within your enterprise provided
that all proprietary notices are preserved. You may not make derivative works of these publications, or

720 z/OS: z/OS MVS Callable Services for HLL

reproduce, distribute or display these publications or any portion thereof outside your enterprise, without
the express consent of IBM.

Rights
Except as expressly granted in this permission, no other permissions, licenses or rights are granted, either
express or implied, to the publications or any information, data, software or other intellectual property
contained therein.

IBM reserves the right to withdraw the permissions granted herein whenever, in its discretion, the use
of the publications is detrimental to its interest or, as determined by IBM, the above instructions are not
being properly followed.

You may not download, export or re-export this information except in full compliance with all applicable
laws and regulations, including all United States export laws and regulations.

IBM MAKES NO GUARANTEE ABOUT THE CONTENT OF THESE PUBLICATIONS. THE PUBLICATIONS
ARE PROVIDED "AS-IS" AND WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED,
INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT,
AND FITNESS FOR A PARTICULAR PURPOSE.

IBM Online Privacy Statement
IBM Software products, including software as a service solutions, ("Software Offerings") may use cookies
or other technologies to collect product usage information, to help improve the end user experience,
to tailor interactions with the end user, or for other purposes. In many cases no personally identifiable
information is collected by the Software Offerings. Some of our Software Offerings can help enable you
to collect personally identifiable information. If this Software Offering uses cookies to collect personally
identifiable information, specific information about this offering’s use of cookies is set forth below.

Depending upon the configurations deployed, this Software Offering may use session cookies that collect
each user’s name, email address, phone number, or other personally identifiable information for purposes
of enhanced user usability and single sign-on configuration. These cookies can be disabled, but disabling
them will also eliminate the functionality they enable.

If the configurations deployed for this Software Offering provide you as customer the ability to collect
personally identifiable information from end users via cookies and other technologies, you should seek
your own legal advice about any laws applicable to such data collection, including any requirements for
notice and consent.

For more information about the use of various technologies, including cookies, for these purposes, see
IBM’s Privacy Policy at ibm.com/privacy and IBM’s Online Privacy Statement at ibm.com/privacy/details
in the section entitled “Cookies, Web Beacons and Other Technologies,” and the “IBM Software Products
and Software-as-a-Service Privacy Statement” at ibm.com/software/info/product-privacy.

Policy for unsupported hardware
Various z/OS elements, such as DFSMSdfp, JES2, JES3, and MVS, contain code that supports specific
hardware servers or devices. In some cases, this device-related element support remains in the product
even after the hardware devices pass their announced End of Service date. z/OS may continue to service
element code; however, it will not provide service related to unsupported hardware devices. Software
problems related to these devices will not be accepted for service, and current service activity will cease
if a problem is determined to be associated with out-of-support devices. In such cases, fixes will not be
issued.

Minimum supported hardware
The minimum supported hardware for z/OS releases identified in z/OS announcements can subsequently
change when service for particular servers or devices is withdrawn. Likewise, the levels of other software
products supported on a particular release of z/OS are subject to the service support lifecycle of those

Notices 721

http://www.ibm.com/privacy
http://www.ibm.com/privacy/details
http://www.ibm.com/software/info/product-privacy

products. Therefore, z/OS and its product publications (for example, panels, samples, messages, and
product documentation) can include references to hardware and software that is no longer supported.

• For information about software support lifecycle, see: IBM Lifecycle Support for z/OS (www.ibm.com/
software/support/systemsz/lifecycle)

• For information about currently-supported IBM hardware, contact your IBM representative.

Additional notices
This information contains examples of data and reports used in daily business operations. To illustrate
them as completely as possible, the examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to the names and addresses used by an
actual business enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrates programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs
in any form without payment to IBM, for the purposes of developing, using, marketing or distributing
application programs conforming to the application programming interface for the operating platform
for which the sample programs are written. These examples have not been thoroughly tested under
all conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these
programs. The sample programs are provided "AS IS", without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

Permission Notice

This book includes information about certain callable service stub and linkage-assist (stub) routines
contained in specific data sets that are intended to be bound or link-edited with code and run on z/OS
systems. In connection with your authorized use of z/OS, you may bind or link-edit these stubs into
your modules and distribute your modules with the included stubs for the purposes of developing, using,
marketing and distributing programs conforming to the documented programming interfaces for z/OS,
provided that each stub is included in its entirety, including any IBM copyright statements. These stubs
have not been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or imply the
reliability, serviceability, or function of these stub programs. The stub referred to in this book is contained
in the following data set:

• SYS1.CSSLIB

Programming interface information
This information is intended to help the customer to write applications that use operating system
services. This information documents general-use programming interface and associated guidance
information provided by z/OS.

General-use programming interfaces allow the customer to write programs that obtain the services of
z/OS.

Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business
Machines Corp., registered in many jurisdictions worldwide. Other product and service names might be
trademarks of IBM or other companies. A current list of IBM trademarks is available on the Web at
Copyright and Trademark information (www.ibm.com/legal/copytrade.shtml).

Linux is a registered trademark of Linus Torvalds in the United States, other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the
United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

722 z/OS: z/OS MVS Callable Services for HLL

http://www.ibm.com/software/support/systemsz/lifecycle
http://www.ibm.com/software/support/systemsz/lifecycle
http://www.ibm.com/legal/copytrade.shtml

Glossary

This glossary defines technical terms and abbreviations used in z/OS MVS documentation.

data object
A VSAM linear data set.
A storage area, outside the user’s storage, that window services defines as a temporary object.

data-in-virtual
An MVS facility that enables a user to access a data object as though that data object resided in the
user’s storage.

gap
The grouping of consecutive bytes that the program repeatedly skips over. When a reference pattern
has a gap, gaps and reference units alternate throughout the data area. See also reference pattern and
reference unit.

hiperspace
A range of up to two gigabytes of virtual storage that a program can use like a buffer.

linear data set
A type of VSAM data set where data is stored as a linear string of bytes.

mapping
A process where window services makes a data object or part of a data object accessible to a user
program through a scroll area or through a window.

object
See data object.

permanent data object
A virtual storage access method (VSAM) linear data set that resides on DASD (also called a data-in-
virtual object).

reference pattern
The order in which a program’s instructions process a data structure, such as an array. A reference
pattern can be sequential or random and can contain gaps.

reference unit
A grouping of consecutive bytes that the program references. If the reference pattern has a gap, the
reference unit is the grouping of bytes between gaps; gaps and reference units alternate throughout
the data area. If the reference pattern does not have gaps, the reference unit is a logical grouping
according to the structure of the data.

scroll area
An area of expanded storage that window services obtains. For a permanent object, window services
maps a window to the scroll area and maps the scroll area to the permanent data object. You can use
the scroll area to make interim changes to a permanent data object. For a temporary data object, the
scroll area is the data object. Window services maps the window to the scroll area.

scrolling
A process where window services saves changes that a user has made in a window. For a permanent
data object, window services saves the changes in the scroll area, without updating the permanent
object. For a temporary object, window services updates the temporary object.

temporary data object
An area of expanded storage that window services provides for use by your program. You can use this
storage to hold temporary data instead of using a DASD workfile. Window services provides no means
for you to save a temporary data object.

VSAM
Virtual storage access method.

© Copyright IBM Corp. 1994, 2023 723

window
An area in the user’s storage where the user can view or change data in a data object that window
services has made available.

724 z/OS: z/OS MVS Callable Services for HLL

Index

A
access to a data object

temporary object 8
access to an object

terminating 18
accessibility

contact IBM 717
ADA programming language

example using window services 37
application

in resource recovery 107
application_backout_UR call

return and reason codes 113
syntax 113

application_commit_UR call
return and reason codes 117
syntax 116

assistive technologies 717
authorized interfaces for zEDC 188, 196, 197, 212

B
back out changes to protected resources 111
BCPii REXX execs, setting up access to 256
BCPii REXX restrictions 262
BCPii REXX support 261, 262, 265, 266
blocks of an object

definition 3
size 3

C
C programming language

call syntax for latch manager services 91
example of reference pattern services 75
example using window services 41

call statements for latch manager services 91
call statements for reference pattern services 71
call syntax

for latch manager service 91
CEA TSO/E address space services

CEATsoRequest API 129
components 121
diagnostic codes 158
invoking 129, 143, 145, 146
overview 121
prerequisites 121
reason codes 149
request types

CeaTsoAttn 135
CeaTsoEnd 136
CeaTsoPing 137
CeaTsoQuery 138
CeaTsoQueryApp 141
CeaTsoStart 134

requirements for callers 134

CEA TSO/E address space services (continued)
return codes 148
TSO/E address spaces 121

changed data in an object
refreshing 16

client web enablement toolkit
HTTP/HTTPS protocol enabler 567
JSON parser 459

Cloud Data Access (CDA) 677
Cloud Data Access (CDA) Services 675
Cloud Data Access Cloud Credential storage 689
Cloud Data Access Configuration 679
Cloud Data Access files 683
COBOL programming language

call syntax for latch manager services 91
example using reference pattern services 77
example using window services 43

commit changes to protected resources 114
commit protocol, two-phase 108
compression service

memory registration 202
Rendezvous 197, 200
single compression request 206
unregister memory 204
unrendezvous 211

Config file 683
contact

z/OS 717
CPC names

dynamic modification of 255
CSRIDAC callable service 22
CSRIRP callable service

example 69
CSRL16J callable service

entry characteristics for the target routine 221
freeing dynamic storage for the target routine 222
programming requirements 222
return codes 226

CSRL16J/CSRLJ1 callable
service

parameter description 221
syntax 221

CSRREFR callable service 26
CSRRRP callable service 73
CSRSAVE callable service 28
CSRSCOT callable service 30
CSRSIC include file 234
CSRVIEW callable service 32

D
data compression 187, 188
data object

mapping 3
obtaining access 10
structure 3

data to be viewed

Index 725

data to be viewed (continued)
identifying 13

data-in-virtual object 3
DFP requirement for window services 10

E
Error conditions 691
examples

data object mapped to a window 3
structure of a data object 3

F
feedback xxi
FORTRAN programming language

call syntax for latch manager services 91
example using reference pattern services 81
example using window services 46

FPZ4ABC 206
FPZ4DMR 204
FPZ4PRB 200
FPZ4RMR 202
FPZ4RZV 197
FPZ4URZ 211

G
gap in reference pattern services

defining 63
definition 63

glossary of terms 723

H
HTTP/HTTPS enabler

Applications executed from a TSO/E operation
environment 650
applications executed from z/OS UNIX operation
environment 647
callable services 586
Capturing trace data through environment variables
647, 648, 650
options 634
options for connections only 634
options for requests onlySure 644, 647

HTTP/HTTPS enablerApplications executed from a batch
job

Capturing trace data through environment variables
647, 648, 650

HTTP/HTTPS protocol enabler
availability 569
elements of 568
linkage 569, 570
programming considerations

environment 571
problem determination 575
recovery 576
security 572

programming examples 581
syntax 569

HWIREXX
return codes 263

HWIREXX (continued)
setting up access to 256

HWTCONST 469, 506, 587
HWTHCONN 588
HWTHDISC 594
HWTHINIT 601
HWTHRQST 605
HWTHRSET 611
HWTHSET 616
HWTHSLST 623
HWTHTERM 629
HWTJCREN 470
HWTJDEL 482
HWTJESCT 489
HWTJGAEN 490
HWTJGBOV 494
HWTJGENC 498
HWTJGJST 502
HWTJGNUE 507
HWTJGNUV 511
HWTJGOEN 517
HWTJGVAL 522
HWTJINIT 527
HWTJOPTS 531
HWTJPARS 536
HWTJSENC 543
HWTJSERI 547
HWTJSRCH 553
HWTJTERM 561

I
identifying data object 10
IEAAFFN callable service

parameter descriptions 219
purpose 219
requirements 220
restrictions and limitations 219
return codes 220
syntax 219

IFAMCON 659
IFAMDSC 662
IFAMGET 665
IFAMQRY 669
interim changes to a permanent object

saving 15
Introduction to DFSMSdfp Cloud Data Access (CDA) 677
ISGLCRT callable service

syntax 91
ISGLOBT callable service

syntax 95
ISGLPBA callable service

syntax 102
ISGLPRG callable service

syntax 101
ISGLREL callable service

syntax 98
ISV-provided REXX programming restrictions 266
ISV-provided REXX support 265

J
JavaScript Object Notation (JSON) 459

726 z/OS: z/OS MVS Callable Services for HLL

JSON parser
availability 461
callable services 467
elements of 460
linkage 462, 463
programming considerations 462, 463
syntax 462

K
Key file 683
keyboard

navigation 717
PF keys 717
shortcut keys 717

L
latch manager services

ISGLCRT callable service
syntax 91

ISGLOBT callable service
syntax 95

ISGLPBA callable service
syntax 102

ISGLPRG callable service
syntax 101

ISGLREL callable service
syntax 98

M
multiple views of an object

defining 14

N
navigation

keyboard 717

P
Pascal programming language

example using window services 50, 83
permanent object

definition 3
maximum size 3
relationship to a data-in-virtual object
3
structure 3

PL/I programming language
call syntax for latch manager services 91
example using window services 53

processor affinity 219
protected

resource 107
Provider file 684

R
reference information 71, 91
reference pattern services

reference pattern services (continued)
coding examples

C programming language 75
COBOL programming language 77
FORTRAN programming language 81
Pascal programming language 83

overview 61
use with data window services 13
using 65

reference unit in reference pattern services
choosing 63
definition 63

REPLACE option for a window 12
resource

process for protecting 108
protecting 107
protection on multiple systems 110
requesting protection 110

resource manager
in resource recovery 107

resource recovery
distributed 110
process 108
programs 107
requesting 110
service 111, 114

RETAIN option for a window 12
REXX programming language

call syntax for latch manager services 91
REXX restrictions 262
REXX support 261, 262
RRS

application_backout_UR call 111
application_commit_UR call 114
as sync-point manager 107

S
sending to IBM

reader comments xxi
server identity 585
shortcut keys 717
size of an object

extending 14
SMF services

SMF real-time interface 659
SMS requirement for window services 10
structure of a data object 3
summary of changes

z/OS MVS Callable Services for HLL xxiv,
xxv

sync-point manager
in resource recovery 107

System Administrator Configuration Quick-Start 679

T
temporary object

definition 3
functions supported 8
maximum size 3
overview of supported functions 8
structure 3

Index 727

terminology 723
transferring control with all registers intact

CSRL16J/CSRLJ1 221
TSO/E REXX programming restrictions 265
TSO/E REXX support 265
two-phase commit protocol 108

U
UR (unit of recovery)

backing out 111
committing 114

User Configuration Quick-Start 681
user interface

ISPF 717
TSO/E 717

using protected resources 107

V
view of an object

terminating 17

W
ways that window services can map an object 4
what window services provides 4
window

definition 3
use 3

window services
call statements 19
COBOL programming language 43
coding examples

ADA programming language 37
C programming language 41
FORTRAN programming language 46
Pascal programming language 50
PL/I programming language 53

functions provided 4
handling abends 18
handling return codes 18
reference information 19
services provided 4
ways to map an object 4

window services overview 3

Z
z/OS client web enablement toolkit, See client web
enablement toolkit
z/OS MVS Callable Services for

HLL
summary of changes xxiv, xxv

zEDC 187, 188, 215
zEDC Express 187, 188
zEnterprise Data Compression (zEDC)

requirements 187
zlib for zEDC 188, 191, 192, 194

728 z/OS: z/OS MVS Callable Services for HLL

IBM®

Product Number: 5650-ZOS

SA23-1377-50

	Contents
	Figures
	Tables
	About this information
	Who should use this information
	How to use this information
	z/OS information

	How to send your comments to IBM
	If you have a technical problem

	Summary of changes
	Summary of changes for z/OS MVS Programming: Callable Services for High-Level Languages for Version 2 Release 5 (V2R5)
	Summary of changes for z/OS V2R4
	Summary of changes for z/OS V2R3

	Part 1. Window services
	Chapter 1. Introduction to window services
	Permanent data objects
	Temporary data objects
	Structure of a data object
	What does window services provide?
	The ways that window services can map an object
	Example 1 — Mapping a permanent object that has no scroll area
	Example 2 — Mapping a permanent object that has a scroll area
	Example 3 — Mapping a temporary object
	Example 4 — Mapping multiple Windows to an object
	Example 5 — Mapping multiple objects

	Access to permanent data objects
	Access to temporary data objects

	Chapter 2. Using window services
	Obtaining access to a data object
	Identifying the object
	Permanent object
	Temporary object

	Specifying the object’s size
	Specifying the type of access
	Obtaining a scroll area

	Defining a view of a data object
	Identifying the data object
	Identifying a window
	Defining the disposition of a window’s contents
	Replace option
	Retain option

	Defining the expected reference pattern
	Identifying the blocks you want to view
	Extending the size of a data object

	Defining multiple views of an object
	Non-overlapping views
	Overlapping views

	Saving interim changes to a permanent data object
	Updating a temporary data object
	Refreshing changed data
	Updating a permanent object on DASD
	When there is a scroll area
	When there is no scroll area

	Changing a view in a window
	Terminating access to a data object
	Handling return codes and abnormal terminations

	Chapter 3. Window services
	CSREVW — View an object and sequentially access it
	Abend codes
	Return codes and reason codes

	CSRIDAC — Request or terminate access to a data object
	Abend codes
	Return codes and reason codes

	CSRREFR — Refresh an object
	Abend codes
	Return codes and reason codes

	CSRSAVE — Save changes made to a permanent object
	Abend codes
	Return codes and reason codes

	CSRSCOT — Save object changes in a scroll area
	Abend codes
	Return codes and reason codes

	CSRVIEW — View an object
	Abend codes
	Return codes and reason codes

	Chapter 4. Window services coding examples
	ADA example
	C/370 example
	COBOL example
	FORTRAN example
	Pascal example
	PL/I example

	Part 2. Reference pattern services
	Chapter 5. Introduction to reference pattern services
	How does the system manage data?
	An example of how the system manages data in an array
	What pages does the system bring in when a gap exists?
	Example 1
	Example 2
	Example 3

	Chapter 6. Using reference pattern services
	Defining the reference pattern for a data area
	Defining the range of the area
	Identifying the direction of the reference
	Defining the reference pattern
	Using CSRIRP when a gap exists

	Choosing the number of bytes on a page fault

	Examples of using CSRIRP to define a reference pattern
	Removing the definition of the reference pattern
	Handling return codes

	Chapter 7. Reference pattern services
	CSRIRP — Define a reference pattern
	Return codes and reason codes

	CSRRRP — Remove a reference pattern
	Return codes and reason codes

	Chapter 8. Reference pattern services coding examples
	C/370 example
	COBOL example
	FORTRAN example
	Pascal example
	PL/I example

	Part 3. Global resource serialization latch manager services
	Chapter 9. Using the latch manager services
	Syntax and linkage conventions for latch manager callable services
	ISGLCRT — Create a latch set
	ABEND codes
	Return codes
	Examples of calls to latch manager services

	ISGLOBT — Obtain a latch
	ABEND codes
	Return codes
	Example

	ISGLREL — Release a latch
	ABEND codes
	Return codes
	Example

	ISGLPRG — Purge a requestor from a latch set
	ABEND codes
	Return codes
	Example

	ISGLPBA — Purge a group of requestors from a group of latch sets
	ABEND codes
	Return codes

	Part 4. Resource recovery services (RRS)
	Chapter 10. Using protected resources
	Resource recovery programs
	Two-phase commit protocol
	Resource recovery process
	Requesting resource protection and recovery
	Using distributed resource recovery
	Application_Backout_UR (SRRBACK)
	Description
	Environment
	Programming requirements
	High level language (HLL) definitions
	Restrictions
	Input register information
	Output register information
	Performance implications
	Syntax
	Parameters
	ABEND codes
	Return codes
	Example

	Application_Commit_UR (SRRCMIT)
	Description
	Environment
	Programming requirements
	High level language (HLL) definitions

	Restrictions
	Input register information
	Output register information
	Performance implications
	Syntax
	Parameters
	ABEND codes
	Return codes
	Example

	Additional callable services

	Part 5. CEA TSO/E address space services
	Chapter 11. Introduction to CEA TSO/E address space services
	CEA TSO/E address space manager components
	System prerequisites for the CEA TSO/E address space services
	Working with TSO/E address spaces started by CEA
	Communicating with programs running in the TSO/E address spaces
	JSON format for TSO/E messages
	Sample TSO/E messages written to the z/OS UNIX message queue

	Reconnecting to CEA TSO/E address spaces
	Idle time versus RECONTIME
	TSO/E LOGON RECONNECT operand versus CEA reconnect

	Chapter 12. Using CEA TSO/E address space services
	Invoking the CEATsoRequest API
	Parameters
	Requirements for callers
	Understanding the request types
	CeaTsoStart - Starting a new TSO/E session
	CeaTsoAttn - Sending an attention interrupt to a TSO/E session
	CeaTsoEnd - Ending a TSO/E session
	CeaTsoPing - Sending a ping on behalf of an application
	CeaTsoQuery - Querying the TSO/E address spaces
	CeaTsoQueryApp - Querying TSO/E sessions by application

	Invoking the CEAmsgsnd API
	Invoking the CEAmsgrcv API
	Invoking the CEAWSNDT API
	Return, reason, and diagnostic codes
	Return codes
	Reason codes
	Diagnostic codes

	CEAYTSOR header file
	CEAXRDEF header file
	Programming example
	Sample compile job

	Part 6. zEnterprise Data Compression (zEDC)
	Chapter 13. Overview and planning of zEnterprise Data Compression (zEDC)
	Requirements for zEnterprise Data Compression
	Planning for zEnterprise Data Compression

	Chapter 14. Application interfaces for zEnterprise Data Compression
	Invoking unauthorized interfaces for zEnterprise Data Compression
	zlib for zEnterprise Data Compression
	Standard zlib functions
	IBM-provided zlib compatible C library
	Running zlib

	Invoking System z authorized interfaces for zEnterprise Data Compression
	System z authorized compression services
	FPZ4RZV - Rendezvous compression service
	Description

	FPZ4PRB — Probe device availability compression service
	Description

	FPZ4RMR - Memory registration compression service
	Description

	FPZ4DMR - Deregister memory compression service
	Description

	FPZ4ABC — Submit compression request
	Description

	FPZ4URZ - Unrendezvous compression request
	Description

	Usage example of a System z authorized service

	Chapter 15. Troubleshooting for zEDC

	Part 7. Other callable services
	Chapter 16. IEAAFFN — Assign processor affinity for encryption or decryption
	Restrictions and limitations
	Requirements
	Return codes

	Chapter 17. CSRL16J/CSRLJ1 — Transfer control with all registers intact
	Defining the entry characteristics of the target routine
	Freeing dynamic storage associated with the caller
	Programming requirements
	Restrictions
	Performance implications
	Syntax diagram
	C/370 syntax
	PL/I syntax

	Parameters
	Return codes
	Example
	C/370 example program
	Assembler program for use with the C/370 example

	Chapter 18. CSRSI — System information service
	Description
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Syntax
	Parameters
	Return codes

	CSRSIC C/370 header file

	Part 8. Base Control Program internal interface (BCPii) services
	Chapter 19. Base Control Program internal interface (BCPii)
	BCPii setup and installation
	Setting up connectivity to the support element
	Levels of hardware that BCPii supports
	Enable BCPii communications on the support element
	Firmware security settings on CPCs lower than z14
	Firmware security settings on z14 and higher CPCs
	Migrating from a pre-z14 to a z14 and higher machine
	Manual BCPii firmware security configuration
	Setting BCPii firmware security access to the CPC
	Setting BCPii firmware security access for each LPAR

	Define the BCPii community name on the support element

	Setting up authority to use BCPii
	Program authority
	General security product authority
	Authority to the particular resource
	Community name defined in the security product for each CPC

	BCPii configuration considerations
	Considerations for Language Environment runtime options
	Dynamic modification of CPC names

	Setting up event notification for BCPii z/OS UNIX applications
	CEA address space setup
	CEA ENF security configuration

	Setting up access to BCPii REXX execs
	Setting up access to the HWIREXX helper program
	Setting up an environment to run BCPii TSO/E REXX execs
	Setting up access for BCPii TSO/E REXX Execs
	Host command environment considerations

	BCPii startup and shutdown
	BCPii address space does not start up at IPL
	Ending the HWIBCPii address space
	Restarting the HWIBCPii address space

	SMF recording in BCPii
	BCPii callable services
	Syntax, linkage and programming considerations
	Calling formats
	BCPii connection scope
	Connections with address space affinity
	Connections with task affinity

	Linkage considerations
	REXX programming considerations
	Executing a BCPii REXX exec in the System REXX environment
	BCPii REXX programming restrictions for the System REXX environment
	Using the HWIREXX interface
	Return codes from the HWIREXX service

	Using the AXREXX macro

	Executing a BCPii REXX exec in the TSO/E REXX environment
	BCPii REXX programming restrictions for the TSO/E environment

	Executing a BCPii REXX exec in an ISV-provided REXX environment
	BCPii REXX programming restrictions for an ISV-provided REXX environment

	REXX Programming tips
	Return codes from a REXX BCPii host command
	REXX return codes from the BCPii hwihost function
	Sample REXX exec

	Assembler programming considerations
	Programming Examples

	HWICMD / HWICMD2 — Issue a BCPii hardware management command
	Description
	Environment
	Programming requirements
	REXX programming considerations for the HWICMD / HWICMD2 service
	Restrictions
	Authorization
	SMF recording
	Syntax
	Parameters
	ABEND codes
	Return codes
	Example

	HWICONN — Establish a BCPii connection
	Description
	Environment
	Programming requirements
	REXX programming considerations for the HWICONN service
	Restrictions
	Authorization
	Syntax
	Parameters
	ABEND codes
	Return codes
	Example

	HWIDISC — Release a BCPii connection
	Description
	Environment
	Programming requirements
	REXX programming considerations for the HWIDISC service
	Restrictions
	Authorization
	Syntax
	Parameters
	ABEND codes
	Return codes
	Example

	HWIEVENT — Register or unregister for BCPii events
	Monitoring events occurring on a particular CPC or image
	Monitoring operating system message events (Hwi_Event_OpSysMsg)
	Monitoring communication availability between BCPii and the CPC
	Monitoring the status of the BCPii address space
	Description
	Environment
	Programming requirements
	REXX programming considerations for the HWIEVENT service
	Restrictions
	Authorization
	Syntax
	Parameters
	ABEND codes
	Return codes
	Example

	HWILIST — Retrieve HMC and BCPii configuration-related information
	Description
	Environment
	Programming requirements
	REXX programming considerations for the HWILIST service
	Restrictions
	Authorization
	Syntax
	Parameters
	ABEND codes
	Return codes
	Example

	HWIQUERY — BCPii retrieval of SE/HMC-managed attributes
	Description
	Environment
	Programming requirements
	REXX programming considerations for the HWIQUERY service
	Restrictions
	Code page consideration
	Authorization
	Syntax
	Parameters
	ABEND codes
	Return codes
	Example

	HWIREST — Issue RESTlike requests to the SE
	Description
	Environment
	Programming requirements
	Restrictions
	Authorization
	SMF recording
	ABEND codes
	Non-REXX interface parms
	Syntax
	Parameters
	Example

	REXX interface parms
	Syntax
	Parameters
	Example

	HWISET/HWISET2 — BCPii set single or multiple SE/HMC-managed attributes
	Description
	Environment
	Programming requirements
	REXX programming considerations for the HWISET / HWISET2 service
	Restrictions
	Code page consideration
	Authorization
	SMF recording
	Syntax
	Parameters
	ABEND codes
	Return codes
	Example

	HWIBeginEventDelivery — Begin delivery of BCPii event notifications
	Description
	Environment
	Programming requirements
	Restrictions
	Authorization
	Syntax
	Parameters
	ABEND codes
	Return codes
	Example

	HWIEndEventDelivery — End delivery of BCPii event notifications
	Description
	Environment
	Programming requirements
	Restrictions
	Authorization
	Syntax
	Parameters
	ABEND codes
	Return codes
	Example

	HWIManageEvents — Manage the list of BCPii events
	Description
	Environment
	Programming requirements
	Restrictions
	Authorization
	Syntax
	Parameters
	ABEND codes
	Return codes
	Example

	HWIGetEvent — Retrieve outstanding BCPii event notifications
	Description
	Environment
	Programming requirements
	Restrictions
	Authorization
	Syntax
	Parameters
	ABEND codes
	Return codes
	Example

	Part 9. z/OS client web enablement toolkit
	Chapter 20. The z/OS JSON parser
	Elements of the z/OS JSON parser
	Availability of the z/OS JSON parser
	Syntax, linkage, and programming considerations
	z/OS JSON parser callable services
	HWTCONST — Initialize predefined variables (REXX)
	HWTJCREN — Create JSON entry
	HWTJDEL — Delete a JSON entry
	HWTJESCT — Encode or decode escape sequences (REXX)
	HWTJGAEN — Get array entry
	HWTJGBOV — Get boolean value
	HWTJGENC — Get JSON encoding
	HWTJGJST — Get JSON type
	HWTCONST — Initialize predefined variables (REXX)
	HWTJGNUE — Get number of entries
	HWTJGNUV — Get number value (non-REXX)
	HWTJGOEN — Get object entry
	HWTJGVAL — Get value
	HWTJINIT — Initialize a parser instance
	HWTJOPTS — Set parser options
	HWTJPARS — Parse a JSON string
	HWTJSENC — Set JSON encoding
	HWTJSERI — Serialize (build) JSON text
	HWTJSRCH — Search
	HWTJTERM — Terminate a parser instance

	Chapter 21. The z/OS HTTP/HTTPS protocol enabler
	Elements of the z/OS HTTP/HTTPS enabler
	Availability of the z/OS HTTP/HTTPS enabler
	Syntax, linkage, and programming considerations
	AT-TLS usage overview
	Using the toolkit with AT-TLS

	Server identity
	z/OS HTTP/HTTPS callable services
	HWTCONST — Initialize predefined variables (REXX)
	HWTHCONN — Connect to an HTTP server
	HWTHDISC — Disconnect from an HTTP server
	HWTHINIT — Initialize an HTTP connection or request
	HWTHRQST — Send a request to an HTTP server
	HWTHRSET — Reset an HTTP connection or request
	HWTHSET — Set HTTP connection or request options
	HWTHSLST — Linked list append service
	HWTHTERM — Terminate an HTTP connection or request
	HTTP/HTTPS enabler options and values
	Options for connections
	Options for requests
	Capturing trace data through environment variables
	Applications executed from z/OS UNIX operation environment
	Applications executed from a batch job
	Applications executed from a TSO/E operation environment

	Sending data to a server (non-REXX)
	Buffer with the HWTH_OPT_REQUESTBODY option
	Streaming send exit

	Receiving data from a server (non-REXX)
	Processing response headers with the response header callback routine
	Response body processing options
	Usage considerations for the toolkit callback routines

	Part 10. SMF Services
	Chapter 22. SMF real-time interface
	IFAMCON — Connect to an SMF in-memory resource
	IFAMDSC — Disconnect from an SMF in-memory resource
	IFAMGET — Obtain data from an SMF in-memory resource
	IFAMQRY — Query SMF in-memory resources

	Part 11. Cloud Data Access (CDA) Services
	Chapter 23. Introduction to DFSMSdfp Cloud Data Access (CDA)
	Chapter 24. Cloud Data Access configuration
	System administrator configuration quick-start
	User configuration quick-start

	Chapter 25. Cloud Data Access files
	Key file
	Config file
	Provider file

	Chapter 26. Cloud Data Access cloud credential storage
	Error conditions

	Appendix A. BCPii communication error reason codes
	Appendix B. BCPii summary tables
	BCPii configuration considerations
	HWICMD / HWICMD2
	HWIEVENT
	HWIQUERY and HWISET / HWISET2 attributes
	HWIREST attributes

	Appendix C. General use C/C++ header files
	Appendix D. Accessibility
	Notices
	Terms and conditions for product documentation
	IBM Online Privacy Statement
	Policy for unsupported hardware
	Minimum supported hardware
	Additional notices
	Programming interface information
	Trademarks

	Glossary
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	P
	R
	S
	T
	U
	V
	W
	Z

