CICS Transaction Server for z/OS
Version 5 Release 4

Distributed Transaction Programming
Guide

.||I

Note

Before using this information and the product it supports, read the information in “Notices” on page
151.

This edition applies to the IBM CICS® Transaction Server for z/0OS® Version 5 Release 4 (product number 5655-Y04) and
to all subsequent releases and modifications until otherwise indicated in new editions.

© Copyright International Business Machines Corporation 1974, 2019.

US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract with
IBM Corp.

Contents

ADOUL this PDF.....c.eeuiieiiirieieierierereseesesessesessssesessssesessssessssssessssssessssesessssesessssesssses Vi

Chapter 1. Distributed transaction processing......c.ccccccceiiniinirniiniiniieiiecienceccecnennn 1

OVEIVIEW OF DTP..iiiiiiieeieeite sttt et st st e st e s ee s te e steesbe s baesabe e baesabeesbeesasessbaesasesnseesssesaseenseesnseenseesssesnses 1
Advantages over function shipping and transaction roUtiNG........cccccveeecieecciee e e 1
Why distributed transaction ProCESSING?.....c.uiiiiiieiccee ettt eeree e e eete e eeate e e aeeeeateeeerteesenaeesseeesnnees 2
DTP’s place in the CICS intercommunication faCiliti€S.........ecccueeeeviieeiiieeceecce e 2
WAt 1S DT P?.ccitiiteeciieeesteeteste et et et e et e ste st e ste e teeseessesssessaessesseessesseesseeneeaseassesseesseeseesseessesseassesseensesssessennses 3
CONVEISATIONS. c.ttiiieeieeite et et et e st eete st e st e s bt e s aee s beesseesabe e beesabe e baesabeenbeeseseenbaesasesnbaesssesnseensaesnsesnseeen 4
S T=TT] o] o 1T OO SRRSO RRRTRPPPRR 5
1Sy A] o TN =Yoo ool T T YT S S 5
MaiNtAINING AAtA INTEEITY . cectiiieiiiecce ettt e e rte e e re e et e e e tbee e stee e ssee e ssaeenssaeennseeensseeennsens 7
SYNCHIONIZALION LEVELS ... eeiieeeieeeee et et e et e e te e e e tae e s te e e e abee e e abaeeenteeeentaeennseas 7
DesSigNING diStribDULET PrOCESSES. ...uiiiiiieicieeeciee et et e et e et e e ete e e te e s ette e s ateesesteesssteeseseeesastaesstessnsenennns 8
Structuring distributed tranSACtIONS.....cccciii e e 8
DESIZNING CONVEISAIONS. ...iiiiitiieeciiieeiieeeiteeeiteeecteeeetreeeetteeesabee e aseeessseeeassseaasseeaasseeeasseeansseeansseesnssneans 10
FAN o o O o o] (e ol | O PSP URR 12
What is a conversation and what makes it NECESSAIY?....cccvuiiiciieicieeeciee ettt e e e e eerre e e rteeeeneeeenes 13
Conversation initiation and transaction hierarChy.........ccueeeceeecie e 13
Dialog between tWO tranSaCHiONS.......cicciiiieiee ettt et te e e ae e e eaae e eeaae e e aee e eaeeeennees 14
Control flOWS and DraCKetS......oiiiiirriiiieeecee e s st st e e be e sase e 15
Conversation state and error detECHION......ccuiiicciie it eere e e re e e ae e e aae e enes 15
SYNCNIONIZALION. ..ei ittt et e ee e tee e e te e e e te e e ebe e e s abeeeeteeesataeeestaeeanteeesnseeeansaeennsaeenneens 15
L O Y o o O {0 gl I I O URTSR 17
FY e e O o g T YT o T=Ye o ol o T T ok PSR 18
EXEC CICS OF CPI COMMUNICAtIONS . ccuutiiieirieeeieesieeniesseestessieeseessseessaesssessseesssesssassssesssessssesssesssasssseenns 18

Chapter 2. Writing programs for APPC mapped conversations........cccccceucencenniannas. 21

CONVEISATION INITIALION. .eutieiteirteeiteerte ettt et ettt et e s e et e s bt e bae st e ebeesasessbeesaeesaseenseesasesnseessseenseensns 21
Allocating a session t0 the CONVEISAtION......ccciiiiciieciee et sr e e e e e e eaaee s 21
USING ATI 10 QllOCAtE @ SESSION....uiiiicieecciee ettt et et ee e e s te e e te e eeate e eertee e steesestaeeenseeesntasenssaeanns 21
Connecting the partnNer traNSACTION......c.iiicciie ettt eeee e e etee e e tre e et e e eaee e sbaeeebeeesnseas 22
Initial data for the back-end tranSACtION......cueieciie ettt ee e e etre e e erte e eeare e seraee e 22

Back-end transaction iNitiatioN.......c.eeceerieereeriecieeee ettt se e ssae e sae e sbe e ba e sete e beesaaesbeesaaeenes 23
What happens if the back-end transaction fails to Start........cccccueeecieiciiieiccie e 24

Transferring data 0N the CONVEISATION.......cccciiiiccie ettt e e tee e e te e e e be e e s baeesaaee e 24
Sending data to the partner tranSaACION......ccciiiccie et re e e e e e e e e eaae e 24
Switching from sending to reCeiVING data.......ccciiicceiieiie e e et 25
Receiving data from the partner tranSaCtioN.........ccceiiciii e 26
The CONVERSE COMMANT....ttiiiiiiiiiiieniieritenierstesiteeseessessseesseesseesseessseessesssseessessssesssessssssssesssassnses 27

Communicating errors aCroSS @ CONVEISAtION.....c..iiiciieiiiieicieeecteeeeteeeereeeereeesree e sseessaseesssseesnsseesnnseeans 27
Requesting INVITE from the partner tranSaction..........cceeecieeiciiecciee ettt e s 28
Demanding INVITE from the partner transSaction........cceeceeeiieeeciee e 28

Safeguarding data INTEEIItY....cucii ettt e e te e e e te e e te e e te e s aae e e ateeenteesnteesseeesnnees 28
How to synchronize a conversation using CONFIRM commMands........ccccueeecieeecieescieeecneeeereeesvneeenns 29
How to synchronize conversations using SYNCPOINT commands........cceccueeeevieeeecieeeesieeescveeeesveeeennns 30

ENING the CONVEISAtION.....ciiiiiectie ettt et e e e te e s te e s at e e s atae s sseeessseeessseeenssaeennseesnnseenns 30
Normal termination of @ CONVEISAtION.......cccuii i e et e ae e e eaae e e 30
Emergency termination of @ CONVEISAtION......cccuiiiiiieeiieecire ettt e e e eee e e ae e e aaeeenes 31
Unexpected termination of @ CONVEISAtiON........cuiiiciiiiciie ettt ere e svre e sevaeeeans 31

Checking the outcome of @ DTP COMMANG......cciiiiiiiiiiiie ittt see e s see e s see e ssaee e s ee e snees 32

Checking EIB fields and the CONVErsation STate.......ccccvvcieiiiiiiniieecieeete et sare e sree e 34
Summary of CICS commands for APPC mapped CONVEIrSatioNS........ccccueeeeeeciiieeeeeecieeeeseeveeeeeeevveeeeeeanns 35
State transitions in APPC Mapped CONVEISAtIONS.....ccccuiieieeeciieeeecciee e e cccteee e eeetree e e sesree e e senbeeeeseeseeeeaens 36

HOW t0 USE the State tableS....iiiiiiiiie et sttt be e s s ae e s sbeeseaee 36

INitial CONVEISAtION STALES...uiiiiiiiieiieeecie ettt sttt e s st e s s e e s s be e s s e e s sabeeesabaeesabaessases 36

Testing the CONVErSAtioN STAtE.....cciiciiiiie ettt be e s ee e s sabe e s s aee e s s aeeesaeas 36

State tables for APPC mapped conversations at Sync level O..........ocovecvieeeieccieee s, 37

State tables for APPC mapped conversations at sync level L........ccooccieeeiecciiee s e 39

State tables for APPC mapped conversations at sync level 2.........ooovcieeeiecciiee e, 42

Chapter 3. Writing programs for MRO conversations..........cccccecereiinirncrniceeciennnes. 47

MRO CONVEISATION TLOW..eiiiiiiiiie ettt et e e e e ree e e e et e e e s e e btee e e e s ssaeeeesenssaeeesensseeesennssnesessnnes 47
(070 NV - LA o] AT T YL =1 (o PSSRSOt 47
Back-end transaction iNItIatiON.........eiiecciieei e eeee e e e e e e e e e ebe e e e s e reeeessensaeeeeeenneaneens 48
Transferring data 0n the CONVEISAtION......ciiciiiiiiiiciece e e s e e s see e s 49
Safeguarding data INTEEIITY ..t ssee e st e s s bee e sbe e e sbeeesbeeessseessanens 52
ENdiNg the CONVEISAtION....cii ittt e s st e e s e e e s e e s sbee e s bee e s beessans 52
Checking the outcome of @ DTP COMMANG....ccoociiiiiiiiiiiiiiiieeriee et e st e ssee e ssee e ssee e ssseeessseeesnee 53
Summary of commands for MRO CONVEISAtIONS.....cccuiiiieicciieeececiiee e ceitre e e eete e e e eenrre e e s eeraeeeeeeaseeees 54

State transitions iN MRO CONVEISATIONS........uiiiicciiieeecciitee e eeciere e eectere e s eerre e e e ssbeeeeesenbeeeeseensseeeesenssenesanas 55
HOW t0 USE the State 1able..eeii et e e et e e e ae e e e e nre e e e e eanes 55
INitial CONVEISATION STAES...uiiiiieiiieeeccee ettt eee e e e e e e e e e e s eabaee e s essteeeesesseeeesennssnsessanns 56
Testing the CONVErSAtioN STAte......ciiciiiiieicee et see e s see e s saee e s s aee e ssaeeesaeas 56
State tables Tor MRO CONVEISAtIONS.....cicccuiieeeicciiee e cecttee e eeestre e s e ecetee e e e e enaee e e s senteeeseestaeeesenssaeesennnsnes 56

Chapter 4. Writing programs for APPC basic conversations.........cccccceeeeeeienieeenes. 539

CONVEISATION INITIATION...iiictieiitee ettt sttt ettt e s sre e st e e s sbae e s s be e s beeesbeeesseeessseesssseessseesnsaesnnsaenn 59
Allocating a session t0 the CONVEISAtION......ccciiiiciieeieeie e aee e ssaee s 59
USING ATI 10 AllOCAtE @ SESSION.c.utiiiiieiiiie ittt ettt e s ste e s te e s sate e ssabeesssteessateessseaessstaessnsaesans 59
Connecting the Partner traNSACTION......ccii ittt sttt sree e sree e sbee e sbe e e sbee s sbeessbeessanens 60
Initial data for the back-end tranSACTION......ccuiiiiiiii i eseree e seaee e saeeesans 60

Back-end transaction INITIATION.......iic ittt e st e e s e e s sabe e s abeessabe e s aaaeeas 61

What happens if the back-end transaction fails t0 Start......ccccccieeieeciie e 61

Sending data to the partner traNSACTION.......ciii ittt e s sate e s be e ssareesaaeesas 62
Switching from sending t0 reCeIVING data.....ccivciiiiiiieiiieeree et ae e ssaee s 64

Receiving data from the partner tranSaCTION........ciicieiiiiii i e s saee e ssreeesane 64
Receiving data by the rECOIG.. ... s e s e e s s be e e s e e e sneas 65
Receiving data by the DU ...t re e s e e 66

Communicating errors aCroSS @ CONVEISATION.....c.uiiviiieriiiereiieriieessteessreessreesseeessseeessseesssseesssseesssseesas 66
Requesting INVITE from the partner tranSaction........cucueeieieeieiieiiiee et ssaeeessee e 66
Demanding INVITE from the partner transSaction ...t see e 67

Safeguarding data INTEEIITY....civviiiiie ittt et te e s ee e s s ee e s saee e ssaee e saeeessaeessneeesneeesnnes 67
How to synchronize conversations using CONFIRM cOmMmMands........coccueerrieeinieeinnieennieesseeessneeesnnee 67

ENAING the CONVEISAION. ...ttt st s st e s et e st e e s abe e s abeesssseessssaesssaesanseesnnseesas 69
Normal termination Of @ CONVEISAtION......iiiciiiirie ittt see e s saee s ssaee e saeas 69
Emergency termination of @ CONVEISAtION.....cicciiiiiieiriieeere ettt e st ee e sae e saeas 70
Unexpected termination of @ CONVEIrSatioN.........uiiiiiciiiee ettt e e e e e e s nra e e e e e anreeas 70

Checking the outcome Of GDS COMMANAS.....ccccuiiiiieiiiieirie ettt see e sbee s sbee s s e e s s beessaseas 70
TesStiNg fOr rEQUEST FAILUME....ii it se e e s e e s e e e s bae e sbaeesneeeen 71
TESTING INAICATOIS . uiiiiiee ittt et e e st e e s sbee e s bee e sbeeesbeeesbeeesaseeesaseessaseessnseessnsens 71
Checking CONVDATA fields and the conversation State........cccvcieircieiiiieiniieerieceee et see e 74

Summary of commands for APPC basiC CONVEISAtiONS.........uiieiieciiieeeecitee e et e e ecree e e vree e e e enneeeeeeans 76

State transitions in APPC DaSiC CONVEISATIONS.....cc.uiiiiiiiiiitieiieeeite et ettt see e ssee e siee s s saee s s sneeessaeeesnees 77
HOW t0 USE the State tableS....iiiiiiiiieeeee e s e e s s ae e s s eeeenaee 77
INitial CONVEISAtION STALES....uiii ittt ettt s e e s s e s e e s s e e s sabeeesabaeesareesnanes 78
Testing the CONVErSatioN STAtE.....cciiciiiiieicee et see e s saee e s saee e s s aeaesaeas 78

State tables for APPC basic conversations at SynC level O......cooceiieeiceciieee e, 79
State tables for APPC basic conversations at SynC level L......uiieeiiccieee e, 80
State tables for APPC mapped conversations at sync level 2.........ooovccieeeiecciiee e, 83

Chapter 5. Writing programs for LUTYPEG6.1 conversationsccccceeeeereecrancrennes. 87

CONVEISATION INITIATION. . eiiitiieiiee ettt ete e st e e saae e s ate e s bteesseeessseessseesasseessseesssaesnnsaenn 87
Allocating a session t0 the CONVEISAtION......ccciiiiciiieieece e saae e s aee s 87
Connecting the Partner traNSACTION......ccuii ittt see e sree e s bee e s bt e e saee e sbeeessbeessaneas 87

Back-end transaction INITIAaTION.......iic ettt e s ae e s e s sbe e s ba e s abe e s aaaeeas 87

Transferring data 0N the CONVEISATION......uiii ittt e e sbe e e sbe e s sbaesssaeeens 88
Sending data to the partner tranSaACTION......icciii et e e ste e s sbeesseaeens 88
Switching from sending t0 reCeIVING data.....ccovciiiiiiiiiiieireecree et see e s ae e s saee s 88
Receiving data from the partner tranSaCTioN........oocveiirviei i s 88
WaAItING TOr @ SIZNAL...ciiiiiiieiiiieeeeee et e e s see e s bee e s saee e s sabeessseeessseaesseaesnneaas 88
Combining SENAING AN FECEIVINGciiiitiiiiteritie ettt erte e srte e e sre e s et essateesssteesssaeesssseesssseesssseessnseess 88
Communicating errors aCroSS @ CONVETSATION.....ccuiiiiieeriieeriieeriteesiteesseeesseeessseessssaessseeesssseessseess 89
Safeguarding data INTEEIITY .. ii ittt ee e s saee e s be e e s bee e sbe e e sbee e sbeesssreeesasens 89

ENAING the CONVEISAION. ...ttt ettt e st e st e e s s te e s abeesssseesssseesssseessnseesanseesas 89
Ending a conversation NOIMALLY......cueiiciei ettt ee e see et e s s bee s sbe e s sbee s sbae e sabaeesaneas 89
Unexpected termination of @ CONVEIrSatioN.........uiiiicciiiee ettt et e e e eeree e e s arae e e e e anreeas 89

Checking the outcome of @ DTP COMMANG......cciiiiiiiiiiiieiiiecriee ettt see e s see e ssaee e s aee e saees 89

Considerations for the front-end tranSaCTiON.......ciiciii it sree e ssreeesane 90
SESSION ALLOCATION. ..eittiiitiei ittt ettt e e sette e sebee e st e e e s beeeseateesbeeesbeeessteesneeesneeesaneeenan 91
The SESSION IAENTITIEI . c.eiiiiciieeieece et s bt e e s sbte e s bbe e s ssaeessseessseesseeesnsaenn 91

Summary of commands for LUTYPEG.1 CONVEISAtIONS.....cccccuiiieieeiiieeeeeciieeeeecvtee e e eeiteeeeeeenreeeeseeneneeeeas 92

State transitions iN LUTYPEG.L CONVEISAtIONS....ccicciiiirieeiiieeieieeesieessieesseeessieeessaeeessseeessseesssneesssseessnnes 92
HOW t0 USE The State table....iiiiiiiiieeeee e e bee e s aee e s 92
L TR] = (3OO R SRS 93
Testing the CONVErSAtioN STAtE.....cciiciiiiie et be e e re e s saee e s see e s s seeesaeas 93
State tables for LUTYPEG.L CONVEISAtIONS....ciciuiiriieeriieeriieeeiiteeesieeessieeessieeessaeeessseeesssseessseeesssenssnnens 93

Chapter 6. Syncpointing a distributed process.......ccccccvcreireireirncieiincincinicnccncnnnes 97

Syncpointing @ diSTriDULEA PrOCESS......iiiiiiiiiiiiieeecee ettt e s re e s be e s s sbeessareessaraeeas 97
The SYNCPOINT COMMANG...ciiiiiiiiiieiiiieriiiersiteesitessreeesieeesieesssseessbeessbeessseessseesssseessnseesssseessssees 97
The ISSUE PREPARE COMMANG...ciiiiiiiiiiiiiiieeiiteesieessit st e st e st e st essbaessaaeessabeessasaessssaesssseesnnnes 97
The SYNCPOINT ROLLBACK COMMANG.....iiiiiiiiiiiieiiiieniieesiieessteessieeesssseessseessnseesssseesssseessssesssseesas 98
When a backoUt iS FEQUITE.......uiiii ettt e et e e e e tee e e e s bt e e e e s nbteeeesnstaeeeeenssneenennses 98
SyNchronizing tWo CICS SYSTEMS.....uiiiiiiiiiiieriiie et ssite st et s e e s s e e s sbee s sbeesssbeessbeessseeesneessnses 99
Synchronizing three or MOre CICS SYSTEMS...ciiiiiiiiieiiiee it rsiee st ssre e seeeesseeessreeessreeeseseeeseneeesans 106
What really flows between APPC SYSTEMS.....ccc i ceciieeeeecteee e eecee e e ecrte e e s eeare e e s seateeeesseassaeeeseanes 111

Appendix A. CICS mapping to the APPC architecture.........ccccceeuiviincncncrecnene.. 115

Y01] 0 o] 5 £=Te I] o) 4ToT AT =Y =TSRSS 115
CICS implementation of CONtrol OPerator VEIDS........uiiie ittt e e e eree e e e eae e e 116
(07e] a) (o] No] o T=T 2=\ o T BV =T o o LTSS 117
Return codes for CONTrol OPErator VEIDS.........uiii ittt et e et e e e ree e e s e naeeee s 124
CICS deviations from APPC arChitECIUM....cucuiiiiiiiiieeeeceec et s e e s 125
APPC transaction routing deviations from APPC archit@Cture......ccccovevveiiiieiicieeniieenciee e e 125
CICS MappPing t0 the APPC VEIDS......ciiiiiiieiieiciee ettt seie e st e s ste e s ssee e s ate e ssateessateesssteessseeessseaesnns 125
Command mapping for APPC basiC CONVEISAtiONS......c.ceiriiiiriiieiriieirieeesieessieessieesseeesseeessseeessnee 125
Command mapping for APPC mapped CONVErSatiONS.......ccivvieiicieeirieeiiieesieeessieesseesssveesssveeesnees 132
CICS deviations from the APPC arChitECIUIE......uiiiiiiiiiiieiiieceite sttt be e sree s 139

Appendix B. Migration of LUTYPEG6.1 applications to APPC links.......ccccccevrenneeee. 141

Tt NaTe] a1 o o F= TSP OPRRTSPR 141
State transitions in LUTYPE6.1 migration-mode CONVErSationS.......ccceevvueeirieeeiniieeiniieeesieesseeessveessneens 143
State tables for LUTYPE6.1 migration-mode CONVErSatioNS.......cceerveerniieernieeesniieeesreessineeessneessnens 143

vi

Appendix C. Differences between APPC mapped and MRO conversations............ 147

Different treatment of COMMANA SEQUENCES........uiiiieciiiee ettt e e e rbeee e e e erre e e e e e enraeeaean 147
USING The LAST OPTION ittt sttt ettt et s et e st te e s saee e sbeeesste e s seeesstaesntaesssaesnssaesnsseenns 148
The LAST option and syncpoint flows 0n APPC SESSIONS......cccccuiieeiecciieeeeccreee e ecieee e eeveeee e e enaeeeas 148

The LAST option and syncpoint flows 0n MRO SESSIONS......ccuuieiieeiiiieiceciieeeeecrreee e eecieee e e e e creeee e 148
Appendix D. Below the SNA interface.....ccccciiieiiniiieniiiiieniceiienicienicentecscesnecans 149
SNA INAICATOrS AN FECOIUS...ciiiuieiiiiieiciee ettt sste ettt esetteesereeeserteesebeeesseeesaseeesaseaesasaeesaseessaseaesans 149
ReqUESt MOAE ANd MESPONSES.uuiieeeeciiieeeeeiiieeeeeitteeeeeetteeeeessteeseessteeeeeestaeessesssaseeseanssesasssnsseneeean 149

When SNA indicators are tranSmitted.......cucuiiieieiiiieerieereesee et sre e s e e s sbe e ssaeeeeas 150

N 0 4o = N 151
11T = Y 155

About this PDF

This PDF describes the technique (called distributed transaction processing, or DTP) of spreading the
functions of a transaction over several transaction programs in a network. It also provides guidance in
producing application programs that exchange data through distributed transaction processing (DTP) on
Advanced Program-to-Program Communication (APPC), multiregion operation(MRO), and LUTYPE6.1
links.

For details of the terms and notation used in this book, see Conventions and terminology used in the CICS
documentation in IBM Knowledge Center.

Date of this PDF
This PDF was created on January 20th 2020.

© Copyright IBM Corp. 1974, 2019 vii

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/documentation/conventions.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/documentation/conventions.html

viii CICS TS for z/OS: Distributed Transaction Programming Guide

Chapter 1. Distributed transaction processing

The technique of distributing the functions of a transaction over several transaction programs within a
network is called distributed transaction processing (DTP).

This chapter contains the following topics:

« “Overview of DTP” on page 1

- “Advantages over function shipping and transaction routing” on page 1

« “Why distributed transaction processing?” on page 2

« “What is a conversation and what makes it necessary?” on page 13
e “MRO or APPC for DTP?” on page 17

« “APPC mapped or basic?” on page 18

« “EXEC CICS or CPI Communications?” on page 18.

Overview of DTP

When CICS arranges function shipping, distributed program link (DPL), asynchronous transaction
processing, or transaction routing for you, it establishes a logical data link with a remote system.

A data exchange between the two systems then follows. This data exchange is controlled by CICS-
supplied programs, using APPC, LUTYPE®6.1, or MRO protocols. The CICS-supplied programs issue
commands to allocate conversations, and send and receive data between the systems. Equivalent
commands are available to application programs, to allow applications to converse. The technique of
distributing the functions of a transaction over several transaction programs within a network is called
distributed transaction processing (DTP).

Of the five intercommunication facilities, DTP is the most flexible and the most powerful, but it is also the
most complex. This chapter introduces you to the basic concepts.

Advantages over function shipping and transaction routing

Distributed transaction processing has advantages over function shipping and transaction routing.

Function shipping gives access to remote resources, and transaction routing lets a terminal communicate
with remote transactions. These two facilities might appear sufficient for all your intercommunication
needs, especially from a functional perspective. However, you must consider other design criteria, for
example, machine loading, response time, continuity of service, and economic use of resources.

Consider the example of a supermarket chain. It has many branches that each stock a different range of
goods, which are served by several distribution centers. Local stock records at the branches are updated
online from point-of-sale terminals. Sales information must be sorted for the separate distribution
centers, and transmitted to them to enable reordering and distribution.

An analyst might consider using function shipping to write each reorder record to a remote file as it arises.
This method has simplicity, but must be rejected for several reasons:

Data is transmitted to the remote systems irregularly in small packets. This means inefficient use of the
links.

« The transactions associated with the point-of-sale devices are competing for sessions with the remote
systems. This could mean unacceptable delays at point-of-sale.

Failure of a link results in a catastrophic suspension of operations at a branch.

Intensive intercommunication activity (for example, at peak periods) causes reduction in performance
at the terminals.

© Copyright IBM Corp. 1974, 2019 1

Now consider the solution where each sales transaction writes its reorder records to a transient data
queue. The data is quickly disposed of, leaving the transaction to carry on its conversation with the
terminal.

Restocking requests are seldom urgent, so it might be possible to delay the sorting and sending of the
data until an off-peak period. Alternatively, the transient data queue could be set to trigger the sender
transaction when a predefined data level is reached. Either way, the sender transaction has the same job
to do.

Again, it is tempting to use function shipping to transmit the reorder records. After the sort process, each
record could be written to a remote file in the relevant remote system. However, this method is still not
ideal. The sender transaction would have to wait after writing each record to make sure that it got the
correct response. Apart from using the link inefficiently, waiting between records would make the whole
process impossibly slow. You can use distributed transaction processing to solve this problem, and
others.

The flexibility of DTP can, in some circumstances, be used to achieve improved performance over function
shipping. Consider browsing a remote file to select a record that satisfies some criteria. If you use
function shipping, CICS ships the GETNEXT request across the link, and lets the mirror perform the
operation and ship the record back to the requester. This is a lot of activity (two flows on the network) and
the data flow can be significant. If the browse is on a large file, the overhead can be unacceptably high.

One alternative is to write a DTP conversation that ships the selection criteria, and returns only the keys
and relevant fields from the selected records. This reduces both the number of flows and the amount of
data sent over the link, thus reducing the overhead incurred in the function-shipping case.

Why distributed transaction processing?

In a multisystem environment, data transfers between systems are necessary because users need access
to remote resources.

In managing these resources, network resources are used. But performance suffers if the network is used
excessively. There is therefore a performance gain if application design is oriented toward doing the
processing associated with a resource in the resource-owning region.

DTP lets you process data at the point where it arises, instead of overworking network resources by
assembling it at a central processing point.

There are, of course, other reasons for using DTP. DTP does the following;:

- Allows some measure of parallel processing to shorten response times
 Provides a common interface to a transaction that is to be attached by several different transactions
« Enables communication with applications running on other systems, particularly on non-CICS systems

» Provides a buffer between a security-sensitive file or database and an application, so that no application
need know the format of the file records

Enables batching of less urgent data destined for a remote system.

DTP’s place in the CICS intercommunication facilities

Today, an increasing number of organizations are connecting their information systems together and
distributing resources among them. To support this kind of processing, applications need to be designed
and developed to access resources across multiple systems.

So CICS provides the following basic intercommunication facilities:

 Function shipping, which enables your application program to access resources in another CICS system.

- Distributed program link, which enables a program in one CICS system to issue a link command that
invokes a program in another CICS system, waiting for a RETURN.

2 CICS TS for z/0OS: Distributed Transaction Programming Guide

= Asynchronous processing, which enables a CICS transaction to initiate a transaction in another CICS
system and pass data to it.

« Transaction routing, which enables a terminal connected to one CICS system to run a transaction in
another CICS system.

- Distributed transaction processing, which enables a CICS transaction to communicate with a transaction
running in another system. The transactions are designed and coded specifically to communicate with
each other, and in doing so to use the intersystem link with maximum efficiency.

In addition, CICS provides the following methods of accessing CICS programs and transactions from non-
CICS environments:

« The CICS bridge
The external CICS interface (EXCI)
Transactional EXCI

« Support for ONC Remote Procedure Calls
« The web interface.

This information discusses only distributed transaction processing. The other basic intercommunication
facilities are described in Intercommunication methods.

What is DTP?

DTP is one of the ways in which CICS allows processing to be split between intercommunicating systems.
Only DTP allows two or more communicating application programs to run simultaneously in different
systems and to pass data back and forth between themselves—that is, to carry on a conversation.

Of the intercommunication facilities offered by CICS, DTP is the most flexible and powerful, but also the
most complex. This section introduces you to the basic concepts involved in creating DTP applications.
For a broad discussion of intercommunication concepts, see Getting started with intercommunication.

DTP allows two or more partner programs in different systems to interact with each other for some
purpose. DTP enables a CICS transaction to communicate with one or more transactions running in
different systems. A group of such connected transactions is called a distributed process.

The process can best be shown by discussing the operation of DTP between two CICS systems, CICSA
and CICSB. The configuration is shown in Figure 1 on page 3.

CICSA CICSB

—— - Transaction TRAAP—p Transaction TREB

Terminal H Program ¥ Program Y

Figure 1. DTP between two CICS transactions

1. A transaction (TRAA) is initiated on CICSA, for example, by a terminal operator keying in a transaction
ID and initial data.

2. To fulfill the request, the processing program X begins to execute on CICSA, probably reading initial
data from files, perhaps updating other files and writing to print queues.

3. Without ending, program X asks CICSA to establish a communication session with another CICS
system, CICSB. CICSA responds to the request.

4. Also without ending, program X sends a message across the communication session, asking CICSB to
start a new transaction, TRBB. CICSB initiates transaction TRBB by invoking program Y.

Chapter 1. Distributed transaction processing 3

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/fundamentals/connections/dfht1k0.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/fundamentals/connections/dfht1k0.html

5. Program X now sends and receives messages, including data, to and from program Y. Between
sending and receiving messages, both program X and program Y continue normal processing
completely independently. When the two programs communicate, their messages can consist of:

- Agreements on how to proceed with communication or how to end it. For example, program X can
tell program Y when it may transmit messages across the session. At any time, both programs must
know the state of their communication, and thus, what actions are allowed. At any time, either
system may have actual control of the communication.

« Agreements to make permanent all changes made up to that point. This allows the two programs to
synchronize changes. For example, a dispatch billing program on CICSA might want to commit
delivery and charging for a stock item, but only when a warehouse program in CICSB confirms that it
has successfully allocated the stock item and adjusted the inventory file accordingly.

- Agreements between CICSA and CICSB to cancel, rather than make permanent, changes to data
made since a given point. Such a cancelation (or rollback) might occur when customers change their
minds, for example. Alternatively, it might occur because of uncertainty caused by failure of the
application, the system, the communication path, or the data source.

Although the two programs X and Y exist as independent units, it is clear that they are designed to work
as one. Of course, DTP is not limited to pairs of programs. You can chain many programs together to
distribute processing more widely. This is discussed later in the book.

In the overview of the process, the location of program Y has not been specified. Program X is a CICS
program, but program Y need not be, because CICS can establish sessions with non-CICS, LUTYPE6.1,
MRO, or APPC partners. This is discussed in “Designing distributed processes” on page 8.

Conversations

Although several programs can be involved in a single distributed process, information transfer within the
process is always between self-contained communication pairs. The exchange of information between a
pair of programs is called a conversation.

During a conversation, both programs are active; they send data to and receive data from each other. The
conversation is two-sided but at any moment, each partner in the conversation has more or less control
than the other. According to its level of control (known as its conversation state), a program has more or
less choice in the commands that it can issue.

Conversation states
Thirteen conversation states have been defined for CICS DTP. The set of states possible for a particular
conversation depends on the protocol and synchronization level used.

The concepts of protocol and synchronization level are explained in “Selecting the protocol” on page 10
and “Maintaining data integrity” on page 7 respectively. Table 1 on page 4 shows which
conversation states are defined for which protocols and synchronization levels.

Table 1. The conversation states defined for different protocols. Yes and no indicate whether the state is

defined.

State State name APPC APPC APPC MRO LUTYPE6.1 LUTYPEG6.1

number sync sync sync normal mode | migration
levelO |levell |[level2 mode

1 Allocated Yes Yes Yes Yes Yes Yes

2 Send Yes Yes Yes Yes Yes Yes

3 Pendreceive Yes Yes Yes No Yes Yes

4 Pendfree Yes Yes Yes Yes Yes Yes

5 Receive Yes Yes Yes Yes Yes Yes

6 Confreceive No Yes Yes No No Yes

4 CICS TS for z/OS: Distributed Transaction Programming Guide

Table 1. The conversation states defined for different protocols. Yes and no indicate whether the state is

defined. (continued)

State State name APPC APPC APPC MRO LUTYPEG6.1 LUTYPEG6.1

number sync sync sync normal mode | migration
level0 |levell |[level2 mode

7 Confsend No Yes Yes No No Yes

8 Conffree No Yes Yes No No Yes

9 Syncreceive No No Yes Yes Yes Yes

10 Syncsend No No Yes No Yes Yes

11 Syncfree No No Yes Yes Yes Yes

12 Free Yes Yes Yes Yes Yes Yes

13 Rollback No No Yes Yes No Yes

By using a special CICS command (EXTRACT ATTRIBUTES STATE), or the STATE option on a conversation
command, a program can obtain a value that indicates its own conversation state. CICS places such a
value in a variable named by the program; the variable is sometimes referred to as a state variable.
Knowing the current conversation state, the program then knows which commands are allowed. If, for
example, a conversation is in send state, the transaction can send data to the partner. (The transaction
can take other actions instead, as indicated in the relevant state table.)

When a transaction issues a DTP command, this can cause the conversation state to change. For example,
a transaction can deliberately switch the conversation from send state to receive state by issuing a
command that invites the partner to send data. When a conversation changes from one state to another, it
is said to undergo a state transition.

Not only does the conversation state determine what commands are allowed, but the state on one side of
the conversation reflects the state on the other side. For example, if one side is in send state, the other
side is in either receive state, confreceive state, or syncreceive state.

Sessions

A conversation takes place across a CICS resource called a session. One transaction (known as the front-
end transaction) asks CICS to allocate a session, and then uses this session to request that the remote
transaction (known as the back-end transaction) be initiated. Then the two transactions, which can be
thought of as partners in the conversation, can “talk to” each other.

A session is a logical data path between two logical units. It is a shared resource and is allocated to a
transaction in response to a request from the transaction. Resource definition determines the number of
sessions available for allocation. While a conversation is active, it has sole use of the session allocated to
it.

A transaction starts a conversation by requesting the use of a session to a remote system. When it obtains
the session, the transaction can issue commands that cause an attach request to be sent to the other
system to activate the transaction that is to be the conversation partner. A transaction can issue an attach
request to more than one other transaction.

Distributed processes

A transaction can initiate other transactions, and hence, conversations. In a complex process, a distinct
hierarchy emerges, usually with the terminal-initiated transaction at the top.

Figure 2 on page 6 shows a possible configuration. In this example, transaction TRAA, in system
CICSA, is initiated from a terminal. Transaction TRAA attaches transaction TRBB to run in system CICSB.
Transaction TRBB in turn attaches transaction TRCC in system CICSC and transaction TRDD in system

Chapter 1. Distributed transaction processing 5

CICSD. Both transactions TRCC and TRDD attach the same transaction SUBR in system CICSE, thus giving
rise to two copies of SUBR.

CICSA
———p Transaction TRAA
Terminal H
CICSB
Transaction TREBEB
CICSC CICSD
Transaction TRCC Transaction TROD
CICSE
Transaction SUBR Transaction SUBR

Figure 2. DTP in a distributed process

Notice that, for every transaction, there is only one inbound attach request, but that there can be a
number of outbound attach requests. The session that activates a transaction is called its principal
facility. A session that is allocated by a transaction to activate another transaction is called its alternate
facility. Therefore, a transaction can have only one principal facility, but several alternate facilities.

When a transaction initiates a conversation, it is the front-end transaction on that conversation. Its
conversation partner is the back-end transaction on the same conversation. It is normally the front-end
transaction that dominates, and determines the way the conversation goes. This style of processing is
sometimes referred to as the client/server model. (In some books, it is called master/slave.)

Alternatively, the front-end transaction and back-end transaction may switch control between
themselves. This style of processing is called peer-to-peer. As the name implies, this model describes
communication between equals. You are free to select whichever model you need when designing your
application; CICS supports both.

6 CICS TS for z/0OS: Distributed Transaction Programming Guide

Maintaining data integrity

Design your application to cope with the things that can go wrong while a transaction is running, for
example, a session failing. The conversation protocol helps you recover from errors and ensures that the
two sides remain in step with each other. This use of the protocol is called synchronization.

Synchronization allows you to protect recoverable resources such as transient data queues and files,
whether they are local or remote. Whatever goes wrong during the running of a transaction should not
leave the associated resources in an inconsistent state.

An application program can cancel all changes made to recoverable resources since the last known
consistent state. This process is called rollback. The physical process of recovering resources is called
backout. The condition that exists as long as there is no loss of consistency between distributed
resources is called data integrity.

Sometimes you might need to backout changes to resources, even though no error conditions have
arisen. Consider an order entry system. While entering an order for a customer, an operator is told by the
system that the customer’s credit limit would be exceeded if the order went through. Because there is no
use continuing until the customer is consulted, the operator presses a function key to abandon the order.
The transaction is programmed to respond by returning the data resources to the state they were in at the
start of the order transaction.

The point in a process where resources are declared to be in a known consistent state is called a
synchronization point, often shortened to sync point. Sync points are implied at the beginning and end of a
transaction. A transaction can define other sync points by program command. All processing between two
sync points belongs to a unit of work (UOW). In a distributed process, this is also known as a distributed
unit of work.

When a transaction issues a sync point command, CICS commits all changes to recoverable resources
associated with that transaction. After the sync point, the transaction can no longer back out changes
made since the previous sync point. They have become irreversible.

Although CICS can commit and backout changes to local and remote resources for you, this service must
be paid for in performance. If the recovery of resources throughout a distributed process is not a problem
(for example, in an inquiry-only application), you can use simpler methods of synchronization.

Synchronization levels

Systems Network Architecture (SNA) defines three levels of synchronization for conversation using the
APPC protocol.

The levels are:

- Level 0 — None

« Level 1 - Confirm

« Level 2 — Syncpoint

Note: Sync level 2 is not supported on single-session connections.

At sync level O, there is no CICS support for synchronization of remote resources on connected systems.
But it is still possible, under the control of the application to achieve some degree of synchronization by
interchanging data, using the SEND and RECEIVE commands.

At sync level 1, you can use special commands for communication between the two conversation
partners. One transaction can confirm the continued presence and readiness of the other. Both
transactions are responsible for preserving the data integrity of recoverable resources by issuing
syncpoint requests at the appropriate times.

At sync level 2, all syncpoint requests are automatically propagated across multiple systems. CICS
implies a syncpoint when it starts a transaction; that is, it initiates logging of changes to recoverable
resources, but no control flows take place. CICS takes a syncpoint when one of the transactions

Chapter 1. Distributed transaction processing 7

terminates normally. One abending transaction causes all to rollback. The transactions themselves can
initiate syncpoint or rollback requests. However, a syncpoint or rollback request is propagated to another
transaction only when the originating transaction is in conversation with the other transaction, and sync
level 2 has been selected.

Bear in mind that syncpoint and rollback are not limited to any one conversation within a transaction.
They are propagated on every conversation currently active at sync level 2.

Designing distributed processes

These topics discuss the issues you must consider when designing distributed processes to run under
APPC or MRO. These issues include structuring distributed processes and designing conversations.

Itis assumed that you are already familiar with the issues involved in designing applications in single
CICS systems, as described in What is a CICS application?.

Structuring distributed transactions

As with many design problems, designing a DTP application involves dealing with several conflicting
objectives that must be carefully balanced against each other. These include performance, ease of
maintenance, reliability, security, connectivity to existing functions, and recovery.

Avoiding performance problems

If performance is the highest priority, you must design your application so that data is processed as close
to its source as possible. This avoids unnecessary transmission of data across the network. Alternatively,
if processing can be deferred, you might want to consider batching data locally before transmitting.

To maintain performance across the intersystem connection, the conversation must be freed as soon as
possible — so that the session can be used by other transactions. In particular, avoid holding a
conversation across a terminal wait.

In terminal-attached transactions, pseudo-conversational design improves performance by reducing the
amount of time a transaction holds CICS resources. A terminal user is likely to take seconds or even
minutes to respond to any request for keyboard input. In contrast, the communication delay associated
with a conversation between partner transactions is likely to be only a few milliseconds. It is therefore not
necessary to terminate a front-end transaction pending a response from a back-end transaction.

However, a front-end transaction can be terminal-initiated, in which case a pseudo-conversational design
might be appropriate. When input from the terminal user is required, terminate the the front-end
transaction and its conversations. After the terminal user has responded, the successor front-end
transaction can initiate a successor back-end transaction. If the first back-end transaction has to pass
information to its successor, the information must either be passed to the front-end transaction or stored
locally (for example, in temporary storage).

Stored information must be retrievable by identifiers that are not associated with the particular session
used by the conversation. The back-end transaction cannot use a COMMAREA, a RETURN TRANSID, nor a
TCTUA for this purpose. Instead, it can construct the identifier of a temporary storage queue by using
information obtained from the front-end transaction. You can use the sysid of the principal facility and the
identifier of the terminal to which the front-end transaction is attached.

Making maintenance easier

To correct errors or to adapt to the evolving needs of an organization, distributed processes inevitably
have o be modified. Whether these changes are made by the original developers or by others, this task is
likely to be easier if the distributed processes are relatively simple. So consider minimizing the number of
transactions involved in a distributed process.

8 CICS TS for z/0OS: Distributed Transaction Programming Guide

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/fundamentals/applications/dfhp3_intro_app_oview.html

Going for reliability

If you are particularly concerned with reliability, consider minimizing the number of transactions in the
distributed process.

Protecting sensitive data

If the distributed process is to handle security-sensitive data, you could place this data on a single
system. Using a single system means that only one of the transactions needs knowledge of how or where
the sensitive data is stored. For guidance on implementing security in CICS systems, see Security
facilities in CICS.

Maintaining connectivity

If you require connectivity to transactions running in a back-level CICS system, check that the functions
required are compatible in both systems.

The following aspects of distributed process design differ from single-system considerations:

Data conversion
For non-EBCDIC APPC logical units, some data conversion might be required on either receipt or
sending of data.

Using multiple conversations
When using multiple, serial conversations, CICS might provide different conversation identifiers to the
transaction. It is therefore not advisable to use the conversation identifier for naming resources; for
example, temporary storage queues.

Safeguarding data integrity

If it is important for you to be able to recover your data when things go wrong, design conversations for
sync level 2, and keep the units of work as small as possible. However, this is not always possible,
because the size of a UOW is determined largely by the function being performed. Remember that CICS
syncpoint processing has no information about the structure and purpose of your application. As an
application designer, you must ensure that syncpoints are taken at the right time and place, and to good
purpose. If you do, error conditions are unlikely to lead to inconsistencies in recoverable data resources.

Here is an example of a distributed application that transfers the contents of a temporary storage queue
from system A to system B, using a pair of transactions (TRAA in system A, and TRBB in system B), and a
conversation at synclevel 2:

1. Transaction TRAA in system A reads a record from the temporary storage queue.

2. Transaction TRAA sends the record to system B, and waits for the response.

3. Transaction TRBB in system B receives the record from system A.

4. Transaction TRBB processes the record, and sends a response to system A.

5. Transaction TRAA receives the response, and deletes the record from the temporary storage queue.

These steps are repeated as long as there are records remaining in the queue. When the queue is empty:

1. Transaction TRAA sends a 'last record' indicator to system B.
2. Transaction TRBB sends a response to system A.

There are several points at which you can consider taking a syncpoint. Here are the relative merits of
taking a syncpoint at each of these points:

At the start of processing
Because a UOW starts at this point, a syncpoint has no effect. In fact, if TRBB tries to take a syncpoint
without having first issued a command to receive data, it will be abended.

After transaction TRAA receives a response
A syncpoint at this point causes CICS to commit a record in system B before it has been deleted from
system A. If either system (or the connection between them) fails before the distributed process is
completed, data may be duplicated.

Chapter 1. Distributed transaction processing 9

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/security/dfht52d.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/security/dfht52d.html

Immediately after the record is deleted from the temporary storage queue
Because minimum processing is needed before resources are committed, this may be a safe place to
take a syncpoint if the queue is long or the records are large. However, performance may be poor
because a syncpoint is taken for each record transmitted.

After transaction TRAA receives the response to the last-record indicator
If you take a syncpoint only when all records have been transmitted, an earlier failure will mean that
all data will have to be retransmitted. A distributed process that syncpoints only at this stage will
complete more quickly than one that syncpoints after each record is processed, provided no failure
occurs. However, it will take longer to recover. If more than two systems are involved in the process,
this problem is made worse.

Remember that too many conversations within one distributed transaction complicates error recovery. A
complex structure may sometimes be unavoidable, but usually it means that the design could be
improved if some thought is given to simplifying the structure of the distributed transaction.

A UOW must be recoverable for the whole process of which it forms a part. All changes made by both
partners in every conversation must be backed out if the UOW does not complete successfully.
Syncpoints are not arbitrary divisions, but must reflect the functions of the application. Units of work must
be designed to preserve consistent resources so that when a transaction fails, all resources are restored
to their correct state.

Before terminating a sync level-2 conversation, make sure that the partner transaction is able to
communicate any errors that it may have found. Not doing so might jeopardize data integrity.

Designing conversations

Once the overall structure of the distributed process has been decided, you can then start to design
individual conversations. Designing a conversation involves deciding what functions to put into the front-
end transaction and into the back-end transaction, and deciding what should be in a distributed unit of
work. So you have to make decisions about how to subdivide the work to be done for your application.

Because a conversation involves transferring data between two transactions, to function correctly, each
transaction must know what the other intends. For instance, there is little point in the front-end
transaction sending data if all the back-end transaction is designed to do is print the weekly sales report.
You must therefore consider each front-end and back-end transaction pair as one software unit.

The sequences of commands you can issue on a conversation are governed by a protocol designed to
ensure that commands are not issued in inappropriate circumstances. The protocol is based on the
concept of a number of conversation states. A conversation state applies only to one side of a single
conversation and not to a transaction as a whole. In each state, there are a number of commands that
might reasonably be issued. The command itself, together with its outcome, may cause the conversation
to change from one state to another.

To determine the conversation state, you can use either the STATE option on a command or the EXTRACT
ATTRIBUTES STATE command. Note, however, that the STATE option is valid only for MRO and APPC
sessions, not for LUTYPEG.1 sessions. For programming information about the state values returned by
different commands, see CICS API commands.

When a conversation changes state, it is said to have undergone a state transition, which generally
makes a different set of commands available. The available commands and state transitions are shown in
a series of state tables. Which state table you use depends on the protocol, sync level, application
programming interface (API), and conversation type that you choose. (Only the APPC protocol gives you a
choice of APIs and conversation types.)

“Maintaining data integrity” on page 7 contains guidance on selecting the sync level for a conversation.
Syncpointing a distributed process discusses the synchronization commands and their effects.

Selecting the protocol
CICS provides three different protocols that support distributed transaction processing. These protocols
define the rules under which two transactions can communicate with each other.

The protocols are:

10 CICS TS for z/0S: Distributed Transaction Programming Guide

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/reference/commands-api/dfhp4_commandsummary.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/applications/developing/connections/dfhp62m.html

« APPC (advanced program-to-program communication, sometimes referred to as LUTYPE6.2)

« MRO (multiregion operation)

« LUTYPEG.1 (logical unit type 6.1).

Both APPC and LUTYPE®6.1 are protocols defined by SNA. They are therefore more widely available for
communicating with non-CICS systems. LUTYPE6.1 is the predecessor of APPC; so you should, if

possible, avoid using LUTYPE6.1 for new applications. However, some new applications may still need to
use LUTYPE6.1 to communicate with existing LUTYPE6.1 applications.

To help you migrate applications from LUTYPE6.1 to APPC, CICS provides a migration path. For more
information on this, see Migration of LUTYPE6.1 applications to APPC links.

Choosing between MRO and APPC can be quite simple. The options depend on the configuration of your
CICS complex and on the nature of the conversation partner. MRO does not support communication with
a partner in a non-CICS system. Further, it supports communication between transactions running in CICS
systems in different MVS™ images only if the MVS images are in the same MVS sysplex, and are joined by
cross-system coupling facility (XCF) links; the MVS images must be at IBM® MVS/ESA release level 5.1, or
later. (For full details of the hardware and software requirements for XCF/MRO, see Installation
requirements for XCF/MRO.)

For communication with a partner in another CICS system, where the CICS systems are either in the same
MVS image, or in the same MVS/ESA 5.1 (or later) sysplex, you can use either the MRO or the APPC
protocol. There are good performance reasons for using MRO. But if there is any possibility that the
distributed transactions will need to communicate with partners in other operating systems, it is better to
use APPC so that the transaction remains unchanged.

APPC application programs will not run under MRO. Even if both partners are in the same MVS image,
CICS will not use MRO facilities but will send conversation data through the communications controller.
That involves some z/OS Communications Server overhead. So you must decide whether your application
programs are to converse using APPC or MRO and code them accordingly.

Table 2 on page 11 points out the main differences between the MRO and APPC protocols.

Table 2. MRO protocol compared with APPC protocol

MRO APPC

Function is realized without using a Depends on z/OS Communications Server or
telecommunication access method. similar.

Non-standard architecture. SNA architecture.

CICS-to-CICS links only. Links to non-CICS systems possible.

Communicates within single MVS image, or (using | Communicates across multiple MVS images or
XCF/MRO) between MVS images in same sysplex. |other operating systems.

Sync level 2 forced for the conversation. Sync level 0, 1, or 2 can be selected.

Program initialization parameter (PIP) data not PIP data supported.

supported.

Data transmission not deferred. Deferred data transmission.

Partner transaction may be identified in data. Partner transaction defined by program command.

Performance overhead over a single application. Even greater performance overhead over a single
application.

RECEIVE can be issued only in receive state. RECEIVE causes conversation turnaround when
issued in send state on mapped conversations.

No ISSUE SIGNAL command. ISSUE SIGNAL command available.

Chapter 1. Distributed transaction processing 11

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/reference/connections/dfhp63l.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/installing/dfha1er.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/installing/dfha1er.html

Table 2. MRO protocol compared with APPC protocol (continued)

MRO

APPC

WAIT command has no function.

WAIT command causes transmission of deferred
data.

APPC protocol

If you choose to use APPC, you must decide which application programming interface (API) to use; and
then which conversation type (basic or mapped) to use.

Selecting the APPC conversation type

APPC conversations can be either mapped or basic. For CICS-to-CICS applications, you can use mapped
conversations. Basic, or unmapped, conversations are useful to communicate with systems that do not
support mapped conversations. These systems include some APPC devices.

The two protocols are similar. The main difference is the way that user data is formatted for transmission.
In mapped conversations, the application sends the data that you want the partner to receive. In basic
conversations, the application must include additional control bytes to convert the data to an SNA-
defined format called a generalized data stream (GDS). Also, in EXEC CICS commands for basic

conversations, you must include the keyword GDS.

The following table summarizes the differences between mapped and basic conversations that apply to

the CICS API.

Table 3. APPC conversations — mapped or basic?

Mapped

Basic

The conversation partners exchange data that is
relevant only to the application.

Both partners must package the user data before
sending, and unpackage it on receipt.

All conversations for a transaction share the same
EXEC Interface Block for status reporting.

Each conversation has its own area for state
information.

The transaction can handle exception conditions or
let them default.

The transaction must test for exception conditions
in a data area set aside for the purpose.

A RECEIVE command issued in send state causes
conversation turnaround.

A RECEIVE command is illegal in send state.

Transactions can be written in any of the supported
languages.

Transactions can be written in assembler language
or C only.

You can cause a conversation to time out if the
partner does not respond. To do this, you specify
the RTIMOUT option of the PROFILE definition.

You cannot cause a conversation to time out if the
partner does not respond.

Effect of z/0S Communications Server persistent sessions support for DTP conversations on APPC

sessions

If you enable z/OS Communications Server persistent sessions support in the local CICS, after a CICS
failure APPC sessions are held in recovery pending state until CICS restarts, or until the timeout value set
on the PSDINT system initialization parameter expires. DTP applications that use APPC sessions defined
as persistent are affected by persistent sessions recovery.

Remote partner programs can cause excessive queuing delays in the partner system if they continue to
issue commands on persistent APPC sessions after this CICS has failed. There is no way for the partner to
know that persistent sessions recovery is in progress. However, there are various actions you can take to
reduce the risk of new work building up for a connection to a persisting CICS system.

Actions on the partner system:

12 CICS TS for z/0OS: Distributed Transaction Programming Guide

- In DTP applications, requests for sessions are instigated by EXEC CICS ALLOCATE commands. Control
the overall number of queued session requests by using:

— The QUEUELIMIT and MAXQTIME options on the CONNECTION definition
— An XZIQUE global user exit program.

These methods are described in Managing allocate queues.

« Control individual session requests by coding the NOQUEUE|NOSUSPEND option on EXEC CICS
ALLOCATE commands.

« Force mapped APPC RECEIVE or CONVERSE commands to time out if there is any delay in receiving
expected data, by coding the RTIMOUT option on PROFILE definitions.

Action on this system:
« Code a PSDINT value that takes into account the number of your APPC sessions to partner systems.

After a restart, LU6.2 session names, in the range -AAA to -999, are allocated on a "first free" basis
(rather than on a "next in the sequence" followed by "last free" basis). This may affect applications that
use LU6.2 CONVIDs as external qualifiers.

For further information about z/OS Communications Server persistent sessions support, see Recovery
with z/OS Communications Server persistent sessions.

What is a conversation and what makes it necessary?

In DTP, transactions pass data to each other directly. While one sends, the other receives. The exchange
of data between two transactions is called a conversation.

Although several transactions can be involved in a single distributed process, communication between
them breaks down into a number of self-contained conversations between pairs. Each such conversation
uses a CICS resource known as a session.

Conversation initiation and transaction hierarchy

A transaction starts a conversation by requesting the use of a session to a remote system. Having
obtained the session, it causes an attach request to be sent to the other system to activate the
transaction that is to be the conversation partner.

A transaction can initiate any number of other transactions, and hence, conversations. In a complex
process, a distinct hierarchy emerges, with the terminal-initiated transaction at the very top. Figure 3 on
page 14 shows a possible configuration. Transaction TRAA is attached over the terminal session.
Transaction TRAA attaches transaction TRBB, which, in turn, attaches transactions TRCC and TRDD. Both
these transactions attach the same transaction, SUBR, in system CICSE. This gives rise to two different
tasks of SUBR.

Chapter 1. Distributed transaction processing 13

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/tuning/connections/dfht139.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/administering/recovery/dfht20t.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/administering/recovery/dfht20t.html

CICSA

Transaction TRAA

Terminal H
CICSB
Transaction TREB
CICSC CICSD
Transaction TRCC Transaction TROD
CICSE
Transaction SUBR Transaction SUBR

Figure 3. DTP in a multisystem configuration

The structure of a distributed process is determined dynamically by program; it cannot be predefined.
Notice that, for every transaction, there is only one inbound attach request, but there can be any number
of outbound attach requests. The session that activates a transaction is called its principal facility. A
session that is allocated by a transaction to activate another transaction is called its alternate facility.
Therefore, a transaction can have only one principal facility, but any number of alternate facilities.

When a transaction initiates a conversation, it is the front end on that conversation. Its conversation
partner is the back end on the same conversation. (Some books refer to the front end as the initiator and
the back end as the recipient.) It is normally the front end that dominates, and determines the way the
conversation goes. You can arrange for the back end to take over if you want, but, in a complex process,
this can cause unnecessary complication. This is further explained in the discussion on synchronization
later in this chapter.

Dialog between two transactions
A conversation transfers data from one transaction to another.

For this to function properly, each transaction must know what the other intends. It would be nonsensical
for the front end to send data if all the back end wants to do is print out the weekly sales report. It is
therefore necessary to design, code, and test front end and back end as one software unit. The same
applies when there are several conversations and several transaction programs. Each new conversation
adds to the complexity of the overall design.

14 CICS TS for z/0S: Distributed Transaction Programming Guide

In the example in “Advantages over function shipping and transaction routing” on page 1, the DTP
solution is to transmit the contents of the transient data queue from the front end to the back end. The
front end issues a SEND command for each record that it takes off the queue. The back end issues
RECEIVE commands until it receives an indication that the transmission has ended.

In practice, most conversations transfer a file of data from one transaction to another. The next stage of
complexity is to cause the back end to return data to the front end, perhaps the result of some
processing. Here the front end is programmed to request conversation turnaround at the appropriate
point.

Control flows and brackets
During a conversation, data passes over the link in both directions.

A single transmission is called a flow. Issuing a SEND command does not always cause a flow. This is
because the transmission of user data can be deferred; that is, held in a buffer until some event takes
place. The APPC architecture defines data formats and packaging. CICS handles these things for you, and
they concern you only if you need to trace flows for debugging.

The APPC architecture defines a data header for each transmission, which holds information about the
purpose and structure of the data following. The header also contains bit indicators to convey control
information to the other side. For example, if one side wants to tell the other that it can start sending,
CICS sets a bit in the header that signals a change of direction in the conversation.

To keep flows to a minimum, non-urgent control indicators are accumulated until it is necessary to send
user data, at which time they are added to the header.

For the formats of the headers and control indicators used by APPC, see Systems Network Architecture
Formats (GA27-3136).

In complex procedures, such as establishing syncpoints, it is often necessary to send control indicators
when there is no user data available to send. This is called a control flow.

begin_bracket marks the start of a conversation; that is, when a transaction is attached.
conditional_end_bracket ends a conversation. End bracket is conditional because the conversation can
be reopened under some circumstances. A conversation is in bracket when it is still active.

MRO is not unlike APPC in its internal organization. It is based on LUTYPE6.1, which is also an SNA-
defined architecture.

Conversation state and error detection
As a conversation progresses, it moves from one state to another within both conversing transactions.

The conversation state determines the commands that may be issued. For example, it is no use trying to
send or receive data if there is no session linking the front end to the back end. Similarly, if the back end
signals end of conversation, the front end cannot receive any more data on the conversation.

Either end of the conversation can cause a change of state, usually by issuing a particular command from
a particular state. CICS tracks these changes, and stops transactions from issuing the wrong command in
the wrong state.

Synchronization

There are many things that can go wrong during the running of a transaction. The conversation protocol
helps you to recover from errors and ensures that the two sides remain in step with each other. This use
of the protocol is called synchronization.

Synchronization allows you to protect resources such as transient data queues and files. If anything goes
wrong during the running of a transaction, the associated resources should not be left in an inconsistent
state.

Chapter 1. Distributed transaction processing 15

https://www.ibm.com/e-business/linkweb/publications/servlet/pbi.wss?CTY=US&FNC=SRX&PBL=GA27-3136-20
https://www.ibm.com/e-business/linkweb/publications/servlet/pbi.wss?CTY=US&FNC=SRX&PBL=GA27-3136-20

Examples of use

Suppose, for example, that a transaction is transmitting a queue of data to another system to be written
to a DASD file. Suppose also that for some reason, not necessarily connected with the
intercommunication activity, the receiving transaction is abended.

Even if a further abend can be prevented, there is the problem of how to continue the process without
loss of data. It is uncertain how many queue items have been received and how many have been correctly
written to the DASD file. The only safe way of continuing is to go back to a point where you know that the
contents of the queue are consistent with the contents of the file. However, you then have two problems.
On one side, you need to restore the queue entries that you have sent; on the other side, you need to
delete the corresponding entries in the DASD file.

The cancelation by an application program of all changes to recoverable resources since the last known
consistent state is called rollback. The physical process of recovering resources is called backout. The
condition that exists as long as there is no loss of consistency between distributed resources is called
data integrity.

There are cases in which you may want to recover resources, even though there are no error conditions.
Consider an order entry system. While entering an order for a customer, an operator is told by the system
that the customer's credit limit would be exceeded if the order went through. Because there is no use
continuing until the customer is consulted, the operator presses a function key to abandon the order. The
transaction is programmed to respond by restoring the data resources to the state they were in at the
start of the order.

Taking syncpoints
If you were to log your own data movements, you could arrange backout of your files and queues.

However, it would involve some very complex programming, which you would have to repeat for every
similar application. To save you this overhead, CICS arranges resource recovery for you. LU management
works with resource management in ensuring that resources can be restored.

The points in the process where resources are declared to be in a known consistent state are called
synchronization points, often shortened to syncpoints. Syncpoints are implied at the beginning and end
of a transaction. A transaction can define other syncpoints by program command. All processing between
two consecutive syncpoints belongs to a unit of work (UOW).

Taking a syncpoint commits all recoverable resources. This means that all systems involved in a
distributed process erase all the information they have been keeping about data movements on
recoverable resources. Now backout is no longer possible, and all changes to the resources since the last
syncpoint are made irreversible.

Although CICS commits and backs out changes to resources for you, the service must be paid for in
performance. You might have transactions that do not need such complexity, and it would be wasteful to
employ it. If the recovery of resources is not a problem, you can use simpler methods of synchronization.

The three sync levels
The APPC architecture defines three levels of synchronization (called sync levels).

 Level 0 — none

 Level 1 - confirm

« Level 2 - syncpoint

At sync level O, there is no system support for synchronization. It is nevertheless possible to achieve

some degree of synchronization through the interchange of data, using the SEND and RECEIVE
commands.

If you select sync level 1, you can use special commands for communication between the two
conversation partners. One transaction can confirm the continued presence and readiness of the other.
The user is responsible for preserving the data integrity of recoverable resources.

16 CICS TS for z/OS: Distributed Transaction Programming Guide

The level of synchronization described earlier in this section corresponds to sync level 2. Here, system
support is available for maintaining the data integrity of recoverable resources.

CICS implies a syncpoint when it starts a transaction; that is, it initiates logging of changes to recoverable
resources, but no control flows take place. CICS takes a full syncpoint when a transaction is normally
terminated. Transaction abend causes rollback. The transactions themselves can initiate syncpoint or
rollback requests. However, a syncpoint or rollback request is propagated to another transaction only
when the originating transaction is in conversation with the other transaction, and if sync level 2 has been

selected for the conversation between them.

Remember that syncpoint and rollback are not peculiar to any one conversation within a transaction. They
are propagated on every sync level 2 conversation that is currently in bracket.

MRO or APPC for DTP?

You can program DTP applications for both MRO and APPC links. The two conversation protocols are not
identical. Although you seldom have the choice for a particular application, an awareness of the
differences and similarities will help you to make decisions about compatibility.

Choosing between MRO and APPC can be quite simple. The options depend on the configuration of your
CICS complex and on the nature of the conversation partner. You cannot use MRO to communicate with a
partner in a non-CICS system. Further, it supports communication between transactions running in CICS
systems in different MVS images only if the MVS images are in the same MVS sysplex, and are joined by
cross-system coupling facility (XCF) links. For full details of the hardware and software requirements for
XCF/MRO, see Installation requirements for XCF/MRO.

For communication with a partner in another CICS system, where the CICS systems are either in the same
MVS image, or in the same sysplex, you can use either the MRO or the APPC protocol. There are good
performance reasons for using MRO. But if there is any possibility that the distributed transactions will
need to communicate with partners in other operating systems, it is better to use APPC so that the

transaction remains unchanged.

Table 4 on page 17 summarizes the main differences between the two protocols.

Table 4. MRO compared with APPC

MRO

APPC

Function is realized within CICS

Depends on the z/OS Communications Server or
similar

Nonstandard architecture

SNA architecture

CICS-to-CICS links only

Links to non-CICS systems possible

Communicates within single MVS image, or (using
XCF/MRO) between MVS images in same sysplex

Communicates across multiple MVS images and
other operating systems

PIP data not supported

PIP data supported

Data transmission not deferred

Deferred data transmission

Partner transaction identified in data

Partner transaction defined by program command

RECEIVE can only be issued in receive state

RECEIVE causes conversation turnaround when
issued in send state on mapped conversations

No expedited flow possible

ISSUE SIGNAL command flows expedited

WAIT command has no function

WAIT command causes transmission of deferred
data

Chapter 1. Distributed transaction processing 17

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/installing/dfha1er.html

APPC mapped or basic?

APPC conversations can be either mapped or basic. For CICS-to-CICS applications, you can use mapped
conversations. Basic, or unmapped, conversations are useful to communicate with systems that do not
support mapped conversations. These systems include some APPC devices.

The two protocols are similar. The main difference is the way that user data is formatted for transmission.
In mapped conversations, the application sends the data that you want the partner to receive. In basic
conversations, the application must include additional control bytes to convert the data to an SNA-
defined format called a generalized data stream (GDS). Also, in EXEC CICS commands for basic

conversations, you must include the keyword GDS.

Table 5 on page 18 summarizes the differences between mapped and basic conversations that apply to

the CICS API.

CPI Communications has different rules (see “EXEC CICS or CPI Communications?” on page 18.

Table 5. APPC conversations — mapped or basic?

Mapped

Basic

The conversation partners exchange data that is
relevant only to the application.

Both partners must package the user data before
sending, and unpackage it on receipt.

All conversations for a transaction share the same
EXEC Interface Block for status reporting.

Each conversation has its own area for state
information.

The transaction can handle exception conditions or
let them default.

The transaction must test for exception conditions
in a data area set aside for the purpose.

A RECEIVE command issued in send state causes
conversation turnaround.

A RECEIVE command is illegal in send state.

Transactions can be written in any of the supported
languages.

Transactions can be written in assembler language
or C only.

You can cause a conversation to time out if the
partner does not respond. To do this, you specify
the RTIMOUT option of the PROFILE definition.

You cannot cause a conversation to time out if the
partner does not respond.

EXEC CICS or CPI Communications?

CICS gives you a choice of two application programming interfaces (APIs) for coding your DTP

conversations on APPC sessions.

The first, the CICS API, is the programming interface of the CICS implementation of the APPC
architecture. It consists of EXEC CICS commands and can be used with all CICS-supported languages.
The second, Common Programming Interface Communications (CPI Communications) is the
communication interface defined for the SAA environment. It consists of a set of defined verbs, in the
form of program calls, which are adapted for the language being used.

Table 6 on page 18 compares the two methods to help you to decide which API to use for a particular

application.

Table 6. CICS API compared with CPI Communications

CICS API

CPI Communications

Portability between different members of the CICS
family.

Portability between systems that support SAA
facilities.

18 CICS TS for z/0S: Distributed Transaction Programming Guide

Table 6. CICS API compared with CPI Communications (continued)

CICS API

CPI Communications

Basic conversations can be programmed only in
assembler language or C.

Basic conversations can be programmed in any of
the available languages.

Sync levels 0, 1, and 2 supported.

Sync levels 0, 1, and 2 supported, except for
transaction routing, for which only sync levels 0 and
1 are supported.

PIP data supported.

PIP data not supported.

Only a few conversation characteristics are
programmable. The rest are defined by resource
definition.

Most conversation characteristics can be changed
dynamically by the transaction program.

Can be used on the principal facility to a
transaction started by ATL.

Cannot be used on the principal facility to a
transaction started by ATI.

Limited compatibility with MRO.

No compatibility with MRO.

You can mix CPI Communications calls and EXEC CICS commands in the same transaction, but not on the
same side of the same conversation. You can implement a distributed transaction where one partner to a
conversation uses CPI Communications calls and the other uses the CICS API. In such a case, it would be
up to you to ensure that the APIs on both sides map consistently to the APPC architecture.

Chapter 1. Distributed transaction processing 19

20 CICS TS for z/0S: Distributed Transaction Programming Guide

Chapter 2. Writing programs for APPC mapped
conversations

These topics describe the CICS APIs available for DTP programming using APPC mapped conversations.

Conversation initiation

The front-end transaction is responsible for acquiring a session, specifying the conversation
characteristics and requesting the startup of the back-end transaction in the remote system.

Allocating a session to the conversation

Initially, there is no conversation, and therefore no conversation state. By issuing an ALLOCATE
command, the front-end transaction acquires a session to start a new conversation.

The RESP value returned should be checked to ensure that a session has been allocated. If the session is
successfully allocated, DFHRESP(NORMAL), the conversation is in allocated state (state 1) and the
session identifier (convid) in EIBRSRCE must be saved immediately.

The convid must be used in subsequent commands for this conversation. Figure 4 on page 22 shows an
example of an ALLOCATE command.

Note: If the remote system is using z/OS Communications Server persistent session support, you may
need to code a timeout value on the ALLOCATE command. See Effect of z/OS Communications Server
persistent sessions support for DTP conversations on APPC sessions.

Using ATI to allocate a session
Front-end transactions are often initiated from terminals. But it is also possible to use the EXEC CICS
START command to initiate a front-end transaction on an APPC session.

When this is done, and the front-end transaction is successfully started, a conversation can continue as if
an ALLOCATE command had been issued. The only difference is that, when ATI is used, the APPC session
is the front-end transaction's principal facility.

© Copyright IBM Corp. 1974, 2019 21

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/fundamentals/connections/dfhp63q.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/fundamentals/connections/dfhp63q.html

* ...
DATA DIVISION.
WORKING-STORAGE SECTION.
* ...
01 FILLER.
02 WS-CONVID PIC X(4).
02 WS-RESP PIC S9(8) COMP.
02 WS-STATE PIC S9(8) COMP.
02 WS-SYSID PIC X(4) VALUE 'SYSB'.
02 WS-PROC PIC X(4) VALUE 'BBBB'.
02 WS-LEN-PROCN PIC S9(4) COMP VALUE +4.
02 WS-SYNC-LVL PIC S9(4) COMP VALUE +2.
* ...
PROCEDURE DIVISION.

* ...

EXEC CICS ALLOCATE SYSID(WS-SYSID) RESP(WS-RESP)
END-EXEC.

IF WS-RESP = DFHRESP (NORMAL)

THEN MOVE EIBRSRCE TO WS-CONVID

ELSE

* ... No session allocated. Examine RESP code.
END-IF.

* ...

EXEC CICS CONNECT PROCESS CONVID(WS-CONVID)
STATE (WS-STATE) RESP (WS-RESP)

PROCNAME (WS-PROC)

PROCLENGTH (WS-LEN-PROCN)

SYNCLEVEL (WS-SYNC-LVL)

END-EXEC.

IF WS-RESP = DFHRESP (NORMAL)

THEN

* ... No errors. Check EIB flags.

ELSE

* ... Conversation not started. Examine RESP code.
END-IF.

Figure 4. Starting an APPC mapped conversation at sync level 2

Connecting the partner transaction

When the front-end transaction has acquired a session, the next step is to initiate the partner transaction.

The state tables show that, in the allocated state (state 1), one of the commands available is CONNECT
PROCESS. This command is used to attach the required back-end transaction. It should be noted that the
results of the CONNECT PROCESS are placed in the send buffer and are not sent immediately to the
partner system. Transmission occurs when the send buffer is flushed, either by sending more data than
fits in the send buffer or by issuing a WAIT CONVID command.

A successful CONNECT PROCESS causes the conversation to switch to send state (state 2). The program
fragment in Figure 4 on page 22 shows an example of a CONNECT PROCESS command.

Note: For clarity, the EXEC CICS ALLOCATE and CONNECT PROCESS commands shown in Figure 4 on
page 22 identify the partner LU and transaction explicitly. To avoid doing this, you could use the PARTNER
option of these commands. This specifies a set of definitions that include the names of the partner LU, the
communication profile to be used on the session, and the partner transaction. Thus, in Figure 4 on page
22, the PARTNER option could be used instead of SYSID on the EXEC CICS ALLOCATE command, and
instead of PROCNAME and PROCLENGTH on the EXEC CICS CONNECT PROCESS command. The
advantage of using PARTNER is that it makes your DTP programs more maintainable: the details of each
partner program can be held in a single definition.

Initial data for the back-end transaction

While connecting the back-end transaction, the front-end transaction can send initial data to it. This kind
of data, called program initialization parameters (PIPs), is placed in specially formatted structures and
specified on the CONNECT PROCESS command. The PIPLIST (along with PIPLENGTH) option of the
CONNECT PROCESS command is used to send PIPs to the back-end transaction.

To examine any PIPs received, the back-end transaction uses the EXTRACT PROCESS command.

PIP data is used only by the two connected transactions and not by the CICS systems. APPC systems
other than CICS may not support PIP, or may support it differently.

22 CICS TS for z/0S: Distributed Transaction Programming Guide

The PIP data must be formatted into one or more subfields according to the SNA rules. The content of
each subfield is defined by the application developer. You should format PIP data as follows:

L1|rr| PIPL |L2|rr| PIPZ Lnlrr| PIPn

Figure 5. Format of PIP data

CICS inserts information into the reserved fields to make the PIP architecturally correct. The PIPLENGTH
option must specify the total length of the PIP list and must be between 4 and 32763.

Back-end transaction initiation

The back-end transaction is initiated as a result of the front end transaction’s CONNECT PROCESS
command.

Initially, the back-end transaction should determine the convid. This is not strictly necessary because the
session is the back-end transaction’s principal facility making the CONVID parameter optional for DTP
commands on this conversation. However, the convid is useful for audit trails. Also, if the back-end
transaction is involved in more than one conversation, always specifying the CONVID option improves
program readability and problem determination.

Figure 6 on page 24 shows a fragment of a back-end transaction that obtains the conversation identifier.
The example uses the ASSIGN command for this purpose; another way is to access the information in
EIBTRMID.

The back-end transaction can also retrieve its transaction name by issuing the EXTRACT PROCESS
command. In the example shown in Figure 6 on page 24 , CICS places the transaction name in WS-PROC
and the length of the name in WS-LEN-PROCN. With the EXTRACT PROCESS, the back-end transaction
can also retrieve the sync level at which the conversation was started. In the example, CICS places the
sync level in WS-SYNC-LVL.

Both the ASSIGN and the EXTRACT PROCESS commands are discussed here only to give you some idea of
what you can do in the back-end transaction. They are not essential. The back-end transaction starts in
receive state (state 5), and must issue a RECEIVE command. By doing this, the back-end transaction
receives whatever data the front-end transaction has sent and allows CICS to raise EIB flags and change
the conversation state to reflect any request the front-end transaction has issued.

Chapter 2. Writing programs for APPC mapped conversations 23

* ...

DATA DIVISION.

WORKING-STORAGE SECTION.

* ...

01 FILLER.

02 WS-CONVID PIC X(4).

02 WS-STATE PIC S9(7) COMP.

02 WS-SYSID PIC X(4) VALUE 'SYSB'.

02 WS-PROC PIC X(4) VALUE 'BBBB'.

02 WS-LEN-PROCN PIC S9(4) COMP VALUE +4.

02 WS-SYNC-LVL PIC S9(4) COMP VALUE +2.

* ...

01 FILLER.

02 WS-RECORD PIC X(100).

02 WS-MAX-LEN PIC S9(4) COMP VALUE +100.

02 WS-RCVD-LEN PIC S9(4) COMP VALUE +0O.

* ...

PROCEDURE DIVISION.

* ...

EXEC CICS ASSIGN FACILITY(WS-CONVID) END-EXEC.
* ...

* Extract the conversation characteristics.
*

EXEC CICS EXTRACT PROCESS PROCNAME (WS-PROC)
PROCLENGTH (WS-LEN-PROCN)

SYNCLEVEL (WS-SYNC-LVL)

END-EXEC.

* ...

* Receive data from the front-end transaction.
*

EXEC CICS RECEIVE CONVID(WS-CONVID) STATE(WS-STATE)
INTO(WS-RECORD) MAXLENGTH (WS-MAX-LEN)
NOTRUNCATE LENGTH(WS-RCVD-LEN)

END-EXEC.

*

* ... Check outcome of RECEIVE.

* ...

Figure 6. Startup of a back-end APPC mapped transaction at sync level 2

What happens if the back-end transaction fails to start

It is possible that the back-end transaction fails to start. However there is a transmission delay
mechanism in APPC, which informs the front-end transaction of this fact when the session has been
active long enough for responses from the back-end system to have been received.

The front-end transaction is informed of the failure with a TERMERR condition in response to a DTP
command. EIBERR, EIBFREE, and EIBERRCD are set (see Table 11 on page 32 for the possible values of
EIBERRCD).

Before sending data, the front-end transaction should find out whether the back-end transaction has
started successfully. One way of doing this is to issue a SEND CONFIRM command directly after the
CONNECT PROCESS command. This causes the front-end transaction to suspend until the back-end
transaction responds or the failure notification, as described, is received. SEND CONFIRM is discussed in
“How to synchronize a conversation using CONFIRM commands” on page 29.

Transferring data on the conversation

These topics discuss how to pass data between the front- and back-end transactions, and provide a
program fragment illustrating the commands described and the suggested response code checking.

Sending data to the partner transaction
Data is sent to the partner transaction using the SEND command.

The SEND command is valid only in send state (state 2). Because a successful simple SEND leaves the
conversation in send state (state 2), it is possible to issue a number of successive sends. The data from
the simple SEND command is initially stored in a local CICS buffer which is “flushed” either when this
buffer is full or when the transaction requests transmission. The transaction can request transmission
either by using a WAIT CONVID command or by using the WAIT option on the SEND command. The

24 CICS TS for z/0S: Distributed Transaction Programming Guide

reason data transmission is deferred is to reduce the number of calls to the network. However, the
application should use WAIT if the partner transaction requires the data to continue processing.

An example of a simple SEND command can be seen in Figure 7 on page 25.

* ...
DATA DIVISION.
WORKING-STORAGE SECTION.
* ...
01 FILLER.
02 WS-CONVID PIC X(4).
02 WS-STATE PIC S9(7) COMP.
* ...
01 FILLER.
02 WS-SEND-AREA PIC X(70).
02 WS-SEND-LEN PIC S9(4) COMP VALUE +70.
* ...
01 FILLER.
02 WS-RCVD-AREA PIC X(100).
02 WS-MAX-LEN PIC S9(4) COMP VALUE +100.
02 WS-RCVD-LEN PIC S9(4) COMP VALUE +0.
* ...
PROCEDURE DIVISION.
* ...
EXEC CICS SEND CONVID(WS-CONVID) STATE(WS-STATE)
FROM(WS-SEND-AREA) LENGTH(WS-SEND-LEN)
END-EXEC.
* ... Check outcome of SEND.
* ..
*
EXEC CICS SEND CONVID(WS-CONVID) STATE(WS-STATE)
INVITE WAIT
END-EXEC.
* ...
* Receive data from the partner transaction.
*
EXEC CICS RECEIVE CONVID(WS-CONVID) STATE(WS-STATE)
INTO(WS-RCVD-AREA) MAXLENGTH (WS-MAX-LEN)
NOTRUNCATE LENGTH(WS-RCVD-LEN)
END-EXEC.
*
* ... Check outcome of RECEIVE.
* ...

Figure 7. Transferring data on a conversation at sync level 2

Switching from sending to receiving data
There are several ways of switching from send state to receive state .

One possibility is to use a RECEIVE command. The state tables show that CICS supplies the INVITE and
WAIT when a SEND is followed immediately by a RECEIVE.

Another possibility is to use a SEND INVITE command. The state tables show that after SEND INVITE the
conversation switches to pendreceive state (state 3). The column for state 3 shows that a WAIT CONVID
command switches the conversation to receive state (state 5).

Still another possibility is to specify the INVITE and WAIT options on the SEND command. The state
tables show that after SEND INVITE WAIT, the conversation switches to receive state (state 5).

An example of a SEND INVITE WAIT command can be seen in Figure 7 on page 25. Figure 8 on page 26
illustrates the response-testing sequence after a SEND INVITE WAIT with the STATE option. For more
information on response testing, see “Checking the outcome of a DTP command” on page 32.

Chapter 2. Writing programs for APPC mapped conversations 25

* ...
DATA DIVISION.
WORKING-STORAGE SECTION.
* ...
01 FILLER.
02 WS-RESP PIC S9(7) COMP.
02 WS-STATE PIC S9(7) COMP.
* ...
PROCEDURE DIVISION.
* ...
* Check return code from SEND INVITE WAIT
IF WS-RESP = DFHRESP (NORMAL)
THEN
* ... Request successful
IF EIBERR = LOW-VALUES
THEN
* ... No errors, check state
IF WS-STATE = DFHVALUE (RECEIVE)
THEN
* ... SEND OK, continue processing
ELSE
* ... Logic error, should never happen
END-IF
ELSE
* ... Error indicated
EVALUATE WS-STATE
WHEN DFHVALUE (ROLLBACK)
* ... ROLLBACK received
WHEN DFHVALUE (RECEIVE)
* ... ISSUE ERROR received, reason in EIBERRCD
WHEN OTHER
* ... Logic error, should never happen
END-EVALUATE
END-IF
ELSE
* ... Examine RESP code for source of error.
END-IF.

Figure 8. Checking the outcome of a SEND INVITE WAIT command

Receiving data from the partner transaction
The RECEIVE command is used to receive data from the connected partner.

The rows in the state tables for the RECEIVE command show the EIB fields that should be tested after
issuing a RECEIVE command. As well as showing which field should be tested, the state tables also show
the order in which the tests should be made.

As an alternative to testing the EIB fields it is possible to test the resulting conversation state; this is
shown in Figure 9 on page 27. The conversation state can be meaningfully tested only after issuing a
command with the STATE option or by using the EXTRACT ATTRIBUTES STATE command. Note that the
RESP value returned and EIBERR should always be tested. If EIBNODAT is set on (X'FF'), no data has
been received. For more information about response testing, see “Checking the outcome of a DTP
command” on page 32 . For information about testing the conversation state, see “Testing the
conversation state” on page 36.

An example of a RECEIVE command with the STATE option can be seen in Figure 7 on page 25. Figure 9
on page 27 illustrates the response-testing and state-testing sequence.

Note: In the same way as it is possible to send the INVITE, LAST, and CONFIRM commands with data, it
is also possible to receive them with data. It is also possible to receive a syncpoint request with data.
However, ISSUE ERROR, ISSUE ABEND, and conversation failure are never received with data.

26 CICS TS for z/0OS: Distributed Transaction Programming Guide

* ...
WORKING-STORAGE SECTION.
* ...
01 FILLER.
02 WS-RESP PIC S9(8) COMP.
02 WS-STATE PIC S9(8) COMP.
* ...
PROCEDURE DIVISION.
* ...
* Check return code from RECEIVE
IF WS-RESP = DFHRESP(EOC)
OR WS-RESP = DFHRESP(NORMAL)
THEN
* ... Request successful
IF EIBERR = LOW-VALUES
THEN
* ... No errors, check state
EVALUATE WS-STATE
WHEN DFHVALUE (SYNCFREE)
* ... Partner issued SYNCPOINT and LAST
WHEN DFHVALUE (SYNCRECEIVE)
* ... Partner issued SYNCPOINT
WHEN DFHVALUE (SYNCSEND)
* ... Partner issued SYNCPOINT and INVITE
WHEN DFHVALUE (CONFFREE)
* ... Partner issued CONFIRM and LAST
WHEN DFHVALUE (CONFRECEIVE)
* ... Partner issued CONFIRM
WHEN DFHVALUE (CONFSEND)
* ... Partner issued CONFIRM and INVITE
WHEN DFHVALUE (FREE)
* ... Partner issued LAST or FREE
WHEN DFHVALUE (SEND)
* ... Partner issued INVITE
WHEN DFHVALUE (RECEIVE)
* ... No state change. Check EIBCOMPL.
WHEN OTHER
* ... Logic error, should never happen
END-EVALUATE.
ELSE
* ... Error indicated
EVALUATE WS-STATE
WHEN DFHVALUE (ROLLBACK)
* ... ROLLBACK received
WHEN DFHVALUE (RECEIVE)
* ... ISSUE ERROR received, reason in EIBERRCD
WHEN OTHER
* ... Logic error, should never happen
END-EVALUATE
END-IF
ELSE
* ... Examine RESP code for source of error
END-IF.

Figure 9. Checking the outcome of a RECEIVE command

The CONVERSE command

The CONVERSE command combines the functions SEND INVITE WAIT and RECEIVE. This command is
useful when one transaction needs a response from the partner transaction to continue processing.

Communicating errors across a conversation

The APPC mapped API provides commands to enable transactions to pass error notification across a
conversation.

There are three commands depending on the severity of the error. The most severe, ISSUE ABEND,
causes the conversation to terminate abnormally and is described in “Emergency termination of a
conversation” on page 31.

Chapter 2. Writing programs for APPC mapped conversations 27

Requesting INVITE from the partner transaction

If a transaction is receiving data on a conversation and wants to send, it can use the ISSUE SIGNAL
command to request that the partner transaction does a SEND INVITE.

W hen the ISSUE SIGNAL request is received, EIBSIG= X'FF' and the SIGNAL condition is raised. It should
be noted that on receipt of SIGNAL a transaction is not obliged to issue SEND INVITE.

Demanding INVITE from the partner transaction

If a transaction needs to send an immediate error notification to the partner transaction it can use the
ISSUE ERROR command.

This command is also one of the preferred negative responses to SEND CONFIRM. However it should not
be used to reject ISSUE PREPARE, SYNCPOINT or SYNCPOINT ROLLBACK. When the ISSUE ERROR is
received, EIBERR= X'FF' and the first two bytes of EIBERRCD are X'0889"'. This error condition cannot be
processed by HANDLE CONDITION (or RESP).

If an ISSUE ERROR command is used in receive state (state 5), all incoming data is purged until an
INVITE, SYNCPOINT, or LAST command is received. If LAST is received, no error indication is sent to the
partner transaction, EIBFREE= X'FF' and the conversation is switched to free state (state 12).

If LAST is not received, the conversation is switched to send state (state 2). It is normal programming
practice to communicate the reason for the ISSUE ERROR to the partner transaction. The CONVERSE
command could be used to send an appropriate error message and receive a reply.

Because ISSUE ERROR is allowed in both send state (state 2) and receive state (state 5), it is possible for
both communicating transactions to use ISSUE ERROR at the same time. When this occurs, only one of
the ISSUE ERROR commands is effective. The other is purged with incoming data. However both ISSUE
ERROR commands will appear to have completed successfully and the transaction whose ISSUE ERROR
was purged will pick up EIBERR= X'FF' on a subsequent command.

Safeguarding data integrity

If it is important to safeguard data integrity across connected transactions, then the CICS synchronization
commands should be used.

The commands shown in Table 7 on page 28 are available.

Table 7. Synchronization commands for APPC mapped conversations
Conversation sync level | Commands
0 None
1 SEND CONFIRM
ISSUE CONFIRMATION
2 SEND CONFIRM
ISSUE CONFIRMATION
SYNCPOINT
ISSUE PREPARE
SYNCPOINT ROLLBACK
SAA verbs:
SRRCMIT
SRRBACK

28 CICS TS for z/0S: Distributed Transaction Programming Guide

How to synchronize a conversation using CONFIRM commands

The RECEIVE command is used to receive data from the connected partner.
A confirmation exchange affects a single specified conversation and involves two commands.

1. The conversation that is in send state (state 2) issues a SEND CONFIRM command causing a request
for confirmation to be sent to the partner transaction. The transaction suspends awaiting a response.

2. The partner transaction receives a request for confirmation. It can then respond positively by issuing
an ISSUE CONFIRMATION command. Alternatively, it can respond negatively by using the ISSUE
ERROR or ISSUE ABEND commands.

Requesting confirmation

The CONFIRM option of the SEND command flushes the conversation send buffer; that is, it causes a
transmission to occur. When the conversation is in send state (state 2), you can send data with the SEND
CONFIRM command. You can also specify either the INVITE or the LAST option.

The send state (state 2) column of the state table for APPC mapped conversations at sync level 1 (see
“State tables for APPC mapped conversations at sync level 1” on page 39) shows what happens for the
possible combinations of the CONFIRM, INVITE, and LAST options. After a SEND CONFIRM command,
without the INVITE or LAST options, the conversation remains in send state (state 2). If the INVITE
option is used, the conversation switches to receive state (state 5). If the LAST option is used, the
conversation switches to free state (state 12).

A similar effect to SEND LAST CONFIRM can by achieved by using the command sequence:

SEND LAST
SEND CONFIRM

Note from the state tables that the SEND LAST puts the conversation into pendfree state (state 4), so
data cannot be sent with a SEND CONFIRM command used in this way.

The form of command used depends on how the conversation is to continue if the required confirmation
is received. However, the response from SEND CONFIRM must always be checked. See “Checking the
response to SEND CONFIRM” on page 30.

Receiving and replying to a confirmation request
On receipt of a confirmation request, the EIB and conversation state will be set depending on the request
issued by the partner transaction.

The EIB, the conversation state, and the contents of the EIBCONF, EIBRECV, and EIBFREE fields are
shown in Table 8 on page 29.

Table 8. Indications of a confirmation request

Command issued by partner Conversation state | EIBCONF on | EIBRECV on | EIBFREE on

transaction on receipt of receipt of receipt of receipt of
request request request request

SEND CONFIRM confreceive (state 6) | X'FF' X'FF' X'00'

SEND INVITE CONFIRM confsend (state 7) X'FF' X'00' X'00'

SEND LAST CONFIRM conffree (state 8) X'FF' X'00' X'FF'

There are three ways of replying:

1. Reply positively with an ISSUE CONFIRMATION command.

2. Reply negatively with an ISSUE ERROR command. This reply puts the conversation into send state
(state 2) regardless of the partner transaction request.

3. Abnormally end the conversation with an ISSUE ABEND command. This makes the conversation
unusable and a FREE command must be issued immediately.

Chapter 2. Writing programs for APPC mapped conversations 29

Checking the response to SEND CONFIRM
Afterissuing SEND [INVITE|LAST] CONFIRM, it is important to test EIBERR to determine the partner’s

response.
Table 9 on page 30 shows how the partner’s response is indicated by EIB flags and the conversation
states.
Table 9. Indications of responses to SEND CONFIRM
Command issued in reply by Conversation state on receipt of | EIBERR on EIBFREE on
partner transaction response receipt of receipt of
response response
ISSUE CONFIRMATION dependent on original SEND X'00' X'00'
[INVITE|LAST] CONFIRM request
ISSUE ERROR receive (state 5) X'FF' X'00'
ISSUE ABEND free (state 12) X'FF' X'FF'

If EIBERR=X'00', the partner has replied ISSUE CONFIRMATION.

If the partner replies ISSUE ERROR, this is indicated by EIBERR=X'FF ' and the first two bytes of
EIBERRCD = X'0889'. When the partner replies ISSUE ERROR in response to SEND LAST CONFIRM, the
LAST option is ignored and the conversation is not terminated. The conversation state is switched to
receive state (state 5).

If the partner replies ISSUE ABEND, your transaction will be abended AZCH. In addition, EIBERR and
EIBFREE are set, and the first two bytes of EIBERRCD= X'0864'. The conversation is switched to free
state .

How to synchronize conversations using SYNCPOINT commands

Data synchronization (the SYNCPOINT and SYNCPOINT ROLLBACK commands) affects all connected
conversations at sync level 2.

The use of these commands in DTP is described in “Syncpointing a distributed process” on page 97.

Ending the conversation

A conversation can end in two ways, unexpectedly, or under transaction control.

To end a conversation, one transaction issues a request for termination and the other receives this
request. Once this has happened the conversation is unusable and both transactions must issue a FREE
command to release the session.

Normal termination of a conversation

The SEND LAST command is used to terminate a conversation. It should be used in conjunction with
either the WAIT or CONFIRM options, the SYNCPOINT command, or the WAIT CONVID command
(depending on the conversation sync level).

Table 10. Command sequences for ending a conversation

Sync level Command sequence

0 SEND LAST WAIT

FREE

SEND LAST CONFIRM
FREE

30 CICS TS for z/OS: Distributed Transaction Programming Guide

Table 10. Command sequences for ending a conversation (continued)

Sync level Command sequence

2 SEND LAST
SYNCPOINT
FREE

It is important that the SEND LAST command for sync level 2 is not accompanied by WAIT or CONFIRM
because either of these options will cause the conversation to end before the subsequent syncpoint has
propagated to the partner transaction. This may mean that protected resources of one transaction could
be committed while those in the partner transaction could be backed out. The resulting state errors may
also lead to the session being unbound.

From the state tables it can be seen that it is possible to end a conversation by issuing the FREE
command, provided the conversation is in send state (state 2). This will generate an implicit SEND LAST
WAIT command before the FREE is executed and is therefore not recommended for conversations using
sync levels 1 and 2.

Note: A distributed transaction should not end a conversation by issuing an EXEC CICS RETURN
command, but instead follow the sequence of commands shown in Table 10 on page 30. The issue of an
EXEC CICS RETURN could lead to one or both transactions ending abnormally.

Emergency termination of a conversation

The ISSUE ABEND command provides a means of abnormally ending the conversation. It is valid for all
levels of synchronization, but should be avoided at sync level 2, because its use at the wrong time can
lead to a loss of data integrity.

ISSUE ABEND can be issued by either transaction, irrespective of whether it is in send or receive state, at
any time after the conversation has started. For a conversation in send state (state 2), any deferred data
that is waiting for transmission is flushed before the ISSUE ABEND command is transmitted.

The transaction that issues the ISSUE ABEND command is not itself abended. It must, however, issue a
FREE command for the conversation unless it is designed to terminate immediately.

If an ISSUE ABEND command is issued in receive state (state 5), CICS purges all incoming data until an
INVITE, syncpoint request, or LAST indicator is received. If LAST is received, no abend indication is sent
to the partner transaction.

If an ISSUE ABEND is received, CICS abends the transaction with abend code AZCH, sets on EIBERR(=
X'FF'),EIBFREE(= X'FF'), and places X'0864' in the first two bytes of EIBERRCD.

Unexpected termination of a conversation

If a partner system fails, or a session goes out of service in the middle of a DTP conversation, the
conversation is terminated abnormally and the TERMERR condition is raised on the next command that
accesses the conversation.

In addition, EIBERR and EIBFREE are set on (X'FF') and EIBERRCD contains a value representing the
reason for the error, as follows:

X'08640001"

partner system with persistent session support has failed and restarted
X'1008600B'

session has failed due to a protocol error
X'A0000100'

temporary session failure

X'A0010100'
RTIMOUT timeout value was exceeded.

Chapter 2. Writing programs for APPC mapped conversations 31

Checking the outcome of a DTP command

Checking the response from a DTP command can be separated into three stages.
The stages are :

1. Testing for request failure
2. Testing for indicators received on the conversation
3. Testing the conversation state.

Testing for request failure is the same as for other EXEC CICS commands in that conditions are raised and
can be handled using HANDLE CONDITION or RESP. EIBRCODE will also contain an error code. Note that
when an ISSUE ABEND has been received, and it is to be handled, a HANDLE ABEND should be used
rather than a HANDLE CONDITION.

If the request has not failed, it is then possible to test for indicators received on the conversation. These
are returned to the application in the EIB. The following EIB fields are relevant to all DTP commands:

EIBERR
when set to X'FF' indicates an error has occurred on the conversation. The reason is in EIBERRCD.
This could be as a result of an ISSUE ERROR, ISSUE ABEND, or SYNCPOINT ROLLBACK command
issued by the partner transaction. EIBERR can be set as a result of any command that can be issued
while the conversation is in receive state (state 5) or following any command that causes a
transmission to the partner system. It is safest to test EIBERR in conjunction with EIBFREE and
EIBSYNRB after every DTP command.

EIBERRCD
contains the error code associated with EIBERR. If EIBERR is not set, this field is not used.

EIBFREE
when set to X'FF' indicates that the partner transaction had ended the conversation. It should be
tested along with EIBERR and EIBSYNC to find out exactly how to end the conversation.

EIBSIG
when set to X'FF' indicates the partner transaction or system has issued an ISSUE SIGNAL command.

EIBSYNRB
when set to X'FF' indicates the partner transaction or system has issued a SYNCPOINT ROLLBACK
command. (This is relevant only for conversations at sync level 2.)

Table 11 on page 32 shows how these EIB fields interact.

Table 11. Interaction between some EIB fields—all DTP commands

EIB- ERR |EIB- FREE | EIB- EIBERRCD Description
SYNRB
X'FF! X'00' X'00' X'08890000" The partner transaction has sent ISSUE ERROR
X'08890001"
X'FF' X'00' X'00' X'08890100' The partner system has sent ISSUE ERROR
X'08890101"
X'FF' X'FF' X'00' X'08640000' The partner transaction has sent ISSUE ABEND
X'FF' X'FF X'00' X'08640001" The partner system has sent ISSUE ABEND
X'FF' X'FF' X'00' X'08640002' A partner resource has timed out
X'FF! X'FF! X'00' X'1008600B' The session has failed due to a protocol error
X'FF! X'FF! X'00' X'A0000100' A temporary session failure

32 CICS TS for z/OS: Distributed Transaction Programming Guide

Table 11. Interaction between some EIB fields—all DTP commands (continued)

EIB- ERR |EIB- FREE | EIB- EIBERRCD Description
SYNRB

X'FF! X'FF! X'00' X'A0010100' RTIMOUT has been triggered. (The task has timed out
while waiting for terminal input.)

X'FF' X'FF' X'00 X'10086032' The PIP data sent with the CONNECT PROCESS was
incorrectly specified

X'FF' X'FF! X'00' X'10086034' The partner system does not support mapped
conversations

X'FF' X'FF X'00' X'080F6051' The partner transaction failed security check

X'FF' X'FF' X'00' X'10086041' The partner transaction does not support the sync
level requested on the CONNECT PROCESS

X'FF! X'FF! X'00' X'10086021" The partner transactions name is not recognized by
the partner system

X'FF! X'FF! X'00' X'084C0000" The partner system cannot start the partner
transaction

X'FF' X'FF! X'00' X'084B6031' The partner system is temporarily unable to start the
partner transaction

X'FF' X'00' X'FF' X'08240000' The partner transaction or system has issued
SYNCPOINT ROLLBACK

X'00' X'00' — — The command completed successfully.

In addition, the following EIB fields are relevant only to the RECEIVE and CONVERSE commands:

EIBCOMPL
when set to X'FF' indicates that all the data sent at one time has been received. This field is used in
conjunction with the RECEIVE NOTRUNCATE command.

EIBCONF
when set to X'FF' indicates that the partner transaction has issued a SEND CONFIRM command and
requires a response.

EIBEOC
when set to X'FF' indicates that an end-of-chain indicator has been received. This field is normally
associated with a successful RECEIVE command.

EIBNODAT
when set to X'FF' indicates that no application data has been received.

EIBRECV
is only used when EIBERR is not set. When EIBRECV is on (X'FF'), another RECEIVE is required.

EIBSYNC
when set to X'FF' indicates that the partner transaction or system has requested a syncpoint. (This is
relevant only for conversations at sync level 2.)

Table 12 on page 34 shows how some of these EIB fields interact for RECEIVE and CONVERSE
commands.

Chapter 2. Writing programs for APPC mapped conversations 33

Table 12. Interaction between some EIB fields—RECEIVE and CONVERSE commands only

EIB- ERR |EIB- EIB- EIB- EIB- Description
FREE RECV SYNC CONF
X'00' X'00' X'00' X'00' X'00' The partner transaction or system has issued SEND
INVITE WAIT. The local program is now in send
state.
X'00' X'00' X'00' X'FF! X'00' The partner transaction or system has issued SEND

INVITE, followed by a SYNCPOINT. The local
program is now in syncsend state.

X'00'

X'00' X'00' X'00' X'FF! The partner transaction or system has issued SEND
INVITE CONFIRM. The local program is now in
confsend state.

x'oo0'

X'00' X'FF X'00' X'00' The partner transaction or system has issued SEND
or SEND WAIT. The local program is in receive
state.

X'00'

X'00" X'FF' X'FF' X'00" The partner transaction or system has issued a
SYNCPOINT. The local program is in syncreceive
state.

X'00'

X'00' X'FF! X'00' X'FF! The partner transaction or system has issued a
SEND CONFIRM. The local program is in
confreceive state.

X'00'

X'FF! X'00' X'00' X'00' The partner transaction or system has issued a
SEND LAST WAIT. The local program is in free
state.

X'00'

X'FF' X'00' X'FF! X'00' The partner transaction or system has issued a
SEND LAST followed by a SYNCPOINT. The local
program is in syncfree state.

X'00'

X'FF' X'00' X'00' X'FF! The partner transaction or system has issued a
SEND LAST CONFIRM. The local program is in
conffree state.

After analyzing the EIB fields, you can test the conversation state to determine which DTP commands you
can issue next. See “State transitions in APPC mapped conversations” on page 36.

Checking EIB fields and the conversation state

Most of the information supplied by EIB indicator fields can also be obtained from the conversation state.
Although the conversation state is easier to test, you cannot ignore EIBERR (and EIBERRCD).

For example, if after a SEND INVITE WAIT or a RECEIVE command has been issued, the conversation is in
receive state (state 5), only EIBERR indicates that the partner transaction has sent an ISSUE ERROR. This
is illustrated in Figure 8 on page 26 and Figure 9 on page 27.

It should be noted that the state tables provided contain not only states and commands issued, but also
relevant EIB field settings. The order in which these EIB fields are shown provides a sensible sequence of
checks for an application.

34 CICS TS for z/OS: Distributed Transaction Programming Guide

Summary of CICS commands for APPC mapped conversations

The CICS application programming interface provides a set of commands for use in APPC mapped

conversations.

Table 13. Summary of CICS commands used in mapped conversations

recoverable resources.

Useto... Sync CICS command More information
levels
Acquire a session. 0,1,2 ALLOCATE “Allocating a session to the
conversation” on page 21
Initiate a conversation. 0,1,2 CONNECT PROCESS | “Connecting the partner
transaction” on page 22
Access session-related 0,1,2 EXTRACT PROCESS | “Back-end transaction initiation”
information. on page 23
Send data and control 0,1,2 SEND “Sending data to the partner
information to the conversation transaction” on page 24
partner.
Receive data from the 0,1,2 RECEIVE “Receiving data from the partner
conversation partner. transaction” on page 26
Send and receive data on the 0,1,2 CONVERSE “The CONVERSE command” on
conversation. page 27
Transmit any deferred data or 0,1,2 WAIT CONVID “Sending data to the partner
control indicators. transaction” on page 24
Reply positively to SEND 1,2 ISSUE “Receiving and replying to a
CONFIRM. CONFIRMATION confirmation request” on page 29
Prepare a conversation partner 2 ISSUE PREPARE “The ISSUE PREPARE command”
for syncpointing. on page 97
Inform the conversation partner |0,1,2 ISSUE ERROR “Demanding INVITE from the
of a program-detected error. partner transaction” on page 28
Signal an unusual condition to 0,1,2 ISSUE SIGNAL “Requesting INVITE from the
the conversation partner, usually partner transaction” on page 28
against the flow of data.
Inform the conversation partner |[0,1,2 ISSUE ABEND “Emergency termination of a
that the conversation should be conversation” on page 31
abandoned.
Free the session. 0,1,2 FREE “Ending the conversation” on
page 30
Inform all conversation partners |2 SYNCPOINT “Syncpointing a distributed
of readiness to commit changes process” on page 97
to recoverable resources.
Inform conversation partners of |2 SYNCPOINT “The SYNCPOINT ROLLBACK
the need to back out changes to ROLLBACK command” on page 98

For programming information about CICS commands, see CICS command summary.

Chapter 2. Writing programs for APPC mapped conversations 35

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/reference/commands-api/dfhp4_commandsummary.html

State transitions in APPC mapped conversations

These topics shows the state transitions that occur when transactions engage in APPC mapped
conversations under the EXEC CICS API.

The state transitions are presented in the form of state tables; and there is one table for each of the three
allowable sync levels.

The state tables provide the following information for writing a DTP program. Firstly, they show which
commands can be issued from each conversation state. Secondly, they show the state transitions that
can occur and the EIB fields that can be set as a result of issuing a command.

How to use the state tables

The state tables show the commands you can issue, the EIB flags that can be set when the command is
issued, and the conversation states.

The commands you can issue, coupled with the EIB flags that can be set after execution, are shown in the
first column of each table. Alongside each command, the EIB fields shown are in the order in which the
application should test them. The possible conversation states are shown across the top of the table. The
states correspond to the columns of the table. The intersection of row (command and EIB flag) and
column (state) represents the state transition, if any, that occurs when that command returning a
particular EIB flag is issued in that state.

A number at an intersection indicates the state number of the next state. Other symbols represent other
conditions, as follows:

Symbol Meaning

N/A Cannot occur.

x The EIB flag is any one that has not been covered in earlier rows, or it is irrelevant (but
see the note on EIBSIG if you want to use ISSUE SIGNAL).

Abend code The command is not valid in this state. Issuing a command in a state in which it is not
valid usually causes an ATCV abend. When a different abend code applies, this is
shown in the tables.

INVREQ The command is not valid in this state. An INVREQ condition is returned.
= Remains in current state.

End End of conversation.

Initial conversation states
Before a session is allocated, there is no conversation, and therefore no conversation state.

The EXEC CICS ALLOCATE command gets a session to start a new conversation and does not affect any
conversation that is already in progress, hence the ALLOCATE command does not appear in the tables.
After the ALLOCATE command is successfully issued, the new conversation in the front-end transaction is
in ALLOCATED state.

The back-end transaction starts in RECEIVE state after the front-end transaction has successfully issued
the CONNECT PROCESS command.

Testing the conversation state
There are two ways for a transaction to inquire on the current state of one of its conversations.

The first is to use the EXEC CICS EXTRACT ATTRIBUTES STATE command and the second is to use
the STATE parameter on the DTP commands. In both cases the current state is returned to the
application in a CICS value data area (cvda). Table 14 on page 37 shows how the cvda codes relate to
the conversation state. The table also shows the symbolic names defined for these cvda values.

36 CICS TS for z/OS: Distributed Transaction Programming Guide

Table 14. The conversation states
States used in this book States used in DTP programs
State name State Symbolic name cvda code
number
Allocated 1 DFHVALUE(ALLOCATED) 81
Send 2 DFHVALUE(SEND) 90
Pendreceive 3 DFHVALUE(PENDRECEIVE) 87
Pendfree 4 DFHVALUE(PENDFREE) 86
Receive 5 DFHVALUE(RECEIVE) 88
Confreceive 6 DFHVALUE(CONFRECELVE) 83
Confsend 7 DFHVALUE(CONFSEND) 84
Conffree 8 DFHVALUE(CONFFREE) 82
Syncreceive 9 DFHVALUE(SYNCRECEIVE) 92
Syncsend 10 DFHVALUE(SYNCSEND) 93
Syncfree 11 DFHVALUE(SYNCFREE) 91
Free 12 DFHVALUE(FREE) 85
Rollback 13 DFHVALUE(ROLLBACK) 89

State tables for APPC mapped conversations at sync level 0

Tables showing the state transitions that occur when transactions engage in APPC mapped conversations
at sync level 0, under the EXEC CICS API.

The ISSUE SIGNAL command and the EIBSIG flag

In the tables, the EIBSIG flag is not mentioned. This is because its use is optional and is entirely a matter
of agreement between the two conversation partners. In the worst case, it can occur at any time after
every command that affects the EIB flags. However, used for the purpose for which it was intended, it
usually occurs after a SEND command. Its priority in the order of testing depends on the role you give it in
the application.

The EIBSIG flag is set when the partner issues the ISSUE SIGNAL command.

The RECEIVE NOTRUNCATE command

The RECEIVE NOTRUNCATE command returns a zero value in EIBCOMPL to indicate that the user buffer
was too small to contain all the data received from the partner transaction. Normally, you would continue
to issue RECEIVE NOTRUNCATE commands until the last section of data is passed to you, which is
indicated by EIBCOMPL = X'FF'. If NOTRUNCATE is not specified, and the data area specified by the
RECEIVE command is too small to contain all the data received, CICS truncates the data and sets the
LENGERR condition.

State tables

Table 15. States 1 -6

Command ALLOC- SEND PEND- PEND- RECEIVE CONF-

returns ATED RECEIVE FREE RECEIVE
Command issued EIB flags returned State 1 State 2 State 3 State 4 State 5 State 6
CONNECT PROCESS EIBERR + EIBFREE Immediately 12 Abend Abend Abend Abend N/A

Chapter 2. Writing programs for APPC mapped conversations 37

Table 15. States 1 - 6 (continued)

Command ALLOC- SEND PEND- PEND- RECEIVE CONF-
returns ATED RECEIVE FREE RECEIVE

Command issued EIB flags returned State 1 State 2 State 3 State 4 State 5 State 6

CONNECT PROCESS x Immediately 2 Abend Abend Abend Abend N/A

EXTRACT PROCESS x Immediately = = = = = N/A

(back-end transaction

only)

EXTRACT ATTRIBUTES x Immediately = = = = = N/A

SEND (any valid form) EIBERR + EIBFREE After error Abend 12 Abend Abend Abend N/A
detected

SEND (any valid form) EIBERR After error Abend 5 Abend Abend Abend N/A
detected

SEND INVITE WAIT x After data flows Abend 5 Abend Abend Abend N/A

SEND INVITE x After data Abend 3 Abend Abend Abend N/A
buffered

SEND LAST WAIT x After data flows Abend 12 Abend Abend Abend N/A

SEND LAST x After data Abend 4 Abend Abend Abend N/A
buffered

SEND WAIT x After data flows Abend = Abend Abend Abend N/A

SEND x After data Abend = Abend Abend Abend N/A
buffered

RECEIVE EIBERR + EIBFREE After error Abend 12 12 Abend 12 N/A
detected

RECEIVE EIBERR After error Abend 5 5 Abend = N/A
detected

RECEIVE EIBFREE After error Abend 12 12 Abend 12 N/A
detected

RECEIVE EIBRECV When data Abend 5 5 Abend = N/A
available

RECEIVE NOTRUNCATE EIBCOMPL When data Abend 5 5 Abend = N/A
available

RECEIVE X When data Abend = 2 Abend 2 N/A
available

CONVERSE (equivalent to | As for RECEIVE As for As for As for As for As for As for

SEND INVITE WAIT RECEIVE RECEIVE RECEIVE RECEIVE RECEIVE RECEIVE

followed by RECEIVE)

ISSUE ERROR EIBFREE After response Abend 12 12 Abend 12 N/A
from partner

ISSUE ERROR x After response Abend = 2 Abend 2 N/A
from partner

ISSUE ABEND x Immediately Abend 12 12 12 12 N/A

ISSUE SIGNAL x Immediately Abend = = Abend = N/A

WAIT CONVID x Immediately Abend = 5 12 Abend N/A

FREE x Immediately End End Abend End Abend N/A

Table 16. States 7 - 13

Command issued EIB flags returned CONF- SEND CONF- SYNC- SYNC- SYNC- FREE ROLL-

FREE RECEIVE SEND FREE BACK

State 7 State 8 State 9 State 10 State 11 State 12 State 13

CONNECT PROCESS EIBERR + EIBFREE N/A N/A N/A N/A N/A Abend N/A

CONNECT PROCESS x N/A N/A N/A N/A N/A Abend N/A

EXTRACT PROCESS x N/A N/A N/A N/A N/A = N/A

(back-end transaction

only)

EXTRACT ATTRIBUTES x N/A N/A N/A N/A N/A = N/A

38 CICS TS for z/OS: Distributed Transaction Programming Guide

Table 16. States 7 - 13 (continued)

Command issued EIB flags returned CONF- SEND CONF- SYNC- SYNC- SYNC- FREE ROLL-
FREE RECEIVE SEND FREE BACK
State 7 State 8 State 9 State 10 State 11 State 12 State 13
SEND (any valid form) EIBERR + EIBFREE N/A N/A N/A N/A N/A Abend N/A
SEND (any valid form) EIBERR N/A N/A N/A N/A N/A Abend N/A
SEND INVITE WAIT x N/A N/A N/A N/A N/A Abend N/A
SEND INVITE x N/A N/A N/A N/A N/A Abend N/A
SEND LAST WAIT x N/A N/A N/A N/A N/A Abend N/A
SEND LAST x N/A N/A N/A N/A N/A Abend N/A
SEND WAIT x N/A N/A N/A N/A N/A Abend N/A
SEND x N/A N/A N/A N/A N/A Abend N/A
RECEIVE EIBERR + EIBFREE N/A N/A N/A N/A N/A Abend N/A
RECEIVE EIBERR N/A N/A N/A N/A N/A Abend N/A
RECEIVE EIBFREE N/A N/A N/A N/A N/A Abend N/A
RECEIVE EIBRECV N/A N/A N/A N/A N/A Abend N/A
RECEIVE NOTRUNCATE EIBCOMPL N/A N/A N/A N/A N/A Abend N/A
RECEIVE x N/A N/A N/A N/A N/A Abend N/A
CONVERSE (equivalent to | As for RECEIVE As for RECEIVE As for As for As for As for As for As for
SEND INVITE WAIT RECEIVE RECEIVE RECEIVE RECEIVE RECEIVE RECEIVE
followed by RECEIVE)
ISSUE ERROR EIBFREE N/A N/A N/A N/A N/A Abend N/A
ISSUE ERROR x N/A N/A N/A N/A N/A Abend N/A
ISSUE ABEND x N/A N/A N/A N/A N/A Abend N/A
ISSUE SIGNAL x N/A N/A N/A N/A N/A Abend N/A
WAIT CONVID x N/A N/A N/A N/A N/A Abend N/A
FREE x N/A N/A N/A N/A N/A End N/A

State tables for APPC mapped conversations at sync level 1

Tables showing the state transitions that occur when transactions engage in APPC mapped conversations
at sync level 1, under the EXEC CICS API.

The ISSUE SIGNAL command and the EIBSIG flag

In the tables, the EIBSIG flag is not mentioned. This is because its use is optional and is entirely a matter
of agreement between the two conversation partners. In the worst case, it can occur at any time after
every command that affects the EIB flags. However, used for the purpose for which it was intended, it
usually occurs after a SEND command. Its priority in the order of testing depends on the role you give it in
the application.

The EIBSIG flag is set when the partner issues the ISSUE SIGNAL command.

The RECEIVE NOTRUNCATE command

The RECEIVE NOTRUNCATE command returns a zero value in EIBCOMPL to indicate that the user buffer
was too small to contain all the data received from the partner transaction. Normally, you would continue
to issue RECEIVE NOTRUNCATE commands until the last section of data is passed to you, which is
indicated by EIBCOMPL = X'FF'. If NOTRUNCATE is not specified, and the data area specified by the
RECEIVE command is too small to contain all the data received, CICS truncates the data and sets the
LENGERR condition.

Chapter 2. Writing programs for APPC mapped conversations 39

State tables

Table 17. States 1 -6

Command ALLOC- SEND PEND- PEND- RECEIVE CONF-
returns ATED RECEIVE FREE RECEIVE

Command issued EIB flags returned State 1 State 2 State 3 State 4 State 5 State 6

CONNECT PROCESS EIBERR + EIBFREE Immediately 12 Abend Abend Abend Abend Abend

CONNECT PROCESS x Immediately 2 Abend Abend Abend Abend Abend

EXTRACT PROCESS x Immediately Abend = = = = =

(back-end transaction

only)

EXTRACT ATTRIBUTES x Immediately = = = = = =

SEND (any valid form) EIBERR + EIBFREE After error flow Abend 12 12 12 Abend Abend
detected

SEND (any valid form) EIBERR After error flow Abend 5 5 5 Abend Abend
detected

SEND INVITE WAIT x After data flows Abend 5 Abend Abend Abend Abend

SEND INVITE CONFIRM x After response Abend 5 Abend Abend Abend Abend
from partner

SEND INVITE x After data Abend 3 Abend Abend Abend Abend
buffered

SEND LAST WAIT x After data flows Abend 12 Abend Abend Abend Abend

SEND LAST CONFIRM x After response Abend 12 Abend Abend Abend Abend
from partner

SEND LAST x After data Abend 4 Abend Abend Abend Abend
buffered

SEND WAIT x After data flows Abend = Abend Abend Abend Abend

SEND CONFIRM x After response Abend = 5 12 Abend Abend
from partner

SEND x After data Abend = Abend Abend Abend Abend
buffered

RECEIVE EIBERR + EIBFREE After error Abend 12 12 Abend 12 Abend
detected

RECEIVE EIBERR After error Abend 5 5 Abend = Abend
detected

RECEIVE EIBCONF + EIBFREE After confirm flow | Abend 8 8 Abend 8 Abend
detected

RECEIVE EIBCONF + EIBRECV After confirm flow | Abend 6 6 Abend 6 Abend
detected

RECEIVE EIBCONF After confirm flow | Abend 7 7 Abend 7 Abend
detected

RECEIVE EIBFREE After error Abend 12 12 Abend 12 Abend
detected

RECEIVE EIBRECV When data Abend 5 5 Abend = Abend
available

RECEIVE NOTRUNCATE EIBCOMPL When data Abend 5 5 Abend = Abend
available

RECEIVE x When data Abend = 2 Abend 2 Abend
available

CONVERSE (equivalent to | As for RECEIVE As for As for As for As for As for As for

SEND INVITE WAIT RECEIVE RECEIVE RECEIVE RECEIVE RECEIVE RECEIVE

followed by RECEIVE)

ISSUE CONFIRMATION x Immediately Abend Abend Abend Abend Abend 5

ISSUE ERROR EIBFREE After response Abend 12 12 Abend 12 12
from partner

ISSUE ERROR x After response Abend = 2 Abend 2 2
from partner

ISSUE ABEND x Immediately Abend 12 12 12 12 12

40 CICS TS for z/OS: Distributed Transaction Programming Guide

Table 17. States 1 - 6 (continued)

Command ALLOC- SEND PEND- PEND- RECEIVE CONF-

returns ATED RECEIVE FREE RECEIVE
Command issued EIB flags returned State 1 State 2 State 3 State 4 State 5 State 6
ISSUE SIGNAL x Immediately Abend = = Abend = =
WAIT CONVID x Immediately Abend = 5 12 Abend Abend
FREE x Immediately End End Abend End Abend Abend
Table 18. States 7 - 13
Command issued EIB flags returned CONF- SEND CONF- SYNC- SYNC- SYNC- FREE ROLL-

FREE RECEIVE SEND FREE BACK

State 7 State 8 State 9 State 10 State 11 State 12 State 13
CONNECT PROCESS EIBERR + EIBFREE Abend Abend N/A N/A N/A Abend N/A
CONNECT PROCESS x Abend Abend N/A N/A N/A Abend N/A
EXTRACT PROCESS x = = N/A N/A N/A = N/A
(back-end transaction
only)
EXTRACT ATTRIBUTES x = = N/A N/A N/A = N/A
SEND (any valid form) EIBERR + EIBFREE Abend Abend N/A N/A N/A Abend N/A
SEND (any valid form) EIBERR Abend Abend N/A N/A N/A Abend N/A
SEND INVITE WAIT x Abend Abend N/A N/A N/A Abend N/A
SEND INVITE CONFIRM | x Abend Abend N/A N/A N/A Abend N/A
SEND INVITE x Abend Abend N/A N/A N/A Abend N/A
SEND LAST WAIT x Abend Abend N/A N/A N/A Abend N/A
SEND LAST CONFIRM x Abend Abend N/A N/A N/A Abend N/A
SEND LAST x Abend Abend N/A N/A N/A Abend N/A
SEND WAIT x Abend Abend N/A N/A N/A Abend N/A
SEND CONFIRM x Abend Abend N/A N/A N/A Abend N/A
SEND x Abend Abend N/A N/A N/A Abend N/A
RECEIVE EIBERR + EIBFREE Abend Abend N/A N/A N/A Abend N/A
RECEIVE EIBERR Abend Abend N/A N/A N/A Abend N/A
RECEIVE EIBCONF + EIBFREE Abend Abend N/A N/A N/A Abend N/A
RECEIVE EIBCONF + EIBRECV Abend Abend N/A N/A N/A Abend N/A
RECEIVE EIBCONF Abend Abend N/A N/A N/A Abend N/A
RECEIVE EIBFREE Abend Abend N/A N/A N/A Abend N/A
RECEIVE EIBRECV Abend Abend N/A N/A N/A Abend N/A
RECEIVE NOTRUNCATE | EIBCOMPL Abend Abend N/A N/A N/A Abend N/A
RECEIVE x Abend Abend N/A N/A N/A Abend N/A
CONVERSE (equivalent to As for RECEIVE As for As for As for As for As for As for
SEND INVITE WAIT RECEIVE RECEIVE RECEIVE RECEIVE RECEIVE RECEIVE
followed by RECEIVE)
ISSUE CONFIRMATION X 2 12 N/A N/A N/A Abend N/A
ISSUE ERROR EIBFREE 12 12 N/A N/A N/A Abend N/A
ISSUE ERROR x 2 2 N/A N/A N/A Abend N/A
ISSUE ABEND x 12 12 N/A N/A N/A Abend N/A
ISSUE SIGNAL x = = N/A N/A N/A Abend N/A
WAIT CONVID x Abend Abend N/A N/A N/A Abend N/A
FREE x Abend Abend N/A N/A N/A End N/A

Chapter 2. Writing programs for APPC mapped conversations 41

State tables for APPC mapped conversations at sync level 2

Tables showing the state transitions that occur when transactions engage in APPC mapped conversations
at sync level 2, under the EXEC CICS API.

The ISSUE SIGNAL command and the EIBSIG flag

In the tables, the EIBSIG flag is not mentioned. This is because its use is optional and is entirely a matter
of agreement between the two conversation partners. In the worst case, it can occur at any time after
every command that affects the EIB flags. However, used for the purpose for which it was intended, it
usually occurs after a SEND command. Its priority in the order of testing depends on the role you give it in
the application.

The EIBSIG flag is set when the partner issues the ISSUE SIGNAL command.

The RECEIVE NOTRUNCATE command

The RECEIVE NOTRUNCATE command returns a zero value in EIBCOMPL to indicate that the user buffer
was too small to contain all the data received from the partner transaction. Normally, you would continue
to issue RECEIVE NOTRUNCATE commands until the last section of data is passed to you, which is
indicated by EIBCOMPL = X'FF'. If NOTRUNCATE is not specified, and the data area specified by the
RECEIVE command is too small to contain all the data received, CICS truncates the data and sets the
LENGERR condition.

Restrictions when using APPC transaction routing
Where APPC transaction routing is in use, the ISSUE SIGNAL command is invalid in the following states:

SYNC-RECEIVE
SYNC-SEND
SYNC-FREE

State changes for the SYNCPOINT and SYNCPOINT ROLLBACK commands

When the SYNCPOINT and SYNCPOINT ROLLBACK commands are issued, they are propagated on, and
affect the state of, all the conversations that are currently active for the task, including MRO
conversations.

Following rollback, the conversation can be in SEND or RECEIVE state, depending on the conversation
state at the start of the current distributed unit of work. The conversation can be in FREE state if it ended
abnormally due to session failure or due to deallocate abend being received, or if the partner transaction
issued a SEND LAST WAIT or FREE command.

After a syncpoint or rollback, it is advisable to determine the conversation state before issuing any further
commands against the conversation.

State changes following the ISSUE PREPARE command

Although ISSUE PREPARE can return with the conversation in either SYNCSEND state, SYNCRECEIVE
state, or SYNCFREE state, the only commands allowed on that conversation following an ISSUE PREPARE
are SYNCPOINT and SYNCPOINT ROLLBACK. All other commands Abend.

State tables

Table 19. States 1 -6

Command ALLO- SEND PEND- PEND- RECEIVE CONF-

returns CATED RECEIVE FREE RECEIVE
Command issued EIB flag returned State 1 State 2 State 3 State 4 State 5 State 6
CONNECT PROCESS EIBERR + EIBFREE Immediately 12 Abend Abend Abend Abend Abend
CONNECT PROCESS x Immediately 2 Abend Abend Abend Abend Abend

42 CICS TS for z/OS: Distributed Transaction Programming Guide

Table 19. States 1 - 6 (continued)

Command ALLO- SEND PEND- PEND- RECEIVE CONF-
returns CATED RECEIVE FREE RECEIVE

Command issued EIB flag returned State 1 State 2 State 3 State 4 State 5 State 6

EXTRACT PROCESS x Immediately = = = = = =

(back-end transaction

only)

EXTRACT ATTRIBUTES x Immediately = = = = = =

SEND (any valid form) EIBERR + EIBSYNRB After error flow Abend 13 13 13 Abend Abend
detected

SEND (any valid form) EIBERR + EIBFREE After error flow Abend 12 12 12 Abend Abend
detected

SEND (any valid form) EIBERR After error flow Abend 5 5 5 Abend Abend
detected

SEND INVITE WAIT x After data flows Abend 5 Abend Abend Abend Abend

SEND INVITE CONFIRM x After response Abend 5 Abend Abend Abend Abend
from partner

SEND INVITE x After data Abend 3 Abend Abend Abend Abend
buffered

SEND LAST WAIT x After data flows Abend 12 Abend Abend Abend Abend

SEND LAST CONFIRM x After response Abend 12 Abend Abend Abend Abend
from partner

SEND LAST x After data Abend 4 Abend Abend Abend Abend
buffered

SEND WAIT x After data flows Abend = Abend Abend Abend Abend

SEND CONFIRM x After response Abend = 5 12 Abend Abend
from partner

SEND x After data Abend = Abend Abend Abend Abend
buffered

RECEIVE EIBERR + EIBSYNRB After rollback flow | Abend 13 13 Abend 13 Abend
detected

RECEIVE EIBERR + EIBFREE After error Abend 12 12 Abend 12 Abend
detected

RECEIVE EIBERR After error Abend 5 5 Abend = Abend
detected

RECEIVE EIBSYNC + EIBFREE After sync flow Abend 11 11 Abend 11 Abend
detected

RECEIVE EIBSYNC + EIBRECV After sync flow Abend 9 9 Abend 9 Abend
detected

RECEIVE EIBSYNC After sync flow Abend 10 10 Abend 10 Abend
detected

RECEIVE EIBCONF + EIBFREE After confirm flow | Abend 8 8 Abend 8 Abend
detected

RECEIVE EIBCONF + EIBRECV After confirm flow | Abend 6 6 Abend 6 Abend
detected

RECEIVE EIBCONF After confirm flow | Abend 7 7 Abend 7 Abend
detected

RECEIVE EIBFREE After error flow Abend 12 12 Abend 12 Abend
detected

RECEIVE EIBRECV When data Abend 5 5 Abend = Abend
available

RECEIVE NOTRUNCATE EIBCOMPL When data Abend 5 5 Abend = Abend
available

RECEIVE x When data Abend = 2 Abend 2 Abend
available

CONVERSE (equivalent to | As for RECEIVE As for As for As for As for As for As for

SEND INVITE WAIT RECEIVE RECEIVE RECEIVE RECEIVE RECEIVE RECEIVE

followed by RECEIVE)

Chapter 2. Writing programs for APPC mapped conversations 43

Table 19. States 1 - 6 (continued)

Command ALLO- SEND PEND- PEND- RECEIVE CONF-
returns CATED RECEIVE FREE RECEIVE
Command issued EIB flag returned State 1 State 2 State 3 State 4 State 5 State 6
ISSUE CONFIRMATION x Immediately Abend Abend Abend Abend Abend 5
ISSUE ERROR EIBFREE After response Abend 12 12 Abend 12 12
from partner
ISSUE ERROR x After response Abend = 2 Abend 2 2
from partner
ISSUE ABEND x Immediately Abend 12 12 12 12 12
ISSUE SIGNAL x Immediately Abend = = Abend = =
ISSUE PREPARE EIBERR + EIBSYNRB After response INVREQ 13 13 13 INVREQ INVREQ
from partner
ISSUE PREPARE EIBERR + EIBFREE After error INVREQ 12 12 12 INVREQ INVREQ
detected
ISSUE PREPARE EIBERR After error INVREQ 5 5 5 INVREQ INVREQ
detected
ISSUE PREPARE x After response INVREQ 10 9 11 INVREQ INVREQ
from partner
SYNCPOINT EIBRLDBK After response = 2o0r5 2o0r5 2or5 Abend Abend
from partner ASP2 ASP2
SYNCPOINT x After response = = 5 12 Abend Abend
from partner ASP2 ASP2
SYNCPOINT ROLLBACK X After rollback = 2o0r5 2or5 2o0r5 2or5 2o0r5
across UOW
WAIT CONVID x Immediately Abend = 5 12 Abend Abend
FREE x Immediately End End Abend End Abend Abend
Table 20. States 7 - 13
Command issued EIB flag returned CONF-SEND CONF- SYNC- SYNC- SYNC- FREE ROLL-
FREE RECEIVE SEND FREE BACK
State 7 State 8 State 9 State 10 State 11 State 12 State 13
CONNECT PROCESS EIBERR + EIBFREE Abend Abend Abend Abend Abend Abend Abend
CONNECT PROCESS x Abend Abend Abend Abend Abend Abend Abend
EXTRACT PROCESS x = = = = = = =
(back-end transaction
only)
EXTRACT ATTRIBUTES x = = = = = = =
SEND (any valid form) EIBERR + EIBSYNRB Abend Abend Abend Abend Abend Abend Abend
SEND (any valid form) EIBERR + EIBFREE Abend Abend Abend Abend Abend Abend Abend
SEND (any valid form) EIBERR Abend Abend Abend Abend Abend Abend Abend
SEND INVITE WAIT x Abend Abend Abend Abend Abend Abend Abend
SEND INVITE CONFIRM x Abend Abend Abend Abend Abend Abend Abend
SEND INVITE x Abend Abend Abend Abend Abend Abend Abend
SEND LAST WAIT x Abend Abend Abend Abend Abend Abend Abend
SEND LAST CONFIRM x Abend Abend Abend Abend Abend Abend Abend
SEND LAST x Abend Abend Abend Abend Abend Abend Abend
SEND WAIT x Abend Abend Abend Abend Abend Abend Abend
SEND CONFIRM x Abend Abend Abend Abend Abend Abend Abend
SEND x Abend Abend Abend Abend Abend Abend Abend
RECEIVE EIBERR + EIBSYNRB Abend Abend Abend Abend Abend Abend Abend
RECEIVE EIBERR + EIBFREE Abend Abend Abend Abend Abend Abend Abend

44 CICS TS for z/OS: Distributed Transaction Programming Guide

Table 20. States 7 - 13 (continued)

Command issued EIB flag returned CONF-SEND CONF- SYNC- SYNC- SYNC- FREE ROLL-
FREE RECEIVE SEND FREE BACK
State 7 State 8 State 9 State 10 State 11 State 12 State 13
RECEIVE EIBERR Abend Abend Abend Abend Abend Abend Abend
RECEIVE EIBSYNC + EIBFREE Abend Abend Abend Abend Abend Abend Abend
RECEIVE EIBSYNC + EIBRECV Abend Abend Abend Abend Abend Abend Abend
RECEIVE EIBSYNC Abend Abend Abend Abend Abend Abend Abend
RECEIVE EIBCONF + EIBFREE Abend Abend Abend Abend Abend Abend Abend
RECEIVE EIBCONF + EIBRECV Abend Abend Abend Abend Abend Abend Abend
RECEIVE EIBCONF Abend Abend Abend Abend Abend Abend Abend
RECEIVE EIBFREE Abend Abend Abend Abend Abend Abend Abend
RECEIVE EIBRECV Abend Abend Abend Abend Abend Abend Abend
RECEIVE NOTRUNCATE EIBCOMPL Abend Abend Abend Abend Abend Abend Abend
RECEIVE x Abend Abend Abend Abend Abend Abend Abend
CONVERSE (equivalent to As for RECEIVE As for As for As for As for As for As for
SEND INVITE WAIT RECEIVE RECEIVE RECEIVE RECEIVE RECEIVE RECEIVE
followed by RECEIVE)
ISSUE CONFIRMATION x 2 12 Abend Abend Abend Abend Abend
ISSUE ERROR EIBFREE 12 12 12 12 12 Abend Abend
ISSUE ERROR x 2 2 2 2 2 Abend Abend
ISSUE ABEND x 12 12 12 12 12 Abend Abend
ISSUE SIGNAL x = = = = = Abend Abend
ISSUE PREPARE EIBERR + EIBSYNRB Abend Abend Abend Abend Abend Abend Abend
ISSUE PREPARE EIBERR + EIBFREE Abend Abend Abend Abend Abend Abend Abend
ISSUE PREPARE EIBERR Abend Abend Abend Abend Abend Abend Abend
ISSUE PREPARE x Abend Abend Abend Abend Abend Abend Abend
SYNCPOINT EIBRLDBK Abend ASP2 Abend 2o0r5 2o0r5 2o0r5 = Abend
ASP2 ASP2
SYNCPOINT x Abend ASP2 Abend 5 2 12 = Abend
ASP2 ASP2
SYNCPOINT ROLLBACK x 2o0r5 2o0r5 2o0r5 2o0r5 2or5 = 2o0r5
WAIT CONVID x Abend Abend Abend Abend Abend Abend Abend
FREE x Abend Abend Abend Abend Abend End Abend

Chapter 2. Writing programs for APPC mapped conversations 45

46 CICS TS for z/OS: Distributed Transaction Programming Guide

Chapter 3. Writing programs for MRO conversations

These topics describe the CICS APIs available for DTP programming using MRO conversations.

MRO conversation flow

These topics introduce some of the MRO DTP commands.

Conversation initiation

The front-end transaction is responsible for acquiring a session, specifying the conversation
characteristics and requesting the startup of the back-end transaction in the partner system.

Allocating a session to the conversation
Initially, there is no conversation, and therefore no conversation state. By issuing an ALLOCATE
command, the front-end transaction acquires a session to start a new conversation.

The RESP value returned should be checked to ensure that a session has been allocated. If successfully
allocated, DFHRESP(NORMAL), the conversation is in allocated state (state 1) and the session identifier
(convid) from EIBRSRCE must be saved immediately.

The convid must be used in subsequent commands for this conversation. Figure 10 on page 48 shows a
program fragment containing an example of the ALLOCATE command. You will notice that the PROFILE
option has been omitted from the command.

If the PROFILE option is specified for an MRO link, CICS ignores it at execution time. So none of the
facilities selected through use of a profile (for example, RTIMEOUT and JOURNALING) are available. The
front-end transaction has no control over its session processing options when an MRO session is being
used.

A back-end transaction with an MRO session as its principal facility will be sent the INBFMH parameter by
CICS, regardless of the what the front-end transaction specifies on the PROFILE option of the ALLOCATE
command.

Using ATI to allocate a session
Front-end transactions are often initiated from terminals. But it is also possible to use the EXEC CICS
START command to initiate a front-end transaction on an MRO session.

When the front-end transaction is successfully started in this way, a conversation can continue as if an
ALLOCATE command had been issued. The only difference is that an automatically-initiated front-end
transaction has the MRO session as its principal facility.

Connecting the partner transaction
When a session has been acquired, the next step is to cause the partner transaction to be initiated.

The state table shows that, in allocated state (state 1), one of the commands available is SEND. Using
this command, the back-end transaction’s identifier can be specified in the first four bytes of the data
which, when transferred to the partner system, will be used to attach the required back-end transaction.
The send buffer containing the transaction identifier together with any other data, will be flushed
immediately and the front-end transaction will wait until a response is received from the back end. Figure
10 on page 48 shows an example in which a transaction identifier is sent.

Alternatively, when a session has been acquired, the front-end transaction can build and send an attach
header with the first transmission of data. The attach header can be built using the BUILD ATTACH
command.

When using the BUILD ATTACH command, an eight-character name must be given to the built attach
header which can then be used in the ATTACHID option of the first SEND (or CONVERSE) command. The
back-end transaction identifier should also be specified.

© Copyright IBM Corp. 1974, 2019 47

W ooo
DATA DIVISION.
WORKING-STORAGE SECTION.
W ooo
01 FILLER.
02 WS-CONVID PIC X(4).
02 WS-RESP PIC S9(8) COMP.
02 WS-STATE PIC S9(8) COMP.
02 WS-SYSID PIC X(4) VALUE 'SYSB'.
02 WS-PROC PIC X(4) VALUE 'BBBB'.
02 WS-LEN-PROCN PIC S9(5) COMP VALUE +4.

* ...

PROCEDURE DIVISION.

* ...

EXEC CICS ALLOCATE SYSID(WS-SYSID) RESP(WS-RESP) END-EXEC.
IF WS-RESP = DFHRESP (NORMAL)

THEN MOVE EIBRSRCE TO WS-CONVID

ELSE

* ... No session allocated. Examine EIBRCODE.

END-IF.

* ...

EXEC CICS SEND CONVID(WS-CONV)
RESP (WS-RESP) STATE (WS-STATE)
FROM(WS-PROC) LENGTH(WS-LEN-PROCN)

END-EXEC.

IF WS-RESP = DFHRESP (NORMAL)

THEN

* ... No errors, conversation started.

ELSE

* ... Conversation not started. Examine EIBRCODE.
END-IF.

Figure 10. Starting an MRO conversation

Back-end transaction initiation

The back-end transaction is initiated either by an attach header received from the partner system or by a
transaction identifier included in the incoming data, and is started with the session as its principal facility.

Initially, the back-end transaction should determine the convid from EIBTRMID. This is not strictly
necessary because the session is the back-end transaction’s principal facility making the CONVID
parameter optional for DTP commands on this conversation. However, the convid is very useful for audit
trails. Also, if the back-end transaction is involved in more than one conversation, then always specifying
the convid will improve program readability and problem determination. Figure 11 on page 49 shows a
back-end transaction that does obtain the convid.

When the back-end transaction receives data, the presence of an attach header is indicated by either
EIBATT or RESP(INBFMH). One of these is normally set after the back-end transaction issues its first
RECEIVE command. The EXTRACT ATTACH command can be used to access session-related information
from the attach header (for example, the back-end transaction identifier) if required, but it is not
mandatory.

48 CICS TS for z/OS: Distributed Transaction Programming Guide

W ooo
DATA DIVISION.
WORKING-STORAGE SECTION.
W ooo
01 FILLER.
02 WS-CONVID PIC X(4).
02 WS-STATE PIC S9(7) COMP.
* ...
01 FILLER.
02 WS-RECORD PIC X(100).
02 WS-MAX-LEN PIC S9(5) COMP VALUE +100.
02 WS-RCVD-LEN PIC S9(5) COMP VALUE +0.

* ...

PROCEDURE DIVISION.

* ...

EXEC CICS ASSIGN FACILITY(WS-CONVID) END-EXEC.
* ...

* Receive data from the front-end transaction.
*

EXEC CICS RECEIVE CONVID(WS-CONVID) STATE(WS-STATE)
INTO(WS-RECORD) MAXLENGTH (WS-MAX-LEN)
NOTRUNCATE LENGTH(WS-RCVD-LEN)

END-EXEC.

*

* ... Check outcome of RECEIVE.

* ...

Figure 11. Startup of a back-end MRO transaction

It is possible that the back-end transaction may fail to start. This will result in the front-end transaction
abending. When this happens, message DFHIR3783 contains the reason for the error.

Transferring data on the conversation
These topics discuss how to pass data between the front-end and back-end transactions.

Sending data to the partner transaction
The SEND command is used to send data to the connected partner.

This command is valid in allocated state (state 1) or send state (state 2). Because a successful simple
SEND completes in send state (state 2), it is possible to issue a number of successive sends.

An example of a simple SEND command can be seen in Figure 12 on page 50.

Chapter 3. Writing programs for MRO conversations 49

* ...
DATA DIVISION.
WORKING-STORAGE SECTION.
* ...
01 FILLER.
02 WS-CONVID PIC X(4).
02 WS-RESP PIC S9(8) COMP.
02 WS-STATE PIC S9(8) COMP.
* ..
01 FILLER.
02 WS-SEND-AREA PIC X(70).
02 WS-SEND-LEN PIC S9(5) COMP VALUE +70.
* ...
01 FILLER.
02 WS-RCVD-AREA PIC X(100).
02 WS-MAX-LEN PIC S9(5) COMP VALUE +100.
02 WS-RCVD-LEN PIC S9(5) COMP VALUE +0.
* ..
PROCEDURE DIVISION.
* ...
EXEC CICS SEND CONVID(WS-CONVID) RESP(WS-RESP)
STATE (WS-STATE)
FROM(WS-SEND-AREA) LENGTH (WS-SEND-LEN)
END-EXEC.
* ... Check outcome of SEND.
* ...
*
EXEC CICS SEND INVITE CONVID(WS-CONVID)
RESP (WS-RESP) STATE (WS-STATE)
END-EXEC.
* ...
* Receive data from the partner transaction.
*
EXEC CICS RECEIVE CONVID(WS-CONVID)
RESP (WS-RESP) STATE (WS-STATE)
INTO(WS-RCVD-AREA) MAXLENGTH (WS-MAX-LEN)
NOTRUNCATE LENGTH(WS-RCVD-LEN)
END-EXEC.
*
* ... Check outcome of RECEIVE.
* ...

Figure 12. Transferring data on an MRO conversation

Switching from sending to receiving data
To switch from sending to receiving, use a SEND INVITE command with or without the WAIT option.

The state table in “State transitions in MRO conversations” on page 55 shows that after both SEND
INVITE and SEND INVITE WAIT, the conversation switches the current state to receive state (state 5).

An example of a SEND INVITE command can be seen in Figure 12 on page 50.

50 CICS TS for z/OS: Distributed Transaction Programming Guide

W ooo

DATA DIVISION.
WORKING-STORAGE SECTION.

W ooo

01 FILLER.

02 WS-RESP PIC S9(8) COMP.
02 WS-STATE PIC S9(8) COMP.

* ...

PROCEDURE DIVISION.

* ...

* Check return code from SEND INVITE
IF WS-RESP = DFHRESP (NORMAL)

THEN

* ... Request successful, check state
IF WS-STATE = DFHVALUE (RECEIVE)

THEN

* ... SEND OK, continue processing
ELSE

* ... Logic error, should never happen
END-IF

ELSE

* ... Examine EIBRCODE for source of error
END-IF.

* ...

Figure 13. Checking the outcome of a SEND INVITE command

Receiving data from the partner transaction
The RECEIVE command is used to receive data from the connected partner.

T he rows in the state tables for the RECEIVE command show the EIB fields that should be tested after
issuing a RECEIVE command. As well as showing which field should be tested, the state table also shows
the order in which the tests should be made. Instead of testing some of the EIB fields, you can test the
resulting conversation state; this is shown in Figure 14 on page 52. Note that you should always test the
value returned by the RESP option.

Chapter 3. Writing programs for MRO conversations 51

W ooo

DATA DIVISION.
WORKING-STORAGE SECTION.

W ooo

01 FILLER.

02 WS-RESP PIC S9(8) COMP.
02 WS-STATE PIC S9(8) COMP.

* ...

PROCEDURE DIVISION.

* ...

* Check return code from RECEIVE

IF WS-RESP = DFHRESP (NORMAL)

THEN

* ... Request successful, check state
EVALUATE WS-STATE

WHEN DFHVALUE (ROLLBACK)

* ... Partner issued SYNCPOINT ROLLBACK
WHEN DFHVALUE (SYNCFREE)

* ... Partner issued SYNCPOINT and LAST
WHEN DFHVALUE (SYNCRECEIVE)

* ... Partner issued SYNCPOINT

WHEN DFHVALUE (FREE)

* ... Partner issued LAST

WHEN DFHVALUE (SEND)

* ... Partner issued INVITE

WHEN DFHVALUE (RECEIVE)

* ... Processing for receipt of data

* (including EIBCOMPL for incomplete data)
WHEN OTHER

* ... Logic error, should never happen
END-EVALUATE.

ELSE

* ... Examine EIBRCODE for source of error
END-IF.

* ...

Figure 14. Checking the outcome of a RECEIVE command

Note: In the same way as it is possible to send the INVITE and LAST indicators with data, it is also
possible to receive them with data. Syncpoint requests may also be received with data. However,
indications of conversation failure are never received with data.

The CONVERSE command
The CONVERSE command combines the functions SEND INVITE and RECEIVE.

T his command is useful when one transaction needs a response from the partner transaction to continue

processing.

Safeguarding data integrity
If it is important to safeguard data integrity across connected transactions, then synchronization
commands are available.
The commands are:

SYNCPOINT

SYNCPOINT ROLLBACK

SRRCMIT (SAA verb for SYNCPOINT)

SRRBACK (SAA verb for SYNCPOINT ROLLBACK)

The use of these commands in DTP is described in “Syncpointing a distributed process” on page 97.

Ending the conversation

These topics the different ways a conversation can end, either unexpectedly or under transaction control.

The following sections describe To end a transaction, one transaction issues a request for termination and

the other receives this request. Once this has happened the conversation is unusable and both
transactions must issue a FREE command to release the session.

52 CICS TS for z/0S: Distributed Transaction Programming Guide

Ending a conversation normally
The SEND LAST command is used to terminate a conversation. It should be used in conjunction with
either the WAIT option or the SYNCPOINT command, and followed by the FREE command.

However, SEND LAST WAIT causes the conversation to end before any subsequent syncpoint can be
propagated to the partner transaction. This may mean that the protected resources in one system could
be committed while those in the other system could be backed out.

From the state table it can be seen that it is possible to end a conversation by issuing the FREE command
provided the conversation is in send state (state 2). This generates an implicit SEND LAST WAIT
command before the FREE is executed and therefore is not recommended.

Note: A distributed transaction should not end a conversation by issuing an EXEC CICS RETURN
command, but instead follow the sequence of commands as described. The issue of an EXEC CICS
RETURN could lead to one or both transactions ending abnormally.

Unexpected termination of a conversation
If a partner systems fails, or a session goes out of service in the middle of a DTP conversation, the
transaction is terminated abnormally.

Checking the outcome of a DTP command
Checking the response from a DTP command can be separated into three stages.

The stages are:

1. Testing for request failure
2. Testing for indicators received on the conversation
3. Testing the conversation state.

Testing for request failure is the same as for other EXEC CICS commands in that conditions are raised and
may be handled using HANDLE CONDITION or RESP. EIBRCODE will also contain an error code.

If the request has not failed, it is possible to test for indicators received on the conversation. These are
returned to the application in the EIB. The following EIB fields are relevant to all MRO DTP commands.
(See EIB fields for programming information on the contents and format of EIB fields.)

EIBFREE
when set to X'FF' indicates that the partner transaction has ended the conversation. It should be
tested in conjunction with EIBSYNC to determine exactly how to end the conversation.

EIBSYNC
when set to X'FF' indicates the partner transaction has requested a syncpoint.

EIBSYNRB
when set to X'FF' indicates the partner transaction has issued a SYNCPOINT ROLLBACK command.

Table 21 on page 53 shows how these EIB fields interact.

Table 21. Interaction of some EIB fields
EIB- FREE EIB- SYNRB EIB- SYNC Description

X'00" X'FF' X'00" The partner transaction or system has issued
SYNCPOINT ROLLBACK.

X'FF! X'00' X'00' The partner transaction or system has issued SEND
LAST followed by a FREE command.

X'FF! X'00' X'FF! The partner transaction or system has issued SEND
LAST followed by SYNCPOINT. The local program
should reply with a SYNCPOINT command
followed by a FREE command.

Chapter 3. Writing programs for MRO conversations 53

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/reference/commands-api/dfhp4_eibfields.html

Table 21. Interaction of some EIB fields (continued)

EIB- FREE EIB- SYNRB EIB- SYNC Description
X'00' X'00' X'FF! The partner transaction or system has issued a
SYNCPOINT.

In addition the following EIB fields are relevant only to the RECEIVE and CONVERSE commands:

EIBATT
when set to X'FF' indicates that the data received contained an attach header. The attach header is
not passed to the application; however, EIBATT indicates that an EXTRACT ATTACH command is
appropriate.

EIBCOMPL
when set to X'FF' indicates that all the data sent at one time has been received. This field is used in
conjunction with the RECEIVE NOTRUNCATE command.

EIBFMH
when set to X'FF' indicates that the data passed to the application contains a concatenated Function
Management Header (FMH). This happens only when the partner CICS transaction builds an FMH in
the data and the FMH option on the SEND command is specified.

EIBRECV
when set to X'00' indicates the partner transaction used the INVITE or LAST option on its last SEND
command. When set on (X'FF'), EIBRECV indicates that another RECEIVE is required.

After the EIB fields have been analyzed, it is possible to test the conversation state to determine which
DTP commands may be issued next. See “State transitions in MRO conversations” on page 55.

Note: CICS ignores the profile you specify on the PROFILE option of the ALLOCATE for an MRO link and
instead uses the default profile. This enables FMHSs to be sent and received and EIBATT or EIBFMH to be
set appropriately. The default profile DFHCICSA, used for the session allocated by the front-end
transaction, has INBFMH (ALL) specified. The default principal facility profile DFHCICST used for the
back-end transaction does not have INBFMH (ALL) specified.

Checking EIB fields and the conversation state
Most of the information supplied by the EIB indicator fields can be obtained from the conversation state.
However, there are some EIB fields that you cannot ignore.

F or example, when the conversation remains in receive state (state 5) after a RECEIVE command has
been issued, only EIBFMH indicates that the partner transaction has sent an FMH.

Note that the state table provided in “State transitions in MRO conversations” on page 55 contains not
only states and commands issued, but also relevant EIB fields settings. The order in which the EIB fields
are shown provides a sensible sequence for checking them in an application.

Summary of commands for MRO conversations
The CICS application programming interface provides a set of commands for use in MRO conversations.

Table 22 on page 54 shows the commands used in MRO conversations.

Table 22. Summary of CICS commands used in MRO conversations

Use to... Command More information
Acquire a session. ALLOCATE “Allocating a session to the
conversation” on page 47
Build an attach header. BUILD ATTACH “Connecting the partner
transaction” on page 47
Access session-related EXTRACT ATTACH “Back-end transaction initiation”
information. on page 48

54 CICS TS for z/0S: Distributed Transaction Programming Guide

Table 22. Summary of CICS commands used in MRO conversations (continued)

Useto... Command More information

Send data and control SEND “Sending data to the partner

information to the conversation transaction” on page 49

partner.

Receive data from the RECEIVE “Receiving data from the partner

conversation partner. transaction” on page 51

Send and receive data on the CONVERSE “The CONVERSE command” on

conversation. page 52

Inform all conversation partners |[SYNCPOINT “Syncpointing a distributed

of readiness to commit process” on page 97

recoverable resources.

Inform conversation partners of [SYNCPOINT ROLLBACK “The SYNCPOINT ROLLBACK

the need to back out changes to command” on page 98

recoverable resources.

Free the session. FREE “Ending a conversation normally”
on page 53

For programming information about CICS commands, see CICS command summary.

State transitions in MRO conversations

These topics shows the state transitions that occur when transactions engage in MRO conversations.

The state transitions are presented in the form of a state table. The state table shows which commands a
transaction can issue while the conversation is in any given state. It also shows how the conversation
state changes as a result of any command.

How to use the state table

The state tables show the commands you can issue, the EIB flags that can be set when the command is
issued, and the conversation states.

The commands you can issue, coupled with the EIB flags that can be set after execution, are shown down
the first column of the table. These commands correspond to the rows of the table. The possible
conversation states are shown across the top of the table. The states correspond to the columns of the
table. The intersection of row (command and EIB flag) and column (state) represents the state transition,
if any, that occurs when that command returning a particular EIB flag is issued in that state. The order in
which EIB flags are shown with a command is the order in which you should test the EIB flags in your
program.

A number at an intersection indicates the state number of the next state. Other symbols represent other
conditions, as follows:

Symbol Meaning
N/A Cannot occur.
x The EIB flag is any one that has not been covered in earlier rows, or it is irrelevant.

Abend code The command is not valid in this state. Issuing a command in a state in which it is not
valid usually causes an AZI1 abend. When a different abend code applies, this is
shown in the tables.

= Remains in current state.

End End of conversation.

Chapter 3. Writing programs for MRO conversations 55

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/reference/commands-api/dfhp4_commandsummary.html

Initial conversation states

Before a session is allocated, there is no conversation, and therefore no conversation state.

The EXEC CICS ALLOCATE command gets a session to start a new conversation and does not affect any
conversation that is already in progress, hence the ALLOCATE command does not appear in the tables.
After the ALLOCATE command is successfully issued, the new conversation in the front-end transaction is
in ALLOCATED state.

The back-end transaction starts in RECEIVE state after the front-end transaction has successfully
initiated the partner transaction.

Testing the conversation state

There are two ways for an application to inquire on the current conversation state.

The first is to use the EXEC CICS EXTRACT ATTRIBUTES STATE command and the second is to use
the STATE parameter on the DTP commands. In both cases the current state is returned to the
application in a CICS-value data area (cvda). Table 23 on page 56 shows how the cvda codes relate to
the conversation state. It also shows the symbolic names defined for the cvda values.

Table 23. The conversation states

States used in this book States used in DTP programs

State name State number Symbolic name cvda code
Allocated 1 DFHVALUE(ALLOCATED) 81

Send 2 DFHVALUE(SEND) 90
Pendfree 4 DFHVALUE(PENDFREE) 86
Receive 5 DFHVALUE(RECEIVE) 88
Syncreceive 9 DFHVALUE(SYNCRECEIVE) 92
Syncfree 11 DFHVALUE(SYNCFREE) 91

Free 12 DFHVALUE(FREE) 85
Rollback 13 DFHVALUE(ROLLBACK) 89

State tables for MRO conversations

Tables showing the state transitions that occur when transactions engage in MRO conversations, under
the EXEC CICS API.

The ISSUE SIGNAL command and the EIBSIG flag

In the tables, the EIBSIG flag is not mentioned. This is because its use is optional and is entirely a matter
of agreement between the two conversation partners. In the worst case, it can occur at any time after
every command that affects the EIB flags. However, used for the purpose for which it was intended, it
usually occurs after a SEND command. Its priority in the order of testing depends on the role you give it in
the application.

The EIBSIG flag is set when the partner issues the ISSUE SIGNAL command.

The RECEIVE NOTRUNCATE command

The RECEIVE NOTRUNCATE command returns a zero value in EIBCOMPL to indicate that the user buffer
was too small to contain all the data received from the partner transaction. Normally, you would continue
to issue RECEIVE NOTRUNCATE commands until the last section of data is passed to you, which is
indicated by EIBCOMPL = X'FF'. If NOTRUNCATE is not specified, and the data area specified by the
RECEIVE command is too small to contain all the data received, CICS truncates the data and sets the
LENGERR condition.

56 CICS TS for z/0OS: Distributed Transaction Programming Guide

State changes for the SYNCPOINT and SYNCPOINT ROLLBACK commands

When the SYNCPOINT and SYNCPOINT ROLLBACK commands are issued, they are propagated on, and
affect the state of, all the conversations that are currently active for the task, including APPC
conversations.

Following rollback, the conversation can be in SEND or RECEIVE state, depending on the conversation
state at the start of the current distributed unit of work.

After a syncpoint or rollback, it is advisable to determine the conversation state before issuing any further
commands against the conversation. To do this, use the EXTRACT ATTRIBUTES STATE command or the
STATE option on the EXEC CICS commands to determine the conversation state.

State tables

Table 24. States 1 - 6

Command ALLO- SEND PEND- PEND- RECEIVE CONF-
returns CATED RECEIVE FREE RECEIVE
Command issued EIB flag returned State 1 State 2 State 3 State 4 State 5 State 6
BUILD ATTACH x Immediately = = N/A = Abend N/A
EXTRACT ATTACH x Immediately = = N/A = = N/A
EXTRACT ATTRIBUTES x Immediately = = N/A = = N/A
SEND INVITE WAIT X AfterdataandCD |5 5 N/A Abend Abend N/A
flows
SEND INVITE x AfterdataandCD |5 5 N/A Abend Abend N/A
flows
SEND LAST WAIT X After dataand EB | 12 12 N/A Abend Abend N/A
flows
SEND LAST X After data flows 4 4 N/A Abend Abend N/A
SEND X After data flows 2 = N/A Abend Abend N/A
RECEIVE EIBSYNC + EIBFREE + After sync flow Abend Abend N/A Abend 11 N/A
EIBCOMPL detected
RECEIVE EIBSYNC + EIBRECV + After sync flow Abend Abend N/A Abend 9 N/A
EIBCOMPL detected
RECEIVE EIBSYNRB + EIBCOMPL After rollback flow | Abend Abend N/A Abend 13 N/A
detected
RECEIVE EIBFREE After EB detected | Abend Abend N/A Abend 12 N/A
RECEIVE EIBRECV When data Abend Abend N/A Abend = N/A
available
RECEIVE NOTRUNCATE EIBCOMPL When data Abend Abend N/A Abend = N/A
available
RECEIVE X When data Abend Abend N/A Abend 2 N/A
available
CONVERSE As for RECEIVE but As for As for As for As for As for As for
allowed in send state RECEIVE RECEIVE RECEIVE RECEIVE RECEIVE RECEIVE
but but but but but but
allowed in | allowedin | allowedin |allowedin | allowedin [allowedin
send state | send state | sendstate |sendstate | sendstate | send state
SYNCPOINT EIBRLDBK After response = 2o0r5 N/A 2o0r5 Abend N/A
from partner ASP1
SYNCPOINT x After response = = N/A 12 Abend N/A
from partner ASP1
SYNCPOINT ROLLBACK x After rollback = 2o0r5 N/A 2or5 2o0r5 N/A
across UOW
FREE x Immediately End End N/A End Abend N/A

Chapter 3. Writing programs for MRO conversations 57

Table 25. States 7 - 13

Command issued EIB flag returned CONF-SEND CONF- SYNC- SYNC- SYNC- FREE ROLL-
FREE RECEIVE SEND FREE BACK
State 7 State 8 State 9 State 10 State 11 State 12 State 13
BUILD ATTACH x N/A N/A = N/A = = =
EXTRACT ATTACH x N/A N/A = N/A = = =
EXTRACT ATTRIBUTES x N/A N/A = N/A = = =
SEND INVITE WAIT x N/A N/A Abend N/A Abend Abend Abend
SEND INVITE x N/A N/A Abend N/A Abend Abend Abend
SEND LAST WAIT x N/A N/A Abend N/A Abend Abend Abend
SEND LAST x N/A N/A Abend N/A Abend Abend Abend
SEND x N/A N/A Abend N/A Abend Abend Abend
RECEIVE EIBSYNC + EIBFREE + N/A N/A Abend N/A Abend Abend Abend
EIBCOMPL
RECEIVE EIBSYNC + EIBRECV + N/A N/A Abend N/A Abend Abend Abend
EIBCOMPL
RECEIVE EIBSYNRB + EIBCOMPL N/A N/A Abend N/A Abend Abend Abend
RECEIVE EIBFREE N/A N/A Abend N/A Abend Abend Abend
RECEIVE EIBRECV N/A N/A Abend N/A Abend Abend Abend
RECEIVE NOTRUNCATE EIBCOMPL N/A N/A Abend N/A Abend Abend Abend
RECEIVE x N/A N/A Abend N/A Abend Abend Abend
CONVERSE As for RECEIVE As for As for As for As for As for As for
RECEIVE RECEIVE RECEIVE RECEIVE RECEIVE RECEIVE
SYNCPOINT EIBRLDBK N/A N/A 2o0r5 N/A 2o0r5 = Abend
SYNCPOINT x N/A N/A 5 N/A 12 = Abend
SYNCPOINT ROLLBACK x N/A N/A 2o0r5 N/A 2o0r5 = 2o0r5
FREE x N/A N/A Abend N/A Abend End Abend

58 CICS TS for z/0S: Distributed Transaction Programming Guide

Chapter 4. Writing programs for APPC basic
conversations

These topics describe the CICS APIs available for DTP programming using APPC basic conversations.

Conversation initiation

The front-end transaction is responsible for acquiring a session, specifying the conversation
characteristics, and requesting the startup of the back-end transaction in the partner system.

Allocating a session to the conversation

Initially, there is no conversation, and therefore no conversation state. By issuing a GDS ALLOCATE
command, the front-end transaction acquires a session to start a new conversation.

RETCODE should be checked to ensure that a session has really been allocated. If successfully allocated
(RETCODE = X'00"), the conversation is in allocated state (state 1) and the session identifier (convid) is
placed in the data area specified on the CONVID parameter.

The convid must be used in subsequent commands for this conversation. Figure 15 on page 60 shows
an example of a GDS ALLOCATE command.

Note: If the remote system is using z/OS Communications Server persistent session support, you may
need to code a timeout value on the GDS ALLOCATE command. See Effect of z/0OS Communications
Server persistent sessions support for DTP conversations on APPC sessions.

Using ATI to allocate a session
Front-end transactions are often initiated from terminals. But it is also possible to use the EXEC CICS
START command to initiate a front-end transaction on an APPC session.

W hen this is done, and the front-end transaction is successfully started, a conversation can continue as if
a GDS ALLOCATE command had been issued. The only difference is that, when ATI is used, the APPC
session is the front-end transaction’s principal facility.

© Copyright IBM Corp. 1974, 2019 59

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/fundamentals/connections/dfhp63q.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/fundamentals/connections/dfhp63q.html

* ...

EXEC CICS GDS ALLOCATE SYSID(WSYSID) CONVID(WCONVID) =
STATE (WSTATE) RETCODE (WRETC)

*

* Check outcome of GDS ALLOCATE

*

NC WRETC,WRETC

BNZ ALLOCERR No session allocated, check RETCODE
* ...

EXEC CICS GDS CONNECT PROCESS CONVID(WCONVID) =
STATE (WSTATE) *

PROCNAME (WPROC) =

PROCLENGTH(WLENPROC) *

SYNCLEVEL (WSYNCLVL) =

CONVDATA(WCDB) RETCODE (WRETC)

NC WRETC,WRETC

BNZ CONNERR Request failed, analyze RETCODE
* ... No errors, conversation started.

NC CDBERR,CDBERR

BNZ SESSERR Session failed, examine RETCODE.
* ... Start sending data.

* ...

WSTATE DS F

WRETC DS XL6

WCDB DS 0CL24

COPY DFHCDBLK

WCONVID DS CL4

WSYSID DC CL4'SYSB'

WPROC DC CL4'BBBB'

WLENPROC DC F'4'

WSYNCLVL DC F'2'

* ...

Figure 15. Starting an APPC basic conversation at sync level 2

Connecting the partner transaction
When the front-end transaction has acquired a session, the next step is to initiate the partner transaction.

The state tables show that, in the allocated state (state 1), one of the commands available is GDS
CONNECT PROCESS. This command is used to attach the required back-end transaction. It should be
noted that the results of the GDS CONNECT PROCESS are placed in the send buffer and are not sent
immediately to the partner system. Transmission occurs when the send buffer is flushed, either by
sending more data than fits in the send buffer or by issuing a GDS WAIT command.

A successful GDS CONNECT PROCESS causes the conversation state to switch to send state (state 2).
Figure 15 on page 60 is a program fragment showing an example of a GDS CONNECT PROCESS.

Note: For clarity, the EXEC CICS GDS ALLOCATE and GDS CONNECT PROCESS commands shownin
Figure 15 on page 60 identify the partner LU and transaction explicitly. To avoid doing this, you could use
the PARTNER option of these commands. This specifies a set of definitions that include the names of the
partner LU, the communication profile to be used on the session, and the partner transaction. Thus, in
Figure 15 on page 60, the PARTNER option could be used instead of SYSID on the EXEC CICS GDS
ALLOCATE command, and instead of PROCNAME and PROCLENGTH on the EXEC CICS GDS CONNECT
PROCESS command. The advantage of using PARTNER is that it makes your DTP programs more
maintainable: the details of each partner program can be held in a single definition.

Initial data for the back-end transaction
While connecting the back-end transaction, the front-end transaction can send initial data to it.

T his kind of data, called program initialization parameters (PIPs), is placed in specially formatted
structures and specified on the GDS CONNECT PROCESS command. The PIPLIST (along with PIPLENGTH)
option of the GDS CONNECT PROCESS command is used to send PIPs to the back-end transaction.

To examine any PIPs received, the back-end transaction uses the GDS EXTRACT PROCESS command.

60 CICS TS for z/OS: Distributed Transaction Programming Guide

PIP data is used only by the two connected transactions and not by the CICS systems. APPC systems
other than CICS may not support PIP, or may support it differently.

The PIP data must be formatted into one or more subfields according to the SNA-architected rules. The
content of each subfield is defined by the application developer. You should format PIP data as follows:

L1|rr| PIPL |L2|rr| PIPZ Lnlrr| PIPn

Figure 16. Format of PIP data

CICS inserts information in the reserved fields so that the PIP is architecturally correct. The PIPLENGTH
option must specify the total length of the PIP list and must be between 4 and 32763.

Back-end transaction initiation
A back-end transaction is initiated as a result of the front end’s GDS CONNECT PROCESS command.

Initially the back-end transaction should determine the convid. Figure 17 on page 61 shows a fragment
of a back-end transaction that uses the EXEC CICS GDS ASSIGN command to obtain the convid. The
back-end transaction can also obtain the transaction identifier and sync level used to start the
conversation. The GDS EXTRACT PROCESS command is used to obtain this information.

The back-end transaction starts in receive state (state 5). So, after obtaining the convid, the back-end
transaction can issue a GDS RECEIVE command.

* ...
EXEC CICS GDS ASSIGN PRINCONVID(WCONVID) RETCODE (WRETC)
*

* ...

*

EXEC CICS GDS EXTRACT PROCESS CONVID(WCONVID) =
PROCNAME (WPROC) =*

RETCODE (WRETC) =

PROCLENGTH(WLENPROC) *

SYNCLEVEL (WSYNCLVL)

* ...

* Receive first data from front-end transaction.
* ...

*

WSTATE DS F

WRETC DS XL6

WCDB DS 0CL24

COPY DFHCDBLK

WCONVID DS CL4

WPROC DS CL4

WLENPROC DS F

WSYNCLVL DS F

* ...

Figure 17. Startup of a back-end transaction

What happens if the back-end transaction fails to start

It is possible that the back-end transaction fails to start. However, because of the transmission delay
mechanism in APPC, the front-end transaction is not informed of this fact until the conversation has been
active long enough for responses from the back-end system to be received.

The front-end transaction is informed of this via CDBERR and CDBFREE. In addition, COBERRCD is set as
shown in Table 26 on page 62.

Chapter 4. Writing programs for APPC basic conversations 61

Table 26. Some indications of back-end failure

CDBERRCD value Reason

10086032 The PIP data sent with the GDS CONNECT PROCESS was incorrectly
specified.

10086034 The partner system does not support basic conversations.

080F6051 The partner transaction failed security check.

10086041 The partner transaction does not support the sync level requested
on the GDS CONNECT PROCESS.

10086021 The partner system does not recognize the requested transaction
identifier.

084C0000 The partner system cannot start the partner transaction.

084B6031 The partner system is temporarily unable to start the partner

transaction.

Before sending data, the front-end transaction should find out whether the back end transaction has
started successfully. One way of doing this is to issue a GDS SEND CONFIRM command directly after the
GDS CONNECT PROCESS. This causes the front-end transaction to be suspended until the back end
transaction has responded or the back-end system has sent the failure notification as described.

Sending data to the partner transaction

To send data on an APPC basic conversation, an application must format the data into generalized data
stream (GDS) records.

A GDS record contains a 16-bit (2-byte) header followed by the application data. The 16 bits of the
header consist of the following fields:

Concatenation bit
This is the high-order bit of the first byte of the header. An application program can use it to group
records together logically. This bit does not affect the way CICS processes the records.

LL
This is the rest of the header (15 bits). It specifies the overall length of the data (including the length
of the header).

Figure 18 on page 62 shows the format of GDS records.
Concatenation bit

LL
liﬂata
L | o J
L Yalue in LI »>

Figure 18. Format of GDS records

Up to 32 765 bytes of application data can be accommodated in one GDS record.

Data formatted into GDS records can be transmitted by the GDS SEND command. This command is valid
only in send state (state 2).

Because a simple GDS SEND keeps the conversation in send state (state 2), you can issue a number of
successive sends. You need not issue a GDS SEND for every record to be sent; you can send partial or

62 CICS TS for z/OS: Distributed Transaction Programming Guide

multiple records at a time. However, make sure that the last logical record is complete when you use the
INVITE, LAST, or CONFIRM options, and before you issue a syncpoint request.

Figure 19 on page 63 is an example of the use of GDS SEND commands.
D5 SEND

DS SEND
D> SEND
0S5 SEND INVITE WAIT

O o O G2

v |
FRecord 1 Record 2| Record 3 Record 4

Figure 19. An example of the use of GDS SEND commands

This flexibility also allows you to use separate GDS SEND commands for the GDS header and the
application data—a useful technique to avoid shifting data into storage contiguous with its GDS header.
The program fragment in Figure 20 on page 63 uses this technique.

* ...

LA R5,L'SENDHDR+LEN'SENDDATA Compute LL value
STH R5,SENDHDR Place length in LL

LA R5,L'SENDHDR Length of GDS header

ST R5,SENDLEN into send length field

EXEC CICS GDS SEND FROM(SENDHDR) FLENGTH(SENDLEN) =*
CONVID(WCONVID) RETCODE(WRETC) =

STATE (WSTATE) CONVDATA(WCDB)

*

* ... Check outcome of the SEND

* ...

LA R5,L'SENDDATA Length of application data
ST R5,SENDLEN into send length field

EXEC CICS GDS SEND FROM(SENDDATA) FLENGTH(SENDLEN) *
CONVID(WCONVID) RETCODE (WRETC) =

STATE (WSTATE) CONVDATA(WCDB)

*

* ... Check outcome of the SEND

* ...

EXEC CICS GDS SEND INVITE WAIT =%
CONVID(WCONVID) RETCODE (WRETC) =

STATE (WSTATE) CONVDATA(WCDB)

*

* ... Check outcome of last command

* ...

*

WSTATE DS F

WRETC DS XL6

WCDB DS 0CL24

COPY DFHCDBLK

WCONVID DS CL4

SENDDATA DS CL1060

SENDLEN DS F

SENDHDR DS H

* ...

Figure 20. Sending data on an APPC basic conversation

The records from a simple GDS SEND command are initially stored in a local CICS buffer which is
“flushed” either when this buffer is full or when the transaction requests transmission. The transaction
can request transmission either by using a GDS WAIT command or by using the WAIT option on the GDS
SEND command. The reason transmission is deferred is to reduce the number of calls to the network.
However, the application should use GDS WAIT if the partner transaction requires the data to continue
processing.

Chapter 4. Writing programs for APPC basic conversations 63

Switching from sending to receiving data

To switch from sending to receiving records, use a GDS SEND INVITE command with the WAIT or
CONFIRM option.

This command switches the conversation from send state (state 2) to receive state (state 5). An example
of a GDS SEND INVITE WAIT command can be seen in Figure 20 on page 63. Figure 26 on page 76
illustrates the response-testing sequence.

For further information on the CONFIRM option, see “How to synchronize conversations using CONFIRM
commands” on page 67.

Receiving data from the partner transaction

The GDS RECEIVE command is used to receive data from the connected partner transaction.

T he rows in the state tables for the GDS RECEIVE command show the CONVDATA fields that should be
tested after issuing a GDS RECEIVE command. As well as showing which fields should be tested, the state
tables also show the order in which the tests should be made. As an alternative to testing some of the
CONVDATA fields it is possible to test the resulting conversation state. This is shown in Figure 25 on page
75. Note that both RETCODE and CDBERR should always be tested.

The amount of data received is determined by:

« How much the conversation partner sent

« The value supplied on the MAXFLENGTH option

« Whether the LLID or BUFFER option is used.

The first factor is obvious: the application cannot receive more than is sent. The value of MAXFLENGTH is
an upper limit; CICS never returns more bytes than this value specifies. The LLID and BUFFER options

enable the application to specify how CICS is to treat the data. This is described in “Receiving data by the
record” on page 65 and “Receiving data by the buffer” on page 66.

In the same way as it is possible to send GDS records with the INVITE, LAST, or CONFIRM option, it is
also possible to receive them together. Syncpoint requests can also be received with GDS records.
However, GDS ISSUE ERROR, GDS ISSUE ABEND, and indications of conversation failure are received by
themselves —never with GDS records.

An example of a GDS RECEIVE command can be seen in Figure 21 on page 65. Figure 25 on page 75
illustrates the response testing sequence.

64 CICS TS for z/OS: Distributed Transaction Programming Guide

* ...
RECVLOOP DS OH
LA R5,L'RECVHDR Length of GDS header
ST R5,RECVMAX as maximum receive length
* Receive GDS header from partner transaction
EXEC CICS GDS RECEIVE INTO(RECVHDR) MAXFLENGTH(RECVMAX) %
LLID FLENGTH(RECVLEN) =%
CONVID(WCONVID) RETCODE(WRETC) =*
STATE (WSTATE) CONVDATA(WCDB)
*
* ... Check outcome of the GDS RECEIVE
* ..
LA R5,L'RECVAREA Length of application buffer
ST R5,RECVMAX as maximum receive length
* Receive application data from partner transaction
EXEC CICS GDS RECEIVE INTO(RECVAREA) MAXFLENGTH(RECVMAX) *
LLID FLENGTH(RECVLEN) =*
CONVID(WCONVID) RETCODE(WRETC) =
STATE (WSTATE) CONVDATA(WCDB)
* ...
. Check outcome of the GDS RECEIVE
... (including CDBCOMPL) .
RECVLOOP Loop while in receive state

* W * *

*

WSTATE DS F
WRETC DS XL6
WCDB DS 0CL24
COPY DFHCDBLK
WCONVID DS CL4
RECVAREA DS CL100
RECVMAX DS F
RECVLEN DS F
RECVHDR DS H

* ...

Figure 21. Receiving data on an APPC basic conversation

Receiving data by the record

If you specify the LLID option on a GDS RECEIVE command, the data is considered as a series of GDS
records. On each GDS RECEIVE request, data is received from not more than one record.

If the record is longer than the value specified in the MAXFLENGTH option, two or more RECEIVE
commands are required to recover the whole record. CDBCOMPL is set on when the end of a GDS record
has been received. Consider the example shown in Figure 22 on page 65.

MAKFLS —l

LL LL W

l——MAXFLL MAXFLZ
MAY | L—J
F

GUS KRECELIVE LLID MAAFLENGTH(UMAXRFLL) _
GOS RECEIVE LLID MAXFLENGTHUMAXFLZ) —
GDS RECEIVE LLID MAXFLENGTH(MAXFL3) ——

GOS RECEIVE LLID MAXFLENGTH(UMAXFLA)

Figure 22. An example of the effect of the LLID option

Chapter 4. Writing programs for APPC basic conversations 65

The first RECEIVE command receives the front portion of the first record. The length received is restricted
by the MAXFLENGTH value (MAXFL1). The second RECEIVE command receives the rest of the first logical
record. Even though the MAXFLENGTH value (MAXFL2) allows more data to be received, this cannot be
done without breaking the LL boundary rule. The third RECEIVE command is for two bytes of data (the LL
field). The fourth RECEIVE command receives the rest of the second record.

The application can tell if a complete record has been received, because CDBCOMPL is set (X'FF'). In the
example given, COBCOMPL is set on after the second and fourth RECEIVE commands. CDBCOMPL is set
off (X'00") after the first and third RECEIVE commands.

Receiving data by the buffer
Unlike the LLID option, the BUFFER option does not respect GDS record boundaries.

If the MAXFLENGTH value allows, bytes will be received for more than one record. A GDS RECEIVE
command with the BUFFER option recovers the length of data specified in the MAXFLENGTH option,
ignoring GDS record boundaries. CICS does not return control to the application program until this length
of data has been received or the partner transaction sends the INVITE or LAST option.

Figure 23 on page 66 shows the effect of the BUFFER option on the same four RECEIVE commands
discussed in “Receiving data by the record” on page 65.

MM{FLE—l

LL LL AR

——MAXFLL MAXFLZ |
MMIF|L4—I:-

GOS RECEIVE BUFFER MAXFLENGTH(MAXFLL) il
GOS RECEIVE BUFFER MAXFLENGTH(MAXFLZ) —
GDS RECEIVE BUFFER MAXFLENGTH(MAXFL3) —
GOS RECEIVE BUFFER MAXFLENGTH(MAXFL4)

Figure 23. An example of the effect of the BUFFER option

Communicating errors across a conversation

The APPC basic API provides commands to enable transactions to pass error notification across a
conversation. There are three commands depending on the severity of the error.

The most severe, GDS ISSUE ABEND, causes the conversation to terminate abnormally and is described
in “Emergency termination of a conversation” on page 70 . The other two commands are described in
the following section.

Requesting INVITE from the partner transaction

If a transaction is receiving data on a conversation and wants to send, it can use the GDS ISSUE SIGNAL
command to request that the partner transaction does a GDS SEND INVITE.

W hen the GDS ISSUE SIGNAL request is received, CDBSIG is set (X'FF'). Note that on receipt of a signal,
a transaction is not obliged to issue GDS SEND INVITE.

66 CICS TS for z/OS: Distributed Transaction Programming Guide

Demanding INVITE from the partner transaction

If a transaction wants to send an immediate error notification to the partner transaction it can use the
GDS ISSUE ERROR command.

This command is also one of the preferred negative responses to GDS SEND CONFIRM. However it should
not be used to reject GDS ISSUE PREPARE, SYNCPOINT or SYNCPOINT ROLLBACK. When the GDS ISSUE
ERROR is received, CDBERR is set (X'FF') and the first two bytes of COBERRCD are X'0889'.

If a GDS ISSUE ERROR command is used in receive state (state 5), all incoming data is purged until an
INVITE, SYNCPOINT or LAST is received. If LAST is received, no error indication is sent to the partner
transaction, CDBFREE is set (X'FF') and the conversation is switched to free state (state 12).

If LAST is not received, the conversation is switched to send state (state 2). It is normal to communicate
the reason for the error to the partner transaction. The GDS SEND INVITE WAIT command could be used
to send an appropriate error message and then a GDS RECEIVE could be used to receive a reply.

Because GDS ISSUE ERROR is allowed in both send state (state 2) and receive state (state 5), it is
possible for both communicating transactions to use GDS ISSUE ERROR at the same time. When this
happens, only one of the GDS ISSUE ERROR commands is effective. The other is purged with incoming
data. However, both commands will appear to have completed successfully and the transaction whose
GDS ISSUE ERROR was purged will pick up CDBERR (= X'FF') on a subsequent command.

Safeguarding data integrity

If it is important to safeguard data integrity across connected transactions, then the CICS synchronization
commands are available.

Table 27. Synchronization commands for APPC basic applications

Conversation sync level | Commands

0 None
1

GDS SEND CONFIRM
GDS ISSUE CONFIRMATION

GDS SEND CONFIRM
GDS ISSUE CONFIRMATION
SYNCPOINT
GDS ISSUE PREPARE
SYNCPOINT ROLLBACK
SRRCMIT
SRRBACK

The SRRCMIT and SRRBACK commands are defined in the following sections. SAA verbs for SYNCPOINT
and SYNCPOINT ROLLBACK respectively.

How to synchronize conversations using CONFIRM commands
A confirmation exchange affects a single, specified, conversation and involves two commands.
1. The transaction that is in send state (state 2) issues a GDS SEND CONFIRM command causing a

request for confirmation to be sent to the partner transaction. The transaction is suspended awaiting a
response.

2. The partner transaction receives a request for confirmation. It can then respond positively by issuing a
GDS ISSUE CONFIRMATION command. Alternatively, it can respond negatively by using the GDS
ISSUE ERROR or GDS ISSUE ABEND commands.

Chapter 4. Writing programs for APPC basic conversations 67

Requesting confirmation
The CONFIRM option on the GDS SEND command flushes the conversation send buffer; that is, it causes a
real transmission to occur.

Data can be sent with the GDS SEND CONFIRM command. Either the INVITE or the LAST option can also
be specified.

The send state (state 2) column of the state table for APPC basic conversations at sync level 1 (see
“State tables for APPC basic conversations at sync level 1” on page 80) shows what happens for the
possible combinations of the CONFIRM, INVITE, and LAST options. After a GDS SEND CONFIRM
command, without the INVITE or LAST options, the conversation remains in send state (state 2). If the
INVITE option is used, the conversation switches to receive state (state 5). If the LAST option is used, the
conversation switches to free state (state 12).

A similar effect to GDS SEND LAST CONFIRM can by achieved by using the command sequence:

GDS SEND LAST
GDS SEND CONFIRM

Note from the state tables that the GDS SEND LAST puts the conversation into pendfree state (state 4),
so data cannot be sent with a GDS SEND CONFIRM command used in this way.

The form of command used depends on how the conversation is to continue if the required confirmation
is received. Whichever is used, the response from GDS SEND CONFIRM must always be checked. (See
“Checking the response to GDS SEND CONFIRM” on page 68 .)

Receiving and replying to a confirmation request
On receipt of a confirmation request, the CONVDATA and conversation state will be set depending on the
request issued by the partner transaction.

The CONVDATA and conversation state, together with the contents of the CDBCONF, CDBRECYV, and
CDBFREE fields are shown in Table 28 on page 68.

Table 28. How confirmation requests affect the state and flags

Command issued by partner transaction Conversation state | CDB- CDB- CDB-

on receipt of request | CONF on |RECV on |FREEon
receipt of | receipt of | receipt of
request request request

GDS SEND CONFIRM confreceive (state 6) | X'FF' X'FF' X'00'
GDS SEND INVITE CONFIRM confsend (state 7) X'FF' X'00' X'00'
GDS SEND LAST CONFIRM conffree (state 8) X'FF' X'00' X'FF'

There are three ways of replying:

1. Reply positively with a GDS ISSUE CONFIRMATION command.
2. Reply negatively with a GDS ISSUE ERROR command. This reply puts the conversation into send state
(state 2) regardless of the partner transaction request.

3. Abnormally end the conversation with a GDS ISSUE ABEND command. This makes the conversation
unusable and a GDS FREE command must be issued immediately.

Checking the response to GDS SEND CONFIRM
After issuing GDS SEND [INVITE|LAST] CONFIRM, it is important to test CDBERR to determine the partner
transaction’s response.

Table 29 on page 69 shows the response received when the partner transaction issues different
commands.

68 CICS TS for z/0S: Distributed Transaction Programming Guide

Table 29. Indicators of the partner transaction’s response

Command issued in reply by Conversation state CDBERR CDBFREE

partner transaction

GDS ISSUE CONFIRMATION Dependent on original GDS SEND | X'00' X'00'
[INVITE|LAST] CONFIRM request

GDS ISSUE ERROR Receive (state 5) X'FF' X'00'

GDS ISSUE ABEND Free (state 12) X'FF' X'FF'

If CDBERR= X'00', the partner transaction has replied GDS ISSUE CONFIRMATION.

If the partner transaction replies GDS ISSUE ERROR, this is indicated by CDBERR (= X'FF') and the first
two bytes of CDBERRCD= X'0889'. When the partner transaction replies GDS ISSUE ERROR in response to
GDS SEND LAST CONFIRM, the LAST option is ignored and the conversation is not terminated. The
conversation is switched to receive state (state 5).

If the partner transaction replies GDS ISSUE ABEND, both CDBERR and CDBFREE are both set (X'FF'),
and the first two bytes of CDBERRCD contain X'0864'. The conversation is switched to free state (state
12).

Ending the conversation

These topics describe the different ways a conversation can end, either unexpectedly or under
transaction control.

To end a transaction, one transaction issues a request for termination and the other receives this request.
Once this has happened the conversation is unusable and both transactions must issue a GDS FREE
command to release the session.

Normal termination of a conversation
The GDS SEND LAST command is used to terminate a conversation. It should be used in conjunction with
either the WAIT or CONFIRM options or the SYNCPOINT command (depending on the conversation sync
level).

A distributed transaction should not end a conversation by issuing an EXEC CICS RETURN command,
but instead follow the sequence of commands shown. The issue of an EXEC CICS RETURN could lead to
one or both transactions ending abnormally.

Table 30. Terminating commands for different sync levels

Sync level Command sequence

0 GDS SEND LAST WAIT
GDS FREE

1 GDS SEND LAST CONFIRM
GDS FREE

2 GDS SEND LAST
SYNCPOINT
GDS FREE

Note: It is important that the GDS SEND LAST command for sync level 2 is not accompanied by WAIT or
CONFIRM because either of these options will cause the conversation to end before the subsequent
syncpoint has propagated to the partner transaction. This may mean that protected resources of one

Chapter 4. Writing programs for APPC basic conversations 69

transaction could be committed while those in the partner transaction could be backed out. The resulting
state errors may also lead to the session being unbound.

Emergency termination of a conversation

The GDS ISSUE ABEND command provides a means of abnormally ending the conversation. It is valid for
all levels of synchronization, but should be avoided at sync level 2, because its use at the wrong time can
lead to a loss of data integrity.

GDS ISSUE ABEND can be issued by either transaction, whether it is in send or receive state, at any time
after the conversation has started. For a transaction in send state (state 2), any deferred data that is
waiting for transmission is flushed before the GDS ISSUE ABEND command is transmitted.

The transaction that issues the GDS ISSUE ABEND command is not itself abended. It must, however,
issue a FREE command for the conversation unless it is designed to terminate immediately.

If a GDS ISSUE ABEND command is issued in receive state (state 5), CICS purges all incoming data until
an INVITE, syncpoint request, or LAST indicator is received. If LAST is received, no abend indication is
sent to the partner transaction.

If a GDS ISSUE ABEND is received, both CDBERR and CDBFREE set (X'FF'), the first two bytes of
CDBERRCD contain X'0864' . The only command that can be subsequently issued for the conversation is
GDS FREE.

Unexpected termination of a conversation

If a partner systems fails or a session goes out of service in the middle of a DTP conversation, the
conversation is terminated abnormally and the application informed the next time a command accesses
the session.

In addition, both CDBERR and CDBFREE are set on (X'FF'), and CDBERRCD contains one of the following
values representing the reason for the error.

X'08640001'
partner system with persistent session support has failed and restarted

X'1008600B'
session has failed due to a protocol error

X'A0000100'
temporary session failure

X'A0010100'

Checking the outcome of GDS commands

The CICS exec interface block (EIB) is not affected by EXEC CICS GDS commands, and no CICS conditions
can be raised when EXEC CICS GDS commands are executed. Instead, you must provide data areas in
your application to receive return codes and session status information.

The data areas required are:

« A 6-byte area to receive RETCODE information
« A 24-byte area to receive CONVDATA information.

Within the bounds of the programming language you are using, you can give these areas any identifiers
you like. They must be named explicitly in most EXEC CICS GDS commands.

Checking the response from a GDS command can be separated into three stages:

1. Testing for request failure; this involves testing RETCODE.
2. Testing for indicators received on the conversation. These indicators are found in CONVDATA.
3. Testing the conversation state.

70 CICS TS for z/0OS: Distributed Transaction Programming Guide

Testing for request failure

The RETCODE area is used to detect any errors that occur when an EXEC CICS GDS command is executed.
These errors correspond to CICS exception conditions, such as NOTALLOC, that can be raised when EXEC

CICS commands are executed.

These errors usually reflect failure of the request. Figure 24 on page 71 shows the possible hexadecimal
values for the first three bytes of RETCODE. These values are structured so that the first byte indicates the
general error description and subsequent bytes provide the detail.

00 Normal return code
01 ALLOCATE failure (applicable only to GDS ALLOCATE)

01 04 .. SYSBUSY, unknown modename, task cancelled

01 04 04 No bound contention winner available (SYSBUSY)

01 04 08 Modename not known on this system

01 04 OC Attempt to use reserved modename SNASVCMG, or no COS
table in z/0S Communications Server for the modename

01 04 10 Task cancelled during queuing of ALLOCATE

01 04 14 The requested modegroup is closed

01 04 18 The requested modegroup is draining

01 08 .. SYSID is out of service

01 08 00 Connection out of service or in quiesce state, no
free sessions in requested modegroup, or z/0S

Communications Server ACB is closed

01 08 04 Maximum number of queued ALLOCATE requests specified
on QUEUELIMIT CONNECTION parameter exceeded

01 08 08 ALLOCATE queue purged because MAXQTIME would be
exceeded

01 OC .. SYSID is not known in TCT

01 OC 00 SYSID name is not known

01 OC 04 SYSID name is not that of an APPC connection

01 OC 14 NETNAME specified in PARTNER definition is not known
02 OC OO0 PARTNER is not known

03 INVREQ error

03 00 .. Session is either not defined as APPC, in use by

CPI Communications, or (for EXTRACT PROCESS) not

the principal facility

03 04 .. GDS command issued on a conversation that is not basic
03 08 .. Command issued in wrong state
03 OC .. Sync level cannot be supported or cannot support the

command issued

03 10 .. LL error on a GDS SEND

03 14 .. SEND CONFIRM or ISSUE CONFIRMATION used at sync level 0
03 24 .. GDS ISSUE PREPARE used in wrong state

04 NOTALLOC error (CONVID specifies an unallocated session)
05 LENGERR error (FLENGTH, MAXFLENGTH, PROCLENGTH, PIPLENGTH,
or MAXPROCLEN error)

06 00 00 PROFILE specified in PARTNER definition is not known

Figure 24. RETCODE values

Testing indicators

When RETCODE shows a normal return code from a GDS command, the CONVDATA area (where
applicable) contains information on the indicators received on the conversation. These indicators can be
used to find out why the conversation state is what it is.

The structure of the CONVDATA area is shown in Table 31 on page 71.

Table 31. Structure of the conversation data block

Field name Length Meaning

(bytes)
CDBCOMPL 1 X'FF' = data complete
CDBSYNC 1 X'FF' = SYNCPOINT required

Chapter 4. Writing programs for APPC basic conversations 71

Table 31. Structure of the conversation data block (continued)

Field name Length Meaning
(bytes)
CDBFREE 1 X'FF' = FREE required
CDBRECV 1 X'FF' = RECEIVE required
CDBSIG 1 X'FF' = SIGNAL received
CDBCONF 1 X'FF' = CONFIRM received
CDBERR 1 X'FF' = ERROR received
CDBERRCD 4 Error code (when CDBERR set)
CDBSYNRB 1 X'FF' = SYNCPOINT ROLLBACK required
CDBRSVD 12 Reserved

These definitions are provided in copybook DFHCDBLK. There is one copybook for C, which defines a
typedef for the structure, and another copybook for assembler. To provide the flexibility to enable your
application to manage more than one conversation at the same time, the assembler version does not
contain a DSECT statement.

The meanings of the CONVDATA fields are as follows:

CDBERR
when set to X'FF' indicates an error has occurred on the conversation. The reason is in CDOBERRCD.
This could be as a result of a GDS ISSUE ERROR, GDS ISSUE ABEND, or SYNCPOINT ROLLBACK
command issued by the partner transaction. CDBERR can be set as a result of any command that can
be issued while the conversation is in receive state (state 5), or following any command that causes a
transmission to the partner system. It is safest to test CDBERR in conjunction with CDBFREE and
CDBSYNRB after every GDS command.

CDBERRCD
contains the reason for CDBERR. If CDBERR is not set, this field is not used.

CDBFREE
when set to X'FF' indicates that the partner transaction had ended the conversation. It should be
tested along with CDBERR and CDBSYNC to find out exactly how to end the conversation.

CDBSIG
when set to X'FF' indicates the partner transaction or system has issued and GDS ISSUE SIGNAL
command.

CDBSYNRB
when set to X'FF' indicates the partner transaction or system has issued a SYNCPOINT ROLLBACK
command. (This is relevant only for conversations at sync level 2.)

Table 32 on page 72 shows how these CDB fields interact.

Table 32. Interaction between some CDB fields—all DTP commands

CDB- ERR | CDB- CDB- CDBERRCD Description
FREE SYNRB
X'FF! X'00' X'00' X'08890000" The partner transaction has sent GDS ISSUE ERROR
X'08890001'
X'FF' X'00" X'00' X'08890100' The partner system has sent GDS ISSUE ERROR
X'08890101'
X'FF' X'00' X'00' X'A0020000' Error in data received from partner

72 CICS TS for z/0S: Distributed Transaction Programming Guide

Table 32. Interaction between some CDB fields—all DTP commands (continued)

CDB- ERR | CDB- CDB- CDBERRCD Description
FREE SYNRB

X'FF! X'FF! X'00' X'08640000' The partner transaction has sent GDS ISSUE ABEND

X'FF' X'FF! X'00' X'08640001" The partner system has sent GDS ISSUE ABEND

X'FF' X'FF! X'00' X'08640002' A partner resource has timed out

X'FF' X'FF X'00' X'1008600B' The session has failed due to a protocol error

X'FF' X'FF' X'00' X'A0000100" A temporary session failure

X'FF' X'FF' X'00' X'A0010100" RTIMOUT has triggered

X'FF' X'FF' X'00' X'10086032' The PIP data sent with the GDS CONNECT PROCESS
was incorrectly specified

X'FF' X'FF! X'00' X'10086034' The partner system does not support basic
conversations

X'FF' X'FF! X'00' X'080F6051' The partner transaction failed security check

X'FF' X'FF X'00' X'10086041" The partner transaction does not support the sync
level requested on the GDS CONNECT PROCESS

X'FF' X'FF' X'00' X'10086021" The partner transactions name is not recognized by
the partner system

X'FF! X'FF! X'00' X'084C0000" The partner system cannot start partner transaction

X'FF! X'FF! X'00' X'084B6031' The partner system is temporarily unable to start the
partner transaction

X'FF' X'00' X'FF' X'08240000' The partner transaction or system has issued
SYNCPOINT ROLLBACK

X'00' X'00' — — The command completed successfully

In addition, the following CONVDATA fields are relevant only to GDS RECEIVE commands:

CDBCOMPL
when set to X'FF' indicates that all the data sent at one time has been received. This field is used in
conjunction with the GDS RECEIVE LLID command.

CDBCONF
when set to X'FF' indicates that the partner transaction has issued a GDS SEND CONFIRM command

and requires a response.

CDBRECV
is only used when CDBERR is not set. When CDRECV is on (X'FF'), another GDS RECEIVE is required.

CDBSYNC
when set to X'FF' indicates that the partner transaction or system has requested a syncpoint. (This is
relevant only for conversations at sync level 2.)

Table 33 on page 73 shows how some of these CDB fields interact for RECEIVE commands.

Table 33. Interaction between some CDB fields—RECEIVE commands only

CDB- CDB- CDB- CDB- CDB- Description
ERR FREE RECV SYNC CONF
X'00' X'00' X'00' X'00' X'00' The partner transaction or system has issued GDS

SEND INVITE WAIT. The local program is now in
send state.

Chapter 4. Writing programs for APPC basic conversations 73

Table 33. Interaction between some CDB fields—RECEIVE commands only (continued)

CcDB-
ERR

CDB-
FREE

CDB-
RECV

CDB-
SYNC

CDB-
CONF

Description

X'00'

X'00'

X'00'

X'FF'

X'00'

The partner transaction or system has issued GDS
SEND INVITE, followed by a SYNCPOINT. The local
program is now in syncsend state.

X'00'

X'00'

X'00'

X'00'

X'FF!

The partner transaction or system has issued GDS
SEND INVITE CONFIRM. The local program is now
in confsend state.

X'00'

X'00'

X'FF'

X'00'

X'00'

The partner transaction or system has issued GDS
SEND or GDS SEND WAIT. The local program is in
receive state.

x'oo0'

x'oo0'

X'FF'

X'FF'

X'o0'

The partner transaction or system has issued a
SYNCPOINT. The local program is in syncreceive
state.

X'00'

X'00'

X'FF'

X'00'

X'FF'

The partner transaction or system has issued a GDS
SEND CONFIRM. The local program is in
confreceive state.

X'00'

X'FF'

X'00'

X'00'

X'00'

The partner transaction or system has issued a GDS
SEND LAST WAIT. The local program is in free
state.

X'00'

X'FF'

X'00'

X'FF'

X'00'

The partner transaction or system has issued a GDS
SEND LAST followed by a SYNCPOINT. The local
program is in syncfree state.

X'00'

X'FF'

X'00'

X'00'

X'FF'

The partner transaction or system has issued a GDS
SEND LAST CONFIRM. The local program is in
conffree state.

After analyzing the CONVDATA fields, you can test the conversation state to find out which GDS
commands you can issue next. See “State transitions in APPC basic conversations” on page 77.

Checking CONVDATA fields and the conversation state

Most of the information supplied by the CONVDATA fields can also be obtained from the conversation
state. However, you must also check CDBERR and CDBERRCD.

For example, if after a GDS SEND INVITE WAIT or a GDS RECEIVE command has been issued, the
conversation is in receive state (state 5), only CDBERR indicates that the partner transaction has sent a
GDS ISSUE ERROR. This is illustrated in Figure 25 on page 75 and Figure 26 on page 76.

It should be noted that the state tables provided contain not only conversation states and commands
issued, but also relevant CONVDATA field settings. The order in which these fields are shown provides a
sensible sequence of checks for an application.

74 CICS TS for z/OS: Distributed Transaction Programming Guide

* ...

* Check return code from RECEIVE

NC WRETC,WRETC

BNZ BADRET Request-related error, analyze

* ... Request successful

NC CDBERR,CDBERR

BNZ ERROR Error indicated, analyze

* ... No errors, check state

CLC WSTATE,DFHVALUE (SYNCFREE)

BE OKSYNFR Partner issued SYNCPOINT and LAST
CLC WSTATE,DFHVALUE (SYNCRECEIVE)

BE OKSYNRC Partner issued SYNCPOINT

CLC WSTATE,DFHVALUE (SYNCSEND)

BE OKSYNSE Partner issued SYNCPOINT and INVITE
CLC WSTATE,DFHVALUE (CONFFREE)

BE OKCONFR Partner issued CONFIRM and LAST
CLC WSTATE,DFHVALUE (CONFRECEIVE)

BE OKCONRC Partner issued CONFIRM

CLC WSTATE,DFHVALUE (CONFSEND)

BE OKCONSE Partner issued CONFIRM and INVITE
CLC WSTATE,DFHVALUE (FREE)

BE OKFREE Partner issued LAST

CLC WSTATE,DFHVALUE (SEND)

BE OKSEND Partner issued INVITE

CLC WSTATE,DFHVALUE (RECEIVE)

BE OKRECV Processing for receipt of data

* (including CDBCOMPL for incomplete data)
B LOGICERR Logic error, should never happen
* ...

ERROR DS OH

* Error indicated

CLC WSTATE,DFHVALUE (ROLLBACK)

BE ERRRLBK ROLLBACK received

CLC WSTATE,DFHVALUE (FREE)

BE ERRFREE ISSUE ABEND & TERMERR received,
* reason in CDBERRCD

CLC WSTATE,DFHVALUE (RECEIVE)

BE ERRRECV ISSUE ERROR received,

* reason in CDBERRCD

B LOGICERR Logic error, should never happen
* ...

BADRET DS OH

* ... Examine RETCODE for source of error

* ...

WSTATE DS F

WRETC DS XL6

WCDB DS 0CL24

COPY DFHCDBLK

* ...

Figure 25. Checking the outcome of a GDS RECEIVE command

Chapter 4. Writing programs for APPC basic conversations 75

* ...

* Check return code from SEND INVITE WAIT
NC WRETC,WRETC

BNZ BADRET Request-related error, analyze RETCODE
* ... Request successful

NC CDBERR,CDBERR

BNZ ERROR Error indicated, analyze state

* ... No errors, check state

CLC WSTATE,DFHVALUE (RECEIVE)

BE OKRECV Processing for receipt of data

* (incl. CDBCOMPL for incomplete data)

B LOGICERR Logic error, should never happen
* ...

ERROR DS OH

* Error indicated

CLC WSTATE,DFHVALUE (ROLLBACK)

BE ERRRLBK ROLLBACK received

CLC WSTATE,DFHVALUE (FREE)

BE ERRFREE ISSUE ABEND & TERMERR received,
* reason in CDBERRCD

CLC WSTATE,DFHVALUE (RECEIVE)

BE ERRRECV ISSUE ERROR received,

* reason in CDBERRCD

B LOGICERR Logic error, should never happen
* ...

BADRET ... Examine RETCODE for source of error
* ...

*

WSTATE DS F

WRETC DS XL6

WCDB DS 0CL24

COPY DFHCDBLK

* ...

Figure 26. Checking the outcome of a GDS SEND INVITE WAIT command

Summary of commands for APPC basic conversations

The CICS application programming interface provides a set of commands for use in APPC basic
conversations.

Table 34. Summary of commands used in basic conversations

Useto... Sync Command More information

levels
Acquire a session to the partner |0,1,2 GDS ALLOCATE “Allocating a session to the
system. conversation” on page 59
Initiate a conversation with a 0,1,2 GDS CONNECT “Connecting the partner
named process on the partner PROCESS transaction” on page 60
system.
Obtain the session and 0,1,2 GDS ASSIGN “Back-end transaction initiation”
connection identifiers of the on page 61
transaction’s principal facility.
Access session-related 0,1,2 GDS EXTRACT “Back-end transaction initiation”
information in the attach header PROCESS on page 61
that initiated the transaction.
Send data and control 0,1,2 GDS SEND “Sending data to the partner
information to the conversation transaction” on page 62
partner.

76 CICS TS for z/OS: Distributed Transaction Programming Guide

Table 34. Summary of commands used in basic conversations (continued)

Useto... Sync Command More information

levels
Receive data from the 0,1,2 GDS RECEIVE “Receiving data from the partner
conversation partner. transaction” on page 64
Transmit any deferred data or 0,1,2 GDS WAIT “Sending data to the partner
control indicators. transaction” on page 62
Reply positively to GDS SEND 1,2 GDS ISSUE “Receiving and replying to a
CONFIRM. CONFIRMATION confirmation request” on page 68
Prepare a conversation partner 2 GDS ISSUE PREPARE | “The ISSUE PREPARE command”
for syncpointing. on page 97
Inform the conversation partner |[0,1,2 GDS ISSUE ERROR “Receiving and replying to a
of a program-detected error. confirmation request” on page 68
Signal an unusual condition to 0,1,2 GDS ISSUE SIGNAL | “Communicating errors across a
the conversation partner, usually conversation” on page 66
against the flow of data.
Inform the conversation partner |0,1,2 GDS ISSUE ABEND “Emergency termination of a
that the conversation should be conversation” on page 70
abandoned.
Free the session. 0,1,2 GDS FREE “Ending the conversation” on

page 69

Inform all a transaction’s 2 SYNCPOINT “Syncpointing a distributed
conversation partners that it is process” on page 97
ready to commit its recoverable
resources.
Inform all a transaction’s 2 SYNCPOINT “The SYNCPOINT ROLLBACK
conversation partners that it ROLLBACK command” on page 98

wants to back out changes to
recoverable resources.

State transitions in APPC basic conversations

These topics show how the state changes when GDS commands are issued in APPC basic conversations.

T he state transitions are presented in the form of state tables showing which commands can be issued
while the conversation is in any given state. The tables also show how the conversation state changes as a
result of a command.

How to use the state tables

The state tables show the commands you can issue, the CDB flags that can be set when the command is
issued, and the conversation states.

The commands you can issue, coupled with the CDB flags that can be set after execution, are shown in
the first column of the table. The possible conversation states are shown across the top of the table. The
states correspond to the columns of the table. The intersection of a row (command and CDB flag) and a
column (state) represents the state transition, if any, that occurs when a particular command, issued in a
particular state, returns a particular CDB flag. The order in which the CDB flags appear with a command
also shows the order in which you test the CDB flags in your program.

A number at an intersection indicates the next state. Other symbols represent other conditions, as
follows:

Chapter 4. Writing programs for APPC basic conversations 77

Symbol

Meaning

N/A

Abend

End

Cannot occur.

The CDB flag is any one that has not been covered in earlier rows, or it is irrelevant
(but see the note on CDBSIG if you want to use GDS ISSUE SIGNAL).

The command is not valid in this state. Issuing a command in a state in which it is not
valid causes a bad response to be returned.

Remains in current state.

End of conversation.

Initial conversation states

Before a session is allocated, there is no conversation, and therefore no conversation state.

The EXEC CICS GDS ALLOCATE command gets a session to start a new conversation and does not
affect any conversation that is already in progress, hence the GDS ALLOCATE command does not appear
in the tables. After the GDS ALLOCATE command is successfully issued, the new conversation in the
front-end transaction is in ALLOCATED state.

The back-end transaction starts in RECEIVE state after the front-end transaction has successfully issued
the GDS CONNECT PROCESS command.

Testing the conversation state

There are two ways for an application to inquire on the current conversation state. The first is to use the
EXEC CICS GDS EXTRACT ATTRIBUTES STATE command and the second is to use the STATE parameter
on the GDS commands.

In both cases the current state is returned to the application in a CICS value data area (cvda). Table 35 on
page 78 shows how the cvda codes relate to the conversation state. The table also shows the symbolic
names defined for the cvda values.

Table 35. The conversation states

States used in this book States used in DTP programs
State name State Symbolic name cvda code
number

Allocated 1 DFHVALUE(ALLOCATED) 81
Send 2 DFHVALUE(SEND) 90
Pendreceive 3 DFHVALUE(PENDRECEIVE) 87
Pendfree 4 DFHVALUE(PENDFREE) 86
Receive 5 DFHVALUE(RECEIVE) 88
Confreceive 6 DFHVALUE(CONFRECELVE) 83
Confsend 7 DFHVALUE(CONFSEND) 84
Conffree 8 DFHVALUE(CONFFREE) 82
Syncreceive 9 DFHVALUE(SYNCRECEIVE) 92
Syncsend 10 DFHVALUE(SYNCSEND) 93
Syncfree 11 DFHVALUE(SYNCFREE) 91
Free 12 DFHVALUE(FREE) 85
Rollback 13 DFHVALUE(ROLLBACK) 89

78 CICS TS for z/0S: Distributed Transaction Programming Guide

State tables for APPC basic conversations at sync level 0

Tables showing the state transitions that occur when transactions engage in APPC basic (or unmapped)

conversations at sync level 0, under the EXEC CICS API.

The GDS ISSUE SIGNAL command and the CDBSIG flag

In the tables, the CDBSIG flag is not mentioned. This is because its use is optional and is entirely a matter
of agreement between the two conversation partners. In the worst case, it can occur at any time after
every command that affects the CDB flags. However, used for the purpose for which it was intended, it
usually occurs after a GDS SEND command. Its priority in the order of testing depends on the role you give
it in the application.

The CDBSIG flag is set when the partner issues the GDS ISSUE SIGNAL command.

State tables

Table 36. States 1 - 6
Command ALLO- SEND PEND- PEND- RECEIVE CONF-
returns CATED RECEIVE FREE RECEIVE

Command issued CDB flag returned State 1 State 2 State 3 State 4 State 5 State 6

GDS CONNECT PROCESS | EIBERR + EIBFREE Immediately 12 Abend Abend Abend Abend N/A

GDS CONNECT PROCESS | x Immediately 2 Abend Abend Abend Abend N/A

GDS EXTRACT PROCESS | x Immediately = = = = = N/A

(back-end transaction

only)

GDS EXTRACT x Immediately = = = = = N/A

ATTRIBUTES

GDS SEND (any valid CDBERR + CDBFREE After error Abend 12 Abend Abend Abend N/A

form) detected

GDS SEND (any valid CDBERR After error Abend 5 Abend Abend Abend N/A

form) detected

GDS SEND INVITE WAIT | x After data flows Abend 5 Abend Abend Abend N/A

GDS SEND INVITE x After data Abend 3 Abend Abend Abend N/A
buffered

GDS SEND LAST WAIT x After data flows Abend 12 Abend Abend Abend N/A

GDS SEND LAST x After data Abend 4 Abend Abend Abend N/A
buffered

GDS SEND WAIT x After data flows Abend = Abend Abend Abend N/A

GDS SEND x After data Abend = Abend Abend Abend N/A
buffered

GDS RECEIVE CDBERR + CDBFREE After error Abend Abend Abend Abend 12 N/A
detected

GDS RECEIVE CDBERR After error Abend Abend Abend Abend = N/A
detected

GDS RECEIVE CDBFREE After error Abend Abend Abend Abend 12 N/A
detected

GDS RECEIVE CDBRECV When data Abend Abend Abend Abend = N/A
available

GDS RECEIVE LLID CDBCOMPL When data Abend Abend Abend Abend = N/A
available

GDS RECEIVE x When data Abend Abend Abend Abend 2 N/A
available

GDS ISSUE ERROR CDBFREE After response Abend 12 12 Abend 12 N/A
from partner

GDS ISSUE ERROR x After response Abend = 2 Abend 2 N/A
from partner

GDS ISSUE ABEND x Immediately Abend 12 12 12 12 N/A

GDS ISSUE SIGNAL x Immediately Abend = = Abend = N/A

Chapter 4. Writing programs for APPC basic conversations 79

Table 36. States 1 - 6 (continued)

Command ALLO- SEND PEND- PEND- RECEIVE CONF-

returns CATED RECEIVE FREE RECEIVE
Command issued CDB flag returned State 1 State 2 State 3 State 4 State 5 State 6
GDS WAIT x Immediately Abend = 5 12 Abend N/A
GDS FREE x Immediately End Abend Abend End Abend N/A
Table 37. States 7 -13
Command issued CDB flag returned CONF- SEND CONF- SYNC- SYNC- SYNC- FREE ROLL-

FREE RECEIVE SEND FREE BACK

State 7 State 8 State 9 State 10 State 11 State 12 State 13
GDS CONNECT PROCESS | EIBERR + EIBFREE N/A N/A N/A N/A N/A Abend N/A
GDS CONNECT PROCESS | x N/A N/A N/A N/A N/A Abend N/A
GDS EXTRACT PROCESS | x N/A N/A N/A N/A N/A = N/A
(back-end transaction
only)
GDS EXTRACT x N/A N/A N/A N/A N/A = N/A
ATTRIBUTES
GDS SEND (any valid CDBERR + CDBFREE N/A N/A N/A N/A N/A Abend N/A
form)
GDS SEND (any valid CDBERR N/A N/A N/A N/A N/A Abend N/A
form)
GDS SEND INVITE WAIT | x N/A N/A N/A N/A N/A Abend N/A
GDS SEND INVITE x N/A N/A N/A N/A N/A Abend N/A
GDS SEND LAST WAIT x N/A N/A N/A N/A N/A Abend N/A
GDS SEND LAST x N/A N/A N/A N/A N/A Abend N/A
GDS SEND WAIT x N/A N/A N/A N/A N/A Abend N/A
GDS SEND x N/A N/A N/A N/A N/A Abend N/A
GDS RECEIVE CDBERR + CDBFREE N/A N/A N/A N/A N/A Abend N/A
GDS RECEIVE CDBERR N/A N/A N/A N/A N/A Abend N/A
GDS RECEIVE CDBFREE N/A N/A N/A N/A N/A Abend N/A
GDS RECEIVE CDBRECV N/A N/A N/A N/A N/A Abend N/A
GDS RECEIVE LLID CDBCOMPL N/A N/A N/A N/A N/A Abend N/A
GDS RECEIVE x N/A N/A N/A N/A N/A Abend N/A
GDS ISSUE ERROR CDBFREE N/A N/A N/A N/A N/A Abend N/A
GDS ISSUE ERROR x N/A N/A N/A N/A N/A Abend N/A
GDS ISSUE ABEND x N/A N/A N/A N/A N/A Abend N/A
GDS ISSUE SIGNAL x N/A N/A N/A N/A N/A Abend N/A
GDS WAIT x N/A N/A N/A N/A N/A Abend N/A
GDS FREE x N/A N/A N/A N/A N/A End N/A

State tables for APPC basic conversations at sync level 1

Tables showing the state transitions that occur when transactions engage in APPC basic (or unmapped)

conversations at sync level 1, under the EXEC CICS API.

The GDS ISSUE SIGNAL command and the CDBSIG flag

In the tables, the CDBSIG flag is not mentioned. This is because its use is optional and is entirely a matter
of agreement between the two conversation partners. In the worst case, it can occur at any time after
every command that affects the CDB flags. However, used for the purpose for which it was intended, it

usually occurs after a GDS SEND command. Its priority in the order of testing depends on the role you give

it in the application.

80 CICS TS for z/0S: Distributed Transaction Programming Guide

The CDBSIG flag is set when the partner issues the GDS ISSUE SIGNAL command.
State tables

Table 38. States 1 - 6
Command ALLO- SEND PEND- PEND- RECEIVE CONF-
returns CATED RECEIVE FREE RECEIVE

Command issued CDB flag returned State 1 State 2 State 3 State 4 State 5 State 6

GDS CONNECT PROCESS | EIBERR + EIBFREE Immediately 12 Abend Abend Abend Abend Abend

GDS CONNECT PROCESS | x Immediately 2 Abend Abend Abend Abend Abend

GDS EXTRACT PROCESS | x Immediately = = = = = =

GDS EXTRACT x Immediately = = = = = =

ATTRIBUTES

GDS SEND (any valid CDBERR + CDBFREE After error flow Abend 12 Abend 12 Abend Abend

form) detected

GDS SEND (any valid CDBFREE After error flow Abend 12 Abend Abend Abend Abend

form) detected

GDS SEND INVITE WAIT | x After data flows Abend 5 Abend Abend Abend Abend

GDS SEND INVITE x After response Abend 5 Abend Abend Abend Abend

CONFIRM from partner

GDS SEND INVITE x After data Abend 3 Abend Abend Abend Abend
buffered

GDS SEND LAST WAIT x After data flows Abend 12 Abend Abend Abend Abend

GDS SEND LAST x After response Abend 12 Abend Abend Abend Abend

CONFIRM from partner

GDS SEND LAST x After data Abend 4 Abend Abend Abend Abend
buffered

GDS SEND WAIT x After data flows Abend = Abend Abend Abend Abend

GDS SEND CONFIRM x After response Abend = 5 12 Abend Abend
from partner

GDS SEND x After data Abend = Abend Abend Abend Abend
buffered

GDS RECEIVE CDBERR + CDBFREE After error Abend Abend Abend Abend 12 Abend
detected

GDS RECEIVE CDBERR After error Abend Abend Abend Abend = Abend
detected

GDS RECEIVE CDBCONF + CDBFREE After confirm flow | Abend Abend Abend Abend 8 Abend
detected

GDS RECEIVE CDBCONF + CDBRECV After confirm flow | Abend Abend Abend Abend 6 Abend
detected

GDS RECEIVE CDBCONF After confirm flow | Abend Abend Abend Abend 7 Abend
detected

GDS RECEIVE CDBFREE After error Abend Abend Abend Abend 12 Abend
detected

GDS RECEIVE CDBRECV When data Abend Abend Abend Abend = Abend
available

GDS RECEIVE LLID CDBCOMPL When data Abend Abend Abend Abend = Abend
available

GDS RECEIVE x When data Abend Abend Abend Abend 2 Abend
available

GDS ISSUE x Immediately Abend Abend Abend Abend Abend 5

CONFIRMATION

GDS ISSUE ERROR CDBFREE After response Abend 12 12 Abend 12 12
from partner

GDS ISSUE ERROR x After response Abend = 2 Abend 2 2
from partner

GDS ISSUE ABEND x Immediately Abend 12 12 12 12 12

Chapter 4. Writing programs for APPC basic conversations 81

Table 38. States 1 - 6 (continued)

Command ALLO- SEND PEND- PEND- RECEIVE CONF-

returns CATED RECEIVE FREE RECEIVE
Command issued CDB flag returned State 1 State 2 State 3 State 4 State 5 State 6
GDS ISSUE SIGNAL x Immediately Abend = = Abend = =
GDS WAIT x Immediately Abend = 5 12 Abend Abend
GDS FREE x Immediately End Abend Abend End Abend Abend
Table 39. States 7 - 13
Command issued CDB flag returned CONF- SEND CONF- SYNC- SYNC- SYNC- FREE ROLL-

FREE RECEIVE SEND FREE BACK

State 7 State 8 State 9 State 10 State 11 State 12 State 13
GDS CONNECT PROCESS | EIBERR + EIBFREE Abend Abend N/A N/A N/A Abend N/A
GDS CONNECT PROCESS | x Abend Abend N/A N/A N/A Abend N/A
GDS EXTRACT PROCESS | x = = N/A N/A N/A = N/A
GDS EXTRACT x = = N/A N/A N/A = N/A
ATTRIBUTES
GDS SEND (any valid CDBERR + CDBFREE Abend Abend N/A N/A N/A Abend N/A
form)
GDS SEND (any valid CDBFREE Abend Abend N/A N/A N/A Abend N/A
form)
GDS SEND INVITE WAIT | x Abend Abend N/A N/A N/A Abend N/A
GDS SEND INVITE x Abend Abend N/A N/A N/A Abend N/A
CONFIRM
GDS SEND INVITE x Abend Abend N/A N/A N/A Abend N/A
GDS SEND LAST WAIT x Abend Abend N/A N/A N/A Abend N/A
GDS SEND LAST x Abend Abend N/A N/A N/A Abend N/A
CONFIRM
GDS SEND LAST x Abend Abend N/A N/A N/A Abend N/A
GDS SEND WAIT x Abend Abend N/A N/A N/A Abend N/A
GDS SEND CONFIRM x Abend Abend N/A N/A N/A Abend N/A
GDS SEND x Abend Abend N/A N/A N/A Abend N/A
GDS RECEIVE CDBERR + CDBFREE Abend Abend N/A N/A N/A Abend N/A
GDS RECEIVE CDBERR Abend Abend N/A N/A N/A Abend N/A
GDS RECEIVE CDBCONF + CDBFREE Abend Abend N/A N/A N/A Abend N/A
GDS RECEIVE CDBCONF + CDBRECV Abend Abend N/A N/A N/A Abend N/A
GDS RECEIVE CDBCONF Abend Abend N/A N/A N/A Abend N/A
GDS RECEIVE CDBFREE Abend Abend N/A N/A N/A Abend N/A
GDS RECEIVE CDBRECV Abend Abend N/A N/A N/A Abend N/A
GDS RECEIVE LLID CDBCOMPL Abend Abend N/A N/A N/A Abend N/A
GDS RECEIVE x Abend Abend N/A N/A N/A Abend N/A
GDS ISSUE x 2 12 N/A N/A N/A Abend N/A
CONFIRMATION
GDS ISSUE ERROR CDBFREE 12 12 N/A N/A N/A Abend N/A
GDS ISSUE ERROR x 2 2 N/A N/A N/A Abend N/A
GDS ISSUE ABEND x 12 12 N/A N/A N/A Abend N/A
GDS ISSUE SIGNAL x = = N/A N/A N/A Abend N/A
GDS WAIT X Abend Abend N/A N/A N/A Abend N/A
GDS FREE x Abend Abend N/A N/A N/A End N/A

82 CICS TS for z/0S: Distributed Transaction Programming Guide

State tables for APPC mapped conversations at sync level 2

Tables showing the state transitions that occur when transactions engage in APPC mapped conversations
at sync level 2, under the EXEC CICS API.

The GDS ISSUE SIGNAL command and the CDBSIG flag

In the tables, the CDBSIG flag is not mentioned. This is because its use is optional and is entirely a matter
of agreement between the two conversation partners. In the worst case, it can occur at any time after
every command that affects the CDB flags. However, used for the purpose for which it was intended, it
usually occurs after a GDS SEND command. Its priority in the order of testing depends on the role you give
it in the application.

The CDBSIG flag is set when the partner issues the GDS ISSUE SIGNAL command.

State changes for the SYNCPOINT and SYNCPOINT ROLLBACK commands

When the SYNCPOINT and SYNCPOINT ROLLBACK commands are issued, they are propagated on, and
affect the state of, all the conversations that are currently active for the task, including MRO
conversations.

Following rollback, the conversation can be in SEND or RECEIVE state, depending on the conversation

state at the start of the current distributed unit of work. The conversation can be in FREE state if it ended
abnormally due to session failure or due to deallocate abend being received, or if the partner transaction
issued a SEND LAST WAIT or FREE command.

After a syncpoint or rollback, it is advisable to determine the conversation state before issuing any further
commands against the conversation.

State changes following the ISSUE PREPARE command

Although ISSUE PREPARE can return with the conversation in either SYNCSEND state, SYNCRECEIVE
state, or SYNCFREE state, the only commands allowed on that conversation following an ISSUE PREPARE
are SYNCPOINT and SYNCPOINT ROLLBACK. All other commands abend.

State tables
Table 40. States 1 - 6
Command ALLO- SEND PEND- PEND- RECEIVE CONF-
returns CATED RECEIVE FREE RECEIVE
Command issued CDB flag returned State 1 State 2 State 3 State 4 State 5 State 6
GDS CONNECT PROCESS | EIBERR + EIBFREE Immediately 12 Abend Abend Abend Abend Abend
GDS CONNECT PROCESS | x Immediately 2 Abend Abend Abend Abend Abend
GDS EXTRACT PROCESS | x Immediately = = = = = =
(back-end transaction
only)
GDS EXTRACT x Immediately = = = = = =
ATTRIBUTES
GDS SEND (any valid CDBERR + CDBFREE After error flow Abend 12 Abend 12 Abend Abend
form) detected
GDS SEND (any valid CDBERR After error flow Abend 5 Abend 12 Abend Abend
form) detected
GDS SEND INVITE WAIT | x After data flows Abend 5 Abend Abend Abend Abend
GDS SEND INVITE x After response Abend 5 Abend Abend Abend Abend
CONFIRM from partner
GDS SEND INVITE x After data Abend 3 Abend Abend Abend Abend
buffered
GDS SEND LAST WAIT x After data flows Abend 12 Abend Abend Abend Abend
GDS SEND LAST x After response Abend 12 Abend Abend Abend Abend
CONFIRM from partner

Chapter 4. Writing programs for APPC basic conversations 83

Table 40. States 1 - 6 (continued)

Command ALLO- SEND PEND- PEND- RECEIVE CONF-
returns CATED RECEIVE FREE RECEIVE

Command issued CDB flag returned State 1 State 2 State 3 State 4 State 5 State 6

GDS SEND LAST x After data Abend 4 Abend Abend Abend Abend
buffered

GDS SEND WAIT x After data flows Abend = Abend Abend Abend Abend

GDS SEND CONFIRM x After response Abend = 5 12 Abend Abend
from partner

GDS SEND x After data Abend = Abend Abend Abend Abend
buffered

GDS RECEIVE CDBERR + CDBSYNRB After rollback flow | Abend Abend Abend Abend 13 Abend
detected

GDS RECEIVE CDBERR + CDBFREE After error Abend Abend Abend Abend 12 Abend
detected

GDS RECEIVE CDBERR After error Abend Abend Abend Abend = Abend
detected

GDS RECEIVE CDBSYNC + CDBFREE After sync flow Abend Abend Abend Abend 11 Abend
detected

GDS RECEIVE CDBSYNC + CDBRECV After sync flow Abend Abend Abend Abend 9 Abend
detected

GDS RECEIVE CDBSYNC After sync flow Abend Abend Abend Abend 10 Abend
detected

GDS RECEIVE CDBCONF + CDBFREE After confirm flow | Abend Abend Abend Abend 8 Abend
detected

GDS RECEIVE CDBCONF + CDBRECV After confirm flow | Abend Abend Abend Abend 6 Abend
detected

GDS RECEIVE CDBCONF After confirm flow | Abend Abend Abend Abend 7 Abend
detected

GDS RECEIVE CDBFREE After error flow Abend Abend Abend Abend 12 Abend
detected

GDS RECEIVE CDBRECV When data Abend Abend Abend Abend = Abend
available

GDS RECEIVE LLID CDBCOMPL When data Abend Abend Abend Abend = Abend
available

GDS RECEIVE x When data Abend Abend Abend Abend 2 Abend
available

GDS ISSUE x Immediately Abend Abend Abend Abend Abend 5

CONFIRMATION

GDS ISSUE ERROR CDBFREE After response Abend 12 12 Abend 12 12
from partner

GDS ISSUE ERROR X After response Abend = 2 Abend 2 2
from partner

GDS ISSUE ABEND x Immediately Abend 12 12 12 12 12

GDS ISSUE SIGNAL x Immediately Abend = = Abend = =

GDS ISSUE PREPARE CDBERR + CDBSYNRB After response Abend 13 13 13 Abend Abend
from partner

GDS ISSUE PREPARE CDBERR + CDBFREE After error Abend 12 12 12 Abend Abend
detected

GDS ISSUE PREPARE CDBERR After error Abend 5 5 5 Abend Abend
detected

GDS ISSUE PREPARE x After response Abend 10 9 11 Abend Abend
from partner

SYNCPOINT EIBRLDBK After response = 2o0r5 2or5 2o0r5 Abend Abend
from partner

SYNCPOINT x After response = = 5 12 Abend Abend

from partner

84 CICS TS for z/0S: Distributed Transaction Programming Guide

Table 40. States 1 - 6 (continued)

Command ALLO- SEND PEND- PEND- RECEIVE CONF-
returns CATED RECEIVE FREE RECEIVE
Command issued CDB flag returned State 1 State 2 State 3 State 4 State 5 State 6
SYNCPOINT ROLLBACK | x After rollback = 2o0r5 2or5 2o0r5 2or5 2or5
across UOW
GDS WAIT x Immediately Abend = 5 12 Abend Abend
GDS FREE x Immediately End Abend Abend End Abend Abend
Table 41. States 7 -13
Command issued CDB flag returned CONF- SEND CONF- SYNC- SYNC- SYNC- FREE ROLL-
FREE RECEIVE SEND FREE BACK
State 7 State 8 State 9 State 10 State 11 State 12 State 13
GDS CONNECT PROCESS | EIBERR + EIBFREE Abend Abend Abend Abend Abend Abend Abend
GDS CONNECT PROCESS | x Abend Abend Abend Abend Abend Abend Abend
GDS EXTRACT PROCESS | x = = = = = = =
(back-end transaction
only)
GDS EXTRACT X = = = = = = =
ATTRIBUTES
GDS SEND (any valid CDBERR + CDBFREE Abend Abend Abend Abend Abend Abend Abend
form)
GDS SEND (any valid CDBERR Abend Abend Abend Abend Abend Abend Abend
form)
GDS SEND INVITE WAIT | x Abend Abend Abend Abend Abend Abend Abend
GDS SEND INVITE x Abend Abend Abend Abend Abend Abend Abend
CONFIRM
GDS SEND INVITE x Abend Abend Abend Abend Abend Abend Abend
GDS SEND LAST WAIT x Abend Abend Abend Abend Abend Abend Abend
GDS SEND LAST x Abend Abend Abend Abend Abend Abend Abend
CONFIRM
GDS SEND LAST x Abend Abend Abend Abend Abend Abend Abend
GDS SEND WAIT x Abend Abend Abend Abend Abend Abend Abend
GDS SEND CONFIRM x Abend Abend Abend Abend Abend Abend Abend
GDS SEND x Abend Abend Abend Abend Abend Abend Abend
GDS RECEIVE CDBERR + CDBSYNRB Abend Abend Abend Abend Abend Abend Abend
GDS RECEIVE CDBERR + CDBFREE Abend Abend Abend Abend Abend Abend Abend
GDS RECEIVE CDBERR Abend Abend Abend Abend Abend Abend Abend
GDS RECEIVE CDBSYNC + CDBFREE Abend Abend Abend Abend Abend Abend Abend
GDS RECEIVE CDBSYNC + CDBRECV Abend Abend Abend Abend Abend Abend Abend
GDS RECEIVE CDBSYNC Abend Abend Abend Abend Abend Abend Abend
GDS RECEIVE CDBCONF + CDBFREE Abend Abend Abend Abend Abend Abend Abend
GDS RECEIVE CDBCONF + CDBRECV Abend Abend Abend Abend Abend Abend Abend
GDS RECEIVE CDBCONF Abend Abend Abend Abend Abend Abend Abend
GDS RECEIVE CDBFREE Abend Abend Abend Abend Abend Abend Abend
GDS RECEIVE CDBRECV Abend Abend Abend Abend Abend Abend Abend
GDS RECEIVE LLID CDBCOMPL Abend Abend Abend Abend Abend Abend Abend
GDS RECEIVE x Abend Abend Abend Abend Abend Abend Abend
GDS ISSUE x 2 12 Abend Abend Abend Abend Abend
CONFIRMATION
GDS ISSUE ERROR CDBFREE 12 12 12 12 12 Abend Abend
GDS ISSUE ERROR x 2 2 2 2 2 Abend Abend

Chapter 4. Writing programs for APPC basic conversations 85

Table 41. States 7 -13 (continued)

Command issued CDB flag returned CONF- SEND CONF- SYNC- SYNC- SYNC- FREE ROLL-

FREE RECEIVE SEND FREE BACK

State 7 State 8 State 9 State 10 State 11 State 12 State 13

GDS ISSUE ABEND x 12 12 12 12 12 Abend Abend
GDS ISSUE SIGNAL x = = = = = Abend Abend
GDS ISSUE PREPARE CDBERR + CDBSYNRB Abend Abend Abend Abend Abend Abend Abend
GDS ISSUE PREPARE CDBERR + CDBFREE Abend Abend Abend Abend Abend Abend Abend
GDS ISSUE PREPARE CDBERR Abend Abend Abend Abend Abend Abend Abend
GDS ISSUE PREPARE x Abend Abend Abend Abend Abend Abend Abend
SYNCPOINT EIBRLDBK Abend Abend 2o0r5 2o0r5 2or5 = Abend
SYNCPOINT x Abend Abend 5 2 12 = Abend
SYNCPOINT ROLLBACK x 2o0r5 2o0r5 2o0r5 2o0r5 2o0rb Abend 2o0r5
GDS WAIT x Abend Abend Abend Abend Abend Abend Abend
GDS FREE x Abend Abend Abend Abend Abend End Abend

86 CICS TS for z/0S: Distributed Transaction Programming Guide

Chapter 5. Writing programs for LUTYPEG6.1
conversations

These topics describe the CICS APIs available for DTP programming using LUTYPE6.1 conversations.

Conversation initiation

The front-end transaction is responsible for acquiring a session, specifying the conversation
characteristics, and requesting the startup of the back-end transaction in the partner system.

Allocating a session to the conversation
Initially, there is no conversation, and therefore no conversation state.

The front-end transaction acquires a session to start a new conversation by issuing an ALLOCATE
command.

The RESP value should be checked to ensure that a session has been allocated. If successful, the RESP
value is DFHRESP(NORMAL), the conversation is in allocated state (state 1) and the session identifier
(convid) from EIBRSRCE must be saved immediately. The convid must be used in subsequent
commands for this conversation.

If the front-end transaction is started by ATI in the local region, and is required to hold a conversation
with an LUTYPEG.1 session as its principal facility, the session has already been allocated when the
transaction starts. You can omit the SESSION option from commands relating to the principal facility. If,
however, you want to name the session explicitly in these commands, you should obtain its name from
EIBTRMID.

Connecting the partner transaction
When a session has been acquired, the next step is to cause the partner transaction to be initiated.

The state table shows that, in allocated state (state 1), one of the commands available is SEND. Using
this command, the back-end transaction identifiers can be specified in the first four bytes of the data
which, when transferred to the partner system, will attach the required back-end transaction. The send
buffer containing the transaction name together with any other data, will be flushed immediately and the
front-end transaction will wait until a response is received from the back-end transaction.

Alternatively, when a session has been acquired, the front-end transaction can build and send an attach
header with the first transmission of data. The attach header can be built using the BUILD ATTACH
command.

When using the BUILD ATTACH command, you must give a name to the built attach header which can
then be used in the ATTACHID option of the first SEND (or converse) command. The back-end transaction
name should also be specified.

Back-end transaction initiation

The back-end transaction is initiated either by an attach header received from the partner system or by a
transaction name included in the incoming data, and is started with the session as its principal facility.

Initially, the back-end transaction should determine the convid from EIBTRMID. This is not strictly
necessary because the session is the back-end transaction’s principal facility making the CONVID
parameter optional for DTP commands on this conversation. However, the convid is very useful for audit
trails. Also, if the back-end transaction is involved in more than one conversation, then always specifying
the convid improves program readability and problem determination.

© Copyright IBM Corp. 1974, 2019 87

A CICS transaction can be the back-end transaction in CICS-to- IMS communication only in the special
case of SEND/RECEIVE asynchronous processing. The transaction is initiated by an LUTYPE6.1 attach
FMH received from the remote IMS system, and is allowed to issue a single RECEIVE command only,
possibly followed by an EXTRACT ATTACH command.

It is possible that the back-end transaction might fail to start. This will result in the front-end transaction
abending.

Transferring data on the conversation

These topics discuss how to pass data between the front-end and back-end transactions.

Sending data to the partner transaction
The SEND command is used to send data to the connected partner.

This command is valid in allocated state (state 1) or send state (state 2). Because a successful simple
SEND completes in send state (state 2), it is possible to issue a number of successive sends.

Switching from sending to receiving data
There is more than one way of switching from send state to receive state .
One possibility is to use a SEND INVITE command. The state table shows that after SEND INVITE the

conversation switches to pendreceive state (state 3). As the column for state 3 shows, a WAIT
TERMINAL command switches the conversation to receive state (state 5).

Another possibility is to specify INVITE and WAIT on the SEND command. As the state table shows, SEND
INVITE WAIT switches the conversation to receive state (state 5).

Receiving data from the partner transaction
The RECEIVE command is used to receive data from the connected partner.
T he rows in the state tables for the RECEIVE command show the EIB fields that should be tested after

issuing a RECEIVE command. As well as showing which field should be tested, the state tables also shows
the order in which the tests should be made. Note that you should always test for RESP values.

The transaction whose side of the conversation is in receive state cannot change to send state , but can
request a change of direction by using the ISSUE SIGNAL command. This causes the SIGNAL condition to
be raised in the partner transaction the next time it issues a SEND, RECEIVE, or CONVERSE command.
The application is responsible for determining the purpose of the SIGNAL condition and responding
appropriately.

Waiting for a signal

A transaction can wait for its partner to send a signal. This is done by issuing the WAIT SIGNAL command
and testing for the SIGNAL condition.

T he WAIT SIGNAL command suspends the transaction until its partner responds with an ISSUE SIGNAL
command. This response activates the suspended transaction and raises the SIGNAL condition.

Combining sending and receiving
The CONVERSE command combines the functions SEND INVITE and RECEIVE.

T his command is useful when one transaction needs a response from the partner transaction to continue
processing.

88 CICS TS for z/0S: Distributed Transaction Programming Guide

Communicating errors across a conversation

If a transaction is receiving data on a conversation and needs to notify its partner of an error, it can use
the ISSUE SIGNAL command to request that the partner does a SEND INVITE.

When the ISSUE SIGNAL request is received, EIBSIG is set to X'FF' and the SIGNAL condition is raised.
Note that when a signal is received, the transaction is not obliged to issue SEND INVITE.

Safeguarding data integrity

If it is important to safeguard data integrity across connected transactions, then synchronization
commands are available.

The c ommands are:

SYNCPOINT
SRRCMIT (SAA verb for SYNCPOINT)

The use of these commands in DTP is described in “Syncpointing a distributed process” on page 97.

Ending the conversation

These topics describe the different ways a conversation can end, either unexpectedly or under
transaction control.

W hen under transaction control, one transaction will issue a request for termination and the other will
receive this request. Once this has happened the conversation is unusable and both transactions must
issue a FREE command to release the session.

Ending a conversation normally
The SEND LAST command is used to terminate a conversation.
It should be used in conjunction with either the WAIT option or the SYNCPOINT command, and followed
by the FREE command. However, SEND LAST WAIT will cause the conversation to end before the

subsequent syncpoint can be propagated to the partner transaction. This may mean that the protected
resources in one system could be committed while those in the other system could be backed out.

From the state table it can be seen that it is possible to end a conversation by issuing the FREE command
provided the conversation is in send state (state 2). This will generate an implicit SEND LAST WAIT
command before the FREE is executed and is therefore not recommended.

Note: A distributed transaction should not end a conversation by issuing an EXEC CICS RETURN
command, but instead follow the sequence of commands as described. The issue of an EXEC CICS
RETURN could lead to one or both transactions ending abnormally.

Unexpected termination of a conversation
From time to time, partner systems do fail and sessions go out of service.

I f this happens in the middle of a DTP conversation, the transaction will be terminated abnormally.

Checking the outcome of a DTP command

Checking the response from a DTP command can be separated into two stages.
The stages are:

1. Testing for request failure

2. Testing for indicators received on the conversation.

Testing for request failure is the same as for other EXEC CICS commands in that conditions are raised and
may be handled using HANDLE CONDITION or RESP. EIBRCODE will also contain an error code.

Chapter 5. Writing programs for LUTYPE6.1 conversations 89

If the request has not failed, it is then possible to test for indicators received on the conversation. These
are returned to the application in the EIB. The following EIB fields are relevant to all DTP commands. (See
EIB fields for programming information on the contents and format of EIB fields.)

EIBFREE
when set to X'FF' indicates that the partner transaction has ended the conversation. It should be
tested in conjunction with EIBSYNC to determine exactly how to end the conversation.

EIBSYNC
when set to X'FF' indicates the partner transaction/system has requested a syncpoint.

Table 42 on page 90 shows how these EIB fields interact.

Table 42. Interaction of some EIB fields

EIB- FREE EIB- SYNC Description

X'FF' X'00" The partner transaction or system has sent SEND LAST followed by a
FREE command.

X'FF' X'FF' The partner transaction or system has issued SEND LAST followed
by SYNCPOINT. The local program should reply with a SYNCPOINT
command followed by a FREE command.

X'00' X'FF! The partner transactions or system has issued a SYNCPOINT.

In addition, there is a group of EIB fields that are relevant only to the RECEIVE and CONVERSE
commands. These are:

EIBCOMPL
when set to X'FF' indicates that all the data sent at one time has been received. This field is used in
conjunction with the RECEIVE NOTRUNCATE command.

EIBRECV
when set to X'FF' indicates the partner transaction did not use the INVITE option on its last SEND
command.

EIBATT
when set to X'FF' indicates that the data received contained an attach header. The attach header is
not passed to the application; however, EIBATT indicates that an EXTRACT ATTACH command is
appropriate.

EIBFMH
when set to X'FF' indicates that the data passed to the application contains a concentrated FMH. This
happens only when the partner CICS transaction builds an FMH in the data and the FMH option on the
SEND command is specified.

Note: Profiles specifying INBFMH (ALL) must be used in the ALLOCATE commands if FMHs are to be sent
and received and EIBATT or EIBFMH to be sent appropriately. The default profile DFHCICSA used for the
session allocated by the front-end transaction, has INBFMH (ALL) specified. However, the default
principal facility profile DFHCICST used for the back-end transaction does not have INBFMH (ALL)
specified.

Considerations for the front-end transaction

Several special considerations apply to the front-end transaction in an LUTYPE6.1 conversation.

Except in the special case of the receiving transaction in SEND/RECEIVE asynchronous processing, the
CICS transaction is always the front-end transaction in CICS-to- IMS DTP.

The front-end transaction is responsible for acquiring a session to the remote IMS system and initiating
the partner transaction.

Thereafter, the two transactions become equals. However, the front-end transaction is usually designed
as the client, or driving, transaction.

90 CICS TS for z/OS: Distributed Transaction Programming Guide

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/reference/commands-api/dfhp4_eibfields.html

Session allocation
You acquire an LUTYPE®6.1 session to a remote IMS system by means of the ALLOCATE command.

The command has the following format:

ALLOCATE §SYSID(name) |SESSION(name)$
[PROFILE (name)]
[NOQUEUE]

You can use the SESSION option to request the use of a specific session to the remote IMS system, or you
can use the SYSID option to name the partner system and allow CICS to select an available session. The
use of the SESSION option is not normally recommended, because it can result in an application program
gueuing on a specific session when others are available. In most cases, therefore, you use the SYSID
option to name the system with which the session is required.

If CICS cannot find the named system, or all sessions to that system are out of service, it raises the
SYSIDERR condition. If CICS cannot find the named session, or that session is out of service, it raises the
SESSIONERR condition.

The PROFILE option allows you to select a specified communication profile for an LUTYPE6.1 session. The
profile, which is set up during resource definition, contains a set of terminal control processing options
that are to be used for the session.

If you omit the PROFILE option, CICS uses the default profile DFHCICSA. This profile specifies
INBFMH(ALL), which means that incoming function management headers are passed to your program and
cause the INBFMH condition to be raised.

The NOQUEUE option allows you to specify explicitly that you do not want your request for a session to be
queued if a session is not available immediately. A session is “not immediately available” in any of the
following situations:

« All the sessions to the specified system are in use.
« The only available sessions are not bound (in which case CICS would have to bind a session).

- The only available sessions are contention losers (in which case CICS would have to bid to begin a
bracket).

The action taken by CICS if a session is not immediately available depends on whether you specify
NOQUEUE and also on whether your application has executed a HANDLE command for the SYSBUSY
condition. These are the possible combinations:

« HANDLE for SYSBUSY condition

— Controlis returned immediately to the label specified in the HANDLE command, whether or not you
have specified NOQUEUE.

« No HANDLE for SYSBUSY condition

— If you have specified NOQUEUE, control is returned immediately to your application program. A RESP
value of DFHRESP(SYSBUSY) is returned. You should test this field immediately after issuing the
ALLOCATE command.

— If you have omitted the NOQUEUE option, CICS queues the request until a session is available.
Whether a delay in acquiring a session is acceptable is dependent on your application.

Similar considerations apply to an ALLOCATE command that specifies SESSION rather than SYSID. The
associated condition is SESSBUSY.

The session identifier
When a session has been allocated, the name by which it is known is available in the EIBRSRCE field in
the EIB.

Because EIBRSRCE will probably be overwritten by the next EXEC CICS command, your application must
capture the session name immediately. It is the name that you must use in the SESSION option of all
subsequent commands that relate to this session.

Chapter 5. Writing programs for LUTYPE6.1 conversations 91

Summary of commands for LUTYPEG.1 conversations

The CICS application programming interface provides a set of commands for use in LUTYPE6.1
conversations.

Table 43 on page 92 shows the commands used in LUTYPE6.1 conversations.

Table 43. Summary of commands used in LUTYPEG6.1 conversations

Useto... Command More information
Acquire a session. ALLOCATE “Allocating a session to the
conversation” on page 87
Build an attach header. BUILD ATTACH “Connecting the partner
transaction” on page 87
Access session-related EXTRACT ATTACH “Back-end transaction initiation”
information. on page 87
Send data and control SEND “Sending data to the partner
information to the conversation transaction” on page 88
partner.
Receive data from the RECEIVE “Receiving data from the partner
conversation partner. transaction” on page 88
Send and receive data on the CONVERSE “Combining sending and
conversation. receiving” on page 88
Inform all partners of readiness | SYNCPOINT “Syncpointing a distributed
to commit recoverable resources. process” on page 97
Signal an unusual condition to ISSUE SIGNAL “Communicating errors across a
the conversation partner, usually conversation” on page 89
against the flow of data.
Suspend processing until the WAIT SIGNAL “Waiting for a signal” on page 88
SIGNAL condition is raised.
Ensure that CICS has transmitted | WAIT TERMINAL “Switching from sending to
any accumulated data or data receiving data” on page 88

flow control indicators before
further processing.

Free the session. FREE “Ending a conversation normally”
on page 89

State transitions in LUTYPEG.1 conversations

These topics show the state transitions that occur when transactions engage in LUTYPEG6.1 conversations.
The state transitions are presented in the form of a state table. The state table shows which commands a
transaction can issue while the conversation is in any given state. It also shows how the conversation
state changes as a result of any command.

How to use the state table

The state tables show the commands you can issue, the EIB flags that can be set when the command is
issued, and the conversation states.

The commands you can issue, coupled with the EIB flags that can be set after execution, are shown on
the first column of the table. The possible conversation states are shown across the top of the table. The

92 CICS TS for z/OS: Distributed Transaction Programming Guide

states correspond to the columns of the table. The intersection of row (command and EIB flag) and
column (state) represents the state transition, if any, that occurs when that command returning a
particular EIB flag is issued in that state.

A number at an intersection indicates the state number of the next state. Other symbols represent other
conditions, as follows:

Symbol Meaning
N/A Cannot occur.
X The EIB flag is any one that has not been covered in earlier rows, or it is irrelevant.
Abend The command is not valid in this state. Issuing a command in a state in which it is not

valid usually causes an ATCV abend.

= Remains in current state.

End End of conversation.
Initial states
A front-end transaction can be initiated either from a transaction or by automatic transaction initiation

(ATI).

A terminal-initiated front-end transaction must issue an ALLOCATE command to acquire a session. If the
session is successfully allocated, the front-end transaction’s side of the conversation goes into allocated
state (state 1).

A front-end transaction started by ATI in the local region, with an LUTYPE6.1 session as its principal
facility, already has a session allocated. Such a transaction does not issue an ALLOCATE command, and
its side of the conversation starts in send state (state 2).

A back-end transaction is initially in receive state (state 5).

Testing the conversation state
An application cannot check the state of an LUTYPEG6.1 conversation directly.

T he application must instead check RESP and the EIB fields after each command, and must follow the
rules shown in the state table.

State tables for LUTYPEG6.1 conversations

Tables showing the state transitions that occur when transactions engage in LUTYPE6.1 conversations,
under the EXEC CICS APL.

The ISSUE SIGNAL command and the EIBSIG flag

In the tables, the EIBSIG flag is not mentioned. This is because its use is optional and is entirely a matter
of agreement between the two conversation partners. In the worst case, it can occur at any time after
every command that affects the EIB flags. However, used for the purpose for which it was intended, it
usually occurs after a SEND command. Its priority in the order of testing depends on the role you give it in
the application.

The EIBSIG flag is set when the partner issues the ISSUE SIGNAL command.

The RECEIVE NOTRUNCATE command

The RECEIVE NOTRUNCATE command returns a zero value in EIBCOMPL to indicate that the user buffer
was too small to contain all the data received from the partner transaction. Normally, you would continue
to issue RECEIVE NOTRUNCATE commands until the last section of data is passed to you, which is
indicated by EIBCOMPL = X'FF'. If NOTRUNCATE is not specified, and the data area specified by the
RECEIVE command is too small to contain all the data received, CICS truncates the data and sets the
LENGERR condition.

Chapter 5. Writing programs for LUTYPE6.1 conversations 93

State changes for the SYNCPOINT and SYNCPOINT ROLLBACK commands

When the SYNCPOINT and SYNCPOINT ROLLBACK commands are issued, they are propagated on, and
affect the state of, all the conversations that are currently active for the task, including APPC and MRO
conversations.

State tables

Table 44. States 1 - 6

Command ALLO- SEND PEND- PEND- RECEIVE CONF-
returns CATED RECEIVE FREE RECEIVE
Command issued EIB flag returned State 1 State 2 State 3 State 4 State 5 State 6
BUILD ATTACH x Immediately = = = = = N/A
EXTRACT ATTACH x Immediately = = = = = N/A
SEND INVITE WAIT X AfterdataandCD |5 5 Abend Abend Abend N/A
flows
SEND INVITE x After data 3 3 Abend Abend Abend N/A
buffered
SEND LAST WAIT x After dataand EB | 12 12 Abend Abend Abend N/A
flows
SEND LAST x After data 4 4 Abend Abend Abend N/A
buffered
SEND x After data = = Abend Abend Abend N/A
buffered
RECEIVE EIBSYNC + EIBFREE After sync flow Abend 11 11 Abend 11 N/A
detected
RECEIVE EIBSYNC + EIBRECV After sync flow Abend 9 9 Abend 9 N/A
detected
RECEIVE EIBSYNC After sync flow Abend 10 10 Abend 10 N/A
detected
RECEIVE EIBFREE After EB detected | Abend 12 12 Abend 12 N/A
RECEIVE EIBRECV When data Abend 5 5 Abend = N/A
available
RECEIVE NOTRUNCATE EIBCOMPL When data Abend 5 5 Abend = N/A
available
RECEIVE X When data Abend 2 2 Abend 2 N/A
available
CONVERSE As for RECEIVE but As for As for As for As for As for As for
allowed in send state RECEIVE RECEIVE RECEIVE RECEIVE RECEIVE RECEIVE
but but but but but but
allowed in | allowedin | allowedin | allowedin | allowedin | allowedin
send state | send state | sendstate |sendstate | sendstate | send state
ISSUE SIGNAL x Immediately Abend = = = = N/A
WAIT SIGNAL x After response Abend = = = = N/A
from partner
SYNCPOINT x After response = = 5 12 Abend N/A
from partner
WAIT TERMINAL x Immediately = = 5 12 = N/A
FREE x Immediately End End Abend End Abend N/A
Table 45. States 7 -13
Command issued EIB flag returned CONF- SEND CONF- SYNC- SYNC- SYNC- FREE ROLL-
FREE RECEIVE SEND FREE BACK
State 7 State 8 State 9 State 10 State 11 State 12 State 13
BUILD ATTACH x N/A N/A N/A = = = =
EXTRACT ATTACH X N/A N/A = = = = N/A
SEND INVITE WAIT x N/A N/A Abend Abend Abend Abend N/A

94 CICS TS for z/OS: Distributed Transaction Programming Guide

Table 45. States 7 -13 (continued)

Command issued EIB flag returned CONF- SEND CONF- SYNC- SYNC- SYNC- FREE ROLL-
FREE RECEIVE SEND FREE BACK
State 7 State 8 State 9 State 10 State 11 State 12 State 13
SEND INVITE x N/A N/A Abend Abend Abend Abend N/A
SEND LAST WAIT x N/A N/A Abend Abend Abend Abend N/A
SEND LAST x N/A N/A Abend Abend Abend Abend N/A
SEND x N/A N/A Abend Abend Abend Abend N/A
RECEIVE EIBSYNC + EIBFREE N/A N/A Abend Abend Abend Abend N/A
RECEIVE EIBSYNC + EIBRECV N/A N/A Abend Abend Abend Abend N/A
RECEIVE EIBSYNC N/A N/A Abend Abend Abend Abend N/A
RECEIVE EIBFREE N/A N/A Abend Abend Abend Abend N/A
RECEIVE EIBRECV N/A N/A Abend Abend Abend Abend N/A
RECEIVE NOTRUNCATE | EIBCOMPL N/A N/A Abend Abend Abend Abend N/A
RECEIVE x N/A N/A Abend Abend Abend Abend N/A
CONVERSE As for RECEIVE As for As for As for As for As for As for
RECEIVE RECEIVE RECEIVE RECEIVE RECEIVE RECEIVE
ISSUE SIGNAL x N/A N/A = = = Abend N/A
WAIT SIGNAL x N/A N/A = = = Abend N/A
SYNCPOINT X N/A N/A 5 2 12 = N/A
WAIT TERMINAL x N/A N/A Abend Abend Abend Abend N/A
FREE x N/A N/A Abend Abend Abend End N/A

Chapter 5. Writing programs for LUTYPE6.1 conversations 95

96 CICS TS for z/OS: Distributed Transaction Programming Guide

Chapter 6. Syncpointing a distributed process

You can use the SYNCPOINT and SYNCPOINT ROLLBACK commands to commit and roll back a
distributed process.

This topic concentrates on the programming aspects of using the SYNCPOINT and SYNCPOINT
ROLLBACK commands across APPC conversations at sync level 2 and MRO conversations.

Syncpointing a distributed process

You can use the SYNCPOINT and SYNCPOINT ROLLBACK commands to commit and roll back a
distributed process.

This topic concentrates on the programming aspects of using the SYNCPOINT and SYNCPOINT
ROLLBACK commands across APPC conversations at sync level 2 and MRO conversations. This includes
issuing syncpoint requests and receiving them, because they are transmitted to all partners connected on
conversations at sync level 2. The section also describes how these partners are given the opportunity to
back out even though they have been requested to commit.

The SAA equivalent commands (SRRCMIT and SRRBACK) are described in Systems Application
Architecture Common Programming Interface Resource Recovery Reference.

The SYNCPOINT command

The SYNCPOINT command is used to commit recoverable resources. In a DTP environment, the effect of
the SYNCPOINT command is propagated across all conversations using sync level 2 or MRO.

N o matter how many DTP transactions are connected by conversations at sync level 2, the distributed
process should be designed such that only one of the transactions initiates syncpoint activity for the
distributed unit of work. When issuing the SYNCPOINT command, this transaction, known as the
syncpoint initiator must be in send state (state 2), pendreceive state (state 3), or pendfree state (state
4) on all its conversations at sync level 2. Any transaction that receives the syncpoint request becomes a
syncpoint agent.

A syncpoint agent is in receive state on its conversation with the syncpoint initiator and becomes aware
of the syncpoint request by testing EIBSYNC (CDBSYNC in the APPC basic interface) after issuing a
RECEIVE command. If it decides to respond positively by issuing SYNCPOINT, it must be in an
appropriate state on all the conversations with its own agents, for which it has become syncpoint initiator.
If an agent transaction responds negatively to a syncpoint request by issuing SYNCPOINT ROLLBACK, the
initiator sees EIBRLDBK set (X'FF'), which must be tested on return from the SYNCPOINT command.
(This is also true for APPC basic conversations.)

Your transaction design should ensure that all participating transactions are in the correct conversation
state before a SYNCPOINT command is issued.

When a syncpoint agent receives the syncpoint request, it is given the opportunity to respond positively
(to commit recoverable resources) with a SYNCPOINT command or negatively (to back out recoverable
resources) with a SYNCPOINT ROLLBACK command. For information on backing out recoverable
resources, see “The SYNCPOINT ROLLBACK command” on page 98.

Examples of these commands are given in “Synchronizing two CICS systems” on page 99 and
“Synchronizing three or more CICS systems” on page 106.

The ISSUE PREPARE command

The ISSUE PREPARE (GDS ISSUE PREPARE for the APPC basic interface) command is used to send the
initial syncpoint flow to a selected partner on an APPC conversation at sync level 2. Depending on the

© Copyright IBM Corp. 1974, 2019 97

https://www.ibm.com/support/knowledgecenter/SSB27U_6.4.0/com.ibm.zvm.v53.cn2v0/toc.htm
https://www.ibm.com/support/knowledgecenter/SSB27U_6.4.0/com.ibm.zvm.v53.cn2v0/toc.htm

partner’s response, this command can then be followed by a SYNCPOINT or SYNCPOINT ROLLBACK
command.

The reasons for using ISSUE PREPARE are as follows:

1. In complex DTP involving several conversing transactions, an ISSUE ERROR command from one of the
transactions may not reach the syncpoint initiator in time to prevent it from issuing a SYNCPOINT
command. This can lead to complex backout procedures for the distributed unit of work.

Use ISSUE PREPARE as a way of flushing any error responses from the network.
2. If one or more syncpoint agents are not completely “reliable”, use ISSUE PREPARE to check the status
of these agents before proceeding with a general distributed syncpoint.

Receiving ISSUE PREPARE is exactly the same as receiving SYNCPOINT. The partner program cannot
detect any difference.

The SYNCPOINT ROLLBACK command

The SYNCPOINT ROLLBACK command is used to back out changes to recoverable resources. In a DTP
environment, the effect of the SYNCPOINT command is propagated across all conversations using MRO or
sync level 2.

A SYNCPOINT ROLLBACK command can be issued in any conversation state. If the command is issued
when a conversation is in receive state (state 5), incoming data on that conversation is purged as
described for the ISSUE ERROR and ISSUE ABEND commands.

When a transaction receives a SYNCPOINT ROLLBACK in response to a syncpoint request, the EIBRLDBK
indicator is set. If SYNCPOINT ROLLBACK is received in response to any other request, the EIBERR and
EIBSYNRB indicators (CDBERR and CDBSYNRB in the basic interface) are set.

The conversation state of each partner is restored to the state at the beginning of the distributed unit of
work after a SYNCPOINT ROLLBACK command.

If a session failure or notification of a deallocate abend occurs during SYNCPOINT ROLLBACK processing,
the command still completes successfully. If the same thing happens during SYNCPOINT processing, the
command might complete successfully with EIBRLDBK set. In such circumstances, the conversation on
which the failure or abend occurred will be in free state (state 12).

To avoid potential state problems, you can check the conversation state by using the STATE option on the
command following SYNCPOINT ROLLBACK. However, to avoid the possibility of an abend, you are
recommended to follow each SYNCPOINT ROLLBACK command with an EXTRACT ATTRIBUTES STATE
command instead.

When a backout is required
In some situations, a transaction must back out in response to a request received from a partner.

A backout is required in the following circumstances:

« When SYNCPOINT ROLLBACK is received

 After ISSUE ABEND is sent

« After EIBERR and EIBFREE (CDBERR and CDBFREE in the basic interface) are returned together.

The conversation state does not always reflect the requirement to back out. However, CICS is aware of
this requirement and converts the next SYNCPOINT request to a SYNCPOINT ROLLBACK request. If no
SYNCPOINT or SYNCPOINT ROLLBACK request is issued before the end of the task, the task is abended
(ASPN), and all recoverable resources are backed out.

98 CICS TS for z/OS: Distributed Transaction Programming Guide

Synchronizing two CICS systems

This section gives examples of how to commit and back out changes to recoverable resources made by
two DTP transactions connected on a conversation using MRO or sync level 2.

SYNCPOINT in response to SYNCPOINT
In an APPC mapped conversation, a transaction issues a SYNCPOINT command and its partner responds
with a SYNCPOINT command.

Figure 27 on page 99, Figure 28 on page 99, and Figure 29 on page 100 illustrate the effect of SEND,
SEND INVITE, or SEND LAST preceding SYNCPOINT on an APPC mapped conversation. The figures also
show the conversation state before each command and the state and EIB fields set after each command.

Transaction A Transaction B

Eﬁiate; send)
SEND CONVIDCAB)

(state: send) (state: receive)

SYNCPOINT p RECEIVE CONVIDCAB)

(state: send) 4 {state: syncreceive
+EIBSYNC, EIBRECWY)
SYNCPOINT

(state: recejve)

Figure 27. SYNCPOINT (in response to SEND followed by SYNCPOINT) on an APPC mapped conversation

Transaction A Transaction B

ﬁﬁfate: send)
SEND INVITE

CONVIDCAB)
(state: pendreceive) (state: receive)
SYNCPOINT » RECEIVE CONVIDCAB)
(state: receive) 4— (state: syncsend
+ETBSYNC)
SYNCPOINT

(state: send)

Figure 28. SYNCPOINT (in response to SEND INVITE followed by SYNCPOINT) on an APPC mapped
conversation

Chapter 6. Syncpointing a distributed process 99

Transaction A Transaction B

Eﬁiate; send)
SEND LAST CONVID{(AB)

(state: pendfree) (state: receive)

SYNCPOINT » RECEIVE CONVIDCAB)

(state: free) 4 {state: syncfree
+EIBSYNC, EIBFREE)
SYNCPOINT

(state: free)

Figure 29. SYNCPOINT (in response to SEND LAST followed by SYNCPOINT) on an APPC mapped
conversation

SYNCPOINT in response to ISSUE PREPARE
In an APPC mapped conversation, a transaction issues an ISSUE PREPARE command and its partner
responds with a SYNCPOINT command.

Figure 30 on page 100 illustrates a SYNCPOINT command being used in response to ISSUE PREPARE on
an APPC mapped conversation. The figure also shows the conversation state before each command and
the state and EIB fields set after each command.

Note that it is also possible to use an ISSUE PREPARE command in pendreceive state (state 3) and
pendfree state (state 4).
Note also that, although the ISSUE PREPARE command in Figure 30 on page 100 returns with the

conversation in syncsend state (state 10), the only commands available for use on that conversation are
SYNCPOINT and SYNCPOINT ROLLBACK. All other commands abend ATCV.

Transaction A Transaction B
Eﬁiate; send)
ISSUE PREPARE {state: receijve)
CONVIDCAB) p RECEIVE CONVIDCAB)
< {state: syncreceive
istate: syncsend) +ETBSYNC, EIBRECY)
SYNCPOINT | SYNCPOINT
(state: send) < g
L {state: receijve)

Figure 30. SYNCPOINT in response to ISSUE PREPARE on an APPC mapped conversation

SYNCPOINT ROLLBACK in response to SYNCPOINT ROLLBACK
In an APPC mapped conversation, a transaction issues a SYNCPOINT ROLLBACK command and its
partner responds with a SYNCPOINT ROLLBACK command.

Figure 31 on page 101 illustrates a SYNCPOINT ROLLBACK command being used in response to
SYNCPOINT ROLLBACK on an APPC mapped conversation. The figure also shows the conversation state
before each command and the state and EIB fields set after each command.

100 CICS TS for z/OS: Distributed Transaction Programming Guide

Transaction A Transaction B

(state: send) {state: receive)

SYNCPOINT ROLLBACK » RECEIVE CONVIDCAB)
+— (state: rollback

{state: same as when +EIBERR, EIBSYNRE)

unit of work began)

SYNCPOINT ROLLBACK
{state: same as when
unit of work began)

Figure 31. SYNCPOINT ROLLBACK in response to SYNCPOINT ROLLBACK on an APPC mapped conversation

SYNCPOINT ROLLBACK in response to SYNCPOINT
In an APPC mapped conversation, a transaction issues a SYNCPOINT command and its partner responds
with a SYNCPOINT ROLLBACK command.

Figure 32 on page 101 illustrates a SYNCPOINT ROLLBACK command being used in response to
SYNCPOINT on an APPC mapped conversation. The figure also shows the conversation state before each
command and the state and EIB fields set after each command.

Transaction A Transaction B
Eﬁiate; send) fﬁfate: receijve}
SYNCPOINT p RECEIVE CONVID{AB)

(state: syncreceive

(state: same as when 44— +EIBSYNC, EIBRECY)
unit of work began
+EIBRLDBK) SYNCPOINT ROLLBACK
{state: same as when
unit of work began)

Figure 32. SYNCPOINT ROLLBACK in response to SYNCPOINT on an APPC mapped conversation

SYNCPOINT ROLLBACK in response to ISSUE PREPARE
In an APPC mapped conversation, a transaction issues an ISSUE PREPARE command and its partner
responds with a SYNCPOINT ROLLBACK command.

Figure 33 on page 102 illustrates a SYNCPOINT ROLLBACK command being used in response to ISSUE
PREPARE on an APPC mapped conversation. The figure also shows the conversation state before each
command and the state and EIB fields set after each command.

Chapter 6. Syncpointing a distributed process 101

Transaction A Transaction B

(state: send) {state: receive)
ISSUE PREPARE ______J——————h RECEIVE CONVIDCAB)
CONVIDCAB) (state: syncreceive
i{state: rollback < +EIBSYNC, EIBRECY)
+EIBERR, EIBSYNRB)
SYNCPOINT ROLLBACK SYNCPOINT ROLLBACK
(state: same as when L—————h {state: same as when
unit of work began) unit of work began)

Figure 33. SYNCPOINT ROLLBACK in response to ISSUE PREPARE on an APPC mapped conversation

ISSUE ERROR in response to SYNCPOINT
In an APPC mapped conversation, a transaction issues a SYNCPOINT command and its partner responds
with an ISSUE ERROR command.

Figure 34 on page 102 illustrates an ISSUE ERROR command being used in response to SYNCPOINT on
an APPC mapped conversation. The figure also shows the conversation state before each command and
the state and EIB fields set after each command. You can also send ISSUE ERROR before receiving
SYNCPOINT; but this is not shown, because the results are the same.

It is pointless to use ISSUE ERROR as a response to SYNCPOINT, because this causes the syncpoint
initiator to discard all data transmitted with the ISSUE ERROR by the syncpoint agent. To safeguard
integrity, the syncpoint agent has to issue a SYNCPOINT ROLLBACK command.

Note that if transaction A were running on a CICS release earlier than 3.2, the results would be different.

Transaction A Transaction B
ﬁﬁfate: send) iﬁfate: receive)
SYNCPOINT p RECEIVE CONVID{AB)

{state: syncreceive
+EIBSYNC, EIBRECY)
[SSUE ERROR

CONVID (AB)
(state: send)
< SEND INVITE WAIT

CONVIDCAB)

(state: receive)
p RECEIVE CONVIDCAB)
{state: rollback
+EIBERR, EIBSYNRE)

(state: same as when -4 SYNCPOINT ROLLBACK
unit of work began {state: same as when
+EIBRLDEK) unit of work began)

Figure 34. ISSUE ERROR in response to SYNCPOINT on an APPC mapped conversation

ISSUE ERROR in response to ISSUE PREPARE
In an APPC mapped conversation, a transaction issues a SYNCPOINT command and its partner responds
with a SYNCPOINT command.

Figure 35 on page 103 illustrates an ISSUE ERROR command being used in response to ISSUE PREPARE
on an APPC mapped conversation. The figure also shows the conversation state before each command

102 CICS TS for z/OS: Distributed Transaction Programming Guide

and the state and EIB fields set after each command. You can also send ISSUE ERROR before receiving
ISSUE PREPARE; but this is not shown, because the results are the same.

Transaction A Transaction B
ﬁﬁfate: send) iﬁfate: receive)
ISSUE PREPARE p RECEIVE CONVID{AB)

CONVIDCAB) {state: syncreceive

+EIBSYNC, EIBRECY)
ISSUE ERROR

CONVID (AB)
(state: send)
(state: receive < WAIT CONVID(AB)
+EIBERR) (state: send)

Figure 35. ISSUE ERROR in response to ISSUE PREPARE on an APPC mapped conversation

ISSUE ABEND in response to SYNCPOINT
In an APPC mapped conversation, a transaction issues a SYNCPOINT command and its partner responds
with an ISSUE ABEND command.

Figure 36 on page 103 illustrates an ISSUE ABEND command being used in response to SYNCPOINT on
an APPC mapped conversation. The figure also shows the conversation state before each command and
the state and EIB fields set after each command. You can also send ISSUE ABEND before receiving
SYNCPOINT; but this is not shown, because the results are the same.

Transaction A Transaction B
Eﬁfate; send) iﬁfate: recejvel
SYNCPOINT p RECEIVE CONVID{AB)
(abend: ASP3) +—— (state: syncreceive

+EIBSYNC, EIBRECVY)
[SSUE ABEND

CONVID (AB)
{state: free)
FREE CONVID(AB)

SYNCPOINT ROLLBACK

Figure 36. ISSUE ABEND in response to SYNCPOINT on an APPC mapped conversation

ISSUE ABEND in response to ISSUE PREPARE
In an APPC mapped conversation, a transaction issues an ISSUE PREPARE command and its partner
responds withan I SSUE ABEND command.

Figure 37 on page 104 illustrates an ISSUE ABEND command being used in response to ISSUE PREPARE
on an APPC mapped conversation. The figure also shows the conversation state before each command
and the state and EIB fields set after each command. You can also send ISSUE ABEND before receiving
ISSUE PREPARE; but this is not shown, because the results are the same.

Chapter 6. Syncpointing a distributed process 103

Transaction A

(state: send)

ISSUE PREPARE
CONVIDCAB)

(state: free

+ EIBERR, EIBFREE)

FREE CONVIDCAE)

SYNCPOINT ROLLBACK

I
|

Transaction B

(state: receive)
RECEIVE CONVIDCAB)
(state: syncreceive
+EIBESYNC, EIBRECV)
ISSUE ABEND
CONVIDCAB)
{state: free)
FREE CONVIDCAB)

SYNCPOINT ROLLBACK

Figure 37. ISSUE ABEND in response to ISSUE PREPARE on an APPC mapped conversation

Session failure in response to SYNCPOINT

In an APPC mapped conversation, a transaction issues a SYNCPOINT command, its partner responds with
a SYNCPOINT command, but the session fails before the first transaction receives the response.

Figure 38 on page 104 and Figure 39 on page 105 illustrate what happens if the session fails before or

after a SYNCPOINT command issued in response to SYNCPOINT on an APPC mapped conversation. The
figures also show the conversation state before each command and the state and EIB fields set after each

command.
Transaction A

Eéfater send)
SYNCPOINT

(abend: ASP3)

Transaction B

Figure 38. Session failure before SYNCPOINT in response to SYNCPOINT on an APPC mapped conversation

104 CICS TS for z/OS: Distributed Transaction Programming Guide

>

‘+— —
session
failure

(state: receive)
RECEIVE CONVIDCAB)
(state: syncreceive
+EIBSYNC, EIBRECVY)
SYNCPOINT
(Conversation freed.
A1l subsequent cmds
on AB fail NOTALLOC)

Transaction A Transaction B

(state: send) (state: receive)
SYNCPOINT p RECEIVE CONVIDCAB)
{state: syncreceive
+EIBSYNC, EIBRECY)
SYNCPOINT

{state: receive)

A

{abend: ASP3) 4—
—» RECEIVE CONVIDCAB)
(state: free
+EIBERR, EIBFREE)
FREE CONVIDCAB)

SYNCPOINT ROLLBACK

5es5510nN
failure

Figure 39. Session failure after SYNCPOINT in response to SYNCPOINT on an APPC mapped conversation

Session failure in response to ISSUE PREPARE

In an APPC mapped conversation, a transaction issues an ISSUE PREPARE command, its partner
responds with a SYNCPOINT command, but the session fails before the first transaction receives the
response.

Figure 40 on page 105 illustrates what happens if the session fails after ISSUE PREPARE is received by
transaction B and before the SYNCPOINT response is received by transaction A on an APPC mapped
conversation. The figure also shows the conversation state before each command and the state and EIB
fields set after each command.

Transaction A Transaction B
(state: send) (state: receive)
ISSUE PREPARE p RECEIVE CONVIDCAB)

CONVIDCAB) {state: syncreceive
+EIBSYNC, EIBRECY)
l—| SYNCPOINT
(abend: ASP1) <+ {state: recejve)
—» RECEIVE CONVIDCAB)

(state: free
+EIBERR, EIBFREE)
FREE CONVID(AB)

SYNCPOINT ROLLBACK

5es510nN
failure

Figure 40. Session failure during SYNCPOINT in response to ISSUE PREPARE on an APPC mapped
conversation

Chapter 6. Syncpointing a distributed process 105

Session failure in response to SYNCPOINT ROLLBACK

In an APPC mapped conversation, a transaction issues a SYNCPOINT ROLLBACK command, its partner
responds with a SYNCPOINT ROLLBACK command, but the session fails before the first transaction
receives the response.

Figure 41 on page 106 illustrates what happens if the session fails after SYNCPOINT ROLLBACK is
received and before the response is issued on an APPC mapped conversation. The figure also shows the
conversation state before each command and the state and EIB fields set after each command.

Transaction A Transaction B
E;fate: send) i;fate: receijve)
SYNCPOINT ROLLBACK p RECEIVE CONVIDCAB)

{state: rollback

+EIBERR, EIBSYNRB)
SYNCPOINT ROLLBACK
{state: free) <+—
—+¥ {(state: free)

session
failure

Figure 41. Session failure during SYNCPOINT ROLLBACK in response to SYNCPOINT ROLLBACK on an APPC
mapped conversation

Synchronizing three or more CICS systems

This section gives examples of how to commit and back out recoverable resources affected by three or
more DTP transactions connected on conversations at sync level 2.

SYNCPOINT in response to SYNCPOINT
In a complex distributed transaction, all the agents agree that the transaction should be committed.

Figure 42 on page 107 shows the sequence of events for a successful syncpoint involving six conversing
transactions:

Transaction A

« isin conversation with transactions B and D. Before the syncpoint, its conversations with B and D
are in send state.

- is the syncpoint initiator with respect to transactions B and D.
Transaction B

- isin conversation with transactions A, C, and E. Before the syncpoint, its conversation with A is in
receive state, and its conversations with C and E are in send state.

- is a syncpoint agent of transaction A, and the syncpoint initiator with respect to transactions C and
E.

Transaction C

« is in conversation with transaction B. Before the syncpoint, its conversation with B is in receive
state.

« is a syncpoint agent of transaction B.
Transaction D

« isin conversation with transactions A and F. Before the syncpoint, its conversation with A is in
receive state, and its conversation F is in send state.

- is a syncpoint agent of transaction A, and the syncpoint initiator with respect to transaction F.

106 CICS TS for z/OS: Distributed Transaction Programming Guide

Transaction E

« isin conversation with transaction B. Before the syncpoint, its conversation with B is in receive
state.

- is a syncpoint agent with respect to transaction B.
Transaction F

- isin conversation with transaction D. Before the syncpoint, its conversation with D is in receive
state.

- is the only syncpoint agent of transaction D.

It illustrates the states and actions that occur when transactions issue SYNCPOINT requests. To write
successful distributed applications you do not need to understand all the data flows that take place
during a distributed syncpoint. In this example, the programmer is concerned only with issuing
SYNCPOINT in response to finding a conversation in syncreceive state (state 9).

Transaction A Transaction B
(initiator for (agent of A; Transaction C
B & D) initiator for C & E) (agent of B)
(states: {state: receive)
on AB - send (states: —» RECEIVE
on AD - send) an AB - receive {state:
SYNCPOINT aon BC - send syncreceive)
on BE - send) — SYNCPOINT
(states: —» RECEIVE ({state: receive)
on AB - send < (states:
on AD - send) o4 an AB - syncreceive
on BC - send Transaction E
on BE - send) (agent of B)
SYNCPOINT -
{states: {state: receive
on AB - receive p RECEIVE
an BC - send « {state syncrecejve)
on BE - send) 44— SYNCPOINT
(state: receive)
Transaction D
(last agent of A;
initiator for F)
(states:
on AD - receive Transaction F
on DF - send) (only agent of D)
“» RECEIVE
(states:
on AD - syncreceive {state: receive)
on DF - send) RECEIVE
SYNCPOINT ——J___. (state:
(states: syncreceive)
on AD - receijve SYNCPOINT
on DF - send) 1———r__ (state: receive)

Figure 42. A distributed syncpoint with all partners running on CICS Transaction Server for z/0S, Version 5
Release 4

1. Transaction A, which is in send state (state 2) on its conversations with transactions B and D, decides
to end the distributed unit of work, and therefore issues a SYNCPOINT command.

Chapter 6. Syncpointing a distributed process 107

2. Transaction B sees that its half of its conversation with transaction A is in syncreceive state (state 9),
so it issues a SYNCPOINT command. Transaction B is responding to a request from transaction A, but
it also becomes the syncpoint initiator for transactions C and E, and must ensure that its conversations
with these transactions are in a valid state for issuing a SYNCPOINT command. In this example, they
are both in send state (state 2).

3. Transaction C sees that its half of its conversation with transaction B is in syncreceive state (state 9),
so it issues a SYNCPOINT command.

4, Transaction E sees that its half of its conversation with transaction B is in syncreceive state (state 9),
so it issues a SYNCPOINT command.

5. Transaction D sees that its half of its conversation with transaction A is in syncreceive state (state 9),
so it issues a SYNCPOINT command. Transaction D is responding to a request from transaction A, but
it also becomes the syncpoint initiator for transaction F, and must ensure that its conversation with
this transaction is in a valid state for issuing a SYNCPOINT command. In this example, it is in send
state (state 2).

6. Transaction F sees that its half of its conversation with transaction D is in syncreceive state (state 9),
so it issues a SYNCPOINT command.

7. All the transactions have now indicated, by issuing SYNCPOINT commands, that they are ready to
commit their changes. This process begins with transaction F, which has no agents and has responded
to "request commit" by issuing a SYNCPOINT command.

8. The distributed syncpoint is complete and control returns to transaction A following the SYNCPOINT
command.

The previous discussion of the SYNCPOINT command assumed that all the agent transactions were ready
to take a syncpoint by issuing SYNCPOINT when their conversation entered syncreceive state (state 9).

If, however, an agent has detected an error, it can reject the syncpoint request with one of the following
commands:

« SYNCPOINT ROLLBACK (preferred response)
- ISSUE ERROR
« ISSUE ABEND

The SYNCPOINT ROLLBACK command enables a transaction to initiate a backout operation across the
entire distributed unit of work. When it is issued in response to a syncpoint request, it has the following
effects:

1. Any changes made to recoverable resources by the transaction that issues the rollback request are
backed out.
2. The syncpoint initiator is also backed out (EIBRLDBK set).

This causes the syncpoint initiator to initiate a backout operation across the distributed unit of work.

SYNCPOINT ROLLBACK in response to SYNCPOINT
In a complex distributed transaction, during sync point processing, one of the agents determines that the
transaction should be backed out.

Figure 43 on page 110 shows the sequence of events for a sync point involving six conversing
transactions, when one of the agents determines that the distributed transaction should be backed out.
The topology, and initial states are the same as in Figure 42 on page 107 :

Transaction A

« is in conversation with transactions B and D. Before the syncpoint, its conversations with B and D
are in send state.

« is the sync point initiator with respect to transactions B and D.
Transaction B

« isin conversation with transactions A, C, and E. Before the syncpoint, its conversation with A is in
receive state, and its conversations with C and E are in send state.

108 CICS TS for z/OS: Distributed Transaction Programming Guide

- is a sync point agent of transaction A, and the sync point initiator with respect to transactions C and
E.

Transaction C

« isin conversation with transaction B. Before the syncpoint, its conversation with B is in receive
state.

- is a sync point agent of transaction B.
Transaction D

- isin conversation with transactions A and F. Before the syncpoint, its conversation with A is in
receive state, and its conversation F is in send state.

- is a sync point agent of transaction A, and the sync point initiator with respect to transaction F.
Transaction E

- is in conversation with transaction B. Before the syncpoint, its conversation with B is in receive
state.

- is a sync point agent with respect to transaction B.
Transaction F

« isin conversation with transaction D. Before the syncpoint, its conversation with D is in receive
state.

- is the only sync point agent of transaction D.

Chapter 6. Syncpointing a distributed process 109

Transaction A Transaction B

{initiator for (agent of A; Transaction C
B & D) initiator for C & E) (agent of B)
(states: {state: receijve)
on AB - send (states: —» RECEIVE
on AD - send) on AB - receive (state syncreceive)
SYNCPOINT on BC - send — SYNCPOINT
on BE - send) {state: receijve
(states: —» RECEIVE EIERLOBE set)
on AB - send 4 (states:
on AD - send o on AB - syncreceive
EIBRLDEEK) on BC - send Transaction E
on BE - send) (agent of B)
SYNCPOINT -
(states: {state: receijve
on AB - receive p RECEIVE
on BC - send 4 {(state syncreceijve)
on BE - send 44— SYNCPOINT ROLLBACK
EIBRLOEK set) {state: receive)

Transaction D
(last agent of A;
initiator for F)

(states:

on AD - recejve Transaction F

on DF - send) (only agent of D)
“» RECEIVE

(states:

on AD - rollback {state: recejve)

an DF - send) RECELIVE

SYNCPOINT ROLLBACK ———r__. (state: rollback)

{states:

an AD - receive SYNCPOINT ROLLBACK

an DF - send) 4———J___ (state: receive)

|

Figure 43. Rollback during distributed syncpointing

As in Figure 42 on page 107, transaction A (while in send state , state 2) issues the SYNCPOINT
command, and CICS initiates a chain of events. Here, however, transaction E has detected an error that
makes it unable to commit, and it issues SYNCPOINT ROLLBACK when it detects that the conversation on
its principal facility is in syncreceive state (state 9, EIBSYNC is also set). This causes any changes that
transaction E has made to be backed out, and initiates a distributed rollback.

Transactions B, C and A are rolled back (EIBRLDBK set). Transaction D senses that the conversation on its
principal facility is in rollback state (state 13, EIBSYNRB is also set), and issues a SYNCPOINT ROLLBACK
command. Transaction F too senses that the conversation on its principal facility is in rollback state , and
issues a SYNCPOINT ROLLBACK command. The distributed rollback is now complete.

Session failure and the indoubt period

During the period between the sending of the syncpoint request to the partner region and the receipt of
the reply, the local region does not know whether the partner region has committed the change. This is
known as the indoubt period . If the intersystem session fails during this period, the local CICS system
cannot tell whether the partner region has committed or backed out its resource changes.

This situation could occur for situations other than DTP and is discussed in Recovery functions and
interfaces.

110 CICS TS for z/OS: Distributed Transaction Programming Guide

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/troubleshooting/connections/dfht163.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/troubleshooting/connections/dfht163.html

What really flows between APPC systems
This topic describes the commit protocols that flow between APPC systems during a syncpoint.

First, consider a simple distributed process involving only one conversation, as in Figure 44 on page 111 .
Here is what happens:

1. The syncpoint initiator sends a "commit" request to the syncpoint agent.

2. The syncpoint agent commits all changes it made to recoverable resources, and responds with
“committed”.

3. The syncpoint initiator then commits its changes, and the UOW is complete.

System 1 System 2
. commit e
SYNCPOINT » RECEIVE
(EIBSYNC set)
committed
< SYNCPOINT

Figure 44. Syncpoint flows in a single conversation

When the syncpoint agent has a conversation with a third transaction, Figure 45 on page 111 shows the
flows that occur. Here is what happens:

1. The syncpoint initiator sends a "commit" request to its agent.

2. The agent becomes the initiator on the conversation to its agent, and sends a "commit" request.
3. The second agent commits first and responds with “committed”.

4. The first agent commits and sends "committed" to the initiator.

5. The initiator commits.

System 1 System 2 System 3
commit |
SYNCPOINT p RECEIVE
(EIBSYNC set)
commit
SYNCPOINT p RECEIVE
(EIBSYNC set)
committed committed
1 1 SYNCPOINT

Figure 45. Syncpoint flows in concurrent conversations

When the syncpoint initiator has two concurrent conversations, the flows involved are shown in Figure 46
on page 112. Here is what happens:

1. The syncpoint initiator sends a "prepare" request to all its agents except one.
2. The agent receiving "prepare" responds by sending a "commit" request to the initiator.

3. When all the "prepare" requests have been sent, and the "commit" requests received, the initiator
sends a “commit” request to its last agent.

4. The initiator receives "committed" from the last agent.
5. The initiator sends "committed" to the remaining agents.

6. The agents respond "forget" to indicate that they do not need to be resynchronized.

Chapter 6. Syncpointing a distributed process 111

System 1 System 2
1) prepare [
SYNCPOINT » RECEIVE
(EIBSYNC set)
2) commit
< SYNCPOINT
5) committed
>
6) forget
<
System 3
3) commit [
» RECEIVE
(EIBSYNC set)
4) committed
< SYNCPOINT

Figure 46. Syncpoint flows in concurrent conversations with one initiator

If the syncpoint initiator decides to prepare the conversation with system 2 explicitly before issuing a
syncpoint, the flows involved are shown in Figure 47 on page 112. In this case, the application program in
system 1 issues an ISSUE PREPARE command, followed by SYNCPOINT command, rather than just a
SYNCPOINT command; however, the flows across the links are exactly the same as those in the previous
example. Using the ISSUE PREPARE command gives the application the opportunity to "change its mind"

and rollback, depending on the response to ISSUE PREPARE.

System 1 System 2
1) prepare |
ISSUE PREPARE p RECEIVE
(EIBSYNC set)
20 commit
< SYNCPOINT
3) commit
SYNCPOINT
5) committed
} >
6) forget
<
System 3
|
L » RECEIVE
(EIBSYNC set)
4) committed
f SYNCPOINT

Figure 47. Syncpoint flows in concurrent conversations with one initiator

112 CICS TS for z/OS: Distributed Transaction Programming Guide

For further information on the flows in a distributed process, see the book LU6.2 Reference: Peer
Protocols , SC31-6808.

Chapter 6. Syncpointing a distributed process 113

114 CICS TS for z/OS: Distributed Transaction Programming Guide

Appendix A. CICS mapping to the APPC architecture

This appendix shows how the APPC programming language is implemented by CICS.

The APPC programming language is described in the SNA publication Transaction Programmer’s
Reference Manual for LU Type 6.2.

For information on how the CICS application programming interface for basic and unmapped
conversations maps to the APPC verbs, see the .

Supported option sets

This table shows which APPC option sets are supported by CICS and which are not.

Table 46. CICS support of APPC options sets
Set # Set name Supported
101 Clear the LU's send buffer Yes
102 Get attributes Yes
103 Post on receipt with test for posting No
104 Post on receipt with wait No
105 Prepare to receive Yes
106 Receive immediate Yes

Note: CICS programs support receive_immediate requests provided these

requests are coded using the common programming Interface for

communications.
108 Sync point services Yes
109 Get TP name and instance identifier No
110 Get conversation type Yes
111 Recovery from program errors detected during syncpoint Yes
201 Queued allocation of a contention-winner session No
203 Immediate allocation of a session Yes
204 Conversations between programs located at the same LU No
211 Session-level LU-LU verification Yes
212 User ID verification Yes
213 Program-supplied user ID and password No
214 User ID authorization Yes
215 Profile verification and authorization Yes
217 Profile pass-through No
218 Program-supplied profile No
241 Send PIP data Yes
242 Receive PIP data Yes

© Copyright IBM Corp. 1974, 2019 115

Table 46. CICS support of APPC options sets (continued)

Set # Set name Supported
243 Accounting Yes
244 Long locks No
245 Test for request-to-send received Yes
246 Data mapping No
247 FMH data No
249 Vote read-only response to a syncpoint operation No
251 Extract transaction and conversation identity information No
290 Logging of data in a system log No
291 Mapped conversation LU services component Yes
401 Reliable one-way brackets No
501 CHANGE_SESSION_LIMIT verb Yes
502 ACTIVATE_SESSION verb Yes
504 DEACTIVATE_SESSION verb No
505 LU-definition verbs Yes
601 MIN_CONWINNERS_TARGET parameter No
602 RESPONSIBLE(TARGET) parameter No
603 DRAIN_TARGET(NO) parameter No
604 FORCE parameter No
605 LU-LU session limit No
606 Locally known LU names Yes
607 Uninterpreted LU names No
608 Single-session reinitiation No
610 Maximum RU size bounds Yes
611 Session-level mandatory cryptography No
612 Contention-winner automatic activation limit No
613 Local maximum (LU, mode) session limit Yes
616 CPSVCMG modename support No
617 Session-level selective cryptography No

CICS implementation of control operator verbs

This section describes how CICS implements the APPC control operator verbs. It includes tables showing
how these verbs map to CICS commands. CICS supports control operator verbs in a variety of ways.

Some verbs are supported by the CICS master terminal transaction CEMT. The relevant CEMT commands
are:

« CEMT INQUIRE CONNECTION

116 CICS TS for z/OS: Distributed Transaction Programming Guide

« CEMT SET CONNECTION

« CEMT INQUIRE MODENAME

« CEMT SET MODENAME

Tip: In CICS Explorer, the ISC/MRO connections operations view provides a functional equivalent to the

INQUIRE and SET CONNECTION commands. See ISC/MRO Connections view in the CICS Explorer
product documentation.

CEMT is normally entered by an operator at a display device. It is described in CEMT - master terminal.

The inquire and set operations for connections and modenames are also available at the CICS SPI, using
the following commands:

« EXEC CICS INQUIRE CONNECTION
« EXEC CICS SET CONNECTION

« EXEC CICS INQUIRE MODENAME

« EXEC CICS SET MODENAME

Programming information about these commands is given in INQUIRE CONNECTION.

Some control operator verbs are supported by CICS resource definition. The definition of APPC links is
described in Defining APPC links.

You can change some CONNECTION and SESSION attributes while CICS is running by discarding the
resource and creating a new one.

Control operator verbs
The way in which CICS implements APPC control operator verbs is shown in a set of tables.

See “Return codes for control operator verbs” on page 124 for details of the corresponding return code
mapping.
Note: Wherever CEMT is shown, the equivalent form of EXEC CICS command can be used.

Tip: In CICS Explorer®, the ISC/MRO Connections view provides a functional equivalent to the SET and
INQUIRE CONNECTION commands. The Terminals, Local Transactions, and Remote Transactions
views provide functional equivalents to the INQUIRE TERMINAL and INQUIRE TRANSACTION commands,
respectively. See CICSPlex SM Operations views in the CICS Explorer product documentation.

Table 47. CHANGE_SESSION_LIMIT

CHANGE_SESSION_LIMIT CEMT SET MODENAME

LU_NAME(vble) CONNECTION()

MODE_NAME(vble) MODENAME()
LU_MODE_SESSION_LIMIT(vble) AVAILABLE()
MIN_CONWINNERS_SOURCE(vble) CICS negotiates a revised value, based on the

AVAILABLE request and the MAXIMUM attribute of the
SESSIONS resource.

MIN_CONWINNERS_TARGET(vnle) Not supported.

RESPONSIBLE(source) Yes.

RESPONSIBLE(target) Not supported. CICS does not support receipt of
RESP(TARGET).

RETURN_CODE Supported.

Appendix A. CICS mapping to the APPC architecture 117

https://www.ibm.com/support/knowledgecenter/SSSQ3W_5.4.0/com.ibm.cics.core.help/topics/reference/view_std_connections.html
https://www.ibm.com/support/knowledgecenter/SSSQ3W_5.4.0/com.ibm.cics.core.help/topics/reference/view_std_connections.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/reference/transactions/dfha721.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/reference/commands-spi/dfha8_inquireconnection.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/configuring/connections/dfht12f.html
https://www.ibm.com/support/knowledgecenter/SSSQ3W_5.4.0/com.ibm.cics.core.help/topics/reference/view_operations.html

Table 48. INITIALIZE_SESSION_LIMIT

INITIALIZE_SESSION_LIMIT

Specified in SESSIONS resource

LU_NAME(vble)

CONNECTION()

MODE_NAME(vble)

MODENAME()

LU_MODE_SESSION_LIMIT(vble)

MAXIMUM(valuel,)

MIN_CONWINNERS_SOURCE(vble)

MAXIMUM(,value2)

MIN_CONWINNERS_TARGET(vnle)

Not supported.

RETURN_CODE

Supported.

Table 49. PROCESS_SESSION_LIMIT

PROCESS_SESSION_LIMIT

Automatic action by CICS-supplied transaction
CLS1 when CNOS is received by a target CICS
system.

RESOURCE(vble)

Connection resource.

LU_NAME(vble)

Passed internally.

MODE_NAME(vblel,vble2)

Passed internally.

RETURN_CODE

Supported.

Table 50. RESET_SESSION_LIMIT

RESET_SESSION_LIMIT

CEMT SET MODENAME (for individual modegroups)
or CEMT SET CONNECTION RELEASED (to reset all
modegroups)

LU_NAME(vble)

CONNECTION()

MODE_NAME(ALL)

SET CONNECTION() RELEASED

MODE_NAME(ONE(vble))

MODENAME() AVAILABLE(O)

MODE_NAME(ONE('SNASVCMG")

SET CONNECTION() RELEASED

RESPONSIBLE(SOURCE) Yes.
RESPONSIBLE(TARGET) Not supported.
DRAIN_SOURCE(NO|YES) CICS supports YES.
DRAIN_TARGET(NO|YES) CICS supports YES.
FORCE(NO|YES) Not supported.
RETURN_CODE Supported.

Table 51. ACTIVATE_SESSION

ACTIVATE_SESSION

CEMT SET MODENAME ACQUIRED (for individual
modegroups) or CEMT SET CONNECTION ACQUIRED
(for SNASVCMG sessions)

LU_NAME(vble)

CONNECTION()

MODE_NAME(vble)

MODENAME() ACQUIRED

118 CICS TS for z/OS: Distributed Transaction Programming Guide

Table 51. ACTIVATE_SESSION (continued)

ACTIVATE_SESSION

CEMT SET MODENAME ACQUIRED (for individual
modegroups) or CEMT SET CONNECTION ACQUIRED
(for SNASVCMG sessions)

MODE_NAME('SNASVCMG")

Activated when CEMT SET CONNECTION ACQUIRED is
issued.

RETURN_CODE Supported.
Table 52. DEACTIVATE_CONVERSATION_GROUP
DEACTIVATE_CONVERSATION_GROUP Not supported.
Table 53. DEACTIVATE_SESSION

DEACTIVATE_SESSION Not supported.

Table 54. DEFINE_LOCAL_LU

DEFINE_LOCAL_LU

SESSION resource and system initialization
parameters

FULLY_QUALIFIED_LU_NAME(vble)

Cannot be specified. CICS uses the network LU name
(APPLID on DFHSIT).

LU_SESSION_LIMIT(NONE)

Not supported.

LU_SESSION_LIMIT(VALUE(vble))

Total of MAX(nn) on all sessions.

SECURITY(ADD USER_ID(vble))

In an external security manager (ESM).

SECURITY(ADD PASSWORD(vble))

Not supported; defined in an ESM.

SECURITY(ADD PROFILE(vble))

Not supported; defined in an ESM.

SECURITY(DELETE USER_ID(vble))

Supported in an ESM.

SECURITY(DELETE PASSWORD(vble))

Not supported; defined in an ESM.

MAP_NAME(ADD(vble)) Not supported.
MAP_NAME(DELETE(vble)) Not supported.
BIND_RSP QUEUE_CAPACITY(YES|NO) Not supported.

Table 55. DEFINE_MODE

DEFINE_MODE

EXEC CICS CONNECT PROCESS + MODEENT
macro (ACF/Communications Server systems
definition) + SESSIONS resource

FULLY_QUALIFIED_LU_NAME(vble)

Cannot be specified. LU identified via CONNECTION
on SESSIONS.

MODE_NAME(vble)

MODENAME on SESSIONS is mapped to LOGMODE
on MODEENT.

SEND_MAX_RU_SIZE_LOWER_BOUND (vble)

Fixed at 8.

SEND_MAX_RU_SIZE_UPPER_BOUND (vble)

SENDSIZE on SESSIONS.

PREFERRED_RECEIVE_RU_SIZE (vble)

Not supported.

Appendix A. CICS mapping to the APPC architecture 119

Table 55. DEFINE_MODE (continued)

DEFINE_MODE

EXEC CICS CONNECT PROCESS + MODEENT
macro (ACF/Communications Server systems
definition) + SESSIONS resource

PREFERRED_SEND_RU_SIZE (vble)

Not supported.

RECEIVE_MAX_RU_SIZE_LOWER _BOUND (vble)

Fixed at 256.

RECEIVE_MAX_RU_SIZE_UPPER _BOUND (vble)

RECEIVESIZE on SESSIONS.

SINGLE_SESSION_REINITIATION OPERATOR Not supported.
SINGLE_SESSION_REINITIATION PLU Not supported.
SINGLE_SESSION_REINITIATION SLU Not supported.
SINGLE_SESSION_REINITIATION PLU_OR_SLU Not supported.
SESSION_LEVEL_CRYPTOGRAPHY Default.
(NOT_SUPPORTED)

SESSION_LEVEL_CRYPTOGRAPHY (MANDATORY) | Not supported.
SESSION_LEVEL_CRYPTOGRAPHY (SELECTIVE) Not supported.

CONWINNER_AUTO_ACTIVATE_LIMIT (vble)

MAXIMUM(value2) on SESSIONS.

SESSION_DEACTIVATED_TP_NAME (vble)

Not supported.

LOCAL_MAX_SESSION_LIMIT (vble)

MAXIMUM(nn,) on SESSIONS.

Table 56. DEFINE_REMOTE_LU

DEFINE_REMOTE_LU

CONNECTION resource

FULLY_QUALIFIED_LU_NAME(vble)

Cannot be specified.

LOCALLY_KNOWN_LU_NAME(NONE)

Not supported.

LOCALLY_KNOWN_LU_NAME (NAME(vble))

CONNECTION(name)

UNINTERPRETED_LU_NAME(NONE)

Defaults to CONNECTION(nhame).

UNINTERPRETED_LU_NAME (NAME(vble))

NETNAME on CONNECTION.

INITIATE_TYPE(INITIATE_ONLY) Not supported.
INITIATE_TYPE(INITIATE_OR_QUEUE) Not supported.
PARALLEL_SESSION_SUPPORT(YES|NO) SINGLESESS(NOJ|YES) on CONNECTION.
CNOS_SUPPORT(YESINO) Always YES.

LU_LU_PASSWORD(NONE)

Default on CONNECTION.

LU_LU_PASSWORD(VALUE(vble))

BINDPASSWORD on CONNECTION, or SESSKEY in
RACF® APPCLU profile.

SECURITY_ACCEPTANCE(NONE)

ATTACHSEC(LOCAL)

SECURITY_ACCEPTANCE (CONVERSATION)

ATTACHSEC(VERIFY)

SECURITY_ACCEPTANCE (ALREADY_VERIFIED)

ATTACHSEC(IDENTIFY) or ATTACHSEC(PERSISTENT).

120 CICS TS for z/OS: Distributed Transaction Programming Guide

Table 57. DEFINE_TP

DEFINE_TP TRANSACTION resource
TP_NAME(vble) TRANSACTION(name)
STATUS(ENABLED) STATUS(ENABLED)
STATUS(TEMP_DISABLED) Not supported.
STATUS(PERM_DISABLED) STATUS(DISABLED)
CONVERSATION_TYPE(MAPPED|BASIC) Supported for all TPs (determined by choice of
command).
SYNC_LEVEL(NONE|CONFIRMVSYNCPT) SYNCPT for all TPs (actual level specified on CONNECT
PROCESS).
SECURITY_REQUIRED(NONE) Not supported; defined in an ESM.
SECURITY_REQUIRED(CONVERSATION) Not supported; defined in an ESM.
SECURITY_REQUIRED (ACCESS(PROFILE)) Not supported.
SECURITY_REQUIRED (ACCESS(USER_ID)) Not supported; defined in an ESM.
SECURITY_REQUIRED (ACCESS(USER_ID_PROFILE)) | Not supported.
SECURITY_ACCESS(ADD(USER_ID(vble))) Transaction can be redefined.
SECURITY_ACCESS(ADD(PROFILE(vble))) Transaction can be redefined.
SECURITY_ACCESS (DELETE(USER_ID(vble))) Transaction can be redefined.
SECURITY_ACCESS (DELETE(PROFILE(vble))) Transaction can be redefined.
PIP(NO) Specified for all TPs.
PIP(YES(vble)) Specified on CONNECT PROCESS.
PIP(NO_LU_VERIFICATION) Default for all PIP data.
DATA_MAPPING(NOJYES) DATA_MAPPING(NO) for all TPs.
FMH_DATA(NO|YES) FMH_DATAC(YES) for all TPs.
PRIVILEGE(NONE) Not supported.
PRIVILEGE(CNOS) Not supported.
PRIVILEGE(SESSION_CONTROL) Not supported.
PRIVILEGE(DEFINE) Not supported.
PRIVILEGE(DISPLAY) Not supported.
PRIVILEGE(ALLOCATE_SERVICE_TP) Not supported.
INSTANCE_LIMIT(vble) Not supported.
RETURN_CODE Supported.
Table 58. DELETE
DELETE EXEC CICS DISCARD
LOCAL_LU_NAME(vble) Not supported.
REMOTE_LU_NAME Not supported.

Appendix A. CICS mapping to the APPC architecture 121

Table 58. DELETE (continued)

DELETE EXEC CICS DISCARD
MODE_NAME Not supported.

TP_NAME DISCARD TRANSACTION()
RETURN_CODE Supported.

Table 59. DISPLAY_LOCAL_LU

DISPLAY_LOCAL_LU

CEMT INQUIRE CONNECTION + CEMT INQUIRE
MODENAME + CEMT INQUIRE TRANSACTION

FULLY_QUALIFIED_LU_NAME(vble)

Cannot be specified in CICS. The APPLID on DFHSIT
serves as identifier for the local LU. Specific
information can be had by identifying the remote LU.
Otherwise, the universal ID * can be used.

LU_SESSION_LIMIT(vble)

MAXIMUM on INQ MODENAME.

LU_SESSION_COUNT(vble)

ACTIVE on INQ MODENAME

SECURITY(vble)

Not available.

MAP_NAMES(vble) Not supported.
REMOTE_LU_NAMES(vble) INQ CONNECTION(®)
TP_NAMES(vble) INQ TRANSACTION(*)
BIND_RSP_QUEUE_CAPABILITY(vble) Not supported.
RETURN_CODE Supported.

Table 60. DISPLAY_REMOTE_LU

DISPLAY_REMOTE_LU

CEMT INQUIRE CONNECTION + CEMT INQUIRE
MODENAME

FULLY_QUALIFIED_LU_NAME(vble)

Cannot be specified; CONNECTION or MODENAME
may be used.

LOCALLY_KNOWN_LU_NAME(vble)

CONNECTION name.

UNINTERPRETED_LU_NAME(vble)

NETNAME on INQ CONNECTION.

INITIATE_TYPE(vble) Not supported.
PARALLEL_SESSION_SUPPORT(vble) SINGLESESS(Y|N) attribute.
CNOS_SUPPORT(vble) Always YES.

SECURITY_ACCEPTANCE_LOCAL_LU (vble)

Not available.

SECURITY_ACCEPTANCE_REMOTE_LU (vble)

Not available.

MODE_NAMES(vble)

MODENAME attribute of the SESSIONS resource.

RETURN_CODE

Supported.

122 CICS TS for z/OS: Distributed Transaction Programming Guide

Table 61. DISPLAY_MODE

DISPLAY_MODE

CEMT INQUIRE MODENAME + CEMT INQUIRE
TERMINAL

FULLY_QUALIFIED_LU_NAME(vble)

Cannot be specified.

MODE_NAME(vble)

MODENAME attribute of the SESSIONS resource.

LOCAL_MAX_SESSION_LIMIT(vble)

AVA on CEMT INQ MODENAME.

CONVERSATION_GROUP_IDS(vble) Not supported.
SEND_MAX_RU_SIZE_LOWER_BOUND (vble) Fixed at 8.
SEND_MAX_RU_SIZE_UPPER_BOUND (vble) Not available.
RECEIVE_MAX_RU_SIZE_LOWER_BOUND (vble) Fixed at 256.

RECEIVE_MAX_RU_SIZE_UPPER_BOUND (vble)

Not available.

PREFERRED_SEND_RU_SIZE(vble) Not supported.
PREFERRED_RECEIVE_RU_SIZE(vble) Not supported.
SINGLE_SESSION_REINITIATION(vble) Not supported.
SESSION_LEVEL_CRYPTOGRAPHY (vble) Not available.

SESSION_DEACTIVATED_TP_NAME Not supported.

CONWINNER_AUTO_ACTIVATE_LIMIT (vble)

Not available.

LU_MODE_SESSION_LIMIT(vble)

MAXIMUM on INQ MODENAME.

MIN_CONWINNERS(vble) Not supported.
MIN_CONLOSERS(vble) Not supported.
TERMINATION_COUNT(vble) Not supported.
DRAIN_LOCAL_LU(vble) Not supported.
DRAIN_REMOTE_LU(vble) Not supported.

LU_MODE_SESSION_COUNT(vble)

ACTIVE on INQ MODENAME.

CONWINNERS_SESSION_COUNT(vble) Not available.
CONLOSERS_SESSION_COUNT(vble) Not available.
SESSION_IDS(vble) INQ TERMINAL(Y).
RETURN_CODE Supported.

Table 62. DISPLAY_TP

DISPLAY_TP

CEMT INQUIRE TRANSACTION

TP_NAME(vble)

TRANSACTION(tranid)

STATUS(vble)

ENABLED/DISABLED.

CONVERSATION_TYPE(vble)

CICS TPs allow both types.

SYNC_LEVEL(vble)

CICS TPs allow all sync levels.

SECURITY_REQUIRED(vble)

Not available.

SECURITY_ACCESS(vble)

Not available.

Appendix A. CICS mapping to the APPC architecture 123

Table 62. DISPLAY_TP (continued)

DISPLAY_TP

CEMT INQUIRE TRANSACTION

PIP(vble)

CICS TPs allow PIP YES and NO.

DATA_MAPPING(vble) Always NO.
FMH_DATA(vble) Always YES.
PRIVILEGE(vble) Not supported.
INSTANCE_LIMIT(vble) Not supported.
INSTANCE_COUNT(vble) CEMT INQ TRAN()
RETURN_CODE Supported.

Return codes for control operator verbs

When you change the state of a CONNECTION or a MODENAME, the LU services manager starts

asynchronously.

Some of the errors that may occur are detected by immediately. Other errors are not detected until a later
time, when the LU services manager transaction (CLS1) runs.

If CLS1 detects errors, it causes messages to be written to the CSMT log, as shown in Table 63 on page
124. In normal operation, the CICS master terminal operator may not want to inspect the CSMT log when
a command has been issued. So in general, the operator, after issuing a command to change parameters
should wait for a few seconds for the request to be carried out and then reissue the INQUIRE version of
the command to check that the requested change has been made. In the few cases when an error occurs,
the master terminal control operator can refer to the CSMT log.

The message used to report the results of CLS1 execution is DFHZC4900. The explanatory text that
accompanies the message varies and is summarized in Table 63 on page 124. In certain cases,
DFHZC4901 is also issued to give further information.

Table 63. Messages triggered by CLS1

APPC RETURN CODE

CICS MESSAGE

OK

DFHZC4900 result = SUCCESSFUL

ACTIVATION_FAILURE_RETRY

DFHZCA4900 result = VALUES AMENDED + DFHZC4901
MAX =0

ACTIVATION_FAILURE_NO_RETRY

DFHZC4900 result = VALUES AMENDED + DFHZC4901
MAX =0

ALLOCATION_ERROR

SYSTEM NOT ACQUIRED is returned to the operator.

COMMAND_RACE_REJECT

DFHZC4900 result = RACE DETECTED

LU_MODE_SESSION_LIMIT_CLOSED

DFHZC4900 result = VALUES AMENDED + DFHZC4901
MAX =0

LU_MODE_SESSION_LIMIT_EXCEEDED

DFHZC4900 result = VALUES AMENDED + DFHZC4901
MAX = (negotiated value)

LU_MODE_SESSION_LIMIT_NOT_ZERO

DFHZC4900 result = VALUES AMENDED + DFHZC4901
MAX = (negotiated value)

LU_MODE_SESSION_LIMIT_ZERO

DFHZC4900 result = VALUES AMENDED + DFHZC4901
MAX =0

LU_SESSION_LIMIT_EXCEEDED

DFHZC4900 result = VALUES AMENDED + DFHZC4901
MAX = (negotiated value)

124 CICS TS for z/OS: Distributed Transaction Programming Guide

Table 63. Messages triggered by CLS1 (continued)

APPC RETURN CODE CICS MESSAGE

PARAMETER_ERROR Checked immediately

REQUEST_EXCEEDS_MAX_ALLOWED Checked immediately

RESOURCE_FAILURE_NO_RETRY The LU services manager transaction (CLS1) abends
with abend code ATNI.

UNRECOGNIZED_MODE_NAME DFHZC4900 result = MODENAME NOT RECOGNIZED

CICS deviations from APPC architecture

This section describes the way in which the CICS implementation of APPC differs from the architecture
described in the Format and Protocol Reference Manual: Architecture Logic for LU Type 6.2.

There is one deviation:

« CICS implementation: CICS checks incoming BIND requests for valid combinations of the CNOS
indicator (BIND RQ byte 24 bit 6) and the PARALLEL-SESSIONS indicator (BIND RQ byte 24 bit 7). If an
incorrect combination is found (that is, PARALLEL-SESSIONS specified but CNOS not specified), CICS
sends a negative response to the BIND request.

APPC architecture: The secondary logical unit (SLU), or BIND request receiver, should negotiate the
CNOS and PARALLEL-SESSIONS indicators to the supported level and return them in the BIND
response. The SLU should not check for an incorrect combination of these indicators.

APPC transaction routing deviations from APPC architecture

A transaction program cannot use ISSUE SIGNAL while in syncfree, syncsend, or syncreceive state.
Attempting to do so may result in a state check. This single deviation applies only to APPC transaction
routing.

CICS mapping to the APPC verbs

The APPC verbs are implemented by equivalent CICS application programming commands.

The APPC programming language is described in Transaction Programmer’s Reference Manual for LU Type
6.2.

For information on which APPC option sets are supported by CICS and which are not, or on how CICS
implements the APPC control operator verbs, see Appendix A, “CICS mapping to the APPC architecture,”
on page 115.

Command mapping for APPC basic conversations

The APPC verbs for basic conversations are implemented by equivalent CICS application programming
commands.

The following tables show the mapping between APPC verbs and CICS commands for basic
conversations. See “Return codes for APPC basic conversations” on page 130 for details of the
corresponding return code mapping.

ALLOCATE EXEC CICS GDS ALLOCATE

+ EXEC CICS GDS CONNECT PROCESS
LU_NAME (vble) SYSID on ALLOCATE
MODE_NAME (vble) MODENAME on ALLOCATE

Appendix A. CICS mapping to the APPC architecture 125

ALLOCATE EXEC CICS GDS ALLOCATE
+ EXEC CICS GDS CONNECT PROCESS
MODE_NAME (' SNASVCMG ') MODENAME on ALLOCATE
TPN(vble) PROCNAME on CONNECT PROCESS (with
PROCLENGTH)
TYPE (BASIC_CONVERSATION) Supported by GDS
TYPE (MAPPED_CONVERSATION) Not supported
RETURN_CONTROL (WHEN_SESSION_ALLOCATED) |[Default on ALLOCATE
RETURN_CONTROL (WHEN_CONWINNER_ALLOCATE [Not supported
D)
RETURN_CONTROL Supported
(WHEN_CONVERSATION_GROUP_ALLOCATED)
RETURN_CONTROL (IMMEDIATE) NOQUEUE /NOSUSPEND on ALLOCATE
SYNC_LEVEL SYNCLEVEL on CONNECT PROCESS
O — None
1 — Confirm
2 — Syncpoint
SECURITY (NONE) Not supported
SECURITY (SAME) Default on ALLOCATE
SECURITY (PGM(USED_ID(vble) Not supported
(PASSWORD (vble))) Not supported
PIP(NO) Supported by PIPLENGTH(O)
PIP(YES(vblel,vble2 ... vblen)) Supported by PIPLIST+PIPLENGTH
RESOURCE Returned by GDS ASSIGN
RETURN_CODE Supported
BACKOUT EXEC CICS SYNCPOINT ROLLBACK
RETURN_CODE Supported
CONFIRM EXEC CICS GDS CONFIRM
RESOURCE CONVID
RETURN_CODE Supported
REQUEST_TO_SEND_RECEIVED Returned in CDBSIG
CONFIRMED EXEC CICS GDS ISSUE CONFIRMATION
RESOURCE CONVID
RETURN_CODE Supported

126 CICS TS for z/OS: Distributed Transaction Programming Guide

DEALLOCATE EXEC CICS GDS SEND LAST

+ EXEC CICS SYNCPOINT
+ EXEC CICS GDS FREE

TYPE(SYNC_LEVEL) None EXEC CICS GDS SEND LAST WAIT

+ EXEC CICS GDS FREE

TYPE(SYNC_LEVEL) Confirm EXEC CICS GDS SEND LAST CONFIRM

+ EXEC CICS GDS FREE

TYPE(SYNC_LEVEL) Syncpt EXEC CICS GDS SEND LAST

+ EXEC CICS SYNCPOINT
+ EXEC CICS GDS FREE

TYPE (FLUSH) EXEC CICS GDS SEND LAST WAIT
+ EXEC CICS GDS FREE

TYPE (CONFIRM) EXEC CICS GDS SEND LAST CONFIRM
+ EXEC CICS GDS FREE

TYPE (ABEND_PROG)
Depends on setting of CDBFREE by
previous command:

CDBFREE = X'00 EXEC CICS GDS ISSUE ABEND
+ EXEC CICS GDS FREE

EXEC CICS GDS FREE

CDBFREE = X'FF

TYPE (ABEND_SVC) Not supported at API (option set 11)

TYPE (ABEND_TIMER) Not supported at API (option set 11)

TYPE (LOCAL) EXEC CICS GDS FREE

LOG_DATA(vble) Not available at API. CICS inserts the
appropriate values

RETURN_CODE Supported

FLUSH EXEC CICS GDS WAIT

GET_ATTRIBUTES EXEC CICS GDS EXTRACT PROCESS

or EXEC CICS GDS ASSIGN
or EXEC CICS ASSIGN

RESOURCE CONVID

SYNC_LEVEL SYNCLEVEL on GDS EXTRACT PROCESS

O — None
1 — Confirm
2 — Syncpoint

UOW_IDENTIFIER See note
OWN_FULLY_QUALIFIED_LU_NAME See note

Appendix A. CICS mapping to the APPC architecture 127

PARTNER_LU_NAME
PARTNER_FULLY_QUALIFIED_LU_NAME
MODE_NAME

USERID

RETURN_CODE

GDS ASSIGN PRINSYSID
See note
See note

ASSIGN USERID

Note: These values are not normally required in
CICS applications and are not available at the APL.

Supported

GET_TYPE EXEC CICS GDS ASSIGN (+ return code
test)
RESOURCE PRINCONVID
TYPE(vble) RETCODE
clear = GDS (BASIC)

03 04

wrong conversation level

POST_ON_RECEIPT

Not suppoxrted

PREPARE_FOR_SYNCPT

EXEC CICS GDS ISSUE PREPARE

RESOURCE
RETURN_CODE

CONVID
Supported

PREPARE_TO_RECEIVE

EXEC CICS GDS SEND INVITE

TYPE(SYNC_LEVEL) none
TYPE(SYNC_LEVEL) confirm
TYPE(SYNC_LEVEL) syncpt

TYPE (FLUSH)
TYPE (CONFIRM)
LOCKS (SHORT)
LOCKS (LONG)
RETURN_CODE

EXEC CICS GDS SEND INVITE WAIT
EXEC CICS GDS SEND INVITE CONFIRM

EXEC CICS GDS SEND INVITE
+ EXEC CICS SYNCPOINT

EXEC CICS GDS SEND INVITE WAIT
EXEC CICS GDS SEND INVITE CONFIRM
Defaulted

Not supported

Supported

RECEIVE_AND_WAIT

EXEC CICS GDS RECEIVE
(for both LL and BUFFER)

RESOURCE
FILL(BUFFER)
FILL(LL)
LENGTH(vble) Input
LENGTH(vble) Output
RETURN_CODE

CONVID field
BUFFER option
LLID option
MAXFLENGTH option
FLENGTH option
Supported

128 CICS TS for z/OS: Distributed Transaction Programming Guide

REQUEST_TO_SEND_RECEIVED
DATA

WHAT_RECEIVED

Returned in CDBSIG
INTO or SET option

CICS Settings

CONFIRM CDBCONF + CDBRECV
CONFIRM_DEALLOCATE CDBCONF + CDBFREE

CONFIRM_SEND CDBCONF

DATA FLENGTH field -= © [+ CDBRECV]

DATA_COMPLETE CDBCOMPL [+ CDBRECV]
DATA_INCOMPLETE -CDBCOMPL [+ CDBRECV]
LL_TRUNCATED RETCODE = X'0310...."
SEND -CDBRECV

TAKE_SYNCPT CDBSYNC + CDBRECV
TAKE_SYNCPT_DEALLOCATE CDBSYNC + CDBFREE
TAKE_SYNCPT_SEND CDBSYNC

Notes:
1. Mapping of RECEIVE_AND_WAIT to EXEC CICS GDS RECEIVE is not always one to one.

When a CICS RECEIVE command is issued, CICS returns all the information and data (the DATA, the
WHAT_RECEIVED flags, and the RETURN_CODE) at once. On completion of a CICS command, more
than one indicator may be set, as shown in the WHAT_RECEIVED mapping. It may be necessary to
perform more than one subsequent command to honor the actions required by the indicators. For
this reason, the action flags must be saved when they are received, and then acted on one by one. If
the same data area is used for CONVDATA on successive GDS commands, the flags are overwritten
and lost.

APPC does not work this way; a RECEIVE_AND_WAIT verb returns either data or information about
the conversation state (as indicated by WHAT_RECEIVED), but never both.

It is necessary to program around this difference in philosophy when translating APPC verbs into
CICS commands.

2. APPC allows a RECEIVE_AND_WAIT to be issued immediately after an ALLOCATE verb. When you
are writing basic conversations in CICS, however, you must supply the PREPARE_TO_RECEIVE
explicitly, as follows:

ALLOCATE EXEC CICS GDS ALLOCATE
+EXEC CICS CONNECT PROCESS

EXEC CICS GDS SEND INVITE WAIT
EXEC CICS GDS RECEIVE

(Required by CICS)
RECEIVE_AND_WAIT

REQUEST_TO_SEND EXEC CICS GDS ISSUE SIGNAL

RESOURCE CONVID field

RETURN_CODE Supported
SEND_DATA EXEC CICS GDS SEND
RESOURCE CONVID field

DATA FROM option

LENGTH FLENGTH option

RETURN_CODE Supported
REQUEST_TO_SEND_RECEIVED Returned in CDBSIG
ENCRYPT Not supported

SEND_ERROR EXEC CICS GDS ISSUE ERROR

RESOURCE CONVID field

Appendix A. CICS mapping to the APPC architecture 129

TYPE (PROG)

TYPE(SVC)

LOG_DATA

RETURN_CODE
REQUEST_TO_SEND_RECEIVED

Default

Not supported

Not supported
Supported

Returned in CDBSIG

SYNCPT

EXEC CICS SYNCPOINT

RETURN_CODE

Zero - Control returned to
program.

Non-zero - CICS takes action;
to backout the UOW (and
abend the task or set
EIBRLDBK) .

Notes:

EXEC CICS GDS ISSUE PREPARE

1. EXEC CICS SYNCPOINT is not a GDS command.

2. For certain specialized applications, the PREPARE flow (the first flow in syncpoint exchanges) may be
sent for a particular conversation by using the command:

This enables any outstanding messages in the network (for example, SEND ERROR) to be received
before proceeding, or deciding not to proceed, with the full syncpoint.

TEST(REQUEST_TO_SEND_RECEIVED)

TEST Check CDB flags
RETURN_CODE Not supported
TEST(POSTED) Check CDB flags

Check CDBSIG

WAIT

Not supported

Return codes for APPC basic conversations

The return codes for APPC basic conversation verbs are indicated by equivalent CICS return codes.

APPC RETURN_CODE

CICS return codes

OK

CDBERR and RETCODE are zero

ALLOCATION_ERROR

Local allocation failures:

ALLOCATION_FATLURE_NO_RETRY

CICS is unable to allocate a session
for an ALLOCATE command.

RETCODE = 01....

The second and subsequent bytes give
further information

130 CICS TS for z/OS: Distributed Transaction Programming Guide

APPC RETURN_CODE

CICS return codes

ALLOCATION_FATILURE_RETRY

Remote allocation failures:

CONVERSATION_TYPE_MISMATCH
PIP_NOT_ALLOWED
PIP_NOT_SPECIFIED_CORRECTLY
SECURITY_NOT_VALID

SYNC_LEVEL_NOT_SUPPORTED_BY_PGM
SYNC_LEVEL_NOT_SUPPORTED_BY_LU

TPN_NOT_RECOGNIZED

TRANS_PGM_NOT_AVAIL_NO_RETRY

TRANS_PGM_NOT_AVAIL_RETRY

For temporary problems, CICS waits in
the ALLOCATE command until the problem
has cleared and then continues.

See also the UNSUCCESSFUL return code,
which relates to the NOQUEUE option on
the CICS ALLOCATE command

These are returned to the program
after the CONNECT PROCESS command has
been issued, and the partner system
has been unable to start the requested
task. They may be returned on any
subsequent command that relates to the
session in use

CDBERRCD = 10086034
CDBERRCD = 10086031
CDBERRCD = 10086032
CDBERRCD = 080F6051
CDBERRCD = 10086041

RETCODE = 030C

Note: CICS remembers SYNC_LEVEL
negotiated at bind time and does not
permit a request to be sent for a sync
level not supported by the remote LU.

CDBERRCD = 10086021
CDBERRCD = 084C0000
CDBERRCD = 084B6031

BACKED_OUT

CDBERRCD = 08240000

DEALLOCATE_ABEND_PROG
DEALLOCATE_ABEND_SVC
DEALLOCATE_ABEND_TIMER

CDBERRCD = 08640000
CDBERRCD = 08640001
CDBERRCD = 08640002

DEALLOCATE_NORMAL

CDBFREE + -CDBERR

PARAMETER_ERROR

RETCODE = 01 OC ..

This return code relates ONLY to the
ALLOCATE command (for CICS). It is
given when an invalid LU name oxr MODE
name has been specified. The third
byte gives additional information.

PROG_ERROR_NO_TRUNC CDBERRCD = 08890000 (RECEIVE Only)
PROG_ERROR_TRUNC CDBERRCD = 08890001
PROG_ERROR_PURGING CDBERRCD = 08890000
RESOURCE_FAILURE_RETRY CDBERRCD = A0OO
RESOURCE_FAILURE_NO_RETRY CDBERRCD = A0OO

Appendix A. CICS mapping to the APPC architecture 131

APPC RETURN_CODE

CICS return codes

This return code relates ONLY to the
APPC ALLOCATE verb with
RETURN_CONTROL (IMMEDIATE) specified.
This is implemented in CICS with the
NOQUEUE option on the ALLOCATE
command.

SVC_ERROR_NO_TRUNC CDBERRCD = 08890100 (RECEIVE Only)
SVC_ERROR_TRUNC CDBERRCD = 08890101
SVC_ERROR_PURGING CDBERRCD = 08890100
UNSUCCESSFUL RETCODE = 01 04 04

Control returned to the program
because a session was not immediately
available.

Note: In all cases, where a value for CDBERRCD is given, CDBERR will be set to X'FF'. It is intended that
the program should first test CDBERR and then examine CDBERRCD if additional information is required.

Command mapping for APPC mapped conversations

The APPC verbs for mapped conversations are implemented by equivalent CICS application programming

commands.

See “Return codes for APPC mapped conversations” on page 137 for details of the corresponding return

code mapping.

This table has two columns. The headers are in the first row.

MC_ALLOCATE

EXEC CICS ALLOCATE
+ EXEC CICS CONNECT PROCESS

LU_NAME (vble)
MODE_NAME (vble)
TPN(vble)

RETURN_CONTROL (WHEN_SESSION_ALLOCATED)
RETURN_CONTROL (WHEN_CONWINNER_ALLOCATE
D)

RETURN_CONTROL
(WHEN_CONVERSATION_GROUP_ALLOCATED)

RETURN_CONTROL (IMMEDIATE)
SYNC_LEVEL

CONVERSATION_GROUP_ID
SECURITY (NONE)

SECURITY (SAME)

SECURITY (PGM(USED_ID(vble)
(PASSWORD (vble)))

SYSID on ALLOCATE
MODENAME on ALLOCATE

PROCNAME on CONNECT PROCESS (with
PROCLENGTH)

Default on ALLOCATE
Not supported

Not supported

NOQUEUE/NOSUSPEND on ALLOCATE
SYNCLEVEL on CONNECT PROCESS

O — None

1 — Confizrm

2 — Syncpoint
Not supported
Not supported
Default on ALLOCATE
Not supported
Not supported

132 CICS TS for z/OS: Distributed Transaction Programming Guide

This table has two columns. The headers are in the first row.

(continued)

MC_ALLOCATE

EXEC CICS ALLOCATE
+ EXEC CICS CONNECT PROCESS

PIP(NO)

PIP(YES(vblel,vble2 ... vblen))
RESOURCE

RETURN_CODE

Supported by PIPLENGTH(O)
Supported by PIPLIST+PIPLENGTH
Returned in CONVID field
Supported

BACKOUT EXEC CICS SYNCPOINT ROLLBACK
RETURN_CODE Supported

MC_CONFIRM EXEC CICS CONFIRM

RESOURCE CONVID

RETURN_CODE Supported

REQUEST_TO_SEND_RECEIVED

Returned in EIBSIG

MC_CONFIRMED

EXEC CICS ISSUE CONFIRMATION

RESOURCE
RETURN_CODE

CONVID
Supported

MC_DEALLOCATE

EXEC CICS SEND LAST
+ EXEC CICS SYNCPOINT
+ EXEC CICS FREE

RESOURCE
TYPE(SYNC_LEVEL) None

TYPE(SYNC_LEVEL) Confizrm

TYPE(SYNC_LEVEL) Syncpt

TYPE (FLUSH)

TYPE (CONFIRM)

TYPE (ABEND_PROG)
Depends on setting of EIBFREE by
previous command:

CONVID

EXEC CICS SEND LAST WAIT
+ EXEC CICS FREE

EXEC CICS SEND LAST CONFIRM
+ EXEC CICS FREE

EXEC CICS SEND LAST
+ EXEC CICS SYNCPOINT
+ EXEC CICS FREE

EXEC CICS SEND LAST WAIT
+ EXEC CICS FREE

EXEC CICS SEND LAST CONFIRM
+ EXEC CICS GDS FREE

Appendix A. CICS mapping to the APPC architecture 133

EIBFREE = X'00 EXEC CICS ISSUE ABEND
+ EXEC CICS FREE
EIBFREE = X'EF EXEC CICS FREE
TYPE (LOCAL) EXEC CICS FREE
RETURN_CODE Supported
MC_FLUSH EXEC CICS WAIT
or EXEC CICS SEND WAIT
RESOURCE CONVID
RETURN_CODE Supported

MC_GET_ATTRIBUTES

EXEC CICS EXTRACT PROCESS
or EXEC CICS ASSIGN

RESOURCE
SYNC_LEVEL

PARTNER_LU_NAME
PARTNER_FULLY_QUALIFIED_LU_NAME
MODE_NAME
CONVERSATION_STATE(vble)
CONVERSATION_CORRELATOR
CONVERSATION_GROUP_ID

CONVID on EXTRACT PROCESS

SYNCLEVEL on EXTRACT PROCESS
0 —None

1 — Confirm

2 — Syncpoint

ASSIGN PRINSYSID

See note

See note

STATE on EXTRACT PROCESS

See note

Not supported

Note: These values are not normally required in
CICS applications and are not available at the APL.

RETURN_CODE Supported
GET_TYPE (Examine EIBRSRCE)
RESOURCE EIBRSRCE

TYPE (vble)

EIBRSRCE set - mapped
EIBRSRCE not set - not mapped

MC_POST_ON_RECEIPT

Not suppoxrted

MC_PREPARE_FOR_SYNCPT

EXEC CICS ISSUE PREPARE

RESOURCE
RETURN_CODE

CONVID
Supported

134 CICS TS for z/OS: Distributed Transaction Programming Guide

MC_PREPARE_TO_RECEIVE

EXEC CICS SEND INVITE

TYPE(SYNC_LEVEL) none
TYPE(SYNC_LEVEL) confirm
TYPE(SYNC_LEVEL) syncpt

TYPE (FLUSH)
TYPE (CONFIRM)
LOCKS (SHORT)
LOCKS (LONG)
RETURN_CODE

EXEC CICS SEND INVITE WAIT
EXEC CICS SEND INVITE CONFIRM

EXEC CICS SEND INVITE
+ EXEC CICS SYNCPOINT

EXEC CICS SEND INVITE WAIT
EXEC CICS SEND INVITE CONFIRM
Defaulted

Not supported

Supported

MC_RECEIVE_AND_WAIT

EXEC CICS RECEIVE [NOTRUNCATE]

RESOURCE

LENGTH(vble) Input
RETURN_CODE
REQUEST_TO_SEND_RECEIVED
DATA

MAP_NAME

WHAT_RECEIVED
CONFIRM
CONFIRM_DEALLOCATE
CONFIRM_SEND
DATA_COMPLETE
DATA_INCOMPLETE
DATA_TRUNCATED

FMH_DATA_COMPLETE
FMH_DATA_INCOMPLETE
FMH_DATA_TRUNCATED

SEND

TAKE_SYNCPT
TAKE_SYNCPT_DEALLOCATE
TAKE_SYNCPT_SEND

CONVID field
MAXFLENGTH option
Supported

Returned in EIBSIG
INTO or SET option
Not supported

CICS Settings
EIBCONF + EIBRECV
EIBCONF + EIBFREE
EIBCONF
EIBCOMPL [+ EIBRECV]
-EIBCOMPL [+ EIBRECV}
-EIBCOMPL if NOTRUNCATE not
specified on RECEIVE
EIBFMH + EIBCOMPL [+ EIBRECV]
EIBFMH + -EIBCOMPL [+ EIBRECV]
EIBFMH + -EIBCOMPL [+ EIBRECV]
if NOTRUNCATE not specified
on RECEIVE
-EIBRECV + no other flags
EIBSYNC + EIBRECV
EIBSYNC + EIBFREE
EIBSYNC

Appendix A. CICS mapping to the APPC architecture 135

Notes:
1. Mapping of MC_RECEIVE_AND_WAIT to EXEC CICS RECEIVE is not always one to one.

When a CICS RECEIVE command is issued, CICS returns all the information and data (the DATA, the
WHAT_RECEIVED flags, and the RETURN_CODE) at once. On completion of a CICS command, more
than one indicator may be set, as shown in the WHAT_RECEIVED mapping. It may be necessary to
perform more than one subsequent command to honor the actions required by the indicators. For
this reason, the action flags must be saved when they are received (because the EIB can be
overwritten by subsequent CICS commands), and then acted on one by one.

APPC does not work this way; an MC_RECEIVE_AND_WAIT verb returns either data or information
about the conversation state (as indicated by WHAT_RECEIVED), but never both.

It is necessary to program around this difference in philosophy when translating APPC verbs into
CICS commands.

2. CICS EIBCOMPL settings are applicable only if NOTRUNCATE is specified on the CICS RECEIVE
command.

If NOTRUNCATE is specified, DATA_INCOMPLETE is indicated by a zero value in EIBCOMPL. CICS
will save the remaining data for retrieval by subsequent RECEIVE NOTRUNCATE commands.
EIBCOMPL is set when the last part of the data is passed back.

If the NOTRUNCATE option is not specified, DATA_INCOMPLETE is indicated by the CICS LENGERR
condition, and the data remaining after the RECEIVE is discarded.

MC_REQUEST_TO_SEND EXEC CICS ISSUE SIGNAL
RESOURCE CONVID field
RETURN_CODE Supported
MC_SEND_DATA EXEC CICS SEND
RESOURCE CONVID field

DATA FROM option

LENGTH LENGTH option
FMH_DATA(NO) Default

FMH_DATA(YES) See note

MAP_NAME (NO)
MAP_NAME (YES)

Not supported
Not supported

ENCRYPT (NO) Not supported
ENCRYPT (YES) Not supported
RETURN_CODE Supported
REQUEST_TO_SEND_RECEIVED Returned in EIBSIG

Note: FMH_DATA(YES) permits the sending of LU6.1 FMHs within an APPC conversation (for example,
when running a CICS program which was originally written for use on LU6.1). An LU6.1 FMH may be built
either by using the EXEC CICS BUILD ATTACH command, before issuing the EXEC CICS SEND command,
or by building the FMH within the program, putting it in the output area, and specifying the FMH option
on the SEND command. Either of these two actions is equivalent to specifying FMH_DATA(YES)

MC_SEND_ERROR EXEC CICS ISSUE ERROR

RESOURCE CONVID field

136 CICS TS for z/OS: Distributed Transaction Programming Guide

RETURN_CODE
REQUEST_TO_SEND_RECEIVED

Supported
Returned in EIBSIG

SYNCPT

EXEC CICS SYNCPOINT

RETURN_CODE

Zero - Control returned to program.
Non-zero - CICS takes action to
backout

the UOW (and abend the task or set
EIBRLDBK) .

EXEC CICS ISSUE PREPARE

Note: For certain specialized applications, the PREPARE flow (the first flow in syncpoint exchanges) may
be sent for a particular conversation by using the command:

This enables any outstanding messages in the network (for example, SEND ERROR) to be received
before proceeding, or deciding not to proceed, with the full syncpoint.

TEST(REQUEST_TO_SEND_RECEIVED)
RETURN_CODE

MC_TEST Check EIB flags
RESOURCE EIBRSRCE
TEST(POSTED) Check EIB flags

Check EIBSIG
Not supported

WAIT

Not supported

Return codes for APPC mapped conversations

The return codes for APPC mapped conversation verbs are indicated by equivalent CICS return codes.

APPC RETURN_CODE

CICS return codes

OK

EIBERR zero + INVREQ not raised

ALLOCATION_ERROR

Local allocation failures:

ALLOCATION_FATLURE_NO_RETRY

ALLOCATION_FAILURE_RETRY

CICS is unable to allocate a session
for an ALLOCATE command.

SYSIDERR raised

The second and subsequent bytes of
EIBRCODE give further information

SYSBUSY raised if there is a HANDLE
for it. Otherwise, CICS queues the
request until a session is available

See also the UNSUCCESSFUL return code,
which relates to the NOQUEUE option on
the CICS ALLOCATE command

Appendix A. CICS mapping to the APPC architecture 137

APPC RETURN_CODE

CICS return codes

Remote allocation failures:

CONVERSATION_TYPE_MISMATCH
PIP_NOT_ALLOWED
PIP_NOT_SPECIFIED_CORRECTLY
SECURITY_NOT_VALID
SYNC_LEVEL_NOT_SUPPORTED_BY_PGM
SYNC_LEVEL_NOT_SUPPORTED_BY_LU

TPN_NOT_RECOGNIZED
TRANS_PGM_NOT_AVAIL_NO_RETRY
TRANS_PGM_NOT_AVAIL_RETRY

These will be returned to the program
after the CONNECT PROCESS command has
been issued, and the partner system
has been unable to start the requested
task. They may be returned on any
subsequent command that relates to the
session in use

TERMERR (EIBERRCD = 10086034)
TERMERR (EIBERRCD = 10086031)
TERMERR (EIBERRCD = 10086032)
TERMERR (EIBERRCD = Q80F6051)
TERMERR (EIBERRCD = 10086041)

INVREQ (EIBRCODE = EOOOOOOC)

Note: CICS remembers SYNC_LEVEL
negotiated at bind time and does not
permit a request to be sent for a sync
level not supported by the remote LU.

TERMERR (EIBERRCD = 10086021)
TERMERR (EIBERRCD = 084C0000)
TERMERR (EIBERRCD = 084B6031)

BACKED_OUT

EIBSYNRB (EIBERRCD = 08240000)

DEALLOCATE_ABEND

The transaction is abended with code
AZCH (EIBERRCD = 08640000)

DEALLOCATE_NORMAL

EIBFREE + -EIBERR

FMH_DATA_NOT_SUPPORTED

TERMERR (EIBERRCD = 08890100)

MAP_EXECUTION_FAILURE
MAP_NOT_FOUND
MAPPING_NOT_SUPPORTED

Not applicable. Map requests are not
sent because the option is not
supported.

PARAMETER_ERROR

PARAMETER_ERROR (Invalid LU name)

PARAMETER_ERROR (Invalid mode name)

This return code relates ONLY to the
CICS ALLOCATE command. It is given
when an invalid LU name or MODE name
has been specified.

SYSIDERR (EIBRCODE = DO 04 ..
or DO OC ..)

CBIDERR raised for invalid PROFILE on
ALLOCATE command.

PROG_ERROR_NO_TRUNC EIBERRCD = 08890000 (RECEIVE Only)
PROG_ERROR_PURGING CDBERRCD = 08890000
RESOURCE_FAILURE_RETRY EIBERRCD = AGGO
RESOURCE_FAILURE_NO_RETRY EIBERRCD = AGGO

UNSUCCESSFUL

RETCODE = 01 04 04

138 CICS TS for z/OS: Distributed Transaction Programming Guide

APPC RETURN_CODE CICS return codes

This return code relates ONLY to the Control returned to the program

APPC ALLOCATE verb with because a session was not immediately
RETURN_CONTROL (IMMEDIATE) specified. available.

This is implemented in CICS with the
NOQUEUE option on the ALLOCATE
command.

Note: In all cases, where a value for EIBERRCD is given, EIBERR will be set to X'FF'. It is intended that
the program should first test EIBERR and then examine EIBERRCD if additional information is required.

CICS deviations from the APPC architecture
CICS deviates from the APPC architecture in a small number of detailed respects.

CICS allows EXEC CICS commands to be issued on APPC conversations when a backout (rollback) is
required but the conversation is not in rollback state (state 13).

When a session is being allocated, the back-end CICS system checks the incoming bind request for valid
combinations of CNOS (change number of sessions) and parallel-sessions indicators. If CICS finds that
parallel-sessions is specified but CNOS is not, it sends a negative response to the bind request.

CICS allows a sync level-2 conversation to be terminated using the SEND LAST WAIT or SEND LAST
CONFIRM commands. However, doing this is a deviation from the APPC architecture and should be
avoided. Figure 48 on page 139 illustrates the problems that can be caused by not syncpointing a sync
level-2 conversation.

Transaction AAAA Transaction BBBB
CONNECT PROCESS
SYNCLEVEL(Z2)
SEND
——» RECEIVE
A serious error occurs
[SSUE ABEND
Suspends pending change
direction or end bracket.
SEND LAST WAIT ———» Receives end bracket,
{without data) returns to free state.
SYNCPOINT ROLLBACK
Backs out changes to
recaverable resources.
FREE FREE
Changes committed. Changes backed out.

Figure 48. Losing data integrity on a sync level-2 conversation

Because transaction AAAA ends the conversation using the SEND LAST WAIT command, transaction
BBBB cannot inform it that an error has occurred. The ISSUE ABEND command causes the backout-

Appendix A. CICS mapping to the APPC architecture 139

required condition to be raised in transaction BBBB; so a SYNCPOINT ROLLBACK is needed. Transaction
AAAA commits changes to its resources and data integrity is lost.

The resulting state errors may also lead to the session being unbound.

Effects of CICS deviations on the transaction programmer
Where CICS deviates from the APPC architecture, there may be some effect on transaction programs
running on products other than CICS and having conversations with CICS transactions.

The effects can be avoided by using the following programming conventions (the verbs and return codes
referred to here are described in Transaction Programmer’s Reference Manual for LU Type 6.2):

- When writing a transaction program that will converse with a CICS transaction program, do not use the
verb PREPARE_TO_RECEIVE with the TYPE(CONFIRM) and LOCKS(LONG) parameters, or with the
TYPE(SYNC_LEVEL) and LOCKS(LONG) when the SYNC_LEVEL is CONFIRM. Instead, use the
LOCKS(SHORT) parameter to achieve the same function. Use of the LOCKS(LONG) parameter results in
less messages being passed on the APPC connection.

- When writing a transaction program that will converse with a CICS transaction program, do not depend
on the distinction between the return codes PROG_ERROR_PURGING and PROG_ERROR_NO_TRUNC,
and between the return codes SVC_ERROR_PURGING and SVC_ERROR_NO_TRUNC. Instead, the CICS
transaction program must be coded to send additional error information after it issues the CICS EXEC
ISSUE ERROR in order to describe the reason for sending the error indication.

« When writing a transaction program that will run on CICS, do not depend on the receipt of the sense
data X'08890000' or X'08890100' to indicate the state of the other end of the conversation when the
partner transaction program sent the error indication. Instead, the partner transaction program must be
coded to send additional error information after it sends the error indication in order to describe the
reason for sending the error indication.

« Because CICS may omit the negative response before an FMH-7 (ALLOCATION_ERROR), a transaction
program in conversation with CICS can receive an ALLOCATION_ERROR after the point where the
partner transaction appears to have been successfully allocated. The transaction program must
therefore be written to handle this possibility.

140 CICS TS for z/OS: Distributed Transaction Programming Guide

Appendix B. Migration of LUTYPEG6.1 applications to
APPC links

If your installation is changing its CICS-to-CICS Intersystem communication (ISC) links from LUTYPE6.1
to APPC (LUTYPE®.2), you may want to redesign some of your existing ISC applications to take advantage
of APPC function. Alternatively, you can continue to run your existing applications in migration mode.

Migration mode

In migration mode, the front-end and back-end transactions use LUTYPE6.1 commands just as if the
session was an LUTYPE6.1 session.

CICS takes data from the transaction in the normal way, and formats it as an APPC mapped data stream
for transmission over the link. At the receiving side, CICS analyses the APPC mapped data stream and
presents the LUTYPE®6.1 data and function management headers to the receiving transaction.

In general, you will not have to modify existing CICS-to-CICS ISC applications to enable them to run in
migration mode on APPC links. A notable exception is the use of the ALLOCATE SESSION command. If
your installation previously had individually defined ISC sessions, and your application used the
ALLOCATE SESSION command to acquire a specific session, you must change this command to
ALLOCATE SYSID.

The ISSUE SIGNAL command is valid for both LU types, but the WAIT SIGNAL command is available only
for LUTYPE6.1.

Table 64 on page 141 compares the commands that you can use for:
« LUTYPE®6.1 applications on LUTYPE®6.1 links

« LUTYPE®6.1 applications on APPC links (migration mode)

« APPC applications on APPC links.

As Table 64 on page 141 shows, migration mode allows you to start adding new function to an application
(for example, using ISSUE ERROR or ISSUE ABEND) without converting it entirely to APPC. You can also
implement different sync levels by modifying the application to use the CONNECT PROCESS command.
Applications not modified to use CONNECT PROCESS will use sync level 2. The migration of an application
towards the “pure” APPC level can thus be made stepwise.

To aid migration, the SESSION and CONVID options can be used interchangeably.

If a migration-mode transaction abends, the architected APPC flows take place. How this affects the
connected transaction depends where the abend occurs and is often different from what you would
expect if the connection were native LUTYPE6.1.

Because APPC uses different modules from LUTYPE®6.1, the user exits XZCIN and XZCOUT are not taken
for APPC sessions. Any programs making use of these exits on LUTYPE6.1 will need consideration.

Table 64. Migration of LUTYPE6.1 programs to APPC links

Operation Command LU6.1 Migration APPC

Obtain use of a session ALLOCATE SESSION yes no no

Obtain use of a session ALLOCATE SYSID yes yes yes

Build an LUTYPE®6.1 attach BUILD ATTACHID yes yes no

FMH

Start a partner transaction SEND yes(“1” on | yes(“4” on no
page 142) | page 142)

© Copyright IBM Corp. 1974, 2019 141

Table 64. Migration of LUTYPE6.1 programs to APPC links (continued)

Operation Command LU6.1 Migration APPC
Start a partner transaction SEND ATTACHID yes(“2” on [yes(“5” on no
page 142) | page 142)
Start a partner transaction SEND FMH yes(“3” on [yes(“6” on no
page 142) | page 142)
Start a partner transaction CONNECT PROCESS no yes(“7” on yes(“7” on
page 142) page 142)
Retrieve information about EXTRACT ATTACH yes yes no
how the transaction was
initiated EXTRACT PROCESS no yes yes
Send data SEND yes yes yes
Send further LUTYPE6.1 SEND ATTACHID yes yes no
FMHs
Send further LUTYPE®6.1 SEND FMH yes yes no
FMHs
Receive LUTYPE6.1 FMHs EXTRACT ATTACH yes yes no
Receive data RECEIVE yes yes yes
Send and receive data CONVERSE yes yes yes
Program error ISSUE ERROR no yes yes
Abend conversation ISSUE ABEND no yes yes
Request change of direction ISSUE SIGNAL yes yes yes
Await SIGNAL condition WAIT SIGNAL yes no no
Synchronize Level O no yes(“8” on yes
page 142)
Synchronize Level 1 SEND CONFIRM ISSUE no no yes(“8” on yes yes
CONFIRMATION page 142)
yes
Synchronize Level 2 SEND CONFIRM ISSUE nonoyes| yes(“8”on | yesyes
CONFIRMATION SYNCPOINT no page 142) yes yes
SYNCPOINT ROLLBACK yes yes yes

Notes on migration of LUTYPEG6.1 programs:

1. The CICS transaction identifier is included in the first four bytes of the data.

generated.

2. An LUTYPEG6.1 attach FMH is generated.
3. An LUTYPE®6.1 FMH provided by the application program is sent.

4. An APPC attach FMH is generated, but with no TPN (TPNL=0). The CICS transaction identifier is
included in the first four bytes of the data.

0o J o o

. An APPC attach FMH and an LUTYPE6.1 attach FMH are generated.
. An APPC attach FMH and an LUTYPE6.1 FMH (provided by the application program) are sent.
. An APPC attach FMH is generated.
. Sync levels 0 and 1 can be used if CONNECT PROCESS has been used to define the sync level in

No attach FMH

operation. If CONNECT PROCESS has not been used, sync level 2 is assumed.

142 CICS TS for z/OS: Distributed Transaction Programming Guide

State transitions in LUTYPEG6.1 migration-mode conversations

In this section, the state table shows the state transitions that occur when transactions engage in
LUTYPE®6.1 conversations in migration mode. The state table includes the commands available and the
states returned when starting a back-end transaction using the SEND [FMH|ATTACHID] command with
the transaction identifier imbedded in first four bytes of user data.

For back-end transactions started by CONNECT PROCESS, use the tables in State transitions in APPC
mapped conversations, but remember that the BUILD ATTACH, SEND ATTACHID, SEND FMH, and
EXTRACT ATTACH commands are also available.

The commands you can issue, coupled with the EIB flags that can be set after execution, are shown on
the first column of the table. The possible conversation states are shown across the top of the table. The
states correspond to the columns of the table. The intersection of a row (command and EIB flag) and a
column (state) represents the state transition, if any, that occurs when a particular command returning a
particular EIB flag is issued in a particular state. A number at an intersection indicates the state number
of the next state. Other symbols represent other conditions, as follows:

Symbol Meaning

N/A Cannot occur.

X The EIB flag is any one that has not been covered in earlier rows, or it is irrelevant (but
see the note on EIBSIG if you want to use ISSUE SIGNAL).

Abend code The command is not valid in this state. Issuing a command in a state in which it is not
valid usually causes an ATCV abend. When a different abend code applies, this is
shown in the tables.

= Remains in current state.

End End of conversation.

State tables for LUTYPEG6.1 migration-mode conversations

Tables showing the state transitions that occur when transactions engage in LUTYPE6.1 migration mode
conversations, under the EXEC CICS APL.

The ISSUE SIGNAL command and the EIBSIG flag

In the tables, the EIBSIG flag is not mentioned. This is because its use is optional and is entirely a matter
of agreement between the two conversation partners. In the worst case, it can occur at any time after
every command that affects the EIB flags. However, used for the purpose for which it was intended, it
usually occurs after a SEND command. Its priority in the order of testing depends on the role you give it in
the application.

The EIBSIG flag is set when the partner issues the ISSUE SIGNAL command.

The RECEIVE NOTRUNCATE command

The RECEIVE NOTRUNCATE command returns a zero value in EIBCOMPL to indicate that the user buffer
was too small to contain all the data received from the partner transaction. Normally, you would continue
to issue RECEIVE NOTRUNCATE commands until the last section of data is passed to you, which is
indicated by EIBCOMPL = X'FF'. If NOTRUNCATE is not specified, and the data area specified by the
RECEIVE command is too small to contain all the data received, CICS truncates the data and sets the
LENGERR condition.

State changes for the SYNCPOINT and SYNCPOINT ROLLBACK commands

When the SYNCPOINT and SYNCPOINT ROLLBACK commands are issued, they are propagated on, and
affect the state of, all the conversations that are currently active for the task, including MRO
conversations.

Appendix B. Migration of LUTYPE6.1 applications to APPC links 143

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/applications/developing/connections/dfhp616.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/applications/developing/connections/dfhp616.html

Following rollback, the conversation can be in SEND or RECEIVE state, depending on the conversation
state at the start of the current distributed unit of work. The conversation can be in FREE state if it ended
abnormally due to session failure or due to deallocate abend being received, or if the partner transaction
issued a SEND LAST WAIT or FREE command.

After a syncpoint or rollback, it is advisable to determine the conversation state before issuing any further
commands against the conversation.

State changes following the ISSUE PREPARE command

Although ISSUE PREPARE can return with the conversation in either SYNCSEND state, SYNCRECEIVE
state, or SYNCFREE state, the only commands allowed on that conversation following an ISSUE PREPARE
are SYNCPOINT and SYNCPOINT ROLLBACK. All other commands Abend.

State tables

Table 65. States 1 - 6

Command ALLO- SEND PEND- PEND- RECEIVE CONF-
returns CATED RECEIVE FREE RECEIVE

Command issued EIB flag returned State 1 State 2 State 3 State 4 State 5 State 6

BUILD ATTACH x Immediately = = = = = =

EXTRACT ATTACH x Immediately INVREQ INVREQ INVREQ INVREQ = INVREQ

EXTRACT PROCESS x Immediately Abend = = = = =

(back-end transaction

only)

EXTRACT ATTRIBUTES x Immediately = = = = = =

SEND (any valid form) EIBERR + EIBSYNRB After error flow Abend 13 13 13 Abend Abend
detected

SEND (any valid form) EIBERR + EIBFREE After error flow 12 12 12 12 Abend Abend
detected

SEND (any valid form) EIBERR After error flow Abend 5 5 5 Abend Abend
detected

SEND INVITE WAIT x After data flows 5 5 Abend Abend Abend Abend

SEND INVITE CONFIRM x After response 5 5 Abend Abend Abend Abend
from partner

SEND INVITE x After data 3 3 Abend Abend Abend Abend
buffered

SEND LAST WAIT x After data flows 12 12 Abend Abend Abend Abend

SEND LAST CONFIRM x After response 12 12 Abend Abend Abend Abend
from partner

SEND LAST x After data 4 4 Abend Abend Abend Abend
buffered

SEND WAIT x After data flows 2 = Abend Abend Abend Abend

SEND CONFIRM x After response 2 = 5 12 Abend Abend
from partner

SEND x After data 2 = Abend Abend Abend Abend
buffered

RECEIVE EIBERR + EIBSYNRB After rollback flow | Abend 13 13 Abend 13 Abend
detected

RECEIVE EIBERR + EIBFREE After error Abend 12 12 Abend 12 Abend
detected

RECEIVE EIBERR After error Abend 5 5 Abend = Abend
detected

RECEIVE EIBSYNC + EIBFREE After sync flow Abend 11 11 Abend 11 Abend
detected

RECEIVE EIBSYNC + EIBRECV After sync flow Abend 9 9 Abend 9 Abend
detected

144 CICS TS for z/OS: Distributed Transaction Programming Guide

Table 65. States 1 - 6 (continued)

Command ALLO- SEND PEND- PEND- RECEIVE CONF-
returns CATED RECEIVE FREE RECEIVE

Command issued EIB flag returned State 1 State 2 State 3 State 4 State 5 State 6

RECEIVE EIBSYNC After sync flow Abend 10 10 Abend 10 Abend
detected

RECEIVE EIBCONF + EIBFREE After confirm flow | Abend 8 8 Abend 8 Abend
detected

RECEIVE EIBCONF + EIBRECV After confirm flow | Abend 6 6 Abend 6 Abend
detected

RECEIVE EIBCONF After confirm flow | Abend 7 7 Abend 7 Abend
detected

RECEIVE EIBFREE After error flow Abend 12 12 Abend 12 Abend
detected

RECEIVE EIBRECV When data Abend 5 5 Abend = Abend
available

RECEIVE NOTRUNCATE EIBCOMPL When data Abend 5 5 Abend = Abend
available

RECEIVE x When data Abend = 2 Abend 2 Abend
available

CONVERSE As for RECEIVE As for As for As for As for As for As for

RECEIVE RECEIVE RECEIVE RECEIVE RECEIVE RECEIVE

ISSUE CONFIRMATION x Immediately Abend Abend Abend Abend Abend 5

ISSUE ERROR EIBFREE After response Abend 12 12 Abend 12 12
from partner

ISSUE ERROR x After response Abend = 2 Abend 2 2
from partner

ISSUE ABEND x Immediately Abend 12 12 12 12 12

ISSUE SIGNAL x Immediately Abend = = Abend = =

ISSUE PREPARE EIBERR + EIBSYNRB After response INVREQ 13 13 13 INVREQ INVREQ
from partner

ISSUE PREPARE EIBERR + EIBFREE After error INVREQ 12 12 12 INVREQ INVREQ
detected

ISSUE PREPARE EIBERR After error INVREQ 5 5 5 INVREQ INVREQ
detected

ISSUE PREPARE X After response INVREQ 10 9 11 INVREQ INVREQ
from partner

SYNCPOINT EIBRLDBK After response = 2o0r5 2or5 2o0r5 Abend Abend
from partner ASP2 ASP2

SYNCPOINT x After response = = 5 12 Abend Abend
from partner ASP2 ASP2

SYNCPOINT ROLLBACK x After rollback = 2o0r5 2o0r5 2orb 2o0r5 2or5
across UOW

WAIT x Immediately Abend = 5 12 Abend Abend

FREE x Immediately End End Abend End Abend Abend

Table 66. States 7 - 13

Command issued EIB flag returned CONF- SEND CONF- SYNC- SYNC- SYNC- FREE ROLL-
FREE RECEIVE SEND FREE BACK

State 7 State 8 State 9 State 10 State 11 State 12 State 13

BUILD ATTACH X = = = = = = =

EXTRACT ATTACH X INVREQ INVREQ INVREQ INVREQ INVREQ INVREQ INVREQ

EXTRACT PROCESS x = = = = = = =

(back-end transaction

only)

EXTRACT ATTRIBUTES x = = = = = = =

Appendix B. Migration of LUTYPE6.1 applications to APPC links 145

Table 66. States 7 - 13 (continued)

Command issued EIB flag returned CONF- SEND CONF- SYNC- SYNC- SYNC- FREE ROLL-
FREE RECEIVE SEND FREE BACK
State 7 State 8 State 9 State 10 State 11 State 12 State 13
SEND (any valid form) EIBERR + EIBSYNRB Abend Abend Abend Abend Abend Abend Abend
SEND (any valid form) EIBERR + EIBFREE Abend Abend Abend Abend Abend Abend Abend
SEND (any valid form) EIBERR Abend Abend Abend Abend Abend Abend Abend
SEND INVITE WAIT x Abend Abend Abend Abend Abend Abend Abend
SEND INVITE CONFIRM x Abend Abend Abend Abend Abend Abend Abend
SEND INVITE x Abend Abend Abend Abend Abend Abend Abend
SEND LAST WAIT x Abend Abend Abend Abend Abend Abend Abend
SEND LAST CONFIRM x Abend Abend Abend Abend Abend Abend Abend
SEND LAST x Abend Abend Abend Abend Abend Abend Abend
SEND WAIT x Abend Abend Abend Abend Abend Abend Abend
SEND CONFIRM x Abend Abend Abend Abend Abend Abend Abend
SEND x Abend Abend Abend Abend Abend Abend Abend
RECEIVE EIBERR + EIBSYNRB Abend Abend Abend Abend Abend Abend Abend
RECEIVE EIBERR + EIBFREE Abend Abend Abend Abend Abend Abend Abend
RECEIVE EIBERR Abend Abend Abend Abend Abend Abend Abend
RECEIVE EIBSYNC + EIBFREE Abend Abend Abend Abend Abend Abend Abend
RECEIVE EIBSYNC + EIBRECV Abend Abend Abend Abend Abend Abend Abend
RECEIVE EIBSYNC Abend Abend Abend Abend Abend Abend Abend
RECEIVE EIBCONF + EIBFREE Abend Abend Abend Abend Abend Abend Abend
RECEIVE EIBCONF + EIBRECV Abend Abend Abend Abend Abend Abend Abend
RECEIVE EIBCONF Abend Abend Abend Abend Abend Abend Abend
RECEIVE EIBFREE Abend Abend Abend Abend Abend Abend Abend
RECEIVE EIBRECV Abend Abend Abend Abend Abend Abend Abend
RECEIVE NOTRUNCATE EIBCOMPL Abend Abend Abend Abend Abend Abend Abend
RECEIVE x Abend Abend Abend Abend Abend Abend Abend
CONVERSE As for RECEIVE As for RECEIVE As for As for As for As for As for As for
RECEIVE RECEIVE RECEIVE RECEIVE RECEIVE RECEIVE
ISSUE CONFIRMATION x 2 12 Abend Abend Abend Abend Abend
ISSUE ERROR EIBFREE 12 12 12 12 12 Abend Abend
ISSUE ERROR x 2 2 2 2 2 Abend Abend
ISSUE ABEND x 12 12 12 12 12 Abend Abend
ISSUE SIGNAL x = = = = = Abend Abend
ISSUE PREPARE EIBERR + EIBSYNRB INVREQ INVREQ INVREQ INVREQ INVREQ INVREQ INVREQ
ISSUE PREPARE EIBERR + EIBFREE INVREQ INVREQ INVREQ INVREQ INVREQ INVREQ INVREQ
ISSUE PREPARE EIBERR INVREQ INVREQ INVREQ INVREQ INVREQ INVREQ INVREQ
ISSUE PREPARE x INVREQ INVREQ INVREQ INVREQ INVREQ INVREQ INVREQ
SYNCPOINT EIBRLDBK Abend Abend 2o0r5 2o0r5 2o0r5 = Abend
SYNCPOINT x Abend Abend 2 2 12 = Abend
SYNCPOINT ROLLBACK x 2o0r5 2or5 2o0r5 2o0r5 2orb = 2or5
WAIT x Abend Abend Abend Abend Abend Abend Abend
FREE x Abend Abend Abend Abend Abend End Abend

146 CICS TS for z/OS: Distributed Transaction Programming Guide

Appendix C. Differences between APPC mapped and

MRO conversations

When a SEND command is issued on an MRO session, CICS does not defer sending the data, so control
indicators cannot be added to the data after a SEND command has been issued.

The same command sequence may therefore require more flows on an MRO session than it does on an
APPC session but, if the receiving transaction is correctly designed to be driven by the conversation state,

the same effects are achieved.

Different treatment of command sequences

Although you can use similar sequences of commands for a APPC mapped conversations and MRO
conversations, there are some cases where the same command sequences operate differently in each

conversation type.

Some of the differences between APPC mapped and MRO conversations are shown in the command

sequence in Table 67 on page 147.

Table 67. How the same command sequence operates differently in APPC mapped and MRO

conversations

Commands

APPC mapped

MRO

EXEC CICS SEND
CONVID(REM1)
FROM(datal)
LENGTH(251)

EXEC CICS
SYNCPOINT

EXEC CICS SEND
CONVID(REM1)
FROM(data2)
LENGTH(251)
INVITE

EXEC CICS WAIT
CONVID(REM1)

EXEC CICS RECEIVE
CONVID(REM1)

(INVITE received)

EXEC CICS SEND
CONVID(REM1)
FROM(data3)
LENGTH(251)
LAST

EXEC CICS
SYNCPOINT

sending is deferred

syncpoint request added to
datal, and both are sent

sending of data2, with INVITE,
is deferred

data2, with INVITE, is sent

sending of data3, with LAST
indicator, is deferred

syncpoint request and LAST
indicator added to data3 and
sent

datalis sent

syncpoint request is sent with
null data

data2 with INVITE is sent

(nothing to send)

data3is sent, but without LAST
indicator

syncpoint request and LAST
indicator are sent with null data

© Copyright IBM Corp. 1974, 2019

147

The WAIT option can, of course, be added to the SEND command to cause immediate transmission on
APPC links; for example:

SEND CONVID(REM1)
FROM(data2)
LENGTH(251)
INVITE
WAIT

RECEIVE SESSION(REM1)

There are no significant differences between the MRO and APPC mapped implementations of this
command sequence. However, with MRO, a SEND command with the WAIT option causes CICS to
suspend the transaction until the partner system has received the data.

Unlike APPC, MRO allows only one outstanding SEND to be transmitted. This means that when a
transaction issue two successive SEND commands (without the WAIT option) to transmit data, the second
piece of data does not flow until the partner system has received the first.

A further implementation difference arises between APPC mapped and MRO for command sequences
that contain an implicit change of direction. For MRO, a RECEIVE command must not be issued unless the
conversation is in receive state (state 5).

Using the LAST option

The LAST option on the SEND command indicates the end of the conversation. No further data flows can
occur on the session, and the next action must be to free the session.

However, the session can still carry CICS syncpointing flows before it is freed, provided the LAST request
has not been flushed.

A syncpoint, whether on an APPC or MRO session, is initiated explicitly by a SYNCPOINT command, or
implicitly by a RETURN command. However, the circumstances under which session syncpointing occurs,
and the ways in which syncpointing can be avoided on the session, differ for APPC and MRO.

The LAST option and syncpoint flows on APPC sessions

If an APPC mapped conversation has been terminated by a SEND LAST command, without the WAIT
option, transmission will have been deferred, and the syncpointing activity causes the final transmission
to occur with an added syncpoint request. The conversation is thus automatically involved in the
syncpoint.

If the conversation is not to be involved in the syncpoint (for example, because the partner transaction
does not access any recoverable resources), the transaction must issue a SEND LAST WAIT command, or
a FREE command, to force the transmission before using a command that causes a syncpoint.

The LAST option and syncpoint flows on MRO sessions
If an MRO conversation is terminated by a SEND LAST command, without the WAIT option, the WAIT
implicit in all MRO commands is applied, and the data is transmitted. However, in anticipation of
subsequent syncpoint flows, CICS does not send the LAST indicator with this data.

If the conversation is not to be involved in the syncpoint (for example, because the partner transaction
does not access any recoverable resources) you must specify the WAIT option explicitly on the SEND
LAST command to force the LAST indicator to be sent with the data. Alternatively, you could follow the
SEND LAST command by a FREE command.

148 CICS TS for z/OS: Distributed Transaction Programming Guide

Appendix D. Below the SNA interface

To design high-performance distributed processes, you need some understanding of the SNA protocols
and corresponding data flow control (DFC) indicators that CICS uses for DTP, and how the DFC indicators
relate to the CICS commands and options. In addition, you need this knowledge to understand the CICS
trace.

Except for some commands that can cause transmissions "against the flow" (such as ISSUE SIGNAL), the
conversation flow and indicators set are dictated by the transaction currently in send state (state 2).

SNA indicators and records

SNA indicators and records can be generated either explicitly as a result of a CICS command, or
automatically when CICS detects that they are needed.

The most common SNA indicators and records:

Begin_bracket and conditional_end_bracket
The begin_bracket (BB) and condition_end_bracket (CEB) indicators in the request header (RH)
denote respectively the beginning and end of a conversation between two transactions. Because the
BB is generated automatically at the start of a conversation, you need only consider the CEB. The CEB
is generated by a SEND with the LAST option, an ISSUE ABEND, a FREE command, or task termination
before the conversation is ended.

Function management headers
Function management headers (FMHs) are records sent on a conversation which contain SNA control
data. Several types of FMH are defined under SNA; but only two (FMH5 and FMH7) are relevant to
APPC DTP.

The FMH5, also known as the attach FMH, is sent with BB and contains the information required to
initiate the back-end transaction.

The FMH7 is issued by the ISSUE ERROR, ISSUE ABEND, and SYNCPOINT ROLLBACK commands. In
addition, if the back-end system rejects the FMH5, an FMH7 is sent to the front-end transaction. The
FMH7 contains a 4-byte code, called the sense code, which describes the error. This code is set in
EIBERRCD (or CDBERRCD for basic conversations). The FMH7 may be followed by log data. This log
datais included in message DFHZN2701 on the sending system and DFHZC3433 on the receiving
system.

Change direction
The change direction (CD) indicator, found in the RH, switches the issuing transaction from send state
(state 2) to receive state (state 5). CD is generated explicitly by either of the following:

« A SEND command with the INVITE option
« A CONVERSE command.
PS header (type 10)
PS headers (type 10) are records sent on a conversation which contain syncpoint requests. These
headers contain a 2-byte syncpoint request code (for example, prepare, request commit, committed,

and forget). In addition, the initial record sent contains a 2-byte modifier specifying the conversation
state after a successful syncpoint exchange.

Request mode and responses
When data is sent, a response confirming receipt of the data is not normally expected, unless data is sent
with the CONFIRM option.

Data is normally sent in RQE (request exception response) mode, meaning that a response is required
only if an error condition needs to be transmitted. This response is called -RSP (negative response) and
might precede an FMH7. However, if data is sent with the CONFIRM option, the data is sent in RQD

© Copyright IBM Corp. 1974, 2019 149

(request definite response) mode. This means that the sending transaction will suspend until a DR
(definite response) or -RSP is received. The partner transaction generates a DR with the ISSUE
CONFIRMATION command.

When SNA indicators are transmitted

To optimize the use of ISC sessions, CICS defers output processing for SEND commands. Deferred output
often enables CICS to add SNA indicators to waiting data before transmitting it. The number of
transmissions on the session is thereby reduced.

For APPC sessions, this reduction is achieved by accumulating as much data as possible in a CICS buffer
before transmitting it across the link. Thus the data from a series of SEND commands is transmitted only
when the buffer becomes full or when transmission must be forced (for example, if SEND WAIT is
encountered).

Optimization of ISC transmission does not affect the number of data flows that the application
programming interface sees.

150 CICS TS for z/OS: Distributed Transaction Programming Guide

Notices

This information was developed for products and services offered in the U.S.A. This material might be
available from IBM in other languages. However, you may be required to own a copy of the product or
product version in that language in order to access it.

IBM may not offer the products, services, or features discussed in this document in other countries.
Consult your local IBM representative for information on the products and services currently available in
your area. Any reference to an IBM product, program, or service is not intended to state or imply that only
that IBM product, program, or service may be used. Any functionally equivalent product, program, or
service that does not infringe any IBM intellectual property rights may be used instead. However, it is the
user's responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this
document. The furnishing of this document does not grant you any license to these patents. You can send
license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive, MD-NC119
Armonk, NY 10504-1785
United States of America

For license inquiries regarding double-byte (DBCS) information, contact the IBM Intellectual Property
Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing

Legal and Intellectual Property Law

IBM Japan Ltd.

19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION “AS IS”
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS FOR A
PARTICULAR PURPOSE. Some jurisdictions do not allow disclaimer of express or implied warranties in
certain transactions, therefore this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically
made to the information herein; these changes will be incorporated in new editions of the publication.
IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM websites are provided for convenience only and do not in
any manner serve as an endorsement of those websites. The materials at those websites are not part of
the materials for this IBM product and use of those websites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Licensees of this program who want to have information about it for the purpose of enabling: (i) the
exchange of information between independently created programs and other programs (including this
one) and (ii) the mutual use of the information which has been exchanged, should contact

IBM Director of Licensing

IBM Corporation

North Castle Drive, MD-NC119
Armonk, NY 10504-1785

us

© Copyright IBM Corp. 1974, 2019 151

Such information may be available, subject to appropriate terms and conditions, including in some cases,
payment of a fee.

The licensed program described in this document and all licensed material available for it are provided by
IBM under terms of the IBM Customer Agreement, IBM International Programming License Agreement, or
any equivalent agreement between us.

Information concerning non-IBM products was obtained from the suppliers of those products, their
published announcements or other publicly available sources. IBM has not tested those products and
cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM
products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of
those products.

This information contains examples of data and reports used in daily business operations. To illustrate
them as completely as possible, the examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to actual people or business enterprises is
entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs
in any form without payment to IBM, for the purposes of developing, using, marketing or distributing
application programs conforming to the application programming interface for the operating platform for
which the sample programs are written. These examples have not been thoroughly tested under all
conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these
programs. The sample programs are provided "AS IS", without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

Programming interface information

CICS supplies some documentation that can be considered to be Programming Interfaces, and some
documentation that cannot be considered to be a Programming Interface.

Programming Interfaces that allow the customer to write programs to obtain the services of CICS
Transaction Server for z/OS, Version 5 Release 4 are included in the following sections of the online
product documentation:

- Developing applications

 Developing system programs

= Securing overview

- Developing for external interfaces

« Reference: application developmenth

- Reference: system programming

- Reference: connectivity

Information that is NOT intended to be used as a Programming Interface of CICS Transaction Server for
z/0S, Version 5 Release 4, but that might be misconstrued as Programming Interfaces, is included in the
following sections of the online product documentation:

« Troubleshooting and support

- Reference: diagnostics

If you access the CICS documentation in manuals in PDF format, Programming Interfaces that allow the
customer to write programs to obtain the services of CICS Transaction Server for z/0S, Version 5 Release
4 are included in the following manuals:

 Application Programming Guide and Application Programming Reference
 Business Transaction Services
 Customization Guide

152 Notices

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/applications/developing/developing.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/system-programming/developing_sysprogs.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/security/security.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/applications/developing/interfaces/externalInterfaces.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/reference/reference-programming.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/reference/reference-systemprogramming.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/reference/reference-connections.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/troubleshooting/troubleshooting.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/reference/reference-diagnostics.html

e C++ 00 Class Libraries

 Debugging Tools Interfaces Reference

- Distributed Transaction Programming Guide
 External Interfaces Guide

« Front End Programming Interface Guide

- IMS Database Control Guide

- Installation Guide

 Security Guide

« Supplied Transactions

« CICSPlex SM Managing Workloads

« CICSPlex SM Managing Resource Usage

« CICSPlex SM Application Programming Guide and Application Programming Reference
« Java Applications in CICS

If you access the CICS documentation in manuals in PDF format, information that is NOT intended to be
used as a Programming Interface of CICS Transaction Server for z/OS, Version 5 Release 4, but that might
be misconstrued as Programming Interfaces, is included in the following manuals:

« Data Areas

- Diagnosis Reference

 Problem Determination Guide

« CICSPlex SM Problem Determination Guide

Trademarks

IBM, the IBM logo, and ibm.com® are trademarks or registered trademarks of International Business
Machines Corp., registered in many jurisdictions worldwide. Other product and service names might be
trademarks of IBM or other companies. A current list of IBM trademarks is available on the Web at
Copyright and trademark information at www.ibm.com/legal/copytrade.shtml.

Adobe, the Adobe logo, PostScript, and the PostScript logo are either registered trademarks or
trademarks of Adobe Systems Incorporated in the United States, and/or other countries.

Intel, Intel logo, Intel Inside, Intel Inside logo, Intel Centrino, Intel Centrino logo, Celeron, Intel Xeon,
Intel SpeedStep, Itanium, and Pentium are trademarks or registered trademarks of Intel Corporation or
its subsidiaries in the United States and other countries.

Java and all Java-based trademarks and logos are trademarks or registered trademarks of Oracle and/or
its affiliates.

Linux is a registered trademark of Linus Torvalds in the United States, other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the
United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Terms and conditions for product documentation
Permissions for the use of these publications are granted subject to the following terms and conditions.

Applicability
These terms and conditions are in addition to any terms of use for the IBM website.

Personal use
You may reproduce these publications for your personal, noncommercial use provided that all
proprietary notices are preserved. You may not distribute, display or make derivative work of these
publications, or any portion thereof, without the express consent of IBM.

Notices 153

https://www.ibm.com/legal/copytrade.shtml

Commercial use
You may reproduce, distribute and display these publications solely within your enterprise provided
that all proprietary notices are preserved. You may not make derivative works of these publications,
or reproduce, distribute or display these publications or any portion thereof outside your enterprise,
without the express consent of IBM.

Rights
Except as expressly granted in this permission, no other permissions, licenses or rights are granted,
either express or implied, to the publications or any information, data, software or other intellectual
property contained therein.

IBM reserves the right to withdraw the permissions granted herein whenever, in its discretion, the use
of the publications is detrimental to its interest or, as determined by IBM, the above instructions are
not being properly followed.

You may not download, export or re-export this information except in full compliance with all
applicable laws and regulations, including all United States export laws and regulations.

IBM MAKES NO GUARANTEE ABOUT THE CONTENT OF THESE PUBLICATIONS. THE PUBLICATIONS
ARE PROVIDED "AS-IS" AND WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED,
INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY, NON-
INFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE.

IBM online privacy statement

IBM Software products, including software as a service solutions, ("Software Offerings") may use cookies
or other technologies to collect product usage information, to help improve the end user experience, to
tailor interactions with the end user or for other purposes. In many cases no personally identifiable
information is collected by the Software Offerings. Some of our Software Offerings can help enable you to
collect personally identifiable information. If this Software Offering uses cookies to collect personally
identifiable information, specific information about this offering’s use of cookies is set forth below:

For the CICSPlex® SM Web User Interface (main interface):
Depending upon the configurations deployed, this Software Offering may use session and persistent
cookies that collect each user’s user name and other personally identifiable information for purposes
of session management, authentication, enhanced user usability, or other usage tracking or functional
purposes. These cookies cannot be disabled.

For the CICSPlex SM Web User Interface (data interface):
Depending upon the configurations deployed, this Software Offering may use session cookies that
collect each user's user name and other personally identifiable information for purposes of session
management, authentication, or other usage tracking or functional purposes. These cookies cannot be
disabled.

For the CICSPlex SM Web User Interface ("hello world" page):
Depending upon the configurations deployed, this Software Offering may use session cookies that
collect no personally identifiable information. These cookies cannot be disabled.

For CICS Explorer:
Depending upon the configurations deployed, this Software Offering may use session and persistent
preferences that collect each user’s user name and password, for purposes of session management,
authentication, and single sign-on configuration. These preferences cannot be disabled, although
storing a user's password on disk in encrypted form can only be enabled by the user's explicit action
to check a check box during sign-on.

If the configurations deployed for this Software Offering provide you, as customer, the ability to collect
personally identifiable information from end users via cookies and other technologies, you should seek
your own legal advice about any laws applicable to such data collection, including any requirements for
notice and consent.

For more information about the use of various technologies, including cookies, for these purposes, see
IBM Privacy Policy and IBM Online Privacy Statement, the section entitled "Cookies, Web Beacons and
Other Technologies" and the IBM Software Products and Software-as-a-Service Privacy Statement.

154 CICS TS for z/OS: Distributed Transaction Programming Guide

https://www.ibm.com/privacy
https://www.ibm.com/privacy/details
https://www.ibm.com/software/info/product-privacy

Index

A

abend codes
ASP1
ASP3 103-105
ASPN 98
ATCV 36, 93,143
AZI1 55
abnormal termination
APPC basic conversations 66
APPC mapped conversations 27, 29
LUTYPE6.1 conversations 89
MRO conversations 53
ALLOCATE command
APPC basic conversations 71, 76
APPC mapped conversations 21, 35
LUTYPE®6.1 conversations 87, 90
MRO conversations 47, 54
PARTNER option 21
allocating a session
APPC basic conversations 59
APPC mapped conversations 21
using ATI 21, 59
alternate facility 6
APPC
data stream 62
generalized data stream 62
mapping to APPC architecture 115, 125
APPC architecture
CICS mapping 125,132
CICS mapping to 125
deviations 139
APPC basic conversations
abnormal termination 66—-68
back-end transaction 59, 61
CDB data 64
CICS mapping to APPC verbs 125
CONFIRM option
GDS SEND command 64
CONVDATA fields 71
conversation data block (CDB) 71
ending one 69
flushing a CICS buffer 63
front-end transaction 59
GDS ALLOCATE command 71, 76
GDS ASSIGN command 61
GDS CONNECT PROCESS command 60, 76
GDS EXTRACT PROCESS command 60, 61, 76
GDS FREE command 68, 70, 77
GDS ISSUE ABEND command 66
GDS ISSUE ERROR command 67
GDS ISSUE SIGNAL command 66
GDS RECEIVE command 64, 73
GDS SEND command 62, 63
GDS WAIT command 63
INVITE option 64
RETCODE values 71

APPC basic conversations (continued)
session data and error codes 70
state transitions 77

APPC mapped conversations
abnormal termination 27
ALLOCATE command 21, 35
ASSIGN command 23
attaching partner transactions 22
CICS mapping to APPC verbs 132
CONNECT PROCESS command 22, 35
CONVERSE command 27, 28, 33, 35
ending one 30
EXTRACT PROCESS command 22, 23, 35
FREE command 30, 31, 35
front-end transaction 21
ISSUE ABEND command 27
ISSUE CONFIRMATION command 29
ISSUE ERROR command 28
RECEIVE command 33
SEND command 24, 49
starting 21

application design 7, 8

application program development
MRO conversations 47

application programming
APPC basic conversations 64
CICS mapping to APPC verbs 115, 125
LUTYPE6.1 conversations 92
MRO conversations 47
MRO distributed transaction processing 47, 55

ASP1 abend

ASP3 abend 103-105

ASPN abend 98

assembler language 72

ASSIGN command
APPC basic conversations 61
APPC mapped conversations 23
MRO conversations 49

asynchronous processing 3

ATCV abend
APPC mapped conversations 36
LUTYPE6.1 conversations 93, 143

ATI (automatic transaction initiation)
APPC basic conversations 59
APPC mapped conversations 21
LUTYPE6.1 conversations 87, 93
MRO conversations 47

attach request 5

attaching partner transactions
APPC basic conversations 60
APPC mapped conversations 22
LUTYPE6.1 conversations 87
MRO conversations 47

automatic transaction initiation (ATI)
APPC basic conversations 59
APPC mapped conversations 21
LUTYPE6.1 conversations 87, 93

Index 155

automatic transaction initiation (ATI) (continued)
MRO conversations 47

AZI1 abend
MRO conversations 55

back-end transaction
APPC basic conversations 59, 61
LUTYPE6.1 conversations 141
backing out changes
performance effect 7
to recoverable resources 7, 98
backout
effect on performance 7
of recoverable resources 7
basic conversations
command sequences 76
CONVDATA fields 71
conversation design 64
RETCODE values 71
session data and error codes 70
state transitions 77
structured fields 64
BUFFER option
GDS RECEIVE command 66
BUILD ATTACH command
LUTYPE6.1 conversations 87, 92
MRO conversations 47, 54

C

C language 72
CDB data 64, 68, 70
checking the conversation state of a transaction 26
CICS mapping to APPC architecture

deviations 125

deviations from APPC architecture 125
CICS-CICS communication 12, 18
CICS-to-CICS communication

application programming (MRO) 47, 55
CICS-to-IMS communication

application programming (LUTYPE6.1) 92
CICS-to-IMS sessions

session allocation 91
client/server model 6
command sequences

APPC basic conversations 76
commands

APPC basic conversations 76, 77

APPC mapped conversations 35

CICS-to-IMS sessions 92

LUTYPE6.1 conversations 92

MRO conversations 54

MRO mapped conversations 54, 55
committing changes

to recoverable resources 97
CONFIRM option

GDS SEND command 64, 67

SEND command (APPC mapped) 29
CONNECT PROCESS command

APPC basic conversations 60

APPC mapped conversations 22, 35

CONNECT PROCESS command (continued)
PARTNER option 22
PIPLENGTH option 22
PIPLIST option 22

CONVDATA fields 71

conversation data block (CDB)
layout 72

conversation state 4

conversations
definition 4

CONVERSE command
APPC mapped conversations 27, 28, 33, 35
LUTYPE®6.1 conversations 88, 90, 92
MRO conversations 52, 54, 55

CONVID option
APPC mapped conversations 23, 24
GDS CONNECT PROCESS command 60
LUTYPE6.1 conversations 87
WAIT command 24

D

data integrity 7

data streams, generalized
GDS for APPC 62

deferred transmission
APPC mapped conversations 24
MRO sessions 147

designing for recovery 9

deviations from APPC architecture 125

DFHCDBLK copybook 72

distributed process 5

distributed program link 2

distributed transaction processing (DTP)
application programming 47, 55, 92
CICS-to-CICS (LUTYPE6.1) 92
CICS-to-CICS (MRO) 47, 55
overview 1

distributed unit of work 7

DTP (distributed transaction processing) 3

DTP command 5

E

EIB fields
EIBATT
LUTYPE6.1 conversations 90
MRO conversations 48, 54
EIBCOMPL
APPC mapped conversations 33
LUTYPE6.1 conversations 90
MRO conversations 54
EIBCONF
APPC mapped conversations 29, 33
EIBEOC
APPC mapped conversations 33
EIBERR

APPC mapped conversations 24, 26, 28, 30, 32

EIBERRCD

APPC mapped conversations 24, 26, 28, 30, 32

EIBFMH
LUTYPE6.1 conversations 90
MRO conversations 54

156 CICS TS for z/OS: Distributed Transaction Programming Guide

EIB fields (continued)
EIBFREE
APPC mapped conversations 24, 28, 29, 32
LUTYPE6.1 conversations 90
MRO conversations 53
EIBNODAT
APPC mapped conversations 26, 33
EIBRCODE
APPC mapped conversations 32
LUTYPE®6.1 conversations 87, 88, 91
MRO conversations 53
EIBRECV
APPC mapped conversations 29, 33
LUTYPE6.1 conversations 90
MRO conversations 54
EIBRLDBK 98, 108, 110
EIBRSRCE
APPC mapped conversations 21
LUTYPE6.1 conversations 87, 91
EIBSIG
APPC mapped conversations 28, 32
LUTYPE6.1 conversations 89, 143
EIBSYNC
APPC mapped conversations 33
LUTYPE6.1 conversations 90
MRO conversations 53
EIBSYNRB
APPC mapped conversations 32, 33
MRO conversations 53
MRO conversations 51, 53
EIBATT flag
LUTYPE6.1 conversations 90
MRO conversations 48, 54
EIBCOMPL flag
APPC mapped conversations 33
LUTYPE6.1 conversations 90
MRO conversations 54
EIBCONF flag
APPC mapped conversations 29, 33
EIBEOC flag
APPC mapped conversations 33
EIBERR flag
APPC mapped conversations 24, 26
EIBERRCD field
APPC mapped conversations 24, 26, 28, 30, 32
EIBFMH flag
LUTYPE6.1 conversations 90
MRO conversations 54
EIBFREE flag
APPC mapped conversations 24, 28, 29,
LUTYPE6.1 conversations 90
MRO conversations 53
EIBNODAT flag
APPC mapped conversations 26, 33
EIBRCODE field
APPC mapped conversations 32
LUTYPE6.1 conversations 87-89
MRO conversations 53
EIBRECV flag
APPC mapped conversations 29, 33
LUTYPE6.1 conversations 90
MRO conversations 54
EIBRLDBK flag 98, 108, 110
EIBRSRCE field

‘ w

EIBRSRCE field (continued)
APPC mapped conversations 21
LUTYPE6.1 conversations 87, 91
EIBSIG flag
APPC mapped conversations 28, 32
LUTYPE®6.1 conversations 89, 143
EIBSYNC flag
APPC mapped conversations 33
LUTYPE6.1 conversations 90
MRO conversations 53
EIBSYNRB flag
APPC mapped conversations 32, 33
MRO conversations 53
ending a conversation
APPC basic sessions 69
APPC mapped session 30
LUTYPE6.1 sessions 89
MRO session 52
EXTRACT ATTACH command
LUTYPE6.1 conversations 88, 90, 92
MRO conversations 48, 54
EXTRACT ATTRIBUTES STATE command 5,10
EXTRACT PROCESS command
APPC basic conversations 60, 61, 76
APPC mapped conversations 22, 23, 35

F

failures
back-end transaction 24, 49, 61
conversation 64
intersystem session 4, 9
notification of 24, 62
FMH (function management header)
concatenated 54, 90
FREE command
APPC basic conversations 68, 70, 77
APPC mapped conversations 30, 31, 35
CICS-to-IMS sessions 92
LUTYPE®6.1 conversations 89, 90, 92
MRO conversations 52, 53, 55
front-end transaction
APPC basic conversations 59
APPC mapped conversations 21
LUTYPE6.1 conversations 141
LUTYPE®6.1 sessions (CICS-to-IMS) 90
function management header (FMH)
concatenated 54, 90
function shipping 2

G

GDS ALLOCATE command
APPC basic conversations 59
PARTNER option 60

GDS ASSIGN command 61

GDS CONNECT PROCESS command
PARTNER option 60
PIPLENGTH option 60
PIPLIST option 60

GDS EXTRACT PROCESS command 60, 61, 76

GDS FREE command 68, 77

GDS ISSUE ABEND command 66

Index 157

GDS ISSUE CONFIRMATION command 68
GDS ISSUE ERROR command 67
GDS ISSUE PREPARE command 97
GDS ISSUE SIGNAL command 66
GDS RECEIVE command
BUFFER option 66
LLID option 65
GDS SEND command 62
GDS WAIT command 60, 63
generalized data stream (GDS)
GDS for APPC 62

H

header, function management 88, 90, 149

I

integrity of data 7
INVITE option

GDS SEND command 64

SEND command (APPC mapped) 25

SEND command (LUTYPE6.1) 88
ISSUE ABEND command

APPC basic conversations 66

APPC mapped conversations 27
ISSUE CONFIRMATION command

APPC basic conversations 68

APPC mapped conversations 29
ISSUE ERROR command

APPC basic conversations 67

APPC mapped conversations 28
ISSUE PREPARE command 97
ISSUE SIGNAL command

APPC basic conversations 66

LUTYPE6.1 sessions (CICS-to-IMS) 92

L

LAST option
APPC sessions
with syncpointing 148
MRO sessions
with syncpointing 148
LLID option
GDS RECEIVE command 65
LUTYPEG.1 conversations
ALLOCATE command 87, 90, 92
attaching partner transactions 87
back-end transaction 141
BUILD ATTACH command 87

CICS-to-CICS application ﬁgramming 92

CONVERSE command 88, 90, 92
CONVID option 87

ending one 89

EXTRACT ATTACH command 88, 90, 92
FREE command 89, 90, 92

front-end transaction 141

RECEIVE command 92

SEND command 88, 92

M

mapping to APPC architecture
basic (unmapped) conversations 125
control operator verbs 116
deviations 125
mapped conversations 132
migration
LUTYPE®6.1 programs on APPC links 141
migration mode 141
model
client/server 6
peer-to peer 6
MRO conversations
ALLOCATE command 47, 54
ASSIGN command 49
attaching partner transactions 47
BUILD ATTACH command 47, 54
CONVERSE command 52, 54, 55
ending one 52
EXTRACT ATTACH command 48, 54
FREE command 52, 53, 55
RECEIVE command 54
Multi-Region Operation (MRO)

CICS-to-CICS application programming 47, 55

N

NOQUEUE option
ALLOCATE command

LUTYPE®6.1 sessions (CICS-to-IMS) 91

P

PARTNER option
ALLOCATE command 21
CONNECT PROCESS command 22
GDS ALLOCATE command 60
GDS CONNECT PROCESS command 60
peer-to-peer model 6

persistent session support, z/OS Communications Server 12,

21,59
PIP data
format of 22, 60
PIPLENGTH option
CONNECT PROCESS command 22
GDS CONNECT PROCESS command 60
PIPLIST option
CONNECT PROCESS command 22
GDS CONNECT PROCESS command 60
preparing a partner for syncpoint 97
principal facility 6
PROFILE option
ALLOCATE command

LUTYPE6.1 sessions (CICS-to-IMS) 91

ALLOCATE command (MRO) 47, 54
program development

MRO conversations 47
programming

MRO conversations 47
PSDINT, system initialization parameter 12

158 CICS TS for z/OS: Distributed Transaction Programming Guide

R SYSID option (continued)
GDS ALLOCATE command (continued)

RECEIVE command APPC basic conversations 59
APPC basic conversations 64, 73 system initialization parameters
APPC mapped conversations 33 PSDINT 12
LUTYPE®6.1 conversations 92 Systems Network Architecture (SNA) 7
MRO conversations 54

recoverable resources T
canceling changes to 7, 98
committing changes to 7, 97 termination, abnormal

RETCODE values 71 APPC basic conversations 66, 70

rollback 7 APPC mapped conversations 27, 29, 31

RTIMOUT attribute LUTYPE®6.1 conversations 89
PROFILE definition 31, 33 MRO conversations 53

testing the conversation state 36

S transaction routing 3

transactions

SEND command back-end 5, 10
APPC basic conversations 62 front-end 5, 10
APPC mapped conversations 24, 25, 49
CONFIRM option U

APPC mapped conversations 29
!_UTYPEé.i.L conversations 88, 92 unit of work (UOW) 7

session allocapon . UOW (unit of work)) 7
APPC basic conversations 59 -

LUTYPE®6.1 conversations 91

SESSION option W
ALLOCATE command (LUTYPE6.1) 91

sessions WAIT command

APPC basic conversations 60, 63
APPC mapped conversations 22, 24
LUTYPE6.1 conversations 88, 92
WAIT option
GDS SEND command 63
LUTYPE®6.1 conversations 89
SEND command
MRO conversations 53
SEND command (LUTYPE6.1) 88
WAIT option (APPC mapped)
SEND command 24
WAIT SIGNAL command 88

allocating under ATI 21, 59
what they are 5
SNA (Systems Network Architecture) 7
state of a conversation 4
STATE option
GDS ALLOCATE command
APPC basic conversations 59
state tables
APPC basic conversations
sync level 0 79
sync level 1 80
sync level 2 83
APPC mapped conversations

sync level 0 37 Z
sync level 1 39
sync level 2 42 z/0S Communications Server
LUTYPE®6.1 conversations persistent session support 12, 21, 59

migration mode 143
MRO conversations 56
state transitions
APPC basic conversations 77
state variable 5
sync level 7
synchronization
levels of 7
synchronization levels 16
syncpoint
preparing a partner for 97
SYNCPOINT command 97
SYNCPOINT ROLLBACK command
APPC basic conversations 76
SYSID option
ALLOCATE command
LUTYPE®6.1 sessions (CICS-to-IMS) 91
GDS ALLOCATE command

Index 159

160 CICS TS for z/OS: Distributed Transaction Programming Guide

	Contents
	About this PDF
	Chapter 1. Distributed transaction processing
	Overview of DTP
	Advantages over function shipping and transaction routing
	Why distributed transaction processing?
	DTP’s place in the CICS intercommunication facilities
	What is DTP?
	Conversations
	Conversation states

	Sessions

	Distributed processes
	Maintaining data integrity
	Synchronization levels

	Designing distributed processes
	Structuring distributed transactions
	Designing conversations
	Selecting the protocol

	APPC protocol
	Selecting the APPC conversation type
	Effect of z/OS Communications Server persistent sessions support for DTP conversations on APPC sessions

	What is a conversation and what makes it necessary?
	Conversation initiation and transaction hierarchy
	Dialog between two transactions
	Control flows and brackets
	Conversation state and error detection
	Synchronization
	Examples of use
	Taking syncpoints
	The three sync levels

	MRO or APPC for DTP?
	APPC mapped or basic?
	EXEC CICS or CPI Communications?

	Chapter 2. Writing programs for APPC mapped conversations
	Conversation initiation
	Allocating a session to the conversation
	Using ATI to allocate a session
	Connecting the partner transaction
	Initial data for the back-end transaction

	Back-end transaction initiation
	What happens if the back-end transaction fails to start

	Transferring data on the conversation
	Sending data to the partner transaction
	Switching from sending to receiving data
	Receiving data from the partner transaction
	The CONVERSE command

	Communicating errors across a conversation
	Requesting INVITE from the partner transaction
	Demanding INVITE from the partner transaction

	Safeguarding data integrity
	How to synchronize a conversation using CONFIRM commands
	Requesting confirmation
	Receiving and replying to a confirmation request
	Checking the response to SEND CONFIRM

	How to synchronize conversations using SYNCPOINT commands

	Ending the conversation
	Normal termination of a conversation
	Emergency termination of a conversation
	Unexpected termination of a conversation

	Checking the outcome of a DTP command
	Checking EIB fields and the conversation state

	Summary of CICS commands for APPC mapped conversations
	State transitions in APPC mapped conversations
	How to use the state tables
	Initial conversation states
	Testing the conversation state
	State tables for APPC mapped conversations at sync level 0
	State tables for APPC mapped conversations at sync level 1
	State tables for APPC mapped conversations at sync level 2

	Chapter 3. Writing programs for MRO conversations
	MRO conversation flow
	Conversation initiation
	Allocating a session to the conversation
	Using ATI to allocate a session
	Connecting the partner transaction

	Back-end transaction initiation
	Transferring data on the conversation
	Sending data to the partner transaction
	Switching from sending to receiving data
	Receiving data from the partner transaction
	The CONVERSE command

	Safeguarding data integrity
	Ending the conversation
	Ending a conversation normally
	Unexpected termination of a conversation

	Checking the outcome of a DTP command
	Checking EIB fields and the conversation state

	Summary of commands for MRO conversations

	State transitions in MRO conversations
	How to use the state table
	Initial conversation states
	Testing the conversation state
	State tables for MRO conversations

	Chapter 4. Writing programs for APPC basic conversations
	Conversation initiation
	Allocating a session to the conversation
	Using ATI to allocate a session
	Connecting the partner transaction
	Initial data for the back-end transaction

	Back-end transaction initiation
	What happens if the back-end transaction fails to start
	Sending data to the partner transaction
	Switching from sending to receiving data

	Receiving data from the partner transaction
	Receiving data by the record
	Receiving data by the buffer

	Communicating errors across a conversation
	Requesting INVITE from the partner transaction
	Demanding INVITE from the partner transaction

	Safeguarding data integrity
	How to synchronize conversations using CONFIRM commands
	Requesting confirmation
	Receiving and replying to a confirmation request
	Checking the response to GDS SEND CONFIRM

	Ending the conversation
	Normal termination of a conversation
	Emergency termination of a conversation
	Unexpected termination of a conversation

	Checking the outcome of GDS commands
	Testing for request failure
	Testing indicators
	Checking CONVDATA fields and the conversation state

	Summary of commands for APPC basic conversations
	State transitions in APPC basic conversations
	How to use the state tables
	Initial conversation states
	Testing the conversation state
	State tables for APPC basic conversations at sync level 0
	State tables for APPC basic conversations at sync level 1
	State tables for APPC mapped conversations at sync level 2

	Chapter 5. Writing programs for LUTYPE6.1 conversations
	Conversation initiation
	Allocating a session to the conversation
	Connecting the partner transaction

	Back-end transaction initiation
	Transferring data on the conversation
	Sending data to the partner transaction
	Switching from sending to receiving data
	Receiving data from the partner transaction
	Waiting for a signal
	Combining sending and receiving
	Communicating errors across a conversation
	Safeguarding data integrity

	Ending the conversation
	Ending a conversation normally
	Unexpected termination of a conversation

	Checking the outcome of a DTP command
	Considerations for the front-end transaction
	Session allocation
	The session identifier

	Summary of commands for LUTYPE6.1 conversations
	State transitions in LUTYPE6.1 conversations
	How to use the state table
	Initial states
	Testing the conversation state
	State tables for LUTYPE6.1 conversations

	Chapter 6. Syncpointing a distributed process
	Syncpointing a distributed process
	The SYNCPOINT command
	The ISSUE PREPARE command
	The SYNCPOINT ROLLBACK command
	When a backout is required
	Synchronizing two CICS systems
	SYNCPOINT in response to SYNCPOINT
	SYNCPOINT in response to ISSUE PREPARE
	SYNCPOINT ROLLBACK in response to SYNCPOINT ROLLBACK
	SYNCPOINT ROLLBACK in response to SYNCPOINT
	SYNCPOINT ROLLBACK in response to ISSUE PREPARE
	ISSUE ERROR in response to SYNCPOINT
	ISSUE ERROR in response to ISSUE PREPARE
	ISSUE ABEND in response to SYNCPOINT
	ISSUE ABEND in response to ISSUE PREPARE
	Session failure in response to SYNCPOINT
	Session failure in response to ISSUE PREPARE
	Session failure in response to SYNCPOINT ROLLBACK

	Synchronizing three or more CICS systems
	SYNCPOINT in response to SYNCPOINT
	SYNCPOINT ROLLBACK in response to SYNCPOINT
	Session failure and the indoubt period

	What really flows between APPC systems

	Appendix A. CICS mapping to the APPC architecture
	Supported option sets
	CICS implementation of control operator verbs
	Control operator verbs
	Return codes for control operator verbs

	CICS deviations from APPC architecture
	APPC transaction routing deviations from APPC architecture

	CICS mapping to the APPC verbs
	Command mapping for APPC basic conversations
	Return codes for APPC basic conversations

	Command mapping for APPC mapped conversations
	Return codes for APPC mapped conversations

	CICS deviations from the APPC architecture
	Effects of CICS deviations on the transaction programmer

	Appendix B. Migration of LUTYPE6.1 applications to APPC links
	Migration mode
	State transitions in LUTYPE6.1 migration-mode conversations
	State tables for LUTYPE6.1 migration-mode conversations

	Appendix C. Differences between APPC mapped and MRO conversations
	Different treatment of command sequences
	Using the LAST option
	The LAST option and syncpoint flows on APPC sessions
	The LAST option and syncpoint flows on MRO sessions

	Appendix D. Below the SNA interface
	SNA indicators and records
	Request mode and responses
	When SNA indicators are transmitted

	Notices
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	L
	M
	N
	P
	R
	S
	T
	U
	W
	Z

