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About this PDF

This PDF describes the debugging tools interfaces for CICS Transaction Server for z/OS: the debugging
tools socket interfaces and the debugging tools pattern matching interface. These interfaces are
assembler language programming interfaces that allow debugging tools to use CICS functions that are not
available in the application programming interface.

For details of the terms and notation used in this book, see Conventions and terminology used in the CICS
documentation in IBM Knowledge Center.

Date of this PDF

This PDF was created on January 20th 2020.
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Chapter 1. The debugging tools sockets interface
The debugging tools sockets interface is an interface that debugging tools can use to communicate with a
debugger client. It uses the support for TCP/IP provided by the CICS sockets domain.

The interface supports a limited number of socket calls used in a restricted way, and is not a full function
application programming interface. The interface is not optimized for concurrent use.

The client set of functions that are explained in the interface support both IPv4 and IPv6 addressing;
however, the server set of functions support IPv4 addressing only.

Setting up CICS to use the debugging tools sockets interface
To use the debugging tools sockets interface, you must set a system initialization parameter.

About this task

To use the debugging tools sockets interface:

• Specify TCPIP=YES in your system initialization parameters.

The debugging tools sockets interface does not use a TCPIPSERVICE definition; however, you must
ensure that the port numbers that you use for the sockets interface are different from those that you
define in your TCPIPSERVICEs.

Using the debugging tools sockets interface
The debugging tools sockets interface supports the protocols between a TCP/IP client and a TCP/IP
server.

About this task

The protocols are shown in Figure 1 on page 2. 

© Copyright IBM Corp. 1974, 2019 1



Figure 1. Protocols between client and server

In addition, the client and the server can issue the following calls:

GETHOSTID
GETHOSTBYNAME
GETSOCKNAME

The WRITE and READ calls can be repeated as often as required, and can be used to send data in either
direction.

Code page conversion
The debugging tools sockets interface does not provide data conversion between ASCII and EBCDIC code
pages.

It is your responsibility to provide the necessary conversion between the EBCDIC code page use in your
CICS system and the code page used in the debugging client.

Environmental restrictions and programming requirements
Environmental restrictions and programming requirements apply to the debugging tools sockets
interface.

SRB mode
The interface can only be invoked in TCB mode (task mode).

Cross-memory mode
The interface can only be invoked in a non-cross-memory environment (PASN=SASN=HASN).

Functional Recovery Routine (FRR)
The interface cannot be invoked this interface with an FRR set. Doing so will cause system recovery
routines to be bypassed and severely damage the system.

Storage
Storage acquired for the purpose of containing data returned from a socket call must be obtained in
the same key as the program status word (PSW) at the time of the socket call.
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Nested socket calls
You can not issue nested socket calls within the same task. That is, if a request block (RB) issues a
socket call and is interrupted by an interrupt request block (IRB) in an STIMER exit, any additional
socket calls that the IRB attempts to issue are detected and flagged as an error.

CALL instruction programming interface
These topics describe the general form of the CALL instruction for programs written in Assembler. The
format and parameters are described for each socket call.

The entry point for the CICS Sockets Extended module (DFHSOKET) is within the DFHSOCI module, which
should be included explicitly in your link-editing JCL.

Assembler language Call Format
Use the following ‘DFHSOKET' call format for assembler language programs in order to meet the CICS
requirement for quasi-reentrant programming.

CALL DFHSOKET,(SOC_FUNCTION, parm1, parm2, ...

ERRNO RETCODE),VL,MF=(E, PARMLIST)

PARMLIST
A remote parameter list defined in dynamic storage DFHEISTG. This list contains addresses of the
parameters that are referenced by the CALL.

Code CALL Instructions
These topics contain the description, syntax, parameters, and other related information for each call
instruction included in the debugging tools sockets interface.

ACCEPT
A server issues the ACCEPT call to accept a connection request from a client. The call points to a socket
that was previously created with a SOCKET call and marked by a LISTEN call.

The ACCEPT call is a blocking call. When issued, the ACCEPT call performs these functions:

1. Accepts the first connection on a queue of pending connections.
2. Creates a new socket with the same properties as an existing socket, and returns its descriptor in

RETCODE. The original sockets remain available to the calling program to accept more connection
requests.

3. The address of the client is returned in NAME for use by subsequent server calls.

Note:

1. If the queue has no pending connection requests, ACCEPT blocks the socket.
2. The interface does not screen clients. As a result, the program must control which connection

requests it accepts, but it can close a connection immediately after discovering the identity of the
client.

Example of ACCEPT call

SOC_FUNCTION DC   CL16'ACCEPT'
S            DS   H
NAME         DS   0XL16
FAMILY       DS   H
PORT         DS   H
IP_ADDRESS   DS   F
RESERVED     DS   CL8
ERRNO        DS   F
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RETCODE      DS   F
 
             CALL DFHSOKET,(SOC_FUNCTION,S,NAME,ERRNO,RETCODE)

Input parameters
SOC_FUNCTION

A 16-byte character field containing ACCEPT. Left-justify the field and pad it on the right with blanks.
S

A halfword binary number specifying the descriptor of a socket that was previously created with a
SOCKET call. In a concurrent server, the server listens on this socket.

Output parameters
NAME

A socket address structure that contains the client socket address.
FAMILY

A halfword binary field specifying the addressing family. The call returns 2 for the AF_INET socket.
For more information on AF_INET and AF_INET6, see the z/OS Communications Server: IP
Configuration Guide.

PORT
A halfword binary field that is set to the client port number.

IP_ADDRESS
A fullword binary field that is set to the 32-bit IPv4 address, in network byte order, of the client
host machine. IPv6 addressing is not supported.

RESERVED
Specifies 8 bytes of binary zeros. This field is required, but not used.

ERRNO
A fullword binary field. If RETCODE is negative, the field contains an error number. See “Return
codes” on page 18 for information about ERRNO return codes.

RETCODE
If the RETCODE value is positive, the RETCODE value is the new socket number.

If the RETCODE value is negative, check the ERRNO field for an error number.

BIND
In a typical server program, the BIND call follows a SOCKET call and completes the process of creating a
new socket.

The BIND call can either specify the required port or let the system choose the port. A listener program
always binds to the same well-known port, so that clients know which socket address to use when
attempting to connect.

The BIND call can specify the networks from which it will accept connection requests. The program can
fully specify the network interface by setting the ADDRESS field to the internet address of a network
interface. Alternatively, the program can use a wildcard to specify that it will receive connection requests
from any network interface. Set the ADDRESS field to a fullword of zeros for a wildcard.

Example of BIND call

SOC_FUNCTION DC   CL16'BIND'
S            DS   H
NAME         DS   0XL16
FAMILY       DS   H
PORT         DS   H
IP_ADDRESS   DS   F
RESERVED     DS   CL8
ERRNO        DS   F
RETCODE      DS   F
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             CALL DFHSOKET,(SOC_FUNCTION,S,NAME,ERRNO,RETCODE)

Input parameters
SOC_FUNCTION

A 16-byte character field containing BIND. The field is left-justified and padded to the right with
blanks.

S
A halfword binary number specifying the socket descriptor for the socket to be bound.

NAME
Specifies the socket address structure for the socket that is to be bound.
FAMILY

A halfword binary field specifying the addressing family. The call returns 2 for the AF_INET socket.
For more information on AF_INET and AF_INET6, see the z/OS Communications Server: IP
Configuration Guide.

PORT
A halfword binary field that is set to the port number to which you want the socket to be bound.

Note: If PORT is set to 0 when the call is issued, the system assigns the port number for the
socket. The program can call the GETSOCKNAME call after the BIND call to discover the assigned
port number.

IP_ADDRESS
A fullword binary field that is set to the 32-bit IPv4 address (network byte order) of the socket to
be bound. IPv6 addressing is not supported.

RESERVED
Specifies an 8-byte character field that is required but not used.

Output parameters
ERRNO

A fullword binary field. If RETCODE is negative, this field contains an error number. See “Return
codes” on page 18, for information about ERRNO return codes.

RETCODE
A fullword binary field that returns one of the following:
Value

Description
0

Successful call
-1

Check ERRNO for an error code

CLOSE
The CLOSE call shuts down a socket and frees all resources allocated to it. If the socket refers to an open
TCP connection, the connection is closed.

After an unsuccesful socket call, a CLOSE should be issued and a new socket should be opened. An
attempt to use the same socket with another call results in a nonzero return code.

Example of CLOSE call

SOC_FUNCTION DC  CL16'CLOSE'
S            DS  H
ERRNO        DS  F
RETCODE      DS  F
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    CALL DFHSOKET,(SOC_FUNCTION,S,ERRNO,RETCODE)

Input parameters
SOC_FUNCTION

A 16-byte field containing CLOSE. Left-justify the field and pad it on the right with blanks.
S

A halfword binary field containing the descriptor of the socket to be closed.

Output parameters
ERRNO

A fullword binary field. If RETCODE is negative, this field contains an error number. See “Return
codes” on page 18, for information about ERRNO return codes.

RETCODE
A fullword binary field that returns one of the following:
Value

Description
0

Successful call
-1

Check ERRNO for an error code

CONNECT
The CONNECT call is issued by a client to establish connection with a server.

The call performs the following two tasks:

1. Completes the binding process if a BIND call has not been previously issued.
2. Attempts to make a connection to a remote socket. This connection is necessary before data can be

transferred.

The following call sequence is issued by the client and server:

1. The server issues BIND and LISTEN calls to create a passive open socket.
2. The client issues a CONNECT call to request the connection.
3. The server accepts the connection on the passive open socket, creating a new connected socket.

The CONNECT call blocks the calling program until the connection is established or until an error is
received. The completion cannot be checked by issuing a second CONNECT call.

Example of CONNECT call

SOC_FUNCTION DC  CL16'CONNECT'
S            DS  H
NAME         DS  0XL28
FAMILY       DS  H
PORT         DS  H
IP_ADDRESS   DS  CL16
RESERVED     DS  CL8
ERRNO        DS  F
RETCODE      DS  F
 
 
    CALL DFHSOKET,(SOC_FUNCTION,S,,NAME,ERRNO,RETCODE)

Input parameters
SOC_FUNCTION

A 16-byte field containing CONNECT. Left-justify the field and pad it on the right with blanks.
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S
A halfword binary number specifying the socket descriptor of the socket that is to be used to establish
a connection.

NAME
A structure that contains the socket address of the target to which the local client socket is to be
connected.
FAMILY

A halfword binary field specifying the addressing family. FAMILY must match the value assigned to
the AF field used in the SOCKET function request.

PORT
A halfword binary field that is set to the server port number in network byte order. For example, if
the port number is 5000 in decimal, it is stored as X'1388' in hex.

IP_ADDRESS
A 16-byte field that is set to the IPv4 or IPv6 internet address of the socket to be bound. If
FAMILY is set to 2 (denoting an AF_NET socket), the address is an IPv4 address and the first 4
bytes of IP_ADDRESS are used. For more information on AF_INET and AF_INET6, see the z/OS
Communications Server: IP Configuration Guide.

RESERVED
Specifies an 8-byte reserved field. This field is required, but is not used.

Output parameters
ERRNO

A fullword binary field. If RETCODE is negative, this field contains an error number. See “Return
codes” on page 18 for information about ERRNO return codes.

RETCODE
A fullword binary field that returns one of the following values:
Value

Description
0

Successful call
-1

Check ERRNO for an error code

FREEADDRINFO
The FREEADDRINFO call frees the storage that was acquired by the z/OS Communications Server when
the GETADDRINFO call was issued.

Example of FREEADDRINFO call

SOC_FUNCTION DC   CL16'FREEADDRINFO'
RESULTS      DS   A
ERRNO        DS   F
RETCODE      DS   F
 
             CALL DFHSOKET,(SOC_FUNCTION,RESULTS,ERRNO,RETCODE)

Input parameters
SOC_FUNCTION

A 16-byte character field containing FREEADDRINFO. Left-justify the field and pad it on the right with
blanks.
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RESULTS
The name of a fullword field that contains a pointer to an Addr_Info structure or a linked list of
Addr_Info structures returned by the GETADDRINFO command issued by the z/OS Communications
Server.

Output parameters
ERRNO

A fullword binary field. If RETCODE is negative, the field contains an error number. For a list of return
code values for FREEADDRINFO, see z/OS Communications Server: IP and SNA Codes.

RETCODE
A fullword binary field that returns one of the following values:
Value

Description
0

Successful call
-1

An error occurred.

GETADDRINFO
The GETADDRINFO call returns the 32-bit internet address for the current host from the GETADDRINFO
command that is issued by z/OS Communications Server to resolve host or service name information. This
command translates the name of a service location (host name) or a service name.

Example of GETADDRINFO call

SOC_FUNCTION DC   CL16'GETADDRINFO'
NAME         DS   CL255
NAMELEN      DS   F
SERVICE      DS   CL32
SERVICELEN   DS   F

HINTS        DS   A
RESULTS      DS   A
CANONICALLEN DS   F
ERRNO        DS   F
RETCODE      DS   F
 
             CALL DFHSOKET,(SOC_FUNCTION,NAME,NAMELEN,SERVICE,SERVICELEN,HINTS,
RESULTS,CANONICALLEN,ERRNO,RETCODE)

Input parameters
SOC_FUNCTION

A 16-byte character field containing GETADDRINFO. The field is left-justified and padded on the right
with blanks.

NAME
NAME is returned as one of the following strings:

• An EBCDIC character string, up to 255 characters long, set to the node name (host name) that is
being queried.

• An EBCDIC character string set to the IP address of the node (host) where the service resides.

NAMELEN
The name of a fullword that contains the length of the NAME parameter.

SERVICE
SERVICE is returned as one of the following strings:

• An EBCDIC character string, up to 32 characters long, set to the service name that is being queried.
• An EBCDIC character string set to the port number of the required service.
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SERVICELEN
The name of a fullword that contains the length of the SERVICE parameter.

HINTS
The name of a field that contains a pointer to a z/OS Communications Server input Addr_Info
structure. The following fields can be specified in the Addr_Info structure:

• A set of flags (ai_flags) for interpreting the request. Here are the flags:

– AI_PASSIVE
– AI_CANONNAMEOK
– AI_NUMERICHOST
– AI_NUMERICSERV
– AI_V4MAPPED
– AI_ALL
– AI_ADDRCONFIG

For more information about ai_flags, see the Parameters topic in the z/OS Communications
Server: IP CICS Sockets Guide.

• The address family (ai_family) that the caller expects to be returned by the resolver. Here are the
address families:

– AF_UNSPEC
– AF_INET
– AF_INET6

• The socket type (ai_socktype) that the caller can accept as a response.
• The protocol (ai_protocol) that the caller can accept as a response.

All other fields in the Addr_Info structure must be set to zero.

If the HINTS parameter is not specified; that is, HINT is set to zero, the following settings are used:

• All flags are set to off.
• Address family is set to AF_UNSPEC.
• Socket type is set to 0.
• Protocol is set to 0.

Output parameters
RESULTS

The name of a field that contains a pointer to an output Addr_Info structure. If more than one
address is returned, this field contains a linked list of output Addr_Info structures. Each output
Addr_Info structure contains the following information about the information returned in the
Addr_Info structure:

• A set of flags (ai_flags) for interpreting the address.
• The address family (ai_family) for the address.
• The socket type (ai_socktype) for the address.
• The protocol (ai_protocol) for the address.
• The length (ai_addrlen) of the sock_inet_sockaddr or sock_inet6_sockaddr structure

returned in the ai_addr field.
• The canonical name (ai_canonname) associated with the NAME input parameter, if NAME was

requested using the input AI_CANONNAMEOK flag. If more than one Addr_Info structure is
returned, the canonical name is supplied in the first Addr_Info structure only.
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CANONICALLEN
The name of a fullword binary field that contains the length of the canonical name that was returned
in the first Addr_Info structure pointed to by the RESULTS parameter.

ERRNO
A fullword binary field. If RETCODE is negative, ERRNO contains an error number. For a list of return
code values for GETADDRINFO, see z/OS Communications Server: IP and SNA Codes.

RETCODE
A fullword binary field that returns one of the following values:
Value

Description
0

Successful call
-1

An error occurred.

GETHOSTBYNAME
The GETHOSTBYNAME call returns the alias name and the internet address of a host whose domain name
is specified in the call. A given host can have multiple alias names and multiple host internet addresses.

The debugging tools sockets interface tries to resolve the host name through a name server.

Example of GETHOSTBYNAME call

SOC_FUNCTION DC   CL16'GETHOSTBYNAME'
NAMELEN      DS   F
NAME         DS   CL255
HOSTENT      DS   F
RETCODE      DS   F
 
             CALL DFHSOKET,(SOC_FUNCTION,NAMELEN,NAME,HOSTENT,RETCODE)

Input parameters
SOC_FUNCTION

A 16-byte character field containing 'GETHOSTBYNAME'. The field is left-justified and padded on the
right with blanks.

NAMELEN
A value set to the length of the host name.

NAME
A character string, up to 255 characters, set to a host name. This call returns the address of the
HOSTENT structure for this name.

Output parameters
HOSTENT

A fullword binary field that contains the address of the HOSTENT structure.
RETCODE

A fullword binary field that returns one of the following:
Value

Description
0

Successful call
-1

An error occurred
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The HOSTENT structure

Figure 2. HOSTENT structure returned by the GETHOSTYBYNAME call

GETHOSTBYNAME returns the HOSTENT structure shown in Figure 2 on page 11. This structure contains:

• The address of the host name that is returned by the call. The name length is variable and is ended by
X'00'.

• The address of a list of addresses that point to the alias names returned by the call. This list is ended by
the pointer X'00000000'. Each alias name is a variable length field ended by X'00'.

• The value returned in the FAMILY field is always 2 for AF_INET.
• The length of the host internet address returned in the HOSTADDR_LEN field is always 4 for AF_INET.
• The address of a list of addresses that point to the host internet addresses returned by the call. The list

is ended by the pointer X'00000000'. If the call cannot be resolved, the HOSTENT structure contains
the ERRNO 10214.

GETHOSTID
The GETHOSTID call returns the 32-bit internet address for the current host.

Example of GETHOSTID call

SOC_FUNCTION DC   CL16'GETHOSTID'
RETCODE      DS   F
 
             CALL DFHSOKET,(SOC_FUNCTION,RETCODE)

Input parameters
SOC_FUNCTION

A 16-byte character field containing 'GETHOSTID'. The field is left-justified and padded on the right
with blanks.

Output parameters
RETCODE

Returns a fullword binary field containing the 32-bit internet address of the host. There is no ERRNO
parameter for this call.

Chapter 1. The debugging tools sockets interface  11



GETSOCKNAME
The GETSOCKNAME call returns the address currently bound to a specified socket. If the socket is not
currently bound to an address, the call returns with the FAMILY field set, and the rest of the structure set
to 0.

Since a socket is not assigned a name until after a successful call to either BIND, CONNECT, or ACCEPT,
the GETSOCKNAME call can be used after an implicit bind to discover which port was assigned to the
socket.

Example of GETSOCKNAME call

SOC_FUNCTION DC   CL16'GETSOCKNAME'
S            DS   H
NAME         DS   0XL16
FAMILY       DS   H
PORT         DS   H
IP_ADDRESS   DS   F
RESERVED     DS   CL8
ERRNO        DS   F
RETCODE      DS   F
 
             CALL DFHSOKET,(SOC_FUNCTION,S,NAME,ERRNO,RETCODE)

Input parameters
SOC_FUNCTION

A 16-byte character field containing GETSOCKNAME. The field is left-justified and padded on the right
with blanks.

S
A halfword binary number set to the descriptor of a local socket whose address is required.

Output parameters
NAME

Specifies the socket address structure returned by the call.
FAMILY

A halfword binary field containing the addressing family. The call always returns the value 2,
indicating AF_INET.

PORT
A halfword binary field set to the port number bound to this socket. If the socket is not bound,
zero is returned.

IP_ADDRESS
A fullword binary field set to the 32-bit internet address of the local host machine.

RESERVED
Specifies eight bytes of binary zeros. This field is required but not used.

ERRNO
A fullword binary field. If RETCODE is negative, the field contains an error number. See “Return
codes” on page 18 for information about ERRNO return codes.

RETCODE
A fullword binary field that returns one of the following:
Value

Description
0

Successful call
-1

Check ERRNO for an error code
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INITAPI
The INITAPI call connects a program to the debugging tools sockets interface. All sockets programs must
issue the INITAPI call before they issue other sockets calls.

Example of INITAPI call

SOC_FUNCTION DC   CL16'INITAPI'
MAXSOC       DS   H
IDENT        DS   0CL16
TCPNAME      DS   CL8
ADSNAME      DS   CL8
SUBTASK      DS   CL8
MAXSNO       DS   F
ERRNO        DS   F
RETCODE      DS   F
 
             CALL DFHSOKET,(SOC_FUNCTION,MAXSOC,IDENT,SUBTASK,MAXSNO,ERRNO,RETCODE)

Input parameters
SOC_FUNCTION

A 16-byte character field containing INITAPI. The field is left-justified and padded on the right with
blanks.

MAXSOC
A halfword binary field set to the maximum number of sockets this program will ever have open at one
time. The maximum number is 2000 and the minimum number is 50. This value is used to determine
the amount of memory that will be allocated for socket control blocks and buffers. If fewer than 50
sockets are requested, MAXSOC defaults to 50.

Note: This is not the same as the MAXSOCKETS system initialization parameter.

IDENT
A structure containing the identities of the address space and the calling program’s address space.
Specify IDENT on the INITAPI call from an address space.
TCPNAME

Reserved — do not specify a value in this field.
ADSNAME

An 8-byte character field. Specify the name of the CICS startup job.
SUBTASK

Specify a null value (X'00000000') for this parameter.

Output parameters
MAXSNO

A fullword binary field that contains the highest socket number assigned to this program. The lowest
socket number is zero. If you have 50 sockets, they are numbered from 0 to 49. If MAXSNO is not
specified, the value for MAXSNO is 49.

ERRNO
A fullword binary field. If RETCODE is negative, the field contains an error number. See “Return
codes” on page 18 for information about ERRNO return codes.

RETCODE
A fullword binary field that returns one of the following:
Value

Description
0

Successful call
-1

Check ERRNO for an error code
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LISTEN
The LISTEN call completes the bind, if BIND has not already been called for the socket, and creates a
connection-request queue of a specified length for incoming connection requests.

Restriction: The LISTEN call is not supported for datagram sockets or raw sockets.

The LISTEN call is used by a server to receive connection requests from clients. When a connection
request is received, a new socket is created by a subsequent ACCEPT call, and the original socket
continues to listen for additional connection requests. The LISTEN call converts an active socket to a
passive socket and conditions it to accept connection requests from clients. Once a socket becomes
passive, it cannot initiate connection requests.

Example of LISTEN call

SOC_FUNCTION DC   CL16'LISTEN'
S            DS   H
BACKLOG      DS   F
ERRNO        DS   F
RETCODE      DS   F
 
             CALL DFHSOKET,(SOC_FUNCTION,S,BACKLOG,ERRNO,RETCODE)

Input parameters
SOC_FUNCTION

A 16-byte character field containing LISTEN. The field is left-justified and padded to the right with
blanks.

S
A halfword binary number set to the socket descriptor.

BACKLOG
A fullword binary number set to the number of communication requests to be queued. Specify a value
of 5 for this parameter.

Output parameters
ERRNO

A fullword binary field. If RETCODE is negative, the field contains an error number. See “Return
codes” on page 18 for information about ERRNO return codes.

RETCODE
A fullword binary field that returns one of the following:
Value

Description
0

Successful call
-1

Check ERRNO for an error code

READ
The READ call reads the data on a socket.

Data is processed as streams of information with no boundaries separating the data. For example, if
programs A and B are connected and program A sends 1000 bytes, each call to this function can return
any number of bytes up to the entire 1000 bytes. The number of bytes returned will be contained in
RETCODE. Therefore, programs should place this call in a loop that repeats until all data has been
received.
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Example of READ call

SOC_FUNCTION DC  CL16'READ'
S            DS   H
NBYTE        DS   F
BUF          DS   CL(length of buffer).
ERRNO        DS   F
RETCODE      DS   F
 
             CALL DFHSOKET,(SOC_FUNCTION,S,NBYTE,BUF,ERRNO,RETCODE)

Input parameters
SOC_FUNCTION

A 16-byte character field containing READ. The field is left-justified and padded to the right with
blanks.

S
A halfword binary number set to the socket descriptor of the socket that is going to read the data.

NBYTE
A fullword binary number set to the size of BUF. READ does not return more than the number of bytes
of data in NBYTE even if more data is available.

Output parameters
BUF

On input, a buffer to be filled by completion of the call. The length of BUF must be at least as long as
the value of NBYTE.

ERRNO
A fullword binary field. If RETCODE is negative, the field contains an error number. See “Return
codes” on page 18 for information about ERRNO return codes.

RETCODE
A fullword binary field that returns one of the following:
Value

Description
0

A 0 return code indicates that the connection is closed and no data is available.
>0

A positive value indicates the number of bytes copied into the buffer.
-1

Check ERRNO for an error code.

SHUTDOWN
One way to terminate a network connection is to issue the CLOSE call which attempts to complete all
outstanding data transmission requests before breaking the connection. The SHUTDOWN call can be used
to close one-way traffic while completing data transfer in the other direction. The HOW parameter
determines the direction of traffic to shutdown.

If you issue SHUTDOWN for a socket that currently has outstanding socket calls pending, see Table 1 on
page 15 to determine the effects of this operation on the outstanding socket calls. 

Table 1. Effect of Shutdown Socket Call

Call Local program Remote program

Socket calls in local
program

Shutdown
END_TO

Shutdown
END_FROM

Shutdown
END_FROM

Shutdown END_TO
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Table 1. Effect of Shutdown Socket Call (continued)

Call Local program Remote program

Write calls Error number
EPIPE on first call

Error number
EPIPE on second
call*

Read calls Zero length return
code

Zero length return
code

* If you issue two write calls immediately, both might be successful, and an EPIPE error number might
not be returned until a third write call is issued.

Example of SHUTDOWN call

SOC_FUNCTION DC   CL16'SHUTDOWN'
S            DS   H
HOW          DS   F
END_FROM     EQU  0
END_TO       EQU  1
END_BOTH     EQU  2
ERRNO        DS   F
RETCODE      DS   F
 
             CALL DFHSOKET,(SOC_FUNCTION,S,HOW,ERRNO,RETCODE)

Input parameters
SOC_FUNCTION

A 16-byte character field containing SHUTDOWN. The field is left-justified and padded on the right
with blanks.

S
A halfword binary number set to the socket descriptor of the socket to be shutdown.

HOW
A fullword binary field. Set to specify whether all or part of a connection is to be shut down. The
following values can be set:
Value

Description
0 (END_FROM)

Ends further receive operations.
1 (END_TO)

Ends further send operations.
2 (END_BOTH)

Ends further send and receive operations.

Output parameters
ERRNO

A fullword binary field. If RETCODE is negative, the field contains an error number. See “Return
codes” on page 18 for information about ERRNO return codes.

RETCODE
A fullword binary field that returns one of the following:
Value

Description
0

Successful call
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-1
Check ERRNO for an error code

SOCKET
The SOCKET call creates an endpoint for communication and returns a socket descriptor representing the
endpoint.

Example of SOCKET call

SOC_FUNCTION DC   CL16'SOCKET'
AF           DC   F'19'
SOCTYPE      DS   F
STREAM       EQU  1
PROTO        DS   F
ERRNO        DS   F
RETCODE      DS   F
 
             CALL DFHSOKET,(SOC_FUNCTION,AF,SOCTYPE,PROTO,ERRNO,RETCODE)

Input parameters
SOC_FUNCTION

A 16-byte character field containing SOCKET. The field is left-justified and padded on the right with
blanks.

AF
A fullword binary field set to the addressing family. Specify a value of 19, denoting an AF_INET6
socket. You can specify a value of 2 for migration purposes however, the socket will be limited to IPv4
connections only. A halfword binary field specifying the addressing family. For more information on
AF_INET and AF_INET6, see the z/OS Communications Server: IP Configuration Guide.

SOCTYPE
A fullword binary field set to the type of socket required. Specify 1, denoting stream sockets. Stream
sockets provide sequenced, 2-way byte streams that are reliable and connection-oriented. They
support a mechanism for out-of-band data.

PROTO
Reserved. Do not specify a value in this field. The interface uses a protocol of TCP.

Output parameters
ERRNO

A fullword binary field. If RETCODE is negative, the field contains an error number. See “Return
codes” on page 18 for information about ERRNO return codes.

RETCODE
A fullword binary field that returns one of the following values:
Value

Description
≥0

Contains the new socket descriptor
-1

Check ERRNO for an error code

WRITE
The WRITE call writes data on a connected socket.

Sockets act like streams of information with no boundaries separating data. For example, if a program
wants to send 1000 bytes, each call to this function can send any number of bytes, up to the entire 1000
bytes. The number of bytes sent will be returned in RETCODE. Therefore, programs should place this call
in a loop, calling this function until all data has been sent.
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Example of WRITE call

SOC_FUNCTION DC   CL16'WRITE'
S            DS   H
NBYTE        DS   F
BUF          DS   CL(length of buffer)
ERRNO        DS   F
RETCODE      DS   F
 
             CALL DFHSOKET,(SOC_FUNCTION,S,NBYTE,BUF,ERRNO,RETCODE)

Input parameters
SOC_FUNCTION

A 16-byte character field containing WRITE. The field is left-justified and padded on the right with
blanks.

S
A halfword binary field set to the socket descriptor.

NBYTE
A fullword binary field set to the number of bytes of data to be transmitted.

BUF
Specifies the buffer containing the data to be transmitted.

Output parameters
ERRNO

A fullword binary field. If RETCODE is negative, the field contains an error number. See “Return
codes” on page 18 for information about ERRNO return codes.

RETCODE
A fullword binary field that returns one of the following:
Value

Description
≥0

A successful call. A return code greater than zero indicates the number of bytes of data written.
-1

Check ERRNO for an error code.

Return codes
A table of the error numbers, error descriptions, and the suggested programmer's response.

Error number Error description Programmer's response

30001 Unknown session token Call your IBM® Software Support
Center

30002 Insufficient storage Retry the request when CICS is
not short on storage

30003 I/O error Retry the request. Data might not
be available at this time.

30004 Connection closed Determine why the partner
system has closed the
connection, and retry the request

30005 No socket available Retry the request when more
sockets are available
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Error number Error description Programmer's response

30006 Client error Call your IBM Software Support
Center

30007 Invalid option Call your IBM Software Support
Center

30008 Missing option Call your IBM Software Support
Center

30009 Not authorized Call your IBM Software Support
Center

30010 State error Call your IBM Software Support
Center

30011 Never associated Call your IBM Software Support
Center

30012 Notification unavailable Call your IBM Software Support
Center

30013 Already associated Call your IBM Software Support
Center

30014 TCP not active Ensure TCP/IP is active in your
CICS region

30015 Scheduled Should not occur. Call your IBM
Software Support Center

30016 No connection Retry the request when the
partner system can accept
connections

30017 Connection refused Retry the request when the
partner system can accept
connections

30018 Address in use Retry the request when the
partner system can accept
connections

30019 Address not available Retry the request when the
partner system can accept
connections

30020 Insufficient threads Increase the number of threads
for each OMVS process

30021 Notified Should not occur. Call your IBM
Software Support Center

30022 Not pending Should not occur. Call your IBM
Software Support Center

30023 Lock failure Call your IBM Software Support
Center

30024 Socket in use Retry the request when the
partner system can accept
connections
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Error number Error description Programmer's response

30025 Timed out Determine why the request timed
out and retry the request

30026 Task canceled Determine why the task was
canceled, and retry the request

30027 CEEPIPI error Call your IBM Software Support
Center

30028 Listener attach failure Call your IBM Software Support
Center

30029 TCP/IP unavailable Ensure TCP/IP is active in your
CICS region

30030 TCP/IP already open Should not occur. Call your IBM
Software Support Center

30031 TCP/IP already closed Should not occur. Call your IBM
Software Support Center

30032 Unknown listen token Call your IBM Software Support
Center

30033 Unknown session token Call your IBM Software Support
Center

30034 Unknown client token Call your IBM Software Support
Center

30035 Unknown server address Should not occur. Call your IBM
Software Support Center

30036 Unknown client hostname Should not occur. Call your IBM
Software Support Center

30037 Unknown server hostname Should not occur. Call your IBM
Software Support Center

30038 Hostname truncated Should not occur. Call your IBM
Software Support Center

30039 Repository error Should not occur. Call your IBM
Software Support Center

30040 MAXSOCKETS hard limit Retry the request when more
sockets are available

30041 At MAXSOCKETS Retry the request when more
sockets are available

30042 Unknown socket token Call your IBM Software Support
Center

30043 I/O error Retry the request. Data might not
be available at this time.

30045 INITAPI getmain array fail CICS internal error. Call your IBM
Software Support Center

30046 HOSTENT getmain fail CICS internal error. Call your IBM
Software Support Center
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Error number Error description Programmer's response

30047 SOCKNAME getmain fail CICS internal error. Call your IBM
Software Support Center

30048 Alias struct getmain fail CICS internal error. Call your IBM
Software Support Center

30049 Inet struct getmain fail CICS internal error. Call your IBM
Software Support Center

30050 Alias getmain fail CICS internal error. Call your IBM
Software Support Center

30051 Inet getmain fail CICS internal error. Call your IBM
Software Support Center

30052 No room in sock array Increase the value of the
MAXSOC parameter on the
INITAPI request
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Chapter 2. The debugging tools pattern matching
interface

Use the debugging tools pattern matching interface to determine if a program instance that you specify
matches an active debugging profile. The interface returns information about the profile that is the best
match for the program instance you specify.

Invoking the pattern matching interface
To invoke the pattern matching interface, LINK to program DFHDPCP, with a commarea.

Procedure

Use a commarea with a length of 699 bytes or longer and the following structure:

Offset
Hex

Offset
Decima
l

Type Length Name Type of data Description

X'00' 0 16 Reserved

X'10' 16 1 Input Specify a value of X'02'

X'11' 17 1 Reserved

X'12' 18 UNSIGNED 1 DPCC_RESPONSE Output X'01'
The specified program
instance matches an
active debugging profile.

X'02'
The specified program
instance does not match
an active debugging
profile.

X'13' 19 CHARACTER 4 DPCC_TRANID Input Specify the transaction ID
that is used to identify
matching profiles

X'17' 23 CHARACTER 4 DPCC_TERMID Input Specify the terminal ID that is
used to identify matching
profiles

X'1B' 27 CHARACTER 8 DPCC_PROGID Input Specify the program name
that is used to identify
matching profiles

X'23' 35 CHARACTER 30 DPCC_COMP_UNIT Input Specify the name of the
compilation unit that is used
to identify matching profiles

X'41' 65 CHARACTER 8 DPCC_USERID Input Specify the user ID that is
used to identify matching
profiles

X'49' 73 CHARACTER 8 DPCC_NETNAME Input Specify the terminal Netname
that is used to identify
matching profiles
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Offset
Hex

Offset
Decima
l

Type Length Name Type of data Description

X'51' 81 CHARACTER 8 DPCC_APPLID Input Specify the APPLID that is
used to identify matching
profiles

X'59' 89 CHARACTER 1 DPCC_SESSION_
TYPE

Output X'01'
The best matching
debugging profile
specifies a session type
of 3270

X'02'
The best matching
debugging profile
specifies a session type
of TCP

X'5A' 90 CHARACTER 255 DPCC_IP_NAME_
OR_ADDR

Output For a session type of TCP,
returns the TCP/IP name or
address specified in the best
matching profile

X'159' 345 CHARACTER 5 DPCC_PORT Output For a session type of TCP,
returns the port number
specified in the best
matching profile

X'15E' 350 CHARACTER 4 DPCC_3270_
DISPLAY

Output For a session type of 3270,
returns the terminal Id of the
3270 terminal specified in
the best matching profile

X'162' 354 UNSIGNED 1 DPCC_TEST_ LEVEL Output If the best matching profile is
for a Language Environment®

program, returns the Test
Level specified in the profile

X'163' 355 CHARACTER 44 DPCC_COMMAND_
FILE

Output If the best matching profile is
for a Language Environment
program, returns the name of
the Command File specified
in the profile

X'18F' 399 UNSIGNED 1 DPCC_PROMPT Output If the best matching profile is
for a Language Environment
program, returns the Prompt
Level specified in the profile

X'190' 400 CHARACTER 44 DPCC_
PREFERENCE_ FILE

Output If the best matching profile is
for a Language Environment
program, returns the name of
the Preference File specified
in the profile
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Offset
Hex

Offset
Decima
l

Type Length Name Type of data Description

X'1BC' 444 CHARACTER 255 DPCC_LE_
OPTIONS

Output If the best matching profile is
for a Language Environment
program, returns the
Language Environment
options specified in the
profile
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Notices

This information was developed for products and services offered in the U.S.A. This material might be
available from IBM in other languages. However, you may be required to own a copy of the product or
product version in that language in order to access it.

IBM may not offer the products, services, or features discussed in this document in other countries.
Consult your local IBM representative for information on the products and services currently available in
your area. Any reference to an IBM product, program, or service is not intended to state or imply that only
that IBM product, program, or service may be used. Any functionally equivalent product, program, or
service that does not infringe any IBM intellectual property rights may be used instead. However, it is the
user's responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this
document. The furnishing of this document does not grant you any license to these patents. You can send
license inquiries, in writing, to:

IBM Director of Licensing 
IBM Corporation 
North Castle Drive, MD-NC119 
Armonk, NY 10504-1785 
United States of America

For license inquiries regarding double-byte (DBCS) information, contact the IBM Intellectual Property
Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing 
Legal and Intellectual Property Law 
IBM Japan Ltd. 
19-21, Nihonbashi-Hakozakicho, Chuo-ku 
Tokyo 103-8510, Japan 

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION “AS IS”
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS FOR A
PARTICULAR PURPOSE. Some jurisdictions do not allow disclaimer of express or implied warranties in
certain transactions, therefore this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically
made to the information herein; these changes will be incorporated in new editions of the publication.
IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM websites are provided for convenience only and do not in
any manner serve as an endorsement of those websites. The materials at those websites are not part of
the materials for this IBM product and use of those websites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Licensees of this program who want to have information about it for the purpose of enabling: (i) the
exchange of information between independently created programs and other programs (including this
one) and (ii) the mutual use of the information which has been exchanged, should contact

IBM Director of Licensing
IBM Corporation
North Castle Drive, MD-NC119
Armonk, NY 10504-1785
US
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Such information may be available, subject to appropriate terms and conditions, including in some cases,
payment of a fee.

The licensed program described in this document and all licensed material available for it are provided by
IBM under terms of the IBM Customer Agreement, IBM International Programming License Agreement, or
any equivalent agreement between us.

Information concerning non-IBM products was obtained from the suppliers of those products, their
published announcements or other publicly available sources. IBM has not tested those products and
cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM
products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of
those products.

This information contains examples of data and reports used in daily business operations. To illustrate
them as completely as possible, the examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to actual people or business enterprises is
entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs
in any form without payment to IBM, for the purposes of developing, using, marketing or distributing
application programs conforming to the application programming interface for the operating platform for
which the sample programs are written. These examples have not been thoroughly tested under all
conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these
programs. The sample programs are provided "AS IS", without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

Programming interface information

CICS supplies some documentation that can be considered to be Programming Interfaces, and some
documentation that cannot be considered to be a Programming Interface.

Programming Interfaces that allow the customer to write programs to obtain the services of CICS
Transaction Server for z/OS, Version 5 Release 4 are included in the following sections of the online
product documentation:

• Developing applications
• Developing system programs
• Securing overview
• Developing for external interfaces
• Reference: application developmenth
• Reference: system programming
• Reference: connectivity

Information that is NOT intended to be used as a Programming Interface of CICS Transaction Server for
z/OS, Version 5 Release 4, but that might be misconstrued as Programming Interfaces, is included in the
following sections of the online product documentation:

• Troubleshooting and support
• Reference: diagnostics

If you access the CICS documentation in manuals in PDF format, Programming Interfaces that allow the
customer to write programs to obtain the services of CICS Transaction Server for z/OS, Version 5 Release
4 are included in the following manuals:

• Application Programming Guide and Application Programming Reference
• Business Transaction Services
• Customization Guide
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• C++ OO Class Libraries
• Debugging Tools Interfaces Reference
• Distributed Transaction Programming Guide
• External Interfaces Guide
• Front End Programming Interface Guide
• IMS Database Control Guide
• Installation Guide
• Security Guide
• Supplied Transactions
• CICSPlex SM Managing Workloads
• CICSPlex SM Managing Resource Usage
• CICSPlex SM Application Programming Guide and Application Programming Reference
• Java Applications in CICS

If you access the CICS documentation in manuals in PDF format, information that is NOT intended to be
used as a Programming Interface of CICS Transaction Server for z/OS, Version 5 Release 4, but that might
be misconstrued as Programming Interfaces, is included in the following manuals:

• Data Areas
• Diagnosis Reference
• Problem Determination Guide
• CICSPlex SM Problem Determination Guide

Trademarks

IBM, the IBM logo, and ibm.com® are trademarks or registered trademarks of International Business
Machines Corp., registered in many jurisdictions worldwide. Other product and service names might be
trademarks of IBM or other companies. A current list of IBM trademarks is available on the Web at
Copyright and trademark information at www.ibm.com/legal/copytrade.shtml.

Adobe, the Adobe logo, PostScript, and the PostScript logo are either registered trademarks or
trademarks of Adobe Systems Incorporated in the United States, and/or other countries.

Intel, Intel logo, Intel Inside, Intel Inside logo, Intel Centrino, Intel Centrino logo, Celeron, Intel Xeon,
Intel SpeedStep, Itanium, and Pentium are trademarks or registered trademarks of Intel Corporation or
its subsidiaries in the United States and other countries.

Java and all Java-based trademarks and logos are trademarks or registered trademarks of Oracle and/or
its affiliates.

Linux is a registered trademark of Linus Torvalds in the United States, other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the
United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Terms and conditions for product documentation

Permissions for the use of these publications are granted subject to the following terms and conditions.
Applicability

These terms and conditions are in addition to any terms of use for the IBM website.
Personal use

You may reproduce these publications for your personal, noncommercial use provided that all
proprietary notices are preserved. You may not distribute, display or make derivative work of these
publications, or any portion thereof, without the express consent of IBM.
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Commercial use
You may reproduce, distribute and display these publications solely within your enterprise provided
that all proprietary notices are preserved. You may not make derivative works of these publications,
or reproduce, distribute or display these publications or any portion thereof outside your enterprise,
without the express consent of IBM.

Rights
Except as expressly granted in this permission, no other permissions, licenses or rights are granted,
either express or implied, to the publications or any information, data, software or other intellectual
property contained therein.

IBM reserves the right to withdraw the permissions granted herein whenever, in its discretion, the use
of the publications is detrimental to its interest or, as determined by IBM, the above instructions are
not being properly followed.

You may not download, export or re-export this information except in full compliance with all
applicable laws and regulations, including all United States export laws and regulations.

IBM MAKES NO GUARANTEE ABOUT THE CONTENT OF THESE PUBLICATIONS. THE PUBLICATIONS
ARE PROVIDED "AS-IS" AND WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED,
INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY, NON-
INFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE.

IBM online privacy statement

IBM Software products, including software as a service solutions, ("Software Offerings") may use cookies
or other technologies to collect product usage information, to help improve the end user experience, to
tailor interactions with the end user or for other purposes. In many cases no personally identifiable
information is collected by the Software Offerings. Some of our Software Offerings can help enable you to
collect personally identifiable information. If this Software Offering uses cookies to collect personally
identifiable information, specific information about this offering’s use of cookies is set forth below:

For the CICSPlex® SM Web User Interface (main interface):
Depending upon the configurations deployed, this Software Offering may use session and persistent
cookies that collect each user’s user name and other personally identifiable information for purposes
of session management, authentication, enhanced user usability, or other usage tracking or functional
purposes. These cookies cannot be disabled.

For the CICSPlex SM Web User Interface (data interface):
Depending upon the configurations deployed, this Software Offering may use session cookies that
collect each user's user name and other personally identifiable information for purposes of session
management, authentication, or other usage tracking or functional purposes. These cookies cannot be
disabled.

For the CICSPlex SM Web User Interface ("hello world" page):
Depending upon the configurations deployed, this Software Offering may use session cookies that
collect no personally identifiable information. These cookies cannot be disabled.

For CICS Explorer®:
Depending upon the configurations deployed, this Software Offering may use session and persistent
preferences that collect each user’s user name and password, for purposes of session management,
authentication, and single sign-on configuration. These preferences cannot be disabled, although
storing a user's password on disk in encrypted form can only be enabled by the user's explicit action
to check a check box during sign-on.

If the configurations deployed for this Software Offering provide you, as customer, the ability to collect
personally identifiable information from end users via cookies and other technologies, you should seek
your own legal advice about any laws applicable to such data collection, including any requirements for
notice and consent.

For more information about the use of various technologies, including cookies, for these purposes, see
IBM Privacy Policy and IBM Online Privacy Statement, the section entitled "Cookies, Web Beacons and
Other Technologies" and the IBM Software Products and Software-as-a-Service Privacy Statement.
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