
Progress® DataDirect®

Autonomous REST
Connector for JDBC™

User's Guide for Partners

Release 6.0.0

Copyright

© 2020 Progress Software Corporation and/or its subsidiaries or affiliates. All rights
reserved.
These materials and all Progress® software products are copyrighted and all rights are reserved by Progress
Software Corporation. The information in these materials is subject to change without notice, and Progress
Software Corporation assumes no responsibility for any errors that may appear therein. The references in
these materials to specific platforms supported are subject to change.

Corticon, DataDirect (and design), DataDirect Cloud, DataDirect Connect, DataDirect Connect64, DataDirect
XML Converters, DataDirect XQuery, DataRPM, Defrag This, Deliver More Than Expected, Icenium, Ipswitch,
iMacros, Kendo UI, Kinvey, MessageWay, MOVEit, NativeChat, NativeScript, OpenEdge, Powered by Progress,
Progress, Progress Software Developers Network, SequeLink, Sitefinity (and Design), Sitefinity, SpeedScript,
Stylus Studio, TeamPulse, Telerik, Telerik (and Design), Test Studio, WebSpeed, WhatsConfigured,
WhatsConnected, WhatsUp, and WS_FTP are registered trademarks of Progress Software Corporation or one
of its affiliates or subsidiaries in the U.S. and/or other countries. Analytics360, AppServer, BusinessEdge,
DataDirect Autonomous REST Connector, DataDirect Spy, SupportLink, DevCraft, Fiddler, iMail, JustAssembly,
JustDecompile, JustMock, NativeScript Sidekick, OpenAccess, ProDataSet, Progress Results, Progress
Software, ProVision, PSE Pro, SmartBrowser, SmartComponent, SmartDataBrowser, SmartDataObjects,
SmartDataView, SmartDialog, SmartFolder, SmartFrame, SmartObjects, SmartPanel, SmartQuery, SmartViewer,
SmartWindow, and WebClient are trademarks or service marks of Progress Software Corporation and/or its
subsidiaries or affiliates in the U.S. and other countries. Java is a registered trademark of Oracle and/or its
affiliates. Any other marks contained herein may be trademarks of their respective owners.

Updated: 2020/06/26

3Progress DataDirect Autonomous REST Connector for JDBC : User's Guide for Partners: Version 6.0.0

Progress DataDirect Autonomous REST Connector for JDBC : User's Guide for Partners: Version 6.0.04

Copyright

Table of Contents

Welcome to the Progress DataDirect Autonomous REST Connector for

JDBC ...9
What's new in this release?..10

Setting up the driver...10

Connection URL...12

Mapping objects to tables...13

Normalizing JSON maps...15

Determining the primary key..16

Using the driver..17
Configuring the relational map ...18

Using the Sample property method...19

Using the input REST file method..20

Creating an input REST file ..20

Modifying the relational view ...21

Mapping new native objects to a table...23

Connecting from an application..23

Passing the connection URL..23

Using connection properties...24

Required properties...24

Mapping properties..25

Basic authentication properties...26

HTTP header authentication properties...27

OAuth 2.0 properties..28

URL parameter authentication properties..30

Custom authentication request properties...31

Data encryption properties..32

Proxy server properties..33

Web service properties..34

Data type handling properties..35

Timeout properties...36

Statement pooling properties...37

Additional properties..38

Connecting through a proxy server...40

Performance considerations...41

Authentication...42

Basic authentication...43

HTTP header authentication..43

5Progress DataDirect Autonomous REST Connector for JDBC : User's Guide for Partners: Version 6.0.0

Contents

URL parameter authentication...44

OAuth 2.0 authentication...44

Custom authentication ..49

Data encryption..50

Configuring SSL encryption...51

Configuring SSL server authentication..51

Configuring SSL client authentication..52

IP addresses...53

Timeouts...54

Using Java logging...54

Logging components...54

Configuring logging..56

Enabling Debug Record Mode..58

Tracking JDBC calls with DataDirect Spy...58

Enabling DataDirect Spy..59

Connection property descriptions...63
AccessToken...68

AuthenticationMethod...69

AuthHeader...70

AuthParam..70

ClientID...71

ClientSecret..72

Config...73

ConvertNull...74

CreateMap..74

CryptoProtocolVersion..75

CustomAuthParams..76

DebugRecord...77

EncryptionMethod..78

FetchSize..79

HostNameInCertificate...80

ImportStatementPool..81

InsensitiveResultSetBufferSize...82

JDBCBehavior..83

KeyPassword..84

KeyStore...84

KeyStorePassword..85

LogConfigFile...86

LoginTimeout..87

LogoffURI...87

MaxPooledStatements..88

OAuthCode...89

Password..90

Progress DataDirect Autonomous REST Connector for JDBC : User's Guide for Partners: Version 6.0.06

Contents

PortNumber..91

ProxyHost...91

ProxyPassword...92

ProxyPort..93

ProxyUser...93

ReadAhead ..94

RedirectURI..95

RefreshDirtyCache...96

RefreshSchema..96

RefreshToken..97

RegisterStatementPoolMonitorMBean...98

Sample...99

SchemaMap...100

Scope...101

SecurityToken...102

ServerName...103

SpyAttributes..103

StmtCallLimit..106

StmtCallLimitBehavior..107

Table...107

TokenURI..108

TrustStore...109

TrustStorePassword..110

User..110

ValidateServerCertificate..111

WSFetchSize..112

WSPoolSize..113

WSRetryCount...114

WSTimeout...115

Input REST file syntax...117
HTTP response code processing ..119

OAuth 2.0 authentication ...122

Custom authentication requests...124

Table definition entries ...126

Paging ...129

REST model parsing..131

POST requests..131

Requests with custom HTTP headers ..133

Query paths...135

Column names...138

Data type mapping...139

Primary key..141

Columns as an array..141

7Progress DataDirect Autonomous REST Connector for JDBC : User's Guide for Partners: Version 6.0.0

Contents

Columns as a key-value map...142

Columns with nested objects ..142

Date, time, and timestamp formats..143

Subfields ...144

Columns as HTTP headers...144

Filtering and URI parameters...145

Example input REST file ..147

Supported SQL statements and extensions...149
Alter Session (EXT)..149

Refresh Map (EXT)...151

Select..151

Select clause...152

SQL expressions..161

Column names...162

Literals...162

Operators...164

Functions...168

Conditions..168

Subqueries...169

IN predicate...169

EXISTS predicate..170

UNIQUE predicate...170

Correlated subqueries...170

Progress DataDirect Autonomous REST Connector for JDBC : User's Guide for Partners: Version 6.0.08

Contents

1
Welcome to the Progress DataDirect
Autonomous REST Connector for JDBC

The Progress DataDirect Autonomous REST Connector for JDBC is a driver that supports SQL read-only
access to JSON-based REST API data sources. To support SQL access to REST services, the driver creates
a relational map of the returned JSON data and translates SQL statements to REST API requests. The driver
can either infer a map at the beginning of a session or can leverage a configuration REST file that allows you
to modify and persist a map. In addition, the driver employs a SQL engine component that provides support
for SQL constructs unavailable to most REST services. This functionality offers a number of advantages,
including support for reporting data and metadata in a form JDBC applications are ready to use.

Once you are ready to start accessing your data with your application, the driver requires you to complete
several tasks to ensure the driver is deployed properly. See "Setting up the driver" for an overview of the
recommended setup of the driver.

Note: The documentation library uses the terms the driver and the connector to refer to the Autonomous REST
Connector.

For details, see the following topics:

• What's new in this release?

• Setting up the driver

• Connection URL

• Mapping objects to tables

9Progress DataDirect Autonomous REST Connector for JDBC : User's Guide for Partners: Version 6.0.0

What's new in this release?

Changes Since 6.0.0 Release

• Driver Enhancements

• The driver has been enhanced to allow you to define custom authentication requests, including the new
CustomAuthParams connection property. If your service does not support one of the standard
authentication methods supported by the driver, you can modify the input REST file to define a custom
authentication flow. See Custom authentication on page 49 for details.

• The driver has been enhanced to allow you to customize how HTTP response status codes are processed
by the driver. By configuring the input REST file, you can define error responses for codes that are
returned by the service, including driver actions and error messages. See HTTP response code processing
on page 119 for details.

• The driver has been enhanced to support OAuth 2.0 authentication. See OAuth 2.0 authentication on
page 44 for details.

• The driver has been enhanced to support requests for endpoints that use custom HTTP-headers. See
Creating an input REST file on page 20 for details.

Highlights of 6.0.0 Release

• The driver supports SQL read-only access to REST API endpoints returning JSON payloads. See Supported
SQL statements and extensions on page 149 for details.

• The driver supports standard JSON data types and additional data types through data type inference.

• The driver supports using internal memory or a configurable REST file to define REST responses and
relational mapping. See Configuring the relational map on page 18 for details.

• The driver heuristically maps data types, eliminating the need to define native data types in most scenarios.

• The driver supports basic, HTTP-header based, URL-Parameter based and no authentication. See
Authentication on page 42 for details.

• The driver supports the handling of large result sets with configurable paging and the FetchSize on page
79 and WSFetchSize on page 112 connection properties. See Configuring the relational map on page 18
for more information on configuring paging.

Setting up the driver
After installation, you will need to complete several tasks before you can begin accessing data with the
Autonomous REST Connector.This section provides you with an overview of those tasks and the recommended
set-up of the driver. Refer to the references within the steps for detailed information related to each task.

To begin accessing data with the driver:

1. Determine the method the driver will use to sample endpoints for relational mapping:

• Using the Sample property:You can specify a single endpoint to sample using the Sample property. At
connection, the driver samples the specified endpoint and infers a schema based on the results. This
method allows you to begin accessing data with a minimal amount of configuration, but it lacks some of
the functionality supported by the input REST file method.

Progress DataDirect Autonomous REST Connector for JDBC : User's Guide for Partners: Version 6.0.010

Chapter 1: Welcome to the Progress DataDirect Autonomous REST Connector for JDBC

See Using the Sample property method on page 19 for more information. Skip to Step 6 on page 11.

• Using the input REST file:You can specify multiple endpoints to sample using the input REST file. This
method also allows you to leverage the file's supported syntax to define POST requests, and configure
paging and other customizations supported by the input REST file.

See Using the input REST file method on page 20 for more information. Proceed to the next step.

You must use an input REST file if your session does any of the following; otherwise, we recommend using
the Sample property:

• Accesses multiple endpoints

• Issues POST requests

• Accesses endpoints that require paging

• Uses a custom authentication method

• Uses other customizations supported by the input REST file

2. Using a text editor, create an input REST file. The input REST file is a simple text file that uses the
file_name.rest naming convention.

3. In the REST file, type a comma-separated list of the GET endpoints to be used by your session. For example:

{
 "<table_name1>":"<endpoint1>",
 "<table_name2>":"<endpoint2>",
 "<table_name3>":"<endpoint3>"
}

See Input REST file syntax on page 117 for a detailed description of the syntax supported by the file.

4. If your session uses POST requests, type your POST endpoints in the comma-separated list of endpoints
in your input REST file. See POST requests on page 131 for details.

5. If any of your endpoints require paging, configure either offset or page numbering paging for affected
endpoints in your input REST file. See Paging on page 129 for details.

6. Configure the driver to connect using connection URLs or data sources as described in Connecting from
an application on page 23. The following groups of properties should be addressed:

a) Required properties: Configure the required properties based on whether you are using the sample
property or input REST file:

• Sample property: Set the Sample property to specify the endpoint to which you want to connect and
sample. For example, https://example.com/countries/.

• Input REST file: Set the Config property to specify the name and location of the input REST file. For
example, C:\path\to\myrest.rest (Windows) or home_dir/path/to/myrest.rest
(UNIX/Linux).

b) Authentication method properties: Configure the driver according to the authentication method used
by your REST service. The driver supports the following methods:

• No Authentication: The driver does not attempt to authenticate.

• Basic Authentication: The driver authenticates using the specified user IDs, passwords, and HTTP
headers.

• HTTP Header Authentication: The driver passes security tokens via the HTTP headers to
authenticate. In some scenarios, the REST services may also authenticate the user ID.

11Progress DataDirect Autonomous REST Connector for JDBC : User's Guide for Partners: Version 6.0.0

Setting up the driver

• URL Parameter Authentication: The driver authenticates by passing security tokens using URLs.
In some scenarios, the REST services may also authenticate the user ID.

• OAuth 2.0 Authentication: The driver authenticates using OAuth 2.0 authentication flows.

• Custom authentication requests: The driver uses a custom token-based authentication flow that
is defined in the input REST file.

See Authentication on page 42 for configuration details.

c) Optional properties: Set the values for any optional properties that you want to configure. See Using
connection properties on page 24 for a complete list of supported properties by functionality.

7. Connect to your REST service.

This completes the deployment of the driver.

Connection URL
The required connection information needs to be passed in the form of a connection URL. The form of the
connection URL differs depending on whether you are using a REST file.

For sessions using an input REST file (sessions that use multiple endpoints, POST requests, or other
customizations supported by the REST file):

jdbc:subprotocol:autorest://servername;Config=rest_file_path;[property=value[;...]];

For sessions using the Sample property:

jdbc:subprotocol:autorest:Sample=sample_path;[property=value[;...]];

where:

subprotocol

is the portion of the connection URL subprotocol that is determined by the publisher of your application.
For this value, refer to your application’s documentation.

servername

optionally, specifies the host name portion of the URL endpoint to which you send requests. Specify
this value only if you want to define endpoints without the web server address in the REST config
file.

rest_file_path

specifies the name and location of the input REST file that contains a list of endpoints to sample,
PUSH request definitions, and configuration information. See "Creating an input REST file" for details.

property=value

specifies connection property settings. Multiple properties are separated by a semi-colon.

sample_path

specifies the endpoint to sample when not using an input REST file.

Progress DataDirect Autonomous REST Connector for JDBC : User's Guide for Partners: Version 6.0.012

Chapter 1: Welcome to the Progress DataDirect Autonomous REST Connector for JDBC

The following examples demonstrate URLs for sessions using no authentication:

For sessions using an input REST file:

jdbc:subprotocol:autorest:https://example.com/;Config=C:/path/to/myrest.rest;

For sessions using the Sample property:

jdbc:subprotocol:autorest:Sample='https://example.com/countries/';

Note: Connection URLs containing special characters should be enclosed in quotes; otherwise, the connection
may fail.

See also
Connection property descriptions on page 63

Mapping objects to tables
Data mapping describes how elements are mapped between two distinct data models.To support SQL access
to a REST service, the REST endpoint must be mapped to a relational schema. The driver automatically
generates a relational view of your data when the REST file is loaded and/or any of the initial sampling has
been completed. When generating the relational view, the driver decompounds JSON documents returned by
endpoints into parent-child tables. The driver handles mapping in the following manner:

• Simple and nested objects are flattened and mapped to a parent table

• Arrays of objects and arrays of strings are mapped to related child tables

• If a JSON map is detected, it is normalized into a child table. See "Normalizing a JSON map" for a list of
detectable map types and a description of normalizing JSON maps.

For example, the following JSON document contains nested objects in the address object, an array strings
in the vehicles object, and an array of objects in the pets object.

{"resident_id":"ajx363",
 "name":"Sydney Smith",
 "address":{"street": "101 Main Street", "city": "Raleigh", "state": "NC"},
 "county":"Wake",
 "pets":[{"species":"dog","breed":"beagle","weight":"35"}],
 "vehicles":["car","boat","bicycle"]
},
{"resident_id":"tzn525",
 "name":"Cora Welch",
 "address":{"street":"191 First Street","city":"Chapel Hill","state":"NC"},
 "county":"Orange",
 "pets":[{"species":"pig","breed":"yorkshire","weight":"55"}]
 "vehicles": ["scooter","truck","bicycle"]
}

When generating the relational view, the driver decompounds native objects into separate, but related tables.
The mapping of the sample JSON document produced one parent table and two child tables. In the parent
table, simple objects, such as name and county, are flattened into corresponding relational columns. Nested
objects are also flattened into relational columns; however, column names are formed by concatenating the
name of the parent and nested objects, which are joined by an underscore character. For example, the
ADDRESS_STEET column contains the values of the street object that is nested in the address object.

13Progress DataDirect Autonomous REST Connector for JDBC : User's Guide for Partners: Version 6.0.0

Mapping objects to tables

Note: When an endpoint features a top-level object that contains only arrays, instead of mapping an empty
table, the driver omits the object’s table from the relational view and promotes tables generated from the
subordinate arrays to the top level. The driver’s log records empty tables that are excluded from the relational
view using the following message: Empty table is not being persisted: table_name.

The primary key for parent tables are determined heuristically from the top-level fields in the document (see
"Determining the primary key"). For example, resident_id. If necessary, you can designate a new primary
key in a parent table by editing the resolved REST file. For details, see "Designating a primary key."

You can specify the name of the parent table using the Table property. If no value is specified, The name is
derived from the endpoint from which the data was sampled. For example, for the endpoint
https://example.com/residents/2, the table would be named residents_2 by default.

Note: When using the Sample connection property, the driver maps endpoints that consist of only a host name
to the URL_ parent table by default.You can specify a different table name using the Table property.

Note: If a naming conflict occurs, a suffix comprised of an underscore and numeral, starting at 1, is appended
to the relational name of an object. For example, if your table contains an object that would normally map to
POSITION, your object would map column POSITION_1 to avoid a conflict with the column used for composite
keys.

The parent table for our example is named RESIDENTS_2 and takes the following form:

Table 1: RESIDENTS_2

COUNTYADDRESS_STATEADDRESS_CITYADDRESS_STREETNAMERESIDENT_ID
(PK)

WakeNCRaleigh101 MAIN
STREET

Sydney Smithajx363

OrangeNCChapel Hill191 FIRST
STREET

Cora Welchtzn525

The data for the pets arrays of objects normalizes to PETS child tables. When discovered, the objects within
an array are mapped to corresponding relational columns. For example, the species and breed array values
from the pets array in the JSON sample, are mapped as columns to the following PETS table. A foreign key
relationship to the parent table is provided by including the primary key of the parent in the child, in this case,
RESIDENT_ID. The primary key of the child table is a composite key formed by the primary key of the parent
table combined with the positional information contained in the POSITION column. If the array is nested multiple
layers deep, additional positional columns for parent objects are mapped to insure that a unique key is used.

The child table for the pets array would take the following form:

Table 2: PETS

WEIGHTBREEDSPECIESPOSITION (PK)RESIDENTS_RESIDENT_ID
(PK)

35beagledog0ajx363

55yorkshirepig0tzn525

Progress DataDirect Autonomous REST Connector for JDBC : User's Guide for Partners: Version 6.0.014

Chapter 1: Welcome to the Progress DataDirect Autonomous REST Connector for JDBC

The information in the vehicles array of strings normalizes to the VEHICLES child table. The values of the
array are mapped into a single relational column that corresponds to the name of the array. For example, the
values for the vehicles array in the JSON sample, such as car and boat, map to the VEHICLES column in
the VEHICLES table.To maintain a unique foreign key, the driver generates a POSITION common to differentiate
from the duplicate primary keys derived from the parent table.

Table 3: VEHICLES

VEHICLESPOSITION (PK)RESIDENTS_RESIDENT_ID (PK)

car0ajx363

boat1ajx363

bicycle2ajx363

scooter0tzn525

truck1tzn525

bicycle2tzn525

See also
Determining the primary key on page 16
Designating the primary key on page 21
Table on page 107

Normalizing JSON maps

A JSON map is a collection of key-value pairs that contain a set of unique keys. Typically, the keys are used
for reference and, therefore, act as identifiers with a real world relationship, such as ID numbers, dates, or
times. The driver will attempt to detect maps by recognizing patterns and formats in the keys when sampling
an endpoint. For the driver to automatically recognize an object as a map, the object must have the following
characteristics:

• The keys must me be one of the following types:

• Numeric values

• GUIDs

• Dates formatted as YYYY-MM-DD

• Times using the ISO 8061 format. The map may contain values with and without timezones in the same
map.

• Timestamps using the ISO 8061 format. The map may contain values with and without timezones in the
same map.

• Every key in the object must be of the same type.

15Progress DataDirect Autonomous REST Connector for JDBC : User's Guide for Partners: Version 6.0.0

Mapping objects to tables

For example, the following JSON document contains a map that uses dates as keys:

{
 "1979-10-31":{"attendance":"12080","opponent":"Wildcats","result":"loss"},
 "1979-11-06":{"attendance":"34000","opponent":"Mustangs","result":"loss"},
 "1979-11-06":{"attendance":"8500","opponent":"Jets","result":"loss"},
}

The driver normalizes the key-value pairs in the JSON map to a child table. The fields in the map value are
mapped into relational columns. For example, the attendance and opponent fields, are mapped to relational
columns of the same name. The primary key is determined by the key portion of the key-value pair and maps
to the KEY column by default.

You can specify the name of the parent table using the Table property. If no value is specified, The name is
derived from the endpoint from which the data was sampled. The parent table for our example is named
SEASON_RESULTS and takes the following form:

Table 4: SEASON_RESULTS

RESULTOPPONENTATTENDANCEKEY (PK)

lossWildcats120801979-10-31

lossMustangs340001979-11-06

lossJets85001979-11-06

Determining the primary key

The primary key for parent tables are determined heuristically from the top-level fields in the document. When
sampling, the driver attempts to find the first outermost simple column to designate as the primary key. Columns
are then evaluated using the following rules to determine the most viable candidate:

• If sampling reveals a duplicate value, the column is not considered a good candidate

• If sampling reveals a null value, the column is not considered a good candidate

• If sampling reveals certain statistical patterns in the content of the data, the column may be discarded as
a candidate

• If no top-level column is available, nested columns inside objects may be considered

• If the search runs out of candidates, a best-case candidate will be selected

Note that this is just an overview of the rules employed by the driver. Additional and more subtle interactions
occur when the driver encounters complex types or unusual data structures or values.

Progress DataDirect Autonomous REST Connector for JDBC : User's Guide for Partners: Version 6.0.016

Chapter 1: Welcome to the Progress DataDirect Autonomous REST Connector for JDBC

2
Using the driver

This section provides information on how to connect to your data store using either connection URLs or data
sources, as well as information on how to implement and use functionality supported by the driver.

For details, see the following topics:

• Configuring the relational map

• Connecting from an application

• Using connection properties

• Connecting through a proxy server

• Performance considerations

• Authentication

• Data encryption

• IP addresses

• Timeouts

• Using Java logging

• Enabling Debug Record Mode

• Tracking JDBC calls with DataDirect Spy

17Progress DataDirect Autonomous REST Connector for JDBC : User's Guide for Partners: Version 6.0.0

Configuring the relational map
The Autonomous REST Connector maps JSON responses to a relational model, exposing your REST data to
relational, SQL-based applications. The driver supports two methods for mapping data: using the Sample
property to map a single endpoint, and using an input REST file to define one or more endpoints.Which method
you use depends on the characteristics of your session. If any of the following apply to your session, you will
need to create an input REST file:

• Accesses multiple endpoints

• Issues POST requests

• Accesses endpoints that require paging

• Accesses endpoints that use custom HTTP headers

• Uses custom HTTP response code processing

• Requires a custom authentication flow

If none of these characteristics apply, you can use either method.

Sample property method

When using the Sample property, the driver issues a query to the endpoint specified with the Sample property
at connection. The results of the query provide a sample of the data, which are then inspected by the driver
and used to infer a schema. Using the Sample property method requires minimal configuration, but offers
limited functionality compared to the input REST file method. For more information on configuring this method,
see "Using the Sample property method."

Input REST file method

In addition to being able to specify multiple endpoints for your session, the input REST file method also allows
you to define POST requests, configure paging, and define additional customizations described in "Creating
an input REST file." To use this method, you will need to create an input REST file, which is a simple text file
that contains a comma separated list of endpoints. After you create the file, you will need to specify its location
using the Config property.

See "Creating an input REST file" for a full description of the syntax used in the REST file. For information on
configuring the driver for the input REST file method, see "Using the input REST file method".

Schema map generation

Upon initial connection, the driver generates a schema map that is stored in either internal memory or a resolved
REST file--depending on the setting of the CreateMap property. When CreateMap is set to Session (the
default), the driver stores the schema map using internal memory, which persists for only the life of the session
before being discarded.When CreateMap is set to forceNew or notExist, the driver generates the relational
map in a resolved REST file and set of internal driver files.The REST file persists indefinitely when the property
is set to notExist. Conversely, if the property is set to forceNew, the driver deletes and regenerates the
REST file at the beginning of every connection. See "CreateMap" for details.

Resolved REST file

The resolved REST file is a driver generated file that contains the fully defined map of REST responses. The
driver uses this map to execute SQL queries.The resolved REST file is distinct from the input REST file, which
is user created and supplies a list of end point for the driver to sample. In other words, the input REST file
specifies which endpoints to sample, while the resolved REST file stores the response definitions discovered
by sampling. Note that the resolved REST file is supported using both the Sample property and input REST
file methods.

Progress DataDirect Autonomous REST Connector for JDBC : User's Guide for Partners: Version 6.0.018

Chapter 2: Using the driver

The driver generates the resolved REST file in the location specified by the SchemaMap property. In most
scenarios, the resolved REST file works transparently from this location, with no additional driver configuration.
However, in some instances, you may want to change the relational view generated by the driver. To modify
the relational view, you will need to edit the resolved REST file. See "Modifying the relational view" for details.

See also
Using the Sample property method on page 19
Using the input REST file method on page 20
CreateMap on page 74
Modifying the relational view on page 21
Mapping objects to tables on page 13

Using the Sample property method

The sample property method allows you to access data for a single endpoint with minimal configuration.

To configure the driver to using the Sample property method:

• Set the Sample property to specify the endpoint to which you want to connect and sample. For example,
https://example.com/countries/events/1.

• Optionally, set the Table property to specify the name of the table your endpoint maps to in the relational
view of the data. If you do not specify a value, the driver will automatically generate a name based on the
composition of the endpoint. For example, the following endpoint:

https://example.com/countries/events/1/

maps to the following table name:

COUNTRIES_EVENTS_1

• Optionally, if you want to store the relational map in a resolved REST file, set the CreateMap property to
either of the following values:

• forceNew: The driver deletes the current REST file, internal configuration files, and relational map in
the location specified by the SchemaMap property and creates a new set at the same location.

• notExist:The driver uses the current REST file, internal files, and relational map in the location specified
by the SchemaMap property. If the files do not exist, the driver creates them.

Note that if no value is specified for CreateMap, the driver defaults to using internal memory to store the
map (CreateMap=session).

• Optionally, if you are storing the relational map to a REST file (CreateMap=forceNew | notExist) , you
can set the SchemaMap property to specify the location to generation the REST and internal driver files.

• Optionally, set the values for any required authentication properties. See "Authentication" for details.

For example, the following connection string demonstrates the minimum connection properties to configure
the Sample property method:

jdbc:subprotocol:autorest:Sample=https://example.com/countries/events/1;

Note: Connection URLs containing special characters should be enclosed in quotes; otherwise, the connection
may fail.

19Progress DataDirect Autonomous REST Connector for JDBC : User's Guide for Partners: Version 6.0.0

Configuring the relational map

Using the input REST file method

The input REST file method allows you to access data from one or more endpoints, define POST requests,
and configure additional customizations supported by the input REST file.

To configure the driver to using the input REST file property method:

• Set the Config property to specify the name and location of the input REST file used to define your endpoints
for sampling. For example, C:\path\to\myrest.rest (Windows) or home_dir/path/to/myrest.rest
(UNIX/Linux).

• Optionally, if you want to store the relational map in a resolved REST file, set the CreateMap property to
either of the following values:

• forceNew: The driver deletes the current REST file, internal configuration files, and relational map in
the location specified by the SchemaMap property and creates a new set at the same location.

• notExist:The driver uses the current REST file, internal files, and relational map in the location specified
by the SchemaMap property. If the files do not exist, the driver creates them.

Note that if no value is specified for CreateMap, the driver defaults to using internal memory to store the
map (CreateMap=session).

• Optionally, if you are storing the relational map to a REST file (CreateMap=forceNew | notExist) , you
can set the SchemaMap property to specify the location to generation the REST and internal driver files.

• Optionally, set the values for any required authentication properties. See "Authentication" for details.

For example, the following connection string demonstrates the minimum connection properties to configure

jdbc:subprotocol:autorest:Config=C:/path/to/myrest.rest;

Note: Connection URLs containing special characters should be enclosed in quotes; otherwise, the connection
may fail.

See also
Authentication on page 42

Creating an input REST file

The input REST file is a simple text file that uses the file_name.rest naming convention. To configure the
file, you will need to populate the contents with a list of comma-separated endpoints and requests using the
formats described in "Input REST file syntax". For additional examples, see "Example input REST file."

In addition to mapping endpoints to tables, you can customize your mapping and driver behavior using the
REST file. See "Input REST file syntax" for details.

The following example demonstrates the basic format used in the REST file when mapping a table to the
schema:

{
 "<table_name1>":"<endpoint1>",
 "<table_name2>":"<endpoint2>",
 "<table_name3>":"<endpoint3>"
}

Progress DataDirect Autonomous REST Connector for JDBC : User's Guide for Partners: Version 6.0.020

Chapter 2: Using the driver

See also
Input REST file syntax on page 117
Example input REST file on page 147

Modifying the relational view

Note: You can modify the relational view only if your session uses REST files. For sessions that use internal
memory to map the relational view (CreateMap=Session), the following functionality is not supported.

You can manually edit the resolved REST file to modify the relational view of your data, including adding/removing
endpoints or updating the primary key.When you first issue a SQL command for a session, the driver overwrites
the resolved REST file to the location specified by the SchemaMap. To persist your changes, you will need to
move the edited REST file to the location specified by the Config property.This procedure will guide you through
the process of modifying the REST file.

To modify your REST file:

1. Copy the REST file in the location specified by the SchemaMap property to a new location or the current
location specified by the Config property. Note, if moving the file to a different location, the driver must have
read access to the new directory.

2. Edit the contents of the copied REST file to do either of the following:

• Designate the primary key for a table. See Designating the primary key on page 21 for details.

• Add/remove endpoints from the map. See Adding/removing objects on page 22 for details.

3. Set the Config property to specify the name and location of the edited REST file.

4. Set the CreateMap property to ForceNew.

Note: After completing this procedure, set the CreateMap property to your preferred setting.

5. Use the driver to execute any SQL command to regenerate the resolved REST file.

The resolved REST file, and therefore your relational view, now includes your modifications. If you need to
make additional modifications, repeat the steps discussed in this procedure.

Designating the primary key
You can designate the primary key for a table by modifying the REST file. In the column object, add the #key
after the data type element, separated by a comma. In the following example, the employeeID column has
been designated the primary key for this table:

{
"my_table":{
 "#path":[
 "https://example.com/employees"
],
 "employeeID":"VarChar(32),#key",
 "position_title":"VarChar(46)",
 "start_year":"Integer",
 }
}

21Progress DataDirect Autonomous REST Connector for JDBC : User's Guide for Partners: Version 6.0.0

Configuring the relational map

You an also create a composite primary key by using the #key element to designate multiple columns in a
definition. For example, the values of the employeeID and position columns act as a composite key in the
following:

{
"my_table":{
 "#path":[
 "https://example.com/employees"
],
 "employeeID":"VarChar(32),#key",
 "position":"Integer",#key,
 "position_title":"VarChar(46)",
 "start_year":"Integer",
 }
}

Your changes will be updated during your next connection. See "Modifying the relational view" for details on
regenerating the REST file to include your changes.

See also
Modifying the relational view on page 21

Adding/removing objects
After you generate your initial relational map, you can add endpoints or remove objects at any time by editing
the REST file. The following sections provide you with detailed instructions.

Adding endpoints
To add endpoints to your map, add a comma-separated entry for each endpoint using the following format.
This process is similar to the one used to create the input REST file.

 "<table_name1>":"<endpoint1>",

For example, the following demonstrates adding an endpoint for new_table table to a REST file containing
a resolved entry my_table table.

{
"new_table":"http://example.com/countries/",
"my_table":{
 "#path":[
 "https://example.com/employees"
],
 "employeeID":"VarChar(32),#key",
 "position_title":"VarChar(46)",
 "start_year":"Integer",
 }
}

The added table or tables will be resolved during the next connection. See "Modifying the REST file" for details
on regenerating the REST file to include your changes.

Removing objects from the relational view
To remove an object, delete the resolved table entry or object from the REST file. See "Modifying the REST
file" for details on regenerating the REST file to include your changes.

See also
Modifying the relational view on page 21

Progress DataDirect Autonomous REST Connector for JDBC : User's Guide for Partners: Version 6.0.022

Chapter 2: Using the driver

Mapping new native objects to a table

You can map new JSON objects to an existing relational table by configuring the driver to resample the table.
To resample a table, set the Table property to specify the name of the table you want to update. The next time
the driver connects to the data source, the driver will resample the table and map any new JSON objects. Note
that any objects removed from the native view will persist after resampling. To remove these objects, see
"Adding/removing objects".

See “Table” for more information on the Table property.

See also
Adding/removing objects on page 22
Table on page 107

Connecting from an application
After the driver has been installed and defined on your class path, you can connect from your application to
your data using a connection URL.

Passing the connection URL

The required connection information needs to be passed in the form of a connection URL. The form of the
connection URL differs depending on whether you are using a REST file.

Connection URL Syntax
For sessions using a REST file (sessions that use multiple endpoints, POST requests, or other customizations
supported by the input REST file):

jdbc:subprotocol:autorest://servername;Config=rest_file_path;[property=value[;...]];")

For sessions using the Sample property:

jdbc:subprotocol:autorest:Sample=sample_path;[property=value[;...]];

where:

servername

optionally, specifies the host name portion of the URL endpoint to which you send requests. Specify
this value only if you want to define endpoints without the web server address in the REST config
file.

rest_file_path

specifies the name and location of the input REST file that contains a list of endpoints to sample,
PUSH request definitions, and configuration information. See "Creating an input REST file" for details.

property=value

specifies connection property settings. Multiple properties are separated by a semi-colon.

23Progress DataDirect Autonomous REST Connector for JDBC : User's Guide for Partners: Version 6.0.0

Connecting from an application

sample_path

specifies the endpoint the sample when not using a REST file.

Connection URL Example
For sessions using a REST file:

jdbc:subprotocol:autorest:https://example.com/;Config=C:\path\to\myrest.rest;

For sessions using the Sample property:

jdbc:subprotocol:autorest:Sample='https://example.com//countries/get/all';

See also
Config on page 73
Sample on page 99
Connection property descriptions on page 63

Using connection properties
You can use connection properties to customize the driver for your environment. This section organizes
connection properties according to functionality. Connection properties are specified in your connection URL
as a key value pair and takes the form property=value.

See "Connection property descriptions" for an alphabetical list of connection properties and their descriptions.

See also
Passing the connection URL on page 23
Connection property descriptions on page 63

Required properties

The following table summarizes connection properties which are required to connect to a REST service.

Progress DataDirect Autonomous REST Connector for JDBC : User's Guide for Partners: Version 6.0.024

Chapter 2: Using the driver

Table 5: Required properties

CharacteristicProperty

Specifies the name and location of the input REST file used to define your endpoints
for sampling. This file allows you to specify multiple endpoints, define POST
requests, and configure paging.You will need to create and specify an input REST
file if your session:

• Accesses multiple endpoints

• Issues POST requests

• Accesses endpoints that require paging

• Accesses endpoints that use custom HTTP headers

• Uses custom HTTP response code processing

• Requires a custom authentication flow

Config on page 73

Specifies the endpoint that the driver connects to and samples.This property allows
you to configure the driver to issue GET requests to a single endpoint without
creating an input REST file.

Note: This property is required when not using an input REST file.

Sample on page 99

Mapping properties

The following table summarizes connection properties involved in mapping the REST API data model to a local
schema map used to support SQL queries.

Table 6: Mapping properties

CharacteristicProperty

Determines whether the driver creates the internal files required for a relational
map of the native data when establishing a connection.

If set session, the driver uses memory to store the internal configuration
information and relational map of native data. A REST file is not created when
this value is specified. After the session, the view is discarded.

If set to forceNew, the driver deletes the current REST file, internal
configuration files, and relational map in the location specified by the
SchemaMap property and creates a new set at the same location.

If set to notExist, the driver uses the current REST file, internal files, and
relational map in the location specified by the SchemaMap property. If the files
do not exist, the driver creates them.

The default is session.

CreateMap on page 74

25Progress DataDirect Autonomous REST Connector for JDBC : User's Guide for Partners: Version 6.0.0

Using connection properties

CharacteristicProperty

Specifies whether the driver automatically refreshes the map of the data model
when a user connects to a REST service.

If set to true, the driver automatically refreshes the map of the data model
when a user connects to a REST service. Changes to objects since the last
time the map was generated will be shown in the metadata.

If set to false, the driver does not refresh the map of the data model when a
user connects to a REST service.

The default is true.

RefreshSchema on page 96

Specifies the directory where the internal configuration files, REST file, and
the relational map of the REST data model are written. The driver looks for
these files when connecting to a REST service. If the file does not exist, the
driver creates one.

The default varies based on your environment:

For Windows:

application_data_folder\Local\Progress\DataDirect\AutoREST_Schema\

For UNIX/Linux:

~/progress/datadirect/AutoREST_schema/

SchemaMap on page 100

Specifies the host name portion of the URL endpoint to which you send
requests.This property allows you to define endpoints without storing the host
name component in the REST file property.

ServerName on page 103

Determines the name of the table your endpoint maps to when specifying an
endpoint using the Sample property. If the table already exists, including those
defined in an input REST file, the driver will resample the endpoint associated
with this table and add any newly discovered columns to the relational view.

Table on page 107

See also
Mapping objects to tables on page 13

Basic authentication properties

The following table summarizes connection properties which are required for basic authentication.

Progress DataDirect Autonomous REST Connector for JDBC : User's Guide for Partners: Version 6.0.026

Chapter 2: Using the driver

Table 7: Authentication properties

CharacteristicProperty

Determines which authentication method the driver uses during the course of a
session.

If set to None, the driver does not attempt to authenticate.

If set to Basic, the driver uses a hashed value, based on the concatenation of the
user name and password, for authentication. In addition to the User and Password
properties, you must also configure the AuthHeader property if the name of your
HTTP header is not Authorization (the default).

If set to Custom, the driver uses the custom token-based authentication flow that
is defined in the input REST file.

If set to HttpHeader, the driver passes security tokens via HTTP headers for
authentication.You must also configure SecurityToken property and, if the name
of your HTTP header is not Authorization (the default), the AuthHeader property.

If set to OAuth2, the driver uses OAuth 2.0 to authenticate to REST endpoints.

If set to UrlParameter, the driver passes security tokens via the URL for
authentication.You must also configure the AuthParam and SecurityToken
properties.

The default is None.

AuthenticationMethod on
page 69

Specifies the name of the HTTP header used for authentication. This property is
used when Basic (AuthenticationMethod=Basic) or Header-based token
authentication (AuthenticationMethod=HttpHeader) is enabled; otherwise,
this property is ignored.

The default is Authorization.

AuthHeader on page 70

Specifies the password to use to connect to your REST service. This property is
ignored when AuthenticationMethod=None.

Password on page 90

Specifies the user name that is used to connect to the REST service. A user name
is required if user is enabled by your REST service. This property is ignored when
AuthenticationMethod=None.

User on page 110

HTTP header authentication properties

The following table summarizes connection properties which are required for HTTP header authentication.

27Progress DataDirect Autonomous REST Connector for JDBC : User's Guide for Partners: Version 6.0.0

Using connection properties

Table 8: Authentication properties

CharacteristicProperty

Determines which authentication method the driver uses during the course of a
session.

If set to None, the driver does not attempt to authenticate.

If set to Basic, the driver uses a hashed value, based on the concatenation of the
user name and password, for authentication. In addition to the User and Password
properties, you must also configure the AuthHeader property if the name of your
HTTP header is not Authorization (the default).

If set to Custom, the driver uses the custom token-based authentication flow that
is defined in the input REST file.

If set to HttpHeader, the driver passes security tokens via HTTP headers for
authentication.You must also configure SecurityToken property and, if the name
of your HTTP header is not Authorization (the default), the AuthHeader property.

If set to OAuth2, the driver uses OAuth 2.0 to authenticate to REST endpoints.

If set to UrlParameter, the driver passes security tokens via the URL for
authentication.You must also configure the AuthParam and SecurityToken
properties.

The default is None.

AuthenticationMethod on
page 69

Specifies the name of the HTTP header used for authentication. This property is
used when Basic (AuthenticationMethod=Basic) or Header-based token
authentication (AuthenticationMethod=HttpHeader) is enabled; otherwise,
this property is ignored.

The default is Authorization.

AuthHeader on page 70

Specifies the security token required to make a connection to your REST API
endpoint. This property is required when token based authentication is enabled
(AuthenticationMethod=HttpHeader | UrlParameter); otherwise, this
property is ignored. If a security token is required and you do not supply one, the
driver returns an error indicating that an invalid user or password was supplied.

SecurityToken on page
102

OAuth 2.0 properties

The following table summarizes connection properties that are used for OAuth 2.0 authentication. See "OAuth
2.0 authentication" for the properties used for each authentication flow.

Table 9: Authentication Properties

CharacteristicProperty

Specifies the access token required to authenticate to a REST service when OAuth
2.0 is enabled (AuthenticationMethod=OAuth2). Typically, this property is
configured by the application

AccessToken on page 68

Progress DataDirect Autonomous REST Connector for JDBC : User's Guide for Partners: Version 6.0.028

Chapter 2: Using the driver

CharacteristicProperty

Determines which authentication method the driver uses during the course of a
session.

If set to None, the driver does not attempt to authenticate.

If set to Basic, the driver uses a hashed value, based on the concatenation of the
user name and password, for authentication. In addition to the User and Password
properties, you must also configure the AuthHeader property if the name of your
HTTP header is not Authorization (the default).

If set to Custom, the driver uses the custom token-based authentication flow that
is defined in the input REST file.

If set to HttpHeader, the driver passes security tokens via HTTP headers for
authentication.You must also configure SecurityToken property and, if the name
of your HTTP header is not Authorization (the default), the AuthHeader property.

If set to OAuth2, the driver uses OAuth 2.0 to authenticate to REST endpoints.

If set to UrlParameter, the driver passes security tokens via the URL for
authentication.You must also configure the AuthParam and SecurityToken
properties.

The default is None.

AuthenticationMethod on
page 69

Specifies the client ID key for your application.The driver uses this value for certain
flows when authenticating to a REST service using OAuth 2.0
(AuthenticationMethod=OAuth2).

ClientID on page 71

Specifies the client secret for your application when authenticating to a REST
service with OAuth 2.0 enabled (AuthenticationMethod=OAuth2).

Important: The client secret is a confidential value used to authenticate the
application to the server. The value must be securely maintained to prevent
unauthorized access.

ClientSecret on page 72

Specifies the endpoint the driver calls to notify the service to log the client out of
the session, including performing any clean-up tasks or expiring the token.

LogoffURI on page 87

Specifies the temporary authorization code that is exchanged for access tokens
when OAuth 2.0 authentication is enabled (AuthenticationMethod=OAuth2).
Authorization codes are used to authenticate against the endpoint specified by the
TokenURI property. If authentication is successful, an access token is generated
and fetched from the specified location.

OAuthCode on page 89

Specifies the password to use to connect to your REST service.Password on page 90

Specifies the endpoint to which the client is returned after authenticating with a
third-party service when OAuth 2.0 authentication is enabled
(AuthenticationMethod=OAuth2).

RedirectURI on page 95

29Progress DataDirect Autonomous REST Connector for JDBC : User's Guide for Partners: Version 6.0.0

Using connection properties

CharacteristicProperty

Specifies a space-separated list of OAuth scopes that limit the permissions granted
by an access token. The driver uses this value when authenticating to a REST
service using OAuth 2.0 (AuthenticationMethod=OAuth2).

Scope on page 101

Specifies the endpoint used to exchange authentication credentials for access
tokens when OAuth 2.0 authentication is enabled
(AuthenticationMethod=OAuth2).

TokenURI on page 108

Specifies the user name that is used to connect to the REST service. A user name
is required if user is enabled by your REST service.

User on page 110

See also
OAuth 2.0 authentication on page 44

URL parameter authentication properties

The following table summarizes connection properties which are required for URL parameter authentication.

Table 10: Authentication Properties

CharacteristicProperty

Determines which authentication method the driver uses during the course of a
session.

If set to None, the driver does not attempt to authenticate.

If set to Basic, the driver uses a hashed value, based on the concatenation of the
user name and password, for authentication. In addition to the User and Password
properties, you must also configure the AuthHeader property if the name of your
HTTP header is not Authorization (the default).

If set to Custom, the driver uses the custom token-based authentication flow that
is defined in the input REST file.

If set to HttpHeader, the driver passes security tokens via HTTP headers for
authentication.You must also configure SecurityToken property and, if the name
of your HTTP header is not Authorization (the default), the AuthHeader property.

If set to OAuth2, the driver uses OAuth 2.0 to authenticate to REST endpoints.

If set to UrlParameter, the driver passes security tokens via the URL for
authentication.You must also configure the AuthParam and SecurityToken
properties.

The default is None.

AuthenticationMethod on
page 69

Specifies the name of the URL parameter used to pass the security token. This
property is required when using URL parameters to pass tokens for authentication
(AuthenticationMethod=UrlParameter); otherwise, this property is ignored.

AuthParam on page 70

Progress DataDirect Autonomous REST Connector for JDBC : User's Guide for Partners: Version 6.0.030

Chapter 2: Using the driver

CharacteristicProperty

Specifies the security token required to make a connection to your REST API
endpoint. This property is required when token based authentication is enabled
(AuthenticationMethod=HttpHeader | UrlParameter); otherwise, this
property is ignored. If a security token is required and you do not supply one, the
driver returns an error indicating that an invalid user or password was supplied.

SecurityToken on page
102

Specifies the user name that is used to connect to the REST service. A user name
is required if user is enabled by your REST service. This property is ignored when
AuthenticationMethod=None.

User on page 110

Custom authentication request properties

The following table summarizes connection properties which are used for custom authentication requests that
defined in the input REST file.

Table 11: Authentication Properties

CharacteristicProperty

Determines which authentication method the driver uses during the course of a
session.

If set to None, the driver does not attempt to authenticate.

If set to Basic, the driver uses a hashed value, based on the concatenation of the
user name and password, for authentication. In addition to the User and Password
properties, you must also configure the AuthHeader property if the name of your
HTTP header is not Authorization (the default).

If set to Custom, the driver uses the custom token-based authentication flow that
is defined in the input REST file. See "Custom authentication requests" for more
information on input REST file.

If set to HttpHeader, the driver passes security tokens via HTTP headers for
authentication.You must also configure SecurityToken property and, if the name
of your HTTP header is not Authorization (the default), the AuthHeader property.

If set to OAuth2, the driver uses OAuth 2.0 to authenticate to REST endpoints.

If set to UrlParameter, the driver passes security tokens via the URL for
authentication.You must also configure the AuthParam and SecurityToken
properties.

The default is None.

AuthenticationMethod on
page 69

Specifies a list of parameter values used by custom authentication requests that
are defined in the input REST file.This property allows you to configure parameter
values used in custom authentication requests on a per connection basis, without
editing the REST file, and securely pass them in a connection string.

CustomAuthParams on
page 76

31Progress DataDirect Autonomous REST Connector for JDBC : User's Guide for Partners: Version 6.0.0

Using connection properties

CharacteristicProperty

Specifies the user name that is used to connect to the REST service. A user name
is required if user is enabled by your REST service. This property is ignored when
AuthenticationMethod=None.

User on page 110

Specifies the password to use to connect to your REST service.Password on page 90

See also
Custom authentication requests on page 124
Authentication on page 42

Data encryption properties

The following table summarizes connection properties which can be used to enable SSL.

Table 12: Data encryption properties

CharacteristicProperty

Specifies a cryptographic protocol or comma-separated list of cryptographic
protocols that can be used when SSL is enabled (EncryptionMethod=SSL).

CryptoProtocolVersion on
page 75

Determines whether data is encrypted and decrypted when transmitted over
the network between the driver and REST service.

If set to noEncryption, data is not encrypted or decrypted.

If set to SSL, data is encrypted using SSL. If the endpoint does not support
SSL, the connection fails and the driver throws an exception.

The default is noEncryption.

Note: SSL encryption is enabled when the URL specified in the Sample
property or REST file uses HTTPS, regardless of the setting of
EncryptionMethod.

EncryptionMethod on page 78

Specifies a host name for certificate validation when SSL encryption is enabled
(EncryptionMethod=SSL) and validation is enabled
(ValidateServerCertificate=true). This property is optional and
provides additional security against man-in-the-middle (MITM) attacks by
ensuring that the server the driver is connecting to is the server that was
requested.

HostNameInCertificate on
page 80

Specifies the password that is used to access the individual keys in the keystore
file when SSL is enabled (EncryptionMethod=SSL) and SSL client
authentication is enabled on the REST server. This property is useful when
individual keys in the keystore file have a different password than the keystore
file.

KeyPassword on page 84

Progress DataDirect Autonomous REST Connector for JDBC : User's Guide for Partners: Version 6.0.032

Chapter 2: Using the driver

CharacteristicProperty

Specifies the directory of the keystore file to be used when SSL is enabled
(EncryptionMethod=SSL) and SSL client authentication is enabled on the
REST server. The keystore file contains the certificates that the client sends
to the server in response to the server’s certificate request.

KeyStore on page 84

Specifies the password that is used to access the keystore file when SSL is
enabled (EncryptionMethod=SSL) and SSL client authentication is enabled
on the REST server. The keystore file contains the certificates that the client
sends to the server in response to the server’s certificate request.

KeyStorePassword on page
85

Specifies the directory of the truststore file to be used when SSL is enabled
(EncryptionMethod=SSL) and server authentication is used.The truststore
file contains a list of the Certificate Authorities (CAs) that the client trusts.

TrustStore on page 109

Specifies the password that is used to access the truststore file when SSL is
enabled (EncryptionMethod=SSL) and server authentication is used. The
truststore file contains a list of the Certificate Authorities (CAs) that the client
trusts.

TrustStorePassword on page
110

Determines whether the driver validates the certificate that is sent by the
database server when SSL encryption is enabled (EncryptionMethod=SSL).
When using SSL server authentication, any certificate that is sent by the server
must be issued by a trusted Certificate Authority (CA).

The default is true.

ValidateServerCertificate on
page 111

See also
Data encryption on page 50

Proxy server properties

The following table summarizes proxy server connection properties.

Table 13: Proxy Server Properties

CharacteristicProperty

Identifies a proxy server to use for the first connection. This can be a named
server or an IP address.

ProxyHost on page 91

Specifies the password needed to connect to a proxy server for the first
connection.

ProxyPassword on page 92

Specifies the port number where the proxy server is listening for HTTP or
HTTPS requests for the first connection.

The default is 0.

ProxyPort on page 93

Specifies the user name needed to connect to a proxy server for the first
connection.

ProxyUser on page 93

33Progress DataDirect Autonomous REST Connector for JDBC : User's Guide for Partners: Version 6.0.0

Using connection properties

See also

• Connecting through a proxy server on page 40

Web service properties

The following table summarizes Web service connection properties, including those related to timeouts.

Table 14: Web Service Properties

CharacteristicProperty

The amount of time, in seconds, that the driver waits for a connection to
be established before timing out the connection request.

If set to 0, the driver does not time out a connection request.

If set to x, the driver waits for the specified number of seconds before
returning control to the application and throwing a timeout exception.

The default is 0 (no timeout).

LoginTimeout on page 87

Specifies the maximum number of Web service calls the driver can make
when executing any single SQL statement or metadata query.

If set to 0, there is no limit.

If set to x, the driver uses this value to set the maximum number of Web
service calls on a single connection that can be made when executing a
SQL statement. This limit can be overridden by changing the
STMT_CALL_LIMIT session attribute using the ALTER SESSION statement.

The default is 0 (no limit).

StmtCallLimit on page 106

Specifies the behavior of the driver when the maximum Web service call
limit specified by the StmtCallLimit property is exceeded.

If set to errorAlways, the driver generates an exception if the maximum
Web service call limit is exceed.

If set to returnResults, the driver returns any partial results it received
prior to the call limit being exceeded. The driver generates a warning that
not all of the results were fetched.

The default is errorAlways.

StmtCallLimitBehavior on page
107

Progress DataDirect Autonomous REST Connector for JDBC : User's Guide for Partners: Version 6.0.034

Chapter 2: Using the driver

CharacteristicProperty

Specifies the number of rows of data the driver attempts to fetch for each
JDBC call when paging is enabled for an endpoint.

If set to 0, the driver attempts to fetch up to the maximum number of row
specified by the maximumPageSize property. This value typically provides
the maximum throughput.

If set to x, the driver attempts to fetch up to the maximum of the specified
number of rows. Setting the value lower than the maximum can reduce the
response time for returning the initial data. Consider using a smaller
WSFetch size for interactive applications only.

0 (up to the maximum number of rows specified by the maximumPageSize
property)

WSFetchSize on page 112

Specifies the maximum number of sessions the driver uses. This allows
the driver to have multiple web service requests active when multiple JDBC
connections are open, thereby improving throughput and performance.

The default is 1.

WSPoolSize on page 113

The number of times the driver retries a timed-out Select request.

If set to 0, the driver does not retry timed-out requests after the initial
unsuccessful attempt.

If set to x, the driver retries the timed-out request the specified number of
times.

The default is 5.

WSRetryCount on page 114

Specifies the time, in seconds, that the driver waits for a response to a
Web service request.

If set to 0, the driver waits indefinitely for a response; there is no timeout.

If set to x, the driver uses the value as the default timeout for any statement
created by the connection.

The default is 120.

WSTimeout on page 115

Data type handling properties

The following table summarizes connection properties which can be used to handle data types.

35Progress DataDirect Autonomous REST Connector for JDBC : User's Guide for Partners: Version 6.0.0

Using connection properties

Table 15: Data type handling properties

CharacteristicProperty

Controls how data conversions are handled for null values.

If set to 0, the driver does not perform the data type check if the value of
the column is null. This allows null values to be returned even though a
conversion between the requested type and the column type is undefined.

If set to 1, the driver checks the data type being requested against the
data type of the table column that stores the data. If a conversion between
the requested type and column type is not defined, the driver generates
an "unsupported data conversion" exception regardless of whether the
column value is NULL.

The default is 1.

ConvertNull on page 74

Determines how the driver describes native data types that map to the
following JDBC 4.0 data types: NCHAR, NVARCHAR, NLONGVARCHAR,
NCLOB, and SQLXML.

If set to 0, the driver describes the data types as JDBC 4.0 data types
when using Java SE 8 or higher.

If set to 1, the driver describes the data types using JDBC 3.0-equivalent
data types, regardless of JVM. This allows your application to continue
using JDBC 3.0 types in a Java SE 8 or higher environment.

The defaut is 1.

JDBCBehavior on page 83

Timeout properties

The following table summarizes timeout connection properties.

Table 16:Timeout Properties

CharacteristicProperty

The amount of time, in seconds, that the driver waits for a connection to be
established before timing out the connection request.

If set to 0, the driver does not time out a connection request.

If set to x, the driver waits for the specified number of seconds before returning
control to the application and throwing a timeout exception.

The default is 0 (no timeout).

LoginTimeout on page 87

Progress DataDirect Autonomous REST Connector for JDBC : User's Guide for Partners: Version 6.0.036

Chapter 2: Using the driver

CharacteristicProperty

The number of times the driver retries a timed-out Select request.

If set to 0, the driver does not retry timed-out requests after the initial
unsuccessful attempt.

If set to x, the driver retries the timed-out request the specified number of
times.

The default is 0.

WSRetryCount on page 114

Specifies the time, in seconds, that the driver waits for a response to a Web
service request.

If set to 0, the driver waits indefinitely for a response; there is no timeout.

If set to x, the driver uses the value as the default timeout for any statement
created by the connection.

The default is 120.

WSTimeout on page 115

Statement pooling properties

The following table summarizes statement pooling connection properties.

Table 17: Statement Pooling Properties

CharacteristicProperty

Specifies the path and file name of the file to be used to load the
contents of the statement pool. When this property is specified,
statements are imported into the statement pool from the specified
file.

ImportStatementPool on page 81

37Progress DataDirect Autonomous REST Connector for JDBC : User's Guide for Partners: Version 6.0.0

Using connection properties

CharacteristicProperty

Specifies the maximum number of prepared statements to be
pooled for each connection and enables the driver’s internal
prepared statement pooling when set to an integer greater than
zero (0).The driver’s internal prepared statement pooling provides
performance benefits when the driver is not running from within
an application server or another application that provides its own
statement pooling.

If set to 0, the driver’s internal prepared statement pooling is not
enabled.

If set to x, the driver enables the DataDirect Statement Pool and
uses the specified value to cache a certain number of prepared
statements created by an application. If the value set for this
property is greater than the number of prepared statements that
are used by the application, all prepared statements that are
created by the application are cached. Because CallableStatement
is a sub-class of PreparedStatement, CallableStatements also
are cached.

The default is 0.

MaxPooledStatements on page 88

Registers the Statement Pool Monitor as a JMX MBean when
statement pooling has been enabled with MaxPooledStatements.
This allows you to manage statement pooling with standard JMX
API calls and to use JMX-compliant tools, such as JConsole.

If set to true, the driver registers an MBean for the statement
pool monitor for each statement pool. This gives applications
access to the Statement Pool Monitor through JMX when
statement pooling is enabled.

If set to false, the driver does not register an MBean for the
Statement Pool Monitor for any statement pool.

The default is false.

RegisterStatementPoolMonitorMBean on
page 98

Refer to "Statement Pool Monitor" in the Progress DataDirect for JDBC Drivers Reference for an overview of
statement pooling.

Additional properties

The following table summarizes additional connection properties.

Progress DataDirect Autonomous REST Connector for JDBC : User's Guide for Partners: Version 6.0.038

Chapter 2: Using the driver

Table 18: Additional Properties

CharacteristicProperty

Specifies the directory where the driver generates debug record files.
When a value is specified, the driver records server requests and
responses to set of files stored in this location. These files assist in
troubleshooting by providing a method for Technical Support to reproduce
and debug issues for REST services that are not publicly accessible.

Important: Debug record files may capture security-related headers,
such as auth or token headers. Before sending Technical Support debug
files, review the content to remove any confidential information that may
have been recorded.

DebugRecord on page 77

Specifies the maximum number of rows that the driver processes before
returning data to the application when executing a Select. This value
provides a suggestion to the driver as to the number of rows it should
internally process before returning control to the application. The driver
may fetch fewer rows to conserve memory when processing exceptionally
wide rows.

If set to 0, the driver processes all the rows of the result before returning
control to the application. When large data sets are being processed,
setting FetchSize to 0 can diminish performance and increase the
likelihood of out-of-memory errors.

If set to x, the driver limits the number of rows that may be processed for
each fetch request before returning control to the application.

The default is 100 (rows).

FetchSize on page 79

Determines the amount of memory used by the driver to cache insensitive
result set data.

If set to -1, the driver caches insensitive result set data in memory. If the
size of the result set exceeds available memory, an
OutOfMemoryException is generated. With no need to write result set
data to disk, the driver processes the data efficiently.

If set to 0, the driver caches insensitive result set data in memory, up to
a maximum of 2 MB. If the size of the result set data exceeds available
memory, then the driver pages the result set data to disk, which can have
a negative performance effect. Because result set data may be written
to disk, the driver may have to reformat the data to write it correctly to
disk.

If set to x, the driver caches insensitive result set data in memory and
uses this value to set the size (in KB) of the memory buffer for caching
insensitive result set data. If the size of the result set data exceeds
available memory, then the driver pages the result set data to disk, which
can have a negative performance effect. Because the result set data may
be written to disk, the driver may have to reformat the data to write it
correctly to disk. Specifying a buffer size that is a power of 2 results in
efficient memory use.

The default is 2048.

InsensitiveResultSetBufferSize on
page 82

39Progress DataDirect Autonomous REST Connector for JDBC : User's Guide for Partners: Version 6.0.0

Using connection properties

CharacteristicProperty

Specifies the filename of the configuration file used to initialize driver
logging.

The default is ddlogging.properties.

LogConfigFile on page 86

Specifies the maximum number of fetch requests the driver issues in
parallel. By default, the driver queues the next page while processing the
current page. This property allows you to fetch multiple requests
simultaneously, thereby improving throughput and performance.

Caution: Due to potential impacts to other users, we strongly recommend
specifying only smaller values for this property. For example, in fully
optimized environments, which include exceptionally fast connections
and low latency, we recommend a setting of no higher than 10. For typical
environments, this value should be considerably lower.

ReadAhead on page 94

Specifies whether the driver refreshes a dirty cache on the next fetch
operation from the cache. A cache is marked as dirty when a row is
inserted into or deleted from a cached table or a row in the cached table
is updated.

If set to 1, a dirty cache is refreshed when the cache is referenced in a
fetch operation.The cache state is set to initialized if the refresh succeeds.

If set to 0, a dirty cache is not refreshed when the cache is referenced
in a fetch operation.

The default is 1.

RefreshDirtyCache on page 96

Enables DataDirect Spy to log detailed information about calls issued by
the driver on behalf of the application. DataDirect Spy is not enabled by
default.

SpyAttributes on page 103

Connecting through a proxy server
In some environments, your application may need to connect through a proxy server, for example, if your
application accesses an external resource such as a Web service. At a minimum, your application needs to
provide the following connection information when you invoke the JVM if the application connects through a
proxy server:

• Server name or IP address of the proxy server

• Port number on which the proxy server is listening for HTTP/HTTPS requests

In addition, if authentication is required, your application may need to provide a valid user ID and password for
the proxy server. Consult with your system administrator for the required information.

Progress DataDirect Autonomous REST Connector for JDBC : User's Guide for Partners: Version 6.0.040

Chapter 2: Using the driver

For example, the following command invokes the JVM while specifying a proxy server named pserver, a port
of 8888, and provides a user ID and password for authentication:

java -Dhttp.proxyHost=pserver -Dhttp.proxyPort=8888 -Dhttp.proxyUser=smith
-Dhttp.proxyPassword=secret -cp autorest.jar com.acme.myapp.Main

Alternatively, you can use the ProxyHost, ProxyPort, ProxyUser, and ProxyPassword connection properties.
See "Connection property descriptions" for details about these properties.

See also
Connection property descriptions on page 63

Performance considerations
EncryptionMethod: Data encryption may adversely affect performance because of the additional overhead
(mainly CPU usage) required to encrypt and decrypt data.

InsensitiveResultSetBufferSize: To improve performance when using scroll-insensitive result sets, the driver
can cache the result set data in memory instead of writing it to disk. By default, the driver caches 2 MB of
insensitive result set data in memory and writes any remaining result set data to disk. Performance can be
improved by increasing the amount of memory used by the driver before writing data to disk or by forcing the
driver to never write insensitive result set data to disk. The maximum cache size setting is 2 GB.

FetchSize/WSFetchSize: The connection properties FetchSize and WSFetchSize can be used to adjust the
trade-off between throughput and response time. In general, setting larger values for WSFetchSize and
FetchSize will improve throughput, but can reduce response time.

For example, if an application attempts to fetch 100,000 rows from the remote data source and WSFetchSize
is set to 500, the driver must make 200 Web service calls to get the 100,000 rows. If, however, WSFetchSize
is set to 2000 (the maximum), the driver only needs to make 50 Web service calls to retrieve 100,000 rows.
Web service calls are expensive, so generally, minimizing Web service calls increases throughput. In addition,
many Cloud data sources impose limits on the number of Web service calls that can be made in a given period
of time. Minimizing the number of Web service calls used to fetch data also can help prevent exceeding the
data source call limits.

For many applications, throughput is the primary performance measure, but for interactive applications, such
as Web applications, response time (how fast the first set of data is returned) is more important than throughput.
For example, suppose that you have a Web application that displays data 50 rows to a page and that, on
average, you view three or four pages. Response time can be improved by setting FetchSize to 50 (the number
of rows displayed on a page) and WSFetchSize to 200. With these settings, the driver fetches all of the rows
from the remote data source that you would typically view in a single Web service call and only processes the
rows needed to display the first page.

41Progress DataDirect Autonomous REST Connector for JDBC : User's Guide for Partners: Version 6.0.0

Performance considerations

ReadAhead: The ReadAhead property allows you to issue multiple fetch requests in parallel. By increasing
this number, you can improve throughput and performance, but it does so with the following restrictions:

• Larger values can increase the load on the server, which may adversely affect performance of other users.
If you encounter issues, decrease the value specified for this property.

• Larger values may result in unnecessary requests if your application only requires the first few rows of
results. This may be an issue if your service places limits on the number of web requests.

Caution: Due to potential impacts to other users, we strongly recommend specifying only smaller values for
the ReadAhead property. For example, in fully optimized environments, which include exceptionally fast
connections and low latency, we recommend a setting of no higher than 10. For typical environments, this
value should be considerably lower.

WSPoolSize: WSPoolSize determines the maximum number of sessions the driver uses when there are
multiple active connections. By increasing this number, you increase the number of sessions the driver uses
to distribute calls to the REST service, thereby improving throughput and performance. For example, if
WSPoolSize is set to 1, and you have two open connections, the session must complete a call from one
connection before it can begin processing a call from the other connection. However, if WSPoolSize is equal
to 2, a second session is opened that allows calls from both connections to be processed simultaneously.

Note: The number specified for WSPoolSize should not exceed the amount of sessions permitted by your
REST service.

Authentication
The driver supports the following authentication methods:

• No Authentication is used for REST services that do not require authentication.This is often used for publicly
available data, such as services for weather or earthquake data, governmental census or statistcal data,
or internal lists of lookup codes.

• Basic Authentication authenticates using the specified user IDs, passwords, and HTTP headers.

• HTTP Header Authentication passes security tokens via the HTTP headers to authenticate. In some
scenarios, the REST services may also authenticate the user ID.

• URL Parameter Authentication authenticates by passing security tokens using URLs. In some scenarios,
the REST services may also authenticate the user ID.

• OAuth 2.0 Authentication authenticates using OAuth 2.0 authentication flows.

• Custom Authentication authenticates using a series of requests defined in the input REST file.

By default, the driver is configured to use no authentication (AuthenticationMethod=None).

See also
AuthenticationMethod on page 69

Progress DataDirect Autonomous REST Connector for JDBC : User's Guide for Partners: Version 6.0.042

Chapter 2: Using the driver

Basic authentication

To configure the driver to use basic authentication:

• Configure the minimum properties required for a connection:

• If you are using a REST file, set the Config property to provide the name and location of the input REST
file. For example, C:/path/to/myrest.rest.

• If you are using the Sample property, set the Sample property to specify the endpoint that the want to
connect to and sample. For example, https://example.com/countries/.

• Set the AuthenticationMethod property to Basic.

• Set the AuthHeader property to specify the name of the HTTP header used for authentication. The default
is Authorization.

• Set the User property to specify your logon ID.

• Set the Password property to specify your password.

• Optionally, specify values for any additional properties you want to configure.

The following examples demonstrate a session using a REST file with basic authentication enabled and
AuthHeader set to the default.

For a connection URL:

jdbc:subprotocol:autorest:https://example.com/;AuthenticationMethod=basic;
 Config=C:/path/to/myrest.rest;User=jsmith;Password=secret;

See also
Basic authentication properties on page 26

HTTP header authentication

To configure the driver to use HTTP header authentication:

• Configure the minimum properties required for a connection:

• If you are using a REST file, set the Config property to provide the name and location of the input REST
file. For example, C:/path/to/myrest.rest.

• If you are using the Sample property, set the Sample property to specify the endpoint that the want to
connect to and sample. For example, https://example.com/countries/.

• Set the AuthenticationMethod property to HttpHeader.

• Set the AuthHeader property to specify the name of the HTTP header used for authentication. The default
is Authorization.

• Set the SecurityToken to specify the security token required to make a connection to your endpoint. For
example, XaBARTsLZReM.

• Optionally, specify values for any additional properties you want to configure.

43Progress DataDirect Autonomous REST Connector for JDBC : User's Guide for Partners: Version 6.0.0

Authentication

The following examples demonstrates a session using a REST file with HTTP header authentication enabled
and AuthHeader is set to the default.

For a connection URL:

jdbc:subprotocol:autorest:AuthenticationMethod=HttpHeader;
 Config=C:/path/to/myrest.rest;SecurityToken=XaBARTsLZReM;User=jsmith;

See also
HTTP header authentication properties on page 27

URL parameter authentication

To configure the driver to use HTTP header authentication:

• Configure the minimum properties required for a connection:

• If you are using a REST file, set the Config property to provide the name and location of the input REST
file. For example, C:/path/to/myrest.rest.

• If you are using the Sample property, set the Sample property to specify the endpoint that the want to
connect to and sample. For example, https://example.com/countries/.

• Set the AuthenticationMethod property to UrlParameter.

• Set the AuthParam property to specify the name of the URL parameter used to pass the security token. For
example, apikey.

• Set the SecurityToken to specify the security token required to make a connection to your endpoint. For
example, XaBARTsLZReM.

• If required by your service, set the User property to specify your logon ID.

• Optionally, specify values for any additional properties you want to configure.

The following examples demonstrates a session using a REST file with URL parameter authentication enabled.

For a connection URL:

jdbc:subprotocol:autorest:AuthenticationMethod=UrlParameter;AuthParam=apikey;
 Config=C:/path/to/myrest.rest;SecurityToken=XaBARTsLZReM;User=jsmith;

See also
URL parameter authentication properties on page 30

OAuth 2.0 authentication

OAuth 2.0 is an authentication protocol that is commonly used by REST services and websites to authorize
access to their data. While OAuth 2.0 offers a number of benefits, including the ability to limit the scope of
access privileges and support for multiple points of authentication, its primary advantage is that it allows for
access delegation without the issuance of passwords. Instead, the protocol relies on the distribution of temporary
access tokens to verify that an application is authorized to access data stored on the site.

Progress DataDirect Autonomous REST Connector for JDBC : User's Guide for Partners: Version 6.0.044

Chapter 2: Using the driver

Although access tokens ultimately grant access privileges to endpoints that use OAuth 2.0 authentication, there
are multiple authentication flows that you can use to obtain them. These authentication flows, or grant types,
differ based on environment and security needs of the site. Because of this, each grant type requires a different
set of credentials and authentication locations to successfully authenticate. The following sections describe
some common grant types and their required properties. Note that your authentication flow may differ from the
types listed here. If you are unsure of your requirements, contact your system administrator.

See also
OAuth 2.0 properties on page 28

Access token flow
The access token authentication flow passes the access token directly from the client to the REST service for
authentication. Unlike other grant types, authentication credentials, such as authorization codes, are not
exchanged in return for the access code. Instead, the access token has been obtained from sources external
to the flow and specified using the AccessToken property.

To use an access token flow:

• The application should be configured to set the AccessToken property to specify the access token required
to authenticate to a REST service.

• Configure the minimum required properties required for a connection:

• If you are using a REST file, set the Config property to provide the name and location of the input REST
file. For example, C:/path/to/yelp.rest.

• If you are using the Sample property, set the Sample property to specify the endpoint that the want to
connect to and sample. For example, https://example.com/countries/.

• Set the AuthenticationMethod property to OAuth2.

The following examples demonstrate a basic Yelp session using an access token flow:

Using a connection URL:

jdbc:subprotocol:autorest:AccessToken='C3TQH9zjwek4CgJCU-4Mxb2DxLNfI2LB3a-dNfpWYx';
 AuthenticationMethod=OAuth2;Config=C:/path/to/yelp.rest;

See also
OAuth 2.0 properties on page 28

Authorization code grant
The authorization code grant is a commonly used authentication flow for web and native applications. It provides
secure connections by requiring multiple points of authentication before permitting access to data.When using
the authorization code flow, the application first navigates to the location hosting the temporary authorization
code and retrieves it. Next, the authorization code is exchanged for an access token from the location specified
in the TokenURI property. If authentication takes place with a third-party authentication service, the application
is redirected to the endpoint provided in the RedirectURI property to begin the session.

45Progress DataDirect Autonomous REST Connector for JDBC : User's Guide for Partners: Version 6.0.0

Authentication

To use an authorization code grant:

• The application should be configured to set the OAuthCode property to specify the authorization code that
is exchanged for the access token.

• Configure the minimum properties required for a connection:

• If you are using a REST file, set the Config property to provide the name and location of the input REST
file. For example, C:/path/to/box.rest.

• If you are using the Sample property, set the Sample property to specify the endpoint that the want to
connect to and sample. For example, https://example.com/countries/.

• Set the AuthenticationMethod property to OAuth2.

• Set the ClientID property to specify the client ID key for your application.

• Set the TokenURI property to specify the endpoint used to exchange authentication credentials for access
tokens. For example, https://example.com/oauth2/authorize/.

• If required by your authentication flow, set the RedirectURI to specify the endpoint that the client is returned
to after authenticating with a third-party service.

• Optionally, set the Scope property to specify a space-separated list of OAuth scopes to limit the permissions
granted by the access token.

The following example demonstrates a basic session for a Box account using an authorization code grant:

Using a connection URL:

jdbc:subprotocol:autorest:AuthenticationMethod=OAuth2;
 ClientID='abcdefghik2lmn3o5qr67s';Config=C:/path/to/box.rest;
 OAuthCode='xyz123abc';TokenURI='https://api.box.com/oauth2/token';

See also
OAuth 2.0 properties on page 28

Client credentials grant
The authentication flow for the client credentials grant exchanges client credentials for the access token at the
location specified by the TokenURI.

Progress DataDirect Autonomous REST Connector for JDBC : User's Guide for Partners: Version 6.0.046

Chapter 2: Using the driver

To configure the driver to use a client credentials grant:

• Configure the minimum properties required for a connection:

• If you are using a REST file, set the Config property to provide the name and location of the input REST
file. For example, C:/path/to/googleanalytics.rest.

• If you are using the Sample property, set the Sample property to specify the endpoint that the want to
connect to and sample. For example, https://example.com/countries/.

• Set the AuthenticationMethod property to OAuth2.

• Set the ClientID property to specify the client ID key for your application.

• Set the ClientSecret property to specify client secret for your application.

Important: The client secret is a confidential value used to authenticate the application to the server. To
prevent unauthorized access, this value must be securely maintained.

• Set the TokenURI property to specify the endpoint used to exchange authentication credentials for access
tokens. For example, https://example.com/oauth2/authorize/.

• Optionally, set the Scope property to specify a space-separated list of OAuth scopes to limit the permissions
granted by the access token.

The following example demonstrates a basic Google Analytics session using a client credentials grant:

Using a connection string:

jdbc:subprotocol:autorest:AuthenticationMethod=OAuth2;
 ClientID='123456789876-a1bc2de3fgh4ij567klmn8opqr9stuvw.apps.googleusercontent.com';
 ClientSecret='FaZBFRsGXTaR';Config=C:/path/to/googleanalytics.rest;
 TokenURI=https://accounts.google.com/o/oauth2/token;"

See also
OAuth 2.0 properties on page 28

Password grant
The authentication flow for the password grant exchanges user credentials for the access token at the location
specified by the TokenURI. For added security, client credentials, such as the client ID and client Secret, might
also be authenticated for some flows.

47Progress DataDirect Autonomous REST Connector for JDBC : User's Guide for Partners: Version 6.0.0

Authentication

To configure the driver to use an authentication flow for a password grant:

• Configure the minimum properties required for a connection:

• If you are using a REST file, set the Config property to provide the name and location of the input REST
file. For example, C:/path/zendesk.rest.

• If you are using the Sample property, set the Sample property to specify the endpoint that the want to
connect to and sample. For example, https://example.com/countries/.

• Set the AuthenticationMethod property to OAuth2.

• Set the User property to specify the user name that is used to fetch the access token from the Token
endpoint.

• Set the Password property to specify the password used to fetch the access token.

• Set the TokenURI property to specify the endpoint used to exchange authentication credentials for access
tokens. For example, https://example.com/oauth2/authorize/.

• If required by your REST service, set the ClientID property to specify the client ID key for your application.

• If required by your REST service, set the ClientSecret property to specify the client secret for your application.

Important: The client secret is a confidential value used to authenticate the application to the server. To
prevent unauthorized access, this value must be securely maintained.

• Optionally, set the Scope property to specify a space-separated list of OAuth scopes to limit the permissions
granted by the access token.

The following example demonstrates a basic Zendesk session using a password grant:

Using a connection string:

jdbc:subprotocol:autorest:AuthenticationMethod=OAuth2;
 Config=C:/path/zendesk.rest;TokenURI=https://accounts.google.com/o/oauth2/token;
 User='jjones@example.com';Password='secretstuff';

See also
OAuth 2.0 properties on page 28

Refresh token grant
The refresh token grant is used to replace expired access tokens with active ones by exchanging the refresh
token at the endpoint specified by the TokenURI property.

Progress DataDirect Autonomous REST Connector for JDBC : User's Guide for Partners: Version 6.0.048

Chapter 2: Using the driver

To configure the driver to use an authentication flow for a refresh token grant:

• Configure the minimum properties required for a connection:

• If you are using a REST file, set the Config property to provide the name and location of the input REST
file. For example, C:/path/to/googleanalytics.rest.

• If you are using the Sample property, set the Sample property to specify the endpoint that the want to
connect to and sample. For example, https://example.com/countries/.

• Set the AuthenticationMethod property to OAuth2.

• Set the ClientID property to specify the client ID key for your application.

• Set the ClientSecret property to specify the client secret for your application.

Important: The client secret is a confidential value used to authenticate the application to the server. To
prevent unauthorized access, this value must be securely maintained.

• Set the RefreshToken property to specify the refresh token used to request a new access token or renew
an expired one.

Important: The refresh token is a confidential value used to authenticate to the server. To prevent
unauthorized access, this value must be securely maintained.

• Set the TokenURI property to specify the endpoint from which the driver fetches access tokens. For example,
https://example.com/oauth2/authorize/.

• Optionally, set the Scope property to specify a space-separated list of OAuth scopes to limit the permissions
granted by the access token.

The following example demonstrates a basic Google Analytics session using a refresh token grant:

Using a connection URL:

jdbc:subprotocol:autorest:AuthenticationMethod=OAuth2;
 ClientID='1234567898-a1bc2de3fgh4ij567klmn8opqr9stu.apps.googleusercontent.com'
 ClientSecret='FaZBFRsGXTaR';Config=C:/path/to/googleanalytics.rest;
 RefreshToken='1/abCD0F1GHijkLmNOPqrs_T2VWx3Y-Zabc45dE6FGh';
 TokenURI=https://accounts.google.com/o/oauth2/token;

See also
OAuth 2.0 properties on page 28

Custom authentication

If your service does not support one of the standard authentication methods provided by the driver, you can
define a custom authentication requests using the input REST file.

Before you start: Define your custom authentication requests in the input REST file. For details, see "Custom
authentication requests."

49Progress DataDirect Autonomous REST Connector for JDBC : User's Guide for Partners: Version 6.0.0

Authentication

To configure the driver to use custom authentication requests:

• Set the Config property to provide the name and location of the input REST file. For example,
C:/path/to/myrest.rest.

• Set the AuthenticationMethod property to Custom. Note that Custom is the default when a custom
authentication request is defined in the input REST file.

• Set the CustomAuthParams property to specify the list of parameters to be used by the authentication
requests defined in the input REST file. Note that these values must be specified in the order that corresponds
to the index location cited by the variable in the REST file. For example, the following customAuthParams
variable points to the second (2) index:

"company": "{customAuthParams[2]}"

To successfully authenticate, the second value specified should be the value for the company field:

CustomAuthParams=123XYZ456abc789;My Company Inc;www.example.com

• If applicable, set the ServerName property to set the host name portion of the HTTP endpoint to which you
send requests.

• If required by your service, set the User property to specify your logon ID.

• If required by your service, set the Password property to specify your password.

• Optionally, specify values for any additional properties you want to configure.

The following examples demonstrate sessions using a REST file with custom authentication enabled:

For a connection URL:

jdbc:subprotocol:autorest:Config=C:/path/to/myrest.rest;CustomAuthParams=123XYZ456abc789;

 My Company Inc;path/to/endpoint;ServerName=https://example.com;User=jsmith;
 Password=secret"

See also
Custom authentication requests on page 124
Custom authentication request properties on page 31

Data encryption
The driver supports Secure Sockets Layer (SSL) data encryption. SSL works by allowing the client and server
to send each other encrypted data that only they can decrypt. SSL negotiates the terms of the encryption in a
sequence of events known as the SSL handshake.The handshake involves the following types of authentication:

• SSL server authentication requires the server to authenticate itself to the client.

• SSL client authentication is optional and requires the client to authenticate itself to the server after the server
has authenticated itself to the client.

Progress DataDirect Autonomous REST Connector for JDBC : User's Guide for Partners: Version 6.0.050

Chapter 2: Using the driver

Configuring SSL encryption

SSL encryption is enabled when the URL specified by the ServerName property file uses HTTPS.The following
steps outline how to configure SSL encryption.

Note: Connection hangs can occur when the driver is configured for SSL and the database server does not
support SSL.You may want to set a login timeout using the LoginTimeout property to avoid problems when
connecting to a server that does not support SSL.

To configure SSL encryption:

1. Use the CryptoProtocolVersion property to specify acceptable cryptographic protocol versions (for example,
TLSv1.2) supported by your server.

2. Specify the location and password of the truststore file used for SSL server authentication. Either set the
TrustStore and TrustStorePassword properties or their corresponding Java system properties
(javax.net.ssl.trustStore and javax.net.ssl.trustStorePassword, respectively).

3. To validate certificates sent by the database server, set the ValidateServerCertificate property to true.

4. Optionally, set the HostNameInCertificate property to a host name to be used to validate the certificate.The
HostNameInCertificate property provides additional security against man-in-the-middle (MITM) attacks by
ensuring that the server the driver is connecting to is the server that was requested.

5. If your database server is configured for SSL client authentication, configure your keystore information:

a) Specify the location and password of the keystore file. Either set the KeyStore and KeyStorePassword
properties or their corresponding Java system properties (javax.net.ssl.keyStore and
javax.net.ssl.keyStorePassword, respectively).

b) If any key entry in the keystore file is password-protected, set the KeyPassword property to the key
password.

See also
ServerName on page 103
CryptoProtocolVersion on page 75
TrustStore on page 109
TrustStorePassword on page 110
ValidateServerCertificate on page 111
KeyStore on page 84
KeyStorePassword on page 85
KeyPassword on page 84

Configuring SSL server authentication

When the client makes a connection request, the server presents its public certificate for the client to accept
or deny. The client checks the issuer of the certificate against a list of trusted Certificate Authorities (CAs) that
resides in an encrypted file on the client known as a truststore. Optionally, the client may check the subject
(owner) of the certificate. If the certificate matches a trusted CA in the truststore (and the certificate’s subject
matches the value that the application expects), an encrypted connection is established between the client
and server. If the certificate does not match, the connection fails and the driver throws an exception.

51Progress DataDirect Autonomous REST Connector for JDBC : User's Guide for Partners: Version 6.0.0

Data encryption

To check the issuer of the certificate against the contents of the truststore, the driver must be able to locate
the truststore and unlock the truststore with the appropriate password.You can specify truststore information
in either of the following ways:

• Specify values for the Java system properties javax.net.ssl.trustStore and javax.net.ssl.trustStorePassword.
For example:

java -Djavax.net.ssl.trustStore=C:\Certificates\MyTruststore
 -Djavax.net.ssl.trustStorePassword=MyTruststorePassword

This method sets values for all SSL sockets created in the JVM.

• Specify values for the connection properties TrustStore and TrustStorePassword in the connection URL.
For example:

jdbc:subprotocol:autorest:Config=C:/path/to/myrest.rest;
 Password=secr3t;TrustStore=C:\Certficates\MyTruststore.jks;
 TrustStorePassword=MyTruststorePassword;User=jsmith;

Any values specified by the TrustStore and TrustStorePassword properties override values specified by
the Java system properties. This allows you to choose which truststore file you want to use for a particular
connection.

Alternatively, you can configure the drivers to trust any certificate sent by the server, even if the issuer is not
a trusted CA. Allowing a driver to trust any certificate sent from the server is useful in test environments because
it eliminates the need to specify truststore information on each client in the test environment. If the driver is
configured to trust any certificate sent from the server, the issuer information in the certificate is ignored.

Configuring SSL client authentication

If the server is configured for SSL client authentication, the server asks the client to verify its identity after the
server has proved its identity. Similar to SSL server authentication, the client sends a public certificate to the
server to accept or deny. The client stores its public certificate in an encrypted file known as a keystore.

The driver must be able to locate the keystore and unlock the keystore with the appropriate keystore password.
Depending on the type of keystore used, the driver also may need to unlock the keystore entry with a password
to gain access to the certificate and its private key.

The drivers can use the following types of keystores:

• Java Keystore (JKS) contains a collection of certificates. Each entry is identified by an alias. The value of
each entry is a certificate and the certificate’s private key. Each keystore entry can have the same password
as the keystore password or a different password. If a keystore entry has a password different than the
keystore password, the driver must provide this password to unlock the entry and gain access to the certificate
and its private key.

• PKCS #12 keystores. To gain access to the certificate and its private key, the driver must provide the
keystore password. The file extension of the keystore must be .pfx or .p12.

You can specify this information in either of the following ways:

• Specify values for the Java system properties javax.net.ssl.keyStore and javax.net.ssl.keyStorePassword.
For example:

java -Djavax.net.ssl.keyStore=C:\Certificates\MyKeystore
 -Djavax.net.ssl.keyStorePassword=MyKeystorePassword

This method sets values for all SSL sockets created in the JVM.

Progress DataDirect Autonomous REST Connector for JDBC : User's Guide for Partners: Version 6.0.052

Chapter 2: Using the driver

Note: If the keystore specified by the javax.net.ssl.keyStore Java system property is a JKS and the keystore
entry has a password different than the keystore password, the KeyPassword connection property must specify
the password of the keystore entry (for example, KeyPassword=MyKeyPassword).

IP addresses
The driver supports Internet Protocol (IP) addresses in IPv4 and IPv6 format.

The endpoint specified in the connection URL, data source, or REST file can resolve to an IPv4 or IPv6 address.

jdbc:subprotocol:autorest:Sample='https://example.com/countries/';

Note: You can use the Sample property or the REST file to access endpoints, for example,
https://example.com/countries/.

Alternately, you can specify addresses using IPv4 or IPv6 format using the connection URL by using the Sample
property of the or the REST file specified by the Config property. For example, the following connection URL
specifies an endpoint using an IPv4 address:

jdbc:subprotocol:autorest:Sample='123.456.78.90';

You also can specify addresses in either format using a data source by using the Sample property or the REST
file specified by the Config property. The following example shows a data source definition that specifies the
server name using IPv6 format:

AutoRESTDataSource mds = new AutoRESTDataSource();
 mds.setDescription("My Autonomous REST DataSource");
 mds.setSample("[ABCD:EF01:2345:6789:ABCD:EF01:2345:6789]");
 ...

Note: When specifying IPv6 addresses in a connection URL or data source property, the address must be
enclosed by brackets.

In addition to the normal IPv6 format, the drivers support IPv6 alternative formats for compressed and IPv4/IPv6
combination addresses. For example, the following connection URL specifies the server using IPv6 format,
but uses the compressed syntax for strings of zero bits:

jdbc:subprotocol:autorest:Sample=[2001:DB8:0:0:8:800:200C:417A];

Similarly, the following connection URL specifies the server using a combination of IPv4 and IPv6:

jdbc:subprotocol:autorest:Sample=[0000:0000:0000:0000:0000:FFFF:123.456.78.90];

For complete information about IPv6, go to the following URL:

http://tools.ietf.org/html/rfc4291#section-2.2

See also
Sample on page 99
Config on page 73

53Progress DataDirect Autonomous REST Connector for JDBC : User's Guide for Partners: Version 6.0.0

IP addresses

http://tools.ietf.org/html/rfc4291#section-2.2

Timeouts
The driver supports the LoginTimeout, WSTimeout, and WSRetryCount connection properties.The LoginTimeout
property specifies the amount of time, in seconds, that the driver waits for a connection to be established before
timing out the connection request. With WSTimeout, you can specify the time, in seconds, that the driver waits
for a response to a Web service request. The WSTimeout property can be used in conjunction with the
WSRetryCount property.The WSRetryCount connection property can be used to retry select queries that have
timed out.

Session timeouts

Session timeouts If the driver receives a session timeout error from a data source, the driver automatically
attempts to re-establish a new session. The driver uses the initial server name, port (if appropriate), remote
user ID, and remote password (encrypted) to re-establish the session. If the attempt fails, the driver returns an
error indicating that the session timed out and the attempt to re-establish the session failed.

Web service request timeouts

You can configure the driver to never time out while waiting for a response to a Web service request or to wait
for a specified interval before timing out by setting the WSTimeout connection property for fetch requests.
Additionally, in a case where requests might fail, you can configure the driver to retry the request a specified
number of times by setting the WSRetryCount connection property. If all subsequent attempts to retry a request
fail, the driver will return an error indicating that the service request timed out and that the subsequent requests
failed.

See also
Timeout properties on page 36

Using Java logging
The driver provides a flexible and comprehensive logging mechanism that allows logging to be incorporated
seamlessly with the logging of your own application or allows logging to be enabled and configured independently
from the application. The logging mechanism can be instrumental in investigating and diagnosing issues. It
also provides valuable insight into the type and number of operations requested by the application from the
driver and requested by the driver from the remote data source.This information can help you tune and optimize
your application.

Logging components

The driver uses the Java Logging API to configure the loggers (individual logging components) used by the
driver. The Java Logging API is built into the JVM.

The Java Logging API allows applications or components to define one or more named loggers. Messages
written to the loggers can be given different levels of importance. For example, errors that occur in the driver
can be written to a logger at the CONFIG level, while progress or flow information may be written to a logger
at the FINE or FINER level. Each logger used by the driver can be configured independently.The configuration
for a logger includes what level of log messages are written, the location to which they are written, and the
format of the log message.

The Java Logging API defines the following levels:

• SEVERE

Progress DataDirect Autonomous REST Connector for JDBC : User's Guide for Partners: Version 6.0.054

Chapter 2: Using the driver

• WARNING

• INFO

• CONFIG

• FINE

• FINER

• FINEST

Note: Log messages logged by the driver only use the CONFIG, FINE, FINER, and FINEST logging levels.

Setting the log threshold of a logger to a particular level causes the logger to write log messages of that level
and higher to the log. For example, if the threshold is set to FINE, the logger writes messages of levels FINE,
CONFIG, INFO, WARNING, and SEVERE to its log. Messages of level FINER or FINEST are not written to the
log.

The driver exposes loggers for the following functional areas:

• JDBC API

• SQL Engine

• Web service adapter

JDBC API logger

Name
com.ddtek.jdbc.cloud.level

Purpose
Logs the JDBC calls made by the application to the driver and the responses from the driver back to the
application. DataDirect Spy is used to log the JDBC calls.

Message Levels
FINER - Calls to the JDBC methods are logged at the FINER level. The value of all input parameters passed
to these methods and the return values passed from them are also logged, except that input parameter or
result data contained in InputStream, Reader, Blob, or Clob objects are not written at this level.

FINEST - In addition to the same information logged by the FINER level, input parameter values and return
values contained in InputStream, Reader, Blob and Clob objects are written at this level.

OFF - Calls to the JDBC methods are not logged.

SQL Engine logger

Name
com.ddtek.cloud.sql.level

55Progress DataDirect Autonomous REST Connector for JDBC : User's Guide for Partners: Version 6.0.0

Using Java logging

Purpose
Logs the operations that the SQL engine performs while executing a query. Operations include preparing a
statement to be executed, executing the statement, and fetching the data, if needed. These are internal
operations that do not necessarily directly correlate with Web service calls made to the remote data source.

Message Levels
CONFIG - Any errors or warnings detected by the SQL engine are written at this level.

FINE - In addition to the same information logged by the CONFIG level, SQL engine operations are logged at
this level. In particular, the SQL statement that is being executed is written at this level.

FINER - In addition to the same information logged by the CONFIG and FINE levels, data sent or received in
the process of performing an operation is written at this level.

Web Service Adapter logger

Name
com.ddtek.cloud.adapter.level

Purpose
Logs the Web service calls the driver makes to the remote data source and the responses it receives from the
remote data source.

Message Levels
CONFIG - Any errors or warnings detected by the Web service adapter are written at this level.

FINE - In addition to the same information logged by the CONFIG level, information about Web service calls
made by the Web service adapter and responses received by the Web service adapter are written at this level.
In particular, the Web service calls made to execute the query and the calls to fetch or send the data are logged.
The log entries for the calls to execute the query include the API-specific query being executed. The actual
data sent or fetched is not written at this level.

FINER - In addition to the same information logged by the CONFIG and FINE levels, this level provides additional
information.

FINEST - In addition to the same information logged by the CONFIG, FINE, and FINER levels, data associated
with the Web service calls made by the Web service adapter is written.

Configuring logging

You can configure logging using a standard Java properties file in either of the following ways:

• Using the properties file that is shipped with your JVM. See "Using the JVM" for details.

• Using the driver. See "Using the driver" for details.

Using the JVM for logging
If you want to configure logging using the properties file that is shipped with your JVM, use a text editor to
modify the properties file in your JVM. Typically, this file is named logging.properties and is located in
the JRE/lib subdirectory of your JVM. The JRE looks for this file when it is loading.

Progress DataDirect Autonomous REST Connector for JDBC : User's Guide for Partners: Version 6.0.056

Chapter 2: Using the driver

You can also specify which properties file to use by setting the java.util.logging.config.file system property. At
a command prompt, enter:

java -Djava.util.logging.config.file=properties_file

where:

properties_file

is the name of the properties file you want to load.

Using the driver for logging
If you want to configure logging using the driver, you can use either of the following approaches:

• Use a single properties file for all REST sessions.

• Use a different properties file for each schema map. For example, if you have two maps (for example,
C:\data\schemamaps1\ and C:\data\schemamaps2\), you can load one properties file for the
test1map.config schema map and load another properties file for the test2map.config schema map.

Note: See "SchemaMap" for information on SchemaMap default values and how to specify valid values for
SchemaMap.

By default, the driver looks for the file named ddlogging.properties in the current working directory to
load for all REST connections.

If a properties file is specified for the LogConfigFile connection property, the driver uses the following process
to determine which file to load.

1. The driver looks for the file specified by the LogConfigFile property.

2. If the driver cannot find the file in Step 1 on page 57, it looks for a properties file named
user_name.logging.properties in the directory containing the schema map for the connection, where
user_name is your user ID used to connect to the REST endpoint.

3. If the driver cannot find the file in Step 2 on page 57, it looks for a properties file named
ddlogging.properties in the current working directory.

4. If the driver cannot find the file in Step 3 on page 57 , it abandons its attempt to load a properties file.

If any of these files exist, but the logging initialization fails for some reason while using that file, the driver writes
a warning to the standard output (System.out), specifying the name of the properties file being used.

A sample properties file is installed in the install_dir/testforjdbc.

See also
SchemaMap on page 100
LogConfigFile on page 86

57Progress DataDirect Autonomous REST Connector for JDBC : User's Guide for Partners: Version 6.0.0

Using Java logging

Enabling Debug Record Mode
The Autonomous REST Connector supports a debug record mode that provides a method for troubleshooting
issues that occur when accessing data on a REST service. When Debug Record Mode is enabled, the driver
captures and records server requests and responses to a set of files stored in a designated location.Technical
Support can then use these files to analyze and reproduce the issue without requiring access to your private
data source.

To generate debug record files:

1. Using the DebugRecord property, specify the location where the driver will generate the files used to record
server requests and responses.

2. Start the JDBC application and reproduce the issue.

3. Stop the application.

The driver generates a set of files containing the server requests and responses that occurred during the
session. After generating the debug files, you can remove the location specified for the DebugRecord property.
If you do not remove this value, the driver will overwrite debug files in the specified location the next time you
start the application.

Contact Technical Support for assistance analyzing the files and reproducing the issue.

Important: Debug record files may capture security-related headers, such as auth or token headers. Before
sending Technical Support debug files, review the content to remove any confidential information that may
have been recorded.

See also
DebugRecord on page 77

Tracking JDBC calls with DataDirect Spy
DataDirect Spy is functionality that is built into the drivers. It is used to log detailed information about calls your
driver makes and provide information you can use for troubleshooting. DataDirect Spy provides the following
advantages:

• Logging is JDBC 4.0-compliant.

• All parameters and function results for JDBC calls can be logged.

• Logging can be enabled without changing the application.

When you enable DataDirect Spy for a connection, you can customize logging by setting one or multiple options
for DataDirect Spy. For example, you may want to direct logging to a local file on your machine.

Once logging is enabled for a connection, you can turn it on and off at runtime using the setEnableLogging
method in the com.ddtek.jdbc.extensions.ExtLogControl interface.

Refer to Troubleshooting your application in the Progress DataDirect for JDBC Drivers Reference for information
about using a DataDirect Spy log for troubleshooting.

Progress DataDirect Autonomous REST Connector for JDBC : User's Guide for Partners: Version 6.0.058

Chapter 2: Using the driver

https://docs.progress.com/bundle/datadirect-jdbc-reference/page/Troubleshooting-your-application.html

Enabling DataDirect Spy

You can enable and customize DataDirect Spy logging by specifying the SpyAttributes connection property for
connections using a connection URL.

Using a connection URL
The SpyAttributes connection property allows you to specify a semi-colon separated list of DataDirect Spy
attributes. The format for the value of the SpyAttributes property is:

(
spy_attribute
[;
spy_attribute
]...)

where spy_attribute is any valid DataDirect Spy attribute. See "DataDirect Spy attributes" for a list of
supported attributes.

Windows Example

jdbc:subprotocol:autorest:Config=C:path\\to\\myrest.rest;
 SpyAttributes=(log=(filePrefix)C:\\temp\\spy_;linelimit=80;logTName=yes;
 timestamp=yes)

Note: If coding a path on Windows to the log file in a Java string, the backslash character (\) must be preceded
by the Java escape character, a backslash. For example: log=(filePrefix)C:\\temp\\spy_.

DataDirect Spy loads the driver and logs all JDBC activity to the spy_x.log file located in the C:\temp
directory (log=(filePrefix)C:\\temp\\spy_), where x is an integer that increments by 1 for each
connection on which the prefix is specified. The spy_x.log file logs a maximum of 80 characters on each
line (linelimit=80) and includes the name of the current thread (logTName=yes) with a timestamp on each
line in the log (timestamp=yes).

UNIX Example

jdbc:subprotocol:Config=~/path/to/myrest.rest;
 SpyAttributes=(log=(filePrefix)/tmp/spy_;logTName=yes;timestamp=yes)

DataDirect Spy loads the driver and logs all JDBC activity to the spy_x.log file located in the /tmp directory
(log=(filePrefix)/tmp/spy_), where x is an integer that increments by 1 for each connection on which
the prefix is specified. The spy_x.log file includes the name of the current thread (logTName=yes) with a
timestamp on each line in the log (timestamp=yes).

See also
DataDirect Spy attributes on page 59

DataDirect Spy attributes
DataDirect Spy supports the attributes described in the following table.

59Progress DataDirect Autonomous REST Connector for JDBC : User's Guide for Partners: Version 6.0.0

Tracking JDBC calls with DataDirect Spy

DescriptionAttribute

Sets the maximum number of characters that
DataDirect Spy logs on a single line.

linelimit=numberofchars

The default is 0 (no maximum limit).

Loads the driver specified by classname.load=classname

Directs logging to the file specified by filename.log=(file)filename

For Windows, if coding a path to the log file in a Java
string, the backslash character (\) must be preceded
by the Java escape character, a backslash. For
example:
log=(file)C:\\temp\\spy.log;logIS=yes;logTName=yes.

Directs logging to a file prefixed by file_prefix.
The log file is named file_prefixX.log

log=(filePrefix)file_prefix

where:

X is an integer that increments by 1 for each
connection on which the prefix is specified.

For example, if the attribute
log=(filePrefix)C:\\temp\\spy_ is specified
on multiple connections, the following logs are created:

C:\temp\spy_1.log

C:\temp\spy_2.log

C:\temp\spy_3.log

...

If coding a path to the log file in a Java string, the
backslash character (\) must be preceded by the Java
escape character, a backslash.

For example:
log=(filePrefix)C:\\temp\\spy_;logIS=yes;logTName=yes.

Directs logging to the Java output standard,
System.out.

log=System.out

Progress DataDirect Autonomous REST Connector for JDBC : User's Guide for Partners: Version 6.0.060

Chapter 2: Using the driver

DescriptionAttribute

Specifies whether DataDirect Spy logs activity on
InputStream and Reader objects.

When logIS=nosingleread, logging on
InputStream and Reader objects is active; however,
logging of the single-byte read InputStream.read
or single-character Reader.read is suppressed to
prevent generating large log files that contain
single-byte or single character read messages.

The default is no.

logIS= { yes | no | nosingleread }

Specifies whether DataDirect Spy logs activity on
BLOB and CLOB objects.

logLobs= { yes | no }

Specifies whether DataDirect Spy logs the name of
the current thread.

The default is no.

logTName= { yes | no }

Specifies whether a timestamp is included on each
line of the DataDirect Spy log.

The default is yes.

timestamp= { yes | no }

61Progress DataDirect Autonomous REST Connector for JDBC : User's Guide for Partners: Version 6.0.0

Tracking JDBC calls with DataDirect Spy

Progress DataDirect Autonomous REST Connector for JDBC : User's Guide for Partners: Version 6.0.062

Chapter 2: Using the driver

3
Connection property descriptions

You can use connection properties to customize the driver for your environment.This section lists the connection
properties supported by the driver and describes each property. In the connection URL, property is expressed
as a key value pair and takes the form property=value.

or a JDBC DataSource. For a connection URL

The following table provides a summary of the connection properties supported by the driver and their default
values.

Table 19: Autonomous REST Connector Properties

DefaultProperty

NoneAccessToken on page 68

None

Note: The driver defaults to Custom when it discovers
an entry for a custom authentication request in the
input REST file.

AuthenticationMethod on page 69

AuthorizationAuthHeader on page 70

NoneAuthParam on page 70

NoneClientID on page 71

NoneClientSecret on page 72

63Progress DataDirect Autonomous REST Connector for JDBC : User's Guide for Partners: Version 6.0.0

DefaultProperty

NoneConfig on page 73

1 (data type check is performed if column value is
null)

ConvertNull on page 74

sessionCreateMap on page 74

NoneCryptoProtocolVersion on page 75

NoneCustomAuthParams on page 76

NoneDebugRecord on page 77

noEncryptionEncryptionMethod on page 78

100 (rows)FetchSize on page 79

Empty stringHostNameInCertificate on page 80

Empty stringImportStatementPool on page 81

2048 (KB of memory)InsensitiveResultSetBufferSize on page 82

NoneKeyPassword on page 84

NoneKeyStore on page 84

NoneKeyStorePassword on page 85

ddlogging.propertiesLogConfigFile on page 86

0 (no timeout)LoginTimeout on page 87

NoneLogoffURI on page 87

0 (driver’s internal prepared statement pooling is not
enabled)

MaxPooledStatements on page 88

NoneOAuthCode on page 89

NonePassword on page 90

When SSL encryption is enabled:

80

When SSL encryption is disabled:

443

PortNumber on page 91

Empty stringProxyHost on page 91

Progress DataDirect Autonomous REST Connector for JDBC : User's Guide for Partners: Version 6.0.064

Chapter 3: Connection property descriptions

DefaultProperty

Empty stringProxyPassword on page 92

0ProxyPort on page 93

Empty stringProxyUser on page 93

0ReadAhead on page 94

NoneRedirectURI on page 95

1RefreshDirtyCache on page 96

trueRefreshSchema on page 96

falseRegisterStatementPoolMonitorMBean on page 98

NoneRefreshToken on page 97

NoneSample on page 99

For Windows:

<application_data_folder>\
Local\Progress\DataDirect
\AutoREST_Schema\

For UNIX/Linux:

~/progress/datadirect/
AutoREST_Schema/

SchemaMap on page 100

NoneScope on page 101

NoneSecurityToken on page 102

NoneServerName on page 103

NoneSpyAttributes on page 103

0 (no limit)StmtCallLimit on page 106

errorAlwaysStmtCallLimitBehavior on page 107

NoneTable on page 107

NoneTokenURI on page 108

NoneTrustStore on page 109

NoneTrustStorePassword on page 110

NoneUser on page 110

65Progress DataDirect Autonomous REST Connector for JDBC : User's Guide for Partners: Version 6.0.0

DefaultProperty

trueValidateServerCertificate on page 111

0 (maximum number of rows as set by the
maximumPageSize property. The default maximum
is 10,000 rows.)

WSFetchSize on page 112

1WSPoolSize on page 113

5WSRetryCount on page 114

120 (seconds)WSTimeout on page 115

For details, see the following topics:

• AccessToken

• AuthenticationMethod

• AuthHeader

• AuthParam

• ClientID

• ClientSecret

• Config

• ConvertNull

• CreateMap

• CryptoProtocolVersion

• CustomAuthParams

• DebugRecord

• EncryptionMethod

• FetchSize

• HostNameInCertificate

• ImportStatementPool

• InsensitiveResultSetBufferSize

• JDBCBehavior

• KeyPassword

• KeyStore

• KeyStorePassword

• LogConfigFile

Progress DataDirect Autonomous REST Connector for JDBC : User's Guide for Partners: Version 6.0.066

Chapter 3: Connection property descriptions

• LoginTimeout

• LogoffURI

• MaxPooledStatements

• OAuthCode

• Password

• PortNumber

• ProxyHost

• ProxyPassword

• ProxyPort

• ProxyUser

• ReadAhead

• RedirectURI

• RefreshDirtyCache

• RefreshSchema

• RefreshToken

• RegisterStatementPoolMonitorMBean

• Sample

• SchemaMap

• Scope

• SecurityToken

• ServerName

• SpyAttributes

• StmtCallLimit

• StmtCallLimitBehavior

• Table

• TokenURI

• TrustStore

• TrustStorePassword

• User

• ValidateServerCertificate

• WSFetchSize

• WSPoolSize

• WSRetryCount

67Progress DataDirect Autonomous REST Connector for JDBC : User's Guide for Partners: Version 6.0.0

• WSTimeout

AccessToken

Purpose
Specifies the access token required to authenticate to a REST service when OAuth 2.0 is enabled
(AuthenticationMethod=OAuth2). Typically, this property is configured by the application; however, in
some scenarios, you may need to secure a token using external processes. In those instances, you can also
use this property to set the access token manually.

Valid Values
string

where:

string

is an access token you have obtained from the authentication service.

Notes

• Access tokens are temporary and must be replaced to maintain the session without interruption. The life of
an access token is typically one hour.

• This property is not required for all authentication flows. See “OAuth 2.0 authentication” for a list of common
authentication flows and their requirements. If you are unsure of the requirements for your authentication
flow, contact your administrator for more information.

Data Source Method
setAccessToken

Default
None

Data Type
String

See Also

• OAuth 2.0 authentication on page 44

• OAuth 2.0 properties on page 28

Progress DataDirect Autonomous REST Connector for JDBC : User's Guide for Partners: Version 6.0.068

Chapter 3: Connection property descriptions

AuthenticationMethod

Purpose
Determines which authentication method the driver uses during the course of a session.

Valid values
None | Basic | Custom | HttpHeader | OAuth2 | UrlParameter

Behavior
If set to None, the driver does not attempt to authenticate.

If set to Basic, the driver uses a hashed value, based on the concatenation of the user name and password,
for authentication. In addition to the User and Password properties, you must also configure the AuthHeader
property if the name of your HTTP header is not Authorization (the default).

If set to Custom, the driver uses a custom token-based authentication flow that is defined in the input REST
file. See "Custom authentication requests" for more information on the input REST file.

If set to HttpHeader, the driver passes security tokens via HTTP headers for authentication.You must also
configure SecurityToken property and, if the name of your HTTP header is not Authorization (the default),
the AuthHeader property.

If set to OAuth2, the driver uses OAuth 2.0 to authenticate to REST endpoints.

If set to UrlParameter, the driver passes security tokens via the URL for authentication.You must also
configure the AuthParam and SecurityToken properties.

Data Source Method
setAuthenticationMethod

Default
None

Note: The driver defaults to Custom when it discovers an entry for a custom authentication request in the
input REST file.

Data Type
String

See Also

• Custom authentication requests on page 124

• Authentication on page 42

• Basic authentication properties on page 26

• HTTP header authentication properties on page 27

• OAuth 2.0 properties on page 28

• Custom authentication request properties on page 31

69Progress DataDirect Autonomous REST Connector for JDBC : User's Guide for Partners: Version 6.0.0

AuthenticationMethod

• URL parameter authentication properties on page 30

AuthHeader

Purpose
Specifies the name of the HTTP header used for authentication. This property is used when Basic
(AuthenticationMethod=Basic) or Header-based token authentication
(AuthenticationMethod=HttpHeader) is enabled; otherwise, this property is ignored.

Valid values
auth_header

where:

auth_header

is the name of the HTTP header used for authentication. For example, X-Api-Key.

Data Source Method
setAuthHeader

Default
Authorization

Data Type
String

See Also

• AuthenticationMethod on page 69

AuthParam

Purpose
Specifies the name of the URL parameter used to pass the security token.This property is required when using
URL parameters to pass tokens for authentication (AuthenticationMethod=UrlParameter); otherwise,
this property is ignored.

Valid values
auth_parameter

where:

Progress DataDirect Autonomous REST Connector for JDBC : User's Guide for Partners: Version 6.0.070

Chapter 3: Connection property descriptions

auth_parameter

is the name of the URL parameter used to pass the security token. For example, apikey or key.

Data Source Method
setAuthParam

Default
None

Data Type
String

See Also

• AuthenticationMethod on page 69

ClientID

Purpose
Specifies the client ID key for your application. The driver uses this value for certain flows when authenticating
to a REST service using OAuth 2.0 (AuthenticationMethod=OAuth2).

Valid Values
string

where:

string

is the client ID key for your application. For some systems, the value for this property is the same
as your user name or your authenticating email address. In others, this value is supplied with your
client secret. If you experience an authentication error, verify that you are using the correct value.

Notes

• This property is not required for all authentication flows. See “OAuth 2.0 authentication” for a list of common
authentication flows and their requirements. If you are unsure of the requirements for your authentication
flow, contact your administrator for more information.

Data Source Method
setClientID

Default
None

Data Type
String

71Progress DataDirect Autonomous REST Connector for JDBC : User's Guide for Partners: Version 6.0.0

ClientID

See also

• OAuth 2.0 authentication on page 44

• OAuth 2.0 properties on page 28

ClientSecret

Purpose
Specifies the client secret for your application when authenticating to a REST service with OAuth 2.0 enabled
(AuthenticationMethod=OAuth2).

Important: The client secret is a confidential value used to authenticate the application to the server. To
prevent unauthorized access, this value must be securely maintained.

Valid Values
string

where:

string

is the client secret for your application.

Notes

• This property is not required for all authentication flows. See “OAuth 2.0 authentication” for a list of common
authentication flows and their requirements. If you are unsure of the requirements for your authentication
flow, contact your administrator for more information.

Data Source Method
setClientSecret

Default
None

Data Type
String

See also

• OAuth 2.0 authentication on page 44

• OAuth 2.0 properties on page 28

Progress DataDirect Autonomous REST Connector for JDBC : User's Guide for Partners: Version 6.0.072

Chapter 3: Connection property descriptions

Config

Purpose
Specifies the name and location of the input REST file used to define your endpoints for sampling. This file
allows you to specify multiple endpoints, define PUSH requests, and configure paging.You will need to create
and specify an input REST file if your session:

• Accesses multiple endpoints

• Issues POST requests

• Accesses endpoints that require paging

• Accesses endpoints that use custom HTTP headers

• Uses custom HTTP response code processing

• Requires a custom authentication flow

For more information, see "Creating an input REST file."

Valid Values
string

where:

string

is the name and location of your input REST file. For example, C:\path\to\myrest.rest
(Windows) or home_dir/path/to/myrest.rest (UNIX/Linux).

Notes

• The Config property determines whether the driver uses an input REST file for the session. If no value is
provided, an endpoint must be provided using the Sample property.

Data Source Method
setConfig

Default
None

Data Type
String

See Also

• Creating an input REST file on page 20

• Sample on page 99

• Required properties on page 24

73Progress DataDirect Autonomous REST Connector for JDBC : User's Guide for Partners: Version 6.0.0

Config

ConvertNull

Purpose
Controls how data conversions are handled for null values.

Valid Values
0 | 1

Behavior
If set to 0, the driver does not perform the data type check if the value of the column is null. This allows null
values to be returned even though a conversion between the requested type and the column type is undefined.

If set to 1, the driver checks the data type being requested against the data type of the table column that stores
the data. If a conversion between the requested type and column type is not defined, the driver generates an
"unsupported data conversion" exception regardless of whether the column value is NULL.

Data Source Method
setConvertNull

Default
1

Data Type
int

See Also
Additional properties on page 38

CreateMap

Purpose
Determines whether the driver creates the internal files required for a relational map of the native data when
establishing a connection.

Valid Values
session | forceNew | notExist

Behavior
If set session, the driver uses memory to store the internal configuration information and relational map of
native data. A REST file is not created when this value is specified. After the session, the view is discarded.

If set to forceNew, the driver deletes the current REST file, internal configuration files, and relational map in
the location specified by the SchemaMap property and creates a new set at the same location.

Progress DataDirect Autonomous REST Connector for JDBC : User's Guide for Partners: Version 6.0.074

Chapter 3: Connection property descriptions

Warning: This causes all map customizations defined in the REST file in the location specified by the schema
map property to be lost.

If set to notExist, the driver uses the current REST file, internal files, and relational map in the location
specified by the SchemaMap property. If the files do not exist, the driver creates them.

Notes
Alternatively, you can refresh a schema manually at any time by using the Refresh Map statement. See "Refresh
Map (EXT)" for details.

Data Source Method
setCreateMap

Default
session

Data Type
String

See Also

• SchemaMap on page 100

• Refresh Map (EXT) on page 151

CryptoProtocolVersion

Purpose
Specifies a cryptographic protocol or comma-separated list of cryptographic protocols that can be used when
SSL is enabled (EncryptionMethod=SSL).

Valid Values
cryptographic_protocol [[, cryptographic_protocol]...]

where:

cryptographic_protocol

is one of the following cryptographic protocols:

TLSv1.2 | TLSv1.1 | TLSv1 | SSLv3 | SSLv2

Caution: To avoid vulnerabilities associated with SSLv3 and SSLv2, good security practices recommend
using TLSv1 or higher.

75Progress DataDirect Autonomous REST Connector for JDBC : User's Guide for Partners: Version 6.0.0

CryptoProtocolVersion

Example
If your server supports TLSv1.1 and TLSv1.2, you can specify acceptable cryptographic protocols with the
following key-value pair:

CryptoProtocolVersion=TLSv1.1,TLSv1.2

Notes

• When multiple protocols are specified, the driver uses the highest version supported by the server. If none
of the specified protocols are supported by the server, the connection fails and the driver returns an error.

• When no value has been specified for CryptoProtocolVersion, the cryptographic protocol used depends on
the highest protocol version supported by the server and the highest protocol version supported by the JDK.
The driver uses the lower version of these two protocols to establish the SSL connection. Refer to the REST
service documentation for information on which cryptographic protocols are supported.

Data Source Method
setCryptoProtocolVersion

Default
None

Data Type
String

See Also

• EncryptionMethod on page 78

• Data encryption on page 50

CustomAuthParams

Purpose
Specifies a list of parameter values used by custom authentication requests that are defined in the input REST
file. This property allows you to configure parameter values used in custom authentication requests on a per
connection basis, without editing the REST file, and securely pass them in a connection string or data source
definition.

The input REST file references the values of this property using the CustomAuthParams variable followed
by an index location surrounded in square brackets. For example, a value of CustomAuthParams[3] refers
to the third value specified by this property.

See "Custom authentication requests" for a detailed description of defining custom authentication requests in
the input REST file.

Valid Values
authentication_parameter [[; authentication_parameter]...]

where:

Progress DataDirect Autonomous REST Connector for JDBC : User's Guide for Partners: Version 6.0.076

Chapter 3: Connection property descriptions

authentication_parameter

is an authentication parameter value used in a custom authentication requests defined in the input
REST file. This value can be any parameter value used in the request that is not already mapped
to an existing connection property, for example api-key tokens, company names, and website names.

Important: The index value specified for the variable in the REST file corresponds to the order in
which these values are specified for the property.

Example
If you needed to reference the value My Company Inc for the following company field in the definition for a
custom authentication request:

"company": "{CustomAuthParams[2]}"

Since the variable is pointing to the 2 index location, you would specify My Company Inc as the second value
in the connection property:

CustomAuthParams=123XYZ456abc789;My Company Inc;www.example.com

Notes

• This property is enabled when AuthenticationMethod=Custom; otherwise, it is ignored.

• The values specified for this property are case insensitive.

Data Source Method
setCustomAuthParams

Default
None

Data Type
String

See also
Custom authentication on page 49
AuthenticationMethod on page 69
Custom authentication requests on page 124

DebugRecord

Purpose
Specifies the directory where the driver generates debug record files. When a value is specified, the driver
records server requests and responses to set of files stored in this location.These files assist in troubleshooting
by providing a method for Technical Support to reproduce and debug issues for REST services that are not
publicly accessible.

77Progress DataDirect Autonomous REST Connector for JDBC : User's Guide for Partners: Version 6.0.0

DebugRecord

Important: Debug record files may capture security-related headers, such as auth or token headers. Before
sending Technical Support debug files, review the content to remove any confidential information that may
have been recorded.

Valid Values
debug_record_folder

where:

debug_record_folder

is the location of the folder where the debeg record files are to be generated. For example,
C:\Temp\MyDebug Folder.

Notes

• You must have write access to the specified directory.

• For more information, refer to "Enabling Debug Record Mode" in the Progress DataDirect for JDBC Drivers
Reference.

• For assistance, contact Technical Support.

Data Source Method
setDebugRecord

Default
None

See also
Enabling Debug Record Mode on page 58

EncryptionMethod

Purpose
Determines whether data is encrypted and decrypted when transmitted over the network between the driver
and REST service.

Valid Values
noEncryption | SSL

Behavior
If set to noEncryption, data is not encrypted or decrypted.

If set to SSL, data is encrypted using SSL. If the endpoint does not support SSL, the connection fails and the
driver throws an exception.

Progress DataDirect Autonomous REST Connector for JDBC : User's Guide for Partners: Version 6.0.078

Chapter 3: Connection property descriptions

Notes

• SSL encryption is enabled when the URL specified in the Sample property or REST file uses HTTPS,
regardless of the setting of EncryptionMethod.

• Connection hangs can occur when the driver is configured for SSL and the endpoint does not support SSL.
You may want to set a login timeout using the LoginTimeout property to avoid problems when connecting
to an endpoint that does not support SSL.

• When SSL is enabled, the following properties also apply:

CryptoProtocolVersion

HostNameInCertificate

KeyPassword (for SSL client authentication)

KeyStore (for SSL client authentication)

KeyStorePassword (for SSL client authentication)

TrustStore

TrustStorePassword

ValidateServerCertificate

Data Source Method
setEncryptionMethod

Default
noEncryption

Data Type
String

See Also
Data encryption on page 50

Performance considerations on page 41

FetchSize

Purpose
Specifies the maximum number of rows that the driver processes before returning data to the application when
executing a Select. This value provides a suggestion to the driver as to the number of rows it should internally
process before returning control to the application. The driver may fetch fewer rows to conserve memory when
processing exceptionally wide rows.

Valid Values
0 | x

where:

79Progress DataDirect Autonomous REST Connector for JDBC : User's Guide for Partners: Version 6.0.0

FetchSize

x

is a positive integer indicating the number of rows that should be processed.

Behavior
If set to 0, the driver processes all the rows of the result before returning control to the application. When large
data sets are being processed, setting FetchSize to 0 can diminish performance and increase the likelihood
of out-of-memory errors.

If set to x, the driver limits the number of rows that may be processed for each fetch request before returning
control to the application.

Notes

• To optimize throughput and conserve memory, the driver uses an internal algorithm to determine how many
rows should be processed based on the width of rows in the result set. Therefore, the driver may process
fewer rows than specified by FetchSize when the result set contains exceptionally wide rows. Alternatively,
the driver processes the number of rows specified by FetchSize when the result set contains rows of
unexceptional width.

• FetchSize and WSFetchSize can be used to adjust the trade-off between throughput and response time.
Smaller fetch sizes can improve the initial response time of the query. Larger fetch sizes can improve overall
response times at the cost of additional memory.

• You can use FetchSize to reduce demands on memory and decrease the likelihood of out-of-memory errors.
Simply, decrease FetchSize to reduce the number of rows the driver is required to process before returning
data to the application.

Data Source Method
setFetchSize

Default
100 (rows)

Data Type
Int

See Also

• Additional properties on page 38

• Performance considerations on page 41

HostNameInCertificate

Purpose
Specifies a host name for certificate validation when SSL encryption is enabled (EncryptionMethod=SSL)
and validation is enabled (ValidateServerCertificate=true). This property is optional and provides
additional security against man-in-the-middle (MITM) attacks by ensuring that the server the driver is connecting
to is the server that was requested.

Progress DataDirect Autonomous REST Connector for JDBC : User's Guide for Partners: Version 6.0.080

Chapter 3: Connection property descriptions

Valid values
host_name

where:

host_name

is a valid host name.

Behavior
If host_name is specified, the driver compares the specified host name to the DNSName value of the
SubjectAlternativeName in the certificate. If a DNSName value does not exist in the SubjectAlternativeName
or if the certificate does not have a SubjectAlternativeName, the driver compares the host name with the
Common Name (CN) part of the certificate’s Subject name. If the values do not match, the connection fails
and the driver throws an exception.

Notes

• If the HostNameInCertificate is not specified, the driver automatically uses the value of the ServerName
from the URL as the value for validating the certificate.

• If SSL encryption or certificate validation is not enabled, this property is ignored.

• If SSL encryption and validation is enabled and this property is unspecified, the driver uses the server name
that is specified in the connection URL or data source of the connection to validate the certificate.

Data source method
setHostNameInCertificate

Default
Empty string

Data type
String

See also

• EncryptionMethod on page 78

• ValidateServerCertificate on page 111

ImportStatementPool

Purpose
Specifies the path and file name of the file to be used to load the contents of the statement pool. When this
property is specified, statements are imported into the statement pool from the specified file.

Valid Values
string

81Progress DataDirect Autonomous REST Connector for JDBC : User's Guide for Partners: Version 6.0.0

ImportStatementPool

where:

string

is the path and file name of the file to be used to load the contents of the statement pool.

Notes

• If the driver cannot locate the specified file when establishing the connection, the connection fails and the
driver throws an exception.

• For more information, refer to "Statement Pool Monitor" in the Progress DataDirect for JDBC Drivers
Reference.

Data Source Method
setImportStatementPool

Default
empty string

Data Type
String

InsensitiveResultSetBufferSize

Purpose
Determines the amount of memory that is used by the driver to cache insensitive result set data.

Valid Values
-1 | 0 | x

where:

x

is a positive integer that represents the amount of memory.

Behavior
If set to -1, the driver caches insensitive result set data in memory. If the size of the result set exceeds available
memory, an OutOfMemoryException is generated. With no need to write result set data to disk, the driver
processes the data efficiently.

If set to 0, the driver caches insensitive result set data in memory, up to a maximum of 2 MB. If the size of the
result set data exceeds available memory, then the driver pages the result set data to disk, which can have a
negative performance effect. Because result set data may be written to disk, the driver may have to reformat
the data to write it correctly to disk.

Progress DataDirect Autonomous REST Connector for JDBC : User's Guide for Partners: Version 6.0.082

Chapter 3: Connection property descriptions

If set to x, the driver caches insensitive result set data in memory and uses this value to set the size (in KB)
of the memory buffer for caching insensitive result set data. If the size of the result set data exceeds available
memory, then the driver pages the result set data to disk, which can have a negative performance effect.
Because the result set data may be written to disk, the driver may have to reformat the data to write it correctly
to disk. Specifying a buffer size that is a power of 2 results in efficient memory use.

Data Source Method
setInsensitiveResultSetBufferSize

Default
2048

Data Type
int

See also

• Additional properties on page 38

• Performance considerations on page 41

JDBCBehavior

Purpose
Determines how the driver describes native data types that map to the following JDBC 4.0 data types: NCHAR,
NVARCHAR, NLONGVARCHAR, NCLOB, and SQLXML.

Valid Values
0 | 1

Behavior
If set to 0, the driver describes the data types as JDBC 4.0 data types.

If set to 1, the driver describes the data types using JDBC 3.0-equivalent data types, regardless of JVM. This
allows your application to continue using JDBC 3.0 types.

Data Source Method
setJDBCBehavior

Default
1

Data Type
int

83Progress DataDirect Autonomous REST Connector for JDBC : User's Guide for Partners: Version 6.0.0

JDBCBehavior

See Also

• Data type handling properties on page 35

KeyPassword

Purpose
Specifies the password that is used to access the individual keys in the keystore file when SSL is enabled
(EncryptionMethod=SSL) and SSL client authentication is enabled on the REST server. This property is
useful when individual keys in the keystore file have a different password than the keystore file.

Valid Values
string

where:

string

is a valid password.

Data Source Method
setKeyPassword

Default
None

Data Type
String

See Also

• EncryptionMethod on page 78

• Data encryption properties on page 32

KeyStore

Purpose
Specifies the directory of the keystore file to be used when SSL is enabled (EncryptionMethod=SSL) and
SSL client authentication is enabled on the REST server. The keystore file contains the certificates that the
client sends to the server in response to the server’s certificate request.

This value overrides the directory of the keystore file that is specified by the javax.net.ssl.keyStore Java system
property. If this property is not specified, the keystore directory is specified by the javax.net.ssl.keyStore Java
system property.

Progress DataDirect Autonomous REST Connector for JDBC : User's Guide for Partners: Version 6.0.084

Chapter 3: Connection property descriptions

Valid Values
string

where:

string

is a valid directory of a keystore file.

Notes

• The keystore and truststore files can be the same file.

Data Source Method
setKeyStore

Default
None

Data Type
String

See Also

• EncryptionMethod on page 78

• Data encryption properties on page 32

KeyStorePassword

Purpose
Specifies the password that is used to access the keystore file when SSL is enabled (EncryptionMethod=SSL)
and SSL client authentication is enabled on the REST server. The keystore file contains the certificates that
the client sends to the server in response to the server’s certificate request.

This value overrides the password of the keystore file that is specified by the javax.net.ssl.keyStorePassword
Java system property. If this property is not specified, the keystore password is specified by the
javax.net.ssl.keyStorePassword Java system property.

Valid Values
string

where:

string

is a valid password.

Notes

• The keystore and truststore files can be the same file.

85Progress DataDirect Autonomous REST Connector for JDBC : User's Guide for Partners: Version 6.0.0

KeyStorePassword

Data Source Method
setKeyStorePassword

Default
None

Data Type
String

See Also

• EncryptionMethod on page 78

• Data encryption properties on page 32

LogConfigFile

Purpose
Specifies the file name, and optionally, the path of the properties file used to initialize driver logging.

Valid Values
string

where:

string

is the relative or fully qualified path of the properties file to load to initialize driver logging. If you do
not specify a path, the driver looks for this file in the current working directory. If the specified file
does not exist, the driver continues searching for an appropriate properties file.

Data Source Method
setLogConfigFile

Default
ddlogging.properties

Data Type
String

See Also
Refer to "Using Java logging" in the Progress DataDirect for JDBC Drivers Reference.

Progress DataDirect Autonomous REST Connector for JDBC : User's Guide for Partners: Version 6.0.086

Chapter 3: Connection property descriptions

LoginTimeout

Purpose
The amount of time, in seconds, that the driver waits for a connection to be established before timing out the
connection request.

Valid Values
0 | x

where:

x

is a positive integer that represents a number of seconds.

Behavior
If set to 0, the driver does not time out a connection request.

If set to x, the driver waits for the specified number of seconds before returning control to the application and
throwing a timeout exception.

Data Source Method
setLoginTimeout

Default
0

Data Type
int

See Also

• Timeout properties on page 36

LogoffURI

Purpose
Specifies the endpoint the driver calls to notify the service to log the client out of the session, including performing
any clean-up tasks or expiring the token. The driver uses this value when authenticating to a REST service
using OAuth 2.0 (AuthenticationMethod=OAuth2).

Valid Values
string

where:

87Progress DataDirect Autonomous REST Connector for JDBC : User's Guide for Partners: Version 6.0.0

LoginTimeout

string

is the endpoint used to retrieve OAuth 2.0 authorization codes. For example:

https://example.com/oauth2/logout/

Data Source Method
setLogoffURI

Default
None

Data Type
String

See Also

• OAuth 2.0 authentication on page 44

• OAuth 2.0 properties on page 28

MaxPooledStatements

Purpose
The maximum number of pooled prepared statements for this connection. Setting MaxStatements to an integer
greater than zero (0) enables the driver’s internal prepared statement pooling, which is useful when the driver
is not running from within an application server or another application that provides its own prepared statement
pooling.

Valid Values
0 | x

where

x

is a positive integer that represents a number of pooled prepared statements.

Behavior
If set to 0, the driver’s internal prepared statement pooling is not enabled.

If set to x, the driver enables the DataDirect Statement Pool and uses the specified value to cache a certain
number of prepared statements created by an application. If the value set for this property is greater than the
number of prepared statements that are used by the application, all prepared statements that are created by
the application are cached. Because CallableStatement is a sub-class of PreparedStatement, CallableStatements
also are cached.

Progress DataDirect Autonomous REST Connector for JDBC : User's Guide for Partners: Version 6.0.088

Chapter 3: Connection property descriptions

Example
If the value of this property is set to 20, the driver caches the last 20 prepared statements that are created by
the application.

Data Source Method
setMaxPooledStatements

Default
0

Data Type
int

See Also

• Statement pooling properties on page 37

OAuthCode

Purpose
Specifies the temporary authorization code that is exchanged for access tokens when OAuth 2.0 authentication
is enabled (AuthenticationMethod=OAuth2). Authorization codes are used to authenticate against the
endpoint specified by the TokenURI property. If authentication is successful, an access token is generated and
fetched from the specified location. Typically, this property is configured by the application.

Valid Values
string

where:

string

is an OAuth 2.0 authorization code.

Notes

• This property is not required for all authentication flows. See “OAuth 2.0 authentication” for a list of common
authentication flows and their requirements. If you are unsure of the requirements for your authentication
flow, contact your administrator for more information.

Data Source Method
setAuthCode

Default
None

89Progress DataDirect Autonomous REST Connector for JDBC : User's Guide for Partners: Version 6.0.0

OAuthCode

Data Type
String

See Also

• OAuth 2.0 authentication on page 44

• OAuth 2.0 properties on page 28

Password

Description
Specifies the password to use to connect to your REST service. This property is ignored when
AuthenticationMethod=None.

Important: Setting the password using a data source is not recommended. The data source persists all
properties, including the Password property, in clear text.

Valid Values
password

where:

password

is a valid password. The password is case-sensitive.

Data Source Method
setPassword

Default
None

Data Type
String

See Also

• AuthenticationMethod on page 69

• Basic authentication properties on page 26

Progress DataDirect Autonomous REST Connector for JDBC : User's Guide for Partners: Version 6.0.090

Chapter 3: Connection property descriptions

PortNumber

Purpose
Specifies the TCP port of the server that is listening for REST API requests.

Valid Values
port

where:

port

is the port number.

Data Source Method
setPortNumber

Default
When SSL encryption is disabled:

80

When SSL encryption is enabled:

443

Data Type
int

See Also

• Required properties on page 24

ProxyHost

Description
Identifies a proxy server to use for the first connection.

Valid Values
server_name | IP_address

where:

server_name

is the name of the proxy server, which may be qualified with the domain name.

91Progress DataDirect Autonomous REST Connector for JDBC : User's Guide for Partners: Version 6.0.0

PortNumber

IP_address

is an IP address, specified in either IPv4 or IPv6 format, or a combination of the two. See "Using IP
addresses" for details about using these formats.

Data Source Method
setProxyHost

Default
Empty string

See also
IP addresses on page 53
Connecting through a proxy server on page 40
Proxy server properties on page 33

ProxyPassword

Purpose
Specifies the password needed to connect to a proxy server for the first connection.

Valid Values
password

where:

password

is a valid password for that server. Contact your system administrator to obtain a valid password.

Data Source Method
setProxyPassword

Default
Empty string

See Also

• Connecting through a proxy server on page 40

• Proxy server properties on page 33

Progress DataDirect Autonomous REST Connector for JDBC : User's Guide for Partners: Version 6.0.092

Chapter 3: Connection property descriptions

ProxyPort

Purpose
Specifies the port number where the proxy server is listening for HTTP or HTTPS requests for the first connection.

Valid Values
port

where:

port

is the port number on which the proxy server is listening. Contact your system administrator to obtain
the correct port.

Data Source Method
setProxyPort

Default
0

See Also

• Connecting through a proxy server on page 40

• Proxy server properties on page 33

ProxyUser

Purpose
Specifies the user name needed to connect to a proxy server for the first connection.

Valid Values
user_name

where:

user_name

is a valid user ID for the proxy server.

Data Source Method
setProxyUser

93Progress DataDirect Autonomous REST Connector for JDBC : User's Guide for Partners: Version 6.0.0

ProxyPort

Default
Empty string

See Also

• Connecting through a proxy server on page 40

• Proxy server properties on page 33

ReadAhead

Purpose
Specifies the maximum number of fetch requests the driver issues in parallel. By default, the driver queues the
next page when processing the current page.This property allows you to fetch multiple requests simultaneously,
thereby improving throughput and performance.

Caution: Due to potential impacts to other users on the network, we strongly recommend specifying only
smaller values for this property. For example, in fully optimized environments, which include exceptionally fast
connections and low latency, we recommend a setting of no higher than 10. For typical environments, this
value should be considerably lower.

Valid Values
0 | x

where:

x

is the maximum number of fetch requests the driver issues in parallel.

Behavior
If set to 0, the driver queues the next page while processing the current page.

If set to x, the driver executes fetch requests as they are issued until the number of active parallel-requests
equals the specified value. When that threshold is met, the driver waits until the results of a request are
processed before requesting the next page of data.

Notes

• Specifying larger values for this property generally improves performance; however, with the following
warnings:

• Larger values can increase the load on the server, which may adversely affect performance of other
users. If you encounter issues, decrease the value specified for this property.

• Larger values may result in unnecessary requests if your application only requires the first few rows of
results. This may be an issue if your service places limits on the number of web requests.

Data Source Method
setReadAhead

Progress DataDirect Autonomous REST Connector for JDBC : User's Guide for Partners: Version 6.0.094

Chapter 3: Connection property descriptions

Default
0

Data Type
int

See Also

• Additional properties on page 38

RedirectURI

Purpose
Specifies the endpoint to which the client is returned after authenticating with a third-party service when OAuth
2.0 authentication is enabled (AuthenticationMethod=OAuth2).

For some authentication flows, the REST service will redirect you to a third-party service for authentication.
Once your credentials have been validated, the third-party service returns the client to an endpoint in the REST
service to continue the session. The endpoint used by the third-party service is provided by the client and
specified using the RedirectURI property.

Valid Values
string

where:

string

is the endpoint used to retrieve OAuth 2.0 authorization codes. For example,
https://example.com/countries/.

Notes

• The redirect endpoint is often registered with the authentication service to provide improved security.
Registering the endpoint prevents your valid authentication credentials being redirected to a malicious site;
therefore, reducing the risk of sharing your access token and other sensitive information with unauthorized
parties.

• This property is not required for all authentication flows. See “OAuth 2.0 authentication” for a list of common
authentication flows and their requirements. If you are unsure of the requirements for your authentication
flow, contact your administrator for more information.

Data Source Method
setRedirectURI

Default
None

95Progress DataDirect Autonomous REST Connector for JDBC : User's Guide for Partners: Version 6.0.0

RedirectURI

Data Type
String

See Also

• OAuth 2.0 authentication on page 44

• OAuth 2.0 properties on page 28

RefreshDirtyCache

Purpose
Specifies whether the driver refreshes a dirty cache on the next fetch operation from the cache. A cache is
marked as dirty when a row is inserted into or deleted from a cached table or a row in the cached table is
updated.

Valid Values
1 | 0

Behavior
If set to 1, a dirty cache is refreshed when the cache is referenced in a fetch operation. The cache state is set
to initialized if the refresh succeeds.

If set to 0, a dirty cache is not refreshed when the cache is referenced in a fetch operation.

Data Source Method
setRefreshDirtyCache

Default
1

Data Type
Int

RefreshSchema

Purpose
Specifies whether the driver automatically refreshes the map of the data model when a user connects to a
REST service.

Valid Values
true | false

Progress DataDirect Autonomous REST Connector for JDBC : User's Guide for Partners: Version 6.0.096

Chapter 3: Connection property descriptions

Behavior
If set to true, the driver automatically refreshes the map of the data model when a user connects to a REST
service. Changes to objects since the last time the map was generated will be shown in the metadata.

If set to false, the driver does not refresh the map of the data model when a user connects to a REST service.

Notes

• This property should not be enabled (RefreshSchema=true) when CreateMap=session.

Data Source Method
setRefreshSchema

Default
true

See Also

• Mapping properties on page 25

RefreshToken

Purpose
Specifies the refresh token used to either request a new access token or renew an expired access token. The
value for this property is used for certain flows when authenticating to a REST service with OAuth 2.0 enabled
(AuthenticationMethod=OAuth2).

Important: The refresh token is a confidential value used to authenticate to the server.To prevent unauthorized
access, this value must be securely maintained.

Valid Values
string

where:

string

is the refresh token you have obtained from the authentication service.

Notes

• This property is not required for all authentication flows. See “OAuth 2.0 authentication” for a list of common
authentication flows and their requirements. If you are unsure of the requirements for your authentication
flow, contact your administrator for more information.

Data Source Method
setRefreshToken

97Progress DataDirect Autonomous REST Connector for JDBC : User's Guide for Partners: Version 6.0.0

RefreshToken

Default
None

Data Type
String

See Also

• OAuth 2.0 authentication on page 44

• OAuth 2.0 properties on page 28

RegisterStatementPoolMonitorMBean

Purpose
Registers the Statement Pool Monitor as a JMX MBean when statement pooling has been enabled with
MaxPooledStatements. This allows you to manage statement pooling with standard JMX API calls and to use
JMX-compliant tools, such as JConsole.

Valid Values
true | false

Behavior
If set to true, the driver registers an MBean for the statement pool monitor for each statement pool.This gives
applications access to the Statement Pool Monitor through JMX when statement pooling is enabled.

If set to false, the driver does not register an MBean for the Statement Pool Monitor for any statement pool.

Notes
Registering the MBean exports a reference to the Statement Pool Monitor.The exported reference can prevent
garbage collection on connections if the connections are not properly closed. When garbage collection does
not take place on these connections, out of memory errors can occur.

Data Source Method
setRegisterStatementPoolMonitorMBean

Default
false

Data Type
Boolean

See also
Statement pooling properties on page 37
MaxPooledStatements on page 88

Progress DataDirect Autonomous REST Connector for JDBC : User's Guide for Partners: Version 6.0.098

Chapter 3: Connection property descriptions

Sample

Purpose
Specifies the endpoint that the driver connects to and samples.This property allows you to configure the driver
to issue GET requests to a single endpoint without creating an input REST file. Note that if your session does
any of the following, instead of using this property, you must create an input REST file and specify its location
with the Config property:

• Accesses multiple endpoints

• Issues POST requests

• Accesses endpoints that require paging

• Accesses endpoints that use custom HTTP headers

• Uses custom HTTP response code processing

• Requires a custom authentication flow

Valid Values
string

where:

string

is the endpoint that you want connect to and sample. For example,
https://example.com/countries/.

Notes

• The Table connection property allows you to determine the name of the table the specified endpoint maps
to. If you do not provide a table name, the driver will determine the name based on the name of the endpoint.

• When using the Sample property, the driver maps endpoints that consist of only a host name to the URL_
parent table by default.You can specify a different table name using the Table property.

Data Source Method
setSample

Default
None

Data Type
String

See Also

• Config on page 73

• Table on page 107

• Required properties on page 24

99Progress DataDirect Autonomous REST Connector for JDBC : User's Guide for Partners: Version 6.0.0

Sample

SchemaMap

Purpose
Specifies the directory where the internal configuration files, REST file, and the relational map of the REST
data model are written. The driver looks for these files when connecting to a REST service. If the file does not
exist, the driver creates one.

Valid Values
string

where:

string

is the path to the directory used to store the configuration files, REST file, and relational map. For
example, if SchemaMap is set to a value of
C:\\Users\\Default\\AppData\\Local\\Progress\\DataDirect\\AutoREST_Schema\\,
the driver either creates or looks for these files in the directory
C:\Users\Default\AppData\Local\Progress\DataDirect\AutoREST_Schema.

Notes

• By default, the name of the internal files are determined by the values of the User and ServerName connection
properties. If no value is specified for either property, a prefix of USER is used for these files. For example,
USER.config.

• When connecting to a REST service, the driver looks for the schema map configuration files in the specified
location. If the configuration files do not exist, the driver creates them using the location you have provided.
If you do not provide a location, the driver creates it using default values.

• You can refresh the internal files related to an existing view of your data by using the SQL extension Refresh
Map. Refresh Map runs a discovery against your native data and updates your internal files accordingly.

Example
As the following examples show, escapes are needed when specifying SchemaMap for a data source but are
not used when specifying SchemaMap in a connection URL.

Connection URL Example

jdbc:datadirect:autorest:Config=C:\\path\\to\\myrest.rest;
SchemaMap=C:\\Users\\Default\\AppData\\Local\\Progress\\DataDirect\\AutoREST_Schema\\

Data Source Example

AutoRESTDataSource ds = new AutoRESTDataSource();
ds.setDescription("My Autonomous REST Connector Data Source");
ds.setConfig("C:\\path\\to\\myrest.rest");
ds.setSchemaMap("C:\\Users\\Default\\AppData\\Local\\Progress
 \\DataDirect\\AutoREST_Schema\\")

Data Source Method
setSchemaMap

Progress DataDirect Autonomous REST Connector for JDBC : User's Guide for Partners: Version 6.0.0100

Chapter 3: Connection property descriptions

Default

• For Windows XP and Windows Server 2003

• user_profile\Application Data\Local\Progress\DataDirect\AutoREST_Schema\

• For other Windows platforms

• User data source:user_profile\AppData\Local\Progress\DataDirect\AutoREST_Schema\

• System data source:
C:\Users\Default\AppData\Local\Progress\DataDirect\AutoREST_Schema\

• For UNIX/Linux

• home_dir/progress/datadirect/AutoREST_Schema/

Data Type
String

See Also

• Refresh Map (EXT) on page 151

• Mapping properties on page 25

Scope

Purpose
Specifies a space-separated list of OAuth scopes that limit the permissions granted by an access token. The
driver uses this value when authenticating to a REST service using OAuth 2.0
(AuthenticationMethod=OAuth2).

Valid Values
string

where:

string

is a space-separated list of security scopes.

Examples
The following example demonstrates a configuration that limits the user to read only access to user permissions
and data using Google Analytics API.

Scope=https://www.googleapis.com/auth/analytics.manage.users.readonly
 https://www.googleapis.com/auth/analytics.readonly

Data Source Method
setScope

101Progress DataDirect Autonomous REST Connector for JDBC : User's Guide for Partners: Version 6.0.0

Scope

Default
None

Data Type
String

See Also

• OAuth 2.0 authentication on page 44

• OAuth 2.0 properties on page 28

SecurityToken

Purpose
Specifies the security token required to make a connection to your REST API endpoint.This property is required
when token based authentication is enabled (AuthenticationMethod=HttpHeader | UrlParameter);
otherwise, this property is ignored. If a security token is required and you do not supply one, the driver returns
an error indicating that an invalid user or password was supplied.

Important: If setting the security token using a data source, be aware that the SecurityToken property, like
all data source properties, is persisted in clear text.

Valid Values
string

where:

string

is the value of the security token assigned to the user.

Data Source Method
setSecurityToken

Default
None

Data Type
String

See Also

• AuthenticationMethod on page 69

• Basic authentication properties on page 26

Progress DataDirect Autonomous REST Connector for JDBC : User's Guide for Partners: Version 6.0.0102

Chapter 3: Connection property descriptions

ServerName

Purpose
Specifies the host name portion of the URL endpoint to which you send requests. This property allows you to
define endpoints without storing the host name component in the REST file property.

Valid Values
string

where:

string

is the host name portion of the URL endpoint to which you send requests. For example,
https://example.com.

Data Source Method
setServerName

Default
None

Data Type
String

See Also

• Required properties on page 24

SpyAttributes

Purpose
Enables DataDirect Spy to log detailed information about calls issued by the driver on behalf of the application.
DataDirect Spy is not enabled by default.

Valid Values

(spy_attribute[;spy_attribute]...)

where:

spy_attribute

is any valid DataDirect Spy attribute.

103Progress DataDirect Autonomous REST Connector for JDBC : User's Guide for Partners: Version 6.0.0

ServerName

Behavior

DescriptionAttribute

Sets the maximum number of characters that
DataDirect Spy logs on a single line.

The default is 0 (no maximum limit).

linelimit=numberofchars

Loads the driver specified by classname.load=classname

Directs logging to the file specified by filename.

For Windows, if coding a path to the log file in a Java
string, the backslash character (\) must be preceded
by the Java escape character, a backslash. For
example:
log=(file)C:\\temp\\spy.log;logIS=yes;logTName=yes.

log=(file)filename

Directs logging to a file prefixed by file_prefix.
The log file is named file_prefixX.log

where:

X is an integer that increments by 1 for each
connection on which the prefix is specified.

For example, if the attribute
log=(filePrefix)C:\\temp\\spy_ is specified
on multiple connections, the following logs are created:

C:\temp\spy_1.log

C:\temp\spy_2.log

C:\temp\spy_3.log

...

If coding a path to the log file in a Java string, the
backslash character (\) must be preceded by the Java
escape character, a backslash.

For example:
log=(filePrefix)C:\\temp\\spy_;logIS=yes;logTName=yes.

log=(filePrefix)file_prefix

Directs logging to the Java output standard,
System.out.

log=System.out

Progress DataDirect Autonomous REST Connector for JDBC : User's Guide for Partners: Version 6.0.0104

Chapter 3: Connection property descriptions

DescriptionAttribute

Specifies whether DataDirect Spy logs activity on
InputStream and Reader objects.

When logIS=nosingleread, logging on
InputStream and Reader objects is active; however,
logging of the single-byte read InputStream.read
or single-character Reader.read is suppressed to
prevent generating large log files that contain
single-byte or single character read messages.

The default is no.

logIS= { yes | no | nosingleread }

Specifies whether DataDirect Spy logs activity on
BLOB and CLOB objects.

logLobs= { yes | no }

Specifies whether DataDirect Spy logs the name of
the current thread.

The default is no.

logTName= { yes | no }

Specifies whether a timestamp is included on each
line of the DataDirect Spy log.

The default is no.

timestamp= { yes | no }

Example
The following value instructs the driver to log all JDBC activity to a file using a maximum of 80 characters for
each line.

(log=(file)/tmp/spy.log;linelimit=80)

Notes

• If coding a path on Windows to the log file in a Java string, the backslash character (\) must be preceded
by the Java escape character, a backslash. For example: log=(file)C:\\temp\\spy.log.

• For more information, refer to "Tracking JDBC calls with DataDirect Spy" in the Progress DataDirect for
JDBC Drivers Reference.

Data Source Method
setSpyAttributes

Default
None

105Progress DataDirect Autonomous REST Connector for JDBC : User's Guide for Partners: Version 6.0.0

SpyAttributes

StmtCallLimit

Purpose
Specifies the maximum number of Web service calls the driver can make when executing any single SQL
statement or metadata query.

Valid Values
0 | x

where:

x

is a positive integer that defines the maximum number of Web service calls the driver can make
when executing any single SQL statement or metadata query.

Behavior
If set to 0, there is no limit.

If set to x, the driver uses this value to set the maximum number of Web service calls on a single connection
that can be made when executing a SQL statement. This limit can be overridden by changing the
STMT_CALL_LIMIT session attribute using the ALTER SESSION statement. For example, the following
statement sets the statement call limit to 10 Web service calls:

ALTER SESSION SET STMT_CALL_LIMIT=10

If the Web service call limit is exceeded, the behavior of the driver depends on the value specified for the
StmtCallLimitBehavior property.

Data Source Method
setStmtCallLimit

Default
0 (no limit)

Data Type
int

See Also

• Web service properties on page 34

Progress DataDirect Autonomous REST Connector for JDBC : User's Guide for Partners: Version 6.0.0106

Chapter 3: Connection property descriptions

StmtCallLimitBehavior

Purpose
Specifies the behavior of the driver when the maximum Web service call limit specified by the StmtCallLimit
property is exceeded.

Valid Values
errorAlways | returnResults

Behavior
If set to errorAlways, the driver generates an exception if the maximum Web service call limit is exceeded.

If set to returnResults, the driver returns any partial results it received prior to the call limit being exceeded.
The driver generates a warning that not all of the results were fetched.

Data Source Method
setStmtCallLimitBehavior

Default
errorAlways

Data Type
String

See Also

• Web service properties on page 34

Table

Purpose
Determines the name of the table your endpoint maps to when specifying an endpoint using the Sample
property. If the table already exists, including those defined in an input REST file, the driver will resample the
endpoint associated with this table and add any newly discovered columns to the relational view.

Valid Values
string

where:

string

is the name of the table you want to create for the endpoint or resample.

107Progress DataDirect Autonomous REST Connector for JDBC : User's Guide for Partners: Version 6.0.0

StmtCallLimitBehavior

Notes

• When resampling an existing table, the driver will not remove any columns associated with data that is no
longer discoverable in the native view.

Data Source Method
setSample

Default
None

Data Type
String

See Also

• Config on page 73

• Required properties on page 24

TokenURI

Purpose
Specifies the endpoint used to exchange authentication credentials for access tokens when OAuth 2.0
authentication is enabled (AuthenticationMethod=OAuth2). The credentials passed to this endpoint
depend on the authentication flow being employed by your REST service. For a list of credentials required for
common authentication flows, refer "OAuth 2.0 authentication."

Valid Values
string

where:

string

is the endpoint used to retrieve OAuth 2.0 access tokens. For example:

https://example.com/oauth2/authorize/

Notes

• This property is not required for all authentication flows. See “OAuth 2.0 authentication” for a list of common
authentication flows and their requirements. If you are unsure of the requirements for your authentication
flow, contact your administrator for more information.

Data Source Method
setTokenURI

Progress DataDirect Autonomous REST Connector for JDBC : User's Guide for Partners: Version 6.0.0108

Chapter 3: Connection property descriptions

Default
None

Data Type
String

See Also

• OAuth 2.0 authentication on page 44

• OAuth 2.0 properties on page 28

TrustStore

Purpose
Specifies the directory of the truststore file to be used when SSL is enabled (EncryptionMethod=ssl) and
server authentication is used.The truststore file contains a list of the Certificate Authorities (CAs) that the client
trusts.

This value overrides the directory of the truststore file that is specified by the javax.net.ssl.trustStore Java
system property. If this property is not specified, the truststore directory is specified by the javax.net.ssl.trustStore
Java system property.

This property is ignored if ValidateServerCertificate=false.

Valid Values
string

where:

string

is the directory of the truststore file.

Data Source Method
setTrustStore

Default
None

Data Type
String

See Also

• EncryptionMethod on page 78

• ValidateServerCertificate on page 111

• Performance considerations on page 41

109Progress DataDirect Autonomous REST Connector for JDBC : User's Guide for Partners: Version 6.0.0

TrustStore

• Data encryption properties on page 32

TrustStorePassword

Purpose
Specifies the password that is used to access the truststore file when SSL is enabled (EncryptionMethod=SSL)
and server authentication is used. The truststore file contains a list of the Certificate Authorities (CAs) that the
client trusts.

This value overrides the password of the truststore file that is specified by the javax.net.ssl.trustStorePassword
Java system property. If this property is not specified, the truststore password is specified by the
javax.net.ssl.trustStorePassword Java system property.

This property is ignored if ValidateServerCertificate=false.

Valid Values
string

where:

string

is a valid password for the truststore file.

Data Source Method
setTrustStorePassword

Default
None

Data Type
String

See Also

• EncryptionMethod on page 78

• ValidateServerCertificate on page 111

• Performance considerations on page 41

• Data encryption properties on page 32

User

Purpose
Specifies the user name that is used to connect to the REST service. A user name is required if user is enabled
by your REST service. This property is ignored when AuthenticationMethod=None.

Progress DataDirect Autonomous REST Connector for JDBC : User's Guide for Partners: Version 6.0.0110

Chapter 3: Connection property descriptions

Valid Values
string

where:

string

is a valid user name. The user name is case-insensitive.

Data Source Method
setUser

Default
None

Data Type
String

See Also

• Basic authentication properties on page 26

ValidateServerCertificate

Purpose
Determines whether the driver validates the certificate that is sent by the REST service server when SSL
encryption is enabled (EncryptionMethod=SSL).When using SSL server authentication, any certificate that
is sent by the server must be issued by a trusted Certificate Authority (CA).

Allowing the driver to trust any certificate that is returned from the server even if the issuer is not a trusted CA
is useful in test environments because it eliminates the need to specify truststore information on each client in
the test environment.

Valid values
true | false

Behavior
If set to true, the driver validates the certificate that is sent by the REST service server. Any certificate from
the server must be issued by a trusted CA in the truststore file. If the HostNameInCertificate property is specified,
the driver also validates the certificate using a host name. The HostNameInCertificate property is optional and
provides additional security against man-in-the-middle (MITM) attacks by ensuring that the server the driver is
connecting to is the server that was requested.

If set to false, the driver does not validate the certificate that is sent by the REST service server. The driver
ignores any truststore information that is specified by the TrustStore and TrustStorePassword properties or
Java system properties.

111Progress DataDirect Autonomous REST Connector for JDBC : User's Guide for Partners: Version 6.0.0

ValidateServerCertificate

Notes
Truststore information is specified using the TrustStore and TrustStorePassword properties or by using Java
system properties.

Data source method
setValidateServerCertificate

Default
true

Data type
Boolean

See also

• EncryptionMethod on page 78

• HostNameInCertificate on page 80

WSFetchSize

Purpose
Specifies the number of rows of data the driver attempts to fetch for each JDBC call when paging is enabled
for an endpoint.

Note: To enable paging, specifying paging parameters for an endpoint in the input REST file. See "Creating
an input REST file" for details.

Valid Values
0 | x

where:

x

is a positive integer that defines a number of rows. The maximum is defined by the setting of the
maximumPageSize property in the input REST file.

Behavior
If set to 0, the driver attempts to fetch up to the maximum number of row specified by the maximumPageSize
property. This value typically provides the maximum throughput.

If set to x, the driver attempts to fetch up to the maximum of the specified number of rows. Setting the value
lower than the maximum can reduce the response time for returning the initial data. Consider using a smaller
WSFetch size for interactive applications only.

Progress DataDirect Autonomous REST Connector for JDBC : User's Guide for Partners: Version 6.0.0112

Chapter 3: Connection property descriptions

Notes
WSFetchSize and FetchSize can be used to adjust the trade-off between throughput and response time. Smaller
fetch sizes can improve the initial response time of the query. Larger fetch sizes can improve overall response
times at the cost of additional memory.

Data Source Method
setWSFetchSize

Default
0 (up to the maximum number of rows specified by the maximumPageSize property)

Data Type
Int

See Also

• Creating an input REST file on page 20

• Web service properties on page 34

• Performance considerations on page 41

WSPoolSize

Purpose
Specifies the maximum number of sessions the driver uses.This allows the driver to have multiple web service
requests active when multiple JDBC connections are open, thereby improving throughput and performance.

Valid Values
x

where:

x

is the number of sessions the driver uses to distribute calls.This value should not exceed the number
of sessions permitted by your account.

Notes

• You can improve performance by increasing the number of sessions specified by this property. By increasing
the number of sessions the driver uses, you can improve throughput by distributing calls across multiple
sessions when multiple connections are active.

• The maximum number of sessions is determined by the setting of WSPoolSize for the connection that
initiates the session. For subsequent connections to an active session, the setting is ignored and a warning
is returned.To change the maximum number of sessions, close all connections using the driver; then, open
a new connection with desired limit specified for this property.

113Progress DataDirect Autonomous REST Connector for JDBC : User's Guide for Partners: Version 6.0.0

WSPoolSize

Data Source Method
setWSPoolSize

Default
1

Data Type
Int

See also

• Web service properties on page 34

• Performance considerations on page 41

WSRetryCount

Description
The number of times the driver retries a timed-out Select request. The timeout period is specified by the
WSTimeout connection property.

Valid Values
0 | x

where:

x

is a positive integer.

Behavior
If set to 0, the driver does not retry timed-out requests after the initial unsuccessful attempt.

If set to x, the driver retries the timed-out request the specified number of times.

Data Source Method
setWSRetryCount

Default
5

Data Type
Int

See Also

• Web service properties on page 34

Progress DataDirect Autonomous REST Connector for JDBC : User's Guide for Partners: Version 6.0.0114

Chapter 3: Connection property descriptions

WSTimeout

Purpose
Specifies the time, in seconds, that the driver waits for a response to a Web service request.

Valid Values
0 | x

where:

x

is a positive integer that defines the number of seconds the driver waits for a response to a Web
service request.

Behavior
If set to 0, the driver waits indefinitely for a response; there is no timeout.

If set to x, the driver uses the value as the default timeout for any statement created by the connection.

If a Select request times out and WSRetryCount is set to retry timed-out requests, the driver retries the request
the specified number of times.

Data Source Method
setWSTimeout

Default
120 (seconds)

Data Type
Int

See Also

• Web service properties on page 34

115Progress DataDirect Autonomous REST Connector for JDBC : User's Guide for Partners: Version 6.0.0

WSTimeout

Progress DataDirect Autonomous REST Connector for JDBC : User's Guide for Partners: Version 6.0.0116

Chapter 3: Connection property descriptions

4
Input REST file syntax

The driver employs an input REST file to map JSON responses to the relational model. Although the primary
purpose of the REST file is to define endpoint and table mapping, it is also capable of configuring a number of
driver behaviors, such as paging, custom authentication, and HTTP response code processing.This reference
describes the syntax used to configure the features and functionality supported by the REST file.

The input REST file is a simple text file that uses the file_name.rest naming convention. To configure the
file, you will need to populate its contents. The following is the basic structure of the REST file:

1 {
2 "#http":[<http_response_codes>],
3
4 "#<oauth2_param>":"<oauth2_value>",
5
6 "#authentication":[<custom_auth>],
7 "#reauthentication":[<custom_auth>],
8
9 "<table_name1>":"<table_definition1>",
10 "<table_name2>":"<table_definition2>",
11 "<table_name3>":"<table_definition3>"
12 }

117Progress DataDirect Autonomous REST Connector for JDBC : User's Guide for Partners: Version 6.0.0

Note: With the exception of table definitions, all REST entries described in the following table are optional.

Table 20: Input REST file components

DescriptionEntry/Entry TypeLines

Defines how HTTP response status codes are processed by the
driver.

For details and syntax, see HTTP response code processing
on page 119.

#http2

Configures OAuth 2.0 authentication behavior using a set of
entries. This allows you to centrally set and manage OAuth
authentication properties for all connections using the file. Note
that these entries are mutually exclusive with the
#authentication entry.

For details and syntax, see OAuth 2.0 authentication on page
122.

OAuth 2.0 entries4

Defines custom authentication requests that retrieve and
exchange access tokens. Custom authentication is used when
your service does not support one of the standard authentication
methods provided by the driver. Note that this entry is mutually
exclusive with the OAuth 2.0 entries.

For details and syntax, see Custom authentication requests on
page 124.

#authentication6

Defines the request used to refresh the access token retrieved
through the #authentication entry.

For details and syntax, see Custom authentication requests on
page 124.

#reauthentication7

Defines the tables and columns that are derived from REST
endpoints.This section can be used to configure multiple aspects
of the driver's behavior, including paging, data type mapping,
and filtering.

For details and syntax, see Table definition entries on page 126.

table entries9-11

For details, see the following topics:

• HTTP response code processing

• OAuth 2.0 authentication

• Custom authentication requests

• Table definition entries

• Example input REST file

Progress DataDirect Autonomous REST Connector for JDBC : User's Guide for Partners: Version 6.0.0118

Chapter 4: Input REST file syntax

HTTP response code processing
The driver allows you to customize how HTTP response status codes are processed by the driver.This provides
you with a method to define error responses for codes that are returned by the service, including subsequent
driver actions and error messages. By using the #operation and #match properties, you can further limit
the definition to apply only to responses for certain operations or for service responses that contain specific
content, such as a specific error message.

If no #http entry is created to define how response codes are processed, the driver handles response codes
according to the default actions in the following table. Note that if you supply your own #http entry, you must
provide a definition for each response code that the service returns. Any code not explicitly defined in your
entry will be returned as a failure.

ActionCode

OK200

ZERO_ROWS400

REAUTHENTICATE401

ZERO_ROWS404

RETRY_AFTER429

RETRY_AFTER503

An entry to define HTTP response code processing takes the following form for multiple definitions:

"#http":[
 {
 "#code":<code_number1>,
 "#action":"<action>",
 "#operation":"<operation>",
 "#match":"<match_string>",
 "#message":"<message>"
 },
 {
 "#code":<code_number2>,
 "#action":"<action>",
 "#operation":"<operation>",
 "#match":"<match_string>",
 "#message":"<message>"
 },
 {
 "#code":<code_number3>,
 "#action":"<action>",
 "#operation":"<operation>",
 "#match":"<match_string>",
 "#message":"<message>"
 }
]

Important: The driver reads definitions in the order listed and uses the first one that matches the response
being evaluated. Therefore, if you have multiple definitions for a single code response, it’s important to specify
definitions with #match and #operation parameters before definitions without conditions. This helps the
driver avoid using a definition that is designed to generally apply to a code before evaluating those with specific
conditions.

119Progress DataDirect Autonomous REST Connector for JDBC : User's Guide for Partners: Version 6.0.0

HTTP response code processing

code_number

is the numeric HTTP status code for which you want to define driver behavior. For example, 200,
401, 404, etc.

action

is the action the driver takes after the specified HTTP status code is returned and the values of the
operation and match properties are determined to apply. A list of supported actions is described
in the "Action Values" table.

operation

(optional) is the operation types to which you want to limit the response definition to apply. For
example, if you only wanted the behavior defined in this entry to apply to instances when performing
insert operations, set this value to Select. See the "Operation Values" table for a list of supported
values and their definition.

match

(optional) is text used to limit the instances to which the response definition applies. When a value
is provided for this property, the driver scans the first 512 bytes of the service response for the
specified value. If it's detected, the driver determines that the behavior in the definition applies. For
example, if you only wanted the behavior to apply when the response body contained the text
"status":"error", you would specify the following:

"#match":"\"status\":\"error\"",

message

(optional) is the message text that you want the driver to return when encountering the specified
status code. This is typically the error message you want returned to the user.You can specify this
value as plain text or as a reference to a header of the server response. For example, to reference
the "message" header in a service response, you would specify the following to display the text
contained in the "message" header:

"#message":"{message}"

Progress DataDirect Autonomous REST Connector for JDBC : User's Guide for Partners: Version 6.0.0120

Chapter 4: Input REST file syntax

Table 21: Action Values

BehaviorValue

The operation was successful without errors. In the case of executing a SELECT,
zero or more rows were returned. No further action is taken.

OK

Similar to OK, the operation was successful without errors; however, it does not try
to find any rows in returned content. This can be used to sync the HTTP response
behavior of the REST service to the expected SQL behavior. For example, when a
URL is designed to fetch multiple objects, but there are no objects of that type to
return, some services return a code 200 and an empty array. However, in that same
scenario, other services might return a code 404 as an error to signify that no rows
were returned. In those instances, you would want the code 404 returned using the
ZERO_ROWS action, instead of as an error.

ZERO_ROWS

The driver reinitializes the connection as if it were the first statementRESET

The driver tries to authenticate again.This action can be used when an access token
expires and a new one needs to be fetched.

REAUTHENTICATE

The driver retries the query up to the number of times specified by the wsretrycount
connection property. Note that if the response includes a Retry-After header, the
driver will honor it.

RETRY_AFTER

The driver retries the operation once.RETRY_ONCE

The driver retries the operation up to the number of times specified by the
WSRetryCount property or 5 times, whichever is lesser, using the Google exponential
backoff rules.

RETRY_GOOGLE

The driver retries the operation up to number of times specified by the WSRetryCount
property, using the Amazon Web Services exponential backoff rules as implemented
in the getWaitTime() method.

RETRY_AWS

The driver attempts to retry the operation up to the number of times specified by the
WSRetryCount property. The default setting is 1 second.

RETRY_FIXED

The operation should throw an exception. For example, a code 400 might mean that
the service failed to comprehend the query.

FAIL

121Progress DataDirect Autonomous REST Connector for JDBC : User's Guide for Partners: Version 6.0.0

HTTP response code processing

https://developers.google.com/analytics/devguides/reporting/core/v3/coreErrors#backoff
https://developers.google.com/analytics/devguides/reporting/core/v3/coreErrors#backoff
http://docs.aws.amazon.com/general/latest/gr/api-retries.html

Table 22: Operation Values

DescriptionValue

All API calls involved in sampling endpoints or querying rowsSELECT

API calls related to logging in, such as those for authenticating with
OAuth2. Note that credentials are not automatically added to these
requests.

LOGIN

API calls not related to data, such as those to retrieve schema or user
settings.

API

API calls related to logging out without overriding any result status actions
like OK.

GOODBYE

OAuth 2.0 authentication
The input REST file supports a set of entries that can be used for OAuth 2.0 authentication. As opposed to
specifying these values in a connection string or data source, using an input REST file allows you to centrally
configure and manage certain OAuth 2.0 settings for all connections using that file.

Note: The OAuth 2.0 authentication entries described in this section are mutually exclusive from
#authentication entry, which is used for custom authentication flows.

The following demonstrates the syntax used for specifying OAuth 2.0 settings in the REST file. Note that
different authentication flows, or grant types, require a different set of credentials and authentication locations
to successfully authenticate. Therefore, not all of these entries will be used for every flow. If you are unsure of
your requirements, contact your system administrator.

Progress DataDirect Autonomous REST Connector for JDBC : User's Guide for Partners: Version 6.0.0122

Chapter 4: Input REST file syntax

Note: Entries that correspond to properties that specify confidential information, such as ClientID and
ClientSecret, are not supported in the input REST file. Values for these properties should be passed in a
connection string or by the application.

"#authenticationmethod":"OAuth2"
"#authuri":"<auth_uri>"
"#logoffuri":"<log_off_uri>"
"#redirecturi":"<token_uri>"
"#scope":"<scope>"
"#tokenuri":"<token_uri>"

Table 23: Supported Auth2.0 entries

DescriptionEntry

Determines which authentication method the driver uses during the course of
a session. Set this value to OAuth2.

#authenticationmethod

Specifies the endpoint for obtaining an authorization code from a third-party
authorization service

#authuri

Specifies the endpoint the driver calls to notify the service to log the client out
of the session, including performing any clean-up tasks or expiring the token.

#logoffuri

Specifies the endpoint to which the client is returned after authenticating with
a third-party service.

#redirecturi

Specifies a space-separated list of OAuth scopes that limit the permissions
granted by an access token.

#scope

Specifies the endpoint used to exchange authentication credentials for access
tokens. For example, https://example.com/oauth2/authorize/.

#tokenuri

Examples
The following examples demonstrate potential entries for common authentication flows.

Authorization code grant:

"#authenticationmethod":"OAuth2"
"#redirecturi":"http://localhost"
"#tokenuri":"https://example.com/oauth2/token"

Client credentials, Password, and Refresh token grants:

"#authenticationmethod":"OAuth2"
"#tokenuri":"https://example.com/oauth2/token"

123Progress DataDirect Autonomous REST Connector for JDBC : User's Guide for Partners: Version 6.0.0

OAuth 2.0 authentication

Custom authentication requests
If your service does not support one of the standard authentication methods provided by the driver, you can
define custom authentication requests to retrieve and exchange access tokens using the input REST file.
Multiple authentication requests can be defined in a single entry, allowing you to implement authentication
flows that consist of multiple steps.

A custom authentication request is defined in the REST file using two entries:

• #authentication: defines the initial request in an authentication flow.

• #reauthentication: defines the request used to refresh the access token retrieved through the
#authentication entry.

Important: In authentication request entries, special characters, such as ampersands (&), must be escaped
using a back slash (\).

The #authentication and #reauthentication entries are comprised of the following components:

• Header: Defines the header to be included in the HTTP request used to retrieve an access token. The
header applies to the next HTTP request defined in the entry. A header must be defined for each HTTP
request that retrieves a token.

• Payload: Contains the request body, in JSON format, that must be passed to the service to generate the
access token. The payload applies to the next HTTP request defined in the entry. A payload should be
defined only if a request body is required by the service for that HTTP request.

• HTTP request: Defines the HTTP request to the endpoint that is used to exchange authentication credentials
for access tokens. An HTTP request must be defined each time a token is retrieved.

• Data request credentials: Defines the header or parameter used in requests for data. There is only one
of these definitions per entry.The data request credentials take the following form, where service_reponse
is the service response containing the access token:

For headers:

"HEADER <header_name>=<header_value> {/<service_response>}"

For parameters:

"PARAM <parameter_name>=<parameter_value> {/<service_response>}"

Modifying unique parameters and credentials

To allow you to modify parameter values and payloads on a per connection basis, the REST file supports using
variables to reference connection property values specified in the connection string or data source definition.
This provides you with a secure method to specify unique values for each connection without having to edit
the REST file. For most properties, you can create a variable by enclosing the property name in { } brackets.
For example, to reference the value of the password property in the connection string, specify {password}.

The exception to this behavior is the CustomAuthParams property. The value of the CustomAuthParams
property is a semicolon-separated list of parameter values. To indicate the correct value in the list, in addition
to the property name, you must also specify the ordinal location of the parameter you want to reference in [
] brackets. For example, to reference www.example.com in the following CustomAuthParams value, you
would use a variable of {CustomAuthParams[3]}.

CustomAuthParams=123XYZ456abc789;My Company Inc;www.example.com

Progress DataDirect Autonomous REST Connector for JDBC : User's Guide for Partners: Version 6.0.0124

Chapter 4: Input REST file syntax

Note:

• The property name variables enclosed in brackets are case insensitive. For example, both {password}
and {Password} reference the Password connection property.

• If you specify a property name that does not resolve, the driver returns an error when attempting to issue
a request. For example, this could occur if the property specified is not supported or if there is a typographical
error in the specified variable.

• When using CustomAuthParams variables, if the specified ordinal position does not correlate to a value in
the CustomAuthParams connection property, the driver returns an error when attempting to issue a request.
For example, if specifying {CustomAuthParams[3]}, but only two values are specified by the connection
property, such as CustomAuthParams=123XYZ456abc789;My Company Inc.

Example: Simple token request
The following is an example of a simple token request, where access-token is the server response that
contains the payload with the access token. Most custom authentication requests will take this form.

"#authentication" : [
//Header
 "api-key={CustomAuthParams[1]}",
//Payload
 {
 "credentials": {
 "username": "{user}",
 "password": "{password}",
 "company": "{customAuthParams[2]}"
 }
 },
//HTTP request
 "POST http://{serverName}/bearertoken",
//Data request credentials. "{/access-token}" refers to the service
//response from the preceding HTTP request.
 "HEADER Authentication=Bearer {/access-token}"
]

Example:Two-step token request
The following example demonstrates a two-step authentication, where the service response from the initial
request, UserToken, is passed in the request header of the second stage of authentication. The principles
demonstrated in this example apply to authentication flows requiring two or more requests.

"#authentication" : [
//Header request for first request
 "accept=application/json",
 "content-type=application/json",
 "kmauthtoken=\\{sitename:\"{customAuthParams[1]}\",localeId:\"en_US\"\\}\\}",
//Payload for first request
 {
 "login": "{user}",
 "password": "{password}",
 "siteName": "{customAuthParams[1]}" },
//HTTP request for first token
 "POST https://{serverName}/getusertoken",
//Header for second request. "{/authenticationToken}" refers to the value of
//the service response from the preceding HTTP request.
 "accept=application/json",
 "content-type=application/json",
 "kmauthtoken=\\{sitename:\"{CustomAuthParams[1]}\",localeId:\"en_US\",
 UserToken:\"{/authenticationToken}\"\\}",
//Payload for second request
 {
 "userName": "{user}",

125Progress DataDirect Autonomous REST Connector for JDBC : User's Guide for Partners: Version 6.0.0

Custom authentication requests

 "password": "{password}",
 "siteName": "{customAuthParams[1]}",
 "userExternalType": "ACCOUNT"
 },
//HTTP request for second token
 "POST https://{serverName}/getaccesstoken",
//Data request credentials. "{/customAuthToken}" refers to the value in
//the service response from the preceding HTTP request.
 "HEADER Authentication=Bearer
 \\{sitename:\"{customAuthParams[1]}\",localeId:\"en_US\",
 userToken:\"{/authenticationToken}\",integrationUserToken:\
 "{/accessToken}\"\\}"]

Table definition entries
Table definition entries define the mapping of JSON endpoints to tables.You can specify a single entry or, in
a comma separated list, multiple entries.These entries can be as simple as a colon-separated table name and
endpoint pair ("<table_name>":"<endpoint>",). Or, for a greater level of configuration, entries can take
the form of JSON objects.

The following demonstrates the syntax of a set of three simple table definition entries. For endpoint details and
syntax, see "Query paths."

 "<table_name1>":"<endpoint1>",
 "<table_name2>":"<endpoint2>",
 "<table_name3>":"<endpoint3>"

Progress DataDirect Autonomous REST Connector for JDBC : User's Guide for Partners: Version 6.0.0126

Chapter 4: Input REST file syntax

The following demonstrates the syntax used to configure a single table entry in an array.

Note: The following example demonstrates the syntax for all the features and functionality supported by the
driver, but it is not typical for defining a table. In most scenarios, only a subset of these parameters would be
used to define a table.

1 {
2 "<table_name>": {
3 "#path":["<endpoint>"],
4 "#<paging_parameter>":"<paging_value>",
5 "#<parsing_parameter>":"<parsing_value>",
6 // The following POST entry defines two fields.You can define one or more
7 // fields in an entry.
8 "#post":{"<field1>":"<value1>","<field2>":"<value2>"}
9 //The following HTTP header entry defines two headers. You can define one or more
10 //headers in an entry.
11 "#headers":{"<header1>":"<value1>","<header2>":"<value2>"}
12 "<column1>":"<data_type>",
13 "<column2>":"<data_type>,#key",
14 //The following array defines two nested columns. You can define one or more
15 //nested columns in an array.
16 "<column3>[]":{"<column_a>:<data_type>","<column_b>":"<data_type>"}
17 //The following key-map defines two columns. You can define one or more
18 //columns in a key map.
19 "<column4>{<data_type>}":{"<column_c>:<data_type>","<column_d>":"<data_type>"}
20 //The following column defines two nested objects. You can define one or more
21 //nested columns in table definition.
22 "<column5>":{"<nested_column1>":"<data_type>","<nested_column2>":"<data_type>"}
23 "<column6>":"<data_type>","<java_date_format>"
24 "<column7>":{"#type":"<data_type>","#extract:<reg_expression>"}
25 "<column8>":{"#type":"<data_type>","#header":true,"#eq":"<header_name>"}
26 "<column9>":{"#type":"<data_type>","#<operator>":"<uri_property>"}
27 }
28 }

Table 24: Components of a table definition entry

DescriptionEntry/Entry TypeLines

(Required) Specifies the name of the table.Table name2

(Required) Specifies the query path to an endpoint(s) that the driver
connects to and samples. This can be a full endpoint, the path portion of
an endpoint, or an array of endpoints.

For details and syntax, see Query paths on page 135.

#path3

Configures paging behavior for the table using a set of parameters.These
parameters differ based on the paging mechanisms you want to employ.

For details and syntax, see Paging on page 129.

Paging parameters4

Configures the parsing behavior of the driver using a set of parameters.
This allows the driver to accurately parse services that do not use pure
REST syntax, such as legacy or proprietary services.

For details and syntax, see REST model parsing on page 131.

Parsing parameters5

127Progress DataDirect Autonomous REST Connector for JDBC : User's Guide for Partners: Version 6.0.0

Table definition entries

DescriptionEntry/Entry TypeLines

Defines the sample values used when issuing a POST request.This section
is mutually exclusive with the #headers property.

For details and syntax, see POST requests on page 131.

#post8

Specifies the HTTP headers to filter data returned by a GET request.This
section is mutually exclusive with the #post property.

For details and syntax, see Requests with custom HTTP headers on page
133.

#headers11

Defines the name of the column and additional mapping. Column names
can be literal or regular expressions.You can also configure data type
mapping in these fields.

For details and syntax, see Column names on page 138 and Data type
mapping on page 139.

Column definitions12-26

Designates the primary key by specifying the #key element in a column
definition.

For details and syntax, see Primary key on page 141.

Primary key13

Defines a column as an array by specifying brackets ([]) at the end of its
column name.

For details and syntax, see Columns as an array on page 141.

Column as an array16

Defines a column as an key-value map by specifying brackets ({}) at the
end of its column name.

For details and syntax, see Columns as a key-value map on page 142.

Column as key-value
map

19

Defines a column with nested objects in the entry body.

For details and syntax, see Columns with nested objects on page 142.

Column with nested
objects

22

Defines the time stamp format for a column in the definition.

For details and syntax, see Date, time, and timestamp formats on page
143.

Time stamp formats23

Specifies a regular expression that allows you to extract a subfield, or
portion, of a string value.

For details and syntax, see Subfields on page 144.

#extract24

Specifies whether the column can be sent as an HTTP header instead of
part of a query string for GET requests.

For details and syntax, see Columns as HTTP headers on page 144.

#header25

Specifies filtering operations to be sent in requests for the column.

For details and syntax, see Filtering and URI parameters on page 145.

Filtering and URI
parameters

26

Progress DataDirect Autonomous REST Connector for JDBC : User's Guide for Partners: Version 6.0.0128

Chapter 4: Input REST file syntax

See also
Query paths on page 135

Paging

The connector supports the following paging mechanisms:

• Row offset paging

• Page number paging

• Next page token

To configure paging, specify values for the following properties that correspond to the mechanism you want to
employ. These properties can be specified at either the top level of the REST file, as an entry, or as a property
in the body of a table definition. Properties set at the top level define the default behavior for all the tables
defined in the file, while properties specified in a table definition override paging behavior for that table. If paging
properties are not specified, the driver attempts to retrieve the first page for data sources that require paging.

In addition, for data sources that support more complicated parameters, you can specify parameters using a
template. See "Using templates for paging parameters" for details.

The following demonstrates the syntax used to configuring row offset paging in the body of a table definition:

"<table_name>": {
 "#path": "<host_name>/<endpoint_path>",
 "#maximumPageSize":1000,
 "#firstRowNumber":1,
 "#pageSizeParameter":"maxResults",
 "#rowOffsetParameter":"startAt"
 },

Row offset paging
The following table describes the parameters used to configure row offset paging:

Table 25: Row Offset Paging Properties

DescriptionProperty

Specifies the maximum page size in rows.#maximumPageSize

Specifies the number of the first row. The default is 0; however, some
systems begin numbering rows at 1.

#firstRowNumber

Specifies the name of the URI parameter that contains the page size.#pageSizeParameter

Specifies the name of the URI parameter that contains the starting row
number for this set of rows.

#rowOffsetParameter

Page number paging
The following table describes the parameters used to configure page number paging:

129Progress DataDirect Autonomous REST Connector for JDBC : User's Guide for Partners: Version 6.0.0

Table definition entries

Table 26: Page Number Paging Properties

DescriptionProperty

Specifies the maximum page size in rows.#maximumPageSize

Specifies the number of the first page. The default is 0; however, some
systems begin numbering pages at 1.

#firstPageNumber

Specifies the name of the URI parameter that contains the page size.#pageSizeParameter

When requesting a page of rows, this is the name of the URI parameter
to contain the page number.

#pageNumberParameter

Next page token paging
The following table describes the parameters used to configure next page token paging:

Table 27: Page Number Paging Properties

DescriptionProperty

(Optional) Specifies the maximum page size in rows. This option is only
required when the page size is not dictated by the data source.

#MaximumPageSize

(Optional) Specifies the name of the URI parameter that contains the
page size.

#PageSizeParameter

Specifies the name of the element containing the token that must be
passed in the URI to get the next page. For elements not stored at the
top level, this value should include a slash-separated path.

#NextPageElement

Specifies the name of the URI parameter that holds the token used to
fetch the next page. This is the token found on the current page at the
location specified by the #NextPageElement.

#NextPageParameter

Using templates for paging parameters
For REST services that use more complicated paging parameters, such as a single URI parameter that contains
both an offset and limit parameter, the driver supports using templates to configure paging parameters. In these
scenarios, you can specify the pair for the values for the following parameters:

• NextPageParameter

• PageNumberParameter

• PageSizeParameter

• RowOffsetParameter

The following syntax specifies templates for paging parameter values:

"<paging_parameter>":"<uri_option_name>=<option_element1>:{<token1>}[,<option_element2:<token2>[,...]]"

Progress DataDirect Autonomous REST Connector for JDBC : User's Guide for Partners: Version 6.0.0130

Chapter 4: Input REST file syntax

For example, the following demonstrates using variables to configure RowOffsetParameter paging:

"<table_name>": {
 "#path": "<host_name>/<endpoint_path>",
 "#maximumPageSize":100,
 "#rowOffsetParameter":"locator=start:{OFFSET},count:{LIMIT}"
 },

You can specify one or more of the following templates in the option_name=template pair:

Table 28: Paging parameter variables

DescriptionToken

References the page size.{LIMIT}

References the starting row number.{OFFSET}

References the page number.{PAGE}

References the next-page token.{NEXT}

REST model parsing

In addition to supporting the standard REST architecture, the driver supports RESTful or REST-like services.
To support idiosyncrasies in certain REST services, the driver includes a set of parsing parameters to adjust
how data is being parsed. For example:

"#<parsing_parameter>":"<parsing_value>"

The following table describes the parsing parameters that are currently supported.

Table 29: Parsing properties

DescriptionProperty

Set to true if your native JSON objects are not separated by commas, such
as with those using the JSON Lines format. For example:

{"Name":Sam,"Pet":"dog","vehicle":"car"}
{"Name":Denise,"Pet":"sugar bear","vehicle":"bike"}

The default is false.

#chunked

POST requests

To use POST requests, you must define the request in the REST file in the JSON format. The definition entry
is comprised of a path and body. The path contains the URL endpoint and the body used in requests, while
the body defines documents and provides sample values. The driver then uses these sample values to define
which data type to be used when executing a POST request.

131Progress DataDirect Autonomous REST Connector for JDBC : User's Guide for Partners: Version 6.0.0

Table definition entries

An entry for a POST request with a parameterized or unparameterized path takes the following form for an
entry defining two fields:

"<table_name>": {
 "#path": "<host_name>/<endpoint_path>",
 "#post": {
 "<field1>":"<value1>",
 "<field2>":"<value2>"
 }
 },

An entry for a POST request with query parameters takes the following form:

"<table_name>": {
 "#path": "<host_name>/<endpoint_path>",
 "#post": {
 "<field1>":"<value1>",
 "<field2>":"<value2>"
 }
 "<column_name>":{
 "#type":"<data_type>",
 "<operator>"":"<uri_parameter>"
 }
 },

table_name

is the name of the relational table to which the driver maps the endpoint. For example, countries2.

host_name

(optional) is the protocol and host name components of the URL endpoint. For example,
http://example.com.You can omit this value by specifying the host name using the ServerName
property.

endpoint_path

is the path component of the URL endpoint. For example, country.This can be an unparameterized
or parameterized path, a path that uses query parameters, or an array of paths. See "Query paths"
for examples and more information.

field

is the field name of the field=value pair. For example, START_DATE.

value

is the sample value the driver uses to determine the data type to use when executing a POST to
that document. For example, 2018-08-31.

column_name

specifies the name of the column against which you are using query parameters.

data_type

specifies the data type mapping for the corresponding column.

Progress DataDirect Autonomous REST Connector for JDBC : User's Guide for Partners: Version 6.0.0132

Chapter 4: Input REST file syntax

operator

specifies the property that corresponds to the query operator that you want to used to filter results.
This value can be #eq, #lt, #gt, #le, #ge, #ne, or #in. See "Filtering and URI parameters" for
details.

uri_property

specifies the name of the URI property to be filtered by the operator.

For example, the following demonstrates an entry for a POST request using an unparameterized request.

"countries2": {
 "#path": "http://example.com/country/",
 "#post": {
 "start_date":"2018-08-31",
 "end_date":"2018-09-01",
 "departments":"[engineering,marketing,sales]",
 "tags":"[blue,green,red]"
 }
 },

For example, the following demonstrates an entry for a POST request using an parameterized request.

"football": {
 "#path": "http://example.com/football/{team:Wildcats}",
 "#post": {
 "opponent":"Tigers",
 "date":"2018-2-2",
 }
 },

For example, the following demonstrates an entry for a POST request with query parameters.

"incidents": {
 "#path": "https://www.example.com/safety/",
 "#post": {
 "departments":"accounting",
 "date":"2015-10-8",
 }
 "reported":{
 "#type":"date",
 "#eq":"reportedOn"
 }
 },

Requests with custom HTTP headers

Some endpoints employ custom HTTP headers to filter data returned by a GET request. This type of filtering
is typically used to create multiple unique reports/tables from the same endpoint. To use custom headers, you
must define the request in the input REST file. The REST file entry is comprised of a path and header object.
The path object contains the URL endpoint used in requests, while the header object defines the headers and
provides value arguments used to filter the request.

In addition to filtering requests, the header object can be used to specify a value for the Accept header if the
default, application/json, is not accepted by the endpoint. This scenario typically occurs when accessing
a vendor endpoint that uses a proprietary Accept header.

133Progress DataDirect Autonomous REST Connector for JDBC : User's Guide for Partners: Version 6.0.0

Table definition entries

An entry for a GET request using custom HTTP headers takes the following form for an entry that defines three
headers.You can define one ore more headers in an entry.

"table_name":{
 "#path": "<host_name>/<endpoint_path>",
 "#headers":{
 "<header1>":"<value1>",
 "<header2>":"<value2>",
 "<header3>":"<value3>"
 }
}

table_name

is the name of the relational table to which the driver maps the endpoint. For example, people.

host_name

(optional) is the protocol and host name components of the URL endpoint. For example,
http://example.com.You can omit this value by specifying the host name using the ServerName
property.

endpoint_path

is the path component of the URL endpoint. For example, times.

header

is the HTTP header component of the header=value pair used for filtering the request. For example,
X-Subway-Payment.

When overriding the Accept header, this value is Accept.

value

is the value argument for the HTTP header used for filtering the request or, if overriding the default
Accept header, the value of the Accept header for the endpoint. For example, token.

For example, the following demonstrates an entry for a GET request that defines custom HTTP headers.

"people":{
 "#path": "http://example.com/people",
 "#headers":{
 "Accept":"application/calendar+json",
 "X-Subway-Payment":"token",
 "X-Laundry-Service":"dryclean",
 "X-Favorite-Food":"pizza"
 }
},

Progress DataDirect Autonomous REST Connector for JDBC : User's Guide for Partners: Version 6.0.0134

Chapter 4: Input REST file syntax

Query paths

The query path is the endpoint(s) against which requests are issued. The path can be specified as a single
endpoint or an array of endpoints (see "Array of endpoints" for details).You can specify the endpoints as a
table name-endpoint pair ("<table_name>":"<endpoint>") or by using the #path property in a table
definition. The following types of paths are supported:

• Unparametrized paths

• Parametrized paths

• Paths with query parameters

By default, query paths are issued as GET requests unless they are specified in a POST entry. See "POST
requests" for details.

The basic syntax of a query path takes the following form:

"<host_name>/<endpoint_path> <json_root>"

host_name

(optional) is the protocol and host name components of the URL endpoint. For example,
http://example.com.You can omit this value by specifying the host name using the ServerName
connection property.

endpoint_path

is the path component of the URL endpoint.

json_root

(optional) is a simple path to the element containing the results. If the results are returned in a
top-level array, nothing needs to be stated. For nested elements, separate the element names with
forward slashes (/).

For example, the following demonstrates a query path for an unparamaterized GET request with a JSON root
of countries.

#path:"http://example.com/countries/ countries",

135Progress DataDirect Autonomous REST Connector for JDBC : User's Guide for Partners: Version 6.0.0

Table definition entries

Requests with unparameterized paths
Unparametrized requests are issued as GET requests, unless they are specified in a POST request entry. To
specify endpoints for unparameterized requests, use the following format:

"<host_name>/<endpoint_path>",

host_name

(optional) is the protocol and host name components of the URL endpoint. For example,
http://example.com.You can omit this value by specifying the host name using the ServerName
property.

endpoint_path

is the path component of the URL endpoint. For example, countries.

For example, the following demonstrates a GET request that will map to the countries table using the #path
property.

#path:"http://example.com/countries/",

See also
POST requests on page 131

Requests with parameterized paths
Parameterized requests are issued as GET requests, unless they are specified in a POST request entry. To
specify parameterized requests, use the following format:

"<host_name>/<endpoint_path1>/{<param_name>:<param_value>}[/<endpoint_path2>]",

host_name

(optional) is the protocol and host name components of the URL endpoint. For example,
http://example.com.You can omit this value by specifying the host name using the ServerName
property.

endpoint_path

is the path component of the URL endpoint. For example, states.

param_name

is the parameter identifier used for filtering the request. For example, countryCode.

param_value

is the parameter value used for filtering the request during sampling. For example, USA.

For example, the following demonstrates a GET request that will map to the states table.

#path:"http://example.com/states/get/{countryCode:USA}/all",

Progress DataDirect Autonomous REST Connector for JDBC : User's Guide for Partners: Version 6.0.0136

Chapter 4: Input REST file syntax

See also
POST requests on page 131

Requests with query parameters
Requests with query parameters are issued as GET requests, unless they are specified in a POST request
entry. Use the following format to specify endpoints for requests with argument parameters. Multiple argument
parameters within the same endpoint are separated by an ampersand (&).

Note: For POST requests, the query parameter is specified in the body of the entry. See "Post requests" for
details.

"<host_name>/<endpoint_path>?<parameter>=<value>[&...]",

host_name

(optional) is the protocol and host name components of the URL endpoint. For example,
http://example.com.You can omit this value by specifying the host name using the ServerName
property.

endpoint_path

is the path component of the URL endpoint. For example, times.

parameter

is the argument parameter component of the parameter=value pair used for filtering the request.
For example, interval.

value

is the value argument parameter used for filtering the request. For example, 5min.

For example, the following demonstrates a GET request that will map to the timeseries table.

#path:"https://www.example.com/times/query?interval=5min&symbol=USA&function=TIME_SERIES_WEEKLY",

See also
POST requests on page 131

Arrays of endpoints
You can specify an array of endpoints in a comma-separated list using the #path property. This allows you
to specify multiple endpoints to different representations of the same data.When a query is executed, the driver
maximizes performance by determining which endpoint would return the smallest result set that satisfies your
query; then, issues a request to that endpoint. Arrays of endpoints are issued as GET requests, unless they
are specified in a POST request entry.

137Progress DataDirect Autonomous REST Connector for JDBC : User's Guide for Partners: Version 6.0.0

Table definition entries

Important: To determine the endpoint best suited for your query, starting at the top of the array, the driver
attempts to match the WHERE clause parameter to the supplied paths. The driver will use the first endpoint
in the list that successfully satisfies the query; therefore, the endpoints should be specified in an order of
most-specific to least-specific to ensure that the most appropriate endpoint is used.

The following demonstrates the basic syntax for issuing an array of endpoints. Using this form, you may specify
two or more endpoints in an array.

#path:"[
 <host_name>/<endpoint_path1>,
 <host_name>/<endpoint_path2>,
 <host_name>/<endpoint_path3>
]

host_name

(optional) is the protocol and host name components of the URL endpoint. For example,
http://example.com.You can omit this value by specifying the host name using the ServerName
property.

endpoint_path

is the path component of the URL endpoint. For example, times.

The following demonstrates an array of endpoints. In this example, /orders/{orderid} returns data for just
one order, /customer/{custid}/orders returns data for all orders for a customer, and /orders returns
all orders. Note that the array is specified in order from most-specific to least-specific to ensure that the driver
uses the endpoint best suited for your query.

{
 "Orders":{
 #path:"[
 "/orders/{orderid}",
 "/customer/{custid}/orders",
 "/orders"
]
}

For example, if you executed the following query, the driver would return results for order abc123 from the
/orders/{orderid} end point.

SELECT * FROM ORDERS WHERE ORDERID=abc123

The following query would return all the results for the customer with an ID of 98765 from the
/customer/{custid}/orders endpoint.

SELECT * FROM ORDERS WHERE CUSTID=98765

The following query would return results for all orders from the /orders endpoint.

SELECT * FROM ORDERS

Column names

The column name specified in a table definition can be the element name of the JSON response or a regular
expression matching an element in the JSON response.

Progress DataDirect Autonomous REST Connector for JDBC : User's Guide for Partners: Version 6.0.0138

Chapter 4: Input REST file syntax

Regular expressions (Java Regex)

When specifying a regular expression, the name should begin with a tilde (~). For example, if you had a
parameter that returned a JSON field as Time Series (Daily) or Weekly Time Series, you could
specify a regular expression ~.*Time Series.* for the column name. This would cause the column to be
reported as TIMESERIES, regardless of the contents of the field. For more information on Java Regex syntax,
refer to the Java documentation.

Aliases

You can also specify alias column names by specifying the alias name in angle brackets (< >) after the column
name. This is useful if the generated column name is confusing or lacks a real world context. For example:

"userfield73<casenumber>": "varchar(10)"

Data type mapping

You can manually configure the mapping of data types to a column using the following syntax in a column
definition.

"<column_name>":"<data_type>(<size_parameters>)",

column_name

is the name of the column in your relational table.

data_type

is the case-insensitive name of the data type to which you want to map the column. For columns for
which no data type is defined, the driver heuristically maps the column to the most appropriate data
type. If a value of null is specified, the column is mapped to the default data type, varchar(50).
See the "Supported Data Types and Parameters" table for a list supported data types.

size_parameters

(optional) is the length, precision and/or scale of the specified data type. If this value is not specified,
the driver will use the default value for the data type.

For example:

"price":"decimal(18.2)",

"name":"Varchar(256)",

"age":"Integer",

The following table documents the supported data types and parameters.

139Progress DataDirect Autonomous REST Connector for JDBC : User's Guide for Partners: Version 6.0.0

Table definition entries

https://docs.oracle.com/javase/7/docs/api/java/util/regex/Pattern.html

Table 30: Supported data types

CharacteristicsData Type and Parameters

Range: -99*1018 to 99*1018BigInt

Range: -99*1032765 to 99*1032765Binary(l)

Valid values: 0 or 1Bit

Valid values: 0 or 1Boolean

Precision: 255Char(l)

Range: -99*108 to 99*108Date

Range: -99*1014 to 99*1014

Minimum scale: 0

Decimal(p.s)

Maximum scale: 32767

Range: -99*1051 to 99*1051Double

Range: -99*1022 to 99*1022Float

Range: -99*10522 to 99*10522GUID

Range: -99*108 to 99*108Integer

Precision: 16777215JSON

Precision 16777215LongVarBinary(l)

Precision: 16777215LongVarChar(l)

Precision: 32767NVarChar(l)

Range: -99999 to 99999SmallInt

Precision: 12

Minimum scale: 0

Time(s)

Maximum scale: 9

Precision: 23

Minimum scale: 0

Timestamp(s)

Maximum scale: 9

Range: -999 to 999TinyInt

Precision: 16777215VarBinary(l)

Progress DataDirect Autonomous REST Connector for JDBC : User's Guide for Partners: Version 6.0.0140

Chapter 4: Input REST file syntax

CharacteristicsData Type and Parameters

Precision: 32767VarChar(l)

Primary key

You can designate the primary key for a table by modifying the REST file. In the column object, add the #key
after the data type element, separated by a comma. In the following example, the employeeID column has
been designated the primary key for this table.

{
"my_table":{
 "#path":[
 "https://example.com/employees"
],
 "employeeID":"VarChar(32),#key",
 "position_title":"VarChar(46)",
 "start_year":"Integer",
 }
}

You an also create a composite primary key by using the #key element to designate multiple columns in a
definition. For example, the values of the employeeID and position columns act as a composite key in the
following:

{
"my_table":{
 "#path":[
 "https://example.com/employees"
],
 "employeeID":"VarChar(32),#key",
 "position":"Integer",#key,
 "position_title":"VarChar(46)",
 "start_year":"Integer",
 }
}

Columns as an array

A column is defined as an array by ending the column name in brackets ([]). When mapping a column with
an array to the relational model, the driver normalizes the column to a child table. The driver also supports
arrays nested in arrays. When generating the relational view, the driver normalizes the nested array to child
table.

A column as an array takes the following form for defining two nested columns.You can define one or more
nested columns in an array.

"<column>[]":{"<array_column_a>":"<data_type>","<array_column_b>":"<data_type>"}

column_name

is the name of the column name that contains the nested object.

array_column

specifies the name of the column in an array.

141Progress DataDirect Autonomous REST Connector for JDBC : User's Guide for Partners: Version 6.0.0

Table definition entries

data_type

specifies the data type mapping for the corresponding column.

For example:

"income[]":{"month":"string","amount":"decimal(18.2)"}

Columns as a key-value map

You can define a column as an key-value map by ending the column name in curly brackets ({}), followed by
an object enclosed in curly brackets ({}). In addition, you can specify the data type for the key in the curly
brackets in the column name. For date and time data types, if necessary, you can also specify a format after
the key data type and separated by a comma.

A column as an key-value map takes the following form for a key-value map with two nested columns.You
can define one or more nested columns in a key-map entry.

"<column_map>{<key_data_type>,<format>}":{"<column_a>:<data_type>","<column_b>":"<data_type>"

column_map

is the column name that contains the key-value map.

key_data_type

specifies the data type mapping for the map key.

format

(optional) specifies the Java SimpleDateFormat, if the data type is of the data, time, timestamp type.
This value is not required if the values use ISO format. See "Date, time, and timestamp formats" for
details.

column

specifies the name of columns within the key-value map.

data_type

specifies the data type mapping for the column within the key-map.

The following example demonstrates defining a column as a key-value map with the key data type and format
specified:

"balancesheet{Date,MMddyyyy}":{"assets":"decimal(18.2)", "liabilities":"decimal(18.2)"}

Columns with nested objects

The driver supports objects with nested objects. When generating the relational view, the driver flattens nested
objects to the table of the parent object.

Progress DataDirect Autonomous REST Connector for JDBC : User's Guide for Partners: Version 6.0.0142

Chapter 4: Input REST file syntax

A column with three nested columns takes the following form for a column with three nested objects.You can
define one or more nested objects in a column definition.

"<column_name>":{
 "<nested_column1>":"<data_type>",
 "<nested_column2>","<data_type>",
 "<nested_column3>","<data_type>"
 }

column_name

is the name of the column that contains the nested object.

nested_column

specifies the data type mapping for the map key.

data_type

specifies the data type mapping for the corresponding column.

The following example demonstrates defining a column with nested objects:

"address":{"line1":"varchar(256)", "zip":"integer", "city":"varchar(256)"}

Date, time, and timestamp formats

By default, the driver interprets values of the Data, Time, and Timestamp data types using the default ISO
8061 formats:

• YYYY-MM-DD

• HH:MM:SS.sssssssssZ

• YYYY-MM-DDTHH:MM:SS.sssssssssZ

The driver provides additional flexibility in parsing ISO formats:

• The value can consist of less than the full number of digits. For example, 1970-1-1 is acceptable, as
opposed to 1970-01-01.

• The fractional second and timezone values are optional.

• For timestamps, dates or the date portions of values can use / or - as separators.

• For timestamps, the separator between the date and time portions can be an empty space instead of a T.

However, if necessary, you can also specify your own format after the data type element (or after #key element
in the primary key column) in your column definition, using the Java SimpleDateFormat. These definitions take
the following form:

"<column_name>":"<data_type>","<java_date_format>"

where:

column_name

is the name of the column.

143Progress DataDirect Autonomous REST Connector for JDBC : User's Guide for Partners: Version 6.0.0

Table definition entries

data_type

is either the Date, Time or Timestamp data type.

java_date_format

specifies the format of your Date, Time, or Timestamp values using the Java SimpleDateFormat.

For example:

"birthday":"date","d-M-y-G"

Subfields

Sometimes when a value comes back as a string, only part of that string is required. The #extract property
allows you to specify a regular expression that returns only a portion of the string. In addtion, using the #type
property, you can map the appropriate data type for the subfield before it is converted to the local type.

A column that extracts a subfield takes the following form:

"<column_name>": {"#type":"<data_type>","#extract:<reg_expression>"}

For example, suppose you get back a color value as 27:red:#ff0000, but you only need to know that it is
color 27 .You can accomplish this by specifying the following definition:

"color":{"#type":"Integer","#extract":"^([0-9]+).*"}

This results in the driver returning only the numeric portion of the string, which will be converted into an integer.

Columns as HTTP headers

A column can be sent as an HTTP header instead of as part of a query string in GET requests. HTTP headers
can be specified in the column definition by setting the #header property to true and providing the header
using the #eq property. The syntax to send a column as an HTTP header takes the following form:

"<column_name>[]":{"#type":"<data_type>","#header":true,"#default":"<default_filter>","#eq":"<header_name>"}

where:

data_type

(optional) specifies the data type to which the column is mapped.

default_filter

(optional) specifies the value sent with the header that is used to filter results. When this value is
specified, the value <header>:<default_filter> is sent in the HTTP request. If the default
filter is not specified, a WHERE clause must provide the filter value. For example:

SELECT * FROM authentication WHERE authentication = 'scott/tiger'

header_name

specifies the name of the HTTP header sent in the request.

Progress DataDirect Autonomous REST Connector for JDBC : User's Guide for Partners: Version 6.0.0144

Chapter 4: Input REST file syntax

The following example demonstrates

"service":{"#type":"VarChar","#header":true,"#default":"scott/tiger","#eq":"X-Custom-Auth"}

Filtering and URI parameters

The REST file supports a number of query operators that can be used to filter results. When specifying the
operators in column definition or URI, the filtering is pushed down to the data source, instead of being handled
by the driver. This results in more efficient processing of queries and improved performance.You can specify
one or more operators in the column definition using the set of REST file properties in the "Query operator
syntax" table.

If the URI property to be filtered is a parameter for the URI or POST body, and therefore not returned in the
result set, specify #virtual:true to have it exposed as searchable column. Otherwise, this property should
be omitted.

The syntax to send a column as using operators takes the following form:

"<column_name>":{
 "#type":"<data_type>",
 "<operator>":"<uri_parameter>",
 "#default":"<default_parameter>",
 "#virtual":true
}

where:

data_type

specifies the data type to which the column is mapped.

Note: If the data type is a date, time, timestamp, you can determine the format used by specfiying
a Java SimpleDateFormat string after a comma. See "Date, time, and timestamp formats" for details.

operator

specifies the property that corresponds to the query operator that you want to used to filter results.
This value can be #eq, #lt, #gt, #le, #ge, #ne, or #in. See "Query operator syntax" table for
details.

uri_property

specifies the name of the URI property to be filtered by the operator.

default_param

(optional) specifies the default parameter when the URI property to be filtered is a parameter. Some
REST services require certain parameters in order to operate. Typically, this would require including
a WHERE <parameter>=<value> in a SQL statement. However, when specifying the default
parameter, the driver will push down this value when it’s not included in the statement.

Table 31: Query operator syntax

Property syntaxQuery Operator

"#eq":"<uri_property>"=

145Progress DataDirect Autonomous REST Connector for JDBC : User's Guide for Partners: Version 6.0.0

Table definition entries

Property syntaxQuery Operator

"#lt":"<uri_property"<

"#gt":"<uri_property>">

"#ne":"<uri_property>"!=

"#ge":"<uri_property">=

"#le":"<uri_property>"<=

"#in":"<uri_property>"IN

Examples
The following demonstrates an entry using filters for the orderdate column.

{
 "Orders":{
 #path:"[
 "/orders/{orderid}",
 "/customer/{custid}/orders",
 "/orders"
],
 "orderid":"Varchar(256)",
 "custid":"Varchar(256)",
 "orderdate":{
 "#type":"Date",
 "#eq":"date",
 "#gt":"after",
 "#lt":"before"
 }
 }
}

The following demonstrates example queries to use against the preceding entry along with corresponding
example URIs that can be issued as an alternative to specifying filters in the column definition.

• The following query returns results for all the orders that occurred on 2020-01-01:

SELECT * FROM ORDERS WHERE ORDERDATE = '2020-01-01'

Instead of using the column definition, you can also push down filtering for this query using the following
URI:

https://www.example.com/ORDERS?DATE=2020-O1-1

• The following query returns all the orders that occurred after 2020-01-01:

SELECT * FROM ORDERS WHERE ORDERDATE > '2020-01-01'

Instead of using the column definition, you can also push down filtering for this query using the following
URI:

https://www.example.com//ORDERS?AFTER=20

Progress DataDirect Autonomous REST Connector for JDBC : User's Guide for Partners: Version 6.0.0146

Chapter 4: Input REST file syntax

• The following query returns results for all the orders that occurred before 2020-01-01:

SELECT * FROM ORDERS WHERE ORDEREDATE < '2020-01-01'

Instead of using the column definition, you can also push down filtering for this query using the following
URI:

https://www.example.com//ORDERS?BEFORE=2020-01-01

Example input REST file
The following is an example input REST file that can be modified for your environment.

{
 //An entry that defines how HTTP response status codes are processed by the driver.

 "#http":[{ "#code":200, "#action":"FAIL", "#operation":"SELECT",
 "#match":"\"status\":\"error"", "#message":"{message}", },
 { "#code":200, "#action":"OK" },
 { "#code":400, "#action":"ZERO_ROWS" },
 { "#code":401, "#action":"REAUTHENTICATE" },
 { "#code":404, "#action":"ZERO_ROWS" },
 { "#code":429, "#action":"RETRY_AFTER" },
 { "#code":503, "#action":"RETRY_AFTER" }]

 //An entry for a custom authentication request.
 "#authentication" : [
 "api-key={customAuthParams[1]}",
 {
 "credentials": {
 "username": "{user}",
 "password": "{password}",
 "company": "{customAuthParams[2]}"
 }
 },
 "POST http://{serverName}/bearertoken",
 "HEADER Authentication=Bearer {/access-token}"
]

 // A simple GET request without parameters to sample:
 "countries":"http://example.com/country",

 // A GET request with a parameter in the path:
 "states":"http://example.com/states/get/{countryCode:USA}/all",

 // A GET request with parameters as arguments

"timeseries":"https://www.example.com/times/query?interval=5min&symbol=USA&function=TIME_WEEKLY",

 // A GET request with custom HTTP headers
 "people":{
 "#path": "http://example.com/people",
 "#headers":{
 "Accept":"application/calendar+json",
 "X-Subway-Payment":"token",
 "X-Laundry-Service":"dryclean",
 "X-Favorite-Food":"pizza"
 }
 },

 // A POST with parameters in the body
 "countries2": {

147Progress DataDirect Autonomous REST Connector for JDBC : User's Guide for Partners: Version 6.0.0

Example input REST file

 "#path": "http://example.com/country",
 "#post": {
 "start_date":"2018-08-31",
 "end_date":"2018-09-01",
 "departments":"[engineering,marketing,sales]",
 "tags":"[blue,green,red]"
 }
 },

 // A GET with paging configured
 "products": {
 "#path": "http://example.com/products",
 "#maximumPageSize":1000,
 "#firstRowNumber":1,
 "#pageSizeParameter":"maxResults",
 "#rowOffsetParameter":"startAt"
 },
}

Progress DataDirect Autonomous REST Connector for JDBC : User's Guide for Partners: Version 6.0.0148

Chapter 4: Input REST file syntax

5
Supported SQL statements and extensions

The driver provides support for the SQL statements and the SQL extensions described in this section. SQL
extensions are denoted by an (EXT) in the topic title.

For details, see the following topics:

• Alter Session (EXT)

• Refresh Map (EXT)

• Select

• SQL expressions

• Subqueries

Alter Session (EXT)

Purpose
Changes various attributes of a local or remote session. A local session maintains the state of the overall
connection. A remote session maintains the state that pertains to a particular remote data source connection.

Syntax
ALTER SESSION SET attribute_name=value

where:

149Progress DataDirect Autonomous REST Connector for JDBC : User's Guide for Partners: Version 6.0.0

attribute_name

specifies the name of the attribute to be changed. Attributes apply to either local or remote sessions.

value

specifies the value for that attribute.

The following table lists the local and remote session attributes, and provides descriptions of each.

Table 32: Alter Session Attributes

DescriptionSession TypeAttribute Name

Sets the current schema for the local session. The current schema is
the schema used when an identifier in a SQL statement is unqualified.
The string value must be the name of a schema visible in the local
session. For example:

ALTER SESSION SET CURRENT_SCHEMA=AUTOREST

LocalCurrent_Schema

Sets the maximum number of Web service calls the driver can make
in executing a statement. Setting the Stmt_Call_Limit attribute has the
same effect as setting the StmtCallLimit connection property. It sets
the default Web service call limit used by any statement on the
connection. Executing this command on a statement overrides the
previously set StmtCallLimit for the connection. The value specified
must be a positive integer or 0. The value 0 means that no call limit
exists. For example:

ALTER SESSION SET STMT_CALL_LIMIT=150

LocalStmt_Call_Limit

Resets the Web service call count of a remote session to the value
specified. The value must be 0 or a positive integer. WS_Call_Count
represents the total number of Web service calls made to the remote
data source instance for the current session. For example:

ALTER SESSION SET autorest.WS_CALL_COUNT=0

The current value of WS_Call_Count can be obtained by referring to
the System_Remote_Sessions system table (see
SYSTEM_REMOTE_SESSIONS Catalog Table for details). For
example:

SELECT * from
information_schema.system_remote_sessions WHERE
session_id = cursessionid()

RemoteWs_Call_Count

Progress DataDirect Autonomous REST Connector for JDBC : User's Guide for Partners: Version 6.0.0150

Chapter 5: Supported SQL statements and extensions

Refresh Map (EXT)

Purpose
The REFRESH MAP statement adds newly discovered objects to your relational view of native data. It also
incorporates any configuration changes made to your relational view by reloading the schema definition and
associated files.

Syntax
REFRESH MAP

Notes

• REFRESH MAP is an expensive query since it involves the discovery of native data.

Select

Purpose
Use the Select statement to fetch results from one or more tables.

Syntax

SELECT select_clausefrom_clause
[where_clause]
[groupby_clause]
[having_clause]
[{UNION [ALL | DISTINCT] |
 {MINUS [DISTINCT] | EXCEPT [DISTINCT]} |
 INTERSECT [DISTINCT]} select_statement]
[limit_clause]

where:

select_clause

specifies the columns from which results are to be returned by the query. See "Select" for a complete
explanation.

from_clause

specifies one or more tables on which the other clauses in the query operate. See "From" for a
complete explanation.

where_clause

is optional and restricts the results that are returned by the query. See "Where clause" for a complete
explanation.

151Progress DataDirect Autonomous REST Connector for JDBC : User's Guide for Partners: Version 6.0.0

Refresh Map (EXT)

groupby_clause

is optional and allows query results to be aggregated in terms of groups. See "Group By clause" for
a complete explanation.

having_clause

is optional and specifies conditions for groups of rows (for example, display only the departments
that have salaries totaling more than $200,000). See "Having clause" for a complete explanation.

UNION

is an optional operator that combines the results of the left and right Select statements into a single
result. See "Union operator" for a complete explanation.

INTERSECT

is an optional operator that returns a single result by keeping any distinct values from the results of
the left and right Select statements. See "Intersect operator" for a complete explanation.

EXCEPT | MINUS

are synonymous optional operators that returns a single result by taking the results of the left Select
statement and removing the results of the right Select statement. See "Except and Minus operators"
for a complete explanation.

orderby_clause

is optional and sorts the results that are returned by the query. See "Order By clause" for a complete
explanation.

limit_clause

is optional and places an upper bound on the number of rows returned in the result. See "Limit
clause" for a complete explanation.

Select clause

Purpose
Use the Select clause to specify with a list of column expressions that identify columns of values that you want
to retrieve or an asterisk (*) to retrieve the value of all columns.

Syntax

SELECT [{LIMIT offsetnumber | TOP number}] [ALL | DISTINCT] {* | column_expression
[[AS] column_alias] [,column_expression [[AS] column_alias], ...]}

where:

LIMIT offset number

creates the result set for the Select statement first and then discards the first number of rows specified
by offset and returns the number of remaining rows specified by number. To not discard any of
the rows, specify 0 for offset, for example, LIMIT 0 number. To discard the first offset number
of rows and return all the remaining rows, specify 0 for number, for example, LIMIT offset0.

Progress DataDirect Autonomous REST Connector for JDBC : User's Guide for Partners: Version 6.0.0152

Chapter 5: Supported SQL statements and extensions

TOP number

is equivalent to LIMIT 0number.

column_expression

can be simply a column name (for example, last_name). More complex expressions may include
mathematical operations or string manipulation (for example, salary * 1.05). See "SQL
expressions" for details.column_expression can also include aggregate functions. See "Aggregate
functions" for details.

column_alias

can be used to give the column a descriptive name. For example, to assign the alias department to
the column dep:

SELECT dep AS department FROM emp

DISTINCT

eliminates duplicate rows from the result of a query. This operator can precede the first column
expression. For example:

SELECT DISTINCT dep FROM emp

Notes

• Separate multiple column expressions with commas (for example, SELECT last_name, first_name,
hire_date).

• Column names can be prefixed with the table name or table alias. For example, SELECT emp.last_name
or e.last_name, where e is the alias for the table emp.

• NULL values are not treated as distinct from each other. The default behavior is that all result rows be
returned, which can be made explicit with the keyword ALL.

See also
SQL expressions on page 161

Aggregate functions
Aggregate functions can also be a part of a Select clause. Aggregate functions return a single value from a
set of rows. An aggregate can be used with a column name (for example, AVG(salary)) or in combination
with a more complex column expression (for example, AVG(salary * 1.07)).

The following table lists supported aggregate functions.

Note: Doubly nested aggregates, such as SUM(COUNT(col1)), are currently not permitted by the driver.

Table 33: Aggregate Functions

ReturnsAggregate

The average of the values in a numeric column expression. For example, AVG(salary)
returns the average of all salary column values.

AVG

153Progress DataDirect Autonomous REST Connector for JDBC : User's Guide for Partners: Version 6.0.0

Select

The number of values in any field expression. For example, COUNT(name) returns the
number of name values. When using COUNT with a field name, COUNT returns the
number of non-NULL column values. A special example is COUNT(*), which returns
the number of rows in the set, including rows with NULL values.

COUNT

The maximum value in any column expression. For example, MAX(salary) returns
the maximum salary column value.

MAX

The minimum value in any column expression. For example, MIN(salary) returns
the minimum salary column value.

MIN

The total of the values in a numeric column expression. For example, SUM(salary)
returns the sum of all salary column values.

SUM

Example
The following example uses the COUNT, MAX, and AVG aggregate functions:

SELECT
 COUNT(amount) AS numOpportunities,
 MAX(amount) AS maxAmount,
 AVG(amount) AS avgAmount
FROM opportunity o INNER JOIN user u
 ON o.ownerId = u.id
WHERE o.isClosed = 'false' AND
 u.name = 'MyName'

From clause

Purpose
The From clause indicates the tables to be used in the Select statement.

Syntax
FROM table_name [table_alias] [,...]

where:

table_name

is the name of a table or a subquery. Multiple tables define an implicit inner join among those tables.
Multiple table names must be separated by a comma. For example:

SELECT * FROM emp, dep

Subqueries can be used instead of table names. Subqueries must be enclosed in parentheses. See
"Subquery in a From clause" for an example.

table_alias

is a name used to refer to a table in the rest of the Select statement. When you specify an alias for
a table, you can prefix all column names of that table with the table alias.

Progress DataDirect Autonomous REST Connector for JDBC : User's Guide for Partners: Version 6.0.0154

Chapter 5: Supported SQL statements and extensions

Example
The following example specifies two table aliases, e for emp and d for dep:

SELECT e.name, d.deptName
FROM emp e, dep d
WHERE e.deptId = d.id

table_alias is a name used to refer to a table in the rest of the Select statement. When you specify an alias
for a table, you can prefix all column names of that table with the table alias. For example, given the table
specification:

FROM emp E

you may refer to the last_name field as E.last_name. Table aliases must be used if the Select statement joins
a table to itself. For example:

SELECT * FROM emp E, emp F WHERE E.mgr_id = F.emp_id

The equal sign (=) includes only matching rows in the results.

Join in a From clause

Purpose
You can use a Join as a way to associate multiple tables within a Select statement. Joins may be either explicit
or implicit. For example, the following is the example from the previous section restated as an explicit inner
join:

SELECT * FROM emp INNER JOIN dep ON id=empId
SELECT e.name, d.deptName
FROM emp e INNER JOIN dep d ON e.deptId = d.id;

whereas the following is the same statement as an implicit inner join:

SELECT * FROM emp, dep WHERE emp.deptID=dep.id

Note: The ON clause in a join expression must evaluate to a true or false value.

Syntax

FROM table_name {RIGHT OUTER | INNER | LEFT OUTER | CROSS | FULL OUTER} JOIN table.key
 ON search-condition

Example
In this example, two tables are joined using LEFT OUTER JOIN.T1, the first table named includes nonmatching
rows.

SELECT * FROM T1 LEFT OUTER JOIN T2 ON T1.key = T2.key

If you use a CROSS JOIN, no ON expression is allowed for the join.

Subquery in a From clause

Subqueries can be used in the From clause in place of table references (table_name).

155Progress DataDirect Autonomous REST Connector for JDBC : User's Guide for Partners: Version 6.0.0

Select

Example
SELECT * FROM (SELECT * FROM emp WHERE sal > 10000) new_emp, dept WHERE
new_emp.deptno = dept.deptno

See also
Subqueries on page 169

Where clause

Purpose
Specifies the conditions that rows must meet to be retrieved.

Syntax
WHERE expr1rel_operatorexpr2

where:

expr1

is either a column name, literal, or expression.

expr2

is either a column name, literal, expression, or subquery. Subqueries must be enclosed in parentheses.

rel_operator

is the relational operator that links the two expressions.

Example
The following Select statement retrieves the first and last names of employees that make at least $20,000.

SELECT last_name, first_name FROM emp WHERE salary >= 20000

See also
Subqueries on page 169
SQL expressions on page 161

Group By clause

Purpose
Specifies the names of one or more columns by which the returned values are grouped. This clause is used
to return a set of aggregate values.

Syntax
GROUP BY column_expression [,...]

where:

Progress DataDirect Autonomous REST Connector for JDBC : User's Guide for Partners: Version 6.0.0156

Chapter 5: Supported SQL statements and extensions

column_expression

is either a column name or a SQL expression. Multiple values must be separated by a comma. If
column_expression is a column name, it must match one of the column names specified in the Select
clause. Also, the Group By clause must include all non-aggregate columns specified in the Select
list.

Example
The following example totals the salaries in each department:

SELECT dept_id, sum(salary) FROM emp GROUP BY dept_id

This statement returns one row for each distinct department ID. Each row contains the department ID and the
sum of the salaries of the employees in the department.

See also
Subqueries on page 169
SQL expressions on page 161

Having clause

Purpose
Specifies conditions for groups of rows (for example, display only the departments that have salaries totaling
more than $200,000). This clause is valid only if you have already defined a Group By clause.

Syntax
HAVING expr1rel_operatorexpr2

where:

expr1 | expr2

can be column names, constant values, or expressions. These expressions do not have to match a
column expression in the Select clause. See "SQL expressions" for details regarding SQL expressions.

rel_operator

is the relational operator that links the two expressions.

Example
The following example returns only the departments that have salaries totaling more than $200,000:

SELECT dept_id, sum(salary) FROM emp GROUP BY dept_id HAVING sum(salary) > 200000

See also
Subqueries on page 169
SQL expressions on page 161

157Progress DataDirect Autonomous REST Connector for JDBC : User's Guide for Partners: Version 6.0.0

Select

Union operator

Purpose
Combines the results of two Select statements into a single result. The single result is all the returned rows
from both Select statements. By default, duplicate rows are not returned. To return duplicate rows, use the All
keyword (UNION ALL).

Syntax

select_statement
UNION [ALL | DISTINCT] | {MINUS [DISTINCT] | EXCEPT [DISTINCT]} | INTERSECT
[DISTINCT]select_statement

Notes

• When using the Union operator, the Select lists for each Select statement must have the same number of
column expressions with the same data types and must be specified in the same order.

Example A
The following example has the same number of column expressions, and each column expression, in order,
has the same data type.

SELECT last_name, salary, hire_date FROM emp
UNION
SELECT name, pay, birth_date FROM person

Example B
The following example is not valid because the data types of the column expressions are different (salary
FROM emp has a different data type than last_name FROM raises). This example does have the same
number of column expressions in each Select statement but the expressions are not in the same order by data
type.

SELECT last_name, salary FROM emp
UNION
SELECT salary, last_name FROM raises

Intersect operator

Purpose
Intersect operator returns a single result set. The result set contains rows that are returned by both Select
statements. Duplicates are returned unless the Distinct operator is added.

Syntax

select_statement
INTERSECT [DISTINCT]
select_statement

where:

Progress DataDirect Autonomous REST Connector for JDBC : User's Guide for Partners: Version 6.0.0158

Chapter 5: Supported SQL statements and extensions

DISTINCT

eliminates duplicate rows from the results.

Notes

• When using the Intersect operator, the Select lists for each Select statement must have the same number
of column expressions with the same data types and must be specified in the same order.

Example A
The following example has the same number of column expressions, and each column expression, in order,
has the same data type.

SELECT last_name, salary, hire_date FROM emp
INTERSECT [DISTINCT]
SELECT name, pay, birth_date FROM person

Example B
The following example is not valid because the data types of the column expressions are different (salary
FROM emp has a different data type than last_name FROM raises). This example does have the same
number of column expressions in each Select statement but the expressions are not in the same order by data
type.

SELECT last_name, salary FROM emp
INTERSECT
SELECT salary, last_name FROM raises

Except and Minus operators

Purpose
Return the rows from the left Select statement that are not included in the result of the right Select statement.

Syntax

select_statement
{EXCEPT [DISTINCT] | MINUS [DISTINCT]}
select_statement

where:

DISTINCT

eliminates duplicate rows from the results.

Notes

• When using one of these operators, the Select lists for each Select statement must have the same number
of column expressions with the same data types and must be specified in the same order.

159Progress DataDirect Autonomous REST Connector for JDBC : User's Guide for Partners: Version 6.0.0

Select

Example A
The following example has the same number of column expressions, and each column expression, in order,
has the same data type.

SELECT last_name, salary, hire_date FROM emp
EXCEPT
SELECT name, pay, birth_date FROM person

Example B
The following example is not valid because the data types of the column expressions are different (salary
FROM emp has a different data type than last_name FROM raises). This example does have the same
number of column expressions in each Select statement but the expressions are not in the same order by data
type.

SELECT last_name, salary FROM emp
EXCEPT
SELECT salary, last_name FROM raises

Order By clause

Purpose
The Order By clause specifies how the rows are to be sorted.

Syntax
ORDER BY sort_expression [DESC | ASC] [,...]

where:

sort_expression

is either the name of a column, a column alias, a SQL expression, or the positioned number of the
column or expression in the select list to use.

The default is to perform an ascending (ASC) sort.

Example
To sort by last_name and then by first_name, you could use either of the following Select statements:

SELECT emp_id, last_name, first_name FROM emp

ORDER BY last_name, first_name

or

SELECT emp_id, last_name, first_name FROM emp

ORDER BY 2,3

In the second example, last_name is the second item in the Select list, so ORDER BY 2,3 sorts by last_name
and then by first_name.

See also
SQL expressions on page 161

Progress DataDirect Autonomous REST Connector for JDBC : User's Guide for Partners: Version 6.0.0160

Chapter 5: Supported SQL statements and extensions

Limit clause

Purpose
Places an upper bound on the number of rows returned in the result.

Syntax
LIMIT number_of_rows [OFFSET offset_number]

where:

number_of_rows

specifies a maximum number of rows in the result. A negative number indicates no upper bound.

OFFSET

specifies how many rows to skip at the beginning of the result set. offset_number is the number
of rows to skip.

Notes

• In a compound query, the Limit clause can appear only on the final Select statement. The limit is applied
to the entire query, not to the individual Select statement to which it is attached.

Example
The following example returns a maximum of 20 rows.

SELECT last_name, first_name FROM emp WHERE salary > 20000 ORDER BY dept_idc LIMIT
20

SQL expressions
An expression is a combination of one or more values, operators, and SQL functions that evaluate to a value.
You can use expressions in the Where, and Having of Select statements; and in the Set clauses of Update
statements.

Expressions enable you to use mathematical operations as well as character string manipulation operators to
form complex queries.

The driver supports both unquoted and quoted identifiers. An unquoted identifier must start with an ASCII alpha
character and can be followed by zero

Quoted identifiers must be enclosed in double quotation marks (""). A quoted identifier can contain any Unicode
character including the space character. The driver recognizes the Unicode escape sequence \uxxxx as a
Unicode character.You can specify a double quotation mark in a quoted identifier by escaping it with a double
quotation mark.

The maximum length of both quoted and unquoted identifiers is 128 characters.

Valid expression elements are:

• Column names

• Literals

161Progress DataDirect Autonomous REST Connector for JDBC : User's Guide for Partners: Version 6.0.0

SQL expressions

• Operators

• Functions

Column names

The most common expression is a simple column name.You can combine a column name with other expression
elements.

Literals

Literals are fixed data values. For example, in the expression PRICE * 1.05, the value 1.05 is a constant.
Literals are classified into types, including the following:

• Binary

• Character string

• Date

• Floating point

• Integer

• Numeric

• Time

• Timestamp

The following table describes the literal format for supported SQL data types.

Table 34: Literal Syntax Examples

ExampleLiteral SyntaxSQL Type

12 or -34 or 0n

where

n is any valid integer value in the range of the
INTEGER data type

BIGINT

0

1

Min Value: 0

Max Value: 1

BOOLEAN

'2010-05-21'DATE'date'DATE

'2010-05-21
18:33:05.025'

TIMESTAMP'ts'DATETIME

Progress DataDirect Autonomous REST Connector for JDBC : User's Guide for Partners: Version 6.0.0162

Chapter 5: Supported SQL statements and extensions

ExampleLiteral SyntaxSQL Type

0.25

3.1415

-7.48

n.f

where:

n

is the integral part

f

is the fractional part

DECIMAL

1.2E0 or 2.5E40 or -3.45E2
or 5.67E-4

n.fEx

where:

n is the integral part

f is the fractional part

x is the exponent

DOUBLE

12 or -34 or 0n

where n is a valid integer value in the range
of the INTEGER data type

INTEGER

'000482ff''hex_value'LONGVARBINARY

'This is a string
literal'

'value'LONGVARCHAR

'2010-05-21
18:33:05.025'

TIME'time'TIME

'This is a string
literal'

'value'VARCHAR

Character string literals
Text specifies a character string literal. A character string literal must be enclosed in single quotation marks.
To represent one single quotation mark within a literal, you must enter two single quotation marks. When the
data in the fields is returned to the client, trailing blanks are stripped.

A character string literal can have a maximum length of 32 KB, that is, (32*1024) bytes.

Example

'Hello'
'Jim''s friend is Joe'

Numeric literals
Unquoted numeric values are treated as numeric literals. If the unquoted numeric value contains a decimal
point or exponent, it is treated as a real literal; otherwise, it is treated as an integer literal.

163Progress DataDirect Autonomous REST Connector for JDBC : User's Guide for Partners: Version 6.0.0

SQL expressions

Example
+1894.1204

Binary literals
Binary literals are represented with single quotation marks. The valid characters in a binary literal are 0-9, a-f,
and A-F.

Example
'00af123d'

Date/Time literals
Date and time literal values are enclosed in single quotion marks ('value').

• The format for a Date literal is DATE'date'.

• The format for a Time literal is TIME'time'.

• The format for a Timestamp literal is TIMESTAMP'ts'.

Integer literals
Integer literals are represented by a string of numbers that are not enclosed in quotation marks and do not
contain decimal points.

Notes

• Integer constants must be whole numbers; they cannot contain decimals.

• Integer literals can start with sign characters (+/-).

Example
1994 or -2

Operators

This section describes the operators that can be used in SQL expressions.

Note: Numeric operators are restricted to numeric types. Numeric operators do not support non-numeric types.

Unary operator
A unary operator operates on only one operand.

operator operand

Binary operator
A binary operator operates on two operands.

operand1 operator operand2

Progress DataDirect Autonomous REST Connector for JDBC : User's Guide for Partners: Version 6.0.0164

Chapter 5: Supported SQL statements and extensions

If an operator is given a null operand, the result is always null. The only operator that does not follow this rule
is concatenation (||).

Arithmetic operators
You can use an arithmetic operator in an expression to negate, add, subtract, multiply, and divide numeric
values.The result of this operation is also a numeric value.The + and - operators are also supported in date/time
fields to allow date arithmetic. The following table lists the supported arithmetic operators.

Table 35: Arithmetic Operators

ExamplePurposeOperator

SELECT * FROM emp WHERE comm = -1Denotes a positive or negative expression.These
are unary operators.

+ -

UPDATE emp SET sal = sal + sal *
0.10

Multiplies, divides. These are binary operators.* /

SELECT sal + comm FROM emp WHERE
empno > 100

Adds, subtracts. These are binary operators.+ -

Concatenation operator
The concatenation operator manipulates character strings. The following table lists the only supported
concatenation operator.

Table 36: Concatenation Operator

ExamplePurposeOperator

SELECT 'Name is' || ename FROM empConcatenates character strings.||

The result of concatenating two character strings is the data type VARCHAR.

Comparison operators
Comparison operators compare one expression to another. The result of such a comparison can be TRUE,
FALSE, or UNKNOWN (if one of the operands is NULL).The driver considers the UNKNOWN result as FALSE.

The following table lists the supported comparison operators.

Table 37: Comparison Operators

ExamplePurposeOperator

SELECT * FROM emp WHERE sal =
1500

Equality test.=

SELECT * FROM emp WHERE sal !=
1500

Inequality test.!=<>

165Progress DataDirect Autonomous REST Connector for JDBC : User's Guide for Partners: Version 6.0.0

SQL expressions

ExamplePurposeOperator

SELECT * FROM emp WHERE sal >
1500 SELECT * FROM emp WHERE
sal < 1500

"Greater than" and "less than"
tests.

><

SELECT * FROM emp WHERE sal >=
1500 SELECT * FROM emp WHERE
sal <= 1500

"Greater than or equal to" and "less
than or equal to" tests.

>=<=

SELECT * FROM emp WHERE ENAME
LIKE 'J%'

% and _ wildcards can be used to
search for a pattern in a column.
The percent sign denotes zero,
one, or multiple characters, while
the underscore denotes a single
character. The right-hand side of a
LIKE expression must evaluate to
a string or binary.

LIKE

SELECT * FROM emp WHERE ENAME
LIKE 'J%_%' ESCAPE '\'

This matches all records with names that
start with letter 'J' and have the '_'
character in them.

The Escape clause is supported in
the LIKE predicate to indicate the
escape character. Escape
characters are used in the pattern
string to indicate that any wildcard
character that is after the escape

ESCAPE clause in LIKE
operator

LIKE 'pattern string' ESCAPE
'c'

SELECT * FROM emp WHERE ENAME
LIKE 'JOE_JOHN' ESCAPE '\'

character in the pattern string
should be treated as a regular
character.

The default escape character is
backslash (\).

This matches only records with name
'JOE_JOHN'.

SELECT * FROM emp WHERE job IN
('CLERK','ANALYST') SELECT *
FROM emp WHERE sal IN (SELECT
sal FROM emp WHERE deptno =
30)

"Equal to any member of" test.[NOT] IN

SELECT * FROM emp WHERE sal
BETWEEN 2000 AND 3000

"Greater than or equal to x" and
"less than or equal to y."

[NOT] BETWEEN x AND y

SELECT empno, ename, deptno
FROM emp e WHERE EXISTS
(SELECT deptno FROM dept WHERE
e.deptno = dept.deptno)

Tests for existence of rows in a
subquery.

EXISTS

SELECT * FROM emp WHERE ename
IS NOT NULL SELECT * FROM emp
WHERE ename IS NULL

Tests whether the value of the
column or expression is NULL.

IS [NOT] NULL

Progress DataDirect Autonomous REST Connector for JDBC : User's Guide for Partners: Version 6.0.0166

Chapter 5: Supported SQL statements and extensions

Logical operators
A logical operator combines the results of two component conditions to produce a single result or to invert the
result of a single condition. The following table lists the supported logical operators.

Table 38: Logical Operators

ExamplePurposeOperator

SELECT * FROM emp WHERE NOT (job
 IS NULL)
SELECT * FROM emp WHERE NOT (sal
 BETWEEN 1000 AND 2000)

Returns TRUE if the following condition is
FALSE. Returns FALSE if it is TRUE. If it is
UNKNOWN, it remains UNKNOWN.

NOT

SELECT * FROM emp WHERE job =
'CLERK' AND deptno = 10

Returns TRUE if both component conditions
are TRUE. Returns FALSE if either is FALSE;
otherwise, returns UNKNOWN.

AND

SELECT * FROM emp WHERE job =
'CLERK' OR deptno = 10

Returns TRUE if either component condition is
TRUE. Returns FALSE if both are FALSE;
otherwise, returns UNKNOWN.

OR

Example
In the Where clause of the following Select statement, the AND logical operator is used to ensure that managers
earning more than $1000 a month are returned in the result:

SELECT * FROM emp WHERE jobtitle = manager AND sal > 1000

Operator precedence
As expressions become more complex, the order in which the expressions are evaluated becomes important.
The following table shows the order in which the operators are evaluated. The operators in the first line are
evaluated first, then those in the second line, and so on. Operators in the same line are evaluated left to right
in the expression.You can change the order of precedence by using parentheses. Enclosing expressions in
parentheses forces them to be evaluated together.

Table 39: Operator Precedence

OperatorPrecedence

+ (Positive), - (Negative)1

*(Multiply), / (Division)2

+ (Add), - (Subtract)3

|| (Concatenate)4

=, >, <, >=, <=, <>, != (Comparison operators)5

NOT, IN, LIKE6

167Progress DataDirect Autonomous REST Connector for JDBC : User's Guide for Partners: Version 6.0.0

SQL expressions

OperatorPrecedence

AND7

OR8

Example A
The query in the following example returns employee records for which the department number is 1 or 2 and
the salary is greater than $1000:

SELECT * FROM emp WHERE (deptno = 1 OR deptno = 2) AND sal > 1000

Because parenthetical expressions are forced to be evaluated first, the OR operation takes precedence over
AND.

Example B
In the following example, the query returns records for all the employees in department 1, but only employees
whose salary is greater than $1000 in department 2.

SELECT * FROM emp WHERE deptno = 1 OR deptno = 2 AND sal > 1000

The AND operator takes precedence over OR, so that the search condition in the example is equivalent to the
expression deptno = 1 OR (deptno = 2 AND sal > 1000).

Functions

The driver supports a number of functions that you can use in expressions, including String, Numeric, Timedate,
and System functions.

Refer to "Scalar functions" in the Progress DataDirect for JDBC Drivers Reference for more information.

Conditions

A condition specifies a combination of one or more expressions and logical operators that evaluates to either
TRUE, FALSE, or UNKNOWN.You can use a condition in the Where clause of the Delete, Select, and Update
statements; and in the Having clauses of Select statements. The following describes supported conditions.

Table 40: Conditions

DescriptionCondition

Specifies a comparison with expressions or subquery results.

= , !=, <>, < , >, <=, <=

Simple comparison

Specifies a comparison with any or all members in a list or
subquery.

[= , !=, <>, < , >, <=, <=] [ANY, ALL, SOME]

Group comparison

Progress DataDirect Autonomous REST Connector for JDBC : User's Guide for Partners: Version 6.0.0168

Chapter 5: Supported SQL statements and extensions

DescriptionCondition

Tests for membership in a list or subquery.

[NOT] IN

Membership

Tests for inclusion in a range.

[NOT] BETWEEN

Range

Tests for nulls.

IS NULL, IS NOT NULL

NULL

Tests for existence of rows in a subquery.

[NOT] EXISTS

EXISTS

Specifies a test involving pattern matching.

[NOT] LIKE

LIKE

Specifies a combination of other conditions.

CONDITION [AND/OR] CONDITION

Compound

Subqueries
A query is an operation that retrieves data from one or more tables or views. In this reference, a top-level query
is called a Select statement, and a query nested within a Select statement is called a subquery.

A subquery is a query expression that appears in the body of another expression such as a Select, an Update,
or a Delete statement. In the following example, the second Select statement is a subquery:

SELECT * FROM emp WHERE deptno IN (SELECT deptno FROM dept)

IN predicate

Purpose
The In predicate specifies a set of values against which to compare a result set. If the values are being compared
against a subquery, only a single column result set is returned.

Syntax
value [NOT] IN (value1, value2,...)

OR

value [NOT] IN (subquery)

169Progress DataDirect Autonomous REST Connector for JDBC : User's Guide for Partners: Version 6.0.0

Subqueries

Example
SELECT * FROM emp WHERE deptno IN

(SELECT deptno FROM dept WHERE dname <> 'Sales')

EXISTS predicate

Purpose
The Exists predicate is true only if the cardinality of the subquery is greater than 0; otherwise, it is false.

Syntax
EXISTS (subquery)

Example

SELECT empno, ename, deptno FROM emp e WHERE EXISTS
(SELECT deptno FROM dept WHERE e.deptno = dept.deptno)

UNIQUE predicate

Purpose
The Unique predicate is used to determine whether duplicate rows exist in a virtual table (one returned from
a subquery).

Syntax
UNIQUE (subquery)

Example

SELECT * FROM dept d WHERE UNIQUE
(SELECT deptno FROM emp e WHERE e.deptno = d.deptno)

Correlated subqueries

Purpose
A correlated subquery is a subquery that references a column from a table referred to in the parent statement.
A correlated subquery is evaluated once for each row processed by the parent statement.The parent statement
can be a Select, Update, or Delete statement.

A correlated subquery answers a multiple-part question in which the answer depends on the value in each row
processed by the parent statement. For example, you can use a correlated subquery to determine which
employees earn more than the average salaries for their departments. In this case, the correlated subquery
specifically computes the average salary for each department.

Progress DataDirect Autonomous REST Connector for JDBC : User's Guide for Partners: Version 6.0.0170

Chapter 5: Supported SQL statements and extensions

Syntax

SELECT select_list
 FROM table1 t_alias1
 WHERE expr rel_operator
 (SELECT column_list
 FROM table2 t_alias2
 WHERE t_alias1.columnrel_operatort_alias2.column)
UPDATE table1 t_alias1
 SET column =
 (SELECT expr
 FROM table2 t_alias2
 WHERE t_alias1.column = t_alias2.column)
DELETE FROM table1 t_alias1
 WHERE column rel_operator
 (SELECT expr
 FROM table2 t_alias2
 WHERE t_alias1.column = t_alias2.column)

Notes

• Correlated column names in correlated subqueries must be explicitly qualified with the table name of the
parent.

Example A
The following statement returns data about employees whose salaries exceed their department average. This
statement assigns an alias to emp, the table containing the salary information, and then uses the alias in a
correlated subquery:

SELECT deptno, ename, sal FROM emp x WHERE sal >
 (SELECT AVG(sal) FROM emp WHERE x.deptno = deptno)
 ORDER BY deptno

Example B
This is an example of a correlated subquery that returns row values:

SELECT * FROM dept "outer" WHERE 'manager' IN
 (SELECT managername FROM emp
 WHERE "outer".deptno = emp.deptno)

Example C
This is an example of finding the department number (deptno) with multiple employees:

SELECT * FROM dept main WHERE 1 <
 (SELECT COUNT(*) FROM emp WHERE deptno = main.deptno)

Example D
This is an example of correlating a table with itself:

SELECT deptno, ename, sal FROM emp x WHERE sal >
 (SELECT AVG(sal) FROM emp WHERE x.deptno = deptno)

171Progress DataDirect Autonomous REST Connector for JDBC : User's Guide for Partners: Version 6.0.0

Subqueries

Progress DataDirect Autonomous REST Connector for JDBC : User's Guide for Partners: Version 6.0.0172

Chapter 5: Supported SQL statements and extensions

	Copyright
	Table of Contents
	Welcome to the Progress DataDirect Autonomous REST Connector for JDBC
	What's new in this release?
	Setting up the driver
	Connection URL
	Mapping objects to tables
	Normalizing JSON maps
	Determining the primary key

	Using the driver
	Configuring the relational map
	Using the Sample property method
	Using the input REST file method
	Creating an input REST file
	Modifying the relational view
	Designating the primary key
	Adding/removing objects

	Mapping new native objects to a table

	Connecting from an application
	Passing the connection URL

	Using connection properties
	Required properties
	Mapping properties
	Basic authentication properties
	HTTP header authentication properties
	OAuth 2.0 properties
	URL parameter authentication properties
	Custom authentication request properties
	Data encryption properties
	Proxy server properties
	Web service properties
	Data type handling properties
	Timeout properties
	Statement pooling properties
	Additional properties

	Connecting through a proxy server
	Performance considerations
	Authentication
	Basic authentication
	HTTP header authentication
	URL parameter authentication
	OAuth 2.0 authentication
	Access token flow
	Authorization code grant
	Client credentials grant
	Password grant
	Refresh token grant

	Custom authentication

	Data encryption
	Configuring SSL encryption
	Configuring SSL server authentication
	Configuring SSL client authentication

	IP addresses
	Timeouts
	Using Java logging
	Logging components
	JDBC API logger
	SQL Engine logger
	Web Service Adapter logger

	Configuring logging
	Using the JVM for logging
	Using the driver for logging

	Enabling Debug Record Mode
	Tracking JDBC calls with DataDirect Spy
	Enabling DataDirect Spy
	Using a connection URL
	DataDirect Spy attributes

	Connection property descriptions
	AccessToken
	AuthenticationMethod
	AuthHeader
	AuthParam
	ClientID
	ClientSecret
	Config
	ConvertNull
	CreateMap
	CryptoProtocolVersion
	CustomAuthParams
	DebugRecord
	EncryptionMethod
	FetchSize
	HostNameInCertificate
	ImportStatementPool
	InsensitiveResultSetBufferSize
	JDBCBehavior
	KeyPassword
	KeyStore
	KeyStorePassword
	LogConfigFile
	LoginTimeout
	LogoffURI
	MaxPooledStatements
	OAuthCode
	Password
	PortNumber
	ProxyHost
	ProxyPassword
	ProxyPort
	ProxyUser
	ReadAhead
	RedirectURI
	RefreshDirtyCache
	RefreshSchema
	RefreshToken
	RegisterStatementPoolMonitorMBean
	Sample
	SchemaMap
	Scope
	SecurityToken
	ServerName
	SpyAttributes
	StmtCallLimit
	StmtCallLimitBehavior
	Table
	TokenURI
	TrustStore
	TrustStorePassword
	User
	ValidateServerCertificate
	WSFetchSize
	WSPoolSize
	WSRetryCount
	WSTimeout

	Input REST file syntax
	HTTP response code processing
	OAuth 2.0 authentication
	Custom authentication requests
	Table definition entries
	Paging
	Using templates for paging parameters

	REST model parsing
	POST requests
	Requests with custom HTTP headers
	Query paths
	Requests with unparameterized paths
	Requests with parameterized paths
	Requests with query parameters
	Arrays of endpoints

	Column names
	Data type mapping
	Primary key
	Columns as an array
	Columns as a key-value map
	Columns with nested objects
	Date, time, and timestamp formats
	Subfields
	Columns as HTTP headers
	Filtering and URI parameters

	Example input REST file

	Supported SQL statements and extensions
	Alter Session (EXT)
	Refresh Map (EXT)
	Select
	Select clause
	Aggregate functions
	From clause
	Join in a From clause
	Subquery in a From clause

	Where clause
	Group By clause
	Having clause
	Union operator
	Intersect operator
	Except and Minus operators
	Order By clause
	Limit clause

	SQL expressions
	Column names
	Literals
	Character string literals
	Numeric literals
	Binary literals
	Date/Time literals
	Integer literals

	Operators
	Unary operator
	Binary operator
	Arithmetic operators
	Concatenation operator
	Comparison operators
	Logical operators
	Operator precedence

	Functions
	Conditions

	Subqueries
	IN predicate
	EXISTS predicate
	UNIQUE predicate
	Correlated subqueries

